1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Andrew Macleod <amacleod@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "ssaexpand.h"
39 /* FIXME: A lot of code here deals with expanding to RTL. All that code
40 should be in cfgexpand.c. */
44 DEF_VEC_I(source_location
);
45 DEF_VEC_ALLOC_I(source_location
,heap
);
47 /* Used to hold all the components required to do SSA PHI elimination.
48 The node and pred/succ list is a simple linear list of nodes and
49 edges represented as pairs of nodes.
51 The predecessor and successor list: Nodes are entered in pairs, where
52 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
53 predecessors, all the odd elements are successors.
56 When implemented as bitmaps, very large programs SSA->Normal times were
57 being dominated by clearing the interference graph.
59 Typically this list of edges is extremely small since it only includes
60 PHI results and uses from a single edge which have not coalesced with
61 each other. This means that no virtual PHI nodes are included, and
62 empirical evidence suggests that the number of edges rarely exceed
63 3, and in a bootstrap of GCC, the maximum size encountered was 7.
64 This also limits the number of possible nodes that are involved to
65 rarely more than 6, and in the bootstrap of gcc, the maximum number
66 of nodes encountered was 12. */
68 typedef struct _elim_graph
{
69 /* Size of the elimination vectors. */
72 /* List of nodes in the elimination graph. */
75 /* The predecessor and successor edge list. */
76 VEC(int,heap
) *edge_list
;
78 /* Source locus on each edge */
79 VEC(source_location
,heap
) *edge_locus
;
84 /* Stack for visited nodes. */
87 /* The variable partition map. */
90 /* Edge being eliminated by this graph. */
93 /* List of constant copies to emit. These are pushed on in pairs. */
94 VEC(int,heap
) *const_dests
;
95 VEC(tree
,heap
) *const_copies
;
97 /* Source locations for any constant copies. */
98 VEC(source_location
,heap
) *copy_locus
;
102 /* For an edge E find out a good source location to associate with
103 instructions inserted on edge E. If E has an implicit goto set,
104 use its location. Otherwise search instructions in predecessors
105 of E for a location, and use that one. That makes sense because
106 we insert on edges for PHI nodes, and effects of PHIs happen on
107 the end of the predecessor conceptually. */
110 set_location_for_edge (edge e
)
114 set_curr_insn_source_location (e
->goto_locus
);
115 set_curr_insn_block (e
->goto_block
);
119 basic_block bb
= e
->src
;
120 gimple_stmt_iterator gsi
;
124 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
126 gimple stmt
= gsi_stmt (gsi
);
127 if (is_gimple_debug (stmt
))
129 if (gimple_has_location (stmt
) || gimple_block (stmt
))
131 set_curr_insn_source_location (gimple_location (stmt
));
132 set_curr_insn_block (gimple_block (stmt
));
136 /* Nothing found in this basic block. Make a half-assed attempt
137 to continue with another block. */
138 if (single_pred_p (bb
))
139 bb
= single_pred (bb
);
143 while (bb
!= e
->src
);
147 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
148 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
149 which we deduce the size to copy in that case. */
152 emit_partition_copy (rtx dest
, rtx src
, int unsignedsrcp
, tree sizeexp
)
158 if (GET_MODE (src
) != VOIDmode
&& GET_MODE (src
) != GET_MODE (dest
))
159 src
= convert_to_mode (GET_MODE (dest
), src
, unsignedsrcp
);
160 if (GET_MODE (src
) == BLKmode
)
162 gcc_assert (GET_MODE (dest
) == BLKmode
);
163 emit_block_move (dest
, src
, expr_size (sizeexp
), BLOCK_OP_NORMAL
);
166 emit_move_insn (dest
, src
);
174 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
177 insert_partition_copy_on_edge (edge e
, int dest
, int src
, source_location locus
)
181 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
184 "Inserting a partition copy on edge BB%d->BB%d :"
187 e
->dest
->index
, dest
, src
);
188 fprintf (dump_file
, "\n");
191 gcc_assert (SA
.partition_to_pseudo
[dest
]);
192 gcc_assert (SA
.partition_to_pseudo
[src
]);
194 set_location_for_edge (e
);
195 /* If a locus is provided, override the default. */
197 set_curr_insn_source_location (locus
);
199 var
= partition_to_var (SA
.map
, src
);
200 seq
= emit_partition_copy (SA
.partition_to_pseudo
[dest
],
201 SA
.partition_to_pseudo
[src
],
202 TYPE_UNSIGNED (TREE_TYPE (var
)),
205 insert_insn_on_edge (seq
, e
);
208 /* Insert a copy instruction from expression SRC to partition DEST
212 insert_value_copy_on_edge (edge e
, int dest
, tree src
, source_location locus
)
215 enum machine_mode dest_mode
, src_mode
;
219 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
222 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
224 e
->dest
->index
, dest
);
225 print_generic_expr (dump_file
, src
, TDF_SLIM
);
226 fprintf (dump_file
, "\n");
229 gcc_assert (SA
.partition_to_pseudo
[dest
]);
231 set_location_for_edge (e
);
232 /* If a locus is provided, override the default. */
234 set_curr_insn_source_location (locus
);
238 var
= SSA_NAME_VAR (partition_to_var (SA
.map
, dest
));
239 src_mode
= TYPE_MODE (TREE_TYPE (src
));
240 dest_mode
= GET_MODE (SA
.partition_to_pseudo
[dest
]);
241 gcc_assert (src_mode
== TYPE_MODE (TREE_TYPE (var
)));
242 gcc_assert (!REG_P (SA
.partition_to_pseudo
[dest
])
243 || dest_mode
== promote_decl_mode (var
, &unsignedp
));
245 if (src_mode
!= dest_mode
)
247 x
= expand_expr (src
, NULL
, src_mode
, EXPAND_NORMAL
);
248 x
= convert_modes (dest_mode
, src_mode
, x
, unsignedp
);
250 else if (src_mode
== BLKmode
)
252 x
= SA
.partition_to_pseudo
[dest
];
253 store_expr (src
, x
, 0, false);
256 x
= expand_expr (src
, SA
.partition_to_pseudo
[dest
],
257 dest_mode
, EXPAND_NORMAL
);
259 if (x
!= SA
.partition_to_pseudo
[dest
])
260 emit_move_insn (SA
.partition_to_pseudo
[dest
], x
);
264 insert_insn_on_edge (seq
, e
);
267 /* Insert a copy instruction from RTL expression SRC to partition DEST
271 insert_rtx_to_part_on_edge (edge e
, int dest
, rtx src
, int unsignedsrcp
,
272 source_location locus
)
275 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
278 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
280 e
->dest
->index
, dest
);
281 print_simple_rtl (dump_file
, src
);
282 fprintf (dump_file
, "\n");
285 gcc_assert (SA
.partition_to_pseudo
[dest
]);
287 set_location_for_edge (e
);
288 /* If a locus is provided, override the default. */
290 set_curr_insn_source_location (locus
);
292 /* We give the destination as sizeexp in case src/dest are BLKmode
293 mems. Usually we give the source. As we result from SSA names
294 the left and right size should be the same (and no WITH_SIZE_EXPR
295 involved), so it doesn't matter. */
296 seq
= emit_partition_copy (SA
.partition_to_pseudo
[dest
],
298 partition_to_var (SA
.map
, dest
));
300 insert_insn_on_edge (seq
, e
);
303 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
307 insert_part_to_rtx_on_edge (edge e
, rtx dest
, int src
, source_location locus
)
311 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
314 "Inserting a temp copy on edge BB%d->BB%d : ",
317 print_simple_rtl (dump_file
, dest
);
318 fprintf (dump_file
, "= PART.%d\n", src
);
321 gcc_assert (SA
.partition_to_pseudo
[src
]);
323 set_location_for_edge (e
);
324 /* If a locus is provided, override the default. */
326 set_curr_insn_source_location (locus
);
328 var
= partition_to_var (SA
.map
, src
);
329 seq
= emit_partition_copy (dest
,
330 SA
.partition_to_pseudo
[src
],
331 TYPE_UNSIGNED (TREE_TYPE (var
)),
334 insert_insn_on_edge (seq
, e
);
338 /* Create an elimination graph with SIZE nodes and associated data
342 new_elim_graph (int size
)
344 elim_graph g
= (elim_graph
) xmalloc (sizeof (struct _elim_graph
));
346 g
->nodes
= VEC_alloc (int, heap
, 30);
347 g
->const_dests
= VEC_alloc (int, heap
, 20);
348 g
->const_copies
= VEC_alloc (tree
, heap
, 20);
349 g
->copy_locus
= VEC_alloc (source_location
, heap
, 10);
350 g
->edge_list
= VEC_alloc (int, heap
, 20);
351 g
->edge_locus
= VEC_alloc (source_location
, heap
, 10);
352 g
->stack
= VEC_alloc (int, heap
, 30);
354 g
->visited
= sbitmap_alloc (size
);
360 /* Empty elimination graph G. */
363 clear_elim_graph (elim_graph g
)
365 VEC_truncate (int, g
->nodes
, 0);
366 VEC_truncate (int, g
->edge_list
, 0);
367 VEC_truncate (source_location
, g
->edge_locus
, 0);
371 /* Delete elimination graph G. */
374 delete_elim_graph (elim_graph g
)
376 sbitmap_free (g
->visited
);
377 VEC_free (int, heap
, g
->stack
);
378 VEC_free (int, heap
, g
->edge_list
);
379 VEC_free (tree
, heap
, g
->const_copies
);
380 VEC_free (int, heap
, g
->const_dests
);
381 VEC_free (int, heap
, g
->nodes
);
382 VEC_free (source_location
, heap
, g
->copy_locus
);
383 VEC_free (source_location
, heap
, g
->edge_locus
);
389 /* Return the number of nodes in graph G. */
392 elim_graph_size (elim_graph g
)
394 return VEC_length (int, g
->nodes
);
398 /* Add NODE to graph G, if it doesn't exist already. */
401 elim_graph_add_node (elim_graph g
, int node
)
406 FOR_EACH_VEC_ELT (int, g
->nodes
, x
, t
)
409 VEC_safe_push (int, heap
, g
->nodes
, node
);
413 /* Add the edge PRED->SUCC to graph G. */
416 elim_graph_add_edge (elim_graph g
, int pred
, int succ
, source_location locus
)
418 VEC_safe_push (int, heap
, g
->edge_list
, pred
);
419 VEC_safe_push (int, heap
, g
->edge_list
, succ
);
420 VEC_safe_push (source_location
, heap
, g
->edge_locus
, locus
);
424 /* Remove an edge from graph G for which NODE is the predecessor, and
425 return the successor node. -1 is returned if there is no such edge. */
428 elim_graph_remove_succ_edge (elim_graph g
, int node
, source_location
*locus
)
432 for (x
= 0; x
< VEC_length (int, g
->edge_list
); x
+= 2)
433 if (VEC_index (int, g
->edge_list
, x
) == node
)
435 VEC_replace (int, g
->edge_list
, x
, -1);
436 y
= VEC_index (int, g
->edge_list
, x
+ 1);
437 VEC_replace (int, g
->edge_list
, x
+ 1, -1);
438 *locus
= VEC_index (source_location
, g
->edge_locus
, x
/ 2);
439 VEC_replace (source_location
, g
->edge_locus
, x
/ 2, UNKNOWN_LOCATION
);
442 *locus
= UNKNOWN_LOCATION
;
447 /* Find all the nodes in GRAPH which are successors to NODE in the
448 edge list. VAR will hold the partition number found. CODE is the
449 code fragment executed for every node found. */
451 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
455 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
457 y_ = VEC_index (int, (GRAPH)->edge_list, x_); \
460 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1)); \
461 (void) ((LOCUS) = VEC_index (source_location, \
462 (GRAPH)->edge_locus, x_ / 2)); \
468 /* Find all the nodes which are predecessors of NODE in the edge list for
469 GRAPH. VAR will hold the partition number found. CODE is the
470 code fragment executed for every node found. */
472 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
476 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
478 y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1); \
481 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_)); \
482 (void) ((LOCUS) = VEC_index (source_location, \
483 (GRAPH)->edge_locus, x_ / 2)); \
489 /* Add T to elimination graph G. */
492 eliminate_name (elim_graph g
, int T
)
494 elim_graph_add_node (g
, T
);
498 /* Build elimination graph G for basic block BB on incoming PHI edge
502 eliminate_build (elim_graph g
)
506 gimple_stmt_iterator gsi
;
508 clear_elim_graph (g
);
510 for (gsi
= gsi_start_phis (g
->e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
512 gimple phi
= gsi_stmt (gsi
);
513 source_location locus
;
515 p0
= var_to_partition (g
->map
, gimple_phi_result (phi
));
516 /* Ignore results which are not in partitions. */
517 if (p0
== NO_PARTITION
)
520 Ti
= PHI_ARG_DEF (phi
, g
->e
->dest_idx
);
521 locus
= gimple_phi_arg_location_from_edge (phi
, g
->e
);
523 /* If this argument is a constant, or a SSA_NAME which is being
524 left in SSA form, just queue a copy to be emitted on this
526 if (!phi_ssa_name_p (Ti
)
527 || (TREE_CODE (Ti
) == SSA_NAME
528 && var_to_partition (g
->map
, Ti
) == NO_PARTITION
))
530 /* Save constant copies until all other copies have been emitted
532 VEC_safe_push (int, heap
, g
->const_dests
, p0
);
533 VEC_safe_push (tree
, heap
, g
->const_copies
, Ti
);
534 VEC_safe_push (source_location
, heap
, g
->copy_locus
, locus
);
538 pi
= var_to_partition (g
->map
, Ti
);
541 eliminate_name (g
, p0
);
542 eliminate_name (g
, pi
);
543 elim_graph_add_edge (g
, p0
, pi
, locus
);
550 /* Push successors of T onto the elimination stack for G. */
553 elim_forward (elim_graph g
, int T
)
556 source_location locus
;
558 SET_BIT (g
->visited
, T
);
559 FOR_EACH_ELIM_GRAPH_SUCC (g
, T
, S
, locus
,
561 if (!TEST_BIT (g
->visited
, S
))
564 VEC_safe_push (int, heap
, g
->stack
, T
);
568 /* Return 1 if there unvisited predecessors of T in graph G. */
571 elim_unvisited_predecessor (elim_graph g
, int T
)
574 source_location locus
;
576 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
578 if (!TEST_BIT (g
->visited
, P
))
584 /* Process predecessors first, and insert a copy. */
587 elim_backward (elim_graph g
, int T
)
590 source_location locus
;
592 SET_BIT (g
->visited
, T
);
593 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
595 if (!TEST_BIT (g
->visited
, P
))
597 elim_backward (g
, P
);
598 insert_partition_copy_on_edge (g
->e
, P
, T
, locus
);
603 /* Allocate a new pseudo register usable for storing values sitting
604 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
607 get_temp_reg (tree name
)
609 tree var
= TREE_CODE (name
) == SSA_NAME
? SSA_NAME_VAR (name
) : name
;
610 tree type
= TREE_TYPE (var
);
612 enum machine_mode reg_mode
= promote_decl_mode (var
, &unsignedp
);
613 rtx x
= gen_reg_rtx (reg_mode
);
614 if (POINTER_TYPE_P (type
))
615 mark_reg_pointer (x
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var
))));
619 /* Insert required copies for T in graph G. Check for a strongly connected
620 region, and create a temporary to break the cycle if one is found. */
623 elim_create (elim_graph g
, int T
)
626 source_location locus
;
628 if (elim_unvisited_predecessor (g
, T
))
630 tree var
= partition_to_var (g
->map
, T
);
631 rtx U
= get_temp_reg (var
);
632 int unsignedsrcp
= TYPE_UNSIGNED (TREE_TYPE (var
));
634 insert_part_to_rtx_on_edge (g
->e
, U
, T
, UNKNOWN_LOCATION
);
635 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
637 if (!TEST_BIT (g
->visited
, P
))
639 elim_backward (g
, P
);
640 insert_rtx_to_part_on_edge (g
->e
, P
, U
, unsignedsrcp
, locus
);
646 S
= elim_graph_remove_succ_edge (g
, T
, &locus
);
649 SET_BIT (g
->visited
, T
);
650 insert_partition_copy_on_edge (g
->e
, T
, S
, locus
);
656 /* Eliminate all the phi nodes on edge E in graph G. */
659 eliminate_phi (edge e
, elim_graph g
)
663 gcc_assert (VEC_length (tree
, g
->const_copies
) == 0);
664 gcc_assert (VEC_length (source_location
, g
->copy_locus
) == 0);
666 /* Abnormal edges already have everything coalesced. */
667 if (e
->flags
& EDGE_ABNORMAL
)
674 if (elim_graph_size (g
) != 0)
678 sbitmap_zero (g
->visited
);
679 VEC_truncate (int, g
->stack
, 0);
681 FOR_EACH_VEC_ELT (int, g
->nodes
, x
, part
)
683 if (!TEST_BIT (g
->visited
, part
))
684 elim_forward (g
, part
);
687 sbitmap_zero (g
->visited
);
688 while (VEC_length (int, g
->stack
) > 0)
690 x
= VEC_pop (int, g
->stack
);
691 if (!TEST_BIT (g
->visited
, x
))
696 /* If there are any pending constant copies, issue them now. */
697 while (VEC_length (tree
, g
->const_copies
) > 0)
701 source_location locus
;
703 src
= VEC_pop (tree
, g
->const_copies
);
704 dest
= VEC_pop (int, g
->const_dests
);
705 locus
= VEC_pop (source_location
, g
->copy_locus
);
706 insert_value_copy_on_edge (e
, dest
, src
, locus
);
711 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
712 check to see if this allows another PHI node to be removed. */
715 remove_gimple_phi_args (gimple phi
)
720 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
722 fprintf (dump_file
, "Removing Dead PHI definition: ");
723 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
726 FOR_EACH_PHI_ARG (arg_p
, phi
, iter
, SSA_OP_USE
)
728 tree arg
= USE_FROM_PTR (arg_p
);
729 if (TREE_CODE (arg
) == SSA_NAME
)
731 /* Remove the reference to the existing argument. */
732 SET_USE (arg_p
, NULL_TREE
);
733 if (has_zero_uses (arg
))
736 gimple_stmt_iterator gsi
;
738 stmt
= SSA_NAME_DEF_STMT (arg
);
740 /* Also remove the def if it is a PHI node. */
741 if (gimple_code (stmt
) == GIMPLE_PHI
)
743 remove_gimple_phi_args (stmt
);
744 gsi
= gsi_for_stmt (stmt
);
745 remove_phi_node (&gsi
, true);
753 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
756 eliminate_useless_phis (void)
759 gimple_stmt_iterator gsi
;
764 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); )
766 gimple phi
= gsi_stmt (gsi
);
767 result
= gimple_phi_result (phi
);
768 if (!is_gimple_reg (SSA_NAME_VAR (result
)))
770 #ifdef ENABLE_CHECKING
772 /* There should be no arguments which are not virtual, or the
773 results will be incorrect. */
774 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
776 tree arg
= PHI_ARG_DEF (phi
, i
);
777 if (TREE_CODE (arg
) == SSA_NAME
778 && is_gimple_reg (SSA_NAME_VAR (arg
)))
780 fprintf (stderr
, "Argument of PHI is not virtual (");
781 print_generic_expr (stderr
, arg
, TDF_SLIM
);
782 fprintf (stderr
, "), but the result is :");
783 print_gimple_stmt (stderr
, phi
, 0, TDF_SLIM
);
784 internal_error ("SSA corruption");
788 remove_phi_node (&gsi
, true);
792 /* Also remove real PHIs with no uses. */
793 if (has_zero_uses (result
))
795 remove_gimple_phi_args (phi
);
796 remove_phi_node (&gsi
, true);
806 /* This function will rewrite the current program using the variable mapping
807 found in MAP. If the replacement vector VALUES is provided, any
808 occurrences of partitions with non-null entries in the vector will be
809 replaced with the expression in the vector instead of its mapped
813 rewrite_trees (var_map map ATTRIBUTE_UNUSED
)
815 #ifdef ENABLE_CHECKING
817 /* Search for PHIs where the destination has no partition, but one
818 or more arguments has a partition. This should not happen and can
819 create incorrect code. */
822 gimple_stmt_iterator gsi
;
823 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
825 gimple phi
= gsi_stmt (gsi
);
826 tree T0
= var_to_partition_to_var (map
, gimple_phi_result (phi
));
830 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
832 tree arg
= PHI_ARG_DEF (phi
, i
);
834 if (TREE_CODE (arg
) == SSA_NAME
835 && var_to_partition (map
, arg
) != NO_PARTITION
)
837 fprintf (stderr
, "Argument of PHI is in a partition :(");
838 print_generic_expr (stderr
, arg
, TDF_SLIM
);
839 fprintf (stderr
, "), but the result is not :");
840 print_gimple_stmt (stderr
, phi
, 0, TDF_SLIM
);
841 internal_error ("SSA corruption");
850 /* Given the out-of-ssa info object SA (with prepared partitions)
851 eliminate all phi nodes in all basic blocks. Afterwards no
852 basic block will have phi nodes anymore and there are possibly
853 some RTL instructions inserted on edges. */
856 expand_phi_nodes (struct ssaexpand
*sa
)
859 elim_graph g
= new_elim_graph (sa
->map
->num_partitions
);
862 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
863 if (!gimple_seq_empty_p (phi_nodes (bb
)))
867 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
868 eliminate_phi (e
, g
);
869 set_phi_nodes (bb
, NULL
);
870 /* We can't redirect EH edges in RTL land, so we need to do this
871 here. Redirection happens only when splitting is necessary,
872 which it is only for critical edges, normally. For EH edges
873 it might also be necessary when the successor has more than
874 one predecessor. In that case the edge is either required to
875 be fallthru (which EH edges aren't), or the predecessor needs
876 to end with a jump (which again, isn't the case with EH edges).
877 Hence, split all EH edges on which we inserted instructions
878 and whose successor has multiple predecessors. */
879 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
881 if (e
->insns
.r
&& (e
->flags
& EDGE_EH
)
882 && !single_pred_p (e
->dest
))
884 rtx insns
= e
->insns
.r
;
886 e
->insns
.r
= NULL_RTX
;
888 single_pred_edge (bb
)->insns
.r
= insns
;
895 delete_elim_graph (g
);
899 /* Remove the ssa-names in the current function and translate them into normal
900 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
901 should also be used. */
904 remove_ssa_form (bool perform_ter
, struct ssaexpand
*sa
)
906 bitmap values
= NULL
;
910 map
= coalesce_ssa_name ();
912 /* Return to viewing the variable list as just all reference variables after
913 coalescing has been performed. */
914 partition_view_normal (map
, false);
916 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
918 fprintf (dump_file
, "After Coalescing:\n");
919 dump_var_map (dump_file
, map
);
924 values
= find_replaceable_exprs (map
);
925 if (values
&& dump_file
&& (dump_flags
& TDF_DETAILS
))
926 dump_replaceable_exprs (dump_file
, values
);
933 sa
->partition_has_default_def
= BITMAP_ALLOC (NULL
);
934 for (i
= 1; i
< num_ssa_names
; i
++)
936 tree t
= ssa_name (i
);
937 if (t
&& SSA_NAME_IS_DEFAULT_DEF (t
))
939 int p
= var_to_partition (map
, t
);
940 if (p
!= NO_PARTITION
)
941 bitmap_set_bit (sa
->partition_has_default_def
, p
);
947 /* If not already done so for basic block BB, assign increasing uids
948 to each of its instructions. */
951 maybe_renumber_stmts_bb (basic_block bb
)
954 gimple_stmt_iterator gsi
;
959 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
961 gimple stmt
= gsi_stmt (gsi
);
962 gimple_set_uid (stmt
, i
);
968 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
969 of a PHI node) and ARG (one of its arguments) conflict. Return false
970 otherwise, also when we simply aren't sure. */
973 trivially_conflicts_p (basic_block bb
, tree result
, tree arg
)
976 imm_use_iterator imm_iter
;
977 gimple defa
= SSA_NAME_DEF_STMT (arg
);
979 /* If ARG isn't defined in the same block it's too complicated for
981 if (gimple_bb (defa
) != bb
)
984 FOR_EACH_IMM_USE_FAST (use
, imm_iter
, result
)
986 gimple use_stmt
= USE_STMT (use
);
987 if (is_gimple_debug (use_stmt
))
989 /* Now, if there's a use of RESULT that lies outside this basic block,
990 then there surely is a conflict with ARG. */
991 if (gimple_bb (use_stmt
) != bb
)
993 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
995 /* The use now is in a real stmt of BB, so if ARG was defined
996 in a PHI node (like RESULT) both conflict. */
997 if (gimple_code (defa
) == GIMPLE_PHI
)
999 maybe_renumber_stmts_bb (bb
);
1000 /* If the use of RESULT occurs after the definition of ARG,
1001 the two conflict too. */
1002 if (gimple_uid (defa
) < gimple_uid (use_stmt
))
1010 /* Search every PHI node for arguments associated with backedges which
1011 we can trivially determine will need a copy (the argument is either
1012 not an SSA_NAME or the argument has a different underlying variable
1013 than the PHI result).
1015 Insert a copy from the PHI argument to a new destination at the
1016 end of the block with the backedge to the top of the loop. Update
1017 the PHI argument to reference this new destination. */
1020 insert_backedge_copies (void)
1023 gimple_stmt_iterator gsi
;
1027 /* Mark block as possibly needing calculation of UIDs. */
1030 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1032 gimple phi
= gsi_stmt (gsi
);
1033 tree result
= gimple_phi_result (phi
);
1037 if (!is_gimple_reg (result
))
1040 result_var
= SSA_NAME_VAR (result
);
1041 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1043 tree arg
= gimple_phi_arg_def (phi
, i
);
1044 edge e
= gimple_phi_arg_edge (phi
, i
);
1046 /* If the argument is not an SSA_NAME, then we will need a
1047 constant initialization. If the argument is an SSA_NAME with
1048 a different underlying variable then a copy statement will be
1050 if ((e
->flags
& EDGE_DFS_BACK
)
1051 && (TREE_CODE (arg
) != SSA_NAME
1052 || SSA_NAME_VAR (arg
) != result_var
1053 || trivially_conflicts_p (bb
, result
, arg
)))
1056 gimple stmt
, last
= NULL
;
1057 gimple_stmt_iterator gsi2
;
1059 gsi2
= gsi_last_bb (gimple_phi_arg_edge (phi
, i
)->src
);
1060 if (!gsi_end_p (gsi2
))
1061 last
= gsi_stmt (gsi2
);
1063 /* In theory the only way we ought to get back to the
1064 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1065 However, better safe than sorry.
1066 If the block ends with a control statement or
1067 something that might throw, then we have to
1068 insert this assignment before the last
1069 statement. Else insert it after the last statement. */
1070 if (last
&& stmt_ends_bb_p (last
))
1072 /* If the last statement in the block is the definition
1073 site of the PHI argument, then we can't insert
1074 anything after it. */
1075 if (TREE_CODE (arg
) == SSA_NAME
1076 && SSA_NAME_DEF_STMT (arg
) == last
)
1080 /* Create a new instance of the underlying variable of the
1082 stmt
= gimple_build_assign (result_var
,
1083 gimple_phi_arg_def (phi
, i
));
1084 name
= make_ssa_name (result_var
, stmt
);
1085 gimple_assign_set_lhs (stmt
, name
);
1087 /* copy location if present. */
1088 if (gimple_phi_arg_has_location (phi
, i
))
1089 gimple_set_location (stmt
,
1090 gimple_phi_arg_location (phi
, i
));
1092 /* Insert the new statement into the block and update
1094 if (last
&& stmt_ends_bb_p (last
))
1095 gsi_insert_before (&gsi2
, stmt
, GSI_NEW_STMT
);
1097 gsi_insert_after (&gsi2
, stmt
, GSI_NEW_STMT
);
1098 SET_PHI_ARG_DEF (phi
, i
, name
);
1103 /* Unmark this block again. */
1108 /* Free all memory associated with going out of SSA form. SA is
1109 the outof-SSA info object. */
1112 finish_out_of_ssa (struct ssaexpand
*sa
)
1114 free (sa
->partition_to_pseudo
);
1116 BITMAP_FREE (sa
->values
);
1117 delete_var_map (sa
->map
);
1118 BITMAP_FREE (sa
->partition_has_default_def
);
1119 memset (sa
, 0, sizeof *sa
);
1122 /* Take the current function out of SSA form, translating PHIs as described in
1123 R. Morgan, ``Building an Optimizing Compiler'',
1124 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1127 rewrite_out_of_ssa (struct ssaexpand
*sa
)
1129 /* If elimination of a PHI requires inserting a copy on a backedge,
1130 then we will have to split the backedge which has numerous
1131 undesirable performance effects.
1133 A significant number of such cases can be handled here by inserting
1134 copies into the loop itself. */
1135 insert_backedge_copies ();
1138 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1139 eliminate_useless_phis ();
1141 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1142 gimple_dump_cfg (dump_file
, dump_flags
& ~TDF_DETAILS
);
1144 remove_ssa_form (flag_tree_ter
, sa
);
1146 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1147 gimple_dump_cfg (dump_file
, dump_flags
& ~TDF_DETAILS
);