Merge from trunk: 215733-215743
[official-gcc.git] / gcc-4_6_3-mobile / gcc / function.c
blobe18e2eec035f01efa270d0d9b83d432d49922e9f
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "cfglayout.h"
61 #include "gimple.h"
62 #include "tree-pass.h"
63 #include "predict.h"
64 #include "df.h"
65 #include "timevar.h"
66 #include "vecprim.h"
67 #include "l-ipo.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
134 htab_t types_used_by_vars_hash = NULL;
135 VEC(tree,gc) *types_used_by_cur_var_decl;
137 /* Forward declarations. */
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 typedef struct function *function_p;
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
170 void
171 push_function_context (void)
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
183 void
184 pop_function_context (void)
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
199 void
200 free_after_parsing (struct function *f)
202 f->language = 0;
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
209 void
210 free_after_compilation (struct function *f)
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
215 if (crtl->emit.regno_pointer_align)
216 free (crtl->emit.regno_pointer_align);
218 memset (crtl, 0, sizeof (struct rtl_data));
219 f->eh = NULL;
220 f->machine = NULL;
221 f->cfg = NULL;
223 regno_reg_rtx = NULL;
224 insn_locators_free ();
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
231 HOST_WIDE_INT
232 get_frame_size (void)
234 if (FRAME_GROWS_DOWNWARD)
235 return -frame_offset;
236 else
237 return frame_offset;
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
242 return FALSE. */
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
247 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
249 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD)
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects too large");
255 return TRUE;
258 return FALSE;
261 /* Return stack slot alignment in bits for TYPE and MODE. */
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
266 unsigned int alignment;
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
281 /* Determine whether it is possible to fit a stack slot of size SIZE and
282 alignment ALIGNMENT into an area in the stack frame that starts at
283 frame offset START and has a length of LENGTH. If so, store the frame
284 offset to be used for the stack slot in *POFFSET and return true;
285 return false otherwise. This function will extend the frame size when
286 given a start/length pair that lies at the end of the frame. */
288 static bool
289 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
290 HOST_WIDE_INT size, unsigned int alignment,
291 HOST_WIDE_INT *poffset)
293 HOST_WIDE_INT this_frame_offset;
294 int frame_off, frame_alignment, frame_phase;
296 /* Calculate how many bytes the start of local variables is off from
297 stack alignment. */
298 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
299 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
300 frame_phase = frame_off ? frame_alignment - frame_off : 0;
302 /* Round the frame offset to the specified alignment. */
304 /* We must be careful here, since FRAME_OFFSET might be negative and
305 division with a negative dividend isn't as well defined as we might
306 like. So we instead assume that ALIGNMENT is a power of two and
307 use logical operations which are unambiguous. */
308 if (FRAME_GROWS_DOWNWARD)
309 this_frame_offset
310 = (FLOOR_ROUND (start + length - size - frame_phase,
311 (unsigned HOST_WIDE_INT) alignment)
312 + frame_phase);
313 else
314 this_frame_offset
315 = (CEIL_ROUND (start - frame_phase,
316 (unsigned HOST_WIDE_INT) alignment)
317 + frame_phase);
319 /* See if it fits. If this space is at the edge of the frame,
320 consider extending the frame to make it fit. Our caller relies on
321 this when allocating a new slot. */
322 if (frame_offset == start && this_frame_offset < frame_offset)
323 frame_offset = this_frame_offset;
324 else if (this_frame_offset < start)
325 return false;
326 else if (start + length == frame_offset
327 && this_frame_offset + size > start + length)
328 frame_offset = this_frame_offset + size;
329 else if (this_frame_offset + size > start + length)
330 return false;
332 *poffset = this_frame_offset;
333 return true;
336 /* Create a new frame_space structure describing free space in the stack
337 frame beginning at START and ending at END, and chain it into the
338 function's frame_space_list. */
340 static void
341 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
343 struct frame_space *space = ggc_alloc_frame_space ();
344 space->next = crtl->frame_space_list;
345 crtl->frame_space_list = space;
346 space->start = start;
347 space->length = end - start;
350 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
351 with machine mode MODE.
353 ALIGN controls the amount of alignment for the address of the slot:
354 0 means according to MODE,
355 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
356 -2 means use BITS_PER_UNIT,
357 positive specifies alignment boundary in bits.
359 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
360 alignment and ASLK_RECORD_PAD bit set if we should remember
361 extra space we allocated for alignment purposes. When we are
362 called from assign_stack_temp_for_type, it is not set so we don't
363 track the same stack slot in two independent lists.
365 We do not round to stack_boundary here. */
368 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
369 int align, int kind)
371 rtx x, addr;
372 int bigend_correction = 0;
373 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
374 unsigned int alignment, alignment_in_bits;
376 if (align == 0)
378 alignment = get_stack_local_alignment (NULL, mode);
379 alignment /= BITS_PER_UNIT;
381 else if (align == -1)
383 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
384 size = CEIL_ROUND (size, alignment);
386 else if (align == -2)
387 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
388 else
389 alignment = align / BITS_PER_UNIT;
391 alignment_in_bits = alignment * BITS_PER_UNIT;
393 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
394 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
396 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
400 if (SUPPORTS_STACK_ALIGNMENT)
402 if (crtl->stack_alignment_estimated < alignment_in_bits)
404 if (!crtl->stack_realign_processed)
405 crtl->stack_alignment_estimated = alignment_in_bits;
406 else
408 /* If stack is realigned and stack alignment value
409 hasn't been finalized, it is OK not to increase
410 stack_alignment_estimated. The bigger alignment
411 requirement is recorded in stack_alignment_needed
412 below. */
413 gcc_assert (!crtl->stack_realign_finalized);
414 if (!crtl->stack_realign_needed)
416 /* It is OK to reduce the alignment as long as the
417 requested size is 0 or the estimated stack
418 alignment >= mode alignment. */
419 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
420 || size == 0
421 || (crtl->stack_alignment_estimated
422 >= GET_MODE_ALIGNMENT (mode)));
423 alignment_in_bits = crtl->stack_alignment_estimated;
424 alignment = alignment_in_bits / BITS_PER_UNIT;
430 if (crtl->stack_alignment_needed < alignment_in_bits)
431 crtl->stack_alignment_needed = alignment_in_bits;
432 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
433 crtl->max_used_stack_slot_alignment = alignment_in_bits;
435 if (mode != BLKmode || size != 0)
437 if (kind & ASLK_RECORD_PAD)
439 struct frame_space **psp;
441 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
443 struct frame_space *space = *psp;
444 if (!try_fit_stack_local (space->start, space->length, size,
445 alignment, &slot_offset))
446 continue;
447 *psp = space->next;
448 if (slot_offset > space->start)
449 add_frame_space (space->start, slot_offset);
450 if (slot_offset + size < space->start + space->length)
451 add_frame_space (slot_offset + size,
452 space->start + space->length);
453 goto found_space;
457 else if (!STACK_ALIGNMENT_NEEDED)
459 slot_offset = frame_offset;
460 goto found_space;
463 old_frame_offset = frame_offset;
465 if (FRAME_GROWS_DOWNWARD)
467 frame_offset -= size;
468 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
470 if (kind & ASLK_RECORD_PAD)
472 if (slot_offset > frame_offset)
473 add_frame_space (frame_offset, slot_offset);
474 if (slot_offset + size < old_frame_offset)
475 add_frame_space (slot_offset + size, old_frame_offset);
478 else
480 frame_offset += size;
481 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
483 if (kind & ASLK_RECORD_PAD)
485 if (slot_offset > old_frame_offset)
486 add_frame_space (old_frame_offset, slot_offset);
487 if (slot_offset + size < frame_offset)
488 add_frame_space (slot_offset + size, frame_offset);
492 found_space:
493 /* On a big-endian machine, if we are allocating more space than we will use,
494 use the least significant bytes of those that are allocated. */
495 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
496 bigend_correction = size - GET_MODE_SIZE (mode);
498 /* If we have already instantiated virtual registers, return the actual
499 address relative to the frame pointer. */
500 if (virtuals_instantiated)
501 addr = plus_constant (frame_pointer_rtx,
502 trunc_int_for_mode
503 (slot_offset + bigend_correction
504 + STARTING_FRAME_OFFSET, Pmode));
505 else
506 addr = plus_constant (virtual_stack_vars_rtx,
507 trunc_int_for_mode
508 (slot_offset + bigend_correction,
509 Pmode));
511 x = gen_rtx_MEM (mode, addr);
512 set_mem_align (x, alignment_in_bits);
513 MEM_NOTRAP_P (x) = 1;
515 stack_slot_list
516 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
518 if (frame_offset_overflow (frame_offset, current_function_decl))
519 frame_offset = 0;
521 return x;
524 /* Wrap up assign_stack_local_1 with last parameter as false. */
527 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
529 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
533 /* In order to evaluate some expressions, such as function calls returning
534 structures in memory, we need to temporarily allocate stack locations.
535 We record each allocated temporary in the following structure.
537 Associated with each temporary slot is a nesting level. When we pop up
538 one level, all temporaries associated with the previous level are freed.
539 Normally, all temporaries are freed after the execution of the statement
540 in which they were created. However, if we are inside a ({...}) grouping,
541 the result may be in a temporary and hence must be preserved. If the
542 result could be in a temporary, we preserve it if we can determine which
543 one it is in. If we cannot determine which temporary may contain the
544 result, all temporaries are preserved. A temporary is preserved by
545 pretending it was allocated at the previous nesting level.
547 Automatic variables are also assigned temporary slots, at the nesting
548 level where they are defined. They are marked a "kept" so that
549 free_temp_slots will not free them. */
551 struct GTY(()) temp_slot {
552 /* Points to next temporary slot. */
553 struct temp_slot *next;
554 /* Points to previous temporary slot. */
555 struct temp_slot *prev;
556 /* The rtx to used to reference the slot. */
557 rtx slot;
558 /* The size, in units, of the slot. */
559 HOST_WIDE_INT size;
560 /* The type of the object in the slot, or zero if it doesn't correspond
561 to a type. We use this to determine whether a slot can be reused.
562 It can be reused if objects of the type of the new slot will always
563 conflict with objects of the type of the old slot. */
564 tree type;
565 /* The alignment (in bits) of the slot. */
566 unsigned int align;
567 /* Nonzero if this temporary is currently in use. */
568 char in_use;
569 /* Nonzero if this temporary has its address taken. */
570 char addr_taken;
571 /* Nesting level at which this slot is being used. */
572 int level;
573 /* Nonzero if this should survive a call to free_temp_slots. */
574 int keep;
575 /* The offset of the slot from the frame_pointer, including extra space
576 for alignment. This info is for combine_temp_slots. */
577 HOST_WIDE_INT base_offset;
578 /* The size of the slot, including extra space for alignment. This
579 info is for combine_temp_slots. */
580 HOST_WIDE_INT full_size;
583 /* A table of addresses that represent a stack slot. The table is a mapping
584 from address RTXen to a temp slot. */
585 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
587 /* Entry for the above hash table. */
588 struct GTY(()) temp_slot_address_entry {
589 hashval_t hash;
590 rtx address;
591 struct temp_slot *temp_slot;
594 /* Removes temporary slot TEMP from LIST. */
596 static void
597 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
599 if (temp->next)
600 temp->next->prev = temp->prev;
601 if (temp->prev)
602 temp->prev->next = temp->next;
603 else
604 *list = temp->next;
606 temp->prev = temp->next = NULL;
609 /* Inserts temporary slot TEMP to LIST. */
611 static void
612 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
614 temp->next = *list;
615 if (*list)
616 (*list)->prev = temp;
617 temp->prev = NULL;
618 *list = temp;
621 /* Returns the list of used temp slots at LEVEL. */
623 static struct temp_slot **
624 temp_slots_at_level (int level)
626 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
627 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
629 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
632 /* Returns the maximal temporary slot level. */
634 static int
635 max_slot_level (void)
637 if (!used_temp_slots)
638 return -1;
640 return VEC_length (temp_slot_p, used_temp_slots) - 1;
643 /* Moves temporary slot TEMP to LEVEL. */
645 static void
646 move_slot_to_level (struct temp_slot *temp, int level)
648 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
649 insert_slot_to_list (temp, temp_slots_at_level (level));
650 temp->level = level;
653 /* Make temporary slot TEMP available. */
655 static void
656 make_slot_available (struct temp_slot *temp)
658 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
659 insert_slot_to_list (temp, &avail_temp_slots);
660 temp->in_use = 0;
661 temp->level = -1;
664 /* Compute the hash value for an address -> temp slot mapping.
665 The value is cached on the mapping entry. */
666 static hashval_t
667 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
669 int do_not_record = 0;
670 return hash_rtx (t->address, GET_MODE (t->address),
671 &do_not_record, NULL, false);
674 /* Return the hash value for an address -> temp slot mapping. */
675 static hashval_t
676 temp_slot_address_hash (const void *p)
678 const struct temp_slot_address_entry *t;
679 t = (const struct temp_slot_address_entry *) p;
680 return t->hash;
683 /* Compare two address -> temp slot mapping entries. */
684 static int
685 temp_slot_address_eq (const void *p1, const void *p2)
687 const struct temp_slot_address_entry *t1, *t2;
688 t1 = (const struct temp_slot_address_entry *) p1;
689 t2 = (const struct temp_slot_address_entry *) p2;
690 return exp_equiv_p (t1->address, t2->address, 0, true);
693 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
694 static void
695 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
697 void **slot;
698 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
699 t->address = address;
700 t->temp_slot = temp_slot;
701 t->hash = temp_slot_address_compute_hash (t);
702 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
703 *slot = t;
706 /* Remove an address -> temp slot mapping entry if the temp slot is
707 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
708 static int
709 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
711 const struct temp_slot_address_entry *t;
712 t = (const struct temp_slot_address_entry *) *slot;
713 if (! t->temp_slot->in_use)
714 *slot = NULL;
715 return 1;
718 /* Remove all mappings of addresses to unused temp slots. */
719 static void
720 remove_unused_temp_slot_addresses (void)
722 htab_traverse (temp_slot_address_table,
723 remove_unused_temp_slot_addresses_1,
724 NULL);
727 /* Find the temp slot corresponding to the object at address X. */
729 static struct temp_slot *
730 find_temp_slot_from_address (rtx x)
732 struct temp_slot *p;
733 struct temp_slot_address_entry tmp, *t;
735 /* First try the easy way:
736 See if X exists in the address -> temp slot mapping. */
737 tmp.address = x;
738 tmp.temp_slot = NULL;
739 tmp.hash = temp_slot_address_compute_hash (&tmp);
740 t = (struct temp_slot_address_entry *)
741 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
742 if (t)
743 return t->temp_slot;
745 /* If we have a sum involving a register, see if it points to a temp
746 slot. */
747 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
748 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
749 return p;
750 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
751 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
752 return p;
754 /* Last resort: Address is a virtual stack var address. */
755 if (GET_CODE (x) == PLUS
756 && XEXP (x, 0) == virtual_stack_vars_rtx
757 && CONST_INT_P (XEXP (x, 1)))
759 int i;
760 for (i = max_slot_level (); i >= 0; i--)
761 for (p = *temp_slots_at_level (i); p; p = p->next)
763 if (INTVAL (XEXP (x, 1)) >= p->base_offset
764 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
765 return p;
769 return NULL;
772 /* Allocate a temporary stack slot and record it for possible later
773 reuse.
775 MODE is the machine mode to be given to the returned rtx.
777 SIZE is the size in units of the space required. We do no rounding here
778 since assign_stack_local will do any required rounding.
780 KEEP is 1 if this slot is to be retained after a call to
781 free_temp_slots. Automatic variables for a block are allocated
782 with this flag. KEEP values of 2 or 3 were needed respectively
783 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
784 or for SAVE_EXPRs, but they are now unused.
786 TYPE is the type that will be used for the stack slot. */
789 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
790 int keep, tree type)
792 unsigned int align;
793 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
794 rtx slot;
796 /* If SIZE is -1 it means that somebody tried to allocate a temporary
797 of a variable size. */
798 gcc_assert (size != -1);
800 /* These are now unused. */
801 gcc_assert (keep <= 1);
803 align = get_stack_local_alignment (type, mode);
805 /* Try to find an available, already-allocated temporary of the proper
806 mode which meets the size and alignment requirements. Choose the
807 smallest one with the closest alignment.
809 If assign_stack_temp is called outside of the tree->rtl expansion,
810 we cannot reuse the stack slots (that may still refer to
811 VIRTUAL_STACK_VARS_REGNUM). */
812 if (!virtuals_instantiated)
814 for (p = avail_temp_slots; p; p = p->next)
816 if (p->align >= align && p->size >= size
817 && GET_MODE (p->slot) == mode
818 && objects_must_conflict_p (p->type, type)
819 && (best_p == 0 || best_p->size > p->size
820 || (best_p->size == p->size && best_p->align > p->align)))
822 if (p->align == align && p->size == size)
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
829 best_p = p;
834 /* Make our best, if any, the one to use. */
835 if (best_p)
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
845 int alignment = best_p->align / BITS_PER_UNIT;
846 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
848 if (best_p->size - rounded_size >= alignment)
850 p = ggc_alloc_temp_slot ();
851 p->in_use = p->addr_taken = 0;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
860 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
861 stack_slot_list);
863 best_p->size = rounded_size;
864 best_p->full_size = rounded_size;
869 /* If we still didn't find one, make a new temporary. */
870 if (selected == 0)
872 HOST_WIDE_INT frame_offset_old = frame_offset;
874 p = ggc_alloc_temp_slot ();
876 /* We are passing an explicit alignment request to assign_stack_local.
877 One side effect of that is assign_stack_local will not round SIZE
878 to ensure the frame offset remains suitably aligned.
880 So for requests which depended on the rounding of SIZE, we go ahead
881 and round it now. We also make sure ALIGNMENT is at least
882 BIGGEST_ALIGNMENT. */
883 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
884 p->slot = assign_stack_local_1 (mode,
885 (mode == BLKmode
886 ? CEIL_ROUND (size,
887 (int) align
888 / BITS_PER_UNIT)
889 : size),
890 align, 0);
892 p->align = align;
894 /* The following slot size computation is necessary because we don't
895 know the actual size of the temporary slot until assign_stack_local
896 has performed all the frame alignment and size rounding for the
897 requested temporary. Note that extra space added for alignment
898 can be either above or below this stack slot depending on which
899 way the frame grows. We include the extra space if and only if it
900 is above this slot. */
901 if (FRAME_GROWS_DOWNWARD)
902 p->size = frame_offset_old - frame_offset;
903 else
904 p->size = size;
906 /* Now define the fields used by combine_temp_slots. */
907 if (FRAME_GROWS_DOWNWARD)
909 p->base_offset = frame_offset;
910 p->full_size = frame_offset_old - frame_offset;
912 else
914 p->base_offset = frame_offset_old;
915 p->full_size = frame_offset - frame_offset_old;
918 selected = p;
921 p = selected;
922 p->in_use = 1;
923 p->addr_taken = 0;
924 p->type = type;
925 p->level = temp_slot_level;
926 p->keep = keep;
928 pp = temp_slots_at_level (p->level);
929 insert_slot_to_list (p, pp);
930 insert_temp_slot_address (XEXP (p->slot, 0), p);
932 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
933 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
934 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
936 /* If we know the alias set for the memory that will be used, use
937 it. If there's no TYPE, then we don't know anything about the
938 alias set for the memory. */
939 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
940 set_mem_align (slot, align);
942 /* If a type is specified, set the relevant flags. */
943 if (type != 0)
945 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
946 gcc_checking_assert (!MEM_SCALAR_P (slot) && !MEM_IN_STRUCT_P (slot));
947 if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
948 MEM_IN_STRUCT_P (slot) = 1;
949 else
950 MEM_SCALAR_P (slot) = 1;
952 MEM_NOTRAP_P (slot) = 1;
954 return slot;
957 /* Allocate a temporary stack slot and record it for possible later
958 reuse. First three arguments are same as in preceding function. */
961 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
963 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
966 /* Assign a temporary.
967 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
968 and so that should be used in error messages. In either case, we
969 allocate of the given type.
970 KEEP is as for assign_stack_temp.
971 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
972 it is 0 if a register is OK.
973 DONT_PROMOTE is 1 if we should not promote values in register
974 to wider modes. */
977 assign_temp (tree type_or_decl, int keep, int memory_required,
978 int dont_promote ATTRIBUTE_UNUSED)
980 tree type, decl;
981 enum machine_mode mode;
982 #ifdef PROMOTE_MODE
983 int unsignedp;
984 #endif
986 if (DECL_P (type_or_decl))
987 decl = type_or_decl, type = TREE_TYPE (decl);
988 else
989 decl = NULL, type = type_or_decl;
991 mode = TYPE_MODE (type);
992 #ifdef PROMOTE_MODE
993 unsignedp = TYPE_UNSIGNED (type);
994 #endif
996 if (mode == BLKmode || memory_required)
998 HOST_WIDE_INT size = int_size_in_bytes (type);
999 rtx tmp;
1001 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (size == 0)
1004 size = 1;
1006 /* Unfortunately, we don't yet know how to allocate variable-sized
1007 temporaries. However, sometimes we can find a fixed upper limit on
1008 the size, so try that instead. */
1009 else if (size == -1)
1010 size = max_int_size_in_bytes (type);
1012 /* The size of the temporary may be too large to fit into an integer. */
1013 /* ??? Not sure this should happen except for user silliness, so limit
1014 this to things that aren't compiler-generated temporaries. The
1015 rest of the time we'll die in assign_stack_temp_for_type. */
1016 if (decl && size == -1
1017 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1019 error ("size of variable %q+D is too large", decl);
1020 size = 1;
1023 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1024 return tmp;
1027 #ifdef PROMOTE_MODE
1028 if (! dont_promote)
1029 mode = promote_mode (type, mode, &unsignedp);
1030 #endif
1032 return gen_reg_rtx (mode);
1035 /* Combine temporary stack slots which are adjacent on the stack.
1037 This allows for better use of already allocated stack space. This is only
1038 done for BLKmode slots because we can be sure that we won't have alignment
1039 problems in this case. */
1041 static void
1042 combine_temp_slots (void)
1044 struct temp_slot *p, *q, *next, *next_q;
1045 int num_slots;
1047 /* We can't combine slots, because the information about which slot
1048 is in which alias set will be lost. */
1049 if (flag_strict_aliasing)
1050 return;
1052 /* If there are a lot of temp slots, don't do anything unless
1053 high levels of optimization. */
1054 if (! flag_expensive_optimizations)
1055 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1056 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1057 return;
1059 for (p = avail_temp_slots; p; p = next)
1061 int delete_p = 0;
1063 next = p->next;
1065 if (GET_MODE (p->slot) != BLKmode)
1066 continue;
1068 for (q = p->next; q; q = next_q)
1070 int delete_q = 0;
1072 next_q = q->next;
1074 if (GET_MODE (q->slot) != BLKmode)
1075 continue;
1077 if (p->base_offset + p->full_size == q->base_offset)
1079 /* Q comes after P; combine Q into P. */
1080 p->size += q->size;
1081 p->full_size += q->full_size;
1082 delete_q = 1;
1084 else if (q->base_offset + q->full_size == p->base_offset)
1086 /* P comes after Q; combine P into Q. */
1087 q->size += p->size;
1088 q->full_size += p->full_size;
1089 delete_p = 1;
1090 break;
1092 if (delete_q)
1093 cut_slot_from_list (q, &avail_temp_slots);
1096 /* Either delete P or advance past it. */
1097 if (delete_p)
1098 cut_slot_from_list (p, &avail_temp_slots);
1102 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1103 slot that previously was known by OLD_RTX. */
1105 void
1106 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1108 struct temp_slot *p;
1110 if (rtx_equal_p (old_rtx, new_rtx))
1111 return;
1113 p = find_temp_slot_from_address (old_rtx);
1115 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1116 NEW_RTX is a register, see if one operand of the PLUS is a
1117 temporary location. If so, NEW_RTX points into it. Otherwise,
1118 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1119 in common between them. If so, try a recursive call on those
1120 values. */
1121 if (p == 0)
1123 if (GET_CODE (old_rtx) != PLUS)
1124 return;
1126 if (REG_P (new_rtx))
1128 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1129 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1130 return;
1132 else if (GET_CODE (new_rtx) != PLUS)
1133 return;
1135 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1136 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1137 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1138 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1139 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1140 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1141 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1142 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1144 return;
1147 /* Otherwise add an alias for the temp's address. */
1148 insert_temp_slot_address (new_rtx, p);
1151 /* If X could be a reference to a temporary slot, mark the fact that its
1152 address was taken. */
1154 void
1155 mark_temp_addr_taken (rtx x)
1157 struct temp_slot *p;
1159 if (x == 0)
1160 return;
1162 /* If X is not in memory or is at a constant address, it cannot be in
1163 a temporary slot. */
1164 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1165 return;
1167 p = find_temp_slot_from_address (XEXP (x, 0));
1168 if (p != 0)
1169 p->addr_taken = 1;
1172 /* If X could be a reference to a temporary slot, mark that slot as
1173 belonging to the to one level higher than the current level. If X
1174 matched one of our slots, just mark that one. Otherwise, we can't
1175 easily predict which it is, so upgrade all of them. Kept slots
1176 need not be touched.
1178 This is called when an ({...}) construct occurs and a statement
1179 returns a value in memory. */
1181 void
1182 preserve_temp_slots (rtx x)
1184 struct temp_slot *p = 0, *next;
1186 /* If there is no result, we still might have some objects whose address
1187 were taken, so we need to make sure they stay around. */
1188 if (x == 0)
1190 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1192 next = p->next;
1194 if (p->addr_taken)
1195 move_slot_to_level (p, temp_slot_level - 1);
1198 return;
1201 /* If X is a register that is being used as a pointer, see if we have
1202 a temporary slot we know it points to. To be consistent with
1203 the code below, we really should preserve all non-kept slots
1204 if we can't find a match, but that seems to be much too costly. */
1205 if (REG_P (x) && REG_POINTER (x))
1206 p = find_temp_slot_from_address (x);
1208 /* If X is not in memory or is at a constant address, it cannot be in
1209 a temporary slot, but it can contain something whose address was
1210 taken. */
1211 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1213 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1215 next = p->next;
1217 if (p->addr_taken)
1218 move_slot_to_level (p, temp_slot_level - 1);
1221 return;
1224 /* First see if we can find a match. */
1225 if (p == 0)
1226 p = find_temp_slot_from_address (XEXP (x, 0));
1228 if (p != 0)
1230 /* Move everything at our level whose address was taken to our new
1231 level in case we used its address. */
1232 struct temp_slot *q;
1234 if (p->level == temp_slot_level)
1236 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1238 next = q->next;
1240 if (p != q && q->addr_taken)
1241 move_slot_to_level (q, temp_slot_level - 1);
1244 move_slot_to_level (p, temp_slot_level - 1);
1245 p->addr_taken = 0;
1247 return;
1250 /* Otherwise, preserve all non-kept slots at this level. */
1251 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1253 next = p->next;
1255 if (!p->keep)
1256 move_slot_to_level (p, temp_slot_level - 1);
1260 /* Free all temporaries used so far. This is normally called at the
1261 end of generating code for a statement. */
1263 void
1264 free_temp_slots (void)
1266 struct temp_slot *p, *next;
1267 bool some_available = false;
1269 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1271 next = p->next;
1273 if (!p->keep)
1275 make_slot_available (p);
1276 some_available = true;
1280 if (some_available)
1282 remove_unused_temp_slot_addresses ();
1283 combine_temp_slots ();
1287 /* Push deeper into the nesting level for stack temporaries. */
1289 void
1290 push_temp_slots (void)
1292 temp_slot_level++;
1295 /* Pop a temporary nesting level. All slots in use in the current level
1296 are freed. */
1298 void
1299 pop_temp_slots (void)
1301 struct temp_slot *p, *next;
1302 bool some_available = false;
1304 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1306 next = p->next;
1307 make_slot_available (p);
1308 some_available = true;
1311 if (some_available)
1313 remove_unused_temp_slot_addresses ();
1314 combine_temp_slots ();
1317 temp_slot_level--;
1320 /* Initialize temporary slots. */
1322 void
1323 init_temp_slots (void)
1325 /* We have not allocated any temporaries yet. */
1326 avail_temp_slots = 0;
1327 used_temp_slots = 0;
1328 temp_slot_level = 0;
1330 /* Set up the table to map addresses to temp slots. */
1331 if (! temp_slot_address_table)
1332 temp_slot_address_table = htab_create_ggc (32,
1333 temp_slot_address_hash,
1334 temp_slot_address_eq,
1335 NULL);
1336 else
1337 htab_empty (temp_slot_address_table);
1340 /* These routines are responsible for converting virtual register references
1341 to the actual hard register references once RTL generation is complete.
1343 The following four variables are used for communication between the
1344 routines. They contain the offsets of the virtual registers from their
1345 respective hard registers. */
1347 static int in_arg_offset;
1348 static int var_offset;
1349 static int dynamic_offset;
1350 static int out_arg_offset;
1351 static int cfa_offset;
1353 /* In most machines, the stack pointer register is equivalent to the bottom
1354 of the stack. */
1356 #ifndef STACK_POINTER_OFFSET
1357 #define STACK_POINTER_OFFSET 0
1358 #endif
1360 /* If not defined, pick an appropriate default for the offset of dynamically
1361 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1362 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1364 #ifndef STACK_DYNAMIC_OFFSET
1366 /* The bottom of the stack points to the actual arguments. If
1367 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1368 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1369 stack space for register parameters is not pushed by the caller, but
1370 rather part of the fixed stack areas and hence not included in
1371 `crtl->outgoing_args_size'. Nevertheless, we must allow
1372 for it when allocating stack dynamic objects. */
1374 #if defined(REG_PARM_STACK_SPACE)
1375 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1376 ((ACCUMULATE_OUTGOING_ARGS \
1377 ? (crtl->outgoing_args_size \
1378 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1379 : REG_PARM_STACK_SPACE (FNDECL))) \
1380 : 0) + (STACK_POINTER_OFFSET))
1381 #else
1382 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1383 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1384 + (STACK_POINTER_OFFSET))
1385 #endif
1386 #endif
1389 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1390 is a virtual register, return the equivalent hard register and set the
1391 offset indirectly through the pointer. Otherwise, return 0. */
1393 static rtx
1394 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1396 rtx new_rtx;
1397 HOST_WIDE_INT offset;
1399 if (x == virtual_incoming_args_rtx)
1401 if (stack_realign_drap)
1403 /* Replace virtual_incoming_args_rtx with internal arg
1404 pointer if DRAP is used to realign stack. */
1405 new_rtx = crtl->args.internal_arg_pointer;
1406 offset = 0;
1408 else
1409 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1411 else if (x == virtual_stack_vars_rtx)
1412 new_rtx = frame_pointer_rtx, offset = var_offset;
1413 else if (x == virtual_stack_dynamic_rtx)
1414 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1415 else if (x == virtual_outgoing_args_rtx)
1416 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1417 else if (x == virtual_cfa_rtx)
1419 #ifdef FRAME_POINTER_CFA_OFFSET
1420 new_rtx = frame_pointer_rtx;
1421 #else
1422 new_rtx = arg_pointer_rtx;
1423 #endif
1424 offset = cfa_offset;
1426 else if (x == virtual_preferred_stack_boundary_rtx)
1428 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1429 offset = 0;
1431 else
1432 return NULL_RTX;
1434 *poffset = offset;
1435 return new_rtx;
1438 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1439 Instantiate any virtual registers present inside of *LOC. The expression
1440 is simplified, as much as possible, but is not to be considered "valid"
1441 in any sense implied by the target. If any change is made, set CHANGED
1442 to true. */
1444 static int
1445 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1447 HOST_WIDE_INT offset;
1448 bool *changed = (bool *) data;
1449 rtx x, new_rtx;
1451 x = *loc;
1452 if (x == 0)
1453 return 0;
1455 switch (GET_CODE (x))
1457 case REG:
1458 new_rtx = instantiate_new_reg (x, &offset);
1459 if (new_rtx)
1461 *loc = plus_constant (new_rtx, offset);
1462 if (changed)
1463 *changed = true;
1465 return -1;
1467 case PLUS:
1468 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1469 if (new_rtx)
1471 new_rtx = plus_constant (new_rtx, offset);
1472 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1473 if (changed)
1474 *changed = true;
1475 return -1;
1478 /* FIXME -- from old code */
1479 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1480 we can commute the PLUS and SUBREG because pointers into the
1481 frame are well-behaved. */
1482 break;
1484 default:
1485 break;
1488 return 0;
1491 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1492 matches the predicate for insn CODE operand OPERAND. */
1494 static int
1495 safe_insn_predicate (int code, int operand, rtx x)
1497 const struct insn_operand_data *op_data;
1499 if (code < 0)
1500 return true;
1502 op_data = &insn_data[code].operand[operand];
1503 if (op_data->predicate == NULL)
1504 return true;
1506 return op_data->predicate (x, op_data->mode);
1509 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1510 registers present inside of insn. The result will be a valid insn. */
1512 static void
1513 instantiate_virtual_regs_in_insn (rtx insn)
1515 HOST_WIDE_INT offset;
1516 int insn_code, i;
1517 bool any_change = false;
1518 rtx set, new_rtx, x, seq;
1520 /* There are some special cases to be handled first. */
1521 set = single_set (insn);
1522 if (set)
1524 /* We're allowed to assign to a virtual register. This is interpreted
1525 to mean that the underlying register gets assigned the inverse
1526 transformation. This is used, for example, in the handling of
1527 non-local gotos. */
1528 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1529 if (new_rtx)
1531 start_sequence ();
1533 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1534 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1535 GEN_INT (-offset));
1536 x = force_operand (x, new_rtx);
1537 if (x != new_rtx)
1538 emit_move_insn (new_rtx, x);
1540 seq = get_insns ();
1541 end_sequence ();
1543 emit_insn_before (seq, insn);
1544 delete_insn (insn);
1545 return;
1548 /* Handle a straight copy from a virtual register by generating a
1549 new add insn. The difference between this and falling through
1550 to the generic case is avoiding a new pseudo and eliminating a
1551 move insn in the initial rtl stream. */
1552 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1553 if (new_rtx && offset != 0
1554 && REG_P (SET_DEST (set))
1555 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1557 start_sequence ();
1559 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1560 new_rtx, GEN_INT (offset), SET_DEST (set),
1561 1, OPTAB_LIB_WIDEN);
1562 if (x != SET_DEST (set))
1563 emit_move_insn (SET_DEST (set), x);
1565 seq = get_insns ();
1566 end_sequence ();
1568 emit_insn_before (seq, insn);
1569 delete_insn (insn);
1570 return;
1573 extract_insn (insn);
1574 insn_code = INSN_CODE (insn);
1576 /* Handle a plus involving a virtual register by determining if the
1577 operands remain valid if they're modified in place. */
1578 if (GET_CODE (SET_SRC (set)) == PLUS
1579 && recog_data.n_operands >= 3
1580 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1581 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1582 && CONST_INT_P (recog_data.operand[2])
1583 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1585 offset += INTVAL (recog_data.operand[2]);
1587 /* If the sum is zero, then replace with a plain move. */
1588 if (offset == 0
1589 && REG_P (SET_DEST (set))
1590 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1592 start_sequence ();
1593 emit_move_insn (SET_DEST (set), new_rtx);
1594 seq = get_insns ();
1595 end_sequence ();
1597 emit_insn_before (seq, insn);
1598 delete_insn (insn);
1599 return;
1602 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1604 /* Using validate_change and apply_change_group here leaves
1605 recog_data in an invalid state. Since we know exactly what
1606 we want to check, do those two by hand. */
1607 if (safe_insn_predicate (insn_code, 1, new_rtx)
1608 && safe_insn_predicate (insn_code, 2, x))
1610 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1611 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1612 any_change = true;
1614 /* Fall through into the regular operand fixup loop in
1615 order to take care of operands other than 1 and 2. */
1619 else
1621 extract_insn (insn);
1622 insn_code = INSN_CODE (insn);
1625 /* In the general case, we expect virtual registers to appear only in
1626 operands, and then only as either bare registers or inside memories. */
1627 for (i = 0; i < recog_data.n_operands; ++i)
1629 x = recog_data.operand[i];
1630 switch (GET_CODE (x))
1632 case MEM:
1634 rtx addr = XEXP (x, 0);
1635 bool changed = false;
1637 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1638 if (!changed)
1639 continue;
1641 start_sequence ();
1642 x = replace_equiv_address (x, addr);
1643 /* It may happen that the address with the virtual reg
1644 was valid (e.g. based on the virtual stack reg, which might
1645 be acceptable to the predicates with all offsets), whereas
1646 the address now isn't anymore, for instance when the address
1647 is still offsetted, but the base reg isn't virtual-stack-reg
1648 anymore. Below we would do a force_reg on the whole operand,
1649 but this insn might actually only accept memory. Hence,
1650 before doing that last resort, try to reload the address into
1651 a register, so this operand stays a MEM. */
1652 if (!safe_insn_predicate (insn_code, i, x))
1654 addr = force_reg (GET_MODE (addr), addr);
1655 x = replace_equiv_address (x, addr);
1657 seq = get_insns ();
1658 end_sequence ();
1659 if (seq)
1660 emit_insn_before (seq, insn);
1662 break;
1664 case REG:
1665 new_rtx = instantiate_new_reg (x, &offset);
1666 if (new_rtx == NULL)
1667 continue;
1668 if (offset == 0)
1669 x = new_rtx;
1670 else
1672 start_sequence ();
1674 /* Careful, special mode predicates may have stuff in
1675 insn_data[insn_code].operand[i].mode that isn't useful
1676 to us for computing a new value. */
1677 /* ??? Recognize address_operand and/or "p" constraints
1678 to see if (plus new offset) is a valid before we put
1679 this through expand_simple_binop. */
1680 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1681 GEN_INT (offset), NULL_RTX,
1682 1, OPTAB_LIB_WIDEN);
1683 seq = get_insns ();
1684 end_sequence ();
1685 emit_insn_before (seq, insn);
1687 break;
1689 case SUBREG:
1690 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1691 if (new_rtx == NULL)
1692 continue;
1693 if (offset != 0)
1695 start_sequence ();
1696 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1697 GEN_INT (offset), NULL_RTX,
1698 1, OPTAB_LIB_WIDEN);
1699 seq = get_insns ();
1700 end_sequence ();
1701 emit_insn_before (seq, insn);
1703 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1704 GET_MODE (new_rtx), SUBREG_BYTE (x));
1705 gcc_assert (x);
1706 break;
1708 default:
1709 continue;
1712 /* At this point, X contains the new value for the operand.
1713 Validate the new value vs the insn predicate. Note that
1714 asm insns will have insn_code -1 here. */
1715 if (!safe_insn_predicate (insn_code, i, x))
1717 start_sequence ();
1718 if (REG_P (x))
1720 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1721 x = copy_to_reg (x);
1723 else
1724 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1725 seq = get_insns ();
1726 end_sequence ();
1727 if (seq)
1728 emit_insn_before (seq, insn);
1731 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1732 any_change = true;
1735 if (any_change)
1737 /* Propagate operand changes into the duplicates. */
1738 for (i = 0; i < recog_data.n_dups; ++i)
1739 *recog_data.dup_loc[i]
1740 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1742 /* Force re-recognition of the instruction for validation. */
1743 INSN_CODE (insn) = -1;
1746 if (asm_noperands (PATTERN (insn)) >= 0)
1748 if (!check_asm_operands (PATTERN (insn)))
1750 error_for_asm (insn, "impossible constraint in %<asm%>");
1751 delete_insn_and_edges (insn);
1754 else
1756 if (recog_memoized (insn) < 0)
1757 fatal_insn_not_found (insn);
1761 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1762 do any instantiation required. */
1764 void
1765 instantiate_decl_rtl (rtx x)
1767 rtx addr;
1769 if (x == 0)
1770 return;
1772 /* If this is a CONCAT, recurse for the pieces. */
1773 if (GET_CODE (x) == CONCAT)
1775 instantiate_decl_rtl (XEXP (x, 0));
1776 instantiate_decl_rtl (XEXP (x, 1));
1777 return;
1780 /* If this is not a MEM, no need to do anything. Similarly if the
1781 address is a constant or a register that is not a virtual register. */
1782 if (!MEM_P (x))
1783 return;
1785 addr = XEXP (x, 0);
1786 if (CONSTANT_P (addr)
1787 || (REG_P (addr)
1788 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1789 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1790 return;
1792 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1795 /* Helper for instantiate_decls called via walk_tree: Process all decls
1796 in the given DECL_VALUE_EXPR. */
1798 static tree
1799 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1801 tree t = *tp;
1802 if (! EXPR_P (t))
1804 *walk_subtrees = 0;
1805 if (DECL_P (t))
1807 if (DECL_RTL_SET_P (t))
1808 instantiate_decl_rtl (DECL_RTL (t));
1809 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1810 && DECL_INCOMING_RTL (t))
1811 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1812 if ((TREE_CODE (t) == VAR_DECL
1813 || TREE_CODE (t) == RESULT_DECL)
1814 && DECL_HAS_VALUE_EXPR_P (t))
1816 tree v = DECL_VALUE_EXPR (t);
1817 walk_tree (&v, instantiate_expr, NULL, NULL);
1821 return NULL;
1824 /* Subroutine of instantiate_decls: Process all decls in the given
1825 BLOCK node and all its subblocks. */
1827 static void
1828 instantiate_decls_1 (tree let)
1830 tree t;
1832 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1834 if (DECL_RTL_SET_P (t))
1835 instantiate_decl_rtl (DECL_RTL (t));
1836 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1838 tree v = DECL_VALUE_EXPR (t);
1839 walk_tree (&v, instantiate_expr, NULL, NULL);
1843 /* Process all subblocks. */
1844 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1845 instantiate_decls_1 (t);
1848 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1849 all virtual registers in their DECL_RTL's. */
1851 static void
1852 instantiate_decls (tree fndecl)
1854 tree decl;
1855 unsigned ix;
1857 /* Process all parameters of the function. */
1858 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1860 instantiate_decl_rtl (DECL_RTL (decl));
1861 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1862 if (DECL_HAS_VALUE_EXPR_P (decl))
1864 tree v = DECL_VALUE_EXPR (decl);
1865 walk_tree (&v, instantiate_expr, NULL, NULL);
1869 if ((decl = DECL_RESULT (fndecl))
1870 && TREE_CODE (decl) == RESULT_DECL)
1872 if (DECL_RTL_SET_P (decl))
1873 instantiate_decl_rtl (DECL_RTL (decl));
1874 if (DECL_HAS_VALUE_EXPR_P (decl))
1876 tree v = DECL_VALUE_EXPR (decl);
1877 walk_tree (&v, instantiate_expr, NULL, NULL);
1881 /* Now process all variables defined in the function or its subblocks. */
1882 instantiate_decls_1 (DECL_INITIAL (fndecl));
1884 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1885 if (DECL_RTL_SET_P (decl))
1886 instantiate_decl_rtl (DECL_RTL (decl));
1887 VEC_free (tree, gc, cfun->local_decls);
1890 /* Pass through the INSNS of function FNDECL and convert virtual register
1891 references to hard register references. */
1893 static unsigned int
1894 instantiate_virtual_regs (void)
1896 rtx insn;
1898 /* Compute the offsets to use for this function. */
1899 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1900 var_offset = STARTING_FRAME_OFFSET;
1901 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1902 out_arg_offset = STACK_POINTER_OFFSET;
1903 #ifdef FRAME_POINTER_CFA_OFFSET
1904 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1905 #else
1906 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1907 #endif
1909 /* Initialize recognition, indicating that volatile is OK. */
1910 init_recog ();
1912 /* Scan through all the insns, instantiating every virtual register still
1913 present. */
1914 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1915 if (INSN_P (insn))
1917 /* These patterns in the instruction stream can never be recognized.
1918 Fortunately, they shouldn't contain virtual registers either. */
1919 if (GET_CODE (PATTERN (insn)) == USE
1920 || GET_CODE (PATTERN (insn)) == CLOBBER
1921 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1922 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1923 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1924 continue;
1925 else if (DEBUG_INSN_P (insn))
1926 for_each_rtx (&INSN_VAR_LOCATION (insn),
1927 instantiate_virtual_regs_in_rtx, NULL);
1928 else
1929 instantiate_virtual_regs_in_insn (insn);
1931 if (INSN_DELETED_P (insn))
1932 continue;
1934 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1936 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1937 if (CALL_P (insn))
1938 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1939 instantiate_virtual_regs_in_rtx, NULL);
1942 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1943 instantiate_decls (current_function_decl);
1945 targetm.instantiate_decls ();
1947 /* Indicate that, from now on, assign_stack_local should use
1948 frame_pointer_rtx. */
1949 virtuals_instantiated = 1;
1951 /* See allocate_dynamic_stack_space for the rationale. */
1952 #ifdef SETJMP_VIA_SAVE_AREA
1953 if (flag_stack_usage && cfun->calls_setjmp)
1955 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1956 dynamic_offset = (dynamic_offset + align - 1) / align * align;
1957 current_function_dynamic_stack_size
1958 += current_function_dynamic_alloc_count * dynamic_offset;
1960 #endif
1962 return 0;
1965 struct rtl_opt_pass pass_instantiate_virtual_regs =
1968 RTL_PASS,
1969 "vregs", /* name */
1970 NULL, /* gate */
1971 instantiate_virtual_regs, /* execute */
1972 NULL, /* sub */
1973 NULL, /* next */
1974 0, /* static_pass_number */
1975 TV_NONE, /* tv_id */
1976 0, /* properties_required */
1977 0, /* properties_provided */
1978 0, /* properties_destroyed */
1979 0, /* todo_flags_start */
1980 TODO_dump_func /* todo_flags_finish */
1985 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1986 This means a type for which function calls must pass an address to the
1987 function or get an address back from the function.
1988 EXP may be a type node or an expression (whose type is tested). */
1991 aggregate_value_p (const_tree exp, const_tree fntype)
1993 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1994 int i, regno, nregs;
1995 rtx reg;
1997 if (fntype)
1998 switch (TREE_CODE (fntype))
2000 case CALL_EXPR:
2002 tree fndecl = get_callee_fndecl (fntype);
2003 fntype = (fndecl
2004 ? TREE_TYPE (fndecl)
2005 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2007 break;
2008 case FUNCTION_DECL:
2009 fntype = TREE_TYPE (fntype);
2010 break;
2011 case FUNCTION_TYPE:
2012 case METHOD_TYPE:
2013 break;
2014 case IDENTIFIER_NODE:
2015 fntype = NULL_TREE;
2016 break;
2017 default:
2018 /* We don't expect other tree types here. */
2019 gcc_unreachable ();
2022 if (VOID_TYPE_P (type))
2023 return 0;
2025 /* If a record should be passed the same as its first (and only) member
2026 don't pass it as an aggregate. */
2027 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2028 return aggregate_value_p (first_field (type), fntype);
2030 /* If the front end has decided that this needs to be passed by
2031 reference, do so. */
2032 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2033 && DECL_BY_REFERENCE (exp))
2034 return 1;
2036 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2037 if (fntype && TREE_ADDRESSABLE (fntype))
2038 return 1;
2040 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2041 and thus can't be returned in registers. */
2042 if (TREE_ADDRESSABLE (type))
2043 return 1;
2045 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2046 return 1;
2048 if (targetm.calls.return_in_memory (type, fntype))
2049 return 1;
2051 /* Make sure we have suitable call-clobbered regs to return
2052 the value in; if not, we must return it in memory. */
2053 reg = hard_function_value (type, 0, fntype, 0);
2055 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2056 it is OK. */
2057 if (!REG_P (reg))
2058 return 0;
2060 regno = REGNO (reg);
2061 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2062 for (i = 0; i < nregs; i++)
2063 if (! call_used_regs[regno + i])
2064 return 1;
2066 return 0;
2069 /* Return true if we should assign DECL a pseudo register; false if it
2070 should live on the local stack. */
2072 bool
2073 use_register_for_decl (const_tree decl)
2075 if (!targetm.calls.allocate_stack_slots_for_args())
2076 return true;
2078 /* Honor volatile. */
2079 if (TREE_SIDE_EFFECTS (decl))
2080 return false;
2082 /* Honor addressability. */
2083 if (TREE_ADDRESSABLE (decl))
2084 return false;
2086 /* Only register-like things go in registers. */
2087 if (DECL_MODE (decl) == BLKmode)
2088 return false;
2090 /* If -ffloat-store specified, don't put explicit float variables
2091 into registers. */
2092 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2093 propagates values across these stores, and it probably shouldn't. */
2094 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2095 return false;
2097 /* If we're not interested in tracking debugging information for
2098 this decl, then we can certainly put it in a register. */
2099 if (DECL_IGNORED_P (decl))
2100 return true;
2102 if (optimize)
2103 return true;
2105 if (!DECL_REGISTER (decl))
2106 return false;
2108 switch (TREE_CODE (TREE_TYPE (decl)))
2110 case RECORD_TYPE:
2111 case UNION_TYPE:
2112 case QUAL_UNION_TYPE:
2113 /* When not optimizing, disregard register keyword for variables with
2114 types containing methods, otherwise the methods won't be callable
2115 from the debugger. */
2116 if (TYPE_METHODS (TREE_TYPE (decl)))
2117 return false;
2118 break;
2119 default:
2120 break;
2123 return true;
2126 /* Return true if TYPE should be passed by invisible reference. */
2128 bool
2129 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2130 tree type, bool named_arg)
2132 if (type)
2134 /* If this type contains non-trivial constructors, then it is
2135 forbidden for the middle-end to create any new copies. */
2136 if (TREE_ADDRESSABLE (type))
2137 return true;
2139 /* GCC post 3.4 passes *all* variable sized types by reference. */
2140 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2141 return true;
2143 /* If a record type should be passed the same as its first (and only)
2144 member, use the type and mode of that member. */
2145 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2147 type = TREE_TYPE (first_field (type));
2148 mode = TYPE_MODE (type);
2152 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2155 /* Return true if TYPE, which is passed by reference, should be callee
2156 copied instead of caller copied. */
2158 bool
2159 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2160 tree type, bool named_arg)
2162 if (type && TREE_ADDRESSABLE (type))
2163 return false;
2164 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2167 /* Structures to communicate between the subroutines of assign_parms.
2168 The first holds data persistent across all parameters, the second
2169 is cleared out for each parameter. */
2171 struct assign_parm_data_all
2173 CUMULATIVE_ARGS args_so_far;
2174 struct args_size stack_args_size;
2175 tree function_result_decl;
2176 tree orig_fnargs;
2177 rtx first_conversion_insn;
2178 rtx last_conversion_insn;
2179 HOST_WIDE_INT pretend_args_size;
2180 HOST_WIDE_INT extra_pretend_bytes;
2181 int reg_parm_stack_space;
2184 struct assign_parm_data_one
2186 tree nominal_type;
2187 tree passed_type;
2188 rtx entry_parm;
2189 rtx stack_parm;
2190 enum machine_mode nominal_mode;
2191 enum machine_mode passed_mode;
2192 enum machine_mode promoted_mode;
2193 struct locate_and_pad_arg_data locate;
2194 int partial;
2195 BOOL_BITFIELD named_arg : 1;
2196 BOOL_BITFIELD passed_pointer : 1;
2197 BOOL_BITFIELD on_stack : 1;
2198 BOOL_BITFIELD loaded_in_reg : 1;
2201 /* A subroutine of assign_parms. Initialize ALL. */
2203 static void
2204 assign_parms_initialize_all (struct assign_parm_data_all *all)
2206 tree fntype ATTRIBUTE_UNUSED;
2208 memset (all, 0, sizeof (*all));
2210 fntype = TREE_TYPE (current_function_decl);
2212 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2213 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2214 #else
2215 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2216 current_function_decl, -1);
2217 #endif
2219 #ifdef REG_PARM_STACK_SPACE
2220 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2221 #endif
2224 /* If ARGS contains entries with complex types, split the entry into two
2225 entries of the component type. Return a new list of substitutions are
2226 needed, else the old list. */
2228 static void
2229 split_complex_args (VEC(tree, heap) **args)
2231 unsigned i;
2232 tree p;
2234 FOR_EACH_VEC_ELT (tree, *args, i, p)
2236 tree type = TREE_TYPE (p);
2237 if (TREE_CODE (type) == COMPLEX_TYPE
2238 && targetm.calls.split_complex_arg (type))
2240 tree decl;
2241 tree subtype = TREE_TYPE (type);
2242 bool addressable = TREE_ADDRESSABLE (p);
2244 /* Rewrite the PARM_DECL's type with its component. */
2245 p = copy_node (p);
2246 TREE_TYPE (p) = subtype;
2247 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2248 DECL_MODE (p) = VOIDmode;
2249 DECL_SIZE (p) = NULL;
2250 DECL_SIZE_UNIT (p) = NULL;
2251 /* If this arg must go in memory, put it in a pseudo here.
2252 We can't allow it to go in memory as per normal parms,
2253 because the usual place might not have the imag part
2254 adjacent to the real part. */
2255 DECL_ARTIFICIAL (p) = addressable;
2256 DECL_IGNORED_P (p) = addressable;
2257 TREE_ADDRESSABLE (p) = 0;
2258 layout_decl (p, 0);
2259 VEC_replace (tree, *args, i, p);
2261 /* Build a second synthetic decl. */
2262 decl = build_decl (EXPR_LOCATION (p),
2263 PARM_DECL, NULL_TREE, subtype);
2264 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2265 DECL_ARTIFICIAL (decl) = addressable;
2266 DECL_IGNORED_P (decl) = addressable;
2267 layout_decl (decl, 0);
2268 VEC_safe_insert (tree, heap, *args, ++i, decl);
2273 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2274 the hidden struct return argument, and (abi willing) complex args.
2275 Return the new parameter list. */
2277 static VEC(tree, heap) *
2278 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2280 tree fndecl = current_function_decl;
2281 tree fntype = TREE_TYPE (fndecl);
2282 VEC(tree, heap) *fnargs = NULL;
2283 tree arg;
2285 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2286 VEC_safe_push (tree, heap, fnargs, arg);
2288 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2290 /* If struct value address is treated as the first argument, make it so. */
2291 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2292 && ! cfun->returns_pcc_struct
2293 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2295 tree type = build_pointer_type (TREE_TYPE (fntype));
2296 tree decl;
2298 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2299 PARM_DECL, get_identifier (".result_ptr"), type);
2300 DECL_ARG_TYPE (decl) = type;
2301 DECL_ARTIFICIAL (decl) = 1;
2302 DECL_NAMELESS (decl) = 1;
2303 TREE_CONSTANT (decl) = 1;
2305 DECL_CHAIN (decl) = all->orig_fnargs;
2306 all->orig_fnargs = decl;
2307 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2309 all->function_result_decl = decl;
2312 /* If the target wants to split complex arguments into scalars, do so. */
2313 if (targetm.calls.split_complex_arg)
2314 split_complex_args (&fnargs);
2316 return fnargs;
2319 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2320 data for the parameter. Incorporate ABI specifics such as pass-by-
2321 reference and type promotion. */
2323 static void
2324 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2325 struct assign_parm_data_one *data)
2327 tree nominal_type, passed_type;
2328 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2329 int unsignedp;
2331 memset (data, 0, sizeof (*data));
2333 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2334 if (!cfun->stdarg)
2335 data->named_arg = 1; /* No variadic parms. */
2336 else if (DECL_CHAIN (parm))
2337 data->named_arg = 1; /* Not the last non-variadic parm. */
2338 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2339 data->named_arg = 1; /* Only variadic ones are unnamed. */
2340 else
2341 data->named_arg = 0; /* Treat as variadic. */
2343 nominal_type = TREE_TYPE (parm);
2344 passed_type = DECL_ARG_TYPE (parm);
2346 /* Look out for errors propagating this far. Also, if the parameter's
2347 type is void then its value doesn't matter. */
2348 if (TREE_TYPE (parm) == error_mark_node
2349 /* This can happen after weird syntax errors
2350 or if an enum type is defined among the parms. */
2351 || TREE_CODE (parm) != PARM_DECL
2352 || passed_type == NULL
2353 || VOID_TYPE_P (nominal_type))
2355 nominal_type = passed_type = void_type_node;
2356 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2357 goto egress;
2360 /* Find mode of arg as it is passed, and mode of arg as it should be
2361 during execution of this function. */
2362 passed_mode = TYPE_MODE (passed_type);
2363 nominal_mode = TYPE_MODE (nominal_type);
2365 /* If the parm is to be passed as a transparent union or record, use the
2366 type of the first field for the tests below. We have already verified
2367 that the modes are the same. */
2368 if ((TREE_CODE (passed_type) == UNION_TYPE
2369 || TREE_CODE (passed_type) == RECORD_TYPE)
2370 && TYPE_TRANSPARENT_AGGR (passed_type))
2371 passed_type = TREE_TYPE (first_field (passed_type));
2373 /* See if this arg was passed by invisible reference. */
2374 if (pass_by_reference (&all->args_so_far, passed_mode,
2375 passed_type, data->named_arg))
2377 passed_type = nominal_type = build_pointer_type (passed_type);
2378 data->passed_pointer = true;
2379 passed_mode = nominal_mode = Pmode;
2382 /* Find mode as it is passed by the ABI. */
2383 unsignedp = TYPE_UNSIGNED (passed_type);
2384 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2385 TREE_TYPE (current_function_decl), 0);
2387 egress:
2388 data->nominal_type = nominal_type;
2389 data->passed_type = passed_type;
2390 data->nominal_mode = nominal_mode;
2391 data->passed_mode = passed_mode;
2392 data->promoted_mode = promoted_mode;
2395 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2397 static void
2398 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2399 struct assign_parm_data_one *data, bool no_rtl)
2401 int varargs_pretend_bytes = 0;
2403 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2404 data->promoted_mode,
2405 data->passed_type,
2406 &varargs_pretend_bytes, no_rtl);
2408 /* If the back-end has requested extra stack space, record how much is
2409 needed. Do not change pretend_args_size otherwise since it may be
2410 nonzero from an earlier partial argument. */
2411 if (varargs_pretend_bytes > 0)
2412 all->pretend_args_size = varargs_pretend_bytes;
2415 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2416 the incoming location of the current parameter. */
2418 static void
2419 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2420 struct assign_parm_data_one *data)
2422 HOST_WIDE_INT pretend_bytes = 0;
2423 rtx entry_parm;
2424 bool in_regs;
2426 if (data->promoted_mode == VOIDmode)
2428 data->entry_parm = data->stack_parm = const0_rtx;
2429 return;
2432 entry_parm = targetm.calls.function_incoming_arg (&all->args_so_far,
2433 data->promoted_mode,
2434 data->passed_type,
2435 data->named_arg);
2437 if (entry_parm == 0)
2438 data->promoted_mode = data->passed_mode;
2440 /* Determine parm's home in the stack, in case it arrives in the stack
2441 or we should pretend it did. Compute the stack position and rtx where
2442 the argument arrives and its size.
2444 There is one complexity here: If this was a parameter that would
2445 have been passed in registers, but wasn't only because it is
2446 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2447 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2448 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2449 as it was the previous time. */
2450 in_regs = entry_parm != 0;
2451 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2452 in_regs = true;
2453 #endif
2454 if (!in_regs && !data->named_arg)
2456 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2458 rtx tem;
2459 tem = targetm.calls.function_incoming_arg (&all->args_so_far,
2460 data->promoted_mode,
2461 data->passed_type, true);
2462 in_regs = tem != NULL;
2466 /* If this parameter was passed both in registers and in the stack, use
2467 the copy on the stack. */
2468 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2469 data->passed_type))
2470 entry_parm = 0;
2472 if (entry_parm)
2474 int partial;
2476 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2477 data->promoted_mode,
2478 data->passed_type,
2479 data->named_arg);
2480 data->partial = partial;
2482 /* The caller might already have allocated stack space for the
2483 register parameters. */
2484 if (partial != 0 && all->reg_parm_stack_space == 0)
2486 /* Part of this argument is passed in registers and part
2487 is passed on the stack. Ask the prologue code to extend
2488 the stack part so that we can recreate the full value.
2490 PRETEND_BYTES is the size of the registers we need to store.
2491 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2492 stack space that the prologue should allocate.
2494 Internally, gcc assumes that the argument pointer is aligned
2495 to STACK_BOUNDARY bits. This is used both for alignment
2496 optimizations (see init_emit) and to locate arguments that are
2497 aligned to more than PARM_BOUNDARY bits. We must preserve this
2498 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2499 a stack boundary. */
2501 /* We assume at most one partial arg, and it must be the first
2502 argument on the stack. */
2503 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2505 pretend_bytes = partial;
2506 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2508 /* We want to align relative to the actual stack pointer, so
2509 don't include this in the stack size until later. */
2510 all->extra_pretend_bytes = all->pretend_args_size;
2514 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2515 entry_parm ? data->partial : 0, current_function_decl,
2516 &all->stack_args_size, &data->locate);
2518 /* Update parm_stack_boundary if this parameter is passed in the
2519 stack. */
2520 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2521 crtl->parm_stack_boundary = data->locate.boundary;
2523 /* Adjust offsets to include the pretend args. */
2524 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2525 data->locate.slot_offset.constant += pretend_bytes;
2526 data->locate.offset.constant += pretend_bytes;
2528 data->entry_parm = entry_parm;
2531 /* A subroutine of assign_parms. If there is actually space on the stack
2532 for this parm, count it in stack_args_size and return true. */
2534 static bool
2535 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2536 struct assign_parm_data_one *data)
2538 /* Trivially true if we've no incoming register. */
2539 if (data->entry_parm == NULL)
2541 /* Also true if we're partially in registers and partially not,
2542 since we've arranged to drop the entire argument on the stack. */
2543 else if (data->partial != 0)
2545 /* Also true if the target says that it's passed in both registers
2546 and on the stack. */
2547 else if (GET_CODE (data->entry_parm) == PARALLEL
2548 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2550 /* Also true if the target says that there's stack allocated for
2551 all register parameters. */
2552 else if (all->reg_parm_stack_space > 0)
2554 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2555 else
2556 return false;
2558 all->stack_args_size.constant += data->locate.size.constant;
2559 if (data->locate.size.var)
2560 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2562 return true;
2565 /* A subroutine of assign_parms. Given that this parameter is allocated
2566 stack space by the ABI, find it. */
2568 static void
2569 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2571 rtx offset_rtx, stack_parm;
2572 unsigned int align, boundary;
2574 /* If we're passing this arg using a reg, make its stack home the
2575 aligned stack slot. */
2576 if (data->entry_parm)
2577 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2578 else
2579 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2581 stack_parm = crtl->args.internal_arg_pointer;
2582 if (offset_rtx != const0_rtx)
2583 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2584 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2586 if (!data->passed_pointer)
2588 set_mem_attributes (stack_parm, parm, 1);
2589 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2590 while promoted mode's size is needed. */
2591 if (data->promoted_mode != BLKmode
2592 && data->promoted_mode != DECL_MODE (parm))
2594 set_mem_size (stack_parm,
2595 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2596 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2598 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2599 data->promoted_mode);
2600 if (offset)
2601 set_mem_offset (stack_parm,
2602 plus_constant (MEM_OFFSET (stack_parm),
2603 -offset));
2608 boundary = data->locate.boundary;
2609 align = BITS_PER_UNIT;
2611 /* If we're padding upward, we know that the alignment of the slot
2612 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2613 intentionally forcing upward padding. Otherwise we have to come
2614 up with a guess at the alignment based on OFFSET_RTX. */
2615 if (data->locate.where_pad != downward || data->entry_parm)
2616 align = boundary;
2617 else if (CONST_INT_P (offset_rtx))
2619 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2620 align = align & -align;
2622 set_mem_align (stack_parm, align);
2624 if (data->entry_parm)
2625 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2627 data->stack_parm = stack_parm;
2630 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2631 always valid and contiguous. */
2633 static void
2634 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2636 rtx entry_parm = data->entry_parm;
2637 rtx stack_parm = data->stack_parm;
2639 /* If this parm was passed part in regs and part in memory, pretend it
2640 arrived entirely in memory by pushing the register-part onto the stack.
2641 In the special case of a DImode or DFmode that is split, we could put
2642 it together in a pseudoreg directly, but for now that's not worth
2643 bothering with. */
2644 if (data->partial != 0)
2646 /* Handle calls that pass values in multiple non-contiguous
2647 locations. The Irix 6 ABI has examples of this. */
2648 if (GET_CODE (entry_parm) == PARALLEL)
2649 emit_group_store (validize_mem (stack_parm), entry_parm,
2650 data->passed_type,
2651 int_size_in_bytes (data->passed_type));
2652 else
2654 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2655 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2656 data->partial / UNITS_PER_WORD);
2659 entry_parm = stack_parm;
2662 /* If we didn't decide this parm came in a register, by default it came
2663 on the stack. */
2664 else if (entry_parm == NULL)
2665 entry_parm = stack_parm;
2667 /* When an argument is passed in multiple locations, we can't make use
2668 of this information, but we can save some copying if the whole argument
2669 is passed in a single register. */
2670 else if (GET_CODE (entry_parm) == PARALLEL
2671 && data->nominal_mode != BLKmode
2672 && data->passed_mode != BLKmode)
2674 size_t i, len = XVECLEN (entry_parm, 0);
2676 for (i = 0; i < len; i++)
2677 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2678 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2679 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2680 == data->passed_mode)
2681 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2683 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2684 break;
2688 data->entry_parm = entry_parm;
2691 /* A subroutine of assign_parms. Reconstitute any values which were
2692 passed in multiple registers and would fit in a single register. */
2694 static void
2695 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2697 rtx entry_parm = data->entry_parm;
2699 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2700 This can be done with register operations rather than on the
2701 stack, even if we will store the reconstituted parameter on the
2702 stack later. */
2703 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2705 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2706 emit_group_store (parmreg, entry_parm, data->passed_type,
2707 GET_MODE_SIZE (GET_MODE (entry_parm)));
2708 entry_parm = parmreg;
2711 data->entry_parm = entry_parm;
2714 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2715 always valid and properly aligned. */
2717 static void
2718 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2720 rtx stack_parm = data->stack_parm;
2722 /* If we can't trust the parm stack slot to be aligned enough for its
2723 ultimate type, don't use that slot after entry. We'll make another
2724 stack slot, if we need one. */
2725 if (stack_parm
2726 && ((STRICT_ALIGNMENT
2727 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2728 || (data->nominal_type
2729 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2730 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2731 stack_parm = NULL;
2733 /* If parm was passed in memory, and we need to convert it on entry,
2734 don't store it back in that same slot. */
2735 else if (data->entry_parm == stack_parm
2736 && data->nominal_mode != BLKmode
2737 && data->nominal_mode != data->passed_mode)
2738 stack_parm = NULL;
2740 /* If stack protection is in effect for this function, don't leave any
2741 pointers in their passed stack slots. */
2742 else if (crtl->stack_protect_guard
2743 && (flag_stack_protect == 2
2744 || data->passed_pointer
2745 || POINTER_TYPE_P (data->nominal_type)))
2746 stack_parm = NULL;
2748 data->stack_parm = stack_parm;
2751 /* A subroutine of assign_parms. Return true if the current parameter
2752 should be stored as a BLKmode in the current frame. */
2754 static bool
2755 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2757 if (data->nominal_mode == BLKmode)
2758 return true;
2759 if (GET_MODE (data->entry_parm) == BLKmode)
2760 return true;
2762 #ifdef BLOCK_REG_PADDING
2763 /* Only assign_parm_setup_block knows how to deal with register arguments
2764 that are padded at the least significant end. */
2765 if (REG_P (data->entry_parm)
2766 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2767 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2768 == (BYTES_BIG_ENDIAN ? upward : downward)))
2769 return true;
2770 #endif
2772 return false;
2775 /* A subroutine of assign_parms. Arrange for the parameter to be
2776 present and valid in DATA->STACK_RTL. */
2778 static void
2779 assign_parm_setup_block (struct assign_parm_data_all *all,
2780 tree parm, struct assign_parm_data_one *data)
2782 rtx entry_parm = data->entry_parm;
2783 rtx stack_parm = data->stack_parm;
2784 HOST_WIDE_INT size;
2785 HOST_WIDE_INT size_stored;
2787 if (GET_CODE (entry_parm) == PARALLEL)
2788 entry_parm = emit_group_move_into_temps (entry_parm);
2790 size = int_size_in_bytes (data->passed_type);
2791 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2792 if (stack_parm == 0)
2794 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2795 stack_parm = assign_stack_local (BLKmode, size_stored,
2796 DECL_ALIGN (parm));
2797 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2798 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2799 set_mem_attributes (stack_parm, parm, 1);
2802 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2803 calls that pass values in multiple non-contiguous locations. */
2804 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2806 rtx mem;
2808 /* Note that we will be storing an integral number of words.
2809 So we have to be careful to ensure that we allocate an
2810 integral number of words. We do this above when we call
2811 assign_stack_local if space was not allocated in the argument
2812 list. If it was, this will not work if PARM_BOUNDARY is not
2813 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2814 if it becomes a problem. Exception is when BLKmode arrives
2815 with arguments not conforming to word_mode. */
2817 if (data->stack_parm == 0)
2819 else if (GET_CODE (entry_parm) == PARALLEL)
2821 else
2822 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2824 mem = validize_mem (stack_parm);
2826 /* Handle values in multiple non-contiguous locations. */
2827 if (GET_CODE (entry_parm) == PARALLEL)
2829 push_to_sequence2 (all->first_conversion_insn,
2830 all->last_conversion_insn);
2831 emit_group_store (mem, entry_parm, data->passed_type, size);
2832 all->first_conversion_insn = get_insns ();
2833 all->last_conversion_insn = get_last_insn ();
2834 end_sequence ();
2837 else if (size == 0)
2840 /* If SIZE is that of a mode no bigger than a word, just use
2841 that mode's store operation. */
2842 else if (size <= UNITS_PER_WORD)
2844 enum machine_mode mode
2845 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2847 if (mode != BLKmode
2848 #ifdef BLOCK_REG_PADDING
2849 && (size == UNITS_PER_WORD
2850 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2851 != (BYTES_BIG_ENDIAN ? upward : downward)))
2852 #endif
2855 rtx reg;
2857 /* We are really truncating a word_mode value containing
2858 SIZE bytes into a value of mode MODE. If such an
2859 operation requires no actual instructions, we can refer
2860 to the value directly in mode MODE, otherwise we must
2861 start with the register in word_mode and explicitly
2862 convert it. */
2863 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2864 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2865 else
2867 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2868 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2870 emit_move_insn (change_address (mem, mode, 0), reg);
2873 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2874 machine must be aligned to the left before storing
2875 to memory. Note that the previous test doesn't
2876 handle all cases (e.g. SIZE == 3). */
2877 else if (size != UNITS_PER_WORD
2878 #ifdef BLOCK_REG_PADDING
2879 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2880 == downward)
2881 #else
2882 && BYTES_BIG_ENDIAN
2883 #endif
2886 rtx tem, x;
2887 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2888 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2890 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2891 build_int_cst (NULL_TREE, by),
2892 NULL_RTX, 1);
2893 tem = change_address (mem, word_mode, 0);
2894 emit_move_insn (tem, x);
2896 else
2897 move_block_from_reg (REGNO (entry_parm), mem,
2898 size_stored / UNITS_PER_WORD);
2900 else
2901 move_block_from_reg (REGNO (entry_parm), mem,
2902 size_stored / UNITS_PER_WORD);
2904 else if (data->stack_parm == 0)
2906 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2907 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2908 BLOCK_OP_NORMAL);
2909 all->first_conversion_insn = get_insns ();
2910 all->last_conversion_insn = get_last_insn ();
2911 end_sequence ();
2914 data->stack_parm = stack_parm;
2915 SET_DECL_RTL (parm, stack_parm);
2918 /* A subroutine of assign_parm_setup_reg, called through note_stores.
2919 This collects sets and clobbers of hard registers in a HARD_REG_SET,
2920 which is pointed to by DATA. */
2921 static void
2922 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2924 HARD_REG_SET *pset = (HARD_REG_SET *)data;
2925 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
2927 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
2928 while (nregs-- > 0)
2929 SET_HARD_REG_BIT (*pset, REGNO (x) + nregs);
2933 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2934 parameter. Get it there. Perform all ABI specified conversions. */
2936 static void
2937 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2938 struct assign_parm_data_one *data)
2940 rtx parmreg, validated_mem;
2941 rtx equiv_stack_parm;
2942 enum machine_mode promoted_nominal_mode;
2943 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2944 bool did_conversion = false;
2945 bool need_conversion, moved;
2947 /* Store the parm in a pseudoregister during the function, but we may
2948 need to do it in a wider mode. Using 2 here makes the result
2949 consistent with promote_decl_mode and thus expand_expr_real_1. */
2950 promoted_nominal_mode
2951 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2952 TREE_TYPE (current_function_decl), 2);
2954 parmreg = gen_reg_rtx (promoted_nominal_mode);
2956 if (!DECL_ARTIFICIAL (parm))
2957 mark_user_reg (parmreg);
2959 /* If this was an item that we received a pointer to,
2960 set DECL_RTL appropriately. */
2961 if (data->passed_pointer)
2963 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2964 set_mem_attributes (x, parm, 1);
2965 SET_DECL_RTL (parm, x);
2967 else
2968 SET_DECL_RTL (parm, parmreg);
2970 assign_parm_remove_parallels (data);
2972 /* Copy the value into the register, thus bridging between
2973 assign_parm_find_data_types and expand_expr_real_1. */
2975 equiv_stack_parm = data->stack_parm;
2976 validated_mem = validize_mem (data->entry_parm);
2978 need_conversion = (data->nominal_mode != data->passed_mode
2979 || promoted_nominal_mode != data->promoted_mode);
2980 moved = false;
2982 if (need_conversion
2983 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2984 && data->nominal_mode == data->passed_mode
2985 && data->nominal_mode == GET_MODE (data->entry_parm))
2987 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2988 mode, by the caller. We now have to convert it to
2989 NOMINAL_MODE, if different. However, PARMREG may be in
2990 a different mode than NOMINAL_MODE if it is being stored
2991 promoted.
2993 If ENTRY_PARM is a hard register, it might be in a register
2994 not valid for operating in its mode (e.g., an odd-numbered
2995 register for a DFmode). In that case, moves are the only
2996 thing valid, so we can't do a convert from there. This
2997 occurs when the calling sequence allow such misaligned
2998 usages.
3000 In addition, the conversion may involve a call, which could
3001 clobber parameters which haven't been copied to pseudo
3002 registers yet.
3004 First, we try to emit an insn which performs the necessary
3005 conversion. We verify that this insn does not clobber any
3006 hard registers. */
3008 enum insn_code icode;
3009 rtx op0, op1;
3011 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3012 unsignedp);
3014 op0 = parmreg;
3015 op1 = validated_mem;
3016 if (icode != CODE_FOR_nothing
3017 && insn_data[icode].operand[0].predicate (op0, promoted_nominal_mode)
3018 && insn_data[icode].operand[1].predicate (op1, data->passed_mode))
3020 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3021 rtx insn, insns;
3022 HARD_REG_SET hardregs;
3024 start_sequence ();
3025 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
3026 data->passed_mode, unsignedp);
3027 emit_insn (insn);
3028 insns = get_insns ();
3030 moved = true;
3031 CLEAR_HARD_REG_SET (hardregs);
3032 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3034 if (INSN_P (insn))
3035 note_stores (PATTERN (insn), record_hard_reg_sets,
3036 &hardregs);
3037 if (!hard_reg_set_empty_p (hardregs))
3038 moved = false;
3041 end_sequence ();
3043 if (moved)
3045 emit_insn (insns);
3046 if (equiv_stack_parm != NULL_RTX)
3047 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3048 equiv_stack_parm);
3053 if (moved)
3054 /* Nothing to do. */
3056 else if (need_conversion)
3058 /* We did not have an insn to convert directly, or the sequence
3059 generated appeared unsafe. We must first copy the parm to a
3060 pseudo reg, and save the conversion until after all
3061 parameters have been moved. */
3063 int save_tree_used;
3064 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3066 emit_move_insn (tempreg, validated_mem);
3068 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3069 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3071 if (GET_CODE (tempreg) == SUBREG
3072 && GET_MODE (tempreg) == data->nominal_mode
3073 && REG_P (SUBREG_REG (tempreg))
3074 && data->nominal_mode == data->passed_mode
3075 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3076 && GET_MODE_SIZE (GET_MODE (tempreg))
3077 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3079 /* The argument is already sign/zero extended, so note it
3080 into the subreg. */
3081 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3082 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3085 /* TREE_USED gets set erroneously during expand_assignment. */
3086 save_tree_used = TREE_USED (parm);
3087 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3088 TREE_USED (parm) = save_tree_used;
3089 all->first_conversion_insn = get_insns ();
3090 all->last_conversion_insn = get_last_insn ();
3091 end_sequence ();
3093 did_conversion = true;
3095 else
3096 emit_move_insn (parmreg, validated_mem);
3098 /* If we were passed a pointer but the actual value can safely live
3099 in a register, put it in one. */
3100 if (data->passed_pointer
3101 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3102 /* If by-reference argument was promoted, demote it. */
3103 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3104 || use_register_for_decl (parm)))
3106 /* We can't use nominal_mode, because it will have been set to
3107 Pmode above. We must use the actual mode of the parm. */
3108 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3109 mark_user_reg (parmreg);
3111 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3113 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3114 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3116 push_to_sequence2 (all->first_conversion_insn,
3117 all->last_conversion_insn);
3118 emit_move_insn (tempreg, DECL_RTL (parm));
3119 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3120 emit_move_insn (parmreg, tempreg);
3121 all->first_conversion_insn = get_insns ();
3122 all->last_conversion_insn = get_last_insn ();
3123 end_sequence ();
3125 did_conversion = true;
3127 else
3128 emit_move_insn (parmreg, DECL_RTL (parm));
3130 SET_DECL_RTL (parm, parmreg);
3132 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3133 now the parm. */
3134 data->stack_parm = NULL;
3137 /* Mark the register as eliminable if we did no conversion and it was
3138 copied from memory at a fixed offset, and the arg pointer was not
3139 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3140 offset formed an invalid address, such memory-equivalences as we
3141 make here would screw up life analysis for it. */
3142 if (data->nominal_mode == data->passed_mode
3143 && !did_conversion
3144 && data->stack_parm != 0
3145 && MEM_P (data->stack_parm)
3146 && data->locate.offset.var == 0
3147 && reg_mentioned_p (virtual_incoming_args_rtx,
3148 XEXP (data->stack_parm, 0)))
3150 rtx linsn = get_last_insn ();
3151 rtx sinsn, set;
3153 /* Mark complex types separately. */
3154 if (GET_CODE (parmreg) == CONCAT)
3156 enum machine_mode submode
3157 = GET_MODE_INNER (GET_MODE (parmreg));
3158 int regnor = REGNO (XEXP (parmreg, 0));
3159 int regnoi = REGNO (XEXP (parmreg, 1));
3160 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3161 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3162 GET_MODE_SIZE (submode));
3164 /* Scan backwards for the set of the real and
3165 imaginary parts. */
3166 for (sinsn = linsn; sinsn != 0;
3167 sinsn = prev_nonnote_insn (sinsn))
3169 set = single_set (sinsn);
3170 if (set == 0)
3171 continue;
3173 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3174 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3175 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3176 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3179 else if ((set = single_set (linsn)) != 0
3180 && SET_DEST (set) == parmreg)
3181 set_unique_reg_note (linsn, REG_EQUIV, equiv_stack_parm);
3184 /* For pointer data type, suggest pointer register. */
3185 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3186 mark_reg_pointer (parmreg,
3187 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3190 /* A subroutine of assign_parms. Allocate stack space to hold the current
3191 parameter. Get it there. Perform all ABI specified conversions. */
3193 static void
3194 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3195 struct assign_parm_data_one *data)
3197 /* Value must be stored in the stack slot STACK_PARM during function
3198 execution. */
3199 bool to_conversion = false;
3201 assign_parm_remove_parallels (data);
3203 if (data->promoted_mode != data->nominal_mode)
3205 /* Conversion is required. */
3206 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3208 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3210 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3211 to_conversion = true;
3213 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3214 TYPE_UNSIGNED (TREE_TYPE (parm)));
3216 if (data->stack_parm)
3218 int offset = subreg_lowpart_offset (data->nominal_mode,
3219 GET_MODE (data->stack_parm));
3220 /* ??? This may need a big-endian conversion on sparc64. */
3221 data->stack_parm
3222 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3223 if (offset && MEM_OFFSET (data->stack_parm))
3224 set_mem_offset (data->stack_parm,
3225 plus_constant (MEM_OFFSET (data->stack_parm),
3226 offset));
3230 if (data->entry_parm != data->stack_parm)
3232 rtx src, dest;
3234 if (data->stack_parm == 0)
3236 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3237 GET_MODE (data->entry_parm),
3238 TYPE_ALIGN (data->passed_type));
3239 data->stack_parm
3240 = assign_stack_local (GET_MODE (data->entry_parm),
3241 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3242 align);
3243 set_mem_attributes (data->stack_parm, parm, 1);
3246 dest = validize_mem (data->stack_parm);
3247 src = validize_mem (data->entry_parm);
3249 if (MEM_P (src))
3251 /* Use a block move to handle potentially misaligned entry_parm. */
3252 if (!to_conversion)
3253 push_to_sequence2 (all->first_conversion_insn,
3254 all->last_conversion_insn);
3255 to_conversion = true;
3257 emit_block_move (dest, src,
3258 GEN_INT (int_size_in_bytes (data->passed_type)),
3259 BLOCK_OP_NORMAL);
3261 else
3262 emit_move_insn (dest, src);
3265 if (to_conversion)
3267 all->first_conversion_insn = get_insns ();
3268 all->last_conversion_insn = get_last_insn ();
3269 end_sequence ();
3272 SET_DECL_RTL (parm, data->stack_parm);
3275 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3276 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3278 static void
3279 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3280 VEC(tree, heap) *fnargs)
3282 tree parm;
3283 tree orig_fnargs = all->orig_fnargs;
3284 unsigned i = 0;
3286 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3288 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3289 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3291 rtx tmp, real, imag;
3292 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3294 real = DECL_RTL (VEC_index (tree, fnargs, i));
3295 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3296 if (inner != GET_MODE (real))
3298 real = gen_lowpart_SUBREG (inner, real);
3299 imag = gen_lowpart_SUBREG (inner, imag);
3302 if (TREE_ADDRESSABLE (parm))
3304 rtx rmem, imem;
3305 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3306 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3307 DECL_MODE (parm),
3308 TYPE_ALIGN (TREE_TYPE (parm)));
3310 /* split_complex_arg put the real and imag parts in
3311 pseudos. Move them to memory. */
3312 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3313 set_mem_attributes (tmp, parm, 1);
3314 rmem = adjust_address_nv (tmp, inner, 0);
3315 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3316 push_to_sequence2 (all->first_conversion_insn,
3317 all->last_conversion_insn);
3318 emit_move_insn (rmem, real);
3319 emit_move_insn (imem, imag);
3320 all->first_conversion_insn = get_insns ();
3321 all->last_conversion_insn = get_last_insn ();
3322 end_sequence ();
3324 else
3325 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3326 SET_DECL_RTL (parm, tmp);
3328 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3329 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3330 if (inner != GET_MODE (real))
3332 real = gen_lowpart_SUBREG (inner, real);
3333 imag = gen_lowpart_SUBREG (inner, imag);
3335 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3336 set_decl_incoming_rtl (parm, tmp, false);
3337 i++;
3342 /* Assign RTL expressions to the function's parameters. This may involve
3343 copying them into registers and using those registers as the DECL_RTL. */
3345 static void
3346 assign_parms (tree fndecl)
3348 struct assign_parm_data_all all;
3349 tree parm;
3350 VEC(tree, heap) *fnargs;
3351 unsigned i;
3353 crtl->args.internal_arg_pointer
3354 = targetm.calls.internal_arg_pointer ();
3356 assign_parms_initialize_all (&all);
3357 fnargs = assign_parms_augmented_arg_list (&all);
3359 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3361 struct assign_parm_data_one data;
3363 /* Extract the type of PARM; adjust it according to ABI. */
3364 assign_parm_find_data_types (&all, parm, &data);
3366 /* Early out for errors and void parameters. */
3367 if (data.passed_mode == VOIDmode)
3369 SET_DECL_RTL (parm, const0_rtx);
3370 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3371 continue;
3374 /* Estimate stack alignment from parameter alignment. */
3375 if (SUPPORTS_STACK_ALIGNMENT)
3377 unsigned int align
3378 = targetm.calls.function_arg_boundary (data.promoted_mode,
3379 data.passed_type);
3380 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3381 align);
3382 if (TYPE_ALIGN (data.nominal_type) > align)
3383 align = MINIMUM_ALIGNMENT (data.nominal_type,
3384 TYPE_MODE (data.nominal_type),
3385 TYPE_ALIGN (data.nominal_type));
3386 if (crtl->stack_alignment_estimated < align)
3388 gcc_assert (!crtl->stack_realign_processed);
3389 crtl->stack_alignment_estimated = align;
3393 if (cfun->stdarg && !DECL_CHAIN (parm))
3394 assign_parms_setup_varargs (&all, &data, false);
3396 /* Find out where the parameter arrives in this function. */
3397 assign_parm_find_entry_rtl (&all, &data);
3399 /* Find out where stack space for this parameter might be. */
3400 if (assign_parm_is_stack_parm (&all, &data))
3402 assign_parm_find_stack_rtl (parm, &data);
3403 assign_parm_adjust_entry_rtl (&data);
3406 /* Record permanently how this parm was passed. */
3407 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3409 /* Update info on where next arg arrives in registers. */
3410 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3411 data.passed_type, data.named_arg);
3413 assign_parm_adjust_stack_rtl (&data);
3415 if (assign_parm_setup_block_p (&data))
3416 assign_parm_setup_block (&all, parm, &data);
3417 else if (data.passed_pointer || use_register_for_decl (parm))
3418 assign_parm_setup_reg (&all, parm, &data);
3419 else
3420 assign_parm_setup_stack (&all, parm, &data);
3423 if (targetm.calls.split_complex_arg)
3424 assign_parms_unsplit_complex (&all, fnargs);
3426 VEC_free (tree, heap, fnargs);
3428 /* Output all parameter conversion instructions (possibly including calls)
3429 now that all parameters have been copied out of hard registers. */
3430 emit_insn (all.first_conversion_insn);
3432 /* Estimate reload stack alignment from scalar return mode. */
3433 if (SUPPORTS_STACK_ALIGNMENT)
3435 if (DECL_RESULT (fndecl))
3437 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3438 enum machine_mode mode = TYPE_MODE (type);
3440 if (mode != BLKmode
3441 && mode != VOIDmode
3442 && !AGGREGATE_TYPE_P (type))
3444 unsigned int align = GET_MODE_ALIGNMENT (mode);
3445 if (crtl->stack_alignment_estimated < align)
3447 gcc_assert (!crtl->stack_realign_processed);
3448 crtl->stack_alignment_estimated = align;
3454 /* If we are receiving a struct value address as the first argument, set up
3455 the RTL for the function result. As this might require code to convert
3456 the transmitted address to Pmode, we do this here to ensure that possible
3457 preliminary conversions of the address have been emitted already. */
3458 if (all.function_result_decl)
3460 tree result = DECL_RESULT (current_function_decl);
3461 rtx addr = DECL_RTL (all.function_result_decl);
3462 rtx x;
3464 if (DECL_BY_REFERENCE (result))
3466 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3467 x = addr;
3469 else
3471 SET_DECL_VALUE_EXPR (result,
3472 build1 (INDIRECT_REF, TREE_TYPE (result),
3473 all.function_result_decl));
3474 addr = convert_memory_address (Pmode, addr);
3475 x = gen_rtx_MEM (DECL_MODE (result), addr);
3476 set_mem_attributes (x, result, 1);
3479 DECL_HAS_VALUE_EXPR_P (result) = 1;
3481 SET_DECL_RTL (result, x);
3484 /* We have aligned all the args, so add space for the pretend args. */
3485 crtl->args.pretend_args_size = all.pretend_args_size;
3486 all.stack_args_size.constant += all.extra_pretend_bytes;
3487 crtl->args.size = all.stack_args_size.constant;
3489 /* Adjust function incoming argument size for alignment and
3490 minimum length. */
3492 #ifdef REG_PARM_STACK_SPACE
3493 crtl->args.size = MAX (crtl->args.size,
3494 REG_PARM_STACK_SPACE (fndecl));
3495 #endif
3497 crtl->args.size = CEIL_ROUND (crtl->args.size,
3498 PARM_BOUNDARY / BITS_PER_UNIT);
3500 #ifdef ARGS_GROW_DOWNWARD
3501 crtl->args.arg_offset_rtx
3502 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3503 : expand_expr (size_diffop (all.stack_args_size.var,
3504 size_int (-all.stack_args_size.constant)),
3505 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3506 #else
3507 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3508 #endif
3510 /* See how many bytes, if any, of its args a function should try to pop
3511 on return. */
3513 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3514 TREE_TYPE (fndecl),
3515 crtl->args.size);
3517 /* For stdarg.h function, save info about
3518 regs and stack space used by the named args. */
3520 crtl->args.info = all.args_so_far;
3522 /* Set the rtx used for the function return value. Put this in its
3523 own variable so any optimizers that need this information don't have
3524 to include tree.h. Do this here so it gets done when an inlined
3525 function gets output. */
3527 crtl->return_rtx
3528 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3529 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3531 /* If scalar return value was computed in a pseudo-reg, or was a named
3532 return value that got dumped to the stack, copy that to the hard
3533 return register. */
3534 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3536 tree decl_result = DECL_RESULT (fndecl);
3537 rtx decl_rtl = DECL_RTL (decl_result);
3539 if (REG_P (decl_rtl)
3540 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3541 : DECL_REGISTER (decl_result))
3543 rtx real_decl_rtl;
3545 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3546 fndecl, true);
3547 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3548 /* The delay slot scheduler assumes that crtl->return_rtx
3549 holds the hard register containing the return value, not a
3550 temporary pseudo. */
3551 crtl->return_rtx = real_decl_rtl;
3556 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3557 For all seen types, gimplify their sizes. */
3559 static tree
3560 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3562 tree t = *tp;
3564 *walk_subtrees = 0;
3565 if (TYPE_P (t))
3567 if (POINTER_TYPE_P (t))
3568 *walk_subtrees = 1;
3569 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3570 && !TYPE_SIZES_GIMPLIFIED (t))
3572 gimplify_type_sizes (t, (gimple_seq *) data);
3573 *walk_subtrees = 1;
3577 return NULL;
3580 /* Gimplify the parameter list for current_function_decl. This involves
3581 evaluating SAVE_EXPRs of variable sized parameters and generating code
3582 to implement callee-copies reference parameters. Returns a sequence of
3583 statements to add to the beginning of the function. */
3585 gimple_seq
3586 gimplify_parameters (void)
3588 struct assign_parm_data_all all;
3589 tree parm;
3590 gimple_seq stmts = NULL;
3591 VEC(tree, heap) *fnargs;
3592 unsigned i;
3594 assign_parms_initialize_all (&all);
3595 fnargs = assign_parms_augmented_arg_list (&all);
3597 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3599 struct assign_parm_data_one data;
3601 /* Extract the type of PARM; adjust it according to ABI. */
3602 assign_parm_find_data_types (&all, parm, &data);
3604 /* Early out for errors and void parameters. */
3605 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3606 continue;
3608 /* Update info on where next arg arrives in registers. */
3609 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3610 data.passed_type, data.named_arg);
3612 /* ??? Once upon a time variable_size stuffed parameter list
3613 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3614 turned out to be less than manageable in the gimple world.
3615 Now we have to hunt them down ourselves. */
3616 walk_tree_without_duplicates (&data.passed_type,
3617 gimplify_parm_type, &stmts);
3619 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3621 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3622 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3625 if (data.passed_pointer)
3627 tree type = TREE_TYPE (data.passed_type);
3628 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3629 type, data.named_arg))
3631 tree local, t;
3633 /* For constant-sized objects, this is trivial; for
3634 variable-sized objects, we have to play games. */
3635 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3636 && !(flag_stack_check == GENERIC_STACK_CHECK
3637 && compare_tree_int (DECL_SIZE_UNIT (parm),
3638 STACK_CHECK_MAX_VAR_SIZE) > 0))
3640 local = create_tmp_reg (type, get_name (parm));
3641 DECL_IGNORED_P (local) = 0;
3642 /* If PARM was addressable, move that flag over
3643 to the local copy, as its address will be taken,
3644 not the PARMs. Keep the parms address taken
3645 as we'll query that flag during gimplification. */
3646 if (TREE_ADDRESSABLE (parm))
3647 TREE_ADDRESSABLE (local) = 1;
3649 else
3651 tree ptr_type, addr;
3653 ptr_type = build_pointer_type (type);
3654 addr = create_tmp_reg (ptr_type, get_name (parm));
3655 DECL_IGNORED_P (addr) = 0;
3656 local = build_fold_indirect_ref (addr);
3658 t = built_in_decls[BUILT_IN_ALLOCA];
3659 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3660 /* The call has been built for a variable-sized object. */
3661 ALLOCA_FOR_VAR_P (t) = 1;
3662 t = fold_convert (ptr_type, t);
3663 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3664 gimplify_and_add (t, &stmts);
3667 gimplify_assign (local, parm, &stmts);
3669 SET_DECL_VALUE_EXPR (parm, local);
3670 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3675 VEC_free (tree, heap, fnargs);
3677 return stmts;
3680 /* Compute the size and offset from the start of the stacked arguments for a
3681 parm passed in mode PASSED_MODE and with type TYPE.
3683 INITIAL_OFFSET_PTR points to the current offset into the stacked
3684 arguments.
3686 The starting offset and size for this parm are returned in
3687 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3688 nonzero, the offset is that of stack slot, which is returned in
3689 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3690 padding required from the initial offset ptr to the stack slot.
3692 IN_REGS is nonzero if the argument will be passed in registers. It will
3693 never be set if REG_PARM_STACK_SPACE is not defined.
3695 FNDECL is the function in which the argument was defined.
3697 There are two types of rounding that are done. The first, controlled by
3698 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3699 argument list to be aligned to the specific boundary (in bits). This
3700 rounding affects the initial and starting offsets, but not the argument
3701 size.
3703 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3704 optionally rounds the size of the parm to PARM_BOUNDARY. The
3705 initial offset is not affected by this rounding, while the size always
3706 is and the starting offset may be. */
3708 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3709 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3710 callers pass in the total size of args so far as
3711 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3713 void
3714 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3715 int partial, tree fndecl ATTRIBUTE_UNUSED,
3716 struct args_size *initial_offset_ptr,
3717 struct locate_and_pad_arg_data *locate)
3719 tree sizetree;
3720 enum direction where_pad;
3721 unsigned int boundary;
3722 int reg_parm_stack_space = 0;
3723 int part_size_in_regs;
3725 #ifdef REG_PARM_STACK_SPACE
3726 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3728 /* If we have found a stack parm before we reach the end of the
3729 area reserved for registers, skip that area. */
3730 if (! in_regs)
3732 if (reg_parm_stack_space > 0)
3734 if (initial_offset_ptr->var)
3736 initial_offset_ptr->var
3737 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3738 ssize_int (reg_parm_stack_space));
3739 initial_offset_ptr->constant = 0;
3741 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3742 initial_offset_ptr->constant = reg_parm_stack_space;
3745 #endif /* REG_PARM_STACK_SPACE */
3747 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3749 sizetree
3750 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3751 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3752 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3753 locate->where_pad = where_pad;
3755 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3756 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3757 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3759 locate->boundary = boundary;
3761 if (SUPPORTS_STACK_ALIGNMENT)
3763 /* stack_alignment_estimated can't change after stack has been
3764 realigned. */
3765 if (crtl->stack_alignment_estimated < boundary)
3767 if (!crtl->stack_realign_processed)
3768 crtl->stack_alignment_estimated = boundary;
3769 else
3771 /* If stack is realigned and stack alignment value
3772 hasn't been finalized, it is OK not to increase
3773 stack_alignment_estimated. The bigger alignment
3774 requirement is recorded in stack_alignment_needed
3775 below. */
3776 gcc_assert (!crtl->stack_realign_finalized
3777 && crtl->stack_realign_needed);
3782 /* Remember if the outgoing parameter requires extra alignment on the
3783 calling function side. */
3784 if (crtl->stack_alignment_needed < boundary)
3785 crtl->stack_alignment_needed = boundary;
3786 if (crtl->preferred_stack_boundary < boundary)
3787 crtl->preferred_stack_boundary = boundary;
3789 #ifdef ARGS_GROW_DOWNWARD
3790 locate->slot_offset.constant = -initial_offset_ptr->constant;
3791 if (initial_offset_ptr->var)
3792 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3793 initial_offset_ptr->var);
3796 tree s2 = sizetree;
3797 if (where_pad != none
3798 && (!host_integerp (sizetree, 1)
3799 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3800 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3801 SUB_PARM_SIZE (locate->slot_offset, s2);
3804 locate->slot_offset.constant += part_size_in_regs;
3806 if (!in_regs
3807 #ifdef REG_PARM_STACK_SPACE
3808 || REG_PARM_STACK_SPACE (fndecl) > 0
3809 #endif
3811 pad_to_arg_alignment (&locate->slot_offset, boundary,
3812 &locate->alignment_pad);
3814 locate->size.constant = (-initial_offset_ptr->constant
3815 - locate->slot_offset.constant);
3816 if (initial_offset_ptr->var)
3817 locate->size.var = size_binop (MINUS_EXPR,
3818 size_binop (MINUS_EXPR,
3819 ssize_int (0),
3820 initial_offset_ptr->var),
3821 locate->slot_offset.var);
3823 /* Pad_below needs the pre-rounded size to know how much to pad
3824 below. */
3825 locate->offset = locate->slot_offset;
3826 if (where_pad == downward)
3827 pad_below (&locate->offset, passed_mode, sizetree);
3829 #else /* !ARGS_GROW_DOWNWARD */
3830 if (!in_regs
3831 #ifdef REG_PARM_STACK_SPACE
3832 || REG_PARM_STACK_SPACE (fndecl) > 0
3833 #endif
3835 pad_to_arg_alignment (initial_offset_ptr, boundary,
3836 &locate->alignment_pad);
3837 locate->slot_offset = *initial_offset_ptr;
3839 #ifdef PUSH_ROUNDING
3840 if (passed_mode != BLKmode)
3841 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3842 #endif
3844 /* Pad_below needs the pre-rounded size to know how much to pad below
3845 so this must be done before rounding up. */
3846 locate->offset = locate->slot_offset;
3847 if (where_pad == downward)
3848 pad_below (&locate->offset, passed_mode, sizetree);
3850 if (where_pad != none
3851 && (!host_integerp (sizetree, 1)
3852 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3853 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3855 ADD_PARM_SIZE (locate->size, sizetree);
3857 locate->size.constant -= part_size_in_regs;
3858 #endif /* ARGS_GROW_DOWNWARD */
3860 #ifdef FUNCTION_ARG_OFFSET
3861 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3862 #endif
3865 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3866 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3868 static void
3869 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3870 struct args_size *alignment_pad)
3872 tree save_var = NULL_TREE;
3873 HOST_WIDE_INT save_constant = 0;
3874 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3875 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3877 #ifdef SPARC_STACK_BOUNDARY_HACK
3878 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3879 the real alignment of %sp. However, when it does this, the
3880 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3881 if (SPARC_STACK_BOUNDARY_HACK)
3882 sp_offset = 0;
3883 #endif
3885 if (boundary > PARM_BOUNDARY)
3887 save_var = offset_ptr->var;
3888 save_constant = offset_ptr->constant;
3891 alignment_pad->var = NULL_TREE;
3892 alignment_pad->constant = 0;
3894 if (boundary > BITS_PER_UNIT)
3896 if (offset_ptr->var)
3898 tree sp_offset_tree = ssize_int (sp_offset);
3899 tree offset = size_binop (PLUS_EXPR,
3900 ARGS_SIZE_TREE (*offset_ptr),
3901 sp_offset_tree);
3902 #ifdef ARGS_GROW_DOWNWARD
3903 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3904 #else
3905 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3906 #endif
3908 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3909 /* ARGS_SIZE_TREE includes constant term. */
3910 offset_ptr->constant = 0;
3911 if (boundary > PARM_BOUNDARY)
3912 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3913 save_var);
3915 else
3917 offset_ptr->constant = -sp_offset +
3918 #ifdef ARGS_GROW_DOWNWARD
3919 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3920 #else
3921 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3922 #endif
3923 if (boundary > PARM_BOUNDARY)
3924 alignment_pad->constant = offset_ptr->constant - save_constant;
3929 static void
3930 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3932 if (passed_mode != BLKmode)
3934 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3935 offset_ptr->constant
3936 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3937 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3938 - GET_MODE_SIZE (passed_mode));
3940 else
3942 if (TREE_CODE (sizetree) != INTEGER_CST
3943 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3945 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3946 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3947 /* Add it in. */
3948 ADD_PARM_SIZE (*offset_ptr, s2);
3949 SUB_PARM_SIZE (*offset_ptr, sizetree);
3955 /* True if register REGNO was alive at a place where `setjmp' was
3956 called and was set more than once or is an argument. Such regs may
3957 be clobbered by `longjmp'. */
3959 static bool
3960 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3962 /* There appear to be cases where some local vars never reach the
3963 backend but have bogus regnos. */
3964 if (regno >= max_reg_num ())
3965 return false;
3967 return ((REG_N_SETS (regno) > 1
3968 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3969 && REGNO_REG_SET_P (setjmp_crosses, regno));
3972 /* Walk the tree of blocks describing the binding levels within a
3973 function and warn about variables the might be killed by setjmp or
3974 vfork. This is done after calling flow_analysis before register
3975 allocation since that will clobber the pseudo-regs to hard
3976 regs. */
3978 static void
3979 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3981 tree decl, sub;
3983 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3985 if (TREE_CODE (decl) == VAR_DECL
3986 && DECL_RTL_SET_P (decl)
3987 && REG_P (DECL_RTL (decl))
3988 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3989 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3990 " %<longjmp%> or %<vfork%>", decl);
3993 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3994 setjmp_vars_warning (setjmp_crosses, sub);
3997 /* Do the appropriate part of setjmp_vars_warning
3998 but for arguments instead of local variables. */
4000 static void
4001 setjmp_args_warning (bitmap setjmp_crosses)
4003 tree decl;
4004 for (decl = DECL_ARGUMENTS (current_function_decl);
4005 decl; decl = DECL_CHAIN (decl))
4006 if (DECL_RTL (decl) != 0
4007 && REG_P (DECL_RTL (decl))
4008 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4009 warning (OPT_Wclobbered,
4010 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4011 decl);
4014 /* Generate warning messages for variables live across setjmp. */
4016 void
4017 generate_setjmp_warnings (void)
4019 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4021 if (n_basic_blocks == NUM_FIXED_BLOCKS
4022 || bitmap_empty_p (setjmp_crosses))
4023 return;
4025 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4026 setjmp_args_warning (setjmp_crosses);
4030 /* Reverse the order of elements in the fragment chain T of blocks,
4031 and return the new head of the chain (old last element). */
4033 static tree
4034 block_fragments_nreverse (tree t)
4036 tree prev = 0, block, next;
4037 for (block = t; block; block = next)
4039 next = BLOCK_FRAGMENT_CHAIN (block);
4040 BLOCK_FRAGMENT_CHAIN (block) = prev;
4041 prev = block;
4043 return prev;
4046 /* Reverse the order of elements in the chain T of blocks,
4047 and return the new head of the chain (old last element).
4048 Also do the same on subblocks and reverse the order of elements
4049 in BLOCK_FRAGMENT_CHAIN as well. */
4051 static tree
4052 blocks_nreverse_all (tree t)
4054 tree prev = 0, block, next;
4055 for (block = t; block; block = next)
4057 next = BLOCK_CHAIN (block);
4058 BLOCK_CHAIN (block) = prev;
4059 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4060 if (BLOCK_FRAGMENT_CHAIN (block)
4061 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4062 BLOCK_FRAGMENT_CHAIN (block)
4063 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4064 prev = block;
4066 return prev;
4070 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4071 and create duplicate blocks. */
4072 /* ??? Need an option to either create block fragments or to create
4073 abstract origin duplicates of a source block. It really depends
4074 on what optimization has been performed. */
4076 void
4077 reorder_blocks (void)
4079 tree block = DECL_INITIAL (current_function_decl);
4080 VEC(tree,heap) *block_stack;
4082 if (block == NULL_TREE)
4083 return;
4085 block_stack = VEC_alloc (tree, heap, 10);
4087 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4088 clear_block_marks (block);
4090 /* Prune the old trees away, so that they don't get in the way. */
4091 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4092 BLOCK_CHAIN (block) = NULL_TREE;
4094 /* Recreate the block tree from the note nesting. */
4095 reorder_blocks_1 (get_insns (), block, &block_stack);
4096 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4098 VEC_free (tree, heap, block_stack);
4101 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4103 void
4104 clear_block_marks (tree block)
4106 while (block)
4108 TREE_ASM_WRITTEN (block) = 0;
4109 clear_block_marks (BLOCK_SUBBLOCKS (block));
4110 block = BLOCK_CHAIN (block);
4114 static void
4115 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4117 rtx insn;
4119 for (insn = insns; insn; insn = NEXT_INSN (insn))
4121 if (NOTE_P (insn))
4123 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4125 tree block = NOTE_BLOCK (insn);
4126 tree origin;
4128 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4129 origin = block;
4131 /* If we have seen this block before, that means it now
4132 spans multiple address regions. Create a new fragment. */
4133 if (TREE_ASM_WRITTEN (block))
4135 tree new_block = copy_node (block);
4137 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4138 BLOCK_FRAGMENT_CHAIN (new_block)
4139 = BLOCK_FRAGMENT_CHAIN (origin);
4140 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4142 NOTE_BLOCK (insn) = new_block;
4143 block = new_block;
4146 BLOCK_SUBBLOCKS (block) = 0;
4147 TREE_ASM_WRITTEN (block) = 1;
4148 /* When there's only one block for the entire function,
4149 current_block == block and we mustn't do this, it
4150 will cause infinite recursion. */
4151 if (block != current_block)
4153 if (block != origin)
4154 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
4156 BLOCK_SUPERCONTEXT (block) = current_block;
4157 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4158 BLOCK_SUBBLOCKS (current_block) = block;
4159 current_block = origin;
4161 VEC_safe_push (tree, heap, *p_block_stack, block);
4163 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4165 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4166 current_block = BLOCK_SUPERCONTEXT (current_block);
4172 /* Reverse the order of elements in the chain T of blocks,
4173 and return the new head of the chain (old last element). */
4175 tree
4176 blocks_nreverse (tree t)
4178 tree prev = 0, block, next;
4179 for (block = t; block; block = next)
4181 next = BLOCK_CHAIN (block);
4182 BLOCK_CHAIN (block) = prev;
4183 prev = block;
4185 return prev;
4188 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4189 non-NULL, list them all into VECTOR, in a depth-first preorder
4190 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4191 blocks. */
4193 static int
4194 all_blocks (tree block, tree *vector)
4196 int n_blocks = 0;
4198 while (block)
4200 TREE_ASM_WRITTEN (block) = 0;
4202 /* Record this block. */
4203 if (vector)
4204 vector[n_blocks] = block;
4206 ++n_blocks;
4208 /* Record the subblocks, and their subblocks... */
4209 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4210 vector ? vector + n_blocks : 0);
4211 block = BLOCK_CHAIN (block);
4214 return n_blocks;
4217 /* Return a vector containing all the blocks rooted at BLOCK. The
4218 number of elements in the vector is stored in N_BLOCKS_P. The
4219 vector is dynamically allocated; it is the caller's responsibility
4220 to call `free' on the pointer returned. */
4222 static tree *
4223 get_block_vector (tree block, int *n_blocks_p)
4225 tree *block_vector;
4227 *n_blocks_p = all_blocks (block, NULL);
4228 block_vector = XNEWVEC (tree, *n_blocks_p);
4229 all_blocks (block, block_vector);
4231 return block_vector;
4234 static GTY(()) int next_block_index = 2;
4236 /* Set BLOCK_NUMBER for all the blocks in FN. */
4238 void
4239 number_blocks (tree fn)
4241 int i;
4242 int n_blocks;
4243 tree *block_vector;
4245 /* For SDB and XCOFF debugging output, we start numbering the blocks
4246 from 1 within each function, rather than keeping a running
4247 count. */
4248 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4249 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4250 next_block_index = 1;
4251 #endif
4253 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4255 /* The top-level BLOCK isn't numbered at all. */
4256 for (i = 1; i < n_blocks; ++i)
4257 /* We number the blocks from two. */
4258 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4260 free (block_vector);
4262 return;
4265 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4267 DEBUG_FUNCTION tree
4268 debug_find_var_in_block_tree (tree var, tree block)
4270 tree t;
4272 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4273 if (t == var)
4274 return block;
4276 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4278 tree ret = debug_find_var_in_block_tree (var, t);
4279 if (ret)
4280 return ret;
4283 return NULL_TREE;
4286 /* Keep track of whether we're in a dummy function context. If we are,
4287 we don't want to invoke the set_current_function hook, because we'll
4288 get into trouble if the hook calls target_reinit () recursively or
4289 when the initial initialization is not yet complete. */
4291 static bool in_dummy_function;
4293 /* Invoke the target hook when setting cfun. Update the optimization options
4294 if the function uses different options than the default. */
4296 static void
4297 invoke_set_current_function_hook (tree fndecl)
4299 if (!in_dummy_function)
4301 tree opts = ((fndecl)
4302 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4303 : optimization_default_node);
4305 if (!opts)
4306 opts = optimization_default_node;
4308 /* Change optimization options if needed. */
4309 if (optimization_current_node != opts)
4311 optimization_current_node = opts;
4312 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4315 targetm.set_current_function (fndecl);
4319 /* cfun should never be set directly; use this function. */
4321 void
4322 set_cfun (struct function *new_cfun)
4324 if (cfun != new_cfun)
4326 cfun = new_cfun;
4327 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4331 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4333 static VEC(function_p,heap) *cfun_stack;
4335 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4337 void
4338 push_cfun (struct function *new_cfun)
4340 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4341 set_cfun (new_cfun);
4344 /* Pop cfun from the stack. */
4346 void
4347 pop_cfun (void)
4349 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4350 set_cfun (new_cfun);
4353 /* Return value of funcdef and increase it. */
4356 get_next_funcdef_no (void)
4358 return funcdef_no++;
4361 /* Restore funcdef_no to FN. */
4363 void
4364 set_funcdef_no (int fn)
4366 funcdef_no = fn;
4369 /* Reset the funcdef number. */
4371 void
4372 reset_funcdef_no (void)
4374 funcdef_no = 0;
4377 /* Return value of funcdef. */
4379 get_last_funcdef_no (void)
4381 return funcdef_no;
4384 /* Allocate a function structure for FNDECL and set its contents
4385 to the defaults. Set cfun to the newly-allocated object.
4386 Some of the helper functions invoked during initialization assume
4387 that cfun has already been set. Therefore, assign the new object
4388 directly into cfun and invoke the back end hook explicitly at the
4389 very end, rather than initializing a temporary and calling set_cfun
4390 on it.
4392 ABSTRACT_P is true if this is a function that will never be seen by
4393 the middle-end. Such functions are front-end concepts (like C++
4394 function templates) that do not correspond directly to functions
4395 placed in object files. */
4397 void
4398 allocate_struct_function (tree fndecl, bool abstract_p)
4400 tree result;
4401 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4403 cfun = ggc_alloc_cleared_function ();
4405 init_eh_for_function ();
4407 if (init_machine_status)
4408 cfun->machine = (*init_machine_status) ();
4410 #ifdef OVERRIDE_ABI_FORMAT
4411 OVERRIDE_ABI_FORMAT (fndecl);
4412 #endif
4414 invoke_set_current_function_hook (fndecl);
4416 if (fndecl != NULL_TREE)
4418 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4419 cfun->decl = fndecl;
4420 current_function_funcdef_no = get_next_funcdef_no ();
4421 cfun->module_id = current_module_id;
4423 result = DECL_RESULT (fndecl);
4424 if (!abstract_p && aggregate_value_p (result, fndecl))
4426 #ifdef PCC_STATIC_STRUCT_RETURN
4427 cfun->returns_pcc_struct = 1;
4428 #endif
4429 cfun->returns_struct = 1;
4432 cfun->stdarg = stdarg_p (fntype);
4434 /* Assume all registers in stdarg functions need to be saved. */
4435 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4436 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4438 /* ??? This could be set on a per-function basis by the front-end
4439 but is this worth the hassle? */
4440 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4444 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4445 instead of just setting it. */
4447 void
4448 push_struct_function (tree fndecl)
4450 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4451 allocate_struct_function (fndecl, false);
4454 /* Reset crtl and other non-struct-function variables to defaults as
4455 appropriate for emitting rtl at the start of a function. */
4457 static void
4458 prepare_function_start (void)
4460 gcc_assert (!crtl->emit.x_last_insn);
4461 init_temp_slots ();
4462 init_emit ();
4463 init_varasm_status ();
4464 init_expr ();
4465 default_rtl_profile ();
4467 if (flag_stack_usage)
4469 cfun->su = ggc_alloc_cleared_stack_usage ();
4470 cfun->su->static_stack_size = -1;
4473 cse_not_expected = ! optimize;
4475 /* Caller save not needed yet. */
4476 caller_save_needed = 0;
4478 /* We haven't done register allocation yet. */
4479 reg_renumber = 0;
4481 /* Indicate that we have not instantiated virtual registers yet. */
4482 virtuals_instantiated = 0;
4484 /* Indicate that we want CONCATs now. */
4485 generating_concat_p = 1;
4487 /* Indicate we have no need of a frame pointer yet. */
4488 frame_pointer_needed = 0;
4491 /* Initialize the rtl expansion mechanism so that we can do simple things
4492 like generate sequences. This is used to provide a context during global
4493 initialization of some passes. You must call expand_dummy_function_end
4494 to exit this context. */
4496 void
4497 init_dummy_function_start (void)
4499 gcc_assert (!in_dummy_function);
4500 in_dummy_function = true;
4501 push_struct_function (NULL_TREE);
4502 prepare_function_start ();
4505 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4506 and initialize static variables for generating RTL for the statements
4507 of the function. */
4509 void
4510 init_function_start (tree subr)
4512 if (subr && DECL_STRUCT_FUNCTION (subr))
4513 set_cfun (DECL_STRUCT_FUNCTION (subr));
4514 else
4515 allocate_struct_function (subr, false);
4516 prepare_function_start ();
4518 /* Warn if this value is an aggregate type,
4519 regardless of which calling convention we are using for it. */
4520 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4521 warning (OPT_Waggregate_return, "function returns an aggregate");
4524 /* Make sure all values used by the optimization passes have sane defaults. */
4525 unsigned int
4526 init_function_for_compilation (void)
4528 reg_renumber = 0;
4529 return 0;
4532 struct rtl_opt_pass pass_init_function =
4535 RTL_PASS,
4536 "*init_function", /* name */
4537 NULL, /* gate */
4538 init_function_for_compilation, /* execute */
4539 NULL, /* sub */
4540 NULL, /* next */
4541 0, /* static_pass_number */
4542 TV_NONE, /* tv_id */
4543 0, /* properties_required */
4544 0, /* properties_provided */
4545 0, /* properties_destroyed */
4546 0, /* todo_flags_start */
4547 0 /* todo_flags_finish */
4552 void
4553 expand_main_function (void)
4555 #if (defined(INVOKE__main) \
4556 || (!defined(HAS_INIT_SECTION) \
4557 && !defined(INIT_SECTION_ASM_OP) \
4558 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4559 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4560 #endif
4563 /* Expand code to initialize the stack_protect_guard. This is invoked at
4564 the beginning of a function to be protected. */
4566 #ifndef HAVE_stack_protect_set
4567 # define HAVE_stack_protect_set 0
4568 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4569 #endif
4571 void
4572 stack_protect_prologue (void)
4574 tree guard_decl = targetm.stack_protect_guard ();
4575 rtx x, y;
4577 x = expand_normal (crtl->stack_protect_guard);
4578 y = expand_normal (guard_decl);
4580 /* Allow the target to copy from Y to X without leaking Y into a
4581 register. */
4582 if (HAVE_stack_protect_set)
4584 rtx insn = gen_stack_protect_set (x, y);
4585 if (insn)
4587 emit_insn (insn);
4588 return;
4592 /* Otherwise do a straight move. */
4593 emit_move_insn (x, y);
4596 /* Expand code to verify the stack_protect_guard. This is invoked at
4597 the end of a function to be protected. */
4599 #ifndef HAVE_stack_protect_test
4600 # define HAVE_stack_protect_test 0
4601 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4602 #endif
4604 void
4605 stack_protect_epilogue (void)
4607 tree guard_decl = targetm.stack_protect_guard ();
4608 rtx label = gen_label_rtx ();
4609 rtx x, y, tmp;
4611 x = expand_normal (crtl->stack_protect_guard);
4612 y = expand_normal (guard_decl);
4614 /* Allow the target to compare Y with X without leaking either into
4615 a register. */
4616 switch (HAVE_stack_protect_test != 0)
4618 case 1:
4619 tmp = gen_stack_protect_test (x, y, label);
4620 if (tmp)
4622 emit_insn (tmp);
4623 break;
4625 /* FALLTHRU */
4627 default:
4628 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4629 break;
4632 /* The noreturn predictor has been moved to the tree level. The rtl-level
4633 predictors estimate this branch about 20%, which isn't enough to get
4634 things moved out of line. Since this is the only extant case of adding
4635 a noreturn function at the rtl level, it doesn't seem worth doing ought
4636 except adding the prediction by hand. */
4637 tmp = get_last_insn ();
4638 if (JUMP_P (tmp))
4639 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4641 expand_expr_stmt (targetm.stack_protect_fail ());
4642 emit_label (label);
4645 /* Start the RTL for a new function, and set variables used for
4646 emitting RTL.
4647 SUBR is the FUNCTION_DECL node.
4648 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4649 the function's parameters, which must be run at any return statement. */
4651 void
4652 expand_function_start (tree subr)
4654 /* Make sure volatile mem refs aren't considered
4655 valid operands of arithmetic insns. */
4656 init_recog_no_volatile ();
4658 crtl->profile
4659 = (profile_flag
4660 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4662 crtl->limit_stack
4663 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4665 /* Make the label for return statements to jump to. Do not special
4666 case machines with special return instructions -- they will be
4667 handled later during jump, ifcvt, or epilogue creation. */
4668 return_label = gen_label_rtx ();
4670 /* Initialize rtx used to return the value. */
4671 /* Do this before assign_parms so that we copy the struct value address
4672 before any library calls that assign parms might generate. */
4674 /* Decide whether to return the value in memory or in a register. */
4675 if (aggregate_value_p (DECL_RESULT (subr), subr))
4677 /* Returning something that won't go in a register. */
4678 rtx value_address = 0;
4680 #ifdef PCC_STATIC_STRUCT_RETURN
4681 if (cfun->returns_pcc_struct)
4683 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4684 value_address = assemble_static_space (size);
4686 else
4687 #endif
4689 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4690 /* Expect to be passed the address of a place to store the value.
4691 If it is passed as an argument, assign_parms will take care of
4692 it. */
4693 if (sv)
4695 value_address = gen_reg_rtx (Pmode);
4696 emit_move_insn (value_address, sv);
4699 if (value_address)
4701 rtx x = value_address;
4702 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4704 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4705 set_mem_attributes (x, DECL_RESULT (subr), 1);
4707 SET_DECL_RTL (DECL_RESULT (subr), x);
4710 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4711 /* If return mode is void, this decl rtl should not be used. */
4712 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4713 else
4715 /* Compute the return values into a pseudo reg, which we will copy
4716 into the true return register after the cleanups are done. */
4717 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4718 if (TYPE_MODE (return_type) != BLKmode
4719 && targetm.calls.return_in_msb (return_type))
4720 /* expand_function_end will insert the appropriate padding in
4721 this case. Use the return value's natural (unpadded) mode
4722 within the function proper. */
4723 SET_DECL_RTL (DECL_RESULT (subr),
4724 gen_reg_rtx (TYPE_MODE (return_type)));
4725 else
4727 /* In order to figure out what mode to use for the pseudo, we
4728 figure out what the mode of the eventual return register will
4729 actually be, and use that. */
4730 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4732 /* Structures that are returned in registers are not
4733 aggregate_value_p, so we may see a PARALLEL or a REG. */
4734 if (REG_P (hard_reg))
4735 SET_DECL_RTL (DECL_RESULT (subr),
4736 gen_reg_rtx (GET_MODE (hard_reg)));
4737 else
4739 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4740 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4744 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4745 result to the real return register(s). */
4746 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4749 /* Initialize rtx for parameters and local variables.
4750 In some cases this requires emitting insns. */
4751 assign_parms (subr);
4753 /* If function gets a static chain arg, store it. */
4754 if (cfun->static_chain_decl)
4756 tree parm = cfun->static_chain_decl;
4757 rtx local, chain, insn;
4759 local = gen_reg_rtx (Pmode);
4760 chain = targetm.calls.static_chain (current_function_decl, true);
4762 set_decl_incoming_rtl (parm, chain, false);
4763 SET_DECL_RTL (parm, local);
4764 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4766 insn = emit_move_insn (local, chain);
4768 /* Mark the register as eliminable, similar to parameters. */
4769 if (MEM_P (chain)
4770 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4771 set_unique_reg_note (insn, REG_EQUIV, chain);
4774 /* If the function receives a non-local goto, then store the
4775 bits we need to restore the frame pointer. */
4776 if (cfun->nonlocal_goto_save_area)
4778 tree t_save;
4779 rtx r_save;
4781 /* ??? We need to do this save early. Unfortunately here is
4782 before the frame variable gets declared. Help out... */
4783 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4784 if (!DECL_RTL_SET_P (var))
4785 expand_decl (var);
4787 t_save = build4 (ARRAY_REF, ptr_type_node,
4788 cfun->nonlocal_goto_save_area,
4789 integer_zero_node, NULL_TREE, NULL_TREE);
4790 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4791 r_save = convert_memory_address (Pmode, r_save);
4793 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4794 update_nonlocal_goto_save_area ();
4797 /* The following was moved from init_function_start.
4798 The move is supposed to make sdb output more accurate. */
4799 /* Indicate the beginning of the function body,
4800 as opposed to parm setup. */
4801 emit_note (NOTE_INSN_FUNCTION_BEG);
4803 gcc_assert (NOTE_P (get_last_insn ()));
4805 parm_birth_insn = get_last_insn ();
4807 if (crtl->profile)
4809 #ifdef PROFILE_HOOK
4810 PROFILE_HOOK (current_function_funcdef_no);
4811 #endif
4814 /* After the display initializations is where the stack checking
4815 probe should go. */
4816 if(flag_stack_check)
4817 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4819 /* Make sure there is a line number after the function entry setup code. */
4820 force_next_line_note ();
4823 /* Undo the effects of init_dummy_function_start. */
4824 void
4825 expand_dummy_function_end (void)
4827 gcc_assert (in_dummy_function);
4829 /* End any sequences that failed to be closed due to syntax errors. */
4830 while (in_sequence_p ())
4831 end_sequence ();
4833 /* Outside function body, can't compute type's actual size
4834 until next function's body starts. */
4836 free_after_parsing (cfun);
4837 free_after_compilation (cfun);
4838 pop_cfun ();
4839 in_dummy_function = false;
4842 /* Call DOIT for each hard register used as a return value from
4843 the current function. */
4845 void
4846 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4848 rtx outgoing = crtl->return_rtx;
4850 if (! outgoing)
4851 return;
4853 if (REG_P (outgoing))
4854 (*doit) (outgoing, arg);
4855 else if (GET_CODE (outgoing) == PARALLEL)
4857 int i;
4859 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4861 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4863 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4864 (*doit) (x, arg);
4869 static void
4870 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4872 emit_clobber (reg);
4875 void
4876 clobber_return_register (void)
4878 diddle_return_value (do_clobber_return_reg, NULL);
4880 /* In case we do use pseudo to return value, clobber it too. */
4881 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4883 tree decl_result = DECL_RESULT (current_function_decl);
4884 rtx decl_rtl = DECL_RTL (decl_result);
4885 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4887 do_clobber_return_reg (decl_rtl, NULL);
4892 static void
4893 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4895 emit_use (reg);
4898 static void
4899 use_return_register (void)
4901 diddle_return_value (do_use_return_reg, NULL);
4904 /* Possibly warn about unused parameters. */
4905 void
4906 do_warn_unused_parameter (tree fn)
4908 tree decl;
4910 for (decl = DECL_ARGUMENTS (fn);
4911 decl; decl = DECL_CHAIN (decl))
4912 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4913 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4914 && !TREE_NO_WARNING (decl))
4915 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4918 static GTY(()) rtx initial_trampoline;
4920 /* Generate RTL for the end of the current function. */
4922 void
4923 expand_function_end (void)
4925 rtx clobber_after;
4927 /* If arg_pointer_save_area was referenced only from a nested
4928 function, we will not have initialized it yet. Do that now. */
4929 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4930 get_arg_pointer_save_area ();
4932 /* If we are doing generic stack checking and this function makes calls,
4933 do a stack probe at the start of the function to ensure we have enough
4934 space for another stack frame. */
4935 if (flag_stack_check == GENERIC_STACK_CHECK)
4937 rtx insn, seq;
4939 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4940 if (CALL_P (insn))
4942 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4943 start_sequence ();
4944 if (STACK_CHECK_MOVING_SP)
4945 anti_adjust_stack_and_probe (max_frame_size, true);
4946 else
4947 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4948 seq = get_insns ();
4949 end_sequence ();
4950 set_insn_locators (seq, prologue_locator);
4951 emit_insn_before (seq, stack_check_probe_note);
4952 break;
4956 /* End any sequences that failed to be closed due to syntax errors. */
4957 while (in_sequence_p ())
4958 end_sequence ();
4960 clear_pending_stack_adjust ();
4961 do_pending_stack_adjust ();
4963 /* Output a linenumber for the end of the function.
4964 SDB depends on this. */
4965 force_next_line_note ();
4966 set_curr_insn_source_location (input_location);
4968 /* Before the return label (if any), clobber the return
4969 registers so that they are not propagated live to the rest of
4970 the function. This can only happen with functions that drop
4971 through; if there had been a return statement, there would
4972 have either been a return rtx, or a jump to the return label.
4974 We delay actual code generation after the current_function_value_rtx
4975 is computed. */
4976 clobber_after = get_last_insn ();
4978 /* Output the label for the actual return from the function. */
4979 emit_label (return_label);
4981 if (targetm.except_unwind_info (&global_options) == UI_SJLJ)
4983 /* Let except.c know where it should emit the call to unregister
4984 the function context for sjlj exceptions. */
4985 if (flag_exceptions)
4986 sjlj_emit_function_exit_after (get_last_insn ());
4988 else
4990 /* We want to ensure that instructions that may trap are not
4991 moved into the epilogue by scheduling, because we don't
4992 always emit unwind information for the epilogue. */
4993 if (cfun->can_throw_non_call_exceptions)
4994 emit_insn (gen_blockage ());
4997 /* If this is an implementation of throw, do what's necessary to
4998 communicate between __builtin_eh_return and the epilogue. */
4999 expand_eh_return ();
5001 /* If scalar return value was computed in a pseudo-reg, or was a named
5002 return value that got dumped to the stack, copy that to the hard
5003 return register. */
5004 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5006 tree decl_result = DECL_RESULT (current_function_decl);
5007 rtx decl_rtl = DECL_RTL (decl_result);
5009 if (REG_P (decl_rtl)
5010 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5011 : DECL_REGISTER (decl_result))
5013 rtx real_decl_rtl = crtl->return_rtx;
5015 /* This should be set in assign_parms. */
5016 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5018 /* If this is a BLKmode structure being returned in registers,
5019 then use the mode computed in expand_return. Note that if
5020 decl_rtl is memory, then its mode may have been changed,
5021 but that crtl->return_rtx has not. */
5022 if (GET_MODE (real_decl_rtl) == BLKmode)
5023 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5025 /* If a non-BLKmode return value should be padded at the least
5026 significant end of the register, shift it left by the appropriate
5027 amount. BLKmode results are handled using the group load/store
5028 machinery. */
5029 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5030 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5032 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5033 REGNO (real_decl_rtl)),
5034 decl_rtl);
5035 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5037 /* If a named return value dumped decl_return to memory, then
5038 we may need to re-do the PROMOTE_MODE signed/unsigned
5039 extension. */
5040 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5042 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5043 promote_function_mode (TREE_TYPE (decl_result),
5044 GET_MODE (decl_rtl), &unsignedp,
5045 TREE_TYPE (current_function_decl), 1);
5047 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5049 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5051 /* If expand_function_start has created a PARALLEL for decl_rtl,
5052 move the result to the real return registers. Otherwise, do
5053 a group load from decl_rtl for a named return. */
5054 if (GET_CODE (decl_rtl) == PARALLEL)
5055 emit_group_move (real_decl_rtl, decl_rtl);
5056 else
5057 emit_group_load (real_decl_rtl, decl_rtl,
5058 TREE_TYPE (decl_result),
5059 int_size_in_bytes (TREE_TYPE (decl_result)));
5061 /* In the case of complex integer modes smaller than a word, we'll
5062 need to generate some non-trivial bitfield insertions. Do that
5063 on a pseudo and not the hard register. */
5064 else if (GET_CODE (decl_rtl) == CONCAT
5065 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5066 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5068 int old_generating_concat_p;
5069 rtx tmp;
5071 old_generating_concat_p = generating_concat_p;
5072 generating_concat_p = 0;
5073 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5074 generating_concat_p = old_generating_concat_p;
5076 emit_move_insn (tmp, decl_rtl);
5077 emit_move_insn (real_decl_rtl, tmp);
5079 else
5080 emit_move_insn (real_decl_rtl, decl_rtl);
5084 /* If returning a structure, arrange to return the address of the value
5085 in a place where debuggers expect to find it.
5087 If returning a structure PCC style,
5088 the caller also depends on this value.
5089 And cfun->returns_pcc_struct is not necessarily set. */
5090 if (cfun->returns_struct
5091 || cfun->returns_pcc_struct)
5093 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5094 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5095 rtx outgoing;
5097 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5098 type = TREE_TYPE (type);
5099 else
5100 value_address = XEXP (value_address, 0);
5102 outgoing = targetm.calls.function_value (build_pointer_type (type),
5103 current_function_decl, true);
5105 /* Mark this as a function return value so integrate will delete the
5106 assignment and USE below when inlining this function. */
5107 REG_FUNCTION_VALUE_P (outgoing) = 1;
5109 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5110 value_address = convert_memory_address (GET_MODE (outgoing),
5111 value_address);
5113 emit_move_insn (outgoing, value_address);
5115 /* Show return register used to hold result (in this case the address
5116 of the result. */
5117 crtl->return_rtx = outgoing;
5120 /* Emit the actual code to clobber return register. */
5122 rtx seq;
5124 start_sequence ();
5125 clobber_return_register ();
5126 seq = get_insns ();
5127 end_sequence ();
5129 emit_insn_after (seq, clobber_after);
5132 /* Output the label for the naked return from the function. */
5133 if (naked_return_label)
5134 emit_label (naked_return_label);
5136 /* @@@ This is a kludge. We want to ensure that instructions that
5137 may trap are not moved into the epilogue by scheduling, because
5138 we don't always emit unwind information for the epilogue. */
5139 if (cfun->can_throw_non_call_exceptions
5140 && targetm.except_unwind_info (&global_options) != UI_SJLJ)
5141 emit_insn (gen_blockage ());
5143 /* If stack protection is enabled for this function, check the guard. */
5144 if (crtl->stack_protect_guard)
5145 stack_protect_epilogue ();
5147 /* If we had calls to alloca, and this machine needs
5148 an accurate stack pointer to exit the function,
5149 insert some code to save and restore the stack pointer. */
5150 if (! EXIT_IGNORE_STACK
5151 && cfun->calls_alloca)
5153 rtx tem = 0, seq;
5155 start_sequence ();
5156 emit_stack_save (SAVE_FUNCTION, &tem);
5157 seq = get_insns ();
5158 end_sequence ();
5159 emit_insn_before (seq, parm_birth_insn);
5161 emit_stack_restore (SAVE_FUNCTION, tem);
5164 /* ??? This should no longer be necessary since stupid is no longer with
5165 us, but there are some parts of the compiler (eg reload_combine, and
5166 sh mach_dep_reorg) that still try and compute their own lifetime info
5167 instead of using the general framework. */
5168 use_return_register ();
5172 get_arg_pointer_save_area (void)
5174 rtx ret = arg_pointer_save_area;
5176 if (! ret)
5178 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5179 arg_pointer_save_area = ret;
5182 if (! crtl->arg_pointer_save_area_init)
5184 rtx seq;
5186 /* Save the arg pointer at the beginning of the function. The
5187 generated stack slot may not be a valid memory address, so we
5188 have to check it and fix it if necessary. */
5189 start_sequence ();
5190 emit_move_insn (validize_mem (ret),
5191 crtl->args.internal_arg_pointer);
5192 seq = get_insns ();
5193 end_sequence ();
5195 push_topmost_sequence ();
5196 emit_insn_after (seq, entry_of_function ());
5197 pop_topmost_sequence ();
5199 crtl->arg_pointer_save_area_init = true;
5202 return ret;
5205 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5206 for the first time. */
5208 static void
5209 record_insns (rtx insns, rtx end, htab_t *hashp)
5211 rtx tmp;
5212 htab_t hash = *hashp;
5214 if (hash == NULL)
5215 *hashp = hash
5216 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5218 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5220 void **slot = htab_find_slot (hash, tmp, INSERT);
5221 gcc_assert (*slot == NULL);
5222 *slot = tmp;
5226 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5227 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5228 insn, then record COPY as well. */
5230 void
5231 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5233 htab_t hash;
5234 void **slot;
5236 hash = epilogue_insn_hash;
5237 if (!hash || !htab_find (hash, insn))
5239 hash = prologue_insn_hash;
5240 if (!hash || !htab_find (hash, insn))
5241 return;
5244 slot = htab_find_slot (hash, copy, INSERT);
5245 gcc_assert (*slot == NULL);
5246 *slot = copy;
5249 /* Set the locator of the insn chain starting at INSN to LOC. */
5250 static void
5251 set_insn_locators (rtx insn, int loc)
5253 while (insn != NULL_RTX)
5255 if (INSN_P (insn))
5256 INSN_LOCATOR (insn) = loc;
5257 insn = NEXT_INSN (insn);
5261 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5262 we can be running after reorg, SEQUENCE rtl is possible. */
5264 static bool
5265 contains (const_rtx insn, htab_t hash)
5267 if (hash == NULL)
5268 return false;
5270 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5272 int i;
5273 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5274 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5275 return true;
5276 return false;
5279 return htab_find (hash, insn) != NULL;
5283 prologue_epilogue_contains (const_rtx insn)
5285 if (contains (insn, prologue_insn_hash))
5286 return 1;
5287 if (contains (insn, epilogue_insn_hash))
5288 return 1;
5289 return 0;
5292 #ifdef HAVE_return
5293 /* Insert gen_return at the end of block BB. This also means updating
5294 block_for_insn appropriately. */
5296 static void
5297 emit_return_into_block (basic_block bb)
5299 emit_jump_insn_after (gen_return (), BB_END (bb));
5301 #endif /* HAVE_return */
5303 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5304 this into place with notes indicating where the prologue ends and where
5305 the epilogue begins. Update the basic block information when possible. */
5307 static void
5308 thread_prologue_and_epilogue_insns (void)
5310 bool inserted;
5311 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5312 edge entry_edge ATTRIBUTE_UNUSED;
5313 edge e;
5314 edge_iterator ei;
5316 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5318 inserted = false;
5319 seq = NULL_RTX;
5320 epilogue_end = NULL_RTX;
5322 /* Can't deal with multiple successors of the entry block at the
5323 moment. Function should always have at least one entry
5324 point. */
5325 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5326 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5328 if (flag_split_stack
5329 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5330 == NULL))
5332 #ifndef HAVE_split_stack_prologue
5333 gcc_unreachable ();
5334 #else
5335 gcc_assert (HAVE_split_stack_prologue);
5337 start_sequence ();
5338 emit_insn (gen_split_stack_prologue ());
5339 seq = get_insns ();
5340 end_sequence ();
5342 record_insns (seq, NULL, &prologue_insn_hash);
5343 set_insn_locators (seq, prologue_locator);
5345 /* This relies on the fact that committing the edge insertion
5346 will look for basic blocks within the inserted instructions,
5347 which in turn relies on the fact that we are not in CFG
5348 layout mode here. */
5349 insert_insn_on_edge (seq, entry_edge);
5350 inserted = true;
5351 #endif
5354 #ifdef HAVE_prologue
5355 if (HAVE_prologue)
5357 start_sequence ();
5358 seq = gen_prologue ();
5359 emit_insn (seq);
5361 /* Insert an explicit USE for the frame pointer
5362 if the profiling is on and the frame pointer is required. */
5363 if (crtl->profile && frame_pointer_needed)
5364 emit_use (hard_frame_pointer_rtx);
5366 /* Retain a map of the prologue insns. */
5367 record_insns (seq, NULL, &prologue_insn_hash);
5368 emit_note (NOTE_INSN_PROLOGUE_END);
5370 /* Ensure that instructions are not moved into the prologue when
5371 profiling is on. The call to the profiling routine can be
5372 emitted within the live range of a call-clobbered register. */
5373 if (!targetm.profile_before_prologue () && crtl->profile)
5374 emit_insn (gen_blockage ());
5376 seq = get_insns ();
5377 end_sequence ();
5378 set_insn_locators (seq, prologue_locator);
5380 insert_insn_on_edge (seq, entry_edge);
5381 inserted = true;
5383 #endif
5385 /* If the exit block has no non-fake predecessors, we don't need
5386 an epilogue. */
5387 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5388 if ((e->flags & EDGE_FAKE) == 0)
5389 break;
5390 if (e == NULL)
5391 goto epilogue_done;
5393 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5394 #ifdef HAVE_return
5395 if (optimize && HAVE_return)
5397 /* If we're allowed to generate a simple return instruction,
5398 then by definition we don't need a full epilogue. Examine
5399 the block that falls through to EXIT. If it does not
5400 contain any code, examine its predecessors and try to
5401 emit (conditional) return instructions. */
5403 basic_block last;
5404 rtx label;
5406 e = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
5407 if (e == NULL)
5408 goto epilogue_done;
5409 last = e->src;
5411 /* Verify that there are no active instructions in the last block. */
5412 label = BB_END (last);
5413 while (label && !LABEL_P (label))
5415 if (active_insn_p (label))
5416 break;
5417 label = PREV_INSN (label);
5420 if (BB_HEAD (last) == label && LABEL_P (label))
5422 edge_iterator ei2;
5424 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5426 basic_block bb = e->src;
5427 rtx jump;
5429 if (bb == ENTRY_BLOCK_PTR)
5431 ei_next (&ei2);
5432 continue;
5435 jump = BB_END (bb);
5436 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5438 ei_next (&ei2);
5439 continue;
5442 /* If we have an unconditional jump, we can replace that
5443 with a simple return instruction. */
5444 if (simplejump_p (jump))
5446 emit_return_into_block (bb);
5447 delete_insn (jump);
5450 /* If we have a conditional jump, we can try to replace
5451 that with a conditional return instruction. */
5452 else if (condjump_p (jump))
5454 if (! redirect_jump (jump, 0, 0))
5456 ei_next (&ei2);
5457 continue;
5460 /* If this block has only one successor, it both jumps
5461 and falls through to the fallthru block, so we can't
5462 delete the edge. */
5463 if (single_succ_p (bb))
5465 ei_next (&ei2);
5466 continue;
5469 else
5471 ei_next (&ei2);
5472 continue;
5475 /* Fix up the CFG for the successful change we just made. */
5476 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5479 /* Emit a return insn for the exit fallthru block. Whether
5480 this is still reachable will be determined later. */
5482 emit_barrier_after (BB_END (last));
5483 emit_return_into_block (last);
5484 epilogue_end = BB_END (last);
5485 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5486 goto epilogue_done;
5489 #endif
5491 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5492 this marker for the splits of EH_RETURN patterns, and nothing else
5493 uses the flag in the meantime. */
5494 epilogue_completed = 1;
5496 #ifdef HAVE_eh_return
5497 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5498 some targets, these get split to a special version of the epilogue
5499 code. In order to be able to properly annotate these with unwind
5500 info, try to split them now. If we get a valid split, drop an
5501 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5502 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5504 rtx prev, last, trial;
5506 if (e->flags & EDGE_FALLTHRU)
5507 continue;
5508 last = BB_END (e->src);
5509 if (!eh_returnjump_p (last))
5510 continue;
5512 prev = PREV_INSN (last);
5513 trial = try_split (PATTERN (last), last, 1);
5514 if (trial == last)
5515 continue;
5517 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5518 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5520 #endif
5522 /* Find the edge that falls through to EXIT. Other edges may exist
5523 due to RETURN instructions, but those don't need epilogues.
5524 There really shouldn't be a mixture -- either all should have
5525 been converted or none, however... */
5527 e = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
5528 if (e == NULL)
5529 goto epilogue_done;
5531 #ifdef HAVE_epilogue
5532 if (HAVE_epilogue)
5534 start_sequence ();
5535 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5536 seq = gen_epilogue ();
5537 if (seq)
5538 emit_jump_insn (seq);
5540 /* Retain a map of the epilogue insns. */
5541 record_insns (seq, NULL, &epilogue_insn_hash);
5542 set_insn_locators (seq, epilogue_locator);
5544 seq = get_insns ();
5545 end_sequence ();
5547 insert_insn_on_edge (seq, e);
5548 inserted = true;
5550 else
5551 #endif
5553 basic_block cur_bb;
5555 if (! next_active_insn (BB_END (e->src)))
5556 goto epilogue_done;
5557 /* We have a fall-through edge to the exit block, the source is not
5558 at the end of the function, and there will be an assembler epilogue
5559 at the end of the function.
5560 We can't use force_nonfallthru here, because that would try to
5561 use return. Inserting a jump 'by hand' is extremely messy, so
5562 we take advantage of cfg_layout_finalize using
5563 fixup_fallthru_exit_predecessor. */
5564 cfg_layout_initialize (0);
5565 FOR_EACH_BB (cur_bb)
5566 if (cur_bb->index >= NUM_FIXED_BLOCKS
5567 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5568 cur_bb->aux = cur_bb->next_bb;
5569 cfg_layout_finalize ();
5571 epilogue_done:
5572 default_rtl_profile ();
5574 if (inserted)
5576 commit_edge_insertions ();
5578 /* The epilogue insns we inserted may cause the exit edge to no longer
5579 be fallthru. */
5580 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5582 if (((e->flags & EDGE_FALLTHRU) != 0)
5583 && returnjump_p (BB_END (e->src)))
5584 e->flags &= ~EDGE_FALLTHRU;
5588 #ifdef HAVE_sibcall_epilogue
5589 /* Emit sibling epilogues before any sibling call sites. */
5590 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5592 basic_block bb = e->src;
5593 rtx insn = BB_END (bb);
5595 if (!CALL_P (insn)
5596 || ! SIBLING_CALL_P (insn))
5598 ei_next (&ei);
5599 continue;
5602 start_sequence ();
5603 emit_note (NOTE_INSN_EPILOGUE_BEG);
5604 emit_insn (gen_sibcall_epilogue ());
5605 seq = get_insns ();
5606 end_sequence ();
5608 /* Retain a map of the epilogue insns. Used in life analysis to
5609 avoid getting rid of sibcall epilogue insns. Do this before we
5610 actually emit the sequence. */
5611 record_insns (seq, NULL, &epilogue_insn_hash);
5612 set_insn_locators (seq, epilogue_locator);
5614 emit_insn_before (seq, insn);
5615 ei_next (&ei);
5617 #endif
5619 #ifdef HAVE_epilogue
5620 if (epilogue_end)
5622 rtx insn, next;
5624 /* Similarly, move any line notes that appear after the epilogue.
5625 There is no need, however, to be quite so anal about the existence
5626 of such a note. Also possibly move
5627 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5628 info generation. */
5629 for (insn = epilogue_end; insn; insn = next)
5631 next = NEXT_INSN (insn);
5632 if (NOTE_P (insn)
5633 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5634 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5637 #endif
5639 /* Threading the prologue and epilogue changes the artificial refs
5640 in the entry and exit blocks. */
5641 epilogue_completed = 1;
5642 df_update_entry_exit_and_calls ();
5645 /* Reposition the prologue-end and epilogue-begin notes after
5646 instruction scheduling. */
5648 void
5649 reposition_prologue_and_epilogue_notes (void)
5651 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5652 || defined (HAVE_sibcall_epilogue)
5653 /* Since the hash table is created on demand, the fact that it is
5654 non-null is a signal that it is non-empty. */
5655 if (prologue_insn_hash != NULL)
5657 size_t len = htab_elements (prologue_insn_hash);
5658 rtx insn, last = NULL, note = NULL;
5660 /* Scan from the beginning until we reach the last prologue insn. */
5661 /* ??? While we do have the CFG intact, there are two problems:
5662 (1) The prologue can contain loops (typically probing the stack),
5663 which means that the end of the prologue isn't in the first bb.
5664 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5665 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5667 if (NOTE_P (insn))
5669 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5670 note = insn;
5672 else if (contains (insn, prologue_insn_hash))
5674 last = insn;
5675 if (--len == 0)
5676 break;
5680 if (last)
5682 if (note == NULL)
5684 /* Scan forward looking for the PROLOGUE_END note. It should
5685 be right at the beginning of the block, possibly with other
5686 insn notes that got moved there. */
5687 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5689 if (NOTE_P (note)
5690 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5691 break;
5695 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5696 if (LABEL_P (last))
5697 last = NEXT_INSN (last);
5698 reorder_insns (note, note, last);
5702 if (epilogue_insn_hash != NULL)
5704 edge_iterator ei;
5705 edge e;
5707 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5709 rtx insn, first = NULL, note = NULL;
5710 basic_block bb = e->src;
5712 /* Scan from the beginning until we reach the first epilogue insn. */
5713 FOR_BB_INSNS (bb, insn)
5715 if (NOTE_P (insn))
5717 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5719 note = insn;
5720 if (first != NULL)
5721 break;
5724 else if (first == NULL && contains (insn, epilogue_insn_hash))
5726 first = insn;
5727 if (note != NULL)
5728 break;
5732 if (note)
5734 /* If the function has a single basic block, and no real
5735 epilogue insns (e.g. sibcall with no cleanup), the
5736 epilogue note can get scheduled before the prologue
5737 note. If we have frame related prologue insns, having
5738 them scanned during the epilogue will result in a crash.
5739 In this case re-order the epilogue note to just before
5740 the last insn in the block. */
5741 if (first == NULL)
5742 first = BB_END (bb);
5744 if (PREV_INSN (first) != note)
5745 reorder_insns (note, note, PREV_INSN (first));
5749 #endif /* HAVE_prologue or HAVE_epilogue */
5752 /* Returns the name of the current function. */
5753 const char *
5754 current_function_name (void)
5756 if (cfun == NULL)
5757 return "<none>";
5758 return lang_hooks.decl_printable_name (cfun->decl, 2);
5762 static unsigned int
5763 rest_of_handle_check_leaf_regs (void)
5765 #ifdef LEAF_REGISTERS
5766 current_function_uses_only_leaf_regs
5767 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5768 #endif
5769 return 0;
5772 /* Insert a TYPE into the used types hash table of CFUN. */
5774 static void
5775 used_types_insert_helper (tree type, struct function *func)
5777 if (type != NULL && func != NULL)
5779 void **slot;
5781 if (func->used_types_hash == NULL)
5782 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5783 htab_eq_pointer, NULL);
5784 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5785 if (*slot == NULL)
5786 *slot = type;
5790 /* Given a type, insert it into the used hash table in cfun. */
5791 void
5792 used_types_insert (tree t)
5794 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5795 if (TYPE_NAME (t))
5796 break;
5797 else
5798 t = TREE_TYPE (t);
5799 if (TREE_CODE (t) == ERROR_MARK)
5800 return;
5801 if (TYPE_NAME (t) == NULL_TREE
5802 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5803 t = TYPE_MAIN_VARIANT (t);
5804 if (debug_info_level > DINFO_LEVEL_NONE)
5806 if (cfun)
5807 used_types_insert_helper (t, cfun);
5808 else
5809 /* So this might be a type referenced by a global variable.
5810 Record that type so that we can later decide to emit its debug
5811 information. */
5812 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5816 /* Helper to Hash a struct types_used_by_vars_entry. */
5818 static hashval_t
5819 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5821 gcc_assert (entry && entry->var_decl && entry->type);
5823 return iterative_hash_object (entry->type,
5824 iterative_hash_object (entry->var_decl, 0));
5827 /* Hash function of the types_used_by_vars_entry hash table. */
5829 hashval_t
5830 types_used_by_vars_do_hash (const void *x)
5832 const struct types_used_by_vars_entry *entry =
5833 (const struct types_used_by_vars_entry *) x;
5835 return hash_types_used_by_vars_entry (entry);
5838 /*Equality function of the types_used_by_vars_entry hash table. */
5841 types_used_by_vars_eq (const void *x1, const void *x2)
5843 const struct types_used_by_vars_entry *e1 =
5844 (const struct types_used_by_vars_entry *) x1;
5845 const struct types_used_by_vars_entry *e2 =
5846 (const struct types_used_by_vars_entry *)x2;
5848 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5851 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5853 void
5854 types_used_by_var_decl_insert (tree type, tree var_decl)
5856 if (type != NULL && var_decl != NULL)
5858 void **slot;
5859 struct types_used_by_vars_entry e;
5860 e.var_decl = var_decl;
5861 e.type = type;
5862 if (types_used_by_vars_hash == NULL)
5863 types_used_by_vars_hash =
5864 htab_create_ggc (37, types_used_by_vars_do_hash,
5865 types_used_by_vars_eq, NULL);
5866 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5867 hash_types_used_by_vars_entry (&e), INSERT);
5868 if (*slot == NULL)
5870 struct types_used_by_vars_entry *entry;
5871 entry = ggc_alloc_types_used_by_vars_entry ();
5872 entry->type = type;
5873 entry->var_decl = var_decl;
5874 *slot = entry;
5879 struct rtl_opt_pass pass_leaf_regs =
5882 RTL_PASS,
5883 "*leaf_regs", /* name */
5884 NULL, /* gate */
5885 rest_of_handle_check_leaf_regs, /* execute */
5886 NULL, /* sub */
5887 NULL, /* next */
5888 0, /* static_pass_number */
5889 TV_NONE, /* tv_id */
5890 0, /* properties_required */
5891 0, /* properties_provided */
5892 0, /* properties_destroyed */
5893 0, /* todo_flags_start */
5894 0 /* todo_flags_finish */
5898 static unsigned int
5899 rest_of_handle_thread_prologue_and_epilogue (void)
5901 if (optimize)
5902 cleanup_cfg (CLEANUP_EXPENSIVE);
5904 /* On some machines, the prologue and epilogue code, or parts thereof,
5905 can be represented as RTL. Doing so lets us schedule insns between
5906 it and the rest of the code and also allows delayed branch
5907 scheduling to operate in the epilogue. */
5908 thread_prologue_and_epilogue_insns ();
5910 /* The stack usage info is finalized during prologue expansion. */
5911 if (flag_stack_usage)
5912 output_stack_usage ();
5914 return 0;
5917 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5920 RTL_PASS,
5921 "pro_and_epilogue", /* name */
5922 NULL, /* gate */
5923 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5924 NULL, /* sub */
5925 NULL, /* next */
5926 0, /* static_pass_number */
5927 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5928 0, /* properties_required */
5929 0, /* properties_provided */
5930 0, /* properties_destroyed */
5931 TODO_verify_flow, /* todo_flags_start */
5932 TODO_dump_func |
5933 TODO_df_verify |
5934 TODO_df_finish | TODO_verify_rtl_sharing |
5935 TODO_ggc_collect /* todo_flags_finish */
5940 /* This mini-pass fixes fall-out from SSA in asm statements that have
5941 in-out constraints. Say you start with
5943 orig = inout;
5944 asm ("": "+mr" (inout));
5945 use (orig);
5947 which is transformed very early to use explicit output and match operands:
5949 orig = inout;
5950 asm ("": "=mr" (inout) : "0" (inout));
5951 use (orig);
5953 Or, after SSA and copyprop,
5955 asm ("": "=mr" (inout_2) : "0" (inout_1));
5956 use (inout_1);
5958 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5959 they represent two separate values, so they will get different pseudo
5960 registers during expansion. Then, since the two operands need to match
5961 per the constraints, but use different pseudo registers, reload can
5962 only register a reload for these operands. But reloads can only be
5963 satisfied by hardregs, not by memory, so we need a register for this
5964 reload, just because we are presented with non-matching operands.
5965 So, even though we allow memory for this operand, no memory can be
5966 used for it, just because the two operands don't match. This can
5967 cause reload failures on register-starved targets.
5969 So it's a symptom of reload not being able to use memory for reloads
5970 or, alternatively it's also a symptom of both operands not coming into
5971 reload as matching (in which case the pseudo could go to memory just
5972 fine, as the alternative allows it, and no reload would be necessary).
5973 We fix the latter problem here, by transforming
5975 asm ("": "=mr" (inout_2) : "0" (inout_1));
5977 back to
5979 inout_2 = inout_1;
5980 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5982 static void
5983 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5985 int i;
5986 bool changed = false;
5987 rtx op = SET_SRC (p_sets[0]);
5988 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5989 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5990 bool *output_matched = XALLOCAVEC (bool, noutputs);
5992 memset (output_matched, 0, noutputs * sizeof (bool));
5993 for (i = 0; i < ninputs; i++)
5995 rtx input, output, insns;
5996 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5997 char *end;
5998 int match, j;
6000 if (*constraint == '%')
6001 constraint++;
6003 match = strtoul (constraint, &end, 10);
6004 if (end == constraint)
6005 continue;
6007 gcc_assert (match < noutputs);
6008 output = SET_DEST (p_sets[match]);
6009 input = RTVEC_ELT (inputs, i);
6010 /* Only do the transformation for pseudos. */
6011 if (! REG_P (output)
6012 || rtx_equal_p (output, input)
6013 || (GET_MODE (input) != VOIDmode
6014 && GET_MODE (input) != GET_MODE (output)))
6015 continue;
6017 /* We can't do anything if the output is also used as input,
6018 as we're going to overwrite it. */
6019 for (j = 0; j < ninputs; j++)
6020 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6021 break;
6022 if (j != ninputs)
6023 continue;
6025 /* Avoid changing the same input several times. For
6026 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6027 only change in once (to out1), rather than changing it
6028 first to out1 and afterwards to out2. */
6029 if (i > 0)
6031 for (j = 0; j < noutputs; j++)
6032 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6033 break;
6034 if (j != noutputs)
6035 continue;
6037 output_matched[match] = true;
6039 start_sequence ();
6040 emit_move_insn (output, input);
6041 insns = get_insns ();
6042 end_sequence ();
6043 emit_insn_before (insns, insn);
6045 /* Now replace all mentions of the input with output. We can't
6046 just replace the occurrence in inputs[i], as the register might
6047 also be used in some other input (or even in an address of an
6048 output), which would mean possibly increasing the number of
6049 inputs by one (namely 'output' in addition), which might pose
6050 a too complicated problem for reload to solve. E.g. this situation:
6052 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6054 Here 'input' is used in two occurrences as input (once for the
6055 input operand, once for the address in the second output operand).
6056 If we would replace only the occurrence of the input operand (to
6057 make the matching) we would be left with this:
6059 output = input
6060 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6062 Now we suddenly have two different input values (containing the same
6063 value, but different pseudos) where we formerly had only one.
6064 With more complicated asms this might lead to reload failures
6065 which wouldn't have happen without this pass. So, iterate over
6066 all operands and replace all occurrences of the register used. */
6067 for (j = 0; j < noutputs; j++)
6068 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6069 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6070 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6071 input, output);
6072 for (j = 0; j < ninputs; j++)
6073 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6074 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6075 input, output);
6077 changed = true;
6080 if (changed)
6081 df_insn_rescan (insn);
6084 static unsigned
6085 rest_of_match_asm_constraints (void)
6087 basic_block bb;
6088 rtx insn, pat, *p_sets;
6089 int noutputs;
6091 if (!crtl->has_asm_statement)
6092 return 0;
6094 df_set_flags (DF_DEFER_INSN_RESCAN);
6095 FOR_EACH_BB (bb)
6097 FOR_BB_INSNS (bb, insn)
6099 if (!INSN_P (insn))
6100 continue;
6102 pat = PATTERN (insn);
6103 if (GET_CODE (pat) == PARALLEL)
6104 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6105 else if (GET_CODE (pat) == SET)
6106 p_sets = &PATTERN (insn), noutputs = 1;
6107 else
6108 continue;
6110 if (GET_CODE (*p_sets) == SET
6111 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6112 match_asm_constraints_1 (insn, p_sets, noutputs);
6116 return TODO_df_finish;
6119 struct rtl_opt_pass pass_match_asm_constraints =
6122 RTL_PASS,
6123 "asmcons", /* name */
6124 NULL, /* gate */
6125 rest_of_match_asm_constraints, /* execute */
6126 NULL, /* sub */
6127 NULL, /* next */
6128 0, /* static_pass_number */
6129 TV_NONE, /* tv_id */
6130 0, /* properties_required */
6131 0, /* properties_provided */
6132 0, /* properties_destroyed */
6133 0, /* todo_flags_start */
6134 TODO_dump_func /* todo_flags_finish */
6139 #include "gt-function.h"