1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
34 #include "insn-attr.h"
37 /* This structure is used to record liveness information at the targets or
38 fallthrough insns of branches. We will most likely need the information
39 at targets again, so save them in a hash table rather than recomputing them
44 int uid
; /* INSN_UID of target. */
45 struct target_info
*next
; /* Next info for same hash bucket. */
46 HARD_REG_SET live_regs
; /* Registers live at target. */
47 int block
; /* Basic block number containing target. */
48 int bb_tick
; /* Generation count of basic block info. */
51 #define TARGET_HASH_PRIME 257
53 /* Indicates what resources are required at the beginning of the epilogue. */
54 static struct resources start_of_epilogue_needs
;
56 /* Indicates what resources are required at function end. */
57 static struct resources end_of_function_needs
;
59 /* Define the hash table itself. */
60 static struct target_info
**target_hash_table
= NULL
;
62 /* For each basic block, we maintain a generation number of its basic
63 block info, which is updated each time we move an insn from the
64 target of a jump. This is the generation number indexed by block
69 /* Marks registers possibly live at the current place being scanned by
70 mark_target_live_regs. Also used by update_live_status. */
72 static HARD_REG_SET current_live_regs
;
74 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
75 Also only used by the next two functions. */
77 static HARD_REG_SET pending_dead_regs
;
79 static void update_live_status
PARAMS ((rtx
, rtx
, void *));
80 static int find_basic_block
PARAMS ((rtx
, int));
81 static rtx next_insn_no_annul
PARAMS ((rtx
));
82 static rtx find_dead_or_set_registers
PARAMS ((rtx
, struct resources
*,
83 rtx
*, int, struct resources
,
86 /* Utility function called from mark_target_live_regs via note_stores.
87 It deadens any CLOBBERed registers and livens any SET registers. */
90 update_live_status (dest
, x
, data
)
93 void *data ATTRIBUTE_UNUSED
;
95 int first_regno
, last_regno
;
98 if (GET_CODE (dest
) != REG
99 && (GET_CODE (dest
) != SUBREG
|| GET_CODE (SUBREG_REG (dest
)) != REG
))
102 if (GET_CODE (dest
) == SUBREG
)
103 first_regno
= subreg_regno (dest
);
105 first_regno
= REGNO (dest
);
107 last_regno
= first_regno
+ HARD_REGNO_NREGS (first_regno
, GET_MODE (dest
));
109 if (GET_CODE (x
) == CLOBBER
)
110 for (i
= first_regno
; i
< last_regno
; i
++)
111 CLEAR_HARD_REG_BIT (current_live_regs
, i
);
113 for (i
= first_regno
; i
< last_regno
; i
++)
115 SET_HARD_REG_BIT (current_live_regs
, i
);
116 CLEAR_HARD_REG_BIT (pending_dead_regs
, i
);
120 /* Find the number of the basic block with correct live register
121 information that starts closest to INSN. Return -1 if we couldn't
122 find such a basic block or the beginning is more than
123 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
126 The delay slot filling code destroys the control-flow graph so,
127 instead of finding the basic block containing INSN, we search
128 backwards toward a BARRIER where the live register information is
132 find_basic_block (insn
, search_limit
)
138 /* Scan backwards to the previous BARRIER. Then see if we can find a
139 label that starts a basic block. Return the basic block number. */
140 for (insn
= prev_nonnote_insn (insn
);
141 insn
&& GET_CODE (insn
) != BARRIER
&& search_limit
!= 0;
142 insn
= prev_nonnote_insn (insn
), --search_limit
)
145 /* The closest BARRIER is too far away. */
146 if (search_limit
== 0)
149 /* The start of the function. */
151 return ENTRY_BLOCK_PTR
->next_bb
->index
;
153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
154 anything other than a CODE_LABEL or note, we can't find this code. */
155 for (insn
= next_nonnote_insn (insn
);
156 insn
&& GET_CODE (insn
) == CODE_LABEL
;
157 insn
= next_nonnote_insn (insn
))
160 if (insn
== bb
->head
)
167 /* Similar to next_insn, but ignores insns in the delay slots of
168 an annulled branch. */
171 next_insn_no_annul (insn
)
176 /* If INSN is an annulled branch, skip any insns from the target
178 if ((GET_CODE (insn
) == JUMP_INSN
179 || GET_CODE (insn
) == CALL_INSN
180 || GET_CODE (insn
) == INSN
)
181 && INSN_ANNULLED_BRANCH_P (insn
)
182 && NEXT_INSN (PREV_INSN (insn
)) != insn
)
184 rtx next
= NEXT_INSN (insn
);
185 enum rtx_code code
= GET_CODE (next
);
187 while ((code
== INSN
|| code
== JUMP_INSN
|| code
== CALL_INSN
)
188 && INSN_FROM_TARGET_P (next
))
191 next
= NEXT_INSN (insn
);
192 code
= GET_CODE (next
);
196 insn
= NEXT_INSN (insn
);
197 if (insn
&& GET_CODE (insn
) == INSN
198 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
199 insn
= XVECEXP (PATTERN (insn
), 0, 0);
205 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
206 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
207 is TRUE, resources used by the called routine will be included for
211 mark_referenced_resources (x
, res
, include_delayed_effects
)
213 struct resources
*res
;
214 int include_delayed_effects
;
216 enum rtx_code code
= GET_CODE (x
);
219 const char *format_ptr
;
221 /* Handle leaf items for which we set resource flags. Also, special-case
222 CALL, SET and CLOBBER operators. */
235 if (GET_CODE (SUBREG_REG (x
)) != REG
)
236 mark_referenced_resources (SUBREG_REG (x
), res
, 0);
239 unsigned int regno
= subreg_regno (x
);
240 unsigned int last_regno
241 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
243 if (last_regno
> FIRST_PSEUDO_REGISTER
)
245 for (r
= regno
; r
< last_regno
; r
++)
246 SET_HARD_REG_BIT (res
->regs
, r
);
252 unsigned int regno
= REGNO (x
);
253 unsigned int last_regno
254 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
256 if (last_regno
> FIRST_PSEUDO_REGISTER
)
258 for (r
= regno
; r
< last_regno
; r
++)
259 SET_HARD_REG_BIT (res
->regs
, r
);
264 /* If this memory shouldn't change, it really isn't referencing
266 if (RTX_UNCHANGING_P (x
))
267 res
->unch_memory
= 1;
270 res
->volatil
|= MEM_VOLATILE_P (x
);
272 /* Mark registers used to access memory. */
273 mark_referenced_resources (XEXP (x
, 0), res
, 0);
280 case UNSPEC_VOLATILE
:
282 /* Traditional asm's are always volatile. */
291 res
->volatil
|= MEM_VOLATILE_P (x
);
293 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
294 We can not just fall through here since then we would be confused
295 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
296 traditional asms unlike their normal usage. */
298 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
299 mark_referenced_resources (ASM_OPERANDS_INPUT (x
, i
), res
, 0);
303 /* The first operand will be a (MEM (xxx)) but doesn't really reference
304 memory. The second operand may be referenced, though. */
305 mark_referenced_resources (XEXP (XEXP (x
, 0), 0), res
, 0);
306 mark_referenced_resources (XEXP (x
, 1), res
, 0);
310 /* Usually, the first operand of SET is set, not referenced. But
311 registers used to access memory are referenced. SET_DEST is
312 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
314 mark_referenced_resources (SET_SRC (x
), res
, 0);
317 if (GET_CODE (x
) == SIGN_EXTRACT
318 || GET_CODE (x
) == ZERO_EXTRACT
319 || GET_CODE (x
) == STRICT_LOW_PART
)
320 mark_referenced_resources (x
, res
, 0);
321 else if (GET_CODE (x
) == SUBREG
)
323 if (GET_CODE (x
) == MEM
)
324 mark_referenced_resources (XEXP (x
, 0), res
, 0);
331 if (include_delayed_effects
)
333 /* A CALL references memory, the frame pointer if it exists, the
334 stack pointer, any global registers and any registers given in
335 USE insns immediately in front of the CALL.
337 However, we may have moved some of the parameter loading insns
338 into the delay slot of this CALL. If so, the USE's for them
339 don't count and should be skipped. */
340 rtx insn
= PREV_INSN (x
);
345 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
346 if (NEXT_INSN (insn
) != x
)
348 sequence
= PATTERN (NEXT_INSN (insn
));
349 seq_size
= XVECLEN (sequence
, 0);
350 if (GET_CODE (sequence
) != SEQUENCE
)
355 SET_HARD_REG_BIT (res
->regs
, STACK_POINTER_REGNUM
);
356 if (frame_pointer_needed
)
358 SET_HARD_REG_BIT (res
->regs
, FRAME_POINTER_REGNUM
);
359 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
360 SET_HARD_REG_BIT (res
->regs
, HARD_FRAME_POINTER_REGNUM
);
364 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
366 SET_HARD_REG_BIT (res
->regs
, i
);
368 /* Check for a REG_SETJMP. If it exists, then we must
369 assume that this call can need any register.
371 This is done to be more conservative about how we handle setjmp.
372 We assume that they both use and set all registers. Using all
373 registers ensures that a register will not be considered dead
374 just because it crosses a setjmp call. A register should be
375 considered dead only if the setjmp call returns non-zero. */
376 if (find_reg_note (x
, REG_SETJMP
, NULL
))
377 SET_HARD_REG_SET (res
->regs
);
382 for (link
= CALL_INSN_FUNCTION_USAGE (x
);
384 link
= XEXP (link
, 1))
385 if (GET_CODE (XEXP (link
, 0)) == USE
)
387 for (i
= 1; i
< seq_size
; i
++)
389 rtx slot_pat
= PATTERN (XVECEXP (sequence
, 0, i
));
390 if (GET_CODE (slot_pat
) == SET
391 && rtx_equal_p (SET_DEST (slot_pat
),
392 XEXP (XEXP (link
, 0), 0)))
396 mark_referenced_resources (XEXP (XEXP (link
, 0), 0),
402 /* ... fall through to other INSN processing ... */
407 #ifdef INSN_REFERENCES_ARE_DELAYED
408 if (! include_delayed_effects
409 && INSN_REFERENCES_ARE_DELAYED (x
))
413 /* No special processing, just speed up. */
414 mark_referenced_resources (PATTERN (x
), res
, include_delayed_effects
);
421 /* Process each sub-expression and flag what it needs. */
422 format_ptr
= GET_RTX_FORMAT (code
);
423 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
424 switch (*format_ptr
++)
427 mark_referenced_resources (XEXP (x
, i
), res
, include_delayed_effects
);
431 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
432 mark_referenced_resources (XVECEXP (x
, i
, j
), res
,
433 include_delayed_effects
);
438 /* A subroutine of mark_target_live_regs. Search forward from TARGET
439 looking for registers that are set before they are used. These are dead.
440 Stop after passing a few conditional jumps, and/or a small
441 number of unconditional branches. */
444 find_dead_or_set_registers (target
, res
, jump_target
, jump_count
, set
, needed
)
446 struct resources
*res
;
449 struct resources set
, needed
;
451 HARD_REG_SET scratch
;
456 for (insn
= target
; insn
; insn
= next
)
458 rtx this_jump_insn
= insn
;
460 next
= NEXT_INSN (insn
);
462 /* If this instruction can throw an exception, then we don't
463 know where we might end up next. That means that we have to
464 assume that whatever we have already marked as live really is
466 if (can_throw_internal (insn
))
469 switch (GET_CODE (insn
))
472 /* After a label, any pending dead registers that weren't yet
473 used can be made dead. */
474 AND_COMPL_HARD_REG_SET (pending_dead_regs
, needed
.regs
);
475 AND_COMPL_HARD_REG_SET (res
->regs
, pending_dead_regs
);
476 CLEAR_HARD_REG_SET (pending_dead_regs
);
485 if (GET_CODE (PATTERN (insn
)) == USE
)
487 /* If INSN is a USE made by update_block, we care about the
488 underlying insn. Any registers set by the underlying insn
489 are live since the insn is being done somewhere else. */
490 if (INSN_P (XEXP (PATTERN (insn
), 0)))
491 mark_set_resources (XEXP (PATTERN (insn
), 0), res
, 0,
494 /* All other USE insns are to be ignored. */
497 else if (GET_CODE (PATTERN (insn
)) == CLOBBER
)
499 else if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
501 /* An unconditional jump can be used to fill the delay slot
502 of a call, so search for a JUMP_INSN in any position. */
503 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
505 this_jump_insn
= XVECEXP (PATTERN (insn
), 0, i
);
506 if (GET_CODE (this_jump_insn
) == JUMP_INSN
)
515 if (GET_CODE (this_jump_insn
) == JUMP_INSN
)
517 if (jump_count
++ < 10)
519 if (any_uncondjump_p (this_jump_insn
)
520 || GET_CODE (PATTERN (this_jump_insn
)) == RETURN
)
522 next
= JUMP_LABEL (this_jump_insn
);
527 *jump_target
= JUMP_LABEL (this_jump_insn
);
530 else if (any_condjump_p (this_jump_insn
))
532 struct resources target_set
, target_res
;
533 struct resources fallthrough_res
;
535 /* We can handle conditional branches here by following
536 both paths, and then IOR the results of the two paths
537 together, which will give us registers that are dead
538 on both paths. Since this is expensive, we give it
539 a much higher cost than unconditional branches. The
540 cost was chosen so that we will follow at most 1
541 conditional branch. */
544 if (jump_count
>= 10)
547 mark_referenced_resources (insn
, &needed
, 1);
549 /* For an annulled branch, mark_set_resources ignores slots
550 filled by instructions from the target. This is correct
551 if the branch is not taken. Since we are following both
552 paths from the branch, we must also compute correct info
553 if the branch is taken. We do this by inverting all of
554 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
555 and then inverting the INSN_FROM_TARGET_P bits again. */
557 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
558 && INSN_ANNULLED_BRANCH_P (this_jump_insn
))
560 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
561 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
))
562 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
));
565 mark_set_resources (insn
, &target_set
, 0,
568 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
569 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
))
570 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
));
572 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
576 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
581 COPY_HARD_REG_SET (scratch
, target_set
.regs
);
582 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
583 AND_COMPL_HARD_REG_SET (target_res
.regs
, scratch
);
585 fallthrough_res
= *res
;
586 COPY_HARD_REG_SET (scratch
, set
.regs
);
587 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
588 AND_COMPL_HARD_REG_SET (fallthrough_res
.regs
, scratch
);
590 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn
),
591 &target_res
, 0, jump_count
,
593 find_dead_or_set_registers (next
,
594 &fallthrough_res
, 0, jump_count
,
596 IOR_HARD_REG_SET (fallthrough_res
.regs
, target_res
.regs
);
597 AND_HARD_REG_SET (res
->regs
, fallthrough_res
.regs
);
605 /* Don't try this optimization if we expired our jump count
606 above, since that would mean there may be an infinite loop
607 in the function being compiled. */
613 mark_referenced_resources (insn
, &needed
, 1);
614 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
616 COPY_HARD_REG_SET (scratch
, set
.regs
);
617 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
618 AND_COMPL_HARD_REG_SET (res
->regs
, scratch
);
624 /* Given X, a part of an insn, and a pointer to a `struct resource',
625 RES, indicate which resources are modified by the insn. If
626 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
627 set by the called routine. If MARK_TYPE is MARK_DEST, only mark SET_DESTs
629 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
630 objects are being referenced instead of set.
632 We never mark the insn as modifying the condition code unless it explicitly
633 SETs CC0 even though this is not totally correct. The reason for this is
634 that we require a SET of CC0 to immediately precede the reference to CC0.
635 So if some other insn sets CC0 as a side-effect, we know it cannot affect
636 our computation and thus may be placed in a delay slot. */
639 mark_set_resources (x
, res
, in_dest
, mark_type
)
641 struct resources
*res
;
643 enum mark_resource_type mark_type
;
648 const char *format_ptr
;
667 /* These don't set any resources. */
676 /* Called routine modifies the condition code, memory, any registers
677 that aren't saved across calls, global registers and anything
678 explicitly CLOBBERed immediately after the CALL_INSN. */
680 if (mark_type
== MARK_SRC_DEST_CALL
)
684 res
->cc
= res
->memory
= 1;
685 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
686 if (call_used_regs
[r
] || global_regs
[r
])
687 SET_HARD_REG_BIT (res
->regs
, r
);
689 for (link
= CALL_INSN_FUNCTION_USAGE (x
);
690 link
; link
= XEXP (link
, 1))
691 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
692 mark_set_resources (SET_DEST (XEXP (link
, 0)), res
, 1,
695 /* Check for a REG_SETJMP. If it exists, then we must
696 assume that this call can clobber any register. */
697 if (find_reg_note (x
, REG_SETJMP
, NULL
))
698 SET_HARD_REG_SET (res
->regs
);
701 /* ... and also what its RTL says it modifies, if anything. */
706 /* An insn consisting of just a CLOBBER (or USE) is just for flow
707 and doesn't actually do anything, so we ignore it. */
709 #ifdef INSN_SETS_ARE_DELAYED
710 if (mark_type
!= MARK_SRC_DEST_CALL
711 && INSN_SETS_ARE_DELAYED (x
))
716 if (GET_CODE (x
) != USE
&& GET_CODE (x
) != CLOBBER
)
721 /* If the source of a SET is a CALL, this is actually done by
722 the called routine. So only include it if we are to include the
723 effects of the calling routine. */
725 mark_set_resources (SET_DEST (x
), res
,
726 (mark_type
== MARK_SRC_DEST_CALL
727 || GET_CODE (SET_SRC (x
)) != CALL
),
730 if (mark_type
!= MARK_DEST
)
731 mark_set_resources (SET_SRC (x
), res
, 0, MARK_SRC_DEST
);
735 mark_set_resources (XEXP (x
, 0), res
, 1, MARK_SRC_DEST
);
739 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
740 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x
, 0, 0))
741 && INSN_FROM_TARGET_P (XVECEXP (x
, 0, i
))))
742 mark_set_resources (XVECEXP (x
, 0, i
), res
, 0, mark_type
);
749 mark_set_resources (XEXP (x
, 0), res
, 1, MARK_SRC_DEST
);
754 mark_set_resources (XEXP (x
, 0), res
, 1, MARK_SRC_DEST
);
755 mark_set_resources (XEXP (XEXP (x
, 1), 0), res
, 0, MARK_SRC_DEST
);
756 mark_set_resources (XEXP (XEXP (x
, 1), 1), res
, 0, MARK_SRC_DEST
);
761 if (! (mark_type
== MARK_DEST
&& in_dest
))
763 mark_set_resources (XEXP (x
, 0), res
, in_dest
, MARK_SRC_DEST
);
764 mark_set_resources (XEXP (x
, 1), res
, 0, MARK_SRC_DEST
);
765 mark_set_resources (XEXP (x
, 2), res
, 0, MARK_SRC_DEST
);
773 res
->unch_memory
|= RTX_UNCHANGING_P (x
);
774 res
->volatil
|= MEM_VOLATILE_P (x
);
777 mark_set_resources (XEXP (x
, 0), res
, 0, MARK_SRC_DEST
);
783 if (GET_CODE (SUBREG_REG (x
)) != REG
)
784 mark_set_resources (SUBREG_REG (x
), res
, in_dest
, mark_type
);
787 unsigned int regno
= subreg_regno (x
);
788 unsigned int last_regno
789 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
791 if (last_regno
> FIRST_PSEUDO_REGISTER
)
793 for (r
= regno
; r
< last_regno
; r
++)
794 SET_HARD_REG_BIT (res
->regs
, r
);
802 unsigned int regno
= REGNO (x
);
803 unsigned int last_regno
804 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
806 if (last_regno
> FIRST_PSEUDO_REGISTER
)
808 for (r
= regno
; r
< last_regno
; r
++)
809 SET_HARD_REG_BIT (res
->regs
, r
);
813 case STRICT_LOW_PART
:
814 if (! (mark_type
== MARK_DEST
&& in_dest
))
816 mark_set_resources (XEXP (x
, 0), res
, 0, MARK_SRC_DEST
);
820 case UNSPEC_VOLATILE
:
822 /* Traditional asm's are always volatile. */
831 res
->volatil
|= MEM_VOLATILE_P (x
);
833 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
834 We can not just fall through here since then we would be confused
835 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
836 traditional asms unlike their normal usage. */
838 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
839 mark_set_resources (ASM_OPERANDS_INPUT (x
, i
), res
, in_dest
,
847 /* Process each sub-expression and flag what it needs. */
848 format_ptr
= GET_RTX_FORMAT (code
);
849 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
850 switch (*format_ptr
++)
853 mark_set_resources (XEXP (x
, i
), res
, in_dest
, mark_type
);
857 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
858 mark_set_resources (XVECEXP (x
, i
, j
), res
, in_dest
, mark_type
);
863 /* Set the resources that are live at TARGET.
865 If TARGET is zero, we refer to the end of the current function and can
866 return our precomputed value.
868 Otherwise, we try to find out what is live by consulting the basic block
869 information. This is tricky, because we must consider the actions of
870 reload and jump optimization, which occur after the basic block information
873 Accordingly, we proceed as follows::
875 We find the previous BARRIER and look at all immediately following labels
876 (with no intervening active insns) to see if any of them start a basic
877 block. If we hit the start of the function first, we use block 0.
879 Once we have found a basic block and a corresponding first insns, we can
880 accurately compute the live status from basic_block_live_regs and
881 reg_renumber. (By starting at a label following a BARRIER, we are immune
882 to actions taken by reload and jump.) Then we scan all insns between
883 that point and our target. For each CLOBBER (or for call-clobbered regs
884 when we pass a CALL_INSN), mark the appropriate registers are dead. For
885 a SET, mark them as live.
887 We have to be careful when using REG_DEAD notes because they are not
888 updated by such things as find_equiv_reg. So keep track of registers
889 marked as dead that haven't been assigned to, and mark them dead at the
890 next CODE_LABEL since reload and jump won't propagate values across labels.
892 If we cannot find the start of a basic block (should be a very rare
893 case, if it can happen at all), mark everything as potentially live.
895 Next, scan forward from TARGET looking for things set or clobbered
896 before they are used. These are not live.
898 Because we can be called many times on the same target, save our results
899 in a hash table indexed by INSN_UID. This is only done if the function
900 init_resource_info () was invoked before we are called. */
903 mark_target_live_regs (insns
, target
, res
)
906 struct resources
*res
;
910 struct target_info
*tinfo
= NULL
;
914 HARD_REG_SET scratch
;
915 struct resources set
, needed
;
917 /* Handle end of function. */
920 *res
= end_of_function_needs
;
924 /* We have to assume memory is needed, but the CC isn't. */
926 res
->volatil
= res
->unch_memory
= 0;
929 /* See if we have computed this value already. */
930 if (target_hash_table
!= NULL
)
932 for (tinfo
= target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
];
933 tinfo
; tinfo
= tinfo
->next
)
934 if (tinfo
->uid
== INSN_UID (target
))
937 /* Start by getting the basic block number. If we have saved
938 information, we can get it from there unless the insn at the
939 start of the basic block has been deleted. */
940 if (tinfo
&& tinfo
->block
!= -1
941 && ! INSN_DELETED_P (BLOCK_HEAD (tinfo
->block
)))
946 b
= find_basic_block (target
, MAX_DELAY_SLOT_LIVE_SEARCH
);
948 if (target_hash_table
!= NULL
)
952 /* If the information is up-to-date, use it. Otherwise, we will
954 if (b
== tinfo
->block
&& b
!= -1 && tinfo
->bb_tick
== bb_ticks
[b
])
956 COPY_HARD_REG_SET (res
->regs
, tinfo
->live_regs
);
962 /* Allocate a place to put our results and chain it into the
964 tinfo
= (struct target_info
*) xmalloc (sizeof (struct target_info
));
965 tinfo
->uid
= INSN_UID (target
);
968 = target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
];
969 target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
] = tinfo
;
973 CLEAR_HARD_REG_SET (pending_dead_regs
);
975 /* If we found a basic block, get the live registers from it and update
976 them with anything set or killed between its start and the insn before
977 TARGET. Otherwise, we must assume everything is live. */
980 regset regs_live
= BASIC_BLOCK (b
)->global_live_at_start
;
983 rtx start_insn
, stop_insn
;
985 /* Compute hard regs live at start of block -- this is the real hard regs
986 marked live, plus live pseudo regs that have been renumbered to
989 REG_SET_TO_HARD_REG_SET (current_live_regs
, regs_live
);
991 EXECUTE_IF_SET_IN_REG_SET
992 (regs_live
, FIRST_PSEUDO_REGISTER
, i
,
994 if (reg_renumber
[i
] >= 0)
996 regno
= reg_renumber
[i
];
998 j
< regno
+ HARD_REGNO_NREGS (regno
,
999 PSEUDO_REGNO_MODE (i
));
1001 SET_HARD_REG_BIT (current_live_regs
, j
);
1005 /* Get starting and ending insn, handling the case where each might
1007 start_insn
= (b
== 0 ? insns
: BLOCK_HEAD (b
));
1010 if (GET_CODE (start_insn
) == INSN
1011 && GET_CODE (PATTERN (start_insn
)) == SEQUENCE
)
1012 start_insn
= XVECEXP (PATTERN (start_insn
), 0, 0);
1014 if (GET_CODE (stop_insn
) == INSN
1015 && GET_CODE (PATTERN (stop_insn
)) == SEQUENCE
)
1016 stop_insn
= next_insn (PREV_INSN (stop_insn
));
1018 for (insn
= start_insn
; insn
!= stop_insn
;
1019 insn
= next_insn_no_annul (insn
))
1022 rtx real_insn
= insn
;
1023 enum rtx_code code
= GET_CODE (insn
);
1025 /* If this insn is from the target of a branch, it isn't going to
1026 be used in the sequel. If it is used in both cases, this
1027 test will not be true. */
1028 if ((code
== INSN
|| code
== JUMP_INSN
|| code
== CALL_INSN
)
1029 && INSN_FROM_TARGET_P (insn
))
1032 /* If this insn is a USE made by update_block, we care about the
1034 if (code
== INSN
&& GET_CODE (PATTERN (insn
)) == USE
1035 && INSN_P (XEXP (PATTERN (insn
), 0)))
1036 real_insn
= XEXP (PATTERN (insn
), 0);
1038 if (GET_CODE (real_insn
) == CALL_INSN
)
1040 /* CALL clobbers all call-used regs that aren't fixed except
1041 sp, ap, and fp. Do this before setting the result of the
1043 AND_COMPL_HARD_REG_SET (current_live_regs
,
1044 regs_invalidated_by_call
);
1046 /* A CALL_INSN sets any global register live, since it may
1047 have been modified by the call. */
1048 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1050 SET_HARD_REG_BIT (current_live_regs
, i
);
1053 /* Mark anything killed in an insn to be deadened at the next
1054 label. Ignore USE insns; the only REG_DEAD notes will be for
1055 parameters. But they might be early. A CALL_INSN will usually
1056 clobber registers used for parameters. It isn't worth bothering
1057 with the unlikely case when it won't. */
1058 if ((GET_CODE (real_insn
) == INSN
1059 && GET_CODE (PATTERN (real_insn
)) != USE
1060 && GET_CODE (PATTERN (real_insn
)) != CLOBBER
)
1061 || GET_CODE (real_insn
) == JUMP_INSN
1062 || GET_CODE (real_insn
) == CALL_INSN
)
1064 for (link
= REG_NOTES (real_insn
); link
; link
= XEXP (link
, 1))
1065 if (REG_NOTE_KIND (link
) == REG_DEAD
1066 && GET_CODE (XEXP (link
, 0)) == REG
1067 && REGNO (XEXP (link
, 0)) < FIRST_PSEUDO_REGISTER
)
1069 unsigned int first_regno
= REGNO (XEXP (link
, 0));
1070 unsigned int last_regno
1072 + HARD_REGNO_NREGS (first_regno
,
1073 GET_MODE (XEXP (link
, 0))));
1075 for (i
= first_regno
; i
< last_regno
; i
++)
1076 SET_HARD_REG_BIT (pending_dead_regs
, i
);
1079 note_stores (PATTERN (real_insn
), update_live_status
, NULL
);
1081 /* If any registers were unused after this insn, kill them.
1082 These notes will always be accurate. */
1083 for (link
= REG_NOTES (real_insn
); link
; link
= XEXP (link
, 1))
1084 if (REG_NOTE_KIND (link
) == REG_UNUSED
1085 && GET_CODE (XEXP (link
, 0)) == REG
1086 && REGNO (XEXP (link
, 0)) < FIRST_PSEUDO_REGISTER
)
1088 unsigned int first_regno
= REGNO (XEXP (link
, 0));
1089 unsigned int last_regno
1091 + HARD_REGNO_NREGS (first_regno
,
1092 GET_MODE (XEXP (link
, 0))));
1094 for (i
= first_regno
; i
< last_regno
; i
++)
1095 CLEAR_HARD_REG_BIT (current_live_regs
, i
);
1099 else if (GET_CODE (real_insn
) == CODE_LABEL
)
1101 /* A label clobbers the pending dead registers since neither
1102 reload nor jump will propagate a value across a label. */
1103 AND_COMPL_HARD_REG_SET (current_live_regs
, pending_dead_regs
);
1104 CLEAR_HARD_REG_SET (pending_dead_regs
);
1107 /* The beginning of the epilogue corresponds to the end of the
1108 RTL chain when there are no epilogue insns. Certain resources
1109 are implicitly required at that point. */
1110 else if (GET_CODE (real_insn
) == NOTE
1111 && NOTE_LINE_NUMBER (real_insn
) == NOTE_INSN_EPILOGUE_BEG
)
1112 IOR_HARD_REG_SET (current_live_regs
, start_of_epilogue_needs
.regs
);
1115 COPY_HARD_REG_SET (res
->regs
, current_live_regs
);
1119 tinfo
->bb_tick
= bb_ticks
[b
];
1123 /* We didn't find the start of a basic block. Assume everything
1124 in use. This should happen only extremely rarely. */
1125 SET_HARD_REG_SET (res
->regs
);
1127 CLEAR_RESOURCE (&set
);
1128 CLEAR_RESOURCE (&needed
);
1130 jump_insn
= find_dead_or_set_registers (target
, res
, &jump_target
, 0,
1133 /* If we hit an unconditional branch, we have another way of finding out
1134 what is live: we can see what is live at the branch target and include
1135 anything used but not set before the branch. We add the live
1136 resources found using the test below to those found until now. */
1140 struct resources new_resources
;
1141 rtx stop_insn
= next_active_insn (jump_insn
);
1143 mark_target_live_regs (insns
, next_active_insn (jump_target
),
1145 CLEAR_RESOURCE (&set
);
1146 CLEAR_RESOURCE (&needed
);
1148 /* Include JUMP_INSN in the needed registers. */
1149 for (insn
= target
; insn
!= stop_insn
; insn
= next_active_insn (insn
))
1151 mark_referenced_resources (insn
, &needed
, 1);
1153 COPY_HARD_REG_SET (scratch
, needed
.regs
);
1154 AND_COMPL_HARD_REG_SET (scratch
, set
.regs
);
1155 IOR_HARD_REG_SET (new_resources
.regs
, scratch
);
1157 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1160 IOR_HARD_REG_SET (res
->regs
, new_resources
.regs
);
1165 COPY_HARD_REG_SET (tinfo
->live_regs
, res
->regs
);
1169 /* Initialize the resources required by mark_target_live_regs ().
1170 This should be invoked before the first call to mark_target_live_regs. */
1173 init_resource_info (epilogue_insn
)
1178 /* Indicate what resources are required to be valid at the end of the current
1179 function. The condition code never is and memory always is. If the
1180 frame pointer is needed, it is and so is the stack pointer unless
1181 EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
1182 stack pointer is. Registers used to return the function value are
1183 needed. Registers holding global variables are needed. */
1185 end_of_function_needs
.cc
= 0;
1186 end_of_function_needs
.memory
= 1;
1187 end_of_function_needs
.unch_memory
= 0;
1188 CLEAR_HARD_REG_SET (end_of_function_needs
.regs
);
1190 if (frame_pointer_needed
)
1192 SET_HARD_REG_BIT (end_of_function_needs
.regs
, FRAME_POINTER_REGNUM
);
1193 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1194 SET_HARD_REG_BIT (end_of_function_needs
.regs
, HARD_FRAME_POINTER_REGNUM
);
1196 #ifdef EXIT_IGNORE_STACK
1197 if (! EXIT_IGNORE_STACK
1198 || current_function_sp_is_unchanging
)
1200 SET_HARD_REG_BIT (end_of_function_needs
.regs
, STACK_POINTER_REGNUM
);
1203 SET_HARD_REG_BIT (end_of_function_needs
.regs
, STACK_POINTER_REGNUM
);
1205 if (current_function_return_rtx
!= 0)
1206 mark_referenced_resources (current_function_return_rtx
,
1207 &end_of_function_needs
, 1);
1209 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1211 #ifdef EPILOGUE_USES
1212 || EPILOGUE_USES (i
)
1215 SET_HARD_REG_BIT (end_of_function_needs
.regs
, i
);
1217 /* The registers required to be live at the end of the function are
1218 represented in the flow information as being dead just prior to
1219 reaching the end of the function. For example, the return of a value
1220 might be represented by a USE of the return register immediately
1221 followed by an unconditional jump to the return label where the
1222 return label is the end of the RTL chain. The end of the RTL chain
1223 is then taken to mean that the return register is live.
1225 This sequence is no longer maintained when epilogue instructions are
1226 added to the RTL chain. To reconstruct the original meaning, the
1227 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1228 point where these registers become live (start_of_epilogue_needs).
1229 If epilogue instructions are present, the registers set by those
1230 instructions won't have been processed by flow. Thus, those
1231 registers are additionally required at the end of the RTL chain
1232 (end_of_function_needs). */
1234 start_of_epilogue_needs
= end_of_function_needs
;
1236 while ((epilogue_insn
= next_nonnote_insn (epilogue_insn
)))
1237 mark_set_resources (epilogue_insn
, &end_of_function_needs
, 0,
1238 MARK_SRC_DEST_CALL
);
1240 /* Allocate and initialize the tables used by mark_target_live_regs. */
1241 target_hash_table
= (struct target_info
**)
1242 xcalloc (TARGET_HASH_PRIME
, sizeof (struct target_info
*));
1243 bb_ticks
= (int *) xcalloc (last_basic_block
, sizeof (int));
1246 /* Free up the resources allcated to mark_target_live_regs (). This
1247 should be invoked after the last call to mark_target_live_regs (). */
1250 free_resource_info ()
1252 if (target_hash_table
!= NULL
)
1256 for (i
= 0; i
< TARGET_HASH_PRIME
; ++i
)
1258 struct target_info
*ti
= target_hash_table
[i
];
1262 struct target_info
*next
= ti
->next
;
1268 free (target_hash_table
);
1269 target_hash_table
= NULL
;
1272 if (bb_ticks
!= NULL
)
1279 /* Clear any hashed information that we have stored for INSN. */
1282 clear_hashed_info_for_insn (insn
)
1285 struct target_info
*tinfo
;
1287 if (target_hash_table
!= NULL
)
1289 for (tinfo
= target_hash_table
[INSN_UID (insn
) % TARGET_HASH_PRIME
];
1290 tinfo
; tinfo
= tinfo
->next
)
1291 if (tinfo
->uid
== INSN_UID (insn
))
1299 /* Increment the tick count for the basic block that contains INSN. */
1302 incr_ticks_for_insn (insn
)
1305 int b
= find_basic_block (insn
, MAX_DELAY_SLOT_LIVE_SEARCH
);
1311 /* Add TRIAL to the set of resources used at the end of the current
1314 mark_end_of_function_resources (trial
, include_delayed_effects
)
1316 int include_delayed_effects
;
1318 mark_referenced_resources (trial
, &end_of_function_needs
,
1319 include_delayed_effects
);