1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* stdio.h must precede rtl.h for FFS. */
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
33 #include "insn-config.h"
42 /* The basic idea of common subexpression elimination is to go
43 through the code, keeping a record of expressions that would
44 have the same value at the current scan point, and replacing
45 expressions encountered with the cheapest equivalent expression.
47 It is too complicated to keep track of the different possibilities
48 when control paths merge in this code; so, at each label, we forget all
49 that is known and start fresh. This can be described as processing each
50 extended basic block separately. We have a separate pass to perform
53 Note CSE can turn a conditional or computed jump into a nop or
54 an unconditional jump. When this occurs we arrange to run the jump
55 optimizer after CSE to delete the unreachable code.
57 We use two data structures to record the equivalent expressions:
58 a hash table for most expressions, and a vector of "quantity
59 numbers" to record equivalent (pseudo) registers.
61 The use of the special data structure for registers is desirable
62 because it is faster. It is possible because registers references
63 contain a fairly small number, the register number, taken from
64 a contiguously allocated series, and two register references are
65 identical if they have the same number. General expressions
66 do not have any such thing, so the only way to retrieve the
67 information recorded on an expression other than a register
68 is to keep it in a hash table.
70 Registers and "quantity numbers":
72 At the start of each basic block, all of the (hardware and pseudo)
73 registers used in the function are given distinct quantity
74 numbers to indicate their contents. During scan, when the code
75 copies one register into another, we copy the quantity number.
76 When a register is loaded in any other way, we allocate a new
77 quantity number to describe the value generated by this operation.
78 `reg_qty' records what quantity a register is currently thought
81 All real quantity numbers are greater than or equal to `max_reg'.
82 If register N has not been assigned a quantity, reg_qty[N] will equal N.
84 Quantity numbers below `max_reg' do not exist and none of the `qty_table'
85 entries should be referenced with an index below `max_reg'.
87 We also maintain a bidirectional chain of registers for each
88 quantity number. The `qty_table` members `first_reg' and `last_reg',
89 and `reg_eqv_table' members `next' and `prev' hold these chains.
91 The first register in a chain is the one whose lifespan is least local.
92 Among equals, it is the one that was seen first.
93 We replace any equivalent register with that one.
95 If two registers have the same quantity number, it must be true that
96 REG expressions with qty_table `mode' must be in the hash table for both
97 registers and must be in the same class.
99 The converse is not true. Since hard registers may be referenced in
100 any mode, two REG expressions might be equivalent in the hash table
101 but not have the same quantity number if the quantity number of one
102 of the registers is not the same mode as those expressions.
104 Constants and quantity numbers
106 When a quantity has a known constant value, that value is stored
107 in the appropriate qty_table `const_rtx'. This is in addition to
108 putting the constant in the hash table as is usual for non-regs.
110 Whether a reg or a constant is preferred is determined by the configuration
111 macro CONST_COSTS and will often depend on the constant value. In any
112 event, expressions containing constants can be simplified, by fold_rtx.
114 When a quantity has a known nearly constant value (such as an address
115 of a stack slot), that value is stored in the appropriate qty_table
118 Integer constants don't have a machine mode. However, cse
119 determines the intended machine mode from the destination
120 of the instruction that moves the constant. The machine mode
121 is recorded in the hash table along with the actual RTL
122 constant expression so that different modes are kept separate.
126 To record known equivalences among expressions in general
127 we use a hash table called `table'. It has a fixed number of buckets
128 that contain chains of `struct table_elt' elements for expressions.
129 These chains connect the elements whose expressions have the same
132 Other chains through the same elements connect the elements which
133 currently have equivalent values.
135 Register references in an expression are canonicalized before hashing
136 the expression. This is done using `reg_qty' and qty_table `first_reg'.
137 The hash code of a register reference is computed using the quantity
138 number, not the register number.
140 When the value of an expression changes, it is necessary to remove from the
141 hash table not just that expression but all expressions whose values
142 could be different as a result.
144 1. If the value changing is in memory, except in special cases
145 ANYTHING referring to memory could be changed. That is because
146 nobody knows where a pointer does not point.
147 The function `invalidate_memory' removes what is necessary.
149 The special cases are when the address is constant or is
150 a constant plus a fixed register such as the frame pointer
151 or a static chain pointer. When such addresses are stored in,
152 we can tell exactly which other such addresses must be invalidated
153 due to overlap. `invalidate' does this.
154 All expressions that refer to non-constant
155 memory addresses are also invalidated. `invalidate_memory' does this.
157 2. If the value changing is a register, all expressions
158 containing references to that register, and only those,
161 Because searching the entire hash table for expressions that contain
162 a register is very slow, we try to figure out when it isn't necessary.
163 Precisely, this is necessary only when expressions have been
164 entered in the hash table using this register, and then the value has
165 changed, and then another expression wants to be added to refer to
166 the register's new value. This sequence of circumstances is rare
167 within any one basic block.
169 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
170 reg_tick[i] is incremented whenever a value is stored in register i.
171 reg_in_table[i] holds -1 if no references to register i have been
172 entered in the table; otherwise, it contains the value reg_tick[i] had
173 when the references were entered. If we want to enter a reference
174 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
175 Until we want to enter a new entry, the mere fact that the two vectors
176 don't match makes the entries be ignored if anyone tries to match them.
178 Registers themselves are entered in the hash table as well as in
179 the equivalent-register chains. However, the vectors `reg_tick'
180 and `reg_in_table' do not apply to expressions which are simple
181 register references. These expressions are removed from the table
182 immediately when they become invalid, and this can be done even if
183 we do not immediately search for all the expressions that refer to
186 A CLOBBER rtx in an instruction invalidates its operand for further
187 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
188 invalidates everything that resides in memory.
192 Constant expressions that differ only by an additive integer
193 are called related. When a constant expression is put in
194 the table, the related expression with no constant term
195 is also entered. These are made to point at each other
196 so that it is possible to find out if there exists any
197 register equivalent to an expression related to a given expression. */
199 /* One plus largest register number used in this function. */
203 /* One plus largest instruction UID used in this function at time of
206 static int max_insn_uid
;
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
218 /* Per-qty information tracking.
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
223 `mode' contains the machine mode of this quantity.
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
243 struct qty_table_elem
247 rtx comparison_const
;
249 unsigned int first_reg
, last_reg
;
250 enum machine_mode mode
;
251 enum rtx_code comparison_code
;
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem
*qty_table
;
258 /* For machines that have a CC0, we do not record its value in the hash
259 table since its use is guaranteed to be the insn immediately following
260 its definition and any other insn is presumed to invalidate it.
262 Instead, we store below the value last assigned to CC0. If it should
263 happen to be a constant, it is stored in preference to the actual
264 assigned value. In case it is a constant, we store the mode in which
265 the constant should be interpreted. */
267 static rtx prev_insn_cc0
;
268 static enum machine_mode prev_insn_cc0_mode
;
271 /* Previous actual insn. 0 if at first insn of basic block. */
273 static rtx prev_insn
;
275 /* Insn being scanned. */
277 static rtx this_insn
;
279 /* Index by register number, gives the number of the next (or
280 previous) register in the chain of registers sharing the same
283 Or -1 if this register is at the end of the chain.
285 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
287 /* Per-register equivalence chain. */
293 /* The table of all register equivalence chains. */
294 static struct reg_eqv_elem
*reg_eqv_table
;
298 /* Next in hash chain. */
299 struct cse_reg_info
*hash_next
;
301 /* The next cse_reg_info structure in the free or used list. */
302 struct cse_reg_info
*next
;
307 /* The quantity number of the register's current contents. */
310 /* The number of times the register has been altered in the current
314 /* The REG_TICK value at which rtx's containing this register are
315 valid in the hash table. If this does not equal the current
316 reg_tick value, such expressions existing in the hash table are
321 /* A free list of cse_reg_info entries. */
322 static struct cse_reg_info
*cse_reg_info_free_list
;
324 /* A used list of cse_reg_info entries. */
325 static struct cse_reg_info
*cse_reg_info_used_list
;
326 static struct cse_reg_info
*cse_reg_info_used_list_end
;
328 /* A mapping from registers to cse_reg_info data structures. */
329 #define REGHASH_SHIFT 7
330 #define REGHASH_SIZE (1 << REGHASH_SHIFT)
331 #define REGHASH_MASK (REGHASH_SIZE - 1)
332 static struct cse_reg_info
*reg_hash
[REGHASH_SIZE
];
334 #define REGHASH_FN(REGNO) \
335 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
337 /* The last lookup we did into the cse_reg_info_tree. This allows us
338 to cache repeated lookups. */
339 static unsigned int cached_regno
;
340 static struct cse_reg_info
*cached_cse_reg_info
;
342 /* A HARD_REG_SET containing all the hard registers for which there is
343 currently a REG expression in the hash table. Note the difference
344 from the above variables, which indicate if the REG is mentioned in some
345 expression in the table. */
347 static HARD_REG_SET hard_regs_in_table
;
349 /* CUID of insn that starts the basic block currently being cse-processed. */
351 static int cse_basic_block_start
;
353 /* CUID of insn that ends the basic block currently being cse-processed. */
355 static int cse_basic_block_end
;
357 /* Vector mapping INSN_UIDs to cuids.
358 The cuids are like uids but increase monotonically always.
359 We use them to see whether a reg is used outside a given basic block. */
361 static int *uid_cuid
;
363 /* Highest UID in UID_CUID. */
366 /* Get the cuid of an insn. */
368 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
370 /* Nonzero if this pass has made changes, and therefore it's
371 worthwhile to run the garbage collector. */
373 static int cse_altered
;
375 /* Nonzero if cse has altered conditional jump insns
376 in such a way that jump optimization should be redone. */
378 static int cse_jumps_altered
;
380 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
381 REG_LABEL, we have to rerun jump after CSE to put in the note. */
382 static int recorded_label_ref
;
384 /* canon_hash stores 1 in do_not_record
385 if it notices a reference to CC0, PC, or some other volatile
388 static int do_not_record
;
390 #ifdef LOAD_EXTEND_OP
392 /* Scratch rtl used when looking for load-extended copy of a MEM. */
393 static rtx memory_extend_rtx
;
396 /* canon_hash stores 1 in hash_arg_in_memory
397 if it notices a reference to memory within the expression being hashed. */
399 static int hash_arg_in_memory
;
401 /* The hash table contains buckets which are chains of `struct table_elt's,
402 each recording one expression's information.
403 That expression is in the `exp' field.
405 The canon_exp field contains a canonical (from the point of view of
406 alias analysis) version of the `exp' field.
408 Those elements with the same hash code are chained in both directions
409 through the `next_same_hash' and `prev_same_hash' fields.
411 Each set of expressions with equivalent values
412 are on a two-way chain through the `next_same_value'
413 and `prev_same_value' fields, and all point with
414 the `first_same_value' field at the first element in
415 that chain. The chain is in order of increasing cost.
416 Each element's cost value is in its `cost' field.
418 The `in_memory' field is nonzero for elements that
419 involve any reference to memory. These elements are removed
420 whenever a write is done to an unidentified location in memory.
421 To be safe, we assume that a memory address is unidentified unless
422 the address is either a symbol constant or a constant plus
423 the frame pointer or argument pointer.
425 The `related_value' field is used to connect related expressions
426 (that differ by adding an integer).
427 The related expressions are chained in a circular fashion.
428 `related_value' is zero for expressions for which this
431 The `cost' field stores the cost of this element's expression.
432 The `regcost' field stores the value returned by approx_reg_cost for
433 this element's expression.
435 The `is_const' flag is set if the element is a constant (including
438 The `flag' field is used as a temporary during some search routines.
440 The `mode' field is usually the same as GET_MODE (`exp'), but
441 if `exp' is a CONST_INT and has no machine mode then the `mode'
442 field is the mode it was being used as. Each constant is
443 recorded separately for each mode it is used with. */
449 struct table_elt
*next_same_hash
;
450 struct table_elt
*prev_same_hash
;
451 struct table_elt
*next_same_value
;
452 struct table_elt
*prev_same_value
;
453 struct table_elt
*first_same_value
;
454 struct table_elt
*related_value
;
457 enum machine_mode mode
;
463 /* We don't want a lot of buckets, because we rarely have very many
464 things stored in the hash table, and a lot of buckets slows
465 down a lot of loops that happen frequently. */
467 #define HASH_SIZE (1 << HASH_SHIFT)
468 #define HASH_MASK (HASH_SIZE - 1)
470 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
471 register (hard registers may require `do_not_record' to be set). */
474 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
475 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
476 : canon_hash (X, M)) & HASH_MASK)
478 /* Determine whether register number N is considered a fixed register for the
479 purpose of approximating register costs.
480 It is desirable to replace other regs with fixed regs, to reduce need for
482 A reg wins if it is either the frame pointer or designated as fixed. */
483 #define FIXED_REGNO_P(N) \
484 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
485 || fixed_regs[N] || global_regs[N])
487 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
488 hard registers and pointers into the frame are the cheapest with a cost
489 of 0. Next come pseudos with a cost of one and other hard registers with
490 a cost of 2. Aside from these special cases, call `rtx_cost'. */
492 #define CHEAP_REGNO(N) \
493 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
494 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
495 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
496 || ((N) < FIRST_PSEUDO_REGISTER \
497 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
499 #define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
500 #define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
502 /* Get the info associated with register N. */
504 #define GET_CSE_REG_INFO(N) \
505 (((N) == cached_regno && cached_cse_reg_info) \
506 ? cached_cse_reg_info : get_cse_reg_info ((N)))
508 /* Get the number of times this register has been updated in this
511 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
513 /* Get the point at which REG was recorded in the table. */
515 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
517 /* Get the quantity number for REG. */
519 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
521 /* Determine if the quantity number for register X represents a valid index
522 into the qty_table. */
524 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
526 static struct table_elt
*table
[HASH_SIZE
];
528 /* Chain of `struct table_elt's made so far for this function
529 but currently removed from the table. */
531 static struct table_elt
*free_element_chain
;
533 /* Number of `struct table_elt' structures made so far for this function. */
535 static int n_elements_made
;
537 /* Maximum value `n_elements_made' has had so far in this compilation
538 for functions previously processed. */
540 static int max_elements_made
;
542 /* Surviving equivalence class when two equivalence classes are merged
543 by recording the effects of a jump in the last insn. Zero if the
544 last insn was not a conditional jump. */
546 static struct table_elt
*last_jump_equiv_class
;
548 /* Set to the cost of a constant pool reference if one was found for a
549 symbolic constant. If this was found, it means we should try to
550 convert constants into constant pool entries if they don't fit in
553 static int constant_pool_entries_cost
;
555 /* Define maximum length of a branch path. */
557 #define PATHLENGTH 10
559 /* This data describes a block that will be processed by cse_basic_block. */
561 struct cse_basic_block_data
563 /* Lowest CUID value of insns in block. */
565 /* Highest CUID value of insns in block. */
567 /* Total number of SETs in block. */
569 /* Last insn in the block. */
571 /* Size of current branch path, if any. */
573 /* Current branch path, indicating which branches will be taken. */
576 /* The branch insn. */
578 /* Whether it should be taken or not. AROUND is the same as taken
579 except that it is used when the destination label is not preceded
581 enum taken
{TAKEN
, NOT_TAKEN
, AROUND
} status
;
585 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
586 virtual regs here because the simplify_*_operation routines are called
587 by integrate.c, which is called before virtual register instantiation.
589 ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
590 a header file so that their definitions can be shared with the
591 simplification routines in simplify-rtx.c. Until then, do not
592 change these macros without also changing the copy in simplify-rtx.c. */
594 #define FIXED_BASE_PLUS_P(X) \
595 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
596 || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
597 || (X) == virtual_stack_vars_rtx \
598 || (X) == virtual_incoming_args_rtx \
599 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
600 && (XEXP (X, 0) == frame_pointer_rtx \
601 || XEXP (X, 0) == hard_frame_pointer_rtx \
602 || ((X) == arg_pointer_rtx \
603 && fixed_regs[ARG_POINTER_REGNUM]) \
604 || XEXP (X, 0) == virtual_stack_vars_rtx \
605 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
606 || GET_CODE (X) == ADDRESSOF)
608 /* Similar, but also allows reference to the stack pointer.
610 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
611 arg_pointer_rtx by itself is nonzero, because on at least one machine,
612 the i960, the arg pointer is zero when it is unused. */
614 #define NONZERO_BASE_PLUS_P(X) \
615 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
616 || (X) == virtual_stack_vars_rtx \
617 || (X) == virtual_incoming_args_rtx \
618 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
619 && (XEXP (X, 0) == frame_pointer_rtx \
620 || XEXP (X, 0) == hard_frame_pointer_rtx \
621 || ((X) == arg_pointer_rtx \
622 && fixed_regs[ARG_POINTER_REGNUM]) \
623 || XEXP (X, 0) == virtual_stack_vars_rtx \
624 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
625 || (X) == stack_pointer_rtx \
626 || (X) == virtual_stack_dynamic_rtx \
627 || (X) == virtual_outgoing_args_rtx \
628 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
629 && (XEXP (X, 0) == stack_pointer_rtx \
630 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
631 || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
632 || GET_CODE (X) == ADDRESSOF)
634 static int notreg_cost
PARAMS ((rtx
, enum rtx_code
));
635 static int approx_reg_cost_1
PARAMS ((rtx
*, void *));
636 static int approx_reg_cost
PARAMS ((rtx
));
637 static int preferrable
PARAMS ((int, int, int, int));
638 static void new_basic_block
PARAMS ((void));
639 static void make_new_qty
PARAMS ((unsigned int, enum machine_mode
));
640 static void make_regs_eqv
PARAMS ((unsigned int, unsigned int));
641 static void delete_reg_equiv
PARAMS ((unsigned int));
642 static int mention_regs
PARAMS ((rtx
));
643 static int insert_regs
PARAMS ((rtx
, struct table_elt
*, int));
644 static void remove_from_table
PARAMS ((struct table_elt
*, unsigned));
645 static struct table_elt
*lookup
PARAMS ((rtx
, unsigned, enum machine_mode
)),
646 *lookup_for_remove
PARAMS ((rtx
, unsigned, enum machine_mode
));
647 static rtx lookup_as_function
PARAMS ((rtx
, enum rtx_code
));
648 static struct table_elt
*insert
PARAMS ((rtx
, struct table_elt
*, unsigned,
650 static void merge_equiv_classes
PARAMS ((struct table_elt
*,
651 struct table_elt
*));
652 static void invalidate
PARAMS ((rtx
, enum machine_mode
));
653 static int cse_rtx_varies_p
PARAMS ((rtx
, int));
654 static void remove_invalid_refs
PARAMS ((unsigned int));
655 static void remove_invalid_subreg_refs
PARAMS ((unsigned int, unsigned int,
657 static void rehash_using_reg
PARAMS ((rtx
));
658 static void invalidate_memory
PARAMS ((void));
659 static void invalidate_for_call
PARAMS ((void));
660 static rtx use_related_value
PARAMS ((rtx
, struct table_elt
*));
661 static unsigned canon_hash
PARAMS ((rtx
, enum machine_mode
));
662 static unsigned canon_hash_string
PARAMS ((const char *));
663 static unsigned safe_hash
PARAMS ((rtx
, enum machine_mode
));
664 static int exp_equiv_p
PARAMS ((rtx
, rtx
, int, int));
665 static rtx canon_reg
PARAMS ((rtx
, rtx
));
666 static void find_best_addr
PARAMS ((rtx
, rtx
*, enum machine_mode
));
667 static enum rtx_code find_comparison_args
PARAMS ((enum rtx_code
, rtx
*, rtx
*,
669 enum machine_mode
*));
670 static rtx fold_rtx
PARAMS ((rtx
, rtx
));
671 static rtx equiv_constant
PARAMS ((rtx
));
672 static void record_jump_equiv
PARAMS ((rtx
, int));
673 static void record_jump_cond
PARAMS ((enum rtx_code
, enum machine_mode
,
675 static void cse_insn
PARAMS ((rtx
, rtx
));
676 static int addr_affects_sp_p
PARAMS ((rtx
));
677 static void invalidate_from_clobbers
PARAMS ((rtx
));
678 static rtx cse_process_notes
PARAMS ((rtx
, rtx
));
679 static void cse_around_loop
PARAMS ((rtx
));
680 static void invalidate_skipped_set
PARAMS ((rtx
, rtx
, void *));
681 static void invalidate_skipped_block
PARAMS ((rtx
));
682 static void cse_check_loop_start
PARAMS ((rtx
, rtx
, void *));
683 static void cse_set_around_loop
PARAMS ((rtx
, rtx
, rtx
));
684 static rtx cse_basic_block
PARAMS ((rtx
, rtx
, struct branch_path
*, int));
685 static void count_reg_usage
PARAMS ((rtx
, int *, rtx
, int));
686 static int check_for_label_ref
PARAMS ((rtx
*, void *));
687 extern void dump_class
PARAMS ((struct table_elt
*));
688 static struct cse_reg_info
* get_cse_reg_info
PARAMS ((unsigned int));
689 static int check_dependence
PARAMS ((rtx
*, void *));
691 static void flush_hash_table
PARAMS ((void));
692 static bool insn_live_p
PARAMS ((rtx
, int *));
693 static bool set_live_p
PARAMS ((rtx
, rtx
, int *));
694 static bool dead_libcall_p
PARAMS ((rtx
, int *));
696 /* Dump the expressions in the equivalence class indicated by CLASSP.
697 This function is used only for debugging. */
700 struct table_elt
*classp
;
702 struct table_elt
*elt
;
704 fprintf (stderr
, "Equivalence chain for ");
705 print_rtl (stderr
, classp
->exp
);
706 fprintf (stderr
, ": \n");
708 for (elt
= classp
->first_same_value
; elt
; elt
= elt
->next_same_value
)
710 print_rtl (stderr
, elt
->exp
);
711 fprintf (stderr
, "\n");
715 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
718 approx_reg_cost_1 (xp
, data
)
725 if (x
&& GET_CODE (x
) == REG
)
727 unsigned int regno
= REGNO (x
);
729 if (! CHEAP_REGNO (regno
))
731 if (regno
< FIRST_PSEUDO_REGISTER
)
733 if (SMALL_REGISTER_CLASSES
)
745 /* Return an estimate of the cost of the registers used in an rtx.
746 This is mostly the number of different REG expressions in the rtx;
747 however for some exceptions like fixed registers we use a cost of
748 0. If any other hard register reference occurs, return MAX_COST. */
756 if (for_each_rtx (&x
, approx_reg_cost_1
, (void *) &cost
))
762 /* Return a negative value if an rtx A, whose costs are given by COST_A
763 and REGCOST_A, is more desirable than an rtx B.
764 Return a positive value if A is less desirable, or 0 if the two are
767 preferrable (cost_a
, regcost_a
, cost_b
, regcost_b
)
768 int cost_a
, regcost_a
, cost_b
, regcost_b
;
770 /* First, get rid of a cases involving expressions that are entirely
772 if (cost_a
!= cost_b
)
774 if (cost_a
== MAX_COST
)
776 if (cost_b
== MAX_COST
)
780 /* Avoid extending lifetimes of hardregs. */
781 if (regcost_a
!= regcost_b
)
783 if (regcost_a
== MAX_COST
)
785 if (regcost_b
== MAX_COST
)
789 /* Normal operation costs take precedence. */
790 if (cost_a
!= cost_b
)
791 return cost_a
- cost_b
;
792 /* Only if these are identical consider effects on register pressure. */
793 if (regcost_a
!= regcost_b
)
794 return regcost_a
- regcost_b
;
798 /* Internal function, to compute cost when X is not a register; called
799 from COST macro to keep it simple. */
802 notreg_cost (x
, outer
)
806 return ((GET_CODE (x
) == SUBREG
807 && GET_CODE (SUBREG_REG (x
)) == REG
808 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
809 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_INT
810 && (GET_MODE_SIZE (GET_MODE (x
))
811 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
812 && subreg_lowpart_p (x
)
813 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x
)),
814 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))))
816 : rtx_cost (x
, outer
) * 2);
819 /* Return an estimate of the cost of computing rtx X.
820 One use is in cse, to decide which expression to keep in the hash table.
821 Another is in rtl generation, to pick the cheapest way to multiply.
822 Other uses like the latter are expected in the future. */
825 rtx_cost (x
, outer_code
)
827 enum rtx_code outer_code ATTRIBUTE_UNUSED
;
837 /* Compute the default costs of certain things.
838 Note that RTX_COSTS can override the defaults. */
844 total
= COSTS_N_INSNS (5);
850 total
= COSTS_N_INSNS (7);
853 /* Used in loop.c and combine.c as a marker. */
857 total
= COSTS_N_INSNS (1);
866 /* If we can't tie these modes, make this expensive. The larger
867 the mode, the more expensive it is. */
868 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
869 return COSTS_N_INSNS (2
870 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
874 RTX_COSTS (x
, code
, outer_code
);
877 CONST_COSTS (x
, code
, outer_code
);
881 #ifdef DEFAULT_RTX_COSTS
882 DEFAULT_RTX_COSTS (x
, code
, outer_code
);
887 /* Sum the costs of the sub-rtx's, plus cost of this operation,
888 which is already in total. */
890 fmt
= GET_RTX_FORMAT (code
);
891 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
893 total
+= rtx_cost (XEXP (x
, i
), code
);
894 else if (fmt
[i
] == 'E')
895 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
896 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
);
901 /* Return cost of address expression X.
902 Expect that X is properly formed address reference. */
905 address_cost (x
, mode
)
907 enum machine_mode mode
;
909 /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes. But,
910 during CSE, such nodes are present. Using an ADDRESSOF node which
911 refers to the address of a REG is a good thing because we can then
912 turn (MEM (ADDRESSSOF (REG))) into just plain REG. */
914 if (GET_CODE (x
) == ADDRESSOF
&& REG_P (XEXP ((x
), 0)))
917 /* We may be asked for cost of various unusual addresses, such as operands
918 of push instruction. It is not worthwhile to complicate writing
919 of ADDRESS_COST macro by such cases. */
921 if (!memory_address_p (mode
, x
))
924 return ADDRESS_COST (x
);
926 return rtx_cost (x
, MEM
);
931 static struct cse_reg_info
*
932 get_cse_reg_info (regno
)
935 struct cse_reg_info
**hash_head
= ®_hash
[REGHASH_FN (regno
)];
936 struct cse_reg_info
*p
;
938 for (p
= *hash_head
; p
!= NULL
; p
= p
->hash_next
)
939 if (p
->regno
== regno
)
944 /* Get a new cse_reg_info structure. */
945 if (cse_reg_info_free_list
)
947 p
= cse_reg_info_free_list
;
948 cse_reg_info_free_list
= p
->next
;
951 p
= (struct cse_reg_info
*) xmalloc (sizeof (struct cse_reg_info
));
953 /* Insert into hash table. */
954 p
->hash_next
= *hash_head
;
959 p
->reg_in_table
= -1;
962 p
->next
= cse_reg_info_used_list
;
963 cse_reg_info_used_list
= p
;
964 if (!cse_reg_info_used_list_end
)
965 cse_reg_info_used_list_end
= p
;
968 /* Cache this lookup; we tend to be looking up information about the
969 same register several times in a row. */
970 cached_regno
= regno
;
971 cached_cse_reg_info
= p
;
976 /* Clear the hash table and initialize each register with its own quantity,
977 for a new basic block. */
986 /* Clear out hash table state for this pass. */
988 memset ((char *) reg_hash
, 0, sizeof reg_hash
);
990 if (cse_reg_info_used_list
)
992 cse_reg_info_used_list_end
->next
= cse_reg_info_free_list
;
993 cse_reg_info_free_list
= cse_reg_info_used_list
;
994 cse_reg_info_used_list
= cse_reg_info_used_list_end
= 0;
996 cached_cse_reg_info
= 0;
998 CLEAR_HARD_REG_SET (hard_regs_in_table
);
1000 /* The per-quantity values used to be initialized here, but it is
1001 much faster to initialize each as it is made in `make_new_qty'. */
1003 for (i
= 0; i
< HASH_SIZE
; i
++)
1005 struct table_elt
*first
;
1010 struct table_elt
*last
= first
;
1014 while (last
->next_same_hash
!= NULL
)
1015 last
= last
->next_same_hash
;
1017 /* Now relink this hash entire chain into
1018 the free element list. */
1020 last
->next_same_hash
= free_element_chain
;
1021 free_element_chain
= first
;
1032 /* Say that register REG contains a quantity in mode MODE not in any
1033 register before and initialize that quantity. */
1036 make_new_qty (reg
, mode
)
1038 enum machine_mode mode
;
1041 struct qty_table_elem
*ent
;
1042 struct reg_eqv_elem
*eqv
;
1044 if (next_qty
>= max_qty
)
1047 q
= REG_QTY (reg
) = next_qty
++;
1048 ent
= &qty_table
[q
];
1049 ent
->first_reg
= reg
;
1050 ent
->last_reg
= reg
;
1052 ent
->const_rtx
= ent
->const_insn
= NULL_RTX
;
1053 ent
->comparison_code
= UNKNOWN
;
1055 eqv
= ®_eqv_table
[reg
];
1056 eqv
->next
= eqv
->prev
= -1;
1059 /* Make reg NEW equivalent to reg OLD.
1060 OLD is not changing; NEW is. */
1063 make_regs_eqv (new, old
)
1064 unsigned int new, old
;
1066 unsigned int lastr
, firstr
;
1067 int q
= REG_QTY (old
);
1068 struct qty_table_elem
*ent
;
1070 ent
= &qty_table
[q
];
1072 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1073 if (! REGNO_QTY_VALID_P (old
))
1077 firstr
= ent
->first_reg
;
1078 lastr
= ent
->last_reg
;
1080 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1081 hard regs. Among pseudos, if NEW will live longer than any other reg
1082 of the same qty, and that is beyond the current basic block,
1083 make it the new canonical replacement for this qty. */
1084 if (! (firstr
< FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (firstr
))
1085 /* Certain fixed registers might be of the class NO_REGS. This means
1086 that not only can they not be allocated by the compiler, but
1087 they cannot be used in substitutions or canonicalizations
1089 && (new >= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (new) != NO_REGS
)
1090 && ((new < FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (new))
1091 || (new >= FIRST_PSEUDO_REGISTER
1092 && (firstr
< FIRST_PSEUDO_REGISTER
1093 || ((uid_cuid
[REGNO_LAST_UID (new)] > cse_basic_block_end
1094 || (uid_cuid
[REGNO_FIRST_UID (new)]
1095 < cse_basic_block_start
))
1096 && (uid_cuid
[REGNO_LAST_UID (new)]
1097 > uid_cuid
[REGNO_LAST_UID (firstr
)]))))))
1099 reg_eqv_table
[firstr
].prev
= new;
1100 reg_eqv_table
[new].next
= firstr
;
1101 reg_eqv_table
[new].prev
= -1;
1102 ent
->first_reg
= new;
1106 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1107 Otherwise, insert before any non-fixed hard regs that are at the
1108 end. Registers of class NO_REGS cannot be used as an
1109 equivalent for anything. */
1110 while (lastr
< FIRST_PSEUDO_REGISTER
&& reg_eqv_table
[lastr
].prev
>= 0
1111 && (REGNO_REG_CLASS (lastr
) == NO_REGS
|| ! FIXED_REGNO_P (lastr
))
1112 && new >= FIRST_PSEUDO_REGISTER
)
1113 lastr
= reg_eqv_table
[lastr
].prev
;
1114 reg_eqv_table
[new].next
= reg_eqv_table
[lastr
].next
;
1115 if (reg_eqv_table
[lastr
].next
>= 0)
1116 reg_eqv_table
[reg_eqv_table
[lastr
].next
].prev
= new;
1118 qty_table
[q
].last_reg
= new;
1119 reg_eqv_table
[lastr
].next
= new;
1120 reg_eqv_table
[new].prev
= lastr
;
1124 /* Remove REG from its equivalence class. */
1127 delete_reg_equiv (reg
)
1130 struct qty_table_elem
*ent
;
1131 int q
= REG_QTY (reg
);
1134 /* If invalid, do nothing. */
1138 ent
= &qty_table
[q
];
1140 p
= reg_eqv_table
[reg
].prev
;
1141 n
= reg_eqv_table
[reg
].next
;
1144 reg_eqv_table
[n
].prev
= p
;
1148 reg_eqv_table
[p
].next
= n
;
1152 REG_QTY (reg
) = reg
;
1155 /* Remove any invalid expressions from the hash table
1156 that refer to any of the registers contained in expression X.
1158 Make sure that newly inserted references to those registers
1159 as subexpressions will be considered valid.
1161 mention_regs is not called when a register itself
1162 is being stored in the table.
1164 Return 1 if we have done something that may have changed the hash code
1179 code
= GET_CODE (x
);
1182 unsigned int regno
= REGNO (x
);
1183 unsigned int endregno
1184 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
1185 : HARD_REGNO_NREGS (regno
, GET_MODE (x
)));
1188 for (i
= regno
; i
< endregno
; i
++)
1190 if (REG_IN_TABLE (i
) >= 0 && REG_IN_TABLE (i
) != REG_TICK (i
))
1191 remove_invalid_refs (i
);
1193 REG_IN_TABLE (i
) = REG_TICK (i
);
1199 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1200 pseudo if they don't use overlapping words. We handle only pseudos
1201 here for simplicity. */
1202 if (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
1203 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
)
1205 unsigned int i
= REGNO (SUBREG_REG (x
));
1207 if (REG_IN_TABLE (i
) >= 0 && REG_IN_TABLE (i
) != REG_TICK (i
))
1209 /* If reg_tick has been incremented more than once since
1210 reg_in_table was last set, that means that the entire
1211 register has been set before, so discard anything memorized
1212 for the entire register, including all SUBREG expressions. */
1213 if (REG_IN_TABLE (i
) != REG_TICK (i
) - 1)
1214 remove_invalid_refs (i
);
1216 remove_invalid_subreg_refs (i
, SUBREG_BYTE (x
), GET_MODE (x
));
1219 REG_IN_TABLE (i
) = REG_TICK (i
);
1223 /* If X is a comparison or a COMPARE and either operand is a register
1224 that does not have a quantity, give it one. This is so that a later
1225 call to record_jump_equiv won't cause X to be assigned a different
1226 hash code and not found in the table after that call.
1228 It is not necessary to do this here, since rehash_using_reg can
1229 fix up the table later, but doing this here eliminates the need to
1230 call that expensive function in the most common case where the only
1231 use of the register is in the comparison. */
1233 if (code
== COMPARE
|| GET_RTX_CLASS (code
) == '<')
1235 if (GET_CODE (XEXP (x
, 0)) == REG
1236 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0))))
1237 if (insert_regs (XEXP (x
, 0), NULL
, 0))
1239 rehash_using_reg (XEXP (x
, 0));
1243 if (GET_CODE (XEXP (x
, 1)) == REG
1244 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 1))))
1245 if (insert_regs (XEXP (x
, 1), NULL
, 0))
1247 rehash_using_reg (XEXP (x
, 1));
1252 fmt
= GET_RTX_FORMAT (code
);
1253 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1255 changed
|= mention_regs (XEXP (x
, i
));
1256 else if (fmt
[i
] == 'E')
1257 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1258 changed
|= mention_regs (XVECEXP (x
, i
, j
));
1263 /* Update the register quantities for inserting X into the hash table
1264 with a value equivalent to CLASSP.
1265 (If the class does not contain a REG, it is irrelevant.)
1266 If MODIFIED is nonzero, X is a destination; it is being modified.
1267 Note that delete_reg_equiv should be called on a register
1268 before insert_regs is done on that register with MODIFIED != 0.
1270 Nonzero value means that elements of reg_qty have changed
1271 so X's hash code may be different. */
1274 insert_regs (x
, classp
, modified
)
1276 struct table_elt
*classp
;
1279 if (GET_CODE (x
) == REG
)
1281 unsigned int regno
= REGNO (x
);
1284 /* If REGNO is in the equivalence table already but is of the
1285 wrong mode for that equivalence, don't do anything here. */
1287 qty_valid
= REGNO_QTY_VALID_P (regno
);
1290 struct qty_table_elem
*ent
= &qty_table
[REG_QTY (regno
)];
1292 if (ent
->mode
!= GET_MODE (x
))
1296 if (modified
|| ! qty_valid
)
1299 for (classp
= classp
->first_same_value
;
1301 classp
= classp
->next_same_value
)
1302 if (GET_CODE (classp
->exp
) == REG
1303 && GET_MODE (classp
->exp
) == GET_MODE (x
))
1305 make_regs_eqv (regno
, REGNO (classp
->exp
));
1309 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1310 than REG_IN_TABLE to find out if there was only a single preceding
1311 invalidation - for the SUBREG - or another one, which would be
1312 for the full register. However, if we find here that REG_TICK
1313 indicates that the register is invalid, it means that it has
1314 been invalidated in a separate operation. The SUBREG might be used
1315 now (then this is a recursive call), or we might use the full REG
1316 now and a SUBREG of it later. So bump up REG_TICK so that
1317 mention_regs will do the right thing. */
1319 && REG_IN_TABLE (regno
) >= 0
1320 && REG_TICK (regno
) == REG_IN_TABLE (regno
) + 1)
1322 make_new_qty (regno
, GET_MODE (x
));
1329 /* If X is a SUBREG, we will likely be inserting the inner register in the
1330 table. If that register doesn't have an assigned quantity number at
1331 this point but does later, the insertion that we will be doing now will
1332 not be accessible because its hash code will have changed. So assign
1333 a quantity number now. */
1335 else if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
1336 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x
))))
1338 insert_regs (SUBREG_REG (x
), NULL
, 0);
1343 return mention_regs (x
);
1346 /* Look in or update the hash table. */
1348 /* Remove table element ELT from use in the table.
1349 HASH is its hash code, made using the HASH macro.
1350 It's an argument because often that is known in advance
1351 and we save much time not recomputing it. */
1354 remove_from_table (elt
, hash
)
1355 struct table_elt
*elt
;
1361 /* Mark this element as removed. See cse_insn. */
1362 elt
->first_same_value
= 0;
1364 /* Remove the table element from its equivalence class. */
1367 struct table_elt
*prev
= elt
->prev_same_value
;
1368 struct table_elt
*next
= elt
->next_same_value
;
1371 next
->prev_same_value
= prev
;
1374 prev
->next_same_value
= next
;
1377 struct table_elt
*newfirst
= next
;
1380 next
->first_same_value
= newfirst
;
1381 next
= next
->next_same_value
;
1386 /* Remove the table element from its hash bucket. */
1389 struct table_elt
*prev
= elt
->prev_same_hash
;
1390 struct table_elt
*next
= elt
->next_same_hash
;
1393 next
->prev_same_hash
= prev
;
1396 prev
->next_same_hash
= next
;
1397 else if (table
[hash
] == elt
)
1401 /* This entry is not in the proper hash bucket. This can happen
1402 when two classes were merged by `merge_equiv_classes'. Search
1403 for the hash bucket that it heads. This happens only very
1404 rarely, so the cost is acceptable. */
1405 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
1406 if (table
[hash
] == elt
)
1411 /* Remove the table element from its related-value circular chain. */
1413 if (elt
->related_value
!= 0 && elt
->related_value
!= elt
)
1415 struct table_elt
*p
= elt
->related_value
;
1417 while (p
->related_value
!= elt
)
1418 p
= p
->related_value
;
1419 p
->related_value
= elt
->related_value
;
1420 if (p
->related_value
== p
)
1421 p
->related_value
= 0;
1424 /* Now add it to the free element chain. */
1425 elt
->next_same_hash
= free_element_chain
;
1426 free_element_chain
= elt
;
1429 /* Look up X in the hash table and return its table element,
1430 or 0 if X is not in the table.
1432 MODE is the machine-mode of X, or if X is an integer constant
1433 with VOIDmode then MODE is the mode with which X will be used.
1435 Here we are satisfied to find an expression whose tree structure
1438 static struct table_elt
*
1439 lookup (x
, hash
, mode
)
1442 enum machine_mode mode
;
1444 struct table_elt
*p
;
1446 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1447 if (mode
== p
->mode
&& ((x
== p
->exp
&& GET_CODE (x
) == REG
)
1448 || exp_equiv_p (x
, p
->exp
, GET_CODE (x
) != REG
, 0)))
1454 /* Like `lookup' but don't care whether the table element uses invalid regs.
1455 Also ignore discrepancies in the machine mode of a register. */
1457 static struct table_elt
*
1458 lookup_for_remove (x
, hash
, mode
)
1461 enum machine_mode mode
;
1463 struct table_elt
*p
;
1465 if (GET_CODE (x
) == REG
)
1467 unsigned int regno
= REGNO (x
);
1469 /* Don't check the machine mode when comparing registers;
1470 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1471 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1472 if (GET_CODE (p
->exp
) == REG
1473 && REGNO (p
->exp
) == regno
)
1478 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1479 if (mode
== p
->mode
&& (x
== p
->exp
|| exp_equiv_p (x
, p
->exp
, 0, 0)))
1486 /* Look for an expression equivalent to X and with code CODE.
1487 If one is found, return that expression. */
1490 lookup_as_function (x
, code
)
1495 = lookup (x
, safe_hash (x
, VOIDmode
) & HASH_MASK
, GET_MODE (x
));
1497 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1498 long as we are narrowing. So if we looked in vain for a mode narrower
1499 than word_mode before, look for word_mode now. */
1500 if (p
== 0 && code
== CONST_INT
1501 && GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (word_mode
))
1504 PUT_MODE (x
, word_mode
);
1505 p
= lookup (x
, safe_hash (x
, VOIDmode
) & HASH_MASK
, word_mode
);
1511 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
1512 if (GET_CODE (p
->exp
) == code
1513 /* Make sure this is a valid entry in the table. */
1514 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
1520 /* Insert X in the hash table, assuming HASH is its hash code
1521 and CLASSP is an element of the class it should go in
1522 (or 0 if a new class should be made).
1523 It is inserted at the proper position to keep the class in
1524 the order cheapest first.
1526 MODE is the machine-mode of X, or if X is an integer constant
1527 with VOIDmode then MODE is the mode with which X will be used.
1529 For elements of equal cheapness, the most recent one
1530 goes in front, except that the first element in the list
1531 remains first unless a cheaper element is added. The order of
1532 pseudo-registers does not matter, as canon_reg will be called to
1533 find the cheapest when a register is retrieved from the table.
1535 The in_memory field in the hash table element is set to 0.
1536 The caller must set it nonzero if appropriate.
1538 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1539 and if insert_regs returns a nonzero value
1540 you must then recompute its hash code before calling here.
1542 If necessary, update table showing constant values of quantities. */
1544 #define CHEAPER(X, Y) \
1545 (preferrable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1547 static struct table_elt
*
1548 insert (x
, classp
, hash
, mode
)
1550 struct table_elt
*classp
;
1552 enum machine_mode mode
;
1554 struct table_elt
*elt
;
1556 /* If X is a register and we haven't made a quantity for it,
1557 something is wrong. */
1558 if (GET_CODE (x
) == REG
&& ! REGNO_QTY_VALID_P (REGNO (x
)))
1561 /* If X is a hard register, show it is being put in the table. */
1562 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1564 unsigned int regno
= REGNO (x
);
1565 unsigned int endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1568 for (i
= regno
; i
< endregno
; i
++)
1569 SET_HARD_REG_BIT (hard_regs_in_table
, i
);
1572 /* Put an element for X into the right hash bucket. */
1574 elt
= free_element_chain
;
1576 free_element_chain
= elt
->next_same_hash
;
1580 elt
= (struct table_elt
*) xmalloc (sizeof (struct table_elt
));
1584 elt
->canon_exp
= NULL_RTX
;
1585 elt
->cost
= COST (x
);
1586 elt
->regcost
= approx_reg_cost (x
);
1587 elt
->next_same_value
= 0;
1588 elt
->prev_same_value
= 0;
1589 elt
->next_same_hash
= table
[hash
];
1590 elt
->prev_same_hash
= 0;
1591 elt
->related_value
= 0;
1594 elt
->is_const
= (CONSTANT_P (x
)
1595 /* GNU C++ takes advantage of this for `this'
1596 (and other const values). */
1597 || (GET_CODE (x
) == REG
1598 && RTX_UNCHANGING_P (x
)
1599 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1600 || FIXED_BASE_PLUS_P (x
));
1603 table
[hash
]->prev_same_hash
= elt
;
1606 /* Put it into the proper value-class. */
1609 classp
= classp
->first_same_value
;
1610 if (CHEAPER (elt
, classp
))
1611 /* Insert at the head of the class */
1613 struct table_elt
*p
;
1614 elt
->next_same_value
= classp
;
1615 classp
->prev_same_value
= elt
;
1616 elt
->first_same_value
= elt
;
1618 for (p
= classp
; p
; p
= p
->next_same_value
)
1619 p
->first_same_value
= elt
;
1623 /* Insert not at head of the class. */
1624 /* Put it after the last element cheaper than X. */
1625 struct table_elt
*p
, *next
;
1627 for (p
= classp
; (next
= p
->next_same_value
) && CHEAPER (next
, elt
);
1630 /* Put it after P and before NEXT. */
1631 elt
->next_same_value
= next
;
1633 next
->prev_same_value
= elt
;
1635 elt
->prev_same_value
= p
;
1636 p
->next_same_value
= elt
;
1637 elt
->first_same_value
= classp
;
1641 elt
->first_same_value
= elt
;
1643 /* If this is a constant being set equivalent to a register or a register
1644 being set equivalent to a constant, note the constant equivalence.
1646 If this is a constant, it cannot be equivalent to a different constant,
1647 and a constant is the only thing that can be cheaper than a register. So
1648 we know the register is the head of the class (before the constant was
1651 If this is a register that is not already known equivalent to a
1652 constant, we must check the entire class.
1654 If this is a register that is already known equivalent to an insn,
1655 update the qtys `const_insn' to show that `this_insn' is the latest
1656 insn making that quantity equivalent to the constant. */
1658 if (elt
->is_const
&& classp
&& GET_CODE (classp
->exp
) == REG
1659 && GET_CODE (x
) != REG
)
1661 int exp_q
= REG_QTY (REGNO (classp
->exp
));
1662 struct qty_table_elem
*exp_ent
= &qty_table
[exp_q
];
1664 exp_ent
->const_rtx
= gen_lowpart_if_possible (exp_ent
->mode
, x
);
1665 exp_ent
->const_insn
= this_insn
;
1668 else if (GET_CODE (x
) == REG
1670 && ! qty_table
[REG_QTY (REGNO (x
))].const_rtx
1673 struct table_elt
*p
;
1675 for (p
= classp
; p
!= 0; p
= p
->next_same_value
)
1677 if (p
->is_const
&& GET_CODE (p
->exp
) != REG
)
1679 int x_q
= REG_QTY (REGNO (x
));
1680 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
1683 = gen_lowpart_if_possible (GET_MODE (x
), p
->exp
);
1684 x_ent
->const_insn
= this_insn
;
1690 else if (GET_CODE (x
) == REG
1691 && qty_table
[REG_QTY (REGNO (x
))].const_rtx
1692 && GET_MODE (x
) == qty_table
[REG_QTY (REGNO (x
))].mode
)
1693 qty_table
[REG_QTY (REGNO (x
))].const_insn
= this_insn
;
1695 /* If this is a constant with symbolic value,
1696 and it has a term with an explicit integer value,
1697 link it up with related expressions. */
1698 if (GET_CODE (x
) == CONST
)
1700 rtx subexp
= get_related_value (x
);
1702 struct table_elt
*subelt
, *subelt_prev
;
1706 /* Get the integer-free subexpression in the hash table. */
1707 subhash
= safe_hash (subexp
, mode
) & HASH_MASK
;
1708 subelt
= lookup (subexp
, subhash
, mode
);
1710 subelt
= insert (subexp
, NULL
, subhash
, mode
);
1711 /* Initialize SUBELT's circular chain if it has none. */
1712 if (subelt
->related_value
== 0)
1713 subelt
->related_value
= subelt
;
1714 /* Find the element in the circular chain that precedes SUBELT. */
1715 subelt_prev
= subelt
;
1716 while (subelt_prev
->related_value
!= subelt
)
1717 subelt_prev
= subelt_prev
->related_value
;
1718 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1719 This way the element that follows SUBELT is the oldest one. */
1720 elt
->related_value
= subelt_prev
->related_value
;
1721 subelt_prev
->related_value
= elt
;
1728 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1729 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1730 the two classes equivalent.
1732 CLASS1 will be the surviving class; CLASS2 should not be used after this
1735 Any invalid entries in CLASS2 will not be copied. */
1738 merge_equiv_classes (class1
, class2
)
1739 struct table_elt
*class1
, *class2
;
1741 struct table_elt
*elt
, *next
, *new;
1743 /* Ensure we start with the head of the classes. */
1744 class1
= class1
->first_same_value
;
1745 class2
= class2
->first_same_value
;
1747 /* If they were already equal, forget it. */
1748 if (class1
== class2
)
1751 for (elt
= class2
; elt
; elt
= next
)
1755 enum machine_mode mode
= elt
->mode
;
1757 next
= elt
->next_same_value
;
1759 /* Remove old entry, make a new one in CLASS1's class.
1760 Don't do this for invalid entries as we cannot find their
1761 hash code (it also isn't necessary). */
1762 if (GET_CODE (exp
) == REG
|| exp_equiv_p (exp
, exp
, 1, 0))
1764 hash_arg_in_memory
= 0;
1765 hash
= HASH (exp
, mode
);
1767 if (GET_CODE (exp
) == REG
)
1768 delete_reg_equiv (REGNO (exp
));
1770 remove_from_table (elt
, hash
);
1772 if (insert_regs (exp
, class1
, 0))
1774 rehash_using_reg (exp
);
1775 hash
= HASH (exp
, mode
);
1777 new = insert (exp
, class1
, hash
, mode
);
1778 new->in_memory
= hash_arg_in_memory
;
1783 /* Flush the entire hash table. */
1789 struct table_elt
*p
;
1791 for (i
= 0; i
< HASH_SIZE
; i
++)
1792 for (p
= table
[i
]; p
; p
= table
[i
])
1794 /* Note that invalidate can remove elements
1795 after P in the current hash chain. */
1796 if (GET_CODE (p
->exp
) == REG
)
1797 invalidate (p
->exp
, p
->mode
);
1799 remove_from_table (p
, i
);
1803 /* Function called for each rtx to check whether true dependence exist. */
1804 struct check_dependence_data
1806 enum machine_mode mode
;
1811 check_dependence (x
, data
)
1815 struct check_dependence_data
*d
= (struct check_dependence_data
*) data
;
1816 if (*x
&& GET_CODE (*x
) == MEM
)
1817 return true_dependence (d
->exp
, d
->mode
, *x
, cse_rtx_varies_p
);
1822 /* Remove from the hash table, or mark as invalid, all expressions whose
1823 values could be altered by storing in X. X is a register, a subreg, or
1824 a memory reference with nonvarying address (because, when a memory
1825 reference with a varying address is stored in, all memory references are
1826 removed by invalidate_memory so specific invalidation is superfluous).
1827 FULL_MODE, if not VOIDmode, indicates that this much should be
1828 invalidated instead of just the amount indicated by the mode of X. This
1829 is only used for bitfield stores into memory.
1831 A nonvarying address may be just a register or just a symbol reference,
1832 or it may be either of those plus a numeric offset. */
1835 invalidate (x
, full_mode
)
1837 enum machine_mode full_mode
;
1840 struct table_elt
*p
;
1842 switch (GET_CODE (x
))
1846 /* If X is a register, dependencies on its contents are recorded
1847 through the qty number mechanism. Just change the qty number of
1848 the register, mark it as invalid for expressions that refer to it,
1849 and remove it itself. */
1850 unsigned int regno
= REGNO (x
);
1851 unsigned int hash
= HASH (x
, GET_MODE (x
));
1853 /* Remove REGNO from any quantity list it might be on and indicate
1854 that its value might have changed. If it is a pseudo, remove its
1855 entry from the hash table.
1857 For a hard register, we do the first two actions above for any
1858 additional hard registers corresponding to X. Then, if any of these
1859 registers are in the table, we must remove any REG entries that
1860 overlap these registers. */
1862 delete_reg_equiv (regno
);
1865 if (regno
>= FIRST_PSEUDO_REGISTER
)
1867 /* Because a register can be referenced in more than one mode,
1868 we might have to remove more than one table entry. */
1869 struct table_elt
*elt
;
1871 while ((elt
= lookup_for_remove (x
, hash
, GET_MODE (x
))))
1872 remove_from_table (elt
, hash
);
1876 HOST_WIDE_INT in_table
1877 = TEST_HARD_REG_BIT (hard_regs_in_table
, regno
);
1878 unsigned int endregno
1879 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1880 unsigned int tregno
, tendregno
, rn
;
1881 struct table_elt
*p
, *next
;
1883 CLEAR_HARD_REG_BIT (hard_regs_in_table
, regno
);
1885 for (rn
= regno
+ 1; rn
< endregno
; rn
++)
1887 in_table
|= TEST_HARD_REG_BIT (hard_regs_in_table
, rn
);
1888 CLEAR_HARD_REG_BIT (hard_regs_in_table
, rn
);
1889 delete_reg_equiv (rn
);
1894 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
1895 for (p
= table
[hash
]; p
; p
= next
)
1897 next
= p
->next_same_hash
;
1899 if (GET_CODE (p
->exp
) != REG
1900 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1903 tregno
= REGNO (p
->exp
);
1905 = tregno
+ HARD_REGNO_NREGS (tregno
, GET_MODE (p
->exp
));
1906 if (tendregno
> regno
&& tregno
< endregno
)
1907 remove_from_table (p
, hash
);
1914 invalidate (SUBREG_REG (x
), VOIDmode
);
1918 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; --i
)
1919 invalidate (XVECEXP (x
, 0, i
), VOIDmode
);
1923 /* This is part of a disjoint return value; extract the location in
1924 question ignoring the offset. */
1925 invalidate (XEXP (x
, 0), VOIDmode
);
1929 /* Calculate the canonical version of X here so that
1930 true_dependence doesn't generate new RTL for X on each call. */
1933 /* Remove all hash table elements that refer to overlapping pieces of
1935 if (full_mode
== VOIDmode
)
1936 full_mode
= GET_MODE (x
);
1938 for (i
= 0; i
< HASH_SIZE
; i
++)
1940 struct table_elt
*next
;
1942 for (p
= table
[i
]; p
; p
= next
)
1944 next
= p
->next_same_hash
;
1947 struct check_dependence_data d
;
1949 /* Just canonicalize the expression once;
1950 otherwise each time we call invalidate
1951 true_dependence will canonicalize the
1952 expression again. */
1954 p
->canon_exp
= canon_rtx (p
->exp
);
1957 if (for_each_rtx (&p
->canon_exp
, check_dependence
, &d
))
1958 remove_from_table (p
, i
);
1969 /* Remove all expressions that refer to register REGNO,
1970 since they are already invalid, and we are about to
1971 mark that register valid again and don't want the old
1972 expressions to reappear as valid. */
1975 remove_invalid_refs (regno
)
1979 struct table_elt
*p
, *next
;
1981 for (i
= 0; i
< HASH_SIZE
; i
++)
1982 for (p
= table
[i
]; p
; p
= next
)
1984 next
= p
->next_same_hash
;
1985 if (GET_CODE (p
->exp
) != REG
1986 && refers_to_regno_p (regno
, regno
+ 1, p
->exp
, (rtx
*) 0))
1987 remove_from_table (p
, i
);
1991 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1994 remove_invalid_subreg_refs (regno
, offset
, mode
)
1996 unsigned int offset
;
1997 enum machine_mode mode
;
2000 struct table_elt
*p
, *next
;
2001 unsigned int end
= offset
+ (GET_MODE_SIZE (mode
) - 1);
2003 for (i
= 0; i
< HASH_SIZE
; i
++)
2004 for (p
= table
[i
]; p
; p
= next
)
2007 next
= p
->next_same_hash
;
2009 if (GET_CODE (exp
) != REG
2010 && (GET_CODE (exp
) != SUBREG
2011 || GET_CODE (SUBREG_REG (exp
)) != REG
2012 || REGNO (SUBREG_REG (exp
)) != regno
2013 || (((SUBREG_BYTE (exp
)
2014 + (GET_MODE_SIZE (GET_MODE (exp
)) - 1)) >= offset
)
2015 && SUBREG_BYTE (exp
) <= end
))
2016 && refers_to_regno_p (regno
, regno
+ 1, p
->exp
, (rtx
*) 0))
2017 remove_from_table (p
, i
);
2021 /* Recompute the hash codes of any valid entries in the hash table that
2022 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2024 This is called when we make a jump equivalence. */
2027 rehash_using_reg (x
)
2031 struct table_elt
*p
, *next
;
2034 if (GET_CODE (x
) == SUBREG
)
2037 /* If X is not a register or if the register is known not to be in any
2038 valid entries in the table, we have no work to do. */
2040 if (GET_CODE (x
) != REG
2041 || REG_IN_TABLE (REGNO (x
)) < 0
2042 || REG_IN_TABLE (REGNO (x
)) != REG_TICK (REGNO (x
)))
2045 /* Scan all hash chains looking for valid entries that mention X.
2046 If we find one and it is in the wrong hash chain, move it. We can skip
2047 objects that are registers, since they are handled specially. */
2049 for (i
= 0; i
< HASH_SIZE
; i
++)
2050 for (p
= table
[i
]; p
; p
= next
)
2052 next
= p
->next_same_hash
;
2053 if (GET_CODE (p
->exp
) != REG
&& reg_mentioned_p (x
, p
->exp
)
2054 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0)
2055 && i
!= (hash
= safe_hash (p
->exp
, p
->mode
) & HASH_MASK
))
2057 if (p
->next_same_hash
)
2058 p
->next_same_hash
->prev_same_hash
= p
->prev_same_hash
;
2060 if (p
->prev_same_hash
)
2061 p
->prev_same_hash
->next_same_hash
= p
->next_same_hash
;
2063 table
[i
] = p
->next_same_hash
;
2065 p
->next_same_hash
= table
[hash
];
2066 p
->prev_same_hash
= 0;
2068 table
[hash
]->prev_same_hash
= p
;
2074 /* Remove from the hash table any expression that is a call-clobbered
2075 register. Also update their TICK values. */
2078 invalidate_for_call ()
2080 unsigned int regno
, endregno
;
2083 struct table_elt
*p
, *next
;
2086 /* Go through all the hard registers. For each that is clobbered in
2087 a CALL_INSN, remove the register from quantity chains and update
2088 reg_tick if defined. Also see if any of these registers is currently
2091 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2092 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2094 delete_reg_equiv (regno
);
2095 if (REG_TICK (regno
) >= 0)
2098 in_table
|= (TEST_HARD_REG_BIT (hard_regs_in_table
, regno
) != 0);
2101 /* In the case where we have no call-clobbered hard registers in the
2102 table, we are done. Otherwise, scan the table and remove any
2103 entry that overlaps a call-clobbered register. */
2106 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
2107 for (p
= table
[hash
]; p
; p
= next
)
2109 next
= p
->next_same_hash
;
2111 if (GET_CODE (p
->exp
) != REG
2112 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
2115 regno
= REGNO (p
->exp
);
2116 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (p
->exp
));
2118 for (i
= regno
; i
< endregno
; i
++)
2119 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
2121 remove_from_table (p
, hash
);
2127 /* Given an expression X of type CONST,
2128 and ELT which is its table entry (or 0 if it
2129 is not in the hash table),
2130 return an alternate expression for X as a register plus integer.
2131 If none can be found, return 0. */
2134 use_related_value (x
, elt
)
2136 struct table_elt
*elt
;
2138 struct table_elt
*relt
= 0;
2139 struct table_elt
*p
, *q
;
2140 HOST_WIDE_INT offset
;
2142 /* First, is there anything related known?
2143 If we have a table element, we can tell from that.
2144 Otherwise, must look it up. */
2146 if (elt
!= 0 && elt
->related_value
!= 0)
2148 else if (elt
== 0 && GET_CODE (x
) == CONST
)
2150 rtx subexp
= get_related_value (x
);
2152 relt
= lookup (subexp
,
2153 safe_hash (subexp
, GET_MODE (subexp
)) & HASH_MASK
,
2160 /* Search all related table entries for one that has an
2161 equivalent register. */
2166 /* This loop is strange in that it is executed in two different cases.
2167 The first is when X is already in the table. Then it is searching
2168 the RELATED_VALUE list of X's class (RELT). The second case is when
2169 X is not in the table. Then RELT points to a class for the related
2172 Ensure that, whatever case we are in, that we ignore classes that have
2173 the same value as X. */
2175 if (rtx_equal_p (x
, p
->exp
))
2178 for (q
= p
->first_same_value
; q
; q
= q
->next_same_value
)
2179 if (GET_CODE (q
->exp
) == REG
)
2185 p
= p
->related_value
;
2187 /* We went all the way around, so there is nothing to be found.
2188 Alternatively, perhaps RELT was in the table for some other reason
2189 and it has no related values recorded. */
2190 if (p
== relt
|| p
== 0)
2197 offset
= (get_integer_term (x
) - get_integer_term (p
->exp
));
2198 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2199 return plus_constant (q
->exp
, offset
);
2202 /* Hash a string. Just add its bytes up. */
2203 static inline unsigned
2204 canon_hash_string (ps
)
2208 const unsigned char *p
= (const unsigned char *) ps
;
2217 /* Hash an rtx. We are careful to make sure the value is never negative.
2218 Equivalent registers hash identically.
2219 MODE is used in hashing for CONST_INTs only;
2220 otherwise the mode of X is used.
2222 Store 1 in do_not_record if any subexpression is volatile.
2224 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2225 which does not have the RTX_UNCHANGING_P bit set.
2227 Note that cse_insn knows that the hash code of a MEM expression
2228 is just (int) MEM plus the hash code of the address. */
2231 canon_hash (x
, mode
)
2233 enum machine_mode mode
;
2240 /* repeat is used to turn tail-recursion into iteration. */
2245 code
= GET_CODE (x
);
2250 unsigned int regno
= REGNO (x
);
2253 /* On some machines, we can't record any non-fixed hard register,
2254 because extending its life will cause reload problems. We
2255 consider ap, fp, sp, gp to be fixed for this purpose.
2257 We also consider CCmode registers to be fixed for this purpose;
2258 failure to do so leads to failure to simplify 0<100 type of
2261 On all machines, we can't record any global registers.
2262 Nor should we record any register that is in a small
2263 class, as defined by CLASS_LIKELY_SPILLED_P. */
2265 if (regno
>= FIRST_PSEUDO_REGISTER
)
2267 else if (x
== frame_pointer_rtx
2268 || x
== hard_frame_pointer_rtx
2269 || x
== arg_pointer_rtx
2270 || x
== stack_pointer_rtx
2271 || x
== pic_offset_table_rtx
)
2273 else if (global_regs
[regno
])
2275 else if (fixed_regs
[regno
])
2277 else if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
)
2279 else if (SMALL_REGISTER_CLASSES
)
2281 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno
)))
2292 hash
+= ((unsigned) REG
<< 7) + (unsigned) REG_QTY (regno
);
2296 /* We handle SUBREG of a REG specially because the underlying
2297 reg changes its hash value with every value change; we don't
2298 want to have to forget unrelated subregs when one subreg changes. */
2301 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2303 hash
+= (((unsigned) SUBREG
<< 7)
2304 + REGNO (SUBREG_REG (x
))
2305 + (SUBREG_BYTE (x
) / UNITS_PER_WORD
));
2313 unsigned HOST_WIDE_INT tem
= INTVAL (x
);
2314 hash
+= ((unsigned) CONST_INT
<< 7) + (unsigned) mode
+ tem
;
2319 /* This is like the general case, except that it only counts
2320 the integers representing the constant. */
2321 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
2322 if (GET_MODE (x
) != VOIDmode
)
2323 for (i
= 2; i
< GET_RTX_LENGTH (CONST_DOUBLE
); i
++)
2325 unsigned HOST_WIDE_INT tem
= XWINT (x
, i
);
2329 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
2330 + (unsigned) CONST_DOUBLE_HIGH (x
));
2338 units
= CONST_VECTOR_NUNITS (x
);
2340 for (i
= 0; i
< units
; ++i
)
2342 elt
= CONST_VECTOR_ELT (x
, i
);
2343 hash
+= canon_hash (elt
, GET_MODE (elt
));
2349 /* Assume there is only one rtx object for any given label. */
2351 hash
+= ((unsigned) LABEL_REF
<< 7) + (unsigned long) XEXP (x
, 0);
2355 hash
+= ((unsigned) SYMBOL_REF
<< 7) + (unsigned long) XSTR (x
, 0);
2359 /* We don't record if marked volatile or if BLKmode since we don't
2360 know the size of the move. */
2361 if (MEM_VOLATILE_P (x
) || GET_MODE (x
) == BLKmode
)
2366 if (! RTX_UNCHANGING_P (x
) || FIXED_BASE_PLUS_P (XEXP (x
, 0)))
2368 hash_arg_in_memory
= 1;
2370 /* Now that we have already found this special case,
2371 might as well speed it up as much as possible. */
2372 hash
+= (unsigned) MEM
;
2377 /* A USE that mentions non-volatile memory needs special
2378 handling since the MEM may be BLKmode which normally
2379 prevents an entry from being made. Pure calls are
2380 marked by a USE which mentions BLKmode memory. */
2381 if (GET_CODE (XEXP (x
, 0)) == MEM
2382 && ! MEM_VOLATILE_P (XEXP (x
, 0)))
2384 hash
+= (unsigned) USE
;
2387 if (! RTX_UNCHANGING_P (x
) || FIXED_BASE_PLUS_P (XEXP (x
, 0)))
2388 hash_arg_in_memory
= 1;
2390 /* Now that we have already found this special case,
2391 might as well speed it up as much as possible. */
2392 hash
+= (unsigned) MEM
;
2407 case UNSPEC_VOLATILE
:
2412 if (MEM_VOLATILE_P (x
))
2419 /* We don't want to take the filename and line into account. */
2420 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
)
2421 + canon_hash_string (ASM_OPERANDS_TEMPLATE (x
))
2422 + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
))
2423 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x
);
2425 if (ASM_OPERANDS_INPUT_LENGTH (x
))
2427 for (i
= 1; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
2429 hash
+= (canon_hash (ASM_OPERANDS_INPUT (x
, i
),
2430 GET_MODE (ASM_OPERANDS_INPUT (x
, i
)))
2431 + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
2435 hash
+= canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x
, 0));
2436 x
= ASM_OPERANDS_INPUT (x
, 0);
2437 mode
= GET_MODE (x
);
2449 i
= GET_RTX_LENGTH (code
) - 1;
2450 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
2451 fmt
= GET_RTX_FORMAT (code
);
2456 rtx tem
= XEXP (x
, i
);
2458 /* If we are about to do the last recursive call
2459 needed at this level, change it into iteration.
2460 This function is called enough to be worth it. */
2466 hash
+= canon_hash (tem
, 0);
2468 else if (fmt
[i
] == 'E')
2469 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2470 hash
+= canon_hash (XVECEXP (x
, i
, j
), 0);
2471 else if (fmt
[i
] == 's')
2472 hash
+= canon_hash_string (XSTR (x
, i
));
2473 else if (fmt
[i
] == 'i')
2475 unsigned tem
= XINT (x
, i
);
2478 else if (fmt
[i
] == '0' || fmt
[i
] == 't')
2487 /* Like canon_hash but with no side effects. */
2492 enum machine_mode mode
;
2494 int save_do_not_record
= do_not_record
;
2495 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2496 unsigned hash
= canon_hash (x
, mode
);
2497 hash_arg_in_memory
= save_hash_arg_in_memory
;
2498 do_not_record
= save_do_not_record
;
2502 /* Return 1 iff X and Y would canonicalize into the same thing,
2503 without actually constructing the canonicalization of either one.
2504 If VALIDATE is nonzero,
2505 we assume X is an expression being processed from the rtl
2506 and Y was found in the hash table. We check register refs
2507 in Y for being marked as valid.
2509 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2510 that is known to be in the register. Ordinarily, we don't allow them
2511 to match, because letting them match would cause unpredictable results
2512 in all the places that search a hash table chain for an equivalent
2513 for a given value. A possible equivalent that has different structure
2514 has its hash code computed from different data. Whether the hash code
2515 is the same as that of the given value is pure luck. */
2518 exp_equiv_p (x
, y
, validate
, equal_values
)
2527 /* Note: it is incorrect to assume an expression is equivalent to itself
2528 if VALIDATE is nonzero. */
2529 if (x
== y
&& !validate
)
2531 if (x
== 0 || y
== 0)
2534 code
= GET_CODE (x
);
2535 if (code
!= GET_CODE (y
))
2540 /* If X is a constant and Y is a register or vice versa, they may be
2541 equivalent. We only have to validate if Y is a register. */
2542 if (CONSTANT_P (x
) && GET_CODE (y
) == REG
2543 && REGNO_QTY_VALID_P (REGNO (y
)))
2545 int y_q
= REG_QTY (REGNO (y
));
2546 struct qty_table_elem
*y_ent
= &qty_table
[y_q
];
2548 if (GET_MODE (y
) == y_ent
->mode
2549 && rtx_equal_p (x
, y_ent
->const_rtx
)
2550 && (! validate
|| REG_IN_TABLE (REGNO (y
)) == REG_TICK (REGNO (y
))))
2554 if (CONSTANT_P (y
) && code
== REG
2555 && REGNO_QTY_VALID_P (REGNO (x
)))
2557 int x_q
= REG_QTY (REGNO (x
));
2558 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
2560 if (GET_MODE (x
) == x_ent
->mode
2561 && rtx_equal_p (y
, x_ent
->const_rtx
))
2568 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2569 if (GET_MODE (x
) != GET_MODE (y
))
2580 return XEXP (x
, 0) == XEXP (y
, 0);
2583 return XSTR (x
, 0) == XSTR (y
, 0);
2587 unsigned int regno
= REGNO (y
);
2588 unsigned int endregno
2589 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
2590 : HARD_REGNO_NREGS (regno
, GET_MODE (y
)));
2593 /* If the quantities are not the same, the expressions are not
2594 equivalent. If there are and we are not to validate, they
2595 are equivalent. Otherwise, ensure all regs are up-to-date. */
2597 if (REG_QTY (REGNO (x
)) != REG_QTY (regno
))
2603 for (i
= regno
; i
< endregno
; i
++)
2604 if (REG_IN_TABLE (i
) != REG_TICK (i
))
2610 /* For commutative operations, check both orders. */
2618 return ((exp_equiv_p (XEXP (x
, 0), XEXP (y
, 0), validate
, equal_values
)
2619 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 1),
2620 validate
, equal_values
))
2621 || (exp_equiv_p (XEXP (x
, 0), XEXP (y
, 1),
2622 validate
, equal_values
)
2623 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 0),
2624 validate
, equal_values
)));
2627 /* We don't use the generic code below because we want to
2628 disregard filename and line numbers. */
2630 /* A volatile asm isn't equivalent to any other. */
2631 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
2634 if (GET_MODE (x
) != GET_MODE (y
)
2635 || strcmp (ASM_OPERANDS_TEMPLATE (x
), ASM_OPERANDS_TEMPLATE (y
))
2636 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
),
2637 ASM_OPERANDS_OUTPUT_CONSTRAINT (y
))
2638 || ASM_OPERANDS_OUTPUT_IDX (x
) != ASM_OPERANDS_OUTPUT_IDX (y
)
2639 || ASM_OPERANDS_INPUT_LENGTH (x
) != ASM_OPERANDS_INPUT_LENGTH (y
))
2642 if (ASM_OPERANDS_INPUT_LENGTH (x
))
2644 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
2645 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x
, i
),
2646 ASM_OPERANDS_INPUT (y
, i
),
2647 validate
, equal_values
)
2648 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x
, i
),
2649 ASM_OPERANDS_INPUT_CONSTRAINT (y
, i
)))
2659 /* Compare the elements. If any pair of corresponding elements
2660 fail to match, return 0 for the whole things. */
2662 fmt
= GET_RTX_FORMAT (code
);
2663 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2668 if (! exp_equiv_p (XEXP (x
, i
), XEXP (y
, i
), validate
, equal_values
))
2673 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2675 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2676 if (! exp_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
2677 validate
, equal_values
))
2682 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2687 if (XINT (x
, i
) != XINT (y
, i
))
2692 if (XWINT (x
, i
) != XWINT (y
, i
))
2708 /* Return 1 if X has a value that can vary even between two
2709 executions of the program. 0 means X can be compared reliably
2710 against certain constants or near-constants. */
2713 cse_rtx_varies_p (x
, from_alias
)
2717 /* We need not check for X and the equivalence class being of the same
2718 mode because if X is equivalent to a constant in some mode, it
2719 doesn't vary in any mode. */
2721 if (GET_CODE (x
) == REG
2722 && REGNO_QTY_VALID_P (REGNO (x
)))
2724 int x_q
= REG_QTY (REGNO (x
));
2725 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
2727 if (GET_MODE (x
) == x_ent
->mode
2728 && x_ent
->const_rtx
!= NULL_RTX
)
2732 if (GET_CODE (x
) == PLUS
2733 && GET_CODE (XEXP (x
, 1)) == CONST_INT
2734 && GET_CODE (XEXP (x
, 0)) == REG
2735 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0))))
2737 int x0_q
= REG_QTY (REGNO (XEXP (x
, 0)));
2738 struct qty_table_elem
*x0_ent
= &qty_table
[x0_q
];
2740 if ((GET_MODE (XEXP (x
, 0)) == x0_ent
->mode
)
2741 && x0_ent
->const_rtx
!= NULL_RTX
)
2745 /* This can happen as the result of virtual register instantiation, if
2746 the initial constant is too large to be a valid address. This gives
2747 us a three instruction sequence, load large offset into a register,
2748 load fp minus a constant into a register, then a MEM which is the
2749 sum of the two `constant' registers. */
2750 if (GET_CODE (x
) == PLUS
2751 && GET_CODE (XEXP (x
, 0)) == REG
2752 && GET_CODE (XEXP (x
, 1)) == REG
2753 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0)))
2754 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 1))))
2756 int x0_q
= REG_QTY (REGNO (XEXP (x
, 0)));
2757 int x1_q
= REG_QTY (REGNO (XEXP (x
, 1)));
2758 struct qty_table_elem
*x0_ent
= &qty_table
[x0_q
];
2759 struct qty_table_elem
*x1_ent
= &qty_table
[x1_q
];
2761 if ((GET_MODE (XEXP (x
, 0)) == x0_ent
->mode
)
2762 && x0_ent
->const_rtx
!= NULL_RTX
2763 && (GET_MODE (XEXP (x
, 1)) == x1_ent
->mode
)
2764 && x1_ent
->const_rtx
!= NULL_RTX
)
2768 return rtx_varies_p (x
, from_alias
);
2771 /* Canonicalize an expression:
2772 replace each register reference inside it
2773 with the "oldest" equivalent register.
2775 If INSN is non-zero and we are replacing a pseudo with a hard register
2776 or vice versa, validate_change is used to ensure that INSN remains valid
2777 after we make our substitution. The calls are made with IN_GROUP non-zero
2778 so apply_change_group must be called upon the outermost return from this
2779 function (unless INSN is zero). The result of apply_change_group can
2780 generally be discarded since the changes we are making are optional. */
2794 code
= GET_CODE (x
);
2813 struct qty_table_elem
*ent
;
2815 /* Never replace a hard reg, because hard regs can appear
2816 in more than one machine mode, and we must preserve the mode
2817 of each occurrence. Also, some hard regs appear in
2818 MEMs that are shared and mustn't be altered. Don't try to
2819 replace any reg that maps to a reg of class NO_REGS. */
2820 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
2821 || ! REGNO_QTY_VALID_P (REGNO (x
)))
2824 q
= REG_QTY (REGNO (x
));
2825 ent
= &qty_table
[q
];
2826 first
= ent
->first_reg
;
2827 return (first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
2828 : REGNO_REG_CLASS (first
) == NO_REGS
? x
2829 : gen_rtx_REG (ent
->mode
, first
));
2836 fmt
= GET_RTX_FORMAT (code
);
2837 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2843 rtx
new = canon_reg (XEXP (x
, i
), insn
);
2846 /* If replacing pseudo with hard reg or vice versa, ensure the
2847 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2848 if (insn
!= 0 && new != 0
2849 && GET_CODE (new) == REG
&& GET_CODE (XEXP (x
, i
)) == REG
2850 && (((REGNO (new) < FIRST_PSEUDO_REGISTER
)
2851 != (REGNO (XEXP (x
, i
)) < FIRST_PSEUDO_REGISTER
))
2852 || (insn_code
= recog_memoized (insn
)) < 0
2853 || insn_data
[insn_code
].n_dups
> 0))
2854 validate_change (insn
, &XEXP (x
, i
), new, 1);
2858 else if (fmt
[i
] == 'E')
2859 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2860 XVECEXP (x
, i
, j
) = canon_reg (XVECEXP (x
, i
, j
), insn
);
2866 /* LOC is a location within INSN that is an operand address (the contents of
2867 a MEM). Find the best equivalent address to use that is valid for this
2870 On most CISC machines, complicated address modes are costly, and rtx_cost
2871 is a good approximation for that cost. However, most RISC machines have
2872 only a few (usually only one) memory reference formats. If an address is
2873 valid at all, it is often just as cheap as any other address. Hence, for
2874 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2875 costs of various addresses. For two addresses of equal cost, choose the one
2876 with the highest `rtx_cost' value as that has the potential of eliminating
2877 the most insns. For equal costs, we choose the first in the equivalence
2878 class. Note that we ignore the fact that pseudo registers are cheaper
2879 than hard registers here because we would also prefer the pseudo registers.
2883 find_best_addr (insn
, loc
, mode
)
2886 enum machine_mode mode
;
2888 struct table_elt
*elt
;
2891 struct table_elt
*p
;
2892 int found_better
= 1;
2894 int save_do_not_record
= do_not_record
;
2895 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2900 /* Do not try to replace constant addresses or addresses of local and
2901 argument slots. These MEM expressions are made only once and inserted
2902 in many instructions, as well as being used to control symbol table
2903 output. It is not safe to clobber them.
2905 There are some uncommon cases where the address is already in a register
2906 for some reason, but we cannot take advantage of that because we have
2907 no easy way to unshare the MEM. In addition, looking up all stack
2908 addresses is costly. */
2909 if ((GET_CODE (addr
) == PLUS
2910 && GET_CODE (XEXP (addr
, 0)) == REG
2911 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
2912 && (regno
= REGNO (XEXP (addr
, 0)),
2913 regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
2914 || regno
== ARG_POINTER_REGNUM
))
2915 || (GET_CODE (addr
) == REG
2916 && (regno
= REGNO (addr
), regno
== FRAME_POINTER_REGNUM
2917 || regno
== HARD_FRAME_POINTER_REGNUM
2918 || regno
== ARG_POINTER_REGNUM
))
2919 || GET_CODE (addr
) == ADDRESSOF
2920 || CONSTANT_ADDRESS_P (addr
))
2923 /* If this address is not simply a register, try to fold it. This will
2924 sometimes simplify the expression. Many simplifications
2925 will not be valid, but some, usually applying the associative rule, will
2926 be valid and produce better code. */
2927 if (GET_CODE (addr
) != REG
)
2929 rtx folded
= fold_rtx (copy_rtx (addr
), NULL_RTX
);
2930 int addr_folded_cost
= address_cost (folded
, mode
);
2931 int addr_cost
= address_cost (addr
, mode
);
2933 if ((addr_folded_cost
< addr_cost
2934 || (addr_folded_cost
== addr_cost
2935 /* ??? The rtx_cost comparison is left over from an older
2936 version of this code. It is probably no longer helpful. */
2937 && (rtx_cost (folded
, MEM
) > rtx_cost (addr
, MEM
)
2938 || approx_reg_cost (folded
) < approx_reg_cost (addr
))))
2939 && validate_change (insn
, loc
, folded
, 0))
2943 /* If this address is not in the hash table, we can't look for equivalences
2944 of the whole address. Also, ignore if volatile. */
2947 hash
= HASH (addr
, Pmode
);
2948 addr_volatile
= do_not_record
;
2949 do_not_record
= save_do_not_record
;
2950 hash_arg_in_memory
= save_hash_arg_in_memory
;
2955 elt
= lookup (addr
, hash
, Pmode
);
2957 #ifndef ADDRESS_COST
2960 int our_cost
= elt
->cost
;
2962 /* Find the lowest cost below ours that works. */
2963 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
2964 if (elt
->cost
< our_cost
2965 && (GET_CODE (elt
->exp
) == REG
2966 || exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
2967 && validate_change (insn
, loc
,
2968 canon_reg (copy_rtx (elt
->exp
), NULL_RTX
), 0))
2975 /* We need to find the best (under the criteria documented above) entry
2976 in the class that is valid. We use the `flag' field to indicate
2977 choices that were invalid and iterate until we can't find a better
2978 one that hasn't already been tried. */
2980 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2983 while (found_better
)
2985 int best_addr_cost
= address_cost (*loc
, mode
);
2986 int best_rtx_cost
= (elt
->cost
+ 1) >> 1;
2988 struct table_elt
*best_elt
= elt
;
2991 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2994 if ((GET_CODE (p
->exp
) == REG
2995 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
2996 && ((exp_cost
= address_cost (p
->exp
, mode
)) < best_addr_cost
2997 || (exp_cost
== best_addr_cost
2998 && ((p
->cost
+ 1) >> 1) > best_rtx_cost
)))
3001 best_addr_cost
= exp_cost
;
3002 best_rtx_cost
= (p
->cost
+ 1) >> 1;
3009 if (validate_change (insn
, loc
,
3010 canon_reg (copy_rtx (best_elt
->exp
),
3019 /* If the address is a binary operation with the first operand a register
3020 and the second a constant, do the same as above, but looking for
3021 equivalences of the register. Then try to simplify before checking for
3022 the best address to use. This catches a few cases: First is when we
3023 have REG+const and the register is another REG+const. We can often merge
3024 the constants and eliminate one insn and one register. It may also be
3025 that a machine has a cheap REG+REG+const. Finally, this improves the
3026 code on the Alpha for unaligned byte stores. */
3028 if (flag_expensive_optimizations
3029 && (GET_RTX_CLASS (GET_CODE (*loc
)) == '2'
3030 || GET_RTX_CLASS (GET_CODE (*loc
)) == 'c')
3031 && GET_CODE (XEXP (*loc
, 0)) == REG
3032 && GET_CODE (XEXP (*loc
, 1)) == CONST_INT
)
3034 rtx c
= XEXP (*loc
, 1);
3037 hash
= HASH (XEXP (*loc
, 0), Pmode
);
3038 do_not_record
= save_do_not_record
;
3039 hash_arg_in_memory
= save_hash_arg_in_memory
;
3041 elt
= lookup (XEXP (*loc
, 0), hash
, Pmode
);
3045 /* We need to find the best (under the criteria documented above) entry
3046 in the class that is valid. We use the `flag' field to indicate
3047 choices that were invalid and iterate until we can't find a better
3048 one that hasn't already been tried. */
3050 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
3053 while (found_better
)
3055 int best_addr_cost
= address_cost (*loc
, mode
);
3056 int best_rtx_cost
= (COST (*loc
) + 1) >> 1;
3057 struct table_elt
*best_elt
= elt
;
3058 rtx best_rtx
= *loc
;
3061 /* This is at worst case an O(n^2) algorithm, so limit our search
3062 to the first 32 elements on the list. This avoids trouble
3063 compiling code with very long basic blocks that can easily
3064 call simplify_gen_binary so many times that we run out of
3068 for (p
= elt
->first_same_value
, count
= 0;
3070 p
= p
->next_same_value
, count
++)
3072 && (GET_CODE (p
->exp
) == REG
3073 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0)))
3075 rtx
new = simplify_gen_binary (GET_CODE (*loc
), Pmode
,
3078 new_cost
= address_cost (new, mode
);
3080 if (new_cost
< best_addr_cost
3081 || (new_cost
== best_addr_cost
3082 && (COST (new) + 1) >> 1 > best_rtx_cost
))
3085 best_addr_cost
= new_cost
;
3086 best_rtx_cost
= (COST (new) + 1) >> 1;
3094 if (validate_change (insn
, loc
,
3095 canon_reg (copy_rtx (best_rtx
),
3106 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3107 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3108 what values are being compared.
3110 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3111 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3112 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3113 compared to produce cc0.
3115 The return value is the comparison operator and is either the code of
3116 A or the code corresponding to the inverse of the comparison. */
3118 static enum rtx_code
3119 find_comparison_args (code
, parg1
, parg2
, pmode1
, pmode2
)
3122 enum machine_mode
*pmode1
, *pmode2
;
3126 arg1
= *parg1
, arg2
= *parg2
;
3128 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3130 while (arg2
== CONST0_RTX (GET_MODE (arg1
)))
3132 /* Set non-zero when we find something of interest. */
3134 int reverse_code
= 0;
3135 struct table_elt
*p
= 0;
3137 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3138 On machines with CC0, this is the only case that can occur, since
3139 fold_rtx will return the COMPARE or item being compared with zero
3142 if (GET_CODE (arg1
) == COMPARE
&& arg2
== const0_rtx
)
3145 /* If ARG1 is a comparison operator and CODE is testing for
3146 STORE_FLAG_VALUE, get the inner arguments. */
3148 else if (GET_RTX_CLASS (GET_CODE (arg1
)) == '<')
3151 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
3152 && code
== LT
&& STORE_FLAG_VALUE
== -1)
3153 #ifdef FLOAT_STORE_FLAG_VALUE
3154 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
3155 && (REAL_VALUE_NEGATIVE
3156 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)))))
3161 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
3162 && code
== GE
&& STORE_FLAG_VALUE
== -1)
3163 #ifdef FLOAT_STORE_FLAG_VALUE
3164 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
3165 && (REAL_VALUE_NEGATIVE
3166 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)))))
3169 x
= arg1
, reverse_code
= 1;
3172 /* ??? We could also check for
3174 (ne (and (eq (...) (const_int 1))) (const_int 0))
3176 and related forms, but let's wait until we see them occurring. */
3179 /* Look up ARG1 in the hash table and see if it has an equivalence
3180 that lets us see what is being compared. */
3181 p
= lookup (arg1
, safe_hash (arg1
, GET_MODE (arg1
)) & HASH_MASK
,
3185 p
= p
->first_same_value
;
3187 /* If what we compare is already known to be constant, that is as
3189 We need to break the loop in this case, because otherwise we
3190 can have an infinite loop when looking at a reg that is known
3191 to be a constant which is the same as a comparison of a reg
3192 against zero which appears later in the insn stream, which in
3193 turn is constant and the same as the comparison of the first reg
3199 for (; p
; p
= p
->next_same_value
)
3201 enum machine_mode inner_mode
= GET_MODE (p
->exp
);
3203 /* If the entry isn't valid, skip it. */
3204 if (! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
3207 if (GET_CODE (p
->exp
) == COMPARE
3208 /* Another possibility is that this machine has a compare insn
3209 that includes the comparison code. In that case, ARG1 would
3210 be equivalent to a comparison operation that would set ARG1 to
3211 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3212 ORIG_CODE is the actual comparison being done; if it is an EQ,
3213 we must reverse ORIG_CODE. On machine with a negative value
3214 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3217 && GET_MODE_CLASS (inner_mode
) == MODE_INT
3218 && (GET_MODE_BITSIZE (inner_mode
)
3219 <= HOST_BITS_PER_WIDE_INT
)
3220 && (STORE_FLAG_VALUE
3221 & ((HOST_WIDE_INT
) 1
3222 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
3223 #ifdef FLOAT_STORE_FLAG_VALUE
3225 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
3226 && (REAL_VALUE_NEGATIVE
3227 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)))))
3230 && GET_RTX_CLASS (GET_CODE (p
->exp
)) == '<'))
3235 else if ((code
== EQ
3237 && GET_MODE_CLASS (inner_mode
) == MODE_INT
3238 && (GET_MODE_BITSIZE (inner_mode
)
3239 <= HOST_BITS_PER_WIDE_INT
)
3240 && (STORE_FLAG_VALUE
3241 & ((HOST_WIDE_INT
) 1
3242 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
3243 #ifdef FLOAT_STORE_FLAG_VALUE
3245 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
3246 && (REAL_VALUE_NEGATIVE
3247 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)))))
3250 && GET_RTX_CLASS (GET_CODE (p
->exp
)) == '<')
3257 /* If this is fp + constant, the equivalent is a better operand since
3258 it may let us predict the value of the comparison. */
3259 else if (NONZERO_BASE_PLUS_P (p
->exp
))
3266 /* If we didn't find a useful equivalence for ARG1, we are done.
3267 Otherwise, set up for the next iteration. */
3271 /* If we need to reverse the comparison, make sure that that is
3272 possible -- we can't necessarily infer the value of GE from LT
3273 with floating-point operands. */
3276 enum rtx_code reversed
= reversed_comparison_code (x
, NULL_RTX
);
3277 if (reversed
== UNKNOWN
)
3282 else if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
3283 code
= GET_CODE (x
);
3284 arg1
= XEXP (x
, 0), arg2
= XEXP (x
, 1);
3287 /* Return our results. Return the modes from before fold_rtx
3288 because fold_rtx might produce const_int, and then it's too late. */
3289 *pmode1
= GET_MODE (arg1
), *pmode2
= GET_MODE (arg2
);
3290 *parg1
= fold_rtx (arg1
, 0), *parg2
= fold_rtx (arg2
, 0);
3295 /* If X is a nontrivial arithmetic operation on an argument
3296 for which a constant value can be determined, return
3297 the result of operating on that value, as a constant.
3298 Otherwise, return X, possibly with one or more operands
3299 modified by recursive calls to this function.
3301 If X is a register whose contents are known, we do NOT
3302 return those contents here. equiv_constant is called to
3305 INSN is the insn that we may be modifying. If it is 0, make a copy
3306 of X before modifying it. */
3314 enum machine_mode mode
;
3321 /* Folded equivalents of first two operands of X. */
3325 /* Constant equivalents of first three operands of X;
3326 0 when no such equivalent is known. */
3331 /* The mode of the first operand of X. We need this for sign and zero
3333 enum machine_mode mode_arg0
;
3338 mode
= GET_MODE (x
);
3339 code
= GET_CODE (x
);
3349 /* No use simplifying an EXPR_LIST
3350 since they are used only for lists of args
3351 in a function call's REG_EQUAL note. */
3353 /* Changing anything inside an ADDRESSOF is incorrect; we don't
3354 want to (e.g.,) make (addressof (const_int 0)) just because
3355 the location is known to be zero. */
3361 return prev_insn_cc0
;
3365 /* If the next insn is a CODE_LABEL followed by a jump table,
3366 PC's value is a LABEL_REF pointing to that label. That
3367 lets us fold switch statements on the VAX. */
3368 if (insn
&& GET_CODE (insn
) == JUMP_INSN
)
3370 rtx next
= next_nonnote_insn (insn
);
3372 if (next
&& GET_CODE (next
) == CODE_LABEL
3373 && NEXT_INSN (next
) != 0
3374 && GET_CODE (NEXT_INSN (next
)) == JUMP_INSN
3375 && (GET_CODE (PATTERN (NEXT_INSN (next
))) == ADDR_VEC
3376 || GET_CODE (PATTERN (NEXT_INSN (next
))) == ADDR_DIFF_VEC
))
3377 return gen_rtx_LABEL_REF (Pmode
, next
);
3382 /* See if we previously assigned a constant value to this SUBREG. */
3383 if ((new = lookup_as_function (x
, CONST_INT
)) != 0
3384 || (new = lookup_as_function (x
, CONST_DOUBLE
)) != 0)
3387 /* If this is a paradoxical SUBREG, we have no idea what value the
3388 extra bits would have. However, if the operand is equivalent
3389 to a SUBREG whose operand is the same as our mode, and all the
3390 modes are within a word, we can just use the inner operand
3391 because these SUBREGs just say how to treat the register.
3393 Similarly if we find an integer constant. */
3395 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
3397 enum machine_mode imode
= GET_MODE (SUBREG_REG (x
));
3398 struct table_elt
*elt
;
3400 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
3401 && GET_MODE_SIZE (imode
) <= UNITS_PER_WORD
3402 && (elt
= lookup (SUBREG_REG (x
), HASH (SUBREG_REG (x
), imode
),
3404 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
3406 if (CONSTANT_P (elt
->exp
)
3407 && GET_MODE (elt
->exp
) == VOIDmode
)
3410 if (GET_CODE (elt
->exp
) == SUBREG
3411 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
3412 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
3413 return copy_rtx (SUBREG_REG (elt
->exp
));
3419 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3420 We might be able to if the SUBREG is extracting a single word in an
3421 integral mode or extracting the low part. */
3423 folded_arg0
= fold_rtx (SUBREG_REG (x
), insn
);
3424 const_arg0
= equiv_constant (folded_arg0
);
3426 folded_arg0
= const_arg0
;
3428 if (folded_arg0
!= SUBREG_REG (x
))
3430 new = simplify_subreg (mode
, folded_arg0
,
3431 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
3436 /* If this is a narrowing SUBREG and our operand is a REG, see if
3437 we can find an equivalence for REG that is an arithmetic operation
3438 in a wider mode where both operands are paradoxical SUBREGs
3439 from objects of our result mode. In that case, we couldn't report
3440 an equivalent value for that operation, since we don't know what the
3441 extra bits will be. But we can find an equivalence for this SUBREG
3442 by folding that operation is the narrow mode. This allows us to
3443 fold arithmetic in narrow modes when the machine only supports
3444 word-sized arithmetic.
3446 Also look for a case where we have a SUBREG whose operand is the
3447 same as our result. If both modes are smaller than a word, we
3448 are simply interpreting a register in different modes and we
3449 can use the inner value. */
3451 if (GET_CODE (folded_arg0
) == REG
3452 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (folded_arg0
))
3453 && subreg_lowpart_p (x
))
3455 struct table_elt
*elt
;
3457 /* We can use HASH here since we know that canon_hash won't be
3459 elt
= lookup (folded_arg0
,
3460 HASH (folded_arg0
, GET_MODE (folded_arg0
)),
3461 GET_MODE (folded_arg0
));
3464 elt
= elt
->first_same_value
;
3466 for (; elt
; elt
= elt
->next_same_value
)
3468 enum rtx_code eltcode
= GET_CODE (elt
->exp
);
3470 /* Just check for unary and binary operations. */
3471 if (GET_RTX_CLASS (GET_CODE (elt
->exp
)) == '1'
3472 && GET_CODE (elt
->exp
) != SIGN_EXTEND
3473 && GET_CODE (elt
->exp
) != ZERO_EXTEND
3474 && GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
3475 && GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0))) == mode
3476 && (GET_MODE_CLASS (mode
)
3477 == GET_MODE_CLASS (GET_MODE (XEXP (elt
->exp
, 0)))))
3479 rtx op0
= SUBREG_REG (XEXP (elt
->exp
, 0));
3481 if (GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
3482 op0
= fold_rtx (op0
, NULL_RTX
);
3484 op0
= equiv_constant (op0
);
3486 new = simplify_unary_operation (GET_CODE (elt
->exp
), mode
,
3489 else if ((GET_RTX_CLASS (GET_CODE (elt
->exp
)) == '2'
3490 || GET_RTX_CLASS (GET_CODE (elt
->exp
)) == 'c')
3491 && eltcode
!= DIV
&& eltcode
!= MOD
3492 && eltcode
!= UDIV
&& eltcode
!= UMOD
3493 && eltcode
!= ASHIFTRT
&& eltcode
!= LSHIFTRT
3494 && eltcode
!= ROTATE
&& eltcode
!= ROTATERT
3495 && ((GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
3496 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0)))
3498 || CONSTANT_P (XEXP (elt
->exp
, 0)))
3499 && ((GET_CODE (XEXP (elt
->exp
, 1)) == SUBREG
3500 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 1)))
3502 || CONSTANT_P (XEXP (elt
->exp
, 1))))
3504 rtx op0
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 0));
3505 rtx op1
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 1));
3507 if (op0
&& GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
3508 op0
= fold_rtx (op0
, NULL_RTX
);
3511 op0
= equiv_constant (op0
);
3513 if (op1
&& GET_CODE (op1
) != REG
&& ! CONSTANT_P (op1
))
3514 op1
= fold_rtx (op1
, NULL_RTX
);
3517 op1
= equiv_constant (op1
);
3519 /* If we are looking for the low SImode part of
3520 (ashift:DI c (const_int 32)), it doesn't work
3521 to compute that in SImode, because a 32-bit shift
3522 in SImode is unpredictable. We know the value is 0. */
3524 && GET_CODE (elt
->exp
) == ASHIFT
3525 && GET_CODE (op1
) == CONST_INT
3526 && INTVAL (op1
) >= GET_MODE_BITSIZE (mode
))
3528 if (INTVAL (op1
) < GET_MODE_BITSIZE (GET_MODE (elt
->exp
)))
3530 /* If the count fits in the inner mode's width,
3531 but exceeds the outer mode's width,
3532 the value will get truncated to 0
3536 /* If the count exceeds even the inner mode's width,
3537 don't fold this expression. */
3540 else if (op0
&& op1
)
3541 new = simplify_binary_operation (GET_CODE (elt
->exp
), mode
,
3545 else if (GET_CODE (elt
->exp
) == SUBREG
3546 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
3547 && (GET_MODE_SIZE (GET_MODE (folded_arg0
))
3549 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
3550 new = copy_rtx (SUBREG_REG (elt
->exp
));
3561 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3562 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3563 new = lookup_as_function (XEXP (x
, 0), code
);
3565 return fold_rtx (copy_rtx (XEXP (new, 0)), insn
);
3569 /* If we are not actually processing an insn, don't try to find the
3570 best address. Not only don't we care, but we could modify the
3571 MEM in an invalid way since we have no insn to validate against. */
3573 find_best_addr (insn
, &XEXP (x
, 0), GET_MODE (x
));
3576 /* Even if we don't fold in the insn itself,
3577 we can safely do so here, in hopes of getting a constant. */
3578 rtx addr
= fold_rtx (XEXP (x
, 0), NULL_RTX
);
3580 HOST_WIDE_INT offset
= 0;
3582 if (GET_CODE (addr
) == REG
3583 && REGNO_QTY_VALID_P (REGNO (addr
)))
3585 int addr_q
= REG_QTY (REGNO (addr
));
3586 struct qty_table_elem
*addr_ent
= &qty_table
[addr_q
];
3588 if (GET_MODE (addr
) == addr_ent
->mode
3589 && addr_ent
->const_rtx
!= NULL_RTX
)
3590 addr
= addr_ent
->const_rtx
;
3593 /* If address is constant, split it into a base and integer offset. */
3594 if (GET_CODE (addr
) == SYMBOL_REF
|| GET_CODE (addr
) == LABEL_REF
)
3596 else if (GET_CODE (addr
) == CONST
&& GET_CODE (XEXP (addr
, 0)) == PLUS
3597 && GET_CODE (XEXP (XEXP (addr
, 0), 1)) == CONST_INT
)
3599 base
= XEXP (XEXP (addr
, 0), 0);
3600 offset
= INTVAL (XEXP (XEXP (addr
, 0), 1));
3602 else if (GET_CODE (addr
) == LO_SUM
3603 && GET_CODE (XEXP (addr
, 1)) == SYMBOL_REF
)
3604 base
= XEXP (addr
, 1);
3605 else if (GET_CODE (addr
) == ADDRESSOF
)
3606 return change_address (x
, VOIDmode
, addr
);
3608 /* If this is a constant pool reference, we can fold it into its
3609 constant to allow better value tracking. */
3610 if (base
&& GET_CODE (base
) == SYMBOL_REF
3611 && CONSTANT_POOL_ADDRESS_P (base
))
3613 rtx constant
= get_pool_constant (base
);
3614 enum machine_mode const_mode
= get_pool_mode (base
);
3617 if (CONSTANT_P (constant
) && GET_CODE (constant
) != CONST_INT
)
3618 constant_pool_entries_cost
= COST (constant
);
3620 /* If we are loading the full constant, we have an equivalence. */
3621 if (offset
== 0 && mode
== const_mode
)
3624 /* If this actually isn't a constant (weird!), we can't do
3625 anything. Otherwise, handle the two most common cases:
3626 extracting a word from a multi-word constant, and extracting
3627 the low-order bits. Other cases don't seem common enough to
3629 if (! CONSTANT_P (constant
))
3632 if (GET_MODE_CLASS (mode
) == MODE_INT
3633 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
3634 && offset
% UNITS_PER_WORD
== 0
3635 && (new = operand_subword (constant
,
3636 offset
/ UNITS_PER_WORD
,
3637 0, const_mode
)) != 0)
3640 if (((BYTES_BIG_ENDIAN
3641 && offset
== GET_MODE_SIZE (GET_MODE (constant
)) - 1)
3642 || (! BYTES_BIG_ENDIAN
&& offset
== 0))
3643 && (new = gen_lowpart_if_possible (mode
, constant
)) != 0)
3647 /* If this is a reference to a label at a known position in a jump
3648 table, we also know its value. */
3649 if (base
&& GET_CODE (base
) == LABEL_REF
)
3651 rtx label
= XEXP (base
, 0);
3652 rtx table_insn
= NEXT_INSN (label
);
3654 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
3655 && GET_CODE (PATTERN (table_insn
)) == ADDR_VEC
)
3657 rtx table
= PATTERN (table_insn
);
3660 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
3661 < XVECLEN (table
, 0)))
3662 return XVECEXP (table
, 0,
3663 offset
/ GET_MODE_SIZE (GET_MODE (table
)));
3665 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
3666 && GET_CODE (PATTERN (table_insn
)) == ADDR_DIFF_VEC
)
3668 rtx table
= PATTERN (table_insn
);
3671 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
3672 < XVECLEN (table
, 1)))
3674 offset
/= GET_MODE_SIZE (GET_MODE (table
));
3675 new = gen_rtx_MINUS (Pmode
, XVECEXP (table
, 1, offset
),
3678 if (GET_MODE (table
) != Pmode
)
3679 new = gen_rtx_TRUNCATE (GET_MODE (table
), new);
3681 /* Indicate this is a constant. This isn't a
3682 valid form of CONST, but it will only be used
3683 to fold the next insns and then discarded, so
3686 Note this expression must be explicitly discarded,
3687 by cse_insn, else it may end up in a REG_EQUAL note
3688 and "escape" to cause problems elsewhere. */
3689 return gen_rtx_CONST (GET_MODE (new), new);
3697 #ifdef NO_FUNCTION_CSE
3699 if (CONSTANT_P (XEXP (XEXP (x
, 0), 0)))
3705 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
3706 validate_change (insn
, &ASM_OPERANDS_INPUT (x
, i
),
3707 fold_rtx (ASM_OPERANDS_INPUT (x
, i
), insn
), 0);
3717 mode_arg0
= VOIDmode
;
3719 /* Try folding our operands.
3720 Then see which ones have constant values known. */
3722 fmt
= GET_RTX_FORMAT (code
);
3723 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3726 rtx arg
= XEXP (x
, i
);
3727 rtx folded_arg
= arg
, const_arg
= 0;
3728 enum machine_mode mode_arg
= GET_MODE (arg
);
3729 rtx cheap_arg
, expensive_arg
;
3730 rtx replacements
[2];
3733 /* Most arguments are cheap, so handle them specially. */
3734 switch (GET_CODE (arg
))
3737 /* This is the same as calling equiv_constant; it is duplicated
3739 if (REGNO_QTY_VALID_P (REGNO (arg
)))
3741 int arg_q
= REG_QTY (REGNO (arg
));
3742 struct qty_table_elem
*arg_ent
= &qty_table
[arg_q
];
3744 if (arg_ent
->const_rtx
!= NULL_RTX
3745 && GET_CODE (arg_ent
->const_rtx
) != REG
3746 && GET_CODE (arg_ent
->const_rtx
) != PLUS
)
3748 = gen_lowpart_if_possible (GET_MODE (arg
),
3749 arg_ent
->const_rtx
);
3764 folded_arg
= prev_insn_cc0
;
3765 mode_arg
= prev_insn_cc0_mode
;
3766 const_arg
= equiv_constant (folded_arg
);
3771 folded_arg
= fold_rtx (arg
, insn
);
3772 const_arg
= equiv_constant (folded_arg
);
3775 /* For the first three operands, see if the operand
3776 is constant or equivalent to a constant. */
3780 folded_arg0
= folded_arg
;
3781 const_arg0
= const_arg
;
3782 mode_arg0
= mode_arg
;
3785 folded_arg1
= folded_arg
;
3786 const_arg1
= const_arg
;
3789 const_arg2
= const_arg
;
3793 /* Pick the least expensive of the folded argument and an
3794 equivalent constant argument. */
3795 if (const_arg
== 0 || const_arg
== folded_arg
3796 || COST_IN (const_arg
, code
) > COST_IN (folded_arg
, code
))
3797 cheap_arg
= folded_arg
, expensive_arg
= const_arg
;
3799 cheap_arg
= const_arg
, expensive_arg
= folded_arg
;
3801 /* Try to replace the operand with the cheapest of the two
3802 possibilities. If it doesn't work and this is either of the first
3803 two operands of a commutative operation, try swapping them.
3804 If THAT fails, try the more expensive, provided it is cheaper
3805 than what is already there. */
3807 if (cheap_arg
== XEXP (x
, i
))
3810 if (insn
== 0 && ! copied
)
3816 /* Order the replacements from cheapest to most expensive. */
3817 replacements
[0] = cheap_arg
;
3818 replacements
[1] = expensive_arg
;
3820 for (j
= 0; j
< 2 && replacements
[j
]; j
++)
3822 int old_cost
= COST_IN (XEXP (x
, i
), code
);
3823 int new_cost
= COST_IN (replacements
[j
], code
);
3825 /* Stop if what existed before was cheaper. Prefer constants
3826 in the case of a tie. */
3827 if (new_cost
> old_cost
3828 || (new_cost
== old_cost
&& CONSTANT_P (XEXP (x
, i
))))
3831 if (validate_change (insn
, &XEXP (x
, i
), replacements
[j
], 0))
3834 if (code
== NE
|| code
== EQ
|| GET_RTX_CLASS (code
) == 'c'
3835 || code
== LTGT
|| code
== UNEQ
|| code
== ORDERED
3836 || code
== UNORDERED
)
3838 validate_change (insn
, &XEXP (x
, i
), XEXP (x
, 1 - i
), 1);
3839 validate_change (insn
, &XEXP (x
, 1 - i
), replacements
[j
], 1);
3841 if (apply_change_group ())
3843 /* Swap them back to be invalid so that this loop can
3844 continue and flag them to be swapped back later. */
3847 tem
= XEXP (x
, 0); XEXP (x
, 0) = XEXP (x
, 1);
3859 /* Don't try to fold inside of a vector of expressions.
3860 Doing nothing is harmless. */
3864 /* If a commutative operation, place a constant integer as the second
3865 operand unless the first operand is also a constant integer. Otherwise,
3866 place any constant second unless the first operand is also a constant. */
3868 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c'
3869 || code
== LTGT
|| code
== UNEQ
|| code
== ORDERED
3870 || code
== UNORDERED
)
3872 if (must_swap
|| (const_arg0
3874 || (GET_CODE (const_arg0
) == CONST_INT
3875 && GET_CODE (const_arg1
) != CONST_INT
))))
3877 rtx tem
= XEXP (x
, 0);
3879 if (insn
== 0 && ! copied
)
3885 validate_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
3886 validate_change (insn
, &XEXP (x
, 1), tem
, 1);
3887 if (apply_change_group ())
3889 tem
= const_arg0
, const_arg0
= const_arg1
, const_arg1
= tem
;
3890 tem
= folded_arg0
, folded_arg0
= folded_arg1
, folded_arg1
= tem
;
3895 /* If X is an arithmetic operation, see if we can simplify it. */
3897 switch (GET_RTX_CLASS (code
))
3903 /* We can't simplify extension ops unless we know the
3905 if ((code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
3906 && mode_arg0
== VOIDmode
)
3909 /* If we had a CONST, strip it off and put it back later if we
3911 if (const_arg0
!= 0 && GET_CODE (const_arg0
) == CONST
)
3912 is_const
= 1, const_arg0
= XEXP (const_arg0
, 0);
3914 new = simplify_unary_operation (code
, mode
,
3915 const_arg0
? const_arg0
: folded_arg0
,
3917 if (new != 0 && is_const
)
3918 new = gen_rtx_CONST (mode
, new);
3923 /* See what items are actually being compared and set FOLDED_ARG[01]
3924 to those values and CODE to the actual comparison code. If any are
3925 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3926 do anything if both operands are already known to be constant. */
3928 if (const_arg0
== 0 || const_arg1
== 0)
3930 struct table_elt
*p0
, *p1
;
3931 rtx true_rtx
= const_true_rtx
, false_rtx
= const0_rtx
;
3932 enum machine_mode mode_arg1
;
3934 #ifdef FLOAT_STORE_FLAG_VALUE
3935 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3937 true_rtx
= (CONST_DOUBLE_FROM_REAL_VALUE
3938 (FLOAT_STORE_FLAG_VALUE (mode
), mode
));
3939 false_rtx
= CONST0_RTX (mode
);
3943 code
= find_comparison_args (code
, &folded_arg0
, &folded_arg1
,
3944 &mode_arg0
, &mode_arg1
);
3945 const_arg0
= equiv_constant (folded_arg0
);
3946 const_arg1
= equiv_constant (folded_arg1
);
3948 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3949 what kinds of things are being compared, so we can't do
3950 anything with this comparison. */
3952 if (mode_arg0
== VOIDmode
|| GET_MODE_CLASS (mode_arg0
) == MODE_CC
)
3955 /* If we do not now have two constants being compared, see
3956 if we can nevertheless deduce some things about the
3958 if (const_arg0
== 0 || const_arg1
== 0)
3960 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
3961 non-explicit constant? These aren't zero, but we
3962 don't know their sign. */
3963 if (const_arg1
== const0_rtx
3964 && (NONZERO_BASE_PLUS_P (folded_arg0
)
3965 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
3967 || GET_CODE (folded_arg0
) == SYMBOL_REF
3969 || GET_CODE (folded_arg0
) == LABEL_REF
3970 || GET_CODE (folded_arg0
) == CONST
))
3974 else if (code
== NE
)
3978 /* See if the two operands are the same. */
3980 if (folded_arg0
== folded_arg1
3981 || (GET_CODE (folded_arg0
) == REG
3982 && GET_CODE (folded_arg1
) == REG
3983 && (REG_QTY (REGNO (folded_arg0
))
3984 == REG_QTY (REGNO (folded_arg1
))))
3985 || ((p0
= lookup (folded_arg0
,
3986 (safe_hash (folded_arg0
, mode_arg0
)
3987 & HASH_MASK
), mode_arg0
))
3988 && (p1
= lookup (folded_arg1
,
3989 (safe_hash (folded_arg1
, mode_arg0
)
3990 & HASH_MASK
), mode_arg0
))
3991 && p0
->first_same_value
== p1
->first_same_value
))
3993 /* Sadly two equal NaNs are not equivalent. */
3994 if (!HONOR_NANS (mode_arg0
))
3995 return ((code
== EQ
|| code
== LE
|| code
== GE
3996 || code
== LEU
|| code
== GEU
|| code
== UNEQ
3997 || code
== UNLE
|| code
== UNGE
3999 ? true_rtx
: false_rtx
);
4000 /* Take care for the FP compares we can resolve. */
4001 if (code
== UNEQ
|| code
== UNLE
|| code
== UNGE
)
4003 if (code
== LTGT
|| code
== LT
|| code
== GT
)
4007 /* If FOLDED_ARG0 is a register, see if the comparison we are
4008 doing now is either the same as we did before or the reverse
4009 (we only check the reverse if not floating-point). */
4010 else if (GET_CODE (folded_arg0
) == REG
)
4012 int qty
= REG_QTY (REGNO (folded_arg0
));
4014 if (REGNO_QTY_VALID_P (REGNO (folded_arg0
)))
4016 struct qty_table_elem
*ent
= &qty_table
[qty
];
4018 if ((comparison_dominates_p (ent
->comparison_code
, code
)
4019 || (! FLOAT_MODE_P (mode_arg0
)
4020 && comparison_dominates_p (ent
->comparison_code
,
4021 reverse_condition (code
))))
4022 && (rtx_equal_p (ent
->comparison_const
, folded_arg1
)
4024 && rtx_equal_p (ent
->comparison_const
,
4026 || (GET_CODE (folded_arg1
) == REG
4027 && (REG_QTY (REGNO (folded_arg1
)) == ent
->comparison_qty
))))
4028 return (comparison_dominates_p (ent
->comparison_code
, code
)
4029 ? true_rtx
: false_rtx
);
4035 /* If we are comparing against zero, see if the first operand is
4036 equivalent to an IOR with a constant. If so, we may be able to
4037 determine the result of this comparison. */
4039 if (const_arg1
== const0_rtx
)
4041 rtx y
= lookup_as_function (folded_arg0
, IOR
);
4045 && (inner_const
= equiv_constant (XEXP (y
, 1))) != 0
4046 && GET_CODE (inner_const
) == CONST_INT
4047 && INTVAL (inner_const
) != 0)
4049 int sign_bitnum
= GET_MODE_BITSIZE (mode_arg0
) - 1;
4050 int has_sign
= (HOST_BITS_PER_WIDE_INT
>= sign_bitnum
4051 && (INTVAL (inner_const
)
4052 & ((HOST_WIDE_INT
) 1 << sign_bitnum
)));
4053 rtx true_rtx
= const_true_rtx
, false_rtx
= const0_rtx
;
4055 #ifdef FLOAT_STORE_FLAG_VALUE
4056 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
4058 true_rtx
= (CONST_DOUBLE_FROM_REAL_VALUE
4059 (FLOAT_STORE_FLAG_VALUE (mode
), mode
));
4060 false_rtx
= CONST0_RTX (mode
);
4084 new = simplify_relational_operation (code
,
4085 (mode_arg0
!= VOIDmode
4087 : (GET_MODE (const_arg0
4091 ? GET_MODE (const_arg0
4094 : GET_MODE (const_arg1
4097 const_arg0
? const_arg0
: folded_arg0
,
4098 const_arg1
? const_arg1
: folded_arg1
);
4099 #ifdef FLOAT_STORE_FLAG_VALUE
4100 if (new != 0 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
4102 if (new == const0_rtx
)
4103 new = CONST0_RTX (mode
);
4105 new = (CONST_DOUBLE_FROM_REAL_VALUE
4106 (FLOAT_STORE_FLAG_VALUE (mode
), mode
));
4116 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4117 with that LABEL_REF as its second operand. If so, the result is
4118 the first operand of that MINUS. This handles switches with an
4119 ADDR_DIFF_VEC table. */
4120 if (const_arg1
&& GET_CODE (const_arg1
) == LABEL_REF
)
4123 = GET_CODE (folded_arg0
) == MINUS
? folded_arg0
4124 : lookup_as_function (folded_arg0
, MINUS
);
4126 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
4127 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg1
, 0))
4130 /* Now try for a CONST of a MINUS like the above. */
4131 if ((y
= (GET_CODE (folded_arg0
) == CONST
? folded_arg0
4132 : lookup_as_function (folded_arg0
, CONST
))) != 0
4133 && GET_CODE (XEXP (y
, 0)) == MINUS
4134 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
4135 && XEXP (XEXP (XEXP (y
, 0), 1), 0) == XEXP (const_arg1
, 0))
4136 return XEXP (XEXP (y
, 0), 0);
4139 /* Likewise if the operands are in the other order. */
4140 if (const_arg0
&& GET_CODE (const_arg0
) == LABEL_REF
)
4143 = GET_CODE (folded_arg1
) == MINUS
? folded_arg1
4144 : lookup_as_function (folded_arg1
, MINUS
);
4146 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
4147 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg0
, 0))
4150 /* Now try for a CONST of a MINUS like the above. */
4151 if ((y
= (GET_CODE (folded_arg1
) == CONST
? folded_arg1
4152 : lookup_as_function (folded_arg1
, CONST
))) != 0
4153 && GET_CODE (XEXP (y
, 0)) == MINUS
4154 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
4155 && XEXP (XEXP (XEXP (y
, 0), 1), 0) == XEXP (const_arg0
, 0))
4156 return XEXP (XEXP (y
, 0), 0);
4159 /* If second operand is a register equivalent to a negative
4160 CONST_INT, see if we can find a register equivalent to the
4161 positive constant. Make a MINUS if so. Don't do this for
4162 a non-negative constant since we might then alternate between
4163 choosing positive and negative constants. Having the positive
4164 constant previously-used is the more common case. Be sure
4165 the resulting constant is non-negative; if const_arg1 were
4166 the smallest negative number this would overflow: depending
4167 on the mode, this would either just be the same value (and
4168 hence not save anything) or be incorrect. */
4169 if (const_arg1
!= 0 && GET_CODE (const_arg1
) == CONST_INT
4170 && INTVAL (const_arg1
) < 0
4171 /* This used to test
4173 -INTVAL (const_arg1) >= 0
4175 But The Sun V5.0 compilers mis-compiled that test. So
4176 instead we test for the problematic value in a more direct
4177 manner and hope the Sun compilers get it correct. */
4178 && INTVAL (const_arg1
) !=
4179 ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1))
4180 && GET_CODE (folded_arg1
) == REG
)
4182 rtx new_const
= GEN_INT (-INTVAL (const_arg1
));
4184 = lookup (new_const
, safe_hash (new_const
, mode
) & HASH_MASK
,
4188 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
4189 if (GET_CODE (p
->exp
) == REG
)
4190 return simplify_gen_binary (MINUS
, mode
, folded_arg0
,
4191 canon_reg (p
->exp
, NULL_RTX
));
4196 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4197 If so, produce (PLUS Z C2-C). */
4198 if (const_arg1
!= 0 && GET_CODE (const_arg1
) == CONST_INT
)
4200 rtx y
= lookup_as_function (XEXP (x
, 0), PLUS
);
4201 if (y
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
4202 return fold_rtx (plus_constant (copy_rtx (y
),
4203 -INTVAL (const_arg1
)),
4210 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4211 case IOR
: case AND
: case XOR
:
4212 case MULT
: case DIV
: case UDIV
:
4213 case ASHIFT
: case LSHIFTRT
: case ASHIFTRT
:
4214 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4215 is known to be of similar form, we may be able to replace the
4216 operation with a combined operation. This may eliminate the
4217 intermediate operation if every use is simplified in this way.
4218 Note that the similar optimization done by combine.c only works
4219 if the intermediate operation's result has only one reference. */
4221 if (GET_CODE (folded_arg0
) == REG
4222 && const_arg1
&& GET_CODE (const_arg1
) == CONST_INT
)
4225 = (code
== ASHIFT
|| code
== ASHIFTRT
|| code
== LSHIFTRT
);
4226 rtx y
= lookup_as_function (folded_arg0
, code
);
4228 enum rtx_code associate_code
;
4232 || 0 == (inner_const
4233 = equiv_constant (fold_rtx (XEXP (y
, 1), 0)))
4234 || GET_CODE (inner_const
) != CONST_INT
4235 /* If we have compiled a statement like
4236 "if (x == (x & mask1))", and now are looking at
4237 "x & mask2", we will have a case where the first operand
4238 of Y is the same as our first operand. Unless we detect
4239 this case, an infinite loop will result. */
4240 || XEXP (y
, 0) == folded_arg0
)
4243 /* Don't associate these operations if they are a PLUS with the
4244 same constant and it is a power of two. These might be doable
4245 with a pre- or post-increment. Similarly for two subtracts of
4246 identical powers of two with post decrement. */
4248 if (code
== PLUS
&& INTVAL (const_arg1
) == INTVAL (inner_const
)
4249 && ((HAVE_PRE_INCREMENT
4250 && exact_log2 (INTVAL (const_arg1
)) >= 0)
4251 || (HAVE_POST_INCREMENT
4252 && exact_log2 (INTVAL (const_arg1
)) >= 0)
4253 || (HAVE_PRE_DECREMENT
4254 && exact_log2 (- INTVAL (const_arg1
)) >= 0)
4255 || (HAVE_POST_DECREMENT
4256 && exact_log2 (- INTVAL (const_arg1
)) >= 0)))
4259 /* Compute the code used to compose the constants. For example,
4260 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
4263 = (code
== MULT
|| code
== DIV
|| code
== UDIV
? MULT
4264 : is_shift
|| code
== PLUS
|| code
== MINUS
? PLUS
: code
);
4266 new_const
= simplify_binary_operation (associate_code
, mode
,
4267 const_arg1
, inner_const
);
4272 /* If we are associating shift operations, don't let this
4273 produce a shift of the size of the object or larger.
4274 This could occur when we follow a sign-extend by a right
4275 shift on a machine that does a sign-extend as a pair
4278 if (is_shift
&& GET_CODE (new_const
) == CONST_INT
4279 && INTVAL (new_const
) >= GET_MODE_BITSIZE (mode
))
4281 /* As an exception, we can turn an ASHIFTRT of this
4282 form into a shift of the number of bits - 1. */
4283 if (code
== ASHIFTRT
)
4284 new_const
= GEN_INT (GET_MODE_BITSIZE (mode
) - 1);
4289 y
= copy_rtx (XEXP (y
, 0));
4291 /* If Y contains our first operand (the most common way this
4292 can happen is if Y is a MEM), we would do into an infinite
4293 loop if we tried to fold it. So don't in that case. */
4295 if (! reg_mentioned_p (folded_arg0
, y
))
4296 y
= fold_rtx (y
, insn
);
4298 return simplify_gen_binary (code
, mode
, y
, new_const
);
4306 new = simplify_binary_operation (code
, mode
,
4307 const_arg0
? const_arg0
: folded_arg0
,
4308 const_arg1
? const_arg1
: folded_arg1
);
4312 /* (lo_sum (high X) X) is simply X. */
4313 if (code
== LO_SUM
&& const_arg0
!= 0
4314 && GET_CODE (const_arg0
) == HIGH
4315 && rtx_equal_p (XEXP (const_arg0
, 0), const_arg1
))
4321 new = simplify_ternary_operation (code
, mode
, mode_arg0
,
4322 const_arg0
? const_arg0
: folded_arg0
,
4323 const_arg1
? const_arg1
: folded_arg1
,
4324 const_arg2
? const_arg2
: XEXP (x
, 2));
4328 /* Always eliminate CONSTANT_P_RTX at this stage. */
4329 if (code
== CONSTANT_P_RTX
)
4330 return (const_arg0
? const1_rtx
: const0_rtx
);
4334 return new ? new : x
;
4337 /* Return a constant value currently equivalent to X.
4338 Return 0 if we don't know one. */
4344 if (GET_CODE (x
) == REG
4345 && REGNO_QTY_VALID_P (REGNO (x
)))
4347 int x_q
= REG_QTY (REGNO (x
));
4348 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
4350 if (x_ent
->const_rtx
)
4351 x
= gen_lowpart_if_possible (GET_MODE (x
), x_ent
->const_rtx
);
4354 if (x
== 0 || CONSTANT_P (x
))
4357 /* If X is a MEM, try to fold it outside the context of any insn to see if
4358 it might be equivalent to a constant. That handles the case where it
4359 is a constant-pool reference. Then try to look it up in the hash table
4360 in case it is something whose value we have seen before. */
4362 if (GET_CODE (x
) == MEM
)
4364 struct table_elt
*elt
;
4366 x
= fold_rtx (x
, NULL_RTX
);
4370 elt
= lookup (x
, safe_hash (x
, GET_MODE (x
)) & HASH_MASK
, GET_MODE (x
));
4374 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
4375 if (elt
->is_const
&& CONSTANT_P (elt
->exp
))
4382 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4383 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4384 least-significant part of X.
4385 MODE specifies how big a part of X to return.
4387 If the requested operation cannot be done, 0 is returned.
4389 This is similar to gen_lowpart in emit-rtl.c. */
4392 gen_lowpart_if_possible (mode
, x
)
4393 enum machine_mode mode
;
4396 rtx result
= gen_lowpart_common (mode
, x
);
4400 else if (GET_CODE (x
) == MEM
)
4402 /* This is the only other case we handle. */
4406 if (WORDS_BIG_ENDIAN
)
4407 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
4408 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
4409 if (BYTES_BIG_ENDIAN
)
4410 /* Adjust the address so that the address-after-the-data is
4412 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
4413 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
4415 new = adjust_address_nv (x
, mode
, offset
);
4416 if (! memory_address_p (mode
, XEXP (new, 0)))
4425 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
4426 branch. It will be zero if not.
4428 In certain cases, this can cause us to add an equivalence. For example,
4429 if we are following the taken case of
4431 we can add the fact that `i' and '2' are now equivalent.
4433 In any case, we can record that this comparison was passed. If the same
4434 comparison is seen later, we will know its value. */
4437 record_jump_equiv (insn
, taken
)
4441 int cond_known_true
;
4444 enum machine_mode mode
, mode0
, mode1
;
4445 int reversed_nonequality
= 0;
4448 /* Ensure this is the right kind of insn. */
4449 if (! any_condjump_p (insn
))
4451 set
= pc_set (insn
);
4453 /* See if this jump condition is known true or false. */
4455 cond_known_true
= (XEXP (SET_SRC (set
), 2) == pc_rtx
);
4457 cond_known_true
= (XEXP (SET_SRC (set
), 1) == pc_rtx
);
4459 /* Get the type of comparison being done and the operands being compared.
4460 If we had to reverse a non-equality condition, record that fact so we
4461 know that it isn't valid for floating-point. */
4462 code
= GET_CODE (XEXP (SET_SRC (set
), 0));
4463 op0
= fold_rtx (XEXP (XEXP (SET_SRC (set
), 0), 0), insn
);
4464 op1
= fold_rtx (XEXP (XEXP (SET_SRC (set
), 0), 1), insn
);
4466 code
= find_comparison_args (code
, &op0
, &op1
, &mode0
, &mode1
);
4467 if (! cond_known_true
)
4469 code
= reversed_comparison_code_parts (code
, op0
, op1
, insn
);
4471 /* Don't remember if we can't find the inverse. */
4472 if (code
== UNKNOWN
)
4476 /* The mode is the mode of the non-constant. */
4478 if (mode1
!= VOIDmode
)
4481 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
);
4484 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4485 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4486 Make any useful entries we can with that information. Called from
4487 above function and called recursively. */
4490 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
)
4492 enum machine_mode mode
;
4494 int reversed_nonequality
;
4496 unsigned op0_hash
, op1_hash
;
4497 int op0_in_memory
, op1_in_memory
;
4498 struct table_elt
*op0_elt
, *op1_elt
;
4500 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4501 we know that they are also equal in the smaller mode (this is also
4502 true for all smaller modes whether or not there is a SUBREG, but
4503 is not worth testing for with no SUBREG). */
4505 /* Note that GET_MODE (op0) may not equal MODE. */
4506 if (code
== EQ
&& GET_CODE (op0
) == SUBREG
4507 && (GET_MODE_SIZE (GET_MODE (op0
))
4508 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))))
4510 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
4511 rtx tem
= gen_lowpart_if_possible (inner_mode
, op1
);
4513 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
4514 tem
? tem
: gen_rtx_SUBREG (inner_mode
, op1
, 0),
4515 reversed_nonequality
);
4518 if (code
== EQ
&& GET_CODE (op1
) == SUBREG
4519 && (GET_MODE_SIZE (GET_MODE (op1
))
4520 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
)))))
4522 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
4523 rtx tem
= gen_lowpart_if_possible (inner_mode
, op0
);
4525 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
4526 tem
? tem
: gen_rtx_SUBREG (inner_mode
, op0
, 0),
4527 reversed_nonequality
);
4530 /* Similarly, if this is an NE comparison, and either is a SUBREG
4531 making a smaller mode, we know the whole thing is also NE. */
4533 /* Note that GET_MODE (op0) may not equal MODE;
4534 if we test MODE instead, we can get an infinite recursion
4535 alternating between two modes each wider than MODE. */
4537 if (code
== NE
&& GET_CODE (op0
) == SUBREG
4538 && subreg_lowpart_p (op0
)
4539 && (GET_MODE_SIZE (GET_MODE (op0
))
4540 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))))
4542 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
4543 rtx tem
= gen_lowpart_if_possible (inner_mode
, op1
);
4545 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
4546 tem
? tem
: gen_rtx_SUBREG (inner_mode
, op1
, 0),
4547 reversed_nonequality
);
4550 if (code
== NE
&& GET_CODE (op1
) == SUBREG
4551 && subreg_lowpart_p (op1
)
4552 && (GET_MODE_SIZE (GET_MODE (op1
))
4553 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
)))))
4555 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
4556 rtx tem
= gen_lowpart_if_possible (inner_mode
, op0
);
4558 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
4559 tem
? tem
: gen_rtx_SUBREG (inner_mode
, op0
, 0),
4560 reversed_nonequality
);
4563 /* Hash both operands. */
4566 hash_arg_in_memory
= 0;
4567 op0_hash
= HASH (op0
, mode
);
4568 op0_in_memory
= hash_arg_in_memory
;
4574 hash_arg_in_memory
= 0;
4575 op1_hash
= HASH (op1
, mode
);
4576 op1_in_memory
= hash_arg_in_memory
;
4581 /* Look up both operands. */
4582 op0_elt
= lookup (op0
, op0_hash
, mode
);
4583 op1_elt
= lookup (op1
, op1_hash
, mode
);
4585 /* If both operands are already equivalent or if they are not in the
4586 table but are identical, do nothing. */
4587 if ((op0_elt
!= 0 && op1_elt
!= 0
4588 && op0_elt
->first_same_value
== op1_elt
->first_same_value
)
4589 || op0
== op1
|| rtx_equal_p (op0
, op1
))
4592 /* If we aren't setting two things equal all we can do is save this
4593 comparison. Similarly if this is floating-point. In the latter
4594 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4595 If we record the equality, we might inadvertently delete code
4596 whose intent was to change -0 to +0. */
4598 if (code
!= EQ
|| FLOAT_MODE_P (GET_MODE (op0
)))
4600 struct qty_table_elem
*ent
;
4603 /* If we reversed a floating-point comparison, if OP0 is not a
4604 register, or if OP1 is neither a register or constant, we can't
4607 if (GET_CODE (op1
) != REG
)
4608 op1
= equiv_constant (op1
);
4610 if ((reversed_nonequality
&& FLOAT_MODE_P (mode
))
4611 || GET_CODE (op0
) != REG
|| op1
== 0)
4614 /* Put OP0 in the hash table if it isn't already. This gives it a
4615 new quantity number. */
4618 if (insert_regs (op0
, NULL
, 0))
4620 rehash_using_reg (op0
);
4621 op0_hash
= HASH (op0
, mode
);
4623 /* If OP0 is contained in OP1, this changes its hash code
4624 as well. Faster to rehash than to check, except
4625 for the simple case of a constant. */
4626 if (! CONSTANT_P (op1
))
4627 op1_hash
= HASH (op1
,mode
);
4630 op0_elt
= insert (op0
, NULL
, op0_hash
, mode
);
4631 op0_elt
->in_memory
= op0_in_memory
;
4634 qty
= REG_QTY (REGNO (op0
));
4635 ent
= &qty_table
[qty
];
4637 ent
->comparison_code
= code
;
4638 if (GET_CODE (op1
) == REG
)
4640 /* Look it up again--in case op0 and op1 are the same. */
4641 op1_elt
= lookup (op1
, op1_hash
, mode
);
4643 /* Put OP1 in the hash table so it gets a new quantity number. */
4646 if (insert_regs (op1
, NULL
, 0))
4648 rehash_using_reg (op1
);
4649 op1_hash
= HASH (op1
, mode
);
4652 op1_elt
= insert (op1
, NULL
, op1_hash
, mode
);
4653 op1_elt
->in_memory
= op1_in_memory
;
4656 ent
->comparison_const
= NULL_RTX
;
4657 ent
->comparison_qty
= REG_QTY (REGNO (op1
));
4661 ent
->comparison_const
= op1
;
4662 ent
->comparison_qty
= -1;
4668 /* If either side is still missing an equivalence, make it now,
4669 then merge the equivalences. */
4673 if (insert_regs (op0
, NULL
, 0))
4675 rehash_using_reg (op0
);
4676 op0_hash
= HASH (op0
, mode
);
4679 op0_elt
= insert (op0
, NULL
, op0_hash
, mode
);
4680 op0_elt
->in_memory
= op0_in_memory
;
4685 if (insert_regs (op1
, NULL
, 0))
4687 rehash_using_reg (op1
);
4688 op1_hash
= HASH (op1
, mode
);
4691 op1_elt
= insert (op1
, NULL
, op1_hash
, mode
);
4692 op1_elt
->in_memory
= op1_in_memory
;
4695 merge_equiv_classes (op0_elt
, op1_elt
);
4696 last_jump_equiv_class
= op0_elt
;
4699 /* CSE processing for one instruction.
4700 First simplify sources and addresses of all assignments
4701 in the instruction, using previously-computed equivalents values.
4702 Then install the new sources and destinations in the table
4703 of available values.
4705 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4706 the insn. It means that INSN is inside libcall block. In this
4707 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4709 /* Data on one SET contained in the instruction. */
4713 /* The SET rtx itself. */
4715 /* The SET_SRC of the rtx (the original value, if it is changing). */
4717 /* The hash-table element for the SET_SRC of the SET. */
4718 struct table_elt
*src_elt
;
4719 /* Hash value for the SET_SRC. */
4721 /* Hash value for the SET_DEST. */
4723 /* The SET_DEST, with SUBREG, etc., stripped. */
4725 /* Nonzero if the SET_SRC is in memory. */
4727 /* Nonzero if the SET_SRC contains something
4728 whose value cannot be predicted and understood. */
4730 /* Original machine mode, in case it becomes a CONST_INT. */
4731 enum machine_mode mode
;
4732 /* A constant equivalent for SET_SRC, if any. */
4734 /* Original SET_SRC value used for libcall notes. */
4736 /* Hash value of constant equivalent for SET_SRC. */
4737 unsigned src_const_hash
;
4738 /* Table entry for constant equivalent for SET_SRC, if any. */
4739 struct table_elt
*src_const_elt
;
4743 cse_insn (insn
, libcall_insn
)
4747 rtx x
= PATTERN (insn
);
4753 /* Records what this insn does to set CC0. */
4754 rtx this_insn_cc0
= 0;
4755 enum machine_mode this_insn_cc0_mode
= VOIDmode
;
4759 struct table_elt
*src_eqv_elt
= 0;
4760 int src_eqv_volatile
= 0;
4761 int src_eqv_in_memory
= 0;
4762 unsigned src_eqv_hash
= 0;
4764 struct set
*sets
= (struct set
*) 0;
4768 /* Find all the SETs and CLOBBERs in this instruction.
4769 Record all the SETs in the array `set' and count them.
4770 Also determine whether there is a CLOBBER that invalidates
4771 all memory references, or all references at varying addresses. */
4773 if (GET_CODE (insn
) == CALL_INSN
)
4775 for (tem
= CALL_INSN_FUNCTION_USAGE (insn
); tem
; tem
= XEXP (tem
, 1))
4777 if (GET_CODE (XEXP (tem
, 0)) == CLOBBER
)
4778 invalidate (SET_DEST (XEXP (tem
, 0)), VOIDmode
);
4779 XEXP (tem
, 0) = canon_reg (XEXP (tem
, 0), insn
);
4783 if (GET_CODE (x
) == SET
)
4785 sets
= (struct set
*) alloca (sizeof (struct set
));
4788 /* Ignore SETs that are unconditional jumps.
4789 They never need cse processing, so this does not hurt.
4790 The reason is not efficiency but rather
4791 so that we can test at the end for instructions
4792 that have been simplified to unconditional jumps
4793 and not be misled by unchanged instructions
4794 that were unconditional jumps to begin with. */
4795 if (SET_DEST (x
) == pc_rtx
4796 && GET_CODE (SET_SRC (x
)) == LABEL_REF
)
4799 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4800 The hard function value register is used only once, to copy to
4801 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4802 Ensure we invalidate the destination register. On the 80386 no
4803 other code would invalidate it since it is a fixed_reg.
4804 We need not check the return of apply_change_group; see canon_reg. */
4806 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4808 canon_reg (SET_SRC (x
), insn
);
4809 apply_change_group ();
4810 fold_rtx (SET_SRC (x
), insn
);
4811 invalidate (SET_DEST (x
), VOIDmode
);
4816 else if (GET_CODE (x
) == PARALLEL
)
4818 int lim
= XVECLEN (x
, 0);
4820 sets
= (struct set
*) alloca (lim
* sizeof (struct set
));
4822 /* Find all regs explicitly clobbered in this insn,
4823 and ensure they are not replaced with any other regs
4824 elsewhere in this insn.
4825 When a reg that is clobbered is also used for input,
4826 we should presume that that is for a reason,
4827 and we should not substitute some other register
4828 which is not supposed to be clobbered.
4829 Therefore, this loop cannot be merged into the one below
4830 because a CALL may precede a CLOBBER and refer to the
4831 value clobbered. We must not let a canonicalization do
4832 anything in that case. */
4833 for (i
= 0; i
< lim
; i
++)
4835 rtx y
= XVECEXP (x
, 0, i
);
4836 if (GET_CODE (y
) == CLOBBER
)
4838 rtx clobbered
= XEXP (y
, 0);
4840 if (GET_CODE (clobbered
) == REG
4841 || GET_CODE (clobbered
) == SUBREG
)
4842 invalidate (clobbered
, VOIDmode
);
4843 else if (GET_CODE (clobbered
) == STRICT_LOW_PART
4844 || GET_CODE (clobbered
) == ZERO_EXTRACT
)
4845 invalidate (XEXP (clobbered
, 0), GET_MODE (clobbered
));
4849 for (i
= 0; i
< lim
; i
++)
4851 rtx y
= XVECEXP (x
, 0, i
);
4852 if (GET_CODE (y
) == SET
)
4854 /* As above, we ignore unconditional jumps and call-insns and
4855 ignore the result of apply_change_group. */
4856 if (GET_CODE (SET_SRC (y
)) == CALL
)
4858 canon_reg (SET_SRC (y
), insn
);
4859 apply_change_group ();
4860 fold_rtx (SET_SRC (y
), insn
);
4861 invalidate (SET_DEST (y
), VOIDmode
);
4863 else if (SET_DEST (y
) == pc_rtx
4864 && GET_CODE (SET_SRC (y
)) == LABEL_REF
)
4867 sets
[n_sets
++].rtl
= y
;
4869 else if (GET_CODE (y
) == CLOBBER
)
4871 /* If we clobber memory, canon the address.
4872 This does nothing when a register is clobbered
4873 because we have already invalidated the reg. */
4874 if (GET_CODE (XEXP (y
, 0)) == MEM
)
4875 canon_reg (XEXP (y
, 0), NULL_RTX
);
4877 else if (GET_CODE (y
) == USE
4878 && ! (GET_CODE (XEXP (y
, 0)) == REG
4879 && REGNO (XEXP (y
, 0)) < FIRST_PSEUDO_REGISTER
))
4880 canon_reg (y
, NULL_RTX
);
4881 else if (GET_CODE (y
) == CALL
)
4883 /* The result of apply_change_group can be ignored; see
4885 canon_reg (y
, insn
);
4886 apply_change_group ();
4891 else if (GET_CODE (x
) == CLOBBER
)
4893 if (GET_CODE (XEXP (x
, 0)) == MEM
)
4894 canon_reg (XEXP (x
, 0), NULL_RTX
);
4897 /* Canonicalize a USE of a pseudo register or memory location. */
4898 else if (GET_CODE (x
) == USE
4899 && ! (GET_CODE (XEXP (x
, 0)) == REG
4900 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
))
4901 canon_reg (XEXP (x
, 0), NULL_RTX
);
4902 else if (GET_CODE (x
) == CALL
)
4904 /* The result of apply_change_group can be ignored; see canon_reg. */
4905 canon_reg (x
, insn
);
4906 apply_change_group ();
4910 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4911 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4912 is handled specially for this case, and if it isn't set, then there will
4913 be no equivalence for the destination. */
4914 if (n_sets
== 1 && REG_NOTES (insn
) != 0
4915 && (tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)) != 0
4916 && (! rtx_equal_p (XEXP (tem
, 0), SET_SRC (sets
[0].rtl
))
4917 || GET_CODE (SET_DEST (sets
[0].rtl
)) == STRICT_LOW_PART
))
4918 src_eqv
= canon_reg (XEXP (tem
, 0), NULL_RTX
);
4920 /* Canonicalize sources and addresses of destinations.
4921 We do this in a separate pass to avoid problems when a MATCH_DUP is
4922 present in the insn pattern. In that case, we want to ensure that
4923 we don't break the duplicate nature of the pattern. So we will replace
4924 both operands at the same time. Otherwise, we would fail to find an
4925 equivalent substitution in the loop calling validate_change below.
4927 We used to suppress canonicalization of DEST if it appears in SRC,
4928 but we don't do this any more. */
4930 for (i
= 0; i
< n_sets
; i
++)
4932 rtx dest
= SET_DEST (sets
[i
].rtl
);
4933 rtx src
= SET_SRC (sets
[i
].rtl
);
4934 rtx
new = canon_reg (src
, insn
);
4937 sets
[i
].orig_src
= src
;
4938 if ((GET_CODE (new) == REG
&& GET_CODE (src
) == REG
4939 && ((REGNO (new) < FIRST_PSEUDO_REGISTER
)
4940 != (REGNO (src
) < FIRST_PSEUDO_REGISTER
)))
4941 || (insn_code
= recog_memoized (insn
)) < 0
4942 || insn_data
[insn_code
].n_dups
> 0)
4943 validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new, 1);
4945 SET_SRC (sets
[i
].rtl
) = new;
4947 if (GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == SIGN_EXTRACT
)
4949 validate_change (insn
, &XEXP (dest
, 1),
4950 canon_reg (XEXP (dest
, 1), insn
), 1);
4951 validate_change (insn
, &XEXP (dest
, 2),
4952 canon_reg (XEXP (dest
, 2), insn
), 1);
4955 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
4956 || GET_CODE (dest
) == ZERO_EXTRACT
4957 || GET_CODE (dest
) == SIGN_EXTRACT
)
4958 dest
= XEXP (dest
, 0);
4960 if (GET_CODE (dest
) == MEM
)
4961 canon_reg (dest
, insn
);
4964 /* Now that we have done all the replacements, we can apply the change
4965 group and see if they all work. Note that this will cause some
4966 canonicalizations that would have worked individually not to be applied
4967 because some other canonicalization didn't work, but this should not
4970 The result of apply_change_group can be ignored; see canon_reg. */
4972 apply_change_group ();
4974 /* Set sets[i].src_elt to the class each source belongs to.
4975 Detect assignments from or to volatile things
4976 and set set[i] to zero so they will be ignored
4977 in the rest of this function.
4979 Nothing in this loop changes the hash table or the register chains. */
4981 for (i
= 0; i
< n_sets
; i
++)
4985 struct table_elt
*elt
= 0, *p
;
4986 enum machine_mode mode
;
4989 rtx src_related
= 0;
4990 struct table_elt
*src_const_elt
= 0;
4991 int src_cost
= MAX_COST
;
4992 int src_eqv_cost
= MAX_COST
;
4993 int src_folded_cost
= MAX_COST
;
4994 int src_related_cost
= MAX_COST
;
4995 int src_elt_cost
= MAX_COST
;
4996 int src_regcost
= MAX_COST
;
4997 int src_eqv_regcost
= MAX_COST
;
4998 int src_folded_regcost
= MAX_COST
;
4999 int src_related_regcost
= MAX_COST
;
5000 int src_elt_regcost
= MAX_COST
;
5001 /* Set non-zero if we need to call force_const_mem on with the
5002 contents of src_folded before using it. */
5003 int src_folded_force_flag
= 0;
5005 dest
= SET_DEST (sets
[i
].rtl
);
5006 src
= SET_SRC (sets
[i
].rtl
);
5008 /* If SRC is a constant that has no machine mode,
5009 hash it with the destination's machine mode.
5010 This way we can keep different modes separate. */
5012 mode
= GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
5013 sets
[i
].mode
= mode
;
5017 enum machine_mode eqvmode
= mode
;
5018 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5019 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
5021 hash_arg_in_memory
= 0;
5022 src_eqv
= fold_rtx (src_eqv
, insn
);
5023 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
5025 /* Find the equivalence class for the equivalent expression. */
5028 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, eqvmode
);
5030 src_eqv_volatile
= do_not_record
;
5031 src_eqv_in_memory
= hash_arg_in_memory
;
5034 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5035 value of the INNER register, not the destination. So it is not
5036 a valid substitution for the source. But save it for later. */
5037 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5040 src_eqv_here
= src_eqv
;
5042 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5043 simplified result, which may not necessarily be valid. */
5044 src_folded
= fold_rtx (src
, insn
);
5047 /* ??? This caused bad code to be generated for the m68k port with -O2.
5048 Suppose src is (CONST_INT -1), and that after truncation src_folded
5049 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5050 At the end we will add src and src_const to the same equivalence
5051 class. We now have 3 and -1 on the same equivalence class. This
5052 causes later instructions to be mis-optimized. */
5053 /* If storing a constant in a bitfield, pre-truncate the constant
5054 so we will be able to record it later. */
5055 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
5056 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
5058 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
5060 if (GET_CODE (src
) == CONST_INT
5061 && GET_CODE (width
) == CONST_INT
5062 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
5063 && (INTVAL (src
) & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
5065 = GEN_INT (INTVAL (src
) & (((HOST_WIDE_INT
) 1
5066 << INTVAL (width
)) - 1));
5070 /* Compute SRC's hash code, and also notice if it
5071 should not be recorded at all. In that case,
5072 prevent any further processing of this assignment. */
5074 hash_arg_in_memory
= 0;
5077 sets
[i
].src_hash
= HASH (src
, mode
);
5078 sets
[i
].src_volatile
= do_not_record
;
5079 sets
[i
].src_in_memory
= hash_arg_in_memory
;
5081 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5082 a pseudo, do not record SRC. Using SRC as a replacement for
5083 anything else will be incorrect in that situation. Note that
5084 this usually occurs only for stack slots, in which case all the
5085 RTL would be referring to SRC, so we don't lose any optimization
5086 opportunities by not having SRC in the hash table. */
5088 if (GET_CODE (src
) == MEM
5089 && find_reg_note (insn
, REG_EQUIV
, NULL_RTX
) != 0
5090 && GET_CODE (dest
) == REG
5091 && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
5092 sets
[i
].src_volatile
= 1;
5095 /* It is no longer clear why we used to do this, but it doesn't
5096 appear to still be needed. So let's try without it since this
5097 code hurts cse'ing widened ops. */
5098 /* If source is a perverse subreg (such as QI treated as an SI),
5099 treat it as volatile. It may do the work of an SI in one context
5100 where the extra bits are not being used, but cannot replace an SI
5102 if (GET_CODE (src
) == SUBREG
5103 && (GET_MODE_SIZE (GET_MODE (src
))
5104 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))))
5105 sets
[i
].src_volatile
= 1;
5108 /* Locate all possible equivalent forms for SRC. Try to replace
5109 SRC in the insn with each cheaper equivalent.
5111 We have the following types of equivalents: SRC itself, a folded
5112 version, a value given in a REG_EQUAL note, or a value related
5115 Each of these equivalents may be part of an additional class
5116 of equivalents (if more than one is in the table, they must be in
5117 the same class; we check for this).
5119 If the source is volatile, we don't do any table lookups.
5121 We note any constant equivalent for possible later use in a
5124 if (!sets
[i
].src_volatile
)
5125 elt
= lookup (src
, sets
[i
].src_hash
, mode
);
5127 sets
[i
].src_elt
= elt
;
5129 if (elt
&& src_eqv_here
&& src_eqv_elt
)
5131 if (elt
->first_same_value
!= src_eqv_elt
->first_same_value
)
5133 /* The REG_EQUAL is indicating that two formerly distinct
5134 classes are now equivalent. So merge them. */
5135 merge_equiv_classes (elt
, src_eqv_elt
);
5136 src_eqv_hash
= HASH (src_eqv
, elt
->mode
);
5137 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, elt
->mode
);
5143 else if (src_eqv_elt
)
5146 /* Try to find a constant somewhere and record it in `src_const'.
5147 Record its table element, if any, in `src_const_elt'. Look in
5148 any known equivalences first. (If the constant is not in the
5149 table, also set `sets[i].src_const_hash'). */
5151 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
5155 src_const_elt
= elt
;
5160 && (CONSTANT_P (src_folded
)
5161 /* Consider (minus (label_ref L1) (label_ref L2)) as
5162 "constant" here so we will record it. This allows us
5163 to fold switch statements when an ADDR_DIFF_VEC is used. */
5164 || (GET_CODE (src_folded
) == MINUS
5165 && GET_CODE (XEXP (src_folded
, 0)) == LABEL_REF
5166 && GET_CODE (XEXP (src_folded
, 1)) == LABEL_REF
)))
5167 src_const
= src_folded
, src_const_elt
= elt
;
5168 else if (src_const
== 0 && src_eqv_here
&& CONSTANT_P (src_eqv_here
))
5169 src_const
= src_eqv_here
, src_const_elt
= src_eqv_elt
;
5171 /* If we don't know if the constant is in the table, get its
5172 hash code and look it up. */
5173 if (src_const
&& src_const_elt
== 0)
5175 sets
[i
].src_const_hash
= HASH (src_const
, mode
);
5176 src_const_elt
= lookup (src_const
, sets
[i
].src_const_hash
, mode
);
5179 sets
[i
].src_const
= src_const
;
5180 sets
[i
].src_const_elt
= src_const_elt
;
5182 /* If the constant and our source are both in the table, mark them as
5183 equivalent. Otherwise, if a constant is in the table but the source
5184 isn't, set ELT to it. */
5185 if (src_const_elt
&& elt
5186 && src_const_elt
->first_same_value
!= elt
->first_same_value
)
5187 merge_equiv_classes (elt
, src_const_elt
);
5188 else if (src_const_elt
&& elt
== 0)
5189 elt
= src_const_elt
;
5191 /* See if there is a register linearly related to a constant
5192 equivalent of SRC. */
5194 && (GET_CODE (src_const
) == CONST
5195 || (src_const_elt
&& src_const_elt
->related_value
!= 0)))
5197 src_related
= use_related_value (src_const
, src_const_elt
);
5200 struct table_elt
*src_related_elt
5201 = lookup (src_related
, HASH (src_related
, mode
), mode
);
5202 if (src_related_elt
&& elt
)
5204 if (elt
->first_same_value
5205 != src_related_elt
->first_same_value
)
5206 /* This can occur when we previously saw a CONST
5207 involving a SYMBOL_REF and then see the SYMBOL_REF
5208 twice. Merge the involved classes. */
5209 merge_equiv_classes (elt
, src_related_elt
);
5212 src_related_elt
= 0;
5214 else if (src_related_elt
&& elt
== 0)
5215 elt
= src_related_elt
;
5219 /* See if we have a CONST_INT that is already in a register in a
5222 if (src_const
&& src_related
== 0 && GET_CODE (src_const
) == CONST_INT
5223 && GET_MODE_CLASS (mode
) == MODE_INT
5224 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
5226 enum machine_mode wider_mode
;
5228 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
5229 GET_MODE_BITSIZE (wider_mode
) <= BITS_PER_WORD
5230 && src_related
== 0;
5231 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
5233 struct table_elt
*const_elt
5234 = lookup (src_const
, HASH (src_const
, wider_mode
), wider_mode
);
5239 for (const_elt
= const_elt
->first_same_value
;
5240 const_elt
; const_elt
= const_elt
->next_same_value
)
5241 if (GET_CODE (const_elt
->exp
) == REG
)
5243 src_related
= gen_lowpart_if_possible (mode
,
5250 /* Another possibility is that we have an AND with a constant in
5251 a mode narrower than a word. If so, it might have been generated
5252 as part of an "if" which would narrow the AND. If we already
5253 have done the AND in a wider mode, we can use a SUBREG of that
5256 if (flag_expensive_optimizations
&& ! src_related
5257 && GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 1)) == CONST_INT
5258 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5260 enum machine_mode tmode
;
5261 rtx new_and
= gen_rtx_AND (VOIDmode
, NULL_RTX
, XEXP (src
, 1));
5263 for (tmode
= GET_MODE_WIDER_MODE (mode
);
5264 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
5265 tmode
= GET_MODE_WIDER_MODE (tmode
))
5267 rtx inner
= gen_lowpart_if_possible (tmode
, XEXP (src
, 0));
5268 struct table_elt
*larger_elt
;
5272 PUT_MODE (new_and
, tmode
);
5273 XEXP (new_and
, 0) = inner
;
5274 larger_elt
= lookup (new_and
, HASH (new_and
, tmode
), tmode
);
5275 if (larger_elt
== 0)
5278 for (larger_elt
= larger_elt
->first_same_value
;
5279 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
5280 if (GET_CODE (larger_elt
->exp
) == REG
)
5283 = gen_lowpart_if_possible (mode
, larger_elt
->exp
);
5293 #ifdef LOAD_EXTEND_OP
5294 /* See if a MEM has already been loaded with a widening operation;
5295 if it has, we can use a subreg of that. Many CISC machines
5296 also have such operations, but this is only likely to be
5297 beneficial these machines. */
5299 if (flag_expensive_optimizations
&& src_related
== 0
5300 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5301 && GET_MODE_CLASS (mode
) == MODE_INT
5302 && GET_CODE (src
) == MEM
&& ! do_not_record
5303 && LOAD_EXTEND_OP (mode
) != NIL
)
5305 enum machine_mode tmode
;
5307 /* Set what we are trying to extend and the operation it might
5308 have been extended with. */
5309 PUT_CODE (memory_extend_rtx
, LOAD_EXTEND_OP (mode
));
5310 XEXP (memory_extend_rtx
, 0) = src
;
5312 for (tmode
= GET_MODE_WIDER_MODE (mode
);
5313 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
5314 tmode
= GET_MODE_WIDER_MODE (tmode
))
5316 struct table_elt
*larger_elt
;
5318 PUT_MODE (memory_extend_rtx
, tmode
);
5319 larger_elt
= lookup (memory_extend_rtx
,
5320 HASH (memory_extend_rtx
, tmode
), tmode
);
5321 if (larger_elt
== 0)
5324 for (larger_elt
= larger_elt
->first_same_value
;
5325 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
5326 if (GET_CODE (larger_elt
->exp
) == REG
)
5328 src_related
= gen_lowpart_if_possible (mode
,
5337 #endif /* LOAD_EXTEND_OP */
5339 if (src
== src_folded
)
5342 /* At this point, ELT, if non-zero, points to a class of expressions
5343 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5344 and SRC_RELATED, if non-zero, each contain additional equivalent
5345 expressions. Prune these latter expressions by deleting expressions
5346 already in the equivalence class.
5348 Check for an equivalent identical to the destination. If found,
5349 this is the preferred equivalent since it will likely lead to
5350 elimination of the insn. Indicate this by placing it in
5354 elt
= elt
->first_same_value
;
5355 for (p
= elt
; p
; p
= p
->next_same_value
)
5357 enum rtx_code code
= GET_CODE (p
->exp
);
5359 /* If the expression is not valid, ignore it. Then we do not
5360 have to check for validity below. In most cases, we can use
5361 `rtx_equal_p', since canonicalization has already been done. */
5362 if (code
!= REG
&& ! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
5365 /* Also skip paradoxical subregs, unless that's what we're
5368 && (GET_MODE_SIZE (GET_MODE (p
->exp
))
5369 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p
->exp
))))
5371 && GET_CODE (src
) == SUBREG
5372 && GET_MODE (src
) == GET_MODE (p
->exp
)
5373 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5374 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p
->exp
))))))
5377 if (src
&& GET_CODE (src
) == code
&& rtx_equal_p (src
, p
->exp
))
5379 else if (src_folded
&& GET_CODE (src_folded
) == code
5380 && rtx_equal_p (src_folded
, p
->exp
))
5382 else if (src_eqv_here
&& GET_CODE (src_eqv_here
) == code
5383 && rtx_equal_p (src_eqv_here
, p
->exp
))
5385 else if (src_related
&& GET_CODE (src_related
) == code
5386 && rtx_equal_p (src_related
, p
->exp
))
5389 /* This is the same as the destination of the insns, we want
5390 to prefer it. Copy it to src_related. The code below will
5391 then give it a negative cost. */
5392 if (GET_CODE (dest
) == code
&& rtx_equal_p (p
->exp
, dest
))
5396 /* Find the cheapest valid equivalent, trying all the available
5397 possibilities. Prefer items not in the hash table to ones
5398 that are when they are equal cost. Note that we can never
5399 worsen an insn as the current contents will also succeed.
5400 If we find an equivalent identical to the destination, use it as best,
5401 since this insn will probably be eliminated in that case. */
5404 if (rtx_equal_p (src
, dest
))
5405 src_cost
= src_regcost
= -1;
5408 src_cost
= COST (src
);
5409 src_regcost
= approx_reg_cost (src
);
5415 if (rtx_equal_p (src_eqv_here
, dest
))
5416 src_eqv_cost
= src_eqv_regcost
= -1;
5419 src_eqv_cost
= COST (src_eqv_here
);
5420 src_eqv_regcost
= approx_reg_cost (src_eqv_here
);
5426 if (rtx_equal_p (src_folded
, dest
))
5427 src_folded_cost
= src_folded_regcost
= -1;
5430 src_folded_cost
= COST (src_folded
);
5431 src_folded_regcost
= approx_reg_cost (src_folded
);
5437 if (rtx_equal_p (src_related
, dest
))
5438 src_related_cost
= src_related_regcost
= -1;
5441 src_related_cost
= COST (src_related
);
5442 src_related_regcost
= approx_reg_cost (src_related
);
5446 /* If this was an indirect jump insn, a known label will really be
5447 cheaper even though it looks more expensive. */
5448 if (dest
== pc_rtx
&& src_const
&& GET_CODE (src_const
) == LABEL_REF
)
5449 src_folded
= src_const
, src_folded_cost
= src_folded_regcost
= -1;
5451 /* Terminate loop when replacement made. This must terminate since
5452 the current contents will be tested and will always be valid. */
5457 /* Skip invalid entries. */
5458 while (elt
&& GET_CODE (elt
->exp
) != REG
5459 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
5460 elt
= elt
->next_same_value
;
5462 /* A paradoxical subreg would be bad here: it'll be the right
5463 size, but later may be adjusted so that the upper bits aren't
5464 what we want. So reject it. */
5466 && GET_CODE (elt
->exp
) == SUBREG
5467 && (GET_MODE_SIZE (GET_MODE (elt
->exp
))
5468 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt
->exp
))))
5469 /* It is okay, though, if the rtx we're trying to match
5470 will ignore any of the bits we can't predict. */
5472 && GET_CODE (src
) == SUBREG
5473 && GET_MODE (src
) == GET_MODE (elt
->exp
)
5474 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5475 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt
->exp
))))))
5477 elt
= elt
->next_same_value
;
5483 src_elt_cost
= elt
->cost
;
5484 src_elt_regcost
= elt
->regcost
;
5487 /* Find cheapest and skip it for the next time. For items
5488 of equal cost, use this order:
5489 src_folded, src, src_eqv, src_related and hash table entry. */
5491 && preferrable (src_folded_cost
, src_folded_regcost
,
5492 src_cost
, src_regcost
) <= 0
5493 && preferrable (src_folded_cost
, src_folded_regcost
,
5494 src_eqv_cost
, src_eqv_regcost
) <= 0
5495 && preferrable (src_folded_cost
, src_folded_regcost
,
5496 src_related_cost
, src_related_regcost
) <= 0
5497 && preferrable (src_folded_cost
, src_folded_regcost
,
5498 src_elt_cost
, src_elt_regcost
) <= 0)
5500 trial
= src_folded
, src_folded_cost
= MAX_COST
;
5501 if (src_folded_force_flag
)
5502 trial
= force_const_mem (mode
, trial
);
5505 && preferrable (src_cost
, src_regcost
,
5506 src_eqv_cost
, src_eqv_regcost
) <= 0
5507 && preferrable (src_cost
, src_regcost
,
5508 src_related_cost
, src_related_regcost
) <= 0
5509 && preferrable (src_cost
, src_regcost
,
5510 src_elt_cost
, src_elt_regcost
) <= 0)
5511 trial
= src
, src_cost
= MAX_COST
;
5512 else if (src_eqv_here
5513 && preferrable (src_eqv_cost
, src_eqv_regcost
,
5514 src_related_cost
, src_related_regcost
) <= 0
5515 && preferrable (src_eqv_cost
, src_eqv_regcost
,
5516 src_elt_cost
, src_elt_regcost
) <= 0)
5517 trial
= copy_rtx (src_eqv_here
), src_eqv_cost
= MAX_COST
;
5518 else if (src_related
5519 && preferrable (src_related_cost
, src_related_regcost
,
5520 src_elt_cost
, src_elt_regcost
) <= 0)
5521 trial
= copy_rtx (src_related
), src_related_cost
= MAX_COST
;
5524 trial
= copy_rtx (elt
->exp
);
5525 elt
= elt
->next_same_value
;
5526 src_elt_cost
= MAX_COST
;
5529 /* We don't normally have an insn matching (set (pc) (pc)), so
5530 check for this separately here. We will delete such an
5533 For other cases such as a table jump or conditional jump
5534 where we know the ultimate target, go ahead and replace the
5535 operand. While that may not make a valid insn, we will
5536 reemit the jump below (and also insert any necessary
5538 if (n_sets
== 1 && dest
== pc_rtx
5540 || (GET_CODE (trial
) == LABEL_REF
5541 && ! condjump_p (insn
))))
5543 SET_SRC (sets
[i
].rtl
) = trial
;
5544 cse_jumps_altered
= 1;
5548 /* Look for a substitution that makes a valid insn. */
5549 else if (validate_change (insn
, &SET_SRC (sets
[i
].rtl
), trial
, 0))
5551 /* If we just made a substitution inside a libcall, then we
5552 need to make the same substitution in any notes attached
5553 to the RETVAL insn. */
5555 && (GET_CODE (sets
[i
].orig_src
) == REG
5556 || GET_CODE (sets
[i
].orig_src
) == SUBREG
5557 || GET_CODE (sets
[i
].orig_src
) == MEM
))
5558 replace_rtx (REG_NOTES (libcall_insn
), sets
[i
].orig_src
,
5559 canon_reg (SET_SRC (sets
[i
].rtl
), insn
));
5561 /* The result of apply_change_group can be ignored; see
5564 validate_change (insn
, &SET_SRC (sets
[i
].rtl
),
5565 canon_reg (SET_SRC (sets
[i
].rtl
), insn
),
5567 apply_change_group ();
5571 /* If we previously found constant pool entries for
5572 constants and this is a constant, try making a
5573 pool entry. Put it in src_folded unless we already have done
5574 this since that is where it likely came from. */
5576 else if (constant_pool_entries_cost
5577 && CONSTANT_P (trial
)
5578 /* Reject cases that will abort in decode_rtx_const.
5579 On the alpha when simplifying a switch, we get
5580 (const (truncate (minus (label_ref) (label_ref)))). */
5581 && ! (GET_CODE (trial
) == CONST
5582 && GET_CODE (XEXP (trial
, 0)) == TRUNCATE
)
5583 /* Likewise on IA-64, except without the truncate. */
5584 && ! (GET_CODE (trial
) == CONST
5585 && GET_CODE (XEXP (trial
, 0)) == MINUS
5586 && GET_CODE (XEXP (XEXP (trial
, 0), 0)) == LABEL_REF
5587 && GET_CODE (XEXP (XEXP (trial
, 0), 1)) == LABEL_REF
)
5589 || (GET_CODE (src_folded
) != MEM
5590 && ! src_folded_force_flag
))
5591 && GET_MODE_CLASS (mode
) != MODE_CC
5592 && mode
!= VOIDmode
)
5594 src_folded_force_flag
= 1;
5596 src_folded_cost
= constant_pool_entries_cost
;
5600 src
= SET_SRC (sets
[i
].rtl
);
5602 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5603 However, there is an important exception: If both are registers
5604 that are not the head of their equivalence class, replace SET_SRC
5605 with the head of the class. If we do not do this, we will have
5606 both registers live over a portion of the basic block. This way,
5607 their lifetimes will likely abut instead of overlapping. */
5608 if (GET_CODE (dest
) == REG
5609 && REGNO_QTY_VALID_P (REGNO (dest
)))
5611 int dest_q
= REG_QTY (REGNO (dest
));
5612 struct qty_table_elem
*dest_ent
= &qty_table
[dest_q
];
5614 if (dest_ent
->mode
== GET_MODE (dest
)
5615 && dest_ent
->first_reg
!= REGNO (dest
)
5616 && GET_CODE (src
) == REG
&& REGNO (src
) == REGNO (dest
)
5617 /* Don't do this if the original insn had a hard reg as
5618 SET_SRC or SET_DEST. */
5619 && (GET_CODE (sets
[i
].src
) != REG
5620 || REGNO (sets
[i
].src
) >= FIRST_PSEUDO_REGISTER
)
5621 && (GET_CODE (dest
) != REG
|| REGNO (dest
) >= FIRST_PSEUDO_REGISTER
))
5622 /* We can't call canon_reg here because it won't do anything if
5623 SRC is a hard register. */
5625 int src_q
= REG_QTY (REGNO (src
));
5626 struct qty_table_elem
*src_ent
= &qty_table
[src_q
];
5627 int first
= src_ent
->first_reg
;
5629 = (first
>= FIRST_PSEUDO_REGISTER
5630 ? regno_reg_rtx
[first
] : gen_rtx_REG (GET_MODE (src
), first
));
5632 /* We must use validate-change even for this, because this
5633 might be a special no-op instruction, suitable only to
5635 if (validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new_src
, 0))
5638 /* If we had a constant that is cheaper than what we are now
5639 setting SRC to, use that constant. We ignored it when we
5640 thought we could make this into a no-op. */
5641 if (src_const
&& COST (src_const
) < COST (src
)
5642 && validate_change (insn
, &SET_SRC (sets
[i
].rtl
),
5649 /* If we made a change, recompute SRC values. */
5650 if (src
!= sets
[i
].src
)
5654 hash_arg_in_memory
= 0;
5656 sets
[i
].src_hash
= HASH (src
, mode
);
5657 sets
[i
].src_volatile
= do_not_record
;
5658 sets
[i
].src_in_memory
= hash_arg_in_memory
;
5659 sets
[i
].src_elt
= lookup (src
, sets
[i
].src_hash
, mode
);
5662 /* If this is a single SET, we are setting a register, and we have an
5663 equivalent constant, we want to add a REG_NOTE. We don't want
5664 to write a REG_EQUAL note for a constant pseudo since verifying that
5665 that pseudo hasn't been eliminated is a pain. Such a note also
5666 won't help anything.
5668 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5669 which can be created for a reference to a compile time computable
5670 entry in a jump table. */
5672 if (n_sets
== 1 && src_const
&& GET_CODE (dest
) == REG
5673 && GET_CODE (src_const
) != REG
5674 && ! (GET_CODE (src_const
) == CONST
5675 && GET_CODE (XEXP (src_const
, 0)) == MINUS
5676 && GET_CODE (XEXP (XEXP (src_const
, 0), 0)) == LABEL_REF
5677 && GET_CODE (XEXP (XEXP (src_const
, 0), 1)) == LABEL_REF
))
5679 /* Make sure that the rtx is not shared with any other insn. */
5680 src_const
= copy_rtx (src_const
);
5682 /* Record the actual constant value in a REG_EQUAL note, making
5683 a new one if one does not already exist. */
5684 set_unique_reg_note (insn
, REG_EQUAL
, src_const
);
5686 /* If storing a constant value in a register that
5687 previously held the constant value 0,
5688 record this fact with a REG_WAS_0 note on this insn.
5690 Note that the *register* is required to have previously held 0,
5691 not just any register in the quantity and we must point to the
5692 insn that set that register to zero.
5694 Rather than track each register individually, we just see if
5695 the last set for this quantity was for this register. */
5697 if (REGNO_QTY_VALID_P (REGNO (dest
)))
5699 int dest_q
= REG_QTY (REGNO (dest
));
5700 struct qty_table_elem
*dest_ent
= &qty_table
[dest_q
];
5702 if (dest_ent
->const_rtx
== const0_rtx
)
5704 /* See if we previously had a REG_WAS_0 note. */
5705 rtx note
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
);
5706 rtx const_insn
= dest_ent
->const_insn
;
5708 if ((tem
= single_set (const_insn
)) != 0
5709 && rtx_equal_p (SET_DEST (tem
), dest
))
5712 XEXP (note
, 0) = const_insn
;
5715 = gen_rtx_INSN_LIST (REG_WAS_0
, const_insn
,
5722 /* Now deal with the destination. */
5725 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
5726 to the MEM or REG within it. */
5727 while (GET_CODE (dest
) == SIGN_EXTRACT
5728 || GET_CODE (dest
) == ZERO_EXTRACT
5729 || GET_CODE (dest
) == SUBREG
5730 || GET_CODE (dest
) == STRICT_LOW_PART
)
5731 dest
= XEXP (dest
, 0);
5733 sets
[i
].inner_dest
= dest
;
5735 if (GET_CODE (dest
) == MEM
)
5737 #ifdef PUSH_ROUNDING
5738 /* Stack pushes invalidate the stack pointer. */
5739 rtx addr
= XEXP (dest
, 0);
5740 if (GET_RTX_CLASS (GET_CODE (addr
)) == 'a'
5741 && XEXP (addr
, 0) == stack_pointer_rtx
)
5742 invalidate (stack_pointer_rtx
, Pmode
);
5744 dest
= fold_rtx (dest
, insn
);
5747 /* Compute the hash code of the destination now,
5748 before the effects of this instruction are recorded,
5749 since the register values used in the address computation
5750 are those before this instruction. */
5751 sets
[i
].dest_hash
= HASH (dest
, mode
);
5753 /* Don't enter a bit-field in the hash table
5754 because the value in it after the store
5755 may not equal what was stored, due to truncation. */
5757 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
5758 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
5760 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
5762 if (src_const
!= 0 && GET_CODE (src_const
) == CONST_INT
5763 && GET_CODE (width
) == CONST_INT
5764 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
5765 && ! (INTVAL (src_const
)
5766 & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
5767 /* Exception: if the value is constant,
5768 and it won't be truncated, record it. */
5772 /* This is chosen so that the destination will be invalidated
5773 but no new value will be recorded.
5774 We must invalidate because sometimes constant
5775 values can be recorded for bitfields. */
5776 sets
[i
].src_elt
= 0;
5777 sets
[i
].src_volatile
= 1;
5783 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5785 else if (n_sets
== 1 && dest
== pc_rtx
&& src
== pc_rtx
)
5787 /* One less use of the label this insn used to jump to. */
5789 cse_jumps_altered
= 1;
5790 /* No more processing for this set. */
5794 /* If this SET is now setting PC to a label, we know it used to
5795 be a conditional or computed branch. */
5796 else if (dest
== pc_rtx
&& GET_CODE (src
) == LABEL_REF
)
5798 /* Now emit a BARRIER after the unconditional jump. */
5799 if (NEXT_INSN (insn
) == 0
5800 || GET_CODE (NEXT_INSN (insn
)) != BARRIER
)
5801 emit_barrier_after (insn
);
5803 /* We reemit the jump in as many cases as possible just in
5804 case the form of an unconditional jump is significantly
5805 different than a computed jump or conditional jump.
5807 If this insn has multiple sets, then reemitting the
5808 jump is nontrivial. So instead we just force rerecognition
5809 and hope for the best. */
5812 rtx
new = emit_jump_insn_after (gen_jump (XEXP (src
, 0)), insn
);
5814 JUMP_LABEL (new) = XEXP (src
, 0);
5815 LABEL_NUSES (XEXP (src
, 0))++;
5819 /* Now emit a BARRIER after the unconditional jump. */
5820 if (NEXT_INSN (insn
) == 0
5821 || GET_CODE (NEXT_INSN (insn
)) != BARRIER
)
5822 emit_barrier_after (insn
);
5825 INSN_CODE (insn
) = -1;
5827 never_reached_warning (insn
, NULL
);
5829 /* Do not bother deleting any unreachable code,
5830 let jump/flow do that. */
5832 cse_jumps_altered
= 1;
5836 /* If destination is volatile, invalidate it and then do no further
5837 processing for this assignment. */
5839 else if (do_not_record
)
5841 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
5842 invalidate (dest
, VOIDmode
);
5843 else if (GET_CODE (dest
) == MEM
)
5845 /* Outgoing arguments for a libcall don't
5846 affect any recorded expressions. */
5847 if (! libcall_insn
|| insn
== libcall_insn
)
5848 invalidate (dest
, VOIDmode
);
5850 else if (GET_CODE (dest
) == STRICT_LOW_PART
5851 || GET_CODE (dest
) == ZERO_EXTRACT
)
5852 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
5856 if (sets
[i
].rtl
!= 0 && dest
!= SET_DEST (sets
[i
].rtl
))
5857 sets
[i
].dest_hash
= HASH (SET_DEST (sets
[i
].rtl
), mode
);
5860 /* If setting CC0, record what it was set to, or a constant, if it
5861 is equivalent to a constant. If it is being set to a floating-point
5862 value, make a COMPARE with the appropriate constant of 0. If we
5863 don't do this, later code can interpret this as a test against
5864 const0_rtx, which can cause problems if we try to put it into an
5865 insn as a floating-point operand. */
5866 if (dest
== cc0_rtx
)
5868 this_insn_cc0
= src_const
&& mode
!= VOIDmode
? src_const
: src
;
5869 this_insn_cc0_mode
= mode
;
5870 if (FLOAT_MODE_P (mode
))
5871 this_insn_cc0
= gen_rtx_COMPARE (VOIDmode
, this_insn_cc0
,
5877 /* Now enter all non-volatile source expressions in the hash table
5878 if they are not already present.
5879 Record their equivalence classes in src_elt.
5880 This way we can insert the corresponding destinations into
5881 the same classes even if the actual sources are no longer in them
5882 (having been invalidated). */
5884 if (src_eqv
&& src_eqv_elt
== 0 && sets
[0].rtl
!= 0 && ! src_eqv_volatile
5885 && ! rtx_equal_p (src_eqv
, SET_DEST (sets
[0].rtl
)))
5887 struct table_elt
*elt
;
5888 struct table_elt
*classp
= sets
[0].src_elt
;
5889 rtx dest
= SET_DEST (sets
[0].rtl
);
5890 enum machine_mode eqvmode
= GET_MODE (dest
);
5892 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5894 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
5897 if (insert_regs (src_eqv
, classp
, 0))
5899 rehash_using_reg (src_eqv
);
5900 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
5902 elt
= insert (src_eqv
, classp
, src_eqv_hash
, eqvmode
);
5903 elt
->in_memory
= src_eqv_in_memory
;
5906 /* Check to see if src_eqv_elt is the same as a set source which
5907 does not yet have an elt, and if so set the elt of the set source
5909 for (i
= 0; i
< n_sets
; i
++)
5910 if (sets
[i
].rtl
&& sets
[i
].src_elt
== 0
5911 && rtx_equal_p (SET_SRC (sets
[i
].rtl
), src_eqv
))
5912 sets
[i
].src_elt
= src_eqv_elt
;
5915 for (i
= 0; i
< n_sets
; i
++)
5916 if (sets
[i
].rtl
&& ! sets
[i
].src_volatile
5917 && ! rtx_equal_p (SET_SRC (sets
[i
].rtl
), SET_DEST (sets
[i
].rtl
)))
5919 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == STRICT_LOW_PART
)
5921 /* REG_EQUAL in setting a STRICT_LOW_PART
5922 gives an equivalent for the entire destination register,
5923 not just for the subreg being stored in now.
5924 This is a more interesting equivalence, so we arrange later
5925 to treat the entire reg as the destination. */
5926 sets
[i
].src_elt
= src_eqv_elt
;
5927 sets
[i
].src_hash
= src_eqv_hash
;
5931 /* Insert source and constant equivalent into hash table, if not
5933 struct table_elt
*classp
= src_eqv_elt
;
5934 rtx src
= sets
[i
].src
;
5935 rtx dest
= SET_DEST (sets
[i
].rtl
);
5936 enum machine_mode mode
5937 = GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
5939 if (sets
[i
].src_elt
== 0)
5941 /* Don't put a hard register source into the table if this is
5942 the last insn of a libcall. In this case, we only need
5943 to put src_eqv_elt in src_elt. */
5944 if (! find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
5946 struct table_elt
*elt
;
5948 /* Note that these insert_regs calls cannot remove
5949 any of the src_elt's, because they would have failed to
5950 match if not still valid. */
5951 if (insert_regs (src
, classp
, 0))
5953 rehash_using_reg (src
);
5954 sets
[i
].src_hash
= HASH (src
, mode
);
5956 elt
= insert (src
, classp
, sets
[i
].src_hash
, mode
);
5957 elt
->in_memory
= sets
[i
].src_in_memory
;
5958 sets
[i
].src_elt
= classp
= elt
;
5961 sets
[i
].src_elt
= classp
;
5963 if (sets
[i
].src_const
&& sets
[i
].src_const_elt
== 0
5964 && src
!= sets
[i
].src_const
5965 && ! rtx_equal_p (sets
[i
].src_const
, src
))
5966 sets
[i
].src_elt
= insert (sets
[i
].src_const
, classp
,
5967 sets
[i
].src_const_hash
, mode
);
5970 else if (sets
[i
].src_elt
== 0)
5971 /* If we did not insert the source into the hash table (e.g., it was
5972 volatile), note the equivalence class for the REG_EQUAL value, if any,
5973 so that the destination goes into that class. */
5974 sets
[i
].src_elt
= src_eqv_elt
;
5976 invalidate_from_clobbers (x
);
5978 /* Some registers are invalidated by subroutine calls. Memory is
5979 invalidated by non-constant calls. */
5981 if (GET_CODE (insn
) == CALL_INSN
)
5983 if (! CONST_OR_PURE_CALL_P (insn
))
5984 invalidate_memory ();
5985 invalidate_for_call ();
5988 /* Now invalidate everything set by this instruction.
5989 If a SUBREG or other funny destination is being set,
5990 sets[i].rtl is still nonzero, so here we invalidate the reg
5991 a part of which is being set. */
5993 for (i
= 0; i
< n_sets
; i
++)
5996 /* We can't use the inner dest, because the mode associated with
5997 a ZERO_EXTRACT is significant. */
5998 rtx dest
= SET_DEST (sets
[i
].rtl
);
6000 /* Needed for registers to remove the register from its
6001 previous quantity's chain.
6002 Needed for memory if this is a nonvarying address, unless
6003 we have just done an invalidate_memory that covers even those. */
6004 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
6005 invalidate (dest
, VOIDmode
);
6006 else if (GET_CODE (dest
) == MEM
)
6008 /* Outgoing arguments for a libcall don't
6009 affect any recorded expressions. */
6010 if (! libcall_insn
|| insn
== libcall_insn
)
6011 invalidate (dest
, VOIDmode
);
6013 else if (GET_CODE (dest
) == STRICT_LOW_PART
6014 || GET_CODE (dest
) == ZERO_EXTRACT
)
6015 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
6018 /* A volatile ASM invalidates everything. */
6019 if (GET_CODE (insn
) == INSN
6020 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
6021 && MEM_VOLATILE_P (PATTERN (insn
)))
6022 flush_hash_table ();
6024 /* Make sure registers mentioned in destinations
6025 are safe for use in an expression to be inserted.
6026 This removes from the hash table
6027 any invalid entry that refers to one of these registers.
6029 We don't care about the return value from mention_regs because
6030 we are going to hash the SET_DEST values unconditionally. */
6032 for (i
= 0; i
< n_sets
; i
++)
6036 rtx x
= SET_DEST (sets
[i
].rtl
);
6038 if (GET_CODE (x
) != REG
)
6042 /* We used to rely on all references to a register becoming
6043 inaccessible when a register changes to a new quantity,
6044 since that changes the hash code. However, that is not
6045 safe, since after HASH_SIZE new quantities we get a
6046 hash 'collision' of a register with its own invalid
6047 entries. And since SUBREGs have been changed not to
6048 change their hash code with the hash code of the register,
6049 it wouldn't work any longer at all. So we have to check
6050 for any invalid references lying around now.
6051 This code is similar to the REG case in mention_regs,
6052 but it knows that reg_tick has been incremented, and
6053 it leaves reg_in_table as -1 . */
6054 unsigned int regno
= REGNO (x
);
6055 unsigned int endregno
6056 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
6057 : HARD_REGNO_NREGS (regno
, GET_MODE (x
)));
6060 for (i
= regno
; i
< endregno
; i
++)
6062 if (REG_IN_TABLE (i
) >= 0)
6064 remove_invalid_refs (i
);
6065 REG_IN_TABLE (i
) = -1;
6072 /* We may have just removed some of the src_elt's from the hash table.
6073 So replace each one with the current head of the same class. */
6075 for (i
= 0; i
< n_sets
; i
++)
6078 if (sets
[i
].src_elt
&& sets
[i
].src_elt
->first_same_value
== 0)
6079 /* If elt was removed, find current head of same class,
6080 or 0 if nothing remains of that class. */
6082 struct table_elt
*elt
= sets
[i
].src_elt
;
6084 while (elt
&& elt
->prev_same_value
)
6085 elt
= elt
->prev_same_value
;
6087 while (elt
&& elt
->first_same_value
== 0)
6088 elt
= elt
->next_same_value
;
6089 sets
[i
].src_elt
= elt
? elt
->first_same_value
: 0;
6093 /* Now insert the destinations into their equivalence classes. */
6095 for (i
= 0; i
< n_sets
; i
++)
6098 rtx dest
= SET_DEST (sets
[i
].rtl
);
6099 rtx inner_dest
= sets
[i
].inner_dest
;
6100 struct table_elt
*elt
;
6102 /* Don't record value if we are not supposed to risk allocating
6103 floating-point values in registers that might be wider than
6105 if ((flag_float_store
6106 && GET_CODE (dest
) == MEM
6107 && FLOAT_MODE_P (GET_MODE (dest
)))
6108 /* Don't record BLKmode values, because we don't know the
6109 size of it, and can't be sure that other BLKmode values
6110 have the same or smaller size. */
6111 || GET_MODE (dest
) == BLKmode
6112 /* Don't record values of destinations set inside a libcall block
6113 since we might delete the libcall. Things should have been set
6114 up so we won't want to reuse such a value, but we play it safe
6117 /* If we didn't put a REG_EQUAL value or a source into the hash
6118 table, there is no point is recording DEST. */
6119 || sets
[i
].src_elt
== 0
6120 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6121 or SIGN_EXTEND, don't record DEST since it can cause
6122 some tracking to be wrong.
6124 ??? Think about this more later. */
6125 || (GET_CODE (dest
) == SUBREG
6126 && (GET_MODE_SIZE (GET_MODE (dest
))
6127 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
6128 && (GET_CODE (sets
[i
].src
) == SIGN_EXTEND
6129 || GET_CODE (sets
[i
].src
) == ZERO_EXTEND
)))
6132 /* STRICT_LOW_PART isn't part of the value BEING set,
6133 and neither is the SUBREG inside it.
6134 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6135 if (GET_CODE (dest
) == STRICT_LOW_PART
)
6136 dest
= SUBREG_REG (XEXP (dest
, 0));
6138 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
6139 /* Registers must also be inserted into chains for quantities. */
6140 if (insert_regs (dest
, sets
[i
].src_elt
, 1))
6142 /* If `insert_regs' changes something, the hash code must be
6144 rehash_using_reg (dest
);
6145 sets
[i
].dest_hash
= HASH (dest
, GET_MODE (dest
));
6148 if (GET_CODE (inner_dest
) == MEM
6149 && GET_CODE (XEXP (inner_dest
, 0)) == ADDRESSOF
)
6150 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
6151 that (MEM (ADDRESSOF (X))) is equivalent to Y.
6152 Consider the case in which the address of the MEM is
6153 passed to a function, which alters the MEM. Then, if we
6154 later use Y instead of the MEM we'll miss the update. */
6155 elt
= insert (dest
, 0, sets
[i
].dest_hash
, GET_MODE (dest
));
6157 elt
= insert (dest
, sets
[i
].src_elt
,
6158 sets
[i
].dest_hash
, GET_MODE (dest
));
6160 elt
->in_memory
= (GET_CODE (sets
[i
].inner_dest
) == MEM
6161 && (! RTX_UNCHANGING_P (sets
[i
].inner_dest
)
6162 || FIXED_BASE_PLUS_P (XEXP (sets
[i
].inner_dest
,
6165 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6166 narrower than M2, and both M1 and M2 are the same number of words,
6167 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6168 make that equivalence as well.
6170 However, BAR may have equivalences for which gen_lowpart_if_possible
6171 will produce a simpler value than gen_lowpart_if_possible applied to
6172 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6173 BAR's equivalences. If we don't get a simplified form, make
6174 the SUBREG. It will not be used in an equivalence, but will
6175 cause two similar assignments to be detected.
6177 Note the loop below will find SUBREG_REG (DEST) since we have
6178 already entered SRC and DEST of the SET in the table. */
6180 if (GET_CODE (dest
) == SUBREG
6181 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))) - 1)
6183 == (GET_MODE_SIZE (GET_MODE (dest
)) - 1) / UNITS_PER_WORD
)
6184 && (GET_MODE_SIZE (GET_MODE (dest
))
6185 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
6186 && sets
[i
].src_elt
!= 0)
6188 enum machine_mode new_mode
= GET_MODE (SUBREG_REG (dest
));
6189 struct table_elt
*elt
, *classp
= 0;
6191 for (elt
= sets
[i
].src_elt
->first_same_value
; elt
;
6192 elt
= elt
->next_same_value
)
6196 struct table_elt
*src_elt
;
6198 /* Ignore invalid entries. */
6199 if (GET_CODE (elt
->exp
) != REG
6200 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
6203 new_src
= gen_lowpart_if_possible (new_mode
, elt
->exp
);
6205 new_src
= gen_rtx_SUBREG (new_mode
, elt
->exp
, 0);
6207 src_hash
= HASH (new_src
, new_mode
);
6208 src_elt
= lookup (new_src
, src_hash
, new_mode
);
6210 /* Put the new source in the hash table is if isn't
6214 if (insert_regs (new_src
, classp
, 0))
6216 rehash_using_reg (new_src
);
6217 src_hash
= HASH (new_src
, new_mode
);
6219 src_elt
= insert (new_src
, classp
, src_hash
, new_mode
);
6220 src_elt
->in_memory
= elt
->in_memory
;
6222 else if (classp
&& classp
!= src_elt
->first_same_value
)
6223 /* Show that two things that we've seen before are
6224 actually the same. */
6225 merge_equiv_classes (src_elt
, classp
);
6227 classp
= src_elt
->first_same_value
;
6228 /* Ignore invalid entries. */
6230 && GET_CODE (classp
->exp
) != REG
6231 && ! exp_equiv_p (classp
->exp
, classp
->exp
, 1, 0))
6232 classp
= classp
->next_same_value
;
6237 /* Special handling for (set REG0 REG1) where REG0 is the
6238 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6239 be used in the sequel, so (if easily done) change this insn to
6240 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6241 that computed their value. Then REG1 will become a dead store
6242 and won't cloud the situation for later optimizations.
6244 Do not make this change if REG1 is a hard register, because it will
6245 then be used in the sequel and we may be changing a two-operand insn
6246 into a three-operand insn.
6248 Also do not do this if we are operating on a copy of INSN.
6250 Also don't do this if INSN ends a libcall; this would cause an unrelated
6251 register to be set in the middle of a libcall, and we then get bad code
6252 if the libcall is deleted. */
6254 if (n_sets
== 1 && sets
[0].rtl
&& GET_CODE (SET_DEST (sets
[0].rtl
)) == REG
6255 && NEXT_INSN (PREV_INSN (insn
)) == insn
6256 && GET_CODE (SET_SRC (sets
[0].rtl
)) == REG
6257 && REGNO (SET_SRC (sets
[0].rtl
)) >= FIRST_PSEUDO_REGISTER
6258 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets
[0].rtl
))))
6260 int src_q
= REG_QTY (REGNO (SET_SRC (sets
[0].rtl
)));
6261 struct qty_table_elem
*src_ent
= &qty_table
[src_q
];
6263 if ((src_ent
->first_reg
== REGNO (SET_DEST (sets
[0].rtl
)))
6264 && ! find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
6266 rtx prev
= prev_nonnote_insn (insn
);
6268 /* Do not swap the registers around if the previous instruction
6269 attaches a REG_EQUIV note to REG1.
6271 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6272 from the pseudo that originally shadowed an incoming argument
6273 to another register. Some uses of REG_EQUIV might rely on it
6274 being attached to REG1 rather than REG2.
6276 This section previously turned the REG_EQUIV into a REG_EQUAL
6277 note. We cannot do that because REG_EQUIV may provide an
6278 uninitialised stack slot when REG_PARM_STACK_SPACE is used. */
6280 if (prev
!= 0 && GET_CODE (prev
) == INSN
6281 && GET_CODE (PATTERN (prev
)) == SET
6282 && SET_DEST (PATTERN (prev
)) == SET_SRC (sets
[0].rtl
)
6283 && ! find_reg_note (prev
, REG_EQUIV
, NULL_RTX
))
6285 rtx dest
= SET_DEST (sets
[0].rtl
);
6286 rtx src
= SET_SRC (sets
[0].rtl
);
6289 validate_change (prev
, &SET_DEST (PATTERN (prev
)), dest
, 1);
6290 validate_change (insn
, &SET_DEST (sets
[0].rtl
), src
, 1);
6291 validate_change (insn
, &SET_SRC (sets
[0].rtl
), dest
, 1);
6292 apply_change_group ();
6294 /* If there was a REG_WAS_0 note on PREV, remove it. Move
6295 any REG_WAS_0 note on INSN to PREV. */
6296 note
= find_reg_note (prev
, REG_WAS_0
, NULL_RTX
);
6298 remove_note (prev
, note
);
6300 note
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
);
6303 remove_note (insn
, note
);
6304 XEXP (note
, 1) = REG_NOTES (prev
);
6305 REG_NOTES (prev
) = note
;
6308 /* If INSN has a REG_EQUAL note, and this note mentions
6309 REG0, then we must delete it, because the value in
6310 REG0 has changed. If the note's value is REG1, we must
6311 also delete it because that is now this insn's dest. */
6312 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
6314 && (reg_mentioned_p (dest
, XEXP (note
, 0))
6315 || rtx_equal_p (src
, XEXP (note
, 0))))
6316 remove_note (insn
, note
);
6321 /* If this is a conditional jump insn, record any known equivalences due to
6322 the condition being tested. */
6324 last_jump_equiv_class
= 0;
6325 if (GET_CODE (insn
) == JUMP_INSN
6326 && n_sets
== 1 && GET_CODE (x
) == SET
6327 && GET_CODE (SET_SRC (x
)) == IF_THEN_ELSE
)
6328 record_jump_equiv (insn
, 0);
6331 /* If the previous insn set CC0 and this insn no longer references CC0,
6332 delete the previous insn. Here we use the fact that nothing expects CC0
6333 to be valid over an insn, which is true until the final pass. */
6334 if (prev_insn
&& GET_CODE (prev_insn
) == INSN
6335 && (tem
= single_set (prev_insn
)) != 0
6336 && SET_DEST (tem
) == cc0_rtx
6337 && ! reg_mentioned_p (cc0_rtx
, x
))
6338 delete_insn (prev_insn
);
6340 prev_insn_cc0
= this_insn_cc0
;
6341 prev_insn_cc0_mode
= this_insn_cc0_mode
;
6347 /* Remove from the hash table all expressions that reference memory. */
6350 invalidate_memory ()
6353 struct table_elt
*p
, *next
;
6355 for (i
= 0; i
< HASH_SIZE
; i
++)
6356 for (p
= table
[i
]; p
; p
= next
)
6358 next
= p
->next_same_hash
;
6360 remove_from_table (p
, i
);
6364 /* If ADDR is an address that implicitly affects the stack pointer, return
6365 1 and update the register tables to show the effect. Else, return 0. */
6368 addr_affects_sp_p (addr
)
6371 if (GET_RTX_CLASS (GET_CODE (addr
)) == 'a'
6372 && GET_CODE (XEXP (addr
, 0)) == REG
6373 && REGNO (XEXP (addr
, 0)) == STACK_POINTER_REGNUM
)
6375 if (REG_TICK (STACK_POINTER_REGNUM
) >= 0)
6376 REG_TICK (STACK_POINTER_REGNUM
)++;
6378 /* This should be *very* rare. */
6379 if (TEST_HARD_REG_BIT (hard_regs_in_table
, STACK_POINTER_REGNUM
))
6380 invalidate (stack_pointer_rtx
, VOIDmode
);
6388 /* Perform invalidation on the basis of everything about an insn
6389 except for invalidating the actual places that are SET in it.
6390 This includes the places CLOBBERed, and anything that might
6391 alias with something that is SET or CLOBBERed.
6393 X is the pattern of the insn. */
6396 invalidate_from_clobbers (x
)
6399 if (GET_CODE (x
) == CLOBBER
)
6401 rtx ref
= XEXP (x
, 0);
6404 if (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
6405 || GET_CODE (ref
) == MEM
)
6406 invalidate (ref
, VOIDmode
);
6407 else if (GET_CODE (ref
) == STRICT_LOW_PART
6408 || GET_CODE (ref
) == ZERO_EXTRACT
)
6409 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
6412 else if (GET_CODE (x
) == PARALLEL
)
6415 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
6417 rtx y
= XVECEXP (x
, 0, i
);
6418 if (GET_CODE (y
) == CLOBBER
)
6420 rtx ref
= XEXP (y
, 0);
6421 if (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
6422 || GET_CODE (ref
) == MEM
)
6423 invalidate (ref
, VOIDmode
);
6424 else if (GET_CODE (ref
) == STRICT_LOW_PART
6425 || GET_CODE (ref
) == ZERO_EXTRACT
)
6426 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
6432 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6433 and replace any registers in them with either an equivalent constant
6434 or the canonical form of the register. If we are inside an address,
6435 only do this if the address remains valid.
6437 OBJECT is 0 except when within a MEM in which case it is the MEM.
6439 Return the replacement for X. */
6442 cse_process_notes (x
, object
)
6446 enum rtx_code code
= GET_CODE (x
);
6447 const char *fmt
= GET_RTX_FORMAT (code
);
6464 validate_change (x
, &XEXP (x
, 0),
6465 cse_process_notes (XEXP (x
, 0), x
), 0);
6470 if (REG_NOTE_KIND (x
) == REG_EQUAL
)
6471 XEXP (x
, 0) = cse_process_notes (XEXP (x
, 0), NULL_RTX
);
6473 XEXP (x
, 1) = cse_process_notes (XEXP (x
, 1), NULL_RTX
);
6480 rtx
new = cse_process_notes (XEXP (x
, 0), object
);
6481 /* We don't substitute VOIDmode constants into these rtx,
6482 since they would impede folding. */
6483 if (GET_MODE (new) != VOIDmode
)
6484 validate_change (object
, &XEXP (x
, 0), new, 0);
6489 i
= REG_QTY (REGNO (x
));
6491 /* Return a constant or a constant register. */
6492 if (REGNO_QTY_VALID_P (REGNO (x
)))
6494 struct qty_table_elem
*ent
= &qty_table
[i
];
6496 if (ent
->const_rtx
!= NULL_RTX
6497 && (CONSTANT_P (ent
->const_rtx
)
6498 || GET_CODE (ent
->const_rtx
) == REG
))
6500 rtx
new = gen_lowpart_if_possible (GET_MODE (x
), ent
->const_rtx
);
6506 /* Otherwise, canonicalize this register. */
6507 return canon_reg (x
, NULL_RTX
);
6513 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6515 validate_change (object
, &XEXP (x
, i
),
6516 cse_process_notes (XEXP (x
, i
), object
), 0);
6521 /* Find common subexpressions between the end test of a loop and the beginning
6522 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
6524 Often we have a loop where an expression in the exit test is used
6525 in the body of the loop. For example "while (*p) *q++ = *p++;".
6526 Because of the way we duplicate the loop exit test in front of the loop,
6527 however, we don't detect that common subexpression. This will be caught
6528 when global cse is implemented, but this is a quite common case.
6530 This function handles the most common cases of these common expressions.
6531 It is called after we have processed the basic block ending with the
6532 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
6533 jumps to a label used only once. */
6536 cse_around_loop (loop_start
)
6541 struct table_elt
*p
;
6543 /* If the jump at the end of the loop doesn't go to the start, we don't
6545 for (insn
= PREV_INSN (loop_start
);
6546 insn
&& (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) >= 0);
6547 insn
= PREV_INSN (insn
))
6551 || GET_CODE (insn
) != NOTE
6552 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
)
6555 /* If the last insn of the loop (the end test) was an NE comparison,
6556 we will interpret it as an EQ comparison, since we fell through
6557 the loop. Any equivalences resulting from that comparison are
6558 therefore not valid and must be invalidated. */
6559 if (last_jump_equiv_class
)
6560 for (p
= last_jump_equiv_class
->first_same_value
; p
;
6561 p
= p
->next_same_value
)
6563 if (GET_CODE (p
->exp
) == MEM
|| GET_CODE (p
->exp
) == REG
6564 || (GET_CODE (p
->exp
) == SUBREG
6565 && GET_CODE (SUBREG_REG (p
->exp
)) == REG
))
6566 invalidate (p
->exp
, VOIDmode
);
6567 else if (GET_CODE (p
->exp
) == STRICT_LOW_PART
6568 || GET_CODE (p
->exp
) == ZERO_EXTRACT
)
6569 invalidate (XEXP (p
->exp
, 0), GET_MODE (p
->exp
));
6572 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
6573 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
6575 The only thing we do with SET_DEST is invalidate entries, so we
6576 can safely process each SET in order. It is slightly less efficient
6577 to do so, but we only want to handle the most common cases.
6579 The gen_move_insn call in cse_set_around_loop may create new pseudos.
6580 These pseudos won't have valid entries in any of the tables indexed
6581 by register number, such as reg_qty. We avoid out-of-range array
6582 accesses by not processing any instructions created after cse started. */
6584 for (insn
= NEXT_INSN (loop_start
);
6585 GET_CODE (insn
) != CALL_INSN
&& GET_CODE (insn
) != CODE_LABEL
6586 && INSN_UID (insn
) < max_insn_uid
6587 && ! (GET_CODE (insn
) == NOTE
6588 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
);
6589 insn
= NEXT_INSN (insn
))
6592 && (GET_CODE (PATTERN (insn
)) == SET
6593 || GET_CODE (PATTERN (insn
)) == CLOBBER
))
6594 cse_set_around_loop (PATTERN (insn
), insn
, loop_start
);
6595 else if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == PARALLEL
)
6596 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
6597 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
6598 || GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
6599 cse_set_around_loop (XVECEXP (PATTERN (insn
), 0, i
), insn
,
6604 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6605 since they are done elsewhere. This function is called via note_stores. */
6608 invalidate_skipped_set (dest
, set
, data
)
6611 void *data ATTRIBUTE_UNUSED
;
6613 enum rtx_code code
= GET_CODE (dest
);
6616 && ! addr_affects_sp_p (dest
) /* If this is not a stack push ... */
6617 /* There are times when an address can appear varying and be a PLUS
6618 during this scan when it would be a fixed address were we to know
6619 the proper equivalences. So invalidate all memory if there is
6620 a BLKmode or nonscalar memory reference or a reference to a
6621 variable address. */
6622 && (MEM_IN_STRUCT_P (dest
) || GET_MODE (dest
) == BLKmode
6623 || cse_rtx_varies_p (XEXP (dest
, 0), 0)))
6625 invalidate_memory ();
6629 if (GET_CODE (set
) == CLOBBER
6636 if (code
== STRICT_LOW_PART
|| code
== ZERO_EXTRACT
)
6637 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
6638 else if (code
== REG
|| code
== SUBREG
|| code
== MEM
)
6639 invalidate (dest
, VOIDmode
);
6642 /* Invalidate all insns from START up to the end of the function or the
6643 next label. This called when we wish to CSE around a block that is
6644 conditionally executed. */
6647 invalidate_skipped_block (start
)
6652 for (insn
= start
; insn
&& GET_CODE (insn
) != CODE_LABEL
;
6653 insn
= NEXT_INSN (insn
))
6655 if (! INSN_P (insn
))
6658 if (GET_CODE (insn
) == CALL_INSN
)
6660 if (! CONST_OR_PURE_CALL_P (insn
))
6661 invalidate_memory ();
6662 invalidate_for_call ();
6665 invalidate_from_clobbers (PATTERN (insn
));
6666 note_stores (PATTERN (insn
), invalidate_skipped_set
, NULL
);
6670 /* If modifying X will modify the value in *DATA (which is really an
6671 `rtx *'), indicate that fact by setting the pointed to value to
6675 cse_check_loop_start (x
, set
, data
)
6677 rtx set ATTRIBUTE_UNUSED
;
6680 rtx
*cse_check_loop_start_value
= (rtx
*) data
;
6682 if (*cse_check_loop_start_value
== NULL_RTX
6683 || GET_CODE (x
) == CC0
|| GET_CODE (x
) == PC
)
6686 if ((GET_CODE (x
) == MEM
&& GET_CODE (*cse_check_loop_start_value
) == MEM
)
6687 || reg_overlap_mentioned_p (x
, *cse_check_loop_start_value
))
6688 *cse_check_loop_start_value
= NULL_RTX
;
6691 /* X is a SET or CLOBBER contained in INSN that was found near the start of
6692 a loop that starts with the label at LOOP_START.
6694 If X is a SET, we see if its SET_SRC is currently in our hash table.
6695 If so, we see if it has a value equal to some register used only in the
6696 loop exit code (as marked by jump.c).
6698 If those two conditions are true, we search backwards from the start of
6699 the loop to see if that same value was loaded into a register that still
6700 retains its value at the start of the loop.
6702 If so, we insert an insn after the load to copy the destination of that
6703 load into the equivalent register and (try to) replace our SET_SRC with that
6706 In any event, we invalidate whatever this SET or CLOBBER modifies. */
6709 cse_set_around_loop (x
, insn
, loop_start
)
6714 struct table_elt
*src_elt
;
6716 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
6717 are setting PC or CC0 or whose SET_SRC is already a register. */
6718 if (GET_CODE (x
) == SET
6719 && GET_CODE (SET_DEST (x
)) != PC
&& GET_CODE (SET_DEST (x
)) != CC0
6720 && GET_CODE (SET_SRC (x
)) != REG
)
6722 src_elt
= lookup (SET_SRC (x
),
6723 HASH (SET_SRC (x
), GET_MODE (SET_DEST (x
))),
6724 GET_MODE (SET_DEST (x
)));
6727 for (src_elt
= src_elt
->first_same_value
; src_elt
;
6728 src_elt
= src_elt
->next_same_value
)
6729 if (GET_CODE (src_elt
->exp
) == REG
&& REG_LOOP_TEST_P (src_elt
->exp
)
6730 && COST (src_elt
->exp
) < COST (SET_SRC (x
)))
6734 /* Look for an insn in front of LOOP_START that sets
6735 something in the desired mode to SET_SRC (x) before we hit
6736 a label or CALL_INSN. */
6738 for (p
= prev_nonnote_insn (loop_start
);
6739 p
&& GET_CODE (p
) != CALL_INSN
6740 && GET_CODE (p
) != CODE_LABEL
;
6741 p
= prev_nonnote_insn (p
))
6742 if ((set
= single_set (p
)) != 0
6743 && GET_CODE (SET_DEST (set
)) == REG
6744 && GET_MODE (SET_DEST (set
)) == src_elt
->mode
6745 && rtx_equal_p (SET_SRC (set
), SET_SRC (x
)))
6747 /* We now have to ensure that nothing between P
6748 and LOOP_START modified anything referenced in
6749 SET_SRC (x). We know that nothing within the loop
6750 can modify it, or we would have invalidated it in
6753 rtx cse_check_loop_start_value
= SET_SRC (x
);
6754 for (q
= p
; q
!= loop_start
; q
= NEXT_INSN (q
))
6756 note_stores (PATTERN (q
),
6757 cse_check_loop_start
,
6758 &cse_check_loop_start_value
);
6760 /* If nothing was changed and we can replace our
6761 SET_SRC, add an insn after P to copy its destination
6762 to what we will be replacing SET_SRC with. */
6763 if (cse_check_loop_start_value
6764 && validate_change (insn
, &SET_SRC (x
),
6767 /* If this creates new pseudos, this is unsafe,
6768 because the regno of new pseudo is unsuitable
6769 to index into reg_qty when cse_insn processes
6770 the new insn. Therefore, if a new pseudo was
6771 created, discard this optimization. */
6772 int nregs
= max_reg_num ();
6774 = gen_move_insn (src_elt
->exp
, SET_DEST (set
));
6775 if (nregs
!= max_reg_num ())
6777 if (! validate_change (insn
, &SET_SRC (x
),
6782 emit_insn_after (move
, p
);
6789 /* Deal with the destination of X affecting the stack pointer. */
6790 addr_affects_sp_p (SET_DEST (x
));
6792 /* See comment on similar code in cse_insn for explanation of these
6794 if (GET_CODE (SET_DEST (x
)) == REG
|| GET_CODE (SET_DEST (x
)) == SUBREG
6795 || GET_CODE (SET_DEST (x
)) == MEM
)
6796 invalidate (SET_DEST (x
), VOIDmode
);
6797 else if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
6798 || GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
6799 invalidate (XEXP (SET_DEST (x
), 0), GET_MODE (SET_DEST (x
)));
6802 /* Find the end of INSN's basic block and return its range,
6803 the total number of SETs in all the insns of the block, the last insn of the
6804 block, and the branch path.
6806 The branch path indicates which branches should be followed. If a non-zero
6807 path size is specified, the block should be rescanned and a different set
6808 of branches will be taken. The branch path is only used if
6809 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
6811 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6812 used to describe the block. It is filled in with the information about
6813 the current block. The incoming structure's branch path, if any, is used
6814 to construct the output branch path. */
6817 cse_end_of_basic_block (insn
, data
, follow_jumps
, after_loop
, skip_blocks
)
6819 struct cse_basic_block_data
*data
;
6826 int low_cuid
= INSN_CUID (insn
), high_cuid
= INSN_CUID (insn
);
6827 rtx next
= INSN_P (insn
) ? insn
: next_real_insn (insn
);
6828 int path_size
= data
->path_size
;
6832 /* Update the previous branch path, if any. If the last branch was
6833 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
6834 shorten the path by one and look at the previous branch. We know that
6835 at least one branch must have been taken if PATH_SIZE is non-zero. */
6836 while (path_size
> 0)
6838 if (data
->path
[path_size
- 1].status
!= NOT_TAKEN
)
6840 data
->path
[path_size
- 1].status
= NOT_TAKEN
;
6847 /* If the first instruction is marked with QImode, that means we've
6848 already processed this block. Our caller will look at DATA->LAST
6849 to figure out where to go next. We want to return the next block
6850 in the instruction stream, not some branched-to block somewhere
6851 else. We accomplish this by pretending our called forbid us to
6852 follow jumps, or skip blocks. */
6853 if (GET_MODE (insn
) == QImode
)
6854 follow_jumps
= skip_blocks
= 0;
6856 /* Scan to end of this basic block. */
6857 while (p
&& GET_CODE (p
) != CODE_LABEL
)
6859 /* Don't cse out the end of a loop. This makes a difference
6860 only for the unusual loops that always execute at least once;
6861 all other loops have labels there so we will stop in any case.
6862 Cse'ing out the end of the loop is dangerous because it
6863 might cause an invariant expression inside the loop
6864 to be reused after the end of the loop. This would make it
6865 hard to move the expression out of the loop in loop.c,
6866 especially if it is one of several equivalent expressions
6867 and loop.c would like to eliminate it.
6869 If we are running after loop.c has finished, we can ignore
6870 the NOTE_INSN_LOOP_END. */
6872 if (! after_loop
&& GET_CODE (p
) == NOTE
6873 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
6876 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6877 the regs restored by the longjmp come from
6878 a later time than the setjmp. */
6879 if (PREV_INSN (p
) && GET_CODE (PREV_INSN (p
)) == CALL_INSN
6880 && find_reg_note (PREV_INSN (p
), REG_SETJMP
, NULL
))
6883 /* A PARALLEL can have lots of SETs in it,
6884 especially if it is really an ASM_OPERANDS. */
6885 if (INSN_P (p
) && GET_CODE (PATTERN (p
)) == PARALLEL
)
6886 nsets
+= XVECLEN (PATTERN (p
), 0);
6887 else if (GET_CODE (p
) != NOTE
)
6890 /* Ignore insns made by CSE; they cannot affect the boundaries of
6893 if (INSN_UID (p
) <= max_uid
&& INSN_CUID (p
) > high_cuid
)
6894 high_cuid
= INSN_CUID (p
);
6895 if (INSN_UID (p
) <= max_uid
&& INSN_CUID (p
) < low_cuid
)
6896 low_cuid
= INSN_CUID (p
);
6898 /* See if this insn is in our branch path. If it is and we are to
6900 if (path_entry
< path_size
&& data
->path
[path_entry
].branch
== p
)
6902 if (data
->path
[path_entry
].status
!= NOT_TAKEN
)
6905 /* Point to next entry in path, if any. */
6909 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6910 was specified, we haven't reached our maximum path length, there are
6911 insns following the target of the jump, this is the only use of the
6912 jump label, and the target label is preceded by a BARRIER.
6914 Alternatively, we can follow the jump if it branches around a
6915 block of code and there are no other branches into the block.
6916 In this case invalidate_skipped_block will be called to invalidate any
6917 registers set in the block when following the jump. */
6919 else if ((follow_jumps
|| skip_blocks
) && path_size
< PATHLENGTH
- 1
6920 && GET_CODE (p
) == JUMP_INSN
6921 && GET_CODE (PATTERN (p
)) == SET
6922 && GET_CODE (SET_SRC (PATTERN (p
))) == IF_THEN_ELSE
6923 && JUMP_LABEL (p
) != 0
6924 && LABEL_NUSES (JUMP_LABEL (p
)) == 1
6925 && NEXT_INSN (JUMP_LABEL (p
)) != 0)
6927 for (q
= PREV_INSN (JUMP_LABEL (p
)); q
; q
= PREV_INSN (q
))
6928 if ((GET_CODE (q
) != NOTE
6929 || NOTE_LINE_NUMBER (q
) == NOTE_INSN_LOOP_END
6930 || (PREV_INSN (q
) && GET_CODE (PREV_INSN (q
)) == CALL_INSN
6931 && find_reg_note (PREV_INSN (q
), REG_SETJMP
, NULL
)))
6932 && (GET_CODE (q
) != CODE_LABEL
|| LABEL_NUSES (q
) != 0))
6935 /* If we ran into a BARRIER, this code is an extension of the
6936 basic block when the branch is taken. */
6937 if (follow_jumps
&& q
!= 0 && GET_CODE (q
) == BARRIER
)
6939 /* Don't allow ourself to keep walking around an
6940 always-executed loop. */
6941 if (next_real_insn (q
) == next
)
6947 /* Similarly, don't put a branch in our path more than once. */
6948 for (i
= 0; i
< path_entry
; i
++)
6949 if (data
->path
[i
].branch
== p
)
6952 if (i
!= path_entry
)
6955 data
->path
[path_entry
].branch
= p
;
6956 data
->path
[path_entry
++].status
= TAKEN
;
6958 /* This branch now ends our path. It was possible that we
6959 didn't see this branch the last time around (when the
6960 insn in front of the target was a JUMP_INSN that was
6961 turned into a no-op). */
6962 path_size
= path_entry
;
6965 /* Mark block so we won't scan it again later. */
6966 PUT_MODE (NEXT_INSN (p
), QImode
);
6968 /* Detect a branch around a block of code. */
6969 else if (skip_blocks
&& q
!= 0 && GET_CODE (q
) != CODE_LABEL
)
6973 if (next_real_insn (q
) == next
)
6979 for (i
= 0; i
< path_entry
; i
++)
6980 if (data
->path
[i
].branch
== p
)
6983 if (i
!= path_entry
)
6986 /* This is no_labels_between_p (p, q) with an added check for
6987 reaching the end of a function (in case Q precedes P). */
6988 for (tmp
= NEXT_INSN (p
); tmp
&& tmp
!= q
; tmp
= NEXT_INSN (tmp
))
6989 if (GET_CODE (tmp
) == CODE_LABEL
)
6994 data
->path
[path_entry
].branch
= p
;
6995 data
->path
[path_entry
++].status
= AROUND
;
6997 path_size
= path_entry
;
7000 /* Mark block so we won't scan it again later. */
7001 PUT_MODE (NEXT_INSN (p
), QImode
);
7008 data
->low_cuid
= low_cuid
;
7009 data
->high_cuid
= high_cuid
;
7010 data
->nsets
= nsets
;
7013 /* If all jumps in the path are not taken, set our path length to zero
7014 so a rescan won't be done. */
7015 for (i
= path_size
- 1; i
>= 0; i
--)
7016 if (data
->path
[i
].status
!= NOT_TAKEN
)
7020 data
->path_size
= 0;
7022 data
->path_size
= path_size
;
7024 /* End the current branch path. */
7025 data
->path
[path_size
].branch
= 0;
7028 /* Perform cse on the instructions of a function.
7029 F is the first instruction.
7030 NREGS is one plus the highest pseudo-reg number used in the instruction.
7032 AFTER_LOOP is 1 if this is the cse call done after loop optimization
7033 (only if -frerun-cse-after-loop).
7035 Returns 1 if jump_optimize should be redone due to simplifications
7036 in conditional jump instructions. */
7039 cse_main (f
, nregs
, after_loop
, file
)
7045 struct cse_basic_block_data val
;
7049 cse_jumps_altered
= 0;
7050 recorded_label_ref
= 0;
7051 constant_pool_entries_cost
= 0;
7055 init_alias_analysis ();
7059 max_insn_uid
= get_max_uid ();
7061 reg_eqv_table
= (struct reg_eqv_elem
*)
7062 xmalloc (nregs
* sizeof (struct reg_eqv_elem
));
7064 #ifdef LOAD_EXTEND_OP
7066 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
7067 and change the code and mode as appropriate. */
7068 memory_extend_rtx
= gen_rtx_ZERO_EXTEND (VOIDmode
, NULL_RTX
);
7071 /* Reset the counter indicating how many elements have been made
7073 n_elements_made
= 0;
7075 /* Find the largest uid. */
7077 max_uid
= get_max_uid ();
7078 uid_cuid
= (int *) xcalloc (max_uid
+ 1, sizeof (int));
7080 /* Compute the mapping from uids to cuids.
7081 CUIDs are numbers assigned to insns, like uids,
7082 except that cuids increase monotonically through the code.
7083 Don't assign cuids to line-number NOTEs, so that the distance in cuids
7084 between two insns is not affected by -g. */
7086 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
7088 if (GET_CODE (insn
) != NOTE
7089 || NOTE_LINE_NUMBER (insn
) < 0)
7090 INSN_CUID (insn
) = ++i
;
7092 /* Give a line number note the same cuid as preceding insn. */
7093 INSN_CUID (insn
) = i
;
7096 ggc_push_context ();
7098 /* Loop over basic blocks.
7099 Compute the maximum number of qty's needed for each basic block
7100 (which is 2 for each SET). */
7105 cse_end_of_basic_block (insn
, &val
, flag_cse_follow_jumps
, after_loop
,
7106 flag_cse_skip_blocks
);
7108 /* If this basic block was already processed or has no sets, skip it. */
7109 if (val
.nsets
== 0 || GET_MODE (insn
) == QImode
)
7111 PUT_MODE (insn
, VOIDmode
);
7112 insn
= (val
.last
? NEXT_INSN (val
.last
) : 0);
7117 cse_basic_block_start
= val
.low_cuid
;
7118 cse_basic_block_end
= val
.high_cuid
;
7119 max_qty
= val
.nsets
* 2;
7122 fnotice (file
, ";; Processing block from %d to %d, %d sets.\n",
7123 INSN_UID (insn
), val
.last
? INSN_UID (val
.last
) : 0,
7126 /* Make MAX_QTY bigger to give us room to optimize
7127 past the end of this basic block, if that should prove useful. */
7133 /* If this basic block is being extended by following certain jumps,
7134 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7135 Otherwise, we start after this basic block. */
7136 if (val
.path_size
> 0)
7137 cse_basic_block (insn
, val
.last
, val
.path
, 0);
7140 int old_cse_jumps_altered
= cse_jumps_altered
;
7143 /* When cse changes a conditional jump to an unconditional
7144 jump, we want to reprocess the block, since it will give
7145 us a new branch path to investigate. */
7146 cse_jumps_altered
= 0;
7147 temp
= cse_basic_block (insn
, val
.last
, val
.path
, ! after_loop
);
7148 if (cse_jumps_altered
== 0
7149 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
7152 cse_jumps_altered
|= old_cse_jumps_altered
;
7165 if (max_elements_made
< n_elements_made
)
7166 max_elements_made
= n_elements_made
;
7169 end_alias_analysis ();
7171 free (reg_eqv_table
);
7173 return cse_jumps_altered
|| recorded_label_ref
;
7176 /* Process a single basic block. FROM and TO and the limits of the basic
7177 block. NEXT_BRANCH points to the branch path when following jumps or
7178 a null path when not following jumps.
7180 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
7181 loop. This is true when we are being called for the last time on a
7182 block and this CSE pass is before loop.c. */
7185 cse_basic_block (from
, to
, next_branch
, around_loop
)
7187 struct branch_path
*next_branch
;
7192 rtx libcall_insn
= NULL_RTX
;
7195 /* This array is undefined before max_reg, so only allocate
7196 the space actually needed and adjust the start. */
7199 = (struct qty_table_elem
*) xmalloc ((max_qty
- max_reg
)
7200 * sizeof (struct qty_table_elem
));
7201 qty_table
-= max_reg
;
7205 /* TO might be a label. If so, protect it from being deleted. */
7206 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
7209 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
7211 enum rtx_code code
= GET_CODE (insn
);
7213 /* If we have processed 1,000 insns, flush the hash table to
7214 avoid extreme quadratic behavior. We must not include NOTEs
7215 in the count since there may be more of them when generating
7216 debugging information. If we clear the table at different
7217 times, code generated with -g -O might be different than code
7218 generated with -O but not -g.
7220 ??? This is a real kludge and needs to be done some other way.
7222 if (code
!= NOTE
&& num_insns
++ > 1000)
7224 flush_hash_table ();
7228 /* See if this is a branch that is part of the path. If so, and it is
7229 to be taken, do so. */
7230 if (next_branch
->branch
== insn
)
7232 enum taken status
= next_branch
++->status
;
7233 if (status
!= NOT_TAKEN
)
7235 if (status
== TAKEN
)
7236 record_jump_equiv (insn
, 1);
7238 invalidate_skipped_block (NEXT_INSN (insn
));
7240 /* Set the last insn as the jump insn; it doesn't affect cc0.
7241 Then follow this branch. */
7246 insn
= JUMP_LABEL (insn
);
7251 if (GET_MODE (insn
) == QImode
)
7252 PUT_MODE (insn
, VOIDmode
);
7254 if (GET_RTX_CLASS (code
) == 'i')
7258 /* Process notes first so we have all notes in canonical forms when
7259 looking for duplicate operations. */
7261 if (REG_NOTES (insn
))
7262 REG_NOTES (insn
) = cse_process_notes (REG_NOTES (insn
), NULL_RTX
);
7264 /* Track when we are inside in LIBCALL block. Inside such a block,
7265 we do not want to record destinations. The last insn of a
7266 LIBCALL block is not considered to be part of the block, since
7267 its destination is the result of the block and hence should be
7270 if (REG_NOTES (insn
) != 0)
7272 if ((p
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)))
7273 libcall_insn
= XEXP (p
, 0);
7274 else if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
7278 cse_insn (insn
, libcall_insn
);
7280 /* If we haven't already found an insn where we added a LABEL_REF,
7282 if (GET_CODE (insn
) == INSN
&& ! recorded_label_ref
7283 && for_each_rtx (&PATTERN (insn
), check_for_label_ref
,
7285 recorded_label_ref
= 1;
7288 /* If INSN is now an unconditional jump, skip to the end of our
7289 basic block by pretending that we just did the last insn in the
7290 basic block. If we are jumping to the end of our block, show
7291 that we can have one usage of TO. */
7293 if (any_uncondjump_p (insn
))
7297 free (qty_table
+ max_reg
);
7301 if (JUMP_LABEL (insn
) == to
)
7304 /* Maybe TO was deleted because the jump is unconditional.
7305 If so, there is nothing left in this basic block. */
7306 /* ??? Perhaps it would be smarter to set TO
7307 to whatever follows this insn,
7308 and pretend the basic block had always ended here. */
7309 if (INSN_DELETED_P (to
))
7312 insn
= PREV_INSN (to
);
7315 /* See if it is ok to keep on going past the label
7316 which used to end our basic block. Remember that we incremented
7317 the count of that label, so we decrement it here. If we made
7318 a jump unconditional, TO_USAGE will be one; in that case, we don't
7319 want to count the use in that jump. */
7321 if (to
!= 0 && NEXT_INSN (insn
) == to
7322 && GET_CODE (to
) == CODE_LABEL
&& --LABEL_NUSES (to
) == to_usage
)
7324 struct cse_basic_block_data val
;
7327 insn
= NEXT_INSN (to
);
7329 /* If TO was the last insn in the function, we are done. */
7332 free (qty_table
+ max_reg
);
7336 /* If TO was preceded by a BARRIER we are done with this block
7337 because it has no continuation. */
7338 prev
= prev_nonnote_insn (to
);
7339 if (prev
&& GET_CODE (prev
) == BARRIER
)
7341 free (qty_table
+ max_reg
);
7345 /* Find the end of the following block. Note that we won't be
7346 following branches in this case. */
7349 cse_end_of_basic_block (insn
, &val
, 0, 0, 0);
7351 /* If the tables we allocated have enough space left
7352 to handle all the SETs in the next basic block,
7353 continue through it. Otherwise, return,
7354 and that block will be scanned individually. */
7355 if (val
.nsets
* 2 + next_qty
> max_qty
)
7358 cse_basic_block_start
= val
.low_cuid
;
7359 cse_basic_block_end
= val
.high_cuid
;
7362 /* Prevent TO from being deleted if it is a label. */
7363 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
7366 /* Back up so we process the first insn in the extension. */
7367 insn
= PREV_INSN (insn
);
7371 if (next_qty
> max_qty
)
7374 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7375 the previous insn is the only insn that branches to the head of a loop,
7376 we can cse into the loop. Don't do this if we changed the jump
7377 structure of a loop unless we aren't going to be following jumps. */
7379 insn
= prev_nonnote_insn (to
);
7380 if ((cse_jumps_altered
== 0
7381 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
7382 && around_loop
&& to
!= 0
7383 && GET_CODE (to
) == NOTE
&& NOTE_LINE_NUMBER (to
) == NOTE_INSN_LOOP_END
7384 && GET_CODE (insn
) == JUMP_INSN
7385 && JUMP_LABEL (insn
) != 0
7386 && LABEL_NUSES (JUMP_LABEL (insn
)) == 1)
7387 cse_around_loop (JUMP_LABEL (insn
));
7389 free (qty_table
+ max_reg
);
7391 return to
? NEXT_INSN (to
) : 0;
7394 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7395 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7398 check_for_label_ref (rtl
, data
)
7402 rtx insn
= (rtx
) data
;
7404 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7405 we must rerun jump since it needs to place the note. If this is a
7406 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7407 since no REG_LABEL will be added. */
7408 return (GET_CODE (*rtl
) == LABEL_REF
7409 && ! LABEL_REF_NONLOCAL_P (*rtl
)
7410 && LABEL_P (XEXP (*rtl
, 0))
7411 && INSN_UID (XEXP (*rtl
, 0)) != 0
7412 && ! find_reg_note (insn
, REG_LABEL
, XEXP (*rtl
, 0)));
7415 /* Count the number of times registers are used (not set) in X.
7416 COUNTS is an array in which we accumulate the count, INCR is how much
7417 we count each register usage.
7419 Don't count a usage of DEST, which is the SET_DEST of a SET which
7420 contains X in its SET_SRC. This is because such a SET does not
7421 modify the liveness of DEST. */
7424 count_reg_usage (x
, counts
, dest
, incr
)
7437 switch (code
= GET_CODE (x
))
7441 counts
[REGNO (x
)] += incr
;
7455 /* If we are clobbering a MEM, mark any registers inside the address
7457 if (GET_CODE (XEXP (x
, 0)) == MEM
)
7458 count_reg_usage (XEXP (XEXP (x
, 0), 0), counts
, NULL_RTX
, incr
);
7462 /* Unless we are setting a REG, count everything in SET_DEST. */
7463 if (GET_CODE (SET_DEST (x
)) != REG
)
7464 count_reg_usage (SET_DEST (x
), counts
, NULL_RTX
, incr
);
7466 /* If SRC has side-effects, then we can't delete this insn, so the
7467 usage of SET_DEST inside SRC counts.
7469 ??? Strictly-speaking, we might be preserving this insn
7470 because some other SET has side-effects, but that's hard
7471 to do and can't happen now. */
7472 count_reg_usage (SET_SRC (x
), counts
,
7473 side_effects_p (SET_SRC (x
)) ? NULL_RTX
: SET_DEST (x
),
7478 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x
), counts
, NULL_RTX
, incr
);
7483 count_reg_usage (PATTERN (x
), counts
, NULL_RTX
, incr
);
7485 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7488 count_reg_usage (REG_NOTES (x
), counts
, NULL_RTX
, incr
);
7493 if (REG_NOTE_KIND (x
) == REG_EQUAL
7494 || (REG_NOTE_KIND (x
) != REG_NONNEG
&& GET_CODE (XEXP (x
,0)) == USE
))
7495 count_reg_usage (XEXP (x
, 0), counts
, NULL_RTX
, incr
);
7496 count_reg_usage (XEXP (x
, 1), counts
, NULL_RTX
, incr
);
7503 fmt
= GET_RTX_FORMAT (code
);
7504 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7507 count_reg_usage (XEXP (x
, i
), counts
, dest
, incr
);
7508 else if (fmt
[i
] == 'E')
7509 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7510 count_reg_usage (XVECEXP (x
, i
, j
), counts
, dest
, incr
);
7514 /* Return true if set is live. */
7516 set_live_p (set
, insn
, counts
)
7518 rtx insn ATTRIBUTE_UNUSED
; /* Only used with HAVE_cc0. */
7525 if (set_noop_p (set
))
7529 else if (GET_CODE (SET_DEST (set
)) == CC0
7530 && !side_effects_p (SET_SRC (set
))
7531 && ((tem
= next_nonnote_insn (insn
)) == 0
7533 || !reg_referenced_p (cc0_rtx
, PATTERN (tem
))))
7536 else if (GET_CODE (SET_DEST (set
)) != REG
7537 || REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
7538 || counts
[REGNO (SET_DEST (set
))] != 0
7539 || side_effects_p (SET_SRC (set
))
7540 /* An ADDRESSOF expression can turn into a use of the
7541 internal arg pointer, so always consider the
7542 internal arg pointer live. If it is truly dead,
7543 flow will delete the initializing insn. */
7544 || (SET_DEST (set
) == current_function_internal_arg_pointer
))
7549 /* Return true if insn is live. */
7552 insn_live_p (insn
, counts
)
7557 if (GET_CODE (PATTERN (insn
)) == SET
)
7558 return set_live_p (PATTERN (insn
), insn
, counts
);
7559 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
7561 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
7563 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
7565 if (GET_CODE (elt
) == SET
)
7567 if (set_live_p (elt
, insn
, counts
))
7570 else if (GET_CODE (elt
) != CLOBBER
&& GET_CODE (elt
) != USE
)
7579 /* Return true if libcall is dead as a whole. */
7582 dead_libcall_p (insn
, counts
)
7587 /* See if there's a REG_EQUAL note on this insn and try to
7588 replace the source with the REG_EQUAL expression.
7590 We assume that insns with REG_RETVALs can only be reg->reg
7591 copies at this point. */
7592 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
7595 rtx set
= single_set (insn
);
7596 rtx
new = simplify_rtx (XEXP (note
, 0));
7599 new = XEXP (note
, 0);
7601 /* While changing insn, we must update the counts accordingly. */
7602 count_reg_usage (insn
, counts
, NULL_RTX
, -1);
7604 if (set
&& validate_change (insn
, &SET_SRC (set
), new, 0))
7606 count_reg_usage (insn
, counts
, NULL_RTX
, 1);
7607 remove_note (insn
, find_reg_note (insn
, REG_RETVAL
, NULL_RTX
));
7608 remove_note (insn
, note
);
7611 count_reg_usage (insn
, counts
, NULL_RTX
, 1);
7616 /* Scan all the insns and delete any that are dead; i.e., they store a register
7617 that is never used or they copy a register to itself.
7619 This is used to remove insns made obviously dead by cse, loop or other
7620 optimizations. It improves the heuristics in loop since it won't try to
7621 move dead invariants out of loops or make givs for dead quantities. The
7622 remaining passes of the compilation are also sped up. */
7625 delete_trivially_dead_insns (insns
, nreg
)
7631 int in_libcall
= 0, dead_libcall
= 0;
7632 int ndead
= 0, nlastdead
, niterations
= 0;
7634 timevar_push (TV_DELETE_TRIVIALLY_DEAD
);
7635 /* First count the number of times each register is used. */
7636 counts
= (int *) xcalloc (nreg
, sizeof (int));
7637 for (insn
= next_real_insn (insns
); insn
; insn
= next_real_insn (insn
))
7638 count_reg_usage (insn
, counts
, NULL_RTX
, 1);
7644 /* Go from the last insn to the first and delete insns that only set unused
7645 registers or copy a register to itself. As we delete an insn, remove
7646 usage counts for registers it uses.
7648 The first jump optimization pass may leave a real insn as the last
7649 insn in the function. We must not skip that insn or we may end
7650 up deleting code that is not really dead. */
7651 insn
= get_last_insn ();
7652 if (! INSN_P (insn
))
7653 insn
= prev_real_insn (insn
);
7655 for (; insn
; insn
= prev
)
7659 prev
= prev_real_insn (insn
);
7661 /* Don't delete any insns that are part of a libcall block unless
7662 we can delete the whole libcall block.
7664 Flow or loop might get confused if we did that. Remember
7665 that we are scanning backwards. */
7666 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
7670 dead_libcall
= dead_libcall_p (insn
, counts
);
7672 else if (in_libcall
)
7673 live_insn
= ! dead_libcall
;
7675 live_insn
= insn_live_p (insn
, counts
);
7677 /* If this is a dead insn, delete it and show registers in it aren't
7682 count_reg_usage (insn
, counts
, NULL_RTX
, -1);
7683 delete_insn_and_edges (insn
);
7687 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
7694 while (ndead
!= nlastdead
);
7696 if (rtl_dump_file
&& ndead
)
7697 fprintf (rtl_dump_file
, "Deleted %i trivially dead insns; %i iterations\n",
7698 ndead
, niterations
);
7701 timevar_pop (TV_DELETE_TRIVIALLY_DEAD
);