alias.c (nonoverlapping_memrefs): Use REGNO_PTR_FRAME_P.
[official-gcc.git] / gcc / fold-const.c
blobf7cdc57d42133d8cafa7329bf1a35caea902f289
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
45 #include "config.h"
46 #include "system.h"
47 #include "flags.h"
48 #include "tree.h"
49 #include "rtl.h"
50 #include "expr.h"
51 #include "tm_p.h"
52 #include "toplev.h"
53 #include "ggc.h"
54 #include "hashtab.h"
56 static void encode PARAMS ((HOST_WIDE_INT *,
57 unsigned HOST_WIDE_INT,
58 HOST_WIDE_INT));
59 static void decode PARAMS ((HOST_WIDE_INT *,
60 unsigned HOST_WIDE_INT *,
61 HOST_WIDE_INT *));
62 #ifndef REAL_ARITHMETIC
63 static void exact_real_inverse_1 PARAMS ((PTR));
64 #endif
65 static tree negate_expr PARAMS ((tree));
66 static tree split_tree PARAMS ((tree, enum tree_code, tree *, tree *,
67 int));
68 static tree associate_trees PARAMS ((tree, tree, enum tree_code, tree));
69 static tree int_const_binop PARAMS ((enum tree_code, tree, tree, int));
70 static void const_binop_1 PARAMS ((PTR));
71 static tree const_binop PARAMS ((enum tree_code, tree, tree, int));
72 static hashval_t size_htab_hash PARAMS ((const void *));
73 static int size_htab_eq PARAMS ((const void *, const void *));
74 static void fold_convert_1 PARAMS ((PTR));
75 static tree fold_convert PARAMS ((tree, tree));
76 static enum tree_code invert_tree_comparison PARAMS ((enum tree_code));
77 static enum tree_code swap_tree_comparison PARAMS ((enum tree_code));
78 static int truth_value_p PARAMS ((enum tree_code));
79 static int operand_equal_for_comparison_p PARAMS ((tree, tree, tree));
80 static int twoval_comparison_p PARAMS ((tree, tree *, tree *, int *));
81 static tree eval_subst PARAMS ((tree, tree, tree, tree, tree));
82 static tree omit_one_operand PARAMS ((tree, tree, tree));
83 static tree pedantic_omit_one_operand PARAMS ((tree, tree, tree));
84 static tree distribute_bit_expr PARAMS ((enum tree_code, tree, tree, tree));
85 static tree make_bit_field_ref PARAMS ((tree, tree, int, int, int));
86 static tree optimize_bit_field_compare PARAMS ((enum tree_code, tree,
87 tree, tree));
88 static tree decode_field_reference PARAMS ((tree, HOST_WIDE_INT *,
89 HOST_WIDE_INT *,
90 enum machine_mode *, int *,
91 int *, tree *, tree *));
92 static int all_ones_mask_p PARAMS ((tree, int));
93 static int simple_operand_p PARAMS ((tree));
94 static tree range_binop PARAMS ((enum tree_code, tree, tree, int,
95 tree, int));
96 static tree make_range PARAMS ((tree, int *, tree *, tree *));
97 static tree build_range_check PARAMS ((tree, tree, int, tree, tree));
98 static int merge_ranges PARAMS ((int *, tree *, tree *, int, tree, tree,
99 int, tree, tree));
100 static tree fold_range_test PARAMS ((tree));
101 static tree unextend PARAMS ((tree, int, int, tree));
102 static tree fold_truthop PARAMS ((enum tree_code, tree, tree, tree));
103 static tree optimize_minmax_comparison PARAMS ((tree));
104 static tree extract_muldiv PARAMS ((tree, tree, enum tree_code, tree));
105 static tree strip_compound_expr PARAMS ((tree, tree));
106 static int multiple_of_p PARAMS ((tree, tree, tree));
107 static tree constant_boolean_node PARAMS ((int, tree));
108 static int count_cond PARAMS ((tree, int));
109 static tree fold_binary_op_with_conditional_arg
110 PARAMS ((enum tree_code, tree, tree, tree, int));
112 #ifndef BRANCH_COST
113 #define BRANCH_COST 1
114 #endif
116 #if defined(HOST_EBCDIC)
117 /* bit 8 is significant in EBCDIC */
118 #define CHARMASK 0xff
119 #else
120 #define CHARMASK 0x7f
121 #endif
123 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
124 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
125 and SUM1. Then this yields nonzero if overflow occurred during the
126 addition.
128 Overflow occurs if A and B have the same sign, but A and SUM differ in
129 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
130 sign. */
131 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
133 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
134 We do that by representing the two-word integer in 4 words, with only
135 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
136 number. The value of the word is LOWPART + HIGHPART * BASE. */
138 #define LOWPART(x) \
139 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
140 #define HIGHPART(x) \
141 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
142 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
144 /* Unpack a two-word integer into 4 words.
145 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
146 WORDS points to the array of HOST_WIDE_INTs. */
148 static void
149 encode (words, low, hi)
150 HOST_WIDE_INT *words;
151 unsigned HOST_WIDE_INT low;
152 HOST_WIDE_INT hi;
154 words[0] = LOWPART (low);
155 words[1] = HIGHPART (low);
156 words[2] = LOWPART (hi);
157 words[3] = HIGHPART (hi);
160 /* Pack an array of 4 words into a two-word integer.
161 WORDS points to the array of words.
162 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
164 static void
165 decode (words, low, hi)
166 HOST_WIDE_INT *words;
167 unsigned HOST_WIDE_INT *low;
168 HOST_WIDE_INT *hi;
170 *low = words[0] + words[1] * BASE;
171 *hi = words[2] + words[3] * BASE;
174 /* Make the integer constant T valid for its type by setting to 0 or 1 all
175 the bits in the constant that don't belong in the type.
177 Return 1 if a signed overflow occurs, 0 otherwise. If OVERFLOW is
178 nonzero, a signed overflow has already occurred in calculating T, so
179 propagate it.
181 Make the real constant T valid for its type by calling CHECK_FLOAT_VALUE,
182 if it exists. */
185 force_fit_type (t, overflow)
186 tree t;
187 int overflow;
189 unsigned HOST_WIDE_INT low;
190 HOST_WIDE_INT high;
191 unsigned int prec;
193 if (TREE_CODE (t) == REAL_CST)
195 #ifdef CHECK_FLOAT_VALUE
196 CHECK_FLOAT_VALUE (TYPE_MODE (TREE_TYPE (t)), TREE_REAL_CST (t),
197 overflow);
198 #endif
199 return overflow;
202 else if (TREE_CODE (t) != INTEGER_CST)
203 return overflow;
205 low = TREE_INT_CST_LOW (t);
206 high = TREE_INT_CST_HIGH (t);
208 if (POINTER_TYPE_P (TREE_TYPE (t)))
209 prec = POINTER_SIZE;
210 else
211 prec = TYPE_PRECISION (TREE_TYPE (t));
213 /* First clear all bits that are beyond the type's precision. */
215 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
217 else if (prec > HOST_BITS_PER_WIDE_INT)
218 TREE_INT_CST_HIGH (t)
219 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
220 else
222 TREE_INT_CST_HIGH (t) = 0;
223 if (prec < HOST_BITS_PER_WIDE_INT)
224 TREE_INT_CST_LOW (t) &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
227 /* Unsigned types do not suffer sign extension or overflow unless they
228 are a sizetype. */
229 if (TREE_UNSIGNED (TREE_TYPE (t))
230 && ! (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
231 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
232 return overflow;
234 /* If the value's sign bit is set, extend the sign. */
235 if (prec != 2 * HOST_BITS_PER_WIDE_INT
236 && (prec > HOST_BITS_PER_WIDE_INT
237 ? 0 != (TREE_INT_CST_HIGH (t)
238 & ((HOST_WIDE_INT) 1
239 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
240 : 0 != (TREE_INT_CST_LOW (t)
241 & ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))))
243 /* Value is negative:
244 set to 1 all the bits that are outside this type's precision. */
245 if (prec > HOST_BITS_PER_WIDE_INT)
246 TREE_INT_CST_HIGH (t)
247 |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
248 else
250 TREE_INT_CST_HIGH (t) = -1;
251 if (prec < HOST_BITS_PER_WIDE_INT)
252 TREE_INT_CST_LOW (t) |= ((unsigned HOST_WIDE_INT) (-1) << prec);
256 /* Return nonzero if signed overflow occurred. */
257 return
258 ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
259 != 0);
262 /* Add two doubleword integers with doubleword result.
263 Each argument is given as two `HOST_WIDE_INT' pieces.
264 One argument is L1 and H1; the other, L2 and H2.
265 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
268 add_double (l1, h1, l2, h2, lv, hv)
269 unsigned HOST_WIDE_INT l1, l2;
270 HOST_WIDE_INT h1, h2;
271 unsigned HOST_WIDE_INT *lv;
272 HOST_WIDE_INT *hv;
274 unsigned HOST_WIDE_INT l;
275 HOST_WIDE_INT h;
277 l = l1 + l2;
278 h = h1 + h2 + (l < l1);
280 *lv = l;
281 *hv = h;
282 return OVERFLOW_SUM_SIGN (h1, h2, h);
285 /* Negate a doubleword integer with doubleword result.
286 Return nonzero if the operation overflows, assuming it's signed.
287 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
288 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
291 neg_double (l1, h1, lv, hv)
292 unsigned HOST_WIDE_INT l1;
293 HOST_WIDE_INT h1;
294 unsigned HOST_WIDE_INT *lv;
295 HOST_WIDE_INT *hv;
297 if (l1 == 0)
299 *lv = 0;
300 *hv = - h1;
301 return (*hv & h1) < 0;
303 else
305 *lv = -l1;
306 *hv = ~h1;
307 return 0;
311 /* Multiply two doubleword integers with doubleword result.
312 Return nonzero if the operation overflows, assuming it's signed.
313 Each argument is given as two `HOST_WIDE_INT' pieces.
314 One argument is L1 and H1; the other, L2 and H2.
315 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
318 mul_double (l1, h1, l2, h2, lv, hv)
319 unsigned HOST_WIDE_INT l1, l2;
320 HOST_WIDE_INT h1, h2;
321 unsigned HOST_WIDE_INT *lv;
322 HOST_WIDE_INT *hv;
324 HOST_WIDE_INT arg1[4];
325 HOST_WIDE_INT arg2[4];
326 HOST_WIDE_INT prod[4 * 2];
327 unsigned HOST_WIDE_INT carry;
328 int i, j, k;
329 unsigned HOST_WIDE_INT toplow, neglow;
330 HOST_WIDE_INT tophigh, neghigh;
332 encode (arg1, l1, h1);
333 encode (arg2, l2, h2);
335 memset ((char *) prod, 0, sizeof prod);
337 for (i = 0; i < 4; i++)
339 carry = 0;
340 for (j = 0; j < 4; j++)
342 k = i + j;
343 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
344 carry += arg1[i] * arg2[j];
345 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
346 carry += prod[k];
347 prod[k] = LOWPART (carry);
348 carry = HIGHPART (carry);
350 prod[i + 4] = carry;
353 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
355 /* Check for overflow by calculating the top half of the answer in full;
356 it should agree with the low half's sign bit. */
357 decode (prod + 4, &toplow, &tophigh);
358 if (h1 < 0)
360 neg_double (l2, h2, &neglow, &neghigh);
361 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
363 if (h2 < 0)
365 neg_double (l1, h1, &neglow, &neghigh);
366 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
368 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
371 /* Shift the doubleword integer in L1, H1 left by COUNT places
372 keeping only PREC bits of result.
373 Shift right if COUNT is negative.
374 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
375 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
377 void
378 lshift_double (l1, h1, count, prec, lv, hv, arith)
379 unsigned HOST_WIDE_INT l1;
380 HOST_WIDE_INT h1, count;
381 unsigned int prec;
382 unsigned HOST_WIDE_INT *lv;
383 HOST_WIDE_INT *hv;
384 int arith;
386 unsigned HOST_WIDE_INT signmask;
388 if (count < 0)
390 rshift_double (l1, h1, -count, prec, lv, hv, arith);
391 return;
394 #ifdef SHIFT_COUNT_TRUNCATED
395 if (SHIFT_COUNT_TRUNCATED)
396 count %= prec;
397 #endif
399 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
401 /* Shifting by the host word size is undefined according to the
402 ANSI standard, so we must handle this as a special case. */
403 *hv = 0;
404 *lv = 0;
406 else if (count >= HOST_BITS_PER_WIDE_INT)
408 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
409 *lv = 0;
411 else
413 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
414 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
415 *lv = l1 << count;
418 /* Sign extend all bits that are beyond the precision. */
420 signmask = -((prec > HOST_BITS_PER_WIDE_INT
421 ? (*hv >> (prec - HOST_BITS_PER_WIDE_INT - 1))
422 : (*lv >> (prec - 1))) & 1);
424 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
426 else if (prec >= HOST_BITS_PER_WIDE_INT)
428 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
429 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
431 else
433 *hv = signmask;
434 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
435 *lv |= signmask << prec;
439 /* Shift the doubleword integer in L1, H1 right by COUNT places
440 keeping only PREC bits of result. COUNT must be positive.
441 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
442 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
444 void
445 rshift_double (l1, h1, count, prec, lv, hv, arith)
446 unsigned HOST_WIDE_INT l1;
447 HOST_WIDE_INT h1, count;
448 unsigned int prec;
449 unsigned HOST_WIDE_INT *lv;
450 HOST_WIDE_INT *hv;
451 int arith;
453 unsigned HOST_WIDE_INT signmask;
455 signmask = (arith
456 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
457 : 0);
459 #ifdef SHIFT_COUNT_TRUNCATED
460 if (SHIFT_COUNT_TRUNCATED)
461 count %= prec;
462 #endif
464 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
466 /* Shifting by the host word size is undefined according to the
467 ANSI standard, so we must handle this as a special case. */
468 *hv = 0;
469 *lv = 0;
471 else if (count >= HOST_BITS_PER_WIDE_INT)
473 *hv = 0;
474 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
476 else
478 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
479 *lv = ((l1 >> count)
480 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
483 /* Zero / sign extend all bits that are beyond the precision. */
485 if (count >= (HOST_WIDE_INT)prec)
487 *hv = signmask;
488 *lv = signmask;
490 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
492 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
494 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
495 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
497 else
499 *hv = signmask;
500 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
501 *lv |= signmask << (prec - count);
505 /* Rotate the doubleword integer in L1, H1 left by COUNT places
506 keeping only PREC bits of result.
507 Rotate right if COUNT is negative.
508 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
510 void
511 lrotate_double (l1, h1, count, prec, lv, hv)
512 unsigned HOST_WIDE_INT l1;
513 HOST_WIDE_INT h1, count;
514 unsigned int prec;
515 unsigned HOST_WIDE_INT *lv;
516 HOST_WIDE_INT *hv;
518 unsigned HOST_WIDE_INT s1l, s2l;
519 HOST_WIDE_INT s1h, s2h;
521 count %= prec;
522 if (count < 0)
523 count += prec;
525 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
526 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
527 *lv = s1l | s2l;
528 *hv = s1h | s2h;
531 /* Rotate the doubleword integer in L1, H1 left by COUNT places
532 keeping only PREC bits of result. COUNT must be positive.
533 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
535 void
536 rrotate_double (l1, h1, count, prec, lv, hv)
537 unsigned HOST_WIDE_INT l1;
538 HOST_WIDE_INT h1, count;
539 unsigned int prec;
540 unsigned HOST_WIDE_INT *lv;
541 HOST_WIDE_INT *hv;
543 unsigned HOST_WIDE_INT s1l, s2l;
544 HOST_WIDE_INT s1h, s2h;
546 count %= prec;
547 if (count < 0)
548 count += prec;
550 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
551 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
552 *lv = s1l | s2l;
553 *hv = s1h | s2h;
556 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
557 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
558 CODE is a tree code for a kind of division, one of
559 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
560 or EXACT_DIV_EXPR
561 It controls how the quotient is rounded to an integer.
562 Return nonzero if the operation overflows.
563 UNS nonzero says do unsigned division. */
566 div_and_round_double (code, uns,
567 lnum_orig, hnum_orig, lden_orig, hden_orig,
568 lquo, hquo, lrem, hrem)
569 enum tree_code code;
570 int uns;
571 unsigned HOST_WIDE_INT lnum_orig; /* num == numerator == dividend */
572 HOST_WIDE_INT hnum_orig;
573 unsigned HOST_WIDE_INT lden_orig; /* den == denominator == divisor */
574 HOST_WIDE_INT hden_orig;
575 unsigned HOST_WIDE_INT *lquo, *lrem;
576 HOST_WIDE_INT *hquo, *hrem;
578 int quo_neg = 0;
579 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
580 HOST_WIDE_INT den[4], quo[4];
581 int i, j;
582 unsigned HOST_WIDE_INT work;
583 unsigned HOST_WIDE_INT carry = 0;
584 unsigned HOST_WIDE_INT lnum = lnum_orig;
585 HOST_WIDE_INT hnum = hnum_orig;
586 unsigned HOST_WIDE_INT lden = lden_orig;
587 HOST_WIDE_INT hden = hden_orig;
588 int overflow = 0;
590 if (hden == 0 && lden == 0)
591 overflow = 1, lden = 1;
593 /* calculate quotient sign and convert operands to unsigned. */
594 if (!uns)
596 if (hnum < 0)
598 quo_neg = ~ quo_neg;
599 /* (minimum integer) / (-1) is the only overflow case. */
600 if (neg_double (lnum, hnum, &lnum, &hnum)
601 && ((HOST_WIDE_INT) lden & hden) == -1)
602 overflow = 1;
604 if (hden < 0)
606 quo_neg = ~ quo_neg;
607 neg_double (lden, hden, &lden, &hden);
611 if (hnum == 0 && hden == 0)
612 { /* single precision */
613 *hquo = *hrem = 0;
614 /* This unsigned division rounds toward zero. */
615 *lquo = lnum / lden;
616 goto finish_up;
619 if (hnum == 0)
620 { /* trivial case: dividend < divisor */
621 /* hden != 0 already checked. */
622 *hquo = *lquo = 0;
623 *hrem = hnum;
624 *lrem = lnum;
625 goto finish_up;
628 memset ((char *) quo, 0, sizeof quo);
630 memset ((char *) num, 0, sizeof num); /* to zero 9th element */
631 memset ((char *) den, 0, sizeof den);
633 encode (num, lnum, hnum);
634 encode (den, lden, hden);
636 /* Special code for when the divisor < BASE. */
637 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
639 /* hnum != 0 already checked. */
640 for (i = 4 - 1; i >= 0; i--)
642 work = num[i] + carry * BASE;
643 quo[i] = work / lden;
644 carry = work % lden;
647 else
649 /* Full double precision division,
650 with thanks to Don Knuth's "Seminumerical Algorithms". */
651 int num_hi_sig, den_hi_sig;
652 unsigned HOST_WIDE_INT quo_est, scale;
654 /* Find the highest non-zero divisor digit. */
655 for (i = 4 - 1;; i--)
656 if (den[i] != 0)
658 den_hi_sig = i;
659 break;
662 /* Insure that the first digit of the divisor is at least BASE/2.
663 This is required by the quotient digit estimation algorithm. */
665 scale = BASE / (den[den_hi_sig] + 1);
666 if (scale > 1)
667 { /* scale divisor and dividend */
668 carry = 0;
669 for (i = 0; i <= 4 - 1; i++)
671 work = (num[i] * scale) + carry;
672 num[i] = LOWPART (work);
673 carry = HIGHPART (work);
676 num[4] = carry;
677 carry = 0;
678 for (i = 0; i <= 4 - 1; i++)
680 work = (den[i] * scale) + carry;
681 den[i] = LOWPART (work);
682 carry = HIGHPART (work);
683 if (den[i] != 0) den_hi_sig = i;
687 num_hi_sig = 4;
689 /* Main loop */
690 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
692 /* Guess the next quotient digit, quo_est, by dividing the first
693 two remaining dividend digits by the high order quotient digit.
694 quo_est is never low and is at most 2 high. */
695 unsigned HOST_WIDE_INT tmp;
697 num_hi_sig = i + den_hi_sig + 1;
698 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
699 if (num[num_hi_sig] != den[den_hi_sig])
700 quo_est = work / den[den_hi_sig];
701 else
702 quo_est = BASE - 1;
704 /* Refine quo_est so it's usually correct, and at most one high. */
705 tmp = work - quo_est * den[den_hi_sig];
706 if (tmp < BASE
707 && (den[den_hi_sig - 1] * quo_est
708 > (tmp * BASE + num[num_hi_sig - 2])))
709 quo_est--;
711 /* Try QUO_EST as the quotient digit, by multiplying the
712 divisor by QUO_EST and subtracting from the remaining dividend.
713 Keep in mind that QUO_EST is the I - 1st digit. */
715 carry = 0;
716 for (j = 0; j <= den_hi_sig; j++)
718 work = quo_est * den[j] + carry;
719 carry = HIGHPART (work);
720 work = num[i + j] - LOWPART (work);
721 num[i + j] = LOWPART (work);
722 carry += HIGHPART (work) != 0;
725 /* If quo_est was high by one, then num[i] went negative and
726 we need to correct things. */
727 if (num[num_hi_sig] < carry)
729 quo_est--;
730 carry = 0; /* add divisor back in */
731 for (j = 0; j <= den_hi_sig; j++)
733 work = num[i + j] + den[j] + carry;
734 carry = HIGHPART (work);
735 num[i + j] = LOWPART (work);
738 num [num_hi_sig] += carry;
741 /* Store the quotient digit. */
742 quo[i] = quo_est;
746 decode (quo, lquo, hquo);
748 finish_up:
749 /* if result is negative, make it so. */
750 if (quo_neg)
751 neg_double (*lquo, *hquo, lquo, hquo);
753 /* compute trial remainder: rem = num - (quo * den) */
754 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
755 neg_double (*lrem, *hrem, lrem, hrem);
756 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
758 switch (code)
760 case TRUNC_DIV_EXPR:
761 case TRUNC_MOD_EXPR: /* round toward zero */
762 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
763 return overflow;
765 case FLOOR_DIV_EXPR:
766 case FLOOR_MOD_EXPR: /* round toward negative infinity */
767 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
769 /* quo = quo - 1; */
770 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
771 lquo, hquo);
773 else
774 return overflow;
775 break;
777 case CEIL_DIV_EXPR:
778 case CEIL_MOD_EXPR: /* round toward positive infinity */
779 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
781 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
782 lquo, hquo);
784 else
785 return overflow;
786 break;
788 case ROUND_DIV_EXPR:
789 case ROUND_MOD_EXPR: /* round to closest integer */
791 unsigned HOST_WIDE_INT labs_rem = *lrem;
792 HOST_WIDE_INT habs_rem = *hrem;
793 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
794 HOST_WIDE_INT habs_den = hden, htwice;
796 /* Get absolute values */
797 if (*hrem < 0)
798 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
799 if (hden < 0)
800 neg_double (lden, hden, &labs_den, &habs_den);
802 /* If (2 * abs (lrem) >= abs (lden)) */
803 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
804 labs_rem, habs_rem, &ltwice, &htwice);
806 if (((unsigned HOST_WIDE_INT) habs_den
807 < (unsigned HOST_WIDE_INT) htwice)
808 || (((unsigned HOST_WIDE_INT) habs_den
809 == (unsigned HOST_WIDE_INT) htwice)
810 && (labs_den < ltwice)))
812 if (*hquo < 0)
813 /* quo = quo - 1; */
814 add_double (*lquo, *hquo,
815 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
816 else
817 /* quo = quo + 1; */
818 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
819 lquo, hquo);
821 else
822 return overflow;
824 break;
826 default:
827 abort ();
830 /* compute true remainder: rem = num - (quo * den) */
831 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
832 neg_double (*lrem, *hrem, lrem, hrem);
833 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
834 return overflow;
837 #ifndef REAL_ARITHMETIC
838 /* Effectively truncate a real value to represent the nearest possible value
839 in a narrower mode. The result is actually represented in the same data
840 type as the argument, but its value is usually different.
842 A trap may occur during the FP operations and it is the responsibility
843 of the calling function to have a handler established. */
845 REAL_VALUE_TYPE
846 real_value_truncate (mode, arg)
847 enum machine_mode mode;
848 REAL_VALUE_TYPE arg;
850 return REAL_VALUE_TRUNCATE (mode, arg);
853 #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
855 /* Check for infinity in an IEEE double precision number. */
858 target_isinf (x)
859 REAL_VALUE_TYPE x;
861 /* The IEEE 64-bit double format. */
862 union {
863 REAL_VALUE_TYPE d;
864 struct {
865 unsigned sign : 1;
866 unsigned exponent : 11;
867 unsigned mantissa1 : 20;
868 unsigned mantissa2 : 32;
869 } little_endian;
870 struct {
871 unsigned mantissa2 : 32;
872 unsigned mantissa1 : 20;
873 unsigned exponent : 11;
874 unsigned sign : 1;
875 } big_endian;
876 } u;
878 u.d = dconstm1;
879 if (u.big_endian.sign == 1)
881 u.d = x;
882 return (u.big_endian.exponent == 2047
883 && u.big_endian.mantissa1 == 0
884 && u.big_endian.mantissa2 == 0);
886 else
888 u.d = x;
889 return (u.little_endian.exponent == 2047
890 && u.little_endian.mantissa1 == 0
891 && u.little_endian.mantissa2 == 0);
895 /* Check whether an IEEE double precision number is a NaN. */
898 target_isnan (x)
899 REAL_VALUE_TYPE x;
901 /* The IEEE 64-bit double format. */
902 union {
903 REAL_VALUE_TYPE d;
904 struct {
905 unsigned sign : 1;
906 unsigned exponent : 11;
907 unsigned mantissa1 : 20;
908 unsigned mantissa2 : 32;
909 } little_endian;
910 struct {
911 unsigned mantissa2 : 32;
912 unsigned mantissa1 : 20;
913 unsigned exponent : 11;
914 unsigned sign : 1;
915 } big_endian;
916 } u;
918 u.d = dconstm1;
919 if (u.big_endian.sign == 1)
921 u.d = x;
922 return (u.big_endian.exponent == 2047
923 && (u.big_endian.mantissa1 != 0
924 || u.big_endian.mantissa2 != 0));
926 else
928 u.d = x;
929 return (u.little_endian.exponent == 2047
930 && (u.little_endian.mantissa1 != 0
931 || u.little_endian.mantissa2 != 0));
935 /* Check for a negative IEEE double precision number. */
938 target_negative (x)
939 REAL_VALUE_TYPE x;
941 /* The IEEE 64-bit double format. */
942 union {
943 REAL_VALUE_TYPE d;
944 struct {
945 unsigned sign : 1;
946 unsigned exponent : 11;
947 unsigned mantissa1 : 20;
948 unsigned mantissa2 : 32;
949 } little_endian;
950 struct {
951 unsigned mantissa2 : 32;
952 unsigned mantissa1 : 20;
953 unsigned exponent : 11;
954 unsigned sign : 1;
955 } big_endian;
956 } u;
958 u.d = dconstm1;
959 if (u.big_endian.sign == 1)
961 u.d = x;
962 return u.big_endian.sign;
964 else
966 u.d = x;
967 return u.little_endian.sign;
970 #else /* Target not IEEE */
972 /* Let's assume other float formats don't have infinity.
973 (This can be overridden by redefining REAL_VALUE_ISINF.) */
976 target_isinf (x)
977 REAL_VALUE_TYPE x ATTRIBUTE_UNUSED;
979 return 0;
982 /* Let's assume other float formats don't have NaNs.
983 (This can be overridden by redefining REAL_VALUE_ISNAN.) */
986 target_isnan (x)
987 REAL_VALUE_TYPE x ATTRIBUTE_UNUSED;
989 return 0;
992 /* Let's assume other float formats don't have minus zero.
993 (This can be overridden by redefining REAL_VALUE_NEGATIVE.) */
996 target_negative (x)
997 REAL_VALUE_TYPE x;
999 return x < 0;
1001 #endif /* Target not IEEE */
1003 /* Try to change R into its exact multiplicative inverse in machine mode
1004 MODE. Return nonzero function value if successful. */
1005 struct exact_real_inverse_args
1007 REAL_VALUE_TYPE *r;
1008 enum machine_mode mode;
1009 int success;
1012 static void
1013 exact_real_inverse_1 (p)
1014 PTR p;
1016 struct exact_real_inverse_args *args =
1017 (struct exact_real_inverse_args *) p;
1019 enum machine_mode mode = args->mode;
1020 REAL_VALUE_TYPE *r = args->r;
1022 union
1024 double d;
1025 unsigned short i[4];
1027 x, t, y;
1028 #ifdef CHECK_FLOAT_VALUE
1029 int i;
1030 #endif
1032 /* Set array index to the less significant bits in the unions, depending
1033 on the endian-ness of the host doubles. */
1034 #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT \
1035 || HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
1036 # define K 2
1037 #else
1038 # define K (2 * HOST_FLOAT_WORDS_BIG_ENDIAN)
1039 #endif
1041 /* Domain check the argument. */
1042 x.d = *r;
1043 if (x.d == 0.0)
1044 goto fail;
1046 #ifdef REAL_INFINITY
1047 if (REAL_VALUE_ISINF (x.d) || REAL_VALUE_ISNAN (x.d))
1048 goto fail;
1049 #endif
1051 /* Compute the reciprocal and check for numerical exactness.
1052 It is unnecessary to check all the significand bits to determine
1053 whether X is a power of 2. If X is not, then it is impossible for
1054 the bottom half significand of both X and 1/X to be all zero bits.
1055 Hence we ignore the data structure of the top half and examine only
1056 the low order bits of the two significands. */
1057 t.d = 1.0 / x.d;
1058 if (x.i[K] != 0 || x.i[K + 1] != 0 || t.i[K] != 0 || t.i[K + 1] != 0)
1059 goto fail;
1061 /* Truncate to the required mode and range-check the result. */
1062 y.d = REAL_VALUE_TRUNCATE (mode, t.d);
1063 #ifdef CHECK_FLOAT_VALUE
1064 i = 0;
1065 if (CHECK_FLOAT_VALUE (mode, y.d, i))
1066 goto fail;
1067 #endif
1069 /* Fail if truncation changed the value. */
1070 if (y.d != t.d || y.d == 0.0)
1071 goto fail;
1073 #ifdef REAL_INFINITY
1074 if (REAL_VALUE_ISINF (y.d) || REAL_VALUE_ISNAN (y.d))
1075 goto fail;
1076 #endif
1078 /* Output the reciprocal and return success flag. */
1079 *r = y.d;
1080 args->success = 1;
1081 return;
1083 fail:
1084 args->success = 0;
1085 return;
1087 #undef K
1092 exact_real_inverse (mode, r)
1093 enum machine_mode mode;
1094 REAL_VALUE_TYPE *r;
1096 struct exact_real_inverse_args args;
1098 /* Disable if insufficient information on the data structure. */
1099 #if HOST_FLOAT_FORMAT == UNKNOWN_FLOAT_FORMAT
1100 return 0;
1101 #endif
1103 /* Usually disable if bounds checks are not reliable. */
1104 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT) && !flag_pretend_float)
1105 return 0;
1107 args.mode = mode;
1108 args.r = r;
1110 if (do_float_handler (exact_real_inverse_1, (PTR) &args))
1111 return args.success;
1112 return 0;
1115 /* Convert C99 hexadecimal floating point string constant S. Return
1116 real value type in mode MODE. This function uses the host computer's
1117 floating point arithmetic when there is no REAL_ARITHMETIC. */
1119 REAL_VALUE_TYPE
1120 real_hex_to_f (s, mode)
1121 const char *s;
1122 enum machine_mode mode;
1124 REAL_VALUE_TYPE ip;
1125 const char *p = s;
1126 unsigned HOST_WIDE_INT low, high;
1127 int shcount, nrmcount, k;
1128 int sign, expsign, isfloat;
1129 int lost = 0;/* Nonzero low order bits shifted out and discarded. */
1130 int frexpon = 0; /* Bits after the decimal point. */
1131 int expon = 0; /* Value of exponent. */
1132 int decpt = 0; /* How many decimal points. */
1133 int gotp = 0; /* How many P's. */
1134 char c;
1136 isfloat = 0;
1137 expsign = 1;
1138 ip = 0.0;
1140 while (*p == ' ' || *p == '\t')
1141 ++p;
1143 /* Sign, if any, comes first. */
1144 sign = 1;
1145 if (*p == '-')
1147 sign = -1;
1148 ++p;
1151 /* The string is supposed to start with 0x or 0X . */
1152 if (*p == '0')
1154 ++p;
1155 if (*p == 'x' || *p == 'X')
1156 ++p;
1157 else
1158 abort ();
1160 else
1161 abort ();
1163 while (*p == '0')
1164 ++p;
1166 high = 0;
1167 low = 0;
1168 shcount = 0;
1169 while ((c = *p) != '\0')
1171 if (ISXDIGIT (c))
1173 k = c & CHARMASK;
1174 if (k >= 'a' && k <= 'f')
1175 k = k - 'a' + 10;
1176 else if (k >= 'A')
1177 k = k - 'A' + 10;
1178 else
1179 k = k - '0';
1181 if ((high & 0xf0000000) == 0)
1183 high = (high << 4) + ((low >> 28) & 15);
1184 low = (low << 4) + k;
1185 shcount += 4;
1186 if (decpt)
1187 frexpon += 4;
1189 else
1191 /* Record nonzero lost bits. */
1192 lost |= k;
1193 if (! decpt)
1194 frexpon -= 4;
1196 ++p;
1198 else if (c == '.')
1200 ++decpt;
1201 ++p;
1204 else if (c == 'p' || c == 'P')
1206 ++gotp;
1207 ++p;
1208 /* Sign of exponent. */
1209 if (*p == '-')
1211 expsign = -1;
1212 ++p;
1215 /* Value of exponent.
1216 The exponent field is a decimal integer. */
1217 while (ISDIGIT (*p))
1219 k = (*p++ & CHARMASK) - '0';
1220 expon = 10 * expon + k;
1223 expon *= expsign;
1224 /* F suffix is ambiguous in the significand part
1225 so it must appear after the decimal exponent field. */
1226 if (*p == 'f' || *p == 'F')
1228 isfloat = 1;
1229 ++p;
1230 break;
1234 else if (c == 'l' || c == 'L')
1236 ++p;
1237 break;
1239 else
1240 break;
1243 /* Abort if last character read was not legitimate. */
1244 c = *p;
1245 if ((c != '\0' && c != ' ' && c != '\n' && c != '\r') || (decpt > 1))
1246 abort ();
1248 /* There must be either one decimal point or one p. */
1249 if (decpt == 0 && gotp == 0)
1250 abort ();
1252 shcount -= 4;
1253 if (high == 0 && low == 0)
1254 return dconst0;
1256 /* Normalize. */
1257 nrmcount = 0;
1258 if (high == 0)
1260 high = low;
1261 low = 0;
1262 nrmcount += 32;
1265 /* Leave a high guard bit for carry-out. */
1266 if ((high & 0x80000000) != 0)
1268 lost |= low & 1;
1269 low = (low >> 1) | (high << 31);
1270 high = high >> 1;
1271 nrmcount -= 1;
1274 if ((high & 0xffff8000) == 0)
1276 high = (high << 16) + ((low >> 16) & 0xffff);
1277 low = low << 16;
1278 nrmcount += 16;
1281 while ((high & 0xc0000000) == 0)
1283 high = (high << 1) + ((low >> 31) & 1);
1284 low = low << 1;
1285 nrmcount += 1;
1288 if (isfloat || GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1290 /* Keep 24 bits precision, bits 0x7fffff80.
1291 Rounding bit is 0x40. */
1292 lost = lost | low | (high & 0x3f);
1293 low = 0;
1294 if (high & 0x40)
1296 if ((high & 0x80) || lost)
1297 high += 0x40;
1299 high &= 0xffffff80;
1301 else
1303 /* We need real.c to do long double formats, so here default
1304 to double precision. */
1305 #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
1306 /* IEEE double.
1307 Keep 53 bits precision, bits 0x7fffffff fffffc00.
1308 Rounding bit is low word 0x200. */
1309 lost = lost | (low & 0x1ff);
1310 if (low & 0x200)
1312 if ((low & 0x400) || lost)
1314 low = (low + 0x200) & 0xfffffc00;
1315 if (low == 0)
1316 high += 1;
1319 low &= 0xfffffc00;
1320 #else
1321 /* Assume it's a VAX with 56-bit significand,
1322 bits 0x7fffffff ffffff80. */
1323 lost = lost | (low & 0x7f);
1324 if (low & 0x40)
1326 if ((low & 0x80) || lost)
1328 low = (low + 0x40) & 0xffffff80;
1329 if (low == 0)
1330 high += 1;
1333 low &= 0xffffff80;
1334 #endif
1337 ip = (double) high;
1338 ip = REAL_VALUE_LDEXP (ip, 32) + (double) low;
1339 /* Apply shifts and exponent value as power of 2. */
1340 ip = REAL_VALUE_LDEXP (ip, expon - (nrmcount + frexpon));
1342 if (sign < 0)
1343 ip = -ip;
1344 return ip;
1347 #endif /* no REAL_ARITHMETIC */
1349 /* Given T, an expression, return the negation of T. Allow for T to be
1350 null, in which case return null. */
1352 static tree
1353 negate_expr (t)
1354 tree t;
1356 tree type;
1357 tree tem;
1359 if (t == 0)
1360 return 0;
1362 type = TREE_TYPE (t);
1363 STRIP_SIGN_NOPS (t);
1365 switch (TREE_CODE (t))
1367 case INTEGER_CST:
1368 case REAL_CST:
1369 if (! TREE_UNSIGNED (type)
1370 && 0 != (tem = fold (build1 (NEGATE_EXPR, type, t)))
1371 && ! TREE_OVERFLOW (tem))
1372 return tem;
1373 break;
1375 case NEGATE_EXPR:
1376 return convert (type, TREE_OPERAND (t, 0));
1378 case MINUS_EXPR:
1379 /* - (A - B) -> B - A */
1380 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1381 return convert (type,
1382 fold (build (MINUS_EXPR, TREE_TYPE (t),
1383 TREE_OPERAND (t, 1),
1384 TREE_OPERAND (t, 0))));
1385 break;
1387 default:
1388 break;
1391 return convert (type, build1 (NEGATE_EXPR, TREE_TYPE (t), t));
1394 /* Split a tree IN into a constant, literal and variable parts that could be
1395 combined with CODE to make IN. "constant" means an expression with
1396 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1397 commutative arithmetic operation. Store the constant part into *CONP,
1398 the literal in &LITP and return the variable part. If a part isn't
1399 present, set it to null. If the tree does not decompose in this way,
1400 return the entire tree as the variable part and the other parts as null.
1402 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1403 case, we negate an operand that was subtracted. If NEGATE_P is true, we
1404 are negating all of IN.
1406 If IN is itself a literal or constant, return it as appropriate.
1408 Note that we do not guarantee that any of the three values will be the
1409 same type as IN, but they will have the same signedness and mode. */
1411 static tree
1412 split_tree (in, code, conp, litp, negate_p)
1413 tree in;
1414 enum tree_code code;
1415 tree *conp, *litp;
1416 int negate_p;
1418 tree var = 0;
1420 *conp = 0;
1421 *litp = 0;
1423 /* Strip any conversions that don't change the machine mode or signedness. */
1424 STRIP_SIGN_NOPS (in);
1426 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
1427 *litp = in;
1428 else if (TREE_CODE (in) == code
1429 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1430 /* We can associate addition and subtraction together (even
1431 though the C standard doesn't say so) for integers because
1432 the value is not affected. For reals, the value might be
1433 affected, so we can't. */
1434 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1435 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1437 tree op0 = TREE_OPERAND (in, 0);
1438 tree op1 = TREE_OPERAND (in, 1);
1439 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1440 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1442 /* First see if either of the operands is a literal, then a constant. */
1443 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
1444 *litp = op0, op0 = 0;
1445 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
1446 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1448 if (op0 != 0 && TREE_CONSTANT (op0))
1449 *conp = op0, op0 = 0;
1450 else if (op1 != 0 && TREE_CONSTANT (op1))
1451 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1453 /* If we haven't dealt with either operand, this is not a case we can
1454 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1455 if (op0 != 0 && op1 != 0)
1456 var = in;
1457 else if (op0 != 0)
1458 var = op0;
1459 else
1460 var = op1, neg_var_p = neg1_p;
1462 /* Now do any needed negations. */
1463 if (neg_litp_p) *litp = negate_expr (*litp);
1464 if (neg_conp_p) *conp = negate_expr (*conp);
1465 if (neg_var_p) var = negate_expr (var);
1467 else if (TREE_CONSTANT (in))
1468 *conp = in;
1469 else
1470 var = in;
1472 if (negate_p)
1474 var = negate_expr (var);
1475 *conp = negate_expr (*conp);
1476 *litp = negate_expr (*litp);
1479 return var;
1482 /* Re-associate trees split by the above function. T1 and T2 are either
1483 expressions to associate or null. Return the new expression, if any. If
1484 we build an operation, do it in TYPE and with CODE, except if CODE is a
1485 MINUS_EXPR, in which case we use PLUS_EXPR since split_tree will already
1486 have taken care of the negations. */
1488 static tree
1489 associate_trees (t1, t2, code, type)
1490 tree t1, t2;
1491 enum tree_code code;
1492 tree type;
1494 if (t1 == 0)
1495 return t2;
1496 else if (t2 == 0)
1497 return t1;
1499 if (code == MINUS_EXPR)
1500 code = PLUS_EXPR;
1502 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1503 try to fold this since we will have infinite recursion. But do
1504 deal with any NEGATE_EXPRs. */
1505 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1506 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1508 if (TREE_CODE (t1) == NEGATE_EXPR)
1509 return build (MINUS_EXPR, type, convert (type, t2),
1510 convert (type, TREE_OPERAND (t1, 0)));
1511 else if (TREE_CODE (t2) == NEGATE_EXPR)
1512 return build (MINUS_EXPR, type, convert (type, t1),
1513 convert (type, TREE_OPERAND (t2, 0)));
1514 else
1515 return build (code, type, convert (type, t1), convert (type, t2));
1518 return fold (build (code, type, convert (type, t1), convert (type, t2)));
1521 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1522 to produce a new constant.
1524 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1526 static tree
1527 int_const_binop (code, arg1, arg2, notrunc)
1528 enum tree_code code;
1529 tree arg1, arg2;
1530 int notrunc;
1532 unsigned HOST_WIDE_INT int1l, int2l;
1533 HOST_WIDE_INT int1h, int2h;
1534 unsigned HOST_WIDE_INT low;
1535 HOST_WIDE_INT hi;
1536 unsigned HOST_WIDE_INT garbagel;
1537 HOST_WIDE_INT garbageh;
1538 tree t;
1539 tree type = TREE_TYPE (arg1);
1540 int uns = TREE_UNSIGNED (type);
1541 int is_sizetype
1542 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1543 int overflow = 0;
1544 int no_overflow = 0;
1546 int1l = TREE_INT_CST_LOW (arg1);
1547 int1h = TREE_INT_CST_HIGH (arg1);
1548 int2l = TREE_INT_CST_LOW (arg2);
1549 int2h = TREE_INT_CST_HIGH (arg2);
1551 switch (code)
1553 case BIT_IOR_EXPR:
1554 low = int1l | int2l, hi = int1h | int2h;
1555 break;
1557 case BIT_XOR_EXPR:
1558 low = int1l ^ int2l, hi = int1h ^ int2h;
1559 break;
1561 case BIT_AND_EXPR:
1562 low = int1l & int2l, hi = int1h & int2h;
1563 break;
1565 case BIT_ANDTC_EXPR:
1566 low = int1l & ~int2l, hi = int1h & ~int2h;
1567 break;
1569 case RSHIFT_EXPR:
1570 int2l = -int2l;
1571 case LSHIFT_EXPR:
1572 /* It's unclear from the C standard whether shifts can overflow.
1573 The following code ignores overflow; perhaps a C standard
1574 interpretation ruling is needed. */
1575 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1576 &low, &hi, !uns);
1577 no_overflow = 1;
1578 break;
1580 case RROTATE_EXPR:
1581 int2l = - int2l;
1582 case LROTATE_EXPR:
1583 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1584 &low, &hi);
1585 break;
1587 case PLUS_EXPR:
1588 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1589 break;
1591 case MINUS_EXPR:
1592 neg_double (int2l, int2h, &low, &hi);
1593 add_double (int1l, int1h, low, hi, &low, &hi);
1594 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1595 break;
1597 case MULT_EXPR:
1598 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1599 break;
1601 case TRUNC_DIV_EXPR:
1602 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1603 case EXACT_DIV_EXPR:
1604 /* This is a shortcut for a common special case. */
1605 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1606 && ! TREE_CONSTANT_OVERFLOW (arg1)
1607 && ! TREE_CONSTANT_OVERFLOW (arg2)
1608 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1610 if (code == CEIL_DIV_EXPR)
1611 int1l += int2l - 1;
1613 low = int1l / int2l, hi = 0;
1614 break;
1617 /* ... fall through ... */
1619 case ROUND_DIV_EXPR:
1620 if (int2h == 0 && int2l == 1)
1622 low = int1l, hi = int1h;
1623 break;
1625 if (int1l == int2l && int1h == int2h
1626 && ! (int1l == 0 && int1h == 0))
1628 low = 1, hi = 0;
1629 break;
1631 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1632 &low, &hi, &garbagel, &garbageh);
1633 break;
1635 case TRUNC_MOD_EXPR:
1636 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1637 /* This is a shortcut for a common special case. */
1638 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1639 && ! TREE_CONSTANT_OVERFLOW (arg1)
1640 && ! TREE_CONSTANT_OVERFLOW (arg2)
1641 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1643 if (code == CEIL_MOD_EXPR)
1644 int1l += int2l - 1;
1645 low = int1l % int2l, hi = 0;
1646 break;
1649 /* ... fall through ... */
1651 case ROUND_MOD_EXPR:
1652 overflow = div_and_round_double (code, uns,
1653 int1l, int1h, int2l, int2h,
1654 &garbagel, &garbageh, &low, &hi);
1655 break;
1657 case MIN_EXPR:
1658 case MAX_EXPR:
1659 if (uns)
1660 low = (((unsigned HOST_WIDE_INT) int1h
1661 < (unsigned HOST_WIDE_INT) int2h)
1662 || (((unsigned HOST_WIDE_INT) int1h
1663 == (unsigned HOST_WIDE_INT) int2h)
1664 && int1l < int2l));
1665 else
1666 low = (int1h < int2h
1667 || (int1h == int2h && int1l < int2l));
1669 if (low == (code == MIN_EXPR))
1670 low = int1l, hi = int1h;
1671 else
1672 low = int2l, hi = int2h;
1673 break;
1675 default:
1676 abort ();
1679 /* If this is for a sizetype, can be represented as one (signed)
1680 HOST_WIDE_INT word, and doesn't overflow, use size_int since it caches
1681 constants. */
1682 if (is_sizetype
1683 && ((hi == 0 && (HOST_WIDE_INT) low >= 0)
1684 || (hi == -1 && (HOST_WIDE_INT) low < 0))
1685 && overflow == 0 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
1686 return size_int_type_wide (low, type);
1687 else
1689 t = build_int_2 (low, hi);
1690 TREE_TYPE (t) = TREE_TYPE (arg1);
1693 TREE_OVERFLOW (t)
1694 = ((notrunc
1695 ? (!uns || is_sizetype) && overflow
1696 : (force_fit_type (t, (!uns || is_sizetype) && overflow)
1697 && ! no_overflow))
1698 | TREE_OVERFLOW (arg1)
1699 | TREE_OVERFLOW (arg2));
1701 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1702 So check if force_fit_type truncated the value. */
1703 if (is_sizetype
1704 && ! TREE_OVERFLOW (t)
1705 && (TREE_INT_CST_HIGH (t) != hi
1706 || TREE_INT_CST_LOW (t) != low))
1707 TREE_OVERFLOW (t) = 1;
1709 TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
1710 | TREE_CONSTANT_OVERFLOW (arg1)
1711 | TREE_CONSTANT_OVERFLOW (arg2));
1712 return t;
1715 /* Define input and output argument for const_binop_1. */
1716 struct cb_args
1718 enum tree_code code; /* Input: tree code for operation. */
1719 tree type; /* Input: tree type for operation. */
1720 REAL_VALUE_TYPE d1, d2; /* Input: floating point operands. */
1721 tree t; /* Output: constant for result. */
1724 /* Do the real arithmetic for const_binop while protected by a
1725 float overflow handler. */
1727 static void
1728 const_binop_1 (data)
1729 PTR data;
1731 struct cb_args *args = (struct cb_args *) data;
1732 REAL_VALUE_TYPE value;
1734 #ifdef REAL_ARITHMETIC
1735 REAL_ARITHMETIC (value, args->code, args->d1, args->d2);
1736 #else
1737 switch (args->code)
1739 case PLUS_EXPR:
1740 value = args->d1 + args->d2;
1741 break;
1743 case MINUS_EXPR:
1744 value = args->d1 - args->d2;
1745 break;
1747 case MULT_EXPR:
1748 value = args->d1 * args->d2;
1749 break;
1751 case RDIV_EXPR:
1752 #ifndef REAL_INFINITY
1753 if (args->d2 == 0)
1754 abort ();
1755 #endif
1757 value = args->d1 / args->d2;
1758 break;
1760 case MIN_EXPR:
1761 value = MIN (args->d1, args->d2);
1762 break;
1764 case MAX_EXPR:
1765 value = MAX (args->d1, args->d2);
1766 break;
1768 default:
1769 abort ();
1771 #endif /* no REAL_ARITHMETIC */
1773 args->t
1774 = build_real (args->type,
1775 real_value_truncate (TYPE_MODE (args->type), value));
1778 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1779 constant. We assume ARG1 and ARG2 have the same data type, or at least
1780 are the same kind of constant and the same machine mode.
1782 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1784 static tree
1785 const_binop (code, arg1, arg2, notrunc)
1786 enum tree_code code;
1787 tree arg1, arg2;
1788 int notrunc;
1790 STRIP_NOPS (arg1);
1791 STRIP_NOPS (arg2);
1793 if (TREE_CODE (arg1) == INTEGER_CST)
1794 return int_const_binop (code, arg1, arg2, notrunc);
1796 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1797 if (TREE_CODE (arg1) == REAL_CST)
1799 REAL_VALUE_TYPE d1;
1800 REAL_VALUE_TYPE d2;
1801 int overflow = 0;
1802 tree t;
1803 struct cb_args args;
1805 d1 = TREE_REAL_CST (arg1);
1806 d2 = TREE_REAL_CST (arg2);
1808 /* If either operand is a NaN, just return it. Otherwise, set up
1809 for floating-point trap; we return an overflow. */
1810 if (REAL_VALUE_ISNAN (d1))
1811 return arg1;
1812 else if (REAL_VALUE_ISNAN (d2))
1813 return arg2;
1815 /* Setup input for const_binop_1() */
1816 args.type = TREE_TYPE (arg1);
1817 args.d1 = d1;
1818 args.d2 = d2;
1819 args.code = code;
1821 if (do_float_handler (const_binop_1, (PTR) &args))
1822 /* Receive output from const_binop_1. */
1823 t = args.t;
1824 else
1826 /* We got an exception from const_binop_1. */
1827 t = copy_node (arg1);
1828 overflow = 1;
1831 TREE_OVERFLOW (t)
1832 = (force_fit_type (t, overflow)
1833 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1834 TREE_CONSTANT_OVERFLOW (t)
1835 = TREE_OVERFLOW (t)
1836 | TREE_CONSTANT_OVERFLOW (arg1)
1837 | TREE_CONSTANT_OVERFLOW (arg2);
1838 return t;
1840 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1841 if (TREE_CODE (arg1) == COMPLEX_CST)
1843 tree type = TREE_TYPE (arg1);
1844 tree r1 = TREE_REALPART (arg1);
1845 tree i1 = TREE_IMAGPART (arg1);
1846 tree r2 = TREE_REALPART (arg2);
1847 tree i2 = TREE_IMAGPART (arg2);
1848 tree t;
1850 switch (code)
1852 case PLUS_EXPR:
1853 t = build_complex (type,
1854 const_binop (PLUS_EXPR, r1, r2, notrunc),
1855 const_binop (PLUS_EXPR, i1, i2, notrunc));
1856 break;
1858 case MINUS_EXPR:
1859 t = build_complex (type,
1860 const_binop (MINUS_EXPR, r1, r2, notrunc),
1861 const_binop (MINUS_EXPR, i1, i2, notrunc));
1862 break;
1864 case MULT_EXPR:
1865 t = build_complex (type,
1866 const_binop (MINUS_EXPR,
1867 const_binop (MULT_EXPR,
1868 r1, r2, notrunc),
1869 const_binop (MULT_EXPR,
1870 i1, i2, notrunc),
1871 notrunc),
1872 const_binop (PLUS_EXPR,
1873 const_binop (MULT_EXPR,
1874 r1, i2, notrunc),
1875 const_binop (MULT_EXPR,
1876 i1, r2, notrunc),
1877 notrunc));
1878 break;
1880 case RDIV_EXPR:
1882 tree magsquared
1883 = const_binop (PLUS_EXPR,
1884 const_binop (MULT_EXPR, r2, r2, notrunc),
1885 const_binop (MULT_EXPR, i2, i2, notrunc),
1886 notrunc);
1888 t = build_complex (type,
1889 const_binop
1890 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1891 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1892 const_binop (PLUS_EXPR,
1893 const_binop (MULT_EXPR, r1, r2,
1894 notrunc),
1895 const_binop (MULT_EXPR, i1, i2,
1896 notrunc),
1897 notrunc),
1898 magsquared, notrunc),
1899 const_binop
1900 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1901 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1902 const_binop (MINUS_EXPR,
1903 const_binop (MULT_EXPR, i1, r2,
1904 notrunc),
1905 const_binop (MULT_EXPR, r1, i2,
1906 notrunc),
1907 notrunc),
1908 magsquared, notrunc));
1910 break;
1912 default:
1913 abort ();
1915 return t;
1917 return 0;
1920 /* These are the hash table functions for the hash table of INTEGER_CST
1921 nodes of a sizetype. */
1923 /* Return the hash code code X, an INTEGER_CST. */
1925 static hashval_t
1926 size_htab_hash (x)
1927 const void *x;
1929 tree t = (tree) x;
1931 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1932 ^ (hashval_t) ((long) TREE_TYPE (t) >> 3)
1933 ^ (TREE_OVERFLOW (t) << 20));
1936 /* Return non-zero if the value represented by *X (an INTEGER_CST tree node)
1937 is the same as that given by *Y, which is the same. */
1939 static int
1940 size_htab_eq (x, y)
1941 const void *x;
1942 const void *y;
1944 tree xt = (tree) x;
1945 tree yt = (tree) y;
1947 return (TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1948 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)
1949 && TREE_TYPE (xt) == TREE_TYPE (yt)
1950 && TREE_OVERFLOW (xt) == TREE_OVERFLOW (yt));
1953 /* Return an INTEGER_CST with value whose low-order HOST_BITS_PER_WIDE_INT
1954 bits are given by NUMBER and of the sizetype represented by KIND. */
1956 tree
1957 size_int_wide (number, kind)
1958 HOST_WIDE_INT number;
1959 enum size_type_kind kind;
1961 return size_int_type_wide (number, sizetype_tab[(int) kind]);
1964 /* Likewise, but the desired type is specified explicitly. */
1966 tree
1967 size_int_type_wide (number, type)
1968 HOST_WIDE_INT number;
1969 tree type;
1971 static htab_t size_htab = 0;
1972 static tree new_const = 0;
1973 PTR *slot;
1975 if (size_htab == 0)
1977 size_htab = htab_create (1024, size_htab_hash, size_htab_eq, NULL);
1978 ggc_add_deletable_htab (size_htab, NULL, NULL);
1979 new_const = make_node (INTEGER_CST);
1980 ggc_add_tree_root (&new_const, 1);
1983 /* Adjust NEW_CONST to be the constant we want. If it's already in the
1984 hash table, we return the value from the hash table. Otherwise, we
1985 place that in the hash table and make a new node for the next time. */
1986 TREE_INT_CST_LOW (new_const) = number;
1987 TREE_INT_CST_HIGH (new_const) = number < 0 ? -1 : 0;
1988 TREE_TYPE (new_const) = type;
1989 TREE_OVERFLOW (new_const) = TREE_CONSTANT_OVERFLOW (new_const)
1990 = force_fit_type (new_const, 0);
1992 slot = htab_find_slot (size_htab, new_const, INSERT);
1993 if (*slot == 0)
1995 tree t = new_const;
1997 *slot = (PTR) new_const;
1998 new_const = make_node (INTEGER_CST);
1999 return t;
2001 else
2002 return (tree) *slot;
2005 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
2006 is a tree code. The type of the result is taken from the operands.
2007 Both must be the same type integer type and it must be a size type.
2008 If the operands are constant, so is the result. */
2010 tree
2011 size_binop (code, arg0, arg1)
2012 enum tree_code code;
2013 tree arg0, arg1;
2015 tree type = TREE_TYPE (arg0);
2017 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
2018 || type != TREE_TYPE (arg1))
2019 abort ();
2021 /* Handle the special case of two integer constants faster. */
2022 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2024 /* And some specific cases even faster than that. */
2025 if (code == PLUS_EXPR && integer_zerop (arg0))
2026 return arg1;
2027 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
2028 && integer_zerop (arg1))
2029 return arg0;
2030 else if (code == MULT_EXPR && integer_onep (arg0))
2031 return arg1;
2033 /* Handle general case of two integer constants. */
2034 return int_const_binop (code, arg0, arg1, 0);
2037 if (arg0 == error_mark_node || arg1 == error_mark_node)
2038 return error_mark_node;
2040 return fold (build (code, type, arg0, arg1));
2043 /* Given two values, either both of sizetype or both of bitsizetype,
2044 compute the difference between the two values. Return the value
2045 in signed type corresponding to the type of the operands. */
2047 tree
2048 size_diffop (arg0, arg1)
2049 tree arg0, arg1;
2051 tree type = TREE_TYPE (arg0);
2052 tree ctype;
2054 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
2055 || type != TREE_TYPE (arg1))
2056 abort ();
2058 /* If the type is already signed, just do the simple thing. */
2059 if (! TREE_UNSIGNED (type))
2060 return size_binop (MINUS_EXPR, arg0, arg1);
2062 ctype = (type == bitsizetype || type == ubitsizetype
2063 ? sbitsizetype : ssizetype);
2065 /* If either operand is not a constant, do the conversions to the signed
2066 type and subtract. The hardware will do the right thing with any
2067 overflow in the subtraction. */
2068 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
2069 return size_binop (MINUS_EXPR, convert (ctype, arg0),
2070 convert (ctype, arg1));
2072 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
2073 Otherwise, subtract the other way, convert to CTYPE (we know that can't
2074 overflow) and negate (which can't either). Special-case a result
2075 of zero while we're here. */
2076 if (tree_int_cst_equal (arg0, arg1))
2077 return convert (ctype, integer_zero_node);
2078 else if (tree_int_cst_lt (arg1, arg0))
2079 return convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
2080 else
2081 return size_binop (MINUS_EXPR, convert (ctype, integer_zero_node),
2082 convert (ctype, size_binop (MINUS_EXPR, arg1, arg0)));
2085 /* This structure is used to communicate arguments to fold_convert_1. */
2086 struct fc_args
2088 tree arg1; /* Input: value to convert. */
2089 tree type; /* Input: type to convert value to. */
2090 tree t; /* Ouput: result of conversion. */
2093 /* Function to convert floating-point constants, protected by floating
2094 point exception handler. */
2096 static void
2097 fold_convert_1 (data)
2098 PTR data;
2100 struct fc_args *args = (struct fc_args *) data;
2102 args->t = build_real (args->type,
2103 real_value_truncate (TYPE_MODE (args->type),
2104 TREE_REAL_CST (args->arg1)));
2107 /* Given T, a tree representing type conversion of ARG1, a constant,
2108 return a constant tree representing the result of conversion. */
2110 static tree
2111 fold_convert (t, arg1)
2112 tree t;
2113 tree arg1;
2115 tree type = TREE_TYPE (t);
2116 int overflow = 0;
2118 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2120 if (TREE_CODE (arg1) == INTEGER_CST)
2122 /* If we would build a constant wider than GCC supports,
2123 leave the conversion unfolded. */
2124 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
2125 return t;
2127 /* If we are trying to make a sizetype for a small integer, use
2128 size_int to pick up cached types to reduce duplicate nodes. */
2129 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
2130 && !TREE_CONSTANT_OVERFLOW (arg1)
2131 && compare_tree_int (arg1, 10000) < 0)
2132 return size_int_type_wide (TREE_INT_CST_LOW (arg1), type);
2134 /* Given an integer constant, make new constant with new type,
2135 appropriately sign-extended or truncated. */
2136 t = build_int_2 (TREE_INT_CST_LOW (arg1),
2137 TREE_INT_CST_HIGH (arg1));
2138 TREE_TYPE (t) = type;
2139 /* Indicate an overflow if (1) ARG1 already overflowed,
2140 or (2) force_fit_type indicates an overflow.
2141 Tell force_fit_type that an overflow has already occurred
2142 if ARG1 is a too-large unsigned value and T is signed.
2143 But don't indicate an overflow if converting a pointer. */
2144 TREE_OVERFLOW (t)
2145 = ((force_fit_type (t,
2146 (TREE_INT_CST_HIGH (arg1) < 0
2147 && (TREE_UNSIGNED (type)
2148 < TREE_UNSIGNED (TREE_TYPE (arg1)))))
2149 && ! POINTER_TYPE_P (TREE_TYPE (arg1)))
2150 || TREE_OVERFLOW (arg1));
2151 TREE_CONSTANT_OVERFLOW (t)
2152 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
2154 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
2155 else if (TREE_CODE (arg1) == REAL_CST)
2157 /* Don't initialize these, use assignments.
2158 Initialized local aggregates don't work on old compilers. */
2159 REAL_VALUE_TYPE x;
2160 REAL_VALUE_TYPE l;
2161 REAL_VALUE_TYPE u;
2162 tree type1 = TREE_TYPE (arg1);
2163 int no_upper_bound;
2165 x = TREE_REAL_CST (arg1);
2166 l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
2168 no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
2169 if (!no_upper_bound)
2170 u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
2172 /* See if X will be in range after truncation towards 0.
2173 To compensate for truncation, move the bounds away from 0,
2174 but reject if X exactly equals the adjusted bounds. */
2175 #ifdef REAL_ARITHMETIC
2176 REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
2177 if (!no_upper_bound)
2178 REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
2179 #else
2180 l--;
2181 if (!no_upper_bound)
2182 u++;
2183 #endif
2184 /* If X is a NaN, use zero instead and show we have an overflow.
2185 Otherwise, range check. */
2186 if (REAL_VALUE_ISNAN (x))
2187 overflow = 1, x = dconst0;
2188 else if (! (REAL_VALUES_LESS (l, x)
2189 && !no_upper_bound
2190 && REAL_VALUES_LESS (x, u)))
2191 overflow = 1;
2193 #ifndef REAL_ARITHMETIC
2195 HOST_WIDE_INT low, high;
2196 HOST_WIDE_INT half_word
2197 = (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2);
2199 if (x < 0)
2200 x = -x;
2202 high = (HOST_WIDE_INT) (x / half_word / half_word);
2203 x -= (REAL_VALUE_TYPE) high * half_word * half_word;
2204 if (x >= (REAL_VALUE_TYPE) half_word * half_word / 2)
2206 low = x - (REAL_VALUE_TYPE) half_word * half_word / 2;
2207 low |= (HOST_WIDE_INT) -1 << (HOST_BITS_PER_WIDE_INT - 1);
2209 else
2210 low = (HOST_WIDE_INT) x;
2211 if (TREE_REAL_CST (arg1) < 0)
2212 neg_double (low, high, &low, &high);
2213 t = build_int_2 (low, high);
2215 #else
2217 HOST_WIDE_INT low, high;
2218 REAL_VALUE_TO_INT (&low, &high, x);
2219 t = build_int_2 (low, high);
2221 #endif
2222 TREE_TYPE (t) = type;
2223 TREE_OVERFLOW (t)
2224 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
2225 TREE_CONSTANT_OVERFLOW (t)
2226 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
2228 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
2229 TREE_TYPE (t) = type;
2231 else if (TREE_CODE (type) == REAL_TYPE)
2233 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
2234 if (TREE_CODE (arg1) == INTEGER_CST)
2235 return build_real_from_int_cst (type, arg1);
2236 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
2237 if (TREE_CODE (arg1) == REAL_CST)
2239 struct fc_args args;
2241 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
2243 t = arg1;
2244 TREE_TYPE (arg1) = type;
2245 return t;
2248 /* Setup input for fold_convert_1() */
2249 args.arg1 = arg1;
2250 args.type = type;
2252 if (do_float_handler (fold_convert_1, (PTR) &args))
2254 /* Receive output from fold_convert_1() */
2255 t = args.t;
2257 else
2259 /* We got an exception from fold_convert_1() */
2260 overflow = 1;
2261 t = copy_node (arg1);
2264 TREE_OVERFLOW (t)
2265 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
2266 TREE_CONSTANT_OVERFLOW (t)
2267 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
2268 return t;
2271 TREE_CONSTANT (t) = 1;
2272 return t;
2275 /* Return an expr equal to X but certainly not valid as an lvalue. */
2277 tree
2278 non_lvalue (x)
2279 tree x;
2281 tree result;
2283 /* These things are certainly not lvalues. */
2284 if (TREE_CODE (x) == NON_LVALUE_EXPR
2285 || TREE_CODE (x) == INTEGER_CST
2286 || TREE_CODE (x) == REAL_CST
2287 || TREE_CODE (x) == STRING_CST
2288 || TREE_CODE (x) == ADDR_EXPR)
2289 return x;
2291 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2292 TREE_CONSTANT (result) = TREE_CONSTANT (x);
2293 return result;
2296 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2297 Zero means allow extended lvalues. */
2299 int pedantic_lvalues;
2301 /* When pedantic, return an expr equal to X but certainly not valid as a
2302 pedantic lvalue. Otherwise, return X. */
2304 tree
2305 pedantic_non_lvalue (x)
2306 tree x;
2308 if (pedantic_lvalues)
2309 return non_lvalue (x);
2310 else
2311 return x;
2314 /* Given a tree comparison code, return the code that is the logical inverse
2315 of the given code. It is not safe to do this for floating-point
2316 comparisons, except for NE_EXPR and EQ_EXPR. */
2318 static enum tree_code
2319 invert_tree_comparison (code)
2320 enum tree_code code;
2322 switch (code)
2324 case EQ_EXPR:
2325 return NE_EXPR;
2326 case NE_EXPR:
2327 return EQ_EXPR;
2328 case GT_EXPR:
2329 return LE_EXPR;
2330 case GE_EXPR:
2331 return LT_EXPR;
2332 case LT_EXPR:
2333 return GE_EXPR;
2334 case LE_EXPR:
2335 return GT_EXPR;
2336 default:
2337 abort ();
2341 /* Similar, but return the comparison that results if the operands are
2342 swapped. This is safe for floating-point. */
2344 static enum tree_code
2345 swap_tree_comparison (code)
2346 enum tree_code code;
2348 switch (code)
2350 case EQ_EXPR:
2351 case NE_EXPR:
2352 return code;
2353 case GT_EXPR:
2354 return LT_EXPR;
2355 case GE_EXPR:
2356 return LE_EXPR;
2357 case LT_EXPR:
2358 return GT_EXPR;
2359 case LE_EXPR:
2360 return GE_EXPR;
2361 default:
2362 abort ();
2366 /* Return nonzero if CODE is a tree code that represents a truth value. */
2368 static int
2369 truth_value_p (code)
2370 enum tree_code code;
2372 return (TREE_CODE_CLASS (code) == '<'
2373 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2374 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2375 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2378 /* Return nonzero if two operands are necessarily equal.
2379 If ONLY_CONST is non-zero, only return non-zero for constants.
2380 This function tests whether the operands are indistinguishable;
2381 it does not test whether they are equal using C's == operation.
2382 The distinction is important for IEEE floating point, because
2383 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2384 (2) two NaNs may be indistinguishable, but NaN!=NaN. */
2387 operand_equal_p (arg0, arg1, only_const)
2388 tree arg0, arg1;
2389 int only_const;
2391 /* If both types don't have the same signedness, then we can't consider
2392 them equal. We must check this before the STRIP_NOPS calls
2393 because they may change the signedness of the arguments. */
2394 if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
2395 return 0;
2397 STRIP_NOPS (arg0);
2398 STRIP_NOPS (arg1);
2400 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2401 /* This is needed for conversions and for COMPONENT_REF.
2402 Might as well play it safe and always test this. */
2403 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2404 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2405 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2406 return 0;
2408 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2409 We don't care about side effects in that case because the SAVE_EXPR
2410 takes care of that for us. In all other cases, two expressions are
2411 equal if they have no side effects. If we have two identical
2412 expressions with side effects that should be treated the same due
2413 to the only side effects being identical SAVE_EXPR's, that will
2414 be detected in the recursive calls below. */
2415 if (arg0 == arg1 && ! only_const
2416 && (TREE_CODE (arg0) == SAVE_EXPR
2417 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2418 return 1;
2420 /* Next handle constant cases, those for which we can return 1 even
2421 if ONLY_CONST is set. */
2422 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2423 switch (TREE_CODE (arg0))
2425 case INTEGER_CST:
2426 return (! TREE_CONSTANT_OVERFLOW (arg0)
2427 && ! TREE_CONSTANT_OVERFLOW (arg1)
2428 && tree_int_cst_equal (arg0, arg1));
2430 case REAL_CST:
2431 return (! TREE_CONSTANT_OVERFLOW (arg0)
2432 && ! TREE_CONSTANT_OVERFLOW (arg1)
2433 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2434 TREE_REAL_CST (arg1)));
2436 case COMPLEX_CST:
2437 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2438 only_const)
2439 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2440 only_const));
2442 case STRING_CST:
2443 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2444 && ! memcmp (TREE_STRING_POINTER (arg0),
2445 TREE_STRING_POINTER (arg1),
2446 TREE_STRING_LENGTH (arg0)));
2448 case ADDR_EXPR:
2449 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2451 default:
2452 break;
2455 if (only_const)
2456 return 0;
2458 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2460 case '1':
2461 /* Two conversions are equal only if signedness and modes match. */
2462 if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
2463 && (TREE_UNSIGNED (TREE_TYPE (arg0))
2464 != TREE_UNSIGNED (TREE_TYPE (arg1))))
2465 return 0;
2467 return operand_equal_p (TREE_OPERAND (arg0, 0),
2468 TREE_OPERAND (arg1, 0), 0);
2470 case '<':
2471 case '2':
2472 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
2473 && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
2475 return 1;
2477 /* For commutative ops, allow the other order. */
2478 return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
2479 || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
2480 || TREE_CODE (arg0) == BIT_IOR_EXPR
2481 || TREE_CODE (arg0) == BIT_XOR_EXPR
2482 || TREE_CODE (arg0) == BIT_AND_EXPR
2483 || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
2484 && operand_equal_p (TREE_OPERAND (arg0, 0),
2485 TREE_OPERAND (arg1, 1), 0)
2486 && operand_equal_p (TREE_OPERAND (arg0, 1),
2487 TREE_OPERAND (arg1, 0), 0));
2489 case 'r':
2490 /* If either of the pointer (or reference) expressions we are dereferencing
2491 contain a side effect, these cannot be equal. */
2492 if (TREE_SIDE_EFFECTS (arg0)
2493 || TREE_SIDE_EFFECTS (arg1))
2494 return 0;
2496 switch (TREE_CODE (arg0))
2498 case INDIRECT_REF:
2499 return operand_equal_p (TREE_OPERAND (arg0, 0),
2500 TREE_OPERAND (arg1, 0), 0);
2502 case COMPONENT_REF:
2503 case ARRAY_REF:
2504 case ARRAY_RANGE_REF:
2505 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2506 TREE_OPERAND (arg1, 0), 0)
2507 && operand_equal_p (TREE_OPERAND (arg0, 1),
2508 TREE_OPERAND (arg1, 1), 0));
2510 case BIT_FIELD_REF:
2511 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2512 TREE_OPERAND (arg1, 0), 0)
2513 && operand_equal_p (TREE_OPERAND (arg0, 1),
2514 TREE_OPERAND (arg1, 1), 0)
2515 && operand_equal_p (TREE_OPERAND (arg0, 2),
2516 TREE_OPERAND (arg1, 2), 0));
2517 default:
2518 return 0;
2521 case 'e':
2522 if (TREE_CODE (arg0) == RTL_EXPR)
2523 return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
2524 return 0;
2526 default:
2527 return 0;
2531 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2532 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2534 When in doubt, return 0. */
2536 static int
2537 operand_equal_for_comparison_p (arg0, arg1, other)
2538 tree arg0, arg1;
2539 tree other;
2541 int unsignedp1, unsignedpo;
2542 tree primarg0, primarg1, primother;
2543 unsigned int correct_width;
2545 if (operand_equal_p (arg0, arg1, 0))
2546 return 1;
2548 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2549 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2550 return 0;
2552 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2553 and see if the inner values are the same. This removes any
2554 signedness comparison, which doesn't matter here. */
2555 primarg0 = arg0, primarg1 = arg1;
2556 STRIP_NOPS (primarg0);
2557 STRIP_NOPS (primarg1);
2558 if (operand_equal_p (primarg0, primarg1, 0))
2559 return 1;
2561 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2562 actual comparison operand, ARG0.
2564 First throw away any conversions to wider types
2565 already present in the operands. */
2567 primarg1 = get_narrower (arg1, &unsignedp1);
2568 primother = get_narrower (other, &unsignedpo);
2570 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2571 if (unsignedp1 == unsignedpo
2572 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2573 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2575 tree type = TREE_TYPE (arg0);
2577 /* Make sure shorter operand is extended the right way
2578 to match the longer operand. */
2579 primarg1 = convert (signed_or_unsigned_type (unsignedp1,
2580 TREE_TYPE (primarg1)),
2581 primarg1);
2583 if (operand_equal_p (arg0, convert (type, primarg1), 0))
2584 return 1;
2587 return 0;
2590 /* See if ARG is an expression that is either a comparison or is performing
2591 arithmetic on comparisons. The comparisons must only be comparing
2592 two different values, which will be stored in *CVAL1 and *CVAL2; if
2593 they are non-zero it means that some operands have already been found.
2594 No variables may be used anywhere else in the expression except in the
2595 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2596 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2598 If this is true, return 1. Otherwise, return zero. */
2600 static int
2601 twoval_comparison_p (arg, cval1, cval2, save_p)
2602 tree arg;
2603 tree *cval1, *cval2;
2604 int *save_p;
2606 enum tree_code code = TREE_CODE (arg);
2607 char class = TREE_CODE_CLASS (code);
2609 /* We can handle some of the 'e' cases here. */
2610 if (class == 'e' && code == TRUTH_NOT_EXPR)
2611 class = '1';
2612 else if (class == 'e'
2613 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2614 || code == COMPOUND_EXPR))
2615 class = '2';
2617 else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0
2618 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2620 /* If we've already found a CVAL1 or CVAL2, this expression is
2621 two complex to handle. */
2622 if (*cval1 || *cval2)
2623 return 0;
2625 class = '1';
2626 *save_p = 1;
2629 switch (class)
2631 case '1':
2632 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2634 case '2':
2635 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2636 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2637 cval1, cval2, save_p));
2639 case 'c':
2640 return 1;
2642 case 'e':
2643 if (code == COND_EXPR)
2644 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2645 cval1, cval2, save_p)
2646 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2647 cval1, cval2, save_p)
2648 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2649 cval1, cval2, save_p));
2650 return 0;
2652 case '<':
2653 /* First see if we can handle the first operand, then the second. For
2654 the second operand, we know *CVAL1 can't be zero. It must be that
2655 one side of the comparison is each of the values; test for the
2656 case where this isn't true by failing if the two operands
2657 are the same. */
2659 if (operand_equal_p (TREE_OPERAND (arg, 0),
2660 TREE_OPERAND (arg, 1), 0))
2661 return 0;
2663 if (*cval1 == 0)
2664 *cval1 = TREE_OPERAND (arg, 0);
2665 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2667 else if (*cval2 == 0)
2668 *cval2 = TREE_OPERAND (arg, 0);
2669 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2671 else
2672 return 0;
2674 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2676 else if (*cval2 == 0)
2677 *cval2 = TREE_OPERAND (arg, 1);
2678 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2680 else
2681 return 0;
2683 return 1;
2685 default:
2686 return 0;
2690 /* ARG is a tree that is known to contain just arithmetic operations and
2691 comparisons. Evaluate the operations in the tree substituting NEW0 for
2692 any occurrence of OLD0 as an operand of a comparison and likewise for
2693 NEW1 and OLD1. */
2695 static tree
2696 eval_subst (arg, old0, new0, old1, new1)
2697 tree arg;
2698 tree old0, new0, old1, new1;
2700 tree type = TREE_TYPE (arg);
2701 enum tree_code code = TREE_CODE (arg);
2702 char class = TREE_CODE_CLASS (code);
2704 /* We can handle some of the 'e' cases here. */
2705 if (class == 'e' && code == TRUTH_NOT_EXPR)
2706 class = '1';
2707 else if (class == 'e'
2708 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2709 class = '2';
2711 switch (class)
2713 case '1':
2714 return fold (build1 (code, type,
2715 eval_subst (TREE_OPERAND (arg, 0),
2716 old0, new0, old1, new1)));
2718 case '2':
2719 return fold (build (code, type,
2720 eval_subst (TREE_OPERAND (arg, 0),
2721 old0, new0, old1, new1),
2722 eval_subst (TREE_OPERAND (arg, 1),
2723 old0, new0, old1, new1)));
2725 case 'e':
2726 switch (code)
2728 case SAVE_EXPR:
2729 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2731 case COMPOUND_EXPR:
2732 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2734 case COND_EXPR:
2735 return fold (build (code, type,
2736 eval_subst (TREE_OPERAND (arg, 0),
2737 old0, new0, old1, new1),
2738 eval_subst (TREE_OPERAND (arg, 1),
2739 old0, new0, old1, new1),
2740 eval_subst (TREE_OPERAND (arg, 2),
2741 old0, new0, old1, new1)));
2742 default:
2743 break;
2745 /* fall through - ??? */
2747 case '<':
2749 tree arg0 = TREE_OPERAND (arg, 0);
2750 tree arg1 = TREE_OPERAND (arg, 1);
2752 /* We need to check both for exact equality and tree equality. The
2753 former will be true if the operand has a side-effect. In that
2754 case, we know the operand occurred exactly once. */
2756 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2757 arg0 = new0;
2758 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2759 arg0 = new1;
2761 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2762 arg1 = new0;
2763 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2764 arg1 = new1;
2766 return fold (build (code, type, arg0, arg1));
2769 default:
2770 return arg;
2774 /* Return a tree for the case when the result of an expression is RESULT
2775 converted to TYPE and OMITTED was previously an operand of the expression
2776 but is now not needed (e.g., we folded OMITTED * 0).
2778 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2779 the conversion of RESULT to TYPE. */
2781 static tree
2782 omit_one_operand (type, result, omitted)
2783 tree type, result, omitted;
2785 tree t = convert (type, result);
2787 if (TREE_SIDE_EFFECTS (omitted))
2788 return build (COMPOUND_EXPR, type, omitted, t);
2790 return non_lvalue (t);
2793 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2795 static tree
2796 pedantic_omit_one_operand (type, result, omitted)
2797 tree type, result, omitted;
2799 tree t = convert (type, result);
2801 if (TREE_SIDE_EFFECTS (omitted))
2802 return build (COMPOUND_EXPR, type, omitted, t);
2804 return pedantic_non_lvalue (t);
2807 /* Return a simplified tree node for the truth-negation of ARG. This
2808 never alters ARG itself. We assume that ARG is an operation that
2809 returns a truth value (0 or 1). */
2811 tree
2812 invert_truthvalue (arg)
2813 tree arg;
2815 tree type = TREE_TYPE (arg);
2816 enum tree_code code = TREE_CODE (arg);
2818 if (code == ERROR_MARK)
2819 return arg;
2821 /* If this is a comparison, we can simply invert it, except for
2822 floating-point non-equality comparisons, in which case we just
2823 enclose a TRUTH_NOT_EXPR around what we have. */
2825 if (TREE_CODE_CLASS (code) == '<')
2827 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
2828 && !flag_unsafe_math_optimizations
2829 && code != NE_EXPR
2830 && code != EQ_EXPR)
2831 return build1 (TRUTH_NOT_EXPR, type, arg);
2832 else
2833 return build (invert_tree_comparison (code), type,
2834 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2837 switch (code)
2839 case INTEGER_CST:
2840 return convert (type, build_int_2 (integer_zerop (arg), 0));
2842 case TRUTH_AND_EXPR:
2843 return build (TRUTH_OR_EXPR, type,
2844 invert_truthvalue (TREE_OPERAND (arg, 0)),
2845 invert_truthvalue (TREE_OPERAND (arg, 1)));
2847 case TRUTH_OR_EXPR:
2848 return build (TRUTH_AND_EXPR, type,
2849 invert_truthvalue (TREE_OPERAND (arg, 0)),
2850 invert_truthvalue (TREE_OPERAND (arg, 1)));
2852 case TRUTH_XOR_EXPR:
2853 /* Here we can invert either operand. We invert the first operand
2854 unless the second operand is a TRUTH_NOT_EXPR in which case our
2855 result is the XOR of the first operand with the inside of the
2856 negation of the second operand. */
2858 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2859 return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2860 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2861 else
2862 return build (TRUTH_XOR_EXPR, type,
2863 invert_truthvalue (TREE_OPERAND (arg, 0)),
2864 TREE_OPERAND (arg, 1));
2866 case TRUTH_ANDIF_EXPR:
2867 return build (TRUTH_ORIF_EXPR, type,
2868 invert_truthvalue (TREE_OPERAND (arg, 0)),
2869 invert_truthvalue (TREE_OPERAND (arg, 1)));
2871 case TRUTH_ORIF_EXPR:
2872 return build (TRUTH_ANDIF_EXPR, type,
2873 invert_truthvalue (TREE_OPERAND (arg, 0)),
2874 invert_truthvalue (TREE_OPERAND (arg, 1)));
2876 case TRUTH_NOT_EXPR:
2877 return TREE_OPERAND (arg, 0);
2879 case COND_EXPR:
2880 return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
2881 invert_truthvalue (TREE_OPERAND (arg, 1)),
2882 invert_truthvalue (TREE_OPERAND (arg, 2)));
2884 case COMPOUND_EXPR:
2885 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2886 invert_truthvalue (TREE_OPERAND (arg, 1)));
2888 case WITH_RECORD_EXPR:
2889 return build (WITH_RECORD_EXPR, type,
2890 invert_truthvalue (TREE_OPERAND (arg, 0)),
2891 TREE_OPERAND (arg, 1));
2893 case NON_LVALUE_EXPR:
2894 return invert_truthvalue (TREE_OPERAND (arg, 0));
2896 case NOP_EXPR:
2897 case CONVERT_EXPR:
2898 case FLOAT_EXPR:
2899 return build1 (TREE_CODE (arg), type,
2900 invert_truthvalue (TREE_OPERAND (arg, 0)));
2902 case BIT_AND_EXPR:
2903 if (!integer_onep (TREE_OPERAND (arg, 1)))
2904 break;
2905 return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
2907 case SAVE_EXPR:
2908 return build1 (TRUTH_NOT_EXPR, type, arg);
2910 case CLEANUP_POINT_EXPR:
2911 return build1 (CLEANUP_POINT_EXPR, type,
2912 invert_truthvalue (TREE_OPERAND (arg, 0)));
2914 default:
2915 break;
2917 if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
2918 abort ();
2919 return build1 (TRUTH_NOT_EXPR, type, arg);
2922 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2923 operands are another bit-wise operation with a common input. If so,
2924 distribute the bit operations to save an operation and possibly two if
2925 constants are involved. For example, convert
2926 (A | B) & (A | C) into A | (B & C)
2927 Further simplification will occur if B and C are constants.
2929 If this optimization cannot be done, 0 will be returned. */
2931 static tree
2932 distribute_bit_expr (code, type, arg0, arg1)
2933 enum tree_code code;
2934 tree type;
2935 tree arg0, arg1;
2937 tree common;
2938 tree left, right;
2940 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2941 || TREE_CODE (arg0) == code
2942 || (TREE_CODE (arg0) != BIT_AND_EXPR
2943 && TREE_CODE (arg0) != BIT_IOR_EXPR))
2944 return 0;
2946 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
2948 common = TREE_OPERAND (arg0, 0);
2949 left = TREE_OPERAND (arg0, 1);
2950 right = TREE_OPERAND (arg1, 1);
2952 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
2954 common = TREE_OPERAND (arg0, 0);
2955 left = TREE_OPERAND (arg0, 1);
2956 right = TREE_OPERAND (arg1, 0);
2958 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
2960 common = TREE_OPERAND (arg0, 1);
2961 left = TREE_OPERAND (arg0, 0);
2962 right = TREE_OPERAND (arg1, 1);
2964 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
2966 common = TREE_OPERAND (arg0, 1);
2967 left = TREE_OPERAND (arg0, 0);
2968 right = TREE_OPERAND (arg1, 0);
2970 else
2971 return 0;
2973 return fold (build (TREE_CODE (arg0), type, common,
2974 fold (build (code, type, left, right))));
2977 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2978 starting at BITPOS. The field is unsigned if UNSIGNEDP is non-zero. */
2980 static tree
2981 make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
2982 tree inner;
2983 tree type;
2984 int bitsize, bitpos;
2985 int unsignedp;
2987 tree result = build (BIT_FIELD_REF, type, inner,
2988 size_int (bitsize), bitsize_int (bitpos));
2990 TREE_UNSIGNED (result) = unsignedp;
2992 return result;
2995 /* Optimize a bit-field compare.
2997 There are two cases: First is a compare against a constant and the
2998 second is a comparison of two items where the fields are at the same
2999 bit position relative to the start of a chunk (byte, halfword, word)
3000 large enough to contain it. In these cases we can avoid the shift
3001 implicit in bitfield extractions.
3003 For constants, we emit a compare of the shifted constant with the
3004 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3005 compared. For two fields at the same position, we do the ANDs with the
3006 similar mask and compare the result of the ANDs.
3008 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3009 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3010 are the left and right operands of the comparison, respectively.
3012 If the optimization described above can be done, we return the resulting
3013 tree. Otherwise we return zero. */
3015 static tree
3016 optimize_bit_field_compare (code, compare_type, lhs, rhs)
3017 enum tree_code code;
3018 tree compare_type;
3019 tree lhs, rhs;
3021 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3022 tree type = TREE_TYPE (lhs);
3023 tree signed_type, unsigned_type;
3024 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3025 enum machine_mode lmode, rmode, nmode;
3026 int lunsignedp, runsignedp;
3027 int lvolatilep = 0, rvolatilep = 0;
3028 tree linner, rinner = NULL_TREE;
3029 tree mask;
3030 tree offset;
3032 /* Get all the information about the extractions being done. If the bit size
3033 if the same as the size of the underlying object, we aren't doing an
3034 extraction at all and so can do nothing. We also don't want to
3035 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3036 then will no longer be able to replace it. */
3037 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3038 &lunsignedp, &lvolatilep);
3039 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3040 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3041 return 0;
3043 if (!const_p)
3045 /* If this is not a constant, we can only do something if bit positions,
3046 sizes, and signedness are the same. */
3047 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3048 &runsignedp, &rvolatilep);
3050 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3051 || lunsignedp != runsignedp || offset != 0
3052 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3053 return 0;
3056 /* See if we can find a mode to refer to this field. We should be able to,
3057 but fail if we can't. */
3058 nmode = get_best_mode (lbitsize, lbitpos,
3059 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3060 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3061 TYPE_ALIGN (TREE_TYPE (rinner))),
3062 word_mode, lvolatilep || rvolatilep);
3063 if (nmode == VOIDmode)
3064 return 0;
3066 /* Set signed and unsigned types of the precision of this mode for the
3067 shifts below. */
3068 signed_type = type_for_mode (nmode, 0);
3069 unsigned_type = type_for_mode (nmode, 1);
3071 /* Compute the bit position and size for the new reference and our offset
3072 within it. If the new reference is the same size as the original, we
3073 won't optimize anything, so return zero. */
3074 nbitsize = GET_MODE_BITSIZE (nmode);
3075 nbitpos = lbitpos & ~ (nbitsize - 1);
3076 lbitpos -= nbitpos;
3077 if (nbitsize == lbitsize)
3078 return 0;
3080 if (BYTES_BIG_ENDIAN)
3081 lbitpos = nbitsize - lbitsize - lbitpos;
3083 /* Make the mask to be used against the extracted field. */
3084 mask = build_int_2 (~0, ~0);
3085 TREE_TYPE (mask) = unsigned_type;
3086 force_fit_type (mask, 0);
3087 mask = convert (unsigned_type, mask);
3088 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3089 mask = const_binop (RSHIFT_EXPR, mask,
3090 size_int (nbitsize - lbitsize - lbitpos), 0);
3092 if (! const_p)
3093 /* If not comparing with constant, just rework the comparison
3094 and return. */
3095 return build (code, compare_type,
3096 build (BIT_AND_EXPR, unsigned_type,
3097 make_bit_field_ref (linner, unsigned_type,
3098 nbitsize, nbitpos, 1),
3099 mask),
3100 build (BIT_AND_EXPR, unsigned_type,
3101 make_bit_field_ref (rinner, unsigned_type,
3102 nbitsize, nbitpos, 1),
3103 mask));
3105 /* Otherwise, we are handling the constant case. See if the constant is too
3106 big for the field. Warn and return a tree of for 0 (false) if so. We do
3107 this not only for its own sake, but to avoid having to test for this
3108 error case below. If we didn't, we might generate wrong code.
3110 For unsigned fields, the constant shifted right by the field length should
3111 be all zero. For signed fields, the high-order bits should agree with
3112 the sign bit. */
3114 if (lunsignedp)
3116 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3117 convert (unsigned_type, rhs),
3118 size_int (lbitsize), 0)))
3120 warning ("comparison is always %d due to width of bitfield",
3121 code == NE_EXPR);
3122 return convert (compare_type,
3123 (code == NE_EXPR
3124 ? integer_one_node : integer_zero_node));
3127 else
3129 tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
3130 size_int (lbitsize - 1), 0);
3131 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3133 warning ("comparison is always %d due to width of bitfield",
3134 code == NE_EXPR);
3135 return convert (compare_type,
3136 (code == NE_EXPR
3137 ? integer_one_node : integer_zero_node));
3141 /* Single-bit compares should always be against zero. */
3142 if (lbitsize == 1 && ! integer_zerop (rhs))
3144 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3145 rhs = convert (type, integer_zero_node);
3148 /* Make a new bitfield reference, shift the constant over the
3149 appropriate number of bits and mask it with the computed mask
3150 (in case this was a signed field). If we changed it, make a new one. */
3151 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
3152 if (lvolatilep)
3154 TREE_SIDE_EFFECTS (lhs) = 1;
3155 TREE_THIS_VOLATILE (lhs) = 1;
3158 rhs = fold (const_binop (BIT_AND_EXPR,
3159 const_binop (LSHIFT_EXPR,
3160 convert (unsigned_type, rhs),
3161 size_int (lbitpos), 0),
3162 mask, 0));
3164 return build (code, compare_type,
3165 build (BIT_AND_EXPR, unsigned_type, lhs, mask),
3166 rhs);
3169 /* Subroutine for fold_truthop: decode a field reference.
3171 If EXP is a comparison reference, we return the innermost reference.
3173 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3174 set to the starting bit number.
3176 If the innermost field can be completely contained in a mode-sized
3177 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3179 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3180 otherwise it is not changed.
3182 *PUNSIGNEDP is set to the signedness of the field.
3184 *PMASK is set to the mask used. This is either contained in a
3185 BIT_AND_EXPR or derived from the width of the field.
3187 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3189 Return 0 if this is not a component reference or is one that we can't
3190 do anything with. */
3192 static tree
3193 decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
3194 pvolatilep, pmask, pand_mask)
3195 tree exp;
3196 HOST_WIDE_INT *pbitsize, *pbitpos;
3197 enum machine_mode *pmode;
3198 int *punsignedp, *pvolatilep;
3199 tree *pmask;
3200 tree *pand_mask;
3202 tree and_mask = 0;
3203 tree mask, inner, offset;
3204 tree unsigned_type;
3205 unsigned int precision;
3207 /* All the optimizations using this function assume integer fields.
3208 There are problems with FP fields since the type_for_size call
3209 below can fail for, e.g., XFmode. */
3210 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3211 return 0;
3213 STRIP_NOPS (exp);
3215 if (TREE_CODE (exp) == BIT_AND_EXPR)
3217 and_mask = TREE_OPERAND (exp, 1);
3218 exp = TREE_OPERAND (exp, 0);
3219 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3220 if (TREE_CODE (and_mask) != INTEGER_CST)
3221 return 0;
3224 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3225 punsignedp, pvolatilep);
3226 if ((inner == exp && and_mask == 0)
3227 || *pbitsize < 0 || offset != 0
3228 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3229 return 0;
3231 /* Compute the mask to access the bitfield. */
3232 unsigned_type = type_for_size (*pbitsize, 1);
3233 precision = TYPE_PRECISION (unsigned_type);
3235 mask = build_int_2 (~0, ~0);
3236 TREE_TYPE (mask) = unsigned_type;
3237 force_fit_type (mask, 0);
3238 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3239 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3241 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3242 if (and_mask != 0)
3243 mask = fold (build (BIT_AND_EXPR, unsigned_type,
3244 convert (unsigned_type, and_mask), mask));
3246 *pmask = mask;
3247 *pand_mask = and_mask;
3248 return inner;
3251 /* Return non-zero if MASK represents a mask of SIZE ones in the low-order
3252 bit positions. */
3254 static int
3255 all_ones_mask_p (mask, size)
3256 tree mask;
3257 int size;
3259 tree type = TREE_TYPE (mask);
3260 unsigned int precision = TYPE_PRECISION (type);
3261 tree tmask;
3263 tmask = build_int_2 (~0, ~0);
3264 TREE_TYPE (tmask) = signed_type (type);
3265 force_fit_type (tmask, 0);
3266 return
3267 tree_int_cst_equal (mask,
3268 const_binop (RSHIFT_EXPR,
3269 const_binop (LSHIFT_EXPR, tmask,
3270 size_int (precision - size),
3272 size_int (precision - size), 0));
3275 /* Subroutine for fold_truthop: determine if an operand is simple enough
3276 to be evaluated unconditionally. */
3278 static int
3279 simple_operand_p (exp)
3280 tree exp;
3282 /* Strip any conversions that don't change the machine mode. */
3283 while ((TREE_CODE (exp) == NOP_EXPR
3284 || TREE_CODE (exp) == CONVERT_EXPR)
3285 && (TYPE_MODE (TREE_TYPE (exp))
3286 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
3287 exp = TREE_OPERAND (exp, 0);
3289 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
3290 || (DECL_P (exp)
3291 && ! TREE_ADDRESSABLE (exp)
3292 && ! TREE_THIS_VOLATILE (exp)
3293 && ! DECL_NONLOCAL (exp)
3294 /* Don't regard global variables as simple. They may be
3295 allocated in ways unknown to the compiler (shared memory,
3296 #pragma weak, etc). */
3297 && ! TREE_PUBLIC (exp)
3298 && ! DECL_EXTERNAL (exp)
3299 /* Loading a static variable is unduly expensive, but global
3300 registers aren't expensive. */
3301 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3304 /* The following functions are subroutines to fold_range_test and allow it to
3305 try to change a logical combination of comparisons into a range test.
3307 For example, both
3308 X == 2 || X == 3 || X == 4 || X == 5
3310 X >= 2 && X <= 5
3311 are converted to
3312 (unsigned) (X - 2) <= 3
3314 We describe each set of comparisons as being either inside or outside
3315 a range, using a variable named like IN_P, and then describe the
3316 range with a lower and upper bound. If one of the bounds is omitted,
3317 it represents either the highest or lowest value of the type.
3319 In the comments below, we represent a range by two numbers in brackets
3320 preceded by a "+" to designate being inside that range, or a "-" to
3321 designate being outside that range, so the condition can be inverted by
3322 flipping the prefix. An omitted bound is represented by a "-". For
3323 example, "- [-, 10]" means being outside the range starting at the lowest
3324 possible value and ending at 10, in other words, being greater than 10.
3325 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3326 always false.
3328 We set up things so that the missing bounds are handled in a consistent
3329 manner so neither a missing bound nor "true" and "false" need to be
3330 handled using a special case. */
3332 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3333 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3334 and UPPER1_P are nonzero if the respective argument is an upper bound
3335 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3336 must be specified for a comparison. ARG1 will be converted to ARG0's
3337 type if both are specified. */
3339 static tree
3340 range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
3341 enum tree_code code;
3342 tree type;
3343 tree arg0, arg1;
3344 int upper0_p, upper1_p;
3346 tree tem;
3347 int result;
3348 int sgn0, sgn1;
3350 /* If neither arg represents infinity, do the normal operation.
3351 Else, if not a comparison, return infinity. Else handle the special
3352 comparison rules. Note that most of the cases below won't occur, but
3353 are handled for consistency. */
3355 if (arg0 != 0 && arg1 != 0)
3357 tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
3358 arg0, convert (TREE_TYPE (arg0), arg1)));
3359 STRIP_NOPS (tem);
3360 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3363 if (TREE_CODE_CLASS (code) != '<')
3364 return 0;
3366 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3367 for neither. In real maths, we cannot assume open ended ranges are
3368 the same. But, this is computer arithmetic, where numbers are finite.
3369 We can therefore make the transformation of any unbounded range with
3370 the value Z, Z being greater than any representable number. This permits
3371 us to treat unbounded ranges as equal. */
3372 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3373 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3374 switch (code)
3376 case EQ_EXPR:
3377 result = sgn0 == sgn1;
3378 break;
3379 case NE_EXPR:
3380 result = sgn0 != sgn1;
3381 break;
3382 case LT_EXPR:
3383 result = sgn0 < sgn1;
3384 break;
3385 case LE_EXPR:
3386 result = sgn0 <= sgn1;
3387 break;
3388 case GT_EXPR:
3389 result = sgn0 > sgn1;
3390 break;
3391 case GE_EXPR:
3392 result = sgn0 >= sgn1;
3393 break;
3394 default:
3395 abort ();
3398 return convert (type, result ? integer_one_node : integer_zero_node);
3401 /* Given EXP, a logical expression, set the range it is testing into
3402 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3403 actually being tested. *PLOW and *PHIGH will be made of the same type
3404 as the returned expression. If EXP is not a comparison, we will most
3405 likely not be returning a useful value and range. */
3407 static tree
3408 make_range (exp, pin_p, plow, phigh)
3409 tree exp;
3410 int *pin_p;
3411 tree *plow, *phigh;
3413 enum tree_code code;
3414 tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
3415 tree orig_type = NULL_TREE;
3416 int in_p, n_in_p;
3417 tree low, high, n_low, n_high;
3419 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3420 and see if we can refine the range. Some of the cases below may not
3421 happen, but it doesn't seem worth worrying about this. We "continue"
3422 the outer loop when we've changed something; otherwise we "break"
3423 the switch, which will "break" the while. */
3425 in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
3427 while (1)
3429 code = TREE_CODE (exp);
3431 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3433 arg0 = TREE_OPERAND (exp, 0);
3434 if (TREE_CODE_CLASS (code) == '<'
3435 || TREE_CODE_CLASS (code) == '1'
3436 || TREE_CODE_CLASS (code) == '2')
3437 type = TREE_TYPE (arg0);
3438 if (TREE_CODE_CLASS (code) == '2'
3439 || TREE_CODE_CLASS (code) == '<'
3440 || (TREE_CODE_CLASS (code) == 'e'
3441 && TREE_CODE_LENGTH (code) > 1))
3442 arg1 = TREE_OPERAND (exp, 1);
3445 /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
3446 lose a cast by accident. */
3447 if (type != NULL_TREE && orig_type == NULL_TREE)
3448 orig_type = type;
3450 switch (code)
3452 case TRUTH_NOT_EXPR:
3453 in_p = ! in_p, exp = arg0;
3454 continue;
3456 case EQ_EXPR: case NE_EXPR:
3457 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3458 /* We can only do something if the range is testing for zero
3459 and if the second operand is an integer constant. Note that
3460 saying something is "in" the range we make is done by
3461 complementing IN_P since it will set in the initial case of
3462 being not equal to zero; "out" is leaving it alone. */
3463 if (low == 0 || high == 0
3464 || ! integer_zerop (low) || ! integer_zerop (high)
3465 || TREE_CODE (arg1) != INTEGER_CST)
3466 break;
3468 switch (code)
3470 case NE_EXPR: /* - [c, c] */
3471 low = high = arg1;
3472 break;
3473 case EQ_EXPR: /* + [c, c] */
3474 in_p = ! in_p, low = high = arg1;
3475 break;
3476 case GT_EXPR: /* - [-, c] */
3477 low = 0, high = arg1;
3478 break;
3479 case GE_EXPR: /* + [c, -] */
3480 in_p = ! in_p, low = arg1, high = 0;
3481 break;
3482 case LT_EXPR: /* - [c, -] */
3483 low = arg1, high = 0;
3484 break;
3485 case LE_EXPR: /* + [-, c] */
3486 in_p = ! in_p, low = 0, high = arg1;
3487 break;
3488 default:
3489 abort ();
3492 exp = arg0;
3494 /* If this is an unsigned comparison, we also know that EXP is
3495 greater than or equal to zero. We base the range tests we make
3496 on that fact, so we record it here so we can parse existing
3497 range tests. */
3498 if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
3500 if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
3501 1, convert (type, integer_zero_node),
3502 NULL_TREE))
3503 break;
3505 in_p = n_in_p, low = n_low, high = n_high;
3507 /* If the high bound is missing, but we
3508 have a low bound, reverse the range so
3509 it goes from zero to the low bound minus 1. */
3510 if (high == 0 && low)
3512 in_p = ! in_p;
3513 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3514 integer_one_node, 0);
3515 low = convert (type, integer_zero_node);
3518 continue;
3520 case NEGATE_EXPR:
3521 /* (-x) IN [a,b] -> x in [-b, -a] */
3522 n_low = range_binop (MINUS_EXPR, type,
3523 convert (type, integer_zero_node), 0, high, 1);
3524 n_high = range_binop (MINUS_EXPR, type,
3525 convert (type, integer_zero_node), 0, low, 0);
3526 low = n_low, high = n_high;
3527 exp = arg0;
3528 continue;
3530 case BIT_NOT_EXPR:
3531 /* ~ X -> -X - 1 */
3532 exp = build (MINUS_EXPR, type, negate_expr (arg0),
3533 convert (type, integer_one_node));
3534 continue;
3536 case PLUS_EXPR: case MINUS_EXPR:
3537 if (TREE_CODE (arg1) != INTEGER_CST)
3538 break;
3540 /* If EXP is signed, any overflow in the computation is undefined,
3541 so we don't worry about it so long as our computations on
3542 the bounds don't overflow. For unsigned, overflow is defined
3543 and this is exactly the right thing. */
3544 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3545 type, low, 0, arg1, 0);
3546 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3547 type, high, 1, arg1, 0);
3548 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3549 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3550 break;
3552 /* Check for an unsigned range which has wrapped around the maximum
3553 value thus making n_high < n_low, and normalize it. */
3554 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3556 low = range_binop (PLUS_EXPR, type, n_high, 0,
3557 integer_one_node, 0);
3558 high = range_binop (MINUS_EXPR, type, n_low, 0,
3559 integer_one_node, 0);
3561 /* If the range is of the form +/- [ x+1, x ], we won't
3562 be able to normalize it. But then, it represents the
3563 whole range or the empty set, so make it
3564 +/- [ -, - ]. */
3565 if (tree_int_cst_equal (n_low, low)
3566 && tree_int_cst_equal (n_high, high))
3567 low = high = 0;
3568 else
3569 in_p = ! in_p;
3571 else
3572 low = n_low, high = n_high;
3574 exp = arg0;
3575 continue;
3577 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3578 if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
3579 break;
3581 if (! INTEGRAL_TYPE_P (type)
3582 || (low != 0 && ! int_fits_type_p (low, type))
3583 || (high != 0 && ! int_fits_type_p (high, type)))
3584 break;
3586 n_low = low, n_high = high;
3588 if (n_low != 0)
3589 n_low = convert (type, n_low);
3591 if (n_high != 0)
3592 n_high = convert (type, n_high);
3594 /* If we're converting from an unsigned to a signed type,
3595 we will be doing the comparison as unsigned. The tests above
3596 have already verified that LOW and HIGH are both positive.
3598 So we have to make sure that the original unsigned value will
3599 be interpreted as positive. */
3600 if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
3602 tree equiv_type = type_for_mode (TYPE_MODE (type), 1);
3603 tree high_positive;
3605 /* A range without an upper bound is, naturally, unbounded.
3606 Since convert would have cropped a very large value, use
3607 the max value for the destination type. */
3608 high_positive
3609 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3610 : TYPE_MAX_VALUE (type);
3612 high_positive = fold (build (RSHIFT_EXPR, type,
3613 convert (type, high_positive),
3614 convert (type, integer_one_node)));
3616 /* If the low bound is specified, "and" the range with the
3617 range for which the original unsigned value will be
3618 positive. */
3619 if (low != 0)
3621 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3622 1, n_low, n_high,
3623 1, convert (type, integer_zero_node),
3624 high_positive))
3625 break;
3627 in_p = (n_in_p == in_p);
3629 else
3631 /* Otherwise, "or" the range with the range of the input
3632 that will be interpreted as negative. */
3633 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3634 0, n_low, n_high,
3635 1, convert (type, integer_zero_node),
3636 high_positive))
3637 break;
3639 in_p = (in_p != n_in_p);
3643 exp = arg0;
3644 low = n_low, high = n_high;
3645 continue;
3647 default:
3648 break;
3651 break;
3654 /* If EXP is a constant, we can evaluate whether this is true or false. */
3655 if (TREE_CODE (exp) == INTEGER_CST)
3657 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3658 exp, 0, low, 0))
3659 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3660 exp, 1, high, 1)));
3661 low = high = 0;
3662 exp = 0;
3665 *pin_p = in_p, *plow = low, *phigh = high;
3666 return exp;
3669 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3670 type, TYPE, return an expression to test if EXP is in (or out of, depending
3671 on IN_P) the range. */
3673 static tree
3674 build_range_check (type, exp, in_p, low, high)
3675 tree type;
3676 tree exp;
3677 int in_p;
3678 tree low, high;
3680 tree etype = TREE_TYPE (exp);
3681 tree utype, value;
3683 if (! in_p
3684 && (0 != (value = build_range_check (type, exp, 1, low, high))))
3685 return invert_truthvalue (value);
3687 else if (low == 0 && high == 0)
3688 return convert (type, integer_one_node);
3690 else if (low == 0)
3691 return fold (build (LE_EXPR, type, exp, high));
3693 else if (high == 0)
3694 return fold (build (GE_EXPR, type, exp, low));
3696 else if (operand_equal_p (low, high, 0))
3697 return fold (build (EQ_EXPR, type, exp, low));
3699 else if (TREE_UNSIGNED (etype) && integer_zerop (low))
3700 return build_range_check (type, exp, 1, 0, high);
3702 else if (integer_zerop (low))
3704 utype = unsigned_type (etype);
3705 return build_range_check (type, convert (utype, exp), 1, 0,
3706 convert (utype, high));
3709 else if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
3710 && ! TREE_OVERFLOW (value))
3711 return build_range_check (type,
3712 fold (build (MINUS_EXPR, etype, exp, low)),
3713 1, convert (etype, integer_zero_node), value);
3714 else
3715 return 0;
3718 /* Given two ranges, see if we can merge them into one. Return 1 if we
3719 can, 0 if we can't. Set the output range into the specified parameters. */
3721 static int
3722 merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
3723 int *pin_p;
3724 tree *plow, *phigh;
3725 int in0_p, in1_p;
3726 tree low0, high0, low1, high1;
3728 int no_overlap;
3729 int subset;
3730 int temp;
3731 tree tem;
3732 int in_p;
3733 tree low, high;
3734 int lowequal = ((low0 == 0 && low1 == 0)
3735 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3736 low0, 0, low1, 0)));
3737 int highequal = ((high0 == 0 && high1 == 0)
3738 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3739 high0, 1, high1, 1)));
3741 /* Make range 0 be the range that starts first, or ends last if they
3742 start at the same value. Swap them if it isn't. */
3743 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3744 low0, 0, low1, 0))
3745 || (lowequal
3746 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3747 high1, 1, high0, 1))))
3749 temp = in0_p, in0_p = in1_p, in1_p = temp;
3750 tem = low0, low0 = low1, low1 = tem;
3751 tem = high0, high0 = high1, high1 = tem;
3754 /* Now flag two cases, whether the ranges are disjoint or whether the
3755 second range is totally subsumed in the first. Note that the tests
3756 below are simplified by the ones above. */
3757 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3758 high0, 1, low1, 0));
3759 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3760 high1, 1, high0, 1));
3762 /* We now have four cases, depending on whether we are including or
3763 excluding the two ranges. */
3764 if (in0_p && in1_p)
3766 /* If they don't overlap, the result is false. If the second range
3767 is a subset it is the result. Otherwise, the range is from the start
3768 of the second to the end of the first. */
3769 if (no_overlap)
3770 in_p = 0, low = high = 0;
3771 else if (subset)
3772 in_p = 1, low = low1, high = high1;
3773 else
3774 in_p = 1, low = low1, high = high0;
3777 else if (in0_p && ! in1_p)
3779 /* If they don't overlap, the result is the first range. If they are
3780 equal, the result is false. If the second range is a subset of the
3781 first, and the ranges begin at the same place, we go from just after
3782 the end of the first range to the end of the second. If the second
3783 range is not a subset of the first, or if it is a subset and both
3784 ranges end at the same place, the range starts at the start of the
3785 first range and ends just before the second range.
3786 Otherwise, we can't describe this as a single range. */
3787 if (no_overlap)
3788 in_p = 1, low = low0, high = high0;
3789 else if (lowequal && highequal)
3790 in_p = 0, low = high = 0;
3791 else if (subset && lowequal)
3793 in_p = 1, high = high0;
3794 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3795 integer_one_node, 0);
3797 else if (! subset || highequal)
3799 in_p = 1, low = low0;
3800 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3801 integer_one_node, 0);
3803 else
3804 return 0;
3807 else if (! in0_p && in1_p)
3809 /* If they don't overlap, the result is the second range. If the second
3810 is a subset of the first, the result is false. Otherwise,
3811 the range starts just after the first range and ends at the
3812 end of the second. */
3813 if (no_overlap)
3814 in_p = 1, low = low1, high = high1;
3815 else if (subset || highequal)
3816 in_p = 0, low = high = 0;
3817 else
3819 in_p = 1, high = high1;
3820 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
3821 integer_one_node, 0);
3825 else
3827 /* The case where we are excluding both ranges. Here the complex case
3828 is if they don't overlap. In that case, the only time we have a
3829 range is if they are adjacent. If the second is a subset of the
3830 first, the result is the first. Otherwise, the range to exclude
3831 starts at the beginning of the first range and ends at the end of the
3832 second. */
3833 if (no_overlap)
3835 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
3836 range_binop (PLUS_EXPR, NULL_TREE,
3837 high0, 1,
3838 integer_one_node, 1),
3839 1, low1, 0)))
3840 in_p = 0, low = low0, high = high1;
3841 else
3842 return 0;
3844 else if (subset)
3845 in_p = 0, low = low0, high = high0;
3846 else
3847 in_p = 0, low = low0, high = high1;
3850 *pin_p = in_p, *plow = low, *phigh = high;
3851 return 1;
3854 /* EXP is some logical combination of boolean tests. See if we can
3855 merge it into some range test. Return the new tree if so. */
3857 static tree
3858 fold_range_test (exp)
3859 tree exp;
3861 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
3862 || TREE_CODE (exp) == TRUTH_OR_EXPR);
3863 int in0_p, in1_p, in_p;
3864 tree low0, low1, low, high0, high1, high;
3865 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
3866 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
3867 tree tem;
3869 /* If this is an OR operation, invert both sides; we will invert
3870 again at the end. */
3871 if (or_op)
3872 in0_p = ! in0_p, in1_p = ! in1_p;
3874 /* If both expressions are the same, if we can merge the ranges, and we
3875 can build the range test, return it or it inverted. If one of the
3876 ranges is always true or always false, consider it to be the same
3877 expression as the other. */
3878 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
3879 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
3880 in1_p, low1, high1)
3881 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
3882 lhs != 0 ? lhs
3883 : rhs != 0 ? rhs : integer_zero_node,
3884 in_p, low, high))))
3885 return or_op ? invert_truthvalue (tem) : tem;
3887 /* On machines where the branch cost is expensive, if this is a
3888 short-circuited branch and the underlying object on both sides
3889 is the same, make a non-short-circuit operation. */
3890 else if (BRANCH_COST >= 2
3891 && lhs != 0 && rhs != 0
3892 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3893 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
3894 && operand_equal_p (lhs, rhs, 0))
3896 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3897 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
3898 which cases we can't do this. */
3899 if (simple_operand_p (lhs))
3900 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3901 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3902 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
3903 TREE_OPERAND (exp, 1));
3905 else if (global_bindings_p () == 0
3906 && ! contains_placeholder_p (lhs))
3908 tree common = save_expr (lhs);
3910 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
3911 or_op ? ! in0_p : in0_p,
3912 low0, high0))
3913 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
3914 or_op ? ! in1_p : in1_p,
3915 low1, high1))))
3916 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3917 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3918 TREE_TYPE (exp), lhs, rhs);
3922 return 0;
3925 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3926 bit value. Arrange things so the extra bits will be set to zero if and
3927 only if C is signed-extended to its full width. If MASK is nonzero,
3928 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3930 static tree
3931 unextend (c, p, unsignedp, mask)
3932 tree c;
3933 int p;
3934 int unsignedp;
3935 tree mask;
3937 tree type = TREE_TYPE (c);
3938 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
3939 tree temp;
3941 if (p == modesize || unsignedp)
3942 return c;
3944 /* We work by getting just the sign bit into the low-order bit, then
3945 into the high-order bit, then sign-extend. We then XOR that value
3946 with C. */
3947 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
3948 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
3950 /* We must use a signed type in order to get an arithmetic right shift.
3951 However, we must also avoid introducing accidental overflows, so that
3952 a subsequent call to integer_zerop will work. Hence we must
3953 do the type conversion here. At this point, the constant is either
3954 zero or one, and the conversion to a signed type can never overflow.
3955 We could get an overflow if this conversion is done anywhere else. */
3956 if (TREE_UNSIGNED (type))
3957 temp = convert (signed_type (type), temp);
3959 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
3960 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
3961 if (mask != 0)
3962 temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
3963 /* If necessary, convert the type back to match the type of C. */
3964 if (TREE_UNSIGNED (type))
3965 temp = convert (type, temp);
3967 return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
3970 /* Find ways of folding logical expressions of LHS and RHS:
3971 Try to merge two comparisons to the same innermost item.
3972 Look for range tests like "ch >= '0' && ch <= '9'".
3973 Look for combinations of simple terms on machines with expensive branches
3974 and evaluate the RHS unconditionally.
3976 For example, if we have p->a == 2 && p->b == 4 and we can make an
3977 object large enough to span both A and B, we can do this with a comparison
3978 against the object ANDed with the a mask.
3980 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3981 operations to do this with one comparison.
3983 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3984 function and the one above.
3986 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3987 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3989 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3990 two operands.
3992 We return the simplified tree or 0 if no optimization is possible. */
3994 static tree
3995 fold_truthop (code, truth_type, lhs, rhs)
3996 enum tree_code code;
3997 tree truth_type, lhs, rhs;
3999 /* If this is the "or" of two comparisons, we can do something if
4000 the comparisons are NE_EXPR. If this is the "and", we can do something
4001 if the comparisons are EQ_EXPR. I.e.,
4002 (a->b == 2 && a->c == 4) can become (a->new == NEW).
4004 WANTED_CODE is this operation code. For single bit fields, we can
4005 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
4006 comparison for one-bit fields. */
4008 enum tree_code wanted_code;
4009 enum tree_code lcode, rcode;
4010 tree ll_arg, lr_arg, rl_arg, rr_arg;
4011 tree ll_inner, lr_inner, rl_inner, rr_inner;
4012 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
4013 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
4014 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
4015 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
4016 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
4017 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
4018 enum machine_mode lnmode, rnmode;
4019 tree ll_mask, lr_mask, rl_mask, rr_mask;
4020 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
4021 tree l_const, r_const;
4022 tree lntype, rntype, result;
4023 int first_bit, end_bit;
4024 int volatilep;
4026 /* Start by getting the comparison codes. Fail if anything is volatile.
4027 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
4028 it were surrounded with a NE_EXPR. */
4030 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
4031 return 0;
4033 lcode = TREE_CODE (lhs);
4034 rcode = TREE_CODE (rhs);
4036 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
4037 lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
4039 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
4040 rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
4042 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
4043 return 0;
4045 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
4046 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
4048 ll_arg = TREE_OPERAND (lhs, 0);
4049 lr_arg = TREE_OPERAND (lhs, 1);
4050 rl_arg = TREE_OPERAND (rhs, 0);
4051 rr_arg = TREE_OPERAND (rhs, 1);
4053 /* If the RHS can be evaluated unconditionally and its operands are
4054 simple, it wins to evaluate the RHS unconditionally on machines
4055 with expensive branches. In this case, this isn't a comparison
4056 that can be merged. Avoid doing this if the RHS is a floating-point
4057 comparison since those can trap. */
4059 if (BRANCH_COST >= 2
4060 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
4061 && simple_operand_p (rl_arg)
4062 && simple_operand_p (rr_arg))
4063 return build (code, truth_type, lhs, rhs);
4065 /* See if the comparisons can be merged. Then get all the parameters for
4066 each side. */
4068 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
4069 || (rcode != EQ_EXPR && rcode != NE_EXPR))
4070 return 0;
4072 volatilep = 0;
4073 ll_inner = decode_field_reference (ll_arg,
4074 &ll_bitsize, &ll_bitpos, &ll_mode,
4075 &ll_unsignedp, &volatilep, &ll_mask,
4076 &ll_and_mask);
4077 lr_inner = decode_field_reference (lr_arg,
4078 &lr_bitsize, &lr_bitpos, &lr_mode,
4079 &lr_unsignedp, &volatilep, &lr_mask,
4080 &lr_and_mask);
4081 rl_inner = decode_field_reference (rl_arg,
4082 &rl_bitsize, &rl_bitpos, &rl_mode,
4083 &rl_unsignedp, &volatilep, &rl_mask,
4084 &rl_and_mask);
4085 rr_inner = decode_field_reference (rr_arg,
4086 &rr_bitsize, &rr_bitpos, &rr_mode,
4087 &rr_unsignedp, &volatilep, &rr_mask,
4088 &rr_and_mask);
4090 /* It must be true that the inner operation on the lhs of each
4091 comparison must be the same if we are to be able to do anything.
4092 Then see if we have constants. If not, the same must be true for
4093 the rhs's. */
4094 if (volatilep || ll_inner == 0 || rl_inner == 0
4095 || ! operand_equal_p (ll_inner, rl_inner, 0))
4096 return 0;
4098 if (TREE_CODE (lr_arg) == INTEGER_CST
4099 && TREE_CODE (rr_arg) == INTEGER_CST)
4100 l_const = lr_arg, r_const = rr_arg;
4101 else if (lr_inner == 0 || rr_inner == 0
4102 || ! operand_equal_p (lr_inner, rr_inner, 0))
4103 return 0;
4104 else
4105 l_const = r_const = 0;
4107 /* If either comparison code is not correct for our logical operation,
4108 fail. However, we can convert a one-bit comparison against zero into
4109 the opposite comparison against that bit being set in the field. */
4111 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
4112 if (lcode != wanted_code)
4114 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
4116 /* Make the left operand unsigned, since we are only interested
4117 in the value of one bit. Otherwise we are doing the wrong
4118 thing below. */
4119 ll_unsignedp = 1;
4120 l_const = ll_mask;
4122 else
4123 return 0;
4126 /* This is analogous to the code for l_const above. */
4127 if (rcode != wanted_code)
4129 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
4131 rl_unsignedp = 1;
4132 r_const = rl_mask;
4134 else
4135 return 0;
4138 /* See if we can find a mode that contains both fields being compared on
4139 the left. If we can't, fail. Otherwise, update all constants and masks
4140 to be relative to a field of that size. */
4141 first_bit = MIN (ll_bitpos, rl_bitpos);
4142 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
4143 lnmode = get_best_mode (end_bit - first_bit, first_bit,
4144 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
4145 volatilep);
4146 if (lnmode == VOIDmode)
4147 return 0;
4149 lnbitsize = GET_MODE_BITSIZE (lnmode);
4150 lnbitpos = first_bit & ~ (lnbitsize - 1);
4151 lntype = type_for_size (lnbitsize, 1);
4152 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
4154 if (BYTES_BIG_ENDIAN)
4156 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
4157 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
4160 ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
4161 size_int (xll_bitpos), 0);
4162 rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
4163 size_int (xrl_bitpos), 0);
4165 if (l_const)
4167 l_const = convert (lntype, l_const);
4168 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
4169 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
4170 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
4171 fold (build1 (BIT_NOT_EXPR,
4172 lntype, ll_mask)),
4173 0)))
4175 warning ("comparison is always %d", wanted_code == NE_EXPR);
4177 return convert (truth_type,
4178 wanted_code == NE_EXPR
4179 ? integer_one_node : integer_zero_node);
4182 if (r_const)
4184 r_const = convert (lntype, r_const);
4185 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
4186 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
4187 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
4188 fold (build1 (BIT_NOT_EXPR,
4189 lntype, rl_mask)),
4190 0)))
4192 warning ("comparison is always %d", wanted_code == NE_EXPR);
4194 return convert (truth_type,
4195 wanted_code == NE_EXPR
4196 ? integer_one_node : integer_zero_node);
4200 /* If the right sides are not constant, do the same for it. Also,
4201 disallow this optimization if a size or signedness mismatch occurs
4202 between the left and right sides. */
4203 if (l_const == 0)
4205 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
4206 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
4207 /* Make sure the two fields on the right
4208 correspond to the left without being swapped. */
4209 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
4210 return 0;
4212 first_bit = MIN (lr_bitpos, rr_bitpos);
4213 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
4214 rnmode = get_best_mode (end_bit - first_bit, first_bit,
4215 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
4216 volatilep);
4217 if (rnmode == VOIDmode)
4218 return 0;
4220 rnbitsize = GET_MODE_BITSIZE (rnmode);
4221 rnbitpos = first_bit & ~ (rnbitsize - 1);
4222 rntype = type_for_size (rnbitsize, 1);
4223 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
4225 if (BYTES_BIG_ENDIAN)
4227 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
4228 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
4231 lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
4232 size_int (xlr_bitpos), 0);
4233 rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
4234 size_int (xrr_bitpos), 0);
4236 /* Make a mask that corresponds to both fields being compared.
4237 Do this for both items being compared. If the operands are the
4238 same size and the bits being compared are in the same position
4239 then we can do this by masking both and comparing the masked
4240 results. */
4241 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4242 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
4243 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
4245 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4246 ll_unsignedp || rl_unsignedp);
4247 if (! all_ones_mask_p (ll_mask, lnbitsize))
4248 lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);
4250 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
4251 lr_unsignedp || rr_unsignedp);
4252 if (! all_ones_mask_p (lr_mask, rnbitsize))
4253 rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);
4255 return build (wanted_code, truth_type, lhs, rhs);
4258 /* There is still another way we can do something: If both pairs of
4259 fields being compared are adjacent, we may be able to make a wider
4260 field containing them both.
4262 Note that we still must mask the lhs/rhs expressions. Furthermore,
4263 the mask must be shifted to account for the shift done by
4264 make_bit_field_ref. */
4265 if ((ll_bitsize + ll_bitpos == rl_bitpos
4266 && lr_bitsize + lr_bitpos == rr_bitpos)
4267 || (ll_bitpos == rl_bitpos + rl_bitsize
4268 && lr_bitpos == rr_bitpos + rr_bitsize))
4270 tree type;
4272 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
4273 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
4274 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
4275 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
4277 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
4278 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
4279 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
4280 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
4282 /* Convert to the smaller type before masking out unwanted bits. */
4283 type = lntype;
4284 if (lntype != rntype)
4286 if (lnbitsize > rnbitsize)
4288 lhs = convert (rntype, lhs);
4289 ll_mask = convert (rntype, ll_mask);
4290 type = rntype;
4292 else if (lnbitsize < rnbitsize)
4294 rhs = convert (lntype, rhs);
4295 lr_mask = convert (lntype, lr_mask);
4296 type = lntype;
4300 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
4301 lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
4303 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
4304 rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);
4306 return build (wanted_code, truth_type, lhs, rhs);
4309 return 0;
4312 /* Handle the case of comparisons with constants. If there is something in
4313 common between the masks, those bits of the constants must be the same.
4314 If not, the condition is always false. Test for this to avoid generating
4315 incorrect code below. */
4316 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
4317 if (! integer_zerop (result)
4318 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
4319 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
4321 if (wanted_code == NE_EXPR)
4323 warning ("`or' of unmatched not-equal tests is always 1");
4324 return convert (truth_type, integer_one_node);
4326 else
4328 warning ("`and' of mutually exclusive equal-tests is always 0");
4329 return convert (truth_type, integer_zero_node);
4333 /* Construct the expression we will return. First get the component
4334 reference we will make. Unless the mask is all ones the width of
4335 that field, perform the mask operation. Then compare with the
4336 merged constant. */
4337 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4338 ll_unsignedp || rl_unsignedp);
4340 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4341 if (! all_ones_mask_p (ll_mask, lnbitsize))
4342 result = build (BIT_AND_EXPR, lntype, result, ll_mask);
4344 return build (wanted_code, truth_type, result,
4345 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
4348 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
4349 constant. */
4351 static tree
4352 optimize_minmax_comparison (t)
4353 tree t;
4355 tree type = TREE_TYPE (t);
4356 tree arg0 = TREE_OPERAND (t, 0);
4357 enum tree_code op_code;
4358 tree comp_const = TREE_OPERAND (t, 1);
4359 tree minmax_const;
4360 int consts_equal, consts_lt;
4361 tree inner;
4363 STRIP_SIGN_NOPS (arg0);
4365 op_code = TREE_CODE (arg0);
4366 minmax_const = TREE_OPERAND (arg0, 1);
4367 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
4368 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
4369 inner = TREE_OPERAND (arg0, 0);
4371 /* If something does not permit us to optimize, return the original tree. */
4372 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
4373 || TREE_CODE (comp_const) != INTEGER_CST
4374 || TREE_CONSTANT_OVERFLOW (comp_const)
4375 || TREE_CODE (minmax_const) != INTEGER_CST
4376 || TREE_CONSTANT_OVERFLOW (minmax_const))
4377 return t;
4379 /* Now handle all the various comparison codes. We only handle EQ_EXPR
4380 and GT_EXPR, doing the rest with recursive calls using logical
4381 simplifications. */
4382 switch (TREE_CODE (t))
4384 case NE_EXPR: case LT_EXPR: case LE_EXPR:
4385 return
4386 invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));
4388 case GE_EXPR:
4389 return
4390 fold (build (TRUTH_ORIF_EXPR, type,
4391 optimize_minmax_comparison
4392 (build (EQ_EXPR, type, arg0, comp_const)),
4393 optimize_minmax_comparison
4394 (build (GT_EXPR, type, arg0, comp_const))));
4396 case EQ_EXPR:
4397 if (op_code == MAX_EXPR && consts_equal)
4398 /* MAX (X, 0) == 0 -> X <= 0 */
4399 return fold (build (LE_EXPR, type, inner, comp_const));
4401 else if (op_code == MAX_EXPR && consts_lt)
4402 /* MAX (X, 0) == 5 -> X == 5 */
4403 return fold (build (EQ_EXPR, type, inner, comp_const));
4405 else if (op_code == MAX_EXPR)
4406 /* MAX (X, 0) == -1 -> false */
4407 return omit_one_operand (type, integer_zero_node, inner);
4409 else if (consts_equal)
4410 /* MIN (X, 0) == 0 -> X >= 0 */
4411 return fold (build (GE_EXPR, type, inner, comp_const));
4413 else if (consts_lt)
4414 /* MIN (X, 0) == 5 -> false */
4415 return omit_one_operand (type, integer_zero_node, inner);
4417 else
4418 /* MIN (X, 0) == -1 -> X == -1 */
4419 return fold (build (EQ_EXPR, type, inner, comp_const));
4421 case GT_EXPR:
4422 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
4423 /* MAX (X, 0) > 0 -> X > 0
4424 MAX (X, 0) > 5 -> X > 5 */
4425 return fold (build (GT_EXPR, type, inner, comp_const));
4427 else if (op_code == MAX_EXPR)
4428 /* MAX (X, 0) > -1 -> true */
4429 return omit_one_operand (type, integer_one_node, inner);
4431 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
4432 /* MIN (X, 0) > 0 -> false
4433 MIN (X, 0) > 5 -> false */
4434 return omit_one_operand (type, integer_zero_node, inner);
4436 else
4437 /* MIN (X, 0) > -1 -> X > -1 */
4438 return fold (build (GT_EXPR, type, inner, comp_const));
4440 default:
4441 return t;
4445 /* T is an integer expression that is being multiplied, divided, or taken a
4446 modulus (CODE says which and what kind of divide or modulus) by a
4447 constant C. See if we can eliminate that operation by folding it with
4448 other operations already in T. WIDE_TYPE, if non-null, is a type that
4449 should be used for the computation if wider than our type.
4451 For example, if we are dividing (X * 8) + (Y + 16) by 4, we can return
4452 (X * 2) + (Y + 4). We must, however, be assured that either the original
4453 expression would not overflow or that overflow is undefined for the type
4454 in the language in question.
4456 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
4457 the machine has a multiply-accumulate insn or that this is part of an
4458 addressing calculation.
4460 If we return a non-null expression, it is an equivalent form of the
4461 original computation, but need not be in the original type. */
4463 static tree
4464 extract_muldiv (t, c, code, wide_type)
4465 tree t;
4466 tree c;
4467 enum tree_code code;
4468 tree wide_type;
4470 tree type = TREE_TYPE (t);
4471 enum tree_code tcode = TREE_CODE (t);
4472 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
4473 > GET_MODE_SIZE (TYPE_MODE (type)))
4474 ? wide_type : type);
4475 tree t1, t2;
4476 int same_p = tcode == code;
4477 tree op0 = NULL_TREE, op1 = NULL_TREE;
4479 /* Don't deal with constants of zero here; they confuse the code below. */
4480 if (integer_zerop (c))
4481 return NULL_TREE;
4483 if (TREE_CODE_CLASS (tcode) == '1')
4484 op0 = TREE_OPERAND (t, 0);
4486 if (TREE_CODE_CLASS (tcode) == '2')
4487 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
4489 /* Note that we need not handle conditional operations here since fold
4490 already handles those cases. So just do arithmetic here. */
4491 switch (tcode)
4493 case INTEGER_CST:
4494 /* For a constant, we can always simplify if we are a multiply
4495 or (for divide and modulus) if it is a multiple of our constant. */
4496 if (code == MULT_EXPR
4497 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
4498 return const_binop (code, convert (ctype, t), convert (ctype, c), 0);
4499 break;
4501 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
4502 /* If op0 is an expression, and is unsigned, and the type is
4503 smaller than ctype, then we cannot widen the expression. */
4504 if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
4505 || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
4506 || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
4507 || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
4508 && TREE_UNSIGNED (TREE_TYPE (op0))
4509 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
4510 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
4511 && (GET_MODE_SIZE (TYPE_MODE (ctype))
4512 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
4513 break;
4515 /* Pass the constant down and see if we can make a simplification. If
4516 we can, replace this expression with the inner simplification for
4517 possible later conversion to our or some other type. */
4518 if (0 != (t1 = extract_muldiv (op0, convert (TREE_TYPE (op0), c), code,
4519 code == MULT_EXPR ? ctype : NULL_TREE)))
4520 return t1;
4521 break;
4523 case NEGATE_EXPR: case ABS_EXPR:
4524 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4525 return fold (build1 (tcode, ctype, convert (ctype, t1)));
4526 break;
4528 case MIN_EXPR: case MAX_EXPR:
4529 /* If widening the type changes the signedness, then we can't perform
4530 this optimization as that changes the result. */
4531 if (TREE_UNSIGNED (ctype) != TREE_UNSIGNED (type))
4532 break;
4534 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
4535 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
4536 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
4538 if (tree_int_cst_sgn (c) < 0)
4539 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
4541 return fold (build (tcode, ctype, convert (ctype, t1),
4542 convert (ctype, t2)));
4544 break;
4546 case WITH_RECORD_EXPR:
4547 if ((t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code, wide_type)) != 0)
4548 return build (WITH_RECORD_EXPR, TREE_TYPE (t1), t1,
4549 TREE_OPERAND (t, 1));
4550 break;
4552 case SAVE_EXPR:
4553 /* If this has not been evaluated and the operand has no side effects,
4554 we can see if we can do something inside it and make a new one.
4555 Note that this test is overly conservative since we can do this
4556 if the only reason it had side effects is that it was another
4557 similar SAVE_EXPR, but that isn't worth bothering with. */
4558 if (SAVE_EXPR_RTL (t) == 0 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))
4559 && 0 != (t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code,
4560 wide_type)))
4562 t1 = save_expr (t1);
4563 if (SAVE_EXPR_PERSISTENT_P (t) && TREE_CODE (t1) == SAVE_EXPR)
4564 SAVE_EXPR_PERSISTENT_P (t1) = 1;
4565 if (is_pending_size (t))
4566 put_pending_size (t1);
4567 return t1;
4569 break;
4571 case LSHIFT_EXPR: case RSHIFT_EXPR:
4572 /* If the second operand is constant, this is a multiplication
4573 or floor division, by a power of two, so we can treat it that
4574 way unless the multiplier or divisor overflows. */
4575 if (TREE_CODE (op1) == INTEGER_CST
4576 /* const_binop may not detect overflow correctly,
4577 so check for it explicitly here. */
4578 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
4579 && TREE_INT_CST_HIGH (op1) == 0
4580 && 0 != (t1 = convert (ctype,
4581 const_binop (LSHIFT_EXPR, size_one_node,
4582 op1, 0)))
4583 && ! TREE_OVERFLOW (t1))
4584 return extract_muldiv (build (tcode == LSHIFT_EXPR
4585 ? MULT_EXPR : FLOOR_DIV_EXPR,
4586 ctype, convert (ctype, op0), t1),
4587 c, code, wide_type);
4588 break;
4590 case PLUS_EXPR: case MINUS_EXPR:
4591 /* See if we can eliminate the operation on both sides. If we can, we
4592 can return a new PLUS or MINUS. If we can't, the only remaining
4593 cases where we can do anything are if the second operand is a
4594 constant. */
4595 t1 = extract_muldiv (op0, c, code, wide_type);
4596 t2 = extract_muldiv (op1, c, code, wide_type);
4597 if (t1 != 0 && t2 != 0
4598 && (code == MULT_EXPR
4599 /* If not multiplication, we can only do this if either operand
4600 is divisible by c. */
4601 || multiple_of_p (ctype, op0, c)
4602 || multiple_of_p (ctype, op1, c)))
4603 return fold (build (tcode, ctype, convert (ctype, t1),
4604 convert (ctype, t2)));
4606 /* If this was a subtraction, negate OP1 and set it to be an addition.
4607 This simplifies the logic below. */
4608 if (tcode == MINUS_EXPR)
4609 tcode = PLUS_EXPR, op1 = negate_expr (op1);
4611 if (TREE_CODE (op1) != INTEGER_CST)
4612 break;
4614 /* If either OP1 or C are negative, this optimization is not safe for
4615 some of the division and remainder types while for others we need
4616 to change the code. */
4617 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
4619 if (code == CEIL_DIV_EXPR)
4620 code = FLOOR_DIV_EXPR;
4621 else if (code == FLOOR_DIV_EXPR)
4622 code = CEIL_DIV_EXPR;
4623 else if (code != MULT_EXPR
4624 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
4625 break;
4628 /* If it's a multiply or a division/modulus operation of a multiple
4629 of our constant, do the operation and verify it doesn't overflow. */
4630 if (code == MULT_EXPR
4631 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4633 op1 = const_binop (code, convert (ctype, op1), convert (ctype, c), 0);
4634 if (op1 == 0 || TREE_OVERFLOW (op1))
4635 break;
4637 else
4638 break;
4640 /* If we have an unsigned type is not a sizetype, we cannot widen
4641 the operation since it will change the result if the original
4642 computation overflowed. */
4643 if (TREE_UNSIGNED (ctype)
4644 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
4645 && ctype != type)
4646 break;
4648 /* If we were able to eliminate our operation from the first side,
4649 apply our operation to the second side and reform the PLUS. */
4650 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
4651 return fold (build (tcode, ctype, convert (ctype, t1), op1));
4653 /* The last case is if we are a multiply. In that case, we can
4654 apply the distributive law to commute the multiply and addition
4655 if the multiplication of the constants doesn't overflow. */
4656 if (code == MULT_EXPR)
4657 return fold (build (tcode, ctype, fold (build (code, ctype,
4658 convert (ctype, op0),
4659 convert (ctype, c))),
4660 op1));
4662 break;
4664 case MULT_EXPR:
4665 /* We have a special case here if we are doing something like
4666 (C * 8) % 4 since we know that's zero. */
4667 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
4668 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
4669 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
4670 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4671 return omit_one_operand (type, integer_zero_node, op0);
4673 /* ... fall through ... */
4675 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
4676 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
4677 /* If we can extract our operation from the LHS, do so and return a
4678 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
4679 do something only if the second operand is a constant. */
4680 if (same_p
4681 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4682 return fold (build (tcode, ctype, convert (ctype, t1),
4683 convert (ctype, op1)));
4684 else if (tcode == MULT_EXPR && code == MULT_EXPR
4685 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
4686 return fold (build (tcode, ctype, convert (ctype, op0),
4687 convert (ctype, t1)));
4688 else if (TREE_CODE (op1) != INTEGER_CST)
4689 return 0;
4691 /* If these are the same operation types, we can associate them
4692 assuming no overflow. */
4693 if (tcode == code
4694 && 0 != (t1 = const_binop (MULT_EXPR, convert (ctype, op1),
4695 convert (ctype, c), 0))
4696 && ! TREE_OVERFLOW (t1))
4697 return fold (build (tcode, ctype, convert (ctype, op0), t1));
4699 /* If these operations "cancel" each other, we have the main
4700 optimizations of this pass, which occur when either constant is a
4701 multiple of the other, in which case we replace this with either an
4702 operation or CODE or TCODE.
4704 If we have an unsigned type that is not a sizetype, we cannot do
4705 this since it will change the result if the original computation
4706 overflowed. */
4707 if ((! TREE_UNSIGNED (ctype)
4708 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
4709 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
4710 || (tcode == MULT_EXPR
4711 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
4712 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
4714 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4715 return fold (build (tcode, ctype, convert (ctype, op0),
4716 convert (ctype,
4717 const_binop (TRUNC_DIV_EXPR,
4718 op1, c, 0))));
4719 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
4720 return fold (build (code, ctype, convert (ctype, op0),
4721 convert (ctype,
4722 const_binop (TRUNC_DIV_EXPR,
4723 c, op1, 0))));
4725 break;
4727 default:
4728 break;
4731 return 0;
4734 /* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
4735 S, a SAVE_EXPR, return the expression actually being evaluated. Note
4736 that we may sometimes modify the tree. */
4738 static tree
4739 strip_compound_expr (t, s)
4740 tree t;
4741 tree s;
4743 enum tree_code code = TREE_CODE (t);
4745 /* See if this is the COMPOUND_EXPR we want to eliminate. */
4746 if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
4747 && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
4748 return TREE_OPERAND (t, 1);
4750 /* See if this is a COND_EXPR or a simple arithmetic operator. We
4751 don't bother handling any other types. */
4752 else if (code == COND_EXPR)
4754 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4755 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4756 TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
4758 else if (TREE_CODE_CLASS (code) == '1')
4759 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4760 else if (TREE_CODE_CLASS (code) == '<'
4761 || TREE_CODE_CLASS (code) == '2')
4763 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4764 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4767 return t;
4770 /* Return a node which has the indicated constant VALUE (either 0 or
4771 1), and is of the indicated TYPE. */
4773 static tree
4774 constant_boolean_node (value, type)
4775 int value;
4776 tree type;
4778 if (type == integer_type_node)
4779 return value ? integer_one_node : integer_zero_node;
4780 else if (TREE_CODE (type) == BOOLEAN_TYPE)
4781 return truthvalue_conversion (value ? integer_one_node :
4782 integer_zero_node);
4783 else
4785 tree t = build_int_2 (value, 0);
4787 TREE_TYPE (t) = type;
4788 return t;
4792 /* Utility function for the following routine, to see how complex a nesting of
4793 COND_EXPRs can be. EXPR is the expression and LIMIT is a count beyond which
4794 we don't care (to avoid spending too much time on complex expressions.). */
4796 static int
4797 count_cond (expr, lim)
4798 tree expr;
4799 int lim;
4801 int ctrue, cfalse;
4803 if (TREE_CODE (expr) != COND_EXPR)
4804 return 0;
4805 else if (lim <= 0)
4806 return 0;
4808 ctrue = count_cond (TREE_OPERAND (expr, 1), lim - 1);
4809 cfalse = count_cond (TREE_OPERAND (expr, 2), lim - 1 - ctrue);
4810 return MIN (lim, 1 + ctrue + cfalse);
4813 /* Transform `a + (b ? x : y)' into `x ? (a + b) : (a + y)'.
4814 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
4815 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
4816 expression, and ARG to `a'. If COND_FIRST_P is non-zero, then the
4817 COND is the first argument to CODE; otherwise (as in the example
4818 given here), it is the second argument. TYPE is the type of the
4819 original expression. */
4821 static tree
4822 fold_binary_op_with_conditional_arg (code, type, cond, arg, cond_first_p)
4823 enum tree_code code;
4824 tree type;
4825 tree cond;
4826 tree arg;
4827 int cond_first_p;
4829 tree test, true_value, false_value;
4830 tree lhs = NULL_TREE;
4831 tree rhs = NULL_TREE;
4832 /* In the end, we'll produce a COND_EXPR. Both arms of the
4833 conditional expression will be binary operations. The left-hand
4834 side of the expression to be executed if the condition is true
4835 will be pointed to by TRUE_LHS. Similarly, the right-hand side
4836 of the expression to be executed if the condition is true will be
4837 pointed to by TRUE_RHS. FALSE_LHS and FALSE_RHS are analagous --
4838 but apply to the expression to be executed if the conditional is
4839 false. */
4840 tree *true_lhs;
4841 tree *true_rhs;
4842 tree *false_lhs;
4843 tree *false_rhs;
4844 /* These are the codes to use for the left-hand side and right-hand
4845 side of the COND_EXPR. Normally, they are the same as CODE. */
4846 enum tree_code lhs_code = code;
4847 enum tree_code rhs_code = code;
4848 /* And these are the types of the expressions. */
4849 tree lhs_type = type;
4850 tree rhs_type = type;
4852 if (cond_first_p)
4854 true_rhs = false_rhs = &arg;
4855 true_lhs = &true_value;
4856 false_lhs = &false_value;
4858 else
4860 true_lhs = false_lhs = &arg;
4861 true_rhs = &true_value;
4862 false_rhs = &false_value;
4865 if (TREE_CODE (cond) == COND_EXPR)
4867 test = TREE_OPERAND (cond, 0);
4868 true_value = TREE_OPERAND (cond, 1);
4869 false_value = TREE_OPERAND (cond, 2);
4870 /* If this operand throws an expression, then it does not make
4871 sense to try to perform a logical or arithmetic operation
4872 involving it. Instead of building `a + throw 3' for example,
4873 we simply build `a, throw 3'. */
4874 if (VOID_TYPE_P (TREE_TYPE (true_value)))
4876 lhs_code = COMPOUND_EXPR;
4877 if (!cond_first_p)
4878 lhs_type = void_type_node;
4880 if (VOID_TYPE_P (TREE_TYPE (false_value)))
4882 rhs_code = COMPOUND_EXPR;
4883 if (!cond_first_p)
4884 rhs_type = void_type_node;
4887 else
4889 tree testtype = TREE_TYPE (cond);
4890 test = cond;
4891 true_value = convert (testtype, integer_one_node);
4892 false_value = convert (testtype, integer_zero_node);
4895 /* If ARG is complex we want to make sure we only evaluate
4896 it once. Though this is only required if it is volatile, it
4897 might be more efficient even if it is not. However, if we
4898 succeed in folding one part to a constant, we do not need
4899 to make this SAVE_EXPR. Since we do this optimization
4900 primarily to see if we do end up with constant and this
4901 SAVE_EXPR interferes with later optimizations, suppressing
4902 it when we can is important.
4904 If we are not in a function, we can't make a SAVE_EXPR, so don't
4905 try to do so. Don't try to see if the result is a constant
4906 if an arm is a COND_EXPR since we get exponential behavior
4907 in that case. */
4909 if (TREE_CODE (arg) != SAVE_EXPR && ! TREE_CONSTANT (arg)
4910 && global_bindings_p () == 0
4911 && ((TREE_CODE (arg) != VAR_DECL
4912 && TREE_CODE (arg) != PARM_DECL)
4913 || TREE_SIDE_EFFECTS (arg)))
4915 if (TREE_CODE (true_value) != COND_EXPR)
4916 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4918 if (TREE_CODE (false_value) != COND_EXPR)
4919 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4921 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4922 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4923 arg = save_expr (arg), lhs = rhs = 0;
4926 if (lhs == 0)
4927 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4928 if (rhs == 0)
4929 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4931 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4933 if (TREE_CODE (arg) == SAVE_EXPR)
4934 return build (COMPOUND_EXPR, type,
4935 convert (void_type_node, arg),
4936 strip_compound_expr (test, arg));
4937 else
4938 return convert (type, test);
4942 /* Perform constant folding and related simplification of EXPR.
4943 The related simplifications include x*1 => x, x*0 => 0, etc.,
4944 and application of the associative law.
4945 NOP_EXPR conversions may be removed freely (as long as we
4946 are careful not to change the C type of the overall expression)
4947 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
4948 but we can constant-fold them if they have constant operands. */
4950 tree
4951 fold (expr)
4952 tree expr;
4954 tree t = expr;
4955 tree t1 = NULL_TREE;
4956 tree tem;
4957 tree type = TREE_TYPE (expr);
4958 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4959 enum tree_code code = TREE_CODE (t);
4960 int kind = TREE_CODE_CLASS (code);
4961 int invert;
4962 /* WINS will be nonzero when the switch is done
4963 if all operands are constant. */
4964 int wins = 1;
4966 /* Don't try to process an RTL_EXPR since its operands aren't trees.
4967 Likewise for a SAVE_EXPR that's already been evaluated. */
4968 if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t) != 0))
4969 return t;
4971 /* Return right away if a constant. */
4972 if (kind == 'c')
4973 return t;
4975 #ifdef MAX_INTEGER_COMPUTATION_MODE
4976 check_max_integer_computation_mode (expr);
4977 #endif
4979 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
4981 tree subop;
4983 /* Special case for conversion ops that can have fixed point args. */
4984 arg0 = TREE_OPERAND (t, 0);
4986 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
4987 if (arg0 != 0)
4988 STRIP_SIGN_NOPS (arg0);
4990 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
4991 subop = TREE_REALPART (arg0);
4992 else
4993 subop = arg0;
4995 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
4996 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4997 && TREE_CODE (subop) != REAL_CST
4998 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
5000 /* Note that TREE_CONSTANT isn't enough:
5001 static var addresses are constant but we can't
5002 do arithmetic on them. */
5003 wins = 0;
5005 else if (IS_EXPR_CODE_CLASS (kind) || kind == 'r')
5007 int len = first_rtl_op (code);
5008 int i;
5009 for (i = 0; i < len; i++)
5011 tree op = TREE_OPERAND (t, i);
5012 tree subop;
5014 if (op == 0)
5015 continue; /* Valid for CALL_EXPR, at least. */
5017 if (kind == '<' || code == RSHIFT_EXPR)
5019 /* Signedness matters here. Perhaps we can refine this
5020 later. */
5021 STRIP_SIGN_NOPS (op);
5023 else
5024 /* Strip any conversions that don't change the mode. */
5025 STRIP_NOPS (op);
5027 if (TREE_CODE (op) == COMPLEX_CST)
5028 subop = TREE_REALPART (op);
5029 else
5030 subop = op;
5032 if (TREE_CODE (subop) != INTEGER_CST
5033 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
5034 && TREE_CODE (subop) != REAL_CST
5035 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
5037 /* Note that TREE_CONSTANT isn't enough:
5038 static var addresses are constant but we can't
5039 do arithmetic on them. */
5040 wins = 0;
5042 if (i == 0)
5043 arg0 = op;
5044 else if (i == 1)
5045 arg1 = op;
5049 /* If this is a commutative operation, and ARG0 is a constant, move it
5050 to ARG1 to reduce the number of tests below. */
5051 if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
5052 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
5053 || code == BIT_AND_EXPR)
5054 && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
5056 tem = arg0; arg0 = arg1; arg1 = tem;
5058 tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
5059 TREE_OPERAND (t, 1) = tem;
5062 /* Now WINS is set as described above,
5063 ARG0 is the first operand of EXPR,
5064 and ARG1 is the second operand (if it has more than one operand).
5066 First check for cases where an arithmetic operation is applied to a
5067 compound, conditional, or comparison operation. Push the arithmetic
5068 operation inside the compound or conditional to see if any folding
5069 can then be done. Convert comparison to conditional for this purpose.
5070 The also optimizes non-constant cases that used to be done in
5071 expand_expr.
5073 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
5074 one of the operands is a comparison and the other is a comparison, a
5075 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
5076 code below would make the expression more complex. Change it to a
5077 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
5078 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
5080 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
5081 || code == EQ_EXPR || code == NE_EXPR)
5082 && ((truth_value_p (TREE_CODE (arg0))
5083 && (truth_value_p (TREE_CODE (arg1))
5084 || (TREE_CODE (arg1) == BIT_AND_EXPR
5085 && integer_onep (TREE_OPERAND (arg1, 1)))))
5086 || (truth_value_p (TREE_CODE (arg1))
5087 && (truth_value_p (TREE_CODE (arg0))
5088 || (TREE_CODE (arg0) == BIT_AND_EXPR
5089 && integer_onep (TREE_OPERAND (arg0, 1)))))))
5091 t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
5092 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
5093 : TRUTH_XOR_EXPR,
5094 type, arg0, arg1));
5096 if (code == EQ_EXPR)
5097 t = invert_truthvalue (t);
5099 return t;
5102 if (TREE_CODE_CLASS (code) == '1')
5104 if (TREE_CODE (arg0) == COMPOUND_EXPR)
5105 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5106 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
5107 else if (TREE_CODE (arg0) == COND_EXPR)
5109 t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
5110 fold (build1 (code, type, TREE_OPERAND (arg0, 1))),
5111 fold (build1 (code, type, TREE_OPERAND (arg0, 2)))));
5113 /* If this was a conversion, and all we did was to move into
5114 inside the COND_EXPR, bring it back out. But leave it if
5115 it is a conversion from integer to integer and the
5116 result precision is no wider than a word since such a
5117 conversion is cheap and may be optimized away by combine,
5118 while it couldn't if it were outside the COND_EXPR. Then return
5119 so we don't get into an infinite recursion loop taking the
5120 conversion out and then back in. */
5122 if ((code == NOP_EXPR || code == CONVERT_EXPR
5123 || code == NON_LVALUE_EXPR)
5124 && TREE_CODE (t) == COND_EXPR
5125 && TREE_CODE (TREE_OPERAND (t, 1)) == code
5126 && TREE_CODE (TREE_OPERAND (t, 2)) == code
5127 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
5128 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
5129 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
5130 && (INTEGRAL_TYPE_P
5131 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))))
5132 && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
5133 t = build1 (code, type,
5134 build (COND_EXPR,
5135 TREE_TYPE (TREE_OPERAND
5136 (TREE_OPERAND (t, 1), 0)),
5137 TREE_OPERAND (t, 0),
5138 TREE_OPERAND (TREE_OPERAND (t, 1), 0),
5139 TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
5140 return t;
5142 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
5143 return fold (build (COND_EXPR, type, arg0,
5144 fold (build1 (code, type, integer_one_node)),
5145 fold (build1 (code, type, integer_zero_node))));
5147 else if (TREE_CODE_CLASS (code) == '2'
5148 || TREE_CODE_CLASS (code) == '<')
5150 if (TREE_CODE (arg1) == COMPOUND_EXPR)
5151 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5152 fold (build (code, type,
5153 arg0, TREE_OPERAND (arg1, 1))));
5154 else if ((TREE_CODE (arg1) == COND_EXPR
5155 || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
5156 && TREE_CODE_CLASS (code) != '<'))
5157 && (TREE_CODE (arg0) != COND_EXPR
5158 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5159 && (! TREE_SIDE_EFFECTS (arg0)
5160 || (global_bindings_p () == 0
5161 && ! contains_placeholder_p (arg0))))
5162 return
5163 fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
5164 /*cond_first_p=*/0);
5165 else if (TREE_CODE (arg0) == COMPOUND_EXPR)
5166 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5167 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5168 else if ((TREE_CODE (arg0) == COND_EXPR
5169 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
5170 && TREE_CODE_CLASS (code) != '<'))
5171 && (TREE_CODE (arg1) != COND_EXPR
5172 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5173 && (! TREE_SIDE_EFFECTS (arg1)
5174 || (global_bindings_p () == 0
5175 && ! contains_placeholder_p (arg1))))
5176 return
5177 fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
5178 /*cond_first_p=*/1);
5180 else if (TREE_CODE_CLASS (code) == '<'
5181 && TREE_CODE (arg0) == COMPOUND_EXPR)
5182 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5183 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5184 else if (TREE_CODE_CLASS (code) == '<'
5185 && TREE_CODE (arg1) == COMPOUND_EXPR)
5186 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5187 fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
5189 switch (code)
5191 case INTEGER_CST:
5192 case REAL_CST:
5193 case STRING_CST:
5194 case COMPLEX_CST:
5195 case CONSTRUCTOR:
5196 return t;
5198 case CONST_DECL:
5199 return fold (DECL_INITIAL (t));
5201 case NOP_EXPR:
5202 case FLOAT_EXPR:
5203 case CONVERT_EXPR:
5204 case FIX_TRUNC_EXPR:
5205 /* Other kinds of FIX are not handled properly by fold_convert. */
5207 if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
5208 return TREE_OPERAND (t, 0);
5210 /* Handle cases of two conversions in a row. */
5211 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
5212 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
5214 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5215 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
5216 tree final_type = TREE_TYPE (t);
5217 int inside_int = INTEGRAL_TYPE_P (inside_type);
5218 int inside_ptr = POINTER_TYPE_P (inside_type);
5219 int inside_float = FLOAT_TYPE_P (inside_type);
5220 unsigned int inside_prec = TYPE_PRECISION (inside_type);
5221 int inside_unsignedp = TREE_UNSIGNED (inside_type);
5222 int inter_int = INTEGRAL_TYPE_P (inter_type);
5223 int inter_ptr = POINTER_TYPE_P (inter_type);
5224 int inter_float = FLOAT_TYPE_P (inter_type);
5225 unsigned int inter_prec = TYPE_PRECISION (inter_type);
5226 int inter_unsignedp = TREE_UNSIGNED (inter_type);
5227 int final_int = INTEGRAL_TYPE_P (final_type);
5228 int final_ptr = POINTER_TYPE_P (final_type);
5229 int final_float = FLOAT_TYPE_P (final_type);
5230 unsigned int final_prec = TYPE_PRECISION (final_type);
5231 int final_unsignedp = TREE_UNSIGNED (final_type);
5233 /* In addition to the cases of two conversions in a row
5234 handled below, if we are converting something to its own
5235 type via an object of identical or wider precision, neither
5236 conversion is needed. */
5237 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (final_type)
5238 && ((inter_int && final_int) || (inter_float && final_float))
5239 && inter_prec >= final_prec)
5240 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5242 /* Likewise, if the intermediate and final types are either both
5243 float or both integer, we don't need the middle conversion if
5244 it is wider than the final type and doesn't change the signedness
5245 (for integers). Avoid this if the final type is a pointer
5246 since then we sometimes need the inner conversion. Likewise if
5247 the outer has a precision not equal to the size of its mode. */
5248 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
5249 || (inter_float && inside_float))
5250 && inter_prec >= inside_prec
5251 && (inter_float || inter_unsignedp == inside_unsignedp)
5252 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5253 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5254 && ! final_ptr)
5255 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5257 /* If we have a sign-extension of a zero-extended value, we can
5258 replace that by a single zero-extension. */
5259 if (inside_int && inter_int && final_int
5260 && inside_prec < inter_prec && inter_prec < final_prec
5261 && inside_unsignedp && !inter_unsignedp)
5262 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5264 /* Two conversions in a row are not needed unless:
5265 - some conversion is floating-point (overstrict for now), or
5266 - the intermediate type is narrower than both initial and
5267 final, or
5268 - the intermediate type and innermost type differ in signedness,
5269 and the outermost type is wider than the intermediate, or
5270 - the initial type is a pointer type and the precisions of the
5271 intermediate and final types differ, or
5272 - the final type is a pointer type and the precisions of the
5273 initial and intermediate types differ. */
5274 if (! inside_float && ! inter_float && ! final_float
5275 && (inter_prec > inside_prec || inter_prec > final_prec)
5276 && ! (inside_int && inter_int
5277 && inter_unsignedp != inside_unsignedp
5278 && inter_prec < final_prec)
5279 && ((inter_unsignedp && inter_prec > inside_prec)
5280 == (final_unsignedp && final_prec > inter_prec))
5281 && ! (inside_ptr && inter_prec != final_prec)
5282 && ! (final_ptr && inside_prec != inter_prec)
5283 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5284 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5285 && ! final_ptr)
5286 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5289 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
5290 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
5291 /* Detect assigning a bitfield. */
5292 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
5293 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
5295 /* Don't leave an assignment inside a conversion
5296 unless assigning a bitfield. */
5297 tree prev = TREE_OPERAND (t, 0);
5298 TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
5299 /* First do the assignment, then return converted constant. */
5300 t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
5301 TREE_USED (t) = 1;
5302 return t;
5304 if (!wins)
5306 TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
5307 return t;
5309 return fold_convert (t, arg0);
5311 #if 0 /* This loses on &"foo"[0]. */
5312 case ARRAY_REF:
5314 int i;
5316 /* Fold an expression like: "foo"[2] */
5317 if (TREE_CODE (arg0) == STRING_CST
5318 && TREE_CODE (arg1) == INTEGER_CST
5319 && compare_tree_int (arg1, TREE_STRING_LENGTH (arg0)) < 0)
5321 t = build_int_2 (TREE_STRING_POINTER (arg0)[TREE_INT_CST_LOW (arg))], 0);
5322 TREE_TYPE (t) = TREE_TYPE (TREE_TYPE (arg0));
5323 force_fit_type (t, 0);
5326 return t;
5327 #endif /* 0 */
5329 case COMPONENT_REF:
5330 if (TREE_CODE (arg0) == CONSTRUCTOR)
5332 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
5333 if (m)
5334 t = TREE_VALUE (m);
5336 return t;
5338 case RANGE_EXPR:
5339 TREE_CONSTANT (t) = wins;
5340 return t;
5342 case NEGATE_EXPR:
5343 if (wins)
5345 if (TREE_CODE (arg0) == INTEGER_CST)
5347 unsigned HOST_WIDE_INT low;
5348 HOST_WIDE_INT high;
5349 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5350 TREE_INT_CST_HIGH (arg0),
5351 &low, &high);
5352 t = build_int_2 (low, high);
5353 TREE_TYPE (t) = type;
5354 TREE_OVERFLOW (t)
5355 = (TREE_OVERFLOW (arg0)
5356 | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
5357 TREE_CONSTANT_OVERFLOW (t)
5358 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5360 else if (TREE_CODE (arg0) == REAL_CST)
5361 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5363 else if (TREE_CODE (arg0) == NEGATE_EXPR)
5364 return TREE_OPERAND (arg0, 0);
5366 /* Convert - (a - b) to (b - a) for non-floating-point. */
5367 else if (TREE_CODE (arg0) == MINUS_EXPR
5368 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
5369 return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
5370 TREE_OPERAND (arg0, 0));
5372 return t;
5374 case ABS_EXPR:
5375 if (wins)
5377 if (TREE_CODE (arg0) == INTEGER_CST)
5379 /* If the value is unsigned, then the absolute value is
5380 the same as the ordinary value. */
5381 if (TREE_UNSIGNED (type))
5382 return arg0;
5383 /* Similarly, if the value is non-negative. */
5384 else if (INT_CST_LT (integer_minus_one_node, arg0))
5385 return arg0;
5386 /* If the value is negative, then the absolute value is
5387 its negation. */
5388 else
5390 unsigned HOST_WIDE_INT low;
5391 HOST_WIDE_INT high;
5392 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5393 TREE_INT_CST_HIGH (arg0),
5394 &low, &high);
5395 t = build_int_2 (low, high);
5396 TREE_TYPE (t) = type;
5397 TREE_OVERFLOW (t)
5398 = (TREE_OVERFLOW (arg0)
5399 | force_fit_type (t, overflow));
5400 TREE_CONSTANT_OVERFLOW (t)
5401 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5404 else if (TREE_CODE (arg0) == REAL_CST)
5406 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
5407 t = build_real (type,
5408 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5411 else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
5412 return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
5413 return t;
5415 case CONJ_EXPR:
5416 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
5417 return convert (type, arg0);
5418 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
5419 return build (COMPLEX_EXPR, type,
5420 TREE_OPERAND (arg0, 0),
5421 negate_expr (TREE_OPERAND (arg0, 1)));
5422 else if (TREE_CODE (arg0) == COMPLEX_CST)
5423 return build_complex (type, TREE_REALPART (arg0),
5424 negate_expr (TREE_IMAGPART (arg0)));
5425 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
5426 return fold (build (TREE_CODE (arg0), type,
5427 fold (build1 (CONJ_EXPR, type,
5428 TREE_OPERAND (arg0, 0))),
5429 fold (build1 (CONJ_EXPR,
5430 type, TREE_OPERAND (arg0, 1)))));
5431 else if (TREE_CODE (arg0) == CONJ_EXPR)
5432 return TREE_OPERAND (arg0, 0);
5433 return t;
5435 case BIT_NOT_EXPR:
5436 if (wins)
5438 t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
5439 ~ TREE_INT_CST_HIGH (arg0));
5440 TREE_TYPE (t) = type;
5441 force_fit_type (t, 0);
5442 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
5443 TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
5445 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
5446 return TREE_OPERAND (arg0, 0);
5447 return t;
5449 case PLUS_EXPR:
5450 /* A + (-B) -> A - B */
5451 if (TREE_CODE (arg1) == NEGATE_EXPR)
5452 return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5453 /* (-A) + B -> B - A */
5454 if (TREE_CODE (arg0) == NEGATE_EXPR)
5455 return fold (build (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
5456 else if (! FLOAT_TYPE_P (type))
5458 if (integer_zerop (arg1))
5459 return non_lvalue (convert (type, arg0));
5461 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
5462 with a constant, and the two constants have no bits in common,
5463 we should treat this as a BIT_IOR_EXPR since this may produce more
5464 simplifications. */
5465 if (TREE_CODE (arg0) == BIT_AND_EXPR
5466 && TREE_CODE (arg1) == BIT_AND_EXPR
5467 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5468 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5469 && integer_zerop (const_binop (BIT_AND_EXPR,
5470 TREE_OPERAND (arg0, 1),
5471 TREE_OPERAND (arg1, 1), 0)))
5473 code = BIT_IOR_EXPR;
5474 goto bit_ior;
5477 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
5478 (plus (plus (mult) (mult)) (foo)) so that we can
5479 take advantage of the factoring cases below. */
5480 if ((TREE_CODE (arg0) == PLUS_EXPR
5481 && TREE_CODE (arg1) == MULT_EXPR)
5482 || (TREE_CODE (arg1) == PLUS_EXPR
5483 && TREE_CODE (arg0) == MULT_EXPR))
5485 tree parg0, parg1, parg, marg;
5487 if (TREE_CODE (arg0) == PLUS_EXPR)
5488 parg = arg0, marg = arg1;
5489 else
5490 parg = arg1, marg = arg0;
5491 parg0 = TREE_OPERAND (parg, 0);
5492 parg1 = TREE_OPERAND (parg, 1);
5493 STRIP_NOPS (parg0);
5494 STRIP_NOPS (parg1);
5496 if (TREE_CODE (parg0) == MULT_EXPR
5497 && TREE_CODE (parg1) != MULT_EXPR)
5498 return fold (build (PLUS_EXPR, type,
5499 fold (build (PLUS_EXPR, type, parg0, marg)),
5500 parg1));
5501 if (TREE_CODE (parg0) != MULT_EXPR
5502 && TREE_CODE (parg1) == MULT_EXPR)
5503 return fold (build (PLUS_EXPR, type,
5504 fold (build (PLUS_EXPR, type, parg1, marg)),
5505 parg0));
5508 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
5510 tree arg00, arg01, arg10, arg11;
5511 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
5513 /* (A * C) + (B * C) -> (A+B) * C.
5514 We are most concerned about the case where C is a constant,
5515 but other combinations show up during loop reduction. Since
5516 it is not difficult, try all four possibilities. */
5518 arg00 = TREE_OPERAND (arg0, 0);
5519 arg01 = TREE_OPERAND (arg0, 1);
5520 arg10 = TREE_OPERAND (arg1, 0);
5521 arg11 = TREE_OPERAND (arg1, 1);
5522 same = NULL_TREE;
5524 if (operand_equal_p (arg01, arg11, 0))
5525 same = arg01, alt0 = arg00, alt1 = arg10;
5526 else if (operand_equal_p (arg00, arg10, 0))
5527 same = arg00, alt0 = arg01, alt1 = arg11;
5528 else if (operand_equal_p (arg00, arg11, 0))
5529 same = arg00, alt0 = arg01, alt1 = arg10;
5530 else if (operand_equal_p (arg01, arg10, 0))
5531 same = arg01, alt0 = arg00, alt1 = arg11;
5533 /* No identical multiplicands; see if we can find a common
5534 power-of-two factor in non-power-of-two multiplies. This
5535 can help in multi-dimensional array access. */
5536 else if (TREE_CODE (arg01) == INTEGER_CST
5537 && TREE_CODE (arg11) == INTEGER_CST
5538 && TREE_INT_CST_HIGH (arg01) == 0
5539 && TREE_INT_CST_HIGH (arg11) == 0)
5541 HOST_WIDE_INT int01, int11, tmp;
5542 int01 = TREE_INT_CST_LOW (arg01);
5543 int11 = TREE_INT_CST_LOW (arg11);
5545 /* Move min of absolute values to int11. */
5546 if ((int01 >= 0 ? int01 : -int01)
5547 < (int11 >= 0 ? int11 : -int11))
5549 tmp = int01, int01 = int11, int11 = tmp;
5550 alt0 = arg00, arg00 = arg10, arg10 = alt0;
5551 alt0 = arg01, arg01 = arg11, arg11 = alt0;
5554 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
5556 alt0 = fold (build (MULT_EXPR, type, arg00,
5557 build_int_2 (int01 / int11, 0)));
5558 alt1 = arg10;
5559 same = arg11;
5563 if (same)
5564 return fold (build (MULT_EXPR, type,
5565 fold (build (PLUS_EXPR, type, alt0, alt1)),
5566 same));
5569 /* In IEEE floating point, x+0 may not equal x. */
5570 else if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
5571 || flag_unsafe_math_optimizations)
5572 && real_zerop (arg1))
5573 return non_lvalue (convert (type, arg0));
5574 /* x+(-0) equals x, even for IEEE. */
5575 else if (TREE_CODE (arg1) == REAL_CST
5576 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (arg1)))
5577 return non_lvalue (convert (type, arg0));
5579 bit_rotate:
5580 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
5581 is a rotate of A by C1 bits. */
5582 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
5583 is a rotate of A by B bits. */
5585 enum tree_code code0, code1;
5586 code0 = TREE_CODE (arg0);
5587 code1 = TREE_CODE (arg1);
5588 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
5589 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
5590 && operand_equal_p (TREE_OPERAND (arg0, 0),
5591 TREE_OPERAND (arg1, 0), 0)
5592 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5594 tree tree01, tree11;
5595 enum tree_code code01, code11;
5597 tree01 = TREE_OPERAND (arg0, 1);
5598 tree11 = TREE_OPERAND (arg1, 1);
5599 STRIP_NOPS (tree01);
5600 STRIP_NOPS (tree11);
5601 code01 = TREE_CODE (tree01);
5602 code11 = TREE_CODE (tree11);
5603 if (code01 == INTEGER_CST
5604 && code11 == INTEGER_CST
5605 && TREE_INT_CST_HIGH (tree01) == 0
5606 && TREE_INT_CST_HIGH (tree11) == 0
5607 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
5608 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
5609 return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
5610 code0 == LSHIFT_EXPR ? tree01 : tree11);
5611 else if (code11 == MINUS_EXPR)
5613 tree tree110, tree111;
5614 tree110 = TREE_OPERAND (tree11, 0);
5615 tree111 = TREE_OPERAND (tree11, 1);
5616 STRIP_NOPS (tree110);
5617 STRIP_NOPS (tree111);
5618 if (TREE_CODE (tree110) == INTEGER_CST
5619 && 0 == compare_tree_int (tree110,
5620 TYPE_PRECISION
5621 (TREE_TYPE (TREE_OPERAND
5622 (arg0, 0))))
5623 && operand_equal_p (tree01, tree111, 0))
5624 return build ((code0 == LSHIFT_EXPR
5625 ? LROTATE_EXPR
5626 : RROTATE_EXPR),
5627 type, TREE_OPERAND (arg0, 0), tree01);
5629 else if (code01 == MINUS_EXPR)
5631 tree tree010, tree011;
5632 tree010 = TREE_OPERAND (tree01, 0);
5633 tree011 = TREE_OPERAND (tree01, 1);
5634 STRIP_NOPS (tree010);
5635 STRIP_NOPS (tree011);
5636 if (TREE_CODE (tree010) == INTEGER_CST
5637 && 0 == compare_tree_int (tree010,
5638 TYPE_PRECISION
5639 (TREE_TYPE (TREE_OPERAND
5640 (arg0, 0))))
5641 && operand_equal_p (tree11, tree011, 0))
5642 return build ((code0 != LSHIFT_EXPR
5643 ? LROTATE_EXPR
5644 : RROTATE_EXPR),
5645 type, TREE_OPERAND (arg0, 0), tree11);
5650 associate:
5651 /* In most languages, can't associate operations on floats through
5652 parentheses. Rather than remember where the parentheses were, we
5653 don't associate floats at all. It shouldn't matter much. However,
5654 associating multiplications is only very slightly inaccurate, so do
5655 that if -funsafe-math-optimizations is specified. */
5657 if (! wins
5658 && (! FLOAT_TYPE_P (type)
5659 || (flag_unsafe_math_optimizations && code == MULT_EXPR)))
5661 tree var0, con0, lit0, var1, con1, lit1;
5663 /* Split both trees into variables, constants, and literals. Then
5664 associate each group together, the constants with literals,
5665 then the result with variables. This increases the chances of
5666 literals being recombined later and of generating relocatable
5667 expressions for the sum of a constant and literal. */
5668 var0 = split_tree (arg0, code, &con0, &lit0, 0);
5669 var1 = split_tree (arg1, code, &con1, &lit1, code == MINUS_EXPR);
5671 /* Only do something if we found more than two objects. Otherwise,
5672 nothing has changed and we risk infinite recursion. */
5673 if (2 < ((var0 != 0) + (var1 != 0) + (con0 != 0) + (con1 != 0)
5674 + (lit0 != 0) + (lit1 != 0)))
5676 var0 = associate_trees (var0, var1, code, type);
5677 con0 = associate_trees (con0, con1, code, type);
5678 lit0 = associate_trees (lit0, lit1, code, type);
5679 con0 = associate_trees (con0, lit0, code, type);
5680 return convert (type, associate_trees (var0, con0, code, type));
5684 binary:
5685 #if defined (REAL_IS_NOT_DOUBLE) && ! defined (REAL_ARITHMETIC)
5686 if (TREE_CODE (arg1) == REAL_CST)
5687 return t;
5688 #endif /* REAL_IS_NOT_DOUBLE, and no REAL_ARITHMETIC */
5689 if (wins)
5690 t1 = const_binop (code, arg0, arg1, 0);
5691 if (t1 != NULL_TREE)
5693 /* The return value should always have
5694 the same type as the original expression. */
5695 if (TREE_TYPE (t1) != TREE_TYPE (t))
5696 t1 = convert (TREE_TYPE (t), t1);
5698 return t1;
5700 return t;
5702 case MINUS_EXPR:
5703 /* A - (-B) -> A + B */
5704 if (TREE_CODE (arg1) == NEGATE_EXPR)
5705 return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5706 /* (-A) - CST -> (-CST) - A for floating point (what about ints ?) */
5707 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == REAL_CST)
5708 return
5709 fold (build (MINUS_EXPR, type,
5710 build_real (TREE_TYPE (arg1),
5711 REAL_VALUE_NEGATE (TREE_REAL_CST (arg1))),
5712 TREE_OPERAND (arg0, 0)));
5714 if (! FLOAT_TYPE_P (type))
5716 if (! wins && integer_zerop (arg0))
5717 return negate_expr (convert (type, arg1));
5718 if (integer_zerop (arg1))
5719 return non_lvalue (convert (type, arg0));
5721 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
5722 about the case where C is a constant, just try one of the
5723 four possibilities. */
5725 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
5726 && operand_equal_p (TREE_OPERAND (arg0, 1),
5727 TREE_OPERAND (arg1, 1), 0))
5728 return fold (build (MULT_EXPR, type,
5729 fold (build (MINUS_EXPR, type,
5730 TREE_OPERAND (arg0, 0),
5731 TREE_OPERAND (arg1, 0))),
5732 TREE_OPERAND (arg0, 1)));
5735 else if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
5736 || flag_unsafe_math_optimizations)
5738 /* Except with IEEE floating point, 0-x equals -x. */
5739 if (! wins && real_zerop (arg0))
5740 return negate_expr (convert (type, arg1));
5741 /* Except with IEEE floating point, x-0 equals x. */
5742 if (real_zerop (arg1))
5743 return non_lvalue (convert (type, arg0));
5746 /* Fold &x - &x. This can happen from &x.foo - &x.
5747 This is unsafe for certain floats even in non-IEEE formats.
5748 In IEEE, it is unsafe because it does wrong for NaNs.
5749 Also note that operand_equal_p is always false if an operand
5750 is volatile. */
5752 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
5753 && operand_equal_p (arg0, arg1, 0))
5754 return convert (type, integer_zero_node);
5756 goto associate;
5758 case MULT_EXPR:
5759 /* (-A) * (-B) -> A * B */
5760 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
5761 return fold (build (MULT_EXPR, type, TREE_OPERAND (arg0, 0),
5762 TREE_OPERAND (arg1, 0)));
5764 if (! FLOAT_TYPE_P (type))
5766 if (integer_zerop (arg1))
5767 return omit_one_operand (type, arg1, arg0);
5768 if (integer_onep (arg1))
5769 return non_lvalue (convert (type, arg0));
5771 /* (a * (1 << b)) is (a << b) */
5772 if (TREE_CODE (arg1) == LSHIFT_EXPR
5773 && integer_onep (TREE_OPERAND (arg1, 0)))
5774 return fold (build (LSHIFT_EXPR, type, arg0,
5775 TREE_OPERAND (arg1, 1)));
5776 if (TREE_CODE (arg0) == LSHIFT_EXPR
5777 && integer_onep (TREE_OPERAND (arg0, 0)))
5778 return fold (build (LSHIFT_EXPR, type, arg1,
5779 TREE_OPERAND (arg0, 1)));
5781 if (TREE_CODE (arg1) == INTEGER_CST
5782 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
5783 code, NULL_TREE)))
5784 return convert (type, tem);
5787 else
5789 /* x*0 is 0, except for IEEE floating point. */
5790 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
5791 || flag_unsafe_math_optimizations)
5792 && real_zerop (arg1))
5793 return omit_one_operand (type, arg1, arg0);
5794 /* In IEEE floating point, x*1 is not equivalent to x for snans.
5795 However, ANSI says we can drop signals,
5796 so we can do this anyway. */
5797 if (real_onep (arg1))
5798 return non_lvalue (convert (type, arg0));
5799 /* x*2 is x+x */
5800 if (! wins && real_twop (arg1) && global_bindings_p () == 0
5801 && ! contains_placeholder_p (arg0))
5803 tree arg = save_expr (arg0);
5804 return build (PLUS_EXPR, type, arg, arg);
5807 goto associate;
5809 case BIT_IOR_EXPR:
5810 bit_ior:
5811 if (integer_all_onesp (arg1))
5812 return omit_one_operand (type, arg1, arg0);
5813 if (integer_zerop (arg1))
5814 return non_lvalue (convert (type, arg0));
5815 t1 = distribute_bit_expr (code, type, arg0, arg1);
5816 if (t1 != NULL_TREE)
5817 return t1;
5819 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
5821 This results in more efficient code for machines without a NAND
5822 instruction. Combine will canonicalize to the first form
5823 which will allow use of NAND instructions provided by the
5824 backend if they exist. */
5825 if (TREE_CODE (arg0) == BIT_NOT_EXPR
5826 && TREE_CODE (arg1) == BIT_NOT_EXPR)
5828 return fold (build1 (BIT_NOT_EXPR, type,
5829 build (BIT_AND_EXPR, type,
5830 TREE_OPERAND (arg0, 0),
5831 TREE_OPERAND (arg1, 0))));
5834 /* See if this can be simplified into a rotate first. If that
5835 is unsuccessful continue in the association code. */
5836 goto bit_rotate;
5838 case BIT_XOR_EXPR:
5839 if (integer_zerop (arg1))
5840 return non_lvalue (convert (type, arg0));
5841 if (integer_all_onesp (arg1))
5842 return fold (build1 (BIT_NOT_EXPR, type, arg0));
5844 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
5845 with a constant, and the two constants have no bits in common,
5846 we should treat this as a BIT_IOR_EXPR since this may produce more
5847 simplifications. */
5848 if (TREE_CODE (arg0) == BIT_AND_EXPR
5849 && TREE_CODE (arg1) == BIT_AND_EXPR
5850 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5851 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5852 && integer_zerop (const_binop (BIT_AND_EXPR,
5853 TREE_OPERAND (arg0, 1),
5854 TREE_OPERAND (arg1, 1), 0)))
5856 code = BIT_IOR_EXPR;
5857 goto bit_ior;
5860 /* See if this can be simplified into a rotate first. If that
5861 is unsuccessful continue in the association code. */
5862 goto bit_rotate;
5864 case BIT_AND_EXPR:
5865 bit_and:
5866 if (integer_all_onesp (arg1))
5867 return non_lvalue (convert (type, arg0));
5868 if (integer_zerop (arg1))
5869 return omit_one_operand (type, arg1, arg0);
5870 t1 = distribute_bit_expr (code, type, arg0, arg1);
5871 if (t1 != NULL_TREE)
5872 return t1;
5873 /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
5874 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == NOP_EXPR
5875 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0))))
5877 unsigned int prec
5878 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)));
5880 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
5881 && (~TREE_INT_CST_LOW (arg0)
5882 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
5883 return build1 (NOP_EXPR, type, TREE_OPERAND (arg1, 0));
5885 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
5886 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5888 unsigned int prec
5889 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
5891 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
5892 && (~TREE_INT_CST_LOW (arg1)
5893 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
5894 return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
5897 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
5899 This results in more efficient code for machines without a NOR
5900 instruction. Combine will canonicalize to the first form
5901 which will allow use of NOR instructions provided by the
5902 backend if they exist. */
5903 if (TREE_CODE (arg0) == BIT_NOT_EXPR
5904 && TREE_CODE (arg1) == BIT_NOT_EXPR)
5906 return fold (build1 (BIT_NOT_EXPR, type,
5907 build (BIT_IOR_EXPR, type,
5908 TREE_OPERAND (arg0, 0),
5909 TREE_OPERAND (arg1, 0))));
5912 goto associate;
5914 case BIT_ANDTC_EXPR:
5915 if (integer_all_onesp (arg0))
5916 return non_lvalue (convert (type, arg1));
5917 if (integer_zerop (arg0))
5918 return omit_one_operand (type, arg0, arg1);
5919 if (TREE_CODE (arg1) == INTEGER_CST)
5921 arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
5922 code = BIT_AND_EXPR;
5923 goto bit_and;
5925 goto binary;
5927 case RDIV_EXPR:
5928 /* In most cases, do nothing with a divide by zero. */
5929 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
5930 #ifndef REAL_INFINITY
5931 if (TREE_CODE (arg1) == REAL_CST && real_zerop (arg1))
5932 return t;
5933 #endif
5934 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
5936 /* (-A) / (-B) -> A / B */
5937 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
5938 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
5939 TREE_OPERAND (arg1, 0)));
5941 /* In IEEE floating point, x/1 is not equivalent to x for snans.
5942 However, ANSI says we can drop signals, so we can do this anyway. */
5943 if (real_onep (arg1))
5944 return non_lvalue (convert (type, arg0));
5946 /* If ARG1 is a constant, we can convert this to a multiply by the
5947 reciprocal. This does not have the same rounding properties,
5948 so only do this if -funsafe-math-optimizations. We can actually
5949 always safely do it if ARG1 is a power of two, but it's hard to
5950 tell if it is or not in a portable manner. */
5951 if (TREE_CODE (arg1) == REAL_CST)
5953 if (flag_unsafe_math_optimizations
5954 && 0 != (tem = const_binop (code, build_real (type, dconst1),
5955 arg1, 0)))
5956 return fold (build (MULT_EXPR, type, arg0, tem));
5957 /* Find the reciprocal if optimizing and the result is exact. */
5958 else if (optimize)
5960 REAL_VALUE_TYPE r;
5961 r = TREE_REAL_CST (arg1);
5962 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
5964 tem = build_real (type, r);
5965 return fold (build (MULT_EXPR, type, arg0, tem));
5969 /* Convert A/B/C to A/(B*C). */
5970 if (flag_unsafe_math_optimizations
5971 && TREE_CODE (arg0) == RDIV_EXPR)
5973 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
5974 build (MULT_EXPR, type, TREE_OPERAND (arg0, 1),
5975 arg1)));
5977 /* Convert A/(B/C) to (A/B)*C. */
5978 if (flag_unsafe_math_optimizations
5979 && TREE_CODE (arg1) == RDIV_EXPR)
5981 return fold (build (MULT_EXPR, type,
5982 build (RDIV_EXPR, type, arg0,
5983 TREE_OPERAND (arg1, 0)),
5984 TREE_OPERAND (arg1, 1)));
5986 goto binary;
5988 case TRUNC_DIV_EXPR:
5989 case ROUND_DIV_EXPR:
5990 case FLOOR_DIV_EXPR:
5991 case CEIL_DIV_EXPR:
5992 case EXACT_DIV_EXPR:
5993 if (integer_onep (arg1))
5994 return non_lvalue (convert (type, arg0));
5995 if (integer_zerop (arg1))
5996 return t;
5998 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
5999 operation, EXACT_DIV_EXPR.
6001 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
6002 At one time others generated faster code, it's not clear if they do
6003 after the last round to changes to the DIV code in expmed.c. */
6004 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
6005 && multiple_of_p (type, arg0, arg1))
6006 return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));
6008 if (TREE_CODE (arg1) == INTEGER_CST
6009 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6010 code, NULL_TREE)))
6011 return convert (type, tem);
6013 goto binary;
6015 case CEIL_MOD_EXPR:
6016 case FLOOR_MOD_EXPR:
6017 case ROUND_MOD_EXPR:
6018 case TRUNC_MOD_EXPR:
6019 if (integer_onep (arg1))
6020 return omit_one_operand (type, integer_zero_node, arg0);
6021 if (integer_zerop (arg1))
6022 return t;
6024 if (TREE_CODE (arg1) == INTEGER_CST
6025 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6026 code, NULL_TREE)))
6027 return convert (type, tem);
6029 goto binary;
6031 case LSHIFT_EXPR:
6032 case RSHIFT_EXPR:
6033 case LROTATE_EXPR:
6034 case RROTATE_EXPR:
6035 if (integer_zerop (arg1))
6036 return non_lvalue (convert (type, arg0));
6037 /* Since negative shift count is not well-defined,
6038 don't try to compute it in the compiler. */
6039 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
6040 return t;
6041 /* Rewrite an LROTATE_EXPR by a constant into an
6042 RROTATE_EXPR by a new constant. */
6043 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
6045 TREE_SET_CODE (t, RROTATE_EXPR);
6046 code = RROTATE_EXPR;
6047 TREE_OPERAND (t, 1) = arg1
6048 = const_binop
6049 (MINUS_EXPR,
6050 convert (TREE_TYPE (arg1),
6051 build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
6052 arg1, 0);
6053 if (tree_int_cst_sgn (arg1) < 0)
6054 return t;
6057 /* If we have a rotate of a bit operation with the rotate count and
6058 the second operand of the bit operation both constant,
6059 permute the two operations. */
6060 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6061 && (TREE_CODE (arg0) == BIT_AND_EXPR
6062 || TREE_CODE (arg0) == BIT_ANDTC_EXPR
6063 || TREE_CODE (arg0) == BIT_IOR_EXPR
6064 || TREE_CODE (arg0) == BIT_XOR_EXPR)
6065 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6066 return fold (build (TREE_CODE (arg0), type,
6067 fold (build (code, type,
6068 TREE_OPERAND (arg0, 0), arg1)),
6069 fold (build (code, type,
6070 TREE_OPERAND (arg0, 1), arg1))));
6072 /* Two consecutive rotates adding up to the width of the mode can
6073 be ignored. */
6074 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6075 && TREE_CODE (arg0) == RROTATE_EXPR
6076 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6077 && TREE_INT_CST_HIGH (arg1) == 0
6078 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
6079 && ((TREE_INT_CST_LOW (arg1)
6080 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
6081 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
6082 return TREE_OPERAND (arg0, 0);
6084 goto binary;
6086 case MIN_EXPR:
6087 if (operand_equal_p (arg0, arg1, 0))
6088 return omit_one_operand (type, arg0, arg1);
6089 if (INTEGRAL_TYPE_P (type)
6090 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
6091 return omit_one_operand (type, arg1, arg0);
6092 goto associate;
6094 case MAX_EXPR:
6095 if (operand_equal_p (arg0, arg1, 0))
6096 return omit_one_operand (type, arg0, arg1);
6097 if (INTEGRAL_TYPE_P (type)
6098 && TYPE_MAX_VALUE (type)
6099 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
6100 return omit_one_operand (type, arg1, arg0);
6101 goto associate;
6103 case TRUTH_NOT_EXPR:
6104 /* Note that the operand of this must be an int
6105 and its values must be 0 or 1.
6106 ("true" is a fixed value perhaps depending on the language,
6107 but we don't handle values other than 1 correctly yet.) */
6108 tem = invert_truthvalue (arg0);
6109 /* Avoid infinite recursion. */
6110 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
6111 return t;
6112 return convert (type, tem);
6114 case TRUTH_ANDIF_EXPR:
6115 /* Note that the operands of this must be ints
6116 and their values must be 0 or 1.
6117 ("true" is a fixed value perhaps depending on the language.) */
6118 /* If first arg is constant zero, return it. */
6119 if (integer_zerop (arg0))
6120 return convert (type, arg0);
6121 case TRUTH_AND_EXPR:
6122 /* If either arg is constant true, drop it. */
6123 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6124 return non_lvalue (convert (type, arg1));
6125 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
6126 /* Preserve sequence points. */
6127 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6128 return non_lvalue (convert (type, arg0));
6129 /* If second arg is constant zero, result is zero, but first arg
6130 must be evaluated. */
6131 if (integer_zerop (arg1))
6132 return omit_one_operand (type, arg1, arg0);
6133 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
6134 case will be handled here. */
6135 if (integer_zerop (arg0))
6136 return omit_one_operand (type, arg0, arg1);
6138 truth_andor:
6139 /* We only do these simplifications if we are optimizing. */
6140 if (!optimize)
6141 return t;
6143 /* Check for things like (A || B) && (A || C). We can convert this
6144 to A || (B && C). Note that either operator can be any of the four
6145 truth and/or operations and the transformation will still be
6146 valid. Also note that we only care about order for the
6147 ANDIF and ORIF operators. If B contains side effects, this
6148 might change the truth-value of A. */
6149 if (TREE_CODE (arg0) == TREE_CODE (arg1)
6150 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
6151 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
6152 || TREE_CODE (arg0) == TRUTH_AND_EXPR
6153 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
6154 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
6156 tree a00 = TREE_OPERAND (arg0, 0);
6157 tree a01 = TREE_OPERAND (arg0, 1);
6158 tree a10 = TREE_OPERAND (arg1, 0);
6159 tree a11 = TREE_OPERAND (arg1, 1);
6160 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
6161 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
6162 && (code == TRUTH_AND_EXPR
6163 || code == TRUTH_OR_EXPR));
6165 if (operand_equal_p (a00, a10, 0))
6166 return fold (build (TREE_CODE (arg0), type, a00,
6167 fold (build (code, type, a01, a11))));
6168 else if (commutative && operand_equal_p (a00, a11, 0))
6169 return fold (build (TREE_CODE (arg0), type, a00,
6170 fold (build (code, type, a01, a10))));
6171 else if (commutative && operand_equal_p (a01, a10, 0))
6172 return fold (build (TREE_CODE (arg0), type, a01,
6173 fold (build (code, type, a00, a11))));
6175 /* This case if tricky because we must either have commutative
6176 operators or else A10 must not have side-effects. */
6178 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
6179 && operand_equal_p (a01, a11, 0))
6180 return fold (build (TREE_CODE (arg0), type,
6181 fold (build (code, type, a00, a10)),
6182 a01));
6185 /* See if we can build a range comparison. */
6186 if (0 != (tem = fold_range_test (t)))
6187 return tem;
6189 /* Check for the possibility of merging component references. If our
6190 lhs is another similar operation, try to merge its rhs with our
6191 rhs. Then try to merge our lhs and rhs. */
6192 if (TREE_CODE (arg0) == code
6193 && 0 != (tem = fold_truthop (code, type,
6194 TREE_OPERAND (arg0, 1), arg1)))
6195 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6197 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
6198 return tem;
6200 return t;
6202 case TRUTH_ORIF_EXPR:
6203 /* Note that the operands of this must be ints
6204 and their values must be 0 or true.
6205 ("true" is a fixed value perhaps depending on the language.) */
6206 /* If first arg is constant true, return it. */
6207 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6208 return convert (type, arg0);
6209 case TRUTH_OR_EXPR:
6210 /* If either arg is constant zero, drop it. */
6211 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
6212 return non_lvalue (convert (type, arg1));
6213 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
6214 /* Preserve sequence points. */
6215 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6216 return non_lvalue (convert (type, arg0));
6217 /* If second arg is constant true, result is true, but we must
6218 evaluate first arg. */
6219 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
6220 return omit_one_operand (type, arg1, arg0);
6221 /* Likewise for first arg, but note this only occurs here for
6222 TRUTH_OR_EXPR. */
6223 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6224 return omit_one_operand (type, arg0, arg1);
6225 goto truth_andor;
6227 case TRUTH_XOR_EXPR:
6228 /* If either arg is constant zero, drop it. */
6229 if (integer_zerop (arg0))
6230 return non_lvalue (convert (type, arg1));
6231 if (integer_zerop (arg1))
6232 return non_lvalue (convert (type, arg0));
6233 /* If either arg is constant true, this is a logical inversion. */
6234 if (integer_onep (arg0))
6235 return non_lvalue (convert (type, invert_truthvalue (arg1)));
6236 if (integer_onep (arg1))
6237 return non_lvalue (convert (type, invert_truthvalue (arg0)));
6238 return t;
6240 case EQ_EXPR:
6241 case NE_EXPR:
6242 case LT_EXPR:
6243 case GT_EXPR:
6244 case LE_EXPR:
6245 case GE_EXPR:
6246 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
6248 /* (-a) CMP (-b) -> b CMP a */
6249 if (TREE_CODE (arg0) == NEGATE_EXPR
6250 && TREE_CODE (arg1) == NEGATE_EXPR)
6251 return fold (build (code, type, TREE_OPERAND (arg1, 0),
6252 TREE_OPERAND (arg0, 0)));
6253 /* (-a) CMP CST -> a swap(CMP) (-CST) */
6254 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == REAL_CST)
6255 return
6256 fold (build
6257 (swap_tree_comparison (code), type,
6258 TREE_OPERAND (arg0, 0),
6259 build_real (TREE_TYPE (arg1),
6260 REAL_VALUE_NEGATE (TREE_REAL_CST (arg1)))));
6261 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
6262 /* a CMP (-0) -> a CMP 0 */
6263 if (TREE_CODE (arg1) == REAL_CST
6264 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (arg1)))
6265 return fold (build (code, type, arg0,
6266 build_real (TREE_TYPE (arg1), dconst0)));
6269 /* If one arg is a constant integer, put it last. */
6270 if (TREE_CODE (arg0) == INTEGER_CST
6271 && TREE_CODE (arg1) != INTEGER_CST)
6273 TREE_OPERAND (t, 0) = arg1;
6274 TREE_OPERAND (t, 1) = arg0;
6275 arg0 = TREE_OPERAND (t, 0);
6276 arg1 = TREE_OPERAND (t, 1);
6277 code = swap_tree_comparison (code);
6278 TREE_SET_CODE (t, code);
6281 /* Convert foo++ == CONST into ++foo == CONST + INCR.
6282 First, see if one arg is constant; find the constant arg
6283 and the other one. */
6285 tree constop = 0, varop = NULL_TREE;
6286 int constopnum = -1;
6288 if (TREE_CONSTANT (arg1))
6289 constopnum = 1, constop = arg1, varop = arg0;
6290 if (TREE_CONSTANT (arg0))
6291 constopnum = 0, constop = arg0, varop = arg1;
6293 if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
6295 /* This optimization is invalid for ordered comparisons
6296 if CONST+INCR overflows or if foo+incr might overflow.
6297 This optimization is invalid for floating point due to rounding.
6298 For pointer types we assume overflow doesn't happen. */
6299 if (POINTER_TYPE_P (TREE_TYPE (varop))
6300 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6301 && (code == EQ_EXPR || code == NE_EXPR)))
6303 tree newconst
6304 = fold (build (PLUS_EXPR, TREE_TYPE (varop),
6305 constop, TREE_OPERAND (varop, 1)));
6307 /* Do not overwrite the current varop to be a preincrement,
6308 create a new node so that we won't confuse our caller who
6309 might create trees and throw them away, reusing the
6310 arguments that they passed to build. This shows up in
6311 the THEN or ELSE parts of ?: being postincrements. */
6312 varop = build (PREINCREMENT_EXPR, TREE_TYPE (varop),
6313 TREE_OPERAND (varop, 0),
6314 TREE_OPERAND (varop, 1));
6316 /* If VAROP is a reference to a bitfield, we must mask
6317 the constant by the width of the field. */
6318 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6319 && DECL_BIT_FIELD(TREE_OPERAND
6320 (TREE_OPERAND (varop, 0), 1)))
6322 int size
6323 = TREE_INT_CST_LOW (DECL_SIZE
6324 (TREE_OPERAND
6325 (TREE_OPERAND (varop, 0), 1)));
6326 tree mask, unsigned_type;
6327 unsigned int precision;
6328 tree folded_compare;
6330 /* First check whether the comparison would come out
6331 always the same. If we don't do that we would
6332 change the meaning with the masking. */
6333 if (constopnum == 0)
6334 folded_compare = fold (build (code, type, constop,
6335 TREE_OPERAND (varop, 0)));
6336 else
6337 folded_compare = fold (build (code, type,
6338 TREE_OPERAND (varop, 0),
6339 constop));
6340 if (integer_zerop (folded_compare)
6341 || integer_onep (folded_compare))
6342 return omit_one_operand (type, folded_compare, varop);
6344 unsigned_type = type_for_size (size, 1);
6345 precision = TYPE_PRECISION (unsigned_type);
6346 mask = build_int_2 (~0, ~0);
6347 TREE_TYPE (mask) = unsigned_type;
6348 force_fit_type (mask, 0);
6349 mask = const_binop (RSHIFT_EXPR, mask,
6350 size_int (precision - size), 0);
6351 newconst = fold (build (BIT_AND_EXPR,
6352 TREE_TYPE (varop), newconst,
6353 convert (TREE_TYPE (varop),
6354 mask)));
6357 t = build (code, type,
6358 (constopnum == 0) ? newconst : varop,
6359 (constopnum == 1) ? newconst : varop);
6360 return t;
6363 else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
6365 if (POINTER_TYPE_P (TREE_TYPE (varop))
6366 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6367 && (code == EQ_EXPR || code == NE_EXPR)))
6369 tree newconst
6370 = fold (build (MINUS_EXPR, TREE_TYPE (varop),
6371 constop, TREE_OPERAND (varop, 1)));
6373 /* Do not overwrite the current varop to be a predecrement,
6374 create a new node so that we won't confuse our caller who
6375 might create trees and throw them away, reusing the
6376 arguments that they passed to build. This shows up in
6377 the THEN or ELSE parts of ?: being postdecrements. */
6378 varop = build (PREDECREMENT_EXPR, TREE_TYPE (varop),
6379 TREE_OPERAND (varop, 0),
6380 TREE_OPERAND (varop, 1));
6382 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6383 && DECL_BIT_FIELD(TREE_OPERAND
6384 (TREE_OPERAND (varop, 0), 1)))
6386 int size
6387 = TREE_INT_CST_LOW (DECL_SIZE
6388 (TREE_OPERAND
6389 (TREE_OPERAND (varop, 0), 1)));
6390 tree mask, unsigned_type;
6391 unsigned int precision;
6392 tree folded_compare;
6394 if (constopnum == 0)
6395 folded_compare = fold (build (code, type, constop,
6396 TREE_OPERAND (varop, 0)));
6397 else
6398 folded_compare = fold (build (code, type,
6399 TREE_OPERAND (varop, 0),
6400 constop));
6401 if (integer_zerop (folded_compare)
6402 || integer_onep (folded_compare))
6403 return omit_one_operand (type, folded_compare, varop);
6405 unsigned_type = type_for_size (size, 1);
6406 precision = TYPE_PRECISION (unsigned_type);
6407 mask = build_int_2 (~0, ~0);
6408 TREE_TYPE (mask) = TREE_TYPE (varop);
6409 force_fit_type (mask, 0);
6410 mask = const_binop (RSHIFT_EXPR, mask,
6411 size_int (precision - size), 0);
6412 newconst = fold (build (BIT_AND_EXPR,
6413 TREE_TYPE (varop), newconst,
6414 convert (TREE_TYPE (varop),
6415 mask)));
6418 t = build (code, type,
6419 (constopnum == 0) ? newconst : varop,
6420 (constopnum == 1) ? newconst : varop);
6421 return t;
6426 /* Change X >= CST to X > (CST - 1) if CST is positive. */
6427 if (TREE_CODE (arg1) == INTEGER_CST
6428 && TREE_CODE (arg0) != INTEGER_CST
6429 && tree_int_cst_sgn (arg1) > 0)
6431 switch (TREE_CODE (t))
6433 case GE_EXPR:
6434 code = GT_EXPR;
6435 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6436 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6437 break;
6439 case LT_EXPR:
6440 code = LE_EXPR;
6441 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6442 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6443 break;
6445 default:
6446 break;
6450 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
6451 a MINUS_EXPR of a constant, we can convert it into a comparison with
6452 a revised constant as long as no overflow occurs. */
6453 if ((code == EQ_EXPR || code == NE_EXPR)
6454 && TREE_CODE (arg1) == INTEGER_CST
6455 && (TREE_CODE (arg0) == PLUS_EXPR
6456 || TREE_CODE (arg0) == MINUS_EXPR)
6457 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6458 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6459 ? MINUS_EXPR : PLUS_EXPR,
6460 arg1, TREE_OPERAND (arg0, 1), 0))
6461 && ! TREE_CONSTANT_OVERFLOW (tem))
6462 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6464 /* Similarly for a NEGATE_EXPR. */
6465 else if ((code == EQ_EXPR || code == NE_EXPR)
6466 && TREE_CODE (arg0) == NEGATE_EXPR
6467 && TREE_CODE (arg1) == INTEGER_CST
6468 && 0 != (tem = negate_expr (arg1))
6469 && TREE_CODE (tem) == INTEGER_CST
6470 && ! TREE_CONSTANT_OVERFLOW (tem))
6471 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6473 /* If we have X - Y == 0, we can convert that to X == Y and similarly
6474 for !=. Don't do this for ordered comparisons due to overflow. */
6475 else if ((code == NE_EXPR || code == EQ_EXPR)
6476 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
6477 return fold (build (code, type,
6478 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
6480 /* If we are widening one operand of an integer comparison,
6481 see if the other operand is similarly being widened. Perhaps we
6482 can do the comparison in the narrower type. */
6483 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
6484 && TREE_CODE (arg0) == NOP_EXPR
6485 && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
6486 && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
6487 && (TREE_TYPE (t1) == TREE_TYPE (tem)
6488 || (TREE_CODE (t1) == INTEGER_CST
6489 && int_fits_type_p (t1, TREE_TYPE (tem)))))
6490 return fold (build (code, type, tem, convert (TREE_TYPE (tem), t1)));
6492 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
6493 constant, we can simplify it. */
6494 else if (TREE_CODE (arg1) == INTEGER_CST
6495 && (TREE_CODE (arg0) == MIN_EXPR
6496 || TREE_CODE (arg0) == MAX_EXPR)
6497 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6498 return optimize_minmax_comparison (t);
6500 /* If we are comparing an ABS_EXPR with a constant, we can
6501 convert all the cases into explicit comparisons, but they may
6502 well not be faster than doing the ABS and one comparison.
6503 But ABS (X) <= C is a range comparison, which becomes a subtraction
6504 and a comparison, and is probably faster. */
6505 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6506 && TREE_CODE (arg0) == ABS_EXPR
6507 && ! TREE_SIDE_EFFECTS (arg0)
6508 && (0 != (tem = negate_expr (arg1)))
6509 && TREE_CODE (tem) == INTEGER_CST
6510 && ! TREE_CONSTANT_OVERFLOW (tem))
6511 return fold (build (TRUTH_ANDIF_EXPR, type,
6512 build (GE_EXPR, type, TREE_OPERAND (arg0, 0), tem),
6513 build (LE_EXPR, type,
6514 TREE_OPERAND (arg0, 0), arg1)));
6516 /* If this is an EQ or NE comparison with zero and ARG0 is
6517 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
6518 two operations, but the latter can be done in one less insn
6519 on machines that have only two-operand insns or on which a
6520 constant cannot be the first operand. */
6521 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
6522 && TREE_CODE (arg0) == BIT_AND_EXPR)
6524 if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
6525 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
6526 return
6527 fold (build (code, type,
6528 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6529 build (RSHIFT_EXPR,
6530 TREE_TYPE (TREE_OPERAND (arg0, 0)),
6531 TREE_OPERAND (arg0, 1),
6532 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
6533 convert (TREE_TYPE (arg0),
6534 integer_one_node)),
6535 arg1));
6536 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
6537 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
6538 return
6539 fold (build (code, type,
6540 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6541 build (RSHIFT_EXPR,
6542 TREE_TYPE (TREE_OPERAND (arg0, 1)),
6543 TREE_OPERAND (arg0, 0),
6544 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
6545 convert (TREE_TYPE (arg0),
6546 integer_one_node)),
6547 arg1));
6550 /* If this is an NE or EQ comparison of zero against the result of a
6551 signed MOD operation whose second operand is a power of 2, make
6552 the MOD operation unsigned since it is simpler and equivalent. */
6553 if ((code == NE_EXPR || code == EQ_EXPR)
6554 && integer_zerop (arg1)
6555 && ! TREE_UNSIGNED (TREE_TYPE (arg0))
6556 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
6557 || TREE_CODE (arg0) == CEIL_MOD_EXPR
6558 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
6559 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
6560 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6562 tree newtype = unsigned_type (TREE_TYPE (arg0));
6563 tree newmod = build (TREE_CODE (arg0), newtype,
6564 convert (newtype, TREE_OPERAND (arg0, 0)),
6565 convert (newtype, TREE_OPERAND (arg0, 1)));
6567 return build (code, type, newmod, convert (newtype, arg1));
6570 /* If this is an NE comparison of zero with an AND of one, remove the
6571 comparison since the AND will give the correct value. */
6572 if (code == NE_EXPR && integer_zerop (arg1)
6573 && TREE_CODE (arg0) == BIT_AND_EXPR
6574 && integer_onep (TREE_OPERAND (arg0, 1)))
6575 return convert (type, arg0);
6577 /* If we have (A & C) == C where C is a power of 2, convert this into
6578 (A & C) != 0. Similarly for NE_EXPR. */
6579 if ((code == EQ_EXPR || code == NE_EXPR)
6580 && TREE_CODE (arg0) == BIT_AND_EXPR
6581 && integer_pow2p (TREE_OPERAND (arg0, 1))
6582 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
6583 return build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
6584 arg0, integer_zero_node);
6586 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
6587 and similarly for >= into !=. */
6588 if ((code == LT_EXPR || code == GE_EXPR)
6589 && TREE_UNSIGNED (TREE_TYPE (arg0))
6590 && TREE_CODE (arg1) == LSHIFT_EXPR
6591 && integer_onep (TREE_OPERAND (arg1, 0)))
6592 return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
6593 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
6594 TREE_OPERAND (arg1, 1)),
6595 convert (TREE_TYPE (arg0), integer_zero_node));
6597 else if ((code == LT_EXPR || code == GE_EXPR)
6598 && TREE_UNSIGNED (TREE_TYPE (arg0))
6599 && (TREE_CODE (arg1) == NOP_EXPR
6600 || TREE_CODE (arg1) == CONVERT_EXPR)
6601 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
6602 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
6603 return
6604 build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
6605 convert (TREE_TYPE (arg0),
6606 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
6607 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
6608 convert (TREE_TYPE (arg0), integer_zero_node));
6610 /* Simplify comparison of something with itself. (For IEEE
6611 floating-point, we can only do some of these simplifications.) */
6612 if (operand_equal_p (arg0, arg1, 0))
6614 switch (code)
6616 case EQ_EXPR:
6617 case GE_EXPR:
6618 case LE_EXPR:
6619 if (! FLOAT_TYPE_P (TREE_TYPE (arg0)))
6620 return constant_boolean_node (1, type);
6621 code = EQ_EXPR;
6622 TREE_SET_CODE (t, code);
6623 break;
6625 case NE_EXPR:
6626 /* For NE, we can only do this simplification if integer. */
6627 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
6628 break;
6629 /* ... fall through ... */
6630 case GT_EXPR:
6631 case LT_EXPR:
6632 return constant_boolean_node (0, type);
6633 default:
6634 abort ();
6638 /* An unsigned comparison against 0 can be simplified. */
6639 if (integer_zerop (arg1)
6640 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
6641 || POINTER_TYPE_P (TREE_TYPE (arg1)))
6642 && TREE_UNSIGNED (TREE_TYPE (arg1)))
6644 switch (TREE_CODE (t))
6646 case GT_EXPR:
6647 code = NE_EXPR;
6648 TREE_SET_CODE (t, NE_EXPR);
6649 break;
6650 case LE_EXPR:
6651 code = EQ_EXPR;
6652 TREE_SET_CODE (t, EQ_EXPR);
6653 break;
6654 case GE_EXPR:
6655 return omit_one_operand (type,
6656 convert (type, integer_one_node),
6657 arg0);
6658 case LT_EXPR:
6659 return omit_one_operand (type,
6660 convert (type, integer_zero_node),
6661 arg0);
6662 default:
6663 break;
6667 /* Comparisons with the highest or lowest possible integer of
6668 the specified size will have known values and an unsigned
6669 <= 0x7fffffff can be simplified. */
6671 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
6673 if (TREE_CODE (arg1) == INTEGER_CST
6674 && ! TREE_CONSTANT_OVERFLOW (arg1)
6675 && width <= HOST_BITS_PER_WIDE_INT
6676 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
6677 || POINTER_TYPE_P (TREE_TYPE (arg1))))
6679 if (TREE_INT_CST_HIGH (arg1) == 0
6680 && (TREE_INT_CST_LOW (arg1)
6681 == ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1)
6682 && ! TREE_UNSIGNED (TREE_TYPE (arg1)))
6683 switch (TREE_CODE (t))
6685 case GT_EXPR:
6686 return omit_one_operand (type,
6687 convert (type, integer_zero_node),
6688 arg0);
6689 case GE_EXPR:
6690 TREE_SET_CODE (t, EQ_EXPR);
6691 break;
6693 case LE_EXPR:
6694 return omit_one_operand (type,
6695 convert (type, integer_one_node),
6696 arg0);
6697 case LT_EXPR:
6698 TREE_SET_CODE (t, NE_EXPR);
6699 break;
6701 default:
6702 break;
6705 else if (TREE_INT_CST_HIGH (arg1) == -1
6706 && (- TREE_INT_CST_LOW (arg1)
6707 == ((unsigned HOST_WIDE_INT) 1 << (width - 1)))
6708 && ! TREE_UNSIGNED (TREE_TYPE (arg1)))
6709 switch (TREE_CODE (t))
6711 case LT_EXPR:
6712 return omit_one_operand (type,
6713 convert (type, integer_zero_node),
6714 arg0);
6715 case LE_EXPR:
6716 TREE_SET_CODE (t, EQ_EXPR);
6717 break;
6719 case GE_EXPR:
6720 return omit_one_operand (type,
6721 convert (type, integer_one_node),
6722 arg0);
6723 case GT_EXPR:
6724 TREE_SET_CODE (t, NE_EXPR);
6725 break;
6727 default:
6728 break;
6731 else if (TREE_INT_CST_HIGH (arg1) == 0
6732 && (TREE_INT_CST_LOW (arg1)
6733 == ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1)
6734 && TREE_UNSIGNED (TREE_TYPE (arg1))
6735 /* signed_type does not work on pointer types. */
6736 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
6738 switch (TREE_CODE (t))
6740 case LE_EXPR:
6741 return fold (build (GE_EXPR, type,
6742 convert (signed_type (TREE_TYPE (arg0)),
6743 arg0),
6744 convert (signed_type (TREE_TYPE (arg1)),
6745 integer_zero_node)));
6746 case GT_EXPR:
6747 return fold (build (LT_EXPR, type,
6748 convert (signed_type (TREE_TYPE (arg0)),
6749 arg0),
6750 convert (signed_type (TREE_TYPE (arg1)),
6751 integer_zero_node)));
6753 default:
6754 break;
6759 /* If we are comparing an expression that just has comparisons
6760 of two integer values, arithmetic expressions of those comparisons,
6761 and constants, we can simplify it. There are only three cases
6762 to check: the two values can either be equal, the first can be
6763 greater, or the second can be greater. Fold the expression for
6764 those three values. Since each value must be 0 or 1, we have
6765 eight possibilities, each of which corresponds to the constant 0
6766 or 1 or one of the six possible comparisons.
6768 This handles common cases like (a > b) == 0 but also handles
6769 expressions like ((x > y) - (y > x)) > 0, which supposedly
6770 occur in macroized code. */
6772 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
6774 tree cval1 = 0, cval2 = 0;
6775 int save_p = 0;
6777 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
6778 /* Don't handle degenerate cases here; they should already
6779 have been handled anyway. */
6780 && cval1 != 0 && cval2 != 0
6781 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
6782 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
6783 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
6784 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
6785 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
6786 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
6787 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
6789 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
6790 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
6792 /* We can't just pass T to eval_subst in case cval1 or cval2
6793 was the same as ARG1. */
6795 tree high_result
6796 = fold (build (code, type,
6797 eval_subst (arg0, cval1, maxval, cval2, minval),
6798 arg1));
6799 tree equal_result
6800 = fold (build (code, type,
6801 eval_subst (arg0, cval1, maxval, cval2, maxval),
6802 arg1));
6803 tree low_result
6804 = fold (build (code, type,
6805 eval_subst (arg0, cval1, minval, cval2, maxval),
6806 arg1));
6808 /* All three of these results should be 0 or 1. Confirm they
6809 are. Then use those values to select the proper code
6810 to use. */
6812 if ((integer_zerop (high_result)
6813 || integer_onep (high_result))
6814 && (integer_zerop (equal_result)
6815 || integer_onep (equal_result))
6816 && (integer_zerop (low_result)
6817 || integer_onep (low_result)))
6819 /* Make a 3-bit mask with the high-order bit being the
6820 value for `>', the next for '=', and the low for '<'. */
6821 switch ((integer_onep (high_result) * 4)
6822 + (integer_onep (equal_result) * 2)
6823 + integer_onep (low_result))
6825 case 0:
6826 /* Always false. */
6827 return omit_one_operand (type, integer_zero_node, arg0);
6828 case 1:
6829 code = LT_EXPR;
6830 break;
6831 case 2:
6832 code = EQ_EXPR;
6833 break;
6834 case 3:
6835 code = LE_EXPR;
6836 break;
6837 case 4:
6838 code = GT_EXPR;
6839 break;
6840 case 5:
6841 code = NE_EXPR;
6842 break;
6843 case 6:
6844 code = GE_EXPR;
6845 break;
6846 case 7:
6847 /* Always true. */
6848 return omit_one_operand (type, integer_one_node, arg0);
6851 t = build (code, type, cval1, cval2);
6852 if (save_p)
6853 return save_expr (t);
6854 else
6855 return fold (t);
6860 /* If this is a comparison of a field, we may be able to simplify it. */
6861 if ((TREE_CODE (arg0) == COMPONENT_REF
6862 || TREE_CODE (arg0) == BIT_FIELD_REF)
6863 && (code == EQ_EXPR || code == NE_EXPR)
6864 /* Handle the constant case even without -O
6865 to make sure the warnings are given. */
6866 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
6868 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
6869 return t1 ? t1 : t;
6872 /* If this is a comparison of complex values and either or both sides
6873 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
6874 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
6875 This may prevent needless evaluations. */
6876 if ((code == EQ_EXPR || code == NE_EXPR)
6877 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
6878 && (TREE_CODE (arg0) == COMPLEX_EXPR
6879 || TREE_CODE (arg1) == COMPLEX_EXPR
6880 || TREE_CODE (arg0) == COMPLEX_CST
6881 || TREE_CODE (arg1) == COMPLEX_CST))
6883 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
6884 tree real0, imag0, real1, imag1;
6886 arg0 = save_expr (arg0);
6887 arg1 = save_expr (arg1);
6888 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
6889 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
6890 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
6891 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
6893 return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
6894 : TRUTH_ORIF_EXPR),
6895 type,
6896 fold (build (code, type, real0, real1)),
6897 fold (build (code, type, imag0, imag1))));
6900 /* Optimize comparisons of strlen vs zero to a compare of the
6901 first character of the string vs zero. To wit,
6902 strlen(ptr) == 0 => *ptr == 0
6903 strlen(ptr) != 0 => *ptr != 0
6904 Other cases should reduce to one of these two (or a constant)
6905 due to the return value of strlen being unsigned. */
6906 if ((code == EQ_EXPR || code == NE_EXPR)
6907 && integer_zerop (arg1)
6908 && TREE_CODE (arg0) == CALL_EXPR
6909 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR)
6911 tree fndecl = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
6912 tree arglist;
6914 if (TREE_CODE (fndecl) == FUNCTION_DECL
6915 && DECL_BUILT_IN (fndecl)
6916 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
6917 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
6918 && (arglist = TREE_OPERAND (arg0, 1))
6919 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
6920 && ! TREE_CHAIN (arglist))
6921 return fold (build (code, type,
6922 build1 (INDIRECT_REF, char_type_node,
6923 TREE_VALUE(arglist)),
6924 integer_zero_node));
6927 /* From here on, the only cases we handle are when the result is
6928 known to be a constant.
6930 To compute GT, swap the arguments and do LT.
6931 To compute GE, do LT and invert the result.
6932 To compute LE, swap the arguments, do LT and invert the result.
6933 To compute NE, do EQ and invert the result.
6935 Therefore, the code below must handle only EQ and LT. */
6937 if (code == LE_EXPR || code == GT_EXPR)
6939 tem = arg0, arg0 = arg1, arg1 = tem;
6940 code = swap_tree_comparison (code);
6943 /* Note that it is safe to invert for real values here because we
6944 will check below in the one case that it matters. */
6946 t1 = NULL_TREE;
6947 invert = 0;
6948 if (code == NE_EXPR || code == GE_EXPR)
6950 invert = 1;
6951 code = invert_tree_comparison (code);
6954 /* Compute a result for LT or EQ if args permit;
6955 otherwise return T. */
6956 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
6958 if (code == EQ_EXPR)
6959 t1 = build_int_2 (tree_int_cst_equal (arg0, arg1), 0);
6960 else
6961 t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
6962 ? INT_CST_LT_UNSIGNED (arg0, arg1)
6963 : INT_CST_LT (arg0, arg1)),
6967 #if 0 /* This is no longer useful, but breaks some real code. */
6968 /* Assume a nonexplicit constant cannot equal an explicit one,
6969 since such code would be undefined anyway.
6970 Exception: on sysvr4, using #pragma weak,
6971 a label can come out as 0. */
6972 else if (TREE_CODE (arg1) == INTEGER_CST
6973 && !integer_zerop (arg1)
6974 && TREE_CONSTANT (arg0)
6975 && TREE_CODE (arg0) == ADDR_EXPR
6976 && code == EQ_EXPR)
6977 t1 = build_int_2 (0, 0);
6978 #endif
6979 /* Two real constants can be compared explicitly. */
6980 else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
6982 /* If either operand is a NaN, the result is false with two
6983 exceptions: First, an NE_EXPR is true on NaNs, but that case
6984 is already handled correctly since we will be inverting the
6985 result for NE_EXPR. Second, if we had inverted a LE_EXPR
6986 or a GE_EXPR into a LT_EXPR, we must return true so that it
6987 will be inverted into false. */
6989 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
6990 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
6991 t1 = build_int_2 (invert && code == LT_EXPR, 0);
6993 else if (code == EQ_EXPR)
6994 t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
6995 TREE_REAL_CST (arg1)),
6997 else
6998 t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
6999 TREE_REAL_CST (arg1)),
7003 if (t1 == NULL_TREE)
7004 return t;
7006 if (invert)
7007 TREE_INT_CST_LOW (t1) ^= 1;
7009 TREE_TYPE (t1) = type;
7010 if (TREE_CODE (type) == BOOLEAN_TYPE)
7011 return truthvalue_conversion (t1);
7012 return t1;
7014 case COND_EXPR:
7015 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
7016 so all simple results must be passed through pedantic_non_lvalue. */
7017 if (TREE_CODE (arg0) == INTEGER_CST)
7018 return pedantic_non_lvalue
7019 (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
7020 else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
7021 return pedantic_omit_one_operand (type, arg1, arg0);
7023 /* If the second operand is zero, invert the comparison and swap
7024 the second and third operands. Likewise if the second operand
7025 is constant and the third is not or if the third operand is
7026 equivalent to the first operand of the comparison. */
7028 if (integer_zerop (arg1)
7029 || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
7030 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7031 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7032 TREE_OPERAND (t, 2),
7033 TREE_OPERAND (arg0, 1))))
7035 /* See if this can be inverted. If it can't, possibly because
7036 it was a floating-point inequality comparison, don't do
7037 anything. */
7038 tem = invert_truthvalue (arg0);
7040 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7042 t = build (code, type, tem,
7043 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7044 arg0 = tem;
7045 /* arg1 should be the first argument of the new T. */
7046 arg1 = TREE_OPERAND (t, 1);
7047 STRIP_NOPS (arg1);
7051 /* If we have A op B ? A : C, we may be able to convert this to a
7052 simpler expression, depending on the operation and the values
7053 of B and C. IEEE floating point prevents this though,
7054 because A or B might be -0.0 or a NaN. */
7056 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7057 && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
7058 || ! FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
7059 || flag_unsafe_math_optimizations)
7060 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7061 arg1, TREE_OPERAND (arg0, 1)))
7063 tree arg2 = TREE_OPERAND (t, 2);
7064 enum tree_code comp_code = TREE_CODE (arg0);
7066 STRIP_NOPS (arg2);
7068 /* If we have A op 0 ? A : -A, this is A, -A, abs (A), or abs (-A),
7069 depending on the comparison operation. */
7070 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
7071 ? real_zerop (TREE_OPERAND (arg0, 1))
7072 : integer_zerop (TREE_OPERAND (arg0, 1)))
7073 && TREE_CODE (arg2) == NEGATE_EXPR
7074 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
7075 switch (comp_code)
7077 case EQ_EXPR:
7078 return
7079 pedantic_non_lvalue
7080 (convert (type,
7081 negate_expr
7082 (convert (TREE_TYPE (TREE_OPERAND (t, 1)),
7083 arg1))));
7085 case NE_EXPR:
7086 return pedantic_non_lvalue (convert (type, arg1));
7087 case GE_EXPR:
7088 case GT_EXPR:
7089 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7090 arg1 = convert (signed_type (TREE_TYPE (arg1)), arg1);
7091 return pedantic_non_lvalue
7092 (convert (type, fold (build1 (ABS_EXPR,
7093 TREE_TYPE (arg1), arg1))));
7094 case LE_EXPR:
7095 case LT_EXPR:
7096 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7097 arg1 = convert (signed_type (TREE_TYPE (arg1)), arg1);
7098 return pedantic_non_lvalue
7099 (negate_expr (convert (type,
7100 fold (build1 (ABS_EXPR,
7101 TREE_TYPE (arg1),
7102 arg1)))));
7103 default:
7104 abort ();
7107 /* If this is A != 0 ? A : 0, this is simply A. For ==, it is
7108 always zero. */
7110 if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
7112 if (comp_code == NE_EXPR)
7113 return pedantic_non_lvalue (convert (type, arg1));
7114 else if (comp_code == EQ_EXPR)
7115 return pedantic_non_lvalue (convert (type, integer_zero_node));
7118 /* If this is A op B ? A : B, this is either A, B, min (A, B),
7119 or max (A, B), depending on the operation. */
7121 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
7122 arg2, TREE_OPERAND (arg0, 0)))
7124 tree comp_op0 = TREE_OPERAND (arg0, 0);
7125 tree comp_op1 = TREE_OPERAND (arg0, 1);
7126 tree comp_type = TREE_TYPE (comp_op0);
7128 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
7129 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
7130 comp_type = type;
7132 switch (comp_code)
7134 case EQ_EXPR:
7135 return pedantic_non_lvalue (convert (type, arg2));
7136 case NE_EXPR:
7137 return pedantic_non_lvalue (convert (type, arg1));
7138 case LE_EXPR:
7139 case LT_EXPR:
7140 /* In C++ a ?: expression can be an lvalue, so put the
7141 operand which will be used if they are equal first
7142 so that we can convert this back to the
7143 corresponding COND_EXPR. */
7144 return pedantic_non_lvalue
7145 (convert (type, fold (build (MIN_EXPR, comp_type,
7146 (comp_code == LE_EXPR
7147 ? comp_op0 : comp_op1),
7148 (comp_code == LE_EXPR
7149 ? comp_op1 : comp_op0)))));
7150 break;
7151 case GE_EXPR:
7152 case GT_EXPR:
7153 return pedantic_non_lvalue
7154 (convert (type, fold (build (MAX_EXPR, comp_type,
7155 (comp_code == GE_EXPR
7156 ? comp_op0 : comp_op1),
7157 (comp_code == GE_EXPR
7158 ? comp_op1 : comp_op0)))));
7159 break;
7160 default:
7161 abort ();
7165 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
7166 we might still be able to simplify this. For example,
7167 if C1 is one less or one more than C2, this might have started
7168 out as a MIN or MAX and been transformed by this function.
7169 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
7171 if (INTEGRAL_TYPE_P (type)
7172 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7173 && TREE_CODE (arg2) == INTEGER_CST)
7174 switch (comp_code)
7176 case EQ_EXPR:
7177 /* We can replace A with C1 in this case. */
7178 arg1 = convert (type, TREE_OPERAND (arg0, 1));
7179 t = build (code, type, TREE_OPERAND (t, 0), arg1,
7180 TREE_OPERAND (t, 2));
7181 break;
7183 case LT_EXPR:
7184 /* If C1 is C2 + 1, this is min(A, C2). */
7185 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7186 && operand_equal_p (TREE_OPERAND (arg0, 1),
7187 const_binop (PLUS_EXPR, arg2,
7188 integer_one_node, 0), 1))
7189 return pedantic_non_lvalue
7190 (fold (build (MIN_EXPR, type, arg1, arg2)));
7191 break;
7193 case LE_EXPR:
7194 /* If C1 is C2 - 1, this is min(A, C2). */
7195 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7196 && operand_equal_p (TREE_OPERAND (arg0, 1),
7197 const_binop (MINUS_EXPR, arg2,
7198 integer_one_node, 0), 1))
7199 return pedantic_non_lvalue
7200 (fold (build (MIN_EXPR, type, arg1, arg2)));
7201 break;
7203 case GT_EXPR:
7204 /* If C1 is C2 - 1, this is max(A, C2). */
7205 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7206 && operand_equal_p (TREE_OPERAND (arg0, 1),
7207 const_binop (MINUS_EXPR, arg2,
7208 integer_one_node, 0), 1))
7209 return pedantic_non_lvalue
7210 (fold (build (MAX_EXPR, type, arg1, arg2)));
7211 break;
7213 case GE_EXPR:
7214 /* If C1 is C2 + 1, this is max(A, C2). */
7215 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7216 && operand_equal_p (TREE_OPERAND (arg0, 1),
7217 const_binop (PLUS_EXPR, arg2,
7218 integer_one_node, 0), 1))
7219 return pedantic_non_lvalue
7220 (fold (build (MAX_EXPR, type, arg1, arg2)));
7221 break;
7222 case NE_EXPR:
7223 break;
7224 default:
7225 abort ();
7229 /* If the second operand is simpler than the third, swap them
7230 since that produces better jump optimization results. */
7231 if ((TREE_CONSTANT (arg1) || DECL_P (arg1)
7232 || TREE_CODE (arg1) == SAVE_EXPR)
7233 && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
7234 || DECL_P (TREE_OPERAND (t, 2))
7235 || TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
7237 /* See if this can be inverted. If it can't, possibly because
7238 it was a floating-point inequality comparison, don't do
7239 anything. */
7240 tem = invert_truthvalue (arg0);
7242 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7244 t = build (code, type, tem,
7245 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7246 arg0 = tem;
7247 /* arg1 should be the first argument of the new T. */
7248 arg1 = TREE_OPERAND (t, 1);
7249 STRIP_NOPS (arg1);
7253 /* Convert A ? 1 : 0 to simply A. */
7254 if (integer_onep (TREE_OPERAND (t, 1))
7255 && integer_zerop (TREE_OPERAND (t, 2))
7256 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
7257 call to fold will try to move the conversion inside
7258 a COND, which will recurse. In that case, the COND_EXPR
7259 is probably the best choice, so leave it alone. */
7260 && type == TREE_TYPE (arg0))
7261 return pedantic_non_lvalue (arg0);
7263 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
7264 operation is simply A & 2. */
7266 if (integer_zerop (TREE_OPERAND (t, 2))
7267 && TREE_CODE (arg0) == NE_EXPR
7268 && integer_zerop (TREE_OPERAND (arg0, 1))
7269 && integer_pow2p (arg1)
7270 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
7271 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
7272 arg1, 1))
7273 return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
7275 return t;
7277 case COMPOUND_EXPR:
7278 /* When pedantic, a compound expression can be neither an lvalue
7279 nor an integer constant expression. */
7280 if (TREE_SIDE_EFFECTS (arg0) || pedantic)
7281 return t;
7282 /* Don't let (0, 0) be null pointer constant. */
7283 if (integer_zerop (arg1))
7284 return build1 (NOP_EXPR, type, arg1);
7285 return convert (type, arg1);
7287 case COMPLEX_EXPR:
7288 if (wins)
7289 return build_complex (type, arg0, arg1);
7290 return t;
7292 case REALPART_EXPR:
7293 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7294 return t;
7295 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7296 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7297 TREE_OPERAND (arg0, 1));
7298 else if (TREE_CODE (arg0) == COMPLEX_CST)
7299 return TREE_REALPART (arg0);
7300 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7301 return fold (build (TREE_CODE (arg0), type,
7302 fold (build1 (REALPART_EXPR, type,
7303 TREE_OPERAND (arg0, 0))),
7304 fold (build1 (REALPART_EXPR,
7305 type, TREE_OPERAND (arg0, 1)))));
7306 return t;
7308 case IMAGPART_EXPR:
7309 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7310 return convert (type, integer_zero_node);
7311 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7312 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7313 TREE_OPERAND (arg0, 0));
7314 else if (TREE_CODE (arg0) == COMPLEX_CST)
7315 return TREE_IMAGPART (arg0);
7316 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7317 return fold (build (TREE_CODE (arg0), type,
7318 fold (build1 (IMAGPART_EXPR, type,
7319 TREE_OPERAND (arg0, 0))),
7320 fold (build1 (IMAGPART_EXPR, type,
7321 TREE_OPERAND (arg0, 1)))));
7322 return t;
7324 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
7325 appropriate. */
7326 case CLEANUP_POINT_EXPR:
7327 if (! has_cleanups (arg0))
7328 return TREE_OPERAND (t, 0);
7331 enum tree_code code0 = TREE_CODE (arg0);
7332 int kind0 = TREE_CODE_CLASS (code0);
7333 tree arg00 = TREE_OPERAND (arg0, 0);
7334 tree arg01;
7336 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
7337 return fold (build1 (code0, type,
7338 fold (build1 (CLEANUP_POINT_EXPR,
7339 TREE_TYPE (arg00), arg00))));
7341 if (kind0 == '<' || kind0 == '2'
7342 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
7343 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
7344 || code0 == TRUTH_XOR_EXPR)
7346 arg01 = TREE_OPERAND (arg0, 1);
7348 if (TREE_CONSTANT (arg00)
7349 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
7350 && ! has_cleanups (arg00)))
7351 return fold (build (code0, type, arg00,
7352 fold (build1 (CLEANUP_POINT_EXPR,
7353 TREE_TYPE (arg01), arg01))));
7355 if (TREE_CONSTANT (arg01))
7356 return fold (build (code0, type,
7357 fold (build1 (CLEANUP_POINT_EXPR,
7358 TREE_TYPE (arg00), arg00)),
7359 arg01));
7362 return t;
7365 case CALL_EXPR:
7366 /* Check for a built-in function. */
7367 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
7368 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (expr, 0), 0))
7369 == FUNCTION_DECL)
7370 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
7372 tree tmp = fold_builtin (expr);
7373 if (tmp)
7374 return tmp;
7376 return t;
7378 default:
7379 return t;
7380 } /* switch (code) */
7383 /* Determine if first argument is a multiple of second argument. Return 0 if
7384 it is not, or we cannot easily determined it to be.
7386 An example of the sort of thing we care about (at this point; this routine
7387 could surely be made more general, and expanded to do what the *_DIV_EXPR's
7388 fold cases do now) is discovering that
7390 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7392 is a multiple of
7394 SAVE_EXPR (J * 8)
7396 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
7398 This code also handles discovering that
7400 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7402 is a multiple of 8 so we don't have to worry about dealing with a
7403 possible remainder.
7405 Note that we *look* inside a SAVE_EXPR only to determine how it was
7406 calculated; it is not safe for fold to do much of anything else with the
7407 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
7408 at run time. For example, the latter example above *cannot* be implemented
7409 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
7410 evaluation time of the original SAVE_EXPR is not necessarily the same at
7411 the time the new expression is evaluated. The only optimization of this
7412 sort that would be valid is changing
7414 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
7416 divided by 8 to
7418 SAVE_EXPR (I) * SAVE_EXPR (J)
7420 (where the same SAVE_EXPR (J) is used in the original and the
7421 transformed version). */
7423 static int
7424 multiple_of_p (type, top, bottom)
7425 tree type;
7426 tree top;
7427 tree bottom;
7429 if (operand_equal_p (top, bottom, 0))
7430 return 1;
7432 if (TREE_CODE (type) != INTEGER_TYPE)
7433 return 0;
7435 switch (TREE_CODE (top))
7437 case MULT_EXPR:
7438 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7439 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7441 case PLUS_EXPR:
7442 case MINUS_EXPR:
7443 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7444 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7446 case LSHIFT_EXPR:
7447 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
7449 tree op1, t1;
7451 op1 = TREE_OPERAND (top, 1);
7452 /* const_binop may not detect overflow correctly,
7453 so check for it explicitly here. */
7454 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
7455 > TREE_INT_CST_LOW (op1)
7456 && TREE_INT_CST_HIGH (op1) == 0
7457 && 0 != (t1 = convert (type,
7458 const_binop (LSHIFT_EXPR, size_one_node,
7459 op1, 0)))
7460 && ! TREE_OVERFLOW (t1))
7461 return multiple_of_p (type, t1, bottom);
7463 return 0;
7465 case NOP_EXPR:
7466 /* Can't handle conversions from non-integral or wider integral type. */
7467 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
7468 || (TYPE_PRECISION (type)
7469 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
7470 return 0;
7472 /* .. fall through ... */
7474 case SAVE_EXPR:
7475 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
7477 case INTEGER_CST:
7478 if (TREE_CODE (bottom) != INTEGER_CST
7479 || (TREE_UNSIGNED (type)
7480 && (tree_int_cst_sgn (top) < 0
7481 || tree_int_cst_sgn (bottom) < 0)))
7482 return 0;
7483 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
7484 top, bottom, 0));
7486 default:
7487 return 0;
7491 /* Return true if `t' is known to be non-negative. */
7494 tree_expr_nonnegative_p (t)
7495 tree t;
7497 switch (TREE_CODE (t))
7499 case ABS_EXPR:
7500 case FFS_EXPR:
7501 return 1;
7502 case INTEGER_CST:
7503 return tree_int_cst_sgn (t) >= 0;
7504 case TRUNC_DIV_EXPR:
7505 case CEIL_DIV_EXPR:
7506 case FLOOR_DIV_EXPR:
7507 case ROUND_DIV_EXPR:
7508 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7509 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7510 case TRUNC_MOD_EXPR:
7511 case CEIL_MOD_EXPR:
7512 case FLOOR_MOD_EXPR:
7513 case ROUND_MOD_EXPR:
7514 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7515 case COND_EXPR:
7516 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
7517 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
7518 case COMPOUND_EXPR:
7519 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7520 case MIN_EXPR:
7521 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7522 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7523 case MAX_EXPR:
7524 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7525 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7526 case MODIFY_EXPR:
7527 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7528 case BIND_EXPR:
7529 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7530 case SAVE_EXPR:
7531 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7532 case NON_LVALUE_EXPR:
7533 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7534 case RTL_EXPR:
7535 return rtl_expr_nonnegative_p (RTL_EXPR_RTL (t));
7537 default:
7538 if (truth_value_p (TREE_CODE (t)))
7539 /* Truth values evaluate to 0 or 1, which is nonnegative. */
7540 return 1;
7541 else
7542 /* We don't know sign of `t', so be conservative and return false. */
7543 return 0;
7547 /* Return true if `r' is known to be non-negative.
7548 Only handles constants at the moment. */
7551 rtl_expr_nonnegative_p (r)
7552 rtx r;
7554 switch (GET_CODE (r))
7556 case CONST_INT:
7557 return INTVAL (r) >= 0;
7559 case CONST_DOUBLE:
7560 if (GET_MODE (r) == VOIDmode)
7561 return CONST_DOUBLE_HIGH (r) >= 0;
7562 return 0;
7564 case SYMBOL_REF:
7565 case LABEL_REF:
7566 /* These are always nonnegative. */
7567 return 1;
7569 default:
7570 return 0;