* g++.dg/other/unused1.C: Skip on AIX.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blob58ded23399e16f9fe3b1cbc01b0221eff4a2a099
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2012
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "dumpfile.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30 #include "basic-block.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-pass.h"
34 #include "cfgloop.h"
35 #include "diagnostic-core.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-vectorizer.h"
38 #include "langhooks.h"
40 /*************************************************************************
41 Simple Loop Peeling Utilities
43 Utilities to support loop peeling for vectorization purposes.
44 *************************************************************************/
47 /* Renames the use *OP_P. */
49 static void
50 rename_use_op (use_operand_p op_p)
52 tree new_name;
54 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
55 return;
57 new_name = get_current_def (USE_FROM_PTR (op_p));
59 /* Something defined outside of the loop. */
60 if (!new_name)
61 return;
63 /* An ordinary ssa name defined in the loop. */
65 SET_USE (op_p, new_name);
69 /* Renames the variables in basic block BB. */
71 void
72 rename_variables_in_bb (basic_block bb)
74 gimple_stmt_iterator gsi;
75 gimple stmt;
76 use_operand_p use_p;
77 ssa_op_iter iter;
78 edge e;
79 edge_iterator ei;
80 struct loop *loop = bb->loop_father;
82 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
84 stmt = gsi_stmt (gsi);
85 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
86 rename_use_op (use_p);
89 FOR_EACH_EDGE (e, ei, bb->succs)
91 if (!flow_bb_inside_loop_p (loop, e->dest))
92 continue;
93 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
94 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
99 /* Renames variables in new generated LOOP. */
101 void
102 rename_variables_in_loop (struct loop *loop)
104 unsigned i;
105 basic_block *bbs;
107 bbs = get_loop_body (loop);
109 for (i = 0; i < loop->num_nodes; i++)
110 rename_variables_in_bb (bbs[i]);
112 free (bbs);
115 typedef struct
117 tree from, to;
118 basic_block bb;
119 } adjust_info;
121 DEF_VEC_O(adjust_info);
122 DEF_VEC_ALLOC_O_STACK(adjust_info);
123 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
125 /* A stack of values to be adjusted in debug stmts. We have to
126 process them LIFO, so that the closest substitution applies. If we
127 processed them FIFO, without the stack, we might substitute uses
128 with a PHI DEF that would soon become non-dominant, and when we got
129 to the suitable one, it wouldn't have anything to substitute any
130 more. */
131 static VEC(adjust_info, stack) *adjust_vec;
133 /* Adjust any debug stmts that referenced AI->from values to use the
134 loop-closed AI->to, if the references are dominated by AI->bb and
135 not by the definition of AI->from. */
137 static void
138 adjust_debug_stmts_now (adjust_info *ai)
140 basic_block bbphi = ai->bb;
141 tree orig_def = ai->from;
142 tree new_def = ai->to;
143 imm_use_iterator imm_iter;
144 gimple stmt;
145 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
147 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
149 /* Adjust any debug stmts that held onto non-loop-closed
150 references. */
151 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
153 use_operand_p use_p;
154 basic_block bbuse;
156 if (!is_gimple_debug (stmt))
157 continue;
159 gcc_assert (gimple_debug_bind_p (stmt));
161 bbuse = gimple_bb (stmt);
163 if ((bbuse == bbphi
164 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
165 && !(bbuse == bbdef
166 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
168 if (new_def)
169 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
170 SET_USE (use_p, new_def);
171 else
173 gimple_debug_bind_reset_value (stmt);
174 update_stmt (stmt);
180 /* Adjust debug stmts as scheduled before. */
182 static void
183 adjust_vec_debug_stmts (void)
185 if (!MAY_HAVE_DEBUG_STMTS)
186 return;
188 gcc_assert (adjust_vec);
190 while (!VEC_empty (adjust_info, adjust_vec))
192 adjust_debug_stmts_now (&VEC_last (adjust_info, adjust_vec));
193 VEC_pop (adjust_info, adjust_vec);
196 VEC_free (adjust_info, stack, adjust_vec);
199 /* Adjust any debug stmts that referenced FROM values to use the
200 loop-closed TO, if the references are dominated by BB and not by
201 the definition of FROM. If adjust_vec is non-NULL, adjustments
202 will be postponed until adjust_vec_debug_stmts is called. */
204 static void
205 adjust_debug_stmts (tree from, tree to, basic_block bb)
207 adjust_info ai;
209 if (MAY_HAVE_DEBUG_STMTS
210 && TREE_CODE (from) == SSA_NAME
211 && ! virtual_operand_p (from))
213 ai.from = from;
214 ai.to = to;
215 ai.bb = bb;
217 if (adjust_vec)
218 VEC_safe_push (adjust_info, stack, adjust_vec, ai);
219 else
220 adjust_debug_stmts_now (&ai);
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
227 transformations. */
229 static void
230 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
232 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
234 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
236 if (MAY_HAVE_DEBUG_STMTS)
237 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 gimple_bb (update_phi));
242 /* Update the PHI nodes of NEW_LOOP.
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
249 static void
250 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 struct loop *new_loop, bool after)
253 tree new_ssa_name;
254 gimple phi_new, phi_orig;
255 tree def;
256 edge orig_loop_latch = loop_latch_edge (orig_loop);
257 edge orig_entry_e = loop_preheader_edge (orig_loop);
258 edge new_loop_exit_e = single_exit (new_loop);
259 edge new_loop_entry_e = loop_preheader_edge (new_loop);
260 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261 gimple_stmt_iterator gsi_new, gsi_orig;
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
272 step 3. Update the phis in the successor block of NEW_LOOP.
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
282 The successor block of NEW_LOOP is the original exit block of
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
292 for (gsi_new = gsi_start_phis (new_loop->header),
293 gsi_orig = gsi_start_phis (orig_loop->header);
294 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295 gsi_next (&gsi_new), gsi_next (&gsi_orig))
297 source_location locus;
298 phi_new = gsi_stmt (gsi_new);
299 phi_orig = gsi_stmt (gsi_orig);
301 /* step 1. */
302 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
303 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
306 /* step 2. */
307 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
308 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
309 if (TREE_CODE (def) != SSA_NAME)
310 continue;
312 new_ssa_name = get_current_def (def);
313 if (!new_ssa_name)
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name = PHI_RESULT (phi_new);
320 /* An ordinary ssa name defined in the loop. */
321 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
327 /* step 3 (case 1). */
328 if (!after)
330 gcc_assert (new_loop_exit_e == orig_entry_e);
331 adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
337 /* Update PHI nodes for a guard of the LOOP.
339 Input:
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
351 ===> The CFG before the guard-code was added:
352 LOOP_header_bb:
353 loop_body
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
356 update_bb:
358 ==> The CFG after the guard-code was added:
359 guard_bb:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
362 LOOP_header_bb:
363 loop_body
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
366 new_merge_bb:
367 goto update_bb
368 update_bb:
370 ==> The CFG after this function:
371 guard_bb:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 LOOP_header_bb:
375 loop_body
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
378 new_exit_bb:
379 new_merge_bb:
380 goto update_bb
381 update_bb:
383 This function:
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
392 There are two flavors to this function:
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
404 I.E., the overall structure is:
406 loop1_preheader_bb:
407 guard1 (goto loop1/merge1_bb)
408 loop1
409 loop1_exit_bb:
410 guard2 (goto merge1_bb/merge2_bb)
411 merge1_bb
412 loop2
413 loop2_exit_bb
414 merge2_bb
415 next_bb
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
424 loop1_exit_bb.
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
442 orig_loop
443 guard_bb (goto LOOP/new_merge)
444 new_loop <-- LOOP
445 new_exit
446 new_merge
447 next_bb
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450 have:
452 new_loop
453 guard_bb (goto LOOP/new_merge)
454 orig_loop <-- LOOP
455 new_exit
456 new_merge
457 next_bb
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
464 /* Function slpeel_update_phi_nodes_for_guard1
466 Input:
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
469 information.
471 In the context of the overall structure, we have:
473 loop1_preheader_bb:
474 guard1 (goto loop1/merge1_bb)
475 LOOP-> loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
490 static void
491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492 bool is_new_loop, basic_block *new_exit_bb)
494 gimple orig_phi, new_phi;
495 gimple update_phi, update_phi2;
496 tree guard_arg, loop_arg;
497 basic_block new_merge_bb = guard_edge->dest;
498 edge e = EDGE_SUCC (new_merge_bb, 0);
499 basic_block update_bb = e->dest;
500 basic_block orig_bb = loop->header;
501 edge new_exit_e;
502 tree current_new_name;
503 gimple_stmt_iterator gsi_orig, gsi_update;
505 /* Create new bb between loop and new_merge_bb. */
506 *new_exit_bb = split_edge (single_exit (loop));
508 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
510 for (gsi_orig = gsi_start_phis (orig_bb),
511 gsi_update = gsi_start_phis (update_bb);
512 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
513 gsi_next (&gsi_orig), gsi_next (&gsi_update))
515 source_location loop_locus, guard_locus;
516 tree new_res;
517 orig_phi = gsi_stmt (gsi_orig);
518 update_phi = gsi_stmt (gsi_update);
520 /** 1. Handle new-merge-point phis **/
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
524 new_phi = create_phi_node (new_res, new_merge_bb);
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
529 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 EDGE_SUCC (loop->latch,
531 0));
532 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
533 guard_locus
534 = gimple_phi_arg_location_from_edge (orig_phi,
535 loop_preheader_edge (loop));
537 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
543 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
544 update_phi2 = new_phi;
547 /** 2. Handle loop-closed-ssa-form phis **/
549 if (virtual_operand_p (PHI_RESULT (orig_phi)))
550 continue;
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
554 new_phi = create_phi_node (new_res, *new_exit_bb);
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
557 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
561 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 PHI_RESULT (new_phi));
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
574 if (is_new_loop)
575 current_new_name = loop_arg;
576 else
578 current_new_name = get_current_def (loop_arg);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name)
584 continue;
586 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
588 set_current_def (current_new_name, PHI_RESULT (new_phi));
593 /* Function slpeel_update_phi_nodes_for_guard2
595 Input:
596 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
598 In the context of the overall structure, we have:
600 loop1_preheader_bb:
601 guard1 (goto loop1/merge1_bb)
602 loop1
603 loop1_exit_bb:
604 guard2 (goto merge1_bb/merge2_bb)
605 merge1_bb
606 LOOP-> loop2
607 loop2_exit_bb
608 merge2_bb
609 next_bb
611 For each name used out side the loop (i.e - for each name that has an exit
612 phi in next_bb) we create a new phi in:
613 1. merge2_bb (to account for the edge from guard_bb)
614 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
615 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
616 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
619 static void
620 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
621 bool is_new_loop, basic_block *new_exit_bb)
623 gimple orig_phi, new_phi;
624 gimple update_phi, update_phi2;
625 tree guard_arg, loop_arg;
626 basic_block new_merge_bb = guard_edge->dest;
627 edge e = EDGE_SUCC (new_merge_bb, 0);
628 basic_block update_bb = e->dest;
629 edge new_exit_e;
630 tree orig_def, orig_def_new_name;
631 tree new_name, new_name2;
632 tree arg;
633 gimple_stmt_iterator gsi;
635 /* Create new bb between loop and new_merge_bb. */
636 *new_exit_bb = split_edge (single_exit (loop));
638 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
640 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
642 tree new_res;
643 update_phi = gsi_stmt (gsi);
644 orig_phi = update_phi;
645 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646 /* This loop-closed-phi actually doesn't represent a use
647 out of the loop - the phi arg is a constant. */
648 if (TREE_CODE (orig_def) != SSA_NAME)
649 continue;
650 orig_def_new_name = get_current_def (orig_def);
651 arg = NULL_TREE;
653 /** 1. Handle new-merge-point phis **/
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
657 new_phi = create_phi_node (new_res, new_merge_bb);
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
661 new_name = orig_def;
662 new_name2 = NULL_TREE;
663 if (orig_def_new_name)
665 new_name = orig_def_new_name;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2 = get_current_def (new_name);
673 if (is_new_loop)
675 guard_arg = orig_def;
676 loop_arg = new_name;
678 else
680 guard_arg = new_name;
681 loop_arg = orig_def;
683 if (new_name2)
684 guard_arg = new_name2;
686 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
691 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
692 update_phi2 = new_phi;
695 /** 2. Handle loop-closed-ssa-form phis **/
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
699 new_phi = create_phi_node (new_res, *new_exit_bb);
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
702 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
706 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 PHI_RESULT (new_phi));
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
718 loop-header-phi).
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg == new_name2)
729 continue;
730 arg = guard_arg;
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
734 new_phi = create_phi_node (new_res, guard_edge->src);
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
738 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
739 UNKNOWN_LOCATION);
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743 == guard_arg);
744 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 PHI_RESULT (new_phi));
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
755 void
756 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
758 tree indx_before_incr, indx_after_incr;
759 gimple cond_stmt;
760 gimple orig_cond;
761 edge exit_edge = single_exit (loop);
762 gimple_stmt_iterator loop_cond_gsi;
763 gimple_stmt_iterator incr_gsi;
764 bool insert_after;
765 tree init = build_int_cst (TREE_TYPE (niters), 0);
766 tree step = build_int_cst (TREE_TYPE (niters), 1);
767 LOC loop_loc;
768 enum tree_code code;
770 orig_cond = get_loop_exit_condition (loop);
771 gcc_assert (orig_cond);
772 loop_cond_gsi = gsi_for_stmt (orig_cond);
774 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775 create_iv (init, step, NULL_TREE, loop,
776 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
778 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 true, NULL_TREE, true,
780 GSI_SAME_STMT);
781 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 true, GSI_SAME_STMT);
784 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 NULL_TREE);
788 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi, true);
792 free_stmt_vec_info (orig_cond);
794 loop_loc = find_loop_location (loop);
795 if (dump_enabled_p ())
797 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOC)
798 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOC_FILE (loop_loc),
799 LOC_LINE (loop_loc));
800 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
802 loop->nb_iterations = niters;
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
809 struct loop *
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
816 basic_block exit_dest;
817 gimple phi;
818 tree phi_arg;
819 edge exit, new_exit;
820 gimple_stmt_iterator gsi;
822 at_exit = (e == single_exit (loop));
823 if (!at_exit && e != loop_preheader_edge (loop))
824 return NULL;
826 bbs = get_loop_body (loop);
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs, loop->num_nodes))
831 free (bbs);
832 return NULL;
835 /* Generate new loop structure. */
836 new_loop = duplicate_loop (loop, loop_outer (loop));
837 if (!new_loop)
839 free (bbs);
840 return NULL;
843 exit_dest = single_exit (loop)->dest;
844 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 exit_dest) == loop->header ?
846 true : false);
848 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
850 exit = single_exit (loop);
851 copy_bbs (bbs, loop->num_nodes, new_bbs,
852 &exit, 1, &new_exit, NULL,
853 e->src);
855 /* Duplicating phi args at exit bbs as coming
856 also from exit of duplicated loop. */
857 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
859 phi = gsi_stmt (gsi);
860 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861 if (phi_arg)
863 edge new_loop_exit_edge;
864 source_location locus;
866 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
867 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 else
870 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
872 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
876 if (at_exit) /* Add the loop copy at exit. */
878 redirect_edge_and_branch_force (e, new_loop->header);
879 PENDING_STMT (e) = NULL;
880 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881 if (was_imm_dom)
882 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
884 else /* Add the copy at entry. */
886 edge new_exit_e;
887 edge entry_e = loop_preheader_edge (loop);
888 basic_block preheader = entry_e->src;
890 if (!flow_bb_inside_loop_p (new_loop,
891 EDGE_SUCC (new_loop->header, 0)->dest))
892 new_exit_e = EDGE_SUCC (new_loop->header, 0);
893 else
894 new_exit_e = EDGE_SUCC (new_loop->header, 1);
896 redirect_edge_and_branch_force (new_exit_e, loop->header);
897 PENDING_STMT (new_exit_e) = NULL;
898 set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 new_exit_e->src);
901 /* We have to add phi args to the loop->header here as coming
902 from new_exit_e edge. */
903 for (gsi = gsi_start_phis (loop->header);
904 !gsi_end_p (gsi);
905 gsi_next (&gsi))
907 phi = gsi_stmt (gsi);
908 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 if (phi_arg)
910 add_phi_arg (phi, phi_arg, new_exit_e,
911 gimple_phi_arg_location_from_edge (phi, entry_e));
914 redirect_edge_and_branch_force (entry_e, new_loop->header);
915 PENDING_STMT (entry_e) = NULL;
916 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
919 free (new_bbs);
920 free (bbs);
922 return new_loop;
926 /* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928 Assumes that this is the single exit of the guarded loop.
929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
931 static edge
932 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 gimple_seq cond_expr_stmt_list,
934 basic_block exit_bb, basic_block dom_bb,
935 int probability)
937 gimple_stmt_iterator gsi;
938 edge new_e, enter_e;
939 gimple cond_stmt;
940 gimple_seq gimplify_stmt_list = NULL;
942 enter_e = EDGE_SUCC (guard_bb, 0);
943 enter_e->flags &= ~EDGE_FALLTHRU;
944 enter_e->flags |= EDGE_FALSE_VALUE;
945 gsi = gsi_last_bb (guard_bb);
947 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
948 NULL_TREE);
949 if (gimplify_stmt_list)
950 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
951 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
952 if (cond_expr_stmt_list)
953 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
955 gsi = gsi_last_bb (guard_bb);
956 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
961 new_e->count = guard_bb->count;
962 new_e->probability = probability;
963 new_e->count = apply_probability (enter_e->count, probability);
964 enter_e->count -= new_e->count;
965 enter_e->probability = inverse_probability (probability);
966 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
967 return new_e;
971 /* This function verifies that the following restrictions apply to LOOP:
972 (1) it is innermost
973 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
974 (3) it is single entry, single exit
975 (4) its exit condition is the last stmt in the header
976 (5) E is the entry/exit edge of LOOP.
979 bool
980 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
982 edge exit_e = single_exit (loop);
983 edge entry_e = loop_preheader_edge (loop);
984 gimple orig_cond = get_loop_exit_condition (loop);
985 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
987 if (need_ssa_update_p (cfun))
988 return false;
990 if (loop->inner
991 /* All loops have an outer scope; the only case loop->outer is NULL is for
992 the function itself. */
993 || !loop_outer (loop)
994 || loop->num_nodes != 2
995 || !empty_block_p (loop->latch)
996 || !single_exit (loop)
997 /* Verify that new loop exit condition can be trivially modified. */
998 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
999 || (e != exit_e && e != entry_e))
1000 return false;
1002 return true;
1005 #ifdef ENABLE_CHECKING
1006 static void
1007 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1008 struct loop *second_loop)
1010 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1011 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1012 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1014 /* A guard that controls whether the second_loop is to be executed or skipped
1015 is placed in first_loop->exit. first_loop->exit therefore has two
1016 successors - one is the preheader of second_loop, and the other is a bb
1017 after second_loop.
1019 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1021 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1022 of second_loop. */
1024 /* The preheader of new_loop is expected to have two predecessors:
1025 first_loop->exit and the block that precedes first_loop. */
1027 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1028 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1029 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1030 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1031 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1033 /* Verify that the other successor of first_loop->exit is after the
1034 second_loop. */
1035 /* TODO */
1037 #endif
1039 /* If the run time cost model check determines that vectorization is
1040 not profitable and hence scalar loop should be generated then set
1041 FIRST_NITERS to prologue peeled iterations. This will allow all the
1042 iterations to be executed in the prologue peeled scalar loop. */
1044 static void
1045 set_prologue_iterations (basic_block bb_before_first_loop,
1046 tree *first_niters,
1047 struct loop *loop,
1048 unsigned int th,
1049 int probability)
1051 edge e;
1052 basic_block cond_bb, then_bb;
1053 tree var, prologue_after_cost_adjust_name;
1054 gimple_stmt_iterator gsi;
1055 gimple newphi;
1056 edge e_true, e_false, e_fallthru;
1057 gimple cond_stmt;
1058 gimple_seq stmts = NULL;
1059 tree cost_pre_condition = NULL_TREE;
1060 tree scalar_loop_iters =
1061 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1063 e = single_pred_edge (bb_before_first_loop);
1064 cond_bb = split_edge(e);
1066 e = single_pred_edge (bb_before_first_loop);
1067 then_bb = split_edge(e);
1068 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1070 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1071 EDGE_FALSE_VALUE);
1072 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1074 e_true = EDGE_PRED (then_bb, 0);
1075 e_true->flags &= ~EDGE_FALLTHRU;
1076 e_true->flags |= EDGE_TRUE_VALUE;
1078 e_true->probability = probability;
1079 e_false->probability = inverse_probability (probability);
1080 e_true->count = apply_probability (cond_bb->count, probability);
1081 e_false->count = cond_bb->count - e_true->count;
1082 then_bb->frequency = EDGE_FREQUENCY (e_true);
1083 then_bb->count = e_true->count;
1085 e_fallthru = EDGE_SUCC (then_bb, 0);
1086 e_fallthru->count = then_bb->count;
1088 gsi = gsi_last_bb (cond_bb);
1089 cost_pre_condition =
1090 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1091 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1092 cost_pre_condition =
1093 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1094 NULL_TREE, false, GSI_CONTINUE_LINKING);
1095 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1096 NULL_TREE, NULL_TREE);
1097 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1099 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1100 "prologue_after_cost_adjust");
1101 prologue_after_cost_adjust_name =
1102 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1104 gsi = gsi_last_bb (then_bb);
1105 if (stmts)
1106 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1108 newphi = create_phi_node (var, bb_before_first_loop);
1109 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1110 UNKNOWN_LOCATION);
1111 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1113 *first_niters = PHI_RESULT (newphi);
1116 /* Function slpeel_tree_peel_loop_to_edge.
1118 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1119 that is placed on the entry (exit) edge E of LOOP. After this transformation
1120 we have two loops one after the other - first-loop iterates FIRST_NITERS
1121 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1122 If the cost model indicates that it is profitable to emit a scalar
1123 loop instead of the vector one, then the prolog (epilog) loop will iterate
1124 for the entire unchanged scalar iterations of the loop.
1126 Input:
1127 - LOOP: the loop to be peeled.
1128 - E: the exit or entry edge of LOOP.
1129 If it is the entry edge, we peel the first iterations of LOOP. In this
1130 case first-loop is LOOP, and second-loop is the newly created loop.
1131 If it is the exit edge, we peel the last iterations of LOOP. In this
1132 case, first-loop is the newly created loop, and second-loop is LOOP.
1133 - NITERS: the number of iterations that LOOP iterates.
1134 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1135 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1136 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1137 is false, the caller of this function may want to take care of this
1138 (this can be useful if we don't want new stmts added to first-loop).
1139 - TH: cost model profitability threshold of iterations for vectorization.
1140 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1141 during versioning and hence needs to occur during
1142 prologue generation or whether cost model check
1143 has not occurred during prologue generation and hence
1144 needs to occur during epilogue generation.
1145 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1146 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1149 Output:
1150 The function returns a pointer to the new loop-copy, or NULL if it failed
1151 to perform the transformation.
1153 The function generates two if-then-else guards: one before the first loop,
1154 and the other before the second loop:
1155 The first guard is:
1156 if (FIRST_NITERS == 0) then skip the first loop,
1157 and go directly to the second loop.
1158 The second guard is:
1159 if (FIRST_NITERS == NITERS) then skip the second loop.
1161 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1162 then the generated condition is combined with COND_EXPR and the
1163 statements in COND_EXPR_STMT_LIST are emitted together with it.
1165 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1166 FORNOW the resulting code will not be in loop-closed-ssa form.
1169 static struct loop*
1170 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1171 edge e, tree *first_niters,
1172 tree niters, bool update_first_loop_count,
1173 unsigned int th, bool check_profitability,
1174 tree cond_expr, gimple_seq cond_expr_stmt_list,
1175 int bound1, int bound2)
1177 struct loop *new_loop = NULL, *first_loop, *second_loop;
1178 edge skip_e;
1179 tree pre_condition = NULL_TREE;
1180 basic_block bb_before_second_loop, bb_after_second_loop;
1181 basic_block bb_before_first_loop;
1182 basic_block bb_between_loops;
1183 basic_block new_exit_bb;
1184 gimple_stmt_iterator gsi;
1185 edge exit_e = single_exit (loop);
1186 LOC loop_loc;
1187 tree cost_pre_condition = NULL_TREE;
1188 /* There are many aspects to how likely the first loop is going to be executed.
1189 Without histogram we can't really do good job. Simply set it to
1190 2/3, so the first loop is not reordered to the end of function and
1191 the hot path through stays short. */
1192 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1193 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1194 int probability_of_second_loop;
1196 if (!slpeel_can_duplicate_loop_p (loop, e))
1197 return NULL;
1199 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1200 in the exit bb and rename all the uses after the loop. This simplifies
1201 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1202 (but normally loop closed SSA form doesn't require virtual PHIs to be
1203 in the same form). Doing this early simplifies the checking what
1204 uses should be renamed. */
1205 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1206 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1208 gimple phi = gsi_stmt (gsi);
1209 for (gsi = gsi_start_phis (exit_e->dest);
1210 !gsi_end_p (gsi); gsi_next (&gsi))
1211 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1212 break;
1213 if (gsi_end_p (gsi))
1215 tree new_vop = copy_ssa_name (PHI_RESULT (phi), NULL);
1216 gimple new_phi = create_phi_node (new_vop, exit_e->dest);
1217 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1218 imm_use_iterator imm_iter;
1219 gimple stmt;
1220 use_operand_p use_p;
1222 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1223 gimple_phi_set_result (new_phi, new_vop);
1224 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1225 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1226 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1227 SET_USE (use_p, new_vop);
1229 break;
1232 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1233 Resulting CFG would be:
1235 first_loop:
1236 do {
1237 } while ...
1239 second_loop:
1240 do {
1241 } while ...
1243 orig_exit_bb:
1246 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1248 loop_loc = find_loop_location (loop);
1249 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1250 "tree_duplicate_loop_to_edge_cfg failed.\n");
1251 return NULL;
1254 if (MAY_HAVE_DEBUG_STMTS)
1256 gcc_assert (!adjust_vec);
1257 adjust_vec = VEC_alloc (adjust_info, stack, 32);
1260 if (e == exit_e)
1262 /* NEW_LOOP was placed after LOOP. */
1263 first_loop = loop;
1264 second_loop = new_loop;
1266 else
1268 /* NEW_LOOP was placed before LOOP. */
1269 first_loop = new_loop;
1270 second_loop = loop;
1273 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1274 rename_variables_in_loop (new_loop);
1277 /* 2. Add the guard code in one of the following ways:
1279 2.a Add the guard that controls whether the first loop is executed.
1280 This occurs when this function is invoked for prologue or epilogue
1281 generation and when the cost model check can be done at compile time.
1283 Resulting CFG would be:
1285 bb_before_first_loop:
1286 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1287 GOTO first-loop
1289 first_loop:
1290 do {
1291 } while ...
1293 bb_before_second_loop:
1295 second_loop:
1296 do {
1297 } while ...
1299 orig_exit_bb:
1301 2.b Add the cost model check that allows the prologue
1302 to iterate for the entire unchanged scalar
1303 iterations of the loop in the event that the cost
1304 model indicates that the scalar loop is more
1305 profitable than the vector one. This occurs when
1306 this function is invoked for prologue generation
1307 and the cost model check needs to be done at run
1308 time.
1310 Resulting CFG after prologue peeling would be:
1312 if (scalar_loop_iterations <= th)
1313 FIRST_NITERS = scalar_loop_iterations
1315 bb_before_first_loop:
1316 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1317 GOTO first-loop
1319 first_loop:
1320 do {
1321 } while ...
1323 bb_before_second_loop:
1325 second_loop:
1326 do {
1327 } while ...
1329 orig_exit_bb:
1331 2.c Add the cost model check that allows the epilogue
1332 to iterate for the entire unchanged scalar
1333 iterations of the loop in the event that the cost
1334 model indicates that the scalar loop is more
1335 profitable than the vector one. This occurs when
1336 this function is invoked for epilogue generation
1337 and the cost model check needs to be done at run
1338 time. This check is combined with any pre-existing
1339 check in COND_EXPR to avoid versioning.
1341 Resulting CFG after prologue peeling would be:
1343 bb_before_first_loop:
1344 if ((scalar_loop_iterations <= th)
1346 FIRST_NITERS == 0) GOTO bb_before_second_loop
1347 GOTO first-loop
1349 first_loop:
1350 do {
1351 } while ...
1353 bb_before_second_loop:
1355 second_loop:
1356 do {
1357 } while ...
1359 orig_exit_bb:
1362 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1363 bb_before_second_loop = split_edge (single_exit (first_loop));
1365 probability_of_second_loop = (inverse_probability (first_guard_probability)
1366 + combine_probabilities (second_guard_probability,
1367 first_guard_probability));
1368 /* Theoretically preheader edge of first loop and exit edge should have
1369 same frequencies. Loop exit probablities are however easy to get wrong.
1370 It is safer to copy value from original loop entry. */
1371 bb_before_second_loop->frequency
1372 = apply_probability (bb_before_first_loop->frequency,
1373 probability_of_second_loop);
1374 bb_before_second_loop->count
1375 = apply_probability (bb_before_first_loop->count,
1376 probability_of_second_loop);
1377 single_succ_edge (bb_before_second_loop)->count
1378 = bb_before_second_loop->count;
1380 /* Epilogue peeling. */
1381 if (!update_first_loop_count)
1383 pre_condition =
1384 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1385 build_int_cst (TREE_TYPE (*first_niters), 0));
1386 if (check_profitability)
1388 tree scalar_loop_iters
1389 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1390 (loop_vec_info_for_loop (loop)));
1391 cost_pre_condition =
1392 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1393 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1395 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1396 cost_pre_condition, pre_condition);
1398 if (cond_expr)
1400 pre_condition =
1401 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1402 pre_condition,
1403 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1404 cond_expr));
1408 /* Prologue peeling. */
1409 else
1411 if (check_profitability)
1412 set_prologue_iterations (bb_before_first_loop, first_niters,
1413 loop, th, first_guard_probability);
1415 pre_condition =
1416 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1417 build_int_cst (TREE_TYPE (*first_niters), 0));
1420 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1421 cond_expr_stmt_list,
1422 bb_before_second_loop, bb_before_first_loop,
1423 inverse_probability (first_guard_probability));
1424 scale_loop_profile (first_loop, first_guard_probability,
1425 check_profitability && (int)th > bound1 ? th : bound1);
1426 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1427 first_loop == new_loop,
1428 &new_exit_bb);
1431 /* 3. Add the guard that controls whether the second loop is executed.
1432 Resulting CFG would be:
1434 bb_before_first_loop:
1435 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1436 GOTO first-loop
1438 first_loop:
1439 do {
1440 } while ...
1442 bb_between_loops:
1443 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1444 GOTO bb_before_second_loop
1446 bb_before_second_loop:
1448 second_loop:
1449 do {
1450 } while ...
1452 bb_after_second_loop:
1454 orig_exit_bb:
1457 bb_between_loops = new_exit_bb;
1458 bb_after_second_loop = split_edge (single_exit (second_loop));
1460 pre_condition =
1461 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1462 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1463 bb_after_second_loop, bb_before_first_loop,
1464 inverse_probability (second_guard_probability));
1465 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1466 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1467 second_loop == new_loop, &new_exit_bb);
1469 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1471 if (update_first_loop_count)
1472 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1474 delete_update_ssa ();
1476 adjust_vec_debug_stmts ();
1478 return new_loop;
1481 /* Function vect_get_loop_location.
1483 Extract the location of the loop in the source code.
1484 If the loop is not well formed for vectorization, an estimated
1485 location is calculated.
1486 Return the loop location if succeed and NULL if not. */
1489 find_loop_location (struct loop *loop)
1491 gimple stmt = NULL;
1492 basic_block bb;
1493 gimple_stmt_iterator si;
1495 if (!loop)
1496 return UNKNOWN_LOC;
1498 stmt = get_loop_exit_condition (loop);
1500 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1501 return gimple_location (stmt);
1503 /* If we got here the loop is probably not "well formed",
1504 try to estimate the loop location */
1506 if (!loop->header)
1507 return UNKNOWN_LOC;
1509 bb = loop->header;
1511 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1513 stmt = gsi_stmt (si);
1514 if (gimple_location (stmt) != UNKNOWN_LOC)
1515 return gimple_location (stmt);
1518 return UNKNOWN_LOC;
1522 /* This function builds ni_name = number of iterations loop executes
1523 on the loop preheader. If SEQ is given the stmt is instead emitted
1524 there. */
1526 static tree
1527 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1529 tree ni_name, var;
1530 gimple_seq stmts = NULL;
1531 edge pe;
1532 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1533 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1535 var = create_tmp_var (TREE_TYPE (ni), "niters");
1536 ni_name = force_gimple_operand (ni, &stmts, false, var);
1538 pe = loop_preheader_edge (loop);
1539 if (stmts)
1541 if (seq)
1542 gimple_seq_add_seq (&seq, stmts);
1543 else
1545 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1546 gcc_assert (!new_bb);
1550 return ni_name;
1554 /* This function generates the following statements:
1556 ni_name = number of iterations loop executes
1557 ratio = ni_name / vf
1558 ratio_mult_vf_name = ratio * vf
1560 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1561 if that is non-NULL. */
1563 static void
1564 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1565 tree *ni_name_ptr,
1566 tree *ratio_mult_vf_name_ptr,
1567 tree *ratio_name_ptr,
1568 gimple_seq cond_expr_stmt_list)
1571 edge pe;
1572 basic_block new_bb;
1573 gimple_seq stmts;
1574 tree ni_name, ni_minus_gap_name;
1575 tree var;
1576 tree ratio_name;
1577 tree ratio_mult_vf_name;
1578 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1579 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1580 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1581 tree log_vf;
1583 pe = loop_preheader_edge (loop);
1585 /* Generate temporary variable that contains
1586 number of iterations loop executes. */
1588 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1589 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1591 /* If epilogue loop is required because of data accesses with gaps, we
1592 subtract one iteration from the total number of iterations here for
1593 correct calculation of RATIO. */
1594 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1596 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1597 ni_name,
1598 build_one_cst (TREE_TYPE (ni_name)));
1599 if (!is_gimple_val (ni_minus_gap_name))
1601 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1603 stmts = NULL;
1604 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1605 true, var);
1606 if (cond_expr_stmt_list)
1607 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1608 else
1610 pe = loop_preheader_edge (loop);
1611 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1612 gcc_assert (!new_bb);
1616 else
1617 ni_minus_gap_name = ni_name;
1619 /* Create: ratio = ni >> log2(vf) */
1621 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1622 ni_minus_gap_name, log_vf);
1623 if (!is_gimple_val (ratio_name))
1625 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1627 stmts = NULL;
1628 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1629 if (cond_expr_stmt_list)
1630 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1631 else
1633 pe = loop_preheader_edge (loop);
1634 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1635 gcc_assert (!new_bb);
1639 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1641 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1642 ratio_name, log_vf);
1643 if (!is_gimple_val (ratio_mult_vf_name))
1645 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1647 stmts = NULL;
1648 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1649 true, var);
1650 if (cond_expr_stmt_list)
1651 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1652 else
1654 pe = loop_preheader_edge (loop);
1655 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1656 gcc_assert (!new_bb);
1660 *ni_name_ptr = ni_name;
1661 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1662 *ratio_name_ptr = ratio_name;
1664 return;
1667 /* Function vect_can_advance_ivs_p
1669 In case the number of iterations that LOOP iterates is unknown at compile
1670 time, an epilog loop will be generated, and the loop induction variables
1671 (IVs) will be "advanced" to the value they are supposed to take just before
1672 the epilog loop. Here we check that the access function of the loop IVs
1673 and the expression that represents the loop bound are simple enough.
1674 These restrictions will be relaxed in the future. */
1676 bool
1677 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1679 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1680 basic_block bb = loop->header;
1681 gimple phi;
1682 gimple_stmt_iterator gsi;
1684 /* Analyze phi functions of the loop header. */
1686 if (dump_enabled_p ())
1687 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:");
1688 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1690 tree access_fn = NULL;
1691 tree evolution_part;
1693 phi = gsi_stmt (gsi);
1694 if (dump_enabled_p ())
1696 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1697 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1700 /* Skip virtual phi's. The data dependences that are associated with
1701 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1703 if (virtual_operand_p (PHI_RESULT (phi)))
1705 if (dump_enabled_p ())
1706 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1707 "virtual phi. skip.");
1708 continue;
1711 /* Skip reduction phis. */
1713 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1715 if (dump_enabled_p ())
1716 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1717 "reduc phi. skip.");
1718 continue;
1721 /* Analyze the evolution function. */
1723 access_fn = instantiate_parameters
1724 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1726 if (!access_fn)
1728 if (dump_enabled_p ())
1729 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1730 "No Access function.");
1731 return false;
1734 if (dump_enabled_p ())
1736 dump_printf_loc (MSG_NOTE, vect_location,
1737 "Access function of PHI: ");
1738 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
1741 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1743 if (evolution_part == NULL_TREE)
1745 if (dump_enabled_p ())
1746 dump_printf (MSG_MISSED_OPTIMIZATION, "No evolution.");
1747 return false;
1750 /* FORNOW: We do not transform initial conditions of IVs
1751 which evolution functions are a polynomial of degree >= 2. */
1753 if (tree_is_chrec (evolution_part))
1754 return false;
1757 return true;
1761 /* Function vect_update_ivs_after_vectorizer.
1763 "Advance" the induction variables of LOOP to the value they should take
1764 after the execution of LOOP. This is currently necessary because the
1765 vectorizer does not handle induction variables that are used after the
1766 loop. Such a situation occurs when the last iterations of LOOP are
1767 peeled, because:
1768 1. We introduced new uses after LOOP for IVs that were not originally used
1769 after LOOP: the IVs of LOOP are now used by an epilog loop.
1770 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1771 times, whereas the loop IVs should be bumped N times.
1773 Input:
1774 - LOOP - a loop that is going to be vectorized. The last few iterations
1775 of LOOP were peeled.
1776 - NITERS - the number of iterations that LOOP executes (before it is
1777 vectorized). i.e, the number of times the ivs should be bumped.
1778 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1779 coming out from LOOP on which there are uses of the LOOP ivs
1780 (this is the path from LOOP->exit to epilog_loop->preheader).
1782 The new definitions of the ivs are placed in LOOP->exit.
1783 The phi args associated with the edge UPDATE_E in the bb
1784 UPDATE_E->dest are updated accordingly.
1786 Assumption 1: Like the rest of the vectorizer, this function assumes
1787 a single loop exit that has a single predecessor.
1789 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1790 organized in the same order.
1792 Assumption 3: The access function of the ivs is simple enough (see
1793 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1795 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1796 coming out of LOOP on which the ivs of LOOP are used (this is the path
1797 that leads to the epilog loop; other paths skip the epilog loop). This
1798 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1799 needs to have its phis updated.
1802 static void
1803 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1804 edge update_e)
1806 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1807 basic_block exit_bb = single_exit (loop)->dest;
1808 gimple phi, phi1;
1809 gimple_stmt_iterator gsi, gsi1;
1810 basic_block update_bb = update_e->dest;
1812 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1814 /* Make sure there exists a single-predecessor exit bb: */
1815 gcc_assert (single_pred_p (exit_bb));
1817 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1818 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1819 gsi_next (&gsi), gsi_next (&gsi1))
1821 tree init_expr;
1822 tree step_expr, off;
1823 tree type;
1824 tree var, ni, ni_name;
1825 gimple_stmt_iterator last_gsi;
1826 stmt_vec_info stmt_info;
1828 phi = gsi_stmt (gsi);
1829 phi1 = gsi_stmt (gsi1);
1830 if (dump_enabled_p ())
1832 dump_printf_loc (MSG_NOTE, vect_location,
1833 "vect_update_ivs_after_vectorizer: phi: ");
1834 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1837 /* Skip virtual phi's. */
1838 if (virtual_operand_p (PHI_RESULT (phi)))
1840 if (dump_enabled_p ())
1841 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1842 "virtual phi. skip.");
1843 continue;
1846 /* Skip reduction phis. */
1847 stmt_info = vinfo_for_stmt (phi);
1848 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1850 if (dump_enabled_p ())
1851 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1852 "reduc phi. skip.");
1853 continue;
1856 type = TREE_TYPE (gimple_phi_result (phi));
1857 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1858 step_expr = unshare_expr (step_expr);
1860 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1861 of degree >= 2 or exponential. */
1862 gcc_assert (!tree_is_chrec (step_expr));
1864 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1866 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1867 fold_convert (TREE_TYPE (step_expr), niters),
1868 step_expr);
1869 if (POINTER_TYPE_P (type))
1870 ni = fold_build_pointer_plus (init_expr, off);
1871 else
1872 ni = fold_build2 (PLUS_EXPR, type,
1873 init_expr, fold_convert (type, off));
1875 var = create_tmp_var (type, "tmp");
1877 last_gsi = gsi_last_bb (exit_bb);
1878 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1879 true, GSI_SAME_STMT);
1881 /* Fix phi expressions in the successor bb. */
1882 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1886 /* Function vect_do_peeling_for_loop_bound
1888 Peel the last iterations of the loop represented by LOOP_VINFO.
1889 The peeled iterations form a new epilog loop. Given that the loop now
1890 iterates NITERS times, the new epilog loop iterates
1891 NITERS % VECTORIZATION_FACTOR times.
1893 The original loop will later be made to iterate
1894 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1896 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1897 test. */
1899 void
1900 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1901 unsigned int th, bool check_profitability)
1903 tree ni_name, ratio_mult_vf_name;
1904 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1905 struct loop *new_loop;
1906 edge update_e;
1907 basic_block preheader;
1908 int loop_num;
1909 int max_iter;
1910 tree cond_expr = NULL_TREE;
1911 gimple_seq cond_expr_stmt_list = NULL;
1913 if (dump_enabled_p ())
1914 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
1915 "=== vect_do_peeling_for_loop_bound ===");
1917 initialize_original_copy_tables ();
1919 /* Generate the following variables on the preheader of original loop:
1921 ni_name = number of iteration the original loop executes
1922 ratio = ni_name / vf
1923 ratio_mult_vf_name = ratio * vf */
1924 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1925 &ratio_mult_vf_name, ratio,
1926 cond_expr_stmt_list);
1928 loop_num = loop->num;
1930 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1931 &ratio_mult_vf_name, ni_name, false,
1932 th, check_profitability,
1933 cond_expr, cond_expr_stmt_list,
1934 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1935 gcc_assert (new_loop);
1936 gcc_assert (loop_num == loop->num);
1937 #ifdef ENABLE_CHECKING
1938 slpeel_verify_cfg_after_peeling (loop, new_loop);
1939 #endif
1941 /* A guard that controls whether the new_loop is to be executed or skipped
1942 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1943 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1944 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1945 is on the path where the LOOP IVs are used and need to be updated. */
1947 preheader = loop_preheader_edge (new_loop)->src;
1948 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1949 update_e = EDGE_PRED (preheader, 0);
1950 else
1951 update_e = EDGE_PRED (preheader, 1);
1953 /* Update IVs of original loop as if they were advanced
1954 by ratio_mult_vf_name steps. */
1955 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1957 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1958 and this means N-2 loopback edge executions.
1960 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1961 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1962 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1963 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1964 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1965 if (check_profitability)
1966 max_iter = MAX (max_iter, (int) th - 1);
1967 record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
1968 dump_printf (MSG_OPTIMIZED_LOCATIONS,
1969 "Setting upper bound of nb iterations for epilogue "
1970 "loop to %d\n", max_iter);
1972 /* After peeling we have to reset scalar evolution analyzer. */
1973 scev_reset ();
1975 free_original_copy_tables ();
1979 /* Function vect_gen_niters_for_prolog_loop
1981 Set the number of iterations for the loop represented by LOOP_VINFO
1982 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1983 and the misalignment of DR - the data reference recorded in
1984 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1985 this loop, the data reference DR will refer to an aligned location.
1987 The following computation is generated:
1989 If the misalignment of DR is known at compile time:
1990 addr_mis = int mis = DR_MISALIGNMENT (dr);
1991 Else, compute address misalignment in bytes:
1992 addr_mis = addr & (vectype_align - 1)
1994 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1996 (elem_size = element type size; an element is the scalar element whose type
1997 is the inner type of the vectype)
1999 When the step of the data-ref in the loop is not 1 (as in interleaved data
2000 and SLP), the number of iterations of the prolog must be divided by the step
2001 (which is equal to the size of interleaved group).
2003 The above formulas assume that VF == number of elements in the vector. This
2004 may not hold when there are multiple-types in the loop.
2005 In this case, for some data-references in the loop the VF does not represent
2006 the number of elements that fit in the vector. Therefore, instead of VF we
2007 use TYPE_VECTOR_SUBPARTS. */
2009 static tree
2010 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
2012 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2013 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2014 tree var;
2015 gimple_seq stmts;
2016 tree iters, iters_name;
2017 edge pe;
2018 basic_block new_bb;
2019 gimple dr_stmt = DR_STMT (dr);
2020 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2021 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2022 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2023 tree niters_type = TREE_TYPE (loop_niters);
2024 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2026 pe = loop_preheader_edge (loop);
2028 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2030 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2032 if (dump_enabled_p ())
2033 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2034 "known peeling = %d.", npeel);
2036 iters = build_int_cst (niters_type, npeel);
2037 *bound = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2039 else
2041 gimple_seq new_stmts = NULL;
2042 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
2043 tree offset = negative
2044 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2045 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
2046 &new_stmts, offset, loop);
2047 tree type = unsigned_type_for (TREE_TYPE (start_addr));
2048 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
2049 HOST_WIDE_INT elem_size =
2050 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2051 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
2052 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2053 tree nelements_tree = build_int_cst (type, nelements);
2054 tree byte_misalign;
2055 tree elem_misalign;
2057 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2058 gcc_assert (!new_bb);
2060 /* Create: byte_misalign = addr & (vectype_align - 1) */
2061 byte_misalign =
2062 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
2063 vectype_align_minus_1);
2065 /* Create: elem_misalign = byte_misalign / element_size */
2066 elem_misalign =
2067 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2069 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
2070 if (negative)
2071 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
2072 else
2073 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
2074 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2075 iters = fold_convert (niters_type, iters);
2076 *bound = nelements;
2079 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2080 /* If the loop bound is known at compile time we already verified that it is
2081 greater than vf; since the misalignment ('iters') is at most vf, there's
2082 no need to generate the MIN_EXPR in this case. */
2083 if (TREE_CODE (loop_niters) != INTEGER_CST)
2084 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2086 if (dump_enabled_p ())
2088 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2089 "niters for prolog loop: ");
2090 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS, TDF_SLIM, iters);
2093 var = create_tmp_var (niters_type, "prolog_loop_niters");
2094 stmts = NULL;
2095 iters_name = force_gimple_operand (iters, &stmts, false, var);
2097 /* Insert stmt on loop preheader edge. */
2098 if (stmts)
2100 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2101 gcc_assert (!new_bb);
2104 return iters_name;
2108 /* Function vect_update_init_of_dr
2110 NITERS iterations were peeled from LOOP. DR represents a data reference
2111 in LOOP. This function updates the information recorded in DR to
2112 account for the fact that the first NITERS iterations had already been
2113 executed. Specifically, it updates the OFFSET field of DR. */
2115 static void
2116 vect_update_init_of_dr (struct data_reference *dr, tree niters)
2118 tree offset = DR_OFFSET (dr);
2120 niters = fold_build2 (MULT_EXPR, sizetype,
2121 fold_convert (sizetype, niters),
2122 fold_convert (sizetype, DR_STEP (dr)));
2123 offset = fold_build2 (PLUS_EXPR, sizetype,
2124 fold_convert (sizetype, offset), niters);
2125 DR_OFFSET (dr) = offset;
2129 /* Function vect_update_inits_of_drs
2131 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2132 This function updates the information recorded for the data references in
2133 the loop to account for the fact that the first NITERS iterations had
2134 already been executed. Specifically, it updates the initial_condition of
2135 the access_function of all the data_references in the loop. */
2137 static void
2138 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2140 unsigned int i;
2141 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2142 struct data_reference *dr;
2144 if (dump_enabled_p ())
2145 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2146 "=== vect_update_inits_of_dr ===");
2148 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
2149 vect_update_init_of_dr (dr, niters);
2153 /* Function vect_do_peeling_for_alignment
2155 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2156 'niters' is set to the misalignment of one of the data references in the
2157 loop, thereby forcing it to refer to an aligned location at the beginning
2158 of the execution of this loop. The data reference for which we are
2159 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2161 void
2162 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo,
2163 unsigned int th, bool check_profitability)
2165 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2166 tree niters_of_prolog_loop, ni_name;
2167 tree n_iters;
2168 tree wide_prolog_niters;
2169 struct loop *new_loop;
2170 int max_iter;
2171 int bound = 0;
2173 if (dump_enabled_p ())
2174 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2175 "=== vect_do_peeling_for_alignment ===");
2177 initialize_original_copy_tables ();
2179 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2180 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2181 ni_name,
2182 &bound);
2184 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2185 new_loop =
2186 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2187 &niters_of_prolog_loop, ni_name, true,
2188 th, check_profitability, NULL_TREE, NULL,
2189 bound,
2192 gcc_assert (new_loop);
2193 #ifdef ENABLE_CHECKING
2194 slpeel_verify_cfg_after_peeling (new_loop, loop);
2195 #endif
2196 /* For vectorization factor N, we need to copy at most N-1 values
2197 for alignment and this means N-2 loopback edge executions. */
2198 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2199 if (check_profitability)
2200 max_iter = MAX (max_iter, (int) th - 1);
2201 record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
2202 dump_printf (MSG_OPTIMIZED_LOCATIONS,
2203 "Setting upper bound of nb iterations for prologue "
2204 "loop to %d\n", max_iter);
2206 /* Update number of times loop executes. */
2207 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2208 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2209 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2211 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2212 wide_prolog_niters = niters_of_prolog_loop;
2213 else
2215 gimple_seq seq = NULL;
2216 edge pe = loop_preheader_edge (loop);
2217 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2218 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2219 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2220 var);
2221 if (seq)
2223 /* Insert stmt on loop preheader edge. */
2224 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2225 gcc_assert (!new_bb);
2229 /* Update the init conditions of the access functions of all data refs. */
2230 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2232 /* After peeling we have to reset scalar evolution analyzer. */
2233 scev_reset ();
2235 free_original_copy_tables ();
2239 /* Function vect_create_cond_for_align_checks.
2241 Create a conditional expression that represents the alignment checks for
2242 all of data references (array element references) whose alignment must be
2243 checked at runtime.
2245 Input:
2246 COND_EXPR - input conditional expression. New conditions will be chained
2247 with logical AND operation.
2248 LOOP_VINFO - two fields of the loop information are used.
2249 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2250 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2252 Output:
2253 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2254 expression.
2255 The returned value is the conditional expression to be used in the if
2256 statement that controls which version of the loop gets executed at runtime.
2258 The algorithm makes two assumptions:
2259 1) The number of bytes "n" in a vector is a power of 2.
2260 2) An address "a" is aligned if a%n is zero and that this
2261 test can be done as a&(n-1) == 0. For example, for 16
2262 byte vectors the test is a&0xf == 0. */
2264 static void
2265 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2266 tree *cond_expr,
2267 gimple_seq *cond_expr_stmt_list)
2269 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2270 VEC(gimple,heap) *may_misalign_stmts
2271 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2272 gimple ref_stmt;
2273 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2274 tree mask_cst;
2275 unsigned int i;
2276 tree int_ptrsize_type;
2277 char tmp_name[20];
2278 tree or_tmp_name = NULL_TREE;
2279 tree and_tmp_name;
2280 gimple and_stmt;
2281 tree ptrsize_zero;
2282 tree part_cond_expr;
2284 /* Check that mask is one less than a power of 2, i.e., mask is
2285 all zeros followed by all ones. */
2286 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2288 int_ptrsize_type = signed_type_for (ptr_type_node);
2290 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2291 of the first vector of the i'th data reference. */
2293 FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
2295 gimple_seq new_stmt_list = NULL;
2296 tree addr_base;
2297 tree addr_tmp_name;
2298 tree new_or_tmp_name;
2299 gimple addr_stmt, or_stmt;
2300 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2301 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2302 bool negative = tree_int_cst_compare
2303 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2304 tree offset = negative
2305 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2307 /* create: addr_tmp = (int)(address_of_first_vector) */
2308 addr_base =
2309 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2310 offset, loop);
2311 if (new_stmt_list != NULL)
2312 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2314 sprintf (tmp_name, "addr2int%d", i);
2315 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2316 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2317 addr_base, NULL_TREE);
2318 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2320 /* The addresses are OR together. */
2322 if (or_tmp_name != NULL_TREE)
2324 /* create: or_tmp = or_tmp | addr_tmp */
2325 sprintf (tmp_name, "orptrs%d", i);
2326 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2327 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2328 new_or_tmp_name,
2329 or_tmp_name, addr_tmp_name);
2330 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2331 or_tmp_name = new_or_tmp_name;
2333 else
2334 or_tmp_name = addr_tmp_name;
2336 } /* end for i */
2338 mask_cst = build_int_cst (int_ptrsize_type, mask);
2340 /* create: and_tmp = or_tmp & mask */
2341 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2343 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2344 or_tmp_name, mask_cst);
2345 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2347 /* Make and_tmp the left operand of the conditional test against zero.
2348 if and_tmp has a nonzero bit then some address is unaligned. */
2349 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2350 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2351 and_tmp_name, ptrsize_zero);
2352 if (*cond_expr)
2353 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2354 *cond_expr, part_cond_expr);
2355 else
2356 *cond_expr = part_cond_expr;
2360 /* Function vect_vfa_segment_size.
2362 Create an expression that computes the size of segment
2363 that will be accessed for a data reference. The functions takes into
2364 account that realignment loads may access one more vector.
2366 Input:
2367 DR: The data reference.
2368 LENGTH_FACTOR: segment length to consider.
2370 Return an expression whose value is the size of segment which will be
2371 accessed by DR. */
2373 static tree
2374 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2376 tree segment_length;
2378 if (integer_zerop (DR_STEP (dr)))
2379 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2380 else
2381 segment_length = size_binop (MULT_EXPR,
2382 fold_convert (sizetype, DR_STEP (dr)),
2383 fold_convert (sizetype, length_factor));
2385 if (vect_supportable_dr_alignment (dr, false)
2386 == dr_explicit_realign_optimized)
2388 tree vector_size = TYPE_SIZE_UNIT
2389 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2391 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2393 return segment_length;
2397 /* Function vect_create_cond_for_alias_checks.
2399 Create a conditional expression that represents the run-time checks for
2400 overlapping of address ranges represented by a list of data references
2401 relations passed as input.
2403 Input:
2404 COND_EXPR - input conditional expression. New conditions will be chained
2405 with logical AND operation.
2406 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2407 to be checked.
2409 Output:
2410 COND_EXPR - conditional expression.
2411 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2412 expression.
2415 The returned value is the conditional expression to be used in the if
2416 statement that controls which version of the loop gets executed at runtime.
2419 static void
2420 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2421 tree * cond_expr,
2422 gimple_seq * cond_expr_stmt_list)
2424 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2425 VEC (ddr_p, heap) * may_alias_ddrs =
2426 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2427 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2428 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2430 ddr_p ddr;
2431 unsigned int i;
2432 tree part_cond_expr, length_factor;
2434 /* Create expression
2435 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2436 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2440 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2441 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2443 if (VEC_empty (ddr_p, may_alias_ddrs))
2444 return;
2446 FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
2448 struct data_reference *dr_a, *dr_b;
2449 gimple dr_group_first_a, dr_group_first_b;
2450 tree addr_base_a, addr_base_b;
2451 tree segment_length_a, segment_length_b;
2452 gimple stmt_a, stmt_b;
2453 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2455 dr_a = DDR_A (ddr);
2456 stmt_a = DR_STMT (DDR_A (ddr));
2457 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2458 if (dr_group_first_a)
2460 stmt_a = dr_group_first_a;
2461 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2464 dr_b = DDR_B (ddr);
2465 stmt_b = DR_STMT (DDR_B (ddr));
2466 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2467 if (dr_group_first_b)
2469 stmt_b = dr_group_first_b;
2470 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2473 addr_base_a =
2474 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2475 NULL_TREE, loop);
2476 addr_base_b =
2477 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2478 NULL_TREE, loop);
2480 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2481 length_factor = scalar_loop_iters;
2482 else
2483 length_factor = size_int (vect_factor);
2484 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2485 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2487 if (dump_enabled_p ())
2489 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2490 "create runtime check for data references ");
2491 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS, TDF_SLIM, DR_REF (dr_a));
2492 dump_printf (MSG_OPTIMIZED_LOCATIONS, " and ");
2493 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS, TDF_SLIM, DR_REF (dr_b));
2496 seg_a_min = addr_base_a;
2497 seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2498 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2499 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2501 seg_b_min = addr_base_b;
2502 seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2503 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2504 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2506 part_cond_expr =
2507 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2508 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2509 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2511 if (*cond_expr)
2512 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2513 *cond_expr, part_cond_expr);
2514 else
2515 *cond_expr = part_cond_expr;
2518 if (dump_enabled_p ())
2519 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2520 "created %u versioning for alias checks.\n",
2521 VEC_length (ddr_p, may_alias_ddrs));
2525 /* Function vect_loop_versioning.
2527 If the loop has data references that may or may not be aligned or/and
2528 has data reference relations whose independence was not proven then
2529 two versions of the loop need to be generated, one which is vectorized
2530 and one which isn't. A test is then generated to control which of the
2531 loops is executed. The test checks for the alignment of all of the
2532 data references that may or may not be aligned. An additional
2533 sequence of runtime tests is generated for each pairs of DDRs whose
2534 independence was not proven. The vectorized version of loop is
2535 executed only if both alias and alignment tests are passed.
2537 The test generated to check which version of loop is executed
2538 is modified to also check for profitability as indicated by the
2539 cost model initially.
2541 The versioning precondition(s) are placed in *COND_EXPR and
2542 *COND_EXPR_STMT_LIST. */
2544 void
2545 vect_loop_versioning (loop_vec_info loop_vinfo,
2546 unsigned int th, bool check_profitability)
2548 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2549 basic_block condition_bb;
2550 gimple_stmt_iterator gsi, cond_exp_gsi;
2551 basic_block merge_bb;
2552 basic_block new_exit_bb;
2553 edge new_exit_e, e;
2554 gimple orig_phi, new_phi;
2555 tree cond_expr = NULL_TREE;
2556 gimple_seq cond_expr_stmt_list = NULL;
2557 tree arg;
2558 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2559 gimple_seq gimplify_stmt_list = NULL;
2560 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2562 if (check_profitability)
2564 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2565 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2566 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2567 is_gimple_condexpr, NULL_TREE);
2570 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2571 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2572 &cond_expr_stmt_list);
2574 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2575 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr,
2576 &cond_expr_stmt_list);
2578 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2579 is_gimple_condexpr, NULL_TREE);
2580 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2582 initialize_original_copy_tables ();
2583 loop_version (loop, cond_expr, &condition_bb,
2584 prob, prob, REG_BR_PROB_BASE - prob, true);
2585 free_original_copy_tables();
2587 /* Loop versioning violates an assumption we try to maintain during
2588 vectorization - that the loop exit block has a single predecessor.
2589 After versioning, the exit block of both loop versions is the same
2590 basic block (i.e. it has two predecessors). Just in order to simplify
2591 following transformations in the vectorizer, we fix this situation
2592 here by adding a new (empty) block on the exit-edge of the loop,
2593 with the proper loop-exit phis to maintain loop-closed-form. */
2595 merge_bb = single_exit (loop)->dest;
2596 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2597 new_exit_bb = split_edge (single_exit (loop));
2598 new_exit_e = single_exit (loop);
2599 e = EDGE_SUCC (new_exit_bb, 0);
2601 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2603 tree new_res;
2604 orig_phi = gsi_stmt (gsi);
2605 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
2606 new_phi = create_phi_node (new_res, new_exit_bb);
2607 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2608 add_phi_arg (new_phi, arg, new_exit_e,
2609 gimple_phi_arg_location_from_edge (orig_phi, e));
2610 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2613 /* End loop-exit-fixes after versioning. */
2615 update_ssa (TODO_update_ssa);
2616 if (cond_expr_stmt_list)
2618 cond_exp_gsi = gsi_last_bb (condition_bb);
2619 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2620 GSI_SAME_STMT);