* config/h8300/clzsi2.c: Remove.
[official-gcc.git] / gcc / reg-stack.c
blob20cfb46ab1771dc3e9c34ef33ae9b11929954c6c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
182 #ifdef STACK_REGS
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
220 EMIT_AFTER,
221 EMIT_BEFORE
224 /* The block we're currently working on. */
225 static basic_block current_block;
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
234 /* Used to initialize uninitialized registers. */
235 static rtx nan;
237 /* Forward declarations */
239 static int stack_regs_mentioned_p PARAMS ((rtx pat));
240 static void straighten_stack PARAMS ((rtx, stack));
241 static void pop_stack PARAMS ((stack, int));
242 static rtx *get_true_reg PARAMS ((rtx *));
244 static int check_asm_stack_operands PARAMS ((rtx));
245 static int get_asm_operand_n_inputs PARAMS ((rtx));
246 static rtx stack_result PARAMS ((tree));
247 static void replace_reg PARAMS ((rtx *, int));
248 static void remove_regno_note PARAMS ((rtx, enum reg_note,
249 unsigned int));
250 static int get_hard_regnum PARAMS ((stack, rtx));
251 static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
252 enum emit_where));
253 static void emit_swap_insn PARAMS ((rtx, stack, rtx));
254 static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
255 static int swap_rtx_condition_1 PARAMS ((rtx));
256 static int swap_rtx_condition PARAMS ((rtx));
257 static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
258 static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
259 static void subst_asm_stack_regs PARAMS ((rtx, stack));
260 static void subst_stack_regs PARAMS ((rtx, stack));
261 static void change_stack PARAMS ((rtx, stack, stack,
262 enum emit_where));
263 static int convert_regs_entry PARAMS ((void));
264 static void convert_regs_exit PARAMS ((void));
265 static int convert_regs_1 PARAMS ((FILE *, basic_block));
266 static int convert_regs_2 PARAMS ((FILE *, basic_block));
267 static int convert_regs PARAMS ((FILE *));
268 static void print_stack PARAMS ((FILE *, stack));
269 static rtx next_flags_user PARAMS ((rtx));
270 static void record_label_references PARAMS ((rtx, rtx));
271 static bool compensate_edge PARAMS ((edge, FILE *));
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
275 static int
276 stack_regs_mentioned_p (pat)
277 rtx pat;
279 const char *fmt;
280 int i;
282 if (STACK_REG_P (pat))
283 return 1;
285 fmt = GET_RTX_FORMAT (GET_CODE (pat));
286 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 if (fmt[i] == 'E')
290 int j;
292 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 return 1;
296 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 return 1;
300 return 0;
303 /* Return nonzero if INSN mentions stacked registers, else return zero. */
306 stack_regs_mentioned (insn)
307 rtx insn;
309 unsigned int uid, max;
310 int test;
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
315 uid = INSN_UID (insn);
316 max = VARRAY_SIZE (stack_regs_mentioned_data);
317 if (uid >= max)
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20;
322 VARRAY_GROW (stack_regs_mentioned_data, max);
325 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
326 if (test == 0)
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
333 return test == 1;
336 static rtx ix86_flags_rtx;
338 static rtx
339 next_flags_user (insn)
340 rtx insn;
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
345 while (insn != current_block->end)
347 insn = NEXT_INSN (insn);
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
352 if (GET_CODE (insn) == CALL_INSN)
353 return NULL_RTX;
355 return NULL_RTX;
358 /* Reorganize the stack into ascending numbers,
359 after this insn. */
361 static void
362 straighten_stack (insn, regstack)
363 rtx insn;
364 stack regstack;
366 struct stack_def temp_stack;
367 int top;
369 /* If there is only a single register on the stack, then the stack is
370 already in increasing order and no reorganization is needed.
372 Similarly if the stack is empty. */
373 if (regstack->top <= 0)
374 return;
376 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
378 for (top = temp_stack.top = regstack->top; top >= 0; top--)
379 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
381 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
384 /* Pop a register from the stack. */
386 static void
387 pop_stack (regstack, regno)
388 stack regstack;
389 int regno;
391 int top = regstack->top;
393 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
394 regstack->top--;
395 /* If regno was not at the top of stack then adjust stack. */
396 if (regstack->reg [top] != regno)
398 int i;
399 for (i = regstack->top; i >= 0; i--)
400 if (regstack->reg [i] == regno)
402 int j;
403 for (j = i; j < top; j++)
404 regstack->reg [j] = regstack->reg [j + 1];
405 break;
410 /* Convert register usage from "flat" register file usage to a "stack
411 register file. FIRST is the first insn in the function, FILE is the
412 dump file, if used.
414 Construct a CFG and run life analysis. Then convert each insn one
415 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
416 code duplication created when the converter inserts pop insns on
417 the edges. */
419 void
420 reg_to_stack (first, file)
421 rtx first;
422 FILE *file;
424 basic_block bb;
425 int i;
426 int max_uid;
428 /* Clean up previous run. */
429 stack_regs_mentioned_data = 0;
431 if (!optimize)
432 split_all_insns (0);
434 /* See if there is something to do. Flow analysis is quite
435 expensive so we might save some compilation time. */
436 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
437 if (regs_ever_live[i])
438 break;
439 if (i > LAST_STACK_REG)
440 return;
442 /* Ok, floating point instructions exist. If not optimizing,
443 build the CFG and run life analysis. */
444 if (!optimize)
446 count_or_remove_death_notes (NULL, 1);
447 life_analysis (first, file, PROP_DEATH_NOTES);
449 mark_dfs_back_edges ();
451 /* Set up block info for each basic block. */
452 alloc_aux_for_blocks (sizeof (struct block_info_def));
453 FOR_EACH_BB_REVERSE (bb)
455 edge e;
456 for (e = bb->pred; e; e=e->pred_next)
457 if (!(e->flags & EDGE_DFS_BACK)
458 && e->src != ENTRY_BLOCK_PTR)
459 BLOCK_INFO (bb)->predecessors++;
462 /* Create the replacement registers up front. */
463 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
465 enum machine_mode mode;
466 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
467 mode != VOIDmode;
468 mode = GET_MODE_WIDER_MODE (mode))
469 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
470 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
471 mode != VOIDmode;
472 mode = GET_MODE_WIDER_MODE (mode))
473 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
476 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
478 /* A QNaN for initializing uninitialized variables.
480 ??? We can't load from constant memory in PIC mode, because
481 we're inserting these instructions before the prologue and
482 the PIC register hasn't been set up. In that case, fall back
483 on zero, which we can get from `ldz'. */
485 if (flag_pic)
486 nan = CONST0_RTX (SFmode);
487 else
489 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
490 nan = force_const_mem (SFmode, nan);
493 /* Allocate a cache for stack_regs_mentioned. */
494 max_uid = get_max_uid ();
495 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
496 "stack_regs_mentioned cache");
498 convert_regs (file);
500 free_aux_for_blocks ();
503 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
504 label's chain of references, and note which insn contains each
505 reference. */
507 static void
508 record_label_references (insn, pat)
509 rtx insn, pat;
511 enum rtx_code code = GET_CODE (pat);
512 int i;
513 const char *fmt;
515 if (code == LABEL_REF)
517 rtx label = XEXP (pat, 0);
518 rtx ref;
520 if (GET_CODE (label) != CODE_LABEL)
521 abort ();
523 /* If this is an undefined label, LABEL_REFS (label) contains
524 garbage. */
525 if (INSN_UID (label) == 0)
526 return;
528 /* Don't make a duplicate in the code_label's chain. */
530 for (ref = LABEL_REFS (label);
531 ref && ref != label;
532 ref = LABEL_NEXTREF (ref))
533 if (CONTAINING_INSN (ref) == insn)
534 return;
536 CONTAINING_INSN (pat) = insn;
537 LABEL_NEXTREF (pat) = LABEL_REFS (label);
538 LABEL_REFS (label) = pat;
540 return;
543 fmt = GET_RTX_FORMAT (code);
544 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
546 if (fmt[i] == 'e')
547 record_label_references (insn, XEXP (pat, i));
548 if (fmt[i] == 'E')
550 int j;
551 for (j = 0; j < XVECLEN (pat, i); j++)
552 record_label_references (insn, XVECEXP (pat, i, j));
557 /* Return a pointer to the REG expression within PAT. If PAT is not a
558 REG, possible enclosed by a conversion rtx, return the inner part of
559 PAT that stopped the search. */
561 static rtx *
562 get_true_reg (pat)
563 rtx *pat;
565 for (;;)
566 switch (GET_CODE (*pat))
568 case SUBREG:
569 /* Eliminate FP subregister accesses in favor of the
570 actual FP register in use. */
572 rtx subreg;
573 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
575 int regno_off = subreg_regno_offset (REGNO (subreg),
576 GET_MODE (subreg),
577 SUBREG_BYTE (*pat),
578 GET_MODE (*pat));
579 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
580 GET_MODE (subreg));
581 default:
582 return pat;
585 case FLOAT:
586 case FIX:
587 case FLOAT_EXTEND:
588 pat = & XEXP (*pat, 0);
592 /* There are many rules that an asm statement for stack-like regs must
593 follow. Those rules are explained at the top of this file: the rule
594 numbers below refer to that explanation. */
596 static int
597 check_asm_stack_operands (insn)
598 rtx insn;
600 int i;
601 int n_clobbers;
602 int malformed_asm = 0;
603 rtx body = PATTERN (insn);
605 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
606 char implicitly_dies[FIRST_PSEUDO_REGISTER];
607 int alt;
609 rtx *clobber_reg = 0;
610 int n_inputs, n_outputs;
612 /* Find out what the constraints require. If no constraint
613 alternative matches, this asm is malformed. */
614 extract_insn (insn);
615 constrain_operands (1);
616 alt = which_alternative;
618 preprocess_constraints ();
620 n_inputs = get_asm_operand_n_inputs (body);
621 n_outputs = recog_data.n_operands - n_inputs;
623 if (alt < 0)
625 malformed_asm = 1;
626 /* Avoid further trouble with this insn. */
627 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
628 return 0;
631 /* Strip SUBREGs here to make the following code simpler. */
632 for (i = 0; i < recog_data.n_operands; i++)
633 if (GET_CODE (recog_data.operand[i]) == SUBREG
634 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
635 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
637 /* Set up CLOBBER_REG. */
639 n_clobbers = 0;
641 if (GET_CODE (body) == PARALLEL)
643 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
645 for (i = 0; i < XVECLEN (body, 0); i++)
646 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
648 rtx clobber = XVECEXP (body, 0, i);
649 rtx reg = XEXP (clobber, 0);
651 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
652 reg = SUBREG_REG (reg);
654 if (STACK_REG_P (reg))
656 clobber_reg[n_clobbers] = reg;
657 n_clobbers++;
662 /* Enforce rule #4: Output operands must specifically indicate which
663 reg an output appears in after an asm. "=f" is not allowed: the
664 operand constraints must select a class with a single reg.
666 Also enforce rule #5: Output operands must start at the top of
667 the reg-stack: output operands may not "skip" a reg. */
669 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
670 for (i = 0; i < n_outputs; i++)
671 if (STACK_REG_P (recog_data.operand[i]))
673 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
675 error_for_asm (insn, "output constraint %d must specify a single register", i);
676 malformed_asm = 1;
678 else
680 int j;
682 for (j = 0; j < n_clobbers; j++)
683 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
685 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
686 i, reg_names [REGNO (clobber_reg[j])]);
687 malformed_asm = 1;
688 break;
690 if (j == n_clobbers)
691 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
696 /* Search for first non-popped reg. */
697 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
698 if (! reg_used_as_output[i])
699 break;
701 /* If there are any other popped regs, that's an error. */
702 for (; i < LAST_STACK_REG + 1; i++)
703 if (reg_used_as_output[i])
704 break;
706 if (i != LAST_STACK_REG + 1)
708 error_for_asm (insn, "output regs must be grouped at top of stack");
709 malformed_asm = 1;
712 /* Enforce rule #2: All implicitly popped input regs must be closer
713 to the top of the reg-stack than any input that is not implicitly
714 popped. */
716 memset (implicitly_dies, 0, sizeof (implicitly_dies));
717 for (i = n_outputs; i < n_outputs + n_inputs; i++)
718 if (STACK_REG_P (recog_data.operand[i]))
720 /* An input reg is implicitly popped if it is tied to an
721 output, or if there is a CLOBBER for it. */
722 int j;
724 for (j = 0; j < n_clobbers; j++)
725 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
726 break;
728 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
729 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
732 /* Search for first non-popped reg. */
733 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
734 if (! implicitly_dies[i])
735 break;
737 /* If there are any other popped regs, that's an error. */
738 for (; i < LAST_STACK_REG + 1; i++)
739 if (implicitly_dies[i])
740 break;
742 if (i != LAST_STACK_REG + 1)
744 error_for_asm (insn,
745 "implicitly popped regs must be grouped at top of stack");
746 malformed_asm = 1;
749 /* Enforce rule #3: If any input operand uses the "f" constraint, all
750 output constraints must use the "&" earlyclobber.
752 ??? Detect this more deterministically by having constrain_asm_operands
753 record any earlyclobber. */
755 for (i = n_outputs; i < n_outputs + n_inputs; i++)
756 if (recog_op_alt[i][alt].matches == -1)
758 int j;
760 for (j = 0; j < n_outputs; j++)
761 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
763 error_for_asm (insn,
764 "output operand %d must use `&' constraint", j);
765 malformed_asm = 1;
769 if (malformed_asm)
771 /* Avoid further trouble with this insn. */
772 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
773 return 0;
776 return 1;
779 /* Calculate the number of inputs and outputs in BODY, an
780 asm_operands. N_OPERANDS is the total number of operands, and
781 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
782 placed. */
784 static int
785 get_asm_operand_n_inputs (body)
786 rtx body;
788 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
789 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
791 else if (GET_CODE (body) == ASM_OPERANDS)
792 return ASM_OPERANDS_INPUT_LENGTH (body);
794 else if (GET_CODE (body) == PARALLEL
795 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
796 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
798 else if (GET_CODE (body) == PARALLEL
799 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
800 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
802 abort ();
805 /* If current function returns its result in an fp stack register,
806 return the REG. Otherwise, return 0. */
808 static rtx
809 stack_result (decl)
810 tree decl;
812 rtx result;
814 /* If the value is supposed to be returned in memory, then clearly
815 it is not returned in a stack register. */
816 if (aggregate_value_p (DECL_RESULT (decl)))
817 return 0;
819 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
820 if (result != 0)
822 #ifdef FUNCTION_OUTGOING_VALUE
823 result
824 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
825 #else
826 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
827 #endif
830 return result != 0 && STACK_REG_P (result) ? result : 0;
835 * This section deals with stack register substitution, and forms the second
836 * pass over the RTL.
839 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
840 the desired hard REGNO. */
842 static void
843 replace_reg (reg, regno)
844 rtx *reg;
845 int regno;
847 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
848 || ! STACK_REG_P (*reg))
849 abort ();
851 switch (GET_MODE_CLASS (GET_MODE (*reg)))
853 default: abort ();
854 case MODE_FLOAT:
855 case MODE_COMPLEX_FLOAT:;
858 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
861 /* Remove a note of type NOTE, which must be found, for register
862 number REGNO from INSN. Remove only one such note. */
864 static void
865 remove_regno_note (insn, note, regno)
866 rtx insn;
867 enum reg_note note;
868 unsigned int regno;
870 rtx *note_link, this;
872 note_link = &REG_NOTES (insn);
873 for (this = *note_link; this; this = XEXP (this, 1))
874 if (REG_NOTE_KIND (this) == note
875 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
877 *note_link = XEXP (this, 1);
878 return;
880 else
881 note_link = &XEXP (this, 1);
883 abort ();
886 /* Find the hard register number of virtual register REG in REGSTACK.
887 The hard register number is relative to the top of the stack. -1 is
888 returned if the register is not found. */
890 static int
891 get_hard_regnum (regstack, reg)
892 stack regstack;
893 rtx reg;
895 int i;
897 if (! STACK_REG_P (reg))
898 abort ();
900 for (i = regstack->top; i >= 0; i--)
901 if (regstack->reg[i] == REGNO (reg))
902 break;
904 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
907 /* Emit an insn to pop virtual register REG before or after INSN.
908 REGSTACK is the stack state after INSN and is updated to reflect this
909 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
910 is represented as a SET whose destination is the register to be popped
911 and source is the top of stack. A death note for the top of stack
912 cases the movdf pattern to pop. */
914 static rtx
915 emit_pop_insn (insn, regstack, reg, where)
916 rtx insn;
917 stack regstack;
918 rtx reg;
919 enum emit_where where;
921 rtx pop_insn, pop_rtx;
922 int hard_regno;
924 /* For complex types take care to pop both halves. These may survive in
925 CLOBBER and USE expressions. */
926 if (COMPLEX_MODE_P (GET_MODE (reg)))
928 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
929 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
931 pop_insn = NULL_RTX;
932 if (get_hard_regnum (regstack, reg1) >= 0)
933 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
934 if (get_hard_regnum (regstack, reg2) >= 0)
935 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
936 if (!pop_insn)
937 abort ();
938 return pop_insn;
941 hard_regno = get_hard_regnum (regstack, reg);
943 if (hard_regno < FIRST_STACK_REG)
944 abort ();
946 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
947 FP_MODE_REG (FIRST_STACK_REG, DFmode));
949 if (where == EMIT_AFTER)
950 pop_insn = emit_insn_after (pop_rtx, insn);
951 else
952 pop_insn = emit_insn_before (pop_rtx, insn);
954 REG_NOTES (pop_insn)
955 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
956 REG_NOTES (pop_insn));
958 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
959 = regstack->reg[regstack->top];
960 regstack->top -= 1;
961 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
963 return pop_insn;
966 /* Emit an insn before or after INSN to swap virtual register REG with
967 the top of stack. REGSTACK is the stack state before the swap, and
968 is updated to reflect the swap. A swap insn is represented as a
969 PARALLEL of two patterns: each pattern moves one reg to the other.
971 If REG is already at the top of the stack, no insn is emitted. */
973 static void
974 emit_swap_insn (insn, regstack, reg)
975 rtx insn;
976 stack regstack;
977 rtx reg;
979 int hard_regno;
980 rtx swap_rtx;
981 int tmp, other_reg; /* swap regno temps */
982 rtx i1; /* the stack-reg insn prior to INSN */
983 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
985 hard_regno = get_hard_regnum (regstack, reg);
987 if (hard_regno < FIRST_STACK_REG)
988 abort ();
989 if (hard_regno == FIRST_STACK_REG)
990 return;
992 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
994 tmp = regstack->reg[other_reg];
995 regstack->reg[other_reg] = regstack->reg[regstack->top];
996 regstack->reg[regstack->top] = tmp;
998 /* Find the previous insn involving stack regs, but don't pass a
999 block boundary. */
1000 i1 = NULL;
1001 if (current_block && insn != current_block->head)
1003 rtx tmp = PREV_INSN (insn);
1004 rtx limit = PREV_INSN (current_block->head);
1005 while (tmp != limit)
1007 if (GET_CODE (tmp) == CODE_LABEL
1008 || GET_CODE (tmp) == CALL_INSN
1009 || NOTE_INSN_BASIC_BLOCK_P (tmp)
1010 || (GET_CODE (tmp) == INSN
1011 && stack_regs_mentioned (tmp)))
1013 i1 = tmp;
1014 break;
1016 tmp = PREV_INSN (tmp);
1020 if (i1 != NULL_RTX
1021 && (i1set = single_set (i1)) != NULL_RTX)
1023 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1024 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1026 /* If the previous register stack push was from the reg we are to
1027 swap with, omit the swap. */
1029 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1030 && GET_CODE (i1src) == REG
1031 && REGNO (i1src) == (unsigned) hard_regno - 1
1032 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1033 return;
1035 /* If the previous insn wrote to the reg we are to swap with,
1036 omit the swap. */
1038 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1039 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1040 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1041 return;
1044 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1045 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1047 if (i1)
1048 emit_insn_after (swap_rtx, i1);
1049 else if (current_block)
1050 emit_insn_before (swap_rtx, current_block->head);
1051 else
1052 emit_insn_before (swap_rtx, insn);
1055 /* Handle a move to or from a stack register in PAT, which is in INSN.
1056 REGSTACK is the current stack. */
1058 static void
1059 move_for_stack_reg (insn, regstack, pat)
1060 rtx insn;
1061 stack regstack;
1062 rtx pat;
1064 rtx *psrc = get_true_reg (&SET_SRC (pat));
1065 rtx *pdest = get_true_reg (&SET_DEST (pat));
1066 rtx src, dest;
1067 rtx note;
1069 src = *psrc; dest = *pdest;
1071 if (STACK_REG_P (src) && STACK_REG_P (dest))
1073 /* Write from one stack reg to another. If SRC dies here, then
1074 just change the register mapping and delete the insn. */
1076 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1077 if (note)
1079 int i;
1081 /* If this is a no-op move, there must not be a REG_DEAD note. */
1082 if (REGNO (src) == REGNO (dest))
1083 abort ();
1085 for (i = regstack->top; i >= 0; i--)
1086 if (regstack->reg[i] == REGNO (src))
1087 break;
1089 /* The source must be live, and the dest must be dead. */
1090 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1091 abort ();
1093 /* It is possible that the dest is unused after this insn.
1094 If so, just pop the src. */
1096 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1098 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1100 delete_insn (insn);
1101 return;
1104 regstack->reg[i] = REGNO (dest);
1106 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1107 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1109 delete_insn (insn);
1111 return;
1114 /* The source reg does not die. */
1116 /* If this appears to be a no-op move, delete it, or else it
1117 will confuse the machine description output patterns. But if
1118 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1119 for REG_UNUSED will not work for deleted insns. */
1121 if (REGNO (src) == REGNO (dest))
1123 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1124 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1126 delete_insn (insn);
1127 return;
1130 /* The destination ought to be dead. */
1131 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1132 abort ();
1134 replace_reg (psrc, get_hard_regnum (regstack, src));
1136 regstack->reg[++regstack->top] = REGNO (dest);
1137 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1138 replace_reg (pdest, FIRST_STACK_REG);
1140 else if (STACK_REG_P (src))
1142 /* Save from a stack reg to MEM, or possibly integer reg. Since
1143 only top of stack may be saved, emit an exchange first if
1144 needs be. */
1146 emit_swap_insn (insn, regstack, src);
1148 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1149 if (note)
1151 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1152 regstack->top--;
1153 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1155 else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
1156 && regstack->top < REG_STACK_SIZE - 1)
1158 /* A 387 cannot write an XFmode value to a MEM without
1159 clobbering the source reg. The output code can handle
1160 this by reading back the value from the MEM.
1161 But it is more efficient to use a temp register if one is
1162 available. Push the source value here if the register
1163 stack is not full, and then write the value to memory via
1164 a pop. */
1165 rtx push_rtx, push_insn;
1166 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1168 if (GET_MODE (src) == TFmode)
1169 push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
1170 else
1171 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1172 push_insn = emit_insn_before (push_rtx, insn);
1173 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1174 REG_NOTES (insn));
1177 replace_reg (psrc, FIRST_STACK_REG);
1179 else if (STACK_REG_P (dest))
1181 /* Load from MEM, or possibly integer REG or constant, into the
1182 stack regs. The actual target is always the top of the
1183 stack. The stack mapping is changed to reflect that DEST is
1184 now at top of stack. */
1186 /* The destination ought to be dead. */
1187 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1188 abort ();
1190 if (regstack->top >= REG_STACK_SIZE)
1191 abort ();
1193 regstack->reg[++regstack->top] = REGNO (dest);
1194 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1195 replace_reg (pdest, FIRST_STACK_REG);
1197 else
1198 abort ();
1201 /* Swap the condition on a branch, if there is one. Return true if we
1202 found a condition to swap. False if the condition was not used as
1203 such. */
1205 static int
1206 swap_rtx_condition_1 (pat)
1207 rtx pat;
1209 const char *fmt;
1210 int i, r = 0;
1212 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1214 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1215 r = 1;
1217 else
1219 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1220 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1222 if (fmt[i] == 'E')
1224 int j;
1226 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1227 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1229 else if (fmt[i] == 'e')
1230 r |= swap_rtx_condition_1 (XEXP (pat, i));
1234 return r;
1237 static int
1238 swap_rtx_condition (insn)
1239 rtx insn;
1241 rtx pat = PATTERN (insn);
1243 /* We're looking for a single set to cc0 or an HImode temporary. */
1245 if (GET_CODE (pat) == SET
1246 && GET_CODE (SET_DEST (pat)) == REG
1247 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1249 insn = next_flags_user (insn);
1250 if (insn == NULL_RTX)
1251 return 0;
1252 pat = PATTERN (insn);
1255 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1256 not doing anything with the cc value right now. We may be able to
1257 search for one though. */
1259 if (GET_CODE (pat) == SET
1260 && GET_CODE (SET_SRC (pat)) == UNSPEC
1261 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1263 rtx dest = SET_DEST (pat);
1265 /* Search forward looking for the first use of this value.
1266 Stop at block boundaries. */
1267 while (insn != current_block->end)
1269 insn = NEXT_INSN (insn);
1270 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1271 break;
1272 if (GET_CODE (insn) == CALL_INSN)
1273 return 0;
1276 /* So we've found the insn using this value. If it is anything
1277 other than sahf, aka unspec 10, or the value does not die
1278 (meaning we'd have to search further), then we must give up. */
1279 pat = PATTERN (insn);
1280 if (GET_CODE (pat) != SET
1281 || GET_CODE (SET_SRC (pat)) != UNSPEC
1282 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1283 || ! dead_or_set_p (insn, dest))
1284 return 0;
1286 /* Now we are prepared to handle this as a normal cc0 setter. */
1287 insn = next_flags_user (insn);
1288 if (insn == NULL_RTX)
1289 return 0;
1290 pat = PATTERN (insn);
1293 if (swap_rtx_condition_1 (pat))
1295 int fail = 0;
1296 INSN_CODE (insn) = -1;
1297 if (recog_memoized (insn) == -1)
1298 fail = 1;
1299 /* In case the flags don't die here, recurse to try fix
1300 following user too. */
1301 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1303 insn = next_flags_user (insn);
1304 if (!insn || !swap_rtx_condition (insn))
1305 fail = 1;
1307 if (fail)
1309 swap_rtx_condition_1 (pat);
1310 return 0;
1312 return 1;
1314 return 0;
1317 /* Handle a comparison. Special care needs to be taken to avoid
1318 causing comparisons that a 387 cannot do correctly, such as EQ.
1320 Also, a pop insn may need to be emitted. The 387 does have an
1321 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1322 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1323 set up. */
1325 static void
1326 compare_for_stack_reg (insn, regstack, pat_src)
1327 rtx insn;
1328 stack regstack;
1329 rtx pat_src;
1331 rtx *src1, *src2;
1332 rtx src1_note, src2_note;
1333 rtx flags_user;
1335 src1 = get_true_reg (&XEXP (pat_src, 0));
1336 src2 = get_true_reg (&XEXP (pat_src, 1));
1337 flags_user = next_flags_user (insn);
1339 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1340 registers that die in this insn - move those to stack top first. */
1341 if ((! STACK_REG_P (*src1)
1342 || (STACK_REG_P (*src2)
1343 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1344 && swap_rtx_condition (insn))
1346 rtx temp;
1347 temp = XEXP (pat_src, 0);
1348 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1349 XEXP (pat_src, 1) = temp;
1351 src1 = get_true_reg (&XEXP (pat_src, 0));
1352 src2 = get_true_reg (&XEXP (pat_src, 1));
1354 INSN_CODE (insn) = -1;
1357 /* We will fix any death note later. */
1359 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1361 if (STACK_REG_P (*src2))
1362 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1363 else
1364 src2_note = NULL_RTX;
1366 emit_swap_insn (insn, regstack, *src1);
1368 replace_reg (src1, FIRST_STACK_REG);
1370 if (STACK_REG_P (*src2))
1371 replace_reg (src2, get_hard_regnum (regstack, *src2));
1373 if (src1_note)
1375 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1376 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1379 /* If the second operand dies, handle that. But if the operands are
1380 the same stack register, don't bother, because only one death is
1381 needed, and it was just handled. */
1383 if (src2_note
1384 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1385 && REGNO (*src1) == REGNO (*src2)))
1387 /* As a special case, two regs may die in this insn if src2 is
1388 next to top of stack and the top of stack also dies. Since
1389 we have already popped src1, "next to top of stack" is really
1390 at top (FIRST_STACK_REG) now. */
1392 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1393 && src1_note)
1395 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1396 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1398 else
1400 /* The 386 can only represent death of the first operand in
1401 the case handled above. In all other cases, emit a separate
1402 pop and remove the death note from here. */
1404 /* link_cc0_insns (insn); */
1406 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1408 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1409 EMIT_AFTER);
1414 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1415 is the current register layout. */
1417 static void
1418 subst_stack_regs_pat (insn, regstack, pat)
1419 rtx insn;
1420 stack regstack;
1421 rtx pat;
1423 rtx *dest, *src;
1425 switch (GET_CODE (pat))
1427 case USE:
1428 /* Deaths in USE insns can happen in non optimizing compilation.
1429 Handle them by popping the dying register. */
1430 src = get_true_reg (&XEXP (pat, 0));
1431 if (STACK_REG_P (*src)
1432 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1434 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1435 return;
1437 /* ??? Uninitialized USE should not happen. */
1438 else if (get_hard_regnum (regstack, *src) == -1)
1439 abort ();
1440 break;
1442 case CLOBBER:
1444 rtx note;
1446 dest = get_true_reg (&XEXP (pat, 0));
1447 if (STACK_REG_P (*dest))
1449 note = find_reg_note (insn, REG_DEAD, *dest);
1451 if (pat != PATTERN (insn))
1453 /* The fix_truncdi_1 pattern wants to be able to allocate
1454 it's own scratch register. It does this by clobbering
1455 an fp reg so that it is assured of an empty reg-stack
1456 register. If the register is live, kill it now.
1457 Remove the DEAD/UNUSED note so we don't try to kill it
1458 later too. */
1460 if (note)
1461 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1462 else
1464 note = find_reg_note (insn, REG_UNUSED, *dest);
1465 if (!note)
1466 abort ();
1468 remove_note (insn, note);
1469 replace_reg (dest, LAST_STACK_REG);
1471 else
1473 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1474 indicates an uninitialized value. Because reload removed
1475 all other clobbers, this must be due to a function
1476 returning without a value. Load up a NaN. */
1478 if (! note
1479 && get_hard_regnum (regstack, *dest) == -1)
1481 pat = gen_rtx_SET (VOIDmode,
1482 FP_MODE_REG (REGNO (*dest), SFmode),
1483 nan);
1484 PATTERN (insn) = pat;
1485 move_for_stack_reg (insn, regstack, pat);
1487 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1488 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1490 pat = gen_rtx_SET (VOIDmode,
1491 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1492 nan);
1493 PATTERN (insn) = pat;
1494 move_for_stack_reg (insn, regstack, pat);
1498 break;
1501 case SET:
1503 rtx *src1 = (rtx *) 0, *src2;
1504 rtx src1_note, src2_note;
1505 rtx pat_src;
1507 dest = get_true_reg (&SET_DEST (pat));
1508 src = get_true_reg (&SET_SRC (pat));
1509 pat_src = SET_SRC (pat);
1511 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1512 if (STACK_REG_P (*src)
1513 || (STACK_REG_P (*dest)
1514 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1515 || GET_CODE (*src) == CONST_DOUBLE)))
1517 move_for_stack_reg (insn, regstack, pat);
1518 break;
1521 switch (GET_CODE (pat_src))
1523 case COMPARE:
1524 compare_for_stack_reg (insn, regstack, pat_src);
1525 break;
1527 case CALL:
1529 int count;
1530 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1531 --count >= 0;)
1533 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1534 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1537 replace_reg (dest, FIRST_STACK_REG);
1538 break;
1540 case REG:
1541 /* This is a `tstM2' case. */
1542 if (*dest != cc0_rtx)
1543 abort ();
1544 src1 = src;
1546 /* Fall through. */
1548 case FLOAT_TRUNCATE:
1549 case SQRT:
1550 case ABS:
1551 case NEG:
1552 /* These insns only operate on the top of the stack. DEST might
1553 be cc0_rtx if we're processing a tstM pattern. Also, it's
1554 possible that the tstM case results in a REG_DEAD note on the
1555 source. */
1557 if (src1 == 0)
1558 src1 = get_true_reg (&XEXP (pat_src, 0));
1560 emit_swap_insn (insn, regstack, *src1);
1562 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1564 if (STACK_REG_P (*dest))
1565 replace_reg (dest, FIRST_STACK_REG);
1567 if (src1_note)
1569 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1570 regstack->top--;
1571 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1574 replace_reg (src1, FIRST_STACK_REG);
1575 break;
1577 case MINUS:
1578 case DIV:
1579 /* On i386, reversed forms of subM3 and divM3 exist for
1580 MODE_FLOAT, so the same code that works for addM3 and mulM3
1581 can be used. */
1582 case MULT:
1583 case PLUS:
1584 /* These insns can accept the top of stack as a destination
1585 from a stack reg or mem, or can use the top of stack as a
1586 source and some other stack register (possibly top of stack)
1587 as a destination. */
1589 src1 = get_true_reg (&XEXP (pat_src, 0));
1590 src2 = get_true_reg (&XEXP (pat_src, 1));
1592 /* We will fix any death note later. */
1594 if (STACK_REG_P (*src1))
1595 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1596 else
1597 src1_note = NULL_RTX;
1598 if (STACK_REG_P (*src2))
1599 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1600 else
1601 src2_note = NULL_RTX;
1603 /* If either operand is not a stack register, then the dest
1604 must be top of stack. */
1606 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1607 emit_swap_insn (insn, regstack, *dest);
1608 else
1610 /* Both operands are REG. If neither operand is already
1611 at the top of stack, choose to make the one that is the dest
1612 the new top of stack. */
1614 int src1_hard_regnum, src2_hard_regnum;
1616 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1617 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1618 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1619 abort ();
1621 if (src1_hard_regnum != FIRST_STACK_REG
1622 && src2_hard_regnum != FIRST_STACK_REG)
1623 emit_swap_insn (insn, regstack, *dest);
1626 if (STACK_REG_P (*src1))
1627 replace_reg (src1, get_hard_regnum (regstack, *src1));
1628 if (STACK_REG_P (*src2))
1629 replace_reg (src2, get_hard_regnum (regstack, *src2));
1631 if (src1_note)
1633 rtx src1_reg = XEXP (src1_note, 0);
1635 /* If the register that dies is at the top of stack, then
1636 the destination is somewhere else - merely substitute it.
1637 But if the reg that dies is not at top of stack, then
1638 move the top of stack to the dead reg, as though we had
1639 done the insn and then a store-with-pop. */
1641 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1643 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1644 replace_reg (dest, get_hard_regnum (regstack, *dest));
1646 else
1648 int regno = get_hard_regnum (regstack, src1_reg);
1650 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1651 replace_reg (dest, regno);
1653 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1654 = regstack->reg[regstack->top];
1657 CLEAR_HARD_REG_BIT (regstack->reg_set,
1658 REGNO (XEXP (src1_note, 0)));
1659 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1660 regstack->top--;
1662 else if (src2_note)
1664 rtx src2_reg = XEXP (src2_note, 0);
1665 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1667 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1668 replace_reg (dest, get_hard_regnum (regstack, *dest));
1670 else
1672 int regno = get_hard_regnum (regstack, src2_reg);
1674 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1675 replace_reg (dest, regno);
1677 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1678 = regstack->reg[regstack->top];
1681 CLEAR_HARD_REG_BIT (regstack->reg_set,
1682 REGNO (XEXP (src2_note, 0)));
1683 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1684 regstack->top--;
1686 else
1688 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1689 replace_reg (dest, get_hard_regnum (regstack, *dest));
1692 /* Keep operand 1 matching with destination. */
1693 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1694 && REG_P (*src1) && REG_P (*src2)
1695 && REGNO (*src1) != REGNO (*dest))
1697 int tmp = REGNO (*src1);
1698 replace_reg (src1, REGNO (*src2));
1699 replace_reg (src2, tmp);
1701 break;
1703 case UNSPEC:
1704 switch (XINT (pat_src, 1))
1706 case UNSPEC_SIN:
1707 case UNSPEC_COS:
1708 /* These insns only operate on the top of the stack. */
1710 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1712 emit_swap_insn (insn, regstack, *src1);
1714 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1716 if (STACK_REG_P (*dest))
1717 replace_reg (dest, FIRST_STACK_REG);
1719 if (src1_note)
1721 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1722 regstack->top--;
1723 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1726 replace_reg (src1, FIRST_STACK_REG);
1727 break;
1729 case UNSPEC_SAHF:
1730 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1731 The combination matches the PPRO fcomi instruction. */
1733 pat_src = XVECEXP (pat_src, 0, 0);
1734 if (GET_CODE (pat_src) != UNSPEC
1735 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1736 abort ();
1737 /* FALLTHRU */
1739 case UNSPEC_FNSTSW:
1740 /* Combined fcomp+fnstsw generated for doing well with
1741 CSE. When optimizing this would have been broken
1742 up before now. */
1744 pat_src = XVECEXP (pat_src, 0, 0);
1745 if (GET_CODE (pat_src) != COMPARE)
1746 abort ();
1748 compare_for_stack_reg (insn, regstack, pat_src);
1749 break;
1751 default:
1752 abort ();
1754 break;
1756 case IF_THEN_ELSE:
1757 /* This insn requires the top of stack to be the destination. */
1759 src1 = get_true_reg (&XEXP (pat_src, 1));
1760 src2 = get_true_reg (&XEXP (pat_src, 2));
1762 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1763 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1765 /* If the comparison operator is an FP comparison operator,
1766 it is handled correctly by compare_for_stack_reg () who
1767 will move the destination to the top of stack. But if the
1768 comparison operator is not an FP comparison operator, we
1769 have to handle it here. */
1770 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1771 && REGNO (*dest) != regstack->reg[regstack->top])
1773 /* In case one of operands is the top of stack and the operands
1774 dies, it is safe to make it the destination operand by
1775 reversing the direction of cmove and avoid fxch. */
1776 if ((REGNO (*src1) == regstack->reg[regstack->top]
1777 && src1_note)
1778 || (REGNO (*src2) == regstack->reg[regstack->top]
1779 && src2_note))
1781 int idx1 = (get_hard_regnum (regstack, *src1)
1782 - FIRST_STACK_REG);
1783 int idx2 = (get_hard_regnum (regstack, *src2)
1784 - FIRST_STACK_REG);
1786 /* Make reg-stack believe that the operands are already
1787 swapped on the stack */
1788 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1789 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1791 /* Reverse condition to compensate the operand swap.
1792 i386 do have comparison always reversible. */
1793 PUT_CODE (XEXP (pat_src, 0),
1794 reversed_comparison_code (XEXP (pat_src, 0), insn));
1796 else
1797 emit_swap_insn (insn, regstack, *dest);
1801 rtx src_note [3];
1802 int i;
1804 src_note[0] = 0;
1805 src_note[1] = src1_note;
1806 src_note[2] = src2_note;
1808 if (STACK_REG_P (*src1))
1809 replace_reg (src1, get_hard_regnum (regstack, *src1));
1810 if (STACK_REG_P (*src2))
1811 replace_reg (src2, get_hard_regnum (regstack, *src2));
1813 for (i = 1; i <= 2; i++)
1814 if (src_note [i])
1816 int regno = REGNO (XEXP (src_note[i], 0));
1818 /* If the register that dies is not at the top of
1819 stack, then move the top of stack to the dead reg */
1820 if (regno != regstack->reg[regstack->top])
1822 remove_regno_note (insn, REG_DEAD, regno);
1823 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1824 EMIT_AFTER);
1826 else
1827 /* Top of stack never dies, as it is the
1828 destination. */
1829 abort ();
1833 /* Make dest the top of stack. Add dest to regstack if
1834 not present. */
1835 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1836 regstack->reg[++regstack->top] = REGNO (*dest);
1837 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1838 replace_reg (dest, FIRST_STACK_REG);
1839 break;
1841 default:
1842 abort ();
1844 break;
1847 default:
1848 break;
1852 /* Substitute hard regnums for any stack regs in INSN, which has
1853 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1854 before the insn, and is updated with changes made here.
1856 There are several requirements and assumptions about the use of
1857 stack-like regs in asm statements. These rules are enforced by
1858 record_asm_stack_regs; see comments there for details. Any
1859 asm_operands left in the RTL at this point may be assume to meet the
1860 requirements, since record_asm_stack_regs removes any problem asm. */
1862 static void
1863 subst_asm_stack_regs (insn, regstack)
1864 rtx insn;
1865 stack regstack;
1867 rtx body = PATTERN (insn);
1868 int alt;
1870 rtx *note_reg; /* Array of note contents */
1871 rtx **note_loc; /* Address of REG field of each note */
1872 enum reg_note *note_kind; /* The type of each note */
1874 rtx *clobber_reg = 0;
1875 rtx **clobber_loc = 0;
1877 struct stack_def temp_stack;
1878 int n_notes;
1879 int n_clobbers;
1880 rtx note;
1881 int i;
1882 int n_inputs, n_outputs;
1884 if (! check_asm_stack_operands (insn))
1885 return;
1887 /* Find out what the constraints required. If no constraint
1888 alternative matches, that is a compiler bug: we should have caught
1889 such an insn in check_asm_stack_operands. */
1890 extract_insn (insn);
1891 constrain_operands (1);
1892 alt = which_alternative;
1894 preprocess_constraints ();
1896 n_inputs = get_asm_operand_n_inputs (body);
1897 n_outputs = recog_data.n_operands - n_inputs;
1899 if (alt < 0)
1900 abort ();
1902 /* Strip SUBREGs here to make the following code simpler. */
1903 for (i = 0; i < recog_data.n_operands; i++)
1904 if (GET_CODE (recog_data.operand[i]) == SUBREG
1905 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1907 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1908 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1911 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1913 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1914 i++;
1916 note_reg = (rtx *) alloca (i * sizeof (rtx));
1917 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1918 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1920 n_notes = 0;
1921 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1923 rtx reg = XEXP (note, 0);
1924 rtx *loc = & XEXP (note, 0);
1926 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1928 loc = & SUBREG_REG (reg);
1929 reg = SUBREG_REG (reg);
1932 if (STACK_REG_P (reg)
1933 && (REG_NOTE_KIND (note) == REG_DEAD
1934 || REG_NOTE_KIND (note) == REG_UNUSED))
1936 note_reg[n_notes] = reg;
1937 note_loc[n_notes] = loc;
1938 note_kind[n_notes] = REG_NOTE_KIND (note);
1939 n_notes++;
1943 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1945 n_clobbers = 0;
1947 if (GET_CODE (body) == PARALLEL)
1949 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1950 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
1952 for (i = 0; i < XVECLEN (body, 0); i++)
1953 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1955 rtx clobber = XVECEXP (body, 0, i);
1956 rtx reg = XEXP (clobber, 0);
1957 rtx *loc = & XEXP (clobber, 0);
1959 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1961 loc = & SUBREG_REG (reg);
1962 reg = SUBREG_REG (reg);
1965 if (STACK_REG_P (reg))
1967 clobber_reg[n_clobbers] = reg;
1968 clobber_loc[n_clobbers] = loc;
1969 n_clobbers++;
1974 temp_stack = *regstack;
1976 /* Put the input regs into the desired place in TEMP_STACK. */
1978 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1979 if (STACK_REG_P (recog_data.operand[i])
1980 && reg_class_subset_p (recog_op_alt[i][alt].class,
1981 FLOAT_REGS)
1982 && recog_op_alt[i][alt].class != FLOAT_REGS)
1984 /* If an operand needs to be in a particular reg in
1985 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1986 these constraints are for single register classes, and
1987 reload guaranteed that operand[i] is already in that class,
1988 we can just use REGNO (recog_data.operand[i]) to know which
1989 actual reg this operand needs to be in. */
1991 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
1993 if (regno < 0)
1994 abort ();
1996 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
1998 /* recog_data.operand[i] is not in the right place. Find
1999 it and swap it with whatever is already in I's place.
2000 K is where recog_data.operand[i] is now. J is where it
2001 should be. */
2002 int j, k, temp;
2004 k = temp_stack.top - (regno - FIRST_STACK_REG);
2005 j = (temp_stack.top
2006 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2008 temp = temp_stack.reg[k];
2009 temp_stack.reg[k] = temp_stack.reg[j];
2010 temp_stack.reg[j] = temp;
2014 /* Emit insns before INSN to make sure the reg-stack is in the right
2015 order. */
2017 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2019 /* Make the needed input register substitutions. Do death notes and
2020 clobbers too, because these are for inputs, not outputs. */
2022 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2023 if (STACK_REG_P (recog_data.operand[i]))
2025 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2027 if (regnum < 0)
2028 abort ();
2030 replace_reg (recog_data.operand_loc[i], regnum);
2033 for (i = 0; i < n_notes; i++)
2034 if (note_kind[i] == REG_DEAD)
2036 int regnum = get_hard_regnum (regstack, note_reg[i]);
2038 if (regnum < 0)
2039 abort ();
2041 replace_reg (note_loc[i], regnum);
2044 for (i = 0; i < n_clobbers; i++)
2046 /* It's OK for a CLOBBER to reference a reg that is not live.
2047 Don't try to replace it in that case. */
2048 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2050 if (regnum >= 0)
2052 /* Sigh - clobbers always have QImode. But replace_reg knows
2053 that these regs can't be MODE_INT and will abort. Just put
2054 the right reg there without calling replace_reg. */
2056 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2060 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2062 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2063 if (STACK_REG_P (recog_data.operand[i]))
2065 /* An input reg is implicitly popped if it is tied to an
2066 output, or if there is a CLOBBER for it. */
2067 int j;
2069 for (j = 0; j < n_clobbers; j++)
2070 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2071 break;
2073 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2075 /* recog_data.operand[i] might not be at the top of stack.
2076 But that's OK, because all we need to do is pop the
2077 right number of regs off of the top of the reg-stack.
2078 record_asm_stack_regs guaranteed that all implicitly
2079 popped regs were grouped at the top of the reg-stack. */
2081 CLEAR_HARD_REG_BIT (regstack->reg_set,
2082 regstack->reg[regstack->top]);
2083 regstack->top--;
2087 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2088 Note that there isn't any need to substitute register numbers.
2089 ??? Explain why this is true. */
2091 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2093 /* See if there is an output for this hard reg. */
2094 int j;
2096 for (j = 0; j < n_outputs; j++)
2097 if (STACK_REG_P (recog_data.operand[j])
2098 && REGNO (recog_data.operand[j]) == (unsigned) i)
2100 regstack->reg[++regstack->top] = i;
2101 SET_HARD_REG_BIT (regstack->reg_set, i);
2102 break;
2106 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2107 input that the asm didn't implicitly pop. If the asm didn't
2108 implicitly pop an input reg, that reg will still be live.
2110 Note that we can't use find_regno_note here: the register numbers
2111 in the death notes have already been substituted. */
2113 for (i = 0; i < n_outputs; i++)
2114 if (STACK_REG_P (recog_data.operand[i]))
2116 int j;
2118 for (j = 0; j < n_notes; j++)
2119 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2120 && note_kind[j] == REG_UNUSED)
2122 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2123 EMIT_AFTER);
2124 break;
2128 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2129 if (STACK_REG_P (recog_data.operand[i]))
2131 int j;
2133 for (j = 0; j < n_notes; j++)
2134 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2135 && note_kind[j] == REG_DEAD
2136 && TEST_HARD_REG_BIT (regstack->reg_set,
2137 REGNO (recog_data.operand[i])))
2139 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2140 EMIT_AFTER);
2141 break;
2146 /* Substitute stack hard reg numbers for stack virtual registers in
2147 INSN. Non-stack register numbers are not changed. REGSTACK is the
2148 current stack content. Insns may be emitted as needed to arrange the
2149 stack for the 387 based on the contents of the insn. */
2151 static void
2152 subst_stack_regs (insn, regstack)
2153 rtx insn;
2154 stack regstack;
2156 rtx *note_link, note;
2157 int i;
2159 if (GET_CODE (insn) == CALL_INSN)
2161 int top = regstack->top;
2163 /* If there are any floating point parameters to be passed in
2164 registers for this call, make sure they are in the right
2165 order. */
2167 if (top >= 0)
2169 straighten_stack (PREV_INSN (insn), regstack);
2171 /* Now mark the arguments as dead after the call. */
2173 while (regstack->top >= 0)
2175 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2176 regstack->top--;
2181 /* Do the actual substitution if any stack regs are mentioned.
2182 Since we only record whether entire insn mentions stack regs, and
2183 subst_stack_regs_pat only works for patterns that contain stack regs,
2184 we must check each pattern in a parallel here. A call_value_pop could
2185 fail otherwise. */
2187 if (stack_regs_mentioned (insn))
2189 int n_operands = asm_noperands (PATTERN (insn));
2190 if (n_operands >= 0)
2192 /* This insn is an `asm' with operands. Decode the operands,
2193 decide how many are inputs, and do register substitution.
2194 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2196 subst_asm_stack_regs (insn, regstack);
2197 return;
2200 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2201 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2203 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2204 subst_stack_regs_pat (insn, regstack,
2205 XVECEXP (PATTERN (insn), 0, i));
2207 else
2208 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2211 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2212 REG_UNUSED will already have been dealt with, so just return. */
2214 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
2215 return;
2217 /* If there is a REG_UNUSED note on a stack register on this insn,
2218 the indicated reg must be popped. The REG_UNUSED note is removed,
2219 since the form of the newly emitted pop insn references the reg,
2220 making it no longer `unset'. */
2222 note_link = &REG_NOTES (insn);
2223 for (note = *note_link; note; note = XEXP (note, 1))
2224 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2226 *note_link = XEXP (note, 1);
2227 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2229 else
2230 note_link = &XEXP (note, 1);
2233 /* Change the organization of the stack so that it fits a new basic
2234 block. Some registers might have to be popped, but there can never be
2235 a register live in the new block that is not now live.
2237 Insert any needed insns before or after INSN, as indicated by
2238 WHERE. OLD is the original stack layout, and NEW is the desired
2239 form. OLD is updated to reflect the code emitted, ie, it will be
2240 the same as NEW upon return.
2242 This function will not preserve block_end[]. But that information
2243 is no longer needed once this has executed. */
2245 static void
2246 change_stack (insn, old, new, where)
2247 rtx insn;
2248 stack old;
2249 stack new;
2250 enum emit_where where;
2252 int reg;
2253 int update_end = 0;
2255 /* We will be inserting new insns "backwards". If we are to insert
2256 after INSN, find the next insn, and insert before it. */
2258 if (where == EMIT_AFTER)
2260 if (current_block && current_block->end == insn)
2261 update_end = 1;
2262 insn = NEXT_INSN (insn);
2265 /* Pop any registers that are not needed in the new block. */
2267 for (reg = old->top; reg >= 0; reg--)
2268 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2269 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2270 EMIT_BEFORE);
2272 if (new->top == -2)
2274 /* If the new block has never been processed, then it can inherit
2275 the old stack order. */
2277 new->top = old->top;
2278 memcpy (new->reg, old->reg, sizeof (new->reg));
2280 else
2282 /* This block has been entered before, and we must match the
2283 previously selected stack order. */
2285 /* By now, the only difference should be the order of the stack,
2286 not their depth or liveliness. */
2288 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2289 abort ();
2290 win:
2291 if (old->top != new->top)
2292 abort ();
2294 /* If the stack is not empty (new->top != -1), loop here emitting
2295 swaps until the stack is correct.
2297 The worst case number of swaps emitted is N + 2, where N is the
2298 depth of the stack. In some cases, the reg at the top of
2299 stack may be correct, but swapped anyway in order to fix
2300 other regs. But since we never swap any other reg away from
2301 its correct slot, this algorithm will converge. */
2303 if (new->top != -1)
2306 /* Swap the reg at top of stack into the position it is
2307 supposed to be in, until the correct top of stack appears. */
2309 while (old->reg[old->top] != new->reg[new->top])
2311 for (reg = new->top; reg >= 0; reg--)
2312 if (new->reg[reg] == old->reg[old->top])
2313 break;
2315 if (reg == -1)
2316 abort ();
2318 emit_swap_insn (insn, old,
2319 FP_MODE_REG (old->reg[reg], DFmode));
2322 /* See if any regs remain incorrect. If so, bring an
2323 incorrect reg to the top of stack, and let the while loop
2324 above fix it. */
2326 for (reg = new->top; reg >= 0; reg--)
2327 if (new->reg[reg] != old->reg[reg])
2329 emit_swap_insn (insn, old,
2330 FP_MODE_REG (old->reg[reg], DFmode));
2331 break;
2333 } while (reg >= 0);
2335 /* At this point there must be no differences. */
2337 for (reg = old->top; reg >= 0; reg--)
2338 if (old->reg[reg] != new->reg[reg])
2339 abort ();
2342 if (update_end)
2343 current_block->end = PREV_INSN (insn);
2346 /* Print stack configuration. */
2348 static void
2349 print_stack (file, s)
2350 FILE *file;
2351 stack s;
2353 if (! file)
2354 return;
2356 if (s->top == -2)
2357 fprintf (file, "uninitialized\n");
2358 else if (s->top == -1)
2359 fprintf (file, "empty\n");
2360 else
2362 int i;
2363 fputs ("[ ", file);
2364 for (i = 0; i <= s->top; ++i)
2365 fprintf (file, "%d ", s->reg[i]);
2366 fputs ("]\n", file);
2370 /* This function was doing life analysis. We now let the regular live
2371 code do it's job, so we only need to check some extra invariants
2372 that reg-stack expects. Primary among these being that all registers
2373 are initialized before use.
2375 The function returns true when code was emitted to CFG edges and
2376 commit_edge_insertions needs to be called. */
2378 static int
2379 convert_regs_entry ()
2381 int inserted = 0;
2382 edge e;
2383 basic_block block;
2385 FOR_EACH_BB_REVERSE (block)
2387 block_info bi = BLOCK_INFO (block);
2388 int reg;
2390 /* Set current register status at last instruction `uninitialized'. */
2391 bi->stack_in.top = -2;
2393 /* Copy live_at_end and live_at_start into temporaries. */
2394 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2396 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2397 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2398 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2399 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2403 /* Load something into each stack register live at function entry.
2404 Such live registers can be caused by uninitialized variables or
2405 functions not returning values on all paths. In order to keep
2406 the push/pop code happy, and to not scrog the register stack, we
2407 must put something in these registers. Use a QNaN.
2409 Note that we are inserting converted code here. This code is
2410 never seen by the convert_regs pass. */
2412 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2414 basic_block block = e->dest;
2415 block_info bi = BLOCK_INFO (block);
2416 int reg, top = -1;
2418 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2419 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2421 rtx init;
2423 bi->stack_in.reg[++top] = reg;
2425 init = gen_rtx_SET (VOIDmode,
2426 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2427 nan);
2428 insert_insn_on_edge (init, e);
2429 inserted = 1;
2432 bi->stack_in.top = top;
2435 return inserted;
2438 /* Construct the desired stack for function exit. This will either
2439 be `empty', or the function return value at top-of-stack. */
2441 static void
2442 convert_regs_exit ()
2444 int value_reg_low, value_reg_high;
2445 stack output_stack;
2446 rtx retvalue;
2448 retvalue = stack_result (current_function_decl);
2449 value_reg_low = value_reg_high = -1;
2450 if (retvalue)
2452 value_reg_low = REGNO (retvalue);
2453 value_reg_high = value_reg_low
2454 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2457 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2458 if (value_reg_low == -1)
2459 output_stack->top = -1;
2460 else
2462 int reg;
2464 output_stack->top = value_reg_high - value_reg_low;
2465 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2467 output_stack->reg[value_reg_high - reg] = reg;
2468 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2473 /* Adjust the stack of this block on exit to match the stack of the
2474 target block, or copy stack info into the stack of the successor
2475 of the successor hasn't been processed yet. */
2476 static bool
2477 compensate_edge (e, file)
2478 edge e;
2479 FILE *file;
2481 basic_block block = e->src, target = e->dest;
2482 block_info bi = BLOCK_INFO (block);
2483 struct stack_def regstack, tmpstack;
2484 stack target_stack = &BLOCK_INFO (target)->stack_in;
2485 int reg;
2487 current_block = block;
2488 regstack = bi->stack_out;
2489 if (file)
2490 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2492 if (target_stack->top == -2)
2494 /* The target block hasn't had a stack order selected.
2495 We need merely ensure that no pops are needed. */
2496 for (reg = regstack.top; reg >= 0; --reg)
2497 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2498 break;
2500 if (reg == -1)
2502 if (file)
2503 fprintf (file, "new block; copying stack position\n");
2505 /* change_stack kills values in regstack. */
2506 tmpstack = regstack;
2508 change_stack (block->end, &tmpstack, target_stack, EMIT_AFTER);
2509 return false;
2512 if (file)
2513 fprintf (file, "new block; pops needed\n");
2515 else
2517 if (target_stack->top == regstack.top)
2519 for (reg = target_stack->top; reg >= 0; --reg)
2520 if (target_stack->reg[reg] != regstack.reg[reg])
2521 break;
2523 if (reg == -1)
2525 if (file)
2526 fprintf (file, "no changes needed\n");
2527 return false;
2531 if (file)
2533 fprintf (file, "correcting stack to ");
2534 print_stack (file, target_stack);
2538 /* Care for non-call EH edges specially. The normal return path have
2539 values in registers. These will be popped en masse by the unwind
2540 library. */
2541 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2542 target_stack->top = -1;
2544 /* Other calls may appear to have values live in st(0), but the
2545 abnormal return path will not have actually loaded the values. */
2546 else if (e->flags & EDGE_ABNORMAL_CALL)
2548 /* Assert that the lifetimes are as we expect -- one value
2549 live at st(0) on the end of the source block, and no
2550 values live at the beginning of the destination block. */
2551 HARD_REG_SET tmp;
2553 CLEAR_HARD_REG_SET (tmp);
2554 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2555 abort ();
2556 eh1:
2558 /* We are sure that there is st(0) live, otherwise we won't compensate.
2559 For complex return values, we may have st(1) live as well. */
2560 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2561 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2562 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2563 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2564 abort ();
2565 eh2:
2567 target_stack->top = -1;
2570 /* It is better to output directly to the end of the block
2571 instead of to the edge, because emit_swap can do minimal
2572 insn scheduling. We can do this when there is only one
2573 edge out, and it is not abnormal. */
2574 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2576 /* change_stack kills values in regstack. */
2577 tmpstack = regstack;
2579 change_stack (block->end, &tmpstack, target_stack,
2580 (GET_CODE (block->end) == JUMP_INSN
2581 ? EMIT_BEFORE : EMIT_AFTER));
2583 else
2585 rtx seq, after;
2587 /* We don't support abnormal edges. Global takes care to
2588 avoid any live register across them, so we should never
2589 have to insert instructions on such edges. */
2590 if (e->flags & EDGE_ABNORMAL)
2591 abort ();
2593 current_block = NULL;
2594 start_sequence ();
2596 /* ??? change_stack needs some point to emit insns after. */
2597 after = emit_note (NULL, NOTE_INSN_DELETED);
2599 tmpstack = regstack;
2600 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2602 seq = get_insns ();
2603 end_sequence ();
2605 insert_insn_on_edge (seq, e);
2606 return true;
2608 return false;
2611 /* Convert stack register references in one block. */
2613 static int
2614 convert_regs_1 (file, block)
2615 FILE *file;
2616 basic_block block;
2618 struct stack_def regstack;
2619 block_info bi = BLOCK_INFO (block);
2620 int inserted, reg;
2621 rtx insn, next;
2622 edge e, beste = NULL;
2624 inserted = 0;
2626 /* Find the edge we will copy stack from. It should be the most frequent
2627 one as it will get cheapest after compensation code is generated,
2628 if multiple such exists, take one with largest count, prefer critical
2629 one (as splitting critical edges is more expensive), or one with lowest
2630 index, to avoid random changes with different orders of the edges. */
2631 for (e = block->pred; e ; e = e->pred_next)
2633 if (e->flags & EDGE_DFS_BACK)
2635 else if (! beste)
2636 beste = e;
2637 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2638 beste = e;
2639 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2641 else if (beste->count < e->count)
2642 beste = e;
2643 else if (beste->count > e->count)
2645 else if ((EDGE_CRITICAL_P (e) != 0)
2646 != (EDGE_CRITICAL_P (beste) != 0))
2648 if (EDGE_CRITICAL_P (e))
2649 beste = e;
2651 else if (e->src->index < beste->src->index)
2652 beste = e;
2655 /* Entry block does have stack already initialized. */
2656 if (bi->stack_in.top == -2)
2657 inserted |= compensate_edge (beste, file);
2658 else
2659 beste = NULL;
2661 current_block = block;
2663 if (file)
2665 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2666 print_stack (file, &bi->stack_in);
2669 /* Process all insns in this block. Keep track of NEXT so that we
2670 don't process insns emitted while substituting in INSN. */
2671 next = block->head;
2672 regstack = bi->stack_in;
2675 insn = next;
2676 next = NEXT_INSN (insn);
2678 /* Ensure we have not missed a block boundary. */
2679 if (next == NULL)
2680 abort ();
2681 if (insn == block->end)
2682 next = NULL;
2684 /* Don't bother processing unless there is a stack reg
2685 mentioned or if it's a CALL_INSN. */
2686 if (stack_regs_mentioned (insn)
2687 || GET_CODE (insn) == CALL_INSN)
2689 if (file)
2691 fprintf (file, " insn %d input stack: ",
2692 INSN_UID (insn));
2693 print_stack (file, &regstack);
2695 subst_stack_regs (insn, &regstack);
2698 while (next);
2700 if (file)
2702 fprintf (file, "Expected live registers [");
2703 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2704 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2705 fprintf (file, " %d", reg);
2706 fprintf (file, " ]\nOutput stack: ");
2707 print_stack (file, &regstack);
2710 insn = block->end;
2711 if (GET_CODE (insn) == JUMP_INSN)
2712 insn = PREV_INSN (insn);
2714 /* If the function is declared to return a value, but it returns one
2715 in only some cases, some registers might come live here. Emit
2716 necessary moves for them. */
2718 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2720 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2721 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2723 rtx set;
2725 if (file)
2727 fprintf (file, "Emitting insn initializing reg %d\n",
2728 reg);
2731 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2732 nan);
2733 insn = emit_insn_after (set, insn);
2734 subst_stack_regs (insn, &regstack);
2738 /* Something failed if the stack lives don't match. */
2739 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2740 abort ();
2741 win:
2742 bi->stack_out = regstack;
2744 /* Compensate the back edges, as those wasn't visited yet. */
2745 for (e = block->succ; e ; e = e->succ_next)
2747 if (e->flags & EDGE_DFS_BACK
2748 || (e->dest == EXIT_BLOCK_PTR))
2750 if (!BLOCK_INFO (e->dest)->done
2751 && e->dest != block)
2752 abort ();
2753 inserted |= compensate_edge (e, file);
2756 for (e = block->pred; e ; e = e->pred_next)
2758 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2759 && e->src != ENTRY_BLOCK_PTR)
2761 if (!BLOCK_INFO (e->src)->done)
2762 abort ();
2763 inserted |= compensate_edge (e, file);
2767 return inserted;
2770 /* Convert registers in all blocks reachable from BLOCK. */
2772 static int
2773 convert_regs_2 (file, block)
2774 FILE *file;
2775 basic_block block;
2777 basic_block *stack, *sp;
2778 int inserted;
2780 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2781 sp = stack;
2783 *sp++ = block;
2785 inserted = 0;
2788 edge e;
2790 block = *--sp;
2791 inserted |= convert_regs_1 (file, block);
2792 BLOCK_INFO (block)->done = 1;
2794 for (e = block->succ; e ; e = e->succ_next)
2795 if (! (e->flags & EDGE_DFS_BACK))
2797 BLOCK_INFO (e->dest)->predecessors--;
2798 if (!BLOCK_INFO (e->dest)->predecessors)
2799 *sp++ = e->dest;
2802 while (sp != stack);
2804 return inserted;
2807 /* Traverse all basic blocks in a function, converting the register
2808 references in each insn from the "flat" register file that gcc uses,
2809 to the stack-like registers the 387 uses. */
2811 static int
2812 convert_regs (file)
2813 FILE *file;
2815 int inserted;
2816 basic_block b;
2817 edge e;
2819 /* Initialize uninitialized registers on function entry. */
2820 inserted = convert_regs_entry ();
2822 /* Construct the desired stack for function exit. */
2823 convert_regs_exit ();
2824 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2826 /* ??? Future: process inner loops first, and give them arbitrary
2827 initial stacks which emit_swap_insn can modify. This ought to
2828 prevent double fxch that aften appears at the head of a loop. */
2830 /* Process all blocks reachable from all entry points. */
2831 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2832 inserted |= convert_regs_2 (file, e->dest);
2834 /* ??? Process all unreachable blocks. Though there's no excuse
2835 for keeping these even when not optimizing. */
2836 FOR_EACH_BB (b)
2838 block_info bi = BLOCK_INFO (b);
2840 if (! bi->done)
2842 int reg;
2844 /* Create an arbitrary input stack. */
2845 bi->stack_in.top = -1;
2846 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2847 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2848 bi->stack_in.reg[++bi->stack_in.top] = reg;
2850 inserted |= convert_regs_2 (file, b);
2854 fixup_abnormal_edges ();
2855 if (inserted)
2856 commit_edge_insertions ();
2858 if (file)
2859 fputc ('\n', file);
2861 return inserted;
2863 #endif /* STACK_REGS */
2865 #include "gt-reg-stack.h"