Daily bump.
[official-gcc.git] / libgo / go / hash / crc32 / crc32.go
blobf330fdb77a5272d8cd5dc77750649b79b0239977
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
6 // checksum. See https://en.wikipedia.org/wiki/Cyclic_redundancy_check for
7 // information.
8 //
9 // Polynomials are represented in LSB-first form also known as reversed representation.
11 // See https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
12 // for information.
13 package crc32
15 import (
16 "errors"
17 "hash"
18 "sync"
19 "sync/atomic"
22 // The size of a CRC-32 checksum in bytes.
23 const Size = 4
25 // Predefined polynomials.
26 const (
27 // IEEE is by far and away the most common CRC-32 polynomial.
28 // Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
29 IEEE = 0xedb88320
31 // Castagnoli's polynomial, used in iSCSI.
32 // Has better error detection characteristics than IEEE.
33 // https://dx.doi.org/10.1109/26.231911
34 Castagnoli = 0x82f63b78
36 // Koopman's polynomial.
37 // Also has better error detection characteristics than IEEE.
38 // https://dx.doi.org/10.1109/DSN.2002.1028931
39 Koopman = 0xeb31d82e
42 // Table is a 256-word table representing the polynomial for efficient processing.
43 type Table [256]uint32
45 // This file makes use of functions implemented in architecture-specific files.
46 // The interface that they implement is as follows:
48 // // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE
49 // // algorithm is available.
50 // archAvailableIEEE() bool
52 // // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm.
53 // // It can only be called if archAvailableIEEE() returns true.
54 // archInitIEEE()
56 // // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if
57 // // archInitIEEE() was previously called.
58 // archUpdateIEEE(crc uint32, p []byte) uint32
60 // // archAvailableCastagnoli reports whether an architecture-specific
61 // // CRC32-C algorithm is available.
62 // archAvailableCastagnoli() bool
64 // // archInitCastagnoli initializes the architecture-specific CRC32-C
65 // // algorithm. It can only be called if archAvailableCastagnoli() returns
66 // // true.
67 // archInitCastagnoli()
69 // // archUpdateCastagnoli updates the given CRC32-C. It can only be called
70 // // if archInitCastagnoli() was previously called.
71 // archUpdateCastagnoli(crc uint32, p []byte) uint32
73 // castagnoliTable points to a lazily initialized Table for the Castagnoli
74 // polynomial. MakeTable will always return this value when asked to make a
75 // Castagnoli table so we can compare against it to find when the caller is
76 // using this polynomial.
77 var castagnoliTable *Table
78 var castagnoliTable8 *slicing8Table
79 var castagnoliArchImpl bool
80 var updateCastagnoli func(crc uint32, p []byte) uint32
81 var castagnoliOnce sync.Once
82 var haveCastagnoli uint32
84 func castagnoliInit() {
85 castagnoliTable = simpleMakeTable(Castagnoli)
86 castagnoliArchImpl = archAvailableCastagnoli()
88 if castagnoliArchImpl {
89 archInitCastagnoli()
90 updateCastagnoli = archUpdateCastagnoli
91 } else {
92 // Initialize the slicing-by-8 table.
93 castagnoliTable8 = slicingMakeTable(Castagnoli)
94 updateCastagnoli = func(crc uint32, p []byte) uint32 {
95 return slicingUpdate(crc, castagnoliTable8, p)
99 atomic.StoreUint32(&haveCastagnoli, 1)
102 // IEEETable is the table for the IEEE polynomial.
103 var IEEETable = simpleMakeTable(IEEE)
105 // ieeeTable8 is the slicing8Table for IEEE
106 var ieeeTable8 *slicing8Table
107 var ieeeArchImpl bool
108 var updateIEEE func(crc uint32, p []byte) uint32
109 var ieeeOnce sync.Once
111 func ieeeInit() {
112 ieeeArchImpl = archAvailableIEEE()
114 if ieeeArchImpl {
115 archInitIEEE()
116 updateIEEE = archUpdateIEEE
117 } else {
118 // Initialize the slicing-by-8 table.
119 ieeeTable8 = slicingMakeTable(IEEE)
120 updateIEEE = func(crc uint32, p []byte) uint32 {
121 return slicingUpdate(crc, ieeeTable8, p)
126 // MakeTable returns a Table constructed from the specified polynomial.
127 // The contents of this Table must not be modified.
128 func MakeTable(poly uint32) *Table {
129 switch poly {
130 case IEEE:
131 ieeeOnce.Do(ieeeInit)
132 return IEEETable
133 case Castagnoli:
134 castagnoliOnce.Do(castagnoliInit)
135 return castagnoliTable
137 return simpleMakeTable(poly)
140 // digest represents the partial evaluation of a checksum.
141 type digest struct {
142 crc uint32
143 tab *Table
146 // New creates a new hash.Hash32 computing the CRC-32 checksum using the
147 // polynomial represented by the Table. Its Sum method will lay the
148 // value out in big-endian byte order. The returned Hash32 also
149 // implements encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to
150 // marshal and unmarshal the internal state of the hash.
151 func New(tab *Table) hash.Hash32 {
152 if tab == IEEETable {
153 ieeeOnce.Do(ieeeInit)
155 return &digest{0, tab}
158 // NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum using
159 // the IEEE polynomial. Its Sum method will lay the value out in
160 // big-endian byte order. The returned Hash32 also implements
161 // encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to marshal
162 // and unmarshal the internal state of the hash.
163 func NewIEEE() hash.Hash32 { return New(IEEETable) }
165 func (d *digest) Size() int { return Size }
167 func (d *digest) BlockSize() int { return 1 }
169 func (d *digest) Reset() { d.crc = 0 }
171 const (
172 magic = "crc\x01"
173 marshaledSize = len(magic) + 4 + 4
176 func (d *digest) MarshalBinary() ([]byte, error) {
177 b := make([]byte, 0, marshaledSize)
178 b = append(b, magic...)
179 b = appendUint32(b, tableSum(d.tab))
180 b = appendUint32(b, d.crc)
181 return b, nil
184 func (d *digest) UnmarshalBinary(b []byte) error {
185 if len(b) < len(magic) || string(b[:len(magic)]) != magic {
186 return errors.New("hash/crc32: invalid hash state identifier")
188 if len(b) != marshaledSize {
189 return errors.New("hash/crc32: invalid hash state size")
191 if tableSum(d.tab) != readUint32(b[4:]) {
192 return errors.New("hash/crc32: tables do not match")
194 d.crc = readUint32(b[8:])
195 return nil
198 func appendUint32(b []byte, x uint32) []byte {
199 a := [4]byte{
200 byte(x >> 24),
201 byte(x >> 16),
202 byte(x >> 8),
203 byte(x),
205 return append(b, a[:]...)
208 func readUint32(b []byte) uint32 {
209 _ = b[3]
210 return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
213 // Update returns the result of adding the bytes in p to the crc.
214 func Update(crc uint32, tab *Table, p []byte) uint32 {
215 switch {
216 case atomic.LoadUint32(&haveCastagnoli) != 0 && tab == castagnoliTable:
217 return updateCastagnoli(crc, p)
218 case tab == IEEETable:
219 // Unfortunately, because IEEETable is exported, IEEE may be used without a
220 // call to MakeTable. We have to make sure it gets initialized in that case.
221 ieeeOnce.Do(ieeeInit)
222 return updateIEEE(crc, p)
223 default:
224 return simpleUpdate(crc, tab, p)
228 func (d *digest) Write(p []byte) (n int, err error) {
229 switch {
230 case atomic.LoadUint32(&haveCastagnoli) != 0 && d.tab == castagnoliTable:
231 d.crc = updateCastagnoli(d.crc, p)
232 case d.tab == IEEETable:
233 // We only create digest objects through New() which takes care of
234 // initialization in this case.
235 d.crc = updateIEEE(d.crc, p)
236 default:
237 d.crc = simpleUpdate(d.crc, d.tab, p)
239 return len(p), nil
242 func (d *digest) Sum32() uint32 { return d.crc }
244 func (d *digest) Sum(in []byte) []byte {
245 s := d.Sum32()
246 return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
249 // Checksum returns the CRC-32 checksum of data
250 // using the polynomial represented by the Table.
251 func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
253 // ChecksumIEEE returns the CRC-32 checksum of data
254 // using the IEEE polynomial.
255 func ChecksumIEEE(data []byte) uint32 {
256 ieeeOnce.Do(ieeeInit)
257 return updateIEEE(0, data)
260 // tableSum returns the IEEE checksum of table t.
261 func tableSum(t *Table) uint32 {
262 var a [1024]byte
263 b := a[:0]
264 if t != nil {
265 for _, x := range t {
266 b = appendUint32(b, x)
269 return ChecksumIEEE(b)