1 /* SLP - Pattern matcher on SLP trees
2 Copyright (C) 2020-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #define INCLUDE_MEMORY
23 #include "coretypes.h"
29 #include "tree-pass.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "recog.h" /* FIXME: for insn_data */
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "gimple-iterator.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
40 #include "gimple-walk.h"
42 #include "tree-vector-builder.h"
43 #include "vec-perm-indices.h"
44 #include "gimple-fold.h"
45 #include "internal-fn.h"
47 /* SLP Pattern matching mechanism.
49 This extension to the SLP vectorizer allows one to transform the generated SLP
50 tree based on any pattern. The difference between this and the normal vect
51 pattern matcher is that unlike the former, this matcher allows you to match
52 with instructions that do not belong to the same SSA dominator graph.
54 The only requirement that this pattern matcher has is that you are only
55 only allowed to either match an entire group or none.
57 The pattern matcher currently only allows you to perform replacements to
60 Once the patterns are matched it is one way, these cannot be undone. It is
61 currently not supported to match patterns recursively.
63 To add a new pattern, implement the vect_pattern class and add the type to
68 /*******************************************************************************
70 ******************************************************************************/
72 /* Default implementation of recognize that performs matching, validation and
73 replacement of nodes but that can be overriden if required. */
76 vect_pattern_validate_optab (internal_fn ifn
, slp_tree node
)
78 tree vectype
= SLP_TREE_VECTYPE (node
);
79 if (ifn
== IFN_LAST
|| !vectype
)
82 if (dump_enabled_p ())
83 dump_printf_loc (MSG_NOTE
, vect_location
,
84 "Found %s pattern in SLP tree\n",
85 internal_fn_name (ifn
));
87 if (direct_internal_fn_supported_p (ifn
, vectype
, OPTIMIZE_FOR_SPEED
))
89 if (dump_enabled_p ())
90 dump_printf_loc (MSG_NOTE
, vect_location
,
91 "Target supports %s vectorization with mode %T\n",
92 internal_fn_name (ifn
), vectype
);
96 if (dump_enabled_p ())
99 dump_printf_loc (MSG_NOTE
, vect_location
,
100 "Target does not support vector type for %G\n",
101 STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (node
)));
103 dump_printf_loc (MSG_NOTE
, vect_location
,
104 "Target does not support %s for vector type "
105 "%T\n", internal_fn_name (ifn
), vectype
);
112 /*******************************************************************************
113 * General helper types
114 ******************************************************************************/
116 /* The COMPLEX_OPERATION enum denotes the possible pair of operations that can
117 be matched when looking for expressions that we are interested matching for
118 complex numbers addition and mla. */
120 typedef enum _complex_operation
: unsigned {
126 } complex_operation_t
;
128 /*******************************************************************************
129 * General helper functions
130 ******************************************************************************/
132 /* Helper function of linear_loads_p that checks to see if the load permutation
133 is sequential and in monotonically increasing order of loads with no gaps.
136 static inline complex_perm_kinds_t
137 is_linear_load_p (load_permutation_t loads
)
139 if (loads
.length() == 0)
143 complex_perm_kinds_t candidates
[4]
150 int valid_patterns
= 4;
151 FOR_EACH_VEC_ELT (loads
, i
, load
)
153 unsigned adj_load
= load
% 2;
154 if (candidates
[0] != PERM_UNKNOWN
&& adj_load
!= 1)
156 candidates
[0] = PERM_UNKNOWN
;
159 if (candidates
[1] != PERM_UNKNOWN
&& adj_load
!= 0)
161 candidates
[1] = PERM_UNKNOWN
;
164 if (candidates
[2] != PERM_UNKNOWN
&& load
!= i
)
166 candidates
[2] = PERM_UNKNOWN
;
169 if (candidates
[3] != PERM_UNKNOWN
170 && load
!= (i
% 2 == 0 ? i
+ 1 : i
- 1))
172 candidates
[3] = PERM_UNKNOWN
;
176 if (valid_patterns
== 0)
180 for (i
= 0; i
< sizeof(candidates
); i
++)
181 if (candidates
[i
] != PERM_UNKNOWN
)
182 return candidates
[i
];
187 /* Combine complex_perm_kinds A and B into a new permute kind that describes the
188 resulting operation. */
190 static inline complex_perm_kinds_t
191 vect_merge_perms (complex_perm_kinds_t a
, complex_perm_kinds_t b
)
205 /* Check to see if all loads rooted in ROOT are linear. Linearity is
206 defined as having no gaps between values loaded. */
208 static complex_perm_kinds_t
209 linear_loads_p (slp_tree_to_load_perm_map_t
*perm_cache
, slp_tree root
)
215 complex_perm_kinds_t
*tmp
;
217 if ((tmp
= perm_cache
->get (root
)) != NULL
)
220 complex_perm_kinds_t retval
= PERM_UNKNOWN
;
221 perm_cache
->put (root
, retval
);
223 /* If it's a load node, then just read the load permute. */
224 if (SLP_TREE_LOAD_PERMUTATION (root
).exists ())
226 retval
= is_linear_load_p (SLP_TREE_LOAD_PERMUTATION (root
));
227 perm_cache
->put (root
, retval
);
230 else if (SLP_TREE_DEF_TYPE (root
) != vect_internal_def
)
233 perm_cache
->put (root
, retval
);
237 complex_perm_kinds_t kind
= PERM_TOP
;
240 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (root
), i
, child
)
242 complex_perm_kinds_t res
= linear_loads_p (perm_cache
, child
);
243 kind
= vect_merge_perms (kind
, res
);
244 /* Unknown and Top are not valid on blends as they produce no permute. */
246 if (kind
== PERM_UNKNOWN
|| kind
== PERM_TOP
)
252 perm_cache
->put (root
, retval
);
257 /* This function attempts to make a node rooted in NODE is linear. If the node
258 if already linear than the node itself is returned in RESULT.
260 If the node is not linear then a new VEC_PERM_EXPR node is created with a
261 lane permute that when applied will make the node linear. If such a
262 permute cannot be created then FALSE is returned from the function.
264 Here linearity is defined as having a sequential, monotically increasing
265 load position inside the load permute generated by the loads reachable from
269 vect_build_swap_evenodd_node (slp_tree node
)
271 /* Attempt to linearise the permute. */
272 vec
<std::pair
<unsigned, unsigned> > zipped
;
273 zipped
.create (SLP_TREE_LANES (node
));
275 for (unsigned x
= 0; x
< SLP_TREE_LANES (node
); x
+=2)
277 zipped
.quick_push (std::make_pair (0, x
+1));
278 zipped
.quick_push (std::make_pair (0, x
));
281 /* Create the new permute node and store it instead. */
282 slp_tree vnode
= vect_create_new_slp_node (1, VEC_PERM_EXPR
);
283 SLP_TREE_LANE_PERMUTATION (vnode
) = zipped
;
284 SLP_TREE_VECTYPE (vnode
) = SLP_TREE_VECTYPE (node
);
285 SLP_TREE_CHILDREN (vnode
).quick_push (node
);
286 SLP_TREE_REF_COUNT (vnode
) = 1;
287 SLP_TREE_LANES (vnode
) = SLP_TREE_LANES (node
);
288 SLP_TREE_REPRESENTATIVE (vnode
) = SLP_TREE_REPRESENTATIVE (node
);
289 SLP_TREE_REF_COUNT (node
)++;
293 /* Checks to see of the expression represented by NODE is a gimple assign with
297 vect_match_expression_p (slp_tree node
, tree_code code
)
300 || !SLP_TREE_REPRESENTATIVE (node
))
303 gimple
* expr
= STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (node
));
304 if (!is_gimple_assign (expr
)
305 || gimple_assign_rhs_code (expr
) != code
)
311 /* Check if the given lane permute in PERMUTES matches an alternating sequence
312 of {even odd even odd ...}. This to account for unrolled loops. Further
313 mode there resulting permute must be linear. */
316 vect_check_evenodd_blend (lane_permutation_t
&permutes
,
317 unsigned even
, unsigned odd
)
319 if (permutes
.length () == 0
320 || permutes
.length () % 2 != 0)
323 unsigned val
[2] = {even
, odd
};
325 for (unsigned i
= 0; i
< permutes
.length (); i
++)
326 if (permutes
[i
].first
!= val
[i
% 2]
327 || permutes
[i
].second
!= seed
++)
333 /* This function will match the two gimple expressions representing NODE1 and
334 NODE2 in parallel and returns the pair operation that represents the two
335 expressions in the two statements.
337 If match is successful then the corresponding complex_operation is
338 returned and the arguments to the two matched operations are returned in OPS.
340 If TWO_OPERANDS it is expected that the LANES of the parent VEC_PERM select
341 from the two nodes alternatingly.
343 If unsuccessful then CMPLX_NONE is returned and OPS is untouched.
345 e.g. the following gimple statements
347 stmt 0 _39 = _37 + _12;
348 stmt 1 _6 = _38 - _36;
350 will return PLUS_MINUS along with OPS containing {_37, _12, _38, _36}.
353 static complex_operation_t
354 vect_detect_pair_op (slp_tree node1
, slp_tree node2
, lane_permutation_t
&lanes
,
355 bool two_operands
= true, vec
<slp_tree
> *ops
= NULL
)
357 complex_operation_t result
= CMPLX_NONE
;
359 if (vect_match_expression_p (node1
, MINUS_EXPR
)
360 && vect_match_expression_p (node2
, PLUS_EXPR
)
361 && (!two_operands
|| vect_check_evenodd_blend (lanes
, 0, 1)))
363 else if (vect_match_expression_p (node1
, PLUS_EXPR
)
364 && vect_match_expression_p (node2
, MINUS_EXPR
)
365 && (!two_operands
|| vect_check_evenodd_blend (lanes
, 0, 1)))
367 else if (vect_match_expression_p (node1
, PLUS_EXPR
)
368 && vect_match_expression_p (node2
, PLUS_EXPR
))
370 else if (vect_match_expression_p (node1
, MULT_EXPR
)
371 && vect_match_expression_p (node2
, MULT_EXPR
))
374 if (result
!= CMPLX_NONE
&& ops
!= NULL
)
378 auto l0node
= SLP_TREE_CHILDREN (node1
);
379 auto l1node
= SLP_TREE_CHILDREN (node2
);
381 /* Check if the tree is connected as we expect it. */
382 if (!((l0node
[0] == l1node
[0] && l0node
[1] == l1node
[1])
383 || (l0node
[0] == l1node
[1] && l0node
[1] == l1node
[0])))
386 ops
->safe_push (node1
);
387 ops
->safe_push (node2
);
392 /* Overload of vect_detect_pair_op that matches against the representative
393 statements in the children of NODE. It is expected that NODE has exactly
394 two children and when TWO_OPERANDS then NODE must be a VEC_PERM. */
396 static complex_operation_t
397 vect_detect_pair_op (slp_tree node
, bool two_operands
= true,
398 vec
<slp_tree
> *ops
= NULL
)
400 if (!two_operands
&& SLP_TREE_CODE (node
) == VEC_PERM_EXPR
)
403 if (SLP_TREE_CHILDREN (node
).length () != 2)
406 vec
<slp_tree
> children
= SLP_TREE_CHILDREN (node
);
407 lane_permutation_t
&lanes
= SLP_TREE_LANE_PERMUTATION (node
);
409 return vect_detect_pair_op (children
[0], children
[1], lanes
, two_operands
,
413 /*******************************************************************************
414 * complex_pattern class
415 ******************************************************************************/
417 /* SLP Complex Numbers pattern matching.
419 As an example, the following simple loop:
421 double a[restrict N]; double b[restrict N]; double c[restrict N];
423 for (int i=0; i < N; i+=2)
425 c[i] = a[i] - b[i+1];
426 c[i+1] = a[i+1] + b[i];
429 which represents a complex addition on with a rotation of 90* around the
430 argand plane. i.e. if `a` and `b` were complex numbers then this would be the
431 same as `a + (b * I)`.
433 Here the expressions for `c[i]` and `c[i+1]` are independent but have to be
434 both recognized in order for the pattern to work. As an SLP tree this is
437 +--------------------------------+
438 | stmt 0 *_9 = _10; |
439 | stmt 1 *_15 = _16; |
440 +--------------------------------+
444 +--------------------------------+
445 | stmt 0 _10 = _4 - _8; |
446 | stmt 1 _16 = _12 + _14; |
447 | lane permutation { 0[0] 1[1] } |
448 +--------------------------------+
454 +-----| { } |<-----+ +----->| { } --------+
455 | | | +------------------| | |
456 | +-----+ | +-----+ |
459 | +------|------------------+ |
462 +--------------------------+ +--------------------------------+
463 | stmt 0 _8 = *_7; | | stmt 0 _4 = *_3; |
464 | stmt 1 _14 = *_13; | | stmt 1 _12 = *_11; |
465 | load permutation { 1 0 } | | load permutation { 0 1 } |
466 +--------------------------+ +--------------------------------+
468 The pattern matcher allows you to replace both statements 0 and 1 or none at
469 all. Because this operation is a two operands operation the actual nodes
470 being replaced are those in the { } nodes. The actual scalar statements
471 themselves are not replaced or used during the matching but instead the
472 SLP_TREE_REPRESENTATIVE statements are inspected. You are also allowed to
473 replace and match on any number of nodes.
475 Because the pattern matcher matches on the representative statement for the
476 SLP node the case of two_operators it allows you to match the children of the
477 node. This is done using the method `recognize ()`.
481 /* The complex_pattern class contains common code for pattern matchers that work
482 on complex numbers. These provide functionality to allow de-construction and
483 validation of sequences depicting/transforming REAL and IMAG pairs. */
485 class complex_pattern
: public vect_pattern
488 auto_vec
<slp_tree
> m_workset
;
489 complex_pattern (slp_tree
*node
, vec
<slp_tree
> *m_ops
, internal_fn ifn
)
490 : vect_pattern (node
, m_ops
, ifn
)
492 this->m_workset
.safe_push (*node
);
496 void build (vec_info
*) override
;
499 matches (complex_operation_t op
, slp_tree_to_load_perm_map_t
*, slp_tree
*,
503 /* Create a replacement pattern statement for each node in m_node and inserts
504 the new statement into m_node as the new representative statement. The old
505 statement is marked as being in a pattern defined by the new statement. The
506 statement is created as call to internal function IFN with m_num_args
509 Futhermore the new pattern is also added to the vectorization information
510 structure VINFO and the old statement STMT_INFO is marked as unused while
511 the new statement is marked as used and the number of SLP uses of the new
512 statement is incremented.
514 The newly created SLP nodes are marked as SLP only and will be dissolved
517 The newly created gimple call is returned and the BB remains unchanged.
519 This default method is designed to only match against simple operands where
520 all the input and output types are the same.
524 complex_pattern::build (vec_info
*vinfo
)
526 stmt_vec_info stmt_info
;
529 args
.create (this->m_num_args
);
530 args
.quick_grow_cleared (this->m_num_args
);
533 stmt_vec_info call_stmt_info
;
534 gcall
*call_stmt
= NULL
;
536 /* Now modify the nodes themselves. */
537 FOR_EACH_VEC_ELT (this->m_workset
, ix
, node
)
539 /* Calculate the location of the statement in NODE to replace. */
540 stmt_info
= SLP_TREE_REPRESENTATIVE (node
);
541 stmt_vec_info reduc_def
542 = STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info
));
543 gimple
* old_stmt
= STMT_VINFO_STMT (stmt_info
);
544 tree lhs_old_stmt
= gimple_get_lhs (old_stmt
);
545 tree type
= TREE_TYPE (lhs_old_stmt
);
547 /* Create the argument set for use by gimple_build_call_internal_vec. */
548 for (unsigned i
= 0; i
< this->m_num_args
; i
++)
549 args
[i
] = lhs_old_stmt
;
551 /* Create the new pattern statements. */
552 call_stmt
= gimple_build_call_internal_vec (this->m_ifn
, args
);
553 tree var
= make_temp_ssa_name (type
, call_stmt
, "slp_patt");
554 gimple_call_set_lhs (call_stmt
, var
);
555 gimple_set_location (call_stmt
, gimple_location (old_stmt
));
556 gimple_call_set_nothrow (call_stmt
, true);
558 /* Adjust the book-keeping for the new and old statements for use during
559 SLP. This is required to get the right VF and statement during SLP
560 analysis. These changes are created after relevancy has been set for
561 the nodes as such we need to manually update them. Any changes will be
562 undone if SLP is cancelled. */
564 = vinfo
->add_pattern_stmt (call_stmt
, stmt_info
);
566 /* Make sure to mark the representative statement pure_slp and
567 relevant and transfer reduction info. */
568 STMT_VINFO_RELEVANT (call_stmt_info
) = vect_used_in_scope
;
569 STMT_SLP_TYPE (call_stmt_info
) = pure_slp
;
570 STMT_VINFO_REDUC_DEF (call_stmt_info
) = reduc_def
;
572 gimple_set_bb (call_stmt
, gimple_bb (stmt_info
->stmt
));
573 STMT_VINFO_VECTYPE (call_stmt_info
) = SLP_TREE_VECTYPE (node
);
574 STMT_VINFO_SLP_VECT_ONLY_PATTERN (call_stmt_info
) = true;
576 /* Since we are replacing all the statements in the group with the same
577 thing it doesn't really matter. So just set it every time a new stmt
579 SLP_TREE_REPRESENTATIVE (node
) = call_stmt_info
;
580 SLP_TREE_LANE_PERMUTATION (node
).release ();
581 SLP_TREE_CODE (node
) = CALL_EXPR
;
585 /*******************************************************************************
586 * complex_add_pattern class
587 ******************************************************************************/
589 class complex_add_pattern
: public complex_pattern
592 complex_add_pattern (slp_tree
*node
, vec
<slp_tree
> *m_ops
, internal_fn ifn
)
593 : complex_pattern (node
, m_ops
, ifn
)
595 this->m_num_args
= 2;
599 void build (vec_info
*) final override
;
601 matches (complex_operation_t op
, slp_tree_to_load_perm_map_t
*,
602 slp_compat_nodes_map_t
*, slp_tree
*, vec
<slp_tree
> *);
605 recognize (slp_tree_to_load_perm_map_t
*, slp_compat_nodes_map_t
*,
609 mkInstance (slp_tree
*node
, vec
<slp_tree
> *m_ops
, internal_fn ifn
)
611 return new complex_add_pattern (node
, m_ops
, ifn
);
615 /* Perform a replacement of the detected complex add pattern with the new
616 instruction sequences. */
619 complex_add_pattern::build (vec_info
*vinfo
)
621 SLP_TREE_CHILDREN (*this->m_node
).reserve_exact (2);
623 slp_tree node
= this->m_ops
[0];
624 vec
<slp_tree
> children
= SLP_TREE_CHILDREN (node
);
626 /* First re-arrange the children. */
627 SLP_TREE_CHILDREN (*this->m_node
)[0] = children
[0];
628 SLP_TREE_CHILDREN (*this->m_node
)[1] =
629 vect_build_swap_evenodd_node (children
[1]);
631 SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (*this->m_node
)[0])++;
632 SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (*this->m_node
)[1])++;
633 vect_free_slp_tree (this->m_ops
[0]);
634 vect_free_slp_tree (this->m_ops
[1]);
636 complex_pattern::build (vinfo
);
639 /* Pattern matcher for trying to match complex addition pattern in SLP tree.
641 If no match is found then IFN is set to IFN_LAST.
642 This function matches the patterns shaped as:
644 c[i] = a[i] - b[i+1];
645 c[i+1] = a[i+1] + b[i];
647 If a match occurred then TRUE is returned, else FALSE. The initial match is
648 expected to be in OP1 and the initial match operands in args0. */
651 complex_add_pattern::matches (complex_operation_t op
,
652 slp_tree_to_load_perm_map_t
*perm_cache
,
653 slp_compat_nodes_map_t
* /* compat_cache */,
654 slp_tree
*node
, vec
<slp_tree
> *ops
)
656 internal_fn ifn
= IFN_LAST
;
658 /* Find the two components. Rotation in the complex plane will modify
666 Rotation 0 and 180 can be handled by normal SIMD code, so we don't need
667 to care about them here. */
668 if (op
== MINUS_PLUS
)
669 ifn
= IFN_COMPLEX_ADD_ROT90
;
670 else if (op
== PLUS_MINUS
)
671 ifn
= IFN_COMPLEX_ADD_ROT270
;
675 /* verify that there is a permute, otherwise this isn't a pattern we
677 gcc_assert (ops
->length () == 2);
679 vec
<slp_tree
> children
= SLP_TREE_CHILDREN ((*ops
)[0]);
681 /* First node must be unpermuted. */
682 if (linear_loads_p (perm_cache
, children
[0]) != PERM_EVENODD
)
685 /* Second node must be permuted. */
686 if (linear_loads_p (perm_cache
, children
[1]) != PERM_ODDEVEN
)
689 if (!vect_pattern_validate_optab (ifn
, *node
))
695 /* Attempt to recognize a complex add pattern. */
698 complex_add_pattern::recognize (slp_tree_to_load_perm_map_t
*perm_cache
,
699 slp_compat_nodes_map_t
*compat_cache
,
702 auto_vec
<slp_tree
> ops
;
703 complex_operation_t op
704 = vect_detect_pair_op (*node
, true, &ops
);
706 = complex_add_pattern::matches (op
, perm_cache
, compat_cache
, node
, &ops
);
710 return new complex_add_pattern (node
, &ops
, ifn
);
713 /*******************************************************************************
714 * complex_mul_pattern
715 ******************************************************************************/
717 /* Helper function to check if PERM is KIND or PERM_TOP. */
720 is_eq_or_top (slp_tree_to_load_perm_map_t
*perm_cache
,
721 slp_tree op1
, complex_perm_kinds_t kind1
,
722 slp_tree op2
, complex_perm_kinds_t kind2
)
724 complex_perm_kinds_t perm1
= linear_loads_p (perm_cache
, op1
);
725 if (perm1
!= kind1
&& perm1
!= PERM_TOP
)
728 complex_perm_kinds_t perm2
= linear_loads_p (perm_cache
, op2
);
729 if (perm2
!= kind2
&& perm2
!= PERM_TOP
)
735 enum _conj_status
{ CONJ_NONE
, CONJ_FST
, CONJ_SND
};
738 compatible_complex_nodes_p (slp_compat_nodes_map_t
*compat_cache
,
739 slp_tree a
, int *pa
, slp_tree b
, int *pb
)
742 std::pair
<slp_tree
, slp_tree
> key
= std::make_pair(a
, b
);
743 if ((tmp
= compat_cache
->get (key
)) != NULL
)
746 compat_cache
->put (key
, false);
748 if (SLP_TREE_CHILDREN (a
).length () != SLP_TREE_CHILDREN (b
).length ())
751 if (SLP_TREE_DEF_TYPE (a
) != SLP_TREE_DEF_TYPE (b
))
754 /* Only internal nodes can be loads, as such we can't check further if they
756 if (SLP_TREE_DEF_TYPE (a
) != vect_internal_def
)
758 for (unsigned i
= 0; i
< SLP_TREE_SCALAR_OPS (a
).length (); i
++)
760 tree op1
= SLP_TREE_SCALAR_OPS (a
)[pa
[i
% 2]];
761 tree op2
= SLP_TREE_SCALAR_OPS (b
)[pb
[i
% 2]];
762 if (!operand_equal_p (op1
, op2
, 0))
766 compat_cache
->put (key
, true);
770 auto a_stmt
= STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (a
));
771 auto b_stmt
= STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (b
));
773 if (gimple_code (a_stmt
) != gimple_code (b_stmt
))
776 /* code, children, type, externals, loads, constants */
777 if (gimple_num_args (a_stmt
) != gimple_num_args (b_stmt
))
780 /* At this point, a and b are known to be the same gimple operations. */
781 if (is_gimple_call (a_stmt
))
783 if (!compatible_calls_p (dyn_cast
<gcall
*> (a_stmt
),
784 dyn_cast
<gcall
*> (b_stmt
)))
787 else if (!is_gimple_assign (a_stmt
))
791 tree_code acode
= gimple_assign_rhs_code (a_stmt
);
792 tree_code bcode
= gimple_assign_rhs_code (b_stmt
);
793 if ((acode
== REALPART_EXPR
|| acode
== IMAGPART_EXPR
)
794 && (bcode
== REALPART_EXPR
|| bcode
== IMAGPART_EXPR
))
801 if (!SLP_TREE_LOAD_PERMUTATION (a
).exists ()
802 || !SLP_TREE_LOAD_PERMUTATION (b
).exists ())
804 for (unsigned i
= 0; i
< gimple_num_args (a_stmt
); i
++)
806 tree t1
= gimple_arg (a_stmt
, i
);
807 tree t2
= gimple_arg (b_stmt
, i
);
808 if (TREE_CODE (t1
) != TREE_CODE (t2
))
811 /* If SSA name then we will need to inspect the children
812 so we can punt here. */
813 if (TREE_CODE (t1
) == SSA_NAME
)
816 if (!operand_equal_p (t1
, t2
, 0))
822 auto dr1
= STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (a
));
823 auto dr2
= STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (b
));
824 /* Don't check the last dimension as that's checked by the lineary
825 checks. This check is also much stricter than what we need
826 because it doesn't consider loading from adjacent elements
827 in the same struct as loading from the same base object.
828 But for now, I'll play it safe. */
829 if (!same_data_refs (dr1
, dr2
, 1))
833 for (unsigned i
= 0; i
< SLP_TREE_CHILDREN (a
).length (); i
++)
835 if (!compatible_complex_nodes_p (compat_cache
,
836 SLP_TREE_CHILDREN (a
)[i
], pa
,
837 SLP_TREE_CHILDREN (b
)[i
], pb
))
841 compat_cache
->put (key
, true);
846 vect_validate_multiplication (slp_tree_to_load_perm_map_t
*perm_cache
,
847 slp_compat_nodes_map_t
*compat_cache
,
848 vec
<slp_tree
> &left_op
,
849 vec
<slp_tree
> &right_op
,
851 enum _conj_status
*_status
)
853 auto_vec
<slp_tree
> ops
;
854 enum _conj_status stats
= CONJ_NONE
;
856 /* The complex operations can occur in two layouts and two permute sequences
857 so declare them and re-use them. */
858 int styles
[][4] = { { 0, 2, 1, 3} /* {L1, R1} + {L2, R2}. */
859 , { 0, 3, 1, 2} /* {L1, R2} + {L2, R1}. */
862 /* Now for the corresponding permutes that go with these values. */
863 complex_perm_kinds_t perms
[][4]
864 = { { PERM_EVENEVEN
, PERM_ODDODD
, PERM_EVENODD
, PERM_ODDEVEN
}
865 , { PERM_EVENODD
, PERM_ODDEVEN
, PERM_EVENEVEN
, PERM_ODDODD
}
868 /* These permutes are used during comparisons of externals on which
869 we require strict equality. */
871 = { { { 0, 0 }, { 1, 1 }, { 0, 1 }, { 1, 0 } }
872 , { { 0, 1 }, { 1, 0 }, { 0, 0 }, { 1, 1 } }
875 /* Default to style and perm 0, most operations use this one. */
877 int perm
= subtract
? 1 : 0;
879 /* Check if we have a negate operation, if so absorb the node and continue
881 bool neg0
= vect_match_expression_p (right_op
[0], NEGATE_EXPR
);
882 bool neg1
= vect_match_expression_p (right_op
[1], NEGATE_EXPR
);
884 /* Determine which style we're looking at. We only have different ones
885 whenever a conjugate is involved. */
890 right_op
[0] = SLP_TREE_CHILDREN (right_op
[0])[0];
897 right_op
[1] = SLP_TREE_CHILDREN (right_op
[1])[0];
904 /* Flatten the inputs after we've remapped them. */
906 ops
.safe_splice (left_op
);
907 ops
.safe_splice (right_op
);
909 /* Extract out the elements to check. */
910 slp_tree op0
= ops
[styles
[style
][0]];
911 slp_tree op1
= ops
[styles
[style
][1]];
912 slp_tree op2
= ops
[styles
[style
][2]];
913 slp_tree op3
= ops
[styles
[style
][3]];
915 /* Do cheapest test first. If failed no need to analyze further. */
916 if (linear_loads_p (perm_cache
, op0
) != perms
[perm
][0]
917 || linear_loads_p (perm_cache
, op1
) != perms
[perm
][1]
918 || !is_eq_or_top (perm_cache
, op2
, perms
[perm
][2], op3
, perms
[perm
][3]))
921 return compatible_complex_nodes_p (compat_cache
, op0
, cq
[perm
][0], op1
,
923 && compatible_complex_nodes_p (compat_cache
, op2
, cq
[perm
][2], op3
,
927 /* This function combines two nodes containing only even and only odd lanes
928 together into a single node which contains the nodes in even/odd order
929 by using a lane permute.
931 The lanes in EVEN and ODD are duplicated 2 times inside the vectors.
932 So for a lanes = 4 EVEN contains {EVEN1, EVEN1, EVEN2, EVEN2}.
934 The tree REPRESENTATION is taken from the supplied REP along with the
935 vectype which must be the same between all three nodes.
939 vect_build_combine_node (slp_tree even
, slp_tree odd
, slp_tree rep
)
941 vec
<std::pair
<unsigned, unsigned> > perm
;
942 perm
.create (SLP_TREE_LANES (rep
));
944 for (unsigned x
= 0; x
< SLP_TREE_LANES (rep
); x
+=2)
946 perm
.quick_push (std::make_pair (0, x
));
947 perm
.quick_push (std::make_pair (1, x
+1));
950 slp_tree vnode
= vect_create_new_slp_node (2, SLP_TREE_CODE (even
));
951 SLP_TREE_CODE (vnode
) = VEC_PERM_EXPR
;
952 SLP_TREE_LANE_PERMUTATION (vnode
) = perm
;
954 SLP_TREE_CHILDREN (vnode
).create (2);
955 SLP_TREE_CHILDREN (vnode
).quick_push (even
);
956 SLP_TREE_CHILDREN (vnode
).quick_push (odd
);
957 SLP_TREE_REF_COUNT (even
)++;
958 SLP_TREE_REF_COUNT (odd
)++;
959 SLP_TREE_REF_COUNT (vnode
) = 1;
961 SLP_TREE_LANES (vnode
) = SLP_TREE_LANES (rep
);
962 gcc_assert (perm
.length () == SLP_TREE_LANES (vnode
));
963 /* Representation is set to that of the current node as the vectorizer
964 can't deal with VEC_PERMs with no representation, as would be the
965 case with invariants. */
966 SLP_TREE_REPRESENTATIVE (vnode
) = SLP_TREE_REPRESENTATIVE (rep
);
967 SLP_TREE_VECTYPE (vnode
) = SLP_TREE_VECTYPE (rep
);
971 class complex_mul_pattern
: public complex_pattern
974 complex_mul_pattern (slp_tree
*node
, vec
<slp_tree
> *m_ops
, internal_fn ifn
)
975 : complex_pattern (node
, m_ops
, ifn
)
977 this->m_num_args
= 2;
981 void build (vec_info
*) final override
;
983 matches (complex_operation_t op
, slp_tree_to_load_perm_map_t
*,
984 slp_compat_nodes_map_t
*, slp_tree
*, vec
<slp_tree
> *);
987 recognize (slp_tree_to_load_perm_map_t
*, slp_compat_nodes_map_t
*,
991 mkInstance (slp_tree
*node
, vec
<slp_tree
> *m_ops
, internal_fn ifn
)
993 return new complex_mul_pattern (node
, m_ops
, ifn
);
998 /* Pattern matcher for trying to match complex multiply and complex multiply
999 and accumulate pattern in SLP tree. If the operation matches then IFN
1000 is set to the operation it matched and the arguments to the two
1001 replacement statements are put in m_ops.
1003 If no match is found then IFN is set to IFN_LAST and m_ops is unchanged.
1005 This function matches the patterns shaped as:
1007 double ax = (b[i+1] * a[i]);
1008 double bx = (a[i+1] * b[i]);
1011 c[i+1] = c[i+1] + bx;
1013 If a match occurred then TRUE is returned, else FALSE. The initial match is
1014 expected to be in OP1 and the initial match operands in args0. */
1017 complex_mul_pattern::matches (complex_operation_t op
,
1018 slp_tree_to_load_perm_map_t
*perm_cache
,
1019 slp_compat_nodes_map_t
*compat_cache
,
1020 slp_tree
*node
, vec
<slp_tree
> *ops
)
1022 internal_fn ifn
= IFN_LAST
;
1024 if (op
!= MINUS_PLUS
)
1028 auto l0node
= SLP_TREE_CHILDREN (childs
[0]);
1030 bool mul0
= vect_match_expression_p (l0node
[0], MULT_EXPR
);
1031 bool mul1
= vect_match_expression_p (l0node
[1], MULT_EXPR
);
1035 /* Now operand2+4 may lead to another expression. */
1036 auto_vec
<slp_tree
> left_op
, right_op
;
1037 slp_tree add0
= NULL
;
1039 /* Check if we may be a multiply add. It's only valid to form FMAs
1040 with -ffp-contract=fast. */
1042 && (flag_fp_contract_mode
== FP_CONTRACT_FAST
1043 || !FLOAT_TYPE_P (SLP_TREE_VECTYPE (*node
)))
1044 && vect_match_expression_p (l0node
[0], PLUS_EXPR
))
1046 auto vals
= SLP_TREE_CHILDREN (l0node
[0]);
1047 /* Check if it's a multiply, otherwise no idea what this is. */
1048 if (!(mul0
= vect_match_expression_p (vals
[1], MULT_EXPR
)))
1051 /* Check if the ADD is linear, otherwise it's not valid complex FMA. */
1052 if (linear_loads_p (perm_cache
, vals
[0]) != PERM_EVENODD
)
1055 left_op
.safe_splice (SLP_TREE_CHILDREN (vals
[1]));
1059 left_op
.safe_splice (SLP_TREE_CHILDREN (l0node
[0]));
1061 right_op
.safe_splice (SLP_TREE_CHILDREN (l0node
[1]));
1063 if (left_op
.length () != 2
1064 || right_op
.length () != 2
1067 || linear_loads_p (perm_cache
, left_op
[1]) == PERM_ODDEVEN
)
1070 enum _conj_status status
;
1071 if (!vect_validate_multiplication (perm_cache
, compat_cache
, left_op
,
1072 right_op
, false, &status
))
1075 if (status
== CONJ_NONE
)
1078 ifn
= IFN_COMPLEX_FMA
;
1080 ifn
= IFN_COMPLEX_MUL
;
1085 ifn
= IFN_COMPLEX_FMA_CONJ
;
1087 ifn
= IFN_COMPLEX_MUL_CONJ
;
1090 if (!vect_pattern_validate_optab (ifn
, *node
))
1094 ops
->create (add0
? 4 : 3);
1097 ops
->quick_push (add0
);
1099 complex_perm_kinds_t kind
= linear_loads_p (perm_cache
, left_op
[0]);
1100 if (kind
== PERM_EVENODD
|| kind
== PERM_TOP
)
1102 ops
->quick_push (left_op
[1]);
1103 ops
->quick_push (right_op
[1]);
1104 ops
->quick_push (left_op
[0]);
1106 else if (kind
== PERM_EVENEVEN
&& status
!= CONJ_SND
)
1108 ops
->quick_push (left_op
[0]);
1109 ops
->quick_push (right_op
[0]);
1110 ops
->quick_push (left_op
[1]);
1114 ops
->quick_push (left_op
[0]);
1115 ops
->quick_push (right_op
[1]);
1116 ops
->quick_push (left_op
[1]);
1122 /* Attempt to recognize a complex mul pattern. */
1125 complex_mul_pattern::recognize (slp_tree_to_load_perm_map_t
*perm_cache
,
1126 slp_compat_nodes_map_t
*compat_cache
,
1129 auto_vec
<slp_tree
> ops
;
1130 complex_operation_t op
1131 = vect_detect_pair_op (*node
, true, &ops
);
1133 = complex_mul_pattern::matches (op
, perm_cache
, compat_cache
, node
, &ops
);
1134 if (ifn
== IFN_LAST
)
1137 return new complex_mul_pattern (node
, &ops
, ifn
);
1140 /* Perform a replacement of the detected complex mul pattern with the new
1141 instruction sequences. */
1144 complex_mul_pattern::build (vec_info
*vinfo
)
1148 switch (this->m_ifn
)
1150 case IFN_COMPLEX_MUL
:
1151 case IFN_COMPLEX_MUL_CONJ
:
1154 = vect_build_combine_node (this->m_ops
[0], this->m_ops
[1],
1156 SLP_TREE_REF_COUNT (this->m_ops
[2])++;
1158 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node
), i
, node
)
1159 vect_free_slp_tree (node
);
1161 /* First re-arrange the children. */
1162 SLP_TREE_CHILDREN (*this->m_node
).reserve_exact (2);
1163 SLP_TREE_CHILDREN (*this->m_node
)[0] = this->m_ops
[2];
1164 SLP_TREE_CHILDREN (*this->m_node
)[1] = newnode
;
1167 case IFN_COMPLEX_FMA
:
1168 case IFN_COMPLEX_FMA_CONJ
:
1170 SLP_TREE_REF_COUNT (this->m_ops
[0])++;
1172 = vect_build_combine_node (this->m_ops
[1], this->m_ops
[2],
1174 SLP_TREE_REF_COUNT (this->m_ops
[3])++;
1176 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node
), i
, node
)
1177 vect_free_slp_tree (node
);
1179 /* First re-arrange the children. */
1180 SLP_TREE_CHILDREN (*this->m_node
).safe_grow (3);
1181 SLP_TREE_CHILDREN (*this->m_node
)[0] = this->m_ops
[3];
1182 SLP_TREE_CHILDREN (*this->m_node
)[1] = newnode
;
1183 SLP_TREE_CHILDREN (*this->m_node
)[2] = this->m_ops
[0];
1185 /* Tell the builder to expect an extra argument. */
1193 /* And then rewrite the node itself. */
1194 complex_pattern::build (vinfo
);
1197 /*******************************************************************************
1198 * complex_fms_pattern class
1199 ******************************************************************************/
1201 class complex_fms_pattern
: public complex_pattern
1204 complex_fms_pattern (slp_tree
*node
, vec
<slp_tree
> *m_ops
, internal_fn ifn
)
1205 : complex_pattern (node
, m_ops
, ifn
)
1207 this->m_num_args
= 3;
1211 void build (vec_info
*) final override
;
1213 matches (complex_operation_t op
, slp_tree_to_load_perm_map_t
*,
1214 slp_compat_nodes_map_t
*, slp_tree
*, vec
<slp_tree
> *);
1216 static vect_pattern
*
1217 recognize (slp_tree_to_load_perm_map_t
*, slp_compat_nodes_map_t
*,
1220 static vect_pattern
*
1221 mkInstance (slp_tree
*node
, vec
<slp_tree
> *m_ops
, internal_fn ifn
)
1223 return new complex_fms_pattern (node
, m_ops
, ifn
);
1228 /* Pattern matcher for trying to match complex multiply and subtract pattern
1229 in SLP tree. If the operation matches then IFN is set to the operation
1230 it matched and the arguments to the two replacement statements are put in
1233 If no match is found then IFN is set to IFN_LAST and m_ops is unchanged.
1235 This function matches the patterns shaped as:
1237 double ax = (b[i+1] * a[i]) + (b[i] * a[i]);
1238 double bx = (a[i+1] * b[i]) - (a[i+1] * b[i+1]);
1241 c[i+1] = c[i+1] + bx;
1243 If a match occurred then TRUE is returned, else FALSE. The initial match is
1244 expected to be in OP1 and the initial match operands in args0. */
1247 complex_fms_pattern::matches (complex_operation_t op
,
1248 slp_tree_to_load_perm_map_t
*perm_cache
,
1249 slp_compat_nodes_map_t
*compat_cache
,
1250 slp_tree
* ref_node
, vec
<slp_tree
> *ops
)
1252 internal_fn ifn
= IFN_LAST
;
1254 /* We need to ignore the two_operands nodes that may also match,
1255 for that we can check if they have any scalar statements and also
1256 check that it's not a permute node as we're looking for a normal
1257 MINUS_EXPR operation. */
1258 if (op
!= CMPLX_NONE
)
1261 slp_tree root
= *ref_node
;
1262 if (!vect_match_expression_p (root
, MINUS_EXPR
))
1265 /* TODO: Support invariants here, with the new layout CADD now
1266 can match before we get a chance to try CFMS. */
1267 auto nodes
= SLP_TREE_CHILDREN (root
);
1268 if (!vect_match_expression_p (nodes
[1], MULT_EXPR
)
1269 || vect_detect_pair_op (nodes
[0]) != PLUS_MINUS
)
1272 auto childs
= SLP_TREE_CHILDREN (nodes
[0]);
1273 auto l0node
= SLP_TREE_CHILDREN (childs
[0]);
1275 /* Now operand2+4 may lead to another expression. */
1276 auto_vec
<slp_tree
> left_op
, right_op
;
1277 left_op
.safe_splice (SLP_TREE_CHILDREN (l0node
[1]));
1278 right_op
.safe_splice (SLP_TREE_CHILDREN (nodes
[1]));
1280 /* If these nodes don't have any children then they're
1281 not ones we're interested in. */
1282 if (left_op
.length () != 2
1283 || right_op
.length () != 2
1284 || !vect_match_expression_p (l0node
[1], MULT_EXPR
))
1287 enum _conj_status status
;
1288 if (!vect_validate_multiplication (perm_cache
, compat_cache
, right_op
,
1289 left_op
, true, &status
))
1292 if (status
== CONJ_NONE
)
1293 ifn
= IFN_COMPLEX_FMS
;
1295 ifn
= IFN_COMPLEX_FMS_CONJ
;
1297 if (!vect_pattern_validate_optab (ifn
, *ref_node
))
1303 complex_perm_kinds_t kind
= linear_loads_p (perm_cache
, right_op
[0]);
1304 if (kind
== PERM_EVENODD
)
1306 ops
->quick_push (l0node
[0]);
1307 ops
->quick_push (right_op
[0]);
1308 ops
->quick_push (right_op
[1]);
1309 ops
->quick_push (left_op
[1]);
1313 ops
->quick_push (l0node
[0]);
1314 ops
->quick_push (right_op
[1]);
1315 ops
->quick_push (right_op
[0]);
1316 ops
->quick_push (left_op
[0]);
1322 /* Attempt to recognize a complex mul pattern. */
1325 complex_fms_pattern::recognize (slp_tree_to_load_perm_map_t
*perm_cache
,
1326 slp_compat_nodes_map_t
*compat_cache
,
1329 auto_vec
<slp_tree
> ops
;
1330 complex_operation_t op
1331 = vect_detect_pair_op (*node
, true, &ops
);
1333 = complex_fms_pattern::matches (op
, perm_cache
, compat_cache
, node
, &ops
);
1334 if (ifn
== IFN_LAST
)
1337 return new complex_fms_pattern (node
, &ops
, ifn
);
1340 /* Perform a replacement of the detected complex mul pattern with the new
1341 instruction sequences. */
1344 complex_fms_pattern::build (vec_info
*vinfo
)
1349 vect_build_combine_node (this->m_ops
[2], this->m_ops
[3], *this->m_node
);
1350 SLP_TREE_REF_COUNT (this->m_ops
[0])++;
1351 SLP_TREE_REF_COUNT (this->m_ops
[1])++;
1353 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node
), i
, node
)
1354 vect_free_slp_tree (node
);
1356 SLP_TREE_CHILDREN (*this->m_node
).release ();
1357 SLP_TREE_CHILDREN (*this->m_node
).create (3);
1359 /* First re-arrange the children. */
1360 SLP_TREE_CHILDREN (*this->m_node
).quick_push (this->m_ops
[1]);
1361 SLP_TREE_CHILDREN (*this->m_node
).quick_push (newnode
);
1362 SLP_TREE_CHILDREN (*this->m_node
).quick_push (this->m_ops
[0]);
1364 /* And then rewrite the node itself. */
1365 complex_pattern::build (vinfo
);
1368 /*******************************************************************************
1369 * complex_operations_pattern class
1370 ******************************************************************************/
1372 /* This function combines all the existing pattern matchers above into one class
1373 that shares the functionality between them. The initial match is shared
1374 between all complex operations. */
1376 class complex_operations_pattern
: public complex_pattern
1379 complex_operations_pattern (slp_tree
*node
, vec
<slp_tree
> *m_ops
,
1381 : complex_pattern (node
, m_ops
, ifn
)
1383 this->m_num_args
= 0;
1387 void build (vec_info
*) final override
;
1389 matches (complex_operation_t op
, slp_tree_to_load_perm_map_t
*,
1390 slp_compat_nodes_map_t
*, slp_tree
*, vec
<slp_tree
> *);
1392 static vect_pattern
*
1393 recognize (slp_tree_to_load_perm_map_t
*, slp_compat_nodes_map_t
*,
1397 /* Dummy matches implementation for proxy object. */
1400 complex_operations_pattern::
1401 matches (complex_operation_t
/* op */,
1402 slp_tree_to_load_perm_map_t
* /* perm_cache */,
1403 slp_compat_nodes_map_t
* /* compat_cache */,
1404 slp_tree
* /* ref_node */, vec
<slp_tree
> * /* ops */)
1409 /* Attempt to recognize a complex mul pattern. */
1412 complex_operations_pattern::recognize (slp_tree_to_load_perm_map_t
*perm_cache
,
1413 slp_compat_nodes_map_t
*ccache
,
1416 auto_vec
<slp_tree
> ops
;
1417 complex_operation_t op
1418 = vect_detect_pair_op (*node
, true, &ops
);
1419 internal_fn ifn
= IFN_LAST
;
1421 ifn
= complex_fms_pattern::matches (op
, perm_cache
, ccache
, node
, &ops
);
1422 if (ifn
!= IFN_LAST
)
1423 return complex_fms_pattern::mkInstance (node
, &ops
, ifn
);
1425 ifn
= complex_mul_pattern::matches (op
, perm_cache
, ccache
, node
, &ops
);
1426 if (ifn
!= IFN_LAST
)
1427 return complex_mul_pattern::mkInstance (node
, &ops
, ifn
);
1429 ifn
= complex_add_pattern::matches (op
, perm_cache
, ccache
, node
, &ops
);
1430 if (ifn
!= IFN_LAST
)
1431 return complex_add_pattern::mkInstance (node
, &ops
, ifn
);
1436 /* Dummy implementation of build. */
1439 complex_operations_pattern::build (vec_info
* /* vinfo */)
1445 /* The addsub_pattern. */
1447 class addsub_pattern
: public vect_pattern
1450 addsub_pattern (slp_tree
*node
, internal_fn ifn
)
1451 : vect_pattern (node
, NULL
, ifn
) {};
1453 void build (vec_info
*) final override
;
1455 static vect_pattern
*
1456 recognize (slp_tree_to_load_perm_map_t
*, slp_compat_nodes_map_t
*,
1461 addsub_pattern::recognize (slp_tree_to_load_perm_map_t
*,
1462 slp_compat_nodes_map_t
*, slp_tree
*node_
)
1464 slp_tree node
= *node_
;
1465 if (SLP_TREE_CODE (node
) != VEC_PERM_EXPR
1466 || SLP_TREE_CHILDREN (node
).length () != 2
1467 || SLP_TREE_LANE_PERMUTATION (node
).length () % 2)
1470 /* Match a blend of a plus and a minus op with the same number of plus and
1471 minus lanes on the same operands. */
1472 unsigned l0
= SLP_TREE_LANE_PERMUTATION (node
)[0].first
;
1473 unsigned l1
= SLP_TREE_LANE_PERMUTATION (node
)[1].first
;
1476 bool l0add_p
= vect_match_expression_p (SLP_TREE_CHILDREN (node
)[l0
],
1479 && !vect_match_expression_p (SLP_TREE_CHILDREN (node
)[l0
], MINUS_EXPR
))
1481 bool l1add_p
= vect_match_expression_p (SLP_TREE_CHILDREN (node
)[l1
],
1484 && !vect_match_expression_p (SLP_TREE_CHILDREN (node
)[l1
], MINUS_EXPR
))
1487 slp_tree l0node
= SLP_TREE_CHILDREN (node
)[l0
];
1488 slp_tree l1node
= SLP_TREE_CHILDREN (node
)[l1
];
1489 if (!((SLP_TREE_CHILDREN (l0node
)[0] == SLP_TREE_CHILDREN (l1node
)[0]
1490 && SLP_TREE_CHILDREN (l0node
)[1] == SLP_TREE_CHILDREN (l1node
)[1])
1491 || (SLP_TREE_CHILDREN (l0node
)[0] == SLP_TREE_CHILDREN (l1node
)[1]
1492 && SLP_TREE_CHILDREN (l0node
)[1] == SLP_TREE_CHILDREN (l1node
)[0])))
1495 for (unsigned i
= 0; i
< SLP_TREE_LANE_PERMUTATION (node
).length (); ++i
)
1497 std::pair
<unsigned, unsigned> perm
= SLP_TREE_LANE_PERMUTATION (node
)[i
];
1498 /* It has to be alternating -, +, -,
1499 While we could permute the .ADDSUB inputs and the .ADDSUB output
1500 that's only profitable over the add + sub + blend if at least
1501 one of the permute is optimized which we can't determine here. */
1502 if (perm
.first
!= ((i
& 1) ? l1
: l0
)
1503 || perm
.second
!= i
)
1507 /* Now we have either { -, +, -, + ... } (!l0add_p) or { +, -, +, - ... }
1508 (l0add_p), see whether we have FMA variants. We can only form FMAs
1509 if allowed via -ffp-contract=fast. */
1510 if (flag_fp_contract_mode
!= FP_CONTRACT_FAST
1511 && FLOAT_TYPE_P (SLP_TREE_VECTYPE (l0node
)))
1514 && vect_match_expression_p (SLP_TREE_CHILDREN (l0node
)[0], MULT_EXPR
))
1517 if (vect_pattern_validate_optab (IFN_VEC_FMADDSUB
, node
))
1518 return new addsub_pattern (node_
, IFN_VEC_FMADDSUB
);
1521 && vect_match_expression_p (SLP_TREE_CHILDREN (l1node
)[0], MULT_EXPR
))
1524 if (vect_pattern_validate_optab (IFN_VEC_FMSUBADD
, node
))
1525 return new addsub_pattern (node_
, IFN_VEC_FMSUBADD
);
1528 if (!l0add_p
&& vect_pattern_validate_optab (IFN_VEC_ADDSUB
, node
))
1529 return new addsub_pattern (node_
, IFN_VEC_ADDSUB
);
1535 addsub_pattern::build (vec_info
*vinfo
)
1537 slp_tree node
= *m_node
;
1539 unsigned l0
= SLP_TREE_LANE_PERMUTATION (node
)[0].first
;
1540 unsigned l1
= SLP_TREE_LANE_PERMUTATION (node
)[1].first
;
1544 case IFN_VEC_ADDSUB
:
1546 slp_tree sub
= SLP_TREE_CHILDREN (node
)[l0
];
1547 slp_tree add
= SLP_TREE_CHILDREN (node
)[l1
];
1549 /* Modify the blend node in-place. */
1550 SLP_TREE_CHILDREN (node
)[0] = SLP_TREE_CHILDREN (sub
)[0];
1551 SLP_TREE_CHILDREN (node
)[1] = SLP_TREE_CHILDREN (sub
)[1];
1552 SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node
)[0])++;
1553 SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node
)[1])++;
1555 /* Build IFN_VEC_ADDSUB from the sub representative operands. */
1556 stmt_vec_info rep
= SLP_TREE_REPRESENTATIVE (sub
);
1557 gcall
*call
= gimple_build_call_internal (IFN_VEC_ADDSUB
, 2,
1558 gimple_assign_rhs1 (rep
->stmt
),
1559 gimple_assign_rhs2 (rep
->stmt
));
1560 gimple_call_set_lhs (call
, make_ssa_name
1561 (TREE_TYPE (gimple_assign_lhs (rep
->stmt
))));
1562 gimple_call_set_nothrow (call
, true);
1563 gimple_set_bb (call
, gimple_bb (rep
->stmt
));
1564 stmt_vec_info new_rep
= vinfo
->add_pattern_stmt (call
, rep
);
1565 SLP_TREE_REPRESENTATIVE (node
) = new_rep
;
1566 STMT_VINFO_RELEVANT (new_rep
) = vect_used_in_scope
;
1567 STMT_SLP_TYPE (new_rep
) = pure_slp
;
1568 STMT_VINFO_VECTYPE (new_rep
) = SLP_TREE_VECTYPE (node
);
1569 STMT_VINFO_SLP_VECT_ONLY_PATTERN (new_rep
) = true;
1570 STMT_VINFO_REDUC_DEF (new_rep
) = STMT_VINFO_REDUC_DEF (vect_orig_stmt (rep
));
1571 SLP_TREE_CODE (node
) = ERROR_MARK
;
1572 SLP_TREE_LANE_PERMUTATION (node
).release ();
1574 vect_free_slp_tree (sub
);
1575 vect_free_slp_tree (add
);
1578 case IFN_VEC_FMADDSUB
:
1579 case IFN_VEC_FMSUBADD
:
1582 if (m_ifn
== IFN_VEC_FMADDSUB
)
1584 sub
= SLP_TREE_CHILDREN (node
)[l0
];
1585 add
= SLP_TREE_CHILDREN (node
)[l1
];
1587 else /* m_ifn == IFN_VEC_FMSUBADD */
1589 sub
= SLP_TREE_CHILDREN (node
)[l1
];
1590 add
= SLP_TREE_CHILDREN (node
)[l0
];
1592 slp_tree mul
= SLP_TREE_CHILDREN (sub
)[0];
1593 /* Modify the blend node in-place. */
1594 SLP_TREE_CHILDREN (node
).safe_grow (3, true);
1595 SLP_TREE_CHILDREN (node
)[0] = SLP_TREE_CHILDREN (mul
)[0];
1596 SLP_TREE_CHILDREN (node
)[1] = SLP_TREE_CHILDREN (mul
)[1];
1597 SLP_TREE_CHILDREN (node
)[2] = SLP_TREE_CHILDREN (sub
)[1];
1598 SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node
)[0])++;
1599 SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node
)[1])++;
1600 SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node
)[2])++;
1602 /* Build IFN_VEC_FMADDSUB from the mul/sub representative operands. */
1603 stmt_vec_info srep
= SLP_TREE_REPRESENTATIVE (sub
);
1604 stmt_vec_info mrep
= SLP_TREE_REPRESENTATIVE (mul
);
1605 gcall
*call
= gimple_build_call_internal (m_ifn
, 3,
1606 gimple_assign_rhs1 (mrep
->stmt
),
1607 gimple_assign_rhs2 (mrep
->stmt
),
1608 gimple_assign_rhs2 (srep
->stmt
));
1609 gimple_call_set_lhs (call
, make_ssa_name
1610 (TREE_TYPE (gimple_assign_lhs (srep
->stmt
))));
1611 gimple_call_set_nothrow (call
, true);
1612 gimple_set_bb (call
, gimple_bb (srep
->stmt
));
1613 stmt_vec_info new_rep
= vinfo
->add_pattern_stmt (call
, srep
);
1614 SLP_TREE_REPRESENTATIVE (node
) = new_rep
;
1615 STMT_VINFO_RELEVANT (new_rep
) = vect_used_in_scope
;
1616 STMT_SLP_TYPE (new_rep
) = pure_slp
;
1617 STMT_VINFO_VECTYPE (new_rep
) = SLP_TREE_VECTYPE (node
);
1618 STMT_VINFO_SLP_VECT_ONLY_PATTERN (new_rep
) = true;
1619 STMT_VINFO_REDUC_DEF (new_rep
) = STMT_VINFO_REDUC_DEF (vect_orig_stmt (srep
));
1620 SLP_TREE_CODE (node
) = ERROR_MARK
;
1621 SLP_TREE_LANE_PERMUTATION (node
).release ();
1623 vect_free_slp_tree (sub
);
1624 vect_free_slp_tree (add
);
1631 /*******************************************************************************
1632 * Pattern matching definitions
1633 ******************************************************************************/
1635 #define SLP_PATTERN(x) &x::recognize
1636 vect_pattern_decl_t slp_patterns
[]
1638 /* For least amount of back-tracking and more efficient matching
1639 order patterns from the largest to the smallest. Especially if they
1640 overlap in what they can detect. */
1642 SLP_PATTERN (complex_operations_pattern
),
1643 SLP_PATTERN (addsub_pattern
)
1647 /* Set the number of SLP pattern matchers available. */
1648 size_t num__slp_patterns
= ARRAY_SIZE (slp_patterns
);