1 ;; ARM Cortex-A5 pipeline description
2 ;; Copyright (C) 2010-2024 Free Software Foundation, Inc.
3 ;; Contributed by CodeSourcery.
5 ;; This file is part of GCC.
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 ;; General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3. If not see
19 ;; <http://www.gnu.org/licenses/>.
21 (define_automaton "cortex_a5")
23 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
25 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
27 ;; The integer (ALU) pipeline. There are five DPU pipeline
28 ;; stages. However the decode/issue stages operate the same for all
29 ;; instructions, so do not model them. We only need to model the
30 ;; first execute stage because instructions always advance one stage
31 ;; per cycle in order. Only branch instructions may dual-issue, so a
32 ;; single unit covers all of the LS, ALU, MAC and FPU pipelines.
34 (define_cpu_unit "cortex_a5_ex1" "cortex_a5")
36 ;; The branch pipeline. Branches can dual-issue with other instructions
37 ;; (except when those instructions take multiple cycles to issue).
39 (define_cpu_unit "cortex_a5_branch" "cortex_a5")
41 ;; Pseudo-unit for blocking the multiply pipeline when a double-precision
42 ;; multiply is in progress.
44 (define_cpu_unit "cortex_a5_fpmul_pipe" "cortex_a5")
46 ;; The floating-point add pipeline (ex1/f1 stage), used to model the usage
47 ;; of the add pipeline by fmac instructions, etc.
49 (define_cpu_unit "cortex_a5_fpadd_pipe" "cortex_a5")
51 ;; Floating-point div/sqrt (long latency, out-of-order completion).
53 (define_cpu_unit "cortex_a5_fp_div_sqrt" "cortex_a5")
55 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
57 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
59 (define_insn_reservation "cortex_a5_alu" 2
60 (and (eq_attr "tune" "cortexa5")
61 (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
62 alu_sreg,alus_sreg,logic_reg,logics_reg,\
63 adc_imm,adcs_imm,adc_reg,adcs_reg,\
64 adr,bfm,clz,rbit,rev,alu_dsp_reg,\
66 mov_imm,mov_reg,mvn_imm,mvn_reg,\
70 (define_insn_reservation "cortex_a5_alu_shift" 2
71 (and (eq_attr "tune" "cortexa5")
72 (eq_attr "type" "extend,\
73 alu_shift_imm_lsl_1to4,alu_shift_imm_other,alus_shift_imm,\
74 logic_shift_imm,logics_shift_imm,\
75 alu_shift_reg,alus_shift_reg,\
76 logic_shift_reg,logics_shift_reg,\
77 mov_shift,mov_shift_reg,\
78 mvn_shift,mvn_shift_reg"))
81 ;; Forwarding path for unshifted operands.
83 (define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
86 (define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
88 "arm_no_early_alu_shift_dep")
90 ;; The multiplier pipeline can forward results from wr stage only so
91 ;; there's no need to specify bypasses).
93 (define_insn_reservation "cortex_a5_mul" 2
94 (and (eq_attr "tune" "cortexa5")
95 (ior (eq_attr "mul32" "yes")
96 (eq_attr "widen_mul64" "yes")))
99 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
100 ;; Load/store instructions.
101 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
103 ;; Address-generation happens in the issue stage, which is one stage behind
104 ;; the ex1 stage (the first stage we care about for scheduling purposes). The
105 ;; dc1 stage is parallel with ex1, dc2 with ex2 and rot with wr.
107 (define_insn_reservation "cortex_a5_load1" 2
108 (and (eq_attr "tune" "cortexa5")
109 (eq_attr "type" "load_byte,load_4"))
112 (define_insn_reservation "cortex_a5_store1" 0
113 (and (eq_attr "tune" "cortexa5")
114 (eq_attr "type" "store_4"))
117 (define_insn_reservation "cortex_a5_load2" 3
118 (and (eq_attr "tune" "cortexa5")
119 (eq_attr "type" "load_8"))
120 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
122 (define_insn_reservation "cortex_a5_store2" 0
123 (and (eq_attr "tune" "cortexa5")
124 (eq_attr "type" "store_8"))
125 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
127 (define_insn_reservation "cortex_a5_load3" 4
128 (and (eq_attr "tune" "cortexa5")
129 (eq_attr "type" "load_12"))
130 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
133 (define_insn_reservation "cortex_a5_store3" 0
134 (and (eq_attr "tune" "cortexa5")
135 (eq_attr "type" "store_12"))
136 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
139 (define_insn_reservation "cortex_a5_load4" 5
140 (and (eq_attr "tune" "cortexa5")
141 (eq_attr "type" "load_12"))
142 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
143 cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
145 (define_insn_reservation "cortex_a5_store4" 0
146 (and (eq_attr "tune" "cortexa5")
147 (eq_attr "type" "store_12"))
148 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
149 cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
151 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
153 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
155 ;; Direct branches are the only instructions we can dual-issue (also IT and
156 ;; nop, but those aren't very interesting for scheduling). (The latency here
157 ;; is meant to represent when the branch actually takes place, but may not be
158 ;; entirely correct.)
160 (define_insn_reservation "cortex_a5_branch" 3
161 (and (eq_attr "tune" "cortexa5")
162 (eq_attr "type" "branch,call"))
165 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
166 ;; Floating-point arithmetic.
167 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
169 (define_insn_reservation "cortex_a5_fpalu" 4
170 (and (eq_attr "tune" "cortexa5")
171 (eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov, fmuls,\
172 f_cvt,f_cvtf2i,f_cvti2f,\
174 "cortex_a5_ex1+cortex_a5_fpadd_pipe")
176 ;; For fconsts and fconstd, 8-bit immediate data is passed directly from
177 ;; f1 to f3 (which I think reduces the latency by one cycle).
179 (define_insn_reservation "cortex_a5_fconst" 3
180 (and (eq_attr "tune" "cortexa5")
181 (eq_attr "type" "fconsts,fconstd"))
182 "cortex_a5_ex1+cortex_a5_fpadd_pipe")
184 ;; We should try not to attempt to issue a single-precision multiplication in
185 ;; the middle of a double-precision multiplication operation (the usage of
186 ;; cortex_a5_fpmul_pipe).
188 (define_insn_reservation "cortex_a5_fpmuls" 4
189 (and (eq_attr "tune" "cortexa5")
190 (eq_attr "type" "fmuls"))
191 "cortex_a5_ex1+cortex_a5_fpmul_pipe")
193 ;; For single-precision multiply-accumulate, the add (accumulate) is issued
194 ;; whilst the multiply is in F4. The multiply result can then be forwarded
195 ;; from F5 to F1. The issue unit is only used once (when we first start
196 ;; processing the instruction), but the usage of the FP add pipeline could
197 ;; block other instructions attempting to use it simultaneously. We try to
198 ;; avoid that using cortex_a5_fpadd_pipe.
200 (define_insn_reservation "cortex_a5_fpmacs" 8
201 (and (eq_attr "tune" "cortexa5")
202 (eq_attr "type" "fmacs,ffmas"))
203 "cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
205 ;; Non-multiply instructions can issue in the middle two instructions of a
206 ;; double-precision multiply. Note that it isn't entirely clear when a branch
207 ;; can dual-issue when a multi-cycle multiplication is in progress; we ignore
208 ;; that for now though.
210 (define_insn_reservation "cortex_a5_fpmuld" 7
211 (and (eq_attr "tune" "cortexa5")
212 (eq_attr "type" "fmuld"))
213 "cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
214 cortex_a5_ex1+cortex_a5_fpmul_pipe")
216 (define_insn_reservation "cortex_a5_fpmacd" 11
217 (and (eq_attr "tune" "cortexa5")
218 (eq_attr "type" "fmacd,ffmad"))
219 "cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
220 cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
222 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
223 ;; Floating-point divide/square root instructions.
224 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
226 ;; ??? Not sure if the 14 cycles taken for single-precision divide to complete
227 ;; includes the time taken for the special instruction used to collect the
228 ;; result to travel down the multiply pipeline, or not. Assuming so. (If
229 ;; that's wrong, the latency should be increased by a few cycles.)
231 ;; fsqrt takes one cycle less, but that is not modelled, nor is the use of the
232 ;; multiply pipeline to collect the divide/square-root result.
234 (define_insn_reservation "cortex_a5_fdivs" 14
235 (and (eq_attr "tune" "cortexa5")
236 (eq_attr "type" "fdivs, fsqrts"))
237 "cortex_a5_ex1, cortex_a5_fp_div_sqrt * 13")
239 ;; ??? Similarly for fdivd.
241 (define_insn_reservation "cortex_a5_fdivd" 29
242 (and (eq_attr "tune" "cortexa5")
243 (eq_attr "type" "fdivd, fsqrtd"))
244 "cortex_a5_ex1, cortex_a5_fp_div_sqrt * 28")
246 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
247 ;; VFP to/from core transfers.
248 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
250 ;; FP loads take data from wr/rot/f3.
252 ;; Core-to-VFP transfers use the multiply pipeline.
254 (define_insn_reservation "cortex_a5_r2f" 4
255 (and (eq_attr "tune" "cortexa5")
256 (eq_attr "type" "f_mcr,f_mcrr"))
259 (define_insn_reservation "cortex_a5_f2r" 2
260 (and (eq_attr "tune" "cortexa5")
261 (eq_attr "type" "f_mrc,f_mrrc"))
264 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
265 ;; VFP flag transfer.
266 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
268 ;; ??? The flag forwarding from fmstat to the ex2 stage of the second
269 ;; instruction is not modeled at present.
271 (define_insn_reservation "cortex_a5_f_flags" 4
272 (and (eq_attr "tune" "cortexa5")
273 (eq_attr "type" "f_flag"))
276 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
278 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
280 (define_insn_reservation "cortex_a5_f_loads" 4
281 (and (eq_attr "tune" "cortexa5")
282 (eq_attr "type" "f_loads"))
285 (define_insn_reservation "cortex_a5_f_loadd" 5
286 (and (eq_attr "tune" "cortexa5")
287 (eq_attr "type" "f_loadd"))
288 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
290 (define_insn_reservation "cortex_a5_f_stores" 0
291 (and (eq_attr "tune" "cortexa5")
292 (eq_attr "type" "f_stores"))
295 (define_insn_reservation "cortex_a5_f_stored" 0
296 (and (eq_attr "tune" "cortexa5")
297 (eq_attr "type" "f_stored"))
298 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
300 ;; Load-to-use for floating-point values has a penalty of one cycle,
301 ;; i.e. a latency of two.
303 (define_bypass 2 "cortex_a5_f_loads"
304 "cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
305 cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
308 (define_bypass 3 "cortex_a5_f_loadd"
309 "cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
310 cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\