Fix common.opt.urls
[official-gcc.git] / gcc / ada / urealp.adb
blob147ac28f90fc98a6f83ea80cb00169a1bb9a6882
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- U R E A L P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Alloc;
27 with Output; use Output;
28 with Table;
30 package body Urealp is
32 Ureal_First_Entry : constant Ureal := Ureal'Succ (No_Ureal);
33 -- First subscript allocated in Ureal table (note that we can't just
34 -- add 1 to No_Ureal, since "+" means something different for Ureals).
36 type Ureal_Entry is record
37 Num : Uint;
38 -- Numerator (always non-negative)
40 Den : Uint;
41 -- Denominator (always non-zero, always positive if base is zero)
43 Rbase : Nat;
44 -- Base value. If Rbase is zero, then the value is simply Num / Den.
45 -- If Rbase is non-zero, then the value is Num / (Rbase ** Den)
47 Negative : Boolean;
48 -- Flag set if value is negative
49 end record;
51 -- The following representation clause ensures that the above record
52 -- has no holes. We do this so that when instances of this record are
53 -- written, we do not write uninitialized values to the file.
55 for Ureal_Entry use record
56 Num at 0 range 0 .. 31;
57 Den at 4 range 0 .. 31;
58 Rbase at 8 range 0 .. 31;
59 Negative at 12 range 0 .. 31;
60 end record;
62 for Ureal_Entry'Size use 16 * 8;
63 -- This ensures that we did not leave out any fields
65 package Ureals is new Table.Table (
66 Table_Component_Type => Ureal_Entry,
67 Table_Index_Type => Ureal'Base,
68 Table_Low_Bound => Ureal_First_Entry,
69 Table_Initial => Alloc.Ureals_Initial,
70 Table_Increment => Alloc.Ureals_Increment,
71 Table_Name => "Ureals");
73 -- The following universal reals are the values returned by the constant
74 -- functions. They are initialized by the initialization procedure.
76 UR_0 : Ureal;
77 UR_M_0 : Ureal;
78 UR_Tenth : Ureal;
79 UR_Half : Ureal;
80 UR_1 : Ureal;
81 UR_2 : Ureal;
82 UR_10 : Ureal;
83 UR_2_10_18 : Ureal;
84 UR_9_10_36 : Ureal;
85 UR_10_76 : Ureal;
86 UR_M_2_10_18 : Ureal;
87 UR_M_9_10_36 : Ureal;
88 UR_M_10_76 : Ureal;
89 UR_100 : Ureal;
90 UR_2_127 : Ureal;
91 UR_2_128 : Ureal;
92 UR_2_31 : Ureal;
93 UR_2_63 : Ureal;
94 UR_2_80 : Ureal;
95 UR_2_M_127 : Ureal;
96 UR_2_M_128 : Ureal;
97 UR_2_M_80 : Ureal;
99 Normalized_Real : Ureal := No_Ureal;
100 -- Used to memoize Norm_Num and Norm_Den, if either of these functions
101 -- is called, this value is set and Normalized_Entry contains the result
102 -- of the normalization. On subsequent calls, this is used to avoid the
103 -- call to Normalize if it has already been made.
105 Normalized_Entry : Ureal_Entry;
106 -- Entry built by most recent call to Normalize
108 -----------------------
109 -- Local Subprograms --
110 -----------------------
112 function Decimal_Exponent_Hi (V : Ureal) return Int;
113 -- Returns an estimate of the exponent of Val represented as a normalized
114 -- decimal number (non-zero digit before decimal point), the estimate is
115 -- either correct, or high, but never low. The accuracy of the estimate
116 -- affects only the efficiency of the comparison routines.
118 function Decimal_Exponent_Lo (V : Ureal) return Int;
119 -- Returns an estimate of the exponent of Val represented as a normalized
120 -- decimal number (non-zero digit before decimal point), the estimate is
121 -- either correct, or low, but never high. The accuracy of the estimate
122 -- affects only the efficiency of the comparison routines.
124 function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int;
125 -- U is a Ureal entry for which the base value is non-zero, the value
126 -- returned is the equivalent decimal exponent value, i.e. the value of
127 -- Den, adjusted as though the base were base 10. The value is rounded
128 -- toward zero (truncated), and so its value can be off by one.
130 function Is_Integer (Num, Den : Uint) return Boolean;
131 -- Return true if the real quotient of Num / Den is an integer value
133 function Normalize (Val : Ureal_Entry) return Ureal_Entry;
134 -- Normalizes the Ureal_Entry by reducing it to lowest terms (with a base
135 -- value of 0).
137 function Same (U1, U2 : Ureal) return Boolean;
138 pragma Inline (Same);
139 -- Determines if U1 and U2 are the same Ureal. Note that we cannot use
140 -- the equals operator for this test, since that tests for equality, not
141 -- identity.
143 function Store_Ureal (Val : Ureal_Entry) return Ureal;
144 -- This store a new entry in the universal reals table and return its index
145 -- in the table.
147 function Store_Ureal_Normalized (Val : Ureal_Entry) return Ureal;
148 pragma Inline (Store_Ureal_Normalized);
149 -- Like Store_Ureal, but normalizes its operand first
151 -------------------------
152 -- Decimal_Exponent_Hi --
153 -------------------------
155 function Decimal_Exponent_Hi (V : Ureal) return Int is
156 Val : constant Ureal_Entry := Ureals.Table (V);
158 begin
159 -- Zero always returns zero
161 if UR_Is_Zero (V) then
162 return 0;
164 -- For numbers in rational form, get the maximum number of digits in the
165 -- numerator and the minimum number of digits in the denominator, and
166 -- subtract. For example:
168 -- 1000 / 99 = 1.010E+1
169 -- 9999 / 10 = 9.999E+2
171 -- This estimate may of course be high, but that is acceptable
173 elsif Val.Rbase = 0 then
174 return UI_Decimal_Digits_Hi (Val.Num) -
175 UI_Decimal_Digits_Lo (Val.Den);
177 -- For based numbers, get the maximum number of digits in the numerator
178 -- minus one and the either exact or floor value of the decimal exponent
179 -- of the denominator, and subtract. For example:
181 -- 321 / 10**3 = 3.21E-1
182 -- 435 / 5**7 = 5.57E-3
184 else
185 declare
186 E : Int;
188 begin
189 if Val.Rbase = 10 then
190 E := UI_To_Int (Val.Den);
192 else
193 E := Equivalent_Decimal_Exponent (Val);
194 if E < 0 then
195 E := E - 1;
196 end if;
197 end if;
199 return UI_Decimal_Digits_Hi (Val.Num) - 1 - E;
200 end;
201 end if;
202 end Decimal_Exponent_Hi;
204 -------------------------
205 -- Decimal_Exponent_Lo --
206 -------------------------
208 function Decimal_Exponent_Lo (V : Ureal) return Int is
209 Val : constant Ureal_Entry := Ureals.Table (V);
211 begin
212 -- Zero always returns zero
214 if UR_Is_Zero (V) then
215 return 0;
217 -- For numbers in rational form, get min digits in numerator, max digits
218 -- in denominator, and subtract and subtract one more for possible loss
219 -- during the division. For example:
221 -- 1000 / 99 = 1.010E+1
222 -- 9999 / 10 = 9.999E+2
224 -- This estimate may of course be low, but that is acceptable
226 elsif Val.Rbase = 0 then
227 return UI_Decimal_Digits_Lo (Val.Num) -
228 UI_Decimal_Digits_Hi (Val.Den) - 1;
230 -- For based numbers, get the minimum number of digits in the numerator
231 -- minus one and the either exact or ceil value of the decimal exponent
232 -- of the denominator, and subtract. For example:
234 -- 321 / 10**3 = 3.21E-1
235 -- 435 / 5**7 = 5.57E-3
237 else
238 declare
239 E : Int;
241 begin
242 if Val.Rbase = 10 then
243 E := UI_To_Int (Val.Den);
245 else
246 E := Equivalent_Decimal_Exponent (Val);
247 if E > 0 then
248 E := E + 1;
249 end if;
250 end if;
252 return UI_Decimal_Digits_Lo (Val.Num) - 1 - E;
253 end;
254 end if;
255 end Decimal_Exponent_Lo;
257 -----------------
258 -- Denominator --
259 -----------------
261 function Denominator (Real : Ureal) return Uint is
262 begin
263 return Ureals.Table (Real).Den;
264 end Denominator;
266 ---------------------------------
267 -- Equivalent_Decimal_Exponent --
268 ---------------------------------
270 function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int is
272 type Ratio is record
273 Num : Nat;
274 Den : Nat;
275 end record;
277 -- The following table is a table of logs to the base 10. All values
278 -- have at least 15 digits of precision, and do not exceed the true
279 -- value. To avoid the use of floating point, and as a result potential
280 -- target dependency, each entry is represented as a fraction of two
281 -- integers.
283 Logs : constant array (Nat range 1 .. 16) of Ratio :=
284 (1 => (Num => 0, Den => 1), -- 0
285 2 => (Num => 15_392_313, Den => 51_132_157), -- 0.301029995663981
286 3 => (Num => 731_111_920, Den => 1532_339_867), -- 0.477121254719662
287 4 => (Num => 30_784_626, Den => 51_132_157), -- 0.602059991327962
288 5 => (Num => 111_488_153, Den => 159_503_487), -- 0.698970004336018
289 6 => (Num => 84_253_929, Den => 108_274_489), -- 0.778151250383643
290 7 => (Num => 35_275_468, Den => 41_741_273), -- 0.845098040014256
291 8 => (Num => 46_176_939, Den => 51_132_157), -- 0.903089986991943
292 9 => (Num => 417_620_173, Den => 437_645_744), -- 0.954242509439324
293 10 => (Num => 1, Den => 1), -- 1.000000000000000
294 11 => (Num => 136_507_510, Den => 131_081_687), -- 1.041392685158225
295 12 => (Num => 26_797_783, Den => 24_831_587), -- 1.079181246047624
296 13 => (Num => 73_333_297, Den => 65_832_160), -- 1.113943352306836
297 14 => (Num => 102_941_258, Den => 89_816_543), -- 1.146128035678238
298 15 => (Num => 53_385_559, Den => 45_392_361), -- 1.176091259055681
299 16 => (Num => 78_897_839, Den => 65_523_237)); -- 1.204119982655924
301 function Scale (X : Uint; R : Ratio) return Int;
302 -- Compute the value of X scaled by R
304 -----------
305 -- Scale --
306 -----------
308 function Scale (X : Uint; R : Ratio) return Int is
309 begin
310 return UI_To_Int (X * R.Num / R.Den);
311 end Scale;
313 begin
314 pragma Assert (U.Rbase /= 0);
315 return Scale (U.Den, Logs (U.Rbase));
316 end Equivalent_Decimal_Exponent;
318 ----------------
319 -- Initialize --
320 ----------------
322 procedure Initialize is
323 begin
324 Ureals.Init;
325 UR_0 := UR_From_Components (Uint_0, Uint_1, 0, False);
326 UR_M_0 := UR_From_Components (Uint_0, Uint_1, 0, True);
327 UR_Half := UR_From_Components (Uint_1, Uint_1, 2, False);
328 UR_Tenth := UR_From_Components (Uint_1, Uint_1, 10, False);
329 UR_1 := UR_From_Components (Uint_1, Uint_1, 0, False);
330 UR_2 := UR_From_Components (Uint_1, Uint_Minus_1, 2, False);
331 UR_10 := UR_From_Components (Uint_1, Uint_Minus_1, 10, False);
332 UR_2_10_18 := UR_From_Components (Uint_2, Uint_Minus_18, 10, False);
333 UR_9_10_36 := UR_From_Components (Uint_9, Uint_Minus_36, 10, False);
334 UR_10_76 := UR_From_Components (Uint_1, Uint_Minus_76, 10, False);
335 UR_M_2_10_18 := UR_From_Components (Uint_2, Uint_Minus_18, 10, True);
336 UR_M_9_10_36 := UR_From_Components (Uint_9, Uint_Minus_36, 10, True);
337 UR_M_10_76 := UR_From_Components (Uint_1, Uint_Minus_76, 10, True);
338 UR_100 := UR_From_Components (Uint_1, Uint_Minus_2, 10, False);
339 UR_2_127 := UR_From_Components (Uint_1, Uint_Minus_127, 2, False);
340 UR_2_M_127 := UR_From_Components (Uint_1, Uint_127, 2, False);
341 UR_2_128 := UR_From_Components (Uint_1, Uint_Minus_128, 2, False);
342 UR_2_M_128 := UR_From_Components (Uint_1, Uint_128, 2, False);
343 UR_2_31 := UR_From_Components (Uint_1, Uint_Minus_31, 2, False);
344 UR_2_63 := UR_From_Components (Uint_1, Uint_Minus_63, 2, False);
345 UR_2_80 := UR_From_Components (Uint_1, Uint_Minus_80, 2, False);
346 UR_2_M_80 := UR_From_Components (Uint_1, Uint_80, 2, False);
347 end Initialize;
349 ----------------
350 -- Is_Integer --
351 ----------------
353 function Is_Integer (Num, Den : Uint) return Boolean is
354 begin
355 return (Num / Den) * Den = Num;
356 end Is_Integer;
358 ----------
359 -- Mark --
360 ----------
362 function Mark return Save_Mark is
363 begin
364 return Save_Mark (Ureals.Last);
365 end Mark;
367 --------------
368 -- Norm_Den --
369 --------------
371 function Norm_Den (Real : Ureal) return Uint is
372 begin
373 if not Same (Real, Normalized_Real) then
374 Normalized_Real := Real;
375 Normalized_Entry := Normalize (Ureals.Table (Real));
376 end if;
378 return Normalized_Entry.Den;
379 end Norm_Den;
381 --------------
382 -- Norm_Num --
383 --------------
385 function Norm_Num (Real : Ureal) return Uint is
386 begin
387 if not Same (Real, Normalized_Real) then
388 Normalized_Real := Real;
389 Normalized_Entry := Normalize (Ureals.Table (Real));
390 end if;
392 return Normalized_Entry.Num;
393 end Norm_Num;
395 ---------------
396 -- Normalize --
397 ---------------
399 function Normalize (Val : Ureal_Entry) return Ureal_Entry is
400 J : Uint;
401 K : Uint;
402 Tmp : Uint;
403 Num : Uint;
404 Den : Uint;
405 M : constant Uintp.Save_Mark := Mark;
407 begin
408 -- Start by setting J to the greatest of the absolute values of the
409 -- numerator and the denominator (taking into account the base value),
410 -- and K to the lesser of the two absolute values. The gcd of Num and
411 -- Den is the gcd of J and K.
413 if Val.Rbase = 0 then
414 J := Val.Num;
415 K := Val.Den;
417 elsif Val.Den < 0 then
418 J := Val.Num * Val.Rbase ** (-Val.Den);
419 K := Uint_1;
421 else
422 J := Val.Num;
423 K := Val.Rbase ** Val.Den;
424 end if;
426 Num := J;
427 Den := K;
429 if K > J then
430 Tmp := J;
431 J := K;
432 K := Tmp;
433 end if;
435 J := UI_GCD (J, K);
436 Num := Num / J;
437 Den := Den / J;
438 Uintp.Release_And_Save (M, Num, Den);
440 -- Divide numerator and denominator by gcd and return result
442 return (Num => Num,
443 Den => Den,
444 Rbase => 0,
445 Negative => Val.Negative);
446 end Normalize;
448 ---------------
449 -- Numerator --
450 ---------------
452 function Numerator (Real : Ureal) return Uint is
453 begin
454 return Ureals.Table (Real).Num;
455 end Numerator;
457 --------
458 -- pr --
459 --------
461 procedure pr (Real : Ureal) is
462 begin
463 UR_Write (Real);
464 Write_Eol;
465 end pr;
467 -----------
468 -- Rbase --
469 -----------
471 function Rbase (Real : Ureal) return Nat is
472 begin
473 return Ureals.Table (Real).Rbase;
474 end Rbase;
476 -------------
477 -- Release --
478 -------------
480 procedure Release (M : Save_Mark) is
481 begin
482 Ureals.Set_Last (Ureal (M));
483 end Release;
485 ----------
486 -- Same --
487 ----------
489 function Same (U1, U2 : Ureal) return Boolean is
490 begin
491 return Int (U1) = Int (U2);
492 end Same;
494 -----------------
495 -- Store_Ureal --
496 -----------------
498 function Store_Ureal (Val : Ureal_Entry) return Ureal is
499 begin
500 Ureals.Append (Val);
502 -- Normalize representation of signed values
504 if Val.Num < 0 then
505 Ureals.Table (Ureals.Last).Negative := True;
506 Ureals.Table (Ureals.Last).Num := -Val.Num;
507 end if;
509 return Ureals.Last;
510 end Store_Ureal;
512 ----------------------------
513 -- Store_Ureal_Normalized --
514 ----------------------------
516 function Store_Ureal_Normalized (Val : Ureal_Entry) return Ureal is
517 begin
518 return Store_Ureal (Normalize (Val));
519 end Store_Ureal_Normalized;
521 ------------
522 -- UR_Abs --
523 ------------
525 function UR_Abs (Real : Ureal) return Ureal is
526 Val : constant Ureal_Entry := Ureals.Table (Real);
528 begin
529 return Store_Ureal
530 ((Num => Val.Num,
531 Den => Val.Den,
532 Rbase => Val.Rbase,
533 Negative => False));
534 end UR_Abs;
536 ------------
537 -- UR_Add --
538 ------------
540 function UR_Add (Left : Uint; Right : Ureal) return Ureal is
541 begin
542 return UR_From_Uint (Left) + Right;
543 end UR_Add;
545 function UR_Add (Left : Ureal; Right : Uint) return Ureal is
546 begin
547 return Left + UR_From_Uint (Right);
548 end UR_Add;
550 function UR_Add (Left : Ureal; Right : Ureal) return Ureal is
551 Lval : Ureal_Entry := Ureals.Table (Left);
552 Rval : Ureal_Entry := Ureals.Table (Right);
553 Num : Uint;
555 begin
556 pragma Annotate (CodePeer, Modified, Lval);
557 pragma Annotate (CodePeer, Modified, Rval);
559 -- Note, in the temporary Ureal_Entry values used in this procedure,
560 -- we store the sign as the sign of the numerator (i.e. xxx.Num may
561 -- be negative, even though in stored entries this can never be so)
563 if Lval.Rbase /= 0 and then Lval.Rbase = Rval.Rbase then
564 declare
565 Opd_Min, Opd_Max : Ureal_Entry;
566 Exp_Min, Exp_Max : Uint;
568 begin
569 if Lval.Negative then
570 Lval.Num := (-Lval.Num);
571 end if;
573 if Rval.Negative then
574 Rval.Num := (-Rval.Num);
575 end if;
577 if Lval.Den < Rval.Den then
578 Exp_Min := Lval.Den;
579 Exp_Max := Rval.Den;
580 Opd_Min := Lval;
581 Opd_Max := Rval;
582 else
583 Exp_Min := Rval.Den;
584 Exp_Max := Lval.Den;
585 Opd_Min := Rval;
586 Opd_Max := Lval;
587 end if;
589 Num :=
590 Opd_Min.Num * Lval.Rbase ** (Exp_Max - Exp_Min) + Opd_Max.Num;
592 if Num = 0 then
593 return Store_Ureal
594 ((Num => Uint_0,
595 Den => Uint_1,
596 Rbase => 0,
597 Negative => Lval.Negative));
599 else
600 return Store_Ureal
601 ((Num => abs Num,
602 Den => Exp_Max,
603 Rbase => Lval.Rbase,
604 Negative => (Num < 0)));
605 end if;
606 end;
608 else
609 declare
610 Ln : Ureal_Entry := Normalize (Lval);
611 Rn : Ureal_Entry := Normalize (Rval);
613 begin
614 if Ln.Negative then
615 Ln.Num := (-Ln.Num);
616 end if;
618 if Rn.Negative then
619 Rn.Num := (-Rn.Num);
620 end if;
622 Num := (Ln.Num * Rn.Den) + (Rn.Num * Ln.Den);
624 if Num = 0 then
625 return Store_Ureal
626 ((Num => Uint_0,
627 Den => Uint_1,
628 Rbase => 0,
629 Negative => Lval.Negative));
631 else
632 return Store_Ureal_Normalized
633 ((Num => abs Num,
634 Den => Ln.Den * Rn.Den,
635 Rbase => 0,
636 Negative => (Num < 0)));
637 end if;
638 end;
639 end if;
640 end UR_Add;
642 ----------------
643 -- UR_Ceiling --
644 ----------------
646 function UR_Ceiling (Real : Ureal) return Uint is
647 Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
648 begin
649 if Val.Negative then
650 return UI_Negate (Val.Num / Val.Den);
651 else
652 return (Val.Num + Val.Den - 1) / Val.Den;
653 end if;
654 end UR_Ceiling;
656 ------------
657 -- UR_Div --
658 ------------
660 function UR_Div (Left : Uint; Right : Ureal) return Ureal is
661 begin
662 return UR_From_Uint (Left) / Right;
663 end UR_Div;
665 function UR_Div (Left : Ureal; Right : Uint) return Ureal is
666 begin
667 return Left / UR_From_Uint (Right);
668 end UR_Div;
670 function UR_Div (Left, Right : Ureal) return Ureal is
671 Lval : constant Ureal_Entry := Ureals.Table (Left);
672 Rval : constant Ureal_Entry := Ureals.Table (Right);
673 Rneg : constant Boolean := Rval.Negative xor Lval.Negative;
675 begin
676 pragma Annotate (CodePeer, Modified, Lval);
677 pragma Annotate (CodePeer, Modified, Rval);
678 pragma Assert (Rval.Num /= Uint_0);
680 if Lval.Rbase = 0 then
681 if Rval.Rbase = 0 then
682 return Store_Ureal_Normalized
683 ((Num => Lval.Num * Rval.Den,
684 Den => Lval.Den * Rval.Num,
685 Rbase => 0,
686 Negative => Rneg));
688 elsif Is_Integer (Lval.Num, Rval.Num * Lval.Den) then
689 return Store_Ureal
690 ((Num => Lval.Num / (Rval.Num * Lval.Den),
691 Den => (-Rval.Den),
692 Rbase => Rval.Rbase,
693 Negative => Rneg));
695 elsif Rval.Den < 0 then
696 return Store_Ureal_Normalized
697 ((Num => Lval.Num,
698 Den => Rval.Rbase ** (-Rval.Den) *
699 Rval.Num *
700 Lval.Den,
701 Rbase => 0,
702 Negative => Rneg));
704 else
705 return Store_Ureal_Normalized
706 ((Num => Lval.Num * Rval.Rbase ** Rval.Den,
707 Den => Rval.Num * Lval.Den,
708 Rbase => 0,
709 Negative => Rneg));
710 end if;
712 elsif Is_Integer (Lval.Num, Rval.Num) then
713 if Rval.Rbase = Lval.Rbase then
714 return Store_Ureal
715 ((Num => Lval.Num / Rval.Num,
716 Den => Lval.Den - Rval.Den,
717 Rbase => Lval.Rbase,
718 Negative => Rneg));
720 elsif Rval.Rbase = 0 then
721 return Store_Ureal
722 ((Num => (Lval.Num / Rval.Num) * Rval.Den,
723 Den => Lval.Den,
724 Rbase => Lval.Rbase,
725 Negative => Rneg));
727 elsif Rval.Den < 0 then
728 declare
729 Num, Den : Uint;
731 begin
732 if Lval.Den < 0 then
733 Num := (Lval.Num / Rval.Num) * (Lval.Rbase ** (-Lval.Den));
734 Den := Rval.Rbase ** (-Rval.Den);
735 else
736 Num := Lval.Num / Rval.Num;
737 Den := (Lval.Rbase ** Lval.Den) *
738 (Rval.Rbase ** (-Rval.Den));
739 end if;
741 return Store_Ureal
742 ((Num => Num,
743 Den => Den,
744 Rbase => 0,
745 Negative => Rneg));
746 end;
748 else
749 return Store_Ureal
750 ((Num => (Lval.Num / Rval.Num) *
751 (Rval.Rbase ** Rval.Den),
752 Den => Lval.Den,
753 Rbase => Lval.Rbase,
754 Negative => Rneg));
755 end if;
757 else
758 declare
759 Num, Den : Uint;
761 begin
762 if Lval.Den < 0 then
763 Num := Lval.Num * (Lval.Rbase ** (-Lval.Den));
764 Den := Rval.Num;
765 else
766 Num := Lval.Num;
767 Den := Rval.Num * (Lval.Rbase ** Lval.Den);
768 end if;
770 if Rval.Rbase /= 0 then
771 if Rval.Den < 0 then
772 Den := Den * (Rval.Rbase ** (-Rval.Den));
773 else
774 Num := Num * (Rval.Rbase ** Rval.Den);
775 end if;
777 else
778 Num := Num * Rval.Den;
779 end if;
781 return Store_Ureal_Normalized
782 ((Num => Num,
783 Den => Den,
784 Rbase => 0,
785 Negative => Rneg));
786 end;
787 end if;
788 end UR_Div;
790 -----------
791 -- UR_Eq --
792 -----------
794 function UR_Eq (Left, Right : Ureal) return Boolean is
795 begin
796 return not UR_Ne (Left, Right);
797 end UR_Eq;
799 ---------------------
800 -- UR_Exponentiate --
801 ---------------------
803 function UR_Exponentiate (Real : Ureal; N : Uint) return Ureal is
804 X : constant Uint := abs N;
805 Bas : Ureal;
806 Val : Ureal_Entry;
807 Neg : Boolean;
808 IBas : Uint;
810 begin
811 -- If base is negative, then the resulting sign depends on whether
812 -- the exponent is even or odd (even => positive, odd = negative)
814 if UR_Is_Negative (Real) then
815 Neg := (N mod 2) /= 0;
816 Bas := UR_Negate (Real);
817 else
818 Neg := False;
819 Bas := Real;
820 end if;
822 Val := Ureals.Table (Bas);
824 -- If the base is a small integer, then we can return the result in
825 -- exponential form, which can save a lot of time for junk exponents.
827 IBas := UR_Trunc (Bas);
829 if IBas <= 16
830 and then UR_From_Uint (IBas) = Bas
831 then
832 return Store_Ureal
833 ((Num => Uint_1,
834 Den => -N,
835 Rbase => UI_To_Int (UR_Trunc (Bas)),
836 Negative => Neg));
838 -- If the exponent is negative then we raise the numerator and the
839 -- denominator (after normalization) to the absolute value of the
840 -- exponent and we return the reciprocal. An assert error will happen
841 -- if the numerator is zero.
843 elsif N < 0 then
844 pragma Assert (Val.Num /= 0);
845 Val := Normalize (Val);
847 return Store_Ureal
848 ((Num => Val.Den ** X,
849 Den => Val.Num ** X,
850 Rbase => 0,
851 Negative => Neg));
853 -- If positive, we distinguish the case when the base is not zero, in
854 -- which case the new denominator is just the product of the old one
855 -- with the exponent,
857 else
858 if Val.Rbase /= 0 then
860 return Store_Ureal
861 ((Num => Val.Num ** X,
862 Den => Val.Den * X,
863 Rbase => Val.Rbase,
864 Negative => Neg));
866 -- And when the base is zero, in which case we exponentiate
867 -- the old denominator.
869 else
870 return Store_Ureal
871 ((Num => Val.Num ** X,
872 Den => Val.Den ** X,
873 Rbase => 0,
874 Negative => Neg));
875 end if;
876 end if;
877 end UR_Exponentiate;
879 --------------
880 -- UR_Floor --
881 --------------
883 function UR_Floor (Real : Ureal) return Uint is
884 Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
885 begin
886 if Val.Negative then
887 return UI_Negate ((Val.Num + Val.Den - 1) / Val.Den);
888 else
889 return Val.Num / Val.Den;
890 end if;
891 end UR_Floor;
893 ------------------------
894 -- UR_From_Components --
895 ------------------------
897 function UR_From_Components
898 (Num : Uint;
899 Den : Uint;
900 Rbase : Nat := 0;
901 Negative : Boolean := False)
902 return Ureal
904 begin
905 return Store_Ureal
906 ((Num => Num,
907 Den => Den,
908 Rbase => Rbase,
909 Negative => Negative));
910 end UR_From_Components;
912 ------------------
913 -- UR_From_Uint --
914 ------------------
916 function UR_From_Uint (UI : Uint) return Ureal is
917 begin
918 return UR_From_Components
919 (abs UI, Uint_1, Negative => (UI < 0));
920 end UR_From_Uint;
922 -----------
923 -- UR_Ge --
924 -----------
926 function UR_Ge (Left, Right : Ureal) return Boolean is
927 begin
928 return not (Left < Right);
929 end UR_Ge;
931 -----------
932 -- UR_Gt --
933 -----------
935 function UR_Gt (Left, Right : Ureal) return Boolean is
936 begin
937 return (Right < Left);
938 end UR_Gt;
940 --------------------
941 -- UR_Is_Negative --
942 --------------------
944 function UR_Is_Negative (Real : Ureal) return Boolean is
945 begin
946 return Ureals.Table (Real).Negative;
947 end UR_Is_Negative;
949 --------------------
950 -- UR_Is_Positive --
951 --------------------
953 function UR_Is_Positive (Real : Ureal) return Boolean is
954 begin
955 return not Ureals.Table (Real).Negative
956 and then Ureals.Table (Real).Num /= 0;
957 end UR_Is_Positive;
959 ----------------
960 -- UR_Is_Zero --
961 ----------------
963 function UR_Is_Zero (Real : Ureal) return Boolean is
964 begin
965 return Ureals.Table (Real).Num = 0;
966 end UR_Is_Zero;
968 -----------
969 -- UR_Le --
970 -----------
972 function UR_Le (Left, Right : Ureal) return Boolean is
973 begin
974 return not (Right < Left);
975 end UR_Le;
977 -----------
978 -- UR_Lt --
979 -----------
981 function UR_Lt (Left, Right : Ureal) return Boolean is
982 begin
983 -- An operand is not less than itself
985 if Same (Left, Right) then
986 return False;
988 -- Deal with zero cases
990 elsif UR_Is_Zero (Left) then
991 return UR_Is_Positive (Right);
993 elsif UR_Is_Zero (Right) then
994 return Ureals.Table (Left).Negative;
996 -- Different signs are decisive (note we dealt with zero cases)
998 elsif Ureals.Table (Left).Negative
999 and then not Ureals.Table (Right).Negative
1000 then
1001 return True;
1003 elsif not Ureals.Table (Left).Negative
1004 and then Ureals.Table (Right).Negative
1005 then
1006 return False;
1008 -- Signs are same, do rapid check based on worst case estimates of
1009 -- decimal exponent, which will often be decisive. Precise test
1010 -- depends on whether operands are positive or negative.
1012 elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) then
1013 return UR_Is_Positive (Left);
1015 elsif Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right) then
1016 return UR_Is_Negative (Left);
1018 -- If we fall through, full gruesome test is required. This happens
1019 -- if the numbers are close together, or in some weird (/=10) base.
1021 else
1022 declare
1023 Imrk : constant Uintp.Save_Mark := Mark;
1024 Rmrk : constant Urealp.Save_Mark := Mark;
1025 Lval : Ureal_Entry;
1026 Rval : Ureal_Entry;
1027 Result : Boolean;
1029 begin
1030 Lval := Ureals.Table (Left);
1031 Rval := Ureals.Table (Right);
1033 -- An optimization. If both numbers are based, then subtract
1034 -- common value of base to avoid unnecessarily giant numbers
1036 if Lval.Rbase = Rval.Rbase and then Lval.Rbase /= 0 then
1037 if Lval.Den < Rval.Den then
1038 Rval.Den := Rval.Den - Lval.Den;
1039 Lval.Den := Uint_0;
1040 else
1041 Lval.Den := Lval.Den - Rval.Den;
1042 Rval.Den := Uint_0;
1043 end if;
1044 end if;
1046 Lval := Normalize (Lval);
1047 Rval := Normalize (Rval);
1049 if Lval.Negative then
1050 Result := (Lval.Num * Rval.Den) > (Rval.Num * Lval.Den);
1051 else
1052 Result := (Lval.Num * Rval.Den) < (Rval.Num * Lval.Den);
1053 end if;
1055 Release (Imrk);
1056 Release (Rmrk);
1057 return Result;
1058 end;
1059 end if;
1060 end UR_Lt;
1062 ------------
1063 -- UR_Max --
1064 ------------
1066 function UR_Max (Left, Right : Ureal) return Ureal is
1067 begin
1068 if Left >= Right then
1069 return Left;
1070 else
1071 return Right;
1072 end if;
1073 end UR_Max;
1075 ------------
1076 -- UR_Min --
1077 ------------
1079 function UR_Min (Left, Right : Ureal) return Ureal is
1080 begin
1081 if Left <= Right then
1082 return Left;
1083 else
1084 return Right;
1085 end if;
1086 end UR_Min;
1088 ------------
1089 -- UR_Mul --
1090 ------------
1092 function UR_Mul (Left : Uint; Right : Ureal) return Ureal is
1093 begin
1094 return UR_From_Uint (Left) * Right;
1095 end UR_Mul;
1097 function UR_Mul (Left : Ureal; Right : Uint) return Ureal is
1098 begin
1099 return Left * UR_From_Uint (Right);
1100 end UR_Mul;
1102 function UR_Mul (Left, Right : Ureal) return Ureal is
1103 Lval : constant Ureal_Entry := Ureals.Table (Left);
1104 Rval : constant Ureal_Entry := Ureals.Table (Right);
1105 Num : Uint := Lval.Num * Rval.Num;
1106 Den : Uint;
1107 Rneg : constant Boolean := Lval.Negative xor Rval.Negative;
1109 begin
1110 if Lval.Rbase = 0 then
1111 if Rval.Rbase = 0 then
1112 return Store_Ureal_Normalized
1113 ((Num => Num,
1114 Den => Lval.Den * Rval.Den,
1115 Rbase => 0,
1116 Negative => Rneg));
1118 elsif Is_Integer (Num, Lval.Den) then
1119 return Store_Ureal
1120 ((Num => Num / Lval.Den,
1121 Den => Rval.Den,
1122 Rbase => Rval.Rbase,
1123 Negative => Rneg));
1125 elsif Rval.Den < 0 then
1126 return Store_Ureal_Normalized
1127 ((Num => Num * (Rval.Rbase ** (-Rval.Den)),
1128 Den => Lval.Den,
1129 Rbase => 0,
1130 Negative => Rneg));
1132 else
1133 return Store_Ureal_Normalized
1134 ((Num => Num,
1135 Den => Lval.Den * (Rval.Rbase ** Rval.Den),
1136 Rbase => 0,
1137 Negative => Rneg));
1138 end if;
1140 elsif Lval.Rbase = Rval.Rbase then
1141 return Store_Ureal
1142 ((Num => Num,
1143 Den => Lval.Den + Rval.Den,
1144 Rbase => Lval.Rbase,
1145 Negative => Rneg));
1147 elsif Rval.Rbase = 0 then
1148 if Is_Integer (Num, Rval.Den) then
1149 return Store_Ureal
1150 ((Num => Num / Rval.Den,
1151 Den => Lval.Den,
1152 Rbase => Lval.Rbase,
1153 Negative => Rneg));
1155 elsif Lval.Den < 0 then
1156 return Store_Ureal_Normalized
1157 ((Num => Num * (Lval.Rbase ** (-Lval.Den)),
1158 Den => Rval.Den,
1159 Rbase => 0,
1160 Negative => Rneg));
1162 else
1163 return Store_Ureal_Normalized
1164 ((Num => Num,
1165 Den => Rval.Den * (Lval.Rbase ** Lval.Den),
1166 Rbase => 0,
1167 Negative => Rneg));
1168 end if;
1170 else
1171 Den := Uint_1;
1173 if Lval.Den < 0 then
1174 Num := Num * (Lval.Rbase ** (-Lval.Den));
1175 else
1176 Den := Den * (Lval.Rbase ** Lval.Den);
1177 end if;
1179 if Rval.Den < 0 then
1180 Num := Num * (Rval.Rbase ** (-Rval.Den));
1181 else
1182 Den := Den * (Rval.Rbase ** Rval.Den);
1183 end if;
1185 return Store_Ureal_Normalized
1186 ((Num => Num,
1187 Den => Den,
1188 Rbase => 0,
1189 Negative => Rneg));
1190 end if;
1191 end UR_Mul;
1193 -----------
1194 -- UR_Ne --
1195 -----------
1197 function UR_Ne (Left, Right : Ureal) return Boolean is
1198 begin
1199 -- Quick processing for case of identical Ureal values (note that
1200 -- this also deals with comparing two No_Ureal values).
1202 if Same (Left, Right) then
1203 return False;
1205 -- Deal with case of one or other operand is No_Ureal, but not both
1207 elsif Same (Left, No_Ureal) or else Same (Right, No_Ureal) then
1208 return True;
1210 -- Do quick check based on number of decimal digits
1212 elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) or else
1213 Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right)
1214 then
1215 return True;
1217 -- Otherwise full comparison is required
1219 else
1220 declare
1221 Imrk : constant Uintp.Save_Mark := Mark;
1222 Rmrk : constant Urealp.Save_Mark := Mark;
1223 Lval : constant Ureal_Entry := Normalize (Ureals.Table (Left));
1224 Rval : constant Ureal_Entry := Normalize (Ureals.Table (Right));
1225 Result : Boolean;
1227 begin
1228 if UR_Is_Zero (Left) then
1229 return not UR_Is_Zero (Right);
1231 elsif UR_Is_Zero (Right) then
1232 return not UR_Is_Zero (Left);
1234 -- Both operands are non-zero
1236 else
1237 Result :=
1238 Rval.Negative /= Lval.Negative
1239 or else Rval.Num /= Lval.Num
1240 or else Rval.Den /= Lval.Den;
1241 Release (Imrk);
1242 Release (Rmrk);
1243 return Result;
1244 end if;
1245 end;
1246 end if;
1247 end UR_Ne;
1249 ---------------
1250 -- UR_Negate --
1251 ---------------
1253 function UR_Negate (Real : Ureal) return Ureal is
1254 begin
1255 return Store_Ureal
1256 ((Num => Ureals.Table (Real).Num,
1257 Den => Ureals.Table (Real).Den,
1258 Rbase => Ureals.Table (Real).Rbase,
1259 Negative => not Ureals.Table (Real).Negative));
1260 end UR_Negate;
1262 ------------
1263 -- UR_Sub --
1264 ------------
1266 function UR_Sub (Left : Uint; Right : Ureal) return Ureal is
1267 begin
1268 return UR_From_Uint (Left) + UR_Negate (Right);
1269 end UR_Sub;
1271 function UR_Sub (Left : Ureal; Right : Uint) return Ureal is
1272 begin
1273 return Left + UR_From_Uint (-Right);
1274 end UR_Sub;
1276 function UR_Sub (Left, Right : Ureal) return Ureal is
1277 begin
1278 return Left + UR_Negate (Right);
1279 end UR_Sub;
1281 ----------------
1282 -- UR_To_Uint --
1283 ----------------
1285 function UR_To_Uint (Real : Ureal) return Uint is
1286 Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
1287 Res : Uint;
1289 begin
1290 Res := (Val.Num + (Val.Den / 2)) / Val.Den;
1292 if Val.Negative then
1293 return UI_Negate (Res);
1294 else
1295 return Res;
1296 end if;
1297 end UR_To_Uint;
1299 --------------
1300 -- UR_Trunc --
1301 --------------
1303 function UR_Trunc (Real : Ureal) return Uint is
1304 Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
1305 begin
1306 if Val.Negative then
1307 return -(Val.Num / Val.Den);
1308 else
1309 return Val.Num / Val.Den;
1310 end if;
1311 end UR_Trunc;
1313 --------------
1314 -- UR_Write --
1315 --------------
1317 procedure UR_Write (Real : Ureal; Brackets : Boolean := False) is
1318 Val : constant Ureal_Entry := Ureals.Table (Real);
1319 T : Uint;
1321 begin
1322 -- If value is negative, we precede the constant by a minus sign
1324 if Val.Negative then
1325 Write_Char ('-');
1326 end if;
1328 -- Zero is zero
1330 if Val.Num = 0 then
1331 Write_Str ("0.0");
1333 -- For constants with a denominator of zero, the value is simply the
1334 -- numerator value, since we are dividing by base**0, which is 1.
1336 elsif Val.Den = 0 then
1337 UI_Write (Val.Num, Decimal);
1338 Write_Str (".0");
1340 -- Small powers of 2 get written in decimal fixed-point format
1342 elsif Val.Rbase = 2
1343 and then Val.Den <= 3
1344 and then Val.Den >= -16
1345 then
1346 if Val.Den = 1 then
1347 T := Val.Num * (10 / 2);
1348 UI_Write (T / 10, Decimal);
1349 Write_Char ('.');
1350 UI_Write (T mod 10, Decimal);
1352 elsif Val.Den = 2 then
1353 T := Val.Num * (100 / 4);
1354 UI_Write (T / 100, Decimal);
1355 Write_Char ('.');
1356 UI_Write (T mod 100 / 10, Decimal);
1358 if T mod 10 /= 0 then
1359 UI_Write (T mod 10, Decimal);
1360 end if;
1362 elsif Val.Den = 3 then
1363 T := Val.Num * (1000 / 8);
1364 UI_Write (T / 1000, Decimal);
1365 Write_Char ('.');
1366 UI_Write (T mod 1000 / 100, Decimal);
1368 if T mod 100 /= 0 then
1369 UI_Write (T mod 100 / 10, Decimal);
1371 if T mod 10 /= 0 then
1372 UI_Write (T mod 10, Decimal);
1373 end if;
1374 end if;
1376 else
1377 UI_Write (Val.Num * (Uint_2 ** (-Val.Den)), Decimal);
1378 Write_Str (".0");
1379 end if;
1381 -- Constants in base 10 or 16 can be written in normal Ada literal
1382 -- style, as long as they fit in the UI_Image_Buffer. Using hexadecimal
1383 -- notation, 4 bytes are required for the 16# # part, and every fifth
1384 -- character is an underscore. So, a buffer of size N has room for
1385 -- ((N - 4) - (N - 4) / 5) * 4 bits,
1386 -- or at least
1387 -- N * 16 / 5 - 12 bits.
1389 elsif (Val.Rbase = 10 or else Val.Rbase = 16)
1390 and then Num_Bits (Val.Num) < UI_Image_Buffer'Length * 16 / 5 - 12
1391 then
1392 pragma Assert (Val.Den /= 0);
1394 -- Use fixed-point format for small scaling values
1396 if (Val.Rbase = 10 and then Val.Den < 0 and then Val.Den > -3)
1397 or else (Val.Rbase = 16 and then Val.Den = -1)
1398 then
1399 UI_Write (Val.Num * Val.Rbase**(-Val.Den), Decimal);
1400 Write_Str (".0");
1402 -- Write hexadecimal constants in exponential notation with a zero
1403 -- unit digit. This matches the Ada canonical form for floating point
1404 -- numbers, and also ensures that the underscores end up in the
1405 -- correct place.
1407 elsif Val.Rbase = 16 then
1408 UI_Image (Val.Num, Hex);
1409 pragma Assert (Val.Rbase = 16);
1411 Write_Str ("16#0.");
1412 Write_Str (UI_Image_Buffer (4 .. UI_Image_Length));
1414 -- For exponent, exclude 16# # and underscores from length
1416 UI_Image_Length := UI_Image_Length - 4;
1417 UI_Image_Length := UI_Image_Length - UI_Image_Length / 5;
1419 Write_Char ('E');
1420 UI_Write (Int (UI_Image_Length) - Val.Den, Decimal);
1422 elsif Val.Den = 1 then
1423 UI_Write (Val.Num / 10, Decimal);
1424 Write_Char ('.');
1425 UI_Write (Val.Num mod 10, Decimal);
1427 elsif Val.Den = 2 then
1428 UI_Write (Val.Num / 100, Decimal);
1429 Write_Char ('.');
1430 UI_Write (Val.Num / 10 mod 10, Decimal);
1431 UI_Write (Val.Num mod 10, Decimal);
1433 -- Else use decimal exponential format
1435 else
1436 -- Write decimal constants with a non-zero unit digit. This
1437 -- matches usual scientific notation.
1439 UI_Image (Val.Num, Decimal);
1440 Write_Char (UI_Image_Buffer (1));
1441 Write_Char ('.');
1443 if UI_Image_Length = 1 then
1444 Write_Char ('0');
1445 else
1446 Write_Str (UI_Image_Buffer (2 .. UI_Image_Length));
1447 end if;
1449 Write_Char ('E');
1450 UI_Write (Int (UI_Image_Length - 1) - Val.Den, Decimal);
1451 end if;
1453 -- Other constants with a base other than 10 are written using one of
1454 -- the following forms, depending on the sign of the number and the
1455 -- sign of the exponent (= minus denominator value). See that we are
1456 -- replacing the division by a multiplication (updating accordingly the
1457 -- sign of the exponent) to generate an expression whose computation
1458 -- does not cause a division by 0 when base**exponent is very small.
1460 -- numerator.0*base**exponent
1461 -- numerator.0*base**-exponent
1463 -- And of course an exponent of 0 can be omitted.
1465 elsif Val.Rbase /= 0 then
1466 if Brackets then
1467 Write_Char ('[');
1468 end if;
1470 UI_Write (Val.Num, Decimal);
1471 Write_Str (".0");
1473 if Val.Den /= 0 then
1474 Write_Char ('*');
1475 Write_Int (Val.Rbase);
1476 Write_Str ("**");
1478 if Val.Den <= 0 then
1479 UI_Write (-Val.Den, Decimal);
1480 else
1481 Write_Str ("(-");
1482 UI_Write (Val.Den, Decimal);
1483 Write_Char (')');
1484 end if;
1485 end if;
1487 if Brackets then
1488 Write_Char (']');
1489 end if;
1491 -- Rationals where numerator is divisible by denominator can be output
1492 -- as literals after we do the division. This includes the common case
1493 -- where the denominator is 1.
1495 elsif Val.Num mod Val.Den = 0 then
1496 UI_Write (Val.Num / Val.Den, Decimal);
1497 Write_Str (".0");
1499 -- Other non-based (rational) constants are written in num/den style
1501 else
1502 if Brackets then
1503 Write_Char ('[');
1504 end if;
1506 UI_Write (Val.Num, Decimal);
1507 Write_Str (".0/");
1508 UI_Write (Val.Den, Decimal);
1509 Write_Str (".0");
1511 if Brackets then
1512 Write_Char (']');
1513 end if;
1514 end if;
1515 end UR_Write;
1517 ----------------------
1518 -- UR_Write_To_JSON --
1519 ----------------------
1521 -- We defer to the implementation of UR_Write for values that are naturally
1522 -- written in a JSON compatible format and write a fraction for the others.
1524 procedure UR_Write_To_JSON (Real : Ureal) is
1525 Val : constant Ureal_Entry := Ureals.Table (Real);
1527 T : Ureal;
1529 begin
1530 -- Zero is zero
1532 if Val.Num = 0 then
1533 T := Real;
1535 -- For constants with a denominator of zero, the value is simply the
1536 -- numerator value, since we are dividing by base**0, which is 1.
1538 elsif Val.Den = 0 then
1539 T := Real;
1541 -- Small powers of 2 get written in decimal fixed-point format
1543 elsif Val.Rbase = 2
1544 and then Val.Den <= 3
1545 and then Val.Den >= -16
1546 then
1547 T := Real;
1549 -- Constants in base 10 can be written in normal Ada literal style
1551 elsif Val.Rbase = 10 then
1552 T := Real;
1554 -- Rationals where numerator is divisible by denominator can be output
1555 -- as literals after we do the division. This includes the common case
1556 -- where the denominator is 1.
1558 elsif Val.Rbase = 0 and then Val.Num mod Val.Den = 0 then
1559 T := Real;
1561 -- Other non-based (rational) constants are written in num/den style
1563 else
1564 Write_Str ("{ ""code"": ""/"", ""operands"": [ ");
1565 if Val.Negative then
1566 Write_Char ('-');
1567 end if;
1568 UI_Write (Val.Num, Decimal);
1569 Write_Str (".0, ");
1570 UI_Write (Val.Den, Decimal);
1571 Write_Str (".0 ] }");
1572 return;
1573 end if;
1575 UR_Write (T);
1576 end UR_Write_To_JSON;
1578 -------------
1579 -- Ureal_0 --
1580 -------------
1582 function Ureal_0 return Ureal is
1583 begin
1584 return UR_0;
1585 end Ureal_0;
1587 -------------
1588 -- Ureal_1 --
1589 -------------
1591 function Ureal_1 return Ureal is
1592 begin
1593 return UR_1;
1594 end Ureal_1;
1596 -------------
1597 -- Ureal_2 --
1598 -------------
1600 function Ureal_2 return Ureal is
1601 begin
1602 return UR_2;
1603 end Ureal_2;
1605 --------------
1606 -- Ureal_10 --
1607 --------------
1609 function Ureal_10 return Ureal is
1610 begin
1611 return UR_10;
1612 end Ureal_10;
1614 ---------------
1615 -- Ureal_100 --
1616 ---------------
1618 function Ureal_100 return Ureal is
1619 begin
1620 return UR_100;
1621 end Ureal_100;
1623 -------------------
1624 -- Ureal_2_10_18 --
1625 -------------------
1627 function Ureal_2_10_18 return Ureal is
1628 begin
1629 return UR_2_10_18;
1630 end Ureal_2_10_18;
1632 -------------------
1633 -- Ureal_9_10_36 --
1634 -------------------
1636 function Ureal_9_10_36 return Ureal is
1637 begin
1638 return UR_9_10_36;
1639 end Ureal_9_10_36;
1641 -----------------
1642 -- Ureal_10_76 --
1643 -----------------
1645 function Ureal_10_76 return Ureal is
1646 begin
1647 return UR_10_76;
1648 end Ureal_10_76;
1650 ----------------
1651 -- Ureal_2_31 --
1652 ----------------
1654 function Ureal_2_31 return Ureal is
1655 begin
1656 return UR_2_31;
1657 end Ureal_2_31;
1659 ----------------
1660 -- Ureal_2_63 --
1661 ----------------
1663 function Ureal_2_63 return Ureal is
1664 begin
1665 return UR_2_63;
1666 end Ureal_2_63;
1668 ----------------
1669 -- Ureal_2_80 --
1670 ----------------
1672 function Ureal_2_80 return Ureal is
1673 begin
1674 return UR_2_80;
1675 end Ureal_2_80;
1677 -----------------
1678 -- Ureal_2_127 --
1679 -----------------
1681 function Ureal_2_127 return Ureal is
1682 begin
1683 return UR_2_127;
1684 end Ureal_2_127;
1686 -----------------
1687 -- Ureal_2_128 --
1688 -----------------
1690 function Ureal_2_128 return Ureal is
1691 begin
1692 return UR_2_128;
1693 end Ureal_2_128;
1695 -------------------
1696 -- Ureal_2_M_80 --
1697 -------------------
1699 function Ureal_2_M_80 return Ureal is
1700 begin
1701 return UR_2_M_80;
1702 end Ureal_2_M_80;
1704 -------------------
1705 -- Ureal_2_M_127 --
1706 -------------------
1708 function Ureal_2_M_127 return Ureal is
1709 begin
1710 return UR_2_M_127;
1711 end Ureal_2_M_127;
1713 -------------------
1714 -- Ureal_2_M_128 --
1715 -------------------
1717 function Ureal_2_M_128 return Ureal is
1718 begin
1719 return UR_2_M_128;
1720 end Ureal_2_M_128;
1722 ----------------
1723 -- Ureal_Half --
1724 ----------------
1726 function Ureal_Half return Ureal is
1727 begin
1728 return UR_Half;
1729 end Ureal_Half;
1731 ---------------
1732 -- Ureal_M_0 --
1733 ---------------
1735 function Ureal_M_0 return Ureal is
1736 begin
1737 return UR_M_0;
1738 end Ureal_M_0;
1740 ---------------------
1741 -- Ureal_M_2_10_18 --
1742 ---------------------
1744 function Ureal_M_2_10_18 return Ureal is
1745 begin
1746 return UR_M_2_10_18;
1747 end Ureal_M_2_10_18;
1749 ---------------------
1750 -- Ureal_M_9_10_36 --
1751 ---------------------
1753 function Ureal_M_9_10_36 return Ureal is
1754 begin
1755 return UR_M_9_10_36;
1756 end Ureal_M_9_10_36;
1758 -------------------
1759 -- Ureal_M_10_76 --
1760 -------------------
1762 function Ureal_M_10_76 return Ureal is
1763 begin
1764 return UR_M_10_76;
1765 end Ureal_M_10_76;
1767 -----------------
1768 -- Ureal_Tenth --
1769 -----------------
1771 function Ureal_Tenth return Ureal is
1772 begin
1773 return UR_Tenth;
1774 end Ureal_Tenth;
1776 end Urealp;