openmp: Fix signed/unsigned warning
[official-gcc.git] / gcc / ada / libgnat / s-exponr.adb
blobd3d9b41964d498fd882f52d49f2e57b775a0170e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . E X P O N R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2021-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- Note that the reason for treating exponents in the range 0 .. 4 specially
33 -- is to ensure identical results with the static expansion in the case of a
34 -- compile-time known exponent in this range; similarly, the use 'Machine is
35 -- to avoid unwanted extra precision in the results.
37 -- For a negative exponent, we compute the result as per RM 4.5.6(11/3):
39 -- Left ** Right = 1.0 / (Left ** (-Right))
41 -- Note that the case of Left being zero is not special, it will simply result
42 -- in a division by zero at the end, yielding a correctly signed infinity, or
43 -- possibly raising an overflow exception.
45 -- Note on overflow: this coding assumes that the target generates infinities
46 -- with standard IEEE semantics. If this is not the case, then the code for
47 -- negative exponents may raise Constraint_Error, which is in keeping with the
48 -- implementation permission given in RM 4.5.6(12).
50 with System.Double_Real;
52 function System.Exponr (Left : Num; Right : Integer) return Num is
54 package Double_Real is new System.Double_Real (Num);
55 use type Double_Real.Double_T;
57 subtype Double_T is Double_Real.Double_T;
58 -- The double floating-point type
60 subtype Safe_Negative is Integer range Integer'First + 1 .. -1;
61 -- The range of safe negative exponents
63 function Expon (Left : Num; Right : Natural) return Num;
64 -- Routine used if Right is greater than 4
66 -----------
67 -- Expon --
68 -----------
70 function Expon (Left : Num; Right : Natural) return Num is
71 Result : Double_T := Double_Real.To_Double (1.0);
72 Factor : Double_T := Double_Real.To_Double (Left);
73 Exp : Natural := Right;
75 begin
76 -- We use the standard logarithmic approach, Exp gets shifted right
77 -- testing successive low order bits and Factor is the value of the
78 -- base raised to the next power of 2. If the low order bit or Exp
79 -- is set, multiply the result by this factor.
81 loop
82 if Exp rem 2 /= 0 then
83 Result := Result * Factor;
84 exit when Exp = 1;
85 end if;
87 Exp := Exp / 2;
88 Factor := Double_Real.Sqr (Factor);
89 end loop;
91 return Double_Real.To_Single (Result);
92 end Expon;
94 begin
95 case Right is
96 when 0 =>
97 return 1.0;
99 when 1 =>
100 return Left;
102 when 2 =>
103 return Num'Machine (Left * Left);
105 when 3 =>
106 return Num'Machine (Left * Left * Left);
108 when 4 =>
109 declare
110 Sqr : constant Num := Num'Machine (Left * Left);
112 begin
113 return Num'Machine (Sqr * Sqr);
114 end;
116 when Safe_Negative =>
117 return Num'Machine (1.0 / Exponr (Left, -Right));
119 when Integer'First =>
120 return Num'Machine (1.0 / (Exponr (Left, Integer'Last) * Left));
122 when others =>
123 return Num'Machine (Expon (Left, Right));
124 end case;
125 end System.Exponr;