1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
5 -- S Y S T E M . B I G N U M S --
9 -- Copyright (C) 2012-2024, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 -- This package provides arbitrary precision signed integer arithmetic for
33 -- use in computing intermediate values in expressions for the case where
34 -- pragma Overflow_Check (Eliminated) is in effect.
36 -- Note that we cannot use a straight instantiation of System.Generic_Bignums
37 -- because the rtsfind mechanism is not ready to handle instantiations.
39 with System
.Shared_Bignums
;
41 package System
.Bignums
is
44 subtype Bignum
is System
.Shared_Bignums
.Bignum
;
46 function Big_Add
(X
, Y
: Bignum
) return Bignum
; -- "+"
47 function Big_Sub
(X
, Y
: Bignum
) return Bignum
; -- "-"
48 function Big_Mul
(X
, Y
: Bignum
) return Bignum
; -- "*"
49 function Big_Div
(X
, Y
: Bignum
) return Bignum
; -- "/"
50 function Big_Exp
(X
, Y
: Bignum
) return Bignum
; -- "**"
51 function Big_Mod
(X
, Y
: Bignum
) return Bignum
; -- "mod"
52 function Big_Rem
(X
, Y
: Bignum
) return Bignum
; -- "rem"
53 function Big_Neg
(X
: Bignum
) return Bignum
; -- "-"
54 function Big_Abs
(X
: Bignum
) return Bignum
; -- "abs"
55 -- Perform indicated arithmetic operation on bignum values. No exception
56 -- raised except for Div/Mod/Rem by 0 which raises Constraint_Error with
57 -- an appropriate message.
59 function Big_EQ
(X
, Y
: Bignum
) return Boolean; -- "="
60 function Big_NE
(X
, Y
: Bignum
) return Boolean; -- "/="
61 function Big_GE
(X
, Y
: Bignum
) return Boolean; -- ">="
62 function Big_LE
(X
, Y
: Bignum
) return Boolean; -- "<="
63 function Big_GT
(X
, Y
: Bignum
) return Boolean; -- ">"
64 function Big_LT
(X
, Y
: Bignum
) return Boolean; -- "<"
65 -- Perform indicated comparison on bignums, returning result as Boolean.
66 -- No exception raised for any input arguments.
68 function Bignum_In_LLI_Range
(X
: Bignum
) return Boolean;
69 -- Returns True if the Bignum value is in the range of Long_Long_Integer,
70 -- so that a call to From_Bignum is guaranteed not to raise an exception.
72 function To_Bignum
(X
: Long_Long_Integer) return Bignum
;
73 -- Convert Long_Long_Integer to Bignum. No exception can be raised for any
76 function From_Bignum
(X
: Bignum
) return Long_Long_Integer;
77 -- Convert Bignum to Long_Long_Integer. Constraint_Error raised with
78 -- appropriate message if value is out of range of Long_Long_Integer.
82 pragma Inline
(Big_Add
);
83 pragma Inline
(Big_Sub
);
84 pragma Inline
(Big_Mul
);
85 pragma Inline
(Big_Div
);
86 pragma Inline
(Big_Exp
);
87 pragma Inline
(Big_Mod
);
88 pragma Inline
(Big_Rem
);
89 pragma Inline
(Big_Neg
);
90 pragma Inline
(Big_Abs
);
91 pragma Inline
(Big_EQ
);
92 pragma Inline
(Big_NE
);
93 pragma Inline
(Big_GE
);
94 pragma Inline
(Big_LE
);
95 pragma Inline
(Big_GT
);
96 pragma Inline
(Big_LT
);
97 pragma Inline
(Bignum_In_LLI_Range
);
98 pragma Inline
(To_Bignum
);
99 pragma Inline
(From_Bignum
);