i386: Add GENERIC and GIMPLE folders of __builtin_ia32_{min,max}* [PR116738]
[official-gcc.git] / gcc / ada / libgnat / g-dyntab.adb
blob207824a88926950693afbba3ac87094e6216bd17
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- G N A T . D Y N A M I C _ T A B L E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2000-2024, AdaCore --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with GNAT.Heap_Sort_G;
34 with Ada.Unchecked_Deallocation;
35 with System;
37 package body GNAT.Dynamic_Tables is
39 -----------------------
40 -- Local Subprograms --
41 -----------------------
43 function Last_Allocated (T : Instance) return Table_Last_Type;
44 pragma Inline (Last_Allocated);
45 -- Return the index of the last allocated element
47 procedure Grow (T : in out Instance; New_Last : Table_Last_Type);
48 -- This is called when we are about to set the value of Last to a value
49 -- that is larger than Last_Allocated. This reallocates the table to the
50 -- larger size, as indicated by New_Last. At the time this is called,
51 -- Last (T) is still the old value, and this does not modify it.
53 --------------
54 -- Allocate --
55 --------------
57 procedure Allocate (T : in out Instance; Num : Integer := 1) is
58 begin
59 -- Note that Num can be negative
61 pragma Assert (not T.Locked);
62 Set_Last (T, Last (T) + Table_Index_Type'Base (Num));
63 end Allocate;
65 ------------
66 -- Append --
67 ------------
69 procedure Append (T : in out Instance; New_Val : Table_Component_Type) is
70 pragma Assert (not T.Locked);
71 New_Last : constant Table_Last_Type := Last (T) + 1;
73 begin
74 if New_Last <= Last_Allocated (T) then
76 -- Fast path
78 T.P.Last := New_Last;
79 T.Table (New_Last) := New_Val;
81 else
82 Set_Item (T, New_Last, New_Val);
83 end if;
84 end Append;
86 ----------------
87 -- Append_All --
88 ----------------
90 procedure Append_All (T : in out Instance; New_Vals : Table_Type) is
91 begin
92 for J in New_Vals'Range loop
93 Append (T, New_Vals (J));
94 end loop;
95 end Append_All;
97 --------------------
98 -- Decrement_Last --
99 --------------------
101 procedure Decrement_Last (T : in out Instance) is
102 begin
103 pragma Assert (not T.Locked);
104 Allocate (T, -1);
105 end Decrement_Last;
107 -----------
108 -- First --
109 -----------
111 function First return Table_Index_Type is
112 begin
113 return Table_Low_Bound;
114 end First;
116 --------------
117 -- For_Each --
118 --------------
120 procedure For_Each (Table : Instance) is
121 Quit : Boolean := False;
122 begin
123 for Index in First .. Last (Table) loop
124 Action (Index, Table.Table (Index), Quit);
125 exit when Quit;
126 end loop;
127 end For_Each;
129 ----------
130 -- Grow --
131 ----------
133 procedure Grow (T : in out Instance; New_Last : Table_Last_Type) is
135 -- Note: Type Alloc_Ptr below needs to be declared locally so we know
136 -- the bounds. That means that the collection is local, so is finalized
137 -- when leaving Grow. That's why this package doesn't support controlled
138 -- types; the table elements would be finalized prematurely. An Ada
139 -- implementation would also be within its rights to reclaim the
140 -- storage. Fortunately, GNAT doesn't do that.
142 pragma Assert (not T.Locked);
143 pragma Assert (New_Last > Last_Allocated (T));
145 subtype Table_Length_Type is Table_Index_Type'Base
146 range 0 .. Table_Index_Type'Base'Last;
148 Old_Last_Allocated : constant Table_Last_Type := Last_Allocated (T);
149 Old_Allocated_Length : constant Table_Length_Type :=
150 Old_Last_Allocated - First + 1;
152 New_Length : constant Table_Length_Type := New_Last - First + 1;
153 New_Allocated_Length : Table_Length_Type;
155 begin
156 if T.Table = Empty_Table_Ptr then
157 New_Allocated_Length := Table_Length_Type (Table_Initial);
158 else
159 New_Allocated_Length :=
160 Table_Length_Type
161 (Long_Long_Integer (Old_Allocated_Length) *
162 (100 + Long_Long_Integer (Table_Increment)) / 100);
163 end if;
165 -- Make sure it really did grow
167 if New_Allocated_Length <= Old_Allocated_Length then
168 New_Allocated_Length := Old_Allocated_Length + 10;
169 end if;
171 if New_Allocated_Length <= New_Length then
172 New_Allocated_Length := New_Length + 10;
173 end if;
175 pragma Assert (New_Allocated_Length > Old_Allocated_Length);
176 pragma Assert (New_Allocated_Length > New_Length);
178 T.P.Last_Allocated := First + New_Allocated_Length - 1;
180 declare
181 subtype Old_Alloc_Type is Table_Type (First .. Old_Last_Allocated);
182 type Old_Alloc_Ptr is access all Old_Alloc_Type;
184 procedure Free is
185 new Ada.Unchecked_Deallocation (Old_Alloc_Type, Old_Alloc_Ptr);
186 function To_Old_Alloc_Ptr is
187 new Ada.Unchecked_Conversion (Table_Ptr, Old_Alloc_Ptr);
189 subtype Alloc_Type is
190 Table_Type (First .. First + New_Allocated_Length - 1);
191 type Alloc_Ptr is access all Alloc_Type;
193 function To_Table_Ptr is
194 new Ada.Unchecked_Conversion (Alloc_Ptr, Table_Ptr);
196 Old_Table : Old_Alloc_Ptr := To_Old_Alloc_Ptr (T.Table);
197 New_Table : constant Alloc_Ptr := new Alloc_Type;
199 begin
200 if T.Table /= Empty_Table_Ptr then
201 New_Table (First .. Last (T)) := Old_Table (First .. Last (T));
202 Free (Old_Table);
203 end if;
205 T.Table := To_Table_Ptr (New_Table);
206 end;
208 pragma Assert (New_Last <= Last_Allocated (T));
209 pragma Assert (T.Table /= null);
210 pragma Assert (T.Table /= Empty_Table_Ptr);
211 end Grow;
213 --------------------
214 -- Increment_Last --
215 --------------------
217 procedure Increment_Last (T : in out Instance) is
218 begin
219 pragma Assert (not T.Locked);
220 Allocate (T, 1);
221 end Increment_Last;
223 ----------
224 -- Init --
225 ----------
227 procedure Init (T : in out Instance) is
228 pragma Assert (not T.Locked);
229 subtype Alloc_Type is Table_Type (First .. Last_Allocated (T));
230 type Alloc_Ptr is access all Alloc_Type;
232 procedure Free is new Ada.Unchecked_Deallocation (Alloc_Type, Alloc_Ptr);
233 function To_Alloc_Ptr is
234 new Ada.Unchecked_Conversion (Table_Ptr, Alloc_Ptr);
236 Temp : Alloc_Ptr := To_Alloc_Ptr (T.Table);
238 begin
239 if T.Table = Empty_Table_Ptr then
240 pragma Assert (T.P = (Last_Allocated | Last => First - 1));
241 null;
242 else
243 Free (Temp);
244 T.Table := Empty_Table_Ptr;
245 T.P := (Last_Allocated | Last => First - 1);
246 end if;
247 end Init;
249 --------------
250 -- Is_Empty --
251 --------------
253 function Is_Empty (T : Instance) return Boolean is
254 begin
255 return Last (T) = First - 1;
256 end Is_Empty;
258 ----------
259 -- Last --
260 ----------
262 function Last (T : Instance) return Table_Last_Type is
263 begin
264 return T.P.Last;
265 end Last;
267 --------------------
268 -- Last_Allocated --
269 --------------------
271 function Last_Allocated (T : Instance) return Table_Last_Type is
272 begin
273 return T.P.Last_Allocated;
274 end Last_Allocated;
276 ----------
277 -- Move --
278 ----------
280 procedure Move (From, To : in out Instance) is
281 begin
282 pragma Assert (not From.Locked);
283 pragma Assert (not To.Locked);
284 pragma Assert (Is_Empty (To));
285 To := From;
287 From.Table := Empty_Table_Ptr;
288 From.Locked := False;
289 From.P.Last_Allocated := First - 1;
290 From.P.Last := First - 1;
291 pragma Assert (Is_Empty (From));
292 end Move;
294 -------------
295 -- Release --
296 -------------
298 procedure Release (T : in out Instance) is
299 pragma Assert (not T.Locked);
300 Old_Last_Allocated : constant Table_Last_Type := Last_Allocated (T);
302 function New_Last_Allocated return Table_Last_Type;
303 -- Compute the new value of Last_Allocated. This is normally equal to
304 -- Last, but if Release_Threshold /= 0, then we need to take that into
305 -- account.
307 ------------------------
308 -- New_Last_Allocated --
309 ------------------------
311 function New_Last_Allocated return Table_Last_Type is
312 subtype Table_Length_Type is Table_Index_Type'Base
313 range 0 .. Table_Index_Type'Base'Last;
315 Length : constant Table_Length_Type := Last (T) - First + 1;
317 Comp_Size_In_Bytes : constant Table_Length_Type :=
318 Table_Type'Component_Size / System.Storage_Unit;
320 Length_Threshold : constant Table_Length_Type :=
321 Table_Length_Type (Release_Threshold) / Comp_Size_In_Bytes;
323 begin
324 if Release_Threshold = 0 or else Length < Length_Threshold then
325 return Last (T);
326 else
327 declare
328 Extra_Length : constant Table_Length_Type := Length / 1000;
329 begin
330 return (Length + Extra_Length) - 1 + First;
331 end;
332 end if;
333 end New_Last_Allocated;
335 -- Local variables
337 New_Last_Alloc : constant Table_Last_Type := New_Last_Allocated;
339 -- Start of processing for Release
341 begin
342 if New_Last_Alloc < Last_Allocated (T) then
343 pragma Assert (Last (T) < Last_Allocated (T));
344 pragma Assert (T.Table /= Empty_Table_Ptr);
346 declare
347 subtype Old_Alloc_Type is Table_Type (First .. Old_Last_Allocated);
348 type Old_Alloc_Ptr is access all Old_Alloc_Type;
350 procedure Free is
351 new Ada.Unchecked_Deallocation (Old_Alloc_Type, Old_Alloc_Ptr);
352 function To_Old_Alloc_Ptr is
353 new Ada.Unchecked_Conversion (Table_Ptr, Old_Alloc_Ptr);
355 subtype Alloc_Type is Table_Type (First .. New_Last_Alloc);
356 type Alloc_Ptr is access all Alloc_Type;
358 function To_Table_Ptr is
359 new Ada.Unchecked_Conversion (Alloc_Ptr, Table_Ptr);
361 Old_Table : Old_Alloc_Ptr := To_Old_Alloc_Ptr (T.Table);
362 New_Table : constant Alloc_Ptr := new Alloc_Type;
364 begin
365 New_Table (First .. Last (T)) := Old_Table (First .. Last (T));
366 T.P.Last_Allocated := New_Last_Alloc;
367 Free (Old_Table);
368 T.Table := To_Table_Ptr (New_Table);
369 end;
370 end if;
371 end Release;
373 --------------
374 -- Set_Item --
375 --------------
377 procedure Set_Item
378 (T : in out Instance;
379 Index : Valid_Table_Index_Type;
380 Item : Table_Component_Type)
382 begin
383 pragma Assert (not T.Locked);
385 -- If Set_Last is going to reallocate the table, we make a copy of Item,
386 -- in case the call was "Set_Item (T, X, T.Table (Y));", and Item is
387 -- passed by reference. Without the copy, we would deallocate the array
388 -- containing Item, leaving a dangling pointer.
390 if Index > Last_Allocated (T) then
391 declare
392 Item_Copy : constant Table_Component_Type := Item;
393 begin
394 Set_Last (T, Index);
395 T.Table (Index) := Item_Copy;
396 end;
398 else
399 if Index > Last (T) then
400 Set_Last (T, Index);
401 end if;
403 T.Table (Index) := Item;
404 end if;
405 end Set_Item;
407 --------------
408 -- Set_Last --
409 --------------
411 procedure Set_Last (T : in out Instance; New_Val : Table_Last_Type) is
412 begin
413 pragma Assert (not T.Locked);
414 if New_Val > Last_Allocated (T) then
415 Grow (T, New_Val);
416 end if;
418 T.P.Last := New_Val;
419 end Set_Last;
421 ----------------
422 -- Sort_Table --
423 ----------------
425 procedure Sort_Table (Table : in out Instance) is
426 Temp : Table_Component_Type;
427 -- A temporary position to simulate index 0
429 -- Local subprograms
431 function Index_Of (Idx : Natural) return Table_Index_Type'Base;
432 -- Return index of Idx'th element of table
434 function Lower_Than (Op1, Op2 : Natural) return Boolean;
435 -- Compare two components
437 procedure Move (From : Natural; To : Natural);
438 -- Move one component
440 package Heap_Sort is new GNAT.Heap_Sort_G (Move, Lower_Than);
442 --------------
443 -- Index_Of --
444 --------------
446 function Index_Of (Idx : Natural) return Table_Index_Type'Base is
447 J : constant Integer'Base :=
448 Table_Index_Type'Base'Pos (First) + Idx - 1;
449 begin
450 return Table_Index_Type'Base'Val (J);
451 end Index_Of;
453 ----------
454 -- Move --
455 ----------
457 procedure Move (From : Natural; To : Natural) is
458 begin
459 if From = 0 then
460 Table.Table (Index_Of (To)) := Temp;
462 elsif To = 0 then
463 Temp := Table.Table (Index_Of (From));
465 else
466 Table.Table (Index_Of (To)) :=
467 Table.Table (Index_Of (From));
468 end if;
469 end Move;
471 ----------------
472 -- Lower_Than --
473 ----------------
475 function Lower_Than (Op1, Op2 : Natural) return Boolean is
476 begin
477 if Op1 = 0 then
478 return Lt (Temp, Table.Table (Index_Of (Op2)));
480 elsif Op2 = 0 then
481 return Lt (Table.Table (Index_Of (Op1)), Temp);
483 else
484 return
485 Lt (Table.Table (Index_Of (Op1)), Table.Table (Index_Of (Op2)));
486 end if;
487 end Lower_Than;
489 -- Start of processing for Sort_Table
491 begin
492 Heap_Sort.Sort (Natural (Last (Table) - First) + 1);
493 end Sort_Table;
495 end GNAT.Dynamic_Tables;