* verify.c (verify_jvm_instructions): Fix typo.
[official-gcc.git] / gcc / sched-rgn.c
blobe0a2a63e338c59c2c7ddbd2fe63132c5ad62f4f7
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free the
21 Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
48 #include "config.h"
49 #include "system.h"
50 #include "toplev.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "hard-reg-set.h"
54 #include "basic-block.h"
55 #include "regs.h"
56 #include "function.h"
57 #include "flags.h"
58 #include "insn-config.h"
59 #include "insn-attr.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "recog.h"
63 #include "sched-int.h"
65 #ifdef INSN_SCHEDULING
66 /* Some accessor macros for h_i_d members only used within this file. */
67 #define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count)
68 #define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load)
69 #define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn)
71 #define MAX_RGN_BLOCKS 10
72 #define MAX_RGN_INSNS 100
74 /* nr_inter/spec counts interblock/speculative motion for the function. */
75 static int nr_inter, nr_spec;
77 /* Control flow graph edges are kept in circular lists. */
78 typedef struct
80 int from_block;
81 int to_block;
82 int next_in;
83 int next_out;
85 haifa_edge;
86 static haifa_edge *edge_table;
88 #define NEXT_IN(edge) (edge_table[edge].next_in)
89 #define NEXT_OUT(edge) (edge_table[edge].next_out)
90 #define FROM_BLOCK(edge) (edge_table[edge].from_block)
91 #define TO_BLOCK(edge) (edge_table[edge].to_block)
93 /* Number of edges in the control flow graph. (In fact, larger than
94 that by 1, since edge 0 is unused.) */
95 static int nr_edges;
97 /* Circular list of incoming/outgoing edges of a block. */
98 static int *in_edges;
99 static int *out_edges;
101 #define IN_EDGES(block) (in_edges[block])
102 #define OUT_EDGES(block) (out_edges[block])
104 static int is_cfg_nonregular PARAMS ((void));
105 static int build_control_flow PARAMS ((struct edge_list *));
106 static void new_edge PARAMS ((int, int));
108 /* A region is the main entity for interblock scheduling: insns
109 are allowed to move between blocks in the same region, along
110 control flow graph edges, in the 'up' direction. */
111 typedef struct
113 int rgn_nr_blocks; /* Number of blocks in region. */
114 int rgn_blocks; /* cblocks in the region (actually index in rgn_bb_table). */
116 region;
118 /* Number of regions in the procedure. */
119 static int nr_regions;
121 /* Table of region descriptions. */
122 static region *rgn_table;
124 /* Array of lists of regions' blocks. */
125 static int *rgn_bb_table;
127 /* Topological order of blocks in the region (if b2 is reachable from
128 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
129 always referred to by either block or b, while its topological
130 order name (in the region) is refered to by bb. */
131 static int *block_to_bb;
133 /* The number of the region containing a block. */
134 static int *containing_rgn;
136 #define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
137 #define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
138 #define BLOCK_TO_BB(block) (block_to_bb[block])
139 #define CONTAINING_RGN(block) (containing_rgn[block])
141 void debug_regions PARAMS ((void));
142 static void find_single_block_region PARAMS ((void));
143 static void find_rgns PARAMS ((struct edge_list *, sbitmap *));
144 static int too_large PARAMS ((int, int *, int *));
146 extern void debug_live PARAMS ((int, int));
148 /* Blocks of the current region being scheduled. */
149 static int current_nr_blocks;
150 static int current_blocks;
152 /* The mapping from bb to block. */
153 #define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])
155 /* Bit vectors and bitset operations are needed for computations on
156 the control flow graph. */
158 typedef unsigned HOST_WIDE_INT *bitset;
159 typedef struct
161 int *first_member; /* Pointer to the list start in bitlst_table. */
162 int nr_members; /* The number of members of the bit list. */
164 bitlst;
166 static int bitlst_table_last;
167 static int bitlst_table_size;
168 static int *bitlst_table;
170 static char bitset_member PARAMS ((bitset, int, int));
171 static void extract_bitlst PARAMS ((bitset, int, int, bitlst *));
173 /* Target info declarations.
175 The block currently being scheduled is referred to as the "target" block,
176 while other blocks in the region from which insns can be moved to the
177 target are called "source" blocks. The candidate structure holds info
178 about such sources: are they valid? Speculative? Etc. */
179 typedef bitlst bblst;
180 typedef struct
182 char is_valid;
183 char is_speculative;
184 int src_prob;
185 bblst split_bbs;
186 bblst update_bbs;
188 candidate;
190 static candidate *candidate_table;
192 /* A speculative motion requires checking live information on the path
193 from 'source' to 'target'. The split blocks are those to be checked.
194 After a speculative motion, live information should be modified in
195 the 'update' blocks.
197 Lists of split and update blocks for each candidate of the current
198 target are in array bblst_table. */
199 static int *bblst_table, bblst_size, bblst_last;
201 #define IS_VALID(src) ( candidate_table[src].is_valid )
202 #define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
203 #define SRC_PROB(src) ( candidate_table[src].src_prob )
205 /* The bb being currently scheduled. */
206 static int target_bb;
208 /* List of edges. */
209 typedef bitlst edgelst;
211 /* Target info functions. */
212 static void split_edges PARAMS ((int, int, edgelst *));
213 static void compute_trg_info PARAMS ((int));
214 void debug_candidate PARAMS ((int));
215 void debug_candidates PARAMS ((int));
217 /* Bit-set of bbs, where bit 'i' stands for bb 'i'. */
218 typedef bitset bbset;
220 /* Number of words of the bbset. */
221 static int bbset_size;
223 /* Dominators array: dom[i] contains the bbset of dominators of
224 bb i in the region. */
225 static bbset *dom;
227 /* bb 0 is the only region entry. */
228 #define IS_RGN_ENTRY(bb) (!bb)
230 /* Is bb_src dominated by bb_trg. */
231 #define IS_DOMINATED(bb_src, bb_trg) \
232 ( bitset_member (dom[bb_src], bb_trg, bbset_size) )
234 /* Probability: Prob[i] is a float in [0, 1] which is the probability
235 of bb i relative to the region entry. */
236 static float *prob;
238 /* The probability of bb_src, relative to bb_trg. Note, that while the
239 'prob[bb]' is a float in [0, 1], this macro returns an integer
240 in [0, 100]. */
241 #define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
242 prob[bb_trg])))
244 /* Bit-set of edges, where bit i stands for edge i. */
245 typedef bitset edgeset;
247 /* Number of edges in the region. */
248 static int rgn_nr_edges;
250 /* Array of size rgn_nr_edges. */
251 static int *rgn_edges;
253 /* Number of words in an edgeset. */
254 static int edgeset_size;
256 /* Number of bits in an edgeset. */
257 static int edgeset_bitsize;
259 /* Mapping from each edge in the graph to its number in the rgn. */
260 static int *edge_to_bit;
261 #define EDGE_TO_BIT(edge) (edge_to_bit[edge])
263 /* The split edges of a source bb is different for each target
264 bb. In order to compute this efficiently, the 'potential-split edges'
265 are computed for each bb prior to scheduling a region. This is actually
266 the split edges of each bb relative to the region entry.
268 pot_split[bb] is the set of potential split edges of bb. */
269 static edgeset *pot_split;
271 /* For every bb, a set of its ancestor edges. */
272 static edgeset *ancestor_edges;
274 static void compute_dom_prob_ps PARAMS ((int));
276 #define ABS_VALUE(x) (((x)<0)?(-(x)):(x))
277 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
278 #define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
279 #define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))
281 /* Parameters affecting the decision of rank_for_schedule().
282 ??? Nope. But MIN_PROBABILITY is used in copmute_trg_info. */
283 #define MIN_DIFF_PRIORITY 2
284 #define MIN_PROBABILITY 40
285 #define MIN_PROB_DIFF 10
287 /* Speculative scheduling functions. */
288 static int check_live_1 PARAMS ((int, rtx));
289 static void update_live_1 PARAMS ((int, rtx));
290 static int check_live PARAMS ((rtx, int));
291 static void update_live PARAMS ((rtx, int));
292 static void set_spec_fed PARAMS ((rtx));
293 static int is_pfree PARAMS ((rtx, int, int));
294 static int find_conditional_protection PARAMS ((rtx, int));
295 static int is_conditionally_protected PARAMS ((rtx, int, int));
296 static int may_trap_exp PARAMS ((rtx, int));
297 static int haifa_classify_insn PARAMS ((rtx));
298 static int is_prisky PARAMS ((rtx, int, int));
299 static int is_exception_free PARAMS ((rtx, int, int));
301 static void add_branch_dependences PARAMS ((rtx, rtx));
302 static void compute_block_backward_dependences PARAMS ((int));
303 void debug_dependencies PARAMS ((void));
305 static void init_regions PARAMS ((void));
306 static void schedule_region PARAMS ((int));
307 static void propagate_deps PARAMS ((int, struct deps *));
308 static void free_pending_lists PARAMS ((void));
310 /* Functions for construction of the control flow graph. */
312 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
314 We decide not to build the control flow graph if there is possibly more
315 than one entry to the function, if computed branches exist, of if we
316 have nonlocal gotos. */
318 static int
319 is_cfg_nonregular ()
321 int b;
322 rtx insn;
323 RTX_CODE code;
325 /* If we have a label that could be the target of a nonlocal goto, then
326 the cfg is not well structured. */
327 if (nonlocal_goto_handler_labels)
328 return 1;
330 /* If we have any forced labels, then the cfg is not well structured. */
331 if (forced_labels)
332 return 1;
334 /* If this function has a computed jump, then we consider the cfg
335 not well structured. */
336 if (current_function_has_computed_jump)
337 return 1;
339 /* If we have exception handlers, then we consider the cfg not well
340 structured. ?!? We should be able to handle this now that flow.c
341 computes an accurate cfg for EH. */
342 if (exception_handler_labels)
343 return 1;
345 /* If we have non-jumping insns which refer to labels, then we consider
346 the cfg not well structured. */
347 /* Check for labels referred to other thn by jumps. */
348 for (b = 0; b < n_basic_blocks; b++)
349 for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
351 code = GET_CODE (insn);
352 if (GET_RTX_CLASS (code) == 'i' && code != JUMP_INSN)
354 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
356 if (note
357 && ! (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
358 && find_reg_note (NEXT_INSN (insn), REG_LABEL,
359 XEXP (note, 0))))
360 return 1;
363 if (insn == BLOCK_END (b))
364 break;
367 /* All the tests passed. Consider the cfg well structured. */
368 return 0;
371 /* Build the control flow graph and set nr_edges.
373 Instead of trying to build a cfg ourselves, we rely on flow to
374 do it for us. Stamp out useless code (and bug) duplication.
376 Return nonzero if an irregularity in the cfg is found which would
377 prevent cross block scheduling. */
379 static int
380 build_control_flow (edge_list)
381 struct edge_list *edge_list;
383 int i, unreachable, num_edges;
385 /* This already accounts for entry/exit edges. */
386 num_edges = NUM_EDGES (edge_list);
388 /* Unreachable loops with more than one basic block are detected
389 during the DFS traversal in find_rgns.
391 Unreachable loops with a single block are detected here. This
392 test is redundant with the one in find_rgns, but it's much
393 cheaper to go ahead and catch the trivial case here. */
394 unreachable = 0;
395 for (i = 0; i < n_basic_blocks; i++)
397 basic_block b = BASIC_BLOCK (i);
399 if (b->pred == NULL
400 || (b->pred->src == b
401 && b->pred->pred_next == NULL))
402 unreachable = 1;
405 /* ??? We can kill these soon. */
406 in_edges = (int *) xcalloc (n_basic_blocks, sizeof (int));
407 out_edges = (int *) xcalloc (n_basic_blocks, sizeof (int));
408 edge_table = (haifa_edge *) xcalloc (num_edges, sizeof (haifa_edge));
410 nr_edges = 0;
411 for (i = 0; i < num_edges; i++)
413 edge e = INDEX_EDGE (edge_list, i);
415 if (e->dest != EXIT_BLOCK_PTR
416 && e->src != ENTRY_BLOCK_PTR)
417 new_edge (e->src->index, e->dest->index);
420 /* Increment by 1, since edge 0 is unused. */
421 nr_edges++;
423 return unreachable;
426 /* Record an edge in the control flow graph from SOURCE to TARGET.
428 In theory, this is redundant with the s_succs computed above, but
429 we have not converted all of haifa to use information from the
430 integer lists. */
432 static void
433 new_edge (source, target)
434 int source, target;
436 int e, next_edge;
437 int curr_edge, fst_edge;
439 /* Check for duplicates. */
440 fst_edge = curr_edge = OUT_EDGES (source);
441 while (curr_edge)
443 if (FROM_BLOCK (curr_edge) == source
444 && TO_BLOCK (curr_edge) == target)
446 return;
449 curr_edge = NEXT_OUT (curr_edge);
451 if (fst_edge == curr_edge)
452 break;
455 e = ++nr_edges;
457 FROM_BLOCK (e) = source;
458 TO_BLOCK (e) = target;
460 if (OUT_EDGES (source))
462 next_edge = NEXT_OUT (OUT_EDGES (source));
463 NEXT_OUT (OUT_EDGES (source)) = e;
464 NEXT_OUT (e) = next_edge;
466 else
468 OUT_EDGES (source) = e;
469 NEXT_OUT (e) = e;
472 if (IN_EDGES (target))
474 next_edge = NEXT_IN (IN_EDGES (target));
475 NEXT_IN (IN_EDGES (target)) = e;
476 NEXT_IN (e) = next_edge;
478 else
480 IN_EDGES (target) = e;
481 NEXT_IN (e) = e;
485 /* BITSET macros for operations on the control flow graph. */
487 /* Compute bitwise union of two bitsets. */
488 #define BITSET_UNION(set1, set2, len) \
489 do { register bitset tp = set1, sp = set2; \
490 register int i; \
491 for (i = 0; i < len; i++) \
492 *(tp++) |= *(sp++); } while (0)
494 /* Compute bitwise intersection of two bitsets. */
495 #define BITSET_INTER(set1, set2, len) \
496 do { register bitset tp = set1, sp = set2; \
497 register int i; \
498 for (i = 0; i < len; i++) \
499 *(tp++) &= *(sp++); } while (0)
501 /* Compute bitwise difference of two bitsets. */
502 #define BITSET_DIFFER(set1, set2, len) \
503 do { register bitset tp = set1, sp = set2; \
504 register int i; \
505 for (i = 0; i < len; i++) \
506 *(tp++) &= ~*(sp++); } while (0)
508 /* Inverts every bit of bitset 'set'. */
509 #define BITSET_INVERT(set, len) \
510 do { register bitset tmpset = set; \
511 register int i; \
512 for (i = 0; i < len; i++, tmpset++) \
513 *tmpset = ~*tmpset; } while (0)
515 /* Turn on the index'th bit in bitset set. */
516 #define BITSET_ADD(set, index, len) \
518 if (index >= HOST_BITS_PER_WIDE_INT * len) \
519 abort (); \
520 else \
521 set[index/HOST_BITS_PER_WIDE_INT] |= \
522 ((unsigned HOST_WIDE_INT) 1) << (index % HOST_BITS_PER_WIDE_INT); \
525 /* Turn off the index'th bit in set. */
526 #define BITSET_REMOVE(set, index, len) \
528 if (index >= HOST_BITS_PER_WIDE_INT * len) \
529 abort (); \
530 else \
531 set[index/HOST_BITS_PER_WIDE_INT] &= \
532 ~(((unsigned HOST_WIDE_INT) 1) << (index % HOST_BITS_PER_WIDE_INT)); \
535 /* Check if the index'th bit in bitset set is on. */
537 static char
538 bitset_member (set, index, len)
539 bitset set;
540 int index, len;
542 if (index >= HOST_BITS_PER_WIDE_INT * len)
543 abort ();
544 return ((set[index / HOST_BITS_PER_WIDE_INT] &
545 ((unsigned HOST_WIDE_INT) 1) << (index % HOST_BITS_PER_WIDE_INT))
546 ? 1 : 0);
549 /* Translate a bit-set SET to a list BL of the bit-set members. */
551 static void
552 extract_bitlst (set, len, bitlen, bl)
553 bitset set;
554 int len;
555 int bitlen;
556 bitlst *bl;
558 int i, j, offset;
559 unsigned HOST_WIDE_INT word;
561 /* bblst table space is reused in each call to extract_bitlst. */
562 bitlst_table_last = 0;
564 bl->first_member = &bitlst_table[bitlst_table_last];
565 bl->nr_members = 0;
567 /* Iterate over each word in the bitset. */
568 for (i = 0; i < len; i++)
570 word = set[i];
571 offset = i * HOST_BITS_PER_WIDE_INT;
573 /* Iterate over each bit in the word, but do not
574 go beyond the end of the defined bits. */
575 for (j = 0; offset < bitlen && word; j++)
577 if (word & 1)
579 bitlst_table[bitlst_table_last++] = offset;
580 (bl->nr_members)++;
582 word >>= 1;
583 ++offset;
589 /* Functions for the construction of regions. */
591 /* Print the regions, for debugging purposes. Callable from debugger. */
593 void
594 debug_regions ()
596 int rgn, bb;
598 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
599 for (rgn = 0; rgn < nr_regions; rgn++)
601 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
602 rgn_table[rgn].rgn_nr_blocks);
603 fprintf (sched_dump, ";;\tbb/block: ");
605 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
607 current_blocks = RGN_BLOCKS (rgn);
609 if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
610 abort ();
612 fprintf (sched_dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
615 fprintf (sched_dump, "\n\n");
619 /* Build a single block region for each basic block in the function.
620 This allows for using the same code for interblock and basic block
621 scheduling. */
623 static void
624 find_single_block_region ()
626 int i;
628 for (i = 0; i < n_basic_blocks; i++)
630 rgn_bb_table[i] = i;
631 RGN_NR_BLOCKS (i) = 1;
632 RGN_BLOCKS (i) = i;
633 CONTAINING_RGN (i) = i;
634 BLOCK_TO_BB (i) = 0;
636 nr_regions = n_basic_blocks;
639 /* Update number of blocks and the estimate for number of insns
640 in the region. Return 1 if the region is "too large" for interblock
641 scheduling (compile time considerations), otherwise return 0. */
643 static int
644 too_large (block, num_bbs, num_insns)
645 int block, *num_bbs, *num_insns;
647 (*num_bbs)++;
648 (*num_insns) += (INSN_LUID (BLOCK_END (block)) -
649 INSN_LUID (BLOCK_HEAD (block)));
650 if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS))
651 return 1;
652 else
653 return 0;
656 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
657 is still an inner loop. Put in max_hdr[blk] the header of the most inner
658 loop containing blk. */
659 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
661 if (max_hdr[blk] == -1) \
662 max_hdr[blk] = hdr; \
663 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
664 RESET_BIT (inner, hdr); \
665 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
667 RESET_BIT (inner,max_hdr[blk]); \
668 max_hdr[blk] = hdr; \
672 /* Find regions for interblock scheduling.
674 A region for scheduling can be:
676 * A loop-free procedure, or
678 * A reducible inner loop, or
680 * A basic block not contained in any other region.
682 ?!? In theory we could build other regions based on extended basic
683 blocks or reverse extended basic blocks. Is it worth the trouble?
685 Loop blocks that form a region are put into the region's block list
686 in topological order.
688 This procedure stores its results into the following global (ick) variables
690 * rgn_nr
691 * rgn_table
692 * rgn_bb_table
693 * block_to_bb
694 * containing region
696 We use dominator relationships to avoid making regions out of non-reducible
697 loops.
699 This procedure needs to be converted to work on pred/succ lists instead
700 of edge tables. That would simplify it somewhat. */
702 static void
703 find_rgns (edge_list, dom)
704 struct edge_list *edge_list;
705 sbitmap *dom;
707 int *max_hdr, *dfs_nr, *stack, *degree;
708 char no_loops = 1;
709 int node, child, loop_head, i, head, tail;
710 int count = 0, sp, idx = 0, current_edge = out_edges[0];
711 int num_bbs, num_insns, unreachable;
712 int too_large_failure;
714 /* Note if an edge has been passed. */
715 sbitmap passed;
717 /* Note if a block is a natural loop header. */
718 sbitmap header;
720 /* Note if a block is an natural inner loop header. */
721 sbitmap inner;
723 /* Note if a block is in the block queue. */
724 sbitmap in_queue;
726 /* Note if a block is in the block queue. */
727 sbitmap in_stack;
729 int num_edges = NUM_EDGES (edge_list);
731 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
732 and a mapping from block to its loop header (if the block is contained
733 in a loop, else -1).
735 Store results in HEADER, INNER, and MAX_HDR respectively, these will
736 be used as inputs to the second traversal.
738 STACK, SP and DFS_NR are only used during the first traversal. */
740 /* Allocate and initialize variables for the first traversal. */
741 max_hdr = (int *) xmalloc (n_basic_blocks * sizeof (int));
742 dfs_nr = (int *) xcalloc (n_basic_blocks, sizeof (int));
743 stack = (int *) xmalloc (nr_edges * sizeof (int));
745 inner = sbitmap_alloc (n_basic_blocks);
746 sbitmap_ones (inner);
748 header = sbitmap_alloc (n_basic_blocks);
749 sbitmap_zero (header);
751 passed = sbitmap_alloc (nr_edges);
752 sbitmap_zero (passed);
754 in_queue = sbitmap_alloc (n_basic_blocks);
755 sbitmap_zero (in_queue);
757 in_stack = sbitmap_alloc (n_basic_blocks);
758 sbitmap_zero (in_stack);
760 for (i = 0; i < n_basic_blocks; i++)
761 max_hdr[i] = -1;
763 /* DFS traversal to find inner loops in the cfg. */
765 sp = -1;
766 while (1)
768 if (current_edge == 0 || TEST_BIT (passed, current_edge))
770 /* We have reached a leaf node or a node that was already
771 processed. Pop edges off the stack until we find
772 an edge that has not yet been processed. */
773 while (sp >= 0
774 && (current_edge == 0 || TEST_BIT (passed, current_edge)))
776 /* Pop entry off the stack. */
777 current_edge = stack[sp--];
778 node = FROM_BLOCK (current_edge);
779 child = TO_BLOCK (current_edge);
780 RESET_BIT (in_stack, child);
781 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
782 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
783 current_edge = NEXT_OUT (current_edge);
786 /* See if have finished the DFS tree traversal. */
787 if (sp < 0 && TEST_BIT (passed, current_edge))
788 break;
790 /* Nope, continue the traversal with the popped node. */
791 continue;
794 /* Process a node. */
795 node = FROM_BLOCK (current_edge);
796 child = TO_BLOCK (current_edge);
797 SET_BIT (in_stack, node);
798 dfs_nr[node] = ++count;
800 /* If the successor is in the stack, then we've found a loop.
801 Mark the loop, if it is not a natural loop, then it will
802 be rejected during the second traversal. */
803 if (TEST_BIT (in_stack, child))
805 no_loops = 0;
806 SET_BIT (header, child);
807 UPDATE_LOOP_RELATIONS (node, child);
808 SET_BIT (passed, current_edge);
809 current_edge = NEXT_OUT (current_edge);
810 continue;
813 /* If the child was already visited, then there is no need to visit
814 it again. Just update the loop relationships and restart
815 with a new edge. */
816 if (dfs_nr[child])
818 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
819 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
820 SET_BIT (passed, current_edge);
821 current_edge = NEXT_OUT (current_edge);
822 continue;
825 /* Push an entry on the stack and continue DFS traversal. */
826 stack[++sp] = current_edge;
827 SET_BIT (passed, current_edge);
828 current_edge = OUT_EDGES (child);
830 /* This is temporary until haifa is converted to use rth's new
831 cfg routines which have true entry/exit blocks and the
832 appropriate edges from/to those blocks.
834 Generally we update dfs_nr for a node when we process its
835 out edge. However, if the node has no out edge then we will
836 not set dfs_nr for that node. This can confuse the scheduler
837 into thinking that we have unreachable blocks, which in turn
838 disables cross block scheduling.
840 So, if we have a node with no out edges, go ahead and mark it
841 as reachable now. */
842 if (current_edge == 0)
843 dfs_nr[child] = ++count;
846 /* Another check for unreachable blocks. The earlier test in
847 is_cfg_nonregular only finds unreachable blocks that do not
848 form a loop.
850 The DFS traversal will mark every block that is reachable from
851 the entry node by placing a nonzero value in dfs_nr. Thus if
852 dfs_nr is zero for any block, then it must be unreachable. */
853 unreachable = 0;
854 for (i = 0; i < n_basic_blocks; i++)
855 if (dfs_nr[i] == 0)
857 unreachable = 1;
858 break;
861 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
862 to hold degree counts. */
863 degree = dfs_nr;
865 for (i = 0; i < n_basic_blocks; i++)
866 degree[i] = 0;
867 for (i = 0; i < num_edges; i++)
869 edge e = INDEX_EDGE (edge_list, i);
871 if (e->dest != EXIT_BLOCK_PTR)
872 degree[e->dest->index]++;
875 /* Do not perform region scheduling if there are any unreachable
876 blocks. */
877 if (!unreachable)
879 int *queue;
881 if (no_loops)
882 SET_BIT (header, 0);
884 /* Second travsersal:find reducible inner loops and topologically sort
885 block of each region. */
887 queue = (int *) xmalloc (n_basic_blocks * sizeof (int));
889 /* Find blocks which are inner loop headers. We still have non-reducible
890 loops to consider at this point. */
891 for (i = 0; i < n_basic_blocks; i++)
893 if (TEST_BIT (header, i) && TEST_BIT (inner, i))
895 edge e;
896 int j;
898 /* Now check that the loop is reducible. We do this separate
899 from finding inner loops so that we do not find a reducible
900 loop which contains an inner non-reducible loop.
902 A simple way to find reducible/natural loops is to verify
903 that each block in the loop is dominated by the loop
904 header.
906 If there exists a block that is not dominated by the loop
907 header, then the block is reachable from outside the loop
908 and thus the loop is not a natural loop. */
909 for (j = 0; j < n_basic_blocks; j++)
911 /* First identify blocks in the loop, except for the loop
912 entry block. */
913 if (i == max_hdr[j] && i != j)
915 /* Now verify that the block is dominated by the loop
916 header. */
917 if (!TEST_BIT (dom[j], i))
918 break;
922 /* If we exited the loop early, then I is the header of
923 a non-reducible loop and we should quit processing it
924 now. */
925 if (j != n_basic_blocks)
926 continue;
928 /* I is a header of an inner loop, or block 0 in a subroutine
929 with no loops at all. */
930 head = tail = -1;
931 too_large_failure = 0;
932 loop_head = max_hdr[i];
934 /* Decrease degree of all I's successors for topological
935 ordering. */
936 for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
937 if (e->dest != EXIT_BLOCK_PTR)
938 --degree[e->dest->index];
940 /* Estimate # insns, and count # blocks in the region. */
941 num_bbs = 1;
942 num_insns = (INSN_LUID (BLOCK_END (i))
943 - INSN_LUID (BLOCK_HEAD (i)));
945 /* Find all loop latches (blocks with back edges to the loop
946 header) or all the leaf blocks in the cfg has no loops.
948 Place those blocks into the queue. */
949 if (no_loops)
951 for (j = 0; j < n_basic_blocks; j++)
952 /* Leaf nodes have only a single successor which must
953 be EXIT_BLOCK. */
954 if (BASIC_BLOCK (j)->succ
955 && BASIC_BLOCK (j)->succ->dest == EXIT_BLOCK_PTR
956 && BASIC_BLOCK (j)->succ->succ_next == NULL)
958 queue[++tail] = j;
959 SET_BIT (in_queue, j);
961 if (too_large (j, &num_bbs, &num_insns))
963 too_large_failure = 1;
964 break;
968 else
970 edge e;
972 for (e = BASIC_BLOCK (i)->pred; e; e = e->pred_next)
974 if (e->src == ENTRY_BLOCK_PTR)
975 continue;
977 node = e->src->index;
979 if (max_hdr[node] == loop_head && node != i)
981 /* This is a loop latch. */
982 queue[++tail] = node;
983 SET_BIT (in_queue, node);
985 if (too_large (node, &num_bbs, &num_insns))
987 too_large_failure = 1;
988 break;
994 /* Now add all the blocks in the loop to the queue.
996 We know the loop is a natural loop; however the algorithm
997 above will not always mark certain blocks as being in the
998 loop. Consider:
999 node children
1000 a b,c
1002 c a,d
1005 The algorithm in the DFS traversal may not mark B & D as part
1006 of the loop (ie they will not have max_hdr set to A).
1008 We know they can not be loop latches (else they would have
1009 had max_hdr set since they'd have a backedge to a dominator
1010 block). So we don't need them on the initial queue.
1012 We know they are part of the loop because they are dominated
1013 by the loop header and can be reached by a backwards walk of
1014 the edges starting with nodes on the initial queue.
1016 It is safe and desirable to include those nodes in the
1017 loop/scheduling region. To do so we would need to decrease
1018 the degree of a node if it is the target of a backedge
1019 within the loop itself as the node is placed in the queue.
1021 We do not do this because I'm not sure that the actual
1022 scheduling code will properly handle this case. ?!? */
1024 while (head < tail && !too_large_failure)
1026 edge e;
1027 child = queue[++head];
1029 for (e = BASIC_BLOCK (child)->pred; e; e = e->pred_next)
1031 node = e->src->index;
1033 /* See discussion above about nodes not marked as in
1034 this loop during the initial DFS traversal. */
1035 if (e->src == ENTRY_BLOCK_PTR
1036 || max_hdr[node] != loop_head)
1038 tail = -1;
1039 break;
1041 else if (!TEST_BIT (in_queue, node) && node != i)
1043 queue[++tail] = node;
1044 SET_BIT (in_queue, node);
1046 if (too_large (node, &num_bbs, &num_insns))
1048 too_large_failure = 1;
1049 break;
1055 if (tail >= 0 && !too_large_failure)
1057 /* Place the loop header into list of region blocks. */
1058 degree[i] = -1;
1059 rgn_bb_table[idx] = i;
1060 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1061 RGN_BLOCKS (nr_regions) = idx++;
1062 CONTAINING_RGN (i) = nr_regions;
1063 BLOCK_TO_BB (i) = count = 0;
1065 /* Remove blocks from queue[] when their in degree
1066 becomes zero. Repeat until no blocks are left on the
1067 list. This produces a topological list of blocks in
1068 the region. */
1069 while (tail >= 0)
1071 if (head < 0)
1072 head = tail;
1073 child = queue[head];
1074 if (degree[child] == 0)
1076 edge e;
1078 degree[child] = -1;
1079 rgn_bb_table[idx++] = child;
1080 BLOCK_TO_BB (child) = ++count;
1081 CONTAINING_RGN (child) = nr_regions;
1082 queue[head] = queue[tail--];
1084 for (e = BASIC_BLOCK (child)->succ;
1086 e = e->succ_next)
1087 if (e->dest != EXIT_BLOCK_PTR)
1088 --degree[e->dest->index];
1090 else
1091 --head;
1093 ++nr_regions;
1097 free (queue);
1100 /* Any block that did not end up in a region is placed into a region
1101 by itself. */
1102 for (i = 0; i < n_basic_blocks; i++)
1103 if (degree[i] >= 0)
1105 rgn_bb_table[idx] = i;
1106 RGN_NR_BLOCKS (nr_regions) = 1;
1107 RGN_BLOCKS (nr_regions) = idx++;
1108 CONTAINING_RGN (i) = nr_regions++;
1109 BLOCK_TO_BB (i) = 0;
1112 free (max_hdr);
1113 free (dfs_nr);
1114 free (stack);
1115 free (passed);
1116 free (header);
1117 free (inner);
1118 free (in_queue);
1119 free (in_stack);
1122 /* Functions for regions scheduling information. */
1124 /* Compute dominators, probability, and potential-split-edges of bb.
1125 Assume that these values were already computed for bb's predecessors. */
1127 static void
1128 compute_dom_prob_ps (bb)
1129 int bb;
1131 int nxt_in_edge, fst_in_edge, pred;
1132 int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;
1134 prob[bb] = 0.0;
1135 if (IS_RGN_ENTRY (bb))
1137 BITSET_ADD (dom[bb], 0, bbset_size);
1138 prob[bb] = 1.0;
1139 return;
1142 fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));
1144 /* Intialize dom[bb] to '111..1'. */
1145 BITSET_INVERT (dom[bb], bbset_size);
1149 pred = FROM_BLOCK (nxt_in_edge);
1150 BITSET_INTER (dom[bb], dom[BLOCK_TO_BB (pred)], bbset_size);
1152 BITSET_UNION (ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)],
1153 edgeset_size);
1155 BITSET_ADD (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge), edgeset_size);
1157 nr_out_edges = 1;
1158 nr_rgn_out_edges = 0;
1159 fst_out_edge = OUT_EDGES (pred);
1160 nxt_out_edge = NEXT_OUT (fst_out_edge);
1161 BITSET_UNION (pot_split[bb], pot_split[BLOCK_TO_BB (pred)],
1162 edgeset_size);
1164 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (fst_out_edge), edgeset_size);
1166 /* The successor doesn't belong in the region? */
1167 if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
1168 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1169 ++nr_rgn_out_edges;
1171 while (fst_out_edge != nxt_out_edge)
1173 ++nr_out_edges;
1174 /* The successor doesn't belong in the region? */
1175 if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
1176 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1177 ++nr_rgn_out_edges;
1178 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (nxt_out_edge), edgeset_size);
1179 nxt_out_edge = NEXT_OUT (nxt_out_edge);
1183 /* Now nr_rgn_out_edges is the number of region-exit edges from
1184 pred, and nr_out_edges will be the number of pred out edges
1185 not leaving the region. */
1186 nr_out_edges -= nr_rgn_out_edges;
1187 if (nr_rgn_out_edges > 0)
1188 prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1189 else
1190 prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1191 nxt_in_edge = NEXT_IN (nxt_in_edge);
1193 while (fst_in_edge != nxt_in_edge);
1195 BITSET_ADD (dom[bb], bb, bbset_size);
1196 BITSET_DIFFER (pot_split[bb], ancestor_edges[bb], edgeset_size);
1198 if (sched_verbose >= 2)
1199 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1200 (int) (100.0 * prob[bb]));
1203 /* Functions for target info. */
1205 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1206 Note that bb_trg dominates bb_src. */
1208 static void
1209 split_edges (bb_src, bb_trg, bl)
1210 int bb_src;
1211 int bb_trg;
1212 edgelst *bl;
1214 int es = edgeset_size;
1215 edgeset src = (edgeset) xcalloc (es, sizeof (HOST_WIDE_INT));
1217 while (es--)
1218 src[es] = (pot_split[bb_src])[es];
1219 BITSET_DIFFER (src, pot_split[bb_trg], edgeset_size);
1220 extract_bitlst (src, edgeset_size, edgeset_bitsize, bl);
1221 free (src);
1224 /* Find the valid candidate-source-blocks for the target block TRG, compute
1225 their probability, and check if they are speculative or not.
1226 For speculative sources, compute their update-blocks and split-blocks. */
1228 static void
1229 compute_trg_info (trg)
1230 int trg;
1232 register candidate *sp;
1233 edgelst el;
1234 int check_block, update_idx;
1235 int i, j, k, fst_edge, nxt_edge;
1237 /* Define some of the fields for the target bb as well. */
1238 sp = candidate_table + trg;
1239 sp->is_valid = 1;
1240 sp->is_speculative = 0;
1241 sp->src_prob = 100;
1243 for (i = trg + 1; i < current_nr_blocks; i++)
1245 sp = candidate_table + i;
1247 sp->is_valid = IS_DOMINATED (i, trg);
1248 if (sp->is_valid)
1250 sp->src_prob = GET_SRC_PROB (i, trg);
1251 sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
1254 if (sp->is_valid)
1256 split_edges (i, trg, &el);
1257 sp->is_speculative = (el.nr_members) ? 1 : 0;
1258 if (sp->is_speculative && !flag_schedule_speculative)
1259 sp->is_valid = 0;
1262 if (sp->is_valid)
1264 char *update_blocks;
1266 /* Compute split blocks and store them in bblst_table.
1267 The TO block of every split edge is a split block. */
1268 sp->split_bbs.first_member = &bblst_table[bblst_last];
1269 sp->split_bbs.nr_members = el.nr_members;
1270 for (j = 0; j < el.nr_members; bblst_last++, j++)
1271 bblst_table[bblst_last] =
1272 TO_BLOCK (rgn_edges[el.first_member[j]]);
1273 sp->update_bbs.first_member = &bblst_table[bblst_last];
1275 /* Compute update blocks and store them in bblst_table.
1276 For every split edge, look at the FROM block, and check
1277 all out edges. For each out edge that is not a split edge,
1278 add the TO block to the update block list. This list can end
1279 up with a lot of duplicates. We need to weed them out to avoid
1280 overrunning the end of the bblst_table. */
1281 update_blocks = (char *) alloca (n_basic_blocks);
1282 memset (update_blocks, 0, n_basic_blocks);
1284 update_idx = 0;
1285 for (j = 0; j < el.nr_members; j++)
1287 check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
1288 fst_edge = nxt_edge = OUT_EDGES (check_block);
1291 if (! update_blocks[TO_BLOCK (nxt_edge)])
1293 for (k = 0; k < el.nr_members; k++)
1294 if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
1295 break;
1297 if (k >= el.nr_members)
1299 bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
1300 update_blocks[TO_BLOCK (nxt_edge)] = 1;
1301 update_idx++;
1305 nxt_edge = NEXT_OUT (nxt_edge);
1307 while (fst_edge != nxt_edge);
1309 sp->update_bbs.nr_members = update_idx;
1311 /* Make sure we didn't overrun the end of bblst_table. */
1312 if (bblst_last > bblst_size)
1313 abort ();
1315 else
1317 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1319 sp->is_speculative = 0;
1320 sp->src_prob = 0;
1325 /* Print candidates info, for debugging purposes. Callable from debugger. */
1327 void
1328 debug_candidate (i)
1329 int i;
1331 if (!candidate_table[i].is_valid)
1332 return;
1334 if (candidate_table[i].is_speculative)
1336 int j;
1337 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1339 fprintf (sched_dump, "split path: ");
1340 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1342 int b = candidate_table[i].split_bbs.first_member[j];
1344 fprintf (sched_dump, " %d ", b);
1346 fprintf (sched_dump, "\n");
1348 fprintf (sched_dump, "update path: ");
1349 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1351 int b = candidate_table[i].update_bbs.first_member[j];
1353 fprintf (sched_dump, " %d ", b);
1355 fprintf (sched_dump, "\n");
1357 else
1359 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1363 /* Print candidates info, for debugging purposes. Callable from debugger. */
1365 void
1366 debug_candidates (trg)
1367 int trg;
1369 int i;
1371 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1372 BB_TO_BLOCK (trg), trg);
1373 for (i = trg + 1; i < current_nr_blocks; i++)
1374 debug_candidate (i);
1377 /* Functions for speculative scheduing. */
1379 /* Return 0 if x is a set of a register alive in the beginning of one
1380 of the split-blocks of src, otherwise return 1. */
1382 static int
1383 check_live_1 (src, x)
1384 int src;
1385 rtx x;
1387 register int i;
1388 register int regno;
1389 register rtx reg = SET_DEST (x);
1391 if (reg == 0)
1392 return 1;
1394 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1395 || GET_CODE (reg) == SIGN_EXTRACT
1396 || GET_CODE (reg) == STRICT_LOW_PART)
1397 reg = XEXP (reg, 0);
1399 if (GET_CODE (reg) == PARALLEL)
1401 register int i;
1403 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1404 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1405 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1406 return 1;
1408 return 0;
1411 if (GET_CODE (reg) != REG)
1412 return 1;
1414 regno = REGNO (reg);
1416 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1418 /* Global registers are assumed live. */
1419 return 0;
1421 else
1423 if (regno < FIRST_PSEUDO_REGISTER)
1425 /* Check for hard registers. */
1426 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1427 while (--j >= 0)
1429 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1431 int b = candidate_table[src].split_bbs.first_member[i];
1433 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start,
1434 regno + j))
1436 return 0;
1441 else
1443 /* Check for psuedo registers. */
1444 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1446 int b = candidate_table[src].split_bbs.first_member[i];
1448 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, regno))
1450 return 0;
1456 return 1;
1459 /* If x is a set of a register R, mark that R is alive in the beginning
1460 of every update-block of src. */
1462 static void
1463 update_live_1 (src, x)
1464 int src;
1465 rtx x;
1467 register int i;
1468 register int regno;
1469 register rtx reg = SET_DEST (x);
1471 if (reg == 0)
1472 return;
1474 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1475 || GET_CODE (reg) == SIGN_EXTRACT
1476 || GET_CODE (reg) == STRICT_LOW_PART)
1477 reg = XEXP (reg, 0);
1479 if (GET_CODE (reg) == PARALLEL)
1481 register int i;
1483 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1484 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1485 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1487 return;
1490 if (GET_CODE (reg) != REG)
1491 return;
1493 /* Global registers are always live, so the code below does not apply
1494 to them. */
1496 regno = REGNO (reg);
1498 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
1500 if (regno < FIRST_PSEUDO_REGISTER)
1502 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1503 while (--j >= 0)
1505 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1507 int b = candidate_table[src].update_bbs.first_member[i];
1509 SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start,
1510 regno + j);
1514 else
1516 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1518 int b = candidate_table[src].update_bbs.first_member[i];
1520 SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start, regno);
1526 /* Return 1 if insn can be speculatively moved from block src to trg,
1527 otherwise return 0. Called before first insertion of insn to
1528 ready-list or before the scheduling. */
1530 static int
1531 check_live (insn, src)
1532 rtx insn;
1533 int src;
1535 /* Find the registers set by instruction. */
1536 if (GET_CODE (PATTERN (insn)) == SET
1537 || GET_CODE (PATTERN (insn)) == CLOBBER)
1538 return check_live_1 (src, PATTERN (insn));
1539 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1541 int j;
1542 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1543 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1544 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1545 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1546 return 0;
1548 return 1;
1551 return 1;
1554 /* Update the live registers info after insn was moved speculatively from
1555 block src to trg. */
1557 static void
1558 update_live (insn, src)
1559 rtx insn;
1560 int src;
1562 /* Find the registers set by instruction. */
1563 if (GET_CODE (PATTERN (insn)) == SET
1564 || GET_CODE (PATTERN (insn)) == CLOBBER)
1565 update_live_1 (src, PATTERN (insn));
1566 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1568 int j;
1569 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1570 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1571 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1572 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1576 /* Exception Free Loads:
1578 We define five classes of speculative loads: IFREE, IRISKY,
1579 PFREE, PRISKY, and MFREE.
1581 IFREE loads are loads that are proved to be exception-free, just
1582 by examining the load insn. Examples for such loads are loads
1583 from TOC and loads of global data.
1585 IRISKY loads are loads that are proved to be exception-risky,
1586 just by examining the load insn. Examples for such loads are
1587 volatile loads and loads from shared memory.
1589 PFREE loads are loads for which we can prove, by examining other
1590 insns, that they are exception-free. Currently, this class consists
1591 of loads for which we are able to find a "similar load", either in
1592 the target block, or, if only one split-block exists, in that split
1593 block. Load2 is similar to load1 if both have same single base
1594 register. We identify only part of the similar loads, by finding
1595 an insn upon which both load1 and load2 have a DEF-USE dependence.
1597 PRISKY loads are loads for which we can prove, by examining other
1598 insns, that they are exception-risky. Currently we have two proofs for
1599 such loads. The first proof detects loads that are probably guarded by a
1600 test on the memory address. This proof is based on the
1601 backward and forward data dependence information for the region.
1602 Let load-insn be the examined load.
1603 Load-insn is PRISKY iff ALL the following hold:
1605 - insn1 is not in the same block as load-insn
1606 - there is a DEF-USE dependence chain (insn1, ..., load-insn)
1607 - test-insn is either a compare or a branch, not in the same block
1608 as load-insn
1609 - load-insn is reachable from test-insn
1610 - there is a DEF-USE dependence chain (insn1, ..., test-insn)
1612 This proof might fail when the compare and the load are fed
1613 by an insn not in the region. To solve this, we will add to this
1614 group all loads that have no input DEF-USE dependence.
1616 The second proof detects loads that are directly or indirectly
1617 fed by a speculative load. This proof is affected by the
1618 scheduling process. We will use the flag fed_by_spec_load.
1619 Initially, all insns have this flag reset. After a speculative
1620 motion of an insn, if insn is either a load, or marked as
1621 fed_by_spec_load, we will also mark as fed_by_spec_load every
1622 insn1 for which a DEF-USE dependence (insn, insn1) exists. A
1623 load which is fed_by_spec_load is also PRISKY.
1625 MFREE (maybe-free) loads are all the remaining loads. They may be
1626 exception-free, but we cannot prove it.
1628 Now, all loads in IFREE and PFREE classes are considered
1629 exception-free, while all loads in IRISKY and PRISKY classes are
1630 considered exception-risky. As for loads in the MFREE class,
1631 these are considered either exception-free or exception-risky,
1632 depending on whether we are pessimistic or optimistic. We have
1633 to take the pessimistic approach to assure the safety of
1634 speculative scheduling, but we can take the optimistic approach
1635 by invoking the -fsched_spec_load_dangerous option. */
1637 enum INSN_TRAP_CLASS
1639 TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
1640 PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
1643 #define WORST_CLASS(class1, class2) \
1644 ((class1 > class2) ? class1 : class2)
1646 /* Non-zero if block bb_to is equal to, or reachable from block bb_from. */
1647 #define IS_REACHABLE(bb_from, bb_to) \
1648 (bb_from == bb_to \
1649 || IS_RGN_ENTRY (bb_from) \
1650 || (bitset_member (ancestor_edges[bb_to], \
1651 EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))), \
1652 edgeset_size)))
1654 /* Non-zero iff the address is comprised from at most 1 register. */
1655 #define CONST_BASED_ADDRESS_P(x) \
1656 (GET_CODE (x) == REG \
1657 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
1658 || (GET_CODE (x) == LO_SUM)) \
1659 && (GET_CODE (XEXP (x, 0)) == CONST_INT \
1660 || GET_CODE (XEXP (x, 1)) == CONST_INT)))
1662 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1664 static void
1665 set_spec_fed (load_insn)
1666 rtx load_insn;
1668 rtx link;
1670 for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
1671 if (GET_MODE (link) == VOIDmode)
1672 FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
1673 } /* set_spec_fed */
1675 /* On the path from the insn to load_insn_bb, find a conditional
1676 branch depending on insn, that guards the speculative load. */
1678 static int
1679 find_conditional_protection (insn, load_insn_bb)
1680 rtx insn;
1681 int load_insn_bb;
1683 rtx link;
1685 /* Iterate through DEF-USE forward dependences. */
1686 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
1688 rtx next = XEXP (link, 0);
1689 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1690 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1691 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1692 && load_insn_bb != INSN_BB (next)
1693 && GET_MODE (link) == VOIDmode
1694 && (GET_CODE (next) == JUMP_INSN
1695 || find_conditional_protection (next, load_insn_bb)))
1696 return 1;
1698 return 0;
1699 } /* find_conditional_protection */
1701 /* Returns 1 if the same insn1 that participates in the computation
1702 of load_insn's address is feeding a conditional branch that is
1703 guarding on load_insn. This is true if we find a the two DEF-USE
1704 chains:
1705 insn1 -> ... -> conditional-branch
1706 insn1 -> ... -> load_insn,
1707 and if a flow path exist:
1708 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1709 and if insn1 is on the path
1710 region-entry -> ... -> bb_trg -> ... load_insn.
1712 Locate insn1 by climbing on LOG_LINKS from load_insn.
1713 Locate the branch by following INSN_DEPEND from insn1. */
1715 static int
1716 is_conditionally_protected (load_insn, bb_src, bb_trg)
1717 rtx load_insn;
1718 int bb_src, bb_trg;
1720 rtx link;
1722 for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
1724 rtx insn1 = XEXP (link, 0);
1726 /* Must be a DEF-USE dependence upon non-branch. */
1727 if (GET_MODE (link) != VOIDmode
1728 || GET_CODE (insn1) == JUMP_INSN)
1729 continue;
1731 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1732 if (INSN_BB (insn1) == bb_src
1733 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1734 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1735 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1736 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1737 continue;
1739 /* Now search for the conditional-branch. */
1740 if (find_conditional_protection (insn1, bb_src))
1741 return 1;
1743 /* Recursive step: search another insn1, "above" current insn1. */
1744 return is_conditionally_protected (insn1, bb_src, bb_trg);
1747 /* The chain does not exist. */
1748 return 0;
1749 } /* is_conditionally_protected */
1751 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1752 load_insn can move speculatively from bb_src to bb_trg. All the
1753 following must hold:
1755 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1756 (2) load_insn and load1 have a def-use dependence upon
1757 the same insn 'insn1'.
1758 (3) either load2 is in bb_trg, or:
1759 - there's only one split-block, and
1760 - load1 is on the escape path, and
1762 From all these we can conclude that the two loads access memory
1763 addresses that differ at most by a constant, and hence if moving
1764 load_insn would cause an exception, it would have been caused by
1765 load2 anyhow. */
1767 static int
1768 is_pfree (load_insn, bb_src, bb_trg)
1769 rtx load_insn;
1770 int bb_src, bb_trg;
1772 rtx back_link;
1773 register candidate *candp = candidate_table + bb_src;
1775 if (candp->split_bbs.nr_members != 1)
1776 /* Must have exactly one escape block. */
1777 return 0;
1779 for (back_link = LOG_LINKS (load_insn);
1780 back_link; back_link = XEXP (back_link, 1))
1782 rtx insn1 = XEXP (back_link, 0);
1784 if (GET_MODE (back_link) == VOIDmode)
1786 /* Found a DEF-USE dependence (insn1, load_insn). */
1787 rtx fore_link;
1789 for (fore_link = INSN_DEPEND (insn1);
1790 fore_link; fore_link = XEXP (fore_link, 1))
1792 rtx insn2 = XEXP (fore_link, 0);
1793 if (GET_MODE (fore_link) == VOIDmode)
1795 /* Found a DEF-USE dependence (insn1, insn2). */
1796 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1797 /* insn2 not guaranteed to be a 1 base reg load. */
1798 continue;
1800 if (INSN_BB (insn2) == bb_trg)
1801 /* insn2 is the similar load, in the target block. */
1802 return 1;
1804 if (*(candp->split_bbs.first_member) == BLOCK_NUM (insn2))
1805 /* insn2 is a similar load, in a split-block. */
1806 return 1;
1812 /* Couldn't find a similar load. */
1813 return 0;
1814 } /* is_pfree */
1816 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
1817 as found by analyzing insn's expression. */
1819 static int
1820 may_trap_exp (x, is_store)
1821 rtx x;
1822 int is_store;
1824 enum rtx_code code;
1826 if (x == 0)
1827 return TRAP_FREE;
1828 code = GET_CODE (x);
1829 if (is_store)
1831 if (code == MEM)
1832 return TRAP_RISKY;
1833 else
1834 return TRAP_FREE;
1836 if (code == MEM)
1838 /* The insn uses memory: a volatile load. */
1839 if (MEM_VOLATILE_P (x))
1840 return IRISKY;
1841 /* An exception-free load. */
1842 if (!may_trap_p (x))
1843 return IFREE;
1844 /* A load with 1 base register, to be further checked. */
1845 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
1846 return PFREE_CANDIDATE;
1847 /* No info on the load, to be further checked. */
1848 return PRISKY_CANDIDATE;
1850 else
1852 const char *fmt;
1853 int i, insn_class = TRAP_FREE;
1855 /* Neither store nor load, check if it may cause a trap. */
1856 if (may_trap_p (x))
1857 return TRAP_RISKY;
1858 /* Recursive step: walk the insn... */
1859 fmt = GET_RTX_FORMAT (code);
1860 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1862 if (fmt[i] == 'e')
1864 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
1865 insn_class = WORST_CLASS (insn_class, tmp_class);
1867 else if (fmt[i] == 'E')
1869 int j;
1870 for (j = 0; j < XVECLEN (x, i); j++)
1872 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
1873 insn_class = WORST_CLASS (insn_class, tmp_class);
1874 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
1875 break;
1878 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
1879 break;
1881 return insn_class;
1885 /* Classifies insn for the purpose of verifying that it can be
1886 moved speculatively, by examining it's patterns, returning:
1887 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
1888 TRAP_FREE: non-load insn.
1889 IFREE: load from a globaly safe location.
1890 IRISKY: volatile load.
1891 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
1892 being either PFREE or PRISKY. */
1894 static int
1895 haifa_classify_insn (insn)
1896 rtx insn;
1898 rtx pat = PATTERN (insn);
1899 int tmp_class = TRAP_FREE;
1900 int insn_class = TRAP_FREE;
1901 enum rtx_code code;
1903 if (GET_CODE (pat) == PARALLEL)
1905 int i, len = XVECLEN (pat, 0);
1907 for (i = len - 1; i >= 0; i--)
1909 code = GET_CODE (XVECEXP (pat, 0, i));
1910 switch (code)
1912 case CLOBBER:
1913 /* Test if it is a 'store'. */
1914 tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
1915 break;
1916 case SET:
1917 /* Test if it is a store. */
1918 tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
1919 if (tmp_class == TRAP_RISKY)
1920 break;
1921 /* Test if it is a load. */
1922 tmp_class
1923 = WORST_CLASS (tmp_class,
1924 may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)),
1925 0));
1926 break;
1927 case COND_EXEC:
1928 case TRAP_IF:
1929 tmp_class = TRAP_RISKY;
1930 break;
1931 default:
1934 insn_class = WORST_CLASS (insn_class, tmp_class);
1935 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
1936 break;
1939 else
1941 code = GET_CODE (pat);
1942 switch (code)
1944 case CLOBBER:
1945 /* Test if it is a 'store'. */
1946 tmp_class = may_trap_exp (XEXP (pat, 0), 1);
1947 break;
1948 case SET:
1949 /* Test if it is a store. */
1950 tmp_class = may_trap_exp (SET_DEST (pat), 1);
1951 if (tmp_class == TRAP_RISKY)
1952 break;
1953 /* Test if it is a load. */
1954 tmp_class =
1955 WORST_CLASS (tmp_class,
1956 may_trap_exp (SET_SRC (pat), 0));
1957 break;
1958 case COND_EXEC:
1959 case TRAP_IF:
1960 tmp_class = TRAP_RISKY;
1961 break;
1962 default:;
1964 insn_class = tmp_class;
1967 return insn_class;
1970 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1971 a load moved speculatively, or if load_insn is protected by
1972 a compare on load_insn's address). */
1974 static int
1975 is_prisky (load_insn, bb_src, bb_trg)
1976 rtx load_insn;
1977 int bb_src, bb_trg;
1979 if (FED_BY_SPEC_LOAD (load_insn))
1980 return 1;
1982 if (LOG_LINKS (load_insn) == NULL)
1983 /* Dependence may 'hide' out of the region. */
1984 return 1;
1986 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
1987 return 1;
1989 return 0;
1992 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
1993 Return 1 if insn is exception-free (and the motion is valid)
1994 and 0 otherwise. */
1996 static int
1997 is_exception_free (insn, bb_src, bb_trg)
1998 rtx insn;
1999 int bb_src, bb_trg;
2001 int insn_class = haifa_classify_insn (insn);
2003 /* Handle non-load insns. */
2004 switch (insn_class)
2006 case TRAP_FREE:
2007 return 1;
2008 case TRAP_RISKY:
2009 return 0;
2010 default:;
2013 /* Handle loads. */
2014 if (!flag_schedule_speculative_load)
2015 return 0;
2016 IS_LOAD_INSN (insn) = 1;
2017 switch (insn_class)
2019 case IFREE:
2020 return (1);
2021 case IRISKY:
2022 return 0;
2023 case PFREE_CANDIDATE:
2024 if (is_pfree (insn, bb_src, bb_trg))
2025 return 1;
2026 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2027 case PRISKY_CANDIDATE:
2028 if (!flag_schedule_speculative_load_dangerous
2029 || is_prisky (insn, bb_src, bb_trg))
2030 return 0;
2031 break;
2032 default:;
2035 return flag_schedule_speculative_load_dangerous;
2038 /* The number of insns from the current block scheduled so far. */
2039 static int sched_target_n_insns;
2040 /* The number of insns from the current block to be scheduled in total. */
2041 static int target_n_insns;
2042 /* The number of insns from the entire region scheduled so far. */
2043 static int sched_n_insns;
2044 /* Nonzero if the last scheduled insn was a jump. */
2045 static int last_was_jump;
2047 /* Implementations of the sched_info functions for region scheduling. */
2048 static void init_ready_list PARAMS ((struct ready_list *));
2049 static int can_schedule_ready_p PARAMS ((rtx));
2050 static int new_ready PARAMS ((rtx));
2051 static int schedule_more_p PARAMS ((void));
2052 static const char *rgn_print_insn PARAMS ((rtx, int));
2053 static int rgn_rank PARAMS ((rtx, rtx));
2054 static int contributes_to_priority PARAMS ((rtx, rtx));
2055 static void compute_jump_reg_dependencies PARAMS ((rtx, regset));
2057 /* Return nonzero if there are more insns that should be scheduled. */
2059 static int
2060 schedule_more_p ()
2062 return ! last_was_jump && sched_target_n_insns < target_n_insns;
2065 /* Add all insns that are initially ready to the ready list READY. Called
2066 once before scheduling a set of insns. */
2068 static void
2069 init_ready_list (ready)
2070 struct ready_list *ready;
2072 rtx prev_head = current_sched_info->prev_head;
2073 rtx next_tail = current_sched_info->next_tail;
2074 int bb_src;
2075 rtx insn;
2077 target_n_insns = 0;
2078 sched_target_n_insns = 0;
2079 sched_n_insns = 0;
2080 last_was_jump = 0;
2082 /* Print debugging information. */
2083 if (sched_verbose >= 5)
2084 debug_dependencies ();
2086 /* Prepare current target block info. */
2087 if (current_nr_blocks > 1)
2089 candidate_table = (candidate *) xmalloc (current_nr_blocks
2090 * sizeof (candidate));
2092 bblst_last = 0;
2093 /* bblst_table holds split blocks and update blocks for each block after
2094 the current one in the region. split blocks and update blocks are
2095 the TO blocks of region edges, so there can be at most rgn_nr_edges
2096 of them. */
2097 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
2098 bblst_table = (int *) xmalloc (bblst_size * sizeof (int));
2100 bitlst_table_last = 0;
2101 bitlst_table_size = rgn_nr_edges;
2102 bitlst_table = (int *) xmalloc (rgn_nr_edges * sizeof (int));
2104 compute_trg_info (target_bb);
2107 /* Initialize ready list with all 'ready' insns in target block.
2108 Count number of insns in the target block being scheduled. */
2109 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2111 rtx next;
2113 if (! INSN_P (insn))
2114 continue;
2115 next = NEXT_INSN (insn);
2117 if (INSN_DEP_COUNT (insn) == 0
2118 && (SCHED_GROUP_P (next) == 0 || ! INSN_P (next)))
2119 ready_add (ready, insn);
2120 if (!(SCHED_GROUP_P (insn)))
2121 target_n_insns++;
2124 /* Add to ready list all 'ready' insns in valid source blocks.
2125 For speculative insns, check-live, exception-free, and
2126 issue-delay. */
2127 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2128 if (IS_VALID (bb_src))
2130 rtx src_head;
2131 rtx src_next_tail;
2132 rtx tail, head;
2134 get_block_head_tail (BB_TO_BLOCK (bb_src), &head, &tail);
2135 src_next_tail = NEXT_INSN (tail);
2136 src_head = head;
2138 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2140 if (! INSN_P (insn))
2141 continue;
2143 if (!CANT_MOVE (insn)
2144 && (!IS_SPECULATIVE_INSN (insn)
2145 || (insn_issue_delay (insn) <= 3
2146 && check_live (insn, bb_src)
2147 && is_exception_free (insn, bb_src, target_bb))))
2149 rtx next;
2151 /* Note that we havn't squirrled away the notes for
2152 blocks other than the current. So if this is a
2153 speculative insn, NEXT might otherwise be a note. */
2154 next = next_nonnote_insn (insn);
2155 if (INSN_DEP_COUNT (insn) == 0
2156 && (! next
2157 || SCHED_GROUP_P (next) == 0
2158 || ! INSN_P (next)))
2159 ready_add (ready, insn);
2165 /* Called after taking INSN from the ready list. Returns nonzero if this
2166 insn can be scheduled, nonzero if we should silently discard it. */
2168 static int
2169 can_schedule_ready_p (insn)
2170 rtx insn;
2172 if (GET_CODE (insn) == JUMP_INSN)
2173 last_was_jump = 1;
2175 /* An interblock motion? */
2176 if (INSN_BB (insn) != target_bb)
2178 rtx temp;
2179 basic_block b1;
2181 if (IS_SPECULATIVE_INSN (insn))
2183 if (!check_live (insn, INSN_BB (insn)))
2184 return 0;
2185 update_live (insn, INSN_BB (insn));
2187 /* For speculative load, mark insns fed by it. */
2188 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2189 set_spec_fed (insn);
2191 nr_spec++;
2193 nr_inter++;
2195 /* Find the beginning of the scheduling group. */
2196 /* ??? Ought to update basic block here, but later bits of
2197 schedule_block assumes the original insn block is
2198 still intact. */
2200 temp = insn;
2201 while (SCHED_GROUP_P (temp))
2202 temp = PREV_INSN (temp);
2204 /* Update source block boundaries. */
2205 b1 = BLOCK_FOR_INSN (temp);
2206 if (temp == b1->head && insn == b1->end)
2208 /* We moved all the insns in the basic block.
2209 Emit a note after the last insn and update the
2210 begin/end boundaries to point to the note. */
2211 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
2212 b1->head = note;
2213 b1->end = note;
2215 else if (insn == b1->end)
2217 /* We took insns from the end of the basic block,
2218 so update the end of block boundary so that it
2219 points to the first insn we did not move. */
2220 b1->end = PREV_INSN (temp);
2222 else if (temp == b1->head)
2224 /* We took insns from the start of the basic block,
2225 so update the start of block boundary so that
2226 it points to the first insn we did not move. */
2227 b1->head = NEXT_INSN (insn);
2230 else
2232 /* In block motion. */
2233 sched_target_n_insns++;
2235 sched_n_insns++;
2237 return 1;
2240 /* Called after INSN has all its dependencies resolved. Return nonzero
2241 if it should be moved to the ready list or the queue, or zero if we
2242 should silently discard it. */
2243 static int
2244 new_ready (next)
2245 rtx next;
2247 /* For speculative insns, before inserting to ready/queue,
2248 check live, exception-free, and issue-delay. */
2249 if (INSN_BB (next) != target_bb
2250 && (!IS_VALID (INSN_BB (next))
2251 || CANT_MOVE (next)
2252 || (IS_SPECULATIVE_INSN (next)
2253 && (insn_issue_delay (next) > 3
2254 || !check_live (next, INSN_BB (next))
2255 || !is_exception_free (next, INSN_BB (next), target_bb)))))
2256 return 0;
2257 return 1;
2260 /* Return a string that contains the insn uid and optionally anything else
2261 necessary to identify this insn in an output. It's valid to use a
2262 static buffer for this. The ALIGNED parameter should cause the string
2263 to be formatted so that multiple output lines will line up nicely. */
2265 static const char *
2266 rgn_print_insn (insn, aligned)
2267 rtx insn;
2268 int aligned;
2270 static char tmp[80];
2272 if (aligned)
2273 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2274 else
2276 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2277 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2278 else
2279 sprintf (tmp, "%d", INSN_UID (insn));
2281 return tmp;
2284 /* Compare priority of two insns. Return a positive number if the second
2285 insn is to be preferred for scheduling, and a negative one if the first
2286 is to be preferred. Zero if they are equally good. */
2288 static int
2289 rgn_rank (insn1, insn2)
2290 rtx insn1, insn2;
2292 /* Some comparison make sense in interblock scheduling only. */
2293 if (INSN_BB (insn1) != INSN_BB (insn2))
2295 int spec_val, prob_val;
2297 /* Prefer an inblock motion on an interblock motion. */
2298 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2299 return 1;
2300 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2301 return -1;
2303 /* Prefer a useful motion on a speculative one. */
2304 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2305 if (spec_val)
2306 return spec_val;
2308 /* Prefer a more probable (speculative) insn. */
2309 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2310 if (prob_val)
2311 return prob_val;
2313 return 0;
2316 /* NEXT is an instruction that depends on INSN (a backward dependence);
2317 return nonzero if we should include this dependence in priority
2318 calculations. */
2320 static int
2321 contributes_to_priority (next, insn)
2322 rtx next, insn;
2324 return BLOCK_NUM (next) == BLOCK_NUM (insn);
2327 /* INSN is a JUMP_INSN. Store the set of registers that must be considered
2328 to be set by this jump in SET. */
2330 static void
2331 compute_jump_reg_dependencies (insn, set)
2332 rtx insn ATTRIBUTE_UNUSED;
2333 regset set ATTRIBUTE_UNUSED;
2335 /* Nothing to do here, since we postprocess jumps in
2336 add_branch_dependences. */
2339 /* Used in schedule_insns to initialize current_sched_info for scheduling
2340 regions (or single basic blocks). */
2342 static struct sched_info region_sched_info =
2344 init_ready_list,
2345 can_schedule_ready_p,
2346 schedule_more_p,
2347 new_ready,
2348 rgn_rank,
2349 rgn_print_insn,
2350 contributes_to_priority,
2351 compute_jump_reg_dependencies,
2353 NULL, NULL,
2354 NULL, NULL,
2355 0, 0
2358 /* Add dependences so that branches are scheduled to run last in their
2359 block. */
2361 static void
2362 add_branch_dependences (head, tail)
2363 rtx head, tail;
2365 rtx insn, last;
2367 /* For all branches, calls, uses, clobbers, and cc0 setters, force them
2368 to remain in order at the end of the block by adding dependencies and
2369 giving the last a high priority. There may be notes present, and
2370 prev_head may also be a note.
2372 Branches must obviously remain at the end. Calls should remain at the
2373 end since moving them results in worse register allocation. Uses remain
2374 at the end to ensure proper register allocation. cc0 setters remaim
2375 at the end because they can't be moved away from their cc0 user. */
2376 insn = tail;
2377 last = 0;
2378 while (GET_CODE (insn) == CALL_INSN
2379 || GET_CODE (insn) == JUMP_INSN
2380 || (GET_CODE (insn) == INSN
2381 && (GET_CODE (PATTERN (insn)) == USE
2382 || GET_CODE (PATTERN (insn)) == CLOBBER
2383 #ifdef HAVE_cc0
2384 || sets_cc0_p (PATTERN (insn))
2385 #endif
2387 || GET_CODE (insn) == NOTE)
2389 if (GET_CODE (insn) != NOTE)
2391 if (last != 0
2392 && !find_insn_list (insn, LOG_LINKS (last)))
2394 add_dependence (last, insn, REG_DEP_ANTI);
2395 INSN_REF_COUNT (insn)++;
2398 CANT_MOVE (insn) = 1;
2400 last = insn;
2401 /* Skip over insns that are part of a group.
2402 Make each insn explicitly depend on the previous insn.
2403 This ensures that only the group header will ever enter
2404 the ready queue (and, when scheduled, will automatically
2405 schedule the SCHED_GROUP_P block). */
2406 while (SCHED_GROUP_P (insn))
2408 rtx temp = prev_nonnote_insn (insn);
2409 add_dependence (insn, temp, REG_DEP_ANTI);
2410 insn = temp;
2414 /* Don't overrun the bounds of the basic block. */
2415 if (insn == head)
2416 break;
2418 insn = PREV_INSN (insn);
2421 /* Make sure these insns are scheduled last in their block. */
2422 insn = last;
2423 if (insn != 0)
2424 while (insn != head)
2426 insn = prev_nonnote_insn (insn);
2428 if (INSN_REF_COUNT (insn) != 0)
2429 continue;
2431 add_dependence (last, insn, REG_DEP_ANTI);
2432 INSN_REF_COUNT (insn) = 1;
2434 /* Skip over insns that are part of a group. */
2435 while (SCHED_GROUP_P (insn))
2436 insn = prev_nonnote_insn (insn);
2440 /* Data structures for the computation of data dependences in a regions. We
2441 keep one `deps' structure for every basic block. Before analyzing the
2442 data dependences for a bb, its variables are initialized as a function of
2443 the variables of its predecessors. When the analysis for a bb completes,
2444 we save the contents to the corresponding bb_deps[bb] variable. */
2446 static struct deps *bb_deps;
2448 /* After computing the dependencies for block BB, propagate the dependencies
2449 found in TMP_DEPS to the successors of the block. */
2450 static void
2451 propagate_deps (bb, tmp_deps)
2452 int bb;
2453 struct deps *tmp_deps;
2455 int b = BB_TO_BLOCK (bb);
2456 int e, first_edge;
2457 int reg;
2458 rtx link_insn, link_mem;
2459 rtx u;
2461 /* These lists should point to the right place, for correct
2462 freeing later. */
2463 bb_deps[bb].pending_read_insns = tmp_deps->pending_read_insns;
2464 bb_deps[bb].pending_read_mems = tmp_deps->pending_read_mems;
2465 bb_deps[bb].pending_write_insns = tmp_deps->pending_write_insns;
2466 bb_deps[bb].pending_write_mems = tmp_deps->pending_write_mems;
2468 /* bb's structures are inherited by its successors. */
2469 first_edge = e = OUT_EDGES (b);
2470 if (e <= 0)
2471 return;
2475 rtx x;
2476 int b_succ = TO_BLOCK (e);
2477 int bb_succ = BLOCK_TO_BB (b_succ);
2478 struct deps *succ_deps = bb_deps + bb_succ;
2480 /* Only bbs "below" bb, in the same region, are interesting. */
2481 if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
2482 || bb_succ <= bb)
2484 e = NEXT_OUT (e);
2485 continue;
2488 /* The reg_last lists are inherited by bb_succ. */
2489 EXECUTE_IF_SET_IN_REG_SET (&tmp_deps->reg_last_in_use, 0, reg,
2491 struct deps_reg *tmp_deps_reg = &tmp_deps->reg_last[reg];
2492 struct deps_reg *succ_deps_reg = &succ_deps->reg_last[reg];
2494 for (u = tmp_deps_reg->uses; u; u = XEXP (u, 1))
2495 if (! find_insn_list (XEXP (u, 0), succ_deps_reg->uses))
2496 succ_deps_reg->uses
2497 = alloc_INSN_LIST (XEXP (u, 0), succ_deps_reg->uses);
2499 for (u = tmp_deps_reg->sets; u; u = XEXP (u, 1))
2500 if (! find_insn_list (XEXP (u, 0), succ_deps_reg->sets))
2501 succ_deps_reg->sets
2502 = alloc_INSN_LIST (XEXP (u, 0), succ_deps_reg->sets);
2504 for (u = tmp_deps_reg->clobbers; u; u = XEXP (u, 1))
2505 if (! find_insn_list (XEXP (u, 0), succ_deps_reg->clobbers))
2506 succ_deps_reg->clobbers
2507 = alloc_INSN_LIST (XEXP (u, 0), succ_deps_reg->clobbers);
2509 IOR_REG_SET (&succ_deps->reg_last_in_use, &tmp_deps->reg_last_in_use);
2511 /* Mem read/write lists are inherited by bb_succ. */
2512 link_insn = tmp_deps->pending_read_insns;
2513 link_mem = tmp_deps->pending_read_mems;
2514 while (link_insn)
2516 if (!(find_insn_mem_list (XEXP (link_insn, 0),
2517 XEXP (link_mem, 0),
2518 succ_deps->pending_read_insns,
2519 succ_deps->pending_read_mems)))
2520 add_insn_mem_dependence (succ_deps, &succ_deps->pending_read_insns,
2521 &succ_deps->pending_read_mems,
2522 XEXP (link_insn, 0), XEXP (link_mem, 0));
2523 link_insn = XEXP (link_insn, 1);
2524 link_mem = XEXP (link_mem, 1);
2527 link_insn = tmp_deps->pending_write_insns;
2528 link_mem = tmp_deps->pending_write_mems;
2529 while (link_insn)
2531 if (!(find_insn_mem_list (XEXP (link_insn, 0),
2532 XEXP (link_mem, 0),
2533 succ_deps->pending_write_insns,
2534 succ_deps->pending_write_mems)))
2535 add_insn_mem_dependence (succ_deps,
2536 &succ_deps->pending_write_insns,
2537 &succ_deps->pending_write_mems,
2538 XEXP (link_insn, 0), XEXP (link_mem, 0));
2540 link_insn = XEXP (link_insn, 1);
2541 link_mem = XEXP (link_mem, 1);
2544 /* last_function_call is inherited by bb_succ. */
2545 for (u = tmp_deps->last_function_call; u; u = XEXP (u, 1))
2546 if (! find_insn_list (XEXP (u, 0), succ_deps->last_function_call))
2547 succ_deps->last_function_call
2548 = alloc_INSN_LIST (XEXP (u, 0), succ_deps->last_function_call);
2550 /* last_pending_memory_flush is inherited by bb_succ. */
2551 for (u = tmp_deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2552 if (! find_insn_list (XEXP (u, 0),
2553 succ_deps->last_pending_memory_flush))
2554 succ_deps->last_pending_memory_flush
2555 = alloc_INSN_LIST (XEXP (u, 0),
2556 succ_deps->last_pending_memory_flush);
2558 /* sched_before_next_call is inherited by bb_succ. */
2559 x = LOG_LINKS (tmp_deps->sched_before_next_call);
2560 for (; x; x = XEXP (x, 1))
2561 add_dependence (succ_deps->sched_before_next_call,
2562 XEXP (x, 0), REG_DEP_ANTI);
2564 e = NEXT_OUT (e);
2566 while (e != first_edge);
2569 /* Compute backward dependences inside bb. In a multiple blocks region:
2570 (1) a bb is analyzed after its predecessors, and (2) the lists in
2571 effect at the end of bb (after analyzing for bb) are inherited by
2572 bb's successrs.
2574 Specifically for reg-reg data dependences, the block insns are
2575 scanned by sched_analyze () top-to-bottom. Two lists are
2576 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2577 and reg_last[].uses for register USEs.
2579 When analysis is completed for bb, we update for its successors:
2580 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2581 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2583 The mechanism for computing mem-mem data dependence is very
2584 similar, and the result is interblock dependences in the region. */
2586 static void
2587 compute_block_backward_dependences (bb)
2588 int bb;
2590 rtx head, tail;
2591 struct deps tmp_deps;
2593 tmp_deps = bb_deps[bb];
2595 /* Do the analysis for this block. */
2596 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2597 sched_analyze (&tmp_deps, head, tail);
2598 add_branch_dependences (head, tail);
2600 if (current_nr_blocks > 1)
2601 propagate_deps (bb, &tmp_deps);
2603 /* Free up the INSN_LISTs. */
2604 free_deps (&tmp_deps);
2607 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2608 them to the unused_*_list variables, so that they can be reused. */
2610 static void
2611 free_pending_lists ()
2613 int bb;
2615 for (bb = 0; bb < current_nr_blocks; bb++)
2617 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2618 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2619 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2620 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2624 /* Print dependences for debugging, callable from debugger. */
2626 void
2627 debug_dependencies ()
2629 int bb;
2631 fprintf (sched_dump, ";; --------------- forward dependences: ------------ \n");
2632 for (bb = 0; bb < current_nr_blocks; bb++)
2634 if (1)
2636 rtx head, tail;
2637 rtx next_tail;
2638 rtx insn;
2640 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2641 next_tail = NEXT_INSN (tail);
2642 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2643 BB_TO_BLOCK (bb), bb);
2645 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
2646 "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
2647 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
2648 "----", "----", "--", "---", "----", "----", "--------", "-----");
2649 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2651 rtx link;
2652 int unit, range;
2654 if (! INSN_P (insn))
2656 int n;
2657 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2658 if (GET_CODE (insn) == NOTE)
2660 n = NOTE_LINE_NUMBER (insn);
2661 if (n < 0)
2662 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2663 else
2664 fprintf (sched_dump, "line %d, file %s\n", n,
2665 NOTE_SOURCE_FILE (insn));
2667 else
2668 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2669 continue;
2672 unit = insn_unit (insn);
2673 range = (unit < 0
2674 || function_units[unit].blockage_range_function == 0) ? 0 :
2675 function_units[unit].blockage_range_function (insn);
2676 fprintf (sched_dump,
2677 ";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ",
2678 (SCHED_GROUP_P (insn) ? "+" : " "),
2679 INSN_UID (insn),
2680 INSN_CODE (insn),
2681 INSN_BB (insn),
2682 INSN_DEP_COUNT (insn),
2683 INSN_PRIORITY (insn),
2684 insn_cost (insn, 0, 0),
2685 (int) MIN_BLOCKAGE_COST (range),
2686 (int) MAX_BLOCKAGE_COST (range));
2687 insn_print_units (insn);
2688 fprintf (sched_dump, "\t: ");
2689 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
2690 fprintf (sched_dump, "%d ", INSN_UID (XEXP (link, 0)));
2691 fprintf (sched_dump, "\n");
2695 fprintf (sched_dump, "\n");
2698 /* Schedule a region. A region is either an inner loop, a loop-free
2699 subroutine, or a single basic block. Each bb in the region is
2700 scheduled after its flow predecessors. */
2702 static void
2703 schedule_region (rgn)
2704 int rgn;
2706 int bb;
2707 int rgn_n_insns = 0;
2708 int sched_rgn_n_insns = 0;
2710 /* Set variables for the current region. */
2711 current_nr_blocks = RGN_NR_BLOCKS (rgn);
2712 current_blocks = RGN_BLOCKS (rgn);
2714 init_deps_global ();
2716 /* Initializations for region data dependence analyisis. */
2717 bb_deps = (struct deps *) xmalloc (sizeof (struct deps) * current_nr_blocks);
2718 for (bb = 0; bb < current_nr_blocks; bb++)
2719 init_deps (bb_deps + bb);
2721 /* Compute LOG_LINKS. */
2722 for (bb = 0; bb < current_nr_blocks; bb++)
2723 compute_block_backward_dependences (bb);
2725 /* Compute INSN_DEPEND. */
2726 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
2728 rtx head, tail;
2729 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2731 compute_forward_dependences (head, tail);
2734 /* Set priorities. */
2735 for (bb = 0; bb < current_nr_blocks; bb++)
2737 rtx head, tail;
2738 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2740 rgn_n_insns += set_priorities (head, tail);
2743 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
2744 if (current_nr_blocks > 1)
2746 int i;
2748 prob = (float *) xmalloc ((current_nr_blocks) * sizeof (float));
2750 bbset_size = current_nr_blocks / HOST_BITS_PER_WIDE_INT + 1;
2751 dom = (bbset *) xmalloc (current_nr_blocks * sizeof (bbset));
2752 for (i = 0; i < current_nr_blocks; i++)
2753 dom[i] = (bbset) xcalloc (bbset_size, sizeof (HOST_WIDE_INT));
2755 /* Edge to bit. */
2756 rgn_nr_edges = 0;
2757 edge_to_bit = (int *) xmalloc (nr_edges * sizeof (int));
2758 for (i = 1; i < nr_edges; i++)
2759 if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
2760 EDGE_TO_BIT (i) = rgn_nr_edges++;
2761 rgn_edges = (int *) xmalloc (rgn_nr_edges * sizeof (int));
2763 rgn_nr_edges = 0;
2764 for (i = 1; i < nr_edges; i++)
2765 if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
2766 rgn_edges[rgn_nr_edges++] = i;
2768 /* Split edges. */
2769 edgeset_size = rgn_nr_edges / HOST_BITS_PER_WIDE_INT + 1;
2770 edgeset_bitsize = rgn_nr_edges;
2771 pot_split = (edgeset *) xmalloc (current_nr_blocks * sizeof (edgeset));
2772 ancestor_edges
2773 = (edgeset *) xmalloc (current_nr_blocks * sizeof (edgeset));
2774 for (i = 0; i < current_nr_blocks; i++)
2776 pot_split[i] =
2777 (edgeset) xcalloc (edgeset_size, sizeof (HOST_WIDE_INT));
2778 ancestor_edges[i] =
2779 (edgeset) xcalloc (edgeset_size, sizeof (HOST_WIDE_INT));
2782 /* Compute probabilities, dominators, split_edges. */
2783 for (bb = 0; bb < current_nr_blocks; bb++)
2784 compute_dom_prob_ps (bb);
2787 /* Now we can schedule all blocks. */
2788 for (bb = 0; bb < current_nr_blocks; bb++)
2790 rtx head, tail;
2791 int b = BB_TO_BLOCK (bb);
2793 get_block_head_tail (b, &head, &tail);
2795 if (no_real_insns_p (head, tail))
2796 continue;
2798 current_sched_info->prev_head = PREV_INSN (head);
2799 current_sched_info->next_tail = NEXT_INSN (tail);
2801 if (write_symbols != NO_DEBUG)
2803 save_line_notes (b, head, tail);
2804 rm_line_notes (head, tail);
2807 /* rm_other_notes only removes notes which are _inside_ the
2808 block---that is, it won't remove notes before the first real insn
2809 or after the last real insn of the block. So if the first insn
2810 has a REG_SAVE_NOTE which would otherwise be emitted before the
2811 insn, it is redundant with the note before the start of the
2812 block, and so we have to take it out. */
2813 if (INSN_P (head))
2815 rtx note;
2817 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
2818 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2820 remove_note (head, note);
2821 note = XEXP (note, 1);
2822 remove_note (head, note);
2826 /* Remove remaining note insns from the block, save them in
2827 note_list. These notes are restored at the end of
2828 schedule_block (). */
2829 rm_other_notes (head, tail);
2831 target_bb = bb;
2833 current_sched_info->queue_must_finish_empty
2834 = current_nr_blocks > 1 && !flag_schedule_interblock;
2836 schedule_block (b, rgn_n_insns);
2837 sched_rgn_n_insns += sched_n_insns;
2839 /* Update target block boundaries. */
2840 if (head == BLOCK_HEAD (b))
2841 BLOCK_HEAD (b) = current_sched_info->head;
2842 if (tail == BLOCK_END (b))
2843 BLOCK_END (b) = current_sched_info->tail;
2845 /* Clean up. */
2846 if (current_nr_blocks > 1)
2848 free (candidate_table);
2849 free (bblst_table);
2850 free (bitlst_table);
2854 /* Sanity check: verify that all region insns were scheduled. */
2855 if (sched_rgn_n_insns != rgn_n_insns)
2856 abort ();
2858 /* Restore line notes. */
2859 if (write_symbols != NO_DEBUG)
2861 for (bb = 0; bb < current_nr_blocks; bb++)
2863 rtx head, tail;
2864 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2865 restore_line_notes (head, tail);
2869 /* Done with this region. */
2870 free_pending_lists ();
2872 finish_deps_global ();
2874 free (bb_deps);
2876 if (current_nr_blocks > 1)
2878 int i;
2880 free (prob);
2881 for (i = 0; i < current_nr_blocks; ++i)
2883 free (dom[i]);
2884 free (pot_split[i]);
2885 free (ancestor_edges[i]);
2887 free (dom);
2888 free (edge_to_bit);
2889 free (rgn_edges);
2890 free (pot_split);
2891 free (ancestor_edges);
2895 /* Indexed by region, holds the number of death notes found in that region.
2896 Used for consistency checks. */
2897 static int *deaths_in_region;
2899 /* Initialize data structures for region scheduling. */
2901 static void
2902 init_regions ()
2904 sbitmap blocks;
2905 int rgn;
2907 nr_regions = 0;
2908 rgn_table = (region *) xmalloc ((n_basic_blocks) * sizeof (region));
2909 rgn_bb_table = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
2910 block_to_bb = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
2911 containing_rgn = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
2913 blocks = sbitmap_alloc (n_basic_blocks);
2915 /* Compute regions for scheduling. */
2916 if (reload_completed
2917 || n_basic_blocks == 1
2918 || !flag_schedule_interblock)
2920 find_single_block_region ();
2922 else
2924 /* Verify that a 'good' control flow graph can be built. */
2925 if (is_cfg_nonregular ())
2927 find_single_block_region ();
2929 else
2931 sbitmap *dom;
2932 struct edge_list *edge_list;
2934 dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
2936 /* The scheduler runs after flow; therefore, we can't blindly call
2937 back into find_basic_blocks since doing so could invalidate the
2938 info in global_live_at_start.
2940 Consider a block consisting entirely of dead stores; after life
2941 analysis it would be a block of NOTE_INSN_DELETED notes. If
2942 we call find_basic_blocks again, then the block would be removed
2943 entirely and invalidate our the register live information.
2945 We could (should?) recompute register live information. Doing
2946 so may even be beneficial. */
2947 edge_list = create_edge_list ();
2949 /* Compute the dominators and post dominators. */
2950 calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
2952 /* build_control_flow will return nonzero if it detects unreachable
2953 blocks or any other irregularity with the cfg which prevents
2954 cross block scheduling. */
2955 if (build_control_flow (edge_list) != 0)
2956 find_single_block_region ();
2957 else
2958 find_rgns (edge_list, dom);
2960 if (sched_verbose >= 3)
2961 debug_regions ();
2963 /* We are done with flow's edge list. */
2964 free_edge_list (edge_list);
2966 /* For now. This will move as more and more of haifa is converted
2967 to using the cfg code in flow.c. */
2968 free (dom);
2972 deaths_in_region = (int *) xmalloc (sizeof (int) * nr_regions);
2974 /* Remove all death notes from the subroutine. */
2975 for (rgn = 0; rgn < nr_regions; rgn++)
2977 int b;
2979 sbitmap_zero (blocks);
2980 for (b = RGN_NR_BLOCKS (rgn) - 1; b >= 0; --b)
2981 SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn) + b]);
2983 deaths_in_region[rgn] = count_or_remove_death_notes (blocks, 1);
2986 sbitmap_free (blocks);
2989 /* The one entry point in this file. DUMP_FILE is the dump file for
2990 this pass. */
2992 void
2993 schedule_insns (dump_file)
2994 FILE *dump_file;
2996 sbitmap large_region_blocks, blocks;
2997 int rgn;
2998 int any_large_regions;
3000 /* Taking care of this degenerate case makes the rest of
3001 this code simpler. */
3002 if (n_basic_blocks == 0)
3003 return;
3005 nr_inter = 0;
3006 nr_spec = 0;
3008 sched_init (dump_file);
3010 init_regions ();
3012 current_sched_info = &region_sched_info;
3014 /* Schedule every region in the subroutine. */
3015 for (rgn = 0; rgn < nr_regions; rgn++)
3016 schedule_region (rgn);
3018 /* Update life analysis for the subroutine. Do single block regions
3019 first so that we can verify that live_at_start didn't change. Then
3020 do all other blocks. */
3021 /* ??? There is an outside possibility that update_life_info, or more
3022 to the point propagate_block, could get called with non-zero flags
3023 more than once for one basic block. This would be kinda bad if it
3024 were to happen, since REG_INFO would be accumulated twice for the
3025 block, and we'd have twice the REG_DEAD notes.
3027 I'm fairly certain that this _shouldn't_ happen, since I don't think
3028 that live_at_start should change at region heads. Not sure what the
3029 best way to test for this kind of thing... */
3031 allocate_reg_life_data ();
3032 compute_bb_for_insn (get_max_uid ());
3034 any_large_regions = 0;
3035 large_region_blocks = sbitmap_alloc (n_basic_blocks);
3036 sbitmap_ones (large_region_blocks);
3038 blocks = sbitmap_alloc (n_basic_blocks);
3040 for (rgn = 0; rgn < nr_regions; rgn++)
3041 if (RGN_NR_BLOCKS (rgn) > 1)
3042 any_large_regions = 1;
3043 else
3045 sbitmap_zero (blocks);
3046 SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
3047 RESET_BIT (large_region_blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
3049 /* Don't update reg info after reload, since that affects
3050 regs_ever_live, which should not change after reload. */
3051 update_life_info (blocks, UPDATE_LIFE_LOCAL,
3052 (reload_completed ? PROP_DEATH_NOTES
3053 : PROP_DEATH_NOTES | PROP_REG_INFO));
3055 #ifndef HAVE_conditional_execution
3056 /* ??? REG_DEAD notes only exist for unconditional deaths. We need
3057 a count of the conditional plus unconditional deaths for this to
3058 work out. */
3059 /* In the single block case, the count of registers that died should
3060 not have changed during the schedule. */
3061 if (count_or_remove_death_notes (blocks, 0) != deaths_in_region[rgn])
3062 abort ();
3063 #endif
3066 if (any_large_regions)
3068 update_life_info (large_region_blocks, UPDATE_LIFE_GLOBAL,
3069 PROP_DEATH_NOTES | PROP_REG_INFO);
3072 /* Reposition the prologue and epilogue notes in case we moved the
3073 prologue/epilogue insns. */
3074 if (reload_completed)
3075 reposition_prologue_and_epilogue_notes (get_insns ());
3077 /* Delete redundant line notes. */
3078 if (write_symbols != NO_DEBUG)
3079 rm_redundant_line_notes ();
3081 if (sched_verbose)
3083 if (reload_completed == 0 && flag_schedule_interblock)
3085 fprintf (sched_dump,
3086 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3087 nr_inter, nr_spec);
3089 else
3091 if (nr_inter > 0)
3092 abort ();
3094 fprintf (sched_dump, "\n\n");
3097 /* Clean up. */
3098 free (rgn_table);
3099 free (rgn_bb_table);
3100 free (block_to_bb);
3101 free (containing_rgn);
3103 sched_finish ();
3105 if (edge_table)
3107 free (edge_table);
3108 edge_table = NULL;
3111 if (in_edges)
3113 free (in_edges);
3114 in_edges = NULL;
3116 if (out_edges)
3118 free (out_edges);
3119 out_edges = NULL;
3122 sbitmap_free (blocks);
3123 sbitmap_free (large_region_blocks);
3125 free (deaths_in_region);
3127 #endif