* config/mips/mips.c (function_arg): Where one part of a
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob2ece4cab255dc5037046051c8c93031a69e5f105
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Dist; use Exp_Dist;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Itypes; use Itypes;
39 with Layout; use Layout;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Case; use Sem_Case;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch7; use Sem_Ch7;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Dist; use Sem_Dist;
57 with Sem_Elim; use Sem_Elim;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Res; use Sem_Res;
61 with Sem_Smem; use Sem_Smem;
62 with Sem_Type; use Sem_Type;
63 with Sem_Util; use Sem_Util;
64 with Sem_Warn; use Sem_Warn;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Snames; use Snames;
68 with Targparm; use Targparm;
69 with Tbuild; use Tbuild;
70 with Ttypes; use Ttypes;
71 with Uintp; use Uintp;
72 with Urealp; use Urealp;
74 package body Sem_Ch3 is
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 procedure Add_Interface_Tag_Components
81 (N : Node_Id; Typ : Entity_Id);
82 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
83 -- abstract interface types implemented by a record type or a derived
84 -- record type.
86 procedure Build_Derived_Type
87 (N : Node_Id;
88 Parent_Type : Entity_Id;
89 Derived_Type : Entity_Id;
90 Is_Completion : Boolean;
91 Derive_Subps : Boolean := True);
92 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
93 -- the N_Full_Type_Declaration node containing the derived type definition.
94 -- Parent_Type is the entity for the parent type in the derived type
95 -- definition and Derived_Type the actual derived type. Is_Completion must
96 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
97 -- (ie Derived_Type = Defining_Identifier (N)). In this case N is not the
98 -- completion of a private type declaration. If Is_Completion is set to
99 -- True, N is the completion of a private type declaration and Derived_Type
100 -- is different from the defining identifier inside N (i.e. Derived_Type /=
101 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
102 -- subprograms should be derived. The only case where this parameter is
103 -- False is when Build_Derived_Type is recursively called to process an
104 -- implicit derived full type for a type derived from a private type (in
105 -- that case the subprograms must only be derived for the private view of
106 -- the type).
108 -- ??? These flags need a bit of re-examination and re-documentation:
109 -- ??? are they both necessary (both seem related to the recursion)?
111 procedure Build_Derived_Access_Type
112 (N : Node_Id;
113 Parent_Type : Entity_Id;
114 Derived_Type : Entity_Id);
115 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
116 -- create an implicit base if the parent type is constrained or if the
117 -- subtype indication has a constraint.
119 procedure Build_Derived_Array_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Concurrent_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
132 -- tected type, inherit entries and protected subprograms, check legality
133 -- of discriminant constraints if any.
135 procedure Build_Derived_Enumeration_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
140 -- type, we must create a new list of literals. Types derived from
141 -- Character and Wide_Character are special-cased.
143 procedure Build_Derived_Numeric_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
148 -- an anonymous base type, and propagate constraint to subtype if needed.
150 procedure Build_Derived_Private_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id;
154 Is_Completion : Boolean;
155 Derive_Subps : Boolean := True);
156 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
157 -- because the parent may or may not have a completion, and the derivation
158 -- may itself be a completion.
160 procedure Build_Derived_Record_Type
161 (N : Node_Id;
162 Parent_Type : Entity_Id;
163 Derived_Type : Entity_Id;
164 Derive_Subps : Boolean := True);
165 -- Subsidiary procedure for Build_Derived_Type and
166 -- Analyze_Private_Extension_Declaration used for tagged and untagged
167 -- record types. All parameters are as in Build_Derived_Type except that
168 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
169 -- N_Private_Extension_Declaration node. See the definition of this routine
170 -- for much more info. Derive_Subps indicates whether subprograms should
171 -- be derived from the parent type. The only case where Derive_Subps is
172 -- False is for an implicit derived full type for a type derived from a
173 -- private type (see Build_Derived_Type).
175 procedure Complete_Subprograms_Derivation
176 (Partial_View : Entity_Id;
177 Derived_Type : Entity_Id);
178 -- Ada 2005 (AI-251): Used to complete type derivation of private tagged
179 -- types implementing interfaces. In this case some interface primitives
180 -- may have been overriden with the partial-view and, instead of
181 -- re-calculating them, they are included in the list of primitive
182 -- operations of the full-view.
184 function Inherit_Components
185 (N : Node_Id;
186 Parent_Base : Entity_Id;
187 Derived_Base : Entity_Id;
188 Is_Tagged : Boolean;
189 Inherit_Discr : Boolean;
190 Discs : Elist_Id) return Elist_Id;
191 -- Called from Build_Derived_Record_Type to inherit the components of
192 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
193 -- For more information on derived types and component inheritance please
194 -- consult the comment above the body of Build_Derived_Record_Type.
196 -- N is the original derived type declaration
198 -- Is_Tagged is set if we are dealing with tagged types
200 -- If Inherit_Discr is set, Derived_Base inherits its discriminants
201 -- from Parent_Base, otherwise no discriminants are inherited.
203 -- Discs gives the list of constraints that apply to Parent_Base in the
204 -- derived type declaration. If Discs is set to No_Elist, then we have
205 -- the following situation:
207 -- type Parent (D1..Dn : ..) is [tagged] record ...;
208 -- type Derived is new Parent [with ...];
210 -- which gets treated as
212 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
214 -- For untagged types the returned value is an association list. The list
215 -- starts from the association (Parent_Base => Derived_Base), and then it
216 -- contains a sequence of the associations of the form
218 -- (Old_Component => New_Component),
220 -- where Old_Component is the Entity_Id of a component in Parent_Base
221 -- and New_Component is the Entity_Id of the corresponding component
222 -- in Derived_Base. For untagged records, this association list is
223 -- needed when copying the record declaration for the derived base.
224 -- In the tagged case the value returned is irrelevant.
226 procedure Build_Discriminal (Discrim : Entity_Id);
227 -- Create the discriminal corresponding to discriminant Discrim, that is
228 -- the parameter corresponding to Discrim to be used in initialization
229 -- procedures for the type where Discrim is a discriminant. Discriminals
230 -- are not used during semantic analysis, and are not fully defined
231 -- entities until expansion. Thus they are not given a scope until
232 -- initialization procedures are built.
234 function Build_Discriminant_Constraints
235 (T : Entity_Id;
236 Def : Node_Id;
237 Derived_Def : Boolean := False) return Elist_Id;
238 -- Validate discriminant constraints, and return the list of the
239 -- constraints in order of discriminant declarations. T is the
240 -- discriminated unconstrained type. Def is the N_Subtype_Indication node
241 -- where the discriminants constraints for T are specified. Derived_Def is
242 -- True if we are building the discriminant constraints in a derived type
243 -- definition of the form "type D (...) is new T (xxx)". In this case T is
244 -- the parent type and Def is the constraint "(xxx)" on T and this routine
245 -- sets the Corresponding_Discriminant field of the discriminants in the
246 -- derived type D to point to the corresponding discriminants in the parent
247 -- type T.
249 procedure Build_Discriminated_Subtype
250 (T : Entity_Id;
251 Def_Id : Entity_Id;
252 Elist : Elist_Id;
253 Related_Nod : Node_Id;
254 For_Access : Boolean := False);
255 -- Subsidiary procedure to Constrain_Discriminated_Type and to
256 -- Process_Incomplete_Dependents. Given
258 -- T (a possibly discriminated base type)
259 -- Def_Id (a very partially built subtype for T),
261 -- the call completes Def_Id to be the appropriate E_*_Subtype.
263 -- The Elist is the list of discriminant constraints if any (it is set to
264 -- No_Elist if T is not a discriminated type, and to an empty list if
265 -- T has discriminants but there are no discriminant constraints). The
266 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
267 -- The For_Access says whether or not this subtype is really constraining
268 -- an access type. That is its sole purpose is the designated type of an
269 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
270 -- is built to avoid freezing T when the access subtype is frozen.
272 function Build_Scalar_Bound
273 (Bound : Node_Id;
274 Par_T : Entity_Id;
275 Der_T : Entity_Id) return Node_Id;
276 -- The bounds of a derived scalar type are conversions of the bounds of
277 -- the parent type. Optimize the representation if the bounds are literals.
278 -- Needs a more complete spec--what are the parameters exactly, and what
279 -- exactly is the returned value, and how is Bound affected???
281 procedure Build_Underlying_Full_View
282 (N : Node_Id;
283 Typ : Entity_Id;
284 Par : Entity_Id);
285 -- If the completion of a private type is itself derived from a private
286 -- type, or if the full view of a private subtype is itself private, the
287 -- back-end has no way to compute the actual size of this type. We build
288 -- an internal subtype declaration of the proper parent type to convey
289 -- this information. This extra mechanism is needed because a full
290 -- view cannot itself have a full view (it would get clobbered during
291 -- view exchanges).
293 procedure Check_Access_Discriminant_Requires_Limited
294 (D : Node_Id;
295 Loc : Node_Id);
296 -- Check the restriction that the type to which an access discriminant
297 -- belongs must be a concurrent type or a descendant of a type with
298 -- the reserved word 'limited' in its declaration.
300 procedure Check_Delta_Expression (E : Node_Id);
301 -- Check that the expression represented by E is suitable for use
302 -- as a delta expression, i.e. it is of real type and is static.
304 procedure Check_Digits_Expression (E : Node_Id);
305 -- Check that the expression represented by E is suitable for use as
306 -- a digits expression, i.e. it is of integer type, positive and static.
308 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
309 -- Validate the initialization of an object declaration. T is the
310 -- required type, and Exp is the initialization expression.
312 procedure Check_Or_Process_Discriminants
313 (N : Node_Id;
314 T : Entity_Id;
315 Prev : Entity_Id := Empty);
316 -- If T is the full declaration of an incomplete or private type, check
317 -- the conformance of the discriminants, otherwise process them. Prev
318 -- is the entity of the partial declaration, if any.
320 procedure Check_Real_Bound (Bound : Node_Id);
321 -- Check given bound for being of real type and static. If not, post an
322 -- appropriate message, and rewrite the bound with the real literal zero.
324 procedure Constant_Redeclaration
325 (Id : Entity_Id;
326 N : Node_Id;
327 T : out Entity_Id);
328 -- Various checks on legality of full declaration of deferred constant.
329 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
330 -- node. The caller has not yet set any attributes of this entity.
332 procedure Convert_Scalar_Bounds
333 (N : Node_Id;
334 Parent_Type : Entity_Id;
335 Derived_Type : Entity_Id;
336 Loc : Source_Ptr);
337 -- For derived scalar types, convert the bounds in the type definition
338 -- to the derived type, and complete their analysis. Given a constraint
339 -- of the form:
340 -- .. new T range Lo .. Hi;
341 -- Lo and Hi are analyzed and resolved with T'Base, the parent_type.
342 -- The bounds of the derived type (the anonymous base) are copies of
343 -- Lo and Hi. Finally, the bounds of the derived subtype are conversions
344 -- of those bounds to the derived_type, so that their typing is
345 -- consistent.
347 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
348 -- Copies attributes from array base type T2 to array base type T1.
349 -- Copies only attributes that apply to base types, but not subtypes.
351 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
352 -- Copies attributes from array subtype T2 to array subtype T1. Copies
353 -- attributes that apply to both subtypes and base types.
355 procedure Create_Constrained_Components
356 (Subt : Entity_Id;
357 Decl_Node : Node_Id;
358 Typ : Entity_Id;
359 Constraints : Elist_Id);
360 -- Build the list of entities for a constrained discriminated record
361 -- subtype. If a component depends on a discriminant, replace its subtype
362 -- using the discriminant values in the discriminant constraint.
363 -- Subt is the defining identifier for the subtype whose list of
364 -- constrained entities we will create. Decl_Node is the type declaration
365 -- node where we will attach all the itypes created. Typ is the base
366 -- discriminated type for the subtype Subt. Constraints is the list of
367 -- discriminant constraints for Typ.
369 function Constrain_Component_Type
370 (Comp : Entity_Id;
371 Constrained_Typ : Entity_Id;
372 Related_Node : Node_Id;
373 Typ : Entity_Id;
374 Constraints : Elist_Id) return Entity_Id;
375 -- Given a discriminated base type Typ, a list of discriminant constraint
376 -- Constraints for Typ and a component of Typ, with type Compon_Type,
377 -- create and return the type corresponding to Compon_type where all
378 -- discriminant references are replaced with the corresponding
379 -- constraint. If no discriminant references occur in Compon_Typ then
380 -- return it as is. Constrained_Typ is the final constrained subtype to
381 -- which the constrained Compon_Type belongs. Related_Node is the node
382 -- where we will attach all the itypes created.
384 procedure Constrain_Access
385 (Def_Id : in out Entity_Id;
386 S : Node_Id;
387 Related_Nod : Node_Id);
388 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
389 -- an anonymous type created for a subtype indication. In that case it is
390 -- created in the procedure and attached to Related_Nod.
392 procedure Constrain_Array
393 (Def_Id : in out Entity_Id;
394 SI : Node_Id;
395 Related_Nod : Node_Id;
396 Related_Id : Entity_Id;
397 Suffix : Character);
398 -- Apply a list of index constraints to an unconstrained array type. The
399 -- first parameter is the entity for the resulting subtype. A value of
400 -- Empty for Def_Id indicates that an implicit type must be created, but
401 -- creation is delayed (and must be done by this procedure) because other
402 -- subsidiary implicit types must be created first (which is why Def_Id
403 -- is an in/out parameter). The second parameter is a subtype indication
404 -- node for the constrained array to be created (e.g. something of the
405 -- form string (1 .. 10)). Related_Nod gives the place where this type
406 -- has to be inserted in the tree. The Related_Id and Suffix parameters
407 -- are used to build the associated Implicit type name.
409 procedure Constrain_Concurrent
410 (Def_Id : in out Entity_Id;
411 SI : Node_Id;
412 Related_Nod : Node_Id;
413 Related_Id : Entity_Id;
414 Suffix : Character);
415 -- Apply list of discriminant constraints to an unconstrained concurrent
416 -- type.
418 -- SI is the N_Subtype_Indication node containing the constraint and
419 -- the unconstrained type to constrain.
421 -- Def_Id is the entity for the resulting constrained subtype. A value
422 -- of Empty for Def_Id indicates that an implicit type must be created,
423 -- but creation is delayed (and must be done by this procedure) because
424 -- other subsidiary implicit types must be created first (which is why
425 -- Def_Id is an in/out parameter).
427 -- Related_Nod gives the place where this type has to be inserted
428 -- in the tree
430 -- The last two arguments are used to create its external name if needed.
432 function Constrain_Corresponding_Record
433 (Prot_Subt : Entity_Id;
434 Corr_Rec : Entity_Id;
435 Related_Nod : Node_Id;
436 Related_Id : Entity_Id) return Entity_Id;
437 -- When constraining a protected type or task type with discriminants,
438 -- constrain the corresponding record with the same discriminant values.
440 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
441 -- Constrain a decimal fixed point type with a digits constraint and/or a
442 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
444 procedure Constrain_Discriminated_Type
445 (Def_Id : Entity_Id;
446 S : Node_Id;
447 Related_Nod : Node_Id;
448 For_Access : Boolean := False);
449 -- Process discriminant constraints of composite type. Verify that values
450 -- have been provided for all discriminants, that the original type is
451 -- unconstrained, and that the types of the supplied expressions match
452 -- the discriminant types. The first three parameters are like in routine
453 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
454 -- of For_Access.
456 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an enumeration type with a range constraint. This is identical
458 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
460 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
461 -- Constrain a floating point type with either a digits constraint
462 -- and/or a range constraint, building a E_Floating_Point_Subtype.
464 procedure Constrain_Index
465 (Index : Node_Id;
466 S : Node_Id;
467 Related_Nod : Node_Id;
468 Related_Id : Entity_Id;
469 Suffix : Character;
470 Suffix_Index : Nat);
471 -- Process an index constraint in a constrained array declaration. The
472 -- constraint can be a subtype name, or a range with or without an
473 -- explicit subtype mark. The index is the corresponding index of the
474 -- unconstrained array. The Related_Id and Suffix parameters are used to
475 -- build the associated Implicit type name.
477 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
478 -- Build subtype of a signed or modular integer type
480 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
481 -- Constrain an ordinary fixed point type with a range constraint, and
482 -- build an E_Ordinary_Fixed_Point_Subtype entity.
484 procedure Copy_And_Swap (Priv, Full : Entity_Id);
485 -- Copy the Priv entity into the entity of its full declaration
486 -- then swap the two entities in such a manner that the former private
487 -- type is now seen as a full type.
489 procedure Decimal_Fixed_Point_Type_Declaration
490 (T : Entity_Id;
491 Def : Node_Id);
492 -- Create a new decimal fixed point type, and apply the constraint to
493 -- obtain a subtype of this new type.
495 procedure Complete_Private_Subtype
496 (Priv : Entity_Id;
497 Full : Entity_Id;
498 Full_Base : Entity_Id;
499 Related_Nod : Node_Id);
500 -- Complete the implicit full view of a private subtype by setting the
501 -- appropriate semantic fields. If the full view of the parent is a record
502 -- type, build constrained components of subtype.
504 procedure Derive_Interface_Subprograms
505 (Derived_Type : Entity_Id);
506 -- Ada 2005 (AI-251): Subsidiary procedure to Build_Derived_Record_Type.
507 -- Traverse the list of implemented interfaces and derive all their
508 -- subprograms.
510 procedure Derived_Standard_Character
511 (N : Node_Id;
512 Parent_Type : Entity_Id;
513 Derived_Type : Entity_Id);
514 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
515 -- derivations from types Standard.Character and Standard.Wide_Character.
517 procedure Derived_Type_Declaration
518 (T : Entity_Id;
519 N : Node_Id;
520 Is_Completion : Boolean);
521 -- Process a derived type declaration. This routine will invoke
522 -- Build_Derived_Type to process the actual derived type definition.
523 -- Parameters N and Is_Completion have the same meaning as in
524 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
525 -- defined in the N_Full_Type_Declaration node N, that is T is the derived
526 -- type.
528 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Insert each literal in symbol table, as an overloadable identifier. Each
530 -- enumeration type is mapped into a sequence of integers, and each literal
531 -- is defined as a constant with integer value. If any of the literals are
532 -- character literals, the type is a character type, which means that
533 -- strings are legal aggregates for arrays of components of the type.
535 function Expand_To_Stored_Constraint
536 (Typ : Entity_Id;
537 Constraint : Elist_Id) return Elist_Id;
538 -- Given a Constraint (i.e. a list of expressions) on the discriminants of
539 -- Typ, expand it into a constraint on the stored discriminants and return
540 -- the new list of expressions constraining the stored discriminants.
542 function Find_Type_Of_Object
543 (Obj_Def : Node_Id;
544 Related_Nod : Node_Id) return Entity_Id;
545 -- Get type entity for object referenced by Obj_Def, attaching the
546 -- implicit types generated to Related_Nod
548 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
549 -- Create a new float, and apply the constraint to obtain subtype of it
551 function Has_Range_Constraint (N : Node_Id) return Boolean;
552 -- Given an N_Subtype_Indication node N, return True if a range constraint
553 -- is present, either directly, or as part of a digits or delta constraint.
554 -- In addition, a digits constraint in the decimal case returns True, since
555 -- it establishes a default range if no explicit range is present.
557 function Is_Valid_Constraint_Kind
558 (T_Kind : Type_Kind;
559 Constraint_Kind : Node_Kind) return Boolean;
560 -- Returns True if it is legal to apply the given kind of constraint to the
561 -- given kind of type (index constraint to an array type, for example).
563 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
564 -- Create new modular type. Verify that modulus is in bounds and is
565 -- a power of two (implementation restriction).
567 procedure New_Concatenation_Op (Typ : Entity_Id);
568 -- Create an abbreviated declaration for an operator in order to
569 -- materialize concatenation on array types.
571 procedure Ordinary_Fixed_Point_Type_Declaration
572 (T : Entity_Id;
573 Def : Node_Id);
574 -- Create a new ordinary fixed point type, and apply the constraint to
575 -- obtain subtype of it.
577 procedure Prepare_Private_Subtype_Completion
578 (Id : Entity_Id;
579 Related_Nod : Node_Id);
580 -- Id is a subtype of some private type. Creates the full declaration
581 -- associated with Id whenever possible, i.e. when the full declaration
582 -- of the base type is already known. Records each subtype into
583 -- Private_Dependents of the base type.
585 procedure Process_Incomplete_Dependents
586 (N : Node_Id;
587 Full_T : Entity_Id;
588 Inc_T : Entity_Id);
589 -- Process all entities that depend on an incomplete type. There include
590 -- subtypes, subprogram types that mention the incomplete type in their
591 -- profiles, and subprogram with access parameters that designate the
592 -- incomplete type.
594 -- Inc_T is the defining identifier of an incomplete type declaration, its
595 -- Ekind is E_Incomplete_Type.
597 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
599 -- Full_T is N's defining identifier.
601 -- Subtypes of incomplete types with discriminants are completed when the
602 -- parent type is. This is simpler than private subtypes, because they can
603 -- only appear in the same scope, and there is no need to exchange views.
604 -- Similarly, access_to_subprogram types may have a parameter or a return
605 -- type that is an incomplete type, and that must be replaced with the
606 -- full type.
608 -- If the full type is tagged, subprogram with access parameters that
609 -- designated the incomplete may be primitive operations of the full type,
610 -- and have to be processed accordingly.
612 procedure Process_Real_Range_Specification (Def : Node_Id);
613 -- Given the type definition for a real type, this procedure processes
614 -- and checks the real range specification of this type definition if
615 -- one is present. If errors are found, error messages are posted, and
616 -- the Real_Range_Specification of Def is reset to Empty.
618 procedure Record_Type_Declaration
619 (T : Entity_Id;
620 N : Node_Id;
621 Prev : Entity_Id);
622 -- Process a record type declaration (for both untagged and tagged
623 -- records). Parameters T and N are exactly like in procedure
624 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
625 -- for this routine. If this is the completion of an incomplete type
626 -- declaration, Prev is the entity of the incomplete declaration, used for
627 -- cross-referencing. Otherwise Prev = T.
629 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
630 -- This routine is used to process the actual record type definition
631 -- (both for untagged and tagged records). Def is a record type
632 -- definition node. This procedure analyzes the components in this
633 -- record type definition. Prev_T is the entity for the enclosing record
634 -- type. It is provided so that its Has_Task flag can be set if any of
635 -- the component have Has_Task set. If the declaration is the completion
636 -- of an incomplete type declaration, Prev_T is the original incomplete
637 -- type, whose full view is the record type.
639 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
640 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
641 -- build a copy of the declaration tree of the parent, and we create
642 -- independently the list of components for the derived type. Semantic
643 -- information uses the component entities, but record representation
644 -- clauses are validated on the declaration tree. This procedure replaces
645 -- discriminants and components in the declaration with those that have
646 -- been created by Inherit_Components.
648 procedure Set_Fixed_Range
649 (E : Entity_Id;
650 Loc : Source_Ptr;
651 Lo : Ureal;
652 Hi : Ureal);
653 -- Build a range node with the given bounds and set it as the Scalar_Range
654 -- of the given fixed-point type entity. Loc is the source location used
655 -- for the constructed range. See body for further details.
657 procedure Set_Scalar_Range_For_Subtype
658 (Def_Id : Entity_Id;
659 R : Node_Id;
660 Subt : Entity_Id);
661 -- This routine is used to set the scalar range field for a subtype given
662 -- Def_Id, the entity for the subtype, and R, the range expression for the
663 -- scalar range. Subt provides the parent subtype to be used to analyze,
664 -- resolve, and check the given range.
666 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
667 -- Create a new signed integer entity, and apply the constraint to obtain
668 -- the required first named subtype of this type.
670 procedure Set_Stored_Constraint_From_Discriminant_Constraint
671 (E : Entity_Id);
672 -- E is some record type. This routine computes E's Stored_Constraint
673 -- from its Discriminant_Constraint.
675 -----------------------
676 -- Access_Definition --
677 -----------------------
679 function Access_Definition
680 (Related_Nod : Node_Id;
681 N : Node_Id) return Entity_Id
683 Anon_Type : Entity_Id;
684 Desig_Type : Entity_Id;
686 begin
687 if Is_Entry (Current_Scope)
688 and then Is_Task_Type (Etype (Scope (Current_Scope)))
689 then
690 Error_Msg_N ("task entries cannot have access parameters", N);
691 end if;
693 -- Ada 2005: for an object declaration the corresponding anonymous
694 -- type is declared in the current scope.
696 if Nkind (Related_Nod) = N_Object_Declaration then
697 Anon_Type :=
698 Create_Itype
699 (E_Anonymous_Access_Type, Related_Nod,
700 Scope_Id => Current_Scope);
702 -- For the anonymous function result case, retrieve the scope of
703 -- the function specification's associated entity rather than using
704 -- the current scope. The current scope will be the function itself
705 -- if the formal part is currently being analyzed, but will be the
706 -- parent scope in the case of a parameterless function, and we
707 -- always want to use the function's parent scope.
709 elsif Nkind (Related_Nod) = N_Function_Specification
710 and then Nkind (Parent (N)) /= N_Parameter_Specification
711 then
712 Anon_Type :=
713 Create_Itype
714 (E_Anonymous_Access_Type, Related_Nod,
715 Scope_Id => Scope (Defining_Unit_Name (Related_Nod)));
717 else
718 -- For access formals, access components, and access
719 -- discriminants, the scope is that of the enclosing declaration,
721 Anon_Type :=
722 Create_Itype
723 (E_Anonymous_Access_Type, Related_Nod,
724 Scope_Id => Scope (Current_Scope));
725 end if;
727 if All_Present (N)
728 and then Ada_Version >= Ada_05
729 then
730 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
731 end if;
733 -- Ada 2005 (AI-254): In case of anonymous access to subprograms
734 -- call the corresponding semantic routine
736 if Present (Access_To_Subprogram_Definition (N)) then
737 Access_Subprogram_Declaration
738 (T_Name => Anon_Type,
739 T_Def => Access_To_Subprogram_Definition (N));
741 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
742 Set_Ekind
743 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
744 else
745 Set_Ekind
746 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
747 end if;
749 return Anon_Type;
750 end if;
752 Find_Type (Subtype_Mark (N));
753 Desig_Type := Entity (Subtype_Mark (N));
755 Set_Directly_Designated_Type
756 (Anon_Type, Desig_Type);
757 Set_Etype (Anon_Type, Anon_Type);
758 Init_Size_Align (Anon_Type);
759 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
761 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
762 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify
763 -- if the null value is allowed. In Ada 95 the null value is never
764 -- allowed.
766 if Ada_Version >= Ada_05 then
767 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
768 else
769 Set_Can_Never_Be_Null (Anon_Type, True);
770 end if;
772 -- The anonymous access type is as public as the discriminated type or
773 -- subprogram that defines it. It is imported (for back-end purposes)
774 -- if the designated type is.
776 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
778 -- Ada 2005 (AI-50217): Propagate the attribute that indicates that the
779 -- designated type comes from the limited view (for back-end purposes).
781 Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
783 -- Ada 2005 (AI-231): Propagate the access-constant attribute
785 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
787 -- The context is either a subprogram declaration, object declaration,
788 -- or an access discriminant, in a private or a full type declaration.
789 -- In the case of a subprogram, if the designated type is incomplete,
790 -- the operation will be a primitive operation of the full type, to be
791 -- updated subsequently. If the type is imported through a limited_with
792 -- clause, the subprogram is not a primitive operation of the type
793 -- (which is declared elsewhere in some other scope).
795 if Ekind (Desig_Type) = E_Incomplete_Type
796 and then not From_With_Type (Desig_Type)
797 and then Is_Overloadable (Current_Scope)
798 then
799 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
800 Set_Has_Delayed_Freeze (Current_Scope);
801 end if;
803 -- Ada 2005: if the designated type is an interface that may contain
804 -- tasks, create a Master entity for the declaration. This must be done
805 -- before expansion of the full declaration, because the declaration
806 -- may include an expression that is an allocator, whose expansion needs
807 -- the proper Master for the created tasks.
809 if Nkind (Related_Nod) = N_Object_Declaration
810 and then Expander_Active
811 and then Is_Interface (Desig_Type)
812 and then Is_Limited_Record (Desig_Type)
813 then
814 Build_Class_Wide_Master (Anon_Type);
815 end if;
817 return Anon_Type;
818 end Access_Definition;
820 -----------------------------------
821 -- Access_Subprogram_Declaration --
822 -----------------------------------
824 procedure Access_Subprogram_Declaration
825 (T_Name : Entity_Id;
826 T_Def : Node_Id)
828 Formals : constant List_Id := Parameter_Specifications (T_Def);
829 Formal : Entity_Id;
830 D_Ityp : Node_Id;
832 Desig_Type : constant Entity_Id :=
833 Create_Itype (E_Subprogram_Type, Parent (T_Def));
835 begin
836 -- Associate the Itype node with the inner full-type declaration
837 -- or subprogram spec. This is required to handle nested anonymous
838 -- declarations. For example:
840 -- procedure P
841 -- (X : access procedure
842 -- (Y : access procedure
843 -- (Z : access T)))
845 D_Ityp := Associated_Node_For_Itype (Desig_Type);
846 while Nkind (D_Ityp) /= N_Full_Type_Declaration
847 and then Nkind (D_Ityp) /= N_Procedure_Specification
848 and then Nkind (D_Ityp) /= N_Function_Specification
849 and then Nkind (D_Ityp) /= N_Object_Declaration
850 and then Nkind (D_Ityp) /= N_Object_Renaming_Declaration
851 and then Nkind (D_Ityp) /= N_Formal_Type_Declaration
852 loop
853 D_Ityp := Parent (D_Ityp);
854 pragma Assert (D_Ityp /= Empty);
855 end loop;
857 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
859 if Nkind (D_Ityp) = N_Procedure_Specification
860 or else Nkind (D_Ityp) = N_Function_Specification
861 then
862 Set_Scope (Desig_Type, Scope (Defining_Unit_Name (D_Ityp)));
864 elsif Nkind (D_Ityp) = N_Full_Type_Declaration
865 or else Nkind (D_Ityp) = N_Object_Declaration
866 or else Nkind (D_Ityp) = N_Object_Renaming_Declaration
867 or else Nkind (D_Ityp) = N_Formal_Type_Declaration
868 then
869 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
870 end if;
872 if Nkind (T_Def) = N_Access_Function_Definition then
873 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
874 Set_Etype
875 (Desig_Type,
876 Access_Definition (T_Def, Result_Definition (T_Def)));
877 else
878 Analyze (Result_Definition (T_Def));
879 Set_Etype (Desig_Type, Entity (Result_Definition (T_Def)));
880 end if;
882 if not (Is_Type (Etype (Desig_Type))) then
883 Error_Msg_N
884 ("expect type in function specification",
885 Result_Definition (T_Def));
886 end if;
888 else
889 Set_Etype (Desig_Type, Standard_Void_Type);
890 end if;
892 if Present (Formals) then
893 New_Scope (Desig_Type);
894 Process_Formals (Formals, Parent (T_Def));
896 -- A bit of a kludge here, End_Scope requires that the parent
897 -- pointer be set to something reasonable, but Itypes don't have
898 -- parent pointers. So we set it and then unset it ??? If and when
899 -- Itypes have proper parent pointers to their declarations, this
900 -- kludge can be removed.
902 Set_Parent (Desig_Type, T_Name);
903 End_Scope;
904 Set_Parent (Desig_Type, Empty);
905 end if;
907 -- The return type and/or any parameter type may be incomplete. Mark
908 -- the subprogram_type as depending on the incomplete type, so that
909 -- it can be updated when the full type declaration is seen.
911 if Present (Formals) then
912 Formal := First_Formal (Desig_Type);
913 while Present (Formal) loop
914 if Ekind (Formal) /= E_In_Parameter
915 and then Nkind (T_Def) = N_Access_Function_Definition
916 then
917 Error_Msg_N ("functions can only have IN parameters", Formal);
918 end if;
920 if Ekind (Etype (Formal)) = E_Incomplete_Type then
921 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
922 Set_Has_Delayed_Freeze (Desig_Type);
923 end if;
925 Next_Formal (Formal);
926 end loop;
927 end if;
929 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
930 and then not Has_Delayed_Freeze (Desig_Type)
931 then
932 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
933 Set_Has_Delayed_Freeze (Desig_Type);
934 end if;
936 Check_Delayed_Subprogram (Desig_Type);
938 if Protected_Present (T_Def) then
939 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
940 Set_Convention (Desig_Type, Convention_Protected);
941 else
942 Set_Ekind (T_Name, E_Access_Subprogram_Type);
943 end if;
945 Set_Etype (T_Name, T_Name);
946 Init_Size_Align (T_Name);
947 Set_Directly_Designated_Type (T_Name, Desig_Type);
949 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
951 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
953 Check_Restriction (No_Access_Subprograms, T_Def);
954 end Access_Subprogram_Declaration;
956 ----------------------------
957 -- Access_Type_Declaration --
958 ----------------------------
960 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
961 S : constant Node_Id := Subtype_Indication (Def);
962 P : constant Node_Id := Parent (Def);
964 Desig : Entity_Id;
965 -- Designated type
967 begin
968 -- Check for permissible use of incomplete type
970 if Nkind (S) /= N_Subtype_Indication then
971 Analyze (S);
973 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
974 Set_Directly_Designated_Type (T, Entity (S));
975 else
976 Set_Directly_Designated_Type (T,
977 Process_Subtype (S, P, T, 'P'));
978 end if;
980 else
981 Set_Directly_Designated_Type (T,
982 Process_Subtype (S, P, T, 'P'));
983 end if;
985 if All_Present (Def) or Constant_Present (Def) then
986 Set_Ekind (T, E_General_Access_Type);
987 else
988 Set_Ekind (T, E_Access_Type);
989 end if;
991 if Base_Type (Designated_Type (T)) = T then
992 Error_Msg_N ("access type cannot designate itself", S);
994 -- In Ada 2005, the type may have a limited view through some unit
995 -- in its own context, allowing the following circularity that cannot
996 -- be detected earlier
998 elsif Is_Class_Wide_Type (Designated_Type (T))
999 and then Etype (Designated_Type (T)) = T
1000 then
1001 Error_Msg_N
1002 ("access type cannot designate its own classwide type", S);
1004 -- Clean up indication of tagged status to prevent cascaded errors
1006 Set_Is_Tagged_Type (T, False);
1007 end if;
1009 Set_Etype (T, T);
1011 -- If the type has appeared already in a with_type clause, it is
1012 -- frozen and the pointer size is already set. Else, initialize.
1014 if not From_With_Type (T) then
1015 Init_Size_Align (T);
1016 end if;
1018 Set_Is_Access_Constant (T, Constant_Present (Def));
1020 Desig := Designated_Type (T);
1022 -- If designated type is an imported tagged type, indicate that the
1023 -- access type is also imported, and therefore restricted in its use.
1024 -- The access type may already be imported, so keep setting otherwise.
1026 -- Ada 2005 (AI-50217): If the non-limited view of the designated type
1027 -- is available, use it as the designated type of the access type, so
1028 -- that the back-end gets a usable entity.
1030 declare
1031 N_Desig : Entity_Id;
1033 begin
1034 if From_With_Type (Desig)
1035 and then Ekind (Desig) /= E_Access_Type
1036 then
1037 Set_From_With_Type (T);
1039 if Ekind (Desig) = E_Incomplete_Type then
1040 N_Desig := Non_Limited_View (Desig);
1042 else pragma Assert (Ekind (Desig) = E_Class_Wide_Type);
1043 if From_With_Type (Etype (Desig)) then
1044 N_Desig := Non_Limited_View (Etype (Desig));
1045 else
1046 N_Desig := Etype (Desig);
1047 end if;
1048 end if;
1050 pragma Assert (Present (N_Desig));
1051 Set_Directly_Designated_Type (T, N_Desig);
1052 end if;
1053 end;
1055 -- Note that Has_Task is always false, since the access type itself
1056 -- is not a task type. See Einfo for more description on this point.
1057 -- Exactly the same consideration applies to Has_Controlled_Component.
1059 Set_Has_Task (T, False);
1060 Set_Has_Controlled_Component (T, False);
1062 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1063 -- attributes
1065 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1066 Set_Is_Access_Constant (T, Constant_Present (Def));
1067 end Access_Type_Declaration;
1069 ----------------------------------
1070 -- Add_Interface_Tag_Components --
1071 ----------------------------------
1073 procedure Add_Interface_Tag_Components
1074 (N : Node_Id;
1075 Typ : Entity_Id)
1077 Loc : constant Source_Ptr := Sloc (N);
1078 Elmt : Elmt_Id;
1079 Ext : Node_Id;
1080 L : List_Id;
1081 Last_Tag : Node_Id;
1082 Comp : Node_Id;
1084 procedure Add_Tag (Iface : Entity_Id);
1085 -- Comment required ???
1087 -------------
1088 -- Add_Tag --
1089 -------------
1091 procedure Add_Tag (Iface : Entity_Id) is
1092 Decl : Node_Id;
1093 Def : Node_Id;
1094 Tag : Entity_Id;
1095 Offset : Entity_Id;
1097 begin
1098 pragma Assert (Is_Tagged_Type (Iface)
1099 and then Is_Interface (Iface));
1101 Def :=
1102 Make_Component_Definition (Loc,
1103 Aliased_Present => True,
1104 Subtype_Indication =>
1105 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1107 Tag := Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1109 Decl :=
1110 Make_Component_Declaration (Loc,
1111 Defining_Identifier => Tag,
1112 Component_Definition => Def);
1114 Analyze_Component_Declaration (Decl);
1116 Set_Analyzed (Decl);
1117 Set_Ekind (Tag, E_Component);
1118 Set_Is_Limited_Record (Tag);
1119 Set_Is_Tag (Tag);
1120 Init_Component_Location (Tag);
1122 pragma Assert (Is_Frozen (Iface));
1124 Set_DT_Entry_Count (Tag,
1125 DT_Entry_Count (First_Entity (Iface)));
1127 if No (Last_Tag) then
1128 Prepend (Decl, L);
1129 else
1130 Insert_After (Last_Tag, Decl);
1131 end if;
1133 Last_Tag := Decl;
1135 -- If the ancestor has discriminants we need to give special support
1136 -- to store the offset_to_top value of the secondary dispatch tables.
1137 -- For this purpose we add a supplementary component just after the
1138 -- field that contains the tag associated with each secondary DT.
1140 if Typ /= Etype (Typ)
1141 and then Has_Discriminants (Etype (Typ))
1142 then
1143 Def :=
1144 Make_Component_Definition (Loc,
1145 Subtype_Indication =>
1146 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1148 Offset :=
1149 Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1151 Decl :=
1152 Make_Component_Declaration (Loc,
1153 Defining_Identifier => Offset,
1154 Component_Definition => Def);
1156 Analyze_Component_Declaration (Decl);
1158 Set_Analyzed (Decl);
1159 Set_Ekind (Offset, E_Component);
1160 Init_Component_Location (Offset);
1161 Insert_After (Last_Tag, Decl);
1162 Last_Tag := Decl;
1163 end if;
1164 end Add_Tag;
1166 -- Start of processing for Add_Interface_Tag_Components
1168 begin
1169 if Ekind (Typ) /= E_Record_Type
1170 or else No (Abstract_Interfaces (Typ))
1171 or else Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
1172 or else not RTE_Available (RE_Interface_Tag)
1173 then
1174 return;
1175 end if;
1177 if Present (Abstract_Interfaces (Typ)) then
1179 -- Find the current last tag
1181 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1182 Ext := Record_Extension_Part (Type_Definition (N));
1183 else
1184 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1185 Ext := Type_Definition (N);
1186 end if;
1188 Last_Tag := Empty;
1190 if not (Present (Component_List (Ext))) then
1191 Set_Null_Present (Ext, False);
1192 L := New_List;
1193 Set_Component_List (Ext,
1194 Make_Component_List (Loc,
1195 Component_Items => L,
1196 Null_Present => False));
1197 else
1198 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1199 L := Component_Items
1200 (Component_List
1201 (Record_Extension_Part
1202 (Type_Definition (N))));
1203 else
1204 L := Component_Items
1205 (Component_List
1206 (Type_Definition (N)));
1207 end if;
1209 -- Find the last tag component
1211 Comp := First (L);
1212 while Present (Comp) loop
1213 if Is_Tag (Defining_Identifier (Comp)) then
1214 Last_Tag := Comp;
1215 end if;
1217 Next (Comp);
1218 end loop;
1219 end if;
1221 -- At this point L references the list of components and Last_Tag
1222 -- references the current last tag (if any). Now we add the tag
1223 -- corresponding with all the interfaces that are not implemented
1224 -- by the parent.
1226 pragma Assert (Present
1227 (First_Elmt (Abstract_Interfaces (Typ))));
1229 Elmt := First_Elmt (Abstract_Interfaces (Typ));
1230 while Present (Elmt) loop
1231 Add_Tag (Node (Elmt));
1232 Next_Elmt (Elmt);
1233 end loop;
1234 end if;
1235 end Add_Interface_Tag_Components;
1237 -----------------------------------
1238 -- Analyze_Component_Declaration --
1239 -----------------------------------
1241 procedure Analyze_Component_Declaration (N : Node_Id) is
1242 Id : constant Entity_Id := Defining_Identifier (N);
1243 T : Entity_Id;
1244 P : Entity_Id;
1246 function Contains_POC (Constr : Node_Id) return Boolean;
1247 -- Determines whether a constraint uses the discriminant of a record
1248 -- type thus becoming a per-object constraint (POC).
1250 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1251 -- Check whether enclosing record is limited, to validate declaration
1252 -- of components with limited types.
1253 -- This seems a wrong description to me???
1254 -- What is Typ? For sure it can return a result without checking
1255 -- the enclosing record (enclosing what???)
1257 ------------------
1258 -- Contains_POC --
1259 ------------------
1261 function Contains_POC (Constr : Node_Id) return Boolean is
1262 begin
1263 case Nkind (Constr) is
1264 when N_Attribute_Reference =>
1265 return Attribute_Name (Constr) = Name_Access
1267 Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1269 when N_Discriminant_Association =>
1270 return Denotes_Discriminant (Expression (Constr));
1272 when N_Identifier =>
1273 return Denotes_Discriminant (Constr);
1275 when N_Index_Or_Discriminant_Constraint =>
1276 declare
1277 IDC : Node_Id;
1279 begin
1280 IDC := First (Constraints (Constr));
1281 while Present (IDC) loop
1283 -- One per-object constraint is sufficient
1285 if Contains_POC (IDC) then
1286 return True;
1287 end if;
1289 Next (IDC);
1290 end loop;
1292 return False;
1293 end;
1295 when N_Range =>
1296 return Denotes_Discriminant (Low_Bound (Constr))
1297 or else
1298 Denotes_Discriminant (High_Bound (Constr));
1300 when N_Range_Constraint =>
1301 return Denotes_Discriminant (Range_Expression (Constr));
1303 when others =>
1304 return False;
1306 end case;
1307 end Contains_POC;
1309 ----------------------
1310 -- Is_Known_Limited --
1311 ----------------------
1313 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1314 P : constant Entity_Id := Etype (Typ);
1315 R : constant Entity_Id := Root_Type (Typ);
1317 begin
1318 if Is_Limited_Record (Typ) then
1319 return True;
1321 -- If the root type is limited (and not a limited interface)
1322 -- so is the current type
1324 elsif Is_Limited_Record (R)
1325 and then
1326 (not Is_Interface (R)
1327 or else not Is_Limited_Interface (R))
1328 then
1329 return True;
1331 -- Else the type may have a limited interface progenitor, but a
1332 -- limited record parent.
1334 elsif R /= P
1335 and then Is_Limited_Record (P)
1336 then
1337 return True;
1339 else
1340 return False;
1341 end if;
1342 end Is_Known_Limited;
1344 -- Start of processing for Analyze_Component_Declaration
1346 begin
1347 Generate_Definition (Id);
1348 Enter_Name (Id);
1350 if Present (Subtype_Indication (Component_Definition (N))) then
1351 T := Find_Type_Of_Object
1352 (Subtype_Indication (Component_Definition (N)), N);
1354 -- Ada 2005 (AI-230): Access Definition case
1356 else
1357 pragma Assert (Present
1358 (Access_Definition (Component_Definition (N))));
1360 T := Access_Definition
1361 (Related_Nod => N,
1362 N => Access_Definition (Component_Definition (N)));
1363 Set_Is_Local_Anonymous_Access (T);
1365 -- Ada 2005 (AI-254)
1367 if Present (Access_To_Subprogram_Definition
1368 (Access_Definition (Component_Definition (N))))
1369 and then Protected_Present (Access_To_Subprogram_Definition
1370 (Access_Definition
1371 (Component_Definition (N))))
1372 then
1373 T := Replace_Anonymous_Access_To_Protected_Subprogram (N, T);
1374 end if;
1375 end if;
1377 -- If the subtype is a constrained subtype of the enclosing record,
1378 -- (which must have a partial view) the back-end does not properly
1379 -- handle the recursion. Rewrite the component declaration with an
1380 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1381 -- the tree directly because side effects have already been removed from
1382 -- discriminant constraints.
1384 if Ekind (T) = E_Access_Subtype
1385 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1386 and then Comes_From_Source (T)
1387 and then Nkind (Parent (T)) = N_Subtype_Declaration
1388 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1389 then
1390 Rewrite
1391 (Subtype_Indication (Component_Definition (N)),
1392 New_Copy_Tree (Subtype_Indication (Parent (T))));
1393 T := Find_Type_Of_Object
1394 (Subtype_Indication (Component_Definition (N)), N);
1395 end if;
1397 -- If the component declaration includes a default expression, then we
1398 -- check that the component is not of a limited type (RM 3.7(5)),
1399 -- and do the special preanalysis of the expression (see section on
1400 -- "Handling of Default and Per-Object Expressions" in the spec of
1401 -- package Sem).
1403 if Present (Expression (N)) then
1404 Analyze_Per_Use_Expression (Expression (N), T);
1405 Check_Initialization (T, Expression (N));
1407 if Ada_Version >= Ada_05
1408 and then Is_Access_Type (T)
1409 and then Ekind (T) = E_Anonymous_Access_Type
1410 then
1411 -- Check RM 3.9.2(9): "if the expected type for an expression is
1412 -- an anonymous access-to-specific tagged type, then the object
1413 -- designated by the expression shall not be dynamically tagged
1414 -- unless it is a controlling operand in a call on a dispatching
1415 -- operation"
1417 if Is_Tagged_Type (Directly_Designated_Type (T))
1418 and then
1419 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1420 and then
1421 Ekind (Directly_Designated_Type (Etype (Expression (N)))) =
1422 E_Class_Wide_Type
1423 then
1424 Error_Msg_N
1425 ("access to specific tagged type required ('R'M 3.9.2(9))",
1426 Expression (N));
1427 end if;
1429 -- (Ada 2005: AI-230): Accessibility check for anonymous
1430 -- components
1432 if Type_Access_Level (Etype (Expression (N))) >
1433 Type_Access_Level (T)
1434 then
1435 Error_Msg_N
1436 ("expression has deeper access level than component " &
1437 "('R'M 3.10.2 (12.2))", Expression (N));
1438 end if;
1439 end if;
1440 end if;
1442 -- The parent type may be a private view with unknown discriminants,
1443 -- and thus unconstrained. Regular components must be constrained.
1445 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1446 if Is_Class_Wide_Type (T) then
1447 Error_Msg_N
1448 ("class-wide subtype with unknown discriminants" &
1449 " in component declaration",
1450 Subtype_Indication (Component_Definition (N)));
1451 else
1452 Error_Msg_N
1453 ("unconstrained subtype in component declaration",
1454 Subtype_Indication (Component_Definition (N)));
1455 end if;
1457 -- Components cannot be abstract, except for the special case of
1458 -- the _Parent field (case of extending an abstract tagged type)
1460 elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
1461 Error_Msg_N ("type of a component cannot be abstract", N);
1462 end if;
1464 Set_Etype (Id, T);
1465 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1467 -- The component declaration may have a per-object constraint, set
1468 -- the appropriate flag in the defining identifier of the subtype.
1470 if Present (Subtype_Indication (Component_Definition (N))) then
1471 declare
1472 Sindic : constant Node_Id :=
1473 Subtype_Indication (Component_Definition (N));
1475 begin
1476 if Nkind (Sindic) = N_Subtype_Indication
1477 and then Present (Constraint (Sindic))
1478 and then Contains_POC (Constraint (Sindic))
1479 then
1480 Set_Has_Per_Object_Constraint (Id);
1481 end if;
1482 end;
1483 end if;
1485 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1486 -- out some static checks.
1488 if Ada_Version >= Ada_05
1489 and then Can_Never_Be_Null (T)
1490 then
1491 Null_Exclusion_Static_Checks (N);
1492 end if;
1494 -- If this component is private (or depends on a private type), flag the
1495 -- record type to indicate that some operations are not available.
1497 P := Private_Component (T);
1499 if Present (P) then
1501 -- Check for circular definitions
1503 if P = Any_Type then
1504 Set_Etype (Id, Any_Type);
1506 -- There is a gap in the visibility of operations only if the
1507 -- component type is not defined in the scope of the record type.
1509 elsif Scope (P) = Scope (Current_Scope) then
1510 null;
1512 elsif Is_Limited_Type (P) then
1513 Set_Is_Limited_Composite (Current_Scope);
1515 else
1516 Set_Is_Private_Composite (Current_Scope);
1517 end if;
1518 end if;
1520 if P /= Any_Type
1521 and then Is_Limited_Type (T)
1522 and then Chars (Id) /= Name_uParent
1523 and then Is_Tagged_Type (Current_Scope)
1524 then
1525 if Is_Derived_Type (Current_Scope)
1526 and then not Is_Known_Limited (Current_Scope)
1527 then
1528 Error_Msg_N
1529 ("extension of nonlimited type cannot have limited components",
1532 if Is_Interface (Root_Type (Current_Scope)) then
1533 Error_Msg_N
1534 ("\limitedness is not inherited from limited interface", N);
1535 Error_Msg_N
1536 ("\add LIMITED to type indication", N);
1537 end if;
1539 Explain_Limited_Type (T, N);
1540 Set_Etype (Id, Any_Type);
1541 Set_Is_Limited_Composite (Current_Scope, False);
1543 elsif not Is_Derived_Type (Current_Scope)
1544 and then not Is_Limited_Record (Current_Scope)
1545 and then not Is_Concurrent_Type (Current_Scope)
1546 then
1547 Error_Msg_N
1548 ("nonlimited tagged type cannot have limited components", N);
1549 Explain_Limited_Type (T, N);
1550 Set_Etype (Id, Any_Type);
1551 Set_Is_Limited_Composite (Current_Scope, False);
1552 end if;
1553 end if;
1555 Set_Original_Record_Component (Id, Id);
1556 end Analyze_Component_Declaration;
1558 --------------------------
1559 -- Analyze_Declarations --
1560 --------------------------
1562 procedure Analyze_Declarations (L : List_Id) is
1563 D : Node_Id;
1564 Next_Node : Node_Id;
1565 Freeze_From : Entity_Id := Empty;
1567 procedure Adjust_D;
1568 -- Adjust D not to include implicit label declarations, since these
1569 -- have strange Sloc values that result in elaboration check problems.
1570 -- (They have the sloc of the label as found in the source, and that
1571 -- is ahead of the current declarative part).
1573 --------------
1574 -- Adjust_D --
1575 --------------
1577 procedure Adjust_D is
1578 begin
1579 while Present (Prev (D))
1580 and then Nkind (D) = N_Implicit_Label_Declaration
1581 loop
1582 Prev (D);
1583 end loop;
1584 end Adjust_D;
1586 -- Start of processing for Analyze_Declarations
1588 begin
1589 D := First (L);
1590 while Present (D) loop
1592 -- Complete analysis of declaration
1594 Analyze (D);
1595 Next_Node := Next (D);
1597 if No (Freeze_From) then
1598 Freeze_From := First_Entity (Current_Scope);
1599 end if;
1601 -- At the end of a declarative part, freeze remaining entities
1602 -- declared in it. The end of the visible declarations of package
1603 -- specification is not the end of a declarative part if private
1604 -- declarations are present. The end of a package declaration is a
1605 -- freezing point only if it a library package. A task definition or
1606 -- protected type definition is not a freeze point either. Finally,
1607 -- we do not freeze entities in generic scopes, because there is no
1608 -- code generated for them and freeze nodes will be generated for
1609 -- the instance.
1611 -- The end of a package instantiation is not a freeze point, but
1612 -- for now we make it one, because the generic body is inserted
1613 -- (currently) immediately after. Generic instantiations will not
1614 -- be a freeze point once delayed freezing of bodies is implemented.
1615 -- (This is needed in any case for early instantiations ???).
1617 if No (Next_Node) then
1618 if Nkind (Parent (L)) = N_Component_List
1619 or else Nkind (Parent (L)) = N_Task_Definition
1620 or else Nkind (Parent (L)) = N_Protected_Definition
1621 then
1622 null;
1624 elsif Nkind (Parent (L)) /= N_Package_Specification then
1625 if Nkind (Parent (L)) = N_Package_Body then
1626 Freeze_From := First_Entity (Current_Scope);
1627 end if;
1629 Adjust_D;
1630 Freeze_All (Freeze_From, D);
1631 Freeze_From := Last_Entity (Current_Scope);
1633 elsif Scope (Current_Scope) /= Standard_Standard
1634 and then not Is_Child_Unit (Current_Scope)
1635 and then No (Generic_Parent (Parent (L)))
1636 then
1637 null;
1639 elsif L /= Visible_Declarations (Parent (L))
1640 or else No (Private_Declarations (Parent (L)))
1641 or else Is_Empty_List (Private_Declarations (Parent (L)))
1642 then
1643 Adjust_D;
1644 Freeze_All (Freeze_From, D);
1645 Freeze_From := Last_Entity (Current_Scope);
1646 end if;
1648 -- If next node is a body then freeze all types before the body.
1649 -- An exception occurs for expander generated bodies, which can
1650 -- be recognized by their already being analyzed. The expander
1651 -- ensures that all types needed by these bodies have been frozen
1652 -- but it is not necessary to freeze all types (and would be wrong
1653 -- since it would not correspond to an RM defined freeze point).
1655 elsif not Analyzed (Next_Node)
1656 and then (Nkind (Next_Node) = N_Subprogram_Body
1657 or else Nkind (Next_Node) = N_Entry_Body
1658 or else Nkind (Next_Node) = N_Package_Body
1659 or else Nkind (Next_Node) = N_Protected_Body
1660 or else Nkind (Next_Node) = N_Task_Body
1661 or else Nkind (Next_Node) in N_Body_Stub)
1662 then
1663 Adjust_D;
1664 Freeze_All (Freeze_From, D);
1665 Freeze_From := Last_Entity (Current_Scope);
1666 end if;
1668 D := Next_Node;
1669 end loop;
1670 end Analyze_Declarations;
1672 ----------------------------------
1673 -- Analyze_Incomplete_Type_Decl --
1674 ----------------------------------
1676 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
1677 F : constant Boolean := Is_Pure (Current_Scope);
1678 T : Entity_Id;
1680 begin
1681 Generate_Definition (Defining_Identifier (N));
1683 -- Process an incomplete declaration. The identifier must not have been
1684 -- declared already in the scope. However, an incomplete declaration may
1685 -- appear in the private part of a package, for a private type that has
1686 -- already been declared.
1688 -- In this case, the discriminants (if any) must match
1690 T := Find_Type_Name (N);
1692 Set_Ekind (T, E_Incomplete_Type);
1693 Init_Size_Align (T);
1694 Set_Is_First_Subtype (T, True);
1695 Set_Etype (T, T);
1697 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
1698 -- incomplete types.
1700 if Tagged_Present (N) then
1701 Set_Is_Tagged_Type (T);
1702 Make_Class_Wide_Type (T);
1703 Set_Primitive_Operations (T, New_Elmt_List);
1704 end if;
1706 New_Scope (T);
1708 Set_Stored_Constraint (T, No_Elist);
1710 if Present (Discriminant_Specifications (N)) then
1711 Process_Discriminants (N);
1712 end if;
1714 End_Scope;
1716 -- If the type has discriminants, non-trivial subtypes may be be
1717 -- declared before the full view of the type. The full views of those
1718 -- subtypes will be built after the full view of the type.
1720 Set_Private_Dependents (T, New_Elmt_List);
1721 Set_Is_Pure (T, F);
1722 end Analyze_Incomplete_Type_Decl;
1724 -----------------------------------
1725 -- Analyze_Interface_Declaration --
1726 -----------------------------------
1728 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
1729 begin
1730 Set_Is_Tagged_Type (T);
1732 Set_Is_Limited_Record (T, Limited_Present (Def)
1733 or else Task_Present (Def)
1734 or else Protected_Present (Def)
1735 or else Synchronized_Present (Def));
1737 -- Type is abstract if full declaration carries keyword, or if
1738 -- previous partial view did.
1740 Set_Is_Abstract (T);
1741 Set_Is_Interface (T);
1743 Set_Is_Limited_Interface (T, Limited_Present (Def));
1744 Set_Is_Protected_Interface (T, Protected_Present (Def));
1745 Set_Is_Synchronized_Interface (T, Synchronized_Present (Def));
1746 Set_Is_Task_Interface (T, Task_Present (Def));
1747 Set_Abstract_Interfaces (T, New_Elmt_List);
1748 Set_Primitive_Operations (T, New_Elmt_List);
1749 end Analyze_Interface_Declaration;
1751 -----------------------------
1752 -- Analyze_Itype_Reference --
1753 -----------------------------
1755 -- Nothing to do. This node is placed in the tree only for the benefit of
1756 -- back end processing, and has no effect on the semantic processing.
1758 procedure Analyze_Itype_Reference (N : Node_Id) is
1759 begin
1760 pragma Assert (Is_Itype (Itype (N)));
1761 null;
1762 end Analyze_Itype_Reference;
1764 --------------------------------
1765 -- Analyze_Number_Declaration --
1766 --------------------------------
1768 procedure Analyze_Number_Declaration (N : Node_Id) is
1769 Id : constant Entity_Id := Defining_Identifier (N);
1770 E : constant Node_Id := Expression (N);
1771 T : Entity_Id;
1772 Index : Interp_Index;
1773 It : Interp;
1775 begin
1776 Generate_Definition (Id);
1777 Enter_Name (Id);
1779 -- This is an optimization of a common case of an integer literal
1781 if Nkind (E) = N_Integer_Literal then
1782 Set_Is_Static_Expression (E, True);
1783 Set_Etype (E, Universal_Integer);
1785 Set_Etype (Id, Universal_Integer);
1786 Set_Ekind (Id, E_Named_Integer);
1787 Set_Is_Frozen (Id, True);
1788 return;
1789 end if;
1791 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1793 -- Process expression, replacing error by integer zero, to avoid
1794 -- cascaded errors or aborts further along in the processing
1796 -- Replace Error by integer zero, which seems least likely to
1797 -- cause cascaded errors.
1799 if E = Error then
1800 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
1801 Set_Error_Posted (E);
1802 end if;
1804 Analyze (E);
1806 -- Verify that the expression is static and numeric. If
1807 -- the expression is overloaded, we apply the preference
1808 -- rule that favors root numeric types.
1810 if not Is_Overloaded (E) then
1811 T := Etype (E);
1813 else
1814 T := Any_Type;
1816 Get_First_Interp (E, Index, It);
1817 while Present (It.Typ) loop
1818 if (Is_Integer_Type (It.Typ)
1819 or else Is_Real_Type (It.Typ))
1820 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
1821 then
1822 if T = Any_Type then
1823 T := It.Typ;
1825 elsif It.Typ = Universal_Real
1826 or else It.Typ = Universal_Integer
1827 then
1828 -- Choose universal interpretation over any other
1830 T := It.Typ;
1831 exit;
1832 end if;
1833 end if;
1835 Get_Next_Interp (Index, It);
1836 end loop;
1837 end if;
1839 if Is_Integer_Type (T) then
1840 Resolve (E, T);
1841 Set_Etype (Id, Universal_Integer);
1842 Set_Ekind (Id, E_Named_Integer);
1844 elsif Is_Real_Type (T) then
1846 -- Because the real value is converted to universal_real, this is a
1847 -- legal context for a universal fixed expression.
1849 if T = Universal_Fixed then
1850 declare
1851 Loc : constant Source_Ptr := Sloc (N);
1852 Conv : constant Node_Id := Make_Type_Conversion (Loc,
1853 Subtype_Mark =>
1854 New_Occurrence_Of (Universal_Real, Loc),
1855 Expression => Relocate_Node (E));
1857 begin
1858 Rewrite (E, Conv);
1859 Analyze (E);
1860 end;
1862 elsif T = Any_Fixed then
1863 Error_Msg_N ("illegal context for mixed mode operation", E);
1865 -- Expression is of the form : universal_fixed * integer. Try to
1866 -- resolve as universal_real.
1868 T := Universal_Real;
1869 Set_Etype (E, T);
1870 end if;
1872 Resolve (E, T);
1873 Set_Etype (Id, Universal_Real);
1874 Set_Ekind (Id, E_Named_Real);
1876 else
1877 Wrong_Type (E, Any_Numeric);
1878 Resolve (E, T);
1880 Set_Etype (Id, T);
1881 Set_Ekind (Id, E_Constant);
1882 Set_Never_Set_In_Source (Id, True);
1883 Set_Is_True_Constant (Id, True);
1884 return;
1885 end if;
1887 if Nkind (E) = N_Integer_Literal
1888 or else Nkind (E) = N_Real_Literal
1889 then
1890 Set_Etype (E, Etype (Id));
1891 end if;
1893 if not Is_OK_Static_Expression (E) then
1894 Flag_Non_Static_Expr
1895 ("non-static expression used in number declaration!", E);
1896 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
1897 Set_Etype (E, Any_Type);
1898 end if;
1899 end Analyze_Number_Declaration;
1901 --------------------------------
1902 -- Analyze_Object_Declaration --
1903 --------------------------------
1905 procedure Analyze_Object_Declaration (N : Node_Id) is
1906 Loc : constant Source_Ptr := Sloc (N);
1907 Id : constant Entity_Id := Defining_Identifier (N);
1908 T : Entity_Id;
1909 Act_T : Entity_Id;
1911 E : Node_Id := Expression (N);
1912 -- E is set to Expression (N) throughout this routine. When
1913 -- Expression (N) is modified, E is changed accordingly.
1915 Prev_Entity : Entity_Id := Empty;
1917 function Build_Default_Subtype return Entity_Id;
1918 -- If the object is limited or aliased, and if the type is unconstrained
1919 -- and there is no expression, the discriminants cannot be modified and
1920 -- the subtype of the object is constrained by the defaults, so it is
1921 -- worthwhile building the corresponding subtype.
1923 function Count_Tasks (T : Entity_Id) return Uint;
1924 -- This function is called when a library level object of type is
1925 -- declared. It's function is to count the static number of tasks
1926 -- declared within the type (it is only called if Has_Tasks is set for
1927 -- T). As a side effect, if an array of tasks with non-static bounds or
1928 -- a variant record type is encountered, Check_Restrictions is called
1929 -- indicating the count is unknown.
1931 ---------------------------
1932 -- Build_Default_Subtype --
1933 ---------------------------
1935 function Build_Default_Subtype return Entity_Id is
1936 Constraints : constant List_Id := New_List;
1937 Act : Entity_Id;
1938 Decl : Node_Id;
1939 Disc : Entity_Id;
1941 begin
1942 Disc := First_Discriminant (T);
1944 if No (Discriminant_Default_Value (Disc)) then
1945 return T; -- previous error.
1946 end if;
1948 Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
1949 while Present (Disc) loop
1950 Append (
1951 New_Copy_Tree (
1952 Discriminant_Default_Value (Disc)), Constraints);
1953 Next_Discriminant (Disc);
1954 end loop;
1956 Decl :=
1957 Make_Subtype_Declaration (Loc,
1958 Defining_Identifier => Act,
1959 Subtype_Indication =>
1960 Make_Subtype_Indication (Loc,
1961 Subtype_Mark => New_Occurrence_Of (T, Loc),
1962 Constraint =>
1963 Make_Index_Or_Discriminant_Constraint
1964 (Loc, Constraints)));
1966 Insert_Before (N, Decl);
1967 Analyze (Decl);
1968 return Act;
1969 end Build_Default_Subtype;
1971 -----------------
1972 -- Count_Tasks --
1973 -----------------
1975 function Count_Tasks (T : Entity_Id) return Uint is
1976 C : Entity_Id;
1977 X : Node_Id;
1978 V : Uint;
1980 begin
1981 if Is_Task_Type (T) then
1982 return Uint_1;
1984 elsif Is_Record_Type (T) then
1985 if Has_Discriminants (T) then
1986 Check_Restriction (Max_Tasks, N);
1987 return Uint_0;
1989 else
1990 V := Uint_0;
1991 C := First_Component (T);
1992 while Present (C) loop
1993 V := V + Count_Tasks (Etype (C));
1994 Next_Component (C);
1995 end loop;
1997 return V;
1998 end if;
2000 elsif Is_Array_Type (T) then
2001 X := First_Index (T);
2002 V := Count_Tasks (Component_Type (T));
2003 while Present (X) loop
2004 C := Etype (X);
2006 if not Is_Static_Subtype (C) then
2007 Check_Restriction (Max_Tasks, N);
2008 return Uint_0;
2009 else
2010 V := V * (UI_Max (Uint_0,
2011 Expr_Value (Type_High_Bound (C)) -
2012 Expr_Value (Type_Low_Bound (C)) + Uint_1));
2013 end if;
2015 Next_Index (X);
2016 end loop;
2018 return V;
2020 else
2021 return Uint_0;
2022 end if;
2023 end Count_Tasks;
2025 -- Start of processing for Analyze_Object_Declaration
2027 begin
2028 -- There are three kinds of implicit types generated by an
2029 -- object declaration:
2031 -- 1. Those for generated by the original Object Definition
2033 -- 2. Those generated by the Expression
2035 -- 3. Those used to constrained the Object Definition with the
2036 -- expression constraints when it is unconstrained
2038 -- They must be generated in this order to avoid order of elaboration
2039 -- issues. Thus the first step (after entering the name) is to analyze
2040 -- the object definition.
2042 if Constant_Present (N) then
2043 Prev_Entity := Current_Entity_In_Scope (Id);
2045 -- If homograph is an implicit subprogram, it is overridden by the
2046 -- current declaration.
2048 if Present (Prev_Entity)
2049 and then Is_Overloadable (Prev_Entity)
2050 and then Is_Inherited_Operation (Prev_Entity)
2051 then
2052 Prev_Entity := Empty;
2053 end if;
2054 end if;
2056 if Present (Prev_Entity) then
2057 Constant_Redeclaration (Id, N, T);
2059 Generate_Reference (Prev_Entity, Id, 'c');
2060 Set_Completion_Referenced (Id);
2062 if Error_Posted (N) then
2064 -- Type mismatch or illegal redeclaration, Do not analyze
2065 -- expression to avoid cascaded errors.
2067 T := Find_Type_Of_Object (Object_Definition (N), N);
2068 Set_Etype (Id, T);
2069 Set_Ekind (Id, E_Variable);
2070 return;
2071 end if;
2073 -- In the normal case, enter identifier at the start to catch premature
2074 -- usage in the initialization expression.
2076 else
2077 Generate_Definition (Id);
2078 Enter_Name (Id);
2080 T := Find_Type_Of_Object (Object_Definition (N), N);
2082 if Error_Posted (Id) then
2083 Set_Etype (Id, T);
2084 Set_Ekind (Id, E_Variable);
2085 return;
2086 end if;
2087 end if;
2089 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2090 -- out some static checks
2092 if Ada_Version >= Ada_05
2093 and then Can_Never_Be_Null (T)
2094 then
2095 -- In case of aggregates we must also take care of the correct
2096 -- initialization of nested aggregates bug this is done at the
2097 -- point of the analysis of the aggregate (see sem_aggr.adb)
2099 if Present (Expression (N))
2100 and then Nkind (Expression (N)) = N_Aggregate
2101 then
2102 null;
2104 else
2105 declare
2106 Save_Typ : constant Entity_Id := Etype (Id);
2107 begin
2108 Set_Etype (Id, T); -- Temp. decoration for static checks
2109 Null_Exclusion_Static_Checks (N);
2110 Set_Etype (Id, Save_Typ);
2111 end;
2112 end if;
2113 end if;
2115 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2117 -- If deferred constant, make sure context is appropriate. We detect
2118 -- a deferred constant as a constant declaration with no expression.
2119 -- A deferred constant can appear in a package body if its completion
2120 -- is by means of an interface pragma.
2122 if Constant_Present (N)
2123 and then No (E)
2124 then
2125 if not Is_Package_Or_Generic_Package (Current_Scope) then
2126 Error_Msg_N
2127 ("invalid context for deferred constant declaration ('R'M 7.4)",
2129 Error_Msg_N
2130 ("\declaration requires an initialization expression",
2132 Set_Constant_Present (N, False);
2134 -- In Ada 83, deferred constant must be of private type
2136 elsif not Is_Private_Type (T) then
2137 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2138 Error_Msg_N
2139 ("(Ada 83) deferred constant must be private type", N);
2140 end if;
2141 end if;
2143 -- If not a deferred constant, then object declaration freezes its type
2145 else
2146 Check_Fully_Declared (T, N);
2147 Freeze_Before (N, T);
2148 end if;
2150 -- If the object was created by a constrained array definition, then
2151 -- set the link in both the anonymous base type and anonymous subtype
2152 -- that are built to represent the array type to point to the object.
2154 if Nkind (Object_Definition (Declaration_Node (Id))) =
2155 N_Constrained_Array_Definition
2156 then
2157 Set_Related_Array_Object (T, Id);
2158 Set_Related_Array_Object (Base_Type (T), Id);
2159 end if;
2161 -- Special checks for protected objects not at library level
2163 if Is_Protected_Type (T)
2164 and then not Is_Library_Level_Entity (Id)
2165 then
2166 Check_Restriction (No_Local_Protected_Objects, Id);
2168 -- Protected objects with interrupt handlers must be at library level
2170 -- Ada 2005: this test is not needed (and the corresponding clause
2171 -- in the RM is removed) because accessibility checks are sufficient
2172 -- to make handlers not at the library level illegal.
2174 if Has_Interrupt_Handler (T)
2175 and then Ada_Version < Ada_05
2176 then
2177 Error_Msg_N
2178 ("interrupt object can only be declared at library level", Id);
2179 end if;
2180 end if;
2182 -- The actual subtype of the object is the nominal subtype, unless
2183 -- the nominal one is unconstrained and obtained from the expression.
2185 Act_T := T;
2187 -- Process initialization expression if present and not in error
2189 if Present (E) and then E /= Error then
2190 Analyze (E);
2192 -- In case of errors detected in the analysis of the expression,
2193 -- decorate it with the expected type to avoid cascade errors
2195 if No (Etype (E)) then
2196 Set_Etype (E, T);
2197 end if;
2199 -- If an initialization expression is present, then we set the
2200 -- Is_True_Constant flag. It will be reset if this is a variable
2201 -- and it is indeed modified.
2203 Set_Is_True_Constant (Id, True);
2205 -- If we are analyzing a constant declaration, set its completion
2206 -- flag after analyzing the expression.
2208 if Constant_Present (N) then
2209 Set_Has_Completion (Id);
2210 end if;
2212 if not Assignment_OK (N) then
2213 Check_Initialization (T, E);
2214 end if;
2216 Set_Etype (Id, T); -- may be overridden later on
2217 Resolve (E, T);
2218 Check_Unset_Reference (E);
2220 if Compile_Time_Known_Value (E) then
2221 Set_Current_Value (Id, E);
2222 end if;
2224 -- Check incorrect use of dynamically tagged expressions. Note
2225 -- the use of Is_Tagged_Type (T) which seems redundant but is in
2226 -- fact important to avoid spurious errors due to expanded code
2227 -- for dispatching functions over an anonymous access type
2229 if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
2230 and then Is_Tagged_Type (T)
2231 and then not Is_Class_Wide_Type (T)
2232 then
2233 Error_Msg_N ("dynamically tagged expression not allowed!", E);
2234 end if;
2236 Apply_Scalar_Range_Check (E, T);
2237 Apply_Static_Length_Check (E, T);
2238 end if;
2240 -- If the No_Streams restriction is set, check that the type of the
2241 -- object is not, and does not contain, any subtype derived from
2242 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
2243 -- Has_Stream just for efficiency reasons. There is no point in
2244 -- spending time on a Has_Stream check if the restriction is not set.
2246 if Restrictions.Set (No_Streams) then
2247 if Has_Stream (T) then
2248 Check_Restriction (No_Streams, N);
2249 end if;
2250 end if;
2252 -- Abstract type is never permitted for a variable or constant.
2253 -- Note: we inhibit this check for objects that do not come from
2254 -- source because there is at least one case (the expansion of
2255 -- x'class'input where x is abstract) where we legitimately
2256 -- generate an abstract object.
2258 if Is_Abstract (T) and then Comes_From_Source (N) then
2259 Error_Msg_N ("type of object cannot be abstract",
2260 Object_Definition (N));
2262 if Is_CPP_Class (T) then
2263 Error_Msg_NE ("\} may need a cpp_constructor",
2264 Object_Definition (N), T);
2265 end if;
2267 -- Case of unconstrained type
2269 elsif Is_Indefinite_Subtype (T) then
2271 -- Nothing to do in deferred constant case
2273 if Constant_Present (N) and then No (E) then
2274 null;
2276 -- Case of no initialization present
2278 elsif No (E) then
2279 if No_Initialization (N) then
2280 null;
2282 elsif Is_Class_Wide_Type (T) then
2283 Error_Msg_N
2284 ("initialization required in class-wide declaration ", N);
2286 else
2287 Error_Msg_N
2288 ("unconstrained subtype not allowed (need initialization)",
2289 Object_Definition (N));
2290 end if;
2292 -- Case of initialization present but in error. Set initial
2293 -- expression as absent (but do not make above complaints)
2295 elsif E = Error then
2296 Set_Expression (N, Empty);
2297 E := Empty;
2299 -- Case of initialization present
2301 else
2302 -- Not allowed in Ada 83
2304 if not Constant_Present (N) then
2305 if Ada_Version = Ada_83
2306 and then Comes_From_Source (Object_Definition (N))
2307 then
2308 Error_Msg_N
2309 ("(Ada 83) unconstrained variable not allowed",
2310 Object_Definition (N));
2311 end if;
2312 end if;
2314 -- Now we constrain the variable from the initializing expression
2316 -- If the expression is an aggregate, it has been expanded into
2317 -- individual assignments. Retrieve the actual type from the
2318 -- expanded construct.
2320 if Is_Array_Type (T)
2321 and then No_Initialization (N)
2322 and then Nkind (Original_Node (E)) = N_Aggregate
2323 then
2324 Act_T := Etype (E);
2326 else
2327 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
2328 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
2329 end if;
2331 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
2333 if Aliased_Present (N) then
2334 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2335 end if;
2337 Freeze_Before (N, Act_T);
2338 Freeze_Before (N, T);
2339 end if;
2341 elsif Is_Array_Type (T)
2342 and then No_Initialization (N)
2343 and then Nkind (Original_Node (E)) = N_Aggregate
2344 then
2345 if not Is_Entity_Name (Object_Definition (N)) then
2346 Act_T := Etype (E);
2347 Check_Compile_Time_Size (Act_T);
2349 if Aliased_Present (N) then
2350 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2351 end if;
2352 end if;
2354 -- When the given object definition and the aggregate are specified
2355 -- independently, and their lengths might differ do a length check.
2356 -- This cannot happen if the aggregate is of the form (others =>...)
2358 if not Is_Constrained (T) then
2359 null;
2361 elsif Nkind (E) = N_Raise_Constraint_Error then
2363 -- Aggregate is statically illegal. Place back in declaration
2365 Set_Expression (N, E);
2366 Set_No_Initialization (N, False);
2368 elsif T = Etype (E) then
2369 null;
2371 elsif Nkind (E) = N_Aggregate
2372 and then Present (Component_Associations (E))
2373 and then Present (Choices (First (Component_Associations (E))))
2374 and then Nkind (First
2375 (Choices (First (Component_Associations (E))))) = N_Others_Choice
2376 then
2377 null;
2379 else
2380 Apply_Length_Check (E, T);
2381 end if;
2383 elsif (Is_Limited_Record (T)
2384 or else Is_Concurrent_Type (T))
2385 and then not Is_Constrained (T)
2386 and then Has_Discriminants (T)
2387 then
2388 if No (E) then
2389 Act_T := Build_Default_Subtype;
2390 else
2391 -- Ada 2005: a limited object may be initialized by means of an
2392 -- aggregate. If the type has default discriminants it has an
2393 -- unconstrained nominal type, Its actual subtype will be obtained
2394 -- from the aggregate, and not from the default discriminants.
2396 Act_T := Etype (E);
2397 end if;
2399 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
2401 elsif Present (Underlying_Type (T))
2402 and then not Is_Constrained (Underlying_Type (T))
2403 and then Has_Discriminants (Underlying_Type (T))
2404 and then Nkind (E) = N_Function_Call
2405 and then Constant_Present (N)
2406 then
2407 -- The back-end has problems with constants of a discriminated type
2408 -- with defaults, if the initial value is a function call. We
2409 -- generate an intermediate temporary for the result of the call.
2410 -- It is unclear why this should make it acceptable to gcc. ???
2412 Remove_Side_Effects (E);
2413 end if;
2415 if T = Standard_Wide_Character or else T = Standard_Wide_Wide_Character
2416 or else Root_Type (T) = Standard_Wide_String
2417 or else Root_Type (T) = Standard_Wide_Wide_String
2418 then
2419 Check_Restriction (No_Wide_Characters, Object_Definition (N));
2420 end if;
2422 -- Now establish the proper kind and type of the object
2424 if Constant_Present (N) then
2425 Set_Ekind (Id, E_Constant);
2426 Set_Never_Set_In_Source (Id, True);
2427 Set_Is_True_Constant (Id, True);
2429 else
2430 Set_Ekind (Id, E_Variable);
2432 -- A variable is set as shared passive if it appears in a shared
2433 -- passive package, and is at the outer level. This is not done
2434 -- for entities generated during expansion, because those are
2435 -- always manipulated locally.
2437 if Is_Shared_Passive (Current_Scope)
2438 and then Is_Library_Level_Entity (Id)
2439 and then Comes_From_Source (Id)
2440 then
2441 Set_Is_Shared_Passive (Id);
2442 Check_Shared_Var (Id, T, N);
2443 end if;
2445 -- Case of no initializing expression present. If the type is not
2446 -- fully initialized, then we set Never_Set_In_Source, since this
2447 -- is a case of a potentially uninitialized object. Note that we
2448 -- do not consider access variables to be fully initialized for
2449 -- this purpose, since it still seems dubious if someone declares
2451 -- Note that we only do this for source declarations. If the object
2452 -- is declared by a generated declaration, we assume that it is not
2453 -- appropriate to generate warnings in that case.
2455 if No (E) then
2456 if (Is_Access_Type (T)
2457 or else not Is_Fully_Initialized_Type (T))
2458 and then Comes_From_Source (N)
2459 then
2460 Set_Never_Set_In_Source (Id);
2461 end if;
2462 end if;
2463 end if;
2465 Init_Alignment (Id);
2466 Init_Esize (Id);
2468 if Aliased_Present (N) then
2469 Set_Is_Aliased (Id);
2471 if No (E)
2472 and then Is_Record_Type (T)
2473 and then not Is_Constrained (T)
2474 and then Has_Discriminants (T)
2475 then
2476 Set_Actual_Subtype (Id, Build_Default_Subtype);
2477 end if;
2478 end if;
2480 Set_Etype (Id, Act_T);
2482 if Has_Controlled_Component (Etype (Id))
2483 or else Is_Controlled (Etype (Id))
2484 then
2485 if not Is_Library_Level_Entity (Id) then
2486 Check_Restriction (No_Nested_Finalization, N);
2487 else
2488 Validate_Controlled_Object (Id);
2489 end if;
2491 -- Generate a warning when an initialization causes an obvious ABE
2492 -- violation. If the init expression is a simple aggregate there
2493 -- shouldn't be any initialize/adjust call generated. This will be
2494 -- true as soon as aggregates are built in place when possible.
2496 -- ??? at the moment we do not generate warnings for temporaries
2497 -- created for those aggregates although Program_Error might be
2498 -- generated if compiled with -gnato.
2500 if Is_Controlled (Etype (Id))
2501 and then Comes_From_Source (Id)
2502 then
2503 declare
2504 BT : constant Entity_Id := Base_Type (Etype (Id));
2506 Implicit_Call : Entity_Id;
2507 pragma Warnings (Off, Implicit_Call);
2508 -- ??? what is this for (never referenced!)
2510 function Is_Aggr (N : Node_Id) return Boolean;
2511 -- Check that N is an aggregate
2513 -------------
2514 -- Is_Aggr --
2515 -------------
2517 function Is_Aggr (N : Node_Id) return Boolean is
2518 begin
2519 case Nkind (Original_Node (N)) is
2520 when N_Aggregate | N_Extension_Aggregate =>
2521 return True;
2523 when N_Qualified_Expression |
2524 N_Type_Conversion |
2525 N_Unchecked_Type_Conversion =>
2526 return Is_Aggr (Expression (Original_Node (N)));
2528 when others =>
2529 return False;
2530 end case;
2531 end Is_Aggr;
2533 begin
2534 -- If no underlying type, we already are in an error situation.
2535 -- Do not try to add a warning since we do not have access to
2536 -- prim-op list.
2538 if No (Underlying_Type (BT)) then
2539 Implicit_Call := Empty;
2541 -- A generic type does not have usable primitive operators.
2542 -- Initialization calls are built for instances.
2544 elsif Is_Generic_Type (BT) then
2545 Implicit_Call := Empty;
2547 -- If the init expression is not an aggregate, an adjust call
2548 -- will be generated
2550 elsif Present (E) and then not Is_Aggr (E) then
2551 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
2553 -- If no init expression and we are not in the deferred
2554 -- constant case, an Initialize call will be generated
2556 elsif No (E) and then not Constant_Present (N) then
2557 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
2559 else
2560 Implicit_Call := Empty;
2561 end if;
2562 end;
2563 end if;
2564 end if;
2566 if Has_Task (Etype (Id)) then
2567 Check_Restriction (No_Tasking, N);
2569 if Is_Library_Level_Entity (Id) then
2570 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
2571 else
2572 Check_Restriction (Max_Tasks, N);
2573 Check_Restriction (No_Task_Hierarchy, N);
2574 Check_Potentially_Blocking_Operation (N);
2575 end if;
2577 -- A rather specialized test. If we see two tasks being declared
2578 -- of the same type in the same object declaration, and the task
2579 -- has an entry with an address clause, we know that program error
2580 -- will be raised at run-time since we can't have two tasks with
2581 -- entries at the same address.
2583 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
2584 declare
2585 E : Entity_Id;
2587 begin
2588 E := First_Entity (Etype (Id));
2589 while Present (E) loop
2590 if Ekind (E) = E_Entry
2591 and then Present (Get_Attribute_Definition_Clause
2592 (E, Attribute_Address))
2593 then
2594 Error_Msg_N
2595 ("?more than one task with same entry address", N);
2596 Error_Msg_N
2597 ("\?Program_Error will be raised at run time", N);
2598 Insert_Action (N,
2599 Make_Raise_Program_Error (Loc,
2600 Reason => PE_Duplicated_Entry_Address));
2601 exit;
2602 end if;
2604 Next_Entity (E);
2605 end loop;
2606 end;
2607 end if;
2608 end if;
2610 -- Some simple constant-propagation: if the expression is a constant
2611 -- string initialized with a literal, share the literal. This avoids
2612 -- a run-time copy.
2614 if Present (E)
2615 and then Is_Entity_Name (E)
2616 and then Ekind (Entity (E)) = E_Constant
2617 and then Base_Type (Etype (E)) = Standard_String
2618 then
2619 declare
2620 Val : constant Node_Id := Constant_Value (Entity (E));
2621 begin
2622 if Present (Val)
2623 and then Nkind (Val) = N_String_Literal
2624 then
2625 Rewrite (E, New_Copy (Val));
2626 end if;
2627 end;
2628 end if;
2630 -- Another optimization: if the nominal subtype is unconstrained and
2631 -- the expression is a function call that returns an unconstrained
2632 -- type, rewrite the declaration as a renaming of the result of the
2633 -- call. The exceptions below are cases where the copy is expected,
2634 -- either by the back end (Aliased case) or by the semantics, as for
2635 -- initializing controlled types or copying tags for classwide types.
2637 if Present (E)
2638 and then Nkind (E) = N_Explicit_Dereference
2639 and then Nkind (Original_Node (E)) = N_Function_Call
2640 and then not Is_Library_Level_Entity (Id)
2641 and then not Is_Constrained (Underlying_Type (T))
2642 and then not Is_Aliased (Id)
2643 and then not Is_Class_Wide_Type (T)
2644 and then not Is_Controlled (T)
2645 and then not Has_Controlled_Component (Base_Type (T))
2646 and then Expander_Active
2647 then
2648 Rewrite (N,
2649 Make_Object_Renaming_Declaration (Loc,
2650 Defining_Identifier => Id,
2651 Access_Definition => Empty,
2652 Subtype_Mark => New_Occurrence_Of
2653 (Base_Type (Etype (Id)), Loc),
2654 Name => E));
2656 Set_Renamed_Object (Id, E);
2658 -- Force generation of debugging information for the constant and for
2659 -- the renamed function call.
2661 Set_Needs_Debug_Info (Id);
2662 Set_Needs_Debug_Info (Entity (Prefix (E)));
2663 end if;
2665 if Present (Prev_Entity)
2666 and then Is_Frozen (Prev_Entity)
2667 and then not Error_Posted (Id)
2668 then
2669 Error_Msg_N ("full constant declaration appears too late", N);
2670 end if;
2672 Check_Eliminated (Id);
2673 end Analyze_Object_Declaration;
2675 ---------------------------
2676 -- Analyze_Others_Choice --
2677 ---------------------------
2679 -- Nothing to do for the others choice node itself, the semantic analysis
2680 -- of the others choice will occur as part of the processing of the parent
2682 procedure Analyze_Others_Choice (N : Node_Id) is
2683 pragma Warnings (Off, N);
2684 begin
2685 null;
2686 end Analyze_Others_Choice;
2688 --------------------------------
2689 -- Analyze_Per_Use_Expression --
2690 --------------------------------
2692 procedure Analyze_Per_Use_Expression (N : Node_Id; T : Entity_Id) is
2693 Save_In_Default_Expression : constant Boolean := In_Default_Expression;
2694 begin
2695 In_Default_Expression := True;
2696 Pre_Analyze_And_Resolve (N, T);
2697 In_Default_Expression := Save_In_Default_Expression;
2698 end Analyze_Per_Use_Expression;
2700 -------------------------------------------
2701 -- Analyze_Private_Extension_Declaration --
2702 -------------------------------------------
2704 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
2705 T : constant Entity_Id := Defining_Identifier (N);
2706 Indic : constant Node_Id := Subtype_Indication (N);
2707 Parent_Type : Entity_Id;
2708 Parent_Base : Entity_Id;
2710 begin
2711 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
2713 if Is_Non_Empty_List (Interface_List (N)) then
2714 declare
2715 Intf : Node_Id;
2716 T : Entity_Id;
2718 begin
2719 Intf := First (Interface_List (N));
2720 while Present (Intf) loop
2721 T := Find_Type_Of_Subtype_Indic (Intf);
2723 if not Is_Interface (T) then
2724 Error_Msg_NE ("(Ada 2005) & must be an interface", Intf, T);
2725 end if;
2727 Next (Intf);
2728 end loop;
2729 end;
2730 end if;
2732 Generate_Definition (T);
2733 Enter_Name (T);
2735 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
2736 Parent_Base := Base_Type (Parent_Type);
2738 if Parent_Type = Any_Type
2739 or else Etype (Parent_Type) = Any_Type
2740 then
2741 Set_Ekind (T, Ekind (Parent_Type));
2742 Set_Etype (T, Any_Type);
2743 return;
2745 elsif not Is_Tagged_Type (Parent_Type) then
2746 Error_Msg_N
2747 ("parent of type extension must be a tagged type ", Indic);
2748 return;
2750 elsif Ekind (Parent_Type) = E_Void
2751 or else Ekind (Parent_Type) = E_Incomplete_Type
2752 then
2753 Error_Msg_N ("premature derivation of incomplete type", Indic);
2754 return;
2755 end if;
2757 -- Perhaps the parent type should be changed to the class-wide type's
2758 -- specific type in this case to prevent cascading errors ???
2760 if Is_Class_Wide_Type (Parent_Type) then
2761 Error_Msg_N
2762 ("parent of type extension must not be a class-wide type", Indic);
2763 return;
2764 end if;
2766 if (not Is_Package_Or_Generic_Package (Current_Scope)
2767 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
2768 or else In_Private_Part (Current_Scope)
2770 then
2771 Error_Msg_N ("invalid context for private extension", N);
2772 end if;
2774 -- Set common attributes
2776 Set_Is_Pure (T, Is_Pure (Current_Scope));
2777 Set_Scope (T, Current_Scope);
2778 Set_Ekind (T, E_Record_Type_With_Private);
2779 Init_Size_Align (T);
2781 Set_Etype (T, Parent_Base);
2782 Set_Has_Task (T, Has_Task (Parent_Base));
2784 Set_Convention (T, Convention (Parent_Type));
2785 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
2786 Set_Is_First_Subtype (T);
2787 Make_Class_Wide_Type (T);
2789 if Unknown_Discriminants_Present (N) then
2790 Set_Discriminant_Constraint (T, No_Elist);
2791 end if;
2793 Build_Derived_Record_Type (N, Parent_Type, T);
2795 if Limited_Present (N) then
2796 Set_Is_Limited_Record (T);
2798 if not Is_Limited_Type (Parent_Type)
2799 and then
2800 (not Is_Interface (Parent_Type)
2801 or else not Is_Limited_Interface (Parent_Type))
2802 then
2803 Error_Msg_NE ("parent type& of limited extension must be limited",
2804 N, Parent_Type);
2805 end if;
2806 end if;
2807 end Analyze_Private_Extension_Declaration;
2809 ---------------------------------
2810 -- Analyze_Subtype_Declaration --
2811 ---------------------------------
2813 procedure Analyze_Subtype_Declaration (N : Node_Id) is
2814 Id : constant Entity_Id := Defining_Identifier (N);
2815 T : Entity_Id;
2816 R_Checks : Check_Result;
2818 begin
2819 Generate_Definition (Id);
2820 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2821 Init_Size_Align (Id);
2823 -- The following guard condition on Enter_Name is to handle cases where
2824 -- the defining identifier has already been entered into the scope but
2825 -- the declaration as a whole needs to be analyzed.
2827 -- This case in particular happens for derived enumeration types. The
2828 -- derived enumeration type is processed as an inserted enumeration type
2829 -- declaration followed by a rewritten subtype declaration. The defining
2830 -- identifier, however, is entered into the name scope very early in the
2831 -- processing of the original type declaration and therefore needs to be
2832 -- avoided here, when the created subtype declaration is analyzed. (See
2833 -- Build_Derived_Types)
2835 -- This also happens when the full view of a private type is derived
2836 -- type with constraints. In this case the entity has been introduced
2837 -- in the private declaration.
2839 if Present (Etype (Id))
2840 and then (Is_Private_Type (Etype (Id))
2841 or else Is_Task_Type (Etype (Id))
2842 or else Is_Rewrite_Substitution (N))
2843 then
2844 null;
2846 else
2847 Enter_Name (Id);
2848 end if;
2850 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
2852 -- Inherit common attributes
2854 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
2855 Set_Is_Volatile (Id, Is_Volatile (T));
2856 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
2857 Set_Is_Atomic (Id, Is_Atomic (T));
2858 Set_Is_Ada_2005 (Id, Is_Ada_2005 (T));
2860 -- In the case where there is no constraint given in the subtype
2861 -- indication, Process_Subtype just returns the Subtype_Mark, so its
2862 -- semantic attributes must be established here.
2864 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
2865 Set_Etype (Id, Base_Type (T));
2867 case Ekind (T) is
2868 when Array_Kind =>
2869 Set_Ekind (Id, E_Array_Subtype);
2870 Copy_Array_Subtype_Attributes (Id, T);
2872 when Decimal_Fixed_Point_Kind =>
2873 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
2874 Set_Digits_Value (Id, Digits_Value (T));
2875 Set_Delta_Value (Id, Delta_Value (T));
2876 Set_Scale_Value (Id, Scale_Value (T));
2877 Set_Small_Value (Id, Small_Value (T));
2878 Set_Scalar_Range (Id, Scalar_Range (T));
2879 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
2880 Set_Is_Constrained (Id, Is_Constrained (T));
2881 Set_RM_Size (Id, RM_Size (T));
2883 when Enumeration_Kind =>
2884 Set_Ekind (Id, E_Enumeration_Subtype);
2885 Set_First_Literal (Id, First_Literal (Base_Type (T)));
2886 Set_Scalar_Range (Id, Scalar_Range (T));
2887 Set_Is_Character_Type (Id, Is_Character_Type (T));
2888 Set_Is_Constrained (Id, Is_Constrained (T));
2889 Set_RM_Size (Id, RM_Size (T));
2891 when Ordinary_Fixed_Point_Kind =>
2892 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
2893 Set_Scalar_Range (Id, Scalar_Range (T));
2894 Set_Small_Value (Id, Small_Value (T));
2895 Set_Delta_Value (Id, Delta_Value (T));
2896 Set_Is_Constrained (Id, Is_Constrained (T));
2897 Set_RM_Size (Id, RM_Size (T));
2899 when Float_Kind =>
2900 Set_Ekind (Id, E_Floating_Point_Subtype);
2901 Set_Scalar_Range (Id, Scalar_Range (T));
2902 Set_Digits_Value (Id, Digits_Value (T));
2903 Set_Is_Constrained (Id, Is_Constrained (T));
2905 when Signed_Integer_Kind =>
2906 Set_Ekind (Id, E_Signed_Integer_Subtype);
2907 Set_Scalar_Range (Id, Scalar_Range (T));
2908 Set_Is_Constrained (Id, Is_Constrained (T));
2909 Set_RM_Size (Id, RM_Size (T));
2911 when Modular_Integer_Kind =>
2912 Set_Ekind (Id, E_Modular_Integer_Subtype);
2913 Set_Scalar_Range (Id, Scalar_Range (T));
2914 Set_Is_Constrained (Id, Is_Constrained (T));
2915 Set_RM_Size (Id, RM_Size (T));
2917 when Class_Wide_Kind =>
2918 Set_Ekind (Id, E_Class_Wide_Subtype);
2919 Set_First_Entity (Id, First_Entity (T));
2920 Set_Last_Entity (Id, Last_Entity (T));
2921 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2922 Set_Cloned_Subtype (Id, T);
2923 Set_Is_Tagged_Type (Id, True);
2924 Set_Has_Unknown_Discriminants
2925 (Id, True);
2927 if Ekind (T) = E_Class_Wide_Subtype then
2928 Set_Equivalent_Type (Id, Equivalent_Type (T));
2929 end if;
2931 when E_Record_Type | E_Record_Subtype =>
2932 Set_Ekind (Id, E_Record_Subtype);
2934 if Ekind (T) = E_Record_Subtype
2935 and then Present (Cloned_Subtype (T))
2936 then
2937 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
2938 else
2939 Set_Cloned_Subtype (Id, T);
2940 end if;
2942 Set_First_Entity (Id, First_Entity (T));
2943 Set_Last_Entity (Id, Last_Entity (T));
2944 Set_Has_Discriminants (Id, Has_Discriminants (T));
2945 Set_Is_Constrained (Id, Is_Constrained (T));
2946 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2947 Set_Has_Unknown_Discriminants
2948 (Id, Has_Unknown_Discriminants (T));
2950 if Has_Discriminants (T) then
2951 Set_Discriminant_Constraint
2952 (Id, Discriminant_Constraint (T));
2953 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2955 elsif Has_Unknown_Discriminants (Id) then
2956 Set_Discriminant_Constraint (Id, No_Elist);
2957 end if;
2959 if Is_Tagged_Type (T) then
2960 Set_Is_Tagged_Type (Id);
2961 Set_Is_Abstract (Id, Is_Abstract (T));
2962 Set_Primitive_Operations
2963 (Id, Primitive_Operations (T));
2964 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2965 end if;
2967 when Private_Kind =>
2968 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2969 Set_Has_Discriminants (Id, Has_Discriminants (T));
2970 Set_Is_Constrained (Id, Is_Constrained (T));
2971 Set_First_Entity (Id, First_Entity (T));
2972 Set_Last_Entity (Id, Last_Entity (T));
2973 Set_Private_Dependents (Id, New_Elmt_List);
2974 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2975 Set_Has_Unknown_Discriminants
2976 (Id, Has_Unknown_Discriminants (T));
2978 if Is_Tagged_Type (T) then
2979 Set_Is_Tagged_Type (Id);
2980 Set_Is_Abstract (Id, Is_Abstract (T));
2981 Set_Primitive_Operations
2982 (Id, Primitive_Operations (T));
2983 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2984 end if;
2986 -- In general the attributes of the subtype of a private type
2987 -- are the attributes of the partial view of parent. However,
2988 -- the full view may be a discriminated type, and the subtype
2989 -- must share the discriminant constraint to generate correct
2990 -- calls to initialization procedures.
2992 if Has_Discriminants (T) then
2993 Set_Discriminant_Constraint
2994 (Id, Discriminant_Constraint (T));
2995 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2997 elsif Present (Full_View (T))
2998 and then Has_Discriminants (Full_View (T))
2999 then
3000 Set_Discriminant_Constraint
3001 (Id, Discriminant_Constraint (Full_View (T)));
3002 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3004 -- This would seem semantically correct, but apparently
3005 -- confuses the back-end (4412-009). To be explained ???
3007 -- Set_Has_Discriminants (Id);
3008 end if;
3010 Prepare_Private_Subtype_Completion (Id, N);
3012 when Access_Kind =>
3013 Set_Ekind (Id, E_Access_Subtype);
3014 Set_Is_Constrained (Id, Is_Constrained (T));
3015 Set_Is_Access_Constant
3016 (Id, Is_Access_Constant (T));
3017 Set_Directly_Designated_Type
3018 (Id, Designated_Type (T));
3019 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
3021 -- A Pure library_item must not contain the declaration of a
3022 -- named access type, except within a subprogram, generic
3023 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
3025 if Comes_From_Source (Id)
3026 and then In_Pure_Unit
3027 and then not In_Subprogram_Task_Protected_Unit
3028 then
3029 Error_Msg_N
3030 ("named access types not allowed in pure unit", N);
3031 end if;
3033 when Concurrent_Kind =>
3034 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3035 Set_Corresponding_Record_Type (Id,
3036 Corresponding_Record_Type (T));
3037 Set_First_Entity (Id, First_Entity (T));
3038 Set_First_Private_Entity (Id, First_Private_Entity (T));
3039 Set_Has_Discriminants (Id, Has_Discriminants (T));
3040 Set_Is_Constrained (Id, Is_Constrained (T));
3041 Set_Last_Entity (Id, Last_Entity (T));
3043 if Has_Discriminants (T) then
3044 Set_Discriminant_Constraint (Id,
3045 Discriminant_Constraint (T));
3046 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3047 end if;
3049 -- If the subtype name denotes an incomplete type an error was
3050 -- already reported by Process_Subtype.
3052 when E_Incomplete_Type =>
3053 Set_Etype (Id, Any_Type);
3055 when others =>
3056 raise Program_Error;
3057 end case;
3058 end if;
3060 if Etype (Id) = Any_Type then
3061 return;
3062 end if;
3064 -- Some common processing on all types
3066 Set_Size_Info (Id, T);
3067 Set_First_Rep_Item (Id, First_Rep_Item (T));
3069 T := Etype (Id);
3071 Set_Is_Immediately_Visible (Id, True);
3072 Set_Depends_On_Private (Id, Has_Private_Component (T));
3074 if Present (Generic_Parent_Type (N))
3075 and then
3076 (Nkind
3077 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
3078 or else Nkind
3079 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
3080 /= N_Formal_Private_Type_Definition)
3081 then
3082 if Is_Tagged_Type (Id) then
3083 if Is_Class_Wide_Type (Id) then
3084 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
3085 else
3086 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
3087 end if;
3089 elsif Scope (Etype (Id)) /= Standard_Standard then
3090 Derive_Subprograms (Generic_Parent_Type (N), Id);
3091 end if;
3092 end if;
3094 if Is_Private_Type (T)
3095 and then Present (Full_View (T))
3096 then
3097 Conditional_Delay (Id, Full_View (T));
3099 -- The subtypes of components or subcomponents of protected types
3100 -- do not need freeze nodes, which would otherwise appear in the
3101 -- wrong scope (before the freeze node for the protected type). The
3102 -- proper subtypes are those of the subcomponents of the corresponding
3103 -- record.
3105 elsif Ekind (Scope (Id)) /= E_Protected_Type
3106 and then Present (Scope (Scope (Id))) -- error defense!
3107 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
3108 then
3109 Conditional_Delay (Id, T);
3110 end if;
3112 -- Check that constraint_error is raised for a scalar subtype
3113 -- indication when the lower or upper bound of a non-null range
3114 -- lies outside the range of the type mark.
3116 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
3117 if Is_Scalar_Type (Etype (Id))
3118 and then Scalar_Range (Id) /=
3119 Scalar_Range (Etype (Subtype_Mark
3120 (Subtype_Indication (N))))
3121 then
3122 Apply_Range_Check
3123 (Scalar_Range (Id),
3124 Etype (Subtype_Mark (Subtype_Indication (N))));
3126 elsif Is_Array_Type (Etype (Id))
3127 and then Present (First_Index (Id))
3128 then
3129 -- This really should be a subprogram that finds the indications
3130 -- to check???
3132 if ((Nkind (First_Index (Id)) = N_Identifier
3133 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
3134 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
3135 and then
3136 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
3137 then
3138 declare
3139 Target_Typ : constant Entity_Id :=
3140 Etype
3141 (First_Index (Etype
3142 (Subtype_Mark (Subtype_Indication (N)))));
3143 begin
3144 R_Checks :=
3145 Range_Check
3146 (Scalar_Range (Etype (First_Index (Id))),
3147 Target_Typ,
3148 Etype (First_Index (Id)),
3149 Defining_Identifier (N));
3151 Insert_Range_Checks
3152 (R_Checks,
3154 Target_Typ,
3155 Sloc (Defining_Identifier (N)));
3156 end;
3157 end if;
3158 end if;
3159 end if;
3161 Check_Eliminated (Id);
3162 end Analyze_Subtype_Declaration;
3164 --------------------------------
3165 -- Analyze_Subtype_Indication --
3166 --------------------------------
3168 procedure Analyze_Subtype_Indication (N : Node_Id) is
3169 T : constant Entity_Id := Subtype_Mark (N);
3170 R : constant Node_Id := Range_Expression (Constraint (N));
3172 begin
3173 Analyze (T);
3175 if R /= Error then
3176 Analyze (R);
3177 Set_Etype (N, Etype (R));
3178 else
3179 Set_Error_Posted (R);
3180 Set_Error_Posted (T);
3181 end if;
3182 end Analyze_Subtype_Indication;
3184 ------------------------------
3185 -- Analyze_Type_Declaration --
3186 ------------------------------
3188 procedure Analyze_Type_Declaration (N : Node_Id) is
3189 Def : constant Node_Id := Type_Definition (N);
3190 Def_Id : constant Entity_Id := Defining_Identifier (N);
3191 T : Entity_Id;
3192 Prev : Entity_Id;
3194 Is_Remote : constant Boolean :=
3195 (Is_Remote_Types (Current_Scope)
3196 or else Is_Remote_Call_Interface (Current_Scope))
3197 and then not (In_Private_Part (Current_Scope)
3198 or else
3199 In_Package_Body (Current_Scope));
3201 procedure Check_Ops_From_Incomplete_Type;
3202 -- If there is a tagged incomplete partial view of the type, transfer
3203 -- its operations to the full view, and indicate that the type of the
3204 -- controlling parameter (s) is this full view.
3206 ------------------------------------
3207 -- Check_Ops_From_Incomplete_Type --
3208 ------------------------------------
3210 procedure Check_Ops_From_Incomplete_Type is
3211 Elmt : Elmt_Id;
3212 Formal : Entity_Id;
3213 Op : Entity_Id;
3215 begin
3216 if Prev /= T
3217 and then Ekind (Prev) = E_Incomplete_Type
3218 and then Is_Tagged_Type (Prev)
3219 and then Is_Tagged_Type (T)
3220 then
3221 Elmt := First_Elmt (Primitive_Operations (Prev));
3222 while Present (Elmt) loop
3223 Op := Node (Elmt);
3224 Prepend_Elmt (Op, Primitive_Operations (T));
3226 Formal := First_Formal (Op);
3227 while Present (Formal) loop
3228 if Etype (Formal) = Prev then
3229 Set_Etype (Formal, T);
3230 end if;
3232 Next_Formal (Formal);
3233 end loop;
3235 if Etype (Op) = Prev then
3236 Set_Etype (Op, T);
3237 end if;
3239 Next_Elmt (Elmt);
3240 end loop;
3241 end if;
3242 end Check_Ops_From_Incomplete_Type;
3244 -- Start of processing for Analyze_Type_Declaration
3246 begin
3247 Prev := Find_Type_Name (N);
3249 -- The full view, if present, now points to the current type
3251 -- Ada 2005 (AI-50217): If the type was previously decorated when
3252 -- imported through a LIMITED WITH clause, it appears as incomplete
3253 -- but has no full view.
3255 if Ekind (Prev) = E_Incomplete_Type
3256 and then Present (Full_View (Prev))
3257 then
3258 T := Full_View (Prev);
3259 else
3260 T := Prev;
3261 end if;
3263 Set_Is_Pure (T, Is_Pure (Current_Scope));
3265 -- We set the flag Is_First_Subtype here. It is needed to set the
3266 -- corresponding flag for the Implicit class-wide-type created
3267 -- during tagged types processing.
3269 Set_Is_First_Subtype (T, True);
3271 -- Only composite types other than array types are allowed to have
3272 -- discriminants.
3274 case Nkind (Def) is
3276 -- For derived types, the rule will be checked once we've figured
3277 -- out the parent type.
3279 when N_Derived_Type_Definition =>
3280 null;
3282 -- For record types, discriminants are allowed
3284 when N_Record_Definition =>
3285 null;
3287 when others =>
3288 if Present (Discriminant_Specifications (N)) then
3289 Error_Msg_N
3290 ("elementary or array type cannot have discriminants",
3291 Defining_Identifier
3292 (First (Discriminant_Specifications (N))));
3293 end if;
3294 end case;
3296 -- Elaborate the type definition according to kind, and generate
3297 -- subsidiary (implicit) subtypes where needed. We skip this if
3298 -- it was already done (this happens during the reanalysis that
3299 -- follows a call to the high level optimizer).
3301 if not Analyzed (T) then
3302 Set_Analyzed (T);
3304 case Nkind (Def) is
3306 when N_Access_To_Subprogram_Definition =>
3307 Access_Subprogram_Declaration (T, Def);
3309 -- If this is a remote access to subprogram, we must create
3310 -- the equivalent fat pointer type, and related subprograms.
3312 if Is_Remote then
3313 Process_Remote_AST_Declaration (N);
3314 end if;
3316 -- Validate categorization rule against access type declaration
3317 -- usually a violation in Pure unit, Shared_Passive unit.
3319 Validate_Access_Type_Declaration (T, N);
3321 when N_Access_To_Object_Definition =>
3322 Access_Type_Declaration (T, Def);
3324 -- Validate categorization rule against access type declaration
3325 -- usually a violation in Pure unit, Shared_Passive unit.
3327 Validate_Access_Type_Declaration (T, N);
3329 -- If we are in a Remote_Call_Interface package and define
3330 -- a RACW, Read and Write attribute must be added.
3332 if Is_Remote
3333 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3334 then
3335 Add_RACW_Features (Def_Id);
3336 end if;
3338 -- Set no strict aliasing flag if config pragma seen
3340 if Opt.No_Strict_Aliasing then
3341 Set_No_Strict_Aliasing (Base_Type (Def_Id));
3342 end if;
3344 when N_Array_Type_Definition =>
3345 Array_Type_Declaration (T, Def);
3347 when N_Derived_Type_Definition =>
3348 Derived_Type_Declaration (T, N, T /= Def_Id);
3350 when N_Enumeration_Type_Definition =>
3351 Enumeration_Type_Declaration (T, Def);
3353 when N_Floating_Point_Definition =>
3354 Floating_Point_Type_Declaration (T, Def);
3356 when N_Decimal_Fixed_Point_Definition =>
3357 Decimal_Fixed_Point_Type_Declaration (T, Def);
3359 when N_Ordinary_Fixed_Point_Definition =>
3360 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3362 when N_Signed_Integer_Type_Definition =>
3363 Signed_Integer_Type_Declaration (T, Def);
3365 when N_Modular_Type_Definition =>
3366 Modular_Type_Declaration (T, Def);
3368 when N_Record_Definition =>
3369 Record_Type_Declaration (T, N, Prev);
3371 when others =>
3372 raise Program_Error;
3374 end case;
3375 end if;
3377 if Etype (T) = Any_Type then
3378 return;
3379 end if;
3381 -- Some common processing for all types
3383 Set_Depends_On_Private (T, Has_Private_Component (T));
3384 Check_Ops_From_Incomplete_Type;
3386 -- Both the declared entity, and its anonymous base type if one
3387 -- was created, need freeze nodes allocated.
3389 declare
3390 B : constant Entity_Id := Base_Type (T);
3392 begin
3393 -- In the case where the base type is different from the first
3394 -- subtype, we pre-allocate a freeze node, and set the proper link
3395 -- to the first subtype. Freeze_Entity will use this preallocated
3396 -- freeze node when it freezes the entity.
3398 if B /= T then
3399 Ensure_Freeze_Node (B);
3400 Set_First_Subtype_Link (Freeze_Node (B), T);
3401 end if;
3403 if not From_With_Type (T) then
3404 Set_Has_Delayed_Freeze (T);
3405 end if;
3406 end;
3408 -- Case of T is the full declaration of some private type which has
3409 -- been swapped in Defining_Identifier (N).
3411 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3412 Process_Full_View (N, T, Def_Id);
3414 -- Record the reference. The form of this is a little strange,
3415 -- since the full declaration has been swapped in. So the first
3416 -- parameter here represents the entity to which a reference is
3417 -- made which is the "real" entity, i.e. the one swapped in,
3418 -- and the second parameter provides the reference location.
3420 Generate_Reference (T, T, 'c');
3421 Set_Completion_Referenced (Def_Id);
3423 -- For completion of incomplete type, process incomplete dependents
3424 -- and always mark the full type as referenced (it is the incomplete
3425 -- type that we get for any real reference).
3427 elsif Ekind (Prev) = E_Incomplete_Type then
3428 Process_Incomplete_Dependents (N, T, Prev);
3429 Generate_Reference (Prev, Def_Id, 'c');
3430 Set_Completion_Referenced (Def_Id);
3432 -- If not private type or incomplete type completion, this is a real
3433 -- definition of a new entity, so record it.
3435 else
3436 Generate_Definition (Def_Id);
3437 end if;
3439 Check_Eliminated (Def_Id);
3440 end Analyze_Type_Declaration;
3442 --------------------------
3443 -- Analyze_Variant_Part --
3444 --------------------------
3446 procedure Analyze_Variant_Part (N : Node_Id) is
3448 procedure Non_Static_Choice_Error (Choice : Node_Id);
3449 -- Error routine invoked by the generic instantiation below when
3450 -- the variant part has a non static choice.
3452 procedure Process_Declarations (Variant : Node_Id);
3453 -- Analyzes all the declarations associated with a Variant.
3454 -- Needed by the generic instantiation below.
3456 package Variant_Choices_Processing is new
3457 Generic_Choices_Processing
3458 (Get_Alternatives => Variants,
3459 Get_Choices => Discrete_Choices,
3460 Process_Empty_Choice => No_OP,
3461 Process_Non_Static_Choice => Non_Static_Choice_Error,
3462 Process_Associated_Node => Process_Declarations);
3463 use Variant_Choices_Processing;
3464 -- Instantiation of the generic choice processing package
3466 -----------------------------
3467 -- Non_Static_Choice_Error --
3468 -----------------------------
3470 procedure Non_Static_Choice_Error (Choice : Node_Id) is
3471 begin
3472 Flag_Non_Static_Expr
3473 ("choice given in variant part is not static!", Choice);
3474 end Non_Static_Choice_Error;
3476 --------------------------
3477 -- Process_Declarations --
3478 --------------------------
3480 procedure Process_Declarations (Variant : Node_Id) is
3481 begin
3482 if not Null_Present (Component_List (Variant)) then
3483 Analyze_Declarations (Component_Items (Component_List (Variant)));
3485 if Present (Variant_Part (Component_List (Variant))) then
3486 Analyze (Variant_Part (Component_List (Variant)));
3487 end if;
3488 end if;
3489 end Process_Declarations;
3491 -- Variables local to Analyze_Case_Statement
3493 Discr_Name : Node_Id;
3494 Discr_Type : Entity_Id;
3496 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
3497 Last_Choice : Nat;
3498 Dont_Care : Boolean;
3499 Others_Present : Boolean := False;
3501 -- Start of processing for Analyze_Variant_Part
3503 begin
3504 Discr_Name := Name (N);
3505 Analyze (Discr_Name);
3507 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
3508 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
3509 end if;
3511 Discr_Type := Etype (Entity (Discr_Name));
3513 if not Is_Discrete_Type (Discr_Type) then
3514 Error_Msg_N
3515 ("discriminant in a variant part must be of a discrete type",
3516 Name (N));
3517 return;
3518 end if;
3520 -- Call the instantiated Analyze_Choices which does the rest of the work
3522 Analyze_Choices
3523 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
3524 end Analyze_Variant_Part;
3526 ----------------------------
3527 -- Array_Type_Declaration --
3528 ----------------------------
3530 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
3531 Component_Def : constant Node_Id := Component_Definition (Def);
3532 Element_Type : Entity_Id;
3533 Implicit_Base : Entity_Id;
3534 Index : Node_Id;
3535 Related_Id : Entity_Id := Empty;
3536 Nb_Index : Nat;
3537 P : constant Node_Id := Parent (Def);
3538 Priv : Entity_Id;
3540 begin
3541 if Nkind (Def) = N_Constrained_Array_Definition then
3542 Index := First (Discrete_Subtype_Definitions (Def));
3543 else
3544 Index := First (Subtype_Marks (Def));
3545 end if;
3547 -- Find proper names for the implicit types which may be public.
3548 -- in case of anonymous arrays we use the name of the first object
3549 -- of that type as prefix.
3551 if No (T) then
3552 Related_Id := Defining_Identifier (P);
3553 else
3554 Related_Id := T;
3555 end if;
3557 Nb_Index := 1;
3558 while Present (Index) loop
3559 Analyze (Index);
3560 Make_Index (Index, P, Related_Id, Nb_Index);
3561 Next_Index (Index);
3562 Nb_Index := Nb_Index + 1;
3563 end loop;
3565 if Present (Subtype_Indication (Component_Def)) then
3566 Element_Type := Process_Subtype (Subtype_Indication (Component_Def),
3567 P, Related_Id, 'C');
3569 -- Ada 2005 (AI-230): Access Definition case
3571 else pragma Assert (Present (Access_Definition (Component_Def)));
3572 Element_Type := Access_Definition
3573 (Related_Nod => Related_Id,
3574 N => Access_Definition (Component_Def));
3575 Set_Is_Local_Anonymous_Access (Element_Type);
3577 -- Ada 2005 (AI-230): In case of components that are anonymous
3578 -- access types the level of accessibility depends on the enclosing
3579 -- type declaration
3581 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
3583 -- Ada 2005 (AI-254)
3585 declare
3586 CD : constant Node_Id :=
3587 Access_To_Subprogram_Definition
3588 (Access_Definition (Component_Def));
3589 begin
3590 if Present (CD) and then Protected_Present (CD) then
3591 Element_Type :=
3592 Replace_Anonymous_Access_To_Protected_Subprogram
3593 (Def, Element_Type);
3594 end if;
3595 end;
3596 end if;
3598 -- Constrained array case
3600 if No (T) then
3601 T := Create_Itype (E_Void, P, Related_Id, 'T');
3602 end if;
3604 if Nkind (Def) = N_Constrained_Array_Definition then
3606 -- Establish Implicit_Base as unconstrained base type
3608 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
3610 Init_Size_Align (Implicit_Base);
3611 Set_Etype (Implicit_Base, Implicit_Base);
3612 Set_Scope (Implicit_Base, Current_Scope);
3613 Set_Has_Delayed_Freeze (Implicit_Base);
3615 -- The constrained array type is a subtype of the unconstrained one
3617 Set_Ekind (T, E_Array_Subtype);
3618 Init_Size_Align (T);
3619 Set_Etype (T, Implicit_Base);
3620 Set_Scope (T, Current_Scope);
3621 Set_Is_Constrained (T, True);
3622 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
3623 Set_Has_Delayed_Freeze (T);
3625 -- Complete setup of implicit base type
3627 Set_First_Index (Implicit_Base, First_Index (T));
3628 Set_Component_Type (Implicit_Base, Element_Type);
3629 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
3630 Set_Component_Size (Implicit_Base, Uint_0);
3631 Set_Has_Controlled_Component
3632 (Implicit_Base, Has_Controlled_Component
3633 (Element_Type)
3634 or else
3635 Is_Controlled (Element_Type));
3636 Set_Finalize_Storage_Only
3637 (Implicit_Base, Finalize_Storage_Only
3638 (Element_Type));
3640 -- Unconstrained array case
3642 else
3643 Set_Ekind (T, E_Array_Type);
3644 Init_Size_Align (T);
3645 Set_Etype (T, T);
3646 Set_Scope (T, Current_Scope);
3647 Set_Component_Size (T, Uint_0);
3648 Set_Is_Constrained (T, False);
3649 Set_First_Index (T, First (Subtype_Marks (Def)));
3650 Set_Has_Delayed_Freeze (T, True);
3651 Set_Has_Task (T, Has_Task (Element_Type));
3652 Set_Has_Controlled_Component (T, Has_Controlled_Component
3653 (Element_Type)
3654 or else
3655 Is_Controlled (Element_Type));
3656 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
3657 (Element_Type));
3658 end if;
3660 Set_Component_Type (Base_Type (T), Element_Type);
3662 if Aliased_Present (Component_Definition (Def)) then
3663 Set_Has_Aliased_Components (Etype (T));
3664 end if;
3666 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
3667 -- array type to ensure that objects of this type are initialized.
3669 if Ada_Version >= Ada_05
3670 and then Can_Never_Be_Null (Element_Type)
3671 then
3672 Set_Can_Never_Be_Null (T);
3674 if Null_Exclusion_Present (Component_Definition (Def))
3675 and then Can_Never_Be_Null (Element_Type)
3677 -- No need to check itypes because in their case this check
3678 -- was done at their point of creation
3680 and then not Is_Itype (Element_Type)
3681 then
3682 Error_Msg_N
3683 ("(Ada 2005) already a null-excluding type",
3684 Subtype_Indication (Component_Definition (Def)));
3685 end if;
3686 end if;
3688 Priv := Private_Component (Element_Type);
3690 if Present (Priv) then
3692 -- Check for circular definitions
3694 if Priv = Any_Type then
3695 Set_Component_Type (Etype (T), Any_Type);
3697 -- There is a gap in the visibility of operations on the composite
3698 -- type only if the component type is defined in a different scope.
3700 elsif Scope (Priv) = Current_Scope then
3701 null;
3703 elsif Is_Limited_Type (Priv) then
3704 Set_Is_Limited_Composite (Etype (T));
3705 Set_Is_Limited_Composite (T);
3706 else
3707 Set_Is_Private_Composite (Etype (T));
3708 Set_Is_Private_Composite (T);
3709 end if;
3710 end if;
3712 -- Create a concatenation operator for the new type. Internal
3713 -- array types created for packed entities do not need such, they
3714 -- are compatible with the user-defined type.
3716 if Number_Dimensions (T) = 1
3717 and then not Is_Packed_Array_Type (T)
3718 then
3719 New_Concatenation_Op (T);
3720 end if;
3722 -- In the case of an unconstrained array the parser has already
3723 -- verified that all the indices are unconstrained but we still
3724 -- need to make sure that the element type is constrained.
3726 if Is_Indefinite_Subtype (Element_Type) then
3727 Error_Msg_N
3728 ("unconstrained element type in array declaration",
3729 Subtype_Indication (Component_Def));
3731 elsif Is_Abstract (Element_Type) then
3732 Error_Msg_N
3733 ("the type of a component cannot be abstract",
3734 Subtype_Indication (Component_Def));
3735 end if;
3737 end Array_Type_Declaration;
3739 ------------------------------------------------------
3740 -- Replace_Anonymous_Access_To_Protected_Subprogram --
3741 ------------------------------------------------------
3743 function Replace_Anonymous_Access_To_Protected_Subprogram
3744 (N : Node_Id;
3745 Prev_E : Entity_Id) return Entity_Id
3747 Loc : constant Source_Ptr := Sloc (N);
3749 Curr_Scope : constant Scope_Stack_Entry :=
3750 Scope_Stack.Table (Scope_Stack.Last);
3752 Anon : constant Entity_Id :=
3753 Make_Defining_Identifier (Loc,
3754 Chars => New_Internal_Name ('S'));
3756 Acc : Node_Id;
3757 Comp : Node_Id;
3758 Decl : Node_Id;
3759 P : Node_Id;
3761 begin
3762 Set_Is_Internal (Anon);
3764 case Nkind (N) is
3765 when N_Component_Declaration |
3766 N_Unconstrained_Array_Definition |
3767 N_Constrained_Array_Definition =>
3768 Comp := Component_Definition (N);
3769 Acc := Access_Definition (Component_Definition (N));
3771 when N_Discriminant_Specification =>
3772 Comp := Discriminant_Type (N);
3773 Acc := Discriminant_Type (N);
3775 when N_Parameter_Specification =>
3776 Comp := Parameter_Type (N);
3777 Acc := Parameter_Type (N);
3779 when others =>
3780 raise Program_Error;
3781 end case;
3783 Decl := Make_Full_Type_Declaration (Loc,
3784 Defining_Identifier => Anon,
3785 Type_Definition =>
3786 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
3788 Mark_Rewrite_Insertion (Decl);
3790 -- Insert the new declaration in the nearest enclosing scope
3792 P := Parent (N);
3793 while Present (P) and then not Has_Declarations (P) loop
3794 P := Parent (P);
3795 end loop;
3797 pragma Assert (Present (P));
3799 if Nkind (P) = N_Package_Specification then
3800 Prepend (Decl, Visible_Declarations (P));
3801 else
3802 Prepend (Decl, Declarations (P));
3803 end if;
3805 -- Replace the anonymous type with an occurrence of the new declaration.
3806 -- In all cases the rewritten node does not have the null-exclusion
3807 -- attribute because (if present) it was already inherited by the
3808 -- anonymous entity (Anon). Thus, in case of components we do not
3809 -- inherit this attribute.
3811 if Nkind (N) = N_Parameter_Specification then
3812 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
3813 Set_Etype (Defining_Identifier (N), Anon);
3814 Set_Null_Exclusion_Present (N, False);
3815 else
3816 Rewrite (Comp,
3817 Make_Component_Definition (Loc,
3818 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
3819 end if;
3821 Mark_Rewrite_Insertion (Comp);
3823 -- Temporarily remove the current scope from the stack to add the new
3824 -- declarations to the enclosing scope
3826 Scope_Stack.Decrement_Last;
3827 Analyze (Decl);
3828 Scope_Stack.Append (Curr_Scope);
3830 Set_Original_Access_Type (Anon, Prev_E);
3831 return Anon;
3832 end Replace_Anonymous_Access_To_Protected_Subprogram;
3834 -------------------------------
3835 -- Build_Derived_Access_Type --
3836 -------------------------------
3838 procedure Build_Derived_Access_Type
3839 (N : Node_Id;
3840 Parent_Type : Entity_Id;
3841 Derived_Type : Entity_Id)
3843 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
3845 Desig_Type : Entity_Id;
3846 Discr : Entity_Id;
3847 Discr_Con_Elist : Elist_Id;
3848 Discr_Con_El : Elmt_Id;
3849 Subt : Entity_Id;
3851 begin
3852 -- Set the designated type so it is available in case this is
3853 -- an access to a self-referential type, e.g. a standard list
3854 -- type with a next pointer. Will be reset after subtype is built.
3856 Set_Directly_Designated_Type
3857 (Derived_Type, Designated_Type (Parent_Type));
3859 Subt := Process_Subtype (S, N);
3861 if Nkind (S) /= N_Subtype_Indication
3862 and then Subt /= Base_Type (Subt)
3863 then
3864 Set_Ekind (Derived_Type, E_Access_Subtype);
3865 end if;
3867 if Ekind (Derived_Type) = E_Access_Subtype then
3868 declare
3869 Pbase : constant Entity_Id := Base_Type (Parent_Type);
3870 Ibase : constant Entity_Id :=
3871 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
3872 Svg_Chars : constant Name_Id := Chars (Ibase);
3873 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
3875 begin
3876 Copy_Node (Pbase, Ibase);
3878 Set_Chars (Ibase, Svg_Chars);
3879 Set_Next_Entity (Ibase, Svg_Next_E);
3880 Set_Sloc (Ibase, Sloc (Derived_Type));
3881 Set_Scope (Ibase, Scope (Derived_Type));
3882 Set_Freeze_Node (Ibase, Empty);
3883 Set_Is_Frozen (Ibase, False);
3884 Set_Comes_From_Source (Ibase, False);
3885 Set_Is_First_Subtype (Ibase, False);
3887 Set_Etype (Ibase, Pbase);
3888 Set_Etype (Derived_Type, Ibase);
3889 end;
3890 end if;
3892 Set_Directly_Designated_Type
3893 (Derived_Type, Designated_Type (Subt));
3895 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
3896 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
3897 Set_Size_Info (Derived_Type, Parent_Type);
3898 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
3899 Set_Depends_On_Private (Derived_Type,
3900 Has_Private_Component (Derived_Type));
3901 Conditional_Delay (Derived_Type, Subt);
3903 -- Ada 2005 (AI-231). Set the null-exclusion attribute
3905 if Null_Exclusion_Present (Type_Definition (N))
3906 or else Can_Never_Be_Null (Parent_Type)
3907 then
3908 Set_Can_Never_Be_Null (Derived_Type);
3909 end if;
3911 -- Note: we do not copy the Storage_Size_Variable, since
3912 -- we always go to the root type for this information.
3914 -- Apply range checks to discriminants for derived record case
3915 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
3917 Desig_Type := Designated_Type (Derived_Type);
3918 if Is_Composite_Type (Desig_Type)
3919 and then (not Is_Array_Type (Desig_Type))
3920 and then Has_Discriminants (Desig_Type)
3921 and then Base_Type (Desig_Type) /= Desig_Type
3922 then
3923 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
3924 Discr_Con_El := First_Elmt (Discr_Con_Elist);
3926 Discr := First_Discriminant (Base_Type (Desig_Type));
3927 while Present (Discr_Con_El) loop
3928 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
3929 Next_Elmt (Discr_Con_El);
3930 Next_Discriminant (Discr);
3931 end loop;
3932 end if;
3933 end Build_Derived_Access_Type;
3935 ------------------------------
3936 -- Build_Derived_Array_Type --
3937 ------------------------------
3939 procedure Build_Derived_Array_Type
3940 (N : Node_Id;
3941 Parent_Type : Entity_Id;
3942 Derived_Type : Entity_Id)
3944 Loc : constant Source_Ptr := Sloc (N);
3945 Tdef : constant Node_Id := Type_Definition (N);
3946 Indic : constant Node_Id := Subtype_Indication (Tdef);
3947 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3948 Implicit_Base : Entity_Id;
3949 New_Indic : Node_Id;
3951 procedure Make_Implicit_Base;
3952 -- If the parent subtype is constrained, the derived type is a
3953 -- subtype of an implicit base type derived from the parent base.
3955 ------------------------
3956 -- Make_Implicit_Base --
3957 ------------------------
3959 procedure Make_Implicit_Base is
3960 begin
3961 Implicit_Base :=
3962 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3964 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3965 Set_Etype (Implicit_Base, Parent_Base);
3967 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
3968 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
3970 Set_Has_Delayed_Freeze (Implicit_Base, True);
3971 end Make_Implicit_Base;
3973 -- Start of processing for Build_Derived_Array_Type
3975 begin
3976 if not Is_Constrained (Parent_Type) then
3977 if Nkind (Indic) /= N_Subtype_Indication then
3978 Set_Ekind (Derived_Type, E_Array_Type);
3980 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3981 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
3983 Set_Has_Delayed_Freeze (Derived_Type, True);
3985 else
3986 Make_Implicit_Base;
3987 Set_Etype (Derived_Type, Implicit_Base);
3989 New_Indic :=
3990 Make_Subtype_Declaration (Loc,
3991 Defining_Identifier => Derived_Type,
3992 Subtype_Indication =>
3993 Make_Subtype_Indication (Loc,
3994 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
3995 Constraint => Constraint (Indic)));
3997 Rewrite (N, New_Indic);
3998 Analyze (N);
3999 end if;
4001 else
4002 if Nkind (Indic) /= N_Subtype_Indication then
4003 Make_Implicit_Base;
4005 Set_Ekind (Derived_Type, Ekind (Parent_Type));
4006 Set_Etype (Derived_Type, Implicit_Base);
4007 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4009 else
4010 Error_Msg_N ("illegal constraint on constrained type", Indic);
4011 end if;
4012 end if;
4014 -- If parent type is not a derived type itself, and is declared in
4015 -- closed scope (e.g. a subprogram), then we must explicitly introduce
4016 -- the new type's concatenation operator since Derive_Subprograms
4017 -- will not inherit the parent's operator. If the parent type is
4018 -- unconstrained, the operator is of the unconstrained base type.
4020 if Number_Dimensions (Parent_Type) = 1
4021 and then not Is_Limited_Type (Parent_Type)
4022 and then not Is_Derived_Type (Parent_Type)
4023 and then not Is_Package_Or_Generic_Package
4024 (Scope (Base_Type (Parent_Type)))
4025 then
4026 if not Is_Constrained (Parent_Type)
4027 and then Is_Constrained (Derived_Type)
4028 then
4029 New_Concatenation_Op (Implicit_Base);
4030 else
4031 New_Concatenation_Op (Derived_Type);
4032 end if;
4033 end if;
4034 end Build_Derived_Array_Type;
4036 -----------------------------------
4037 -- Build_Derived_Concurrent_Type --
4038 -----------------------------------
4040 procedure Build_Derived_Concurrent_Type
4041 (N : Node_Id;
4042 Parent_Type : Entity_Id;
4043 Derived_Type : Entity_Id)
4045 D_Constraint : Node_Id;
4046 Disc_Spec : Node_Id;
4047 Old_Disc : Entity_Id;
4048 New_Disc : Entity_Id;
4050 Constraint_Present : constant Boolean :=
4051 Nkind (Subtype_Indication (Type_Definition (N)))
4052 = N_Subtype_Indication;
4054 begin
4055 Set_Stored_Constraint (Derived_Type, No_Elist);
4057 if Is_Task_Type (Parent_Type) then
4058 Set_Storage_Size_Variable (Derived_Type,
4059 Storage_Size_Variable (Parent_Type));
4060 end if;
4062 if Present (Discriminant_Specifications (N)) then
4063 New_Scope (Derived_Type);
4064 Check_Or_Process_Discriminants (N, Derived_Type);
4065 End_Scope;
4067 elsif Constraint_Present then
4069 -- Build constrained subtype and derive from it
4071 declare
4072 Loc : constant Source_Ptr := Sloc (N);
4073 Anon : constant Entity_Id :=
4074 Make_Defining_Identifier (Loc,
4075 New_External_Name (Chars (Derived_Type), 'T'));
4076 Decl : Node_Id;
4078 begin
4079 Decl :=
4080 Make_Subtype_Declaration (Loc,
4081 Defining_Identifier => Anon,
4082 Subtype_Indication =>
4083 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
4084 Insert_Before (N, Decl);
4085 Rewrite (Subtype_Indication (Type_Definition (N)),
4086 New_Occurrence_Of (Anon, Loc));
4087 Analyze (Decl);
4088 Set_Analyzed (Derived_Type, False);
4089 Analyze (N);
4090 return;
4091 end;
4092 end if;
4094 -- All attributes are inherited from parent. In particular,
4095 -- entries and the corresponding record type are the same.
4096 -- Discriminants may be renamed, and must be treated separately.
4098 Set_Has_Discriminants
4099 (Derived_Type, Has_Discriminants (Parent_Type));
4100 Set_Corresponding_Record_Type
4101 (Derived_Type, Corresponding_Record_Type (Parent_Type));
4103 if Constraint_Present then
4104 if not Has_Discriminants (Parent_Type) then
4105 Error_Msg_N ("untagged parent must have discriminants", N);
4107 elsif Present (Discriminant_Specifications (N)) then
4109 -- Verify that new discriminants are used to constrain old ones
4111 D_Constraint :=
4112 First
4113 (Constraints
4114 (Constraint (Subtype_Indication (Type_Definition (N)))));
4116 Old_Disc := First_Discriminant (Parent_Type);
4117 New_Disc := First_Discriminant (Derived_Type);
4118 Disc_Spec := First (Discriminant_Specifications (N));
4119 while Present (Old_Disc) and then Present (Disc_Spec) loop
4120 if Nkind (Discriminant_Type (Disc_Spec)) /=
4121 N_Access_Definition
4122 then
4123 Analyze (Discriminant_Type (Disc_Spec));
4125 if not Subtypes_Statically_Compatible (
4126 Etype (Discriminant_Type (Disc_Spec)),
4127 Etype (Old_Disc))
4128 then
4129 Error_Msg_N
4130 ("not statically compatible with parent discriminant",
4131 Discriminant_Type (Disc_Spec));
4132 end if;
4133 end if;
4135 if Nkind (D_Constraint) = N_Identifier
4136 and then Chars (D_Constraint) /=
4137 Chars (Defining_Identifier (Disc_Spec))
4138 then
4139 Error_Msg_N ("new discriminants must constrain old ones",
4140 D_Constraint);
4141 else
4142 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
4143 end if;
4145 Next_Discriminant (Old_Disc);
4146 Next_Discriminant (New_Disc);
4147 Next (Disc_Spec);
4148 end loop;
4150 if Present (Old_Disc) or else Present (Disc_Spec) then
4151 Error_Msg_N ("discriminant mismatch in derivation", N);
4152 end if;
4154 end if;
4156 elsif Present (Discriminant_Specifications (N)) then
4157 Error_Msg_N
4158 ("missing discriminant constraint in untagged derivation",
4160 end if;
4162 if Present (Discriminant_Specifications (N)) then
4163 Old_Disc := First_Discriminant (Parent_Type);
4164 while Present (Old_Disc) loop
4166 if No (Next_Entity (Old_Disc))
4167 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
4168 then
4169 Set_Next_Entity (Last_Entity (Derived_Type),
4170 Next_Entity (Old_Disc));
4171 exit;
4172 end if;
4174 Next_Discriminant (Old_Disc);
4175 end loop;
4177 else
4178 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
4179 if Has_Discriminants (Parent_Type) then
4180 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4181 Set_Discriminant_Constraint (
4182 Derived_Type, Discriminant_Constraint (Parent_Type));
4183 end if;
4184 end if;
4186 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
4188 Set_Has_Completion (Derived_Type);
4189 end Build_Derived_Concurrent_Type;
4191 ------------------------------------
4192 -- Build_Derived_Enumeration_Type --
4193 ------------------------------------
4195 procedure Build_Derived_Enumeration_Type
4196 (N : Node_Id;
4197 Parent_Type : Entity_Id;
4198 Derived_Type : Entity_Id)
4200 Loc : constant Source_Ptr := Sloc (N);
4201 Def : constant Node_Id := Type_Definition (N);
4202 Indic : constant Node_Id := Subtype_Indication (Def);
4203 Implicit_Base : Entity_Id;
4204 Literal : Entity_Id;
4205 New_Lit : Entity_Id;
4206 Literals_List : List_Id;
4207 Type_Decl : Node_Id;
4208 Hi, Lo : Node_Id;
4209 Rang_Expr : Node_Id;
4211 begin
4212 -- Since types Standard.Character and Standard.Wide_Character do
4213 -- not have explicit literals lists we need to process types derived
4214 -- from them specially. This is handled by Derived_Standard_Character.
4215 -- If the parent type is a generic type, there are no literals either,
4216 -- and we construct the same skeletal representation as for the generic
4217 -- parent type.
4219 if Root_Type (Parent_Type) = Standard_Character
4220 or else Root_Type (Parent_Type) = Standard_Wide_Character
4221 or else Root_Type (Parent_Type) = Standard_Wide_Wide_Character
4222 then
4223 Derived_Standard_Character (N, Parent_Type, Derived_Type);
4225 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
4226 declare
4227 Lo : Node_Id;
4228 Hi : Node_Id;
4230 begin
4231 Lo :=
4232 Make_Attribute_Reference (Loc,
4233 Attribute_Name => Name_First,
4234 Prefix => New_Reference_To (Derived_Type, Loc));
4235 Set_Etype (Lo, Derived_Type);
4237 Hi :=
4238 Make_Attribute_Reference (Loc,
4239 Attribute_Name => Name_Last,
4240 Prefix => New_Reference_To (Derived_Type, Loc));
4241 Set_Etype (Hi, Derived_Type);
4243 Set_Scalar_Range (Derived_Type,
4244 Make_Range (Loc,
4245 Low_Bound => Lo,
4246 High_Bound => Hi));
4247 end;
4249 else
4250 -- If a constraint is present, analyze the bounds to catch
4251 -- premature usage of the derived literals.
4253 if Nkind (Indic) = N_Subtype_Indication
4254 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
4255 then
4256 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
4257 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
4258 end if;
4260 -- Introduce an implicit base type for the derived type even
4261 -- if there is no constraint attached to it, since this seems
4262 -- closer to the Ada semantics. Build a full type declaration
4263 -- tree for the derived type using the implicit base type as
4264 -- the defining identifier. The build a subtype declaration
4265 -- tree which applies the constraint (if any) have it replace
4266 -- the derived type declaration.
4268 Literal := First_Literal (Parent_Type);
4269 Literals_List := New_List;
4270 while Present (Literal)
4271 and then Ekind (Literal) = E_Enumeration_Literal
4272 loop
4273 -- Literals of the derived type have the same representation as
4274 -- those of the parent type, but this representation can be
4275 -- overridden by an explicit representation clause. Indicate
4276 -- that there is no explicit representation given yet. These
4277 -- derived literals are implicit operations of the new type,
4278 -- and can be overridden by explicit ones.
4280 if Nkind (Literal) = N_Defining_Character_Literal then
4281 New_Lit :=
4282 Make_Defining_Character_Literal (Loc, Chars (Literal));
4283 else
4284 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
4285 end if;
4287 Set_Ekind (New_Lit, E_Enumeration_Literal);
4288 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
4289 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
4290 Set_Enumeration_Rep_Expr (New_Lit, Empty);
4291 Set_Alias (New_Lit, Literal);
4292 Set_Is_Known_Valid (New_Lit, True);
4294 Append (New_Lit, Literals_List);
4295 Next_Literal (Literal);
4296 end loop;
4298 Implicit_Base :=
4299 Make_Defining_Identifier (Sloc (Derived_Type),
4300 New_External_Name (Chars (Derived_Type), 'B'));
4302 -- Indicate the proper nature of the derived type. This must
4303 -- be done before analysis of the literals, to recognize cases
4304 -- when a literal may be hidden by a previous explicit function
4305 -- definition (cf. c83031a).
4307 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
4308 Set_Etype (Derived_Type, Implicit_Base);
4310 Type_Decl :=
4311 Make_Full_Type_Declaration (Loc,
4312 Defining_Identifier => Implicit_Base,
4313 Discriminant_Specifications => No_List,
4314 Type_Definition =>
4315 Make_Enumeration_Type_Definition (Loc, Literals_List));
4317 Mark_Rewrite_Insertion (Type_Decl);
4318 Insert_Before (N, Type_Decl);
4319 Analyze (Type_Decl);
4321 -- After the implicit base is analyzed its Etype needs to be changed
4322 -- to reflect the fact that it is derived from the parent type which
4323 -- was ignored during analysis. We also set the size at this point.
4325 Set_Etype (Implicit_Base, Parent_Type);
4327 Set_Size_Info (Implicit_Base, Parent_Type);
4328 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
4329 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
4331 Set_Has_Non_Standard_Rep
4332 (Implicit_Base, Has_Non_Standard_Rep
4333 (Parent_Type));
4334 Set_Has_Delayed_Freeze (Implicit_Base);
4336 -- Process the subtype indication including a validation check
4337 -- on the constraint, if any. If a constraint is given, its bounds
4338 -- must be implicitly converted to the new type.
4340 if Nkind (Indic) = N_Subtype_Indication then
4341 declare
4342 R : constant Node_Id :=
4343 Range_Expression (Constraint (Indic));
4345 begin
4346 if Nkind (R) = N_Range then
4347 Hi := Build_Scalar_Bound
4348 (High_Bound (R), Parent_Type, Implicit_Base);
4349 Lo := Build_Scalar_Bound
4350 (Low_Bound (R), Parent_Type, Implicit_Base);
4352 else
4353 -- Constraint is a Range attribute. Replace with the
4354 -- explicit mention of the bounds of the prefix, which must
4355 -- be a subtype.
4357 Analyze (Prefix (R));
4358 Hi :=
4359 Convert_To (Implicit_Base,
4360 Make_Attribute_Reference (Loc,
4361 Attribute_Name => Name_Last,
4362 Prefix =>
4363 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
4365 Lo :=
4366 Convert_To (Implicit_Base,
4367 Make_Attribute_Reference (Loc,
4368 Attribute_Name => Name_First,
4369 Prefix =>
4370 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
4371 end if;
4372 end;
4374 else
4375 Hi :=
4376 Build_Scalar_Bound
4377 (Type_High_Bound (Parent_Type),
4378 Parent_Type, Implicit_Base);
4379 Lo :=
4380 Build_Scalar_Bound
4381 (Type_Low_Bound (Parent_Type),
4382 Parent_Type, Implicit_Base);
4383 end if;
4385 Rang_Expr :=
4386 Make_Range (Loc,
4387 Low_Bound => Lo,
4388 High_Bound => Hi);
4390 -- If we constructed a default range for the case where no range
4391 -- was given, then the expressions in the range must not freeze
4392 -- since they do not correspond to expressions in the source.
4394 if Nkind (Indic) /= N_Subtype_Indication then
4395 Set_Must_Not_Freeze (Lo);
4396 Set_Must_Not_Freeze (Hi);
4397 Set_Must_Not_Freeze (Rang_Expr);
4398 end if;
4400 Rewrite (N,
4401 Make_Subtype_Declaration (Loc,
4402 Defining_Identifier => Derived_Type,
4403 Subtype_Indication =>
4404 Make_Subtype_Indication (Loc,
4405 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
4406 Constraint =>
4407 Make_Range_Constraint (Loc,
4408 Range_Expression => Rang_Expr))));
4410 Analyze (N);
4412 -- If pragma Discard_Names applies on the first subtype of the
4413 -- parent type, then it must be applied on this subtype as well.
4415 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
4416 Set_Discard_Names (Derived_Type);
4417 end if;
4419 -- Apply a range check. Since this range expression doesn't have an
4420 -- Etype, we have to specifically pass the Source_Typ parameter. Is
4421 -- this right???
4423 if Nkind (Indic) = N_Subtype_Indication then
4424 Apply_Range_Check (Range_Expression (Constraint (Indic)),
4425 Parent_Type,
4426 Source_Typ => Entity (Subtype_Mark (Indic)));
4427 end if;
4428 end if;
4429 end Build_Derived_Enumeration_Type;
4431 --------------------------------
4432 -- Build_Derived_Numeric_Type --
4433 --------------------------------
4435 procedure Build_Derived_Numeric_Type
4436 (N : Node_Id;
4437 Parent_Type : Entity_Id;
4438 Derived_Type : Entity_Id)
4440 Loc : constant Source_Ptr := Sloc (N);
4441 Tdef : constant Node_Id := Type_Definition (N);
4442 Indic : constant Node_Id := Subtype_Indication (Tdef);
4443 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
4444 No_Constraint : constant Boolean := Nkind (Indic) /=
4445 N_Subtype_Indication;
4446 Implicit_Base : Entity_Id;
4448 Lo : Node_Id;
4449 Hi : Node_Id;
4451 begin
4452 -- Process the subtype indication including a validation check on
4453 -- the constraint if any.
4455 Discard_Node (Process_Subtype (Indic, N));
4457 -- Introduce an implicit base type for the derived type even if there
4458 -- is no constraint attached to it, since this seems closer to the Ada
4459 -- semantics.
4461 Implicit_Base :=
4462 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
4464 Set_Etype (Implicit_Base, Parent_Base);
4465 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
4466 Set_Size_Info (Implicit_Base, Parent_Base);
4467 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
4468 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
4469 Set_Parent (Implicit_Base, Parent (Derived_Type));
4471 if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
4472 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
4473 end if;
4475 Set_Has_Delayed_Freeze (Implicit_Base);
4477 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
4478 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
4480 Set_Scalar_Range (Implicit_Base,
4481 Make_Range (Loc,
4482 Low_Bound => Lo,
4483 High_Bound => Hi));
4485 if Has_Infinities (Parent_Base) then
4486 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
4487 end if;
4489 -- The Derived_Type, which is the entity of the declaration, is a
4490 -- subtype of the implicit base. Its Ekind is a subtype, even in the
4491 -- absence of an explicit constraint.
4493 Set_Etype (Derived_Type, Implicit_Base);
4495 -- If we did not have a constraint, then the Ekind is set from the
4496 -- parent type (otherwise Process_Subtype has set the bounds)
4498 if No_Constraint then
4499 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
4500 end if;
4502 -- If we did not have a range constraint, then set the range from the
4503 -- parent type. Otherwise, the call to Process_Subtype has set the
4504 -- bounds.
4506 if No_Constraint
4507 or else not Has_Range_Constraint (Indic)
4508 then
4509 Set_Scalar_Range (Derived_Type,
4510 Make_Range (Loc,
4511 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
4512 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
4513 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4515 if Has_Infinities (Parent_Type) then
4516 Set_Includes_Infinities (Scalar_Range (Derived_Type));
4517 end if;
4518 end if;
4520 -- Set remaining type-specific fields, depending on numeric type
4522 if Is_Modular_Integer_Type (Parent_Type) then
4523 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
4525 Set_Non_Binary_Modulus
4526 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
4528 elsif Is_Floating_Point_Type (Parent_Type) then
4530 -- Digits of base type is always copied from the digits value of
4531 -- the parent base type, but the digits of the derived type will
4532 -- already have been set if there was a constraint present.
4534 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4535 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
4537 if No_Constraint then
4538 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
4539 end if;
4541 elsif Is_Fixed_Point_Type (Parent_Type) then
4543 -- Small of base type and derived type are always copied from the
4544 -- parent base type, since smalls never change. The delta of the
4545 -- base type is also copied from the parent base type. However the
4546 -- delta of the derived type will have been set already if a
4547 -- constraint was present.
4549 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
4550 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
4551 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
4553 if No_Constraint then
4554 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
4555 end if;
4557 -- The scale and machine radix in the decimal case are always
4558 -- copied from the parent base type.
4560 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
4561 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
4562 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
4564 Set_Machine_Radix_10
4565 (Derived_Type, Machine_Radix_10 (Parent_Base));
4566 Set_Machine_Radix_10
4567 (Implicit_Base, Machine_Radix_10 (Parent_Base));
4569 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4571 if No_Constraint then
4572 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
4574 else
4575 -- the analysis of the subtype_indication sets the
4576 -- digits value of the derived type.
4578 null;
4579 end if;
4580 end if;
4581 end if;
4583 -- The type of the bounds is that of the parent type, and they
4584 -- must be converted to the derived type.
4586 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
4588 -- The implicit_base should be frozen when the derived type is frozen,
4589 -- but note that it is used in the conversions of the bounds. For fixed
4590 -- types we delay the determination of the bounds until the proper
4591 -- freezing point. For other numeric types this is rejected by GCC, for
4592 -- reasons that are currently unclear (???), so we choose to freeze the
4593 -- implicit base now. In the case of integers and floating point types
4594 -- this is harmless because subsequent representation clauses cannot
4595 -- affect anything, but it is still baffling that we cannot use the
4596 -- same mechanism for all derived numeric types.
4598 if Is_Fixed_Point_Type (Parent_Type) then
4599 Conditional_Delay (Implicit_Base, Parent_Type);
4600 else
4601 Freeze_Before (N, Implicit_Base);
4602 end if;
4603 end Build_Derived_Numeric_Type;
4605 --------------------------------
4606 -- Build_Derived_Private_Type --
4607 --------------------------------
4609 procedure Build_Derived_Private_Type
4610 (N : Node_Id;
4611 Parent_Type : Entity_Id;
4612 Derived_Type : Entity_Id;
4613 Is_Completion : Boolean;
4614 Derive_Subps : Boolean := True)
4616 Der_Base : Entity_Id;
4617 Discr : Entity_Id;
4618 Full_Decl : Node_Id := Empty;
4619 Full_Der : Entity_Id;
4620 Full_P : Entity_Id;
4621 Last_Discr : Entity_Id;
4622 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
4623 Swapped : Boolean := False;
4625 procedure Copy_And_Build;
4626 -- Copy derived type declaration, replace parent with its full view,
4627 -- and analyze new declaration.
4629 --------------------
4630 -- Copy_And_Build --
4631 --------------------
4633 procedure Copy_And_Build is
4634 Full_N : Node_Id;
4636 begin
4637 if Ekind (Parent_Type) in Record_Kind
4638 or else
4639 (Ekind (Parent_Type) in Enumeration_Kind
4640 and then Root_Type (Parent_Type) /= Standard_Character
4641 and then Root_Type (Parent_Type) /= Standard_Wide_Character
4642 and then Root_Type (Parent_Type) /= Standard_Wide_Wide_Character
4643 and then not Is_Generic_Type (Root_Type (Parent_Type)))
4644 then
4645 Full_N := New_Copy_Tree (N);
4646 Insert_After (N, Full_N);
4647 Build_Derived_Type (
4648 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
4650 else
4651 Build_Derived_Type (
4652 N, Parent_Type, Full_Der, True, Derive_Subps => False);
4653 end if;
4654 end Copy_And_Build;
4656 -- Start of processing for Build_Derived_Private_Type
4658 begin
4659 if Is_Tagged_Type (Parent_Type) then
4660 Build_Derived_Record_Type
4661 (N, Parent_Type, Derived_Type, Derive_Subps);
4662 return;
4664 elsif Has_Discriminants (Parent_Type) then
4665 if Present (Full_View (Parent_Type)) then
4666 if not Is_Completion then
4668 -- Copy declaration for subsequent analysis, to provide a
4669 -- completion for what is a private declaration. Indicate that
4670 -- the full type is internally generated.
4672 Full_Decl := New_Copy_Tree (N);
4673 Full_Der := New_Copy (Derived_Type);
4674 Set_Comes_From_Source (Full_Decl, False);
4675 Set_Comes_From_Source (Full_Der, False);
4677 Insert_After (N, Full_Decl);
4679 else
4680 -- If this is a completion, the full view being built is
4681 -- itself private. We build a subtype of the parent with
4682 -- the same constraints as this full view, to convey to the
4683 -- back end the constrained components and the size of this
4684 -- subtype. If the parent is constrained, its full view can
4685 -- serve as the underlying full view of the derived type.
4687 if No (Discriminant_Specifications (N)) then
4688 if Nkind (Subtype_Indication (Type_Definition (N))) =
4689 N_Subtype_Indication
4690 then
4691 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
4693 elsif Is_Constrained (Full_View (Parent_Type)) then
4694 Set_Underlying_Full_View (Derived_Type,
4695 Full_View (Parent_Type));
4696 end if;
4698 else
4699 -- If there are new discriminants, the parent subtype is
4700 -- constrained by them, but it is not clear how to build
4701 -- the underlying_full_view in this case ???
4703 null;
4704 end if;
4705 end if;
4706 end if;
4708 -- Build partial view of derived type from partial view of parent
4710 Build_Derived_Record_Type
4711 (N, Parent_Type, Derived_Type, Derive_Subps);
4713 if Present (Full_View (Parent_Type))
4714 and then not Is_Completion
4715 then
4716 if not In_Open_Scopes (Par_Scope)
4717 or else not In_Same_Source_Unit (N, Parent_Type)
4718 then
4719 -- Swap partial and full views temporarily
4721 Install_Private_Declarations (Par_Scope);
4722 Install_Visible_Declarations (Par_Scope);
4723 Swapped := True;
4724 end if;
4726 -- Build full view of derived type from full view of parent which
4727 -- is now installed. Subprograms have been derived on the partial
4728 -- view, the completion does not derive them anew.
4730 if not Is_Tagged_Type (Parent_Type) then
4732 -- If the parent is itself derived from another private type,
4733 -- installing the private declarations has not affected its
4734 -- privacy status, so use its own full view explicitly.
4736 if Is_Private_Type (Parent_Type) then
4737 Build_Derived_Record_Type
4738 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
4739 else
4740 Build_Derived_Record_Type
4741 (Full_Decl, Parent_Type, Full_Der, False);
4742 end if;
4744 else
4745 -- If full view of parent is tagged, the completion
4746 -- inherits the proper primitive operations.
4748 Set_Defining_Identifier (Full_Decl, Full_Der);
4749 Build_Derived_Record_Type
4750 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
4751 Set_Analyzed (Full_Decl);
4752 end if;
4754 if Swapped then
4755 Uninstall_Declarations (Par_Scope);
4757 if In_Open_Scopes (Par_Scope) then
4758 Install_Visible_Declarations (Par_Scope);
4759 end if;
4760 end if;
4762 Der_Base := Base_Type (Derived_Type);
4763 Set_Full_View (Derived_Type, Full_Der);
4764 Set_Full_View (Der_Base, Base_Type (Full_Der));
4766 -- Copy the discriminant list from full view to the partial views
4767 -- (base type and its subtype). Gigi requires that the partial
4768 -- and full views have the same discriminants.
4770 -- Note that since the partial view is pointing to discriminants
4771 -- in the full view, their scope will be that of the full view.
4772 -- This might cause some front end problems and need
4773 -- adjustment???
4775 Discr := First_Discriminant (Base_Type (Full_Der));
4776 Set_First_Entity (Der_Base, Discr);
4778 loop
4779 Last_Discr := Discr;
4780 Next_Discriminant (Discr);
4781 exit when No (Discr);
4782 end loop;
4784 Set_Last_Entity (Der_Base, Last_Discr);
4786 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
4787 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
4788 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
4790 else
4791 -- If this is a completion, the derived type stays private
4792 -- and there is no need to create a further full view, except
4793 -- in the unusual case when the derivation is nested within a
4794 -- child unit, see below.
4796 null;
4797 end if;
4799 elsif Present (Full_View (Parent_Type))
4800 and then Has_Discriminants (Full_View (Parent_Type))
4801 then
4802 if Has_Unknown_Discriminants (Parent_Type)
4803 and then Nkind (Subtype_Indication (Type_Definition (N)))
4804 = N_Subtype_Indication
4805 then
4806 Error_Msg_N
4807 ("cannot constrain type with unknown discriminants",
4808 Subtype_Indication (Type_Definition (N)));
4809 return;
4810 end if;
4812 -- If full view of parent is a record type, Build full view as
4813 -- a derivation from the parent's full view. Partial view remains
4814 -- private. For code generation and linking, the full view must
4815 -- have the same public status as the partial one. This full view
4816 -- is only needed if the parent type is in an enclosing scope, so
4817 -- that the full view may actually become visible, e.g. in a child
4818 -- unit. This is both more efficient, and avoids order of freezing
4819 -- problems with the added entities.
4821 if not Is_Private_Type (Full_View (Parent_Type))
4822 and then (In_Open_Scopes (Scope (Parent_Type)))
4823 then
4824 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
4825 Chars (Derived_Type));
4826 Set_Is_Itype (Full_Der);
4827 Set_Has_Private_Declaration (Full_Der);
4828 Set_Has_Private_Declaration (Derived_Type);
4829 Set_Associated_Node_For_Itype (Full_Der, N);
4830 Set_Parent (Full_Der, Parent (Derived_Type));
4831 Set_Full_View (Derived_Type, Full_Der);
4832 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
4833 Full_P := Full_View (Parent_Type);
4834 Exchange_Declarations (Parent_Type);
4835 Copy_And_Build;
4836 Exchange_Declarations (Full_P);
4838 else
4839 Build_Derived_Record_Type
4840 (N, Full_View (Parent_Type), Derived_Type,
4841 Derive_Subps => False);
4842 end if;
4844 -- In any case, the primitive operations are inherited from
4845 -- the parent type, not from the internal full view.
4847 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
4849 if Derive_Subps then
4850 Derive_Subprograms (Parent_Type, Derived_Type);
4851 end if;
4853 else
4854 -- Untagged type, No discriminants on either view
4856 if Nkind (Subtype_Indication (Type_Definition (N))) =
4857 N_Subtype_Indication
4858 then
4859 Error_Msg_N
4860 ("illegal constraint on type without discriminants", N);
4861 end if;
4863 if Present (Discriminant_Specifications (N))
4864 and then Present (Full_View (Parent_Type))
4865 and then not Is_Tagged_Type (Full_View (Parent_Type))
4866 then
4867 Error_Msg_N
4868 ("cannot add discriminants to untagged type", N);
4869 end if;
4871 Set_Stored_Constraint (Derived_Type, No_Elist);
4872 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4873 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
4874 Set_Has_Controlled_Component
4875 (Derived_Type, Has_Controlled_Component
4876 (Parent_Type));
4878 -- Direct controlled types do not inherit Finalize_Storage_Only flag
4880 if not Is_Controlled (Parent_Type) then
4881 Set_Finalize_Storage_Only
4882 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
4883 end if;
4885 -- Construct the implicit full view by deriving from full view of
4886 -- the parent type. In order to get proper visibility, we install
4887 -- the parent scope and its declarations.
4889 -- ??? if the parent is untagged private and its completion is
4890 -- tagged, this mechanism will not work because we cannot derive
4891 -- from the tagged full view unless we have an extension
4893 if Present (Full_View (Parent_Type))
4894 and then not Is_Tagged_Type (Full_View (Parent_Type))
4895 and then not Is_Completion
4896 then
4897 Full_Der :=
4898 Make_Defining_Identifier (Sloc (Derived_Type),
4899 Chars => Chars (Derived_Type));
4900 Set_Is_Itype (Full_Der);
4901 Set_Has_Private_Declaration (Full_Der);
4902 Set_Has_Private_Declaration (Derived_Type);
4903 Set_Associated_Node_For_Itype (Full_Der, N);
4904 Set_Parent (Full_Der, Parent (Derived_Type));
4905 Set_Full_View (Derived_Type, Full_Der);
4907 if not In_Open_Scopes (Par_Scope) then
4908 Install_Private_Declarations (Par_Scope);
4909 Install_Visible_Declarations (Par_Scope);
4910 Copy_And_Build;
4911 Uninstall_Declarations (Par_Scope);
4913 -- If parent scope is open and in another unit, and parent has a
4914 -- completion, then the derivation is taking place in the visible
4915 -- part of a child unit. In that case retrieve the full view of
4916 -- the parent momentarily.
4918 elsif not In_Same_Source_Unit (N, Parent_Type) then
4919 Full_P := Full_View (Parent_Type);
4920 Exchange_Declarations (Parent_Type);
4921 Copy_And_Build;
4922 Exchange_Declarations (Full_P);
4924 -- Otherwise it is a local derivation
4926 else
4927 Copy_And_Build;
4928 end if;
4930 Set_Scope (Full_Der, Current_Scope);
4931 Set_Is_First_Subtype (Full_Der,
4932 Is_First_Subtype (Derived_Type));
4933 Set_Has_Size_Clause (Full_Der, False);
4934 Set_Has_Alignment_Clause (Full_Der, False);
4935 Set_Next_Entity (Full_Der, Empty);
4936 Set_Has_Delayed_Freeze (Full_Der);
4937 Set_Is_Frozen (Full_Der, False);
4938 Set_Freeze_Node (Full_Der, Empty);
4939 Set_Depends_On_Private (Full_Der,
4940 Has_Private_Component (Full_Der));
4941 Set_Public_Status (Full_Der);
4942 end if;
4943 end if;
4945 Set_Has_Unknown_Discriminants (Derived_Type,
4946 Has_Unknown_Discriminants (Parent_Type));
4948 if Is_Private_Type (Derived_Type) then
4949 Set_Private_Dependents (Derived_Type, New_Elmt_List);
4950 end if;
4952 if Is_Private_Type (Parent_Type)
4953 and then Base_Type (Parent_Type) = Parent_Type
4954 and then In_Open_Scopes (Scope (Parent_Type))
4955 then
4956 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
4958 if Is_Child_Unit (Scope (Current_Scope))
4959 and then Is_Completion
4960 and then In_Private_Part (Current_Scope)
4961 and then Scope (Parent_Type) /= Current_Scope
4962 then
4963 -- This is the unusual case where a type completed by a private
4964 -- derivation occurs within a package nested in a child unit,
4965 -- and the parent is declared in an ancestor. In this case, the
4966 -- full view of the parent type will become visible in the body
4967 -- of the enclosing child, and only then will the current type
4968 -- be possibly non-private. We build a underlying full view that
4969 -- will be installed when the enclosing child body is compiled.
4971 declare
4972 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
4974 begin
4975 Full_Der :=
4976 Make_Defining_Identifier (Sloc (Derived_Type),
4977 Chars (Derived_Type));
4978 Set_Is_Itype (Full_Der);
4979 Set_Itype (IR, Full_Der);
4980 Insert_After (N, IR);
4982 -- The full view will be used to swap entities on entry/exit
4983 -- to the body, and must appear in the entity list for the
4984 -- package.
4986 Append_Entity (Full_Der, Scope (Derived_Type));
4987 Set_Has_Private_Declaration (Full_Der);
4988 Set_Has_Private_Declaration (Derived_Type);
4989 Set_Associated_Node_For_Itype (Full_Der, N);
4990 Set_Parent (Full_Der, Parent (Derived_Type));
4991 Full_P := Full_View (Parent_Type);
4992 Exchange_Declarations (Parent_Type);
4993 Copy_And_Build;
4994 Exchange_Declarations (Full_P);
4995 Set_Underlying_Full_View (Derived_Type, Full_Der);
4996 end;
4997 end if;
4998 end if;
4999 end Build_Derived_Private_Type;
5001 -------------------------------
5002 -- Build_Derived_Record_Type --
5003 -------------------------------
5005 -- 1. INTRODUCTION
5007 -- Ideally we would like to use the same model of type derivation for
5008 -- tagged and untagged record types. Unfortunately this is not quite
5009 -- possible because the semantics of representation clauses is different
5010 -- for tagged and untagged records under inheritance. Consider the
5011 -- following:
5013 -- type R (...) is [tagged] record ... end record;
5014 -- type T (...) is new R (...) [with ...];
5016 -- The representation clauses of T can specify a completely different
5017 -- record layout from R's. Hence the same component can be placed in
5018 -- two very different positions in objects of type T and R. If R and T
5019 -- are tagged types, representation clauses for T can only specify the
5020 -- layout of non inherited components, thus components that are common
5021 -- in R and T have the same position in objects of type R and T.
5023 -- This has two implications. The first is that the entire tree for R's
5024 -- declaration needs to be copied for T in the untagged case, so that T
5025 -- can be viewed as a record type of its own with its own representation
5026 -- clauses. The second implication is the way we handle discriminants.
5027 -- Specifically, in the untagged case we need a way to communicate to Gigi
5028 -- what are the real discriminants in the record, while for the semantics
5029 -- we need to consider those introduced by the user to rename the
5030 -- discriminants in the parent type. This is handled by introducing the
5031 -- notion of stored discriminants. See below for more.
5033 -- Fortunately the way regular components are inherited can be handled in
5034 -- the same way in tagged and untagged types.
5036 -- To complicate things a bit more the private view of a private extension
5037 -- cannot be handled in the same way as the full view (for one thing the
5038 -- semantic rules are somewhat different). We will explain what differs
5039 -- below.
5041 -- 2. DISCRIMINANTS UNDER INHERITANCE
5043 -- The semantic rules governing the discriminants of derived types are
5044 -- quite subtle.
5046 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
5047 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
5049 -- If parent type has discriminants, then the discriminants that are
5050 -- declared in the derived type are [3.4 (11)]:
5052 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
5053 -- there is one;
5055 -- o Otherwise, each discriminant of the parent type (implicitly declared
5056 -- in the same order with the same specifications). In this case, the
5057 -- discriminants are said to be "inherited", or if unknown in the parent
5058 -- are also unknown in the derived type.
5060 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
5062 -- o The parent subtype shall be constrained;
5064 -- o If the parent type is not a tagged type, then each discriminant of
5065 -- the derived type shall be used in the constraint defining a parent
5066 -- subtype [Implementation note: this ensures that the new discriminant
5067 -- can share storage with an existing discriminant.].
5069 -- For the derived type each discriminant of the parent type is either
5070 -- inherited, constrained to equal some new discriminant of the derived
5071 -- type, or constrained to the value of an expression.
5073 -- When inherited or constrained to equal some new discriminant, the
5074 -- parent discriminant and the discriminant of the derived type are said
5075 -- to "correspond".
5077 -- If a discriminant of the parent type is constrained to a specific value
5078 -- in the derived type definition, then the discriminant is said to be
5079 -- "specified" by that derived type definition.
5081 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
5083 -- We have spoken about stored discriminants in point 1 (introduction)
5084 -- above. There are two sort of stored discriminants: implicit and
5085 -- explicit. As long as the derived type inherits the same discriminants as
5086 -- the root record type, stored discriminants are the same as regular
5087 -- discriminants, and are said to be implicit. However, if any discriminant
5088 -- in the root type was renamed in the derived type, then the derived
5089 -- type will contain explicit stored discriminants. Explicit stored
5090 -- discriminants are discriminants in addition to the semantically visible
5091 -- discriminants defined for the derived type. Stored discriminants are
5092 -- used by Gigi to figure out what are the physical discriminants in
5093 -- objects of the derived type (see precise definition in einfo.ads).
5094 -- As an example, consider the following:
5096 -- type R (D1, D2, D3 : Int) is record ... end record;
5097 -- type T1 is new R;
5098 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
5099 -- type T3 is new T2;
5100 -- type T4 (Y : Int) is new T3 (Y, 99);
5102 -- The following table summarizes the discriminants and stored
5103 -- discriminants in R and T1 through T4.
5105 -- Type Discrim Stored Discrim Comment
5106 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
5107 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
5108 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
5109 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
5110 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
5112 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
5113 -- find the corresponding discriminant in the parent type, while
5114 -- Original_Record_Component (abbreviated ORC below), the actual physical
5115 -- component that is renamed. Finally the field Is_Completely_Hidden
5116 -- (abbreviated ICH below) is set for all explicit stored discriminants
5117 -- (see einfo.ads for more info). For the above example this gives:
5119 -- Discrim CD ORC ICH
5120 -- ^^^^^^^ ^^ ^^^ ^^^
5121 -- D1 in R empty itself no
5122 -- D2 in R empty itself no
5123 -- D3 in R empty itself no
5125 -- D1 in T1 D1 in R itself no
5126 -- D2 in T1 D2 in R itself no
5127 -- D3 in T1 D3 in R itself no
5129 -- X1 in T2 D3 in T1 D3 in T2 no
5130 -- X2 in T2 D1 in T1 D1 in T2 no
5131 -- D1 in T2 empty itself yes
5132 -- D2 in T2 empty itself yes
5133 -- D3 in T2 empty itself yes
5135 -- X1 in T3 X1 in T2 D3 in T3 no
5136 -- X2 in T3 X2 in T2 D1 in T3 no
5137 -- D1 in T3 empty itself yes
5138 -- D2 in T3 empty itself yes
5139 -- D3 in T3 empty itself yes
5141 -- Y in T4 X1 in T3 D3 in T3 no
5142 -- D1 in T3 empty itself yes
5143 -- D2 in T3 empty itself yes
5144 -- D3 in T3 empty itself yes
5146 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
5148 -- Type derivation for tagged types is fairly straightforward. if no
5149 -- discriminants are specified by the derived type, these are inherited
5150 -- from the parent. No explicit stored discriminants are ever necessary.
5151 -- The only manipulation that is done to the tree is that of adding a
5152 -- _parent field with parent type and constrained to the same constraint
5153 -- specified for the parent in the derived type definition. For instance:
5155 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
5156 -- type T1 is new R with null record;
5157 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
5159 -- are changed into:
5161 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
5162 -- _parent : R (D1, D2, D3);
5163 -- end record;
5165 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
5166 -- _parent : T1 (X2, 88, X1);
5167 -- end record;
5169 -- The discriminants actually present in R, T1 and T2 as well as their CD,
5170 -- ORC and ICH fields are:
5172 -- Discrim CD ORC ICH
5173 -- ^^^^^^^ ^^ ^^^ ^^^
5174 -- D1 in R empty itself no
5175 -- D2 in R empty itself no
5176 -- D3 in R empty itself no
5178 -- D1 in T1 D1 in R D1 in R no
5179 -- D2 in T1 D2 in R D2 in R no
5180 -- D3 in T1 D3 in R D3 in R no
5182 -- X1 in T2 D3 in T1 D3 in R no
5183 -- X2 in T2 D1 in T1 D1 in R no
5185 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
5187 -- Regardless of whether we dealing with a tagged or untagged type
5188 -- we will transform all derived type declarations of the form
5190 -- type T is new R (...) [with ...];
5191 -- or
5192 -- subtype S is R (...);
5193 -- type T is new S [with ...];
5194 -- into
5195 -- type BT is new R [with ...];
5196 -- subtype T is BT (...);
5198 -- That is, the base derived type is constrained only if it has no
5199 -- discriminants. The reason for doing this is that GNAT's semantic model
5200 -- assumes that a base type with discriminants is unconstrained.
5202 -- Note that, strictly speaking, the above transformation is not always
5203 -- correct. Consider for instance the following excerpt from ACVC b34011a:
5205 -- procedure B34011A is
5206 -- type REC (D : integer := 0) is record
5207 -- I : Integer;
5208 -- end record;
5210 -- package P is
5211 -- type T6 is new Rec;
5212 -- function F return T6;
5213 -- end P;
5215 -- use P;
5216 -- package Q6 is
5217 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
5218 -- end Q6;
5220 -- The definition of Q6.U is illegal. However transforming Q6.U into
5222 -- type BaseU is new T6;
5223 -- subtype U is BaseU (Q6.F.I)
5225 -- turns U into a legal subtype, which is incorrect. To avoid this problem
5226 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
5227 -- the transformation described above.
5229 -- There is another instance where the above transformation is incorrect.
5230 -- Consider:
5232 -- package Pack is
5233 -- type Base (D : Integer) is tagged null record;
5234 -- procedure P (X : Base);
5236 -- type Der is new Base (2) with null record;
5237 -- procedure P (X : Der);
5238 -- end Pack;
5240 -- Then the above transformation turns this into
5242 -- type Der_Base is new Base with null record;
5243 -- -- procedure P (X : Base) is implicitly inherited here
5244 -- -- as procedure P (X : Der_Base).
5246 -- subtype Der is Der_Base (2);
5247 -- procedure P (X : Der);
5248 -- -- The overriding of P (X : Der_Base) is illegal since we
5249 -- -- have a parameter conformance problem.
5251 -- To get around this problem, after having semantically processed Der_Base
5252 -- and the rewritten subtype declaration for Der, we copy Der_Base field
5253 -- Discriminant_Constraint from Der so that when parameter conformance is
5254 -- checked when P is overridden, no semantic errors are flagged.
5256 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
5258 -- Regardless of whether we are dealing with a tagged or untagged type
5259 -- we will transform all derived type declarations of the form
5261 -- type R (D1, .., Dn : ...) is [tagged] record ...;
5262 -- type T is new R [with ...];
5263 -- into
5264 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
5266 -- The reason for such transformation is that it allows us to implement a
5267 -- very clean form of component inheritance as explained below.
5269 -- Note that this transformation is not achieved by direct tree rewriting
5270 -- and manipulation, but rather by redoing the semantic actions that the
5271 -- above transformation will entail. This is done directly in routine
5272 -- Inherit_Components.
5274 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
5276 -- In both tagged and untagged derived types, regular non discriminant
5277 -- components are inherited in the derived type from the parent type. In
5278 -- the absence of discriminants component, inheritance is straightforward
5279 -- as components can simply be copied from the parent.
5281 -- If the parent has discriminants, inheriting components constrained with
5282 -- these discriminants requires caution. Consider the following example:
5284 -- type R (D1, D2 : Positive) is [tagged] record
5285 -- S : String (D1 .. D2);
5286 -- end record;
5288 -- type T1 is new R [with null record];
5289 -- type T2 (X : positive) is new R (1, X) [with null record];
5291 -- As explained in 6. above, T1 is rewritten as
5292 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
5293 -- which makes the treatment for T1 and T2 identical.
5295 -- What we want when inheriting S, is that references to D1 and D2 in R are
5296 -- replaced with references to their correct constraints, ie D1 and D2 in
5297 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
5298 -- with either discriminant references in the derived type or expressions.
5299 -- This replacement is achieved as follows: before inheriting R's
5300 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
5301 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
5302 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
5303 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
5304 -- by String (1 .. X).
5306 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
5308 -- We explain here the rules governing private type extensions relevant to
5309 -- type derivation. These rules are explained on the following example:
5311 -- type D [(...)] is new A [(...)] with private; <-- partial view
5312 -- type D [(...)] is new P [(...)] with null record; <-- full view
5314 -- Type A is called the ancestor subtype of the private extension.
5315 -- Type P is the parent type of the full view of the private extension. It
5316 -- must be A or a type derived from A.
5318 -- The rules concerning the discriminants of private type extensions are
5319 -- [7.3(10-13)]:
5321 -- o If a private extension inherits known discriminants from the ancestor
5322 -- subtype, then the full view shall also inherit its discriminants from
5323 -- the ancestor subtype and the parent subtype of the full view shall be
5324 -- constrained if and only if the ancestor subtype is constrained.
5326 -- o If a partial view has unknown discriminants, then the full view may
5327 -- define a definite or an indefinite subtype, with or without
5328 -- discriminants.
5330 -- o If a partial view has neither known nor unknown discriminants, then
5331 -- the full view shall define a definite subtype.
5333 -- o If the ancestor subtype of a private extension has constrained
5334 -- discriminants, then the parent subtype of the full view shall impose a
5335 -- statically matching constraint on those discriminants.
5337 -- This means that only the following forms of private extensions are
5338 -- allowed:
5340 -- type D is new A with private; <-- partial view
5341 -- type D is new P with null record; <-- full view
5343 -- If A has no discriminants than P has no discriminants, otherwise P must
5344 -- inherit A's discriminants.
5346 -- type D is new A (...) with private; <-- partial view
5347 -- type D is new P (:::) with null record; <-- full view
5349 -- P must inherit A's discriminants and (...) and (:::) must statically
5350 -- match.
5352 -- subtype A is R (...);
5353 -- type D is new A with private; <-- partial view
5354 -- type D is new P with null record; <-- full view
5356 -- P must have inherited R's discriminants and must be derived from A or
5357 -- any of its subtypes.
5359 -- type D (..) is new A with private; <-- partial view
5360 -- type D (..) is new P [(:::)] with null record; <-- full view
5362 -- No specific constraints on P's discriminants or constraint (:::).
5363 -- Note that A can be unconstrained, but the parent subtype P must either
5364 -- be constrained or (:::) must be present.
5366 -- type D (..) is new A [(...)] with private; <-- partial view
5367 -- type D (..) is new P [(:::)] with null record; <-- full view
5369 -- P's constraints on A's discriminants must statically match those
5370 -- imposed by (...).
5372 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
5374 -- The full view of a private extension is handled exactly as described
5375 -- above. The model chose for the private view of a private extension is
5376 -- the same for what concerns discriminants (ie they receive the same
5377 -- treatment as in the tagged case). However, the private view of the
5378 -- private extension always inherits the components of the parent base,
5379 -- without replacing any discriminant reference. Strictly speaking this is
5380 -- incorrect. However, Gigi never uses this view to generate code so this
5381 -- is a purely semantic issue. In theory, a set of transformations similar
5382 -- to those given in 5. and 6. above could be applied to private views of
5383 -- private extensions to have the same model of component inheritance as
5384 -- for non private extensions. However, this is not done because it would
5385 -- further complicate private type processing. Semantically speaking, this
5386 -- leaves us in an uncomfortable situation. As an example consider:
5388 -- package Pack is
5389 -- type R (D : integer) is tagged record
5390 -- S : String (1 .. D);
5391 -- end record;
5392 -- procedure P (X : R);
5393 -- type T is new R (1) with private;
5394 -- private
5395 -- type T is new R (1) with null record;
5396 -- end;
5398 -- This is transformed into:
5400 -- package Pack is
5401 -- type R (D : integer) is tagged record
5402 -- S : String (1 .. D);
5403 -- end record;
5404 -- procedure P (X : R);
5405 -- type T is new R (1) with private;
5406 -- private
5407 -- type BaseT is new R with null record;
5408 -- subtype T is BaseT (1);
5409 -- end;
5411 -- (strictly speaking the above is incorrect Ada)
5413 -- From the semantic standpoint the private view of private extension T
5414 -- should be flagged as constrained since one can clearly have
5416 -- Obj : T;
5418 -- in a unit withing Pack. However, when deriving subprograms for the
5419 -- private view of private extension T, T must be seen as unconstrained
5420 -- since T has discriminants (this is a constraint of the current
5421 -- subprogram derivation model). Thus, when processing the private view of
5422 -- a private extension such as T, we first mark T as unconstrained, we
5423 -- process it, we perform program derivation and just before returning from
5424 -- Build_Derived_Record_Type we mark T as constrained.
5426 -- ??? Are there are other uncomfortable cases that we will have to
5427 -- deal with.
5429 -- 10. RECORD_TYPE_WITH_PRIVATE complications
5431 -- Types that are derived from a visible record type and have a private
5432 -- extension present other peculiarities. They behave mostly like private
5433 -- types, but if they have primitive operations defined, these will not
5434 -- have the proper signatures for further inheritance, because other
5435 -- primitive operations will use the implicit base that we define for
5436 -- private derivations below. This affect subprogram inheritance (see
5437 -- Derive_Subprograms for details). We also derive the implicit base from
5438 -- the base type of the full view, so that the implicit base is a record
5439 -- type and not another private type, This avoids infinite loops.
5441 procedure Build_Derived_Record_Type
5442 (N : Node_Id;
5443 Parent_Type : Entity_Id;
5444 Derived_Type : Entity_Id;
5445 Derive_Subps : Boolean := True)
5447 Loc : constant Source_Ptr := Sloc (N);
5448 Parent_Base : Entity_Id;
5449 Type_Def : Node_Id;
5450 Indic : Node_Id;
5451 Discrim : Entity_Id;
5452 Last_Discrim : Entity_Id;
5453 Constrs : Elist_Id;
5455 Discs : Elist_Id := New_Elmt_List;
5456 -- An empty Discs list means that there were no constraints in the
5457 -- subtype indication or that there was an error processing it.
5459 Assoc_List : Elist_Id;
5460 New_Discrs : Elist_Id;
5461 New_Base : Entity_Id;
5462 New_Decl : Node_Id;
5463 New_Indic : Node_Id;
5465 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
5466 Discriminant_Specs : constant Boolean :=
5467 Present (Discriminant_Specifications (N));
5468 Private_Extension : constant Boolean :=
5469 (Nkind (N) = N_Private_Extension_Declaration);
5471 Constraint_Present : Boolean;
5472 Has_Interfaces : Boolean := False;
5473 Inherit_Discrims : Boolean := False;
5474 Tagged_Partial_View : Entity_Id;
5475 Save_Etype : Entity_Id;
5476 Save_Discr_Constr : Elist_Id;
5477 Save_Next_Entity : Entity_Id;
5479 begin
5480 if Ekind (Parent_Type) = E_Record_Type_With_Private
5481 and then Present (Full_View (Parent_Type))
5482 and then Has_Discriminants (Parent_Type)
5483 then
5484 Parent_Base := Base_Type (Full_View (Parent_Type));
5485 else
5486 Parent_Base := Base_Type (Parent_Type);
5487 end if;
5489 -- Before we start the previously documented transformations, here is
5490 -- a little fix for size and alignment of tagged types. Normally when
5491 -- we derive type D from type P, we copy the size and alignment of P
5492 -- as the default for D, and in the absence of explicit representation
5493 -- clauses for D, the size and alignment are indeed the same as the
5494 -- parent.
5496 -- But this is wrong for tagged types, since fields may be added,
5497 -- and the default size may need to be larger, and the default
5498 -- alignment may need to be larger.
5500 -- We therefore reset the size and alignment fields in the tagged
5501 -- case. Note that the size and alignment will in any case be at
5502 -- least as large as the parent type (since the derived type has
5503 -- a copy of the parent type in the _parent field)
5505 if Is_Tagged then
5506 Init_Size_Align (Derived_Type);
5507 end if;
5509 -- STEP 0a: figure out what kind of derived type declaration we have
5511 if Private_Extension then
5512 Type_Def := N;
5513 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
5515 else
5516 Type_Def := Type_Definition (N);
5518 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
5519 -- Parent_Base can be a private type or private extension. However,
5520 -- for tagged types with an extension the newly added fields are
5521 -- visible and hence the Derived_Type is always an E_Record_Type.
5522 -- (except that the parent may have its own private fields).
5523 -- For untagged types we preserve the Ekind of the Parent_Base.
5525 if Present (Record_Extension_Part (Type_Def)) then
5526 Set_Ekind (Derived_Type, E_Record_Type);
5527 else
5528 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5529 end if;
5530 end if;
5532 -- Indic can either be an N_Identifier if the subtype indication
5533 -- contains no constraint or an N_Subtype_Indication if the subtype
5534 -- indication has a constraint.
5536 Indic := Subtype_Indication (Type_Def);
5537 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
5539 -- Check that the type has visible discriminants. The type may be
5540 -- a private type with unknown discriminants whose full view has
5541 -- discriminants which are invisible.
5543 if Constraint_Present then
5544 if not Has_Discriminants (Parent_Base)
5545 or else
5546 (Has_Unknown_Discriminants (Parent_Base)
5547 and then Is_Private_Type (Parent_Base))
5548 then
5549 Error_Msg_N
5550 ("invalid constraint: type has no discriminant",
5551 Constraint (Indic));
5553 Constraint_Present := False;
5554 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5556 elsif Is_Constrained (Parent_Type) then
5557 Error_Msg_N
5558 ("invalid constraint: parent type is already constrained",
5559 Constraint (Indic));
5561 Constraint_Present := False;
5562 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5563 end if;
5564 end if;
5566 -- STEP 0b: If needed, apply transformation given in point 5. above
5568 if not Private_Extension
5569 and then Has_Discriminants (Parent_Type)
5570 and then not Discriminant_Specs
5571 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
5572 then
5573 -- First, we must analyze the constraint (see comment in point 5.)
5575 if Constraint_Present then
5576 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
5578 if Has_Discriminants (Derived_Type)
5579 and then Has_Private_Declaration (Derived_Type)
5580 and then Present (Discriminant_Constraint (Derived_Type))
5581 then
5582 -- Verify that constraints of the full view conform to those
5583 -- given in partial view.
5585 declare
5586 C1, C2 : Elmt_Id;
5588 begin
5589 C1 := First_Elmt (New_Discrs);
5590 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
5591 while Present (C1) and then Present (C2) loop
5592 if not
5593 Fully_Conformant_Expressions (Node (C1), Node (C2))
5594 then
5595 Error_Msg_N (
5596 "constraint not conformant to previous declaration",
5597 Node (C1));
5598 end if;
5600 Next_Elmt (C1);
5601 Next_Elmt (C2);
5602 end loop;
5603 end;
5604 end if;
5605 end if;
5607 -- Insert and analyze the declaration for the unconstrained base type
5609 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
5611 New_Decl :=
5612 Make_Full_Type_Declaration (Loc,
5613 Defining_Identifier => New_Base,
5614 Type_Definition =>
5615 Make_Derived_Type_Definition (Loc,
5616 Abstract_Present => Abstract_Present (Type_Def),
5617 Subtype_Indication =>
5618 New_Occurrence_Of (Parent_Base, Loc),
5619 Record_Extension_Part =>
5620 Relocate_Node (Record_Extension_Part (Type_Def))));
5622 Set_Parent (New_Decl, Parent (N));
5623 Mark_Rewrite_Insertion (New_Decl);
5624 Insert_Before (N, New_Decl);
5626 -- Note that this call passes False for the Derive_Subps parameter
5627 -- because subprogram derivation is deferred until after creating
5628 -- the subtype (see below).
5630 Build_Derived_Type
5631 (New_Decl, Parent_Base, New_Base,
5632 Is_Completion => True, Derive_Subps => False);
5634 -- ??? This needs re-examination to determine whether the
5635 -- above call can simply be replaced by a call to Analyze.
5637 Set_Analyzed (New_Decl);
5639 -- Insert and analyze the declaration for the constrained subtype
5641 if Constraint_Present then
5642 New_Indic :=
5643 Make_Subtype_Indication (Loc,
5644 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5645 Constraint => Relocate_Node (Constraint (Indic)));
5647 else
5648 declare
5649 Constr_List : constant List_Id := New_List;
5650 C : Elmt_Id;
5651 Expr : Node_Id;
5653 begin
5654 C := First_Elmt (Discriminant_Constraint (Parent_Type));
5655 while Present (C) loop
5656 Expr := Node (C);
5658 -- It is safe here to call New_Copy_Tree since
5659 -- Force_Evaluation was called on each constraint in
5660 -- Build_Discriminant_Constraints.
5662 Append (New_Copy_Tree (Expr), To => Constr_List);
5664 Next_Elmt (C);
5665 end loop;
5667 New_Indic :=
5668 Make_Subtype_Indication (Loc,
5669 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5670 Constraint =>
5671 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
5672 end;
5673 end if;
5675 Rewrite (N,
5676 Make_Subtype_Declaration (Loc,
5677 Defining_Identifier => Derived_Type,
5678 Subtype_Indication => New_Indic));
5680 Analyze (N);
5682 -- Derivation of subprograms must be delayed until the full subtype
5683 -- has been established to ensure proper overriding of subprograms
5684 -- inherited by full types. If the derivations occurred as part of
5685 -- the call to Build_Derived_Type above, then the check for type
5686 -- conformance would fail because earlier primitive subprograms
5687 -- could still refer to the full type prior the change to the new
5688 -- subtype and hence would not match the new base type created here.
5690 Derive_Subprograms (Parent_Type, Derived_Type);
5692 -- For tagged types the Discriminant_Constraint of the new base itype
5693 -- is inherited from the first subtype so that no subtype conformance
5694 -- problem arise when the first subtype overrides primitive
5695 -- operations inherited by the implicit base type.
5697 if Is_Tagged then
5698 Set_Discriminant_Constraint
5699 (New_Base, Discriminant_Constraint (Derived_Type));
5700 end if;
5702 return;
5703 end if;
5705 -- If we get here Derived_Type will have no discriminants or it will be
5706 -- a discriminated unconstrained base type.
5708 -- STEP 1a: perform preliminary actions/checks for derived tagged types
5710 if Is_Tagged then
5712 -- The parent type is frozen for non-private extensions (RM 13.14(7))
5714 if not Private_Extension then
5715 Freeze_Before (N, Parent_Type);
5716 end if;
5718 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
5719 -- cannot be declared at a deeper level than its parent type is
5720 -- removed. The check on derivation within a generic body is also
5721 -- relaxed, but there's a restriction that a derived tagged type
5722 -- cannot be declared in a generic body if it's derived directly
5723 -- or indirectly from a formal type of that generic.
5725 if Ada_Version >= Ada_05 then
5726 if Present (Enclosing_Generic_Body (Derived_Type)) then
5727 declare
5728 Ancestor_Type : Entity_Id;
5730 begin
5731 -- Check to see if any ancestor of the derived type is a
5732 -- formal type.
5734 Ancestor_Type := Parent_Type;
5735 while not Is_Generic_Type (Ancestor_Type)
5736 and then Etype (Ancestor_Type) /= Ancestor_Type
5737 loop
5738 Ancestor_Type := Etype (Ancestor_Type);
5739 end loop;
5741 -- If the derived type does have a formal type as an
5742 -- ancestor, then it's an error if the derived type is
5743 -- declared within the body of the generic unit that
5744 -- declares the formal type in its generic formal part. It's
5745 -- sufficient to check whether the ancestor type is declared
5746 -- inside the same generic body as the derived type (such as
5747 -- within a nested generic spec), in which case the
5748 -- derivation is legal. If the formal type is declared
5749 -- outside of that generic body, then it's guaranteed that
5750 -- the derived type is declared within the generic body of
5751 -- the generic unit declaring the formal type.
5753 if Is_Generic_Type (Ancestor_Type)
5754 and then Enclosing_Generic_Body (Ancestor_Type) /=
5755 Enclosing_Generic_Body (Derived_Type)
5756 then
5757 Error_Msg_NE
5758 ("parent type of& must not be descendant of formal type"
5759 & " of an enclosing generic body",
5760 Indic, Derived_Type);
5761 end if;
5762 end;
5763 end if;
5765 elsif Type_Access_Level (Derived_Type) /=
5766 Type_Access_Level (Parent_Type)
5767 and then not Is_Generic_Type (Derived_Type)
5768 then
5769 if Is_Controlled (Parent_Type) then
5770 Error_Msg_N
5771 ("controlled type must be declared at the library level",
5772 Indic);
5773 else
5774 Error_Msg_N
5775 ("type extension at deeper accessibility level than parent",
5776 Indic);
5777 end if;
5779 else
5780 declare
5781 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
5783 begin
5784 if Present (GB)
5785 and then GB /= Enclosing_Generic_Body (Parent_Base)
5786 then
5787 Error_Msg_NE
5788 ("parent type of& must not be outside generic body"
5789 & " ('R'M 3.9.1(4))",
5790 Indic, Derived_Type);
5791 end if;
5792 end;
5793 end if;
5794 end if;
5796 -- Ada 2005 (AI-251)
5798 if Ada_Version = Ada_05
5799 and then Is_Tagged
5800 then
5802 -- "The declaration of a specific descendant of an interface type
5803 -- freezes the interface type" (RM 13.14).
5805 declare
5806 Iface : Node_Id;
5807 begin
5808 if Is_Non_Empty_List (Interface_List (Type_Def)) then
5809 Iface := First (Interface_List (Type_Def));
5810 while Present (Iface) loop
5811 Freeze_Before (N, Etype (Iface));
5812 Next (Iface);
5813 end loop;
5814 end if;
5815 end;
5816 end if;
5818 -- STEP 1b : preliminary cleanup of the full view of private types
5820 -- If the type is already marked as having discriminants, then it's the
5821 -- completion of a private type or private extension and we need to
5822 -- retain the discriminants from the partial view if the current
5823 -- declaration has Discriminant_Specifications so that we can verify
5824 -- conformance. However, we must remove any existing components that
5825 -- were inherited from the parent (and attached in Copy_And_Swap)
5826 -- because the full type inherits all appropriate components anyway, and
5827 -- we do not want the partial view's components interfering.
5829 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
5830 Discrim := First_Discriminant (Derived_Type);
5831 loop
5832 Last_Discrim := Discrim;
5833 Next_Discriminant (Discrim);
5834 exit when No (Discrim);
5835 end loop;
5837 Set_Last_Entity (Derived_Type, Last_Discrim);
5839 -- In all other cases wipe out the list of inherited components (even
5840 -- inherited discriminants), it will be properly rebuilt here.
5842 else
5843 Set_First_Entity (Derived_Type, Empty);
5844 Set_Last_Entity (Derived_Type, Empty);
5845 end if;
5847 -- STEP 1c: Initialize some flags for the Derived_Type
5849 -- The following flags must be initialized here so that
5850 -- Process_Discriminants can check that discriminants of tagged types
5851 -- do not have a default initial value and that access discriminants
5852 -- are only specified for limited records. For completeness, these
5853 -- flags are also initialized along with all the other flags below.
5855 -- AI-419: limitedness is not inherited from an interface parent
5857 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5858 Set_Is_Limited_Record (Derived_Type,
5859 Is_Limited_Record (Parent_Type)
5860 and then not Is_Interface (Parent_Type));
5862 -- STEP 2a: process discriminants of derived type if any
5864 New_Scope (Derived_Type);
5866 if Discriminant_Specs then
5867 Set_Has_Unknown_Discriminants (Derived_Type, False);
5869 -- The following call initializes fields Has_Discriminants and
5870 -- Discriminant_Constraint, unless we are processing the completion
5871 -- of a private type declaration.
5873 Check_Or_Process_Discriminants (N, Derived_Type);
5875 -- For non-tagged types the constraint on the Parent_Type must be
5876 -- present and is used to rename the discriminants.
5878 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
5879 Error_Msg_N ("untagged parent must have discriminants", Indic);
5881 elsif not Is_Tagged and then not Constraint_Present then
5882 Error_Msg_N
5883 ("discriminant constraint needed for derived untagged records",
5884 Indic);
5886 -- Otherwise the parent subtype must be constrained unless we have a
5887 -- private extension.
5889 elsif not Constraint_Present
5890 and then not Private_Extension
5891 and then not Is_Constrained (Parent_Type)
5892 then
5893 Error_Msg_N
5894 ("unconstrained type not allowed in this context", Indic);
5896 elsif Constraint_Present then
5897 -- The following call sets the field Corresponding_Discriminant
5898 -- for the discriminants in the Derived_Type.
5900 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
5902 -- For untagged types all new discriminants must rename
5903 -- discriminants in the parent. For private extensions new
5904 -- discriminants cannot rename old ones (implied by [7.3(13)]).
5906 Discrim := First_Discriminant (Derived_Type);
5907 while Present (Discrim) loop
5908 if not Is_Tagged
5909 and then No (Corresponding_Discriminant (Discrim))
5910 then
5911 Error_Msg_N
5912 ("new discriminants must constrain old ones", Discrim);
5914 elsif Private_Extension
5915 and then Present (Corresponding_Discriminant (Discrim))
5916 then
5917 Error_Msg_N
5918 ("only static constraints allowed for parent"
5919 & " discriminants in the partial view", Indic);
5920 exit;
5921 end if;
5923 -- If a new discriminant is used in the constraint, then its
5924 -- subtype must be statically compatible with the parent
5925 -- discriminant's subtype (3.7(15)).
5927 if Present (Corresponding_Discriminant (Discrim))
5928 and then
5929 not Subtypes_Statically_Compatible
5930 (Etype (Discrim),
5931 Etype (Corresponding_Discriminant (Discrim)))
5932 then
5933 Error_Msg_N
5934 ("subtype must be compatible with parent discriminant",
5935 Discrim);
5936 end if;
5938 Next_Discriminant (Discrim);
5939 end loop;
5941 -- Check whether the constraints of the full view statically
5942 -- match those imposed by the parent subtype [7.3(13)].
5944 if Present (Stored_Constraint (Derived_Type)) then
5945 declare
5946 C1, C2 : Elmt_Id;
5948 begin
5949 C1 := First_Elmt (Discs);
5950 C2 := First_Elmt (Stored_Constraint (Derived_Type));
5951 while Present (C1) and then Present (C2) loop
5952 if not
5953 Fully_Conformant_Expressions (Node (C1), Node (C2))
5954 then
5955 Error_Msg_N (
5956 "not conformant with previous declaration",
5957 Node (C1));
5958 end if;
5960 Next_Elmt (C1);
5961 Next_Elmt (C2);
5962 end loop;
5963 end;
5964 end if;
5965 end if;
5967 -- STEP 2b: No new discriminants, inherit discriminants if any
5969 else
5970 if Private_Extension then
5971 Set_Has_Unknown_Discriminants
5972 (Derived_Type,
5973 Has_Unknown_Discriminants (Parent_Type)
5974 or else Unknown_Discriminants_Present (N));
5976 -- The partial view of the parent may have unknown discriminants,
5977 -- but if the full view has discriminants and the parent type is
5978 -- in scope they must be inherited.
5980 elsif Has_Unknown_Discriminants (Parent_Type)
5981 and then
5982 (not Has_Discriminants (Parent_Type)
5983 or else not In_Open_Scopes (Scope (Parent_Type)))
5984 then
5985 Set_Has_Unknown_Discriminants (Derived_Type);
5986 end if;
5988 if not Has_Unknown_Discriminants (Derived_Type)
5989 and then not Has_Unknown_Discriminants (Parent_Base)
5990 and then Has_Discriminants (Parent_Type)
5991 then
5992 Inherit_Discrims := True;
5993 Set_Has_Discriminants
5994 (Derived_Type, True);
5995 Set_Discriminant_Constraint
5996 (Derived_Type, Discriminant_Constraint (Parent_Base));
5997 end if;
5999 -- The following test is true for private types (remember
6000 -- transformation 5. is not applied to those) and in an error
6001 -- situation.
6003 if Constraint_Present then
6004 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
6005 end if;
6007 -- For now mark a new derived type as constrained only if it has no
6008 -- discriminants. At the end of Build_Derived_Record_Type we properly
6009 -- set this flag in the case of private extensions. See comments in
6010 -- point 9. just before body of Build_Derived_Record_Type.
6012 Set_Is_Constrained
6013 (Derived_Type,
6014 not (Inherit_Discrims
6015 or else Has_Unknown_Discriminants (Derived_Type)));
6016 end if;
6018 -- STEP 3: initialize fields of derived type
6020 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
6021 Set_Stored_Constraint (Derived_Type, No_Elist);
6023 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
6024 -- but cannot be interfaces
6026 if not Private_Extension
6027 and then Ekind (Derived_Type) /= E_Private_Type
6028 and then Ekind (Derived_Type) /= E_Limited_Private_Type
6029 then
6030 Set_Is_Interface (Derived_Type, Interface_Present (Type_Def));
6031 Set_Abstract_Interfaces (Derived_Type, No_Elist);
6032 end if;
6034 -- Fields inherited from the Parent_Type
6036 Set_Discard_Names
6037 (Derived_Type, Einfo.Discard_Names (Parent_Type));
6038 Set_Has_Specified_Layout
6039 (Derived_Type, Has_Specified_Layout (Parent_Type));
6040 Set_Is_Limited_Composite
6041 (Derived_Type, Is_Limited_Composite (Parent_Type));
6042 Set_Is_Limited_Record
6043 (Derived_Type,
6044 Is_Limited_Record (Parent_Type)
6045 and then not Is_Interface (Parent_Type));
6046 Set_Is_Private_Composite
6047 (Derived_Type, Is_Private_Composite (Parent_Type));
6049 -- Fields inherited from the Parent_Base
6051 Set_Has_Controlled_Component
6052 (Derived_Type, Has_Controlled_Component (Parent_Base));
6053 Set_Has_Non_Standard_Rep
6054 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
6055 Set_Has_Primitive_Operations
6056 (Derived_Type, Has_Primitive_Operations (Parent_Base));
6058 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6060 if not Is_Controlled (Parent_Type) then
6061 Set_Finalize_Storage_Only
6062 (Derived_Type, Finalize_Storage_Only (Parent_Type));
6063 end if;
6065 -- Set fields for private derived types
6067 if Is_Private_Type (Derived_Type) then
6068 Set_Depends_On_Private (Derived_Type, True);
6069 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6071 -- Inherit fields from non private record types. If this is the
6072 -- completion of a derivation from a private type, the parent itself
6073 -- is private, and the attributes come from its full view, which must
6074 -- be present.
6076 else
6077 if Is_Private_Type (Parent_Base)
6078 and then not Is_Record_Type (Parent_Base)
6079 then
6080 Set_Component_Alignment
6081 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
6082 Set_C_Pass_By_Copy
6083 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
6084 else
6085 Set_Component_Alignment
6086 (Derived_Type, Component_Alignment (Parent_Base));
6088 Set_C_Pass_By_Copy
6089 (Derived_Type, C_Pass_By_Copy (Parent_Base));
6090 end if;
6091 end if;
6093 -- Set fields for tagged types
6095 if Is_Tagged then
6096 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
6098 -- All tagged types defined in Ada.Finalization are controlled
6100 if Chars (Scope (Derived_Type)) = Name_Finalization
6101 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
6102 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
6103 then
6104 Set_Is_Controlled (Derived_Type);
6105 else
6106 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
6107 end if;
6109 Make_Class_Wide_Type (Derived_Type);
6110 Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
6112 if Has_Discriminants (Derived_Type)
6113 and then Constraint_Present
6114 then
6115 Set_Stored_Constraint
6116 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
6117 end if;
6119 -- Ada 2005 (AI-251): Look for the partial view of tagged types
6120 -- declared in the private part. This will be used 1) to check that
6121 -- the set of interfaces in both views is equal, and 2) to complete
6122 -- the derivation of subprograms covering interfaces.
6124 Tagged_Partial_View := Empty;
6126 if Has_Private_Declaration (Derived_Type) then
6127 Tagged_Partial_View := Next_Entity (Derived_Type);
6128 loop
6129 exit when Has_Private_Declaration (Tagged_Partial_View)
6130 and then Full_View (Tagged_Partial_View) = Derived_Type;
6132 Next_Entity (Tagged_Partial_View);
6133 end loop;
6134 end if;
6136 -- Ada 2005 (AI-251): Collect the whole list of implemented
6137 -- interfaces.
6139 if Ada_Version >= Ada_05 then
6140 Set_Abstract_Interfaces (Derived_Type, New_Elmt_List);
6142 if Nkind (N) = N_Private_Extension_Declaration then
6143 Collect_Interfaces (N, Derived_Type);
6144 else
6145 Collect_Interfaces (Type_Definition (N), Derived_Type);
6146 end if;
6147 end if;
6149 else
6150 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
6151 Set_Has_Non_Standard_Rep
6152 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
6153 end if;
6155 -- STEP 4: Inherit components from the parent base and constrain them.
6156 -- Apply the second transformation described in point 6. above.
6158 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
6159 or else not Has_Discriminants (Parent_Type)
6160 or else not Is_Constrained (Parent_Type)
6161 then
6162 Constrs := Discs;
6163 else
6164 Constrs := Discriminant_Constraint (Parent_Type);
6165 end if;
6167 Assoc_List :=
6168 Inherit_Components
6169 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
6171 -- STEP 5a: Copy the parent record declaration for untagged types
6173 if not Is_Tagged then
6175 -- Discriminant_Constraint (Derived_Type) has been properly
6176 -- constructed. Save it and temporarily set it to Empty because we
6177 -- do not want the call to New_Copy_Tree below to mess this list.
6179 if Has_Discriminants (Derived_Type) then
6180 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
6181 Set_Discriminant_Constraint (Derived_Type, No_Elist);
6182 else
6183 Save_Discr_Constr := No_Elist;
6184 end if;
6186 -- Save the Etype field of Derived_Type. It is correctly set now,
6187 -- but the call to New_Copy tree may remap it to point to itself,
6188 -- which is not what we want. Ditto for the Next_Entity field.
6190 Save_Etype := Etype (Derived_Type);
6191 Save_Next_Entity := Next_Entity (Derived_Type);
6193 -- Assoc_List maps all stored discriminants in the Parent_Base to
6194 -- stored discriminants in the Derived_Type. It is fundamental that
6195 -- no types or itypes with discriminants other than the stored
6196 -- discriminants appear in the entities declared inside
6197 -- Derived_Type, since the back end cannot deal with it.
6199 New_Decl :=
6200 New_Copy_Tree
6201 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
6203 -- Restore the fields saved prior to the New_Copy_Tree call
6204 -- and compute the stored constraint.
6206 Set_Etype (Derived_Type, Save_Etype);
6207 Set_Next_Entity (Derived_Type, Save_Next_Entity);
6209 if Has_Discriminants (Derived_Type) then
6210 Set_Discriminant_Constraint
6211 (Derived_Type, Save_Discr_Constr);
6212 Set_Stored_Constraint
6213 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
6214 Replace_Components (Derived_Type, New_Decl);
6215 end if;
6217 -- Insert the new derived type declaration
6219 Rewrite (N, New_Decl);
6221 -- STEP 5b: Complete the processing for record extensions in generics
6223 -- There is no completion for record extensions declared in the
6224 -- parameter part of a generic, so we need to complete processing for
6225 -- these generic record extensions here. The Record_Type_Definition call
6226 -- will change the Ekind of the components from E_Void to E_Component.
6228 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
6229 Record_Type_Definition (Empty, Derived_Type);
6231 -- STEP 5c: Process the record extension for non private tagged types
6233 elsif not Private_Extension then
6235 -- Add the _parent field in the derived type
6237 Expand_Record_Extension (Derived_Type, Type_Def);
6239 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
6240 -- implemented interfaces if we are in expansion mode
6242 if Expander_Active then
6243 Add_Interface_Tag_Components (N, Derived_Type);
6244 end if;
6246 -- Analyze the record extension
6248 Record_Type_Definition
6249 (Record_Extension_Part (Type_Def), Derived_Type);
6250 end if;
6252 End_Scope;
6254 if Etype (Derived_Type) = Any_Type then
6255 return;
6256 end if;
6258 -- Set delayed freeze and then derive subprograms, we need to do
6259 -- this in this order so that derived subprograms inherit the
6260 -- derived freeze if necessary.
6262 Set_Has_Delayed_Freeze (Derived_Type);
6264 if Derive_Subps then
6266 -- Ada 2005 (AI-251): Check if this tagged type implements abstract
6267 -- interfaces
6269 Has_Interfaces := False;
6271 if Is_Tagged_Type (Derived_Type) then
6272 declare
6273 E : Entity_Id;
6275 begin
6276 -- Handle private types
6278 if Present (Full_View (Derived_Type)) then
6279 E := Full_View (Derived_Type);
6280 else
6281 E := Derived_Type;
6282 end if;
6284 loop
6285 if Is_Interface (E)
6286 or else (Present (Abstract_Interfaces (E))
6287 and then
6288 not Is_Empty_Elmt_List (Abstract_Interfaces (E)))
6289 then
6290 Has_Interfaces := True;
6291 exit;
6292 end if;
6294 exit when Etype (E) = E
6296 -- Handle private types
6298 or else (Present (Full_View (Etype (E)))
6299 and then Full_View (Etype (E)) = E)
6301 -- Protect the frontend against wrong source
6303 or else Etype (E) = Derived_Type;
6305 -- Climb to the ancestor type handling private types
6307 if Present (Full_View (Etype (E))) then
6308 E := Full_View (Etype (E));
6309 else
6310 E := Etype (E);
6311 end if;
6312 end loop;
6313 end;
6314 end if;
6316 Derive_Subprograms (Parent_Type, Derived_Type);
6318 -- Ada 2005 (AI-251): Handle tagged types implementing interfaces
6320 if Is_Tagged_Type (Derived_Type)
6321 and then Has_Interfaces
6322 then
6323 -- Ada 2005 (AI-251): If we are analyzing a full view that has
6324 -- no partial view we derive the abstract interface Subprograms
6326 if No (Tagged_Partial_View) then
6327 Derive_Interface_Subprograms (Derived_Type);
6329 -- Ada 2005 (AI-251): if we are analyzing a full view that has
6330 -- a partial view we complete the derivation of the subprograms
6332 else
6333 Complete_Subprograms_Derivation
6334 (Partial_View => Tagged_Partial_View,
6335 Derived_Type => Derived_Type);
6336 end if;
6338 -- Ada 2005 (AI-251): In both cases we check if some of the
6339 -- inherited subprograms cover interface primitives.
6341 declare
6342 Iface_Subp : Entity_Id;
6343 Iface_Subp_Elmt : Elmt_Id;
6344 Prev_Alias : Entity_Id;
6345 Subp : Entity_Id;
6346 Subp_Elmt : Elmt_Id;
6348 begin
6349 Iface_Subp_Elmt :=
6350 First_Elmt (Primitive_Operations (Derived_Type));
6351 while Present (Iface_Subp_Elmt) loop
6352 Iface_Subp := Node (Iface_Subp_Elmt);
6354 -- Look for an abstract interface subprogram
6356 if Is_Abstract (Iface_Subp)
6357 and then Present (Alias (Iface_Subp))
6358 and then Present (DTC_Entity (Alias (Iface_Subp)))
6359 and then Is_Interface
6360 (Scope (DTC_Entity (Alias (Iface_Subp))))
6361 then
6362 -- Look for candidate primitive subprograms of the tagged
6363 -- type that can cover this interface subprogram.
6365 Subp_Elmt :=
6366 First_Elmt (Primitive_Operations (Derived_Type));
6367 while Present (Subp_Elmt) loop
6368 Subp := Node (Subp_Elmt);
6370 if not Is_Abstract (Subp)
6371 and then Chars (Subp) = Chars (Iface_Subp)
6372 and then Type_Conformant (Iface_Subp, Subp)
6373 then
6374 Prev_Alias := Alias (Iface_Subp);
6376 Check_Dispatching_Operation
6377 (Subp => Subp,
6378 Old_Subp => Iface_Subp);
6380 pragma Assert
6381 (Alias (Iface_Subp) = Subp);
6382 pragma Assert
6383 (Abstract_Interface_Alias (Iface_Subp)
6384 = Prev_Alias);
6386 -- Traverse the list of aliased subprograms to link
6387 -- subp with its ultimate aliased subprogram. This
6388 -- avoids problems with the backend.
6390 declare
6391 E : Entity_Id;
6393 begin
6394 E := Alias (Subp);
6395 while Present (Alias (E)) loop
6396 E := Alias (E);
6397 end loop;
6399 Set_Alias (Subp, E);
6400 end;
6402 Set_Has_Delayed_Freeze (Subp);
6403 exit;
6404 end if;
6406 Next_Elmt (Subp_Elmt);
6407 end loop;
6408 end if;
6410 Next_Elmt (Iface_Subp_Elmt);
6411 end loop;
6412 end;
6413 end if;
6414 end if;
6416 -- If we have a private extension which defines a constrained derived
6417 -- type mark as constrained here after we have derived subprograms. See
6418 -- comment on point 9. just above the body of Build_Derived_Record_Type.
6420 if Private_Extension and then Inherit_Discrims then
6421 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
6422 Set_Is_Constrained (Derived_Type, True);
6423 Set_Discriminant_Constraint (Derived_Type, Discs);
6425 elsif Is_Constrained (Parent_Type) then
6426 Set_Is_Constrained
6427 (Derived_Type, True);
6428 Set_Discriminant_Constraint
6429 (Derived_Type, Discriminant_Constraint (Parent_Type));
6430 end if;
6431 end if;
6433 -- Update the class_wide type, which shares the now-completed
6434 -- entity list with its specific type.
6436 if Is_Tagged then
6437 Set_First_Entity
6438 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
6439 Set_Last_Entity
6440 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
6441 end if;
6443 end Build_Derived_Record_Type;
6445 ------------------------
6446 -- Build_Derived_Type --
6447 ------------------------
6449 procedure Build_Derived_Type
6450 (N : Node_Id;
6451 Parent_Type : Entity_Id;
6452 Derived_Type : Entity_Id;
6453 Is_Completion : Boolean;
6454 Derive_Subps : Boolean := True)
6456 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6458 begin
6459 -- Set common attributes
6461 Set_Scope (Derived_Type, Current_Scope);
6463 Set_Ekind (Derived_Type, Ekind (Parent_Base));
6464 Set_Etype (Derived_Type, Parent_Base);
6465 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
6467 Set_Size_Info (Derived_Type, Parent_Type);
6468 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6469 Set_Convention (Derived_Type, Convention (Parent_Type));
6470 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6472 -- The derived type inherits the representation clauses of the parent.
6473 -- However, for a private type that is completed by a derivation, there
6474 -- may be operation attributes that have been specified already (stream
6475 -- attributes and External_Tag) and those must be provided. Finally,
6476 -- if the partial view is a private extension, the representation items
6477 -- of the parent have been inherited already, and should not be chained
6478 -- twice to the derived type.
6480 if Is_Tagged_Type (Parent_Type)
6481 and then Present (First_Rep_Item (Derived_Type))
6482 then
6483 -- The existing items are either operational items or items inherited
6484 -- from a private extension declaration.
6486 declare
6487 Rep : Node_Id;
6488 Found : Boolean := False;
6490 begin
6491 Rep := First_Rep_Item (Derived_Type);
6492 while Present (Rep) loop
6493 if Rep = First_Rep_Item (Parent_Type) then
6494 Found := True;
6495 exit;
6496 else
6497 Rep := Next_Rep_Item (Rep);
6498 end if;
6499 end loop;
6501 if not Found then
6502 Set_Next_Rep_Item
6503 (First_Rep_Item (Derived_Type), First_Rep_Item (Parent_Type));
6504 end if;
6505 end;
6507 else
6508 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
6509 end if;
6511 case Ekind (Parent_Type) is
6512 when Numeric_Kind =>
6513 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
6515 when Array_Kind =>
6516 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
6518 when E_Record_Type
6519 | E_Record_Subtype
6520 | Class_Wide_Kind =>
6521 Build_Derived_Record_Type
6522 (N, Parent_Type, Derived_Type, Derive_Subps);
6523 return;
6525 when Enumeration_Kind =>
6526 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
6528 when Access_Kind =>
6529 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
6531 when Incomplete_Or_Private_Kind =>
6532 Build_Derived_Private_Type
6533 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
6535 -- For discriminated types, the derivation includes deriving
6536 -- primitive operations. For others it is done below.
6538 if Is_Tagged_Type (Parent_Type)
6539 or else Has_Discriminants (Parent_Type)
6540 or else (Present (Full_View (Parent_Type))
6541 and then Has_Discriminants (Full_View (Parent_Type)))
6542 then
6543 return;
6544 end if;
6546 when Concurrent_Kind =>
6547 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
6549 when others =>
6550 raise Program_Error;
6551 end case;
6553 if Etype (Derived_Type) = Any_Type then
6554 return;
6555 end if;
6557 -- Set delayed freeze and then derive subprograms, we need to do this
6558 -- in this order so that derived subprograms inherit the derived freeze
6559 -- if necessary.
6561 Set_Has_Delayed_Freeze (Derived_Type);
6562 if Derive_Subps then
6563 Derive_Subprograms (Parent_Type, Derived_Type);
6564 end if;
6566 Set_Has_Primitive_Operations
6567 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
6568 end Build_Derived_Type;
6570 -----------------------
6571 -- Build_Discriminal --
6572 -----------------------
6574 procedure Build_Discriminal (Discrim : Entity_Id) is
6575 D_Minal : Entity_Id;
6576 CR_Disc : Entity_Id;
6578 begin
6579 -- A discriminal has the same name as the discriminant
6581 D_Minal :=
6582 Make_Defining_Identifier (Sloc (Discrim),
6583 Chars => Chars (Discrim));
6585 Set_Ekind (D_Minal, E_In_Parameter);
6586 Set_Mechanism (D_Minal, Default_Mechanism);
6587 Set_Etype (D_Minal, Etype (Discrim));
6589 Set_Discriminal (Discrim, D_Minal);
6590 Set_Discriminal_Link (D_Minal, Discrim);
6592 -- For task types, build at once the discriminants of the corresponding
6593 -- record, which are needed if discriminants are used in entry defaults
6594 -- and in family bounds.
6596 if Is_Concurrent_Type (Current_Scope)
6597 or else Is_Limited_Type (Current_Scope)
6598 then
6599 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
6601 Set_Ekind (CR_Disc, E_In_Parameter);
6602 Set_Mechanism (CR_Disc, Default_Mechanism);
6603 Set_Etype (CR_Disc, Etype (Discrim));
6604 Set_Discriminal_Link (CR_Disc, Discrim);
6605 Set_CR_Discriminant (Discrim, CR_Disc);
6606 end if;
6607 end Build_Discriminal;
6609 ------------------------------------
6610 -- Build_Discriminant_Constraints --
6611 ------------------------------------
6613 function Build_Discriminant_Constraints
6614 (T : Entity_Id;
6615 Def : Node_Id;
6616 Derived_Def : Boolean := False) return Elist_Id
6618 C : constant Node_Id := Constraint (Def);
6619 Nb_Discr : constant Nat := Number_Discriminants (T);
6621 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
6622 -- Saves the expression corresponding to a given discriminant in T
6624 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
6625 -- Return the Position number within array Discr_Expr of a discriminant
6626 -- D within the discriminant list of the discriminated type T.
6628 ------------------
6629 -- Pos_Of_Discr --
6630 ------------------
6632 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
6633 Disc : Entity_Id;
6635 begin
6636 Disc := First_Discriminant (T);
6637 for J in Discr_Expr'Range loop
6638 if Disc = D then
6639 return J;
6640 end if;
6642 Next_Discriminant (Disc);
6643 end loop;
6645 -- Note: Since this function is called on discriminants that are
6646 -- known to belong to the discriminated type, falling through the
6647 -- loop with no match signals an internal compiler error.
6649 raise Program_Error;
6650 end Pos_Of_Discr;
6652 -- Declarations local to Build_Discriminant_Constraints
6654 Discr : Entity_Id;
6655 E : Entity_Id;
6656 Elist : constant Elist_Id := New_Elmt_List;
6658 Constr : Node_Id;
6659 Expr : Node_Id;
6660 Id : Node_Id;
6661 Position : Nat;
6662 Found : Boolean;
6664 Discrim_Present : Boolean := False;
6666 -- Start of processing for Build_Discriminant_Constraints
6668 begin
6669 -- The following loop will process positional associations only.
6670 -- For a positional association, the (single) discriminant is
6671 -- implicitly specified by position, in textual order (RM 3.7.2).
6673 Discr := First_Discriminant (T);
6674 Constr := First (Constraints (C));
6676 for D in Discr_Expr'Range loop
6677 exit when Nkind (Constr) = N_Discriminant_Association;
6679 if No (Constr) then
6680 Error_Msg_N ("too few discriminants given in constraint", C);
6681 return New_Elmt_List;
6683 elsif Nkind (Constr) = N_Range
6684 or else (Nkind (Constr) = N_Attribute_Reference
6685 and then
6686 Attribute_Name (Constr) = Name_Range)
6687 then
6688 Error_Msg_N
6689 ("a range is not a valid discriminant constraint", Constr);
6690 Discr_Expr (D) := Error;
6692 else
6693 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
6694 Discr_Expr (D) := Constr;
6695 end if;
6697 Next_Discriminant (Discr);
6698 Next (Constr);
6699 end loop;
6701 if No (Discr) and then Present (Constr) then
6702 Error_Msg_N ("too many discriminants given in constraint", Constr);
6703 return New_Elmt_List;
6704 end if;
6706 -- Named associations can be given in any order, but if both positional
6707 -- and named associations are used in the same discriminant constraint,
6708 -- then positional associations must occur first, at their normal
6709 -- position. Hence once a named association is used, the rest of the
6710 -- discriminant constraint must use only named associations.
6712 while Present (Constr) loop
6714 -- Positional association forbidden after a named association
6716 if Nkind (Constr) /= N_Discriminant_Association then
6717 Error_Msg_N ("positional association follows named one", Constr);
6718 return New_Elmt_List;
6720 -- Otherwise it is a named association
6722 else
6723 -- E records the type of the discriminants in the named
6724 -- association. All the discriminants specified in the same name
6725 -- association must have the same type.
6727 E := Empty;
6729 -- Search the list of discriminants in T to see if the simple name
6730 -- given in the constraint matches any of them.
6732 Id := First (Selector_Names (Constr));
6733 while Present (Id) loop
6734 Found := False;
6736 -- If Original_Discriminant is present, we are processing a
6737 -- generic instantiation and this is an instance node. We need
6738 -- to find the name of the corresponding discriminant in the
6739 -- actual record type T and not the name of the discriminant in
6740 -- the generic formal. Example:
6742 -- generic
6743 -- type G (D : int) is private;
6744 -- package P is
6745 -- subtype W is G (D => 1);
6746 -- end package;
6747 -- type Rec (X : int) is record ... end record;
6748 -- package Q is new P (G => Rec);
6750 -- At the point of the instantiation, formal type G is Rec
6751 -- and therefore when reanalyzing "subtype W is G (D => 1);"
6752 -- which really looks like "subtype W is Rec (D => 1);" at
6753 -- the point of instantiation, we want to find the discriminant
6754 -- that corresponds to D in Rec, ie X.
6756 if Present (Original_Discriminant (Id)) then
6757 Discr := Find_Corresponding_Discriminant (Id, T);
6758 Found := True;
6760 else
6761 Discr := First_Discriminant (T);
6762 while Present (Discr) loop
6763 if Chars (Discr) = Chars (Id) then
6764 Found := True;
6765 exit;
6766 end if;
6768 Next_Discriminant (Discr);
6769 end loop;
6771 if not Found then
6772 Error_Msg_N ("& does not match any discriminant", Id);
6773 return New_Elmt_List;
6775 -- The following is only useful for the benefit of generic
6776 -- instances but it does not interfere with other
6777 -- processing for the non-generic case so we do it in all
6778 -- cases (for generics this statement is executed when
6779 -- processing the generic definition, see comment at the
6780 -- beginning of this if statement).
6782 else
6783 Set_Original_Discriminant (Id, Discr);
6784 end if;
6785 end if;
6787 Position := Pos_Of_Discr (T, Discr);
6789 if Present (Discr_Expr (Position)) then
6790 Error_Msg_N ("duplicate constraint for discriminant&", Id);
6792 else
6793 -- Each discriminant specified in the same named association
6794 -- must be associated with a separate copy of the
6795 -- corresponding expression.
6797 if Present (Next (Id)) then
6798 Expr := New_Copy_Tree (Expression (Constr));
6799 Set_Parent (Expr, Parent (Expression (Constr)));
6800 else
6801 Expr := Expression (Constr);
6802 end if;
6804 Discr_Expr (Position) := Expr;
6805 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
6806 end if;
6808 -- A discriminant association with more than one discriminant
6809 -- name is only allowed if the named discriminants are all of
6810 -- the same type (RM 3.7.1(8)).
6812 if E = Empty then
6813 E := Base_Type (Etype (Discr));
6815 elsif Base_Type (Etype (Discr)) /= E then
6816 Error_Msg_N
6817 ("all discriminants in an association " &
6818 "must have the same type", Id);
6819 end if;
6821 Next (Id);
6822 end loop;
6823 end if;
6825 Next (Constr);
6826 end loop;
6828 -- A discriminant constraint must provide exactly one value for each
6829 -- discriminant of the type (RM 3.7.1(8)).
6831 for J in Discr_Expr'Range loop
6832 if No (Discr_Expr (J)) then
6833 Error_Msg_N ("too few discriminants given in constraint", C);
6834 return New_Elmt_List;
6835 end if;
6836 end loop;
6838 -- Determine if there are discriminant expressions in the constraint
6840 for J in Discr_Expr'Range loop
6841 if Denotes_Discriminant (Discr_Expr (J), Check_Protected => True) then
6842 Discrim_Present := True;
6843 end if;
6844 end loop;
6846 -- Build an element list consisting of the expressions given in the
6847 -- discriminant constraint and apply the appropriate checks. The list
6848 -- is constructed after resolving any named discriminant associations
6849 -- and therefore the expressions appear in the textual order of the
6850 -- discriminants.
6852 Discr := First_Discriminant (T);
6853 for J in Discr_Expr'Range loop
6854 if Discr_Expr (J) /= Error then
6856 Append_Elmt (Discr_Expr (J), Elist);
6858 -- If any of the discriminant constraints is given by a
6859 -- discriminant and we are in a derived type declaration we
6860 -- have a discriminant renaming. Establish link between new
6861 -- and old discriminant.
6863 if Denotes_Discriminant (Discr_Expr (J)) then
6864 if Derived_Def then
6865 Set_Corresponding_Discriminant
6866 (Entity (Discr_Expr (J)), Discr);
6867 end if;
6869 -- Force the evaluation of non-discriminant expressions.
6870 -- If we have found a discriminant in the constraint 3.4(26)
6871 -- and 3.8(18) demand that no range checks are performed are
6872 -- after evaluation. If the constraint is for a component
6873 -- definition that has a per-object constraint, expressions are
6874 -- evaluated but not checked either. In all other cases perform
6875 -- a range check.
6877 else
6878 if Discrim_Present then
6879 null;
6881 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
6882 and then
6883 Has_Per_Object_Constraint
6884 (Defining_Identifier (Parent (Parent (Def))))
6885 then
6886 null;
6888 elsif Is_Access_Type (Etype (Discr)) then
6889 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
6891 else
6892 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
6893 end if;
6895 Force_Evaluation (Discr_Expr (J));
6896 end if;
6898 -- Check that the designated type of an access discriminant's
6899 -- expression is not a class-wide type unless the discriminant's
6900 -- designated type is also class-wide.
6902 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
6903 and then not Is_Class_Wide_Type
6904 (Designated_Type (Etype (Discr)))
6905 and then Etype (Discr_Expr (J)) /= Any_Type
6906 and then Is_Class_Wide_Type
6907 (Designated_Type (Etype (Discr_Expr (J))))
6908 then
6909 Wrong_Type (Discr_Expr (J), Etype (Discr));
6910 end if;
6911 end if;
6913 Next_Discriminant (Discr);
6914 end loop;
6916 return Elist;
6917 end Build_Discriminant_Constraints;
6919 ---------------------------------
6920 -- Build_Discriminated_Subtype --
6921 ---------------------------------
6923 procedure Build_Discriminated_Subtype
6924 (T : Entity_Id;
6925 Def_Id : Entity_Id;
6926 Elist : Elist_Id;
6927 Related_Nod : Node_Id;
6928 For_Access : Boolean := False)
6930 Has_Discrs : constant Boolean := Has_Discriminants (T);
6931 Constrained : constant Boolean
6932 := (Has_Discrs
6933 and then not Is_Empty_Elmt_List (Elist)
6934 and then not Is_Class_Wide_Type (T))
6935 or else Is_Constrained (T);
6937 begin
6938 if Ekind (T) = E_Record_Type then
6939 if For_Access then
6940 Set_Ekind (Def_Id, E_Private_Subtype);
6941 Set_Is_For_Access_Subtype (Def_Id, True);
6942 else
6943 Set_Ekind (Def_Id, E_Record_Subtype);
6944 end if;
6946 elsif Ekind (T) = E_Task_Type then
6947 Set_Ekind (Def_Id, E_Task_Subtype);
6949 elsif Ekind (T) = E_Protected_Type then
6950 Set_Ekind (Def_Id, E_Protected_Subtype);
6952 elsif Is_Private_Type (T) then
6953 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
6955 elsif Is_Class_Wide_Type (T) then
6956 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
6958 else
6959 -- Incomplete type. attach subtype to list of dependents, to be
6960 -- completed with full view of parent type, unless is it the
6961 -- designated subtype of a record component within an init_proc.
6962 -- This last case arises for a component of an access type whose
6963 -- designated type is incomplete (e.g. a Taft Amendment type).
6964 -- The designated subtype is within an inner scope, and needs no
6965 -- elaboration, because only the access type is needed in the
6966 -- initialization procedure.
6968 Set_Ekind (Def_Id, Ekind (T));
6970 if For_Access and then Within_Init_Proc then
6971 null;
6972 else
6973 Append_Elmt (Def_Id, Private_Dependents (T));
6974 end if;
6975 end if;
6977 Set_Etype (Def_Id, T);
6978 Init_Size_Align (Def_Id);
6979 Set_Has_Discriminants (Def_Id, Has_Discrs);
6980 Set_Is_Constrained (Def_Id, Constrained);
6982 Set_First_Entity (Def_Id, First_Entity (T));
6983 Set_Last_Entity (Def_Id, Last_Entity (T));
6984 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
6986 if Is_Tagged_Type (T) then
6987 Set_Is_Tagged_Type (Def_Id);
6988 Make_Class_Wide_Type (Def_Id);
6989 end if;
6991 Set_Stored_Constraint (Def_Id, No_Elist);
6993 if Has_Discrs then
6994 Set_Discriminant_Constraint (Def_Id, Elist);
6995 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
6996 end if;
6998 if Is_Tagged_Type (T) then
7000 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
7001 -- concurrent record type (which has the list of primitive
7002 -- operations).
7004 if Ada_Version >= Ada_05
7005 and then Is_Concurrent_Type (T)
7006 then
7007 Set_Corresponding_Record_Type (Def_Id,
7008 Corresponding_Record_Type (T));
7009 else
7010 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
7011 end if;
7013 Set_Is_Abstract (Def_Id, Is_Abstract (T));
7014 end if;
7016 -- Subtypes introduced by component declarations do not need to be
7017 -- marked as delayed, and do not get freeze nodes, because the semantics
7018 -- verifies that the parents of the subtypes are frozen before the
7019 -- enclosing record is frozen.
7021 if not Is_Type (Scope (Def_Id)) then
7022 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
7024 if Is_Private_Type (T)
7025 and then Present (Full_View (T))
7026 then
7027 Conditional_Delay (Def_Id, Full_View (T));
7028 else
7029 Conditional_Delay (Def_Id, T);
7030 end if;
7031 end if;
7033 if Is_Record_Type (T) then
7034 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
7036 if Has_Discrs
7037 and then not Is_Empty_Elmt_List (Elist)
7038 and then not For_Access
7039 then
7040 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
7041 elsif not For_Access then
7042 Set_Cloned_Subtype (Def_Id, T);
7043 end if;
7044 end if;
7046 end Build_Discriminated_Subtype;
7048 ------------------------
7049 -- Build_Scalar_Bound --
7050 ------------------------
7052 function Build_Scalar_Bound
7053 (Bound : Node_Id;
7054 Par_T : Entity_Id;
7055 Der_T : Entity_Id) return Node_Id
7057 New_Bound : Entity_Id;
7059 begin
7060 -- Note: not clear why this is needed, how can the original bound
7061 -- be unanalyzed at this point? and if it is, what business do we
7062 -- have messing around with it? and why is the base type of the
7063 -- parent type the right type for the resolution. It probably is
7064 -- not! It is OK for the new bound we are creating, but not for
7065 -- the old one??? Still if it never happens, no problem!
7067 Analyze_And_Resolve (Bound, Base_Type (Par_T));
7069 if Nkind (Bound) = N_Integer_Literal
7070 or else Nkind (Bound) = N_Real_Literal
7071 then
7072 New_Bound := New_Copy (Bound);
7073 Set_Etype (New_Bound, Der_T);
7074 Set_Analyzed (New_Bound);
7076 elsif Is_Entity_Name (Bound) then
7077 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
7079 -- The following is almost certainly wrong. What business do we have
7080 -- relocating a node (Bound) that is presumably still attached to
7081 -- the tree elsewhere???
7083 else
7084 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
7085 end if;
7087 Set_Etype (New_Bound, Der_T);
7088 return New_Bound;
7089 end Build_Scalar_Bound;
7091 --------------------------------
7092 -- Build_Underlying_Full_View --
7093 --------------------------------
7095 procedure Build_Underlying_Full_View
7096 (N : Node_Id;
7097 Typ : Entity_Id;
7098 Par : Entity_Id)
7100 Loc : constant Source_Ptr := Sloc (N);
7101 Subt : constant Entity_Id :=
7102 Make_Defining_Identifier
7103 (Loc, New_External_Name (Chars (Typ), 'S'));
7105 Constr : Node_Id;
7106 Indic : Node_Id;
7107 C : Node_Id;
7108 Id : Node_Id;
7110 procedure Set_Discriminant_Name (Id : Node_Id);
7111 -- If the derived type has discriminants, they may rename discriminants
7112 -- of the parent. When building the full view of the parent, we need to
7113 -- recover the names of the original discriminants if the constraint is
7114 -- given by named associations.
7116 ---------------------------
7117 -- Set_Discriminant_Name --
7118 ---------------------------
7120 procedure Set_Discriminant_Name (Id : Node_Id) is
7121 Disc : Entity_Id;
7123 begin
7124 Set_Original_Discriminant (Id, Empty);
7126 if Has_Discriminants (Typ) then
7127 Disc := First_Discriminant (Typ);
7128 while Present (Disc) loop
7129 if Chars (Disc) = Chars (Id)
7130 and then Present (Corresponding_Discriminant (Disc))
7131 then
7132 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
7133 end if;
7134 Next_Discriminant (Disc);
7135 end loop;
7136 end if;
7137 end Set_Discriminant_Name;
7139 -- Start of processing for Build_Underlying_Full_View
7141 begin
7142 if Nkind (N) = N_Full_Type_Declaration then
7143 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
7145 elsif Nkind (N) = N_Subtype_Declaration then
7146 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
7148 elsif Nkind (N) = N_Component_Declaration then
7149 Constr :=
7150 New_Copy_Tree
7151 (Constraint (Subtype_Indication (Component_Definition (N))));
7153 else
7154 raise Program_Error;
7155 end if;
7157 C := First (Constraints (Constr));
7158 while Present (C) loop
7159 if Nkind (C) = N_Discriminant_Association then
7160 Id := First (Selector_Names (C));
7161 while Present (Id) loop
7162 Set_Discriminant_Name (Id);
7163 Next (Id);
7164 end loop;
7165 end if;
7167 Next (C);
7168 end loop;
7170 Indic :=
7171 Make_Subtype_Declaration (Loc,
7172 Defining_Identifier => Subt,
7173 Subtype_Indication =>
7174 Make_Subtype_Indication (Loc,
7175 Subtype_Mark => New_Reference_To (Par, Loc),
7176 Constraint => New_Copy_Tree (Constr)));
7178 -- If this is a component subtype for an outer itype, it is not
7179 -- a list member, so simply set the parent link for analysis: if
7180 -- the enclosing type does not need to be in a declarative list,
7181 -- neither do the components.
7183 if Is_List_Member (N)
7184 and then Nkind (N) /= N_Component_Declaration
7185 then
7186 Insert_Before (N, Indic);
7187 else
7188 Set_Parent (Indic, Parent (N));
7189 end if;
7191 Analyze (Indic);
7192 Set_Underlying_Full_View (Typ, Full_View (Subt));
7193 end Build_Underlying_Full_View;
7195 -------------------------------
7196 -- Check_Abstract_Overriding --
7197 -------------------------------
7199 procedure Check_Abstract_Overriding (T : Entity_Id) is
7200 Op_List : Elist_Id;
7201 Elmt : Elmt_Id;
7202 Subp : Entity_Id;
7203 Alias_Subp : Entity_Id;
7204 Type_Def : Node_Id;
7206 begin
7207 Op_List := Primitive_Operations (T);
7209 -- Loop to check primitive operations
7211 Elmt := First_Elmt (Op_List);
7212 while Present (Elmt) loop
7213 Subp := Node (Elmt);
7214 Alias_Subp := Alias (Subp);
7216 -- Inherited subprograms are identified by the fact that they do not
7217 -- come from source, and the associated source location is the
7218 -- location of the first subtype of the derived type.
7220 -- Special exception, do not complain about failure to override the
7221 -- stream routines _Input and _Output, as well as the primitive
7222 -- operations used in dispatching selects since we always provide
7223 -- automatic overridings for these subprograms.
7225 if (Is_Abstract (Subp)
7226 or else (Has_Controlling_Result (Subp)
7227 and then Present (Alias_Subp)
7228 and then not Comes_From_Source (Subp)
7229 and then Sloc (Subp) = Sloc (First_Subtype (T))))
7230 and then not Is_TSS (Subp, TSS_Stream_Input)
7231 and then not Is_TSS (Subp, TSS_Stream_Output)
7232 and then not Is_Abstract (T)
7233 and then Chars (Subp) /= Name_uDisp_Asynchronous_Select
7234 and then Chars (Subp) /= Name_uDisp_Conditional_Select
7235 and then Chars (Subp) /= Name_uDisp_Get_Prim_Op_Kind
7236 and then Chars (Subp) /= Name_uDisp_Timed_Select
7237 then
7238 if Present (Alias_Subp) then
7240 -- Only perform the check for a derived subprogram when the
7241 -- type has an explicit record extension. This avoids
7242 -- incorrectly flagging abstract subprograms for the case of a
7243 -- type without an extension derived from a formal type with a
7244 -- tagged actual (can occur within a private part).
7246 -- Ada 2005 (AI-391): In the case of an inherited function with
7247 -- a controlling result of the type, the rule does not apply if
7248 -- the type is a null extension (unless the parent function
7249 -- itself is abstract, in which case the function must still be
7250 -- be overridden). The expander will generate an overriding
7251 -- wrapper function calling the parent subprogram (see
7252 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
7254 Type_Def := Type_Definition (Parent (T));
7255 if Nkind (Type_Def) = N_Derived_Type_Definition
7256 and then Present (Record_Extension_Part (Type_Def))
7257 and then
7258 (Ada_Version < Ada_05
7259 or else not Is_Null_Extension (T)
7260 or else Ekind (Subp) = E_Procedure
7261 or else not Has_Controlling_Result (Subp)
7262 or else Is_Abstract (Alias_Subp)
7263 or else Is_Access_Type (Etype (Subp)))
7264 then
7265 Error_Msg_NE
7266 ("type must be declared abstract or & overridden",
7267 T, Subp);
7269 -- Traverse the whole chain of aliased subprograms to
7270 -- complete the error notification. This is especially
7271 -- useful for traceability of the chain of entities when the
7272 -- subprogram corresponds with an interface subprogram
7273 -- (which might be defined in another package)
7275 if Present (Alias_Subp) then
7276 declare
7277 E : Entity_Id;
7279 begin
7280 E := Subp;
7281 while Present (Alias (E)) loop
7282 Error_Msg_Sloc := Sloc (E);
7283 Error_Msg_NE ("\& has been inherited #", T, Subp);
7284 E := Alias (E);
7285 end loop;
7287 Error_Msg_Sloc := Sloc (E);
7288 Error_Msg_NE
7289 ("\& has been inherited from subprogram #", T, Subp);
7290 end;
7291 end if;
7293 -- Ada 2005 (AI-345): Protected or task type implementing
7294 -- abstract interfaces.
7296 elsif Is_Concurrent_Record_Type (T)
7297 and then Present (Abstract_Interfaces (T))
7298 then
7299 Error_Msg_NE
7300 ("interface subprogram & must be overridden",
7301 T, Subp);
7302 end if;
7303 else
7304 Error_Msg_NE
7305 ("abstract subprogram not allowed for type&",
7306 Subp, T);
7307 Error_Msg_NE
7308 ("nonabstract type has abstract subprogram&",
7309 T, Subp);
7310 end if;
7311 end if;
7313 Next_Elmt (Elmt);
7314 end loop;
7315 end Check_Abstract_Overriding;
7317 ------------------------------------------------
7318 -- Check_Access_Discriminant_Requires_Limited --
7319 ------------------------------------------------
7321 procedure Check_Access_Discriminant_Requires_Limited
7322 (D : Node_Id;
7323 Loc : Node_Id)
7325 begin
7326 -- A discriminant_specification for an access discriminant shall appear
7327 -- only in the declaration for a task or protected type, or for a type
7328 -- with the reserved word 'limited' in its definition or in one of its
7329 -- ancestors. (RM 3.7(10))
7331 if Nkind (Discriminant_Type (D)) = N_Access_Definition
7332 and then not Is_Concurrent_Type (Current_Scope)
7333 and then not Is_Concurrent_Record_Type (Current_Scope)
7334 and then not Is_Limited_Record (Current_Scope)
7335 and then Ekind (Current_Scope) /= E_Limited_Private_Type
7336 then
7337 Error_Msg_N
7338 ("access discriminants allowed only for limited types", Loc);
7339 end if;
7340 end Check_Access_Discriminant_Requires_Limited;
7342 -----------------------------------
7343 -- Check_Aliased_Component_Types --
7344 -----------------------------------
7346 procedure Check_Aliased_Component_Types (T : Entity_Id) is
7347 C : Entity_Id;
7349 begin
7350 -- ??? Also need to check components of record extensions, but not
7351 -- components of protected types (which are always limited).
7353 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
7354 -- types to be unconstrained. This is safe because it is illegal to
7355 -- create access subtypes to such types with explicit discriminant
7356 -- constraints.
7358 if not Is_Limited_Type (T) then
7359 if Ekind (T) = E_Record_Type then
7360 C := First_Component (T);
7361 while Present (C) loop
7362 if Is_Aliased (C)
7363 and then Has_Discriminants (Etype (C))
7364 and then not Is_Constrained (Etype (C))
7365 and then not In_Instance_Body
7366 and then Ada_Version < Ada_05
7367 then
7368 Error_Msg_N
7369 ("aliased component must be constrained ('R'M 3.6(11))",
7371 end if;
7373 Next_Component (C);
7374 end loop;
7376 elsif Ekind (T) = E_Array_Type then
7377 if Has_Aliased_Components (T)
7378 and then Has_Discriminants (Component_Type (T))
7379 and then not Is_Constrained (Component_Type (T))
7380 and then not In_Instance_Body
7381 and then Ada_Version < Ada_05
7382 then
7383 Error_Msg_N
7384 ("aliased component type must be constrained ('R'M 3.6(11))",
7386 end if;
7387 end if;
7388 end if;
7389 end Check_Aliased_Component_Types;
7391 ----------------------
7392 -- Check_Completion --
7393 ----------------------
7395 procedure Check_Completion (Body_Id : Node_Id := Empty) is
7396 E : Entity_Id;
7398 procedure Post_Error;
7399 -- Post error message for lack of completion for entity E
7401 ----------------
7402 -- Post_Error --
7403 ----------------
7405 procedure Post_Error is
7406 begin
7407 if not Comes_From_Source (E) then
7409 if Ekind (E) = E_Task_Type
7410 or else Ekind (E) = E_Protected_Type
7411 then
7412 -- It may be an anonymous protected type created for a
7413 -- single variable. Post error on variable, if present.
7415 declare
7416 Var : Entity_Id;
7418 begin
7419 Var := First_Entity (Current_Scope);
7420 while Present (Var) loop
7421 exit when Etype (Var) = E
7422 and then Comes_From_Source (Var);
7424 Next_Entity (Var);
7425 end loop;
7427 if Present (Var) then
7428 E := Var;
7429 end if;
7430 end;
7431 end if;
7432 end if;
7434 -- If a generated entity has no completion, then either previous
7435 -- semantic errors have disabled the expansion phase, or else we had
7436 -- missing subunits, or else we are compiling without expan- sion,
7437 -- or else something is very wrong.
7439 if not Comes_From_Source (E) then
7440 pragma Assert
7441 (Serious_Errors_Detected > 0
7442 or else Configurable_Run_Time_Violations > 0
7443 or else Subunits_Missing
7444 or else not Expander_Active);
7445 return;
7447 -- Here for source entity
7449 else
7450 -- Here if no body to post the error message, so we post the error
7451 -- on the declaration that has no completion. This is not really
7452 -- the right place to post it, think about this later ???
7454 if No (Body_Id) then
7455 if Is_Type (E) then
7456 Error_Msg_NE
7457 ("missing full declaration for }", Parent (E), E);
7458 else
7459 Error_Msg_NE
7460 ("missing body for &", Parent (E), E);
7461 end if;
7463 -- Package body has no completion for a declaration that appears
7464 -- in the corresponding spec. Post error on the body, with a
7465 -- reference to the non-completed declaration.
7467 else
7468 Error_Msg_Sloc := Sloc (E);
7470 if Is_Type (E) then
7471 Error_Msg_NE
7472 ("missing full declaration for }!", Body_Id, E);
7474 elsif Is_Overloadable (E)
7475 and then Current_Entity_In_Scope (E) /= E
7476 then
7477 -- It may be that the completion is mistyped and appears
7478 -- as a distinct overloading of the entity.
7480 declare
7481 Candidate : constant Entity_Id :=
7482 Current_Entity_In_Scope (E);
7483 Decl : constant Node_Id :=
7484 Unit_Declaration_Node (Candidate);
7486 begin
7487 if Is_Overloadable (Candidate)
7488 and then Ekind (Candidate) = Ekind (E)
7489 and then Nkind (Decl) = N_Subprogram_Body
7490 and then Acts_As_Spec (Decl)
7491 then
7492 Check_Type_Conformant (Candidate, E);
7494 else
7495 Error_Msg_NE ("missing body for & declared#!",
7496 Body_Id, E);
7497 end if;
7498 end;
7499 else
7500 Error_Msg_NE ("missing body for & declared#!",
7501 Body_Id, E);
7502 end if;
7503 end if;
7504 end if;
7505 end Post_Error;
7507 -- Start processing for Check_Completion
7509 begin
7510 E := First_Entity (Current_Scope);
7511 while Present (E) loop
7512 if Is_Intrinsic_Subprogram (E) then
7513 null;
7515 -- The following situation requires special handling: a child
7516 -- unit that appears in the context clause of the body of its
7517 -- parent:
7519 -- procedure Parent.Child (...);
7521 -- with Parent.Child;
7522 -- package body Parent is
7524 -- Here Parent.Child appears as a local entity, but should not
7525 -- be flagged as requiring completion, because it is a
7526 -- compilation unit.
7528 elsif Ekind (E) = E_Function
7529 or else Ekind (E) = E_Procedure
7530 or else Ekind (E) = E_Generic_Function
7531 or else Ekind (E) = E_Generic_Procedure
7532 then
7533 if not Has_Completion (E)
7534 and then not Is_Abstract (E)
7535 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
7536 N_Compilation_Unit
7537 and then Chars (E) /= Name_uSize
7538 then
7539 Post_Error;
7540 end if;
7542 elsif Is_Entry (E) then
7543 if not Has_Completion (E) and then
7544 (Ekind (Scope (E)) = E_Protected_Object
7545 or else Ekind (Scope (E)) = E_Protected_Type)
7546 then
7547 Post_Error;
7548 end if;
7550 elsif Is_Package_Or_Generic_Package (E) then
7551 if Unit_Requires_Body (E) then
7552 if not Has_Completion (E)
7553 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
7554 N_Compilation_Unit
7555 then
7556 Post_Error;
7557 end if;
7559 elsif not Is_Child_Unit (E) then
7560 May_Need_Implicit_Body (E);
7561 end if;
7563 elsif Ekind (E) = E_Incomplete_Type
7564 and then No (Underlying_Type (E))
7565 then
7566 Post_Error;
7568 elsif (Ekind (E) = E_Task_Type or else
7569 Ekind (E) = E_Protected_Type)
7570 and then not Has_Completion (E)
7571 then
7572 Post_Error;
7574 -- A single task declared in the current scope is a constant, verify
7575 -- that the body of its anonymous type is in the same scope. If the
7576 -- task is defined elsewhere, this may be a renaming declaration for
7577 -- which no completion is needed.
7579 elsif Ekind (E) = E_Constant
7580 and then Ekind (Etype (E)) = E_Task_Type
7581 and then not Has_Completion (Etype (E))
7582 and then Scope (Etype (E)) = Current_Scope
7583 then
7584 Post_Error;
7586 elsif Ekind (E) = E_Protected_Object
7587 and then not Has_Completion (Etype (E))
7588 then
7589 Post_Error;
7591 elsif Ekind (E) = E_Record_Type then
7592 if Is_Tagged_Type (E) then
7593 Check_Abstract_Overriding (E);
7594 end if;
7596 Check_Aliased_Component_Types (E);
7598 elsif Ekind (E) = E_Array_Type then
7599 Check_Aliased_Component_Types (E);
7601 end if;
7603 Next_Entity (E);
7604 end loop;
7605 end Check_Completion;
7607 ----------------------------
7608 -- Check_Delta_Expression --
7609 ----------------------------
7611 procedure Check_Delta_Expression (E : Node_Id) is
7612 begin
7613 if not (Is_Real_Type (Etype (E))) then
7614 Wrong_Type (E, Any_Real);
7616 elsif not Is_OK_Static_Expression (E) then
7617 Flag_Non_Static_Expr
7618 ("non-static expression used for delta value!", E);
7620 elsif not UR_Is_Positive (Expr_Value_R (E)) then
7621 Error_Msg_N ("delta expression must be positive", E);
7623 else
7624 return;
7625 end if;
7627 -- If any of above errors occurred, then replace the incorrect
7628 -- expression by the real 0.1, which should prevent further errors.
7630 Rewrite (E,
7631 Make_Real_Literal (Sloc (E), Ureal_Tenth));
7632 Analyze_And_Resolve (E, Standard_Float);
7633 end Check_Delta_Expression;
7635 -----------------------------
7636 -- Check_Digits_Expression --
7637 -----------------------------
7639 procedure Check_Digits_Expression (E : Node_Id) is
7640 begin
7641 if not (Is_Integer_Type (Etype (E))) then
7642 Wrong_Type (E, Any_Integer);
7644 elsif not Is_OK_Static_Expression (E) then
7645 Flag_Non_Static_Expr
7646 ("non-static expression used for digits value!", E);
7648 elsif Expr_Value (E) <= 0 then
7649 Error_Msg_N ("digits value must be greater than zero", E);
7651 else
7652 return;
7653 end if;
7655 -- If any of above errors occurred, then replace the incorrect
7656 -- expression by the integer 1, which should prevent further errors.
7658 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
7659 Analyze_And_Resolve (E, Standard_Integer);
7661 end Check_Digits_Expression;
7663 --------------------------
7664 -- Check_Initialization --
7665 --------------------------
7667 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
7668 begin
7669 if (Is_Limited_Type (T)
7670 or else Is_Limited_Composite (T))
7671 and then not In_Instance
7672 and then not In_Inlined_Body
7673 then
7674 -- Ada 2005 (AI-287): Relax the strictness of the front-end in
7675 -- case of limited aggregates and extension aggregates.
7677 if Ada_Version >= Ada_05
7678 and then (Nkind (Exp) = N_Aggregate
7679 or else Nkind (Exp) = N_Extension_Aggregate)
7680 then
7681 null;
7682 else
7683 Error_Msg_N
7684 ("cannot initialize entities of limited type", Exp);
7685 Explain_Limited_Type (T, Exp);
7686 end if;
7687 end if;
7688 end Check_Initialization;
7690 ------------------------------------
7691 -- Check_Or_Process_Discriminants --
7692 ------------------------------------
7694 -- If an incomplete or private type declaration was already given for the
7695 -- type, the discriminants may have already been processed if they were
7696 -- present on the incomplete declaration. In this case a full conformance
7697 -- check is performed otherwise just process them.
7699 procedure Check_Or_Process_Discriminants
7700 (N : Node_Id;
7701 T : Entity_Id;
7702 Prev : Entity_Id := Empty)
7704 begin
7705 if Has_Discriminants (T) then
7707 -- Make the discriminants visible to component declarations
7709 declare
7710 D : Entity_Id;
7711 Prev : Entity_Id;
7713 begin
7714 D := First_Discriminant (T);
7715 while Present (D) loop
7716 Prev := Current_Entity (D);
7717 Set_Current_Entity (D);
7718 Set_Is_Immediately_Visible (D);
7719 Set_Homonym (D, Prev);
7721 -- Ada 2005 (AI-230): Access discriminant allowed in
7722 -- non-limited record types.
7724 if Ada_Version < Ada_05 then
7726 -- This restriction gets applied to the full type here. It
7727 -- has already been applied earlier to the partial view.
7729 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
7730 end if;
7732 Next_Discriminant (D);
7733 end loop;
7734 end;
7736 elsif Present (Discriminant_Specifications (N)) then
7737 Process_Discriminants (N, Prev);
7738 end if;
7739 end Check_Or_Process_Discriminants;
7741 ----------------------
7742 -- Check_Real_Bound --
7743 ----------------------
7745 procedure Check_Real_Bound (Bound : Node_Id) is
7746 begin
7747 if not Is_Real_Type (Etype (Bound)) then
7748 Error_Msg_N
7749 ("bound in real type definition must be of real type", Bound);
7751 elsif not Is_OK_Static_Expression (Bound) then
7752 Flag_Non_Static_Expr
7753 ("non-static expression used for real type bound!", Bound);
7755 else
7756 return;
7757 end if;
7759 Rewrite
7760 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
7761 Analyze (Bound);
7762 Resolve (Bound, Standard_Float);
7763 end Check_Real_Bound;
7765 ------------------------
7766 -- Collect_Interfaces --
7767 ------------------------
7769 procedure Collect_Interfaces (N : Node_Id; Derived_Type : Entity_Id) is
7770 Intf : Node_Id;
7772 procedure Add_Interface (Iface : Entity_Id);
7773 -- Add one interface
7775 -------------------
7776 -- Add_Interface --
7777 -------------------
7779 procedure Add_Interface (Iface : Entity_Id) is
7780 Elmt : Elmt_Id;
7782 begin
7783 Elmt := First_Elmt (Abstract_Interfaces (Derived_Type));
7784 while Present (Elmt) and then Node (Elmt) /= Iface loop
7785 Next_Elmt (Elmt);
7786 end loop;
7788 if No (Elmt) then
7789 Append_Elmt (Node => Iface,
7790 To => Abstract_Interfaces (Derived_Type));
7791 end if;
7792 end Add_Interface;
7794 -- Start of processing for Collect_Interfaces
7796 begin
7797 pragma Assert (False
7798 or else Nkind (N) = N_Derived_Type_Definition
7799 or else Nkind (N) = N_Record_Definition
7800 or else Nkind (N) = N_Private_Extension_Declaration);
7802 -- Traverse the graph of ancestor interfaces
7804 if Is_Non_Empty_List (Interface_List (N)) then
7805 Intf := First (Interface_List (N));
7806 while Present (Intf) loop
7808 -- Protect against wrong uses. For example:
7809 -- type I is interface;
7810 -- type O is tagged null record;
7811 -- type Wrong is new I and O with null record; -- ERROR
7813 if Is_Interface (Etype (Intf)) then
7815 -- Do not add the interface when the derived type already
7816 -- implements this interface
7818 if not Interface_Present_In_Ancestor (Derived_Type,
7819 Etype (Intf))
7820 then
7821 Collect_Interfaces
7822 (Type_Definition (Parent (Etype (Intf))),
7823 Derived_Type);
7824 Add_Interface (Etype (Intf));
7825 end if;
7826 end if;
7828 Next (Intf);
7829 end loop;
7830 end if;
7831 end Collect_Interfaces;
7833 ------------------------------
7834 -- Complete_Private_Subtype --
7835 ------------------------------
7837 procedure Complete_Private_Subtype
7838 (Priv : Entity_Id;
7839 Full : Entity_Id;
7840 Full_Base : Entity_Id;
7841 Related_Nod : Node_Id)
7843 Save_Next_Entity : Entity_Id;
7844 Save_Homonym : Entity_Id;
7846 begin
7847 -- Set semantic attributes for (implicit) private subtype completion.
7848 -- If the full type has no discriminants, then it is a copy of the full
7849 -- view of the base. Otherwise, it is a subtype of the base with a
7850 -- possible discriminant constraint. Save and restore the original
7851 -- Next_Entity field of full to ensure that the calls to Copy_Node
7852 -- do not corrupt the entity chain.
7854 -- Note that the type of the full view is the same entity as the type of
7855 -- the partial view. In this fashion, the subtype has access to the
7856 -- correct view of the parent.
7858 Save_Next_Entity := Next_Entity (Full);
7859 Save_Homonym := Homonym (Priv);
7861 case Ekind (Full_Base) is
7862 when E_Record_Type |
7863 E_Record_Subtype |
7864 Class_Wide_Kind |
7865 Private_Kind |
7866 Task_Kind |
7867 Protected_Kind =>
7868 Copy_Node (Priv, Full);
7870 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
7871 Set_First_Entity (Full, First_Entity (Full_Base));
7872 Set_Last_Entity (Full, Last_Entity (Full_Base));
7874 when others =>
7875 Copy_Node (Full_Base, Full);
7876 Set_Chars (Full, Chars (Priv));
7877 Conditional_Delay (Full, Priv);
7878 Set_Sloc (Full, Sloc (Priv));
7879 end case;
7881 Set_Next_Entity (Full, Save_Next_Entity);
7882 Set_Homonym (Full, Save_Homonym);
7883 Set_Associated_Node_For_Itype (Full, Related_Nod);
7885 -- Set common attributes for all subtypes
7887 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
7889 -- The Etype of the full view is inconsistent. Gigi needs to see the
7890 -- structural full view, which is what the current scheme gives:
7891 -- the Etype of the full view is the etype of the full base. However,
7892 -- if the full base is a derived type, the full view then looks like
7893 -- a subtype of the parent, not a subtype of the full base. If instead
7894 -- we write:
7896 -- Set_Etype (Full, Full_Base);
7898 -- then we get inconsistencies in the front-end (confusion between
7899 -- views). Several outstanding bugs are related to this ???
7901 Set_Is_First_Subtype (Full, False);
7902 Set_Scope (Full, Scope (Priv));
7903 Set_Size_Info (Full, Full_Base);
7904 Set_RM_Size (Full, RM_Size (Full_Base));
7905 Set_Is_Itype (Full);
7907 -- A subtype of a private-type-without-discriminants, whose full-view
7908 -- has discriminants with default expressions, is not constrained!
7910 if not Has_Discriminants (Priv) then
7911 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
7913 if Has_Discriminants (Full_Base) then
7914 Set_Discriminant_Constraint
7915 (Full, Discriminant_Constraint (Full_Base));
7917 -- The partial view may have been indefinite, the full view
7918 -- might not be.
7920 Set_Has_Unknown_Discriminants
7921 (Full, Has_Unknown_Discriminants (Full_Base));
7922 end if;
7923 end if;
7925 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
7926 Set_Depends_On_Private (Full, Has_Private_Component (Full));
7928 -- Freeze the private subtype entity if its parent is delayed, and not
7929 -- already frozen. We skip this processing if the type is an anonymous
7930 -- subtype of a record component, or is the corresponding record of a
7931 -- protected type, since ???
7933 if not Is_Type (Scope (Full)) then
7934 Set_Has_Delayed_Freeze (Full,
7935 Has_Delayed_Freeze (Full_Base)
7936 and then (not Is_Frozen (Full_Base)));
7937 end if;
7939 Set_Freeze_Node (Full, Empty);
7940 Set_Is_Frozen (Full, False);
7941 Set_Full_View (Priv, Full);
7943 if Has_Discriminants (Full) then
7944 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
7945 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
7947 if Has_Unknown_Discriminants (Full) then
7948 Set_Discriminant_Constraint (Full, No_Elist);
7949 end if;
7950 end if;
7952 if Ekind (Full_Base) = E_Record_Type
7953 and then Has_Discriminants (Full_Base)
7954 and then Has_Discriminants (Priv) -- might not, if errors
7955 and then not Has_Unknown_Discriminants (Priv)
7956 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
7957 then
7958 Create_Constrained_Components
7959 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
7961 -- If the full base is itself derived from private, build a congruent
7962 -- subtype of its underlying type, for use by the back end. For a
7963 -- constrained record component, the declaration cannot be placed on
7964 -- the component list, but it must nevertheless be built an analyzed, to
7965 -- supply enough information for Gigi to compute the size of component.
7967 elsif Ekind (Full_Base) in Private_Kind
7968 and then Is_Derived_Type (Full_Base)
7969 and then Has_Discriminants (Full_Base)
7970 and then (Ekind (Current_Scope) /= E_Record_Subtype)
7971 then
7972 if not Is_Itype (Priv)
7973 and then
7974 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
7975 then
7976 Build_Underlying_Full_View
7977 (Parent (Priv), Full, Etype (Full_Base));
7979 elsif Nkind (Related_Nod) = N_Component_Declaration then
7980 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
7981 end if;
7983 elsif Is_Record_Type (Full_Base) then
7985 -- Show Full is simply a renaming of Full_Base
7987 Set_Cloned_Subtype (Full, Full_Base);
7988 end if;
7990 -- It is unsafe to share to bounds of a scalar type, because the Itype
7991 -- is elaborated on demand, and if a bound is non-static then different
7992 -- orders of elaboration in different units will lead to different
7993 -- external symbols.
7995 if Is_Scalar_Type (Full_Base) then
7996 Set_Scalar_Range (Full,
7997 Make_Range (Sloc (Related_Nod),
7998 Low_Bound =>
7999 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
8000 High_Bound =>
8001 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
8003 -- This completion inherits the bounds of the full parent, but if
8004 -- the parent is an unconstrained floating point type, so is the
8005 -- completion.
8007 if Is_Floating_Point_Type (Full_Base) then
8008 Set_Includes_Infinities
8009 (Scalar_Range (Full), Has_Infinities (Full_Base));
8010 end if;
8011 end if;
8013 -- ??? It seems that a lot of fields are missing that should be copied
8014 -- from Full_Base to Full. Here are some that are introduced in a
8015 -- non-disruptive way but a cleanup is necessary.
8017 if Is_Tagged_Type (Full_Base) then
8018 Set_Is_Tagged_Type (Full);
8019 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
8020 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
8022 -- If this is a subtype of a protected or task type, constrain its
8023 -- corresponding record, unless this is a subtype without constraints,
8024 -- i.e. a simple renaming as with an actual subtype in an instance.
8026 elsif Is_Concurrent_Type (Full_Base) then
8027 if Has_Discriminants (Full)
8028 and then Present (Corresponding_Record_Type (Full_Base))
8029 and then
8030 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
8031 then
8032 Set_Corresponding_Record_Type (Full,
8033 Constrain_Corresponding_Record
8034 (Full, Corresponding_Record_Type (Full_Base),
8035 Related_Nod, Full_Base));
8037 else
8038 Set_Corresponding_Record_Type (Full,
8039 Corresponding_Record_Type (Full_Base));
8040 end if;
8041 end if;
8042 end Complete_Private_Subtype;
8044 -------------------------------------
8045 -- Complete_Subprograms_Derivation --
8046 -------------------------------------
8048 procedure Complete_Subprograms_Derivation
8049 (Partial_View : Entity_Id;
8050 Derived_Type : Entity_Id)
8052 Result : constant Elist_Id := New_Elmt_List;
8053 Elmt_P : Elmt_Id;
8054 Elmt_D : Elmt_Id;
8055 Found : Boolean;
8056 Prim_Op : Entity_Id;
8057 E : Entity_Id;
8059 begin
8060 -- Handle the case in which the full-view is a transitive
8061 -- derivation of the ancestor of the partial view.
8063 -- type I is interface;
8064 -- type T is new I with ...
8066 -- package H is
8067 -- type DT is new I with private;
8068 -- private
8069 -- type DT is new T with ...
8070 -- end;
8072 if Etype (Partial_View) /= Etype (Derived_Type)
8073 and then Is_Interface (Etype (Partial_View))
8074 and then Is_Ancestor (Etype (Partial_View), Etype (Derived_Type))
8075 then
8076 return;
8077 end if;
8079 if Is_Tagged_Type (Partial_View) then
8080 Elmt_P := First_Elmt (Primitive_Operations (Partial_View));
8081 else
8082 Elmt_P := No_Elmt;
8083 end if;
8085 -- Inherit primitives declared with the partial-view
8087 while Present (Elmt_P) loop
8088 Prim_Op := Node (Elmt_P);
8089 Found := False;
8090 Elmt_D := First_Elmt (Primitive_Operations (Derived_Type));
8091 while Present (Elmt_D) loop
8092 if Node (Elmt_D) = Prim_Op then
8093 Found := True;
8094 exit;
8095 end if;
8097 Next_Elmt (Elmt_D);
8098 end loop;
8100 if not Found then
8101 Append_Elmt (Prim_Op, Result);
8103 -- Search for entries associated with abstract interfaces that
8104 -- have been covered by this primitive
8106 Elmt_D := First_Elmt (Primitive_Operations (Derived_Type));
8107 while Present (Elmt_D) loop
8108 E := Node (Elmt_D);
8110 if Chars (E) = Chars (Prim_Op)
8111 and then Is_Abstract (E)
8112 and then Present (Alias (E))
8113 and then Present (DTC_Entity (Alias (E)))
8114 and then Is_Interface (Scope (DTC_Entity (Alias (E))))
8115 then
8116 Remove_Elmt (Primitive_Operations (Derived_Type), Elmt_D);
8117 end if;
8119 Next_Elmt (Elmt_D);
8120 end loop;
8121 end if;
8123 Next_Elmt (Elmt_P);
8124 end loop;
8126 -- Append the entities of the full-view to the list of primitives
8127 -- of derived_type.
8129 Elmt_D := First_Elmt (Result);
8130 while Present (Elmt_D) loop
8131 Append_Elmt (Node (Elmt_D), Primitive_Operations (Derived_Type));
8132 Next_Elmt (Elmt_D);
8133 end loop;
8134 end Complete_Subprograms_Derivation;
8136 ----------------------------
8137 -- Constant_Redeclaration --
8138 ----------------------------
8140 procedure Constant_Redeclaration
8141 (Id : Entity_Id;
8142 N : Node_Id;
8143 T : out Entity_Id)
8145 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
8146 Obj_Def : constant Node_Id := Object_Definition (N);
8147 New_T : Entity_Id;
8149 procedure Check_Possible_Deferred_Completion
8150 (Prev_Id : Entity_Id;
8151 Prev_Obj_Def : Node_Id;
8152 Curr_Obj_Def : Node_Id);
8153 -- Determine whether the two object definitions describe the partial
8154 -- and the full view of a constrained deferred constant. Generate
8155 -- a subtype for the full view and verify that it statically matches
8156 -- the subtype of the partial view.
8158 procedure Check_Recursive_Declaration (Typ : Entity_Id);
8159 -- If deferred constant is an access type initialized with an allocator,
8160 -- check whether there is an illegal recursion in the definition,
8161 -- through a default value of some record subcomponent. This is normally
8162 -- detected when generating init procs, but requires this additional
8163 -- mechanism when expansion is disabled.
8165 ----------------------------------------
8166 -- Check_Possible_Deferred_Completion --
8167 ----------------------------------------
8169 procedure Check_Possible_Deferred_Completion
8170 (Prev_Id : Entity_Id;
8171 Prev_Obj_Def : Node_Id;
8172 Curr_Obj_Def : Node_Id)
8174 begin
8175 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
8176 and then Present (Constraint (Prev_Obj_Def))
8177 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
8178 and then Present (Constraint (Curr_Obj_Def))
8179 then
8180 declare
8181 Loc : constant Source_Ptr := Sloc (N);
8182 Def_Id : constant Entity_Id :=
8183 Make_Defining_Identifier (Loc,
8184 New_Internal_Name ('S'));
8185 Decl : constant Node_Id :=
8186 Make_Subtype_Declaration (Loc,
8187 Defining_Identifier =>
8188 Def_Id,
8189 Subtype_Indication =>
8190 Relocate_Node (Curr_Obj_Def));
8192 begin
8193 Insert_Before_And_Analyze (N, Decl);
8194 Set_Etype (Id, Def_Id);
8196 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
8197 Error_Msg_Sloc := Sloc (Prev_Id);
8198 Error_Msg_N ("subtype does not statically match deferred " &
8199 "declaration#", N);
8200 end if;
8201 end;
8202 end if;
8203 end Check_Possible_Deferred_Completion;
8205 ---------------------------------
8206 -- Check_Recursive_Declaration --
8207 ---------------------------------
8209 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
8210 Comp : Entity_Id;
8212 begin
8213 if Is_Record_Type (Typ) then
8214 Comp := First_Component (Typ);
8215 while Present (Comp) loop
8216 if Comes_From_Source (Comp) then
8217 if Present (Expression (Parent (Comp)))
8218 and then Is_Entity_Name (Expression (Parent (Comp)))
8219 and then Entity (Expression (Parent (Comp))) = Prev
8220 then
8221 Error_Msg_Sloc := Sloc (Parent (Comp));
8222 Error_Msg_NE
8223 ("illegal circularity with declaration for&#",
8224 N, Comp);
8225 return;
8227 elsif Is_Record_Type (Etype (Comp)) then
8228 Check_Recursive_Declaration (Etype (Comp));
8229 end if;
8230 end if;
8232 Next_Component (Comp);
8233 end loop;
8234 end if;
8235 end Check_Recursive_Declaration;
8237 -- Start of processing for Constant_Redeclaration
8239 begin
8240 if Nkind (Parent (Prev)) = N_Object_Declaration then
8241 if Nkind (Object_Definition
8242 (Parent (Prev))) = N_Subtype_Indication
8243 then
8244 -- Find type of new declaration. The constraints of the two
8245 -- views must match statically, but there is no point in
8246 -- creating an itype for the full view.
8248 if Nkind (Obj_Def) = N_Subtype_Indication then
8249 Find_Type (Subtype_Mark (Obj_Def));
8250 New_T := Entity (Subtype_Mark (Obj_Def));
8252 else
8253 Find_Type (Obj_Def);
8254 New_T := Entity (Obj_Def);
8255 end if;
8257 T := Etype (Prev);
8259 else
8260 -- The full view may impose a constraint, even if the partial
8261 -- view does not, so construct the subtype.
8263 New_T := Find_Type_Of_Object (Obj_Def, N);
8264 T := New_T;
8265 end if;
8267 else
8268 -- Current declaration is illegal, diagnosed below in Enter_Name
8270 T := Empty;
8271 New_T := Any_Type;
8272 end if;
8274 -- If previous full declaration exists, or if a homograph is present,
8275 -- let Enter_Name handle it, either with an error, or with the removal
8276 -- of an overridden implicit subprogram.
8278 if Ekind (Prev) /= E_Constant
8279 or else Present (Expression (Parent (Prev)))
8280 or else Present (Full_View (Prev))
8281 then
8282 Enter_Name (Id);
8284 -- Verify that types of both declarations match, or else that both types
8285 -- are anonymous access types whose designated subtypes statically match
8286 -- (as allowed in Ada 2005 by AI-385).
8288 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
8289 and then
8290 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
8291 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
8292 or else not Subtypes_Statically_Match
8293 (Designated_Type (Etype (Prev)),
8294 Designated_Type (Etype (New_T))))
8295 then
8296 Error_Msg_Sloc := Sloc (Prev);
8297 Error_Msg_N ("type does not match declaration#", N);
8298 Set_Full_View (Prev, Id);
8299 Set_Etype (Id, Any_Type);
8301 -- If so, process the full constant declaration
8303 else
8304 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
8305 -- the deferred declaration is constrained, then the subtype defined
8306 -- by the subtype_indication in the full declaration shall match it
8307 -- statically.
8309 Check_Possible_Deferred_Completion
8310 (Prev_Id => Prev,
8311 Prev_Obj_Def => Object_Definition (Parent (Prev)),
8312 Curr_Obj_Def => Obj_Def);
8314 Set_Full_View (Prev, Id);
8315 Set_Is_Public (Id, Is_Public (Prev));
8316 Set_Is_Internal (Id);
8317 Append_Entity (Id, Current_Scope);
8319 -- Check ALIASED present if present before (RM 7.4(7))
8321 if Is_Aliased (Prev)
8322 and then not Aliased_Present (N)
8323 then
8324 Error_Msg_Sloc := Sloc (Prev);
8325 Error_Msg_N ("ALIASED required (see declaration#)", N);
8326 end if;
8328 -- Check that placement is in private part and that the incomplete
8329 -- declaration appeared in the visible part.
8331 if Ekind (Current_Scope) = E_Package
8332 and then not In_Private_Part (Current_Scope)
8333 then
8334 Error_Msg_Sloc := Sloc (Prev);
8335 Error_Msg_N ("full constant for declaration#"
8336 & " must be in private part", N);
8338 elsif Ekind (Current_Scope) = E_Package
8339 and then List_Containing (Parent (Prev))
8340 /= Visible_Declarations
8341 (Specification (Unit_Declaration_Node (Current_Scope)))
8342 then
8343 Error_Msg_N
8344 ("deferred constant must be declared in visible part",
8345 Parent (Prev));
8346 end if;
8348 if Is_Access_Type (T)
8349 and then Nkind (Expression (N)) = N_Allocator
8350 then
8351 Check_Recursive_Declaration (Designated_Type (T));
8352 end if;
8353 end if;
8354 end Constant_Redeclaration;
8356 ----------------------
8357 -- Constrain_Access --
8358 ----------------------
8360 procedure Constrain_Access
8361 (Def_Id : in out Entity_Id;
8362 S : Node_Id;
8363 Related_Nod : Node_Id)
8365 T : constant Entity_Id := Entity (Subtype_Mark (S));
8366 Desig_Type : constant Entity_Id := Designated_Type (T);
8367 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
8368 Constraint_OK : Boolean := True;
8370 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
8371 -- Simple predicate to test for defaulted discriminants
8372 -- Shouldn't this be in sem_util???
8374 ---------------------------------
8375 -- Has_Defaulted_Discriminants --
8376 ---------------------------------
8378 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
8379 begin
8380 return Has_Discriminants (Typ)
8381 and then Present (First_Discriminant (Typ))
8382 and then Present
8383 (Discriminant_Default_Value (First_Discriminant (Typ)));
8384 end Has_Defaulted_Discriminants;
8386 -- Start of processing for Constrain_Access
8388 begin
8389 if Is_Array_Type (Desig_Type) then
8390 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
8392 elsif (Is_Record_Type (Desig_Type)
8393 or else Is_Incomplete_Or_Private_Type (Desig_Type))
8394 and then not Is_Constrained (Desig_Type)
8395 then
8396 -- ??? The following code is a temporary kludge to ignore a
8397 -- discriminant constraint on access type if it is constraining
8398 -- the current record. Avoid creating the implicit subtype of the
8399 -- record we are currently compiling since right now, we cannot
8400 -- handle these. For now, just return the access type itself.
8402 if Desig_Type = Current_Scope
8403 and then No (Def_Id)
8404 then
8405 Set_Ekind (Desig_Subtype, E_Record_Subtype);
8406 Def_Id := Entity (Subtype_Mark (S));
8408 -- This call added to ensure that the constraint is analyzed
8409 -- (needed for a B test). Note that we still return early from
8410 -- this procedure to avoid recursive processing. ???
8412 Constrain_Discriminated_Type
8413 (Desig_Subtype, S, Related_Nod, For_Access => True);
8414 return;
8415 end if;
8417 if Ekind (T) = E_General_Access_Type
8418 and then Has_Private_Declaration (Desig_Type)
8419 and then In_Open_Scopes (Scope (Desig_Type))
8420 then
8421 -- Enforce rule that the constraint is illegal if there is
8422 -- an unconstrained view of the designated type. This means
8423 -- that the partial view (either a private type declaration or
8424 -- a derivation from a private type) has no discriminants.
8425 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
8426 -- by ACATS B371001).
8427 -- Rule updated for Ada 2005: the private type is said to have
8428 -- a constrained partial view, given that objects of the type
8429 -- can be declared.
8431 declare
8432 Pack : constant Node_Id :=
8433 Unit_Declaration_Node (Scope (Desig_Type));
8434 Decls : List_Id;
8435 Decl : Node_Id;
8437 begin
8438 if Nkind (Pack) = N_Package_Declaration then
8439 Decls := Visible_Declarations (Specification (Pack));
8440 Decl := First (Decls);
8441 while Present (Decl) loop
8442 if (Nkind (Decl) = N_Private_Type_Declaration
8443 and then
8444 Chars (Defining_Identifier (Decl)) =
8445 Chars (Desig_Type))
8447 or else
8448 (Nkind (Decl) = N_Full_Type_Declaration
8449 and then
8450 Chars (Defining_Identifier (Decl)) =
8451 Chars (Desig_Type)
8452 and then Is_Derived_Type (Desig_Type)
8453 and then
8454 Has_Private_Declaration (Etype (Desig_Type)))
8455 then
8456 if No (Discriminant_Specifications (Decl)) then
8457 Error_Msg_N
8458 ("cannot constrain general access type if " &
8459 "designated type has constrained partial view",
8461 end if;
8463 exit;
8464 end if;
8466 Next (Decl);
8467 end loop;
8468 end if;
8469 end;
8470 end if;
8472 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
8473 For_Access => True);
8475 elsif (Is_Task_Type (Desig_Type)
8476 or else Is_Protected_Type (Desig_Type))
8477 and then not Is_Constrained (Desig_Type)
8478 then
8479 Constrain_Concurrent
8480 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
8482 else
8483 Error_Msg_N ("invalid constraint on access type", S);
8484 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
8485 Constraint_OK := False;
8486 end if;
8488 if No (Def_Id) then
8489 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
8490 else
8491 Set_Ekind (Def_Id, E_Access_Subtype);
8492 end if;
8494 if Constraint_OK then
8495 Set_Etype (Def_Id, Base_Type (T));
8497 if Is_Private_Type (Desig_Type) then
8498 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
8499 end if;
8500 else
8501 Set_Etype (Def_Id, Any_Type);
8502 end if;
8504 Set_Size_Info (Def_Id, T);
8505 Set_Is_Constrained (Def_Id, Constraint_OK);
8506 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
8507 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
8508 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
8510 Conditional_Delay (Def_Id, T);
8512 -- AI-363 : Subtypes of general access types whose designated types have
8513 -- default discriminants are disallowed. In instances, the rule has to
8514 -- be checked against the actual, of which T is the subtype. In a
8515 -- generic body, the rule is checked assuming that the actual type has
8516 -- defaulted discriminants.
8518 if Ada_Version >= Ada_05 then
8519 if Ekind (Base_Type (T)) = E_General_Access_Type
8520 and then Has_Defaulted_Discriminants (Desig_Type)
8521 then
8522 Error_Msg_N
8523 ("access subype of general access type not allowed", S);
8524 Error_Msg_N ("\ when discriminants have defaults", S);
8526 elsif Is_Access_Type (T)
8527 and then Is_Generic_Type (Desig_Type)
8528 and then Has_Discriminants (Desig_Type)
8529 and then In_Package_Body (Current_Scope)
8530 then
8531 Error_Msg_N ("access subtype not allowed in generic body", S);
8532 Error_Msg_N
8533 ("\ wben designated type is a discriminated formal", S);
8534 end if;
8535 end if;
8536 end Constrain_Access;
8538 ---------------------
8539 -- Constrain_Array --
8540 ---------------------
8542 procedure Constrain_Array
8543 (Def_Id : in out Entity_Id;
8544 SI : Node_Id;
8545 Related_Nod : Node_Id;
8546 Related_Id : Entity_Id;
8547 Suffix : Character)
8549 C : constant Node_Id := Constraint (SI);
8550 Number_Of_Constraints : Nat := 0;
8551 Index : Node_Id;
8552 S, T : Entity_Id;
8553 Constraint_OK : Boolean := True;
8555 begin
8556 T := Entity (Subtype_Mark (SI));
8558 if Ekind (T) in Access_Kind then
8559 T := Designated_Type (T);
8560 end if;
8562 -- If an index constraint follows a subtype mark in a subtype indication
8563 -- then the type or subtype denoted by the subtype mark must not already
8564 -- impose an index constraint. The subtype mark must denote either an
8565 -- unconstrained array type or an access type whose designated type
8566 -- is such an array type... (RM 3.6.1)
8568 if Is_Constrained (T) then
8569 Error_Msg_N
8570 ("array type is already constrained", Subtype_Mark (SI));
8571 Constraint_OK := False;
8573 else
8574 S := First (Constraints (C));
8575 while Present (S) loop
8576 Number_Of_Constraints := Number_Of_Constraints + 1;
8577 Next (S);
8578 end loop;
8580 -- In either case, the index constraint must provide a discrete
8581 -- range for each index of the array type and the type of each
8582 -- discrete range must be the same as that of the corresponding
8583 -- index. (RM 3.6.1)
8585 if Number_Of_Constraints /= Number_Dimensions (T) then
8586 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
8587 Constraint_OK := False;
8589 else
8590 S := First (Constraints (C));
8591 Index := First_Index (T);
8592 Analyze (Index);
8594 -- Apply constraints to each index type
8596 for J in 1 .. Number_Of_Constraints loop
8597 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
8598 Next (Index);
8599 Next (S);
8600 end loop;
8602 end if;
8603 end if;
8605 if No (Def_Id) then
8606 Def_Id :=
8607 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
8608 Set_Parent (Def_Id, Related_Nod);
8610 else
8611 Set_Ekind (Def_Id, E_Array_Subtype);
8612 end if;
8614 Set_Size_Info (Def_Id, (T));
8615 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8616 Set_Etype (Def_Id, Base_Type (T));
8618 if Constraint_OK then
8619 Set_First_Index (Def_Id, First (Constraints (C)));
8620 else
8621 Set_First_Index (Def_Id, First_Index (T));
8622 end if;
8624 Set_Is_Constrained (Def_Id, True);
8625 Set_Is_Aliased (Def_Id, Is_Aliased (T));
8626 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
8628 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
8629 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
8631 -- Build a freeze node if parent still needs one. Also, make sure
8632 -- that the Depends_On_Private status is set (explanation ???)
8633 -- and also that a conditional delay is set.
8635 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
8636 Conditional_Delay (Def_Id, T);
8638 end Constrain_Array;
8640 ------------------------------
8641 -- Constrain_Component_Type --
8642 ------------------------------
8644 function Constrain_Component_Type
8645 (Comp : Entity_Id;
8646 Constrained_Typ : Entity_Id;
8647 Related_Node : Node_Id;
8648 Typ : Entity_Id;
8649 Constraints : Elist_Id) return Entity_Id
8651 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
8652 Compon_Type : constant Entity_Id := Etype (Comp);
8654 function Build_Constrained_Array_Type
8655 (Old_Type : Entity_Id) return Entity_Id;
8656 -- If Old_Type is an array type, one of whose indices is constrained
8657 -- by a discriminant, build an Itype whose constraint replaces the
8658 -- discriminant with its value in the constraint.
8660 function Build_Constrained_Discriminated_Type
8661 (Old_Type : Entity_Id) return Entity_Id;
8662 -- Ditto for record components
8664 function Build_Constrained_Access_Type
8665 (Old_Type : Entity_Id) return Entity_Id;
8666 -- Ditto for access types. Makes use of previous two functions, to
8667 -- constrain designated type.
8669 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
8670 -- T is an array or discriminated type, C is a list of constraints
8671 -- that apply to T. This routine builds the constrained subtype.
8673 function Is_Discriminant (Expr : Node_Id) return Boolean;
8674 -- Returns True if Expr is a discriminant
8676 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
8677 -- Find the value of discriminant Discrim in Constraint
8679 -----------------------------------
8680 -- Build_Constrained_Access_Type --
8681 -----------------------------------
8683 function Build_Constrained_Access_Type
8684 (Old_Type : Entity_Id) return Entity_Id
8686 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
8687 Itype : Entity_Id;
8688 Desig_Subtype : Entity_Id;
8689 Scop : Entity_Id;
8691 begin
8692 -- if the original access type was not embedded in the enclosing
8693 -- type definition, there is no need to produce a new access
8694 -- subtype. In fact every access type with an explicit constraint
8695 -- generates an itype whose scope is the enclosing record.
8697 if not Is_Type (Scope (Old_Type)) then
8698 return Old_Type;
8700 elsif Is_Array_Type (Desig_Type) then
8701 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
8703 elsif Has_Discriminants (Desig_Type) then
8705 -- This may be an access type to an enclosing record type for
8706 -- which we are constructing the constrained components. Return
8707 -- the enclosing record subtype. This is not always correct,
8708 -- but avoids infinite recursion. ???
8710 Desig_Subtype := Any_Type;
8712 for J in reverse 0 .. Scope_Stack.Last loop
8713 Scop := Scope_Stack.Table (J).Entity;
8715 if Is_Type (Scop)
8716 and then Base_Type (Scop) = Base_Type (Desig_Type)
8717 then
8718 Desig_Subtype := Scop;
8719 end if;
8721 exit when not Is_Type (Scop);
8722 end loop;
8724 if Desig_Subtype = Any_Type then
8725 Desig_Subtype :=
8726 Build_Constrained_Discriminated_Type (Desig_Type);
8727 end if;
8729 else
8730 return Old_Type;
8731 end if;
8733 if Desig_Subtype /= Desig_Type then
8735 -- The Related_Node better be here or else we won't be able
8736 -- to attach new itypes to a node in the tree.
8738 pragma Assert (Present (Related_Node));
8740 Itype := Create_Itype (E_Access_Subtype, Related_Node);
8742 Set_Etype (Itype, Base_Type (Old_Type));
8743 Set_Size_Info (Itype, (Old_Type));
8744 Set_Directly_Designated_Type (Itype, Desig_Subtype);
8745 Set_Depends_On_Private (Itype, Has_Private_Component
8746 (Old_Type));
8747 Set_Is_Access_Constant (Itype, Is_Access_Constant
8748 (Old_Type));
8750 -- The new itype needs freezing when it depends on a not frozen
8751 -- type and the enclosing subtype needs freezing.
8753 if Has_Delayed_Freeze (Constrained_Typ)
8754 and then not Is_Frozen (Constrained_Typ)
8755 then
8756 Conditional_Delay (Itype, Base_Type (Old_Type));
8757 end if;
8759 return Itype;
8761 else
8762 return Old_Type;
8763 end if;
8764 end Build_Constrained_Access_Type;
8766 ----------------------------------
8767 -- Build_Constrained_Array_Type --
8768 ----------------------------------
8770 function Build_Constrained_Array_Type
8771 (Old_Type : Entity_Id) return Entity_Id
8773 Lo_Expr : Node_Id;
8774 Hi_Expr : Node_Id;
8775 Old_Index : Node_Id;
8776 Range_Node : Node_Id;
8777 Constr_List : List_Id;
8779 Need_To_Create_Itype : Boolean := False;
8781 begin
8782 Old_Index := First_Index (Old_Type);
8783 while Present (Old_Index) loop
8784 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
8786 if Is_Discriminant (Lo_Expr)
8787 or else Is_Discriminant (Hi_Expr)
8788 then
8789 Need_To_Create_Itype := True;
8790 end if;
8792 Next_Index (Old_Index);
8793 end loop;
8795 if Need_To_Create_Itype then
8796 Constr_List := New_List;
8798 Old_Index := First_Index (Old_Type);
8799 while Present (Old_Index) loop
8800 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
8802 if Is_Discriminant (Lo_Expr) then
8803 Lo_Expr := Get_Discr_Value (Lo_Expr);
8804 end if;
8806 if Is_Discriminant (Hi_Expr) then
8807 Hi_Expr := Get_Discr_Value (Hi_Expr);
8808 end if;
8810 Range_Node :=
8811 Make_Range
8812 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
8814 Append (Range_Node, To => Constr_List);
8816 Next_Index (Old_Index);
8817 end loop;
8819 return Build_Subtype (Old_Type, Constr_List);
8821 else
8822 return Old_Type;
8823 end if;
8824 end Build_Constrained_Array_Type;
8826 ------------------------------------------
8827 -- Build_Constrained_Discriminated_Type --
8828 ------------------------------------------
8830 function Build_Constrained_Discriminated_Type
8831 (Old_Type : Entity_Id) return Entity_Id
8833 Expr : Node_Id;
8834 Constr_List : List_Id;
8835 Old_Constraint : Elmt_Id;
8837 Need_To_Create_Itype : Boolean := False;
8839 begin
8840 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
8841 while Present (Old_Constraint) loop
8842 Expr := Node (Old_Constraint);
8844 if Is_Discriminant (Expr) then
8845 Need_To_Create_Itype := True;
8846 end if;
8848 Next_Elmt (Old_Constraint);
8849 end loop;
8851 if Need_To_Create_Itype then
8852 Constr_List := New_List;
8854 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
8855 while Present (Old_Constraint) loop
8856 Expr := Node (Old_Constraint);
8858 if Is_Discriminant (Expr) then
8859 Expr := Get_Discr_Value (Expr);
8860 end if;
8862 Append (New_Copy_Tree (Expr), To => Constr_List);
8864 Next_Elmt (Old_Constraint);
8865 end loop;
8867 return Build_Subtype (Old_Type, Constr_List);
8869 else
8870 return Old_Type;
8871 end if;
8872 end Build_Constrained_Discriminated_Type;
8874 -------------------
8875 -- Build_Subtype --
8876 -------------------
8878 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
8879 Indic : Node_Id;
8880 Subtyp_Decl : Node_Id;
8881 Def_Id : Entity_Id;
8882 Btyp : Entity_Id := Base_Type (T);
8884 begin
8885 -- The Related_Node better be here or else we won't be able to
8886 -- attach new itypes to a node in the tree.
8888 pragma Assert (Present (Related_Node));
8890 -- If the view of the component's type is incomplete or private
8891 -- with unknown discriminants, then the constraint must be applied
8892 -- to the full type.
8894 if Has_Unknown_Discriminants (Btyp)
8895 and then Present (Underlying_Type (Btyp))
8896 then
8897 Btyp := Underlying_Type (Btyp);
8898 end if;
8900 Indic :=
8901 Make_Subtype_Indication (Loc,
8902 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8903 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
8905 Def_Id := Create_Itype (Ekind (T), Related_Node);
8907 Subtyp_Decl :=
8908 Make_Subtype_Declaration (Loc,
8909 Defining_Identifier => Def_Id,
8910 Subtype_Indication => Indic);
8912 Set_Parent (Subtyp_Decl, Parent (Related_Node));
8914 -- Itypes must be analyzed with checks off (see package Itypes)
8916 Analyze (Subtyp_Decl, Suppress => All_Checks);
8918 return Def_Id;
8919 end Build_Subtype;
8921 ---------------------
8922 -- Get_Discr_Value --
8923 ---------------------
8925 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
8926 D : Entity_Id;
8927 E : Elmt_Id;
8928 G : Elmt_Id;
8930 begin
8931 -- The discriminant may be declared for the type, in which case we
8932 -- find it by iterating over the list of discriminants. If the
8933 -- discriminant is inherited from a parent type, it appears as the
8934 -- corresponding discriminant of the current type. This will be the
8935 -- case when constraining an inherited component whose constraint is
8936 -- given by a discriminant of the parent.
8938 D := First_Discriminant (Typ);
8939 E := First_Elmt (Constraints);
8940 while Present (D) loop
8941 if D = Entity (Discrim)
8942 or else Corresponding_Discriminant (D) = Entity (Discrim)
8943 then
8944 return Node (E);
8945 end if;
8947 Next_Discriminant (D);
8948 Next_Elmt (E);
8949 end loop;
8951 -- The corresponding_Discriminant mechanism is incomplete, because
8952 -- the correspondence between new and old discriminants is not one
8953 -- to one: one new discriminant can constrain several old ones. In
8954 -- that case, scan sequentially the stored_constraint, the list of
8955 -- discriminants of the parents, and the constraints.
8957 if Is_Derived_Type (Typ)
8958 and then Present (Stored_Constraint (Typ))
8959 and then Scope (Entity (Discrim)) = Etype (Typ)
8960 then
8961 D := First_Discriminant (Etype (Typ));
8962 E := First_Elmt (Constraints);
8963 G := First_Elmt (Stored_Constraint (Typ));
8964 while Present (D) loop
8965 if D = Entity (Discrim) then
8966 return Node (E);
8967 end if;
8969 Next_Discriminant (D);
8970 Next_Elmt (E);
8971 Next_Elmt (G);
8972 end loop;
8973 end if;
8975 -- Something is wrong if we did not find the value
8977 raise Program_Error;
8978 end Get_Discr_Value;
8980 ---------------------
8981 -- Is_Discriminant --
8982 ---------------------
8984 function Is_Discriminant (Expr : Node_Id) return Boolean is
8985 Discrim_Scope : Entity_Id;
8987 begin
8988 if Denotes_Discriminant (Expr) then
8989 Discrim_Scope := Scope (Entity (Expr));
8991 -- Either we have a reference to one of Typ's discriminants,
8993 pragma Assert (Discrim_Scope = Typ
8995 -- or to the discriminants of the parent type, in the case
8996 -- of a derivation of a tagged type with variants.
8998 or else Discrim_Scope = Etype (Typ)
8999 or else Full_View (Discrim_Scope) = Etype (Typ)
9001 -- or same as above for the case where the discriminants
9002 -- were declared in Typ's private view.
9004 or else (Is_Private_Type (Discrim_Scope)
9005 and then Chars (Discrim_Scope) = Chars (Typ))
9007 -- or else we are deriving from the full view and the
9008 -- discriminant is declared in the private entity.
9010 or else (Is_Private_Type (Typ)
9011 and then Chars (Discrim_Scope) = Chars (Typ))
9013 -- or we have a class-wide type, in which case make sure the
9014 -- discriminant found belongs to the root type.
9016 or else (Is_Class_Wide_Type (Typ)
9017 and then Etype (Typ) = Discrim_Scope));
9019 return True;
9020 end if;
9022 -- In all other cases we have something wrong
9024 return False;
9025 end Is_Discriminant;
9027 -- Start of processing for Constrain_Component_Type
9029 begin
9030 if Nkind (Parent (Comp)) = N_Component_Declaration
9031 and then Comes_From_Source (Parent (Comp))
9032 and then Comes_From_Source
9033 (Subtype_Indication (Component_Definition (Parent (Comp))))
9034 and then
9035 Is_Entity_Name
9036 (Subtype_Indication (Component_Definition (Parent (Comp))))
9037 then
9038 return Compon_Type;
9040 elsif Is_Array_Type (Compon_Type) then
9041 return Build_Constrained_Array_Type (Compon_Type);
9043 elsif Has_Discriminants (Compon_Type) then
9044 return Build_Constrained_Discriminated_Type (Compon_Type);
9046 elsif Is_Access_Type (Compon_Type) then
9047 return Build_Constrained_Access_Type (Compon_Type);
9049 else
9050 return Compon_Type;
9051 end if;
9052 end Constrain_Component_Type;
9054 --------------------------
9055 -- Constrain_Concurrent --
9056 --------------------------
9058 -- For concurrent types, the associated record value type carries the same
9059 -- discriminants, so when we constrain a concurrent type, we must constrain
9060 -- the corresponding record type as well.
9062 procedure Constrain_Concurrent
9063 (Def_Id : in out Entity_Id;
9064 SI : Node_Id;
9065 Related_Nod : Node_Id;
9066 Related_Id : Entity_Id;
9067 Suffix : Character)
9069 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
9070 T_Val : Entity_Id;
9072 begin
9073 if Ekind (T_Ent) in Access_Kind then
9074 T_Ent := Designated_Type (T_Ent);
9075 end if;
9077 T_Val := Corresponding_Record_Type (T_Ent);
9079 if Present (T_Val) then
9081 if No (Def_Id) then
9082 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
9083 end if;
9085 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
9087 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
9088 Set_Corresponding_Record_Type (Def_Id,
9089 Constrain_Corresponding_Record
9090 (Def_Id, T_Val, Related_Nod, Related_Id));
9092 else
9093 -- If there is no associated record, expansion is disabled and this
9094 -- is a generic context. Create a subtype in any case, so that
9095 -- semantic analysis can proceed.
9097 if No (Def_Id) then
9098 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
9099 end if;
9101 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
9102 end if;
9103 end Constrain_Concurrent;
9105 ------------------------------------
9106 -- Constrain_Corresponding_Record --
9107 ------------------------------------
9109 function Constrain_Corresponding_Record
9110 (Prot_Subt : Entity_Id;
9111 Corr_Rec : Entity_Id;
9112 Related_Nod : Node_Id;
9113 Related_Id : Entity_Id) return Entity_Id
9115 T_Sub : constant Entity_Id :=
9116 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
9118 begin
9119 Set_Etype (T_Sub, Corr_Rec);
9120 Init_Size_Align (T_Sub);
9121 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
9122 Set_Is_Constrained (T_Sub, True);
9123 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
9124 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
9126 Conditional_Delay (T_Sub, Corr_Rec);
9128 if Has_Discriminants (Prot_Subt) then -- False only if errors.
9129 Set_Discriminant_Constraint
9130 (T_Sub, Discriminant_Constraint (Prot_Subt));
9131 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
9132 Create_Constrained_Components
9133 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
9134 end if;
9136 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
9138 return T_Sub;
9139 end Constrain_Corresponding_Record;
9141 -----------------------
9142 -- Constrain_Decimal --
9143 -----------------------
9145 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
9146 T : constant Entity_Id := Entity (Subtype_Mark (S));
9147 C : constant Node_Id := Constraint (S);
9148 Loc : constant Source_Ptr := Sloc (C);
9149 Range_Expr : Node_Id;
9150 Digits_Expr : Node_Id;
9151 Digits_Val : Uint;
9152 Bound_Val : Ureal;
9154 begin
9155 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
9157 if Nkind (C) = N_Range_Constraint then
9158 Range_Expr := Range_Expression (C);
9159 Digits_Val := Digits_Value (T);
9161 else
9162 pragma Assert (Nkind (C) = N_Digits_Constraint);
9163 Digits_Expr := Digits_Expression (C);
9164 Analyze_And_Resolve (Digits_Expr, Any_Integer);
9166 Check_Digits_Expression (Digits_Expr);
9167 Digits_Val := Expr_Value (Digits_Expr);
9169 if Digits_Val > Digits_Value (T) then
9170 Error_Msg_N
9171 ("digits expression is incompatible with subtype", C);
9172 Digits_Val := Digits_Value (T);
9173 end if;
9175 if Present (Range_Constraint (C)) then
9176 Range_Expr := Range_Expression (Range_Constraint (C));
9177 else
9178 Range_Expr := Empty;
9179 end if;
9180 end if;
9182 Set_Etype (Def_Id, Base_Type (T));
9183 Set_Size_Info (Def_Id, (T));
9184 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9185 Set_Delta_Value (Def_Id, Delta_Value (T));
9186 Set_Scale_Value (Def_Id, Scale_Value (T));
9187 Set_Small_Value (Def_Id, Small_Value (T));
9188 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
9189 Set_Digits_Value (Def_Id, Digits_Val);
9191 -- Manufacture range from given digits value if no range present
9193 if No (Range_Expr) then
9194 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
9195 Range_Expr :=
9196 Make_Range (Loc,
9197 Low_Bound =>
9198 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
9199 High_Bound =>
9200 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
9201 end if;
9203 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
9204 Set_Discrete_RM_Size (Def_Id);
9206 -- Unconditionally delay the freeze, since we cannot set size
9207 -- information in all cases correctly until the freeze point.
9209 Set_Has_Delayed_Freeze (Def_Id);
9210 end Constrain_Decimal;
9212 ----------------------------------
9213 -- Constrain_Discriminated_Type --
9214 ----------------------------------
9216 procedure Constrain_Discriminated_Type
9217 (Def_Id : Entity_Id;
9218 S : Node_Id;
9219 Related_Nod : Node_Id;
9220 For_Access : Boolean := False)
9222 E : constant Entity_Id := Entity (Subtype_Mark (S));
9223 T : Entity_Id;
9224 C : Node_Id;
9225 Elist : Elist_Id := New_Elmt_List;
9227 procedure Fixup_Bad_Constraint;
9228 -- This is called after finding a bad constraint, and after having
9229 -- posted an appropriate error message. The mission is to leave the
9230 -- entity T in as reasonable state as possible!
9232 --------------------------
9233 -- Fixup_Bad_Constraint --
9234 --------------------------
9236 procedure Fixup_Bad_Constraint is
9237 begin
9238 -- Set a reasonable Ekind for the entity. For an incomplete type,
9239 -- we can't do much, but for other types, we can set the proper
9240 -- corresponding subtype kind.
9242 if Ekind (T) = E_Incomplete_Type then
9243 Set_Ekind (Def_Id, Ekind (T));
9244 else
9245 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9246 end if;
9248 Set_Etype (Def_Id, Any_Type);
9249 Set_Error_Posted (Def_Id);
9250 end Fixup_Bad_Constraint;
9252 -- Start of processing for Constrain_Discriminated_Type
9254 begin
9255 C := Constraint (S);
9257 -- A discriminant constraint is only allowed in a subtype indication,
9258 -- after a subtype mark. This subtype mark must denote either a type
9259 -- with discriminants, or an access type whose designated type is a
9260 -- type with discriminants. A discriminant constraint specifies the
9261 -- values of these discriminants (RM 3.7.2(5)).
9263 T := Base_Type (Entity (Subtype_Mark (S)));
9265 if Ekind (T) in Access_Kind then
9266 T := Designated_Type (T);
9267 end if;
9269 -- Check that the type has visible discriminants. The type may be
9270 -- a private type with unknown discriminants whose full view has
9271 -- discriminants which are invisible.
9273 if not Has_Discriminants (T)
9274 or else
9275 (Has_Unknown_Discriminants (T)
9276 and then Is_Private_Type (T))
9277 then
9278 Error_Msg_N ("invalid constraint: type has no discriminant", C);
9279 Fixup_Bad_Constraint;
9280 return;
9282 elsif Is_Constrained (E)
9283 or else (Ekind (E) = E_Class_Wide_Subtype
9284 and then Present (Discriminant_Constraint (E)))
9285 then
9286 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
9287 Fixup_Bad_Constraint;
9288 return;
9289 end if;
9291 -- T may be an unconstrained subtype (e.g. a generic actual).
9292 -- Constraint applies to the base type.
9294 T := Base_Type (T);
9296 Elist := Build_Discriminant_Constraints (T, S);
9298 -- If the list returned was empty we had an error in building the
9299 -- discriminant constraint. We have also already signalled an error
9300 -- in the incomplete type case
9302 if Is_Empty_Elmt_List (Elist) then
9303 Fixup_Bad_Constraint;
9304 return;
9305 end if;
9307 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
9308 end Constrain_Discriminated_Type;
9310 ---------------------------
9311 -- Constrain_Enumeration --
9312 ---------------------------
9314 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
9315 T : constant Entity_Id := Entity (Subtype_Mark (S));
9316 C : constant Node_Id := Constraint (S);
9318 begin
9319 Set_Ekind (Def_Id, E_Enumeration_Subtype);
9321 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
9323 Set_Etype (Def_Id, Base_Type (T));
9324 Set_Size_Info (Def_Id, (T));
9325 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9326 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
9328 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9330 Set_Discrete_RM_Size (Def_Id);
9331 end Constrain_Enumeration;
9333 ----------------------
9334 -- Constrain_Float --
9335 ----------------------
9337 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
9338 T : constant Entity_Id := Entity (Subtype_Mark (S));
9339 C : Node_Id;
9340 D : Node_Id;
9341 Rais : Node_Id;
9343 begin
9344 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
9346 Set_Etype (Def_Id, Base_Type (T));
9347 Set_Size_Info (Def_Id, (T));
9348 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9350 -- Process the constraint
9352 C := Constraint (S);
9354 -- Digits constraint present
9356 if Nkind (C) = N_Digits_Constraint then
9357 Check_Restriction (No_Obsolescent_Features, C);
9359 if Warn_On_Obsolescent_Feature then
9360 Error_Msg_N
9361 ("subtype digits constraint is an " &
9362 "obsolescent feature ('R'M 'J.3(8))?", C);
9363 end if;
9365 D := Digits_Expression (C);
9366 Analyze_And_Resolve (D, Any_Integer);
9367 Check_Digits_Expression (D);
9368 Set_Digits_Value (Def_Id, Expr_Value (D));
9370 -- Check that digits value is in range. Obviously we can do this
9371 -- at compile time, but it is strictly a runtime check, and of
9372 -- course there is an ACVC test that checks this!
9374 if Digits_Value (Def_Id) > Digits_Value (T) then
9375 Error_Msg_Uint_1 := Digits_Value (T);
9376 Error_Msg_N ("?digits value is too large, maximum is ^", D);
9377 Rais :=
9378 Make_Raise_Constraint_Error (Sloc (D),
9379 Reason => CE_Range_Check_Failed);
9380 Insert_Action (Declaration_Node (Def_Id), Rais);
9381 end if;
9383 C := Range_Constraint (C);
9385 -- No digits constraint present
9387 else
9388 Set_Digits_Value (Def_Id, Digits_Value (T));
9389 end if;
9391 -- Range constraint present
9393 if Nkind (C) = N_Range_Constraint then
9394 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9396 -- No range constraint present
9398 else
9399 pragma Assert (No (C));
9400 Set_Scalar_Range (Def_Id, Scalar_Range (T));
9401 end if;
9403 Set_Is_Constrained (Def_Id);
9404 end Constrain_Float;
9406 ---------------------
9407 -- Constrain_Index --
9408 ---------------------
9410 procedure Constrain_Index
9411 (Index : Node_Id;
9412 S : Node_Id;
9413 Related_Nod : Node_Id;
9414 Related_Id : Entity_Id;
9415 Suffix : Character;
9416 Suffix_Index : Nat)
9418 Def_Id : Entity_Id;
9419 R : Node_Id := Empty;
9420 T : constant Entity_Id := Etype (Index);
9422 begin
9423 if Nkind (S) = N_Range
9424 or else
9425 (Nkind (S) = N_Attribute_Reference
9426 and then Attribute_Name (S) = Name_Range)
9427 then
9428 -- A Range attribute will transformed into N_Range by Resolve
9430 Analyze (S);
9431 Set_Etype (S, T);
9432 R := S;
9434 Process_Range_Expr_In_Decl (R, T, Empty_List);
9436 if not Error_Posted (S)
9437 and then
9438 (Nkind (S) /= N_Range
9439 or else not Covers (T, (Etype (Low_Bound (S))))
9440 or else not Covers (T, (Etype (High_Bound (S)))))
9441 then
9442 if Base_Type (T) /= Any_Type
9443 and then Etype (Low_Bound (S)) /= Any_Type
9444 and then Etype (High_Bound (S)) /= Any_Type
9445 then
9446 Error_Msg_N ("range expected", S);
9447 end if;
9448 end if;
9450 elsif Nkind (S) = N_Subtype_Indication then
9452 -- The parser has verified that this is a discrete indication
9454 Resolve_Discrete_Subtype_Indication (S, T);
9455 R := Range_Expression (Constraint (S));
9457 elsif Nkind (S) = N_Discriminant_Association then
9459 -- Syntactically valid in subtype indication
9461 Error_Msg_N ("invalid index constraint", S);
9462 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
9463 return;
9465 -- Subtype_Mark case, no anonymous subtypes to construct
9467 else
9468 Analyze (S);
9470 if Is_Entity_Name (S) then
9471 if not Is_Type (Entity (S)) then
9472 Error_Msg_N ("expect subtype mark for index constraint", S);
9474 elsif Base_Type (Entity (S)) /= Base_Type (T) then
9475 Wrong_Type (S, Base_Type (T));
9476 end if;
9478 return;
9480 else
9481 Error_Msg_N ("invalid index constraint", S);
9482 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
9483 return;
9484 end if;
9485 end if;
9487 Def_Id :=
9488 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
9490 Set_Etype (Def_Id, Base_Type (T));
9492 if Is_Modular_Integer_Type (T) then
9493 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
9495 elsif Is_Integer_Type (T) then
9496 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
9498 else
9499 Set_Ekind (Def_Id, E_Enumeration_Subtype);
9500 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
9501 end if;
9503 Set_Size_Info (Def_Id, (T));
9504 Set_RM_Size (Def_Id, RM_Size (T));
9505 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9507 Set_Scalar_Range (Def_Id, R);
9509 Set_Etype (S, Def_Id);
9510 Set_Discrete_RM_Size (Def_Id);
9511 end Constrain_Index;
9513 -----------------------
9514 -- Constrain_Integer --
9515 -----------------------
9517 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
9518 T : constant Entity_Id := Entity (Subtype_Mark (S));
9519 C : constant Node_Id := Constraint (S);
9521 begin
9522 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9524 if Is_Modular_Integer_Type (T) then
9525 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
9526 else
9527 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
9528 end if;
9530 Set_Etype (Def_Id, Base_Type (T));
9531 Set_Size_Info (Def_Id, (T));
9532 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9533 Set_Discrete_RM_Size (Def_Id);
9534 end Constrain_Integer;
9536 ------------------------------
9537 -- Constrain_Ordinary_Fixed --
9538 ------------------------------
9540 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
9541 T : constant Entity_Id := Entity (Subtype_Mark (S));
9542 C : Node_Id;
9543 D : Node_Id;
9544 Rais : Node_Id;
9546 begin
9547 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
9548 Set_Etype (Def_Id, Base_Type (T));
9549 Set_Size_Info (Def_Id, (T));
9550 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9551 Set_Small_Value (Def_Id, Small_Value (T));
9553 -- Process the constraint
9555 C := Constraint (S);
9557 -- Delta constraint present
9559 if Nkind (C) = N_Delta_Constraint then
9560 Check_Restriction (No_Obsolescent_Features, C);
9562 if Warn_On_Obsolescent_Feature then
9563 Error_Msg_S
9564 ("subtype delta constraint is an " &
9565 "obsolescent feature ('R'M 'J.3(7))?");
9566 end if;
9568 D := Delta_Expression (C);
9569 Analyze_And_Resolve (D, Any_Real);
9570 Check_Delta_Expression (D);
9571 Set_Delta_Value (Def_Id, Expr_Value_R (D));
9573 -- Check that delta value is in range. Obviously we can do this
9574 -- at compile time, but it is strictly a runtime check, and of
9575 -- course there is an ACVC test that checks this!
9577 if Delta_Value (Def_Id) < Delta_Value (T) then
9578 Error_Msg_N ("?delta value is too small", D);
9579 Rais :=
9580 Make_Raise_Constraint_Error (Sloc (D),
9581 Reason => CE_Range_Check_Failed);
9582 Insert_Action (Declaration_Node (Def_Id), Rais);
9583 end if;
9585 C := Range_Constraint (C);
9587 -- No delta constraint present
9589 else
9590 Set_Delta_Value (Def_Id, Delta_Value (T));
9591 end if;
9593 -- Range constraint present
9595 if Nkind (C) = N_Range_Constraint then
9596 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9598 -- No range constraint present
9600 else
9601 pragma Assert (No (C));
9602 Set_Scalar_Range (Def_Id, Scalar_Range (T));
9604 end if;
9606 Set_Discrete_RM_Size (Def_Id);
9608 -- Unconditionally delay the freeze, since we cannot set size
9609 -- information in all cases correctly until the freeze point.
9611 Set_Has_Delayed_Freeze (Def_Id);
9612 end Constrain_Ordinary_Fixed;
9614 ---------------------------
9615 -- Convert_Scalar_Bounds --
9616 ---------------------------
9618 procedure Convert_Scalar_Bounds
9619 (N : Node_Id;
9620 Parent_Type : Entity_Id;
9621 Derived_Type : Entity_Id;
9622 Loc : Source_Ptr)
9624 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
9626 Lo : Node_Id;
9627 Hi : Node_Id;
9628 Rng : Node_Id;
9630 begin
9631 Lo := Build_Scalar_Bound
9632 (Type_Low_Bound (Derived_Type),
9633 Parent_Type, Implicit_Base);
9635 Hi := Build_Scalar_Bound
9636 (Type_High_Bound (Derived_Type),
9637 Parent_Type, Implicit_Base);
9639 Rng :=
9640 Make_Range (Loc,
9641 Low_Bound => Lo,
9642 High_Bound => Hi);
9644 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
9646 Set_Parent (Rng, N);
9647 Set_Scalar_Range (Derived_Type, Rng);
9649 -- Analyze the bounds
9651 Analyze_And_Resolve (Lo, Implicit_Base);
9652 Analyze_And_Resolve (Hi, Implicit_Base);
9654 -- Analyze the range itself, except that we do not analyze it if
9655 -- the bounds are real literals, and we have a fixed-point type.
9656 -- The reason for this is that we delay setting the bounds in this
9657 -- case till we know the final Small and Size values (see circuit
9658 -- in Freeze.Freeze_Fixed_Point_Type for further details).
9660 if Is_Fixed_Point_Type (Parent_Type)
9661 and then Nkind (Lo) = N_Real_Literal
9662 and then Nkind (Hi) = N_Real_Literal
9663 then
9664 return;
9666 -- Here we do the analysis of the range
9668 -- Note: we do this manually, since if we do a normal Analyze and
9669 -- Resolve call, there are problems with the conversions used for
9670 -- the derived type range.
9672 else
9673 Set_Etype (Rng, Implicit_Base);
9674 Set_Analyzed (Rng, True);
9675 end if;
9676 end Convert_Scalar_Bounds;
9678 -------------------
9679 -- Copy_And_Swap --
9680 -------------------
9682 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
9683 begin
9684 -- Initialize new full declaration entity by copying the pertinent
9685 -- fields of the corresponding private declaration entity.
9687 -- We temporarily set Ekind to a value appropriate for a type to
9688 -- avoid assert failures in Einfo from checking for setting type
9689 -- attributes on something that is not a type. Ekind (Priv) is an
9690 -- appropriate choice, since it allowed the attributes to be set
9691 -- in the first place. This Ekind value will be modified later.
9693 Set_Ekind (Full, Ekind (Priv));
9695 -- Also set Etype temporarily to Any_Type, again, in the absence
9696 -- of errors, it will be properly reset, and if there are errors,
9697 -- then we want a value of Any_Type to remain.
9699 Set_Etype (Full, Any_Type);
9701 -- Now start copying attributes
9703 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
9705 if Has_Discriminants (Full) then
9706 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
9707 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
9708 end if;
9710 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
9711 Set_Homonym (Full, Homonym (Priv));
9712 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
9713 Set_Is_Public (Full, Is_Public (Priv));
9714 Set_Is_Pure (Full, Is_Pure (Priv));
9715 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
9717 Conditional_Delay (Full, Priv);
9719 if Is_Tagged_Type (Full) then
9720 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
9722 if Priv = Base_Type (Priv) then
9723 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
9724 end if;
9725 end if;
9727 Set_Is_Volatile (Full, Is_Volatile (Priv));
9728 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
9729 Set_Scope (Full, Scope (Priv));
9730 Set_Next_Entity (Full, Next_Entity (Priv));
9731 Set_First_Entity (Full, First_Entity (Priv));
9732 Set_Last_Entity (Full, Last_Entity (Priv));
9734 -- If access types have been recorded for later handling, keep them in
9735 -- the full view so that they get handled when the full view freeze
9736 -- node is expanded.
9738 if Present (Freeze_Node (Priv))
9739 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
9740 then
9741 Ensure_Freeze_Node (Full);
9742 Set_Access_Types_To_Process
9743 (Freeze_Node (Full),
9744 Access_Types_To_Process (Freeze_Node (Priv)));
9745 end if;
9747 -- Swap the two entities. Now Privat is the full type entity and
9748 -- Full is the private one. They will be swapped back at the end
9749 -- of the private part. This swapping ensures that the entity that
9750 -- is visible in the private part is the full declaration.
9752 Exchange_Entities (Priv, Full);
9753 Append_Entity (Full, Scope (Full));
9754 end Copy_And_Swap;
9756 -------------------------------------
9757 -- Copy_Array_Base_Type_Attributes --
9758 -------------------------------------
9760 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
9761 begin
9762 Set_Component_Alignment (T1, Component_Alignment (T2));
9763 Set_Component_Type (T1, Component_Type (T2));
9764 Set_Component_Size (T1, Component_Size (T2));
9765 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
9766 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
9767 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
9768 Set_Has_Task (T1, Has_Task (T2));
9769 Set_Is_Packed (T1, Is_Packed (T2));
9770 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
9771 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
9772 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
9773 end Copy_Array_Base_Type_Attributes;
9775 -----------------------------------
9776 -- Copy_Array_Subtype_Attributes --
9777 -----------------------------------
9779 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
9780 begin
9781 Set_Size_Info (T1, T2);
9783 Set_First_Index (T1, First_Index (T2));
9784 Set_Is_Aliased (T1, Is_Aliased (T2));
9785 Set_Is_Atomic (T1, Is_Atomic (T2));
9786 Set_Is_Volatile (T1, Is_Volatile (T2));
9787 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
9788 Set_Is_Constrained (T1, Is_Constrained (T2));
9789 Set_Depends_On_Private (T1, Has_Private_Component (T2));
9790 Set_First_Rep_Item (T1, First_Rep_Item (T2));
9791 Set_Convention (T1, Convention (T2));
9792 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
9793 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
9794 end Copy_Array_Subtype_Attributes;
9796 -----------------------------------
9797 -- Create_Constrained_Components --
9798 -----------------------------------
9800 procedure Create_Constrained_Components
9801 (Subt : Entity_Id;
9802 Decl_Node : Node_Id;
9803 Typ : Entity_Id;
9804 Constraints : Elist_Id)
9806 Loc : constant Source_Ptr := Sloc (Subt);
9807 Comp_List : constant Elist_Id := New_Elmt_List;
9808 Parent_Type : constant Entity_Id := Etype (Typ);
9809 Assoc_List : constant List_Id := New_List;
9810 Discr_Val : Elmt_Id;
9811 Errors : Boolean;
9812 New_C : Entity_Id;
9813 Old_C : Entity_Id;
9814 Is_Static : Boolean := True;
9816 procedure Collect_Fixed_Components (Typ : Entity_Id);
9817 -- Collect parent type components that do not appear in a variant part
9819 procedure Create_All_Components;
9820 -- Iterate over Comp_List to create the components of the subtype
9822 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
9823 -- Creates a new component from Old_Compon, copying all the fields from
9824 -- it, including its Etype, inserts the new component in the Subt entity
9825 -- chain and returns the new component.
9827 function Is_Variant_Record (T : Entity_Id) return Boolean;
9828 -- If true, and discriminants are static, collect only components from
9829 -- variants selected by discriminant values.
9831 ------------------------------
9832 -- Collect_Fixed_Components --
9833 ------------------------------
9835 procedure Collect_Fixed_Components (Typ : Entity_Id) is
9836 begin
9837 -- Build association list for discriminants, and find components of the
9838 -- variant part selected by the values of the discriminants.
9840 Old_C := First_Discriminant (Typ);
9841 Discr_Val := First_Elmt (Constraints);
9842 while Present (Old_C) loop
9843 Append_To (Assoc_List,
9844 Make_Component_Association (Loc,
9845 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
9846 Expression => New_Copy (Node (Discr_Val))));
9848 Next_Elmt (Discr_Val);
9849 Next_Discriminant (Old_C);
9850 end loop;
9852 -- The tag, and the possible parent and controller components
9853 -- are unconditionally in the subtype.
9855 if Is_Tagged_Type (Typ)
9856 or else Has_Controlled_Component (Typ)
9857 then
9858 Old_C := First_Component (Typ);
9859 while Present (Old_C) loop
9860 if Chars ((Old_C)) = Name_uTag
9861 or else Chars ((Old_C)) = Name_uParent
9862 or else Chars ((Old_C)) = Name_uController
9863 then
9864 Append_Elmt (Old_C, Comp_List);
9865 end if;
9867 Next_Component (Old_C);
9868 end loop;
9869 end if;
9870 end Collect_Fixed_Components;
9872 ---------------------------
9873 -- Create_All_Components --
9874 ---------------------------
9876 procedure Create_All_Components is
9877 Comp : Elmt_Id;
9879 begin
9880 Comp := First_Elmt (Comp_List);
9881 while Present (Comp) loop
9882 Old_C := Node (Comp);
9883 New_C := Create_Component (Old_C);
9885 Set_Etype
9886 (New_C,
9887 Constrain_Component_Type
9888 (Old_C, Subt, Decl_Node, Typ, Constraints));
9889 Set_Is_Public (New_C, Is_Public (Subt));
9891 Next_Elmt (Comp);
9892 end loop;
9893 end Create_All_Components;
9895 ----------------------
9896 -- Create_Component --
9897 ----------------------
9899 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
9900 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
9902 begin
9903 -- Set the parent so we have a proper link for freezing etc. This is
9904 -- not a real parent pointer, since of course our parent does not own
9905 -- up to us and reference us, we are an illegitimate child of the
9906 -- original parent!
9908 Set_Parent (New_Compon, Parent (Old_Compon));
9910 -- If the old component's Esize was already determined and is a
9911 -- static value, then the new component simply inherits it. Otherwise
9912 -- the old component's size may require run-time determination, but
9913 -- the new component's size still might be statically determinable
9914 -- (if, for example it has a static constraint). In that case we want
9915 -- Layout_Type to recompute the component's size, so we reset its
9916 -- size and positional fields.
9918 if Frontend_Layout_On_Target
9919 and then not Known_Static_Esize (Old_Compon)
9920 then
9921 Set_Esize (New_Compon, Uint_0);
9922 Init_Normalized_First_Bit (New_Compon);
9923 Init_Normalized_Position (New_Compon);
9924 Init_Normalized_Position_Max (New_Compon);
9925 end if;
9927 -- We do not want this node marked as Comes_From_Source, since
9928 -- otherwise it would get first class status and a separate cross-
9929 -- reference line would be generated. Illegitimate children do not
9930 -- rate such recognition.
9932 Set_Comes_From_Source (New_Compon, False);
9934 -- But it is a real entity, and a birth certificate must be properly
9935 -- registered by entering it into the entity list.
9937 Enter_Name (New_Compon);
9939 return New_Compon;
9940 end Create_Component;
9942 -----------------------
9943 -- Is_Variant_Record --
9944 -----------------------
9946 function Is_Variant_Record (T : Entity_Id) return Boolean is
9947 begin
9948 return Nkind (Parent (T)) = N_Full_Type_Declaration
9949 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
9950 and then Present (Component_List (Type_Definition (Parent (T))))
9951 and then Present (
9952 Variant_Part (Component_List (Type_Definition (Parent (T)))));
9953 end Is_Variant_Record;
9955 -- Start of processing for Create_Constrained_Components
9957 begin
9958 pragma Assert (Subt /= Base_Type (Subt));
9959 pragma Assert (Typ = Base_Type (Typ));
9961 Set_First_Entity (Subt, Empty);
9962 Set_Last_Entity (Subt, Empty);
9964 -- Check whether constraint is fully static, in which case we can
9965 -- optimize the list of components.
9967 Discr_Val := First_Elmt (Constraints);
9968 while Present (Discr_Val) loop
9969 if not Is_OK_Static_Expression (Node (Discr_Val)) then
9970 Is_Static := False;
9971 exit;
9972 end if;
9974 Next_Elmt (Discr_Val);
9975 end loop;
9977 New_Scope (Subt);
9979 -- Inherit the discriminants of the parent type
9981 Old_C := First_Discriminant (Typ);
9982 while Present (Old_C) loop
9983 New_C := Create_Component (Old_C);
9984 Set_Is_Public (New_C, Is_Public (Subt));
9985 Next_Discriminant (Old_C);
9986 end loop;
9988 if Is_Static
9989 and then Is_Variant_Record (Typ)
9990 then
9991 Collect_Fixed_Components (Typ);
9993 Gather_Components (
9994 Typ,
9995 Component_List (Type_Definition (Parent (Typ))),
9996 Governed_By => Assoc_List,
9997 Into => Comp_List,
9998 Report_Errors => Errors);
9999 pragma Assert (not Errors);
10001 Create_All_Components;
10003 -- If the subtype declaration is created for a tagged type derivation
10004 -- with constraints, we retrieve the record definition of the parent
10005 -- type to select the components of the proper variant.
10007 elsif Is_Static
10008 and then Is_Tagged_Type (Typ)
10009 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
10010 and then
10011 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
10012 and then Is_Variant_Record (Parent_Type)
10013 then
10014 Collect_Fixed_Components (Typ);
10016 Gather_Components (
10017 Typ,
10018 Component_List (Type_Definition (Parent (Parent_Type))),
10019 Governed_By => Assoc_List,
10020 Into => Comp_List,
10021 Report_Errors => Errors);
10022 pragma Assert (not Errors);
10024 -- If the tagged derivation has a type extension, collect all the
10025 -- new components therein.
10027 if Present
10028 (Record_Extension_Part (Type_Definition (Parent (Typ))))
10029 then
10030 Old_C := First_Component (Typ);
10031 while Present (Old_C) loop
10032 if Original_Record_Component (Old_C) = Old_C
10033 and then Chars (Old_C) /= Name_uTag
10034 and then Chars (Old_C) /= Name_uParent
10035 and then Chars (Old_C) /= Name_uController
10036 then
10037 Append_Elmt (Old_C, Comp_List);
10038 end if;
10040 Next_Component (Old_C);
10041 end loop;
10042 end if;
10044 Create_All_Components;
10046 else
10047 -- If discriminants are not static, or if this is a multi-level type
10048 -- extension, we have to include all components of the parent type.
10050 Old_C := First_Component (Typ);
10051 while Present (Old_C) loop
10052 New_C := Create_Component (Old_C);
10054 Set_Etype
10055 (New_C,
10056 Constrain_Component_Type
10057 (Old_C, Subt, Decl_Node, Typ, Constraints));
10058 Set_Is_Public (New_C, Is_Public (Subt));
10060 Next_Component (Old_C);
10061 end loop;
10062 end if;
10064 End_Scope;
10065 end Create_Constrained_Components;
10067 ------------------------------------------
10068 -- Decimal_Fixed_Point_Type_Declaration --
10069 ------------------------------------------
10071 procedure Decimal_Fixed_Point_Type_Declaration
10072 (T : Entity_Id;
10073 Def : Node_Id)
10075 Loc : constant Source_Ptr := Sloc (Def);
10076 Digs_Expr : constant Node_Id := Digits_Expression (Def);
10077 Delta_Expr : constant Node_Id := Delta_Expression (Def);
10078 Implicit_Base : Entity_Id;
10079 Digs_Val : Uint;
10080 Delta_Val : Ureal;
10081 Scale_Val : Uint;
10082 Bound_Val : Ureal;
10084 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
10086 begin
10087 Check_Restriction (No_Fixed_Point, Def);
10089 -- Create implicit base type
10091 Implicit_Base :=
10092 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
10093 Set_Etype (Implicit_Base, Implicit_Base);
10095 -- Analyze and process delta expression
10097 Analyze_And_Resolve (Delta_Expr, Universal_Real);
10099 Check_Delta_Expression (Delta_Expr);
10100 Delta_Val := Expr_Value_R (Delta_Expr);
10102 -- Check delta is power of 10, and determine scale value from it
10104 declare
10105 Val : Ureal;
10107 begin
10108 Scale_Val := Uint_0;
10109 Val := Delta_Val;
10111 if Val < Ureal_1 then
10112 while Val < Ureal_1 loop
10113 Val := Val * Ureal_10;
10114 Scale_Val := Scale_Val + 1;
10115 end loop;
10117 if Scale_Val > 18 then
10118 Error_Msg_N ("scale exceeds maximum value of 18", Def);
10119 Scale_Val := UI_From_Int (+18);
10120 end if;
10122 else
10123 while Val > Ureal_1 loop
10124 Val := Val / Ureal_10;
10125 Scale_Val := Scale_Val - 1;
10126 end loop;
10128 if Scale_Val < -18 then
10129 Error_Msg_N ("scale is less than minimum value of -18", Def);
10130 Scale_Val := UI_From_Int (-18);
10131 end if;
10132 end if;
10134 if Val /= Ureal_1 then
10135 Error_Msg_N ("delta expression must be a power of 10", Def);
10136 Delta_Val := Ureal_10 ** (-Scale_Val);
10137 end if;
10138 end;
10140 -- Set delta, scale and small (small = delta for decimal type)
10142 Set_Delta_Value (Implicit_Base, Delta_Val);
10143 Set_Scale_Value (Implicit_Base, Scale_Val);
10144 Set_Small_Value (Implicit_Base, Delta_Val);
10146 -- Analyze and process digits expression
10148 Analyze_And_Resolve (Digs_Expr, Any_Integer);
10149 Check_Digits_Expression (Digs_Expr);
10150 Digs_Val := Expr_Value (Digs_Expr);
10152 if Digs_Val > 18 then
10153 Digs_Val := UI_From_Int (+18);
10154 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
10155 end if;
10157 Set_Digits_Value (Implicit_Base, Digs_Val);
10158 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
10160 -- Set range of base type from digits value for now. This will be
10161 -- expanded to represent the true underlying base range by Freeze.
10163 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
10165 -- Set size to zero for now, size will be set at freeze time. We have
10166 -- to do this for ordinary fixed-point, because the size depends on
10167 -- the specified small, and we might as well do the same for decimal
10168 -- fixed-point.
10170 Init_Size_Align (Implicit_Base);
10172 -- If there are bounds given in the declaration use them as the
10173 -- bounds of the first named subtype.
10175 if Present (Real_Range_Specification (Def)) then
10176 declare
10177 RRS : constant Node_Id := Real_Range_Specification (Def);
10178 Low : constant Node_Id := Low_Bound (RRS);
10179 High : constant Node_Id := High_Bound (RRS);
10180 Low_Val : Ureal;
10181 High_Val : Ureal;
10183 begin
10184 Analyze_And_Resolve (Low, Any_Real);
10185 Analyze_And_Resolve (High, Any_Real);
10186 Check_Real_Bound (Low);
10187 Check_Real_Bound (High);
10188 Low_Val := Expr_Value_R (Low);
10189 High_Val := Expr_Value_R (High);
10191 if Low_Val < (-Bound_Val) then
10192 Error_Msg_N
10193 ("range low bound too small for digits value", Low);
10194 Low_Val := -Bound_Val;
10195 end if;
10197 if High_Val > Bound_Val then
10198 Error_Msg_N
10199 ("range high bound too large for digits value", High);
10200 High_Val := Bound_Val;
10201 end if;
10203 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
10204 end;
10206 -- If no explicit range, use range that corresponds to given
10207 -- digits value. This will end up as the final range for the
10208 -- first subtype.
10210 else
10211 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
10212 end if;
10214 -- Complete entity for first subtype
10216 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
10217 Set_Etype (T, Implicit_Base);
10218 Set_Size_Info (T, Implicit_Base);
10219 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
10220 Set_Digits_Value (T, Digs_Val);
10221 Set_Delta_Value (T, Delta_Val);
10222 Set_Small_Value (T, Delta_Val);
10223 Set_Scale_Value (T, Scale_Val);
10224 Set_Is_Constrained (T);
10225 end Decimal_Fixed_Point_Type_Declaration;
10227 ---------------------------------
10228 -- Derive_Interface_Subprogram --
10229 ---------------------------------
10231 procedure Derive_Interface_Subprograms (Derived_Type : Entity_Id) is
10233 procedure Do_Derivation (T : Entity_Id);
10234 -- This inner subprograms is used to climb to the ancestors.
10235 -- It is needed to add the derivations to the Derived_Type.
10237 procedure Do_Derivation (T : Entity_Id) is
10238 Etyp : constant Entity_Id := Etype (T);
10239 AI : Elmt_Id;
10241 begin
10242 if Etyp /= T
10243 and then Is_Interface (Etyp)
10244 then
10245 Do_Derivation (Etyp);
10246 end if;
10248 if Present (Abstract_Interfaces (T))
10249 and then not Is_Empty_Elmt_List (Abstract_Interfaces (T))
10250 then
10251 AI := First_Elmt (Abstract_Interfaces (T));
10252 while Present (AI) loop
10253 if not Is_Ancestor (Node (AI), Derived_Type) then
10254 Derive_Subprograms
10255 (Parent_Type => Node (AI),
10256 Derived_Type => Derived_Type,
10257 No_Predefined_Prims => True);
10258 end if;
10260 Next_Elmt (AI);
10261 end loop;
10262 end if;
10263 end Do_Derivation;
10265 begin
10266 Do_Derivation (Derived_Type);
10268 -- At this point the list of primitive operations of Derived_Type
10269 -- contains the entities corresponding to all the subprograms of all the
10270 -- implemented interfaces. If N interfaces have subprograms with the
10271 -- same profile we have N entities in this list because each one must be
10272 -- allocated in its corresponding virtual table.
10274 -- Its alias attribute references its original interface subprogram.
10275 -- When overridden, the alias attribute is later saved in the
10276 -- Abstract_Interface_Alias attribute.
10278 end Derive_Interface_Subprograms;
10280 -----------------------
10281 -- Derive_Subprogram --
10282 -----------------------
10284 procedure Derive_Subprogram
10285 (New_Subp : in out Entity_Id;
10286 Parent_Subp : Entity_Id;
10287 Derived_Type : Entity_Id;
10288 Parent_Type : Entity_Id;
10289 Actual_Subp : Entity_Id := Empty)
10291 Formal : Entity_Id;
10292 New_Formal : Entity_Id;
10293 Visible_Subp : Entity_Id := Parent_Subp;
10295 function Is_Private_Overriding return Boolean;
10296 -- If Subp is a private overriding of a visible operation, the in-
10297 -- herited operation derives from the overridden op (even though
10298 -- its body is the overriding one) and the inherited operation is
10299 -- visible now. See sem_disp to see the details of the handling of
10300 -- the overridden subprogram, which is removed from the list of
10301 -- primitive operations of the type. The overridden subprogram is
10302 -- saved locally in Visible_Subp, and used to diagnose abstract
10303 -- operations that need overriding in the derived type.
10305 procedure Replace_Type (Id, New_Id : Entity_Id);
10306 -- When the type is an anonymous access type, create a new access type
10307 -- designating the derived type.
10309 procedure Set_Derived_Name;
10310 -- This procedure sets the appropriate Chars name for New_Subp. This
10311 -- is normally just a copy of the parent name. An exception arises for
10312 -- type support subprograms, where the name is changed to reflect the
10313 -- name of the derived type, e.g. if type foo is derived from type bar,
10314 -- then a procedure barDA is derived with a name fooDA.
10316 ---------------------------
10317 -- Is_Private_Overriding --
10318 ---------------------------
10320 function Is_Private_Overriding return Boolean is
10321 Prev : Entity_Id;
10323 begin
10324 -- The visible operation that is overridden is a homonym of the
10325 -- parent subprogram. We scan the homonym chain to find the one
10326 -- whose alias is the subprogram we are deriving.
10328 Prev := Current_Entity (Parent_Subp);
10329 while Present (Prev) loop
10330 if Is_Dispatching_Operation (Parent_Subp)
10331 and then Present (Prev)
10332 and then Ekind (Prev) = Ekind (Parent_Subp)
10333 and then Alias (Prev) = Parent_Subp
10334 and then Scope (Parent_Subp) = Scope (Prev)
10335 and then
10336 (not Is_Hidden (Prev)
10337 or else
10339 -- Ada 2005 (AI-251): Entities associated with overridden
10340 -- interface subprograms are always marked as hidden; in
10341 -- this case the field abstract_interface_alias references
10342 -- the original entity (cf. override_dispatching_operation).
10344 (Atree.Present (Abstract_Interface_Alias (Prev))
10345 and then not Is_Hidden (Abstract_Interface_Alias (Prev))))
10346 then
10347 Visible_Subp := Prev;
10348 return True;
10349 end if;
10351 Prev := Homonym (Prev);
10352 end loop;
10354 return False;
10355 end Is_Private_Overriding;
10357 ------------------
10358 -- Replace_Type --
10359 ------------------
10361 procedure Replace_Type (Id, New_Id : Entity_Id) is
10362 Acc_Type : Entity_Id;
10363 IR : Node_Id;
10364 Par : constant Node_Id := Parent (Derived_Type);
10366 begin
10367 -- When the type is an anonymous access type, create a new access
10368 -- type designating the derived type. This itype must be elaborated
10369 -- at the point of the derivation, not on subsequent calls that may
10370 -- be out of the proper scope for Gigi, so we insert a reference to
10371 -- it after the derivation.
10373 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
10374 declare
10375 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
10377 begin
10378 if Ekind (Desig_Typ) = E_Record_Type_With_Private
10379 and then Present (Full_View (Desig_Typ))
10380 and then not Is_Private_Type (Parent_Type)
10381 then
10382 Desig_Typ := Full_View (Desig_Typ);
10383 end if;
10385 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
10386 Acc_Type := New_Copy (Etype (Id));
10387 Set_Etype (Acc_Type, Acc_Type);
10388 Set_Scope (Acc_Type, New_Subp);
10390 -- Compute size of anonymous access type
10392 if Is_Array_Type (Desig_Typ)
10393 and then not Is_Constrained (Desig_Typ)
10394 then
10395 Init_Size (Acc_Type, 2 * System_Address_Size);
10396 else
10397 Init_Size (Acc_Type, System_Address_Size);
10398 end if;
10400 Init_Alignment (Acc_Type);
10401 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
10403 Set_Etype (New_Id, Acc_Type);
10404 Set_Scope (New_Id, New_Subp);
10406 -- Create a reference to it
10408 IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
10409 Set_Itype (IR, Acc_Type);
10410 Insert_After (Parent (Derived_Type), IR);
10412 else
10413 Set_Etype (New_Id, Etype (Id));
10414 end if;
10415 end;
10417 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
10418 or else
10419 (Ekind (Etype (Id)) = E_Record_Type_With_Private
10420 and then Present (Full_View (Etype (Id)))
10421 and then
10422 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
10423 then
10424 -- Constraint checks on formals are generated during expansion,
10425 -- based on the signature of the original subprogram. The bounds
10426 -- of the derived type are not relevant, and thus we can use
10427 -- the base type for the formals. However, the return type may be
10428 -- used in a context that requires that the proper static bounds
10429 -- be used (a case statement, for example) and for those cases
10430 -- we must use the derived type (first subtype), not its base.
10432 -- If the derived_type_definition has no constraints, we know that
10433 -- the derived type has the same constraints as the first subtype
10434 -- of the parent, and we can also use it rather than its base,
10435 -- which can lead to more efficient code.
10437 if Etype (Id) = Parent_Type then
10438 if Is_Scalar_Type (Parent_Type)
10439 and then
10440 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
10441 then
10442 Set_Etype (New_Id, Derived_Type);
10444 elsif Nkind (Par) = N_Full_Type_Declaration
10445 and then
10446 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
10447 and then
10448 Is_Entity_Name
10449 (Subtype_Indication (Type_Definition (Par)))
10450 then
10451 Set_Etype (New_Id, Derived_Type);
10453 else
10454 Set_Etype (New_Id, Base_Type (Derived_Type));
10455 end if;
10457 else
10458 Set_Etype (New_Id, Base_Type (Derived_Type));
10459 end if;
10461 else
10462 Set_Etype (New_Id, Etype (Id));
10463 end if;
10464 end Replace_Type;
10466 ----------------------
10467 -- Set_Derived_Name --
10468 ----------------------
10470 procedure Set_Derived_Name is
10471 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
10472 begin
10473 if Nm = TSS_Null then
10474 Set_Chars (New_Subp, Chars (Parent_Subp));
10475 else
10476 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
10477 end if;
10478 end Set_Derived_Name;
10480 -- Start of processing for Derive_Subprogram
10482 begin
10483 New_Subp :=
10484 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
10485 Set_Ekind (New_Subp, Ekind (Parent_Subp));
10487 -- Check whether the inherited subprogram is a private operation that
10488 -- should be inherited but not yet made visible. Such subprograms can
10489 -- become visible at a later point (e.g., the private part of a public
10490 -- child unit) via Declare_Inherited_Private_Subprograms. If the
10491 -- following predicate is true, then this is not such a private
10492 -- operation and the subprogram simply inherits the name of the parent
10493 -- subprogram. Note the special check for the names of controlled
10494 -- operations, which are currently exempted from being inherited with
10495 -- a hidden name because they must be findable for generation of
10496 -- implicit run-time calls.
10498 if not Is_Hidden (Parent_Subp)
10499 or else Is_Internal (Parent_Subp)
10500 or else Is_Private_Overriding
10501 or else Is_Internal_Name (Chars (Parent_Subp))
10502 or else Chars (Parent_Subp) = Name_Initialize
10503 or else Chars (Parent_Subp) = Name_Adjust
10504 or else Chars (Parent_Subp) = Name_Finalize
10505 then
10506 Set_Derived_Name;
10508 -- If parent is hidden, this can be a regular derivation if the
10509 -- parent is immediately visible in a non-instantiating context,
10510 -- or if we are in the private part of an instance. This test
10511 -- should still be refined ???
10513 -- The test for In_Instance_Not_Visible avoids inheriting the derived
10514 -- operation as a non-visible operation in cases where the parent
10515 -- subprogram might not be visible now, but was visible within the
10516 -- original generic, so it would be wrong to make the inherited
10517 -- subprogram non-visible now. (Not clear if this test is fully
10518 -- correct; are there any cases where we should declare the inherited
10519 -- operation as not visible to avoid it being overridden, e.g., when
10520 -- the parent type is a generic actual with private primitives ???)
10522 -- (they should be treated the same as other private inherited
10523 -- subprograms, but it's not clear how to do this cleanly). ???
10525 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
10526 and then Is_Immediately_Visible (Parent_Subp)
10527 and then not In_Instance)
10528 or else In_Instance_Not_Visible
10529 then
10530 Set_Derived_Name;
10532 -- The type is inheriting a private operation, so enter
10533 -- it with a special name so it can't be overridden.
10535 else
10536 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
10537 end if;
10539 Set_Parent (New_Subp, Parent (Derived_Type));
10540 Replace_Type (Parent_Subp, New_Subp);
10541 Conditional_Delay (New_Subp, Parent_Subp);
10543 Formal := First_Formal (Parent_Subp);
10544 while Present (Formal) loop
10545 New_Formal := New_Copy (Formal);
10547 -- Normally we do not go copying parents, but in the case of
10548 -- formals, we need to link up to the declaration (which is the
10549 -- parameter specification), and it is fine to link up to the
10550 -- original formal's parameter specification in this case.
10552 Set_Parent (New_Formal, Parent (Formal));
10554 Append_Entity (New_Formal, New_Subp);
10556 Replace_Type (Formal, New_Formal);
10557 Next_Formal (Formal);
10558 end loop;
10560 -- If this derivation corresponds to a tagged generic actual, then
10561 -- primitive operations rename those of the actual. Otherwise the
10562 -- primitive operations rename those of the parent type, If the
10563 -- parent renames an intrinsic operator, so does the new subprogram.
10564 -- We except concatenation, which is always properly typed, and does
10565 -- not get expanded as other intrinsic operations.
10567 if No (Actual_Subp) then
10568 if Is_Intrinsic_Subprogram (Parent_Subp) then
10569 Set_Is_Intrinsic_Subprogram (New_Subp);
10571 if Present (Alias (Parent_Subp))
10572 and then Chars (Parent_Subp) /= Name_Op_Concat
10573 then
10574 Set_Alias (New_Subp, Alias (Parent_Subp));
10575 else
10576 Set_Alias (New_Subp, Parent_Subp);
10577 end if;
10579 else
10580 Set_Alias (New_Subp, Parent_Subp);
10581 end if;
10583 else
10584 Set_Alias (New_Subp, Actual_Subp);
10585 end if;
10587 -- Derived subprograms of a tagged type must inherit the convention
10588 -- of the parent subprogram (a requirement of AI-117). Derived
10589 -- subprograms of untagged types simply get convention Ada by default.
10591 if Is_Tagged_Type (Derived_Type) then
10592 Set_Convention (New_Subp, Convention (Parent_Subp));
10593 end if;
10595 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
10596 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
10598 if Ekind (Parent_Subp) = E_Procedure then
10599 Set_Is_Valued_Procedure
10600 (New_Subp, Is_Valued_Procedure (Parent_Subp));
10601 end if;
10603 -- No_Return must be inherited properly. If this is overridden in the
10604 -- case of a dispatching operation, then a check is made in Sem_Disp
10605 -- that the overriding operation is also No_Return (no such check is
10606 -- required for the case of non-dispatching operation.
10608 Set_No_Return (New_Subp, No_Return (Parent_Subp));
10610 -- A derived function with a controlling result is abstract. If the
10611 -- Derived_Type is a nonabstract formal generic derived type, then
10612 -- inherited operations are not abstract: the required check is done at
10613 -- instantiation time. If the derivation is for a generic actual, the
10614 -- function is not abstract unless the actual is.
10616 if Is_Generic_Type (Derived_Type)
10617 and then not Is_Abstract (Derived_Type)
10618 then
10619 null;
10621 elsif Is_Abstract (Alias (New_Subp))
10622 or else (Is_Tagged_Type (Derived_Type)
10623 and then Etype (New_Subp) = Derived_Type
10624 and then No (Actual_Subp))
10625 then
10626 Set_Is_Abstract (New_Subp);
10628 -- Finally, if the parent type is abstract we must verify that all
10629 -- inherited operations are either non-abstract or overridden, or
10630 -- that the derived type itself is abstract (this check is performed
10631 -- at the end of a package declaration, in Check_Abstract_Overriding).
10632 -- A private overriding in the parent type will not be visible in the
10633 -- derivation if we are not in an inner package or in a child unit of
10634 -- the parent type, in which case the abstractness of the inherited
10635 -- operation is carried to the new subprogram.
10637 elsif Is_Abstract (Parent_Type)
10638 and then not In_Open_Scopes (Scope (Parent_Type))
10639 and then Is_Private_Overriding
10640 and then Is_Abstract (Visible_Subp)
10641 then
10642 Set_Alias (New_Subp, Visible_Subp);
10643 Set_Is_Abstract (New_Subp);
10644 end if;
10646 New_Overloaded_Entity (New_Subp, Derived_Type);
10648 -- Check for case of a derived subprogram for the instantiation of a
10649 -- formal derived tagged type, if so mark the subprogram as dispatching
10650 -- and inherit the dispatching attributes of the parent subprogram. The
10651 -- derived subprogram is effectively renaming of the actual subprogram,
10652 -- so it needs to have the same attributes as the actual.
10654 if Present (Actual_Subp)
10655 and then Is_Dispatching_Operation (Parent_Subp)
10656 then
10657 Set_Is_Dispatching_Operation (New_Subp);
10658 if Present (DTC_Entity (Parent_Subp)) then
10659 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
10660 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
10661 end if;
10662 end if;
10664 -- Indicate that a derived subprogram does not require a body and that
10665 -- it does not require processing of default expressions.
10667 Set_Has_Completion (New_Subp);
10668 Set_Default_Expressions_Processed (New_Subp);
10670 if Ekind (New_Subp) = E_Function then
10671 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
10672 end if;
10673 end Derive_Subprogram;
10675 ------------------------
10676 -- Derive_Subprograms --
10677 ------------------------
10679 procedure Derive_Subprograms
10680 (Parent_Type : Entity_Id;
10681 Derived_Type : Entity_Id;
10682 Generic_Actual : Entity_Id := Empty;
10683 No_Predefined_Prims : Boolean := False)
10685 Op_List : constant Elist_Id :=
10686 Collect_Primitive_Operations (Parent_Type);
10687 Act_List : Elist_Id;
10688 Act_Elmt : Elmt_Id;
10689 Elmt : Elmt_Id;
10690 Is_Predef : Boolean;
10691 Subp : Entity_Id;
10692 New_Subp : Entity_Id := Empty;
10693 Parent_Base : Entity_Id;
10695 begin
10696 if Ekind (Parent_Type) = E_Record_Type_With_Private
10697 and then Has_Discriminants (Parent_Type)
10698 and then Present (Full_View (Parent_Type))
10699 then
10700 Parent_Base := Full_View (Parent_Type);
10701 else
10702 Parent_Base := Parent_Type;
10703 end if;
10705 if Present (Generic_Actual) then
10706 Act_List := Collect_Primitive_Operations (Generic_Actual);
10707 Act_Elmt := First_Elmt (Act_List);
10708 else
10709 Act_Elmt := No_Elmt;
10710 end if;
10712 -- Literals are derived earlier in the process of building the derived
10713 -- type, and are skipped here.
10715 Elmt := First_Elmt (Op_List);
10716 while Present (Elmt) loop
10717 Subp := Node (Elmt);
10719 if Ekind (Subp) /= E_Enumeration_Literal then
10720 Is_Predef :=
10721 Is_Dispatching_Operation (Subp)
10722 and then Is_Predefined_Dispatching_Operation (Subp);
10724 if No_Predefined_Prims and then Is_Predef then
10725 null;
10727 -- We don't need to derive alias entities associated with
10728 -- abstract interfaces
10730 elsif Is_Dispatching_Operation (Subp)
10731 and then Present (Alias (Subp))
10732 and then Present (Abstract_Interface_Alias (Subp))
10733 then
10734 null;
10736 elsif No (Generic_Actual) then
10737 Derive_Subprogram
10738 (New_Subp, Subp, Derived_Type, Parent_Base);
10740 else
10741 Derive_Subprogram (New_Subp, Subp,
10742 Derived_Type, Parent_Base, Node (Act_Elmt));
10743 Next_Elmt (Act_Elmt);
10744 end if;
10745 end if;
10747 Next_Elmt (Elmt);
10748 end loop;
10749 end Derive_Subprograms;
10751 --------------------------------
10752 -- Derived_Standard_Character --
10753 --------------------------------
10755 procedure Derived_Standard_Character
10756 (N : Node_Id;
10757 Parent_Type : Entity_Id;
10758 Derived_Type : Entity_Id)
10760 Loc : constant Source_Ptr := Sloc (N);
10761 Def : constant Node_Id := Type_Definition (N);
10762 Indic : constant Node_Id := Subtype_Indication (Def);
10763 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
10764 Implicit_Base : constant Entity_Id :=
10765 Create_Itype
10766 (E_Enumeration_Type, N, Derived_Type, 'B');
10768 Lo : Node_Id;
10769 Hi : Node_Id;
10771 begin
10772 Discard_Node (Process_Subtype (Indic, N));
10774 Set_Etype (Implicit_Base, Parent_Base);
10775 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
10776 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
10778 Set_Is_Character_Type (Implicit_Base, True);
10779 Set_Has_Delayed_Freeze (Implicit_Base);
10781 -- The bounds of the implicit base are the bounds of the parent base.
10782 -- Note that their type is the parent base.
10784 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
10785 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
10787 Set_Scalar_Range (Implicit_Base,
10788 Make_Range (Loc,
10789 Low_Bound => Lo,
10790 High_Bound => Hi));
10792 Conditional_Delay (Derived_Type, Parent_Type);
10794 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
10795 Set_Etype (Derived_Type, Implicit_Base);
10796 Set_Size_Info (Derived_Type, Parent_Type);
10798 if Unknown_RM_Size (Derived_Type) then
10799 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
10800 end if;
10802 Set_Is_Character_Type (Derived_Type, True);
10804 if Nkind (Indic) /= N_Subtype_Indication then
10806 -- If no explicit constraint, the bounds are those
10807 -- of the parent type.
10809 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
10810 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
10811 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
10812 end if;
10814 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
10816 -- Because the implicit base is used in the conversion of the bounds,
10817 -- we have to freeze it now. This is similar to what is done for
10818 -- numeric types, and it equally suspicious, but otherwise a non-
10819 -- static bound will have a reference to an unfrozen type, which is
10820 -- rejected by Gigi (???).
10822 Freeze_Before (N, Implicit_Base);
10823 end Derived_Standard_Character;
10825 ------------------------------
10826 -- Derived_Type_Declaration --
10827 ------------------------------
10829 procedure Derived_Type_Declaration
10830 (T : Entity_Id;
10831 N : Node_Id;
10832 Is_Completion : Boolean)
10834 Def : constant Node_Id := Type_Definition (N);
10835 Iface_Def : Node_Id;
10836 Indic : constant Node_Id := Subtype_Indication (Def);
10837 Extension : constant Node_Id := Record_Extension_Part (Def);
10838 Parent_Type : Entity_Id;
10839 Parent_Scope : Entity_Id;
10840 Taggd : Boolean;
10842 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
10843 -- Check whether the parent type is a generic formal, or derives
10844 -- directly or indirectly from one.
10846 ------------------------
10847 -- Comes_From_Generic --
10848 ------------------------
10850 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
10851 begin
10852 if Is_Generic_Type (Typ) then
10853 return True;
10855 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
10856 return True;
10858 elsif Is_Private_Type (Typ)
10859 and then Present (Full_View (Typ))
10860 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
10861 then
10862 return True;
10864 elsif Is_Generic_Actual_Type (Typ) then
10865 return True;
10867 else
10868 return False;
10869 end if;
10870 end Comes_From_Generic;
10872 -- Start of processing for Derived_Type_Declaration
10874 begin
10875 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
10877 -- Ada 2005 (AI-251): In case of interface derivation check that the
10878 -- parent is also an interface.
10880 if Interface_Present (Def) then
10881 if not Is_Interface (Parent_Type) then
10882 Error_Msg_NE ("(Ada 2005) & must be an interface",
10883 Indic, Parent_Type);
10885 else
10886 Iface_Def := Type_Definition (Parent (Parent_Type));
10888 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
10889 -- other limited interfaces.
10891 if Limited_Present (Def) then
10892 if Limited_Present (Iface_Def) then
10893 null;
10895 elsif Protected_Present (Iface_Def) then
10896 Error_Msg_N ("(Ada 2005) limited interface cannot" &
10897 " inherit from protected interface", Indic);
10899 elsif Synchronized_Present (Iface_Def) then
10900 Error_Msg_N ("(Ada 2005) limited interface cannot" &
10901 " inherit from synchronized interface", Indic);
10903 elsif Task_Present (Iface_Def) then
10904 Error_Msg_N ("(Ada 2005) limited interface cannot" &
10905 " inherit from task interface", Indic);
10907 else
10908 Error_Msg_N ("(Ada 2005) limited interface cannot" &
10909 " inherit from non-limited interface", Indic);
10910 end if;
10912 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
10913 -- from non-limited or limited interfaces.
10915 elsif not Protected_Present (Def)
10916 and then not Synchronized_Present (Def)
10917 and then not Task_Present (Def)
10918 then
10919 if Limited_Present (Iface_Def) then
10920 null;
10922 elsif Protected_Present (Iface_Def) then
10923 Error_Msg_N ("(Ada 2005) non-limited interface cannot" &
10924 " inherit from protected interface", Indic);
10926 elsif Synchronized_Present (Iface_Def) then
10927 Error_Msg_N ("(Ada 2005) non-limited interface cannot" &
10928 " inherit from synchronized interface", Indic);
10930 elsif Task_Present (Iface_Def) then
10931 Error_Msg_N ("(Ada 2005) non-limited interface cannot" &
10932 " inherit from task interface", Indic);
10934 else
10935 null;
10936 end if;
10937 end if;
10938 end if;
10939 end if;
10941 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
10942 -- interfaces
10944 if Is_Tagged_Type (Parent_Type)
10945 and then Is_Non_Empty_List (Interface_List (Def))
10946 then
10947 declare
10948 Intf : Node_Id;
10949 T : Entity_Id;
10951 begin
10952 Intf := First (Interface_List (Def));
10953 while Present (Intf) loop
10954 T := Find_Type_Of_Subtype_Indic (Intf);
10956 if not Is_Interface (T) then
10957 Error_Msg_NE ("(Ada 2005) & must be an interface", Intf, T);
10959 elsif Limited_Present (Def)
10960 and then not Is_Limited_Interface (T)
10961 then
10962 Error_Msg_NE
10963 ("progenitor interface& of limited type must be limited",
10964 N, T);
10965 end if;
10967 Next (Intf);
10968 end loop;
10969 end;
10970 end if;
10972 if Parent_Type = Any_Type
10973 or else Etype (Parent_Type) = Any_Type
10974 or else (Is_Class_Wide_Type (Parent_Type)
10975 and then Etype (Parent_Type) = T)
10976 then
10977 -- If Parent_Type is undefined or illegal, make new type into a
10978 -- subtype of Any_Type, and set a few attributes to prevent cascaded
10979 -- errors. If this is a self-definition, emit error now.
10981 if T = Parent_Type
10982 or else T = Etype (Parent_Type)
10983 then
10984 Error_Msg_N ("type cannot be used in its own definition", Indic);
10985 end if;
10987 Set_Ekind (T, Ekind (Parent_Type));
10988 Set_Etype (T, Any_Type);
10989 Set_Scalar_Range (T, Scalar_Range (Any_Type));
10991 if Is_Tagged_Type (T) then
10992 Set_Primitive_Operations (T, New_Elmt_List);
10993 end if;
10995 return;
10996 end if;
10998 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
10999 -- an interface is special because the list of interfaces in the full
11000 -- view can be given in any order. For example:
11002 -- type A is interface;
11003 -- type B is interface and A;
11004 -- type D is new B with private;
11005 -- private
11006 -- type D is new A and B with null record; -- 1 --
11008 -- In this case we perform the following transformation of -1-:
11010 -- type D is new B and A with null record;
11012 -- If the parent of the full-view covers the parent of the partial-view
11013 -- we have two possible cases:
11015 -- 1) They have the same parent
11016 -- 2) The parent of the full-view implements some further interfaces
11018 -- In both cases we do not need to perform the transformation. In the
11019 -- first case the source program is correct and the transformation is
11020 -- not needed; in the second case the source program does not fulfill
11021 -- the no-hidden interfaces rule (AI-396) and the error will be reported
11022 -- later.
11024 -- This transformation not only simplifies the rest of the analysis of
11025 -- this type declaration but also simplifies the correct generation of
11026 -- the object layout to the expander.
11028 if In_Private_Part (Current_Scope)
11029 and then Is_Interface (Parent_Type)
11030 then
11031 declare
11032 Iface : Node_Id;
11033 Partial_View : Entity_Id;
11034 Partial_View_Parent : Entity_Id;
11035 New_Iface : Node_Id;
11037 begin
11038 -- Look for the associated private type declaration
11040 Partial_View := First_Entity (Current_Scope);
11041 loop
11042 exit when No (Partial_View)
11043 or else (Has_Private_Declaration (Partial_View)
11044 and then Full_View (Partial_View) = T);
11046 Next_Entity (Partial_View);
11047 end loop;
11049 -- If the partial view was not found then the source code has
11050 -- errors and the transformation is not needed.
11052 if Present (Partial_View) then
11053 Partial_View_Parent := Etype (Partial_View);
11055 -- If the parent of the full-view covers the parent of the
11056 -- partial-view we have nothing else to do.
11058 if Interface_Present_In_Ancestor
11059 (Parent_Type, Partial_View_Parent)
11060 then
11061 null;
11063 -- Traverse the list of interfaces of the full-view to look
11064 -- for the parent of the partial-view and perform the tree
11065 -- transformation.
11067 else
11068 Iface := First (Interface_List (Def));
11069 while Present (Iface) loop
11070 if Etype (Iface) = Etype (Partial_View) then
11071 Rewrite (Subtype_Indication (Def),
11072 New_Copy (Subtype_Indication
11073 (Parent (Partial_View))));
11075 New_Iface := Make_Identifier (Sloc (N),
11076 Chars (Parent_Type));
11077 Append (New_Iface, Interface_List (Def));
11079 -- Analyze the transformed code
11081 Derived_Type_Declaration (T, N, Is_Completion);
11082 return;
11083 end if;
11085 Next (Iface);
11086 end loop;
11087 end if;
11088 end if;
11089 end;
11090 end if;
11092 -- Only composite types other than array types are allowed to have
11093 -- discriminants.
11095 if Present (Discriminant_Specifications (N))
11096 and then (Is_Elementary_Type (Parent_Type)
11097 or else Is_Array_Type (Parent_Type))
11098 and then not Error_Posted (N)
11099 then
11100 Error_Msg_N
11101 ("elementary or array type cannot have discriminants",
11102 Defining_Identifier (First (Discriminant_Specifications (N))));
11103 Set_Has_Discriminants (T, False);
11104 end if;
11106 -- In Ada 83, a derived type defined in a package specification cannot
11107 -- be used for further derivation until the end of its visible part.
11108 -- Note that derivation in the private part of the package is allowed.
11110 if Ada_Version = Ada_83
11111 and then Is_Derived_Type (Parent_Type)
11112 and then In_Visible_Part (Scope (Parent_Type))
11113 then
11114 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
11115 Error_Msg_N
11116 ("(Ada 83): premature use of type for derivation", Indic);
11117 end if;
11118 end if;
11120 -- Check for early use of incomplete or private type
11122 if Ekind (Parent_Type) = E_Void
11123 or else Ekind (Parent_Type) = E_Incomplete_Type
11124 then
11125 Error_Msg_N ("premature derivation of incomplete type", Indic);
11126 return;
11128 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
11129 and then not Comes_From_Generic (Parent_Type))
11130 or else Has_Private_Component (Parent_Type)
11131 then
11132 -- The ancestor type of a formal type can be incomplete, in which
11133 -- case only the operations of the partial view are available in
11134 -- the generic. Subsequent checks may be required when the full
11135 -- view is analyzed, to verify that derivation from a tagged type
11136 -- has an extension.
11138 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
11139 null;
11141 elsif No (Underlying_Type (Parent_Type))
11142 or else Has_Private_Component (Parent_Type)
11143 then
11144 Error_Msg_N
11145 ("premature derivation of derived or private type", Indic);
11147 -- Flag the type itself as being in error, this prevents some
11148 -- nasty problems with subsequent uses of the malformed type.
11150 Set_Error_Posted (T);
11152 -- Check that within the immediate scope of an untagged partial
11153 -- view it's illegal to derive from the partial view if the
11154 -- full view is tagged. (7.3(7))
11156 -- We verify that the Parent_Type is a partial view by checking
11157 -- that it is not a Full_Type_Declaration (i.e. a private type or
11158 -- private extension declaration), to distinguish a partial view
11159 -- from a derivation from a private type which also appears as
11160 -- E_Private_Type.
11162 elsif Present (Full_View (Parent_Type))
11163 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
11164 and then not Is_Tagged_Type (Parent_Type)
11165 and then Is_Tagged_Type (Full_View (Parent_Type))
11166 then
11167 Parent_Scope := Scope (T);
11168 while Present (Parent_Scope)
11169 and then Parent_Scope /= Standard_Standard
11170 loop
11171 if Parent_Scope = Scope (Parent_Type) then
11172 Error_Msg_N
11173 ("premature derivation from type with tagged full view",
11174 Indic);
11175 end if;
11177 Parent_Scope := Scope (Parent_Scope);
11178 end loop;
11179 end if;
11180 end if;
11182 -- Check that form of derivation is appropriate
11184 Taggd := Is_Tagged_Type (Parent_Type);
11186 -- Perhaps the parent type should be changed to the class-wide type's
11187 -- specific type in this case to prevent cascading errors ???
11189 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
11190 Error_Msg_N ("parent type must not be a class-wide type", Indic);
11191 return;
11192 end if;
11194 if Present (Extension) and then not Taggd then
11195 Error_Msg_N
11196 ("type derived from untagged type cannot have extension", Indic);
11198 elsif No (Extension) and then Taggd then
11200 -- If this declaration is within a private part (or body) of a
11201 -- generic instantiation then the derivation is allowed (the parent
11202 -- type can only appear tagged in this case if it's a generic actual
11203 -- type, since it would otherwise have been rejected in the analysis
11204 -- of the generic template).
11206 if not Is_Generic_Actual_Type (Parent_Type)
11207 or else In_Visible_Part (Scope (Parent_Type))
11208 then
11209 Error_Msg_N
11210 ("type derived from tagged type must have extension", Indic);
11211 end if;
11212 end if;
11214 Build_Derived_Type (N, Parent_Type, T, Is_Completion);
11216 -- AI-419: the parent type of an explicitly limited derived type must
11217 -- be a limited type or a limited interface.
11219 if Limited_Present (Def) then
11220 Set_Is_Limited_Record (T);
11222 if Is_Interface (T) then
11223 Set_Is_Limited_Interface (T);
11224 end if;
11226 if not Is_Limited_Type (Parent_Type)
11227 and then
11228 (not Is_Interface (Parent_Type)
11229 or else not Is_Limited_Interface (Parent_Type))
11230 then
11231 Error_Msg_NE ("parent type& of limited type must be limited",
11232 N, Parent_Type);
11233 end if;
11234 end if;
11235 end Derived_Type_Declaration;
11237 ----------------------------------
11238 -- Enumeration_Type_Declaration --
11239 ----------------------------------
11241 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
11242 Ev : Uint;
11243 L : Node_Id;
11244 R_Node : Node_Id;
11245 B_Node : Node_Id;
11247 begin
11248 -- Create identifier node representing lower bound
11250 B_Node := New_Node (N_Identifier, Sloc (Def));
11251 L := First (Literals (Def));
11252 Set_Chars (B_Node, Chars (L));
11253 Set_Entity (B_Node, L);
11254 Set_Etype (B_Node, T);
11255 Set_Is_Static_Expression (B_Node, True);
11257 R_Node := New_Node (N_Range, Sloc (Def));
11258 Set_Low_Bound (R_Node, B_Node);
11260 Set_Ekind (T, E_Enumeration_Type);
11261 Set_First_Literal (T, L);
11262 Set_Etype (T, T);
11263 Set_Is_Constrained (T);
11265 Ev := Uint_0;
11267 -- Loop through literals of enumeration type setting pos and rep values
11268 -- except that if the Ekind is already set, then it means that the
11269 -- literal was already constructed (case of a derived type declaration
11270 -- and we should not disturb the Pos and Rep values.
11272 while Present (L) loop
11273 if Ekind (L) /= E_Enumeration_Literal then
11274 Set_Ekind (L, E_Enumeration_Literal);
11275 Set_Enumeration_Pos (L, Ev);
11276 Set_Enumeration_Rep (L, Ev);
11277 Set_Is_Known_Valid (L, True);
11278 end if;
11280 Set_Etype (L, T);
11281 New_Overloaded_Entity (L);
11282 Generate_Definition (L);
11283 Set_Convention (L, Convention_Intrinsic);
11285 if Nkind (L) = N_Defining_Character_Literal then
11286 Set_Is_Character_Type (T, True);
11287 end if;
11289 Ev := Ev + 1;
11290 Next (L);
11291 end loop;
11293 -- Now create a node representing upper bound
11295 B_Node := New_Node (N_Identifier, Sloc (Def));
11296 Set_Chars (B_Node, Chars (Last (Literals (Def))));
11297 Set_Entity (B_Node, Last (Literals (Def)));
11298 Set_Etype (B_Node, T);
11299 Set_Is_Static_Expression (B_Node, True);
11301 Set_High_Bound (R_Node, B_Node);
11302 Set_Scalar_Range (T, R_Node);
11303 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
11304 Set_Enum_Esize (T);
11306 -- Set Discard_Names if configuration pragma set, or if there is
11307 -- a parameterless pragma in the current declarative region
11309 if Global_Discard_Names
11310 or else Discard_Names (Scope (T))
11311 then
11312 Set_Discard_Names (T);
11313 end if;
11315 -- Process end label if there is one
11317 if Present (Def) then
11318 Process_End_Label (Def, 'e', T);
11319 end if;
11320 end Enumeration_Type_Declaration;
11322 ---------------------------------
11323 -- Expand_To_Stored_Constraint --
11324 ---------------------------------
11326 function Expand_To_Stored_Constraint
11327 (Typ : Entity_Id;
11328 Constraint : Elist_Id) return Elist_Id
11330 Explicitly_Discriminated_Type : Entity_Id;
11331 Expansion : Elist_Id;
11332 Discriminant : Entity_Id;
11334 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
11335 -- Find the nearest type that actually specifies discriminants
11337 ---------------------------------
11338 -- Type_With_Explicit_Discrims --
11339 ---------------------------------
11341 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
11342 Typ : constant E := Base_Type (Id);
11344 begin
11345 if Ekind (Typ) in Incomplete_Or_Private_Kind then
11346 if Present (Full_View (Typ)) then
11347 return Type_With_Explicit_Discrims (Full_View (Typ));
11348 end if;
11350 else
11351 if Has_Discriminants (Typ) then
11352 return Typ;
11353 end if;
11354 end if;
11356 if Etype (Typ) = Typ then
11357 return Empty;
11358 elsif Has_Discriminants (Typ) then
11359 return Typ;
11360 else
11361 return Type_With_Explicit_Discrims (Etype (Typ));
11362 end if;
11364 end Type_With_Explicit_Discrims;
11366 -- Start of processing for Expand_To_Stored_Constraint
11368 begin
11369 if No (Constraint)
11370 or else Is_Empty_Elmt_List (Constraint)
11371 then
11372 return No_Elist;
11373 end if;
11375 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
11377 if No (Explicitly_Discriminated_Type) then
11378 return No_Elist;
11379 end if;
11381 Expansion := New_Elmt_List;
11383 Discriminant :=
11384 First_Stored_Discriminant (Explicitly_Discriminated_Type);
11385 while Present (Discriminant) loop
11386 Append_Elmt (
11387 Get_Discriminant_Value (
11388 Discriminant, Explicitly_Discriminated_Type, Constraint),
11389 Expansion);
11390 Next_Stored_Discriminant (Discriminant);
11391 end loop;
11393 return Expansion;
11394 end Expand_To_Stored_Constraint;
11396 --------------------
11397 -- Find_Type_Name --
11398 --------------------
11400 function Find_Type_Name (N : Node_Id) return Entity_Id is
11401 Id : constant Entity_Id := Defining_Identifier (N);
11402 Prev : Entity_Id;
11403 New_Id : Entity_Id;
11404 Prev_Par : Node_Id;
11406 begin
11407 -- Find incomplete declaration, if one was given
11409 Prev := Current_Entity_In_Scope (Id);
11411 if Present (Prev) then
11413 -- Previous declaration exists. Error if not incomplete/private case
11414 -- except if previous declaration is implicit, etc. Enter_Name will
11415 -- emit error if appropriate.
11417 Prev_Par := Parent (Prev);
11419 if not Is_Incomplete_Or_Private_Type (Prev) then
11420 Enter_Name (Id);
11421 New_Id := Id;
11423 elsif Nkind (N) /= N_Full_Type_Declaration
11424 and then Nkind (N) /= N_Task_Type_Declaration
11425 and then Nkind (N) /= N_Protected_Type_Declaration
11426 then
11427 -- Completion must be a full type declarations (RM 7.3(4))
11429 Error_Msg_Sloc := Sloc (Prev);
11430 Error_Msg_NE ("invalid completion of }", Id, Prev);
11432 -- Set scope of Id to avoid cascaded errors. Entity is never
11433 -- examined again, except when saving globals in generics.
11435 Set_Scope (Id, Current_Scope);
11436 New_Id := Id;
11438 -- Case of full declaration of incomplete type
11440 elsif Ekind (Prev) = E_Incomplete_Type then
11442 -- Indicate that the incomplete declaration has a matching full
11443 -- declaration. The defining occurrence of the incomplete
11444 -- declaration remains the visible one, and the procedure
11445 -- Get_Full_View dereferences it whenever the type is used.
11447 if Present (Full_View (Prev)) then
11448 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
11449 end if;
11451 Set_Full_View (Prev, Id);
11452 Append_Entity (Id, Current_Scope);
11453 Set_Is_Public (Id, Is_Public (Prev));
11454 Set_Is_Internal (Id);
11455 New_Id := Prev;
11457 -- Case of full declaration of private type
11459 else
11460 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
11461 if Etype (Prev) /= Prev then
11463 -- Prev is a private subtype or a derived type, and needs
11464 -- no completion.
11466 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
11467 New_Id := Id;
11469 elsif Ekind (Prev) = E_Private_Type
11470 and then
11471 (Nkind (N) = N_Task_Type_Declaration
11472 or else Nkind (N) = N_Protected_Type_Declaration)
11473 then
11474 Error_Msg_N
11475 ("completion of nonlimited type cannot be limited", N);
11477 elsif Ekind (Prev) = E_Record_Type_With_Private
11478 and then
11479 (Nkind (N) = N_Task_Type_Declaration
11480 or else Nkind (N) = N_Protected_Type_Declaration)
11481 then
11482 if not Is_Limited_Record (Prev) then
11483 Error_Msg_N
11484 ("completion of nonlimited type cannot be limited", N);
11486 elsif No (Interface_List (N)) then
11487 Error_Msg_N
11488 ("completion of tagged private type must be tagged",
11490 end if;
11491 end if;
11493 -- Ada 2005 (AI-251): Private extension declaration of a
11494 -- task type. This case arises with tasks implementing interfaces
11496 elsif Nkind (N) = N_Task_Type_Declaration
11497 or else Nkind (N) = N_Protected_Type_Declaration
11498 then
11499 null;
11501 elsif Nkind (N) /= N_Full_Type_Declaration
11502 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
11503 then
11504 Error_Msg_N
11505 ("full view of private extension must be an extension", N);
11507 elsif not (Abstract_Present (Parent (Prev)))
11508 and then Abstract_Present (Type_Definition (N))
11509 then
11510 Error_Msg_N
11511 ("full view of non-abstract extension cannot be abstract", N);
11512 end if;
11514 if not In_Private_Part (Current_Scope) then
11515 Error_Msg_N
11516 ("declaration of full view must appear in private part", N);
11517 end if;
11519 Copy_And_Swap (Prev, Id);
11520 Set_Has_Private_Declaration (Prev);
11521 Set_Has_Private_Declaration (Id);
11523 -- If no error, propagate freeze_node from private to full view.
11524 -- It may have been generated for an early operational item.
11526 if Present (Freeze_Node (Id))
11527 and then Serious_Errors_Detected = 0
11528 and then No (Full_View (Id))
11529 then
11530 Set_Freeze_Node (Prev, Freeze_Node (Id));
11531 Set_Freeze_Node (Id, Empty);
11532 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
11533 end if;
11535 Set_Full_View (Id, Prev);
11536 New_Id := Prev;
11537 end if;
11539 -- Verify that full declaration conforms to incomplete one
11541 if Is_Incomplete_Or_Private_Type (Prev)
11542 and then Present (Discriminant_Specifications (Prev_Par))
11543 then
11544 if Present (Discriminant_Specifications (N)) then
11545 if Ekind (Prev) = E_Incomplete_Type then
11546 Check_Discriminant_Conformance (N, Prev, Prev);
11547 else
11548 Check_Discriminant_Conformance (N, Prev, Id);
11549 end if;
11551 else
11552 Error_Msg_N
11553 ("missing discriminants in full type declaration", N);
11555 -- To avoid cascaded errors on subsequent use, share the
11556 -- discriminants of the partial view.
11558 Set_Discriminant_Specifications (N,
11559 Discriminant_Specifications (Prev_Par));
11560 end if;
11561 end if;
11563 -- A prior untagged private type can have an associated class-wide
11564 -- type due to use of the class attribute, and in this case also the
11565 -- full type is required to be tagged.
11567 if Is_Type (Prev)
11568 and then (Is_Tagged_Type (Prev)
11569 or else Present (Class_Wide_Type (Prev)))
11570 and then (Nkind (N) /= N_Task_Type_Declaration
11571 and then Nkind (N) /= N_Protected_Type_Declaration)
11572 then
11573 -- The full declaration is either a tagged record or an
11574 -- extension otherwise this is an error
11576 if Nkind (Type_Definition (N)) = N_Record_Definition then
11577 if not Tagged_Present (Type_Definition (N)) then
11578 Error_Msg_NE
11579 ("full declaration of } must be tagged", Prev, Id);
11580 Set_Is_Tagged_Type (Id);
11581 Set_Primitive_Operations (Id, New_Elmt_List);
11582 end if;
11584 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
11585 if No (Record_Extension_Part (Type_Definition (N))) then
11586 Error_Msg_NE (
11587 "full declaration of } must be a record extension",
11588 Prev, Id);
11589 Set_Is_Tagged_Type (Id);
11590 Set_Primitive_Operations (Id, New_Elmt_List);
11591 end if;
11593 else
11594 Error_Msg_NE
11595 ("full declaration of } must be a tagged type", Prev, Id);
11597 end if;
11598 end if;
11600 return New_Id;
11602 else
11603 -- New type declaration
11605 Enter_Name (Id);
11606 return Id;
11607 end if;
11608 end Find_Type_Name;
11610 -------------------------
11611 -- Find_Type_Of_Object --
11612 -------------------------
11614 function Find_Type_Of_Object
11615 (Obj_Def : Node_Id;
11616 Related_Nod : Node_Id) return Entity_Id
11618 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
11619 P : Node_Id := Parent (Obj_Def);
11620 T : Entity_Id;
11621 Nam : Name_Id;
11623 begin
11624 -- If the parent is a component_definition node we climb to the
11625 -- component_declaration node
11627 if Nkind (P) = N_Component_Definition then
11628 P := Parent (P);
11629 end if;
11631 -- Case of an anonymous array subtype
11633 if Def_Kind = N_Constrained_Array_Definition
11634 or else Def_Kind = N_Unconstrained_Array_Definition
11635 then
11636 T := Empty;
11637 Array_Type_Declaration (T, Obj_Def);
11639 -- Create an explicit subtype whenever possible
11641 elsif Nkind (P) /= N_Component_Declaration
11642 and then Def_Kind = N_Subtype_Indication
11643 then
11644 -- Base name of subtype on object name, which will be unique in
11645 -- the current scope.
11647 -- If this is a duplicate declaration, return base type, to avoid
11648 -- generating duplicate anonymous types.
11650 if Error_Posted (P) then
11651 Analyze (Subtype_Mark (Obj_Def));
11652 return Entity (Subtype_Mark (Obj_Def));
11653 end if;
11655 Nam :=
11656 New_External_Name
11657 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
11659 T := Make_Defining_Identifier (Sloc (P), Nam);
11661 Insert_Action (Obj_Def,
11662 Make_Subtype_Declaration (Sloc (P),
11663 Defining_Identifier => T,
11664 Subtype_Indication => Relocate_Node (Obj_Def)));
11666 -- This subtype may need freezing, and this will not be done
11667 -- automatically if the object declaration is not in declarative
11668 -- part. Since this is an object declaration, the type cannot always
11669 -- be frozen here. Deferred constants do not freeze their type
11670 -- (which often enough will be private).
11672 if Nkind (P) = N_Object_Declaration
11673 and then Constant_Present (P)
11674 and then No (Expression (P))
11675 then
11676 null;
11677 else
11678 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
11679 end if;
11681 -- Ada 2005 AI-406: the object definition in an object declaration
11682 -- can be an access definition.
11684 elsif Def_Kind = N_Access_Definition then
11685 T := Access_Definition (Related_Nod, Obj_Def);
11686 Set_Is_Local_Anonymous_Access (T);
11688 -- comment here, what cases ???
11690 else
11691 T := Process_Subtype (Obj_Def, Related_Nod);
11692 end if;
11694 return T;
11695 end Find_Type_Of_Object;
11697 --------------------------------
11698 -- Find_Type_Of_Subtype_Indic --
11699 --------------------------------
11701 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
11702 Typ : Entity_Id;
11704 begin
11705 -- Case of subtype mark with a constraint
11707 if Nkind (S) = N_Subtype_Indication then
11708 Find_Type (Subtype_Mark (S));
11709 Typ := Entity (Subtype_Mark (S));
11711 if not
11712 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
11713 then
11714 Error_Msg_N
11715 ("incorrect constraint for this kind of type", Constraint (S));
11716 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
11717 end if;
11719 -- Otherwise we have a subtype mark without a constraint
11721 elsif Error_Posted (S) then
11722 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
11723 return Any_Type;
11725 else
11726 Find_Type (S);
11727 Typ := Entity (S);
11728 end if;
11730 if Typ = Standard_Wide_Character
11731 or else Typ = Standard_Wide_Wide_Character
11732 or else Typ = Standard_Wide_String
11733 or else Typ = Standard_Wide_Wide_String
11734 then
11735 Check_Restriction (No_Wide_Characters, S);
11736 end if;
11738 return Typ;
11739 end Find_Type_Of_Subtype_Indic;
11741 -------------------------------------
11742 -- Floating_Point_Type_Declaration --
11743 -------------------------------------
11745 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
11746 Digs : constant Node_Id := Digits_Expression (Def);
11747 Digs_Val : Uint;
11748 Base_Typ : Entity_Id;
11749 Implicit_Base : Entity_Id;
11750 Bound : Node_Id;
11752 function Can_Derive_From (E : Entity_Id) return Boolean;
11753 -- Find if given digits value allows derivation from specified type
11755 ---------------------
11756 -- Can_Derive_From --
11757 ---------------------
11759 function Can_Derive_From (E : Entity_Id) return Boolean is
11760 Spec : constant Entity_Id := Real_Range_Specification (Def);
11762 begin
11763 if Digs_Val > Digits_Value (E) then
11764 return False;
11765 end if;
11767 if Present (Spec) then
11768 if Expr_Value_R (Type_Low_Bound (E)) >
11769 Expr_Value_R (Low_Bound (Spec))
11770 then
11771 return False;
11772 end if;
11774 if Expr_Value_R (Type_High_Bound (E)) <
11775 Expr_Value_R (High_Bound (Spec))
11776 then
11777 return False;
11778 end if;
11779 end if;
11781 return True;
11782 end Can_Derive_From;
11784 -- Start of processing for Floating_Point_Type_Declaration
11786 begin
11787 Check_Restriction (No_Floating_Point, Def);
11789 -- Create an implicit base type
11791 Implicit_Base :=
11792 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
11794 -- Analyze and verify digits value
11796 Analyze_And_Resolve (Digs, Any_Integer);
11797 Check_Digits_Expression (Digs);
11798 Digs_Val := Expr_Value (Digs);
11800 -- Process possible range spec and find correct type to derive from
11802 Process_Real_Range_Specification (Def);
11804 if Can_Derive_From (Standard_Short_Float) then
11805 Base_Typ := Standard_Short_Float;
11806 elsif Can_Derive_From (Standard_Float) then
11807 Base_Typ := Standard_Float;
11808 elsif Can_Derive_From (Standard_Long_Float) then
11809 Base_Typ := Standard_Long_Float;
11810 elsif Can_Derive_From (Standard_Long_Long_Float) then
11811 Base_Typ := Standard_Long_Long_Float;
11813 -- If we can't derive from any existing type, use long_long_float
11814 -- and give appropriate message explaining the problem.
11816 else
11817 Base_Typ := Standard_Long_Long_Float;
11819 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
11820 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
11821 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
11823 else
11824 Error_Msg_N
11825 ("range too large for any predefined type",
11826 Real_Range_Specification (Def));
11827 end if;
11828 end if;
11830 -- If there are bounds given in the declaration use them as the bounds
11831 -- of the type, otherwise use the bounds of the predefined base type
11832 -- that was chosen based on the Digits value.
11834 if Present (Real_Range_Specification (Def)) then
11835 Set_Scalar_Range (T, Real_Range_Specification (Def));
11836 Set_Is_Constrained (T);
11838 -- The bounds of this range must be converted to machine numbers
11839 -- in accordance with RM 4.9(38).
11841 Bound := Type_Low_Bound (T);
11843 if Nkind (Bound) = N_Real_Literal then
11844 Set_Realval
11845 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
11846 Set_Is_Machine_Number (Bound);
11847 end if;
11849 Bound := Type_High_Bound (T);
11851 if Nkind (Bound) = N_Real_Literal then
11852 Set_Realval
11853 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
11854 Set_Is_Machine_Number (Bound);
11855 end if;
11857 else
11858 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
11859 end if;
11861 -- Complete definition of implicit base and declared first subtype
11863 Set_Etype (Implicit_Base, Base_Typ);
11865 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
11866 Set_Size_Info (Implicit_Base, (Base_Typ));
11867 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
11868 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
11869 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
11870 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
11872 Set_Ekind (T, E_Floating_Point_Subtype);
11873 Set_Etype (T, Implicit_Base);
11875 Set_Size_Info (T, (Implicit_Base));
11876 Set_RM_Size (T, RM_Size (Implicit_Base));
11877 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
11878 Set_Digits_Value (T, Digs_Val);
11879 end Floating_Point_Type_Declaration;
11881 ----------------------------
11882 -- Get_Discriminant_Value --
11883 ----------------------------
11885 -- This is the situation:
11887 -- There is a non-derived type
11889 -- type T0 (Dx, Dy, Dz...)
11891 -- There are zero or more levels of derivation, with each derivation
11892 -- either purely inheriting the discriminants, or defining its own.
11894 -- type Ti is new Ti-1
11895 -- or
11896 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
11897 -- or
11898 -- subtype Ti is ...
11900 -- The subtype issue is avoided by the use of Original_Record_Component,
11901 -- and the fact that derived subtypes also derive the constraints.
11903 -- This chain leads back from
11905 -- Typ_For_Constraint
11907 -- Typ_For_Constraint has discriminants, and the value for each
11908 -- discriminant is given by its corresponding Elmt of Constraints.
11910 -- Discriminant is some discriminant in this hierarchy
11912 -- We need to return its value
11914 -- We do this by recursively searching each level, and looking for
11915 -- Discriminant. Once we get to the bottom, we start backing up
11916 -- returning the value for it which may in turn be a discriminant
11917 -- further up, so on the backup we continue the substitution.
11919 function Get_Discriminant_Value
11920 (Discriminant : Entity_Id;
11921 Typ_For_Constraint : Entity_Id;
11922 Constraint : Elist_Id) return Node_Id
11924 function Search_Derivation_Levels
11925 (Ti : Entity_Id;
11926 Discrim_Values : Elist_Id;
11927 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
11928 -- This is the routine that performs the recursive search of levels
11929 -- as described above.
11931 ------------------------------
11932 -- Search_Derivation_Levels --
11933 ------------------------------
11935 function Search_Derivation_Levels
11936 (Ti : Entity_Id;
11937 Discrim_Values : Elist_Id;
11938 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
11940 Assoc : Elmt_Id;
11941 Disc : Entity_Id;
11942 Result : Node_Or_Entity_Id;
11943 Result_Entity : Node_Id;
11945 begin
11946 -- If inappropriate type, return Error, this happens only in
11947 -- cascaded error situations, and we want to avoid a blow up.
11949 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
11950 return Error;
11951 end if;
11953 -- Look deeper if possible. Use Stored_Constraints only for
11954 -- untagged types. For tagged types use the given constraint.
11955 -- This asymmetry needs explanation???
11957 if not Stored_Discrim_Values
11958 and then Present (Stored_Constraint (Ti))
11959 and then not Is_Tagged_Type (Ti)
11960 then
11961 Result :=
11962 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
11963 else
11964 declare
11965 Td : constant Entity_Id := Etype (Ti);
11967 begin
11968 if Td = Ti then
11969 Result := Discriminant;
11971 else
11972 if Present (Stored_Constraint (Ti)) then
11973 Result :=
11974 Search_Derivation_Levels
11975 (Td, Stored_Constraint (Ti), True);
11976 else
11977 Result :=
11978 Search_Derivation_Levels
11979 (Td, Discrim_Values, Stored_Discrim_Values);
11980 end if;
11981 end if;
11982 end;
11983 end if;
11985 -- Extra underlying places to search, if not found above. For
11986 -- concurrent types, the relevant discriminant appears in the
11987 -- corresponding record. For a type derived from a private type
11988 -- without discriminant, the full view inherits the discriminants
11989 -- of the full view of the parent.
11991 if Result = Discriminant then
11992 if Is_Concurrent_Type (Ti)
11993 and then Present (Corresponding_Record_Type (Ti))
11994 then
11995 Result :=
11996 Search_Derivation_Levels (
11997 Corresponding_Record_Type (Ti),
11998 Discrim_Values,
11999 Stored_Discrim_Values);
12001 elsif Is_Private_Type (Ti)
12002 and then not Has_Discriminants (Ti)
12003 and then Present (Full_View (Ti))
12004 and then Etype (Full_View (Ti)) /= Ti
12005 then
12006 Result :=
12007 Search_Derivation_Levels (
12008 Full_View (Ti),
12009 Discrim_Values,
12010 Stored_Discrim_Values);
12011 end if;
12012 end if;
12014 -- If Result is not a (reference to a) discriminant, return it,
12015 -- otherwise set Result_Entity to the discriminant.
12017 if Nkind (Result) = N_Defining_Identifier then
12018 pragma Assert (Result = Discriminant);
12019 Result_Entity := Result;
12021 else
12022 if not Denotes_Discriminant (Result) then
12023 return Result;
12024 end if;
12026 Result_Entity := Entity (Result);
12027 end if;
12029 -- See if this level of derivation actually has discriminants
12030 -- because tagged derivations can add them, hence the lower
12031 -- levels need not have any.
12033 if not Has_Discriminants (Ti) then
12034 return Result;
12035 end if;
12037 -- Scan Ti's discriminants for Result_Entity,
12038 -- and return its corresponding value, if any.
12040 Result_Entity := Original_Record_Component (Result_Entity);
12042 Assoc := First_Elmt (Discrim_Values);
12044 if Stored_Discrim_Values then
12045 Disc := First_Stored_Discriminant (Ti);
12046 else
12047 Disc := First_Discriminant (Ti);
12048 end if;
12050 while Present (Disc) loop
12051 pragma Assert (Present (Assoc));
12053 if Original_Record_Component (Disc) = Result_Entity then
12054 return Node (Assoc);
12055 end if;
12057 Next_Elmt (Assoc);
12059 if Stored_Discrim_Values then
12060 Next_Stored_Discriminant (Disc);
12061 else
12062 Next_Discriminant (Disc);
12063 end if;
12064 end loop;
12066 -- Could not find it
12068 return Result;
12069 end Search_Derivation_Levels;
12071 Result : Node_Or_Entity_Id;
12073 -- Start of processing for Get_Discriminant_Value
12075 begin
12076 -- ??? This routine is a gigantic mess and will be deleted. For the
12077 -- time being just test for the trivial case before calling recurse.
12079 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
12080 declare
12081 D : Entity_Id;
12082 E : Elmt_Id;
12084 begin
12085 D := First_Discriminant (Typ_For_Constraint);
12086 E := First_Elmt (Constraint);
12087 while Present (D) loop
12088 if Chars (D) = Chars (Discriminant) then
12089 return Node (E);
12090 end if;
12092 Next_Discriminant (D);
12093 Next_Elmt (E);
12094 end loop;
12095 end;
12096 end if;
12098 Result := Search_Derivation_Levels
12099 (Typ_For_Constraint, Constraint, False);
12101 -- ??? hack to disappear when this routine is gone
12103 if Nkind (Result) = N_Defining_Identifier then
12104 declare
12105 D : Entity_Id;
12106 E : Elmt_Id;
12108 begin
12109 D := First_Discriminant (Typ_For_Constraint);
12110 E := First_Elmt (Constraint);
12111 while Present (D) loop
12112 if Corresponding_Discriminant (D) = Discriminant then
12113 return Node (E);
12114 end if;
12116 Next_Discriminant (D);
12117 Next_Elmt (E);
12118 end loop;
12119 end;
12120 end if;
12122 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
12123 return Result;
12124 end Get_Discriminant_Value;
12126 --------------------------
12127 -- Has_Range_Constraint --
12128 --------------------------
12130 function Has_Range_Constraint (N : Node_Id) return Boolean is
12131 C : constant Node_Id := Constraint (N);
12133 begin
12134 if Nkind (C) = N_Range_Constraint then
12135 return True;
12137 elsif Nkind (C) = N_Digits_Constraint then
12138 return
12139 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
12140 or else
12141 Present (Range_Constraint (C));
12143 elsif Nkind (C) = N_Delta_Constraint then
12144 return Present (Range_Constraint (C));
12146 else
12147 return False;
12148 end if;
12149 end Has_Range_Constraint;
12151 ------------------------
12152 -- Inherit_Components --
12153 ------------------------
12155 function Inherit_Components
12156 (N : Node_Id;
12157 Parent_Base : Entity_Id;
12158 Derived_Base : Entity_Id;
12159 Is_Tagged : Boolean;
12160 Inherit_Discr : Boolean;
12161 Discs : Elist_Id) return Elist_Id
12163 Assoc_List : constant Elist_Id := New_Elmt_List;
12165 procedure Inherit_Component
12166 (Old_C : Entity_Id;
12167 Plain_Discrim : Boolean := False;
12168 Stored_Discrim : Boolean := False);
12169 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
12170 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
12171 -- True, Old_C is a stored discriminant. If they are both false then
12172 -- Old_C is a regular component.
12174 -----------------------
12175 -- Inherit_Component --
12176 -----------------------
12178 procedure Inherit_Component
12179 (Old_C : Entity_Id;
12180 Plain_Discrim : Boolean := False;
12181 Stored_Discrim : Boolean := False)
12183 New_C : constant Entity_Id := New_Copy (Old_C);
12185 Discrim : Entity_Id;
12186 Corr_Discrim : Entity_Id;
12188 begin
12189 pragma Assert (not Is_Tagged or else not Stored_Discrim);
12191 Set_Parent (New_C, Parent (Old_C));
12193 -- Regular discriminants and components must be inserted
12194 -- in the scope of the Derived_Base. Do it here.
12196 if not Stored_Discrim then
12197 Enter_Name (New_C);
12198 end if;
12200 -- For tagged types the Original_Record_Component must point to
12201 -- whatever this field was pointing to in the parent type. This has
12202 -- already been achieved by the call to New_Copy above.
12204 if not Is_Tagged then
12205 Set_Original_Record_Component (New_C, New_C);
12206 end if;
12208 -- If we have inherited a component then see if its Etype contains
12209 -- references to Parent_Base discriminants. In this case, replace
12210 -- these references with the constraints given in Discs. We do not
12211 -- do this for the partial view of private types because this is
12212 -- not needed (only the components of the full view will be used
12213 -- for code generation) and cause problem. We also avoid this
12214 -- transformation in some error situations.
12216 if Ekind (New_C) = E_Component then
12217 if (Is_Private_Type (Derived_Base)
12218 and then not Is_Generic_Type (Derived_Base))
12219 or else (Is_Empty_Elmt_List (Discs)
12220 and then not Expander_Active)
12221 then
12222 Set_Etype (New_C, Etype (Old_C));
12223 else
12224 Set_Etype
12225 (New_C,
12226 Constrain_Component_Type
12227 (Old_C, Derived_Base, N, Parent_Base, Discs));
12228 end if;
12229 end if;
12231 -- In derived tagged types it is illegal to reference a non
12232 -- discriminant component in the parent type. To catch this, mark
12233 -- these components with an Ekind of E_Void. This will be reset in
12234 -- Record_Type_Definition after processing the record extension of
12235 -- the derived type.
12237 if Is_Tagged and then Ekind (New_C) = E_Component then
12238 Set_Ekind (New_C, E_Void);
12239 end if;
12241 if Plain_Discrim then
12242 Set_Corresponding_Discriminant (New_C, Old_C);
12243 Build_Discriminal (New_C);
12245 -- If we are explicitly inheriting a stored discriminant it will be
12246 -- completely hidden.
12248 elsif Stored_Discrim then
12249 Set_Corresponding_Discriminant (New_C, Empty);
12250 Set_Discriminal (New_C, Empty);
12251 Set_Is_Completely_Hidden (New_C);
12253 -- Set the Original_Record_Component of each discriminant in the
12254 -- derived base to point to the corresponding stored that we just
12255 -- created.
12257 Discrim := First_Discriminant (Derived_Base);
12258 while Present (Discrim) loop
12259 Corr_Discrim := Corresponding_Discriminant (Discrim);
12261 -- Corr_Discrim could be missing in an error situation
12263 if Present (Corr_Discrim)
12264 and then Original_Record_Component (Corr_Discrim) = Old_C
12265 then
12266 Set_Original_Record_Component (Discrim, New_C);
12267 end if;
12269 Next_Discriminant (Discrim);
12270 end loop;
12272 Append_Entity (New_C, Derived_Base);
12273 end if;
12275 if not Is_Tagged then
12276 Append_Elmt (Old_C, Assoc_List);
12277 Append_Elmt (New_C, Assoc_List);
12278 end if;
12279 end Inherit_Component;
12281 -- Variables local to Inherit_Component
12283 Loc : constant Source_Ptr := Sloc (N);
12285 Parent_Discrim : Entity_Id;
12286 Stored_Discrim : Entity_Id;
12287 D : Entity_Id;
12288 Component : Entity_Id;
12290 -- Start of processing for Inherit_Components
12292 begin
12293 if not Is_Tagged then
12294 Append_Elmt (Parent_Base, Assoc_List);
12295 Append_Elmt (Derived_Base, Assoc_List);
12296 end if;
12298 -- Inherit parent discriminants if needed
12300 if Inherit_Discr then
12301 Parent_Discrim := First_Discriminant (Parent_Base);
12302 while Present (Parent_Discrim) loop
12303 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
12304 Next_Discriminant (Parent_Discrim);
12305 end loop;
12306 end if;
12308 -- Create explicit stored discrims for untagged types when necessary
12310 if not Has_Unknown_Discriminants (Derived_Base)
12311 and then Has_Discriminants (Parent_Base)
12312 and then not Is_Tagged
12313 and then
12314 (not Inherit_Discr
12315 or else First_Discriminant (Parent_Base) /=
12316 First_Stored_Discriminant (Parent_Base))
12317 then
12318 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
12319 while Present (Stored_Discrim) loop
12320 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
12321 Next_Stored_Discriminant (Stored_Discrim);
12322 end loop;
12323 end if;
12325 -- See if we can apply the second transformation for derived types, as
12326 -- explained in point 6. in the comments above Build_Derived_Record_Type
12327 -- This is achieved by appending Derived_Base discriminants into Discs,
12328 -- which has the side effect of returning a non empty Discs list to the
12329 -- caller of Inherit_Components, which is what we want. This must be
12330 -- done for private derived types if there are explicit stored
12331 -- discriminants, to ensure that we can retrieve the values of the
12332 -- constraints provided in the ancestors.
12334 if Inherit_Discr
12335 and then Is_Empty_Elmt_List (Discs)
12336 and then Present (First_Discriminant (Derived_Base))
12337 and then
12338 (not Is_Private_Type (Derived_Base)
12339 or else Is_Completely_Hidden
12340 (First_Stored_Discriminant (Derived_Base))
12341 or else Is_Generic_Type (Derived_Base))
12342 then
12343 D := First_Discriminant (Derived_Base);
12344 while Present (D) loop
12345 Append_Elmt (New_Reference_To (D, Loc), Discs);
12346 Next_Discriminant (D);
12347 end loop;
12348 end if;
12350 -- Finally, inherit non-discriminant components unless they are not
12351 -- visible because defined or inherited from the full view of the
12352 -- parent. Don't inherit the _parent field of the parent type.
12354 Component := First_Entity (Parent_Base);
12355 while Present (Component) loop
12357 -- Ada 2005 (AI-251): Do not inherit tags corresponding with the
12358 -- interfaces of the parent
12360 if Ekind (Component) = E_Component
12361 and then Is_Tag (Component)
12362 and then RTE_Available (RE_Interface_Tag)
12363 and then Etype (Component) = RTE (RE_Interface_Tag)
12364 then
12365 null;
12367 elsif Ekind (Component) /= E_Component
12368 or else Chars (Component) = Name_uParent
12369 then
12370 null;
12372 -- If the derived type is within the parent type's declarative
12373 -- region, then the components can still be inherited even though
12374 -- they aren't visible at this point. This can occur for cases
12375 -- such as within public child units where the components must
12376 -- become visible upon entering the child unit's private part.
12378 elsif not Is_Visible_Component (Component)
12379 and then not In_Open_Scopes (Scope (Parent_Base))
12380 then
12381 null;
12383 elsif Ekind (Derived_Base) = E_Private_Type
12384 or else Ekind (Derived_Base) = E_Limited_Private_Type
12385 then
12386 null;
12388 else
12389 Inherit_Component (Component);
12390 end if;
12392 Next_Entity (Component);
12393 end loop;
12395 -- For tagged derived types, inherited discriminants cannot be used in
12396 -- component declarations of the record extension part. To achieve this
12397 -- we mark the inherited discriminants as not visible.
12399 if Is_Tagged and then Inherit_Discr then
12400 D := First_Discriminant (Derived_Base);
12401 while Present (D) loop
12402 Set_Is_Immediately_Visible (D, False);
12403 Next_Discriminant (D);
12404 end loop;
12405 end if;
12407 return Assoc_List;
12408 end Inherit_Components;
12410 -----------------------
12411 -- Is_Null_Extension --
12412 -----------------------
12414 function Is_Null_Extension (T : Entity_Id) return Boolean is
12415 Full_Type_Decl : constant Node_Id := Parent (T);
12416 Full_Type_Defn : constant Node_Id := Type_Definition (Full_Type_Decl);
12417 Comp_List : Node_Id;
12418 First_Comp : Node_Id;
12420 begin
12421 if not Is_Tagged_Type (T)
12422 or else Nkind (Full_Type_Defn) /= N_Derived_Type_Definition
12423 then
12424 return False;
12425 end if;
12427 Comp_List := Component_List (Record_Extension_Part (Full_Type_Defn));
12429 if Present (Discriminant_Specifications (Full_Type_Decl)) then
12430 return False;
12432 elsif Present (Comp_List)
12433 and then Is_Non_Empty_List (Component_Items (Comp_List))
12434 then
12435 First_Comp := First (Component_Items (Comp_List));
12437 return Chars (Defining_Identifier (First_Comp)) = Name_uParent
12438 and then No (Next (First_Comp));
12440 else
12441 return True;
12442 end if;
12443 end Is_Null_Extension;
12445 ------------------------------
12446 -- Is_Valid_Constraint_Kind --
12447 ------------------------------
12449 function Is_Valid_Constraint_Kind
12450 (T_Kind : Type_Kind;
12451 Constraint_Kind : Node_Kind) return Boolean
12453 begin
12454 case T_Kind is
12455 when Enumeration_Kind |
12456 Integer_Kind =>
12457 return Constraint_Kind = N_Range_Constraint;
12459 when Decimal_Fixed_Point_Kind =>
12460 return
12461 Constraint_Kind = N_Digits_Constraint
12462 or else
12463 Constraint_Kind = N_Range_Constraint;
12465 when Ordinary_Fixed_Point_Kind =>
12466 return
12467 Constraint_Kind = N_Delta_Constraint
12468 or else
12469 Constraint_Kind = N_Range_Constraint;
12471 when Float_Kind =>
12472 return
12473 Constraint_Kind = N_Digits_Constraint
12474 or else
12475 Constraint_Kind = N_Range_Constraint;
12477 when Access_Kind |
12478 Array_Kind |
12479 E_Record_Type |
12480 E_Record_Subtype |
12481 Class_Wide_Kind |
12482 E_Incomplete_Type |
12483 Private_Kind |
12484 Concurrent_Kind =>
12485 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
12487 when others =>
12488 return True; -- Error will be detected later
12489 end case;
12490 end Is_Valid_Constraint_Kind;
12492 --------------------------
12493 -- Is_Visible_Component --
12494 --------------------------
12496 function Is_Visible_Component (C : Entity_Id) return Boolean is
12497 Original_Comp : Entity_Id := Empty;
12498 Original_Scope : Entity_Id;
12499 Type_Scope : Entity_Id;
12501 function Is_Local_Type (Typ : Entity_Id) return Boolean;
12502 -- Check whether parent type of inherited component is declared locally,
12503 -- possibly within a nested package or instance. The current scope is
12504 -- the derived record itself.
12506 -------------------
12507 -- Is_Local_Type --
12508 -------------------
12510 function Is_Local_Type (Typ : Entity_Id) return Boolean is
12511 Scop : Entity_Id;
12513 begin
12514 Scop := Scope (Typ);
12515 while Present (Scop)
12516 and then Scop /= Standard_Standard
12517 loop
12518 if Scop = Scope (Current_Scope) then
12519 return True;
12520 end if;
12522 Scop := Scope (Scop);
12523 end loop;
12525 return False;
12526 end Is_Local_Type;
12528 -- Start of processing for Is_Visible_Component
12530 begin
12531 if Ekind (C) = E_Component
12532 or else Ekind (C) = E_Discriminant
12533 then
12534 Original_Comp := Original_Record_Component (C);
12535 end if;
12537 if No (Original_Comp) then
12539 -- Premature usage, or previous error
12541 return False;
12543 else
12544 Original_Scope := Scope (Original_Comp);
12545 Type_Scope := Scope (Base_Type (Scope (C)));
12546 end if;
12548 -- This test only concerns tagged types
12550 if not Is_Tagged_Type (Original_Scope) then
12551 return True;
12553 -- If it is _Parent or _Tag, there is no visibility issue
12555 elsif not Comes_From_Source (Original_Comp) then
12556 return True;
12558 -- If we are in the body of an instantiation, the component is visible
12559 -- even when the parent type (possibly defined in an enclosing unit or
12560 -- in a parent unit) might not.
12562 elsif In_Instance_Body then
12563 return True;
12565 -- Discriminants are always visible
12567 elsif Ekind (Original_Comp) = E_Discriminant
12568 and then not Has_Unknown_Discriminants (Original_Scope)
12569 then
12570 return True;
12572 -- If the component has been declared in an ancestor which is currently
12573 -- a private type, then it is not visible. The same applies if the
12574 -- component's containing type is not in an open scope and the original
12575 -- component's enclosing type is a visible full type of a private type
12576 -- (which can occur in cases where an attempt is being made to reference
12577 -- a component in a sibling package that is inherited from a visible
12578 -- component of a type in an ancestor package; the component in the
12579 -- sibling package should not be visible even though the component it
12580 -- inherited from is visible). This does not apply however in the case
12581 -- where the scope of the type is a private child unit, or when the
12582 -- parent comes from a local package in which the ancestor is currently
12583 -- visible. The latter suppression of visibility is needed for cases
12584 -- that are tested in B730006.
12586 elsif Is_Private_Type (Original_Scope)
12587 or else
12588 (not Is_Private_Descendant (Type_Scope)
12589 and then not In_Open_Scopes (Type_Scope)
12590 and then Has_Private_Declaration (Original_Scope))
12591 then
12592 -- If the type derives from an entity in a formal package, there
12593 -- are no additional visible components.
12595 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
12596 N_Formal_Package_Declaration
12597 then
12598 return False;
12600 -- if we are not in the private part of the current package, there
12601 -- are no additional visible components.
12603 elsif Ekind (Scope (Current_Scope)) = E_Package
12604 and then not In_Private_Part (Scope (Current_Scope))
12605 then
12606 return False;
12607 else
12608 return
12609 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
12610 and then Is_Local_Type (Type_Scope);
12611 end if;
12613 -- There is another weird way in which a component may be invisible
12614 -- when the private and the full view are not derived from the same
12615 -- ancestor. Here is an example :
12617 -- type A1 is tagged record F1 : integer; end record;
12618 -- type A2 is new A1 with record F2 : integer; end record;
12619 -- type T is new A1 with private;
12620 -- private
12621 -- type T is new A2 with null record;
12623 -- In this case, the full view of T inherits F1 and F2 but the private
12624 -- view inherits only F1
12626 else
12627 declare
12628 Ancestor : Entity_Id := Scope (C);
12630 begin
12631 loop
12632 if Ancestor = Original_Scope then
12633 return True;
12634 elsif Ancestor = Etype (Ancestor) then
12635 return False;
12636 end if;
12638 Ancestor := Etype (Ancestor);
12639 end loop;
12641 return True;
12642 end;
12643 end if;
12644 end Is_Visible_Component;
12646 --------------------------
12647 -- Make_Class_Wide_Type --
12648 --------------------------
12650 procedure Make_Class_Wide_Type (T : Entity_Id) is
12651 CW_Type : Entity_Id;
12652 CW_Name : Name_Id;
12653 Next_E : Entity_Id;
12655 begin
12656 -- The class wide type can have been defined by the partial view in
12657 -- which case everything is already done
12659 if Present (Class_Wide_Type (T)) then
12660 return;
12661 end if;
12663 CW_Type :=
12664 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
12666 -- Inherit root type characteristics
12668 CW_Name := Chars (CW_Type);
12669 Next_E := Next_Entity (CW_Type);
12670 Copy_Node (T, CW_Type);
12671 Set_Comes_From_Source (CW_Type, False);
12672 Set_Chars (CW_Type, CW_Name);
12673 Set_Parent (CW_Type, Parent (T));
12674 Set_Next_Entity (CW_Type, Next_E);
12675 Set_Has_Delayed_Freeze (CW_Type);
12677 -- Customize the class-wide type: It has no prim. op., it cannot be
12678 -- abstract and its Etype points back to the specific root type.
12680 Set_Ekind (CW_Type, E_Class_Wide_Type);
12681 Set_Is_Tagged_Type (CW_Type, True);
12682 Set_Primitive_Operations (CW_Type, New_Elmt_List);
12683 Set_Is_Abstract (CW_Type, False);
12684 Set_Is_Constrained (CW_Type, False);
12685 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
12686 Init_Size_Align (CW_Type);
12688 if Ekind (T) = E_Class_Wide_Subtype then
12689 Set_Etype (CW_Type, Etype (Base_Type (T)));
12690 else
12691 Set_Etype (CW_Type, T);
12692 end if;
12694 -- If this is the class_wide type of a constrained subtype, it does
12695 -- not have discriminants.
12697 Set_Has_Discriminants (CW_Type,
12698 Has_Discriminants (T) and then not Is_Constrained (T));
12700 Set_Has_Unknown_Discriminants (CW_Type, True);
12701 Set_Class_Wide_Type (T, CW_Type);
12702 Set_Equivalent_Type (CW_Type, Empty);
12704 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
12706 Set_Class_Wide_Type (CW_Type, CW_Type);
12707 end Make_Class_Wide_Type;
12709 ----------------
12710 -- Make_Index --
12711 ----------------
12713 procedure Make_Index
12714 (I : Node_Id;
12715 Related_Nod : Node_Id;
12716 Related_Id : Entity_Id := Empty;
12717 Suffix_Index : Nat := 1)
12719 R : Node_Id;
12720 T : Entity_Id;
12721 Def_Id : Entity_Id := Empty;
12722 Found : Boolean := False;
12724 begin
12725 -- For a discrete range used in a constrained array definition and
12726 -- defined by a range, an implicit conversion to the predefined type
12727 -- INTEGER is assumed if each bound is either a numeric literal, a named
12728 -- number, or an attribute, and the type of both bounds (prior to the
12729 -- implicit conversion) is the type universal_integer. Otherwise, both
12730 -- bounds must be of the same discrete type, other than universal
12731 -- integer; this type must be determinable independently of the
12732 -- context, but using the fact that the type must be discrete and that
12733 -- both bounds must have the same type.
12735 -- Character literals also have a universal type in the absence of
12736 -- of additional context, and are resolved to Standard_Character.
12738 if Nkind (I) = N_Range then
12740 -- The index is given by a range constraint. The bounds are known
12741 -- to be of a consistent type.
12743 if not Is_Overloaded (I) then
12744 T := Etype (I);
12746 -- If the bounds are universal, choose the specific predefined
12747 -- type.
12749 if T = Universal_Integer then
12750 T := Standard_Integer;
12752 elsif T = Any_Character then
12754 if Ada_Version >= Ada_95 then
12755 Error_Msg_N
12756 ("ambiguous character literals (could be Wide_Character)",
12758 end if;
12760 T := Standard_Character;
12761 end if;
12763 else
12764 T := Any_Type;
12766 declare
12767 Ind : Interp_Index;
12768 It : Interp;
12770 begin
12771 Get_First_Interp (I, Ind, It);
12772 while Present (It.Typ) loop
12773 if Is_Discrete_Type (It.Typ) then
12775 if Found
12776 and then not Covers (It.Typ, T)
12777 and then not Covers (T, It.Typ)
12778 then
12779 Error_Msg_N ("ambiguous bounds in discrete range", I);
12780 exit;
12781 else
12782 T := It.Typ;
12783 Found := True;
12784 end if;
12785 end if;
12787 Get_Next_Interp (Ind, It);
12788 end loop;
12790 if T = Any_Type then
12791 Error_Msg_N ("discrete type required for range", I);
12792 Set_Etype (I, Any_Type);
12793 return;
12795 elsif T = Universal_Integer then
12796 T := Standard_Integer;
12797 end if;
12798 end;
12799 end if;
12801 if not Is_Discrete_Type (T) then
12802 Error_Msg_N ("discrete type required for range", I);
12803 Set_Etype (I, Any_Type);
12804 return;
12805 end if;
12807 if Nkind (Low_Bound (I)) = N_Attribute_Reference
12808 and then Attribute_Name (Low_Bound (I)) = Name_First
12809 and then Is_Entity_Name (Prefix (Low_Bound (I)))
12810 and then Is_Type (Entity (Prefix (Low_Bound (I))))
12811 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
12812 then
12813 -- The type of the index will be the type of the prefix, as long
12814 -- as the upper bound is 'Last of the same type.
12816 Def_Id := Entity (Prefix (Low_Bound (I)));
12818 if Nkind (High_Bound (I)) /= N_Attribute_Reference
12819 or else Attribute_Name (High_Bound (I)) /= Name_Last
12820 or else not Is_Entity_Name (Prefix (High_Bound (I)))
12821 or else Entity (Prefix (High_Bound (I))) /= Def_Id
12822 then
12823 Def_Id := Empty;
12824 end if;
12825 end if;
12827 R := I;
12828 Process_Range_Expr_In_Decl (R, T);
12830 elsif Nkind (I) = N_Subtype_Indication then
12832 -- The index is given by a subtype with a range constraint
12834 T := Base_Type (Entity (Subtype_Mark (I)));
12836 if not Is_Discrete_Type (T) then
12837 Error_Msg_N ("discrete type required for range", I);
12838 Set_Etype (I, Any_Type);
12839 return;
12840 end if;
12842 R := Range_Expression (Constraint (I));
12844 Resolve (R, T);
12845 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
12847 elsif Nkind (I) = N_Attribute_Reference then
12849 -- The parser guarantees that the attribute is a RANGE attribute
12851 -- If the node denotes the range of a type mark, that is also the
12852 -- resulting type, and we do no need to create an Itype for it.
12854 if Is_Entity_Name (Prefix (I))
12855 and then Comes_From_Source (I)
12856 and then Is_Type (Entity (Prefix (I)))
12857 and then Is_Discrete_Type (Entity (Prefix (I)))
12858 then
12859 Def_Id := Entity (Prefix (I));
12860 end if;
12862 Analyze_And_Resolve (I);
12863 T := Etype (I);
12864 R := I;
12866 -- If none of the above, must be a subtype. We convert this to a
12867 -- range attribute reference because in the case of declared first
12868 -- named subtypes, the types in the range reference can be different
12869 -- from the type of the entity. A range attribute normalizes the
12870 -- reference and obtains the correct types for the bounds.
12872 -- This transformation is in the nature of an expansion, is only
12873 -- done if expansion is active. In particular, it is not done on
12874 -- formal generic types, because we need to retain the name of the
12875 -- original index for instantiation purposes.
12877 else
12878 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
12879 Error_Msg_N ("invalid subtype mark in discrete range ", I);
12880 Set_Etype (I, Any_Integer);
12881 return;
12883 else
12884 -- The type mark may be that of an incomplete type. It is only
12885 -- now that we can get the full view, previous analysis does
12886 -- not look specifically for a type mark.
12888 Set_Entity (I, Get_Full_View (Entity (I)));
12889 Set_Etype (I, Entity (I));
12890 Def_Id := Entity (I);
12892 if not Is_Discrete_Type (Def_Id) then
12893 Error_Msg_N ("discrete type required for index", I);
12894 Set_Etype (I, Any_Type);
12895 return;
12896 end if;
12897 end if;
12899 if Expander_Active then
12900 Rewrite (I,
12901 Make_Attribute_Reference (Sloc (I),
12902 Attribute_Name => Name_Range,
12903 Prefix => Relocate_Node (I)));
12905 -- The original was a subtype mark that does not freeze. This
12906 -- means that the rewritten version must not freeze either.
12908 Set_Must_Not_Freeze (I);
12909 Set_Must_Not_Freeze (Prefix (I));
12911 -- Is order critical??? if so, document why, if not
12912 -- use Analyze_And_Resolve
12914 Analyze (I);
12915 T := Etype (I);
12916 Resolve (I);
12917 R := I;
12919 -- If expander is inactive, type is legal, nothing else to construct
12921 else
12922 return;
12923 end if;
12924 end if;
12926 if not Is_Discrete_Type (T) then
12927 Error_Msg_N ("discrete type required for range", I);
12928 Set_Etype (I, Any_Type);
12929 return;
12931 elsif T = Any_Type then
12932 Set_Etype (I, Any_Type);
12933 return;
12934 end if;
12936 -- We will now create the appropriate Itype to describe the range, but
12937 -- first a check. If we originally had a subtype, then we just label
12938 -- the range with this subtype. Not only is there no need to construct
12939 -- a new subtype, but it is wrong to do so for two reasons:
12941 -- 1. A legality concern, if we have a subtype, it must not freeze,
12942 -- and the Itype would cause freezing incorrectly
12944 -- 2. An efficiency concern, if we created an Itype, it would not be
12945 -- recognized as the same type for the purposes of eliminating
12946 -- checks in some circumstances.
12948 -- We signal this case by setting the subtype entity in Def_Id
12950 if No (Def_Id) then
12951 Def_Id :=
12952 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
12953 Set_Etype (Def_Id, Base_Type (T));
12955 if Is_Signed_Integer_Type (T) then
12956 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12958 elsif Is_Modular_Integer_Type (T) then
12959 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12961 else
12962 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12963 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12964 Set_First_Literal (Def_Id, First_Literal (T));
12965 end if;
12967 Set_Size_Info (Def_Id, (T));
12968 Set_RM_Size (Def_Id, RM_Size (T));
12969 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12971 Set_Scalar_Range (Def_Id, R);
12972 Conditional_Delay (Def_Id, T);
12974 -- In the subtype indication case, if the immediate parent of the
12975 -- new subtype is non-static, then the subtype we create is non-
12976 -- static, even if its bounds are static.
12978 if Nkind (I) = N_Subtype_Indication
12979 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
12980 then
12981 Set_Is_Non_Static_Subtype (Def_Id);
12982 end if;
12983 end if;
12985 -- Final step is to label the index with this constructed type
12987 Set_Etype (I, Def_Id);
12988 end Make_Index;
12990 ------------------------------
12991 -- Modular_Type_Declaration --
12992 ------------------------------
12994 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
12995 Mod_Expr : constant Node_Id := Expression (Def);
12996 M_Val : Uint;
12998 procedure Set_Modular_Size (Bits : Int);
12999 -- Sets RM_Size to Bits, and Esize to normal word size above this
13001 ----------------------
13002 -- Set_Modular_Size --
13003 ----------------------
13005 procedure Set_Modular_Size (Bits : Int) is
13006 begin
13007 Set_RM_Size (T, UI_From_Int (Bits));
13009 if Bits <= 8 then
13010 Init_Esize (T, 8);
13012 elsif Bits <= 16 then
13013 Init_Esize (T, 16);
13015 elsif Bits <= 32 then
13016 Init_Esize (T, 32);
13018 else
13019 Init_Esize (T, System_Max_Binary_Modulus_Power);
13020 end if;
13021 end Set_Modular_Size;
13023 -- Start of processing for Modular_Type_Declaration
13025 begin
13026 Analyze_And_Resolve (Mod_Expr, Any_Integer);
13027 Set_Etype (T, T);
13028 Set_Ekind (T, E_Modular_Integer_Type);
13029 Init_Alignment (T);
13030 Set_Is_Constrained (T);
13032 if not Is_OK_Static_Expression (Mod_Expr) then
13033 Flag_Non_Static_Expr
13034 ("non-static expression used for modular type bound!", Mod_Expr);
13035 M_Val := 2 ** System_Max_Binary_Modulus_Power;
13036 else
13037 M_Val := Expr_Value (Mod_Expr);
13038 end if;
13040 if M_Val < 1 then
13041 Error_Msg_N ("modulus value must be positive", Mod_Expr);
13042 M_Val := 2 ** System_Max_Binary_Modulus_Power;
13043 end if;
13045 Set_Modulus (T, M_Val);
13047 -- Create bounds for the modular type based on the modulus given in
13048 -- the type declaration and then analyze and resolve those bounds.
13050 Set_Scalar_Range (T,
13051 Make_Range (Sloc (Mod_Expr),
13052 Low_Bound =>
13053 Make_Integer_Literal (Sloc (Mod_Expr), 0),
13054 High_Bound =>
13055 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
13057 -- Properly analyze the literals for the range. We do this manually
13058 -- because we can't go calling Resolve, since we are resolving these
13059 -- bounds with the type, and this type is certainly not complete yet!
13061 Set_Etype (Low_Bound (Scalar_Range (T)), T);
13062 Set_Etype (High_Bound (Scalar_Range (T)), T);
13063 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
13064 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
13066 -- Loop through powers of two to find number of bits required
13068 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
13070 -- Binary case
13072 if M_Val = 2 ** Bits then
13073 Set_Modular_Size (Bits);
13074 return;
13076 -- Non-binary case
13078 elsif M_Val < 2 ** Bits then
13079 Set_Non_Binary_Modulus (T);
13081 if Bits > System_Max_Nonbinary_Modulus_Power then
13082 Error_Msg_Uint_1 :=
13083 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
13084 Error_Msg_N
13085 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
13086 Set_Modular_Size (System_Max_Binary_Modulus_Power);
13087 return;
13089 else
13090 -- In the non-binary case, set size as per RM 13.3(55)
13092 Set_Modular_Size (Bits);
13093 return;
13094 end if;
13095 end if;
13097 end loop;
13099 -- If we fall through, then the size exceed System.Max_Binary_Modulus
13100 -- so we just signal an error and set the maximum size.
13102 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
13103 Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
13105 Set_Modular_Size (System_Max_Binary_Modulus_Power);
13106 Init_Alignment (T);
13108 end Modular_Type_Declaration;
13110 --------------------------
13111 -- New_Concatenation_Op --
13112 --------------------------
13114 procedure New_Concatenation_Op (Typ : Entity_Id) is
13115 Loc : constant Source_Ptr := Sloc (Typ);
13116 Op : Entity_Id;
13118 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
13119 -- Create abbreviated declaration for the formal of a predefined
13120 -- Operator 'Op' of type 'Typ'
13122 --------------------
13123 -- Make_Op_Formal --
13124 --------------------
13126 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
13127 Formal : Entity_Id;
13128 begin
13129 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
13130 Set_Etype (Formal, Typ);
13131 Set_Mechanism (Formal, Default_Mechanism);
13132 return Formal;
13133 end Make_Op_Formal;
13135 -- Start of processing for New_Concatenation_Op
13137 begin
13138 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
13140 Set_Ekind (Op, E_Operator);
13141 Set_Scope (Op, Current_Scope);
13142 Set_Etype (Op, Typ);
13143 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
13144 Set_Is_Immediately_Visible (Op);
13145 Set_Is_Intrinsic_Subprogram (Op);
13146 Set_Has_Completion (Op);
13147 Append_Entity (Op, Current_Scope);
13149 Set_Name_Entity_Id (Name_Op_Concat, Op);
13151 Append_Entity (Make_Op_Formal (Typ, Op), Op);
13152 Append_Entity (Make_Op_Formal (Typ, Op), Op);
13153 end New_Concatenation_Op;
13155 -------------------------------------------
13156 -- Ordinary_Fixed_Point_Type_Declaration --
13157 -------------------------------------------
13159 procedure Ordinary_Fixed_Point_Type_Declaration
13160 (T : Entity_Id;
13161 Def : Node_Id)
13163 Loc : constant Source_Ptr := Sloc (Def);
13164 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13165 RRS : constant Node_Id := Real_Range_Specification (Def);
13166 Implicit_Base : Entity_Id;
13167 Delta_Val : Ureal;
13168 Small_Val : Ureal;
13169 Low_Val : Ureal;
13170 High_Val : Ureal;
13172 begin
13173 Check_Restriction (No_Fixed_Point, Def);
13175 -- Create implicit base type
13177 Implicit_Base :=
13178 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
13179 Set_Etype (Implicit_Base, Implicit_Base);
13181 -- Analyze and process delta expression
13183 Analyze_And_Resolve (Delta_Expr, Any_Real);
13185 Check_Delta_Expression (Delta_Expr);
13186 Delta_Val := Expr_Value_R (Delta_Expr);
13188 Set_Delta_Value (Implicit_Base, Delta_Val);
13190 -- Compute default small from given delta, which is the largest power
13191 -- of two that does not exceed the given delta value.
13193 declare
13194 Tmp : Ureal;
13195 Scale : Int;
13197 begin
13198 Tmp := Ureal_1;
13199 Scale := 0;
13201 if Delta_Val < Ureal_1 then
13202 while Delta_Val < Tmp loop
13203 Tmp := Tmp / Ureal_2;
13204 Scale := Scale + 1;
13205 end loop;
13207 else
13208 loop
13209 Tmp := Tmp * Ureal_2;
13210 exit when Tmp > Delta_Val;
13211 Scale := Scale - 1;
13212 end loop;
13213 end if;
13215 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
13216 end;
13218 Set_Small_Value (Implicit_Base, Small_Val);
13220 -- If no range was given, set a dummy range
13222 if RRS <= Empty_Or_Error then
13223 Low_Val := -Small_Val;
13224 High_Val := Small_Val;
13226 -- Otherwise analyze and process given range
13228 else
13229 declare
13230 Low : constant Node_Id := Low_Bound (RRS);
13231 High : constant Node_Id := High_Bound (RRS);
13233 begin
13234 Analyze_And_Resolve (Low, Any_Real);
13235 Analyze_And_Resolve (High, Any_Real);
13236 Check_Real_Bound (Low);
13237 Check_Real_Bound (High);
13239 -- Obtain and set the range
13241 Low_Val := Expr_Value_R (Low);
13242 High_Val := Expr_Value_R (High);
13244 if Low_Val > High_Val then
13245 Error_Msg_NE ("?fixed point type& has null range", Def, T);
13246 end if;
13247 end;
13248 end if;
13250 -- The range for both the implicit base and the declared first subtype
13251 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
13252 -- set a temporary range in place. Note that the bounds of the base
13253 -- type will be widened to be symmetrical and to fill the available
13254 -- bits when the type is frozen.
13256 -- We could do this with all discrete types, and probably should, but
13257 -- we absolutely have to do it for fixed-point, since the end-points
13258 -- of the range and the size are determined by the small value, which
13259 -- could be reset before the freeze point.
13261 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
13262 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13264 Init_Size_Align (Implicit_Base);
13266 -- Complete definition of first subtype
13268 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
13269 Set_Etype (T, Implicit_Base);
13270 Init_Size_Align (T);
13271 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13272 Set_Small_Value (T, Small_Val);
13273 Set_Delta_Value (T, Delta_Val);
13274 Set_Is_Constrained (T);
13276 end Ordinary_Fixed_Point_Type_Declaration;
13278 ----------------------------------------
13279 -- Prepare_Private_Subtype_Completion --
13280 ----------------------------------------
13282 procedure Prepare_Private_Subtype_Completion
13283 (Id : Entity_Id;
13284 Related_Nod : Node_Id)
13286 Id_B : constant Entity_Id := Base_Type (Id);
13287 Full_B : constant Entity_Id := Full_View (Id_B);
13288 Full : Entity_Id;
13290 begin
13291 if Present (Full_B) then
13293 -- The Base_Type is already completed, we can complete the subtype
13294 -- now. We have to create a new entity with the same name, Thus we
13295 -- can't use Create_Itype.
13297 -- This is messy, should be fixed ???
13299 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
13300 Set_Is_Itype (Full);
13301 Set_Associated_Node_For_Itype (Full, Related_Nod);
13302 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
13303 end if;
13305 -- The parent subtype may be private, but the base might not, in some
13306 -- nested instances. In that case, the subtype does not need to be
13307 -- exchanged. It would still be nice to make private subtypes and their
13308 -- bases consistent at all times ???
13310 if Is_Private_Type (Id_B) then
13311 Append_Elmt (Id, Private_Dependents (Id_B));
13312 end if;
13314 end Prepare_Private_Subtype_Completion;
13316 ---------------------------
13317 -- Process_Discriminants --
13318 ---------------------------
13320 procedure Process_Discriminants
13321 (N : Node_Id;
13322 Prev : Entity_Id := Empty)
13324 Elist : constant Elist_Id := New_Elmt_List;
13325 Id : Node_Id;
13326 Discr : Node_Id;
13327 Discr_Number : Uint;
13328 Discr_Type : Entity_Id;
13329 Default_Present : Boolean := False;
13330 Default_Not_Present : Boolean := False;
13332 begin
13333 -- A composite type other than an array type can have discriminants.
13334 -- Discriminants of non-limited types must have a discrete type.
13335 -- On entry, the current scope is the composite type.
13337 -- The discriminants are initially entered into the scope of the type
13338 -- via Enter_Name with the default Ekind of E_Void to prevent premature
13339 -- use, as explained at the end of this procedure.
13341 Discr := First (Discriminant_Specifications (N));
13342 while Present (Discr) loop
13343 Enter_Name (Defining_Identifier (Discr));
13345 -- For navigation purposes we add a reference to the discriminant
13346 -- in the entity for the type. If the current declaration is a
13347 -- completion, place references on the partial view. Otherwise the
13348 -- type is the current scope.
13350 if Present (Prev) then
13352 -- The references go on the partial view, if present. If the
13353 -- partial view has discriminants, the references have been
13354 -- generated already.
13356 if not Has_Discriminants (Prev) then
13357 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
13358 end if;
13359 else
13360 Generate_Reference
13361 (Current_Scope, Defining_Identifier (Discr), 'd');
13362 end if;
13364 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
13365 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
13367 -- Ada 2005 (AI-230): Access discriminants are now allowed for
13368 -- nonlimited types, and are treated like other components of
13369 -- anonymous access types in terms of accessibility.
13371 if not Is_Concurrent_Type (Current_Scope)
13372 and then not Is_Concurrent_Record_Type (Current_Scope)
13373 and then not Is_Limited_Record (Current_Scope)
13374 and then Ekind (Current_Scope) /= E_Limited_Private_Type
13375 then
13376 Set_Is_Local_Anonymous_Access (Discr_Type);
13377 end if;
13379 -- Ada 2005 (AI-254)
13381 if Present (Access_To_Subprogram_Definition
13382 (Discriminant_Type (Discr)))
13383 and then Protected_Present (Access_To_Subprogram_Definition
13384 (Discriminant_Type (Discr)))
13385 then
13386 Discr_Type :=
13387 Replace_Anonymous_Access_To_Protected_Subprogram
13388 (Discr, Discr_Type);
13389 end if;
13391 else
13392 Find_Type (Discriminant_Type (Discr));
13393 Discr_Type := Etype (Discriminant_Type (Discr));
13395 if Error_Posted (Discriminant_Type (Discr)) then
13396 Discr_Type := Any_Type;
13397 end if;
13398 end if;
13400 if Is_Access_Type (Discr_Type) then
13402 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
13403 -- record types
13405 if Ada_Version < Ada_05 then
13406 Check_Access_Discriminant_Requires_Limited
13407 (Discr, Discriminant_Type (Discr));
13408 end if;
13410 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
13411 Error_Msg_N
13412 ("(Ada 83) access discriminant not allowed", Discr);
13413 end if;
13415 elsif not Is_Discrete_Type (Discr_Type) then
13416 Error_Msg_N ("discriminants must have a discrete or access type",
13417 Discriminant_Type (Discr));
13418 end if;
13420 Set_Etype (Defining_Identifier (Discr), Discr_Type);
13422 -- If a discriminant specification includes the assignment compound
13423 -- delimiter followed by an expression, the expression is the default
13424 -- expression of the discriminant; the default expression must be of
13425 -- the type of the discriminant. (RM 3.7.1) Since this expression is
13426 -- a default expression, we do the special preanalysis, since this
13427 -- expression does not freeze (see "Handling of Default and Per-
13428 -- Object Expressions" in spec of package Sem).
13430 if Present (Expression (Discr)) then
13431 Analyze_Per_Use_Expression (Expression (Discr), Discr_Type);
13433 if Nkind (N) = N_Formal_Type_Declaration then
13434 Error_Msg_N
13435 ("discriminant defaults not allowed for formal type",
13436 Expression (Discr));
13438 -- Tagged types cannot have defaulted discriminants, but a
13439 -- non-tagged private type with defaulted discriminants
13440 -- can have a tagged completion.
13442 elsif Is_Tagged_Type (Current_Scope)
13443 and then Comes_From_Source (N)
13444 then
13445 Error_Msg_N
13446 ("discriminants of tagged type cannot have defaults",
13447 Expression (Discr));
13449 else
13450 Default_Present := True;
13451 Append_Elmt (Expression (Discr), Elist);
13453 -- Tag the defining identifiers for the discriminants with
13454 -- their corresponding default expressions from the tree.
13456 Set_Discriminant_Default_Value
13457 (Defining_Identifier (Discr), Expression (Discr));
13458 end if;
13460 else
13461 Default_Not_Present := True;
13462 end if;
13464 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
13465 -- Discr_Type but with the null-exclusion attribute
13467 if Ada_Version >= Ada_05 then
13469 -- Ada 2005 (AI-231): Static checks
13471 if Can_Never_Be_Null (Discr_Type) then
13472 Null_Exclusion_Static_Checks (Discr);
13474 elsif Is_Access_Type (Discr_Type)
13475 and then Null_Exclusion_Present (Discr)
13477 -- No need to check itypes because in their case this check
13478 -- was done at their point of creation
13480 and then not Is_Itype (Discr_Type)
13481 then
13482 if Can_Never_Be_Null (Discr_Type) then
13483 Error_Msg_N
13484 ("(Ada 2005) already a null-excluding type", Discr);
13485 end if;
13487 Set_Etype (Defining_Identifier (Discr),
13488 Create_Null_Excluding_Itype
13489 (T => Discr_Type,
13490 Related_Nod => Discr));
13491 end if;
13493 end if;
13495 Next (Discr);
13496 end loop;
13498 -- An element list consisting of the default expressions of the
13499 -- discriminants is constructed in the above loop and used to set
13500 -- the Discriminant_Constraint attribute for the type. If an object
13501 -- is declared of this (record or task) type without any explicit
13502 -- discriminant constraint given, this element list will form the
13503 -- actual parameters for the corresponding initialization procedure
13504 -- for the type.
13506 Set_Discriminant_Constraint (Current_Scope, Elist);
13507 Set_Stored_Constraint (Current_Scope, No_Elist);
13509 -- Default expressions must be provided either for all or for none
13510 -- of the discriminants of a discriminant part. (RM 3.7.1)
13512 if Default_Present and then Default_Not_Present then
13513 Error_Msg_N
13514 ("incomplete specification of defaults for discriminants", N);
13515 end if;
13517 -- The use of the name of a discriminant is not allowed in default
13518 -- expressions of a discriminant part if the specification of the
13519 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
13521 -- To detect this, the discriminant names are entered initially with an
13522 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
13523 -- attempt to use a void entity (for example in an expression that is
13524 -- type-checked) produces the error message: premature usage. Now after
13525 -- completing the semantic analysis of the discriminant part, we can set
13526 -- the Ekind of all the discriminants appropriately.
13528 Discr := First (Discriminant_Specifications (N));
13529 Discr_Number := Uint_1;
13530 while Present (Discr) loop
13531 Id := Defining_Identifier (Discr);
13532 Set_Ekind (Id, E_Discriminant);
13533 Init_Component_Location (Id);
13534 Init_Esize (Id);
13535 Set_Discriminant_Number (Id, Discr_Number);
13537 -- Make sure this is always set, even in illegal programs
13539 Set_Corresponding_Discriminant (Id, Empty);
13541 -- Initialize the Original_Record_Component to the entity itself.
13542 -- Inherit_Components will propagate the right value to
13543 -- discriminants in derived record types.
13545 Set_Original_Record_Component (Id, Id);
13547 -- Create the discriminal for the discriminant
13549 Build_Discriminal (Id);
13551 Next (Discr);
13552 Discr_Number := Discr_Number + 1;
13553 end loop;
13555 Set_Has_Discriminants (Current_Scope);
13556 end Process_Discriminants;
13558 -----------------------
13559 -- Process_Full_View --
13560 -----------------------
13562 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
13563 Priv_Parent : Entity_Id;
13564 Full_Parent : Entity_Id;
13565 Full_Indic : Node_Id;
13567 procedure Collect_Implemented_Interfaces
13568 (Typ : Entity_Id;
13569 Ifaces : Elist_Id);
13570 -- Ada 2005: Gather all the interfaces that Typ directly or
13571 -- inherently implements. Duplicate entries are not added to
13572 -- the list Ifaces.
13574 function Contain_Interface
13575 (Iface : Entity_Id;
13576 Ifaces : Elist_Id) return Boolean;
13577 -- Ada 2005: Determine whether Iface is present in the list Ifaces
13579 function Find_Hidden_Interface
13580 (Src : Elist_Id;
13581 Dest : Elist_Id) return Entity_Id;
13582 -- Ada 2005: Determine whether the interfaces in list Src are all
13583 -- present in the list Dest. Return the first differing interface,
13584 -- or Empty otherwise.
13586 ------------------------------------
13587 -- Collect_Implemented_Interfaces --
13588 ------------------------------------
13590 procedure Collect_Implemented_Interfaces
13591 (Typ : Entity_Id;
13592 Ifaces : Elist_Id)
13594 Iface : Entity_Id;
13595 Iface_Elmt : Elmt_Id;
13597 begin
13598 -- Abstract interfaces are only associated with tagged record types
13600 if not Is_Tagged_Type (Typ)
13601 or else not Is_Record_Type (Typ)
13602 then
13603 return;
13604 end if;
13606 -- Implementations of the form:
13607 -- type Typ is new Iface ...
13609 if Is_Interface (Etype (Typ))
13610 and then not Contain_Interface (Etype (Typ), Ifaces)
13611 then
13612 Append_Elmt (Etype (Typ), Ifaces);
13613 end if;
13615 -- Implementations of the form:
13616 -- type Typ is ... and Iface ...
13618 if Present (Abstract_Interfaces (Typ)) then
13619 Iface_Elmt := First_Elmt (Abstract_Interfaces (Typ));
13620 while Present (Iface_Elmt) loop
13621 Iface := Node (Iface_Elmt);
13623 pragma Assert (Is_Interface (Iface));
13625 if not Contain_Interface (Iface, Ifaces) then
13626 Append_Elmt (Iface, Ifaces);
13627 Collect_Implemented_Interfaces (Iface, Ifaces);
13628 end if;
13630 Next_Elmt (Iface_Elmt);
13631 end loop;
13632 end if;
13634 -- Implementations of the form:
13635 -- type Typ is new Parent_Typ and ...
13637 if Ekind (Typ) = E_Record_Type
13638 and then Present (Parent_Subtype (Typ))
13639 then
13640 Collect_Implemented_Interfaces (Parent_Subtype (Typ), Ifaces);
13642 -- Implementations of the form:
13643 -- type Typ is ... with private;
13645 elsif Ekind (Typ) = E_Record_Type_With_Private
13646 and then Present (Full_View (Typ))
13647 and then Etype (Typ) /= Full_View (Typ)
13648 and then Etype (Typ) /= Typ
13649 then
13650 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
13651 end if;
13652 end Collect_Implemented_Interfaces;
13654 -----------------------
13655 -- Contain_Interface --
13656 -----------------------
13658 function Contain_Interface
13659 (Iface : Entity_Id;
13660 Ifaces : Elist_Id) return Boolean
13662 Iface_Elmt : Elmt_Id;
13664 begin
13665 if Present (Ifaces) then
13666 Iface_Elmt := First_Elmt (Ifaces);
13667 while Present (Iface_Elmt) loop
13668 if Node (Iface_Elmt) = Iface then
13669 return True;
13670 end if;
13672 Next_Elmt (Iface_Elmt);
13673 end loop;
13674 end if;
13676 return False;
13677 end Contain_Interface;
13679 ---------------------------
13680 -- Find_Hidden_Interface --
13681 ---------------------------
13683 function Find_Hidden_Interface
13684 (Src : Elist_Id;
13685 Dest : Elist_Id) return Entity_Id
13687 Iface : Entity_Id;
13688 Iface_Elmt : Elmt_Id;
13690 begin
13691 if Present (Src) and then Present (Dest) then
13692 Iface_Elmt := First_Elmt (Src);
13693 while Present (Iface_Elmt) loop
13694 Iface := Node (Iface_Elmt);
13696 if not Contain_Interface (Iface, Dest) then
13697 return Iface;
13698 end if;
13700 Next_Elmt (Iface_Elmt);
13701 end loop;
13702 end if;
13704 return Empty;
13705 end Find_Hidden_Interface;
13707 -- Start of processing for Process_Full_View
13709 begin
13710 -- First some sanity checks that must be done after semantic
13711 -- decoration of the full view and thus cannot be placed with other
13712 -- similar checks in Find_Type_Name
13714 if not Is_Limited_Type (Priv_T)
13715 and then (Is_Limited_Type (Full_T)
13716 or else Is_Limited_Composite (Full_T))
13717 then
13718 Error_Msg_N
13719 ("completion of nonlimited type cannot be limited", Full_T);
13720 Explain_Limited_Type (Full_T, Full_T);
13722 elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
13723 Error_Msg_N
13724 ("completion of nonabstract type cannot be abstract", Full_T);
13726 elsif Is_Tagged_Type (Priv_T)
13727 and then Is_Limited_Type (Priv_T)
13728 and then not Is_Limited_Type (Full_T)
13729 then
13730 -- GNAT allow its own definition of Limited_Controlled to disobey
13731 -- this rule in order in ease the implementation. The next test is
13732 -- safe because Root_Controlled is defined in a private system child
13734 if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
13735 Set_Is_Limited_Composite (Full_T);
13736 else
13737 Error_Msg_N
13738 ("completion of limited tagged type must be limited", Full_T);
13739 end if;
13741 elsif Is_Generic_Type (Priv_T) then
13742 Error_Msg_N ("generic type cannot have a completion", Full_T);
13743 end if;
13745 if Ada_Version >= Ada_05
13746 and then Is_Tagged_Type (Priv_T)
13747 and then Is_Tagged_Type (Full_T)
13748 then
13749 declare
13750 Iface : Entity_Id;
13751 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
13752 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
13754 begin
13755 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
13756 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
13758 -- Ada 2005 (AI-251): The partial view shall be a descendant of
13759 -- an interface type if and only if the full type is descendant
13760 -- of the interface type (AARM 7.3 (7.3/2).
13762 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
13764 if Present (Iface) then
13765 Error_Msg_NE ("interface & not implemented by full type " &
13766 "('R'M'-2005 7.3 (7.3/2))", Priv_T, Iface);
13767 end if;
13769 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
13771 if Present (Iface) then
13772 Error_Msg_NE ("interface & not implemented by partial view " &
13773 "('R'M'-2005 7.3 (7.3/2))", Full_T, Iface);
13774 end if;
13775 end;
13776 end if;
13778 if Is_Tagged_Type (Priv_T)
13779 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
13780 and then Is_Derived_Type (Full_T)
13781 then
13782 Priv_Parent := Etype (Priv_T);
13784 -- The full view of a private extension may have been transformed
13785 -- into an unconstrained derived type declaration and a subtype
13786 -- declaration (see build_derived_record_type for details).
13788 if Nkind (N) = N_Subtype_Declaration then
13789 Full_Indic := Subtype_Indication (N);
13790 Full_Parent := Etype (Base_Type (Full_T));
13791 else
13792 Full_Indic := Subtype_Indication (Type_Definition (N));
13793 Full_Parent := Etype (Full_T);
13794 end if;
13796 -- Check that the parent type of the full type is a descendant of
13797 -- the ancestor subtype given in the private extension. If either
13798 -- entity has an Etype equal to Any_Type then we had some previous
13799 -- error situation [7.3(8)].
13801 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
13802 return;
13804 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
13805 -- any order. Therefore we don't have to check that its parent must
13806 -- be a descendant of the parent of the private type declaration.
13808 elsif Is_Interface (Priv_Parent)
13809 and then Is_Interface (Full_Parent)
13810 then
13811 null;
13813 -- Ada 2005 (AI-251): If the parent of the private type declaration
13814 -- is an interface there is no need to check that it is an ancestor
13815 -- of the associated full type declaration. The required tests for
13816 -- this case case are performed by Build_Derived_Record_Type.
13818 elsif not Is_Interface (Base_Type (Priv_Parent))
13819 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
13820 then
13821 Error_Msg_N
13822 ("parent of full type must descend from parent"
13823 & " of private extension", Full_Indic);
13825 -- Check the rules of 7.3(10): if the private extension inherits
13826 -- known discriminants, then the full type must also inherit those
13827 -- discriminants from the same (ancestor) type, and the parent
13828 -- subtype of the full type must be constrained if and only if
13829 -- the ancestor subtype of the private extension is constrained.
13831 elsif No (Discriminant_Specifications (Parent (Priv_T)))
13832 and then not Has_Unknown_Discriminants (Priv_T)
13833 and then Has_Discriminants (Base_Type (Priv_Parent))
13834 then
13835 declare
13836 Priv_Indic : constant Node_Id :=
13837 Subtype_Indication (Parent (Priv_T));
13839 Priv_Constr : constant Boolean :=
13840 Is_Constrained (Priv_Parent)
13841 or else
13842 Nkind (Priv_Indic) = N_Subtype_Indication
13843 or else Is_Constrained (Entity (Priv_Indic));
13845 Full_Constr : constant Boolean :=
13846 Is_Constrained (Full_Parent)
13847 or else
13848 Nkind (Full_Indic) = N_Subtype_Indication
13849 or else Is_Constrained (Entity (Full_Indic));
13851 Priv_Discr : Entity_Id;
13852 Full_Discr : Entity_Id;
13854 begin
13855 Priv_Discr := First_Discriminant (Priv_Parent);
13856 Full_Discr := First_Discriminant (Full_Parent);
13857 while Present (Priv_Discr) and then Present (Full_Discr) loop
13858 if Original_Record_Component (Priv_Discr) =
13859 Original_Record_Component (Full_Discr)
13860 or else
13861 Corresponding_Discriminant (Priv_Discr) =
13862 Corresponding_Discriminant (Full_Discr)
13863 then
13864 null;
13865 else
13866 exit;
13867 end if;
13869 Next_Discriminant (Priv_Discr);
13870 Next_Discriminant (Full_Discr);
13871 end loop;
13873 if Present (Priv_Discr) or else Present (Full_Discr) then
13874 Error_Msg_N
13875 ("full view must inherit discriminants of the parent type"
13876 & " used in the private extension", Full_Indic);
13878 elsif Priv_Constr and then not Full_Constr then
13879 Error_Msg_N
13880 ("parent subtype of full type must be constrained",
13881 Full_Indic);
13883 elsif Full_Constr and then not Priv_Constr then
13884 Error_Msg_N
13885 ("parent subtype of full type must be unconstrained",
13886 Full_Indic);
13887 end if;
13888 end;
13890 -- Check the rules of 7.3(12): if a partial view has neither known
13891 -- or unknown discriminants, then the full type declaration shall
13892 -- define a definite subtype.
13894 elsif not Has_Unknown_Discriminants (Priv_T)
13895 and then not Has_Discriminants (Priv_T)
13896 and then not Is_Constrained (Full_T)
13897 then
13898 Error_Msg_N
13899 ("full view must define a constrained type if partial view"
13900 & " has no discriminants", Full_T);
13901 end if;
13903 -- ??????? Do we implement the following properly ?????
13904 -- If the ancestor subtype of a private extension has constrained
13905 -- discriminants, then the parent subtype of the full view shall
13906 -- impose a statically matching constraint on those discriminants
13907 -- [7.3(13)].
13909 else
13910 -- For untagged types, verify that a type without discriminants
13911 -- is not completed with an unconstrained type.
13913 if not Is_Indefinite_Subtype (Priv_T)
13914 and then Is_Indefinite_Subtype (Full_T)
13915 then
13916 Error_Msg_N ("full view of type must be definite subtype", Full_T);
13917 end if;
13918 end if;
13920 -- AI-419: verify that the use of "limited" is consistent
13922 declare
13923 Orig_Decl : constant Node_Id := Original_Node (N);
13924 begin
13925 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
13926 and then not Limited_Present (Parent (Priv_T))
13927 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
13928 and then Nkind
13929 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
13930 and then Limited_Present (Type_Definition (Orig_Decl))
13931 then
13932 Error_Msg_N
13933 ("full view of non-limited extension cannot be limited", N);
13934 end if;
13935 end;
13937 -- Ada 2005 AI-363: if the full view has discriminants with
13938 -- defaults, it is illegal to declare constrained access subtypes
13939 -- whose designated type is the current type. This allows objects
13940 -- of the type that are declared in the heap to be unconstrained.
13942 if not Has_Unknown_Discriminants (Priv_T)
13943 and then not Has_Discriminants (Priv_T)
13944 and then Has_Discriminants (Full_T)
13945 and then
13946 Present
13947 (Discriminant_Default_Value (First_Discriminant (Full_T)))
13948 then
13949 Set_Has_Constrained_Partial_View (Full_T);
13950 Set_Has_Constrained_Partial_View (Priv_T);
13951 end if;
13953 -- Create a full declaration for all its subtypes recorded in
13954 -- Private_Dependents and swap them similarly to the base type. These
13955 -- are subtypes that have been define before the full declaration of
13956 -- the private type. We also swap the entry in Private_Dependents list
13957 -- so we can properly restore the private view on exit from the scope.
13959 declare
13960 Priv_Elmt : Elmt_Id;
13961 Priv : Entity_Id;
13962 Full : Entity_Id;
13964 begin
13965 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
13966 while Present (Priv_Elmt) loop
13967 Priv := Node (Priv_Elmt);
13969 if Ekind (Priv) = E_Private_Subtype
13970 or else Ekind (Priv) = E_Limited_Private_Subtype
13971 or else Ekind (Priv) = E_Record_Subtype_With_Private
13972 then
13973 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
13974 Set_Is_Itype (Full);
13975 Set_Parent (Full, Parent (Priv));
13976 Set_Associated_Node_For_Itype (Full, N);
13978 -- Now we need to complete the private subtype, but since the
13979 -- base type has already been swapped, we must also swap the
13980 -- subtypes (and thus, reverse the arguments in the call to
13981 -- Complete_Private_Subtype).
13983 Copy_And_Swap (Priv, Full);
13984 Complete_Private_Subtype (Full, Priv, Full_T, N);
13985 Replace_Elmt (Priv_Elmt, Full);
13986 end if;
13988 Next_Elmt (Priv_Elmt);
13989 end loop;
13990 end;
13992 -- If the private view was tagged, copy the new Primitive
13993 -- operations from the private view to the full view.
13995 if Is_Tagged_Type (Full_T) then
13996 declare
13997 Priv_List : Elist_Id;
13998 Full_List : constant Elist_Id := Primitive_Operations (Full_T);
13999 P1, P2 : Elmt_Id;
14000 Prim : Entity_Id;
14001 D_Type : Entity_Id;
14003 begin
14004 if Is_Tagged_Type (Priv_T) then
14005 Priv_List := Primitive_Operations (Priv_T);
14007 P1 := First_Elmt (Priv_List);
14008 while Present (P1) loop
14009 Prim := Node (P1);
14011 -- Transfer explicit primitives, not those inherited from
14012 -- parent of partial view, which will be re-inherited on
14013 -- the full view.
14015 if Comes_From_Source (Prim) then
14016 P2 := First_Elmt (Full_List);
14017 while Present (P2) and then Node (P2) /= Prim loop
14018 Next_Elmt (P2);
14019 end loop;
14021 -- If not found, that is a new one
14023 if No (P2) then
14024 Append_Elmt (Prim, Full_List);
14025 end if;
14026 end if;
14028 Next_Elmt (P1);
14029 end loop;
14031 else
14032 -- In this case the partial view is untagged, so here we
14033 -- locate all of the earlier primitives that need to be
14034 -- treated as dispatching (those that appear between the two
14035 -- views). Note that these additional operations must all be
14036 -- new operations (any earlier operations that override
14037 -- inherited operations of the full view will already have
14038 -- been inserted in the primitives list and marked as
14039 -- dispatching by Check_Operation_From_Private_View. Note that
14040 -- implicit "/=" operators are excluded from being added to
14041 -- the primitives list since they shouldn't be treated as
14042 -- dispatching (tagged "/=" is handled specially).
14044 Prim := Next_Entity (Full_T);
14045 while Present (Prim) and then Prim /= Priv_T loop
14046 if Ekind (Prim) = E_Procedure
14047 or else
14048 Ekind (Prim) = E_Function
14049 then
14051 D_Type := Find_Dispatching_Type (Prim);
14053 if D_Type = Full_T
14054 and then (Chars (Prim) /= Name_Op_Ne
14055 or else Comes_From_Source (Prim))
14056 then
14057 Check_Controlling_Formals (Full_T, Prim);
14059 if not Is_Dispatching_Operation (Prim) then
14060 Append_Elmt (Prim, Full_List);
14061 Set_Is_Dispatching_Operation (Prim, True);
14062 Set_DT_Position (Prim, No_Uint);
14063 end if;
14065 elsif Is_Dispatching_Operation (Prim)
14066 and then D_Type /= Full_T
14067 then
14069 -- Verify that it is not otherwise controlled by
14070 -- a formal or a return value of type T.
14072 Check_Controlling_Formals (D_Type, Prim);
14073 end if;
14074 end if;
14076 Next_Entity (Prim);
14077 end loop;
14078 end if;
14080 -- For the tagged case, the two views can share the same
14081 -- Primitive Operation list and the same class wide type.
14082 -- Update attributes of the class-wide type which depend on
14083 -- the full declaration.
14085 if Is_Tagged_Type (Priv_T) then
14086 Set_Primitive_Operations (Priv_T, Full_List);
14087 Set_Class_Wide_Type
14088 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
14090 -- Any other attributes should be propagated to C_W ???
14092 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
14094 end if;
14095 end;
14096 end if;
14097 end Process_Full_View;
14099 -----------------------------------
14100 -- Process_Incomplete_Dependents --
14101 -----------------------------------
14103 procedure Process_Incomplete_Dependents
14104 (N : Node_Id;
14105 Full_T : Entity_Id;
14106 Inc_T : Entity_Id)
14108 Inc_Elmt : Elmt_Id;
14109 Priv_Dep : Entity_Id;
14110 New_Subt : Entity_Id;
14112 Disc_Constraint : Elist_Id;
14114 begin
14115 if No (Private_Dependents (Inc_T)) then
14116 return;
14117 end if;
14119 -- Itypes that may be generated by the completion of an incomplete
14120 -- subtype are not used by the back-end and not attached to the tree.
14121 -- They are created only for constraint-checking purposes.
14123 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
14124 while Present (Inc_Elmt) loop
14125 Priv_Dep := Node (Inc_Elmt);
14127 if Ekind (Priv_Dep) = E_Subprogram_Type then
14129 -- An Access_To_Subprogram type may have a return type or a
14130 -- parameter type that is incomplete. Replace with the full view.
14132 if Etype (Priv_Dep) = Inc_T then
14133 Set_Etype (Priv_Dep, Full_T);
14134 end if;
14136 declare
14137 Formal : Entity_Id;
14139 begin
14140 Formal := First_Formal (Priv_Dep);
14141 while Present (Formal) loop
14142 if Etype (Formal) = Inc_T then
14143 Set_Etype (Formal, Full_T);
14144 end if;
14146 Next_Formal (Formal);
14147 end loop;
14148 end;
14150 elsif Is_Overloadable (Priv_Dep) then
14152 -- A protected operation is never dispatching: only its
14153 -- wrapper operation (which has convention Ada) is.
14155 if Is_Tagged_Type (Full_T)
14156 and then Convention (Priv_Dep) /= Convention_Protected
14157 then
14159 -- Subprogram has an access parameter whose designated type
14160 -- was incomplete. Reexamine declaration now, because it may
14161 -- be a primitive operation of the full type.
14163 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
14164 Set_Is_Dispatching_Operation (Priv_Dep);
14165 Check_Controlling_Formals (Full_T, Priv_Dep);
14166 end if;
14168 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
14170 -- Can happen during processing of a body before the completion
14171 -- of a TA type. Ignore, because spec is also on dependent list.
14173 return;
14175 -- Dependent is a subtype
14177 else
14178 -- We build a new subtype indication using the full view of the
14179 -- incomplete parent. The discriminant constraints have been
14180 -- elaborated already at the point of the subtype declaration.
14182 New_Subt := Create_Itype (E_Void, N);
14184 if Has_Discriminants (Full_T) then
14185 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
14186 else
14187 Disc_Constraint := No_Elist;
14188 end if;
14190 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
14191 Set_Full_View (Priv_Dep, New_Subt);
14192 end if;
14194 Next_Elmt (Inc_Elmt);
14195 end loop;
14196 end Process_Incomplete_Dependents;
14198 --------------------------------
14199 -- Process_Range_Expr_In_Decl --
14200 --------------------------------
14202 procedure Process_Range_Expr_In_Decl
14203 (R : Node_Id;
14204 T : Entity_Id;
14205 Check_List : List_Id := Empty_List;
14206 R_Check_Off : Boolean := False)
14208 Lo, Hi : Node_Id;
14209 R_Checks : Check_Result;
14210 Type_Decl : Node_Id;
14211 Def_Id : Entity_Id;
14213 begin
14214 Analyze_And_Resolve (R, Base_Type (T));
14216 if Nkind (R) = N_Range then
14217 Lo := Low_Bound (R);
14218 Hi := High_Bound (R);
14220 -- If there were errors in the declaration, try and patch up some
14221 -- common mistakes in the bounds. The cases handled are literals
14222 -- which are Integer where the expected type is Real and vice versa.
14223 -- These corrections allow the compilation process to proceed further
14224 -- along since some basic assumptions of the format of the bounds
14225 -- are guaranteed.
14227 if Etype (R) = Any_Type then
14229 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
14230 Rewrite (Lo,
14231 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
14233 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
14234 Rewrite (Hi,
14235 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
14237 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
14238 Rewrite (Lo,
14239 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
14241 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
14242 Rewrite (Hi,
14243 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
14244 end if;
14246 Set_Etype (Lo, T);
14247 Set_Etype (Hi, T);
14248 end if;
14250 -- If the bounds of the range have been mistakenly given as string
14251 -- literals (perhaps in place of character literals), then an error
14252 -- has already been reported, but we rewrite the string literal as a
14253 -- bound of the range's type to avoid blowups in later processing
14254 -- that looks at static values.
14256 if Nkind (Lo) = N_String_Literal then
14257 Rewrite (Lo,
14258 Make_Attribute_Reference (Sloc (Lo),
14259 Attribute_Name => Name_First,
14260 Prefix => New_Reference_To (T, Sloc (Lo))));
14261 Analyze_And_Resolve (Lo);
14262 end if;
14264 if Nkind (Hi) = N_String_Literal then
14265 Rewrite (Hi,
14266 Make_Attribute_Reference (Sloc (Hi),
14267 Attribute_Name => Name_First,
14268 Prefix => New_Reference_To (T, Sloc (Hi))));
14269 Analyze_And_Resolve (Hi);
14270 end if;
14272 -- If bounds aren't scalar at this point then exit, avoiding
14273 -- problems with further processing of the range in this procedure.
14275 if not Is_Scalar_Type (Etype (Lo)) then
14276 return;
14277 end if;
14279 -- Resolve (actually Sem_Eval) has checked that the bounds are in
14280 -- then range of the base type. Here we check whether the bounds
14281 -- are in the range of the subtype itself. Note that if the bounds
14282 -- represent the null range the Constraint_Error exception should
14283 -- not be raised.
14285 -- ??? The following code should be cleaned up as follows
14287 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
14288 -- is done in the call to Range_Check (R, T); below
14290 -- 2. The use of R_Check_Off should be investigated and possibly
14291 -- removed, this would clean up things a bit.
14293 if Is_Null_Range (Lo, Hi) then
14294 null;
14296 else
14297 -- Capture values of bounds and generate temporaries for them
14298 -- if needed, before applying checks, since checks may cause
14299 -- duplication of the expression without forcing evaluation.
14301 if Expander_Active then
14302 Force_Evaluation (Lo);
14303 Force_Evaluation (Hi);
14304 end if;
14306 -- We use a flag here instead of suppressing checks on the
14307 -- type because the type we check against isn't necessarily
14308 -- the place where we put the check.
14310 if not R_Check_Off then
14311 R_Checks := Range_Check (R, T);
14313 -- Look up tree to find an appropriate insertion point.
14314 -- This seems really junk code, and very brittle, couldn't
14315 -- we just use an insert actions call of some kind ???
14317 Type_Decl := Parent (R);
14318 while Present (Type_Decl) and then not
14319 (Nkind (Type_Decl) = N_Full_Type_Declaration
14320 or else
14321 Nkind (Type_Decl) = N_Subtype_Declaration
14322 or else
14323 Nkind (Type_Decl) = N_Loop_Statement
14324 or else
14325 Nkind (Type_Decl) = N_Task_Type_Declaration
14326 or else
14327 Nkind (Type_Decl) = N_Single_Task_Declaration
14328 or else
14329 Nkind (Type_Decl) = N_Protected_Type_Declaration
14330 or else
14331 Nkind (Type_Decl) = N_Single_Protected_Declaration)
14332 loop
14333 Type_Decl := Parent (Type_Decl);
14334 end loop;
14336 -- Why would Type_Decl not be present??? Without this test,
14337 -- short regression tests fail.
14339 if Present (Type_Decl) then
14341 -- Case of loop statement (more comments ???)
14343 if Nkind (Type_Decl) = N_Loop_Statement then
14344 declare
14345 Indic : Node_Id;
14347 begin
14348 Indic := Parent (R);
14349 while Present (Indic) and then not
14350 (Nkind (Indic) = N_Subtype_Indication)
14351 loop
14352 Indic := Parent (Indic);
14353 end loop;
14355 if Present (Indic) then
14356 Def_Id := Etype (Subtype_Mark (Indic));
14358 Insert_Range_Checks
14359 (R_Checks,
14360 Type_Decl,
14361 Def_Id,
14362 Sloc (Type_Decl),
14364 Do_Before => True);
14365 end if;
14366 end;
14368 -- All other cases (more comments ???)
14370 else
14371 Def_Id := Defining_Identifier (Type_Decl);
14373 if (Ekind (Def_Id) = E_Record_Type
14374 and then Depends_On_Discriminant (R))
14375 or else
14376 (Ekind (Def_Id) = E_Protected_Type
14377 and then Has_Discriminants (Def_Id))
14378 then
14379 Append_Range_Checks
14380 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
14382 else
14383 Insert_Range_Checks
14384 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
14386 end if;
14387 end if;
14388 end if;
14389 end if;
14390 end if;
14392 elsif Expander_Active then
14393 Get_Index_Bounds (R, Lo, Hi);
14394 Force_Evaluation (Lo);
14395 Force_Evaluation (Hi);
14396 end if;
14397 end Process_Range_Expr_In_Decl;
14399 --------------------------------------
14400 -- Process_Real_Range_Specification --
14401 --------------------------------------
14403 procedure Process_Real_Range_Specification (Def : Node_Id) is
14404 Spec : constant Node_Id := Real_Range_Specification (Def);
14405 Lo : Node_Id;
14406 Hi : Node_Id;
14407 Err : Boolean := False;
14409 procedure Analyze_Bound (N : Node_Id);
14410 -- Analyze and check one bound
14412 -------------------
14413 -- Analyze_Bound --
14414 -------------------
14416 procedure Analyze_Bound (N : Node_Id) is
14417 begin
14418 Analyze_And_Resolve (N, Any_Real);
14420 if not Is_OK_Static_Expression (N) then
14421 Flag_Non_Static_Expr
14422 ("bound in real type definition is not static!", N);
14423 Err := True;
14424 end if;
14425 end Analyze_Bound;
14427 -- Start of processing for Process_Real_Range_Specification
14429 begin
14430 if Present (Spec) then
14431 Lo := Low_Bound (Spec);
14432 Hi := High_Bound (Spec);
14433 Analyze_Bound (Lo);
14434 Analyze_Bound (Hi);
14436 -- If error, clear away junk range specification
14438 if Err then
14439 Set_Real_Range_Specification (Def, Empty);
14440 end if;
14441 end if;
14442 end Process_Real_Range_Specification;
14444 ---------------------
14445 -- Process_Subtype --
14446 ---------------------
14448 function Process_Subtype
14449 (S : Node_Id;
14450 Related_Nod : Node_Id;
14451 Related_Id : Entity_Id := Empty;
14452 Suffix : Character := ' ') return Entity_Id
14454 P : Node_Id;
14455 Def_Id : Entity_Id;
14456 Error_Node : Node_Id;
14457 Full_View_Id : Entity_Id;
14458 Subtype_Mark_Id : Entity_Id;
14460 May_Have_Null_Exclusion : Boolean;
14462 procedure Check_Incomplete (T : Entity_Id);
14463 -- Called to verify that an incomplete type is not used prematurely
14465 ----------------------
14466 -- Check_Incomplete --
14467 ----------------------
14469 procedure Check_Incomplete (T : Entity_Id) is
14470 begin
14471 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
14472 Error_Msg_N ("invalid use of type before its full declaration", T);
14473 end if;
14474 end Check_Incomplete;
14476 -- Start of processing for Process_Subtype
14478 begin
14479 -- Case of no constraints present
14481 if Nkind (S) /= N_Subtype_Indication then
14483 Find_Type (S);
14484 Check_Incomplete (S);
14485 P := Parent (S);
14487 -- Ada 2005 (AI-231): Static check
14489 if Ada_Version >= Ada_05
14490 and then Present (P)
14491 and then Null_Exclusion_Present (P)
14492 and then Nkind (P) /= N_Access_To_Object_Definition
14493 and then not Is_Access_Type (Entity (S))
14494 then
14495 Error_Msg_N
14496 ("(Ada 2005) the null-exclusion part requires an access type",
14498 end if;
14500 May_Have_Null_Exclusion :=
14501 Nkind (P) = N_Access_Definition
14502 or else Nkind (P) = N_Access_Function_Definition
14503 or else Nkind (P) = N_Access_Procedure_Definition
14504 or else Nkind (P) = N_Access_To_Object_Definition
14505 or else Nkind (P) = N_Allocator
14506 or else Nkind (P) = N_Component_Definition
14507 or else Nkind (P) = N_Derived_Type_Definition
14508 or else Nkind (P) = N_Discriminant_Specification
14509 or else Nkind (P) = N_Object_Declaration
14510 or else Nkind (P) = N_Parameter_Specification
14511 or else Nkind (P) = N_Subtype_Declaration;
14513 -- Create an Itype that is a duplicate of Entity (S) but with the
14514 -- null-exclusion attribute
14516 if May_Have_Null_Exclusion
14517 and then Is_Access_Type (Entity (S))
14518 and then Null_Exclusion_Present (P)
14520 -- No need to check the case of an access to object definition.
14521 -- It is correct to define double not-null pointers.
14522 -- Example:
14523 -- type Not_Null_Int_Ptr is not null access Integer;
14524 -- type Acc is not null access Not_Null_Int_Ptr;
14526 and then Nkind (P) /= N_Access_To_Object_Definition
14527 then
14528 if Can_Never_Be_Null (Entity (S)) then
14529 case Nkind (Related_Nod) is
14530 when N_Full_Type_Declaration =>
14531 if Nkind (Type_Definition (Related_Nod))
14532 in N_Array_Type_Definition
14533 then
14534 Error_Node :=
14535 Subtype_Indication
14536 (Component_Definition
14537 (Type_Definition (Related_Nod)));
14538 else
14539 Error_Node :=
14540 Subtype_Indication (Type_Definition (Related_Nod));
14541 end if;
14543 when N_Subtype_Declaration =>
14544 Error_Node := Subtype_Indication (Related_Nod);
14546 when N_Object_Declaration =>
14547 Error_Node := Object_Definition (Related_Nod);
14549 when N_Component_Declaration =>
14550 Error_Node :=
14551 Subtype_Indication (Component_Definition (Related_Nod));
14553 when others =>
14554 pragma Assert (False);
14555 Error_Node := Related_Nod;
14556 end case;
14558 Error_Msg_N
14559 ("(Ada 2005) already a null-excluding type", Error_Node);
14560 end if;
14562 Set_Etype (S,
14563 Create_Null_Excluding_Itype
14564 (T => Entity (S),
14565 Related_Nod => P));
14566 Set_Entity (S, Etype (S));
14567 end if;
14569 return Entity (S);
14571 -- Case of constraint present, so that we have an N_Subtype_Indication
14572 -- node (this node is created only if constraints are present).
14574 else
14576 Find_Type (Subtype_Mark (S));
14578 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
14579 and then not
14580 (Nkind (Parent (S)) = N_Subtype_Declaration
14581 and then Is_Itype (Defining_Identifier (Parent (S))))
14582 then
14583 Check_Incomplete (Subtype_Mark (S));
14584 end if;
14586 P := Parent (S);
14587 Subtype_Mark_Id := Entity (Subtype_Mark (S));
14589 -- Explicit subtype declaration case
14591 if Nkind (P) = N_Subtype_Declaration then
14592 Def_Id := Defining_Identifier (P);
14594 -- Explicit derived type definition case
14596 elsif Nkind (P) = N_Derived_Type_Definition then
14597 Def_Id := Defining_Identifier (Parent (P));
14599 -- Implicit case, the Def_Id must be created as an implicit type.
14600 -- The one exception arises in the case of concurrent types, array
14601 -- and access types, where other subsidiary implicit types may be
14602 -- created and must appear before the main implicit type. In these
14603 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
14604 -- has not yet been called to create Def_Id.
14606 else
14607 if Is_Array_Type (Subtype_Mark_Id)
14608 or else Is_Concurrent_Type (Subtype_Mark_Id)
14609 or else Is_Access_Type (Subtype_Mark_Id)
14610 then
14611 Def_Id := Empty;
14613 -- For the other cases, we create a new unattached Itype,
14614 -- and set the indication to ensure it gets attached later.
14616 else
14617 Def_Id :=
14618 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
14619 end if;
14620 end if;
14622 -- If the kind of constraint is invalid for this kind of type,
14623 -- then give an error, and then pretend no constraint was given.
14625 if not Is_Valid_Constraint_Kind
14626 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
14627 then
14628 Error_Msg_N
14629 ("incorrect constraint for this kind of type", Constraint (S));
14631 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
14633 -- Set Ekind of orphan itype, to prevent cascaded errors
14635 if Present (Def_Id) then
14636 Set_Ekind (Def_Id, Ekind (Any_Type));
14637 end if;
14639 -- Make recursive call, having got rid of the bogus constraint
14641 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
14642 end if;
14644 -- Remaining processing depends on type
14646 case Ekind (Subtype_Mark_Id) is
14647 when Access_Kind =>
14648 Constrain_Access (Def_Id, S, Related_Nod);
14650 when Array_Kind =>
14651 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
14653 when Decimal_Fixed_Point_Kind =>
14654 Constrain_Decimal (Def_Id, S);
14656 when Enumeration_Kind =>
14657 Constrain_Enumeration (Def_Id, S);
14659 when Ordinary_Fixed_Point_Kind =>
14660 Constrain_Ordinary_Fixed (Def_Id, S);
14662 when Float_Kind =>
14663 Constrain_Float (Def_Id, S);
14665 when Integer_Kind =>
14666 Constrain_Integer (Def_Id, S);
14668 when E_Record_Type |
14669 E_Record_Subtype |
14670 Class_Wide_Kind |
14671 E_Incomplete_Type =>
14672 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
14674 when Private_Kind =>
14675 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
14676 Set_Private_Dependents (Def_Id, New_Elmt_List);
14678 -- In case of an invalid constraint prevent further processing
14679 -- since the type constructed is missing expected fields.
14681 if Etype (Def_Id) = Any_Type then
14682 return Def_Id;
14683 end if;
14685 -- If the full view is that of a task with discriminants,
14686 -- we must constrain both the concurrent type and its
14687 -- corresponding record type. Otherwise we will just propagate
14688 -- the constraint to the full view, if available.
14690 if Present (Full_View (Subtype_Mark_Id))
14691 and then Has_Discriminants (Subtype_Mark_Id)
14692 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
14693 then
14694 Full_View_Id :=
14695 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
14697 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
14698 Constrain_Concurrent (Full_View_Id, S,
14699 Related_Nod, Related_Id, Suffix);
14700 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
14701 Set_Full_View (Def_Id, Full_View_Id);
14703 else
14704 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
14705 end if;
14707 when Concurrent_Kind =>
14708 Constrain_Concurrent (Def_Id, S,
14709 Related_Nod, Related_Id, Suffix);
14711 when others =>
14712 Error_Msg_N ("invalid subtype mark in subtype indication", S);
14713 end case;
14715 -- Size and Convention are always inherited from the base type
14717 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
14718 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
14720 return Def_Id;
14721 end if;
14722 end Process_Subtype;
14724 -----------------------------
14725 -- Record_Type_Declaration --
14726 -----------------------------
14728 procedure Record_Type_Declaration
14729 (T : Entity_Id;
14730 N : Node_Id;
14731 Prev : Entity_Id)
14733 Loc : constant Source_Ptr := Sloc (N);
14734 Def : constant Node_Id := Type_Definition (N);
14735 Inc_T : Entity_Id := Empty;
14737 Is_Tagged : Boolean;
14738 Tag_Comp : Entity_Id;
14740 procedure Check_Anonymous_Access_Types (Comp_List : Node_Id);
14741 -- Ada 2005 AI-382: an access component in a record declaration can
14742 -- refer to the enclosing record, in which case it denotes the type
14743 -- itself, and not the current instance of the type. We create an
14744 -- anonymous access type for the component, and flag it as an access
14745 -- to a component, so that accessibility checks are properly performed
14746 -- on it. The declaration of the access type is placed ahead of that
14747 -- of the record, to prevent circular order-of-elaboration issues in
14748 -- Gigi. We create an incomplete type for the record declaration, which
14749 -- is the designated type of the anonymous access.
14751 procedure Make_Incomplete_Type_Declaration;
14752 -- If the record type contains components that include an access to the
14753 -- current record, create an incomplete type declaration for the record,
14754 -- to be used as the designated type of the anonymous access. This is
14755 -- done only once, and only if there is no previous partial view of the
14756 -- type.
14758 ----------------------------------
14759 -- Check_Anonymous_Access_Types --
14760 ----------------------------------
14762 procedure Check_Anonymous_Access_Types (Comp_List : Node_Id) is
14763 Anon_Access : Entity_Id;
14764 Acc_Def : Node_Id;
14765 Comp : Node_Id;
14766 Decl : Node_Id;
14767 Type_Def : Node_Id;
14769 function Mentions_T (Acc_Def : Node_Id) return Boolean;
14770 -- Check whether an access definition includes a reference to
14771 -- the enclosing record type. The reference can be a subtype
14772 -- mark in the access definition itself, or a 'Class attribute
14773 -- reference, or recursively a reference appearing in a parameter
14774 -- type in an access_to_subprogram definition.
14776 ----------------
14777 -- Mentions_T --
14778 ----------------
14780 function Mentions_T (Acc_Def : Node_Id) return Boolean is
14781 Subt : Node_Id;
14783 begin
14784 if No (Access_To_Subprogram_Definition (Acc_Def)) then
14785 Subt := Subtype_Mark (Acc_Def);
14787 if Nkind (Subt) = N_Identifier then
14788 return Chars (Subt) = Chars (T);
14790 -- A reference to the current type may appear as the prefix
14791 -- of a 'Class attribute.
14793 elsif Nkind (Subt) = N_Attribute_Reference
14794 and then Attribute_Name (Subt) = Name_Class
14795 and then Is_Entity_Name (Prefix (Subt))
14796 then
14797 return (Chars (Prefix (Subt))) = Chars (T);
14798 else
14799 return False;
14800 end if;
14802 else
14803 -- Component is an access_to_subprogram: examine its formals
14805 declare
14806 Param_Spec : Node_Id;
14808 begin
14809 Param_Spec :=
14810 First
14811 (Parameter_Specifications
14812 (Access_To_Subprogram_Definition (Acc_Def)));
14813 while Present (Param_Spec) loop
14814 if Nkind (Parameter_Type (Param_Spec))
14815 = N_Access_Definition
14816 and then Mentions_T (Parameter_Type (Param_Spec))
14817 then
14818 return True;
14819 end if;
14821 Next (Param_Spec);
14822 end loop;
14824 return False;
14825 end;
14826 end if;
14827 end Mentions_T;
14829 -- Start of processing for Check_Anonymous_Access_Types
14831 begin
14832 if No (Comp_List) then
14833 return;
14834 end if;
14836 Comp := First (Component_Items (Comp_List));
14837 while Present (Comp) loop
14838 if Nkind (Comp) = N_Component_Declaration
14839 and then
14840 Present (Access_Definition (Component_Definition (Comp)))
14841 and then
14842 Mentions_T (Access_Definition (Component_Definition (Comp)))
14843 then
14844 Acc_Def :=
14845 Access_To_Subprogram_Definition
14846 (Access_Definition (Component_Definition (Comp)));
14848 Make_Incomplete_Type_Declaration;
14849 Anon_Access :=
14850 Make_Defining_Identifier (Loc,
14851 Chars => New_Internal_Name ('S'));
14853 -- Create a declaration for the anonymous access type: either
14854 -- an access_to_object or an access_to_subprogram.
14856 if Present (Acc_Def) then
14857 if Nkind (Acc_Def) = N_Access_Function_Definition then
14858 Type_Def :=
14859 Make_Access_Function_Definition (Loc,
14860 Parameter_Specifications =>
14861 Parameter_Specifications (Acc_Def),
14862 Result_Definition => Result_Definition (Acc_Def));
14863 else
14864 Type_Def :=
14865 Make_Access_Procedure_Definition (Loc,
14866 Parameter_Specifications =>
14867 Parameter_Specifications (Acc_Def));
14868 end if;
14870 else
14871 Type_Def :=
14872 Make_Access_To_Object_Definition (Loc,
14873 Subtype_Indication =>
14874 Relocate_Node
14875 (Subtype_Mark
14876 (Access_Definition
14877 (Component_Definition (Comp)))));
14878 end if;
14880 Decl := Make_Full_Type_Declaration (Loc,
14881 Defining_Identifier => Anon_Access,
14882 Type_Definition => Type_Def);
14884 Insert_Before (N, Decl);
14885 Analyze (Decl);
14887 Rewrite (Component_Definition (Comp),
14888 Make_Component_Definition (Loc,
14889 Subtype_Indication =>
14890 New_Occurrence_Of (Anon_Access, Loc)));
14891 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
14892 Set_Is_Local_Anonymous_Access (Anon_Access);
14893 end if;
14895 Next (Comp);
14896 end loop;
14898 if Present (Variant_Part (Comp_List)) then
14899 declare
14900 V : Node_Id;
14901 begin
14902 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
14903 while Present (V) loop
14904 Check_Anonymous_Access_Types (Component_List (V));
14905 Next_Non_Pragma (V);
14906 end loop;
14907 end;
14908 end if;
14909 end Check_Anonymous_Access_Types;
14911 --------------------------------------
14912 -- Make_Incomplete_Type_Declaration --
14913 --------------------------------------
14915 procedure Make_Incomplete_Type_Declaration is
14916 Decl : Node_Id;
14917 H : Entity_Id;
14919 begin
14920 -- If there is a previous partial view, no need to create a new one
14921 -- If the partial view is incomplete, it is given by Prev. If it is
14922 -- a private declaration, full declaration is flagged accordingly.
14924 if Prev /= T
14925 or else Has_Private_Declaration (T)
14926 then
14927 return;
14929 elsif No (Inc_T) then
14930 Inc_T := Make_Defining_Identifier (Loc, Chars (T));
14931 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
14933 -- Type has already been inserted into the current scope.
14934 -- Remove it, and add incomplete declaration for type, so
14935 -- that subsequent anonymous access types can use it.
14937 H := Current_Entity (T);
14939 if H = T then
14940 Set_Name_Entity_Id (Chars (T), Empty);
14941 else
14942 while Present (H)
14943 and then Homonym (H) /= T
14944 loop
14945 H := Homonym (T);
14946 end loop;
14948 Set_Homonym (H, Homonym (T));
14949 end if;
14951 Insert_Before (N, Decl);
14952 Analyze (Decl);
14953 Set_Full_View (Inc_T, T);
14955 if Tagged_Present (Def) then
14956 Make_Class_Wide_Type (Inc_T);
14957 Set_Class_Wide_Type (T, Class_Wide_Type (Inc_T));
14958 Set_Etype (Class_Wide_Type (T), T);
14959 end if;
14960 end if;
14961 end Make_Incomplete_Type_Declaration;
14963 -- Start of processing for Record_Type_Declaration
14965 begin
14966 -- These flags must be initialized before calling Process_Discriminants
14967 -- because this routine makes use of them.
14969 Set_Ekind (T, E_Record_Type);
14970 Set_Etype (T, T);
14971 Init_Size_Align (T);
14972 Set_Abstract_Interfaces (T, No_Elist);
14973 Set_Stored_Constraint (T, No_Elist);
14975 -- Normal case
14977 if Ada_Version < Ada_05
14978 or else not Interface_Present (Def)
14979 then
14980 -- The flag Is_Tagged_Type might have already been set by
14981 -- Find_Type_Name if it detected an error for declaration T. This
14982 -- arises in the case of private tagged types where the full view
14983 -- omits the word tagged.
14985 Is_Tagged :=
14986 Tagged_Present (Def)
14987 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
14989 Set_Is_Tagged_Type (T, Is_Tagged);
14990 Set_Is_Limited_Record (T, Limited_Present (Def));
14992 -- Type is abstract if full declaration carries keyword, or if
14993 -- previous partial view did.
14995 Set_Is_Abstract (T, Is_Abstract (T)
14996 or else Abstract_Present (Def));
14998 else
14999 Is_Tagged := True;
15000 Analyze_Interface_Declaration (T, Def);
15001 end if;
15003 -- First pass: if there are self-referential access components,
15004 -- create the required anonymous access type declarations, and if
15005 -- need be an incomplete type declaration for T itself.
15007 Check_Anonymous_Access_Types (Component_List (Def));
15009 if Ada_Version >= Ada_05
15010 and then Present (Interface_List (Def))
15011 then
15012 declare
15013 Iface : Node_Id;
15014 Iface_Def : Node_Id;
15015 Iface_Typ : Entity_Id;
15017 begin
15018 Iface := First (Interface_List (Def));
15019 while Present (Iface) loop
15020 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
15021 Iface_Def := Type_Definition (Parent (Iface_Typ));
15023 if not Is_Interface (Iface_Typ) then
15024 Error_Msg_NE ("(Ada 2005) & must be an interface",
15025 Iface, Iface_Typ);
15027 else
15028 -- "The declaration of a specific descendant of an
15029 -- interface type freezes the interface type" RM 13.14
15031 Freeze_Before (N, Iface_Typ);
15033 -- Ada 2005 (AI-345): Protected interfaces can only
15034 -- inherit from limited, synchronized or protected
15035 -- interfaces.
15037 if Protected_Present (Def) then
15038 if Limited_Present (Iface_Def)
15039 or else Synchronized_Present (Iface_Def)
15040 or else Protected_Present (Iface_Def)
15041 then
15042 null;
15044 elsif Task_Present (Iface_Def) then
15045 Error_Msg_N ("(Ada 2005) protected interface cannot"
15046 & " inherit from task interface", Iface);
15048 else
15049 Error_Msg_N ("(Ada 2005) protected interface cannot"
15050 & " inherit from non-limited interface", Iface);
15051 end if;
15053 -- Ada 2005 (AI-345): Synchronized interfaces can only
15054 -- inherit from limited and synchronized.
15056 elsif Synchronized_Present (Def) then
15057 if Limited_Present (Iface_Def)
15058 or else Synchronized_Present (Iface_Def)
15059 then
15060 null;
15062 elsif Protected_Present (Iface_Def) then
15063 Error_Msg_N ("(Ada 2005) synchronized interface " &
15064 "cannot inherit from protected interface", Iface);
15066 elsif Task_Present (Iface_Def) then
15067 Error_Msg_N ("(Ada 2005) synchronized interface " &
15068 "cannot inherit from task interface", Iface);
15070 else
15071 Error_Msg_N ("(Ada 2005) synchronized interface " &
15072 "cannot inherit from non-limited interface",
15073 Iface);
15074 end if;
15076 -- Ada 2005 (AI-345): Task interfaces can only inherit
15077 -- from limited, synchronized or task interfaces.
15079 elsif Task_Present (Def) then
15080 if Limited_Present (Iface_Def)
15081 or else Synchronized_Present (Iface_Def)
15082 or else Task_Present (Iface_Def)
15083 then
15084 null;
15086 elsif Protected_Present (Iface_Def) then
15087 Error_Msg_N ("(Ada 2005) task interface cannot" &
15088 " inherit from protected interface", Iface);
15090 else
15091 Error_Msg_N ("(Ada 2005) task interface cannot" &
15092 " inherit from non-limited interface", Iface);
15093 end if;
15094 end if;
15095 end if;
15097 Next (Iface);
15098 end loop;
15099 Set_Abstract_Interfaces (T, New_Elmt_List);
15100 Collect_Interfaces (Def, T);
15101 end;
15102 end if;
15104 -- Records constitute a scope for the component declarations within.
15105 -- The scope is created prior to the processing of these declarations.
15106 -- Discriminants are processed first, so that they are visible when
15107 -- processing the other components. The Ekind of the record type itself
15108 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
15110 -- Enter record scope
15112 New_Scope (T);
15114 -- If an incomplete or private type declaration was already given for
15115 -- the type, then this scope already exists, and the discriminants have
15116 -- been declared within. We must verify that the full declaration
15117 -- matches the incomplete one.
15119 Check_Or_Process_Discriminants (N, T, Prev);
15121 Set_Is_Constrained (T, not Has_Discriminants (T));
15122 Set_Has_Delayed_Freeze (T, True);
15124 -- For tagged types add a manually analyzed component corresponding
15125 -- to the component _tag, the corresponding piece of tree will be
15126 -- expanded as part of the freezing actions if it is not a CPP_Class.
15128 if Is_Tagged then
15130 -- Do not add the tag unless we are in expansion mode
15132 if Expander_Active then
15133 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
15134 Enter_Name (Tag_Comp);
15136 Set_Is_Tag (Tag_Comp);
15137 Set_Is_Aliased (Tag_Comp);
15138 Set_Ekind (Tag_Comp, E_Component);
15139 Set_Etype (Tag_Comp, RTE (RE_Tag));
15140 Set_DT_Entry_Count (Tag_Comp, No_Uint);
15141 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
15142 Init_Component_Location (Tag_Comp);
15144 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
15145 -- implemented interfaces
15147 Add_Interface_Tag_Components (N, T);
15148 end if;
15150 Make_Class_Wide_Type (T);
15151 Set_Primitive_Operations (T, New_Elmt_List);
15152 end if;
15154 -- We must suppress range checks when processing the components
15155 -- of a record in the presence of discriminants, since we don't
15156 -- want spurious checks to be generated during their analysis, but
15157 -- must reset the Suppress_Range_Checks flags after having processed
15158 -- the record definition.
15160 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
15161 Set_Kill_Range_Checks (T, True);
15162 Record_Type_Definition (Def, Prev);
15163 Set_Kill_Range_Checks (T, False);
15164 else
15165 Record_Type_Definition (Def, Prev);
15166 end if;
15168 -- Exit from record scope
15170 End_Scope;
15172 if Expander_Active
15173 and then Is_Tagged
15174 and then not Is_Empty_List (Interface_List (Def))
15175 then
15176 -- Ada 2005 (AI-251): Derive the interface subprograms of all the
15177 -- implemented interfaces and check if some of the subprograms
15178 -- inherited from the ancestor cover some interface subprogram.
15180 Derive_Interface_Subprograms (T);
15181 end if;
15182 end Record_Type_Declaration;
15184 ----------------------------
15185 -- Record_Type_Definition --
15186 ----------------------------
15188 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
15189 Component : Entity_Id;
15190 Ctrl_Components : Boolean := False;
15191 Final_Storage_Only : Boolean;
15192 T : Entity_Id;
15194 begin
15195 if Ekind (Prev_T) = E_Incomplete_Type then
15196 T := Full_View (Prev_T);
15197 else
15198 T := Prev_T;
15199 end if;
15201 Final_Storage_Only := not Is_Controlled (T);
15203 -- Ada 2005: check whether an explicit Limited is present in a derived
15204 -- type declaration.
15206 if Nkind (Parent (Def)) = N_Derived_Type_Definition
15207 and then Limited_Present (Parent (Def))
15208 then
15209 Set_Is_Limited_Record (T);
15210 end if;
15212 -- If the component list of a record type is defined by the reserved
15213 -- word null and there is no discriminant part, then the record type has
15214 -- no components and all records of the type are null records (RM 3.7)
15215 -- This procedure is also called to process the extension part of a
15216 -- record extension, in which case the current scope may have inherited
15217 -- components.
15219 if No (Def)
15220 or else No (Component_List (Def))
15221 or else Null_Present (Component_List (Def))
15222 then
15223 null;
15225 else
15226 Analyze_Declarations (Component_Items (Component_List (Def)));
15228 if Present (Variant_Part (Component_List (Def))) then
15229 Analyze (Variant_Part (Component_List (Def)));
15230 end if;
15231 end if;
15233 -- After completing the semantic analysis of the record definition,
15234 -- record components, both new and inherited, are accessible. Set
15235 -- their kind accordingly.
15237 Component := First_Entity (Current_Scope);
15238 while Present (Component) loop
15239 if Ekind (Component) = E_Void then
15240 Set_Ekind (Component, E_Component);
15241 Init_Component_Location (Component);
15242 end if;
15244 if Has_Task (Etype (Component)) then
15245 Set_Has_Task (T);
15246 end if;
15248 if Ekind (Component) /= E_Component then
15249 null;
15251 elsif Has_Controlled_Component (Etype (Component))
15252 or else (Chars (Component) /= Name_uParent
15253 and then Is_Controlled (Etype (Component)))
15254 then
15255 Set_Has_Controlled_Component (T, True);
15256 Final_Storage_Only := Final_Storage_Only
15257 and then Finalize_Storage_Only (Etype (Component));
15258 Ctrl_Components := True;
15259 end if;
15261 Next_Entity (Component);
15262 end loop;
15264 -- A type is Finalize_Storage_Only only if all its controlled
15265 -- components are so.
15267 if Ctrl_Components then
15268 Set_Finalize_Storage_Only (T, Final_Storage_Only);
15269 end if;
15271 -- Place reference to end record on the proper entity, which may
15272 -- be a partial view.
15274 if Present (Def) then
15275 Process_End_Label (Def, 'e', Prev_T);
15276 end if;
15277 end Record_Type_Definition;
15279 ------------------------
15280 -- Replace_Components --
15281 ------------------------
15283 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
15284 function Process (N : Node_Id) return Traverse_Result;
15286 -------------
15287 -- Process --
15288 -------------
15290 function Process (N : Node_Id) return Traverse_Result is
15291 Comp : Entity_Id;
15293 begin
15294 if Nkind (N) = N_Discriminant_Specification then
15295 Comp := First_Discriminant (Typ);
15296 while Present (Comp) loop
15297 if Chars (Comp) = Chars (Defining_Identifier (N)) then
15298 Set_Defining_Identifier (N, Comp);
15299 exit;
15300 end if;
15302 Next_Discriminant (Comp);
15303 end loop;
15305 elsif Nkind (N) = N_Component_Declaration then
15306 Comp := First_Component (Typ);
15307 while Present (Comp) loop
15308 if Chars (Comp) = Chars (Defining_Identifier (N)) then
15309 Set_Defining_Identifier (N, Comp);
15310 exit;
15311 end if;
15313 Next_Component (Comp);
15314 end loop;
15315 end if;
15317 return OK;
15318 end Process;
15320 procedure Replace is new Traverse_Proc (Process);
15322 -- Start of processing for Replace_Components
15324 begin
15325 Replace (Decl);
15326 end Replace_Components;
15328 -------------------------------
15329 -- Set_Completion_Referenced --
15330 -------------------------------
15332 procedure Set_Completion_Referenced (E : Entity_Id) is
15333 begin
15334 -- If in main unit, mark entity that is a completion as referenced,
15335 -- warnings go on the partial view when needed.
15337 if In_Extended_Main_Source_Unit (E) then
15338 Set_Referenced (E);
15339 end if;
15340 end Set_Completion_Referenced;
15342 ---------------------
15343 -- Set_Fixed_Range --
15344 ---------------------
15346 -- The range for fixed-point types is complicated by the fact that we
15347 -- do not know the exact end points at the time of the declaration. This
15348 -- is true for three reasons:
15350 -- A size clause may affect the fudging of the end-points
15351 -- A small clause may affect the values of the end-points
15352 -- We try to include the end-points if it does not affect the size
15354 -- This means that the actual end-points must be established at the point
15355 -- when the type is frozen. Meanwhile, we first narrow the range as
15356 -- permitted (so that it will fit if necessary in a small specified size),
15357 -- and then build a range subtree with these narrowed bounds.
15359 -- Set_Fixed_Range constructs the range from real literal values, and sets
15360 -- the range as the Scalar_Range of the given fixed-point type entity.
15362 -- The parent of this range is set to point to the entity so that it is
15363 -- properly hooked into the tree (unlike normal Scalar_Range entries for
15364 -- other scalar types, which are just pointers to the range in the
15365 -- original tree, this would otherwise be an orphan).
15367 -- The tree is left unanalyzed. When the type is frozen, the processing
15368 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
15369 -- analyzed, and uses this as an indication that it should complete
15370 -- work on the range (it will know the final small and size values).
15372 procedure Set_Fixed_Range
15373 (E : Entity_Id;
15374 Loc : Source_Ptr;
15375 Lo : Ureal;
15376 Hi : Ureal)
15378 S : constant Node_Id :=
15379 Make_Range (Loc,
15380 Low_Bound => Make_Real_Literal (Loc, Lo),
15381 High_Bound => Make_Real_Literal (Loc, Hi));
15383 begin
15384 Set_Scalar_Range (E, S);
15385 Set_Parent (S, E);
15386 end Set_Fixed_Range;
15388 ----------------------------------
15389 -- Set_Scalar_Range_For_Subtype --
15390 ----------------------------------
15392 procedure Set_Scalar_Range_For_Subtype
15393 (Def_Id : Entity_Id;
15394 R : Node_Id;
15395 Subt : Entity_Id)
15397 Kind : constant Entity_Kind := Ekind (Def_Id);
15399 begin
15400 Set_Scalar_Range (Def_Id, R);
15402 -- We need to link the range into the tree before resolving it so
15403 -- that types that are referenced, including importantly the subtype
15404 -- itself, are properly frozen (Freeze_Expression requires that the
15405 -- expression be properly linked into the tree). Of course if it is
15406 -- already linked in, then we do not disturb the current link.
15408 if No (Parent (R)) then
15409 Set_Parent (R, Def_Id);
15410 end if;
15412 -- Reset the kind of the subtype during analysis of the range, to
15413 -- catch possible premature use in the bounds themselves.
15415 Set_Ekind (Def_Id, E_Void);
15416 Process_Range_Expr_In_Decl (R, Subt);
15417 Set_Ekind (Def_Id, Kind);
15419 end Set_Scalar_Range_For_Subtype;
15421 --------------------------------------------------------
15422 -- Set_Stored_Constraint_From_Discriminant_Constraint --
15423 --------------------------------------------------------
15425 procedure Set_Stored_Constraint_From_Discriminant_Constraint
15426 (E : Entity_Id)
15428 begin
15429 -- Make sure set if encountered during Expand_To_Stored_Constraint
15431 Set_Stored_Constraint (E, No_Elist);
15433 -- Give it the right value
15435 if Is_Constrained (E) and then Has_Discriminants (E) then
15436 Set_Stored_Constraint (E,
15437 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
15438 end if;
15439 end Set_Stored_Constraint_From_Discriminant_Constraint;
15441 -------------------------------------
15442 -- Signed_Integer_Type_Declaration --
15443 -------------------------------------
15445 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15446 Implicit_Base : Entity_Id;
15447 Base_Typ : Entity_Id;
15448 Lo_Val : Uint;
15449 Hi_Val : Uint;
15450 Errs : Boolean := False;
15451 Lo : Node_Id;
15452 Hi : Node_Id;
15454 function Can_Derive_From (E : Entity_Id) return Boolean;
15455 -- Determine whether given bounds allow derivation from specified type
15457 procedure Check_Bound (Expr : Node_Id);
15458 -- Check bound to make sure it is integral and static. If not, post
15459 -- appropriate error message and set Errs flag
15461 ---------------------
15462 -- Can_Derive_From --
15463 ---------------------
15465 -- Note we check both bounds against both end values, to deal with
15466 -- strange types like ones with a range of 0 .. -12341234.
15468 function Can_Derive_From (E : Entity_Id) return Boolean is
15469 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
15470 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
15471 begin
15472 return Lo <= Lo_Val and then Lo_Val <= Hi
15473 and then
15474 Lo <= Hi_Val and then Hi_Val <= Hi;
15475 end Can_Derive_From;
15477 -----------------
15478 -- Check_Bound --
15479 -----------------
15481 procedure Check_Bound (Expr : Node_Id) is
15482 begin
15483 -- If a range constraint is used as an integer type definition, each
15484 -- bound of the range must be defined by a static expression of some
15485 -- integer type, but the two bounds need not have the same integer
15486 -- type (Negative bounds are allowed.) (RM 3.5.4)
15488 if not Is_Integer_Type (Etype (Expr)) then
15489 Error_Msg_N
15490 ("integer type definition bounds must be of integer type", Expr);
15491 Errs := True;
15493 elsif not Is_OK_Static_Expression (Expr) then
15494 Flag_Non_Static_Expr
15495 ("non-static expression used for integer type bound!", Expr);
15496 Errs := True;
15498 -- The bounds are folded into literals, and we set their type to be
15499 -- universal, to avoid typing difficulties: we cannot set the type
15500 -- of the literal to the new type, because this would be a forward
15501 -- reference for the back end, and if the original type is user-
15502 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
15504 else
15505 if Is_Entity_Name (Expr) then
15506 Fold_Uint (Expr, Expr_Value (Expr), True);
15507 end if;
15509 Set_Etype (Expr, Universal_Integer);
15510 end if;
15511 end Check_Bound;
15513 -- Start of processing for Signed_Integer_Type_Declaration
15515 begin
15516 -- Create an anonymous base type
15518 Implicit_Base :=
15519 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
15521 -- Analyze and check the bounds, they can be of any integer type
15523 Lo := Low_Bound (Def);
15524 Hi := High_Bound (Def);
15526 -- Arbitrarily use Integer as the type if either bound had an error
15528 if Hi = Error or else Lo = Error then
15529 Base_Typ := Any_Integer;
15530 Set_Error_Posted (T, True);
15532 -- Here both bounds are OK expressions
15534 else
15535 Analyze_And_Resolve (Lo, Any_Integer);
15536 Analyze_And_Resolve (Hi, Any_Integer);
15538 Check_Bound (Lo);
15539 Check_Bound (Hi);
15541 if Errs then
15542 Hi := Type_High_Bound (Standard_Long_Long_Integer);
15543 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
15544 end if;
15546 -- Find type to derive from
15548 Lo_Val := Expr_Value (Lo);
15549 Hi_Val := Expr_Value (Hi);
15551 if Can_Derive_From (Standard_Short_Short_Integer) then
15552 Base_Typ := Base_Type (Standard_Short_Short_Integer);
15554 elsif Can_Derive_From (Standard_Short_Integer) then
15555 Base_Typ := Base_Type (Standard_Short_Integer);
15557 elsif Can_Derive_From (Standard_Integer) then
15558 Base_Typ := Base_Type (Standard_Integer);
15560 elsif Can_Derive_From (Standard_Long_Integer) then
15561 Base_Typ := Base_Type (Standard_Long_Integer);
15563 elsif Can_Derive_From (Standard_Long_Long_Integer) then
15564 Base_Typ := Base_Type (Standard_Long_Long_Integer);
15566 else
15567 Base_Typ := Base_Type (Standard_Long_Long_Integer);
15568 Error_Msg_N ("integer type definition bounds out of range", Def);
15569 Hi := Type_High_Bound (Standard_Long_Long_Integer);
15570 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
15571 end if;
15572 end if;
15574 -- Complete both implicit base and declared first subtype entities
15576 Set_Etype (Implicit_Base, Base_Typ);
15577 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
15578 Set_Size_Info (Implicit_Base, (Base_Typ));
15579 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
15580 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
15582 Set_Ekind (T, E_Signed_Integer_Subtype);
15583 Set_Etype (T, Implicit_Base);
15585 Set_Size_Info (T, (Implicit_Base));
15586 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
15587 Set_Scalar_Range (T, Def);
15588 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15589 Set_Is_Constrained (T);
15590 end Signed_Integer_Type_Declaration;
15592 end Sem_Ch3;