tree-object-size: Make unknown a computation
[official-gcc.git] / gcc / basic-block.h
blob0fdabf067b7e6a2efc6a64e949167c08dc962ffa
1 /* Define control flow data structures for the CFG.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
23 #include <profile-count.h>
25 /* Control flow edge information. */
26 class GTY((user)) edge_def {
27 public:
28 /* The two blocks at the ends of the edge. */
29 basic_block src;
30 basic_block dest;
32 /* Instructions queued on the edge. */
33 union edge_def_insns {
34 gimple_seq g;
35 rtx_insn *r;
36 } insns;
38 /* Auxiliary info specific to a pass. */
39 PTR aux;
41 /* Location of any goto implicit in the edge. */
42 location_t goto_locus;
44 /* The index number corresponding to this edge in the edge vector
45 dest->preds. */
46 unsigned int dest_idx;
48 int flags; /* see cfg-flags.def */
49 profile_probability probability;
51 /* Return count of edge E. */
52 inline profile_count count () const;
55 /* Masks for edge.flags. */
56 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
57 enum cfg_edge_flags {
58 #include "cfg-flags.def"
59 LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
61 #undef DEF_EDGE_FLAG
63 /* Bit mask for all edge flags. */
64 #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
66 /* The following four flags all indicate something special about an edge.
67 Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
68 control flow transfers. */
69 #define EDGE_COMPLEX \
70 (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
72 struct GTY(()) rtl_bb_info {
73 /* The first insn of the block is embedded into bb->il.x. */
74 /* The last insn of the block. */
75 rtx_insn *end_;
77 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
78 and after the block. */
79 rtx_insn *header_;
80 rtx_insn *footer_;
83 struct GTY(()) gimple_bb_info {
84 /* Sequence of statements in this block. */
85 gimple_seq seq;
87 /* PHI nodes for this block. */
88 gimple_seq phi_nodes;
91 /* A basic block is a sequence of instructions with only one entry and
92 only one exit. If any one of the instructions are executed, they
93 will all be executed, and in sequence from first to last.
95 There may be COND_EXEC instructions in the basic block. The
96 COND_EXEC *instructions* will be executed -- but if the condition
97 is false the conditionally executed *expressions* will of course
98 not be executed. We don't consider the conditionally executed
99 expression (which might have side-effects) to be in a separate
100 basic block because the program counter will always be at the same
101 location after the COND_EXEC instruction, regardless of whether the
102 condition is true or not.
104 Basic blocks need not start with a label nor end with a jump insn.
105 For example, a previous basic block may just "conditionally fall"
106 into the succeeding basic block, and the last basic block need not
107 end with a jump insn. Block 0 is a descendant of the entry block.
109 A basic block beginning with two labels cannot have notes between
110 the labels.
112 Data for jump tables are stored in jump_insns that occur in no
113 basic block even though these insns can follow or precede insns in
114 basic blocks. */
116 /* Basic block information indexed by block number. */
117 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
118 /* The edges into and out of the block. */
119 vec<edge, va_gc> *preds;
120 vec<edge, va_gc> *succs;
122 /* Auxiliary info specific to a pass. */
123 PTR GTY ((skip (""))) aux;
125 /* Innermost loop containing the block. */
126 class loop *loop_father;
128 /* The dominance and postdominance information node. */
129 struct et_node * GTY ((skip (""))) dom[2];
131 /* Previous and next blocks in the chain. */
132 basic_block prev_bb;
133 basic_block next_bb;
135 union basic_block_il_dependent {
136 struct gimple_bb_info GTY ((tag ("0"))) gimple;
137 struct {
138 rtx_insn *head_;
139 struct rtl_bb_info * rtl;
140 } GTY ((tag ("1"))) x;
141 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
143 /* Various flags. See cfg-flags.def. */
144 int flags;
146 /* The index of this block. */
147 int index;
149 /* Expected number of executions: calculated in profile.c. */
150 profile_count count;
152 /* The discriminator for this block. The discriminator distinguishes
153 among several basic blocks that share a common locus, allowing for
154 more accurate sample-based profiling. */
155 int discriminator;
158 /* This ensures that struct gimple_bb_info is smaller than
159 struct rtl_bb_info, so that inlining the former into basic_block_def
160 is the better choice. */
161 typedef int __assert_gimple_bb_smaller_rtl_bb
162 [(int) sizeof (struct rtl_bb_info)
163 - (int) sizeof (struct gimple_bb_info)];
166 #define BB_FREQ_MAX 10000
168 /* Masks for basic_block.flags. */
169 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
170 enum cfg_bb_flags
172 #include "cfg-flags.def"
173 LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
175 #undef DEF_BASIC_BLOCK_FLAG
177 /* Bit mask for all basic block flags. */
178 #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
180 /* Bit mask for all basic block flags that must be preserved. These are
181 the bit masks that are *not* cleared by clear_bb_flags. */
182 #define BB_FLAGS_TO_PRESERVE \
183 (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
184 | BB_HOT_PARTITION | BB_COLD_PARTITION)
186 /* Dummy bitmask for convenience in the hot/cold partitioning code. */
187 #define BB_UNPARTITIONED 0
189 /* Partitions, to be used when partitioning hot and cold basic blocks into
190 separate sections. */
191 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
192 #define BB_SET_PARTITION(bb, part) do { \
193 basic_block bb_ = (bb); \
194 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
195 | (part)); \
196 } while (0)
198 #define BB_COPY_PARTITION(dstbb, srcbb) \
199 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
201 /* Defines for accessing the fields of the CFG structure for function FN. */
202 #define ENTRY_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_entry_block_ptr)
203 #define EXIT_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_exit_block_ptr)
204 #define basic_block_info_for_fn(FN) ((FN)->cfg->x_basic_block_info)
205 #define n_basic_blocks_for_fn(FN) ((FN)->cfg->x_n_basic_blocks)
206 #define n_edges_for_fn(FN) ((FN)->cfg->x_n_edges)
207 #define last_basic_block_for_fn(FN) ((FN)->cfg->x_last_basic_block)
208 #define label_to_block_map_for_fn(FN) ((FN)->cfg->x_label_to_block_map)
209 #define profile_status_for_fn(FN) ((FN)->cfg->x_profile_status)
211 #define BASIC_BLOCK_FOR_FN(FN,N) \
212 ((*basic_block_info_for_fn (FN))[(N)])
213 #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
214 ((*basic_block_info_for_fn (FN))[(N)] = (BB))
216 /* For iterating over basic blocks. */
217 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
218 for (BB = FROM; BB != TO; BB = BB->DIR)
220 #define FOR_EACH_BB_FN(BB, FN) \
221 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
223 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
224 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
226 /* For iterating over insns in basic block. */
227 #define FOR_BB_INSNS(BB, INSN) \
228 for ((INSN) = BB_HEAD (BB); \
229 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
230 (INSN) = NEXT_INSN (INSN))
232 /* For iterating over insns in basic block when we might remove the
233 current insn. */
234 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
235 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
236 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
237 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
239 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
240 for ((INSN) = BB_END (BB); \
241 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
242 (INSN) = PREV_INSN (INSN))
244 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
245 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
246 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
247 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
249 /* Cycles through _all_ basic blocks, even the fake ones (entry and
250 exit block). */
252 #define FOR_ALL_BB_FN(BB, FN) \
253 for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
256 /* Stuff for recording basic block info. */
258 /* For now, these will be functions (so that they can include checked casts
259 to rtx_insn. Once the underlying fields are converted from rtx
260 to rtx_insn, these can be converted back to macros. */
262 #define BB_HEAD(B) (B)->il.x.head_
263 #define BB_END(B) (B)->il.x.rtl->end_
264 #define BB_HEADER(B) (B)->il.x.rtl->header_
265 #define BB_FOOTER(B) (B)->il.x.rtl->footer_
267 /* Special block numbers [markers] for entry and exit.
268 Neither of them is supposed to hold actual statements. */
269 #define ENTRY_BLOCK (0)
270 #define EXIT_BLOCK (1)
272 /* The two blocks that are always in the cfg. */
273 #define NUM_FIXED_BLOCKS (2)
275 /* This is the value which indicates no edge is present. */
276 #define EDGE_INDEX_NO_EDGE -1
278 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
279 if there is no edge between the 2 basic blocks. */
280 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
282 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
283 block which is either the pred or succ end of the indexed edge. */
284 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
285 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
287 /* INDEX_EDGE returns a pointer to the edge. */
288 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
290 /* Number of edges in the compressed edge list. */
291 #define NUM_EDGES(el) ((el)->num_edges)
293 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
294 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
295 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
297 /* BB is assumed to contain conditional jump. Return the branch edge. */
298 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
299 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
301 /* Return expected execution frequency of the edge E. */
302 #define EDGE_FREQUENCY(e) e->count ().to_frequency (cfun)
304 /* Compute a scale factor (or probability) suitable for scaling of
305 gcov_type values via apply_probability() and apply_scale(). */
306 #define GCOV_COMPUTE_SCALE(num,den) \
307 ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
309 /* Return nonzero if edge is critical. */
310 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
311 && EDGE_COUNT ((e)->dest->preds) >= 2)
313 #define EDGE_COUNT(ev) vec_safe_length (ev)
314 #define EDGE_I(ev,i) (*ev)[(i)]
315 #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
316 #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
318 /* Returns true if BB has precisely one successor. */
320 static inline bool
321 single_succ_p (const_basic_block bb)
323 return EDGE_COUNT (bb->succs) == 1;
326 /* Returns true if BB has precisely one predecessor. */
328 static inline bool
329 single_pred_p (const_basic_block bb)
331 return EDGE_COUNT (bb->preds) == 1;
334 /* Returns the single successor edge of basic block BB. Aborts if
335 BB does not have exactly one successor. */
337 static inline edge
338 single_succ_edge (const_basic_block bb)
340 gcc_checking_assert (single_succ_p (bb));
341 return EDGE_SUCC (bb, 0);
344 /* Returns the single predecessor edge of basic block BB. Aborts
345 if BB does not have exactly one predecessor. */
347 static inline edge
348 single_pred_edge (const_basic_block bb)
350 gcc_checking_assert (single_pred_p (bb));
351 return EDGE_PRED (bb, 0);
354 /* Returns the single successor block of basic block BB. Aborts
355 if BB does not have exactly one successor. */
357 static inline basic_block
358 single_succ (const_basic_block bb)
360 return single_succ_edge (bb)->dest;
363 /* Returns the single predecessor block of basic block BB. Aborts
364 if BB does not have exactly one predecessor.*/
366 static inline basic_block
367 single_pred (const_basic_block bb)
369 return single_pred_edge (bb)->src;
372 /* Iterator object for edges. */
374 struct edge_iterator {
375 unsigned index;
376 vec<edge, va_gc> **container;
379 static inline vec<edge, va_gc> *
380 ei_container (edge_iterator i)
382 gcc_checking_assert (i.container);
383 return *i.container;
386 #define ei_start(iter) ei_start_1 (&(iter))
387 #define ei_last(iter) ei_last_1 (&(iter))
389 /* Return an iterator pointing to the start of an edge vector. */
390 static inline edge_iterator
391 ei_start_1 (vec<edge, va_gc> **ev)
393 edge_iterator i;
395 i.index = 0;
396 i.container = ev;
398 return i;
401 /* Return an iterator pointing to the last element of an edge
402 vector. */
403 static inline edge_iterator
404 ei_last_1 (vec<edge, va_gc> **ev)
406 edge_iterator i;
408 i.index = EDGE_COUNT (*ev) - 1;
409 i.container = ev;
411 return i;
414 /* Is the iterator `i' at the end of the sequence? */
415 static inline bool
416 ei_end_p (edge_iterator i)
418 return (i.index == EDGE_COUNT (ei_container (i)));
421 /* Is the iterator `i' at one position before the end of the
422 sequence? */
423 static inline bool
424 ei_one_before_end_p (edge_iterator i)
426 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
429 /* Advance the iterator to the next element. */
430 static inline void
431 ei_next (edge_iterator *i)
433 gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
434 i->index++;
437 /* Move the iterator to the previous element. */
438 static inline void
439 ei_prev (edge_iterator *i)
441 gcc_checking_assert (i->index > 0);
442 i->index--;
445 /* Return the edge pointed to by the iterator `i'. */
446 static inline edge
447 ei_edge (edge_iterator i)
449 return EDGE_I (ei_container (i), i.index);
452 /* Return an edge pointed to by the iterator. Do it safely so that
453 NULL is returned when the iterator is pointing at the end of the
454 sequence. */
455 static inline edge
456 ei_safe_edge (edge_iterator i)
458 return !ei_end_p (i) ? ei_edge (i) : NULL;
461 /* Return 1 if we should continue to iterate. Return 0 otherwise.
462 *Edge P is set to the next edge if we are to continue to iterate
463 and NULL otherwise. */
465 static inline bool
466 ei_cond (edge_iterator ei, edge *p)
468 if (!ei_end_p (ei))
470 *p = ei_edge (ei);
471 return 1;
473 else
475 *p = NULL;
476 return 0;
480 /* This macro serves as a convenient way to iterate each edge in a
481 vector of predecessor or successor edges. It must not be used when
482 an element might be removed during the traversal, otherwise
483 elements will be missed. Instead, use a for-loop like that shown
484 in the following pseudo-code:
486 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
488 IF (e != taken_edge)
489 remove_edge (e);
490 ELSE
491 ei_next (&ei);
495 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
496 for ((ITER) = ei_start ((EDGE_VEC)); \
497 ei_cond ((ITER), &(EDGE)); \
498 ei_next (&(ITER)))
500 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
501 except for edge forwarding */
502 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
503 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
504 to care REG_DEAD notes. */
505 #define CLEANUP_THREADING 8 /* Do jump threading. */
506 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
507 insns. */
508 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
509 #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
510 #define CLEANUP_NO_PARTITIONING 128 /* Do not try to fix partitions. */
511 #define CLEANUP_FORCE_FAST_DCE 0x100 /* Force run_fast_dce to be called
512 at least once. */
514 /* Return true if BB is in a transaction. */
516 static inline bool
517 bb_in_transaction (basic_block bb)
519 return bb->flags & BB_IN_TRANSACTION;
522 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
523 static inline bool
524 bb_has_eh_pred (basic_block bb)
526 edge e;
527 edge_iterator ei;
529 FOR_EACH_EDGE (e, ei, bb->preds)
531 if (e->flags & EDGE_EH)
532 return true;
534 return false;
537 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
538 static inline bool
539 bb_has_abnormal_pred (basic_block bb)
541 edge e;
542 edge_iterator ei;
544 FOR_EACH_EDGE (e, ei, bb->preds)
546 if (e->flags & EDGE_ABNORMAL)
547 return true;
549 return false;
552 /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
553 static inline edge
554 find_fallthru_edge (vec<edge, va_gc> *edges)
556 edge e;
557 edge_iterator ei;
559 FOR_EACH_EDGE (e, ei, edges)
560 if (e->flags & EDGE_FALLTHRU)
561 break;
563 return e;
566 /* Check tha probability is sane. */
568 static inline void
569 check_probability (int prob)
571 gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
574 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
575 Used to combine BB probabilities. */
577 static inline int
578 combine_probabilities (int prob1, int prob2)
580 check_probability (prob1);
581 check_probability (prob2);
582 return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
585 /* Apply scale factor SCALE on frequency or count FREQ. Use this
586 interface when potentially scaling up, so that SCALE is not
587 constrained to be < REG_BR_PROB_BASE. */
589 static inline gcov_type
590 apply_scale (gcov_type freq, gcov_type scale)
592 return RDIV (freq * scale, REG_BR_PROB_BASE);
595 /* Apply probability PROB on frequency or count FREQ. */
597 static inline gcov_type
598 apply_probability (gcov_type freq, int prob)
600 check_probability (prob);
601 return apply_scale (freq, prob);
604 /* Return inverse probability for PROB. */
606 static inline int
607 inverse_probability (int prob1)
609 check_probability (prob1);
610 return REG_BR_PROB_BASE - prob1;
613 /* Return true if BB has at least one abnormal outgoing edge. */
615 static inline bool
616 has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
618 edge e;
619 edge_iterator ei;
621 FOR_EACH_EDGE (e, ei, bb->succs)
622 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
623 return true;
625 return false;
628 /* Return true when one of the predecessor edges of BB is marked with
629 EDGE_ABNORMAL_CALL or EDGE_EH. */
631 static inline bool
632 has_abnormal_call_or_eh_pred_edge_p (basic_block bb)
634 edge e;
635 edge_iterator ei;
637 FOR_EACH_EDGE (e, ei, bb->preds)
638 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
639 return true;
641 return false;
644 /* Return count of edge E. */
645 inline profile_count edge_def::count () const
647 return src->count.apply_probability (probability);
650 #endif /* GCC_BASIC_BLOCK_H */