1 /* Subroutines used for code generation of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* ------------------------------------------------------------------------ */
25 #include "coretypes.h"
28 #include "stor-layout.h"
33 #include "hard-reg-set.h"
34 #include "insn-config.h" /* Required by recog.h. */
35 #include "conditions.h"
37 #include "insn-attr.h" /* For DFA state_t. */
38 #include "insn-codes.h" /* For CODE_FOR_xxx. */
39 #include "reload.h" /* For push_reload(). */
49 #include "diagnostic-core.h"
50 #include "dominance.h"
56 #include "cfgcleanup.h"
58 #include "basic-block.h"
61 #include "tm-constrs.h"
62 #include "optabs.h" /* For GEN_FCN. */
64 #include "target-def.h"
65 #include "langhooks.h" /* For add_builtin_function(). */
69 /* ------------------------------------------------------------------------ */
71 /* This file is divided into five parts:
73 PART 1: Auxiliary static variable definitions and
74 target hook static variable definitions.
76 PART 2: Auxiliary static function definitions.
78 PART 3: Implement target hook stuff definitions.
80 PART 4: Implemet extern function definitions,
81 the prototype is in nds32-protos.h.
83 PART 5: Initialize target hook structure and definitions. */
85 /* ------------------------------------------------------------------------ */
87 /* PART 1: Auxiliary static variable definitions and
88 target hook static variable definitions. */
90 /* Define intrinsic register names.
91 Please refer to nds32_intrinsic.h file, the index is corresponding to
92 'enum nds32_intrinsic_registers' data type values.
93 NOTE that the base value starting from 1024. */
94 static const char * const nds32_intrinsic_register_names
[] =
96 "$PSW", "$IPSW", "$ITYPE", "$IPC"
99 /* Defining target-specific uses of __attribute__. */
100 static const struct attribute_spec nds32_attribute_table
[] =
102 /* Syntax: { name, min_len, max_len, decl_required, type_required,
103 function_type_required, handler, affects_type_identity } */
105 /* The interrupt vid: [0-63]+ (actual vector number starts from 9 to 72). */
106 { "interrupt", 1, 64, false, false, false, NULL
, false },
107 /* The exception vid: [1-8]+ (actual vector number starts from 1 to 8). */
108 { "exception", 1, 8, false, false, false, NULL
, false },
109 /* Argument is user's interrupt numbers. The vector number is always 0. */
110 { "reset", 1, 1, false, false, false, NULL
, false },
112 /* The attributes describing isr nested type. */
113 { "nested", 0, 0, false, false, false, NULL
, false },
114 { "not_nested", 0, 0, false, false, false, NULL
, false },
115 { "nested_ready", 0, 0, false, false, false, NULL
, false },
117 /* The attributes describing isr register save scheme. */
118 { "save_all", 0, 0, false, false, false, NULL
, false },
119 { "partial_save", 0, 0, false, false, false, NULL
, false },
121 /* The attributes used by reset attribute. */
122 { "nmi", 1, 1, false, false, false, NULL
, false },
123 { "warm", 1, 1, false, false, false, NULL
, false },
125 /* The attribute telling no prologue/epilogue. */
126 { "naked", 0, 0, false, false, false, NULL
, false },
128 /* The last attribute spec is set to be NULL. */
129 { NULL
, 0, 0, false, false, false, NULL
, false }
133 /* ------------------------------------------------------------------------ */
135 /* PART 2: Auxiliary static function definitions. */
137 /* Function to save and restore machine-specific function data. */
138 static struct machine_function
*
139 nds32_init_machine_status (void)
141 struct machine_function
*machine
;
142 machine
= ggc_cleared_alloc
<machine_function
> ();
144 /* Initially assume this function needs prologue/epilogue. */
145 machine
->naked_p
= 0;
147 /* Initially assume this function does NOT use fp_as_gp optimization. */
148 machine
->fp_as_gp_p
= 0;
153 /* Function to compute stack frame size and
154 store into cfun->machine structure. */
156 nds32_compute_stack_frame (void)
161 /* Because nds32_compute_stack_frame() will be called from different place,
162 everytime we enter this function, we have to assume this function
163 needs prologue/epilogue. */
164 cfun
->machine
->naked_p
= 0;
166 /* Get variadic arguments size to prepare pretend arguments and
167 we will push them into stack at prologue by ourself. */
168 cfun
->machine
->va_args_size
= crtl
->args
.pretend_args_size
;
169 if (cfun
->machine
->va_args_size
!= 0)
171 cfun
->machine
->va_args_first_regno
172 = NDS32_GPR_ARG_FIRST_REGNUM
173 + NDS32_MAX_GPR_REGS_FOR_ARGS
174 - (crtl
->args
.pretend_args_size
/ UNITS_PER_WORD
);
175 cfun
->machine
->va_args_last_regno
176 = NDS32_GPR_ARG_FIRST_REGNUM
+ NDS32_MAX_GPR_REGS_FOR_ARGS
- 1;
180 cfun
->machine
->va_args_first_regno
= SP_REGNUM
;
181 cfun
->machine
->va_args_last_regno
= SP_REGNUM
;
184 /* Important: We need to make sure that varargs area is 8-byte alignment. */
185 block_size
= cfun
->machine
->va_args_size
;
186 if (!NDS32_DOUBLE_WORD_ALIGN_P (block_size
))
188 cfun
->machine
->va_args_area_padding_bytes
189 = NDS32_ROUND_UP_DOUBLE_WORD (block_size
) - block_size
;
192 /* Get local variables, incoming variables, and temporary variables size.
193 Note that we need to make sure it is 8-byte alignment because
194 there may be no padding bytes if we are using LRA. */
195 cfun
->machine
->local_size
= NDS32_ROUND_UP_DOUBLE_WORD (get_frame_size ());
197 /* Get outgoing arguments size. */
198 cfun
->machine
->out_args_size
= crtl
->outgoing_args_size
;
200 /* If $fp value is required to be saved on stack, it needs 4 bytes space.
201 Check whether $fp is ever live. */
202 cfun
->machine
->fp_size
= (df_regs_ever_live_p (FP_REGNUM
)) ? 4 : 0;
204 /* If $gp value is required to be saved on stack, it needs 4 bytes space.
205 Check whether we are using PIC code genration. */
206 cfun
->machine
->gp_size
= (flag_pic
) ? 4 : 0;
208 /* If $lp value is required to be saved on stack, it needs 4 bytes space.
209 Check whether $lp is ever live. */
210 cfun
->machine
->lp_size
= (df_regs_ever_live_p (LP_REGNUM
)) ? 4 : 0;
212 /* Initially there is no padding bytes. */
213 cfun
->machine
->callee_saved_area_padding_bytes
= 0;
215 /* Calculate the bytes of saving callee-saved registers on stack. */
216 cfun
->machine
->callee_saved_regs_size
= 0;
217 cfun
->machine
->callee_saved_regs_first_regno
= SP_REGNUM
;
218 cfun
->machine
->callee_saved_regs_last_regno
= SP_REGNUM
;
219 /* Currently, there is no need to check $r28~$r31
220 because we will save them in another way. */
221 for (r
= 0; r
< 28; r
++)
223 if (NDS32_REQUIRED_CALLEE_SAVED_P (r
))
225 /* Mark the first required callee-saved register
226 (only need to set it once).
227 If first regno == SP_REGNUM, we can tell that
228 it is the first time to be here. */
229 if (cfun
->machine
->callee_saved_regs_first_regno
== SP_REGNUM
)
230 cfun
->machine
->callee_saved_regs_first_regno
= r
;
231 /* Mark the last required callee-saved register. */
232 cfun
->machine
->callee_saved_regs_last_regno
= r
;
236 /* Check if this function can omit prologue/epilogue code fragment.
237 If there is 'naked' attribute in this function,
238 we can set 'naked_p' flag to indicate that
239 we do not have to generate prologue/epilogue.
240 Or, if all the following conditions succeed,
241 we can set this function 'naked_p' as well:
242 condition 1: first_regno == last_regno == SP_REGNUM,
243 which means we do not have to save
244 any callee-saved registers.
245 condition 2: Both $lp and $fp are NOT live in this function,
246 which means we do not need to save them and there
248 condition 3: There is no local_size, which means
249 we do not need to adjust $sp. */
250 if (lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl
))
251 || (cfun
->machine
->callee_saved_regs_first_regno
== SP_REGNUM
252 && cfun
->machine
->callee_saved_regs_last_regno
== SP_REGNUM
253 && !df_regs_ever_live_p (FP_REGNUM
)
254 && !df_regs_ever_live_p (LP_REGNUM
)
255 && cfun
->machine
->local_size
== 0))
257 /* Set this function 'naked_p' and other functions can check this flag.
258 Note that in nds32 port, the 'naked_p = 1' JUST means there is no
259 callee-saved, local size, and outgoing size.
260 The varargs space and ret instruction may still present in
261 the prologue/epilogue expanding. */
262 cfun
->machine
->naked_p
= 1;
264 /* No need to save $fp, $gp, and $lp.
265 We should set these value to be zero
266 so that nds32_initial_elimination_offset() can work properly. */
267 cfun
->machine
->fp_size
= 0;
268 cfun
->machine
->gp_size
= 0;
269 cfun
->machine
->lp_size
= 0;
271 /* If stack usage computation is required,
272 we need to provide the static stack size. */
273 if (flag_stack_usage_info
)
274 current_function_static_stack_size
= 0;
276 /* No need to do following adjustment, return immediately. */
280 /* Adjustment for v3push instructions:
281 If we are using v3push (push25/pop25) instructions,
282 we need to make sure Rb is $r6 and Re is
283 located on $r6, $r8, $r10, or $r14.
284 Some results above will be discarded and recomputed.
285 Note that it is only available under V3/V3M ISA and we
286 DO NOT setup following stuff for isr or variadic function. */
288 && !nds32_isr_function_p (current_function_decl
)
289 && (cfun
->machine
->va_args_size
== 0))
292 cfun->machine->fp_size
293 cfun->machine->gp_size
294 cfun->machine->lp_size
295 cfun->machine->callee_saved_regs_first_regno
296 cfun->machine->callee_saved_regs_last_regno */
298 /* For v3push instructions, $fp, $gp, and $lp are always saved. */
299 cfun
->machine
->fp_size
= 4;
300 cfun
->machine
->gp_size
= 4;
301 cfun
->machine
->lp_size
= 4;
303 /* Remember to set Rb = $r6. */
304 cfun
->machine
->callee_saved_regs_first_regno
= 6;
306 if (cfun
->machine
->callee_saved_regs_last_regno
<= 6)
309 cfun
->machine
->callee_saved_regs_last_regno
= 6;
311 else if (cfun
->machine
->callee_saved_regs_last_regno
<= 8)
314 cfun
->machine
->callee_saved_regs_last_regno
= 8;
316 else if (cfun
->machine
->callee_saved_regs_last_regno
<= 10)
319 cfun
->machine
->callee_saved_regs_last_regno
= 10;
321 else if (cfun
->machine
->callee_saved_regs_last_regno
<= 14)
324 cfun
->machine
->callee_saved_regs_last_regno
= 14;
326 else if (cfun
->machine
->callee_saved_regs_last_regno
== SP_REGNUM
)
328 /* If last_regno is SP_REGNUM, which means
329 it is never changed, so set it to Re = $r6. */
330 cfun
->machine
->callee_saved_regs_last_regno
= 6;
334 /* The program flow should not go here. */
339 /* We have correctly set callee_saved_regs_first_regno
340 and callee_saved_regs_last_regno.
341 Initially, the callee_saved_regs_size is supposed to be 0.
342 As long as callee_saved_regs_last_regno is not SP_REGNUM,
343 we can update callee_saved_regs_size with new size. */
344 if (cfun
->machine
->callee_saved_regs_last_regno
!= SP_REGNUM
)
346 /* Compute pushed size of callee-saved registers. */
347 cfun
->machine
->callee_saved_regs_size
348 = 4 * (cfun
->machine
->callee_saved_regs_last_regno
349 - cfun
->machine
->callee_saved_regs_first_regno
353 /* Important: We need to make sure that
354 (fp_size + gp_size + lp_size + callee_saved_regs_size)
356 If it is not, calculate the padding bytes. */
357 block_size
= cfun
->machine
->fp_size
358 + cfun
->machine
->gp_size
359 + cfun
->machine
->lp_size
360 + cfun
->machine
->callee_saved_regs_size
;
361 if (!NDS32_DOUBLE_WORD_ALIGN_P (block_size
))
363 cfun
->machine
->callee_saved_area_padding_bytes
364 = NDS32_ROUND_UP_DOUBLE_WORD (block_size
) - block_size
;
367 /* If stack usage computation is required,
368 we need to provide the static stack size. */
369 if (flag_stack_usage_info
)
371 current_function_static_stack_size
372 = NDS32_ROUND_UP_DOUBLE_WORD (block_size
)
373 + cfun
->machine
->local_size
374 + cfun
->machine
->out_args_size
;
378 /* Function to create a parallel rtx pattern
379 which presents stack push multiple behavior.
380 The overall concept are:
381 "push registers to memory",
382 "adjust stack pointer". */
384 nds32_emit_stack_push_multiple (rtx Rb
, rtx Re
, rtx En4
, bool vaarg_p
)
391 int save_fp
, save_gp
, save_lp
;
400 /* We need to provide a customized rtx which contains
401 necessary information for data analysis,
402 so we create a parallel rtx like this:
403 (parallel [(set (mem (plus (reg:SI SP_REGNUM) (const_int -32)))
405 (set (mem (plus (reg:SI SP_REGNUM) (const_int -28)))
408 (set (mem (plus (reg:SI SP_REGNUM) (const_int -16)))
410 (set (mem (plus (reg:SI SP_REGNUM) (const_int -12)))
412 (set (mem (plus (reg:SI SP_REGNUM) (const_int -8)))
414 (set (mem (plus (reg:SI SP_REGNUM) (const_int -4)))
416 (set (reg:SI SP_REGNUM)
417 (plus (reg:SI SP_REGNUM) (const_int -32)))]) */
419 /* Determine whether we need to save $fp, $gp, or $lp. */
420 save_fp
= INTVAL (En4
) & 0x8;
421 save_gp
= INTVAL (En4
) & 0x4;
422 save_lp
= INTVAL (En4
) & 0x2;
424 /* Calculate the number of registers that will be pushed. */
432 /* Note that Rb and Re may be SP_REGNUM. DO NOT count it in. */
433 if (REGNO (Rb
) == SP_REGNUM
&& REGNO (Re
) == SP_REGNUM
)
434 num_use_regs
= extra_count
;
436 num_use_regs
= REGNO (Re
) - REGNO (Rb
) + 1 + extra_count
;
438 /* In addition to used registers,
439 we need one more space for (set sp sp-x) rtx. */
440 parallel_insn
= gen_rtx_PARALLEL (VOIDmode
,
441 rtvec_alloc (num_use_regs
+ 1));
444 /* Initialize offset and start to create push behavior. */
445 offset
= -(num_use_regs
* 4);
447 /* Create (set mem regX) from Rb, Rb+1 up to Re. */
448 for (regno
= REGNO (Rb
); regno
<= (int) REGNO (Re
); regno
++)
450 /* Rb and Re may be SP_REGNUM.
451 We need to break this loop immediately. */
452 if (regno
== SP_REGNUM
)
455 reg
= gen_rtx_REG (SImode
, regno
);
456 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
459 push_rtx
= gen_rtx_SET (VOIDmode
, mem
, reg
);
460 XVECEXP (parallel_insn
, 0, par_index
) = push_rtx
;
461 RTX_FRAME_RELATED_P (push_rtx
) = 1;
466 /* Create (set mem fp), (set mem gp), and (set mem lp) if necessary. */
469 reg
= gen_rtx_REG (SImode
, FP_REGNUM
);
470 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
473 push_rtx
= gen_rtx_SET (VOIDmode
, mem
, reg
);
474 XVECEXP (parallel_insn
, 0, par_index
) = push_rtx
;
475 RTX_FRAME_RELATED_P (push_rtx
) = 1;
481 reg
= gen_rtx_REG (SImode
, GP_REGNUM
);
482 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
485 push_rtx
= gen_rtx_SET (VOIDmode
, mem
, reg
);
486 XVECEXP (parallel_insn
, 0, par_index
) = push_rtx
;
487 RTX_FRAME_RELATED_P (push_rtx
) = 1;
493 reg
= gen_rtx_REG (SImode
, LP_REGNUM
);
494 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
497 push_rtx
= gen_rtx_SET (VOIDmode
, mem
, reg
);
498 XVECEXP (parallel_insn
, 0, par_index
) = push_rtx
;
499 RTX_FRAME_RELATED_P (push_rtx
) = 1;
504 /* Create (set sp sp-x). */
506 /* We need to re-calculate the offset value again for adjustment. */
507 offset
= -(num_use_regs
* 4);
509 = gen_rtx_SET (VOIDmode
,
511 plus_constant (Pmode
, stack_pointer_rtx
, offset
));
512 XVECEXP (parallel_insn
, 0, par_index
) = adjust_sp_rtx
;
513 RTX_FRAME_RELATED_P (adjust_sp_rtx
) = 1;
515 parallel_insn
= emit_insn (parallel_insn
);
517 /* The insn rtx 'parallel_insn' will change frame layout.
518 We need to use RTX_FRAME_RELATED_P so that GCC is able to
519 generate CFI (Call Frame Information) stuff. */
520 RTX_FRAME_RELATED_P (parallel_insn
) = 1;
522 /* Don't use GCC's logic for CFI info if we are generate a push for VAARG
523 since we will not restore those register at epilogue. */
526 dwarf
= alloc_reg_note (REG_CFA_ADJUST_CFA
,
527 copy_rtx (adjust_sp_rtx
), NULL_RTX
);
528 REG_NOTES (parallel_insn
) = dwarf
;
532 /* Function to create a parallel rtx pattern
533 which presents stack pop multiple behavior.
534 The overall concept are:
535 "pop registers from memory",
536 "adjust stack pointer". */
538 nds32_emit_stack_pop_multiple (rtx Rb
, rtx Re
, rtx En4
)
545 int save_fp
, save_gp
, save_lp
;
552 rtx dwarf
= NULL_RTX
;
554 /* We need to provide a customized rtx which contains
555 necessary information for data analysis,
556 so we create a parallel rtx like this:
557 (parallel [(set (reg:SI Rb)
558 (mem (reg:SI SP_REGNUM)))
560 (mem (plus (reg:SI SP_REGNUM) (const_int 4))))
563 (mem (plus (reg:SI SP_REGNUM) (const_int 16))))
564 (set (reg:SI FP_REGNUM)
565 (mem (plus (reg:SI SP_REGNUM) (const_int 20))))
566 (set (reg:SI GP_REGNUM)
567 (mem (plus (reg:SI SP_REGNUM) (const_int 24))))
568 (set (reg:SI LP_REGNUM)
569 (mem (plus (reg:SI SP_REGNUM) (const_int 28))))
570 (set (reg:SI SP_REGNUM)
571 (plus (reg:SI SP_REGNUM) (const_int 32)))]) */
573 /* Determine whether we need to restore $fp, $gp, or $lp. */
574 save_fp
= INTVAL (En4
) & 0x8;
575 save_gp
= INTVAL (En4
) & 0x4;
576 save_lp
= INTVAL (En4
) & 0x2;
578 /* Calculate the number of registers that will be poped. */
586 /* Note that Rb and Re may be SP_REGNUM. DO NOT count it in. */
587 if (REGNO (Rb
) == SP_REGNUM
&& REGNO (Re
) == SP_REGNUM
)
588 num_use_regs
= extra_count
;
590 num_use_regs
= REGNO (Re
) - REGNO (Rb
) + 1 + extra_count
;
592 /* In addition to used registers,
593 we need one more space for (set sp sp+x) rtx. */
594 parallel_insn
= gen_rtx_PARALLEL (VOIDmode
,
595 rtvec_alloc (num_use_regs
+ 1));
598 /* Initialize offset and start to create pop behavior. */
601 /* Create (set regX mem) from Rb, Rb+1 up to Re. */
602 for (regno
= REGNO (Rb
); regno
<= (int) REGNO (Re
); regno
++)
604 /* Rb and Re may be SP_REGNUM.
605 We need to break this loop immediately. */
606 if (regno
== SP_REGNUM
)
609 reg
= gen_rtx_REG (SImode
, regno
);
610 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
613 pop_rtx
= gen_rtx_SET (VOIDmode
, reg
, mem
);
614 XVECEXP (parallel_insn
, 0, par_index
) = pop_rtx
;
615 RTX_FRAME_RELATED_P (pop_rtx
) = 1;
619 dwarf
= alloc_reg_note (REG_CFA_RESTORE
, reg
, dwarf
);
622 /* Create (set fp mem), (set gp mem), and (set lp mem) if necessary. */
625 reg
= gen_rtx_REG (SImode
, FP_REGNUM
);
626 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
629 pop_rtx
= gen_rtx_SET (VOIDmode
, reg
, mem
);
630 XVECEXP (parallel_insn
, 0, par_index
) = pop_rtx
;
631 RTX_FRAME_RELATED_P (pop_rtx
) = 1;
635 dwarf
= alloc_reg_note (REG_CFA_RESTORE
, reg
, dwarf
);
639 reg
= gen_rtx_REG (SImode
, GP_REGNUM
);
640 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
643 pop_rtx
= gen_rtx_SET (VOIDmode
, reg
, mem
);
644 XVECEXP (parallel_insn
, 0, par_index
) = pop_rtx
;
645 RTX_FRAME_RELATED_P (pop_rtx
) = 1;
649 dwarf
= alloc_reg_note (REG_CFA_RESTORE
, reg
, dwarf
);
653 reg
= gen_rtx_REG (SImode
, LP_REGNUM
);
654 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
657 pop_rtx
= gen_rtx_SET (VOIDmode
, reg
, mem
);
658 XVECEXP (parallel_insn
, 0, par_index
) = pop_rtx
;
659 RTX_FRAME_RELATED_P (pop_rtx
) = 1;
663 dwarf
= alloc_reg_note (REG_CFA_RESTORE
, reg
, dwarf
);
666 /* Create (set sp sp+x). */
668 /* The offset value is already in place. No need to re-calculate it. */
670 = gen_rtx_SET (VOIDmode
,
672 plus_constant (Pmode
, stack_pointer_rtx
, offset
));
673 XVECEXP (parallel_insn
, 0, par_index
) = adjust_sp_rtx
;
675 /* Tell gcc we adjust SP in this insn. */
676 dwarf
= alloc_reg_note (REG_CFA_ADJUST_CFA
, copy_rtx (adjust_sp_rtx
), dwarf
);
678 parallel_insn
= emit_insn (parallel_insn
);
680 /* The insn rtx 'parallel_insn' will change frame layout.
681 We need to use RTX_FRAME_RELATED_P so that GCC is able to
682 generate CFI (Call Frame Information) stuff. */
683 RTX_FRAME_RELATED_P (parallel_insn
) = 1;
685 /* Add CFI info by manual. */
686 REG_NOTES (parallel_insn
) = dwarf
;
689 /* Function to create a parallel rtx pattern
690 which presents stack v3push behavior.
691 The overall concept are:
692 "push registers to memory",
693 "adjust stack pointer". */
695 nds32_emit_stack_v3push (rtx Rb
,
697 rtx En4 ATTRIBUTE_UNUSED
,
711 /* We need to provide a customized rtx which contains
712 necessary information for data analysis,
713 so we create a parallel rtx like this:
714 (parallel [(set (mem (plus (reg:SI SP_REGNUM) (const_int -32)))
716 (set (mem (plus (reg:SI SP_REGNUM) (const_int -28)))
719 (set (mem (plus (reg:SI SP_REGNUM) (const_int -16)))
721 (set (mem (plus (reg:SI SP_REGNUM) (const_int -12)))
723 (set (mem (plus (reg:SI SP_REGNUM) (const_int -8)))
725 (set (mem (plus (reg:SI SP_REGNUM) (const_int -4)))
727 (set (reg:SI SP_REGNUM)
728 (plus (reg:SI SP_REGNUM) (const_int -32-imm8u)))]) */
730 /* Calculate the number of registers that will be pushed.
731 Since $fp, $gp, and $lp is always pushed with v3push instruction,
732 we need to count these three registers.
733 Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
734 So there is no need to worry about Rb=Re=SP_REGNUM case. */
735 num_use_regs
= REGNO (Re
) - REGNO (Rb
) + 1 + 3;
737 /* In addition to used registers,
738 we need one more space for (set sp sp-x-imm8u) rtx. */
739 parallel_insn
= gen_rtx_PARALLEL (VOIDmode
,
740 rtvec_alloc (num_use_regs
+ 1));
743 /* Initialize offset and start to create push behavior. */
744 offset
= -(num_use_regs
* 4);
746 /* Create (set mem regX) from Rb, Rb+1 up to Re.
747 Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
748 So there is no need to worry about Rb=Re=SP_REGNUM case. */
749 for (regno
= REGNO (Rb
); regno
<= (int) REGNO (Re
); regno
++)
751 reg
= gen_rtx_REG (SImode
, regno
);
752 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
755 push_rtx
= gen_rtx_SET (VOIDmode
, mem
, reg
);
756 XVECEXP (parallel_insn
, 0, par_index
) = push_rtx
;
757 RTX_FRAME_RELATED_P (push_rtx
) = 1;
762 /* Create (set mem fp). */
763 reg
= gen_rtx_REG (SImode
, FP_REGNUM
);
764 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
767 push_rtx
= gen_rtx_SET (VOIDmode
, mem
, reg
);
768 XVECEXP (parallel_insn
, 0, par_index
) = push_rtx
;
769 RTX_FRAME_RELATED_P (push_rtx
) = 1;
772 /* Create (set mem gp). */
773 reg
= gen_rtx_REG (SImode
, GP_REGNUM
);
774 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
777 push_rtx
= gen_rtx_SET (VOIDmode
, mem
, reg
);
778 XVECEXP (parallel_insn
, 0, par_index
) = push_rtx
;
779 RTX_FRAME_RELATED_P (push_rtx
) = 1;
782 /* Create (set mem lp). */
783 reg
= gen_rtx_REG (SImode
, LP_REGNUM
);
784 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
787 push_rtx
= gen_rtx_SET (VOIDmode
, mem
, reg
);
788 XVECEXP (parallel_insn
, 0, par_index
) = push_rtx
;
789 RTX_FRAME_RELATED_P (push_rtx
) = 1;
793 /* Create (set sp sp-x-imm8u). */
795 /* We need to re-calculate the offset value again for adjustment. */
796 offset
= -(num_use_regs
* 4);
798 = gen_rtx_SET (VOIDmode
,
800 plus_constant (Pmode
,
802 offset
- INTVAL (imm8u
)));
803 XVECEXP (parallel_insn
, 0, par_index
) = adjust_sp_rtx
;
804 RTX_FRAME_RELATED_P (adjust_sp_rtx
) = 1;
806 parallel_insn
= emit_insn (parallel_insn
);
808 /* The insn rtx 'parallel_insn' will change frame layout.
809 We need to use RTX_FRAME_RELATED_P so that GCC is able to
810 generate CFI (Call Frame Information) stuff. */
811 RTX_FRAME_RELATED_P (parallel_insn
) = 1;
814 /* Function to create a parallel rtx pattern
815 which presents stack v3pop behavior.
816 The overall concept are:
817 "pop registers from memory",
818 "adjust stack pointer". */
820 nds32_emit_stack_v3pop (rtx Rb
,
822 rtx En4 ATTRIBUTE_UNUSED
,
835 rtx dwarf
= NULL_RTX
;
837 /* We need to provide a customized rtx which contains
838 necessary information for data analysis,
839 so we create a parallel rtx like this:
840 (parallel [(set (reg:SI Rb)
841 (mem (reg:SI SP_REGNUM)))
843 (mem (plus (reg:SI SP_REGNUM) (const_int 4))))
846 (mem (plus (reg:SI SP_REGNUM) (const_int 16))))
847 (set (reg:SI FP_REGNUM)
848 (mem (plus (reg:SI SP_REGNUM) (const_int 20))))
849 (set (reg:SI GP_REGNUM)
850 (mem (plus (reg:SI SP_REGNUM) (const_int 24))))
851 (set (reg:SI LP_REGNUM)
852 (mem (plus (reg:SI SP_REGNUM) (const_int 28))))
853 (set (reg:SI SP_REGNUM)
854 (plus (reg:SI SP_REGNUM) (const_int 32+imm8u)))]) */
856 /* Calculate the number of registers that will be poped.
857 Since $fp, $gp, and $lp is always poped with v3pop instruction,
858 we need to count these three registers.
859 Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
860 So there is no need to worry about Rb=Re=SP_REGNUM case. */
861 num_use_regs
= REGNO (Re
) - REGNO (Rb
) + 1 + 3;
863 /* In addition to used registers,
864 we need one more space for (set sp sp+x+imm8u) rtx. */
865 parallel_insn
= gen_rtx_PARALLEL (VOIDmode
,
866 rtvec_alloc (num_use_regs
+ 1));
869 /* Initialize offset and start to create pop behavior. */
872 /* Create (set regX mem) from Rb, Rb+1 up to Re.
873 Under v3pop, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
874 So there is no need to worry about Rb=Re=SP_REGNUM case. */
875 for (regno
= REGNO (Rb
); regno
<= (int) REGNO (Re
); regno
++)
877 reg
= gen_rtx_REG (SImode
, regno
);
878 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
881 pop_rtx
= gen_rtx_SET (VOIDmode
, reg
, mem
);
882 XVECEXP (parallel_insn
, 0, par_index
) = pop_rtx
;
883 RTX_FRAME_RELATED_P (pop_rtx
) = 1;
887 dwarf
= alloc_reg_note (REG_CFA_RESTORE
, reg
, dwarf
);
890 /* Create (set fp mem). */
891 reg
= gen_rtx_REG (SImode
, FP_REGNUM
);
892 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
895 pop_rtx
= gen_rtx_SET (VOIDmode
, reg
, mem
);
896 XVECEXP (parallel_insn
, 0, par_index
) = pop_rtx
;
897 RTX_FRAME_RELATED_P (pop_rtx
) = 1;
900 dwarf
= alloc_reg_note (REG_CFA_RESTORE
, reg
, dwarf
);
902 /* Create (set gp mem). */
903 reg
= gen_rtx_REG (SImode
, GP_REGNUM
);
904 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
907 pop_rtx
= gen_rtx_SET (VOIDmode
, reg
, mem
);
908 XVECEXP (parallel_insn
, 0, par_index
) = pop_rtx
;
909 RTX_FRAME_RELATED_P (pop_rtx
) = 1;
912 dwarf
= alloc_reg_note (REG_CFA_RESTORE
, reg
, dwarf
);
914 /* Create (set lp mem ). */
915 reg
= gen_rtx_REG (SImode
, LP_REGNUM
);
916 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
,
919 pop_rtx
= gen_rtx_SET (VOIDmode
, reg
, mem
);
920 XVECEXP (parallel_insn
, 0, par_index
) = pop_rtx
;
921 RTX_FRAME_RELATED_P (pop_rtx
) = 1;
924 dwarf
= alloc_reg_note (REG_CFA_RESTORE
, reg
, dwarf
);
926 /* Create (set sp sp+x+imm8u). */
928 /* The offset value is already in place. No need to re-calculate it. */
930 = gen_rtx_SET (VOIDmode
,
932 plus_constant (Pmode
,
934 offset
+ INTVAL (imm8u
)));
935 XVECEXP (parallel_insn
, 0, par_index
) = adjust_sp_rtx
;
937 /* Tell gcc we adjust SP in this insn. */
938 dwarf
= alloc_reg_note (REG_CFA_ADJUST_CFA
, copy_rtx (adjust_sp_rtx
), dwarf
);
940 parallel_insn
= emit_insn (parallel_insn
);
942 /* The insn rtx 'parallel_insn' will change frame layout.
943 We need to use RTX_FRAME_RELATED_P so that GCC is able to
944 generate CFI (Call Frame Information) stuff. */
945 RTX_FRAME_RELATED_P (parallel_insn
) = 1;
947 /* Add CFI info by manual. */
948 REG_NOTES (parallel_insn
) = dwarf
;
951 /* Function that may creates more instructions
952 for large value on adjusting stack pointer.
954 In nds32 target, 'addi' can be used for stack pointer
955 adjustment in prologue/epilogue stage.
956 However, sometimes there are too many local variables so that
957 the adjustment value is not able to be fit in the 'addi' instruction.
958 One solution is to move value into a register
959 and then use 'add' instruction.
960 In practice, we use TA_REGNUM ($r15) to accomplish this purpose.
961 Also, we need to return zero for sp adjustment so that
962 proglogue/epilogue knows there is no need to create 'addi' instruction. */
964 nds32_force_addi_stack_int (int full_value
)
971 if (!satisfies_constraint_Is15 (GEN_INT (full_value
)))
973 /* The value is not able to fit in single addi instruction.
974 Create more instructions of moving value into a register
975 and then add stack pointer with it. */
977 /* $r15 is going to be temporary register to hold the value. */
978 tmp_reg
= gen_rtx_REG (SImode
, TA_REGNUM
);
980 /* Create one more instruction to move value
981 into the temporary register. */
982 emit_move_insn (tmp_reg
, GEN_INT (full_value
));
984 /* Create new 'add' rtx. */
985 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
988 /* Emit rtx into insn list and receive its transformed insn rtx. */
989 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
991 /* At prologue, we need to tell GCC that this is frame related insn,
992 so that we can consider this instruction to output debug information.
993 If full_value is NEGATIVE, it means this function
994 is invoked by expand_prologue. */
997 /* Because (tmp_reg <- full_value) may be split into two
998 rtl patterns, we can not set its RTX_FRAME_RELATED_P.
999 We need to construct another (sp <- sp + full_value)
1000 and then insert it into sp_adjust_insn's reg note to
1001 represent a frame related expression.
1002 GCC knows how to refer it and output debug information. */
1007 plus_rtx
= plus_constant (Pmode
, stack_pointer_rtx
, full_value
);
1008 set_rtx
= gen_rtx_SET (VOIDmode
, stack_pointer_rtx
, plus_rtx
);
1009 add_reg_note (sp_adjust_insn
, REG_FRAME_RELATED_EXPR
, set_rtx
);
1011 RTX_FRAME_RELATED_P (sp_adjust_insn
) = 1;
1014 /* We have used alternative way to adjust stack pointer value.
1015 Return zero so that prologue/epilogue
1016 will not generate other instructions. */
1021 /* The value is able to fit in addi instruction.
1022 However, remember to make it to be positive value
1023 because we want to return 'adjustment' result. */
1024 adjust_value
= (full_value
< 0) ? (-full_value
) : (full_value
);
1026 return adjust_value
;
1030 /* Return true if MODE/TYPE need double word alignment. */
1032 nds32_needs_double_word_align (machine_mode mode
, const_tree type
)
1036 /* Pick up the alignment according to the mode or type. */
1037 align
= NDS32_MODE_TYPE_ALIGN (mode
, type
);
1039 return (align
> PARM_BOUNDARY
);
1042 /* Return true if FUNC is a naked function. */
1044 nds32_naked_function_p (tree func
)
1048 if (TREE_CODE (func
) != FUNCTION_DECL
)
1051 t
= lookup_attribute ("naked", DECL_ATTRIBUTES (func
));
1053 return (t
!= NULL_TREE
);
1056 /* Function that check if 'X' is a valid address register.
1057 The variable 'STRICT' is very important to
1058 make decision for register number.
1061 => We are in reload pass or after reload pass.
1062 The register number should be strictly limited in general registers.
1065 => Before reload pass, we are free to use any register number. */
1067 nds32_address_register_rtx_p (rtx x
, bool strict
)
1071 if (GET_CODE (x
) != REG
)
1077 return REGNO_OK_FOR_BASE_P (regno
);
1082 /* Function that check if 'INDEX' is valid to be a index rtx for address.
1084 OUTER_MODE : Machine mode of outer address rtx.
1085 INDEX : Check if this rtx is valid to be a index for address.
1086 STRICT : If it is true, we are in reload pass or after reload pass. */
1088 nds32_legitimate_index_p (machine_mode outer_mode
,
1096 switch (GET_CODE (index
))
1099 regno
= REGNO (index
);
1100 /* If we are in reload pass or after reload pass,
1101 we need to limit it to general register. */
1103 return REGNO_OK_FOR_INDEX_P (regno
);
1108 /* The alignment of the integer value is determined by 'outer_mode'. */
1109 if (GET_MODE_SIZE (outer_mode
) == 1)
1111 /* Further check if the value is legal for the 'outer_mode'. */
1112 if (!satisfies_constraint_Is15 (index
))
1115 /* Pass all test, the value is valid, return true. */
1118 if (GET_MODE_SIZE (outer_mode
) == 2
1119 && NDS32_HALF_WORD_ALIGN_P (INTVAL (index
)))
1121 /* Further check if the value is legal for the 'outer_mode'. */
1122 if (!satisfies_constraint_Is16 (index
))
1125 /* Pass all test, the value is valid, return true. */
1128 if (GET_MODE_SIZE (outer_mode
) == 4
1129 && NDS32_SINGLE_WORD_ALIGN_P (INTVAL (index
)))
1131 /* Further check if the value is legal for the 'outer_mode'. */
1132 if (!satisfies_constraint_Is17 (index
))
1135 /* Pass all test, the value is valid, return true. */
1138 if (GET_MODE_SIZE (outer_mode
) == 8
1139 && NDS32_SINGLE_WORD_ALIGN_P (INTVAL (index
)))
1141 /* Further check if the value is legal for the 'outer_mode'. */
1142 if (!satisfies_constraint_Is17 (gen_int_mode (INTVAL (index
) + 4,
1146 /* Pass all test, the value is valid, return true. */
1153 op0
= XEXP (index
, 0);
1154 op1
= XEXP (index
, 1);
1156 if (REG_P (op0
) && CONST_INT_P (op1
))
1159 multiplier
= INTVAL (op1
);
1161 /* We only allow (mult reg const_int_1)
1162 or (mult reg const_int_2) or (mult reg const_int_4). */
1163 if (multiplier
!= 1 && multiplier
!= 2 && multiplier
!= 4)
1166 regno
= REGNO (op0
);
1167 /* Limit it in general registers if we are
1168 in reload pass or after reload pass. */
1170 return REGNO_OK_FOR_INDEX_P (regno
);
1178 op0
= XEXP (index
, 0);
1179 op1
= XEXP (index
, 1);
1181 if (REG_P (op0
) && CONST_INT_P (op1
))
1184 /* op1 is already the sv value for use to do left shift. */
1187 /* We only allow (ashift reg const_int_0)
1188 or (ashift reg const_int_1) or (ashift reg const_int_2). */
1189 if (sv
!= 0 && sv
!= 1 && sv
!=2)
1192 regno
= REGNO (op0
);
1193 /* Limit it in general registers if we are
1194 in reload pass or after reload pass. */
1196 return REGNO_OK_FOR_INDEX_P (regno
);
1208 /* ------------------------------------------------------------------------ */
1210 /* PART 3: Implement target hook stuff definitions. */
1212 /* Register Classes. */
1214 static unsigned char
1215 nds32_class_max_nregs (reg_class_t rclass ATTRIBUTE_UNUSED
,
1218 /* Return the maximum number of consecutive registers
1219 needed to represent "mode" in a register of "rclass". */
1220 return ((GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
);
1224 nds32_register_priority (int hard_regno
)
1226 /* Encourage to use r0-r7 for LRA when optimize for size. */
1227 if (optimize_size
&& hard_regno
< 8)
1233 /* Stack Layout and Calling Conventions. */
1235 /* There are three kinds of pointer concepts using in GCC compiler:
1237 frame pointer: A pointer to the first location of local variables.
1238 stack pointer: A pointer to the top of a stack frame.
1239 argument pointer: A pointer to the incoming arguments.
1241 In nds32 target calling convention, we are using 8-byte alignment.
1242 Besides, we would like to have each stack frame of a function includes:
1245 1. previous hard frame pointer
1247 3. callee-saved registers
1248 4. <padding bytes> (we will calculte in nds32_compute_stack_frame()
1250 cfun->machine->callee_saved_area_padding_bytes)
1254 2. spilling location
1255 3. <padding bytes> (it will be calculated by GCC itself)
1256 4. incoming arguments
1257 5. <padding bytes> (it will be calculated by GCC itself)
1260 1. <padding bytes> (it will be calculated by GCC itself)
1261 2. outgoing arguments
1263 We 'wrap' these blocks together with
1264 hard frame pointer ($r28) and stack pointer ($r31).
1265 By applying the basic frame/stack/argument pointers concept,
1266 the layout of a stack frame shoule be like this:
1269 old stack pointer -> ----
1271 | | saved arguments for
1272 | | vararg functions
1274 hard frame pointer -> --
1275 & argument pointer | | \
1276 | | previous hardware frame pointer
1278 | | callee-saved registers
1283 | | and incoming arguments
1290 stack pointer -> ----
1292 $SFP and $AP are used to represent frame pointer and arguments pointer,
1293 which will be both eliminated as hard frame pointer. */
1295 /* -- Eliminating Frame Pointer and Arg Pointer. */
1298 nds32_can_eliminate (const int from_reg
, const int to_reg
)
1300 if (from_reg
== ARG_POINTER_REGNUM
&& to_reg
== STACK_POINTER_REGNUM
)
1303 if (from_reg
== ARG_POINTER_REGNUM
&& to_reg
== HARD_FRAME_POINTER_REGNUM
)
1306 if (from_reg
== FRAME_POINTER_REGNUM
&& to_reg
== STACK_POINTER_REGNUM
)
1309 if (from_reg
== FRAME_POINTER_REGNUM
&& to_reg
== HARD_FRAME_POINTER_REGNUM
)
1315 /* -- Passing Arguments in Registers. */
1318 nds32_function_arg (cumulative_args_t ca
, machine_mode mode
,
1319 const_tree type
, bool named
)
1322 CUMULATIVE_ARGS
*cum
= get_cumulative_args (ca
);
1324 /* The last time this hook is called,
1325 it is called with MODE == VOIDmode. */
1326 if (mode
== VOIDmode
)
1329 /* For nameless arguments, we need to take care it individually. */
1332 /* If we are under hard float abi, we have arguments passed on the
1333 stack and all situation can be handled by GCC itself. */
1334 if (TARGET_HARD_FLOAT
)
1337 if (NDS32_ARG_PARTIAL_IN_GPR_REG_P (cum
->gpr_offset
, mode
, type
))
1339 /* If we still have enough registers to pass argument, pick up
1340 next available register number. */
1342 = NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum
->gpr_offset
, mode
, type
);
1343 return gen_rtx_REG (mode
, regno
);
1346 /* No register available, return NULL_RTX.
1347 The compiler will use stack to pass argument instead. */
1351 /* The following is to handle named argument.
1352 Note that the strategies of TARGET_HARD_FLOAT and !TARGET_HARD_FLOAT
1354 if (TARGET_HARD_FLOAT
)
1356 /* Currently we have not implemented hard float yet. */
1361 /* For !TARGET_HARD_FLOAT calling convention, we always use GPR to pass
1362 argument. Since we allow to pass argument partially in registers,
1363 we can just return it if there are still registers available. */
1364 if (NDS32_ARG_PARTIAL_IN_GPR_REG_P (cum
->gpr_offset
, mode
, type
))
1366 /* Pick up the next available register number. */
1368 = NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum
->gpr_offset
, mode
, type
);
1369 return gen_rtx_REG (mode
, regno
);
1374 /* No register available, return NULL_RTX.
1375 The compiler will use stack to pass argument instead. */
1380 nds32_must_pass_in_stack (machine_mode mode
, const_tree type
)
1382 /* Return true if a type must be passed in memory.
1383 If it is NOT using hard float abi, small aggregates can be
1384 passed in a register even we are calling a variadic function.
1385 So there is no need to take padding into consideration. */
1386 if (TARGET_HARD_FLOAT
)
1387 return must_pass_in_stack_var_size_or_pad (mode
, type
);
1389 return must_pass_in_stack_var_size (mode
, type
);
1393 nds32_arg_partial_bytes (cumulative_args_t ca
, machine_mode mode
,
1394 tree type
, bool named ATTRIBUTE_UNUSED
)
1396 /* Returns the number of bytes at the beginning of an argument that
1397 must be put in registers. The value must be zero for arguments that are
1398 passed entirely in registers or that are entirely pushed on the stack.
1399 Besides, TARGET_FUNCTION_ARG for these arguments should return the
1400 first register to be used by the caller for this argument. */
1401 unsigned int needed_reg_count
;
1402 unsigned int remaining_reg_count
;
1403 CUMULATIVE_ARGS
*cum
;
1405 cum
= get_cumulative_args (ca
);
1407 /* Under hard float abi, we better have argument entirely passed in
1408 registers or pushed on the stack so that we can reduce the complexity
1409 of dealing with cum->gpr_offset and cum->fpr_offset. */
1410 if (TARGET_HARD_FLOAT
)
1413 /* If we have already runned out of argument registers, return zero
1414 so that the argument will be entirely pushed on the stack. */
1415 if (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum
->gpr_offset
, mode
, type
)
1416 >= NDS32_GPR_ARG_FIRST_REGNUM
+ NDS32_MAX_GPR_REGS_FOR_ARGS
)
1419 /* Calculate how many registers do we need for this argument. */
1420 needed_reg_count
= NDS32_NEED_N_REGS_FOR_ARG (mode
, type
);
1422 /* Calculate how many argument registers have left for passing argument.
1423 Note that we should count it from next available register number. */
1425 = NDS32_MAX_GPR_REGS_FOR_ARGS
1426 - (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum
->gpr_offset
, mode
, type
)
1427 - NDS32_GPR_ARG_FIRST_REGNUM
);
1429 /* Note that we have to return the nubmer of bytes, not registers count. */
1430 if (needed_reg_count
> remaining_reg_count
)
1431 return remaining_reg_count
* UNITS_PER_WORD
;
1437 nds32_function_arg_advance (cumulative_args_t ca
, machine_mode mode
,
1438 const_tree type
, bool named
)
1440 machine_mode sub_mode
;
1441 CUMULATIVE_ARGS
*cum
= get_cumulative_args (ca
);
1445 /* We need to further check TYPE and MODE so that we can determine
1446 which kind of register we shall advance. */
1447 if (type
&& TREE_CODE (type
) == COMPLEX_TYPE
)
1448 sub_mode
= TYPE_MODE (TREE_TYPE (type
));
1452 /* Under hard float abi, we may advance FPR registers. */
1453 if (TARGET_HARD_FLOAT
&& GET_MODE_CLASS (sub_mode
) == MODE_FLOAT
)
1455 /* Currently we have not implemented hard float yet. */
1461 = NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum
->gpr_offset
, mode
, type
)
1462 - NDS32_GPR_ARG_FIRST_REGNUM
1463 + NDS32_NEED_N_REGS_FOR_ARG (mode
, type
);
1468 /* If this nameless argument is NOT under TARGET_HARD_FLOAT,
1469 we can advance next register as well so that caller is
1470 able to pass arguments in registers and callee must be
1471 in charge of pushing all of them into stack. */
1472 if (!TARGET_HARD_FLOAT
)
1475 = NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum
->gpr_offset
, mode
, type
)
1476 - NDS32_GPR_ARG_FIRST_REGNUM
1477 + NDS32_NEED_N_REGS_FOR_ARG (mode
, type
);
1483 nds32_function_arg_boundary (machine_mode mode
, const_tree type
)
1485 return (nds32_needs_double_word_align (mode
, type
)
1486 ? NDS32_DOUBLE_WORD_ALIGNMENT
1490 /* -- How Scalar Function Values Are Returned. */
1493 nds32_function_value (const_tree ret_type
,
1494 const_tree fn_decl_or_type ATTRIBUTE_UNUSED
,
1495 bool outgoing ATTRIBUTE_UNUSED
)
1500 mode
= TYPE_MODE (ret_type
);
1501 unsignedp
= TYPE_UNSIGNED (ret_type
);
1503 mode
= promote_mode (ret_type
, mode
, &unsignedp
);
1505 return gen_rtx_REG (mode
, NDS32_GPR_RET_FIRST_REGNUM
);
1509 nds32_libcall_value (machine_mode mode
,
1510 const_rtx fun ATTRIBUTE_UNUSED
)
1512 return gen_rtx_REG (mode
, NDS32_GPR_RET_FIRST_REGNUM
);
1516 nds32_function_value_regno_p (const unsigned int regno
)
1518 return (regno
== NDS32_GPR_RET_FIRST_REGNUM
);
1521 /* -- Function Entry and Exit. */
1523 /* The content produced from this function
1524 will be placed before prologue body. */
1526 nds32_asm_function_prologue (FILE *file
,
1527 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
1530 const char *func_name
;
1534 /* All stack frame information is supposed to be
1535 already computed when expanding prologue.
1536 The result is in cfun->machine.
1537 DO NOT call nds32_compute_stack_frame() here
1538 because it may corrupt the essential information. */
1540 fprintf (file
, "\t! BEGIN PROLOGUE\n");
1541 fprintf (file
, "\t! fp needed: %d\n", frame_pointer_needed
);
1542 fprintf (file
, "\t! pretend_args: %d\n", cfun
->machine
->va_args_size
);
1543 fprintf (file
, "\t! local_size: %d\n", cfun
->machine
->local_size
);
1544 fprintf (file
, "\t! out_args_size: %d\n", cfun
->machine
->out_args_size
);
1546 /* Use df_regs_ever_live_p() to detect if the register
1547 is ever used in the current function. */
1548 fprintf (file
, "\t! registers ever_live: ");
1549 for (r
= 0; r
< 32; r
++)
1551 if (df_regs_ever_live_p (r
))
1552 fprintf (file
, "%s, ", reg_names
[r
]);
1556 /* Display the attributes of this function. */
1557 fprintf (file
, "\t! function attributes: ");
1558 /* Get the attributes tree list.
1559 Note that GCC builds attributes list with reverse order. */
1560 attrs
= DECL_ATTRIBUTES (current_function_decl
);
1562 /* If there is no any attribute, print out "None". */
1564 fprintf (file
, "None");
1566 /* If there are some attributes, try if we need to
1567 construct isr vector information. */
1568 func_name
= IDENTIFIER_POINTER (DECL_NAME (current_function_decl
));
1569 nds32_construct_isr_vectors_information (attrs
, func_name
);
1571 /* Display all attributes of this function. */
1574 name
= TREE_PURPOSE (attrs
);
1575 fprintf (file
, "%s ", IDENTIFIER_POINTER (name
));
1577 /* Pick up the next attribute. */
1578 attrs
= TREE_CHAIN (attrs
);
1583 /* After rtl prologue has been expanded, this function is used. */
1585 nds32_asm_function_end_prologue (FILE *file
)
1587 fprintf (file
, "\t! END PROLOGUE\n");
1589 /* If frame pointer is NOT needed and -mfp-as-gp is issued,
1590 we can generate special directive: ".omit_fp_begin"
1591 to guide linker doing fp-as-gp optimization.
1592 However, for a naked function, which means
1593 it should not have prologue/epilogue,
1594 using fp-as-gp still requires saving $fp by push/pop behavior and
1595 there is no benefit to use fp-as-gp on such small function.
1596 So we need to make sure this function is NOT naked as well. */
1597 if (!frame_pointer_needed
1598 && !cfun
->machine
->naked_p
1599 && cfun
->machine
->fp_as_gp_p
)
1601 fprintf (file
, "\t! ----------------------------------------\n");
1602 fprintf (file
, "\t! Guide linker to do "
1603 "link time optimization: fp-as-gp\n");
1604 fprintf (file
, "\t! We add one more instruction to "
1605 "initialize $fp near to $gp location.\n");
1606 fprintf (file
, "\t! If linker fails to use fp-as-gp transformation,\n");
1607 fprintf (file
, "\t! this extra instruction should be "
1608 "eliminated at link stage.\n");
1609 fprintf (file
, "\t.omit_fp_begin\n");
1610 fprintf (file
, "\tla\t$fp,_FP_BASE_\n");
1611 fprintf (file
, "\t! ----------------------------------------\n");
1615 /* Before rtl epilogue has been expanded, this function is used. */
1617 nds32_asm_function_begin_epilogue (FILE *file
)
1619 /* If frame pointer is NOT needed and -mfp-as-gp is issued,
1620 we can generate special directive: ".omit_fp_end"
1621 to claim fp-as-gp optimization range.
1622 However, for a naked function,
1623 which means it should not have prologue/epilogue,
1624 using fp-as-gp still requires saving $fp by push/pop behavior and
1625 there is no benefit to use fp-as-gp on such small function.
1626 So we need to make sure this function is NOT naked as well. */
1627 if (!frame_pointer_needed
1628 && !cfun
->machine
->naked_p
1629 && cfun
->machine
->fp_as_gp_p
)
1631 fprintf (file
, "\t! ----------------------------------------\n");
1632 fprintf (file
, "\t! Claim the range of fp-as-gp "
1633 "link time optimization\n");
1634 fprintf (file
, "\t.omit_fp_end\n");
1635 fprintf (file
, "\t! ----------------------------------------\n");
1638 fprintf (file
, "\t! BEGIN EPILOGUE\n");
1641 /* The content produced from this function
1642 will be placed after epilogue body. */
1644 nds32_asm_function_epilogue (FILE *file
,
1645 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
1647 fprintf (file
, "\t! END EPILOGUE\n");
1651 nds32_asm_output_mi_thunk (FILE *file
, tree thunk ATTRIBUTE_UNUSED
,
1652 HOST_WIDE_INT delta
,
1653 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED
,
1658 /* Make sure unwind info is emitted for the thunk if needed. */
1659 final_start_function (emit_barrier (), file
, 1);
1661 this_regno
= (aggregate_value_p (TREE_TYPE (TREE_TYPE (function
)), function
)
1667 if (satisfies_constraint_Is15 (GEN_INT (delta
)))
1669 fprintf (file
, "\taddi\t$r%d, $r%d, %ld\n",
1670 this_regno
, this_regno
, delta
);
1672 else if (satisfies_constraint_Is20 (GEN_INT (delta
)))
1674 fprintf (file
, "\tmovi\t$ta, %ld\n", delta
);
1675 fprintf (file
, "\tadd\t$r%d, $r%d, $ta\n", this_regno
, this_regno
);
1679 fprintf (file
, "\tsethi\t$ta, hi20(%ld)\n", delta
);
1680 fprintf (file
, "\tori\t$ta, $ta, lo12(%ld)\n", delta
);
1681 fprintf (file
, "\tadd\t$r%d, $r%d, $ta\n", this_regno
, this_regno
);
1685 fprintf (file
, "\tb\t");
1686 assemble_name (file
, XSTR (XEXP (DECL_RTL (function
), 0), 0));
1687 fprintf (file
, "\n");
1689 final_end_function ();
1692 /* -- Permitting tail calls. */
1694 /* Determine whether we need to enable warning for function return check. */
1696 nds32_warn_func_return (tree decl
)
1698 /* Naked functions are implemented entirely in assembly, including the
1699 return sequence, so suppress warnings about this. */
1700 return !nds32_naked_function_p (decl
);
1704 /* Implementing the Varargs Macros. */
1707 nds32_setup_incoming_varargs (cumulative_args_t ca
,
1710 int *pretend_args_size
,
1711 int second_time ATTRIBUTE_UNUSED
)
1713 unsigned int total_args_regs
;
1714 unsigned int num_of_used_regs
;
1715 unsigned int remaining_reg_count
;
1716 CUMULATIVE_ARGS
*cum
;
1718 /* If we are under hard float abi, we do not need to set *pretend_args_size.
1719 So that all nameless arguments are pushed by caller and all situation
1720 can be handled by GCC itself. */
1721 if (TARGET_HARD_FLOAT
)
1724 /* We are using NDS32_MAX_GPR_REGS_FOR_ARGS registers,
1725 counting from NDS32_GPR_ARG_FIRST_REGNUM, for saving incoming arguments.
1726 However, for nameless(anonymous) arguments, we should push them on the
1727 stack so that all the nameless arguments appear to have been passed
1728 consecutively in the memory for accessing. Hence, we need to check and
1729 exclude the registers that are used for named arguments. */
1731 cum
= get_cumulative_args (ca
);
1733 /* The MODE and TYPE describe the last argument.
1734 We need those information to determine the remaining registers
1737 = NDS32_MAX_GPR_REGS_FOR_ARGS
+ NDS32_GPR_ARG_FIRST_REGNUM
;
1739 = NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum
->gpr_offset
, mode
, type
)
1740 + NDS32_NEED_N_REGS_FOR_ARG (mode
, type
);
1742 remaining_reg_count
= total_args_regs
- num_of_used_regs
;
1743 *pretend_args_size
= remaining_reg_count
* UNITS_PER_WORD
;
1749 nds32_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED
)
1751 /* If this hook returns true, the named argument of FUNCTION_ARG is always
1752 true for named arguments, and false for unnamed arguments. */
1757 /* Trampolines for Nested Functions. */
1760 nds32_asm_trampoline_template (FILE *f
)
1762 if (TARGET_REDUCED_REGS
)
1764 /* Trampoline is not supported on reduced-set registers yet. */
1765 sorry ("a nested function is not supported for reduced registers");
1769 asm_fprintf (f
, "\t! Trampoline code template\n");
1770 asm_fprintf (f
, "\t! This code fragment will be copied "
1771 "into stack on demand\n");
1773 asm_fprintf (f
, "\tmfusr\t$r16,$pc\n");
1774 asm_fprintf (f
, "\tlwi\t$r15,[$r16 + 20] "
1775 "! load nested function address\n");
1776 asm_fprintf (f
, "\tlwi\t$r16,[$r16 + 16] "
1777 "! load chain_value\n");
1778 asm_fprintf (f
, "\tjr\t$r15\n");
1781 /* Preserve space ($pc + 16) for saving chain_value,
1782 nds32_trampoline_init will fill the value in this slot. */
1783 asm_fprintf (f
, "\t! space for saving chain_value\n");
1784 assemble_aligned_integer (UNITS_PER_WORD
, const0_rtx
);
1786 /* Preserve space ($pc + 20) for saving nested function address,
1787 nds32_trampoline_init will fill the value in this slot. */
1788 asm_fprintf (f
, "\t! space for saving nested function address\n");
1789 assemble_aligned_integer (UNITS_PER_WORD
, const0_rtx
);
1792 /* Emit RTL insns to initialize the variable parts of a trampoline. */
1794 nds32_trampoline_init (rtx m_tramp
, tree fndecl
, rtx chain_value
)
1798 /* Nested function address. */
1800 /* The memory rtx that is going to
1801 be filled with chain_value. */
1802 rtx chain_value_mem
;
1803 /* The memory rtx that is going to
1804 be filled with nested function address. */
1805 rtx nested_func_mem
;
1807 /* Start address of trampoline code in stack, for doing cache sync. */
1808 rtx sync_cache_addr
;
1809 /* Temporary register for sync instruction. */
1811 /* Instruction-cache sync instruction,
1812 requesting an argument as starting address. */
1814 /* For convenience reason of doing comparison. */
1815 int tramp_align_in_bytes
;
1817 /* Trampoline is not supported on reduced-set registers yet. */
1818 if (TARGET_REDUCED_REGS
)
1819 sorry ("a nested function is not supported for reduced registers");
1821 /* STEP 1: Copy trampoline code template into stack,
1822 fill up essential data into stack. */
1824 /* Extract nested function address rtx. */
1825 fnaddr
= XEXP (DECL_RTL (fndecl
), 0);
1827 /* m_tramp is memory rtx that is going to be filled with trampoline code.
1828 We have nds32_asm_trampoline_template() to emit template pattern. */
1829 emit_block_move (m_tramp
, assemble_trampoline_template (),
1830 GEN_INT (TRAMPOLINE_SIZE
), BLOCK_OP_NORMAL
);
1832 /* After copying trampoline code into stack,
1833 fill chain_value into stack. */
1834 chain_value_mem
= adjust_address (m_tramp
, SImode
, 16);
1835 emit_move_insn (chain_value_mem
, chain_value
);
1836 /* After copying trampoline code int stack,
1837 fill nested function address into stack. */
1838 nested_func_mem
= adjust_address (m_tramp
, SImode
, 20);
1839 emit_move_insn (nested_func_mem
, fnaddr
);
1841 /* STEP 2: Sync instruction-cache. */
1843 /* We have successfully filled trampoline code into stack.
1844 However, in order to execute code in stack correctly,
1845 we must sync instruction cache. */
1846 sync_cache_addr
= XEXP (m_tramp
, 0);
1847 tmp_reg
= gen_reg_rtx (SImode
);
1848 isync_insn
= gen_unspec_volatile_isync (tmp_reg
);
1850 /* Because nds32_cache_block_size is in bytes,
1851 we get trampoline alignment in bytes for convenient comparison. */
1852 tramp_align_in_bytes
= TRAMPOLINE_ALIGNMENT
/ BITS_PER_UNIT
;
1854 if (tramp_align_in_bytes
>= nds32_cache_block_size
1855 && (tramp_align_in_bytes
% nds32_cache_block_size
) == 0)
1857 /* Under this condition, the starting address of trampoline
1858 must be aligned to the starting address of each cache block
1859 and we do not have to worry about cross-boundary issue. */
1861 i
< (TRAMPOLINE_SIZE
+ nds32_cache_block_size
- 1)
1862 / nds32_cache_block_size
;
1865 emit_move_insn (tmp_reg
,
1866 plus_constant (Pmode
, sync_cache_addr
,
1867 nds32_cache_block_size
* i
));
1868 emit_insn (isync_insn
);
1871 else if (TRAMPOLINE_SIZE
> nds32_cache_block_size
)
1873 /* The starting address of trampoline code
1874 may not be aligned to the cache block,
1875 so the trampoline code may be across two cache block.
1876 We need to sync the last element, which is 4-byte size,
1877 of trampoline template. */
1879 i
< (TRAMPOLINE_SIZE
+ nds32_cache_block_size
- 1)
1880 / nds32_cache_block_size
;
1883 emit_move_insn (tmp_reg
,
1884 plus_constant (Pmode
, sync_cache_addr
,
1885 nds32_cache_block_size
* i
));
1886 emit_insn (isync_insn
);
1889 /* The last element of trampoline template is 4-byte size. */
1890 emit_move_insn (tmp_reg
,
1891 plus_constant (Pmode
, sync_cache_addr
,
1892 TRAMPOLINE_SIZE
- 4));
1893 emit_insn (isync_insn
);
1897 /* This is the simplest case.
1898 Because TRAMPOLINE_SIZE is less than or
1899 equal to nds32_cache_block_size,
1900 we can just sync start address and
1901 the last element of trampoline code. */
1903 /* Sync starting address of tampoline code. */
1904 emit_move_insn (tmp_reg
, sync_cache_addr
);
1905 emit_insn (isync_insn
);
1906 /* Sync the last element, which is 4-byte size,
1907 of trampoline template. */
1908 emit_move_insn (tmp_reg
,
1909 plus_constant (Pmode
, sync_cache_addr
,
1910 TRAMPOLINE_SIZE
- 4));
1911 emit_insn (isync_insn
);
1914 /* Set instruction serialization barrier
1915 to guarantee the correct operations. */
1916 emit_insn (gen_unspec_volatile_isb ());
1920 /* Addressing Modes. */
1923 nds32_legitimate_address_p (machine_mode mode
, rtx x
, bool strict
)
1925 /* For (mem:DI addr) or (mem:DF addr) case,
1926 we only allow 'addr' to be [reg], [symbol_ref],
1927 [const], or [reg + const_int] pattern. */
1928 if (mode
== DImode
|| mode
== DFmode
)
1930 /* Allow [Reg + const_int] addressing mode. */
1931 if (GET_CODE (x
) == PLUS
)
1933 if (nds32_address_register_rtx_p (XEXP (x
, 0), strict
)
1934 && nds32_legitimate_index_p (mode
, XEXP (x
, 1), strict
)
1935 && CONST_INT_P (XEXP (x
, 1)))
1938 else if (nds32_address_register_rtx_p (XEXP (x
, 1), strict
)
1939 && nds32_legitimate_index_p (mode
, XEXP (x
, 0), strict
)
1940 && CONST_INT_P (XEXP (x
, 0)))
1944 /* Now check [reg], [symbol_ref], and [const]. */
1945 if (GET_CODE (x
) != REG
1946 && GET_CODE (x
) != SYMBOL_REF
1947 && GET_CODE (x
) != CONST
)
1951 /* Check if 'x' is a valid address. */
1952 switch (GET_CODE (x
))
1955 /* (mem (reg A)) => [Ra] */
1956 return nds32_address_register_rtx_p (x
, strict
);
1960 if (!TARGET_GP_DIRECT
1961 && (reload_completed
1962 || reload_in_progress
1963 || lra_in_progress
))
1966 /* (mem (symbol_ref A)) => [symbol_ref] */
1967 return !currently_expanding_to_rtl
;
1971 if (!TARGET_GP_DIRECT
1972 && (reload_completed
1973 || reload_in_progress
1974 || lra_in_progress
))
1977 /* (mem (const (...)))
1978 => [ + const_addr ], where const_addr = symbol_ref + const_int */
1979 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
1981 rtx plus_op
= XEXP (x
, 0);
1983 rtx op0
= XEXP (plus_op
, 0);
1984 rtx op1
= XEXP (plus_op
, 1);
1986 if (GET_CODE (op0
) == SYMBOL_REF
&& CONST_INT_P (op1
))
1995 /* (mem (post_modify (reg) (plus (reg) (reg))))
1997 /* (mem (post_modify (reg) (plus (reg) (const_int))))
1998 => [Ra], const_int */
1999 if (GET_CODE (XEXP (x
, 0)) == REG
2000 && GET_CODE (XEXP (x
, 1)) == PLUS
)
2002 rtx plus_op
= XEXP (x
, 1);
2004 rtx op0
= XEXP (plus_op
, 0);
2005 rtx op1
= XEXP (plus_op
, 1);
2007 if (nds32_address_register_rtx_p (op0
, strict
)
2008 && nds32_legitimate_index_p (mode
, op1
, strict
))
2018 /* (mem (post_inc reg)) => [Ra], 1/2/4 */
2019 /* (mem (post_dec reg)) => [Ra], -1/-2/-4 */
2020 /* The 1/2/4 or -1/-2/-4 have been displayed in nds32.md.
2021 We only need to deal with register Ra. */
2022 if (nds32_address_register_rtx_p (XEXP (x
, 0), strict
))
2028 /* (mem (plus reg const_int))
2030 /* (mem (plus reg reg))
2032 /* (mem (plus (mult reg const_int) reg))
2033 => [Ra + Rb << sv] */
2034 if (nds32_address_register_rtx_p (XEXP (x
, 0), strict
)
2035 && nds32_legitimate_index_p (mode
, XEXP (x
, 1), strict
))
2037 else if (nds32_address_register_rtx_p (XEXP (x
, 1), strict
)
2038 && nds32_legitimate_index_p (mode
, XEXP (x
, 0), strict
))
2044 /* (mem (lo_sum (reg) (symbol_ref))) */
2045 /* (mem (lo_sum (reg) (const))) */
2046 gcc_assert (REG_P (XEXP (x
, 0)));
2047 if (GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
2048 || GET_CODE (XEXP (x
, 1)) == CONST
)
2049 return nds32_legitimate_address_p (mode
, XEXP (x
, 1), strict
);
2059 /* Describing Relative Costs of Operations. */
2062 nds32_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED
,
2066 if (from
== HIGH_REGS
|| to
== HIGH_REGS
)
2073 nds32_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED
,
2074 reg_class_t rclass ATTRIBUTE_UNUSED
,
2075 bool in ATTRIBUTE_UNUSED
)
2080 /* This target hook describes the relative costs of RTL expressions.
2081 Return 'true' when all subexpressions of x have been processed.
2082 Return 'false' to sum the costs of sub-rtx, plus cost of this operation.
2083 Refer to gcc/rtlanal.c for more information. */
2085 nds32_rtx_costs (rtx x
,
2092 return nds32_rtx_costs_impl (x
, code
, outer_code
, opno
, total
, speed
);
2096 nds32_address_cost (rtx address
,
2101 return nds32_address_cost_impl (address
, mode
, as
, speed
);
2105 /* Defining the Output Assembler Language. */
2107 /* -- The Overall Framework of an Assembler File. */
2110 nds32_asm_file_start (void)
2112 default_file_start ();
2114 /* Tell assembler which ABI we are using. */
2115 fprintf (asm_out_file
, "\t! ABI version\n");
2116 fprintf (asm_out_file
, "\t.abi_2\n");
2118 /* Tell assembler that this asm code is generated by compiler. */
2119 fprintf (asm_out_file
, "\t! This asm file is generated by compiler\n");
2120 fprintf (asm_out_file
, "\t.flag\tverbatim\n");
2121 /* Give assembler the size of each vector for interrupt handler. */
2122 fprintf (asm_out_file
, "\t! This vector size directive is required "
2123 "for checking inconsistency on interrupt handler\n");
2124 fprintf (asm_out_file
, "\t.vec_size\t%d\n", nds32_isr_vector_size
);
2126 /* If user enables '-mforce-fp-as-gp' or compiles programs with -Os,
2127 the compiler may produce 'la $fp,_FP_BASE_' instruction
2128 at prologue for fp-as-gp optimization.
2129 We should emit weak reference of _FP_BASE_ to avoid undefined reference
2130 in case user does not pass '--relax' option to linker. */
2131 if (TARGET_FORCE_FP_AS_GP
|| optimize_size
)
2133 fprintf (asm_out_file
, "\t! This weak reference is required to do "
2134 "fp-as-gp link time optimization\n");
2135 fprintf (asm_out_file
, "\t.weak\t_FP_BASE_\n");
2137 /* If user enables '-mex9', we should emit relaxation directive
2138 to tell linker that this file is allowed to do ex9 optimization. */
2141 fprintf (asm_out_file
, "\t! This relaxation directive is required "
2142 "to do ex9 link time optimization\n");
2143 fprintf (asm_out_file
, "\t.relax\tex9\n");
2146 fprintf (asm_out_file
, "\t! ------------------------------------\n");
2149 fprintf (asm_out_file
, "\t! ISA family\t\t: %s\n", "V2");
2151 fprintf (asm_out_file
, "\t! ISA family\t\t: %s\n", "V3");
2153 fprintf (asm_out_file
, "\t! ISA family\t\t: %s\n", "V3M");
2155 fprintf (asm_out_file
, "\t! Endian setting\t: %s\n",
2156 ((TARGET_BIG_ENDIAN
) ? "big-endian"
2157 : "little-endian"));
2159 fprintf (asm_out_file
, "\t! ------------------------------------\n");
2161 fprintf (asm_out_file
, "\t! Use conditional move\t\t: %s\n",
2162 ((TARGET_CMOV
) ? "Yes"
2164 fprintf (asm_out_file
, "\t! Use performance extension\t: %s\n",
2165 ((TARGET_PERF_EXT
) ? "Yes"
2168 fprintf (asm_out_file
, "\t! ------------------------------------\n");
2170 fprintf (asm_out_file
, "\t! V3PUSH instructions\t: %s\n",
2171 ((TARGET_V3PUSH
) ? "Yes"
2173 fprintf (asm_out_file
, "\t! 16-bit instructions\t: %s\n",
2174 ((TARGET_16_BIT
) ? "Yes"
2176 fprintf (asm_out_file
, "\t! GP base access\t: %s\n",
2177 ((TARGET_GP_DIRECT
) ? "Yes"
2179 fprintf (asm_out_file
, "\t! Reduced registers set\t: %s\n",
2180 ((TARGET_REDUCED_REGS
) ? "Yes"
2183 fprintf (asm_out_file
, "\t! ------------------------------------\n");
2186 fprintf (asm_out_file
, "\t! Optimization level\t: -Os\n");
2188 fprintf (asm_out_file
, "\t! Optimization level\t: -O%d\n", optimize
);
2190 fprintf (asm_out_file
, "\t! ------------------------------------\n");
2192 fprintf (asm_out_file
, "\t! Cache block size\t: %d\n",
2193 nds32_cache_block_size
);
2195 fprintf (asm_out_file
, "\t! ------------------------------------\n");
2197 nds32_asm_file_start_for_isr ();
2201 nds32_asm_file_end (void)
2203 nds32_asm_file_end_for_isr ();
2205 fprintf (asm_out_file
, "\t! ------------------------------------\n");
2208 /* -- Output and Generation of Labels. */
2211 nds32_asm_globalize_label (FILE *stream
, const char *name
)
2213 fputs ("\t.global\t", stream
);
2214 assemble_name (stream
, name
);
2215 fputs ("\n", stream
);
2218 /* -- Output of Assembler Instructions. */
2221 nds32_print_operand (FILE *stream
, rtx x
, int code
)
2228 /* Do nothing special. */
2232 /* 'x' is supposed to be CONST_INT, get the value. */
2233 gcc_assert (CONST_INT_P (x
));
2234 op_value
= INTVAL (x
);
2236 /* According to the Andes architecture,
2237 the system/user register index range is 0 ~ 1023.
2238 In order to avoid conflict between user-specified-integer value
2239 and enum-specified-register value,
2240 the 'enum nds32_intrinsic_registers' value
2241 in nds32_intrinsic.h starts from 1024. */
2242 if (op_value
< 1024 && op_value
>= 0)
2244 /* If user gives integer value directly (0~1023),
2245 we just print out the value. */
2246 fprintf (stream
, "%d", op_value
);
2248 else if (op_value
< 0
2249 || op_value
>= ((int) ARRAY_SIZE (nds32_intrinsic_register_names
)
2252 /* The enum index value for array size is out of range. */
2253 error ("intrinsic register index is out of range");
2257 /* If user applies normal way with __NDS32_REG_XXX__ enum data,
2258 we can print out register name. Remember to substract 1024. */
2259 fprintf (stream
, "%s",
2260 nds32_intrinsic_register_names
[op_value
- 1024]);
2263 /* No need to handle following process, so return immediately. */
2268 output_operand_lossage ("invalid operand output code");
2272 switch (GET_CODE (x
))
2276 output_addr_const (stream
, x
);
2280 /* Forbid using static chain register ($r16)
2281 on reduced-set registers configuration. */
2282 if (TARGET_REDUCED_REGS
2283 && REGNO (x
) == STATIC_CHAIN_REGNUM
)
2284 sorry ("a nested function is not supported for reduced registers");
2286 /* Normal cases, print out register name. */
2287 fputs (reg_names
[REGNO (x
)], stream
);
2291 output_address (XEXP (x
, 0));
2297 output_addr_const (stream
, x
);
2301 /* Generally, output_addr_const () is able to handle most cases.
2302 We want to see what CODE could appear,
2303 so we use gcc_unreachable() to stop it. */
2311 nds32_print_operand_address (FILE *stream
, rtx x
)
2315 switch (GET_CODE (x
))
2319 /* [ + symbol_ref] */
2320 /* [ + const_addr], where const_addr = symbol_ref + const_int */
2321 fputs ("[ + ", stream
);
2322 output_addr_const (stream
, x
);
2323 fputs ("]", stream
);
2327 /* Forbid using static chain register ($r16)
2328 on reduced-set registers configuration. */
2329 if (TARGET_REDUCED_REGS
2330 && REGNO (x
) == STATIC_CHAIN_REGNUM
)
2331 sorry ("a nested function is not supported for reduced registers");
2334 fprintf (stream
, "[%s]", reg_names
[REGNO (x
)]);
2341 /* Checking op0, forbid using static chain register ($r16)
2342 on reduced-set registers configuration. */
2343 if (TARGET_REDUCED_REGS
2345 && REGNO (op0
) == STATIC_CHAIN_REGNUM
)
2346 sorry ("a nested function is not supported for reduced registers");
2347 /* Checking op1, forbid using static chain register ($r16)
2348 on reduced-set registers configuration. */
2349 if (TARGET_REDUCED_REGS
2351 && REGNO (op1
) == STATIC_CHAIN_REGNUM
)
2352 sorry ("a nested function is not supported for reduced registers");
2354 if (REG_P (op0
) && CONST_INT_P (op1
))
2357 fprintf (stream
, "[%s + (%d)]",
2358 reg_names
[REGNO (op0
)], (int)INTVAL (op1
));
2360 else if (REG_P (op0
) && REG_P (op1
))
2363 fprintf (stream
, "[%s + %s]",
2364 reg_names
[REGNO (op0
)], reg_names
[REGNO (op1
)]);
2366 else if (GET_CODE (op0
) == MULT
&& REG_P (op1
))
2369 From observation, the pattern looks like:
2370 (plus:SI (mult:SI (reg:SI 58)
2371 (const_int 4 [0x4]))
2375 /* We need to set sv to output shift value. */
2376 if (INTVAL (XEXP (op0
, 1)) == 1)
2378 else if (INTVAL (XEXP (op0
, 1)) == 2)
2380 else if (INTVAL (XEXP (op0
, 1)) == 4)
2385 fprintf (stream
, "[%s + %s << %d]",
2386 reg_names
[REGNO (op1
)],
2387 reg_names
[REGNO (XEXP (op0
, 0))],
2392 /* The control flow is not supposed to be here. */
2400 /* (post_modify (regA) (plus (regA) (regB)))
2401 (post_modify (regA) (plus (regA) (const_int)))
2402 We would like to extract
2403 regA and regB (or const_int) from plus rtx. */
2404 op0
= XEXP (XEXP (x
, 1), 0);
2405 op1
= XEXP (XEXP (x
, 1), 1);
2407 /* Checking op0, forbid using static chain register ($r16)
2408 on reduced-set registers configuration. */
2409 if (TARGET_REDUCED_REGS
2411 && REGNO (op0
) == STATIC_CHAIN_REGNUM
)
2412 sorry ("a nested function is not supported for reduced registers");
2413 /* Checking op1, forbid using static chain register ($r16)
2414 on reduced-set registers configuration. */
2415 if (TARGET_REDUCED_REGS
2417 && REGNO (op1
) == STATIC_CHAIN_REGNUM
)
2418 sorry ("a nested function is not supported for reduced registers");
2420 if (REG_P (op0
) && REG_P (op1
))
2423 fprintf (stream
, "[%s], %s",
2424 reg_names
[REGNO (op0
)], reg_names
[REGNO (op1
)]);
2426 else if (REG_P (op0
) && CONST_INT_P (op1
))
2429 fprintf (stream
, "[%s], %d",
2430 reg_names
[REGNO (op0
)], (int)INTVAL (op1
));
2434 /* The control flow is not supposed to be here. */
2445 /* Checking op0, forbid using static chain register ($r16)
2446 on reduced-set registers configuration. */
2447 if (TARGET_REDUCED_REGS
2449 && REGNO (op0
) == STATIC_CHAIN_REGNUM
)
2450 sorry ("a nested function is not supported for reduced registers");
2454 /* "[Ra], 1/2/4" or "[Ra], -1/-2/-4"
2455 The 1/2/4 or -1/-2/-4 have been displayed in nds32.md.
2456 We only need to deal with register Ra. */
2457 fprintf (stream
, "[%s]", reg_names
[REGNO (op0
)]);
2461 /* The control flow is not supposed to be here. */
2469 /* Generally, output_addr_const () is able to handle most cases.
2470 We want to see what CODE could appear,
2471 so we use gcc_unreachable() to stop it. */
2479 /* Defining target-specific uses of __attribute__. */
2481 /* Add some checking after merging attributes. */
2483 nds32_merge_decl_attributes (tree olddecl
, tree newdecl
)
2485 tree combined_attrs
;
2487 /* Create combined attributes. */
2488 combined_attrs
= merge_attributes (DECL_ATTRIBUTES (olddecl
),
2489 DECL_ATTRIBUTES (newdecl
));
2491 /* Since newdecl is acutally a duplicate of olddecl,
2492 we can take olddecl for some operations. */
2493 if (TREE_CODE (olddecl
) == FUNCTION_DECL
)
2495 /* Check isr-specific attributes conflict. */
2496 nds32_check_isr_attrs_conflict (olddecl
, combined_attrs
);
2499 return combined_attrs
;
2502 /* Add some checking when inserting attributes. */
2504 nds32_insert_attributes (tree decl
, tree
*attributes
)
2506 /* For function declaration, we need to check isr-specific attributes:
2507 1. Call nds32_check_isr_attrs_conflict() to check any conflict.
2508 2. Check valid integer value for interrupt/exception.
2509 3. Check valid integer value for reset.
2510 4. Check valid function for nmi/warm. */
2511 if (TREE_CODE (decl
) == FUNCTION_DECL
)
2514 tree intr
, excp
, reset
;
2516 /* Pick up function attributes. */
2517 func_attrs
= *attributes
;
2519 /* 1. Call nds32_check_isr_attrs_conflict() to check any conflict. */
2520 nds32_check_isr_attrs_conflict (decl
, func_attrs
);
2522 /* Now we are starting to check valid id value
2523 for interrupt/exception/reset.
2524 Note that we ONLY check its validity here.
2525 To construct isr vector information, it is still performed
2526 by nds32_construct_isr_vectors_information(). */
2527 intr
= lookup_attribute ("interrupt", func_attrs
);
2528 excp
= lookup_attribute ("exception", func_attrs
);
2529 reset
= lookup_attribute ("reset", func_attrs
);
2533 /* Deal with interrupt/exception. */
2535 unsigned int lower_bound
, upper_bound
;
2537 /* The way to handle interrupt or exception is the same,
2538 we just need to take care of actual vector number.
2539 For interrupt(0..63), the actual vector number is (9..72).
2540 For exception(1..8), the actual vector number is (1..8). */
2541 lower_bound
= (intr
) ? (0) : (1);
2542 upper_bound
= (intr
) ? (63) : (8);
2544 /* Prepare id list so that we can traverse id value. */
2545 id_list
= (intr
) ? (TREE_VALUE (intr
)) : (TREE_VALUE (excp
));
2547 /* 2. Check valid integer value for interrupt/exception. */
2552 /* Pick up each vector id value. */
2553 id
= TREE_VALUE (id_list
);
2554 /* Issue error if it is not a valid integer value. */
2555 if (TREE_CODE (id
) != INTEGER_CST
2556 || wi::ltu_p (id
, lower_bound
)
2557 || wi::gtu_p (id
, upper_bound
))
2558 error ("invalid id value for interrupt/exception attribute");
2560 /* Advance to next id. */
2561 id_list
= TREE_CHAIN (id_list
);
2566 /* Deal with reset. */
2570 unsigned int lower_bound
;
2571 unsigned int upper_bound
;
2573 /* Prepare id_list and identify id value so that
2574 we can check if total number of vectors is valid. */
2575 id_list
= TREE_VALUE (reset
);
2576 id
= TREE_VALUE (id_list
);
2578 /* The maximum numbers for user's interrupt is 64. */
2582 /* 3. Check valid integer value for reset. */
2583 if (TREE_CODE (id
) != INTEGER_CST
2584 || wi::ltu_p (id
, lower_bound
)
2585 || wi::gtu_p (id
, upper_bound
))
2586 error ("invalid id value for reset attribute");
2588 /* 4. Check valid function for nmi/warm. */
2589 nmi
= lookup_attribute ("nmi", func_attrs
);
2590 warm
= lookup_attribute ("warm", func_attrs
);
2592 if (nmi
!= NULL_TREE
)
2597 nmi_func_list
= TREE_VALUE (nmi
);
2598 nmi_func
= TREE_VALUE (nmi_func_list
);
2600 /* Issue error if it is not a valid nmi function. */
2601 if (TREE_CODE (nmi_func
) != IDENTIFIER_NODE
)
2602 error ("invalid nmi function for reset attribute");
2605 if (warm
!= NULL_TREE
)
2607 tree warm_func_list
;
2610 warm_func_list
= TREE_VALUE (warm
);
2611 warm_func
= TREE_VALUE (warm_func_list
);
2613 /* Issue error if it is not a valid warm function. */
2614 if (TREE_CODE (warm_func
) != IDENTIFIER_NODE
)
2615 error ("invalid warm function for reset attribute");
2620 /* No interrupt, exception, or reset attribute is set. */
2627 nds32_option_pragma_parse (tree args ATTRIBUTE_UNUSED
,
2628 tree pop_target ATTRIBUTE_UNUSED
)
2630 /* Currently, we do not parse any pragma target by ourself,
2631 so just simply return false. */
2636 nds32_option_override (void)
2638 /* After all the command options have been parsed,
2639 we shall deal with some flags for changing compiler settings. */
2641 /* At first, we check if we have to strictly
2642 set some flags based on ISA family. */
2645 /* Under V2 ISA, we need to strictly disable TARGET_V3PUSH. */
2646 target_flags
&= ~MASK_V3PUSH
;
2650 /* Under V3 ISA, currently nothing should be strictly set. */
2654 /* Under V3M ISA, we need to strictly enable TARGET_REDUCED_REGS. */
2655 target_flags
|= MASK_REDUCED_REGS
;
2656 /* Under V3M ISA, we need to strictly disable TARGET_PERF_EXT. */
2657 target_flags
&= ~MASK_PERF_EXT
;
2660 /* See if we are using reduced-set registers:
2661 $r0~$r5, $r6~$r10, $r15, $r28, $r29, $r30, $r31
2662 If so, we must forbid using $r11~$r14, $r16~$r27. */
2663 if (TARGET_REDUCED_REGS
)
2667 /* Prevent register allocator from
2668 choosing it as doing register allocation. */
2669 for (r
= 11; r
<= 14; r
++)
2670 fixed_regs
[r
] = call_used_regs
[r
] = 1;
2671 for (r
= 16; r
<= 27; r
++)
2672 fixed_regs
[r
] = call_used_regs
[r
] = 1;
2675 /* See if user explicitly would like to use fp-as-gp optimization.
2676 If so, we must prevent $fp from being allocated
2677 during register allocation. */
2678 if (TARGET_FORCE_FP_AS_GP
)
2679 fixed_regs
[FP_REGNUM
] = call_used_regs
[FP_REGNUM
] = 1;
2683 /* Under no 16 bit ISA, we need to strictly disable TARGET_V3PUSH. */
2684 target_flags
&= ~MASK_V3PUSH
;
2687 /* Currently, we don't support PIC code generation yet. */
2689 sorry ("not support -fpic");
2693 /* Miscellaneous Parameters. */
2696 nds32_init_builtins (void)
2698 nds32_init_builtins_impl ();
2702 nds32_expand_builtin (tree exp
,
2708 return nds32_expand_builtin_impl (exp
, target
, subtarget
, mode
, ignore
);
2712 /* ------------------------------------------------------------------------ */
2714 /* PART 4: Implemet extern function definitions,
2715 the prototype is in nds32-protos.h. */
2717 /* Defining Data Structures for Per-function Information. */
2720 nds32_init_expanders (void)
2722 /* Arrange to initialize and mark the machine per-function status. */
2723 init_machine_status
= nds32_init_machine_status
;
2727 /* Register Usage. */
2729 /* -- How Values Fit in Registers. */
2732 nds32_hard_regno_nregs (int regno ATTRIBUTE_UNUSED
,
2735 return ((GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
);
2739 nds32_hard_regno_mode_ok (int regno
, machine_mode mode
)
2741 /* Restrict double-word quantities to even register pairs. */
2742 if (HARD_REGNO_NREGS (regno
, mode
) == 1
2750 /* Register Classes. */
2753 nds32_regno_reg_class (int regno
)
2755 /* Refer to nds32.h for more register class details. */
2757 if (regno
>= 0 && regno
<= 7)
2759 else if (regno
>= 8 && regno
<= 11)
2761 else if (regno
>= 12 && regno
<= 14)
2763 else if (regno
== 15)
2765 else if (regno
>= 16 && regno
<= 19)
2767 else if (regno
>= 20 && regno
<= 31)
2769 else if (regno
== 32 || regno
== 33)
2776 /* Stack Layout and Calling Conventions. */
2778 /* -- Basic Stack Layout. */
2781 nds32_return_addr_rtx (int count
,
2782 rtx frameaddr ATTRIBUTE_UNUSED
)
2784 /* There is no way to determine the return address
2785 if frameaddr is the frame that has 'count' steps
2786 up from current frame. */
2790 /* If count == 0, it means we are at current frame,
2791 the return address is $r30 ($lp). */
2792 return get_hard_reg_initial_val (Pmode
, LP_REGNUM
);
2795 /* -- Eliminating Frame Pointer and Arg Pointer. */
2798 nds32_initial_elimination_offset (unsigned int from_reg
, unsigned int to_reg
)
2800 HOST_WIDE_INT offset
;
2802 /* Compute and setup stack frame size.
2803 The result will be in cfun->machine. */
2804 nds32_compute_stack_frame ();
2806 /* Remember to consider
2807 cfun->machine->callee_saved_area_padding_bytes
2808 when calculating offset. */
2809 if (from_reg
== ARG_POINTER_REGNUM
&& to_reg
== STACK_POINTER_REGNUM
)
2811 offset
= (cfun
->machine
->fp_size
2812 + cfun
->machine
->gp_size
2813 + cfun
->machine
->lp_size
2814 + cfun
->machine
->callee_saved_regs_size
2815 + cfun
->machine
->callee_saved_area_padding_bytes
2816 + cfun
->machine
->local_size
2817 + cfun
->machine
->out_args_size
);
2819 else if (from_reg
== ARG_POINTER_REGNUM
2820 && to_reg
== HARD_FRAME_POINTER_REGNUM
)
2824 else if (from_reg
== FRAME_POINTER_REGNUM
2825 && to_reg
== STACK_POINTER_REGNUM
)
2827 offset
= (cfun
->machine
->local_size
+ cfun
->machine
->out_args_size
);
2829 else if (from_reg
== FRAME_POINTER_REGNUM
2830 && to_reg
== HARD_FRAME_POINTER_REGNUM
)
2832 offset
= (-1) * (cfun
->machine
->fp_size
2833 + cfun
->machine
->gp_size
2834 + cfun
->machine
->lp_size
2835 + cfun
->machine
->callee_saved_regs_size
2836 + cfun
->machine
->callee_saved_area_padding_bytes
);
2846 /* -- Passing Arguments in Registers. */
2849 nds32_init_cumulative_args (CUMULATIVE_ARGS
*cum
,
2850 tree fntype ATTRIBUTE_UNUSED
,
2851 rtx libname ATTRIBUTE_UNUSED
,
2852 tree fndecl ATTRIBUTE_UNUSED
,
2853 int n_named_args ATTRIBUTE_UNUSED
)
2855 /* Initial available registers
2856 (in offset, corresponding to NDS32_GPR_ARG_FIRST_REGNUM)
2857 for passing arguments. */
2858 cum
->gpr_offset
= 0;
2861 /* -- Function Entry and Exit. */
2863 /* Function for normal multiple push prologue. */
2865 nds32_expand_prologue (void)
2872 rtx fp_adjust_insn
, sp_adjust_insn
;
2874 /* Compute and setup stack frame size.
2875 The result will be in cfun->machine. */
2876 nds32_compute_stack_frame ();
2878 /* If this is a variadic function, first we need to push argument
2879 registers that hold the unnamed argument value. */
2880 if (cfun
->machine
->va_args_size
!= 0)
2882 Rb
= gen_rtx_REG (SImode
, cfun
->machine
->va_args_first_regno
);
2883 Re
= gen_rtx_REG (SImode
, cfun
->machine
->va_args_last_regno
);
2884 /* No need to push $fp, $gp, or $lp, so use GEN_INT(0). */
2885 nds32_emit_stack_push_multiple (Rb
, Re
, GEN_INT (0), true);
2887 /* We may also need to adjust stack pointer for padding bytes
2888 because varargs may cause $sp not 8-byte aligned. */
2889 if (cfun
->machine
->va_args_area_padding_bytes
)
2891 /* Generate sp adjustment instruction. */
2892 sp_adjust
= cfun
->machine
->va_args_area_padding_bytes
;
2893 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
2895 GEN_INT (-1 * sp_adjust
));
2897 /* Emit rtx into instructions list and receive INSN rtx form. */
2898 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
2900 /* The insn rtx 'sp_adjust_insn' will change frame layout.
2901 We need to use RTX_FRAME_RELATED_P so that GCC is able to
2902 generate CFI (Call Frame Information) stuff. */
2903 RTX_FRAME_RELATED_P (sp_adjust_insn
) = 1;
2907 /* If the function is 'naked',
2908 we do not have to generate prologue code fragment. */
2909 if (cfun
->machine
->naked_p
)
2912 /* Get callee_first_regno and callee_last_regno. */
2913 Rb
= gen_rtx_REG (SImode
, cfun
->machine
->callee_saved_regs_first_regno
);
2914 Re
= gen_rtx_REG (SImode
, cfun
->machine
->callee_saved_regs_last_regno
);
2916 /* nds32_emit_stack_push_multiple(first_regno, last_regno),
2917 the pattern 'stack_push_multiple' is implemented in nds32.md.
2918 For En4 field, we have to calculate its constant value.
2919 Refer to Andes ISA for more information. */
2921 if (cfun
->machine
->fp_size
)
2923 if (cfun
->machine
->gp_size
)
2925 if (cfun
->machine
->lp_size
)
2928 /* If $fp, $gp, $lp, and all callee-save registers are NOT required
2929 to be saved, we don't have to create multiple push instruction.
2930 Otherwise, a multiple push instruction is needed. */
2931 if (!(REGNO (Rb
) == SP_REGNUM
&& REGNO (Re
) == SP_REGNUM
&& en4_const
== 0))
2933 /* Create multiple push instruction rtx. */
2934 nds32_emit_stack_push_multiple (Rb
, Re
, GEN_INT (en4_const
), false);
2937 /* Check frame_pointer_needed to see
2938 if we shall emit fp adjustment instruction. */
2939 if (frame_pointer_needed
)
2941 /* adjust $fp = $sp + ($fp size) + ($gp size) + ($lp size)
2942 + (4 * callee-saved-registers)
2943 Note: No need to adjust
2944 cfun->machine->callee_saved_area_padding_bytes,
2945 because, at this point, stack pointer is just
2946 at the position after push instruction. */
2947 fp_adjust
= cfun
->machine
->fp_size
2948 + cfun
->machine
->gp_size
2949 + cfun
->machine
->lp_size
2950 + cfun
->machine
->callee_saved_regs_size
;
2951 fp_adjust_insn
= gen_addsi3 (hard_frame_pointer_rtx
,
2953 GEN_INT (fp_adjust
));
2954 /* Emit rtx into instructions list and receive INSN rtx form. */
2955 fp_adjust_insn
= emit_insn (fp_adjust_insn
);
2957 /* The insn rtx 'fp_adjust_insn' will change frame layout. */
2958 RTX_FRAME_RELATED_P (fp_adjust_insn
) = 1;
2961 /* Adjust $sp = $sp - local_size - out_args_size
2962 - callee_saved_area_padding_bytes. */
2963 sp_adjust
= cfun
->machine
->local_size
2964 + cfun
->machine
->out_args_size
2965 + cfun
->machine
->callee_saved_area_padding_bytes
;
2966 /* sp_adjust value may be out of range of the addi instruction,
2967 create alternative add behavior with TA_REGNUM if necessary,
2968 using NEGATIVE value to tell that we are decreasing address. */
2969 sp_adjust
= nds32_force_addi_stack_int ( (-1) * sp_adjust
);
2972 /* Generate sp adjustment instruction if and only if sp_adjust != 0. */
2973 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
2975 GEN_INT (-1 * sp_adjust
));
2976 /* Emit rtx into instructions list and receive INSN rtx form. */
2977 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
2979 /* The insn rtx 'sp_adjust_insn' will change frame layout.
2980 We need to use RTX_FRAME_RELATED_P so that GCC is able to
2981 generate CFI (Call Frame Information) stuff. */
2982 RTX_FRAME_RELATED_P (sp_adjust_insn
) = 1;
2985 /* Prevent the instruction scheduler from
2986 moving instructions across the boundary. */
2987 emit_insn (gen_blockage ());
2990 /* Function for normal multiple pop epilogue. */
2992 nds32_expand_epilogue (void)
3000 /* Compute and setup stack frame size.
3001 The result will be in cfun->machine. */
3002 nds32_compute_stack_frame ();
3004 /* Prevent the instruction scheduler from
3005 moving instructions across the boundary. */
3006 emit_insn (gen_blockage ());
3008 /* If the function is 'naked', we do not have to generate
3009 epilogue code fragment BUT 'ret' instruction.
3010 However, if this function is also a variadic function,
3011 we need to create adjust stack pointer before 'ret' instruction. */
3012 if (cfun
->machine
->naked_p
)
3014 /* If this is a variadic function, we do not have to restore argument
3015 registers but need to adjust stack pointer back to previous stack
3016 frame location before return. */
3017 if (cfun
->machine
->va_args_size
!= 0)
3019 /* Generate sp adjustment instruction.
3020 We need to consider padding bytes here. */
3021 sp_adjust
= cfun
->machine
->va_args_size
3022 + cfun
->machine
->va_args_area_padding_bytes
;
3023 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
3025 GEN_INT (sp_adjust
));
3026 /* Emit rtx into instructions list and receive INSN rtx form. */
3027 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
3029 /* The insn rtx 'sp_adjust_insn' will change frame layout.
3030 We need to use RTX_FRAME_RELATED_P so that GCC is able to
3031 generate CFI (Call Frame Information) stuff. */
3032 RTX_FRAME_RELATED_P (sp_adjust_insn
) = 1;
3035 /* Generate return instruction by using
3036 unspec_volatile_func_return pattern.
3037 Make sure this instruction is after gen_blockage().
3038 NOTE that $lp will become 'live'
3039 after this instruction has been emitted. */
3040 emit_insn (gen_unspec_volatile_func_return ());
3044 if (frame_pointer_needed
)
3046 /* adjust $sp = $fp - ($fp size) - ($gp size) - ($lp size)
3047 - (4 * callee-saved-registers)
3048 Note: No need to adjust
3049 cfun->machine->callee_saved_area_padding_bytes,
3050 because we want to adjust stack pointer
3051 to the position for pop instruction. */
3052 sp_adjust
= cfun
->machine
->fp_size
3053 + cfun
->machine
->gp_size
3054 + cfun
->machine
->lp_size
3055 + cfun
->machine
->callee_saved_regs_size
;
3056 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
3057 hard_frame_pointer_rtx
,
3058 GEN_INT (-1 * sp_adjust
));
3059 /* Emit rtx into instructions list and receive INSN rtx form. */
3060 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
3062 /* The insn rtx 'sp_adjust_insn' will change frame layout. */
3063 RTX_FRAME_RELATED_P (sp_adjust_insn
) = 1;
3067 /* If frame pointer is NOT needed,
3068 we cannot calculate the sp adjustment from frame pointer.
3069 Instead, we calculate the adjustment by local_size,
3070 out_args_size, and callee_saved_area_padding_bytes.
3071 Notice that such sp adjustment value may be out of range,
3072 so we have to deal with it as well. */
3074 /* Adjust $sp = $sp + local_size + out_args_size
3075 + callee_saved_area_padding_bytes. */
3076 sp_adjust
= cfun
->machine
->local_size
3077 + cfun
->machine
->out_args_size
3078 + cfun
->machine
->callee_saved_area_padding_bytes
;
3079 /* sp_adjust value may be out of range of the addi instruction,
3080 create alternative add behavior with TA_REGNUM if necessary,
3081 using POSITIVE value to tell that we are increasing address. */
3082 sp_adjust
= nds32_force_addi_stack_int (sp_adjust
);
3085 /* Generate sp adjustment instruction
3086 if and only if sp_adjust != 0. */
3087 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
3089 GEN_INT (sp_adjust
));
3090 /* Emit rtx into instructions list and receive INSN rtx form. */
3091 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
3093 /* The insn rtx 'sp_adjust_insn' will change frame layout. */
3094 RTX_FRAME_RELATED_P (sp_adjust_insn
) = 1;
3098 /* Get callee_first_regno and callee_last_regno. */
3099 Rb
= gen_rtx_REG (SImode
, cfun
->machine
->callee_saved_regs_first_regno
);
3100 Re
= gen_rtx_REG (SImode
, cfun
->machine
->callee_saved_regs_last_regno
);
3102 /* nds32_emit_stack_pop_multiple(first_regno, last_regno),
3103 the pattern 'stack_pop_multiple' is implementad in nds32.md.
3104 For En4 field, we have to calculate its constant value.
3105 Refer to Andes ISA for more information. */
3107 if (cfun
->machine
->fp_size
)
3109 if (cfun
->machine
->gp_size
)
3111 if (cfun
->machine
->lp_size
)
3114 /* If $fp, $gp, $lp, and all callee-save registers are NOT required
3115 to be saved, we don't have to create multiple pop instruction.
3116 Otherwise, a multiple pop instruction is needed. */
3117 if (!(REGNO (Rb
) == SP_REGNUM
&& REGNO (Re
) == SP_REGNUM
&& en4_const
== 0))
3119 /* Create multiple pop instruction rtx. */
3120 nds32_emit_stack_pop_multiple (Rb
, Re
, GEN_INT (en4_const
));
3123 /* If this is a variadic function, we do not have to restore argument
3124 registers but need to adjust stack pointer back to previous stack
3125 frame location before return. */
3126 if (cfun
->machine
->va_args_size
!= 0)
3128 /* Generate sp adjustment instruction.
3129 We need to consider padding bytes here. */
3130 sp_adjust
= cfun
->machine
->va_args_size
3131 + cfun
->machine
->va_args_area_padding_bytes
;
3132 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
3134 GEN_INT (sp_adjust
));
3135 /* Emit rtx into instructions list and receive INSN rtx form. */
3136 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
3138 /* The insn rtx 'sp_adjust_insn' will change frame layout.
3139 We need to use RTX_FRAME_RELATED_P so that GCC is able to
3140 generate CFI (Call Frame Information) stuff. */
3141 RTX_FRAME_RELATED_P (sp_adjust_insn
) = 1;
3144 /* Generate return instruction by using
3145 unspec_volatile_func_return pattern. */
3146 emit_insn (gen_unspec_volatile_func_return ());
3149 /* Function for v3push prologue. */
3151 nds32_expand_prologue_v3push (void)
3157 rtx fp_adjust_insn
, sp_adjust_insn
;
3159 /* Compute and setup stack frame size.
3160 The result will be in cfun->machine. */
3161 nds32_compute_stack_frame ();
3163 /* If the function is 'naked',
3164 we do not have to generate prologue code fragment. */
3165 if (cfun
->machine
->naked_p
)
3168 /* Get callee_first_regno and callee_last_regno. */
3169 Rb
= gen_rtx_REG (SImode
, cfun
->machine
->callee_saved_regs_first_regno
);
3170 Re
= gen_rtx_REG (SImode
, cfun
->machine
->callee_saved_regs_last_regno
);
3172 /* Calculate sp_adjust first to test if 'push25 Re,imm8u' is available,
3173 where imm8u has to be 8-byte alignment. */
3174 sp_adjust
= cfun
->machine
->local_size
3175 + cfun
->machine
->out_args_size
3176 + cfun
->machine
->callee_saved_area_padding_bytes
;
3178 if (satisfies_constraint_Iu08 (GEN_INT (sp_adjust
))
3179 && NDS32_DOUBLE_WORD_ALIGN_P (sp_adjust
))
3181 /* We can use 'push25 Re,imm8u'. */
3183 /* nds32_emit_stack_v3push(last_regno, sp_adjust),
3184 the pattern 'stack_v3push' is implemented in nds32.md.
3185 The (const_int 14) means v3push always push { $fp $gp $lp }. */
3186 nds32_emit_stack_v3push (Rb
, Re
,
3187 GEN_INT (14), GEN_INT (sp_adjust
));
3189 /* Check frame_pointer_needed to see
3190 if we shall emit fp adjustment instruction. */
3191 if (frame_pointer_needed
)
3193 /* adjust $fp = $sp + 4 ($fp size)
3196 + (4 * n) (callee-saved registers)
3197 + sp_adjust ('push25 Re,imm8u')
3198 Note: Since we use 'push25 Re,imm8u',
3199 the position of stack pointer is further
3200 changed after push instruction.
3201 Hence, we need to take sp_adjust value
3202 into consideration. */
3203 fp_adjust
= cfun
->machine
->fp_size
3204 + cfun
->machine
->gp_size
3205 + cfun
->machine
->lp_size
3206 + cfun
->machine
->callee_saved_regs_size
3208 fp_adjust_insn
= gen_addsi3 (hard_frame_pointer_rtx
,
3210 GEN_INT (fp_adjust
));
3211 /* Emit rtx into instructions list and receive INSN rtx form. */
3212 fp_adjust_insn
= emit_insn (fp_adjust_insn
);
3217 /* We have to use 'push25 Re,0' and
3218 expand one more instruction to adjust $sp later. */
3220 /* nds32_emit_stack_v3push(last_regno, sp_adjust),
3221 the pattern 'stack_v3push' is implemented in nds32.md.
3222 The (const_int 14) means v3push always push { $fp $gp $lp }. */
3223 nds32_emit_stack_v3push (Rb
, Re
,
3224 GEN_INT (14), GEN_INT (0));
3226 /* Check frame_pointer_needed to see
3227 if we shall emit fp adjustment instruction. */
3228 if (frame_pointer_needed
)
3230 /* adjust $fp = $sp + 4 ($fp size)
3233 + (4 * n) (callee-saved registers)
3234 Note: Since we use 'push25 Re,0',
3235 the stack pointer is just at the position
3236 after push instruction.
3237 No need to take sp_adjust into consideration. */
3238 fp_adjust
= cfun
->machine
->fp_size
3239 + cfun
->machine
->gp_size
3240 + cfun
->machine
->lp_size
3241 + cfun
->machine
->callee_saved_regs_size
;
3242 fp_adjust_insn
= gen_addsi3 (hard_frame_pointer_rtx
,
3244 GEN_INT (fp_adjust
));
3245 /* Emit rtx into instructions list and receive INSN rtx form. */
3246 fp_adjust_insn
= emit_insn (fp_adjust_insn
);
3249 /* Because we use 'push25 Re,0',
3250 we need to expand one more instruction to adjust $sp.
3251 However, sp_adjust value may be out of range of the addi instruction,
3252 create alternative add behavior with TA_REGNUM if necessary,
3253 using NEGATIVE value to tell that we are decreasing address. */
3254 sp_adjust
= nds32_force_addi_stack_int ( (-1) * sp_adjust
);
3257 /* Generate sp adjustment instruction
3258 if and only if sp_adjust != 0. */
3259 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
3261 GEN_INT (-1 * sp_adjust
));
3262 /* Emit rtx into instructions list and receive INSN rtx form. */
3263 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
3265 /* The insn rtx 'sp_adjust_insn' will change frame layout.
3266 We need to use RTX_FRAME_RELATED_P so that GCC is able to
3267 generate CFI (Call Frame Information) stuff. */
3268 RTX_FRAME_RELATED_P (sp_adjust_insn
) = 1;
3272 /* Prevent the instruction scheduler from
3273 moving instructions across the boundary. */
3274 emit_insn (gen_blockage ());
3277 /* Function for v3pop epilogue. */
3279 nds32_expand_epilogue_v3pop (void)
3286 /* Compute and setup stack frame size.
3287 The result will be in cfun->machine. */
3288 nds32_compute_stack_frame ();
3290 /* Prevent the instruction scheduler from
3291 moving instructions across the boundary. */
3292 emit_insn (gen_blockage ());
3294 /* If the function is 'naked', we do not have to generate
3295 epilogue code fragment BUT 'ret' instruction. */
3296 if (cfun
->machine
->naked_p
)
3298 /* Generate return instruction by using
3299 unspec_volatile_func_return pattern.
3300 Make sure this instruction is after gen_blockage().
3301 NOTE that $lp will become 'live'
3302 after this instruction has been emitted. */
3303 emit_insn (gen_unspec_volatile_func_return ());
3307 /* Get callee_first_regno and callee_last_regno. */
3308 Rb
= gen_rtx_REG (SImode
, cfun
->machine
->callee_saved_regs_first_regno
);
3309 Re
= gen_rtx_REG (SImode
, cfun
->machine
->callee_saved_regs_last_regno
);
3311 /* Calculate sp_adjust first to test if 'pop25 Re,imm8u' is available,
3312 where imm8u has to be 8-byte alignment. */
3313 sp_adjust
= cfun
->machine
->local_size
3314 + cfun
->machine
->out_args_size
3315 + cfun
->machine
->callee_saved_area_padding_bytes
;
3317 /* We have to consider alloca issue as well.
3318 If the function does call alloca(), the stack pointer is not fixed.
3319 In that case, we cannot use 'pop25 Re,imm8u' directly.
3320 We have to caculate stack pointer from frame pointer
3321 and then use 'pop25 Re,0'.
3322 Of course, the frame_pointer_needed should be nonzero
3323 if the function calls alloca(). */
3324 if (satisfies_constraint_Iu08 (GEN_INT (sp_adjust
))
3325 && NDS32_DOUBLE_WORD_ALIGN_P (sp_adjust
)
3326 && !cfun
->calls_alloca
)
3328 /* We can use 'pop25 Re,imm8u'. */
3330 /* nds32_emit_stack_v3pop(last_regno, sp_adjust),
3331 the pattern 'stack_v3pop' is implementad in nds32.md.
3332 The (const_int 14) means v3pop always pop { $fp $gp $lp }. */
3333 nds32_emit_stack_v3pop (Rb
, Re
,
3334 GEN_INT (14), GEN_INT (sp_adjust
));
3338 /* We have to use 'pop25 Re,0', and prior to it,
3339 we must expand one more instruction to adjust $sp. */
3341 if (frame_pointer_needed
)
3343 /* adjust $sp = $fp - 4 ($fp size)
3346 - (4 * n) (callee-saved registers)
3347 Note: No need to adjust
3348 cfun->machine->callee_saved_area_padding_bytes,
3349 because we want to adjust stack pointer
3350 to the position for pop instruction. */
3351 sp_adjust
= cfun
->machine
->fp_size
3352 + cfun
->machine
->gp_size
3353 + cfun
->machine
->lp_size
3354 + cfun
->machine
->callee_saved_regs_size
;
3355 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
3356 hard_frame_pointer_rtx
,
3357 GEN_INT (-1 * sp_adjust
));
3358 /* Emit rtx into instructions list and receive INSN rtx form. */
3359 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
3363 /* If frame pointer is NOT needed,
3364 we cannot calculate the sp adjustment from frame pointer.
3365 Instead, we calculate the adjustment by local_size,
3366 out_args_size, and callee_saved_area_padding_bytes.
3367 Notice that such sp adjustment value may be out of range,
3368 so we have to deal with it as well. */
3370 /* Adjust $sp = $sp + local_size + out_args_size
3371 + callee_saved_area_padding_bytes. */
3372 sp_adjust
= cfun
->machine
->local_size
3373 + cfun
->machine
->out_args_size
3374 + cfun
->machine
->callee_saved_area_padding_bytes
;
3375 /* sp_adjust value may be out of range of the addi instruction,
3376 create alternative add behavior with TA_REGNUM if necessary,
3377 using POSITIVE value to tell that we are increasing address. */
3378 sp_adjust
= nds32_force_addi_stack_int (sp_adjust
);
3381 /* Generate sp adjustment instruction
3382 if and only if sp_adjust != 0. */
3383 sp_adjust_insn
= gen_addsi3 (stack_pointer_rtx
,
3385 GEN_INT (sp_adjust
));
3386 /* Emit rtx into instructions list and receive INSN rtx form. */
3387 sp_adjust_insn
= emit_insn (sp_adjust_insn
);
3391 /* nds32_emit_stack_v3pop(last_regno, sp_adjust),
3392 the pattern 'stack_v3pop' is implementad in nds32.md. */
3393 /* The (const_int 14) means v3pop always pop { $fp $gp $lp }. */
3394 nds32_emit_stack_v3pop (Rb
, Re
,
3395 GEN_INT (14), GEN_INT (0));
3399 /* ------------------------------------------------------------------------ */
3401 /* Function to test 333-form for load/store instructions.
3402 This is auxiliary extern function for auxiliary macro in nds32.h.
3403 Because it is a little complicated, we use function instead of macro. */
3405 nds32_ls_333_p (rtx rt
, rtx ra
, rtx imm
, machine_mode mode
)
3407 if (REGNO_REG_CLASS (REGNO (rt
)) == LOW_REGS
3408 && REGNO_REG_CLASS (REGNO (ra
)) == LOW_REGS
)
3410 if (GET_MODE_SIZE (mode
) == 4)
3411 return satisfies_constraint_Iu05 (imm
);
3413 if (GET_MODE_SIZE (mode
) == 2)
3414 return satisfies_constraint_Iu04 (imm
);
3416 if (GET_MODE_SIZE (mode
) == 1)
3417 return satisfies_constraint_Iu03 (imm
);
3424 /* Computing the Length of an Insn.
3425 Modifies the length assigned to instruction INSN.
3426 LEN is the initially computed length of the insn. */
3428 nds32_adjust_insn_length (rtx_insn
*insn
, int length
)
3432 switch (recog_memoized (insn
))
3434 case CODE_FOR_move_df
:
3435 case CODE_FOR_move_di
:
3436 /* Adjust length of movd44 to 2. */
3437 src
= XEXP (PATTERN (insn
), 1);
3438 dst
= XEXP (PATTERN (insn
), 0);
3442 && (REGNO (src
) % 2) == 0
3443 && (REGNO (dst
) % 2) == 0)
3455 /* Return align 2 (log base 2) if the next instruction of LABEL is 4 byte. */
3457 nds32_target_alignment (rtx label
)
3464 insn
= next_active_insn (label
);
3468 else if ((get_attr_length (insn
) % 4) == 0)
3474 /* ------------------------------------------------------------------------ */
3476 /* PART 5: Initialize target hook structure and definitions. */
3478 /* Controlling the Compilation Driver. */
3481 /* Run-time Target Specification. */
3484 /* Defining Data Structures for Per-function Information. */
3487 /* Storage Layout. */
3489 #undef TARGET_PROMOTE_FUNCTION_MODE
3490 #define TARGET_PROMOTE_FUNCTION_MODE \
3491 default_promote_function_mode_always_promote
3494 /* Layout of Source Language Data Types. */
3497 /* Register Usage. */
3499 /* -- Basic Characteristics of Registers. */
3501 /* -- Order of Allocation of Registers. */
3503 /* -- How Values Fit in Registers. */
3505 /* -- Handling Leaf Functions. */
3507 /* -- Registers That Form a Stack. */
3510 /* Register Classes. */
3512 #undef TARGET_CLASS_MAX_NREGS
3513 #define TARGET_CLASS_MAX_NREGS nds32_class_max_nregs
3516 #define TARGET_LRA_P hook_bool_void_true
3518 #undef TARGET_REGISTER_PRIORITY
3519 #define TARGET_REGISTER_PRIORITY nds32_register_priority
3522 /* Obsolete Macros for Defining Constraints. */
3525 /* Stack Layout and Calling Conventions. */
3527 /* -- Basic Stack Layout. */
3529 /* -- Exception Handling Support. */
3531 /* -- Specifying How Stack Checking is Done. */
3533 /* -- Registers That Address the Stack Frame. */
3535 /* -- Eliminating Frame Pointer and Arg Pointer. */
3537 #undef TARGET_CAN_ELIMINATE
3538 #define TARGET_CAN_ELIMINATE nds32_can_eliminate
3540 /* -- Passing Function Arguments on the Stack. */
3542 /* -- Passing Arguments in Registers. */
3544 #undef TARGET_FUNCTION_ARG
3545 #define TARGET_FUNCTION_ARG nds32_function_arg
3547 #undef TARGET_MUST_PASS_IN_STACK
3548 #define TARGET_MUST_PASS_IN_STACK nds32_must_pass_in_stack
3550 #undef TARGET_ARG_PARTIAL_BYTES
3551 #define TARGET_ARG_PARTIAL_BYTES nds32_arg_partial_bytes
3553 #undef TARGET_FUNCTION_ARG_ADVANCE
3554 #define TARGET_FUNCTION_ARG_ADVANCE nds32_function_arg_advance
3556 #undef TARGET_FUNCTION_ARG_BOUNDARY
3557 #define TARGET_FUNCTION_ARG_BOUNDARY nds32_function_arg_boundary
3559 /* -- How Scalar Function Values Are Returned. */
3561 #undef TARGET_FUNCTION_VALUE
3562 #define TARGET_FUNCTION_VALUE nds32_function_value
3564 #undef TARGET_LIBCALL_VALUE
3565 #define TARGET_LIBCALL_VALUE nds32_libcall_value
3567 #undef TARGET_FUNCTION_VALUE_REGNO_P
3568 #define TARGET_FUNCTION_VALUE_REGNO_P nds32_function_value_regno_p
3570 /* -- How Large Values Are Returned. */
3572 /* -- Caller-Saves Register Allocation. */
3574 /* -- Function Entry and Exit. */
3576 #undef TARGET_ASM_FUNCTION_PROLOGUE
3577 #define TARGET_ASM_FUNCTION_PROLOGUE nds32_asm_function_prologue
3579 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
3580 #define TARGET_ASM_FUNCTION_END_PROLOGUE nds32_asm_function_end_prologue
3582 #undef TARGET_ASM_FUNCTION_BEGIN_EPILOGUE
3583 #define TARGET_ASM_FUNCTION_BEGIN_EPILOGUE nds32_asm_function_begin_epilogue
3585 #undef TARGET_ASM_FUNCTION_EPILOGUE
3586 #define TARGET_ASM_FUNCTION_EPILOGUE nds32_asm_function_epilogue
3588 #undef TARGET_ASM_OUTPUT_MI_THUNK
3589 #define TARGET_ASM_OUTPUT_MI_THUNK nds32_asm_output_mi_thunk
3591 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
3592 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
3594 /* -- Generating Code for Profiling. */
3596 /* -- Permitting tail calls. */
3598 #undef TARGET_WARN_FUNC_RETURN
3599 #define TARGET_WARN_FUNC_RETURN nds32_warn_func_return
3601 /* Stack smashing protection. */
3604 /* Implementing the Varargs Macros. */
3606 #undef TARGET_SETUP_INCOMING_VARARGS
3607 #define TARGET_SETUP_INCOMING_VARARGS nds32_setup_incoming_varargs
3609 #undef TARGET_STRICT_ARGUMENT_NAMING
3610 #define TARGET_STRICT_ARGUMENT_NAMING nds32_strict_argument_naming
3613 /* Trampolines for Nested Functions. */
3615 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
3616 #define TARGET_ASM_TRAMPOLINE_TEMPLATE nds32_asm_trampoline_template
3618 #undef TARGET_TRAMPOLINE_INIT
3619 #define TARGET_TRAMPOLINE_INIT nds32_trampoline_init
3622 /* Implicit Calls to Library Routines. */
3625 /* Addressing Modes. */
3627 #undef TARGET_LEGITIMATE_ADDRESS_P
3628 #define TARGET_LEGITIMATE_ADDRESS_P nds32_legitimate_address_p
3631 /* Anchored Addresses. */
3634 /* Condition Code Status. */
3636 /* -- Representation of condition codes using (cc0). */
3638 /* -- Representation of condition codes using registers. */
3640 /* -- Macros to control conditional execution. */
3643 /* Describing Relative Costs of Operations. */
3645 #undef TARGET_REGISTER_MOVE_COST
3646 #define TARGET_REGISTER_MOVE_COST nds32_register_move_cost
3648 #undef TARGET_MEMORY_MOVE_COST
3649 #define TARGET_MEMORY_MOVE_COST nds32_memory_move_cost
3651 #undef TARGET_RTX_COSTS
3652 #define TARGET_RTX_COSTS nds32_rtx_costs
3654 #undef TARGET_ADDRESS_COST
3655 #define TARGET_ADDRESS_COST nds32_address_cost
3658 /* Adjusting the Instruction Scheduler. */
3661 /* Dividing the Output into Sections (Texts, Data, . . . ). */
3664 /* Position Independent Code. */
3667 /* Defining the Output Assembler Language. */
3669 /* -- The Overall Framework of an Assembler File. */
3671 #undef TARGET_ASM_FILE_START
3672 #define TARGET_ASM_FILE_START nds32_asm_file_start
3673 #undef TARGET_ASM_FILE_END
3674 #define TARGET_ASM_FILE_END nds32_asm_file_end
3676 /* -- Output of Data. */
3678 #undef TARGET_ASM_ALIGNED_HI_OP
3679 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
3681 #undef TARGET_ASM_ALIGNED_SI_OP
3682 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
3684 /* -- Output of Uninitialized Variables. */
3686 /* -- Output and Generation of Labels. */
3688 #undef TARGET_ASM_GLOBALIZE_LABEL
3689 #define TARGET_ASM_GLOBALIZE_LABEL nds32_asm_globalize_label
3691 /* -- How Initialization Functions Are Handled. */
3693 /* -- Macros Controlling Initialization Routines. */
3695 /* -- Output of Assembler Instructions. */
3697 #undef TARGET_PRINT_OPERAND
3698 #define TARGET_PRINT_OPERAND nds32_print_operand
3699 #undef TARGET_PRINT_OPERAND_ADDRESS
3700 #define TARGET_PRINT_OPERAND_ADDRESS nds32_print_operand_address
3702 /* -- Output of Dispatch Tables. */
3704 /* -- Assembler Commands for Exception Regions. */
3706 /* -- Assembler Commands for Alignment. */
3709 /* Controlling Debugging Information Format. */
3711 /* -- Macros Affecting All Debugging Formats. */
3713 /* -- Specific Options for DBX Output. */
3715 /* -- Open-Ended Hooks for DBX Format. */
3717 /* -- File Names in DBX Format. */
3719 /* -- Macros for SDB and DWARF Output. */
3721 /* -- Macros for VMS Debug Format. */
3724 /* Cross Compilation and Floating Point. */
3727 /* Mode Switching Instructions. */
3730 /* Defining target-specific uses of __attribute__. */
3732 #undef TARGET_ATTRIBUTE_TABLE
3733 #define TARGET_ATTRIBUTE_TABLE nds32_attribute_table
3735 #undef TARGET_MERGE_DECL_ATTRIBUTES
3736 #define TARGET_MERGE_DECL_ATTRIBUTES nds32_merge_decl_attributes
3738 #undef TARGET_INSERT_ATTRIBUTES
3739 #define TARGET_INSERT_ATTRIBUTES nds32_insert_attributes
3741 #undef TARGET_OPTION_PRAGMA_PARSE
3742 #define TARGET_OPTION_PRAGMA_PARSE nds32_option_pragma_parse
3744 #undef TARGET_OPTION_OVERRIDE
3745 #define TARGET_OPTION_OVERRIDE nds32_option_override
3748 /* Emulating TLS. */
3751 /* Defining coprocessor specifics for MIPS targets. */
3754 /* Parameters for Precompiled Header Validity Checking. */
3757 /* C++ ABI parameters. */
3760 /* Adding support for named address spaces. */
3763 /* Miscellaneous Parameters. */
3765 #undef TARGET_INIT_BUILTINS
3766 #define TARGET_INIT_BUILTINS nds32_init_builtins
3768 #undef TARGET_EXPAND_BUILTIN
3769 #define TARGET_EXPAND_BUILTIN nds32_expand_builtin
3772 /* ------------------------------------------------------------------------ */
3774 /* Initialize the GCC target structure. */
3776 struct gcc_target targetm
= TARGET_INITIALIZER
;
3778 /* ------------------------------------------------------------------------ */