1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
31 #include "hard-reg-set.h"
33 #include "insn-config.h"
37 #include "diagnostic-core.h"
42 /* Simplification and canonicalization of RTL. */
44 /* Much code operates on (low, high) pairs; the low value is an
45 unsigned wide int, the high value a signed wide int. We
46 occasionally need to sign extend from low to high as if low were a
48 #define HWI_SIGN_EXTEND(low) \
49 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
51 static rtx
neg_const_int (enum machine_mode
, const_rtx
);
52 static bool plus_minus_operand_p (const_rtx
);
53 static bool simplify_plus_minus_op_data_cmp (rtx
, rtx
);
54 static rtx
simplify_plus_minus (enum rtx_code
, enum machine_mode
, rtx
, rtx
);
55 static rtx
simplify_immed_subreg (enum machine_mode
, rtx
, enum machine_mode
,
57 static rtx
simplify_associative_operation (enum rtx_code
, enum machine_mode
,
59 static rtx
simplify_relational_operation_1 (enum rtx_code
, enum machine_mode
,
60 enum machine_mode
, rtx
, rtx
);
61 static rtx
simplify_unary_operation_1 (enum rtx_code
, enum machine_mode
, rtx
);
62 static rtx
simplify_binary_operation_1 (enum rtx_code
, enum machine_mode
,
65 /* Negate a CONST_INT rtx, truncating (because a conversion from a
66 maximally negative number can overflow). */
68 neg_const_int (enum machine_mode mode
, const_rtx i
)
70 return gen_int_mode (- INTVAL (i
), mode
);
73 /* Test whether expression, X, is an immediate constant that represents
74 the most significant bit of machine mode MODE. */
77 mode_signbit_p (enum machine_mode mode
, const_rtx x
)
79 unsigned HOST_WIDE_INT val
;
82 if (GET_MODE_CLASS (mode
) != MODE_INT
)
85 width
= GET_MODE_PRECISION (mode
);
89 if (width
<= HOST_BITS_PER_WIDE_INT
92 else if (width
<= 2 * HOST_BITS_PER_WIDE_INT
93 && GET_CODE (x
) == CONST_DOUBLE
94 && CONST_DOUBLE_LOW (x
) == 0)
96 val
= CONST_DOUBLE_HIGH (x
);
97 width
-= HOST_BITS_PER_WIDE_INT
;
102 if (width
< HOST_BITS_PER_WIDE_INT
)
103 val
&= ((unsigned HOST_WIDE_INT
) 1 << width
) - 1;
104 return val
== ((unsigned HOST_WIDE_INT
) 1 << (width
- 1));
107 /* Test whether VAL is equal to the most significant bit of mode MODE
108 (after masking with the mode mask of MODE). Returns false if the
109 precision of MODE is too large to handle. */
112 val_signbit_p (enum machine_mode mode
, unsigned HOST_WIDE_INT val
)
116 if (GET_MODE_CLASS (mode
) != MODE_INT
)
119 width
= GET_MODE_PRECISION (mode
);
120 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
123 val
&= GET_MODE_MASK (mode
);
124 return val
== ((unsigned HOST_WIDE_INT
) 1 << (width
- 1));
127 /* Test whether the most significant bit of mode MODE is set in VAL.
128 Returns false if the precision of MODE is too large to handle. */
130 val_signbit_known_set_p (enum machine_mode mode
, unsigned HOST_WIDE_INT val
)
134 if (GET_MODE_CLASS (mode
) != MODE_INT
)
137 width
= GET_MODE_PRECISION (mode
);
138 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
141 val
&= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
145 /* Test whether the most significant bit of mode MODE is clear in VAL.
146 Returns false if the precision of MODE is too large to handle. */
148 val_signbit_known_clear_p (enum machine_mode mode
, unsigned HOST_WIDE_INT val
)
152 if (GET_MODE_CLASS (mode
) != MODE_INT
)
155 width
= GET_MODE_PRECISION (mode
);
156 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
159 val
&= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
163 /* Make a binary operation by properly ordering the operands and
164 seeing if the expression folds. */
167 simplify_gen_binary (enum rtx_code code
, enum machine_mode mode
, rtx op0
,
172 /* If this simplifies, do it. */
173 tem
= simplify_binary_operation (code
, mode
, op0
, op1
);
177 /* Put complex operands first and constants second if commutative. */
178 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
179 && swap_commutative_operands_p (op0
, op1
))
180 tem
= op0
, op0
= op1
, op1
= tem
;
182 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
185 /* If X is a MEM referencing the constant pool, return the real value.
186 Otherwise return X. */
188 avoid_constant_pool_reference (rtx x
)
191 enum machine_mode cmode
;
192 HOST_WIDE_INT offset
= 0;
194 switch (GET_CODE (x
))
200 /* Handle float extensions of constant pool references. */
202 c
= avoid_constant_pool_reference (tmp
);
203 if (c
!= tmp
&& GET_CODE (c
) == CONST_DOUBLE
)
207 REAL_VALUE_FROM_CONST_DOUBLE (d
, c
);
208 return CONST_DOUBLE_FROM_REAL_VALUE (d
, GET_MODE (x
));
216 if (GET_MODE (x
) == BLKmode
)
221 /* Call target hook to avoid the effects of -fpic etc.... */
222 addr
= targetm
.delegitimize_address (addr
);
224 /* Split the address into a base and integer offset. */
225 if (GET_CODE (addr
) == CONST
226 && GET_CODE (XEXP (addr
, 0)) == PLUS
227 && CONST_INT_P (XEXP (XEXP (addr
, 0), 1)))
229 offset
= INTVAL (XEXP (XEXP (addr
, 0), 1));
230 addr
= XEXP (XEXP (addr
, 0), 0);
233 if (GET_CODE (addr
) == LO_SUM
)
234 addr
= XEXP (addr
, 1);
236 /* If this is a constant pool reference, we can turn it into its
237 constant and hope that simplifications happen. */
238 if (GET_CODE (addr
) == SYMBOL_REF
239 && CONSTANT_POOL_ADDRESS_P (addr
))
241 c
= get_pool_constant (addr
);
242 cmode
= get_pool_mode (addr
);
244 /* If we're accessing the constant in a different mode than it was
245 originally stored, attempt to fix that up via subreg simplifications.
246 If that fails we have no choice but to return the original memory. */
247 if (offset
!= 0 || cmode
!= GET_MODE (x
))
249 rtx tem
= simplify_subreg (GET_MODE (x
), c
, cmode
, offset
);
250 if (tem
&& CONSTANT_P (tem
))
260 /* Simplify a MEM based on its attributes. This is the default
261 delegitimize_address target hook, and it's recommended that every
262 overrider call it. */
265 delegitimize_mem_from_attrs (rtx x
)
267 /* MEMs without MEM_OFFSETs may have been offset, so we can't just
268 use their base addresses as equivalent. */
271 && MEM_OFFSET_KNOWN_P (x
))
273 tree decl
= MEM_EXPR (x
);
274 enum machine_mode mode
= GET_MODE (x
);
275 HOST_WIDE_INT offset
= 0;
277 switch (TREE_CODE (decl
))
287 case ARRAY_RANGE_REF
:
292 case VIEW_CONVERT_EXPR
:
294 HOST_WIDE_INT bitsize
, bitpos
;
296 int unsignedp
= 0, volatilep
= 0;
298 decl
= get_inner_reference (decl
, &bitsize
, &bitpos
, &toffset
,
299 &mode
, &unsignedp
, &volatilep
, false);
300 if (bitsize
!= GET_MODE_BITSIZE (mode
)
301 || (bitpos
% BITS_PER_UNIT
)
302 || (toffset
&& !host_integerp (toffset
, 0)))
306 offset
+= bitpos
/ BITS_PER_UNIT
;
308 offset
+= TREE_INT_CST_LOW (toffset
);
315 && mode
== GET_MODE (x
)
316 && TREE_CODE (decl
) == VAR_DECL
317 && (TREE_STATIC (decl
)
318 || DECL_THREAD_LOCAL_P (decl
))
319 && DECL_RTL_SET_P (decl
)
320 && MEM_P (DECL_RTL (decl
)))
324 offset
+= MEM_OFFSET (x
);
326 newx
= DECL_RTL (decl
);
330 rtx n
= XEXP (newx
, 0), o
= XEXP (x
, 0);
332 /* Avoid creating a new MEM needlessly if we already had
333 the same address. We do if there's no OFFSET and the
334 old address X is identical to NEWX, or if X is of the
335 form (plus NEWX OFFSET), or the NEWX is of the form
336 (plus Y (const_int Z)) and X is that with the offset
337 added: (plus Y (const_int Z+OFFSET)). */
339 || (GET_CODE (o
) == PLUS
340 && GET_CODE (XEXP (o
, 1)) == CONST_INT
341 && (offset
== INTVAL (XEXP (o
, 1))
342 || (GET_CODE (n
) == PLUS
343 && GET_CODE (XEXP (n
, 1)) == CONST_INT
344 && (INTVAL (XEXP (n
, 1)) + offset
345 == INTVAL (XEXP (o
, 1)))
346 && (n
= XEXP (n
, 0))))
347 && (o
= XEXP (o
, 0))))
348 && rtx_equal_p (o
, n
)))
349 x
= adjust_address_nv (newx
, mode
, offset
);
351 else if (GET_MODE (x
) == GET_MODE (newx
)
360 /* Make a unary operation by first seeing if it folds and otherwise making
361 the specified operation. */
364 simplify_gen_unary (enum rtx_code code
, enum machine_mode mode
, rtx op
,
365 enum machine_mode op_mode
)
369 /* If this simplifies, use it. */
370 if ((tem
= simplify_unary_operation (code
, mode
, op
, op_mode
)) != 0)
373 return gen_rtx_fmt_e (code
, mode
, op
);
376 /* Likewise for ternary operations. */
379 simplify_gen_ternary (enum rtx_code code
, enum machine_mode mode
,
380 enum machine_mode op0_mode
, rtx op0
, rtx op1
, rtx op2
)
384 /* If this simplifies, use it. */
385 if (0 != (tem
= simplify_ternary_operation (code
, mode
, op0_mode
,
389 return gen_rtx_fmt_eee (code
, mode
, op0
, op1
, op2
);
392 /* Likewise, for relational operations.
393 CMP_MODE specifies mode comparison is done in. */
396 simplify_gen_relational (enum rtx_code code
, enum machine_mode mode
,
397 enum machine_mode cmp_mode
, rtx op0
, rtx op1
)
401 if (0 != (tem
= simplify_relational_operation (code
, mode
, cmp_mode
,
405 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
408 /* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
409 and simplify the result. If FN is non-NULL, call this callback on each
410 X, if it returns non-NULL, replace X with its return value and simplify the
414 simplify_replace_fn_rtx (rtx x
, const_rtx old_rtx
,
415 rtx (*fn
) (rtx
, const_rtx
, void *), void *data
)
417 enum rtx_code code
= GET_CODE (x
);
418 enum machine_mode mode
= GET_MODE (x
);
419 enum machine_mode op_mode
;
421 rtx op0
, op1
, op2
, newx
, op
;
425 if (__builtin_expect (fn
!= NULL
, 0))
427 newx
= fn (x
, old_rtx
, data
);
431 else if (rtx_equal_p (x
, old_rtx
))
432 return copy_rtx ((rtx
) data
);
434 switch (GET_RTX_CLASS (code
))
438 op_mode
= GET_MODE (op0
);
439 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
440 if (op0
== XEXP (x
, 0))
442 return simplify_gen_unary (code
, mode
, op0
, op_mode
);
446 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
447 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
448 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
450 return simplify_gen_binary (code
, mode
, op0
, op1
);
453 case RTX_COMM_COMPARE
:
456 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
457 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
458 op1
= simplify_replace_fn_rtx (op1
, old_rtx
, fn
, data
);
459 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
461 return simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
464 case RTX_BITFIELD_OPS
:
466 op_mode
= GET_MODE (op0
);
467 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
468 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
469 op2
= simplify_replace_fn_rtx (XEXP (x
, 2), old_rtx
, fn
, data
);
470 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
472 if (op_mode
== VOIDmode
)
473 op_mode
= GET_MODE (op0
);
474 return simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
479 op0
= simplify_replace_fn_rtx (SUBREG_REG (x
), old_rtx
, fn
, data
);
480 if (op0
== SUBREG_REG (x
))
482 op0
= simplify_gen_subreg (GET_MODE (x
), op0
,
483 GET_MODE (SUBREG_REG (x
)),
485 return op0
? op0
: x
;
492 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
493 if (op0
== XEXP (x
, 0))
495 return replace_equiv_address_nv (x
, op0
);
497 else if (code
== LO_SUM
)
499 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
500 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
502 /* (lo_sum (high x) x) -> x */
503 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
506 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
508 return gen_rtx_LO_SUM (mode
, op0
, op1
);
517 fmt
= GET_RTX_FORMAT (code
);
518 for (i
= 0; fmt
[i
]; i
++)
523 newvec
= XVEC (newx
, i
);
524 for (j
= 0; j
< GET_NUM_ELEM (vec
); j
++)
526 op
= simplify_replace_fn_rtx (RTVEC_ELT (vec
, j
),
528 if (op
!= RTVEC_ELT (vec
, j
))
532 newvec
= shallow_copy_rtvec (vec
);
534 newx
= shallow_copy_rtx (x
);
535 XVEC (newx
, i
) = newvec
;
537 RTVEC_ELT (newvec
, j
) = op
;
545 op
= simplify_replace_fn_rtx (XEXP (x
, i
), old_rtx
, fn
, data
);
546 if (op
!= XEXP (x
, i
))
549 newx
= shallow_copy_rtx (x
);
558 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
559 resulting RTX. Return a new RTX which is as simplified as possible. */
562 simplify_replace_rtx (rtx x
, const_rtx old_rtx
, rtx new_rtx
)
564 return simplify_replace_fn_rtx (x
, old_rtx
, 0, new_rtx
);
567 /* Try to simplify a unary operation CODE whose output mode is to be
568 MODE with input operand OP whose mode was originally OP_MODE.
569 Return zero if no simplification can be made. */
571 simplify_unary_operation (enum rtx_code code
, enum machine_mode mode
,
572 rtx op
, enum machine_mode op_mode
)
576 trueop
= avoid_constant_pool_reference (op
);
578 tem
= simplify_const_unary_operation (code
, mode
, trueop
, op_mode
);
582 return simplify_unary_operation_1 (code
, mode
, op
);
585 /* Perform some simplifications we can do even if the operands
588 simplify_unary_operation_1 (enum rtx_code code
, enum machine_mode mode
, rtx op
)
590 enum rtx_code reversed
;
596 /* (not (not X)) == X. */
597 if (GET_CODE (op
) == NOT
)
600 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
601 comparison is all ones. */
602 if (COMPARISON_P (op
)
603 && (mode
== BImode
|| STORE_FLAG_VALUE
== -1)
604 && ((reversed
= reversed_comparison_code (op
, NULL_RTX
)) != UNKNOWN
))
605 return simplify_gen_relational (reversed
, mode
, VOIDmode
,
606 XEXP (op
, 0), XEXP (op
, 1));
608 /* (not (plus X -1)) can become (neg X). */
609 if (GET_CODE (op
) == PLUS
610 && XEXP (op
, 1) == constm1_rtx
)
611 return simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
613 /* Similarly, (not (neg X)) is (plus X -1). */
614 if (GET_CODE (op
) == NEG
)
615 return plus_constant (XEXP (op
, 0), -1);
617 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
618 if (GET_CODE (op
) == XOR
619 && CONST_INT_P (XEXP (op
, 1))
620 && (temp
= simplify_unary_operation (NOT
, mode
,
621 XEXP (op
, 1), mode
)) != 0)
622 return simplify_gen_binary (XOR
, mode
, XEXP (op
, 0), temp
);
624 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
625 if (GET_CODE (op
) == PLUS
626 && CONST_INT_P (XEXP (op
, 1))
627 && mode_signbit_p (mode
, XEXP (op
, 1))
628 && (temp
= simplify_unary_operation (NOT
, mode
,
629 XEXP (op
, 1), mode
)) != 0)
630 return simplify_gen_binary (XOR
, mode
, XEXP (op
, 0), temp
);
633 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
634 operands other than 1, but that is not valid. We could do a
635 similar simplification for (not (lshiftrt C X)) where C is
636 just the sign bit, but this doesn't seem common enough to
638 if (GET_CODE (op
) == ASHIFT
639 && XEXP (op
, 0) == const1_rtx
)
641 temp
= simplify_gen_unary (NOT
, mode
, const1_rtx
, mode
);
642 return simplify_gen_binary (ROTATE
, mode
, temp
, XEXP (op
, 1));
645 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
646 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
647 so we can perform the above simplification. */
649 if (STORE_FLAG_VALUE
== -1
650 && GET_CODE (op
) == ASHIFTRT
651 && GET_CODE (XEXP (op
, 1))
652 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
653 return simplify_gen_relational (GE
, mode
, VOIDmode
,
654 XEXP (op
, 0), const0_rtx
);
657 if (GET_CODE (op
) == SUBREG
658 && subreg_lowpart_p (op
)
659 && (GET_MODE_SIZE (GET_MODE (op
))
660 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op
))))
661 && GET_CODE (SUBREG_REG (op
)) == ASHIFT
662 && XEXP (SUBREG_REG (op
), 0) == const1_rtx
)
664 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op
));
667 x
= gen_rtx_ROTATE (inner_mode
,
668 simplify_gen_unary (NOT
, inner_mode
, const1_rtx
,
670 XEXP (SUBREG_REG (op
), 1));
671 return rtl_hooks
.gen_lowpart_no_emit (mode
, x
);
674 /* Apply De Morgan's laws to reduce number of patterns for machines
675 with negating logical insns (and-not, nand, etc.). If result has
676 only one NOT, put it first, since that is how the patterns are
679 if (GET_CODE (op
) == IOR
|| GET_CODE (op
) == AND
)
681 rtx in1
= XEXP (op
, 0), in2
= XEXP (op
, 1);
682 enum machine_mode op_mode
;
684 op_mode
= GET_MODE (in1
);
685 in1
= simplify_gen_unary (NOT
, op_mode
, in1
, op_mode
);
687 op_mode
= GET_MODE (in2
);
688 if (op_mode
== VOIDmode
)
690 in2
= simplify_gen_unary (NOT
, op_mode
, in2
, op_mode
);
692 if (GET_CODE (in2
) == NOT
&& GET_CODE (in1
) != NOT
)
695 in2
= in1
; in1
= tem
;
698 return gen_rtx_fmt_ee (GET_CODE (op
) == IOR
? AND
: IOR
,
704 /* (neg (neg X)) == X. */
705 if (GET_CODE (op
) == NEG
)
708 /* (neg (plus X 1)) can become (not X). */
709 if (GET_CODE (op
) == PLUS
710 && XEXP (op
, 1) == const1_rtx
)
711 return simplify_gen_unary (NOT
, mode
, XEXP (op
, 0), mode
);
713 /* Similarly, (neg (not X)) is (plus X 1). */
714 if (GET_CODE (op
) == NOT
)
715 return plus_constant (XEXP (op
, 0), 1);
717 /* (neg (minus X Y)) can become (minus Y X). This transformation
718 isn't safe for modes with signed zeros, since if X and Y are
719 both +0, (minus Y X) is the same as (minus X Y). If the
720 rounding mode is towards +infinity (or -infinity) then the two
721 expressions will be rounded differently. */
722 if (GET_CODE (op
) == MINUS
723 && !HONOR_SIGNED_ZEROS (mode
)
724 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
725 return simplify_gen_binary (MINUS
, mode
, XEXP (op
, 1), XEXP (op
, 0));
727 if (GET_CODE (op
) == PLUS
728 && !HONOR_SIGNED_ZEROS (mode
)
729 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
731 /* (neg (plus A C)) is simplified to (minus -C A). */
732 if (CONST_INT_P (XEXP (op
, 1))
733 || GET_CODE (XEXP (op
, 1)) == CONST_DOUBLE
)
735 temp
= simplify_unary_operation (NEG
, mode
, XEXP (op
, 1), mode
);
737 return simplify_gen_binary (MINUS
, mode
, temp
, XEXP (op
, 0));
740 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
741 temp
= simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
742 return simplify_gen_binary (MINUS
, mode
, temp
, XEXP (op
, 1));
745 /* (neg (mult A B)) becomes (mult A (neg B)).
746 This works even for floating-point values. */
747 if (GET_CODE (op
) == MULT
748 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
750 temp
= simplify_gen_unary (NEG
, mode
, XEXP (op
, 1), mode
);
751 return simplify_gen_binary (MULT
, mode
, XEXP (op
, 0), temp
);
754 /* NEG commutes with ASHIFT since it is multiplication. Only do
755 this if we can then eliminate the NEG (e.g., if the operand
757 if (GET_CODE (op
) == ASHIFT
)
759 temp
= simplify_unary_operation (NEG
, mode
, XEXP (op
, 0), mode
);
761 return simplify_gen_binary (ASHIFT
, mode
, temp
, XEXP (op
, 1));
764 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
765 C is equal to the width of MODE minus 1. */
766 if (GET_CODE (op
) == ASHIFTRT
767 && CONST_INT_P (XEXP (op
, 1))
768 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
769 return simplify_gen_binary (LSHIFTRT
, mode
,
770 XEXP (op
, 0), XEXP (op
, 1));
772 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
773 C is equal to the width of MODE minus 1. */
774 if (GET_CODE (op
) == LSHIFTRT
775 && CONST_INT_P (XEXP (op
, 1))
776 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
777 return simplify_gen_binary (ASHIFTRT
, mode
,
778 XEXP (op
, 0), XEXP (op
, 1));
780 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
781 if (GET_CODE (op
) == XOR
782 && XEXP (op
, 1) == const1_rtx
783 && nonzero_bits (XEXP (op
, 0), mode
) == 1)
784 return plus_constant (XEXP (op
, 0), -1);
786 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
787 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
788 if (GET_CODE (op
) == LT
789 && XEXP (op
, 1) == const0_rtx
790 && SCALAR_INT_MODE_P (GET_MODE (XEXP (op
, 0))))
792 enum machine_mode inner
= GET_MODE (XEXP (op
, 0));
793 int isize
= GET_MODE_PRECISION (inner
);
794 if (STORE_FLAG_VALUE
== 1)
796 temp
= simplify_gen_binary (ASHIFTRT
, inner
, XEXP (op
, 0),
797 GEN_INT (isize
- 1));
800 if (GET_MODE_PRECISION (mode
) > isize
)
801 return simplify_gen_unary (SIGN_EXTEND
, mode
, temp
, inner
);
802 return simplify_gen_unary (TRUNCATE
, mode
, temp
, inner
);
804 else if (STORE_FLAG_VALUE
== -1)
806 temp
= simplify_gen_binary (LSHIFTRT
, inner
, XEXP (op
, 0),
807 GEN_INT (isize
- 1));
810 if (GET_MODE_PRECISION (mode
) > isize
)
811 return simplify_gen_unary (ZERO_EXTEND
, mode
, temp
, inner
);
812 return simplify_gen_unary (TRUNCATE
, mode
, temp
, inner
);
818 /* We can't handle truncation to a partial integer mode here
819 because we don't know the real bitsize of the partial
821 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
824 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
825 if ((GET_CODE (op
) == SIGN_EXTEND
826 || GET_CODE (op
) == ZERO_EXTEND
)
827 && GET_MODE (XEXP (op
, 0)) == mode
)
830 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
831 (OP:SI foo:SI) if OP is NEG or ABS. */
832 if ((GET_CODE (op
) == ABS
833 || GET_CODE (op
) == NEG
)
834 && (GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
835 || GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
)
836 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
)
837 return simplify_gen_unary (GET_CODE (op
), mode
,
838 XEXP (XEXP (op
, 0), 0), mode
);
840 /* (truncate:A (subreg:B (truncate:C X) 0)) is
842 if (GET_CODE (op
) == SUBREG
843 && GET_CODE (SUBREG_REG (op
)) == TRUNCATE
844 && subreg_lowpart_p (op
))
845 return simplify_gen_unary (TRUNCATE
, mode
, XEXP (SUBREG_REG (op
), 0),
846 GET_MODE (XEXP (SUBREG_REG (op
), 0)));
848 /* If we know that the value is already truncated, we can
849 replace the TRUNCATE with a SUBREG. Note that this is also
850 valid if TRULY_NOOP_TRUNCATION is false for the corresponding
851 modes we just have to apply a different definition for
852 truncation. But don't do this for an (LSHIFTRT (MULT ...))
853 since this will cause problems with the umulXi3_highpart
855 if ((TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (op
))
856 ? (num_sign_bit_copies (op
, GET_MODE (op
))
857 > (unsigned int) (GET_MODE_PRECISION (GET_MODE (op
))
858 - GET_MODE_PRECISION (mode
)))
859 : truncated_to_mode (mode
, op
))
860 && ! (GET_CODE (op
) == LSHIFTRT
861 && GET_CODE (XEXP (op
, 0)) == MULT
))
862 return rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
864 /* A truncate of a comparison can be replaced with a subreg if
865 STORE_FLAG_VALUE permits. This is like the previous test,
866 but it works even if the comparison is done in a mode larger
867 than HOST_BITS_PER_WIDE_INT. */
868 if (HWI_COMPUTABLE_MODE_P (mode
)
870 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0)
871 return rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
875 if (DECIMAL_FLOAT_MODE_P (mode
))
878 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
879 if (GET_CODE (op
) == FLOAT_EXTEND
880 && GET_MODE (XEXP (op
, 0)) == mode
)
883 /* (float_truncate:SF (float_truncate:DF foo:XF))
884 = (float_truncate:SF foo:XF).
885 This may eliminate double rounding, so it is unsafe.
887 (float_truncate:SF (float_extend:XF foo:DF))
888 = (float_truncate:SF foo:DF).
890 (float_truncate:DF (float_extend:XF foo:SF))
891 = (float_extend:SF foo:DF). */
892 if ((GET_CODE (op
) == FLOAT_TRUNCATE
893 && flag_unsafe_math_optimizations
)
894 || GET_CODE (op
) == FLOAT_EXTEND
)
895 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op
,
897 > GET_MODE_SIZE (mode
)
898 ? FLOAT_TRUNCATE
: FLOAT_EXTEND
,
902 /* (float_truncate (float x)) is (float x) */
903 if (GET_CODE (op
) == FLOAT
904 && (flag_unsafe_math_optimizations
905 || (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
906 && ((unsigned)significand_size (GET_MODE (op
))
907 >= (GET_MODE_PRECISION (GET_MODE (XEXP (op
, 0)))
908 - num_sign_bit_copies (XEXP (op
, 0),
909 GET_MODE (XEXP (op
, 0))))))))
910 return simplify_gen_unary (FLOAT
, mode
,
912 GET_MODE (XEXP (op
, 0)));
914 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
915 (OP:SF foo:SF) if OP is NEG or ABS. */
916 if ((GET_CODE (op
) == ABS
917 || GET_CODE (op
) == NEG
)
918 && GET_CODE (XEXP (op
, 0)) == FLOAT_EXTEND
919 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
)
920 return simplify_gen_unary (GET_CODE (op
), mode
,
921 XEXP (XEXP (op
, 0), 0), mode
);
923 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
924 is (float_truncate:SF x). */
925 if (GET_CODE (op
) == SUBREG
926 && subreg_lowpart_p (op
)
927 && GET_CODE (SUBREG_REG (op
)) == FLOAT_TRUNCATE
)
928 return SUBREG_REG (op
);
932 if (DECIMAL_FLOAT_MODE_P (mode
))
935 /* (float_extend (float_extend x)) is (float_extend x)
937 (float_extend (float x)) is (float x) assuming that double
938 rounding can't happen.
940 if (GET_CODE (op
) == FLOAT_EXTEND
941 || (GET_CODE (op
) == FLOAT
942 && SCALAR_FLOAT_MODE_P (GET_MODE (op
))
943 && ((unsigned)significand_size (GET_MODE (op
))
944 >= (GET_MODE_PRECISION (GET_MODE (XEXP (op
, 0)))
945 - num_sign_bit_copies (XEXP (op
, 0),
946 GET_MODE (XEXP (op
, 0)))))))
947 return simplify_gen_unary (GET_CODE (op
), mode
,
949 GET_MODE (XEXP (op
, 0)));
954 /* (abs (neg <foo>)) -> (abs <foo>) */
955 if (GET_CODE (op
) == NEG
)
956 return simplify_gen_unary (ABS
, mode
, XEXP (op
, 0),
957 GET_MODE (XEXP (op
, 0)));
959 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
961 if (GET_MODE (op
) == VOIDmode
)
964 /* If operand is something known to be positive, ignore the ABS. */
965 if (GET_CODE (op
) == FFS
|| GET_CODE (op
) == ABS
966 || val_signbit_known_clear_p (GET_MODE (op
),
967 nonzero_bits (op
, GET_MODE (op
))))
970 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
971 if (num_sign_bit_copies (op
, mode
) == GET_MODE_PRECISION (mode
))
972 return gen_rtx_NEG (mode
, op
);
977 /* (ffs (*_extend <X>)) = (ffs <X>) */
978 if (GET_CODE (op
) == SIGN_EXTEND
979 || GET_CODE (op
) == ZERO_EXTEND
)
980 return simplify_gen_unary (FFS
, mode
, XEXP (op
, 0),
981 GET_MODE (XEXP (op
, 0)));
985 switch (GET_CODE (op
))
989 /* (popcount (zero_extend <X>)) = (popcount <X>) */
990 return simplify_gen_unary (POPCOUNT
, mode
, XEXP (op
, 0),
991 GET_MODE (XEXP (op
, 0)));
995 /* Rotations don't affect popcount. */
996 if (!side_effects_p (XEXP (op
, 1)))
997 return simplify_gen_unary (POPCOUNT
, mode
, XEXP (op
, 0),
998 GET_MODE (XEXP (op
, 0)));
1007 switch (GET_CODE (op
))
1013 return simplify_gen_unary (PARITY
, mode
, XEXP (op
, 0),
1014 GET_MODE (XEXP (op
, 0)));
1018 /* Rotations don't affect parity. */
1019 if (!side_effects_p (XEXP (op
, 1)))
1020 return simplify_gen_unary (PARITY
, mode
, XEXP (op
, 0),
1021 GET_MODE (XEXP (op
, 0)));
1030 /* (bswap (bswap x)) -> x. */
1031 if (GET_CODE (op
) == BSWAP
)
1032 return XEXP (op
, 0);
1036 /* (float (sign_extend <X>)) = (float <X>). */
1037 if (GET_CODE (op
) == SIGN_EXTEND
)
1038 return simplify_gen_unary (FLOAT
, mode
, XEXP (op
, 0),
1039 GET_MODE (XEXP (op
, 0)));
1043 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
1044 becomes just the MINUS if its mode is MODE. This allows
1045 folding switch statements on machines using casesi (such as
1047 if (GET_CODE (op
) == TRUNCATE
1048 && GET_MODE (XEXP (op
, 0)) == mode
1049 && GET_CODE (XEXP (op
, 0)) == MINUS
1050 && GET_CODE (XEXP (XEXP (op
, 0), 0)) == LABEL_REF
1051 && GET_CODE (XEXP (XEXP (op
, 0), 1)) == LABEL_REF
)
1052 return XEXP (op
, 0);
1054 /* Extending a widening multiplication should be canonicalized to
1055 a wider widening multiplication. */
1056 if (GET_CODE (op
) == MULT
)
1058 rtx lhs
= XEXP (op
, 0);
1059 rtx rhs
= XEXP (op
, 1);
1060 enum rtx_code lcode
= GET_CODE (lhs
);
1061 enum rtx_code rcode
= GET_CODE (rhs
);
1063 /* Widening multiplies usually extend both operands, but sometimes
1064 they use a shift to extract a portion of a register. */
1065 if ((lcode
== SIGN_EXTEND
1066 || (lcode
== ASHIFTRT
&& CONST_INT_P (XEXP (lhs
, 1))))
1067 && (rcode
== SIGN_EXTEND
1068 || (rcode
== ASHIFTRT
&& CONST_INT_P (XEXP (rhs
, 1)))))
1070 enum machine_mode lmode
= GET_MODE (lhs
);
1071 enum machine_mode rmode
= GET_MODE (rhs
);
1074 if (lcode
== ASHIFTRT
)
1075 /* Number of bits not shifted off the end. */
1076 bits
= GET_MODE_PRECISION (lmode
) - INTVAL (XEXP (lhs
, 1));
1077 else /* lcode == SIGN_EXTEND */
1078 /* Size of inner mode. */
1079 bits
= GET_MODE_PRECISION (GET_MODE (XEXP (lhs
, 0)));
1081 if (rcode
== ASHIFTRT
)
1082 bits
+= GET_MODE_PRECISION (rmode
) - INTVAL (XEXP (rhs
, 1));
1083 else /* rcode == SIGN_EXTEND */
1084 bits
+= GET_MODE_PRECISION (GET_MODE (XEXP (rhs
, 0)));
1086 /* We can only widen multiplies if the result is mathematiclly
1087 equivalent. I.e. if overflow was impossible. */
1088 if (bits
<= GET_MODE_PRECISION (GET_MODE (op
)))
1089 return simplify_gen_binary
1091 simplify_gen_unary (SIGN_EXTEND
, mode
, lhs
, lmode
),
1092 simplify_gen_unary (SIGN_EXTEND
, mode
, rhs
, rmode
));
1096 /* Check for a sign extension of a subreg of a promoted
1097 variable, where the promotion is sign-extended, and the
1098 target mode is the same as the variable's promotion. */
1099 if (GET_CODE (op
) == SUBREG
1100 && SUBREG_PROMOTED_VAR_P (op
)
1101 && ! SUBREG_PROMOTED_UNSIGNED_P (op
)
1102 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (XEXP (op
, 0))))
1103 return rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1105 /* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
1106 (sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1107 if (GET_CODE (op
) == SIGN_EXTEND
|| GET_CODE (op
) == ZERO_EXTEND
)
1109 gcc_assert (GET_MODE_BITSIZE (mode
)
1110 > GET_MODE_BITSIZE (GET_MODE (op
)));
1111 return simplify_gen_unary (GET_CODE (op
), mode
, XEXP (op
, 0),
1112 GET_MODE (XEXP (op
, 0)));
1115 /* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
1116 is (sign_extend:M (subreg:O <X>)) if there is mode with
1117 GET_MODE_BITSIZE (N) - I bits.
1118 (sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1119 is similarly (zero_extend:M (subreg:O <X>)). */
1120 if ((GET_CODE (op
) == ASHIFTRT
|| GET_CODE (op
) == LSHIFTRT
)
1121 && GET_CODE (XEXP (op
, 0)) == ASHIFT
1122 && CONST_INT_P (XEXP (op
, 1))
1123 && XEXP (XEXP (op
, 0), 1) == XEXP (op
, 1)
1124 && GET_MODE_BITSIZE (GET_MODE (op
)) > INTVAL (XEXP (op
, 1)))
1126 enum machine_mode tmode
1127 = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op
))
1128 - INTVAL (XEXP (op
, 1)), MODE_INT
, 1);
1129 gcc_assert (GET_MODE_BITSIZE (mode
)
1130 > GET_MODE_BITSIZE (GET_MODE (op
)));
1131 if (tmode
!= BLKmode
)
1134 rtl_hooks
.gen_lowpart_no_emit (tmode
, XEXP (XEXP (op
, 0), 0));
1135 return simplify_gen_unary (GET_CODE (op
) == ASHIFTRT
1136 ? SIGN_EXTEND
: ZERO_EXTEND
,
1137 mode
, inner
, tmode
);
1141 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1142 /* As we do not know which address space the pointer is refering to,
1143 we can do this only if the target does not support different pointer
1144 or address modes depending on the address space. */
1145 if (target_default_pointer_address_modes_p ()
1146 && ! POINTERS_EXTEND_UNSIGNED
1147 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
1149 || (GET_CODE (op
) == SUBREG
1150 && REG_P (SUBREG_REG (op
))
1151 && REG_POINTER (SUBREG_REG (op
))
1152 && GET_MODE (SUBREG_REG (op
)) == Pmode
)))
1153 return convert_memory_address (Pmode
, op
);
1158 /* Check for a zero extension of a subreg of a promoted
1159 variable, where the promotion is zero-extended, and the
1160 target mode is the same as the variable's promotion. */
1161 if (GET_CODE (op
) == SUBREG
1162 && SUBREG_PROMOTED_VAR_P (op
)
1163 && SUBREG_PROMOTED_UNSIGNED_P (op
) > 0
1164 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (XEXP (op
, 0))))
1165 return rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1167 /* Extending a widening multiplication should be canonicalized to
1168 a wider widening multiplication. */
1169 if (GET_CODE (op
) == MULT
)
1171 rtx lhs
= XEXP (op
, 0);
1172 rtx rhs
= XEXP (op
, 1);
1173 enum rtx_code lcode
= GET_CODE (lhs
);
1174 enum rtx_code rcode
= GET_CODE (rhs
);
1176 /* Widening multiplies usually extend both operands, but sometimes
1177 they use a shift to extract a portion of a register. */
1178 if ((lcode
== ZERO_EXTEND
1179 || (lcode
== LSHIFTRT
&& CONST_INT_P (XEXP (lhs
, 1))))
1180 && (rcode
== ZERO_EXTEND
1181 || (rcode
== LSHIFTRT
&& CONST_INT_P (XEXP (rhs
, 1)))))
1183 enum machine_mode lmode
= GET_MODE (lhs
);
1184 enum machine_mode rmode
= GET_MODE (rhs
);
1187 if (lcode
== LSHIFTRT
)
1188 /* Number of bits not shifted off the end. */
1189 bits
= GET_MODE_PRECISION (lmode
) - INTVAL (XEXP (lhs
, 1));
1190 else /* lcode == ZERO_EXTEND */
1191 /* Size of inner mode. */
1192 bits
= GET_MODE_PRECISION (GET_MODE (XEXP (lhs
, 0)));
1194 if (rcode
== LSHIFTRT
)
1195 bits
+= GET_MODE_PRECISION (rmode
) - INTVAL (XEXP (rhs
, 1));
1196 else /* rcode == ZERO_EXTEND */
1197 bits
+= GET_MODE_PRECISION (GET_MODE (XEXP (rhs
, 0)));
1199 /* We can only widen multiplies if the result is mathematiclly
1200 equivalent. I.e. if overflow was impossible. */
1201 if (bits
<= GET_MODE_PRECISION (GET_MODE (op
)))
1202 return simplify_gen_binary
1204 simplify_gen_unary (ZERO_EXTEND
, mode
, lhs
, lmode
),
1205 simplify_gen_unary (ZERO_EXTEND
, mode
, rhs
, rmode
));
1209 /* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1210 if (GET_CODE (op
) == ZERO_EXTEND
)
1211 return simplify_gen_unary (ZERO_EXTEND
, mode
, XEXP (op
, 0),
1212 GET_MODE (XEXP (op
, 0)));
1214 /* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1215 is (zero_extend:M (subreg:O <X>)) if there is mode with
1216 GET_MODE_BITSIZE (N) - I bits. */
1217 if (GET_CODE (op
) == LSHIFTRT
1218 && GET_CODE (XEXP (op
, 0)) == ASHIFT
1219 && CONST_INT_P (XEXP (op
, 1))
1220 && XEXP (XEXP (op
, 0), 1) == XEXP (op
, 1)
1221 && GET_MODE_BITSIZE (GET_MODE (op
)) > INTVAL (XEXP (op
, 1)))
1223 enum machine_mode tmode
1224 = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op
))
1225 - INTVAL (XEXP (op
, 1)), MODE_INT
, 1);
1226 if (tmode
!= BLKmode
)
1229 rtl_hooks
.gen_lowpart_no_emit (tmode
, XEXP (XEXP (op
, 0), 0));
1230 return simplify_gen_unary (ZERO_EXTEND
, mode
, inner
, tmode
);
1234 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1235 /* As we do not know which address space the pointer is refering to,
1236 we can do this only if the target does not support different pointer
1237 or address modes depending on the address space. */
1238 if (target_default_pointer_address_modes_p ()
1239 && POINTERS_EXTEND_UNSIGNED
> 0
1240 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
1242 || (GET_CODE (op
) == SUBREG
1243 && REG_P (SUBREG_REG (op
))
1244 && REG_POINTER (SUBREG_REG (op
))
1245 && GET_MODE (SUBREG_REG (op
)) == Pmode
)))
1246 return convert_memory_address (Pmode
, op
);
1257 /* Try to compute the value of a unary operation CODE whose output mode is to
1258 be MODE with input operand OP whose mode was originally OP_MODE.
1259 Return zero if the value cannot be computed. */
1261 simplify_const_unary_operation (enum rtx_code code
, enum machine_mode mode
,
1262 rtx op
, enum machine_mode op_mode
)
1264 unsigned int width
= GET_MODE_PRECISION (mode
);
1265 unsigned int op_width
= GET_MODE_PRECISION (op_mode
);
1267 if (code
== VEC_DUPLICATE
)
1269 gcc_assert (VECTOR_MODE_P (mode
));
1270 if (GET_MODE (op
) != VOIDmode
)
1272 if (!VECTOR_MODE_P (GET_MODE (op
)))
1273 gcc_assert (GET_MODE_INNER (mode
) == GET_MODE (op
));
1275 gcc_assert (GET_MODE_INNER (mode
) == GET_MODE_INNER
1278 if (CONST_INT_P (op
) || GET_CODE (op
) == CONST_DOUBLE
1279 || GET_CODE (op
) == CONST_VECTOR
)
1281 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
1282 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
1283 rtvec v
= rtvec_alloc (n_elts
);
1286 if (GET_CODE (op
) != CONST_VECTOR
)
1287 for (i
= 0; i
< n_elts
; i
++)
1288 RTVEC_ELT (v
, i
) = op
;
1291 enum machine_mode inmode
= GET_MODE (op
);
1292 int in_elt_size
= GET_MODE_SIZE (GET_MODE_INNER (inmode
));
1293 unsigned in_n_elts
= (GET_MODE_SIZE (inmode
) / in_elt_size
);
1295 gcc_assert (in_n_elts
< n_elts
);
1296 gcc_assert ((n_elts
% in_n_elts
) == 0);
1297 for (i
= 0; i
< n_elts
; i
++)
1298 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (op
, i
% in_n_elts
);
1300 return gen_rtx_CONST_VECTOR (mode
, v
);
1304 if (VECTOR_MODE_P (mode
) && GET_CODE (op
) == CONST_VECTOR
)
1306 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
1307 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
1308 enum machine_mode opmode
= GET_MODE (op
);
1309 int op_elt_size
= GET_MODE_SIZE (GET_MODE_INNER (opmode
));
1310 unsigned op_n_elts
= (GET_MODE_SIZE (opmode
) / op_elt_size
);
1311 rtvec v
= rtvec_alloc (n_elts
);
1314 gcc_assert (op_n_elts
== n_elts
);
1315 for (i
= 0; i
< n_elts
; i
++)
1317 rtx x
= simplify_unary_operation (code
, GET_MODE_INNER (mode
),
1318 CONST_VECTOR_ELT (op
, i
),
1319 GET_MODE_INNER (opmode
));
1322 RTVEC_ELT (v
, i
) = x
;
1324 return gen_rtx_CONST_VECTOR (mode
, v
);
1327 /* The order of these tests is critical so that, for example, we don't
1328 check the wrong mode (input vs. output) for a conversion operation,
1329 such as FIX. At some point, this should be simplified. */
1331 if (code
== FLOAT
&& GET_MODE (op
) == VOIDmode
1332 && (GET_CODE (op
) == CONST_DOUBLE
|| CONST_INT_P (op
)))
1334 HOST_WIDE_INT hv
, lv
;
1337 if (CONST_INT_P (op
))
1338 lv
= INTVAL (op
), hv
= HWI_SIGN_EXTEND (lv
);
1340 lv
= CONST_DOUBLE_LOW (op
), hv
= CONST_DOUBLE_HIGH (op
);
1342 REAL_VALUE_FROM_INT (d
, lv
, hv
, mode
);
1343 d
= real_value_truncate (mode
, d
);
1344 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
1346 else if (code
== UNSIGNED_FLOAT
&& GET_MODE (op
) == VOIDmode
1347 && (GET_CODE (op
) == CONST_DOUBLE
1348 || CONST_INT_P (op
)))
1350 HOST_WIDE_INT hv
, lv
;
1353 if (CONST_INT_P (op
))
1354 lv
= INTVAL (op
), hv
= HWI_SIGN_EXTEND (lv
);
1356 lv
= CONST_DOUBLE_LOW (op
), hv
= CONST_DOUBLE_HIGH (op
);
1358 if (op_mode
== VOIDmode
)
1360 /* We don't know how to interpret negative-looking numbers in
1361 this case, so don't try to fold those. */
1365 else if (GET_MODE_PRECISION (op_mode
) >= HOST_BITS_PER_WIDE_INT
* 2)
1368 hv
= 0, lv
&= GET_MODE_MASK (op_mode
);
1370 REAL_VALUE_FROM_UNSIGNED_INT (d
, lv
, hv
, mode
);
1371 d
= real_value_truncate (mode
, d
);
1372 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
1375 if (CONST_INT_P (op
)
1376 && width
<= HOST_BITS_PER_WIDE_INT
&& width
> 0)
1378 HOST_WIDE_INT arg0
= INTVAL (op
);
1392 val
= (arg0
>= 0 ? arg0
: - arg0
);
1396 arg0
&= GET_MODE_MASK (mode
);
1397 val
= ffs_hwi (arg0
);
1401 arg0
&= GET_MODE_MASK (mode
);
1402 if (arg0
== 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
))
1405 val
= GET_MODE_PRECISION (mode
) - floor_log2 (arg0
) - 1;
1409 arg0
&= GET_MODE_MASK (mode
);
1411 val
= GET_MODE_PRECISION (mode
) - 1;
1413 val
= GET_MODE_PRECISION (mode
) - floor_log2 (arg0
) - 2;
1415 val
= GET_MODE_PRECISION (mode
) - floor_log2 (~arg0
) - 2;
1419 arg0
&= GET_MODE_MASK (mode
);
1422 /* Even if the value at zero is undefined, we have to come
1423 up with some replacement. Seems good enough. */
1424 if (! CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
))
1425 val
= GET_MODE_PRECISION (mode
);
1428 val
= ctz_hwi (arg0
);
1432 arg0
&= GET_MODE_MASK (mode
);
1435 val
++, arg0
&= arg0
- 1;
1439 arg0
&= GET_MODE_MASK (mode
);
1442 val
++, arg0
&= arg0
- 1;
1451 for (s
= 0; s
< width
; s
+= 8)
1453 unsigned int d
= width
- s
- 8;
1454 unsigned HOST_WIDE_INT byte
;
1455 byte
= (arg0
>> s
) & 0xff;
1466 /* When zero-extending a CONST_INT, we need to know its
1468 gcc_assert (op_mode
!= VOIDmode
);
1469 if (op_width
== HOST_BITS_PER_WIDE_INT
)
1471 /* If we were really extending the mode,
1472 we would have to distinguish between zero-extension
1473 and sign-extension. */
1474 gcc_assert (width
== op_width
);
1477 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
)
1478 val
= arg0
& GET_MODE_MASK (op_mode
);
1484 if (op_mode
== VOIDmode
)
1486 op_width
= GET_MODE_PRECISION (op_mode
);
1487 if (op_width
== HOST_BITS_PER_WIDE_INT
)
1489 /* If we were really extending the mode,
1490 we would have to distinguish between zero-extension
1491 and sign-extension. */
1492 gcc_assert (width
== op_width
);
1495 else if (op_width
< HOST_BITS_PER_WIDE_INT
)
1497 val
= arg0
& GET_MODE_MASK (op_mode
);
1498 if (val_signbit_known_set_p (op_mode
, val
))
1499 val
|= ~GET_MODE_MASK (op_mode
);
1507 case FLOAT_TRUNCATE
:
1519 return gen_int_mode (val
, mode
);
1522 /* We can do some operations on integer CONST_DOUBLEs. Also allow
1523 for a DImode operation on a CONST_INT. */
1524 else if (GET_MODE (op
) == VOIDmode
1525 && width
<= HOST_BITS_PER_WIDE_INT
* 2
1526 && (GET_CODE (op
) == CONST_DOUBLE
1527 || CONST_INT_P (op
)))
1529 unsigned HOST_WIDE_INT l1
, lv
;
1530 HOST_WIDE_INT h1
, hv
;
1532 if (GET_CODE (op
) == CONST_DOUBLE
)
1533 l1
= CONST_DOUBLE_LOW (op
), h1
= CONST_DOUBLE_HIGH (op
);
1535 l1
= INTVAL (op
), h1
= HWI_SIGN_EXTEND (l1
);
1545 neg_double (l1
, h1
, &lv
, &hv
);
1550 neg_double (l1
, h1
, &lv
, &hv
);
1560 lv
= HOST_BITS_PER_WIDE_INT
+ ffs_hwi (h1
);
1568 lv
= GET_MODE_PRECISION (mode
) - floor_log2 (h1
) - 1
1569 - HOST_BITS_PER_WIDE_INT
;
1571 lv
= GET_MODE_PRECISION (mode
) - floor_log2 (l1
) - 1;
1572 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode
, lv
))
1573 lv
= GET_MODE_PRECISION (mode
);
1581 lv
= HOST_BITS_PER_WIDE_INT
+ ctz_hwi (h1
);
1582 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode
, lv
))
1583 lv
= GET_MODE_PRECISION (mode
);
1611 for (s
= 0; s
< width
; s
+= 8)
1613 unsigned int d
= width
- s
- 8;
1614 unsigned HOST_WIDE_INT byte
;
1616 if (s
< HOST_BITS_PER_WIDE_INT
)
1617 byte
= (l1
>> s
) & 0xff;
1619 byte
= (h1
>> (s
- HOST_BITS_PER_WIDE_INT
)) & 0xff;
1621 if (d
< HOST_BITS_PER_WIDE_INT
)
1624 hv
|= byte
<< (d
- HOST_BITS_PER_WIDE_INT
);
1630 /* This is just a change-of-mode, so do nothing. */
1635 gcc_assert (op_mode
!= VOIDmode
);
1637 if (op_width
> HOST_BITS_PER_WIDE_INT
)
1641 lv
= l1
& GET_MODE_MASK (op_mode
);
1645 if (op_mode
== VOIDmode
1646 || op_width
> HOST_BITS_PER_WIDE_INT
)
1650 lv
= l1
& GET_MODE_MASK (op_mode
);
1651 if (val_signbit_known_set_p (op_mode
, lv
))
1652 lv
|= ~GET_MODE_MASK (op_mode
);
1654 hv
= HWI_SIGN_EXTEND (lv
);
1665 return immed_double_const (lv
, hv
, mode
);
1668 else if (GET_CODE (op
) == CONST_DOUBLE
1669 && SCALAR_FLOAT_MODE_P (mode
)
1670 && SCALAR_FLOAT_MODE_P (GET_MODE (op
)))
1672 REAL_VALUE_TYPE d
, t
;
1673 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1678 if (HONOR_SNANS (mode
) && real_isnan (&d
))
1680 real_sqrt (&t
, mode
, &d
);
1684 d
= real_value_abs (&d
);
1687 d
= real_value_negate (&d
);
1689 case FLOAT_TRUNCATE
:
1690 d
= real_value_truncate (mode
, d
);
1693 /* All this does is change the mode, unless changing
1695 if (GET_MODE_CLASS (mode
) != GET_MODE_CLASS (GET_MODE (op
)))
1696 real_convert (&d
, mode
, &d
);
1699 real_arithmetic (&d
, FIX_TRUNC_EXPR
, &d
, NULL
);
1706 real_to_target (tmp
, &d
, GET_MODE (op
));
1707 for (i
= 0; i
< 4; i
++)
1709 real_from_target (&d
, tmp
, mode
);
1715 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
1718 else if (GET_CODE (op
) == CONST_DOUBLE
1719 && SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1720 && GET_MODE_CLASS (mode
) == MODE_INT
1721 && width
<= 2*HOST_BITS_PER_WIDE_INT
&& width
> 0)
1723 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1724 operators are intentionally left unspecified (to ease implementation
1725 by target backends), for consistency, this routine implements the
1726 same semantics for constant folding as used by the middle-end. */
1728 /* This was formerly used only for non-IEEE float.
1729 eggert@twinsun.com says it is safe for IEEE also. */
1730 HOST_WIDE_INT xh
, xl
, th
, tl
;
1731 REAL_VALUE_TYPE x
, t
;
1732 REAL_VALUE_FROM_CONST_DOUBLE (x
, op
);
1736 if (REAL_VALUE_ISNAN (x
))
1739 /* Test against the signed upper bound. */
1740 if (width
> HOST_BITS_PER_WIDE_INT
)
1742 th
= ((unsigned HOST_WIDE_INT
) 1
1743 << (width
- HOST_BITS_PER_WIDE_INT
- 1)) - 1;
1749 tl
= ((unsigned HOST_WIDE_INT
) 1 << (width
- 1)) - 1;
1751 real_from_integer (&t
, VOIDmode
, tl
, th
, 0);
1752 if (REAL_VALUES_LESS (t
, x
))
1759 /* Test against the signed lower bound. */
1760 if (width
> HOST_BITS_PER_WIDE_INT
)
1762 th
= (unsigned HOST_WIDE_INT
) (-1)
1763 << (width
- HOST_BITS_PER_WIDE_INT
- 1);
1769 tl
= (unsigned HOST_WIDE_INT
) (-1) << (width
- 1);
1771 real_from_integer (&t
, VOIDmode
, tl
, th
, 0);
1772 if (REAL_VALUES_LESS (x
, t
))
1778 REAL_VALUE_TO_INT (&xl
, &xh
, x
);
1782 if (REAL_VALUE_ISNAN (x
) || REAL_VALUE_NEGATIVE (x
))
1785 /* Test against the unsigned upper bound. */
1786 if (width
== 2*HOST_BITS_PER_WIDE_INT
)
1791 else if (width
>= HOST_BITS_PER_WIDE_INT
)
1793 th
= ((unsigned HOST_WIDE_INT
) 1
1794 << (width
- HOST_BITS_PER_WIDE_INT
)) - 1;
1800 tl
= ((unsigned HOST_WIDE_INT
) 1 << width
) - 1;
1802 real_from_integer (&t
, VOIDmode
, tl
, th
, 1);
1803 if (REAL_VALUES_LESS (t
, x
))
1810 REAL_VALUE_TO_INT (&xl
, &xh
, x
);
1816 return immed_double_const (xl
, xh
, mode
);
1822 /* Subroutine of simplify_binary_operation to simplify a commutative,
1823 associative binary operation CODE with result mode MODE, operating
1824 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1825 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1826 canonicalization is possible. */
1829 simplify_associative_operation (enum rtx_code code
, enum machine_mode mode
,
1834 /* Linearize the operator to the left. */
1835 if (GET_CODE (op1
) == code
)
1837 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1838 if (GET_CODE (op0
) == code
)
1840 tem
= simplify_gen_binary (code
, mode
, op0
, XEXP (op1
, 0));
1841 return simplify_gen_binary (code
, mode
, tem
, XEXP (op1
, 1));
1844 /* "a op (b op c)" becomes "(b op c) op a". */
1845 if (! swap_commutative_operands_p (op1
, op0
))
1846 return simplify_gen_binary (code
, mode
, op1
, op0
);
1853 if (GET_CODE (op0
) == code
)
1855 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1856 if (swap_commutative_operands_p (XEXP (op0
, 1), op1
))
1858 tem
= simplify_gen_binary (code
, mode
, XEXP (op0
, 0), op1
);
1859 return simplify_gen_binary (code
, mode
, tem
, XEXP (op0
, 1));
1862 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1863 tem
= simplify_binary_operation (code
, mode
, XEXP (op0
, 1), op1
);
1865 return simplify_gen_binary (code
, mode
, XEXP (op0
, 0), tem
);
1867 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1868 tem
= simplify_binary_operation (code
, mode
, XEXP (op0
, 0), op1
);
1870 return simplify_gen_binary (code
, mode
, tem
, XEXP (op0
, 1));
1877 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1878 and OP1. Return 0 if no simplification is possible.
1880 Don't use this for relational operations such as EQ or LT.
1881 Use simplify_relational_operation instead. */
1883 simplify_binary_operation (enum rtx_code code
, enum machine_mode mode
,
1886 rtx trueop0
, trueop1
;
1889 /* Relational operations don't work here. We must know the mode
1890 of the operands in order to do the comparison correctly.
1891 Assuming a full word can give incorrect results.
1892 Consider comparing 128 with -128 in QImode. */
1893 gcc_assert (GET_RTX_CLASS (code
) != RTX_COMPARE
);
1894 gcc_assert (GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
);
1896 /* Make sure the constant is second. */
1897 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
1898 && swap_commutative_operands_p (op0
, op1
))
1900 tem
= op0
, op0
= op1
, op1
= tem
;
1903 trueop0
= avoid_constant_pool_reference (op0
);
1904 trueop1
= avoid_constant_pool_reference (op1
);
1906 tem
= simplify_const_binary_operation (code
, mode
, trueop0
, trueop1
);
1909 return simplify_binary_operation_1 (code
, mode
, op0
, op1
, trueop0
, trueop1
);
1912 /* Subroutine of simplify_binary_operation. Simplify a binary operation
1913 CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
1914 OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
1915 actual constants. */
1918 simplify_binary_operation_1 (enum rtx_code code
, enum machine_mode mode
,
1919 rtx op0
, rtx op1
, rtx trueop0
, rtx trueop1
)
1921 rtx tem
, reversed
, opleft
, opright
;
1923 unsigned int width
= GET_MODE_PRECISION (mode
);
1925 /* Even if we can't compute a constant result,
1926 there are some cases worth simplifying. */
1931 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1932 when x is NaN, infinite, or finite and nonzero. They aren't
1933 when x is -0 and the rounding mode is not towards -infinity,
1934 since (-0) + 0 is then 0. */
1935 if (!HONOR_SIGNED_ZEROS (mode
) && trueop1
== CONST0_RTX (mode
))
1938 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1939 transformations are safe even for IEEE. */
1940 if (GET_CODE (op0
) == NEG
)
1941 return simplify_gen_binary (MINUS
, mode
, op1
, XEXP (op0
, 0));
1942 else if (GET_CODE (op1
) == NEG
)
1943 return simplify_gen_binary (MINUS
, mode
, op0
, XEXP (op1
, 0));
1945 /* (~a) + 1 -> -a */
1946 if (INTEGRAL_MODE_P (mode
)
1947 && GET_CODE (op0
) == NOT
1948 && trueop1
== const1_rtx
)
1949 return simplify_gen_unary (NEG
, mode
, XEXP (op0
, 0), mode
);
1951 /* Handle both-operands-constant cases. We can only add
1952 CONST_INTs to constants since the sum of relocatable symbols
1953 can't be handled by most assemblers. Don't add CONST_INT
1954 to CONST_INT since overflow won't be computed properly if wider
1955 than HOST_BITS_PER_WIDE_INT. */
1957 if ((GET_CODE (op0
) == CONST
1958 || GET_CODE (op0
) == SYMBOL_REF
1959 || GET_CODE (op0
) == LABEL_REF
)
1960 && CONST_INT_P (op1
))
1961 return plus_constant (op0
, INTVAL (op1
));
1962 else if ((GET_CODE (op1
) == CONST
1963 || GET_CODE (op1
) == SYMBOL_REF
1964 || GET_CODE (op1
) == LABEL_REF
)
1965 && CONST_INT_P (op0
))
1966 return plus_constant (op1
, INTVAL (op0
));
1968 /* See if this is something like X * C - X or vice versa or
1969 if the multiplication is written as a shift. If so, we can
1970 distribute and make a new multiply, shift, or maybe just
1971 have X (if C is 2 in the example above). But don't make
1972 something more expensive than we had before. */
1974 if (SCALAR_INT_MODE_P (mode
))
1976 double_int coeff0
, coeff1
;
1977 rtx lhs
= op0
, rhs
= op1
;
1979 coeff0
= double_int_one
;
1980 coeff1
= double_int_one
;
1982 if (GET_CODE (lhs
) == NEG
)
1984 coeff0
= double_int_minus_one
;
1985 lhs
= XEXP (lhs
, 0);
1987 else if (GET_CODE (lhs
) == MULT
1988 && CONST_INT_P (XEXP (lhs
, 1)))
1990 coeff0
= shwi_to_double_int (INTVAL (XEXP (lhs
, 1)));
1991 lhs
= XEXP (lhs
, 0);
1993 else if (GET_CODE (lhs
) == ASHIFT
1994 && CONST_INT_P (XEXP (lhs
, 1))
1995 && INTVAL (XEXP (lhs
, 1)) >= 0
1996 && INTVAL (XEXP (lhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
1998 coeff0
= double_int_setbit (double_int_zero
,
1999 INTVAL (XEXP (lhs
, 1)));
2000 lhs
= XEXP (lhs
, 0);
2003 if (GET_CODE (rhs
) == NEG
)
2005 coeff1
= double_int_minus_one
;
2006 rhs
= XEXP (rhs
, 0);
2008 else if (GET_CODE (rhs
) == MULT
2009 && CONST_INT_P (XEXP (rhs
, 1)))
2011 coeff1
= shwi_to_double_int (INTVAL (XEXP (rhs
, 1)));
2012 rhs
= XEXP (rhs
, 0);
2014 else if (GET_CODE (rhs
) == ASHIFT
2015 && CONST_INT_P (XEXP (rhs
, 1))
2016 && INTVAL (XEXP (rhs
, 1)) >= 0
2017 && INTVAL (XEXP (rhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
2019 coeff1
= double_int_setbit (double_int_zero
,
2020 INTVAL (XEXP (rhs
, 1)));
2021 rhs
= XEXP (rhs
, 0);
2024 if (rtx_equal_p (lhs
, rhs
))
2026 rtx orig
= gen_rtx_PLUS (mode
, op0
, op1
);
2029 bool speed
= optimize_function_for_speed_p (cfun
);
2031 val
= double_int_add (coeff0
, coeff1
);
2032 coeff
= immed_double_int_const (val
, mode
);
2034 tem
= simplify_gen_binary (MULT
, mode
, lhs
, coeff
);
2035 return set_src_cost (tem
, speed
) <= set_src_cost (orig
, speed
)
2040 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
2041 if ((CONST_INT_P (op1
)
2042 || GET_CODE (op1
) == CONST_DOUBLE
)
2043 && GET_CODE (op0
) == XOR
2044 && (CONST_INT_P (XEXP (op0
, 1))
2045 || GET_CODE (XEXP (op0
, 1)) == CONST_DOUBLE
)
2046 && mode_signbit_p (mode
, op1
))
2047 return simplify_gen_binary (XOR
, mode
, XEXP (op0
, 0),
2048 simplify_gen_binary (XOR
, mode
, op1
,
2051 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
2052 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2053 && GET_CODE (op0
) == MULT
2054 && GET_CODE (XEXP (op0
, 0)) == NEG
)
2058 in1
= XEXP (XEXP (op0
, 0), 0);
2059 in2
= XEXP (op0
, 1);
2060 return simplify_gen_binary (MINUS
, mode
, op1
,
2061 simplify_gen_binary (MULT
, mode
,
2065 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
2066 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
2068 if (COMPARISON_P (op0
)
2069 && ((STORE_FLAG_VALUE
== -1 && trueop1
== const1_rtx
)
2070 || (STORE_FLAG_VALUE
== 1 && trueop1
== constm1_rtx
))
2071 && (reversed
= reversed_comparison (op0
, mode
)))
2073 simplify_gen_unary (NEG
, mode
, reversed
, mode
);
2075 /* If one of the operands is a PLUS or a MINUS, see if we can
2076 simplify this by the associative law.
2077 Don't use the associative law for floating point.
2078 The inaccuracy makes it nonassociative,
2079 and subtle programs can break if operations are associated. */
2081 if (INTEGRAL_MODE_P (mode
)
2082 && (plus_minus_operand_p (op0
)
2083 || plus_minus_operand_p (op1
))
2084 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
2087 /* Reassociate floating point addition only when the user
2088 specifies associative math operations. */
2089 if (FLOAT_MODE_P (mode
)
2090 && flag_associative_math
)
2092 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2099 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
2100 if (((GET_CODE (op0
) == GT
&& GET_CODE (op1
) == LT
)
2101 || (GET_CODE (op0
) == GTU
&& GET_CODE (op1
) == LTU
))
2102 && XEXP (op0
, 1) == const0_rtx
&& XEXP (op1
, 1) == const0_rtx
)
2104 rtx xop00
= XEXP (op0
, 0);
2105 rtx xop10
= XEXP (op1
, 0);
2108 if (GET_CODE (xop00
) == CC0
&& GET_CODE (xop10
) == CC0
)
2110 if (REG_P (xop00
) && REG_P (xop10
)
2111 && GET_MODE (xop00
) == GET_MODE (xop10
)
2112 && REGNO (xop00
) == REGNO (xop10
)
2113 && GET_MODE_CLASS (GET_MODE (xop00
)) == MODE_CC
2114 && GET_MODE_CLASS (GET_MODE (xop10
)) == MODE_CC
)
2121 /* We can't assume x-x is 0 even with non-IEEE floating point,
2122 but since it is zero except in very strange circumstances, we
2123 will treat it as zero with -ffinite-math-only. */
2124 if (rtx_equal_p (trueop0
, trueop1
)
2125 && ! side_effects_p (op0
)
2126 && (!FLOAT_MODE_P (mode
) || !HONOR_NANS (mode
)))
2127 return CONST0_RTX (mode
);
2129 /* Change subtraction from zero into negation. (0 - x) is the
2130 same as -x when x is NaN, infinite, or finite and nonzero.
2131 But if the mode has signed zeros, and does not round towards
2132 -infinity, then 0 - 0 is 0, not -0. */
2133 if (!HONOR_SIGNED_ZEROS (mode
) && trueop0
== CONST0_RTX (mode
))
2134 return simplify_gen_unary (NEG
, mode
, op1
, mode
);
2136 /* (-1 - a) is ~a. */
2137 if (trueop0
== constm1_rtx
)
2138 return simplify_gen_unary (NOT
, mode
, op1
, mode
);
2140 /* Subtracting 0 has no effect unless the mode has signed zeros
2141 and supports rounding towards -infinity. In such a case,
2143 if (!(HONOR_SIGNED_ZEROS (mode
)
2144 && HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
2145 && trueop1
== CONST0_RTX (mode
))
2148 /* See if this is something like X * C - X or vice versa or
2149 if the multiplication is written as a shift. If so, we can
2150 distribute and make a new multiply, shift, or maybe just
2151 have X (if C is 2 in the example above). But don't make
2152 something more expensive than we had before. */
2154 if (SCALAR_INT_MODE_P (mode
))
2156 double_int coeff0
, negcoeff1
;
2157 rtx lhs
= op0
, rhs
= op1
;
2159 coeff0
= double_int_one
;
2160 negcoeff1
= double_int_minus_one
;
2162 if (GET_CODE (lhs
) == NEG
)
2164 coeff0
= double_int_minus_one
;
2165 lhs
= XEXP (lhs
, 0);
2167 else if (GET_CODE (lhs
) == MULT
2168 && CONST_INT_P (XEXP (lhs
, 1)))
2170 coeff0
= shwi_to_double_int (INTVAL (XEXP (lhs
, 1)));
2171 lhs
= XEXP (lhs
, 0);
2173 else if (GET_CODE (lhs
) == ASHIFT
2174 && CONST_INT_P (XEXP (lhs
, 1))
2175 && INTVAL (XEXP (lhs
, 1)) >= 0
2176 && INTVAL (XEXP (lhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
2178 coeff0
= double_int_setbit (double_int_zero
,
2179 INTVAL (XEXP (lhs
, 1)));
2180 lhs
= XEXP (lhs
, 0);
2183 if (GET_CODE (rhs
) == NEG
)
2185 negcoeff1
= double_int_one
;
2186 rhs
= XEXP (rhs
, 0);
2188 else if (GET_CODE (rhs
) == MULT
2189 && CONST_INT_P (XEXP (rhs
, 1)))
2191 negcoeff1
= shwi_to_double_int (-INTVAL (XEXP (rhs
, 1)));
2192 rhs
= XEXP (rhs
, 0);
2194 else if (GET_CODE (rhs
) == ASHIFT
2195 && CONST_INT_P (XEXP (rhs
, 1))
2196 && INTVAL (XEXP (rhs
, 1)) >= 0
2197 && INTVAL (XEXP (rhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
2199 negcoeff1
= double_int_setbit (double_int_zero
,
2200 INTVAL (XEXP (rhs
, 1)));
2201 negcoeff1
= double_int_neg (negcoeff1
);
2202 rhs
= XEXP (rhs
, 0);
2205 if (rtx_equal_p (lhs
, rhs
))
2207 rtx orig
= gen_rtx_MINUS (mode
, op0
, op1
);
2210 bool speed
= optimize_function_for_speed_p (cfun
);
2212 val
= double_int_add (coeff0
, negcoeff1
);
2213 coeff
= immed_double_int_const (val
, mode
);
2215 tem
= simplify_gen_binary (MULT
, mode
, lhs
, coeff
);
2216 return set_src_cost (tem
, speed
) <= set_src_cost (orig
, speed
)
2221 /* (a - (-b)) -> (a + b). True even for IEEE. */
2222 if (GET_CODE (op1
) == NEG
)
2223 return simplify_gen_binary (PLUS
, mode
, op0
, XEXP (op1
, 0));
2225 /* (-x - c) may be simplified as (-c - x). */
2226 if (GET_CODE (op0
) == NEG
2227 && (CONST_INT_P (op1
)
2228 || GET_CODE (op1
) == CONST_DOUBLE
))
2230 tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
2232 return simplify_gen_binary (MINUS
, mode
, tem
, XEXP (op0
, 0));
2235 /* Don't let a relocatable value get a negative coeff. */
2236 if (CONST_INT_P (op1
) && GET_MODE (op0
) != VOIDmode
)
2237 return simplify_gen_binary (PLUS
, mode
,
2239 neg_const_int (mode
, op1
));
2241 /* (x - (x & y)) -> (x & ~y) */
2242 if (GET_CODE (op1
) == AND
)
2244 if (rtx_equal_p (op0
, XEXP (op1
, 0)))
2246 tem
= simplify_gen_unary (NOT
, mode
, XEXP (op1
, 1),
2247 GET_MODE (XEXP (op1
, 1)));
2248 return simplify_gen_binary (AND
, mode
, op0
, tem
);
2250 if (rtx_equal_p (op0
, XEXP (op1
, 1)))
2252 tem
= simplify_gen_unary (NOT
, mode
, XEXP (op1
, 0),
2253 GET_MODE (XEXP (op1
, 0)));
2254 return simplify_gen_binary (AND
, mode
, op0
, tem
);
2258 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
2259 by reversing the comparison code if valid. */
2260 if (STORE_FLAG_VALUE
== 1
2261 && trueop0
== const1_rtx
2262 && COMPARISON_P (op1
)
2263 && (reversed
= reversed_comparison (op1
, mode
)))
2266 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
2267 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2268 && GET_CODE (op1
) == MULT
2269 && GET_CODE (XEXP (op1
, 0)) == NEG
)
2273 in1
= XEXP (XEXP (op1
, 0), 0);
2274 in2
= XEXP (op1
, 1);
2275 return simplify_gen_binary (PLUS
, mode
,
2276 simplify_gen_binary (MULT
, mode
,
2281 /* Canonicalize (minus (neg A) (mult B C)) to
2282 (minus (mult (neg B) C) A). */
2283 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2284 && GET_CODE (op1
) == MULT
2285 && GET_CODE (op0
) == NEG
)
2289 in1
= simplify_gen_unary (NEG
, mode
, XEXP (op1
, 0), mode
);
2290 in2
= XEXP (op1
, 1);
2291 return simplify_gen_binary (MINUS
, mode
,
2292 simplify_gen_binary (MULT
, mode
,
2297 /* If one of the operands is a PLUS or a MINUS, see if we can
2298 simplify this by the associative law. This will, for example,
2299 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
2300 Don't use the associative law for floating point.
2301 The inaccuracy makes it nonassociative,
2302 and subtle programs can break if operations are associated. */
2304 if (INTEGRAL_MODE_P (mode
)
2305 && (plus_minus_operand_p (op0
)
2306 || plus_minus_operand_p (op1
))
2307 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
2312 if (trueop1
== constm1_rtx
)
2313 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
2315 if (GET_CODE (op0
) == NEG
)
2317 rtx temp
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
2318 /* If op1 is a MULT as well and simplify_unary_operation
2319 just moved the NEG to the second operand, simplify_gen_binary
2320 below could through simplify_associative_operation move
2321 the NEG around again and recurse endlessly. */
2323 && GET_CODE (op1
) == MULT
2324 && GET_CODE (temp
) == MULT
2325 && XEXP (op1
, 0) == XEXP (temp
, 0)
2326 && GET_CODE (XEXP (temp
, 1)) == NEG
2327 && XEXP (op1
, 1) == XEXP (XEXP (temp
, 1), 0))
2330 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), temp
);
2332 if (GET_CODE (op1
) == NEG
)
2334 rtx temp
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
2335 /* If op0 is a MULT as well and simplify_unary_operation
2336 just moved the NEG to the second operand, simplify_gen_binary
2337 below could through simplify_associative_operation move
2338 the NEG around again and recurse endlessly. */
2340 && GET_CODE (op0
) == MULT
2341 && GET_CODE (temp
) == MULT
2342 && XEXP (op0
, 0) == XEXP (temp
, 0)
2343 && GET_CODE (XEXP (temp
, 1)) == NEG
2344 && XEXP (op0
, 1) == XEXP (XEXP (temp
, 1), 0))
2347 return simplify_gen_binary (MULT
, mode
, temp
, XEXP (op1
, 0));
2350 /* Maybe simplify x * 0 to 0. The reduction is not valid if
2351 x is NaN, since x * 0 is then also NaN. Nor is it valid
2352 when the mode has signed zeros, since multiplying a negative
2353 number by 0 will give -0, not 0. */
2354 if (!HONOR_NANS (mode
)
2355 && !HONOR_SIGNED_ZEROS (mode
)
2356 && trueop1
== CONST0_RTX (mode
)
2357 && ! side_effects_p (op0
))
2360 /* In IEEE floating point, x*1 is not equivalent to x for
2362 if (!HONOR_SNANS (mode
)
2363 && trueop1
== CONST1_RTX (mode
))
2366 /* Convert multiply by constant power of two into shift unless
2367 we are still generating RTL. This test is a kludge. */
2368 if (CONST_INT_P (trueop1
)
2369 && (val
= exact_log2 (UINTVAL (trueop1
))) >= 0
2370 /* If the mode is larger than the host word size, and the
2371 uppermost bit is set, then this isn't a power of two due
2372 to implicit sign extension. */
2373 && (width
<= HOST_BITS_PER_WIDE_INT
2374 || val
!= HOST_BITS_PER_WIDE_INT
- 1))
2375 return simplify_gen_binary (ASHIFT
, mode
, op0
, GEN_INT (val
));
2377 /* Likewise for multipliers wider than a word. */
2378 if (GET_CODE (trueop1
) == CONST_DOUBLE
2379 && (GET_MODE (trueop1
) == VOIDmode
2380 || GET_MODE_CLASS (GET_MODE (trueop1
)) == MODE_INT
)
2381 && GET_MODE (op0
) == mode
2382 && CONST_DOUBLE_LOW (trueop1
) == 0
2383 && (val
= exact_log2 (CONST_DOUBLE_HIGH (trueop1
))) >= 0)
2384 return simplify_gen_binary (ASHIFT
, mode
, op0
,
2385 GEN_INT (val
+ HOST_BITS_PER_WIDE_INT
));
2387 /* x*2 is x+x and x*(-1) is -x */
2388 if (GET_CODE (trueop1
) == CONST_DOUBLE
2389 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1
))
2390 && !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1
))
2391 && GET_MODE (op0
) == mode
)
2394 REAL_VALUE_FROM_CONST_DOUBLE (d
, trueop1
);
2396 if (REAL_VALUES_EQUAL (d
, dconst2
))
2397 return simplify_gen_binary (PLUS
, mode
, op0
, copy_rtx (op0
));
2399 if (!HONOR_SNANS (mode
)
2400 && REAL_VALUES_EQUAL (d
, dconstm1
))
2401 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
2404 /* Optimize -x * -x as x * x. */
2405 if (FLOAT_MODE_P (mode
)
2406 && GET_CODE (op0
) == NEG
2407 && GET_CODE (op1
) == NEG
2408 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
2409 && !side_effects_p (XEXP (op0
, 0)))
2410 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), XEXP (op1
, 0));
2412 /* Likewise, optimize abs(x) * abs(x) as x * x. */
2413 if (SCALAR_FLOAT_MODE_P (mode
)
2414 && GET_CODE (op0
) == ABS
2415 && GET_CODE (op1
) == ABS
2416 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
2417 && !side_effects_p (XEXP (op0
, 0)))
2418 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), XEXP (op1
, 0));
2420 /* Reassociate multiplication, but for floating point MULTs
2421 only when the user specifies unsafe math optimizations. */
2422 if (! FLOAT_MODE_P (mode
)
2423 || flag_unsafe_math_optimizations
)
2425 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2432 if (trueop1
== CONST0_RTX (mode
))
2434 if (INTEGRAL_MODE_P (mode
) && trueop1
== CONSTM1_RTX (mode
))
2436 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
2438 /* A | (~A) -> -1 */
2439 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
2440 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
2441 && ! side_effects_p (op0
)
2442 && SCALAR_INT_MODE_P (mode
))
2445 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
2446 if (CONST_INT_P (op1
)
2447 && HWI_COMPUTABLE_MODE_P (mode
)
2448 && (nonzero_bits (op0
, mode
) & ~UINTVAL (op1
)) == 0)
2451 /* Canonicalize (X & C1) | C2. */
2452 if (GET_CODE (op0
) == AND
2453 && CONST_INT_P (trueop1
)
2454 && CONST_INT_P (XEXP (op0
, 1)))
2456 HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
2457 HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
2458 HOST_WIDE_INT c2
= INTVAL (trueop1
);
2460 /* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
2462 && !side_effects_p (XEXP (op0
, 0)))
2465 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
2466 if (((c1
|c2
) & mask
) == mask
)
2467 return simplify_gen_binary (IOR
, mode
, XEXP (op0
, 0), op1
);
2469 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
2470 if (((c1
& ~c2
) & mask
) != (c1
& mask
))
2472 tem
= simplify_gen_binary (AND
, mode
, XEXP (op0
, 0),
2473 gen_int_mode (c1
& ~c2
, mode
));
2474 return simplify_gen_binary (IOR
, mode
, tem
, op1
);
2478 /* Convert (A & B) | A to A. */
2479 if (GET_CODE (op0
) == AND
2480 && (rtx_equal_p (XEXP (op0
, 0), op1
)
2481 || rtx_equal_p (XEXP (op0
, 1), op1
))
2482 && ! side_effects_p (XEXP (op0
, 0))
2483 && ! side_effects_p (XEXP (op0
, 1)))
2486 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
2487 mode size to (rotate A CX). */
2489 if (GET_CODE (op1
) == ASHIFT
2490 || GET_CODE (op1
) == SUBREG
)
2501 if (GET_CODE (opleft
) == ASHIFT
&& GET_CODE (opright
) == LSHIFTRT
2502 && rtx_equal_p (XEXP (opleft
, 0), XEXP (opright
, 0))
2503 && CONST_INT_P (XEXP (opleft
, 1))
2504 && CONST_INT_P (XEXP (opright
, 1))
2505 && (INTVAL (XEXP (opleft
, 1)) + INTVAL (XEXP (opright
, 1))
2506 == GET_MODE_PRECISION (mode
)))
2507 return gen_rtx_ROTATE (mode
, XEXP (opright
, 0), XEXP (opleft
, 1));
2509 /* Same, but for ashift that has been "simplified" to a wider mode
2510 by simplify_shift_const. */
2512 if (GET_CODE (opleft
) == SUBREG
2513 && GET_CODE (SUBREG_REG (opleft
)) == ASHIFT
2514 && GET_CODE (opright
) == LSHIFTRT
2515 && GET_CODE (XEXP (opright
, 0)) == SUBREG
2516 && GET_MODE (opleft
) == GET_MODE (XEXP (opright
, 0))
2517 && SUBREG_BYTE (opleft
) == SUBREG_BYTE (XEXP (opright
, 0))
2518 && (GET_MODE_SIZE (GET_MODE (opleft
))
2519 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft
))))
2520 && rtx_equal_p (XEXP (SUBREG_REG (opleft
), 0),
2521 SUBREG_REG (XEXP (opright
, 0)))
2522 && CONST_INT_P (XEXP (SUBREG_REG (opleft
), 1))
2523 && CONST_INT_P (XEXP (opright
, 1))
2524 && (INTVAL (XEXP (SUBREG_REG (opleft
), 1)) + INTVAL (XEXP (opright
, 1))
2525 == GET_MODE_PRECISION (mode
)))
2526 return gen_rtx_ROTATE (mode
, XEXP (opright
, 0),
2527 XEXP (SUBREG_REG (opleft
), 1));
2529 /* If we have (ior (and (X C1) C2)), simplify this by making
2530 C1 as small as possible if C1 actually changes. */
2531 if (CONST_INT_P (op1
)
2532 && (HWI_COMPUTABLE_MODE_P (mode
)
2533 || INTVAL (op1
) > 0)
2534 && GET_CODE (op0
) == AND
2535 && CONST_INT_P (XEXP (op0
, 1))
2536 && CONST_INT_P (op1
)
2537 && (UINTVAL (XEXP (op0
, 1)) & UINTVAL (op1
)) != 0)
2538 return simplify_gen_binary (IOR
, mode
,
2540 (AND
, mode
, XEXP (op0
, 0),
2541 GEN_INT (UINTVAL (XEXP (op0
, 1))
2545 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2546 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2547 the PLUS does not affect any of the bits in OP1: then we can do
2548 the IOR as a PLUS and we can associate. This is valid if OP1
2549 can be safely shifted left C bits. */
2550 if (CONST_INT_P (trueop1
) && GET_CODE (op0
) == ASHIFTRT
2551 && GET_CODE (XEXP (op0
, 0)) == PLUS
2552 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
2553 && CONST_INT_P (XEXP (op0
, 1))
2554 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
)
2556 int count
= INTVAL (XEXP (op0
, 1));
2557 HOST_WIDE_INT mask
= INTVAL (trueop1
) << count
;
2559 if (mask
>> count
== INTVAL (trueop1
)
2560 && (mask
& nonzero_bits (XEXP (op0
, 0), mode
)) == 0)
2561 return simplify_gen_binary (ASHIFTRT
, mode
,
2562 plus_constant (XEXP (op0
, 0), mask
),
2566 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2572 if (trueop1
== CONST0_RTX (mode
))
2574 if (INTEGRAL_MODE_P (mode
) && trueop1
== CONSTM1_RTX (mode
))
2575 return simplify_gen_unary (NOT
, mode
, op0
, mode
);
2576 if (rtx_equal_p (trueop0
, trueop1
)
2577 && ! side_effects_p (op0
)
2578 && GET_MODE_CLASS (mode
) != MODE_CC
)
2579 return CONST0_RTX (mode
);
2581 /* Canonicalize XOR of the most significant bit to PLUS. */
2582 if ((CONST_INT_P (op1
)
2583 || GET_CODE (op1
) == CONST_DOUBLE
)
2584 && mode_signbit_p (mode
, op1
))
2585 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
2586 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2587 if ((CONST_INT_P (op1
)
2588 || GET_CODE (op1
) == CONST_DOUBLE
)
2589 && GET_CODE (op0
) == PLUS
2590 && (CONST_INT_P (XEXP (op0
, 1))
2591 || GET_CODE (XEXP (op0
, 1)) == CONST_DOUBLE
)
2592 && mode_signbit_p (mode
, XEXP (op0
, 1)))
2593 return simplify_gen_binary (XOR
, mode
, XEXP (op0
, 0),
2594 simplify_gen_binary (XOR
, mode
, op1
,
2597 /* If we are XORing two things that have no bits in common,
2598 convert them into an IOR. This helps to detect rotation encoded
2599 using those methods and possibly other simplifications. */
2601 if (HWI_COMPUTABLE_MODE_P (mode
)
2602 && (nonzero_bits (op0
, mode
)
2603 & nonzero_bits (op1
, mode
)) == 0)
2604 return (simplify_gen_binary (IOR
, mode
, op0
, op1
));
2606 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2607 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2610 int num_negated
= 0;
2612 if (GET_CODE (op0
) == NOT
)
2613 num_negated
++, op0
= XEXP (op0
, 0);
2614 if (GET_CODE (op1
) == NOT
)
2615 num_negated
++, op1
= XEXP (op1
, 0);
2617 if (num_negated
== 2)
2618 return simplify_gen_binary (XOR
, mode
, op0
, op1
);
2619 else if (num_negated
== 1)
2620 return simplify_gen_unary (NOT
, mode
,
2621 simplify_gen_binary (XOR
, mode
, op0
, op1
),
2625 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2626 correspond to a machine insn or result in further simplifications
2627 if B is a constant. */
2629 if (GET_CODE (op0
) == AND
2630 && rtx_equal_p (XEXP (op0
, 1), op1
)
2631 && ! side_effects_p (op1
))
2632 return simplify_gen_binary (AND
, mode
,
2633 simplify_gen_unary (NOT
, mode
,
2634 XEXP (op0
, 0), mode
),
2637 else if (GET_CODE (op0
) == AND
2638 && rtx_equal_p (XEXP (op0
, 0), op1
)
2639 && ! side_effects_p (op1
))
2640 return simplify_gen_binary (AND
, mode
,
2641 simplify_gen_unary (NOT
, mode
,
2642 XEXP (op0
, 1), mode
),
2645 /* Given (xor (and A B) C), using P^Q == (~P&Q) | (~Q&P),
2646 we can transform like this:
2647 (A&B)^C == ~(A&B)&C | ~C&(A&B)
2648 == (~A|~B)&C | ~C&(A&B) * DeMorgan's Law
2649 == ~A&C | ~B&C | A&(~C&B) * Distribute and re-order
2650 Attempt a few simplifications when B and C are both constants. */
2651 if (GET_CODE (op0
) == AND
2652 && CONST_INT_P (op1
)
2653 && CONST_INT_P (XEXP (op0
, 1)))
2655 rtx a
= XEXP (op0
, 0);
2656 rtx b
= XEXP (op0
, 1);
2658 HOST_WIDE_INT bval
= INTVAL (b
);
2659 HOST_WIDE_INT cval
= INTVAL (c
);
2662 = simplify_binary_operation (AND
, mode
,
2663 simplify_gen_unary (NOT
, mode
, a
, mode
),
2665 if ((~cval
& bval
) == 0)
2667 /* Try to simplify ~A&C | ~B&C. */
2668 if (na_c
!= NULL_RTX
)
2669 return simplify_gen_binary (IOR
, mode
, na_c
,
2670 GEN_INT (~bval
& cval
));
2674 /* If ~A&C is zero, simplify A&(~C&B) | ~B&C. */
2675 if (na_c
== const0_rtx
)
2677 rtx a_nc_b
= simplify_gen_binary (AND
, mode
, a
,
2678 GEN_INT (~cval
& bval
));
2679 return simplify_gen_binary (IOR
, mode
, a_nc_b
,
2680 GEN_INT (~bval
& cval
));
2685 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2686 comparison if STORE_FLAG_VALUE is 1. */
2687 if (STORE_FLAG_VALUE
== 1
2688 && trueop1
== const1_rtx
2689 && COMPARISON_P (op0
)
2690 && (reversed
= reversed_comparison (op0
, mode
)))
2693 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2694 is (lt foo (const_int 0)), so we can perform the above
2695 simplification if STORE_FLAG_VALUE is 1. */
2697 if (STORE_FLAG_VALUE
== 1
2698 && trueop1
== const1_rtx
2699 && GET_CODE (op0
) == LSHIFTRT
2700 && CONST_INT_P (XEXP (op0
, 1))
2701 && INTVAL (XEXP (op0
, 1)) == GET_MODE_PRECISION (mode
) - 1)
2702 return gen_rtx_GE (mode
, XEXP (op0
, 0), const0_rtx
);
2704 /* (xor (comparison foo bar) (const_int sign-bit))
2705 when STORE_FLAG_VALUE is the sign bit. */
2706 if (val_signbit_p (mode
, STORE_FLAG_VALUE
)
2707 && trueop1
== const_true_rtx
2708 && COMPARISON_P (op0
)
2709 && (reversed
= reversed_comparison (op0
, mode
)))
2712 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2718 if (trueop1
== CONST0_RTX (mode
) && ! side_effects_p (op0
))
2720 if (INTEGRAL_MODE_P (mode
) && trueop1
== CONSTM1_RTX (mode
))
2722 if (HWI_COMPUTABLE_MODE_P (mode
))
2724 HOST_WIDE_INT nzop0
= nonzero_bits (trueop0
, mode
);
2725 HOST_WIDE_INT nzop1
;
2726 if (CONST_INT_P (trueop1
))
2728 HOST_WIDE_INT val1
= INTVAL (trueop1
);
2729 /* If we are turning off bits already known off in OP0, we need
2731 if ((nzop0
& ~val1
) == 0)
2734 nzop1
= nonzero_bits (trueop1
, mode
);
2735 /* If we are clearing all the nonzero bits, the result is zero. */
2736 if ((nzop1
& nzop0
) == 0
2737 && !side_effects_p (op0
) && !side_effects_p (op1
))
2738 return CONST0_RTX (mode
);
2740 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
)
2741 && GET_MODE_CLASS (mode
) != MODE_CC
)
2744 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
2745 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
2746 && ! side_effects_p (op0
)
2747 && GET_MODE_CLASS (mode
) != MODE_CC
)
2748 return CONST0_RTX (mode
);
2750 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2751 there are no nonzero bits of C outside of X's mode. */
2752 if ((GET_CODE (op0
) == SIGN_EXTEND
2753 || GET_CODE (op0
) == ZERO_EXTEND
)
2754 && CONST_INT_P (trueop1
)
2755 && HWI_COMPUTABLE_MODE_P (mode
)
2756 && (~GET_MODE_MASK (GET_MODE (XEXP (op0
, 0)))
2757 & UINTVAL (trueop1
)) == 0)
2759 enum machine_mode imode
= GET_MODE (XEXP (op0
, 0));
2760 tem
= simplify_gen_binary (AND
, imode
, XEXP (op0
, 0),
2761 gen_int_mode (INTVAL (trueop1
),
2763 return simplify_gen_unary (ZERO_EXTEND
, mode
, tem
, imode
);
2766 /* Transform (and (truncate X) C) into (truncate (and X C)). This way
2767 we might be able to further simplify the AND with X and potentially
2768 remove the truncation altogether. */
2769 if (GET_CODE (op0
) == TRUNCATE
&& CONST_INT_P (trueop1
))
2771 rtx x
= XEXP (op0
, 0);
2772 enum machine_mode xmode
= GET_MODE (x
);
2773 tem
= simplify_gen_binary (AND
, xmode
, x
,
2774 gen_int_mode (INTVAL (trueop1
), xmode
));
2775 return simplify_gen_unary (TRUNCATE
, mode
, tem
, xmode
);
2778 /* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
2779 if (GET_CODE (op0
) == IOR
2780 && CONST_INT_P (trueop1
)
2781 && CONST_INT_P (XEXP (op0
, 1)))
2783 HOST_WIDE_INT tmp
= INTVAL (trueop1
) & INTVAL (XEXP (op0
, 1));
2784 return simplify_gen_binary (IOR
, mode
,
2785 simplify_gen_binary (AND
, mode
,
2786 XEXP (op0
, 0), op1
),
2787 gen_int_mode (tmp
, mode
));
2790 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2791 insn (and may simplify more). */
2792 if (GET_CODE (op0
) == XOR
2793 && rtx_equal_p (XEXP (op0
, 0), op1
)
2794 && ! side_effects_p (op1
))
2795 return simplify_gen_binary (AND
, mode
,
2796 simplify_gen_unary (NOT
, mode
,
2797 XEXP (op0
, 1), mode
),
2800 if (GET_CODE (op0
) == XOR
2801 && rtx_equal_p (XEXP (op0
, 1), op1
)
2802 && ! side_effects_p (op1
))
2803 return simplify_gen_binary (AND
, mode
,
2804 simplify_gen_unary (NOT
, mode
,
2805 XEXP (op0
, 0), mode
),
2808 /* Similarly for (~(A ^ B)) & A. */
2809 if (GET_CODE (op0
) == NOT
2810 && GET_CODE (XEXP (op0
, 0)) == XOR
2811 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), op1
)
2812 && ! side_effects_p (op1
))
2813 return simplify_gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 1), op1
);
2815 if (GET_CODE (op0
) == NOT
2816 && GET_CODE (XEXP (op0
, 0)) == XOR
2817 && rtx_equal_p (XEXP (XEXP (op0
, 0), 1), op1
)
2818 && ! side_effects_p (op1
))
2819 return simplify_gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 0), op1
);
2821 /* Convert (A | B) & A to A. */
2822 if (GET_CODE (op0
) == IOR
2823 && (rtx_equal_p (XEXP (op0
, 0), op1
)
2824 || rtx_equal_p (XEXP (op0
, 1), op1
))
2825 && ! side_effects_p (XEXP (op0
, 0))
2826 && ! side_effects_p (XEXP (op0
, 1)))
2829 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2830 ((A & N) + B) & M -> (A + B) & M
2831 Similarly if (N & M) == 0,
2832 ((A | N) + B) & M -> (A + B) & M
2833 and for - instead of + and/or ^ instead of |.
2834 Also, if (N & M) == 0, then
2835 (A +- N) & M -> A & M. */
2836 if (CONST_INT_P (trueop1
)
2837 && HWI_COMPUTABLE_MODE_P (mode
)
2838 && ~UINTVAL (trueop1
)
2839 && (UINTVAL (trueop1
) & (UINTVAL (trueop1
) + 1)) == 0
2840 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
))
2845 pmop
[0] = XEXP (op0
, 0);
2846 pmop
[1] = XEXP (op0
, 1);
2848 if (CONST_INT_P (pmop
[1])
2849 && (UINTVAL (pmop
[1]) & UINTVAL (trueop1
)) == 0)
2850 return simplify_gen_binary (AND
, mode
, pmop
[0], op1
);
2852 for (which
= 0; which
< 2; which
++)
2855 switch (GET_CODE (tem
))
2858 if (CONST_INT_P (XEXP (tem
, 1))
2859 && (UINTVAL (XEXP (tem
, 1)) & UINTVAL (trueop1
))
2860 == UINTVAL (trueop1
))
2861 pmop
[which
] = XEXP (tem
, 0);
2865 if (CONST_INT_P (XEXP (tem
, 1))
2866 && (UINTVAL (XEXP (tem
, 1)) & UINTVAL (trueop1
)) == 0)
2867 pmop
[which
] = XEXP (tem
, 0);
2874 if (pmop
[0] != XEXP (op0
, 0) || pmop
[1] != XEXP (op0
, 1))
2876 tem
= simplify_gen_binary (GET_CODE (op0
), mode
,
2878 return simplify_gen_binary (code
, mode
, tem
, op1
);
2882 /* (and X (ior (not X) Y) -> (and X Y) */
2883 if (GET_CODE (op1
) == IOR
2884 && GET_CODE (XEXP (op1
, 0)) == NOT
2885 && op0
== XEXP (XEXP (op1
, 0), 0))
2886 return simplify_gen_binary (AND
, mode
, op0
, XEXP (op1
, 1));
2888 /* (and (ior (not X) Y) X) -> (and X Y) */
2889 if (GET_CODE (op0
) == IOR
2890 && GET_CODE (XEXP (op0
, 0)) == NOT
2891 && op1
== XEXP (XEXP (op0
, 0), 0))
2892 return simplify_gen_binary (AND
, mode
, op1
, XEXP (op0
, 1));
2894 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2900 /* 0/x is 0 (or x&0 if x has side-effects). */
2901 if (trueop0
== CONST0_RTX (mode
))
2903 if (side_effects_p (op1
))
2904 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
2908 if (trueop1
== CONST1_RTX (mode
))
2909 return rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
2910 /* Convert divide by power of two into shift. */
2911 if (CONST_INT_P (trueop1
)
2912 && (val
= exact_log2 (UINTVAL (trueop1
))) > 0)
2913 return simplify_gen_binary (LSHIFTRT
, mode
, op0
, GEN_INT (val
));
2917 /* Handle floating point and integers separately. */
2918 if (SCALAR_FLOAT_MODE_P (mode
))
2920 /* Maybe change 0.0 / x to 0.0. This transformation isn't
2921 safe for modes with NaNs, since 0.0 / 0.0 will then be
2922 NaN rather than 0.0. Nor is it safe for modes with signed
2923 zeros, since dividing 0 by a negative number gives -0.0 */
2924 if (trueop0
== CONST0_RTX (mode
)
2925 && !HONOR_NANS (mode
)
2926 && !HONOR_SIGNED_ZEROS (mode
)
2927 && ! side_effects_p (op1
))
2930 if (trueop1
== CONST1_RTX (mode
)
2931 && !HONOR_SNANS (mode
))
2934 if (GET_CODE (trueop1
) == CONST_DOUBLE
2935 && trueop1
!= CONST0_RTX (mode
))
2938 REAL_VALUE_FROM_CONST_DOUBLE (d
, trueop1
);
2941 if (REAL_VALUES_EQUAL (d
, dconstm1
)
2942 && !HONOR_SNANS (mode
))
2943 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
2945 /* Change FP division by a constant into multiplication.
2946 Only do this with -freciprocal-math. */
2947 if (flag_reciprocal_math
2948 && !REAL_VALUES_EQUAL (d
, dconst0
))
2950 REAL_ARITHMETIC (d
, RDIV_EXPR
, dconst1
, d
);
2951 tem
= CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
2952 return simplify_gen_binary (MULT
, mode
, op0
, tem
);
2956 else if (SCALAR_INT_MODE_P (mode
))
2958 /* 0/x is 0 (or x&0 if x has side-effects). */
2959 if (trueop0
== CONST0_RTX (mode
)
2960 && !cfun
->can_throw_non_call_exceptions
)
2962 if (side_effects_p (op1
))
2963 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
2967 if (trueop1
== CONST1_RTX (mode
))
2968 return rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
2970 if (trueop1
== constm1_rtx
)
2972 rtx x
= rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
2973 return simplify_gen_unary (NEG
, mode
, x
, mode
);
2979 /* 0%x is 0 (or x&0 if x has side-effects). */
2980 if (trueop0
== CONST0_RTX (mode
))
2982 if (side_effects_p (op1
))
2983 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
2986 /* x%1 is 0 (of x&0 if x has side-effects). */
2987 if (trueop1
== CONST1_RTX (mode
))
2989 if (side_effects_p (op0
))
2990 return simplify_gen_binary (AND
, mode
, op0
, CONST0_RTX (mode
));
2991 return CONST0_RTX (mode
);
2993 /* Implement modulus by power of two as AND. */
2994 if (CONST_INT_P (trueop1
)
2995 && exact_log2 (UINTVAL (trueop1
)) > 0)
2996 return simplify_gen_binary (AND
, mode
, op0
,
2997 GEN_INT (INTVAL (op1
) - 1));
3001 /* 0%x is 0 (or x&0 if x has side-effects). */
3002 if (trueop0
== CONST0_RTX (mode
))
3004 if (side_effects_p (op1
))
3005 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3008 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
3009 if (trueop1
== CONST1_RTX (mode
) || trueop1
== constm1_rtx
)
3011 if (side_effects_p (op0
))
3012 return simplify_gen_binary (AND
, mode
, op0
, CONST0_RTX (mode
));
3013 return CONST0_RTX (mode
);
3020 if (trueop1
== CONST0_RTX (mode
))
3022 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3024 /* Rotating ~0 always results in ~0. */
3025 if (CONST_INT_P (trueop0
) && width
<= HOST_BITS_PER_WIDE_INT
3026 && UINTVAL (trueop0
) == GET_MODE_MASK (mode
)
3027 && ! side_effects_p (op1
))
3030 if (SHIFT_COUNT_TRUNCATED
&& CONST_INT_P (op1
))
3032 val
= INTVAL (op1
) & (GET_MODE_BITSIZE (mode
) - 1);
3033 if (val
!= INTVAL (op1
))
3034 return simplify_gen_binary (code
, mode
, op0
, GEN_INT (val
));
3041 if (trueop1
== CONST0_RTX (mode
))
3043 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3045 goto canonicalize_shift
;
3048 if (trueop1
== CONST0_RTX (mode
))
3050 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3052 /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
3053 if (GET_CODE (op0
) == CLZ
3054 && CONST_INT_P (trueop1
)
3055 && STORE_FLAG_VALUE
== 1
3056 && INTVAL (trueop1
) < (HOST_WIDE_INT
)width
)
3058 enum machine_mode imode
= GET_MODE (XEXP (op0
, 0));
3059 unsigned HOST_WIDE_INT zero_val
= 0;
3061 if (CLZ_DEFINED_VALUE_AT_ZERO (imode
, zero_val
)
3062 && zero_val
== GET_MODE_PRECISION (imode
)
3063 && INTVAL (trueop1
) == exact_log2 (zero_val
))
3064 return simplify_gen_relational (EQ
, mode
, imode
,
3065 XEXP (op0
, 0), const0_rtx
);
3067 goto canonicalize_shift
;
3070 if (width
<= HOST_BITS_PER_WIDE_INT
3071 && mode_signbit_p (mode
, trueop1
)
3072 && ! side_effects_p (op0
))
3074 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3076 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3082 if (width
<= HOST_BITS_PER_WIDE_INT
3083 && CONST_INT_P (trueop1
)
3084 && (UINTVAL (trueop1
) == GET_MODE_MASK (mode
) >> 1)
3085 && ! side_effects_p (op0
))
3087 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3089 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3095 if (trueop1
== CONST0_RTX (mode
) && ! side_effects_p (op0
))
3097 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3099 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3105 if (trueop1
== constm1_rtx
&& ! side_effects_p (op0
))
3107 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3109 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3122 /* ??? There are simplifications that can be done. */
3126 if (!VECTOR_MODE_P (mode
))
3128 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0
)));
3129 gcc_assert (mode
== GET_MODE_INNER (GET_MODE (trueop0
)));
3130 gcc_assert (GET_CODE (trueop1
) == PARALLEL
);
3131 gcc_assert (XVECLEN (trueop1
, 0) == 1);
3132 gcc_assert (CONST_INT_P (XVECEXP (trueop1
, 0, 0)));
3134 if (GET_CODE (trueop0
) == CONST_VECTOR
)
3135 return CONST_VECTOR_ELT (trueop0
, INTVAL (XVECEXP
3138 /* Extract a scalar element from a nested VEC_SELECT expression
3139 (with optional nested VEC_CONCAT expression). Some targets
3140 (i386) extract scalar element from a vector using chain of
3141 nested VEC_SELECT expressions. When input operand is a memory
3142 operand, this operation can be simplified to a simple scalar
3143 load from an offseted memory address. */
3144 if (GET_CODE (trueop0
) == VEC_SELECT
)
3146 rtx op0
= XEXP (trueop0
, 0);
3147 rtx op1
= XEXP (trueop0
, 1);
3149 enum machine_mode opmode
= GET_MODE (op0
);
3150 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (opmode
));
3151 int n_elts
= GET_MODE_SIZE (opmode
) / elt_size
;
3153 int i
= INTVAL (XVECEXP (trueop1
, 0, 0));
3159 gcc_assert (GET_CODE (op1
) == PARALLEL
);
3160 gcc_assert (i
< n_elts
);
3162 /* Select element, pointed by nested selector. */
3163 elem
= INTVAL (XVECEXP (op1
, 0, i
));
3165 /* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
3166 if (GET_CODE (op0
) == VEC_CONCAT
)
3168 rtx op00
= XEXP (op0
, 0);
3169 rtx op01
= XEXP (op0
, 1);
3171 enum machine_mode mode00
, mode01
;
3172 int n_elts00
, n_elts01
;
3174 mode00
= GET_MODE (op00
);
3175 mode01
= GET_MODE (op01
);
3177 /* Find out number of elements of each operand. */
3178 if (VECTOR_MODE_P (mode00
))
3180 elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode00
));
3181 n_elts00
= GET_MODE_SIZE (mode00
) / elt_size
;
3186 if (VECTOR_MODE_P (mode01
))
3188 elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode01
));
3189 n_elts01
= GET_MODE_SIZE (mode01
) / elt_size
;
3194 gcc_assert (n_elts
== n_elts00
+ n_elts01
);
3196 /* Select correct operand of VEC_CONCAT
3197 and adjust selector. */
3198 if (elem
< n_elts01
)
3209 vec
= rtvec_alloc (1);
3210 RTVEC_ELT (vec
, 0) = GEN_INT (elem
);
3212 tmp
= gen_rtx_fmt_ee (code
, mode
,
3213 tmp_op
, gen_rtx_PARALLEL (VOIDmode
, vec
));
3216 if (GET_CODE (trueop0
) == VEC_DUPLICATE
3217 && GET_MODE (XEXP (trueop0
, 0)) == mode
)
3218 return XEXP (trueop0
, 0);
3222 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0
)));
3223 gcc_assert (GET_MODE_INNER (mode
)
3224 == GET_MODE_INNER (GET_MODE (trueop0
)));
3225 gcc_assert (GET_CODE (trueop1
) == PARALLEL
);
3227 if (GET_CODE (trueop0
) == CONST_VECTOR
)
3229 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
3230 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
3231 rtvec v
= rtvec_alloc (n_elts
);
3234 gcc_assert (XVECLEN (trueop1
, 0) == (int) n_elts
);
3235 for (i
= 0; i
< n_elts
; i
++)
3237 rtx x
= XVECEXP (trueop1
, 0, i
);
3239 gcc_assert (CONST_INT_P (x
));
3240 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop0
,
3244 return gen_rtx_CONST_VECTOR (mode
, v
);
3248 if (XVECLEN (trueop1
, 0) == 1
3249 && CONST_INT_P (XVECEXP (trueop1
, 0, 0))
3250 && GET_CODE (trueop0
) == VEC_CONCAT
)
3253 int offset
= INTVAL (XVECEXP (trueop1
, 0, 0)) * GET_MODE_SIZE (mode
);
3255 /* Try to find the element in the VEC_CONCAT. */
3256 while (GET_MODE (vec
) != mode
3257 && GET_CODE (vec
) == VEC_CONCAT
)
3259 HOST_WIDE_INT vec_size
= GET_MODE_SIZE (GET_MODE (XEXP (vec
, 0)));
3260 if (offset
< vec_size
)
3261 vec
= XEXP (vec
, 0);
3265 vec
= XEXP (vec
, 1);
3267 vec
= avoid_constant_pool_reference (vec
);
3270 if (GET_MODE (vec
) == mode
)
3277 enum machine_mode op0_mode
= (GET_MODE (trueop0
) != VOIDmode
3278 ? GET_MODE (trueop0
)
3279 : GET_MODE_INNER (mode
));
3280 enum machine_mode op1_mode
= (GET_MODE (trueop1
) != VOIDmode
3281 ? GET_MODE (trueop1
)
3282 : GET_MODE_INNER (mode
));
3284 gcc_assert (VECTOR_MODE_P (mode
));
3285 gcc_assert (GET_MODE_SIZE (op0_mode
) + GET_MODE_SIZE (op1_mode
)
3286 == GET_MODE_SIZE (mode
));
3288 if (VECTOR_MODE_P (op0_mode
))
3289 gcc_assert (GET_MODE_INNER (mode
)
3290 == GET_MODE_INNER (op0_mode
));
3292 gcc_assert (GET_MODE_INNER (mode
) == op0_mode
);
3294 if (VECTOR_MODE_P (op1_mode
))
3295 gcc_assert (GET_MODE_INNER (mode
)
3296 == GET_MODE_INNER (op1_mode
));
3298 gcc_assert (GET_MODE_INNER (mode
) == op1_mode
);
3300 if ((GET_CODE (trueop0
) == CONST_VECTOR
3301 || CONST_INT_P (trueop0
)
3302 || GET_CODE (trueop0
) == CONST_DOUBLE
)
3303 && (GET_CODE (trueop1
) == CONST_VECTOR
3304 || CONST_INT_P (trueop1
)
3305 || GET_CODE (trueop1
) == CONST_DOUBLE
))
3307 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
3308 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
3309 rtvec v
= rtvec_alloc (n_elts
);
3311 unsigned in_n_elts
= 1;
3313 if (VECTOR_MODE_P (op0_mode
))
3314 in_n_elts
= (GET_MODE_SIZE (op0_mode
) / elt_size
);
3315 for (i
= 0; i
< n_elts
; i
++)
3319 if (!VECTOR_MODE_P (op0_mode
))
3320 RTVEC_ELT (v
, i
) = trueop0
;
3322 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop0
, i
);
3326 if (!VECTOR_MODE_P (op1_mode
))
3327 RTVEC_ELT (v
, i
) = trueop1
;
3329 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop1
,
3334 return gen_rtx_CONST_VECTOR (mode
, v
);
3347 simplify_const_binary_operation (enum rtx_code code
, enum machine_mode mode
,
3350 HOST_WIDE_INT arg0
, arg1
, arg0s
, arg1s
;
3352 unsigned int width
= GET_MODE_PRECISION (mode
);
3354 if (VECTOR_MODE_P (mode
)
3355 && code
!= VEC_CONCAT
3356 && GET_CODE (op0
) == CONST_VECTOR
3357 && GET_CODE (op1
) == CONST_VECTOR
)
3359 unsigned n_elts
= GET_MODE_NUNITS (mode
);
3360 enum machine_mode op0mode
= GET_MODE (op0
);
3361 unsigned op0_n_elts
= GET_MODE_NUNITS (op0mode
);
3362 enum machine_mode op1mode
= GET_MODE (op1
);
3363 unsigned op1_n_elts
= GET_MODE_NUNITS (op1mode
);
3364 rtvec v
= rtvec_alloc (n_elts
);
3367 gcc_assert (op0_n_elts
== n_elts
);
3368 gcc_assert (op1_n_elts
== n_elts
);
3369 for (i
= 0; i
< n_elts
; i
++)
3371 rtx x
= simplify_binary_operation (code
, GET_MODE_INNER (mode
),
3372 CONST_VECTOR_ELT (op0
, i
),
3373 CONST_VECTOR_ELT (op1
, i
));
3376 RTVEC_ELT (v
, i
) = x
;
3379 return gen_rtx_CONST_VECTOR (mode
, v
);
3382 if (VECTOR_MODE_P (mode
)
3383 && code
== VEC_CONCAT
3384 && (CONST_INT_P (op0
)
3385 || GET_CODE (op0
) == CONST_DOUBLE
3386 || GET_CODE (op0
) == CONST_FIXED
)
3387 && (CONST_INT_P (op1
)
3388 || GET_CODE (op1
) == CONST_DOUBLE
3389 || GET_CODE (op1
) == CONST_FIXED
))
3391 unsigned n_elts
= GET_MODE_NUNITS (mode
);
3392 rtvec v
= rtvec_alloc (n_elts
);
3394 gcc_assert (n_elts
>= 2);
3397 gcc_assert (GET_CODE (op0
) != CONST_VECTOR
);
3398 gcc_assert (GET_CODE (op1
) != CONST_VECTOR
);
3400 RTVEC_ELT (v
, 0) = op0
;
3401 RTVEC_ELT (v
, 1) = op1
;
3405 unsigned op0_n_elts
= GET_MODE_NUNITS (GET_MODE (op0
));
3406 unsigned op1_n_elts
= GET_MODE_NUNITS (GET_MODE (op1
));
3409 gcc_assert (GET_CODE (op0
) == CONST_VECTOR
);
3410 gcc_assert (GET_CODE (op1
) == CONST_VECTOR
);
3411 gcc_assert (op0_n_elts
+ op1_n_elts
== n_elts
);
3413 for (i
= 0; i
< op0_n_elts
; ++i
)
3414 RTVEC_ELT (v
, i
) = XVECEXP (op0
, 0, i
);
3415 for (i
= 0; i
< op1_n_elts
; ++i
)
3416 RTVEC_ELT (v
, op0_n_elts
+i
) = XVECEXP (op1
, 0, i
);
3419 return gen_rtx_CONST_VECTOR (mode
, v
);
3422 if (SCALAR_FLOAT_MODE_P (mode
)
3423 && GET_CODE (op0
) == CONST_DOUBLE
3424 && GET_CODE (op1
) == CONST_DOUBLE
3425 && mode
== GET_MODE (op0
) && mode
== GET_MODE (op1
))
3436 real_to_target (tmp0
, CONST_DOUBLE_REAL_VALUE (op0
),
3438 real_to_target (tmp1
, CONST_DOUBLE_REAL_VALUE (op1
),
3440 for (i
= 0; i
< 4; i
++)
3457 real_from_target (&r
, tmp0
, mode
);
3458 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
3462 REAL_VALUE_TYPE f0
, f1
, value
, result
;
3465 REAL_VALUE_FROM_CONST_DOUBLE (f0
, op0
);
3466 REAL_VALUE_FROM_CONST_DOUBLE (f1
, op1
);
3467 real_convert (&f0
, mode
, &f0
);
3468 real_convert (&f1
, mode
, &f1
);
3470 if (HONOR_SNANS (mode
)
3471 && (REAL_VALUE_ISNAN (f0
) || REAL_VALUE_ISNAN (f1
)))
3475 && REAL_VALUES_EQUAL (f1
, dconst0
)
3476 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
3479 if (MODE_HAS_INFINITIES (mode
) && HONOR_NANS (mode
)
3480 && flag_trapping_math
3481 && REAL_VALUE_ISINF (f0
) && REAL_VALUE_ISINF (f1
))
3483 int s0
= REAL_VALUE_NEGATIVE (f0
);
3484 int s1
= REAL_VALUE_NEGATIVE (f1
);
3489 /* Inf + -Inf = NaN plus exception. */
3494 /* Inf - Inf = NaN plus exception. */
3499 /* Inf / Inf = NaN plus exception. */
3506 if (code
== MULT
&& MODE_HAS_INFINITIES (mode
) && HONOR_NANS (mode
)
3507 && flag_trapping_math
3508 && ((REAL_VALUE_ISINF (f0
) && REAL_VALUES_EQUAL (f1
, dconst0
))
3509 || (REAL_VALUE_ISINF (f1
)
3510 && REAL_VALUES_EQUAL (f0
, dconst0
))))
3511 /* Inf * 0 = NaN plus exception. */
3514 inexact
= real_arithmetic (&value
, rtx_to_tree_code (code
),
3516 real_convert (&result
, mode
, &value
);
3518 /* Don't constant fold this floating point operation if
3519 the result has overflowed and flag_trapping_math. */
3521 if (flag_trapping_math
3522 && MODE_HAS_INFINITIES (mode
)
3523 && REAL_VALUE_ISINF (result
)
3524 && !REAL_VALUE_ISINF (f0
)
3525 && !REAL_VALUE_ISINF (f1
))
3526 /* Overflow plus exception. */
3529 /* Don't constant fold this floating point operation if the
3530 result may dependent upon the run-time rounding mode and
3531 flag_rounding_math is set, or if GCC's software emulation
3532 is unable to accurately represent the result. */
3534 if ((flag_rounding_math
3535 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
3536 && (inexact
|| !real_identical (&result
, &value
)))
3539 return CONST_DOUBLE_FROM_REAL_VALUE (result
, mode
);
3543 /* We can fold some multi-word operations. */
3544 if (GET_MODE_CLASS (mode
) == MODE_INT
3545 && width
== HOST_BITS_PER_DOUBLE_INT
3546 && (CONST_DOUBLE_P (op0
) || CONST_INT_P (op0
))
3547 && (CONST_DOUBLE_P (op1
) || CONST_INT_P (op1
)))
3549 double_int o0
, o1
, res
, tmp
;
3551 o0
= rtx_to_double_int (op0
);
3552 o1
= rtx_to_double_int (op1
);
3557 /* A - B == A + (-B). */
3558 o1
= double_int_neg (o1
);
3560 /* Fall through.... */
3563 res
= double_int_add (o0
, o1
);
3567 res
= double_int_mul (o0
, o1
);
3571 if (div_and_round_double (TRUNC_DIV_EXPR
, 0,
3572 o0
.low
, o0
.high
, o1
.low
, o1
.high
,
3573 &res
.low
, &res
.high
,
3574 &tmp
.low
, &tmp
.high
))
3579 if (div_and_round_double (TRUNC_DIV_EXPR
, 0,
3580 o0
.low
, o0
.high
, o1
.low
, o1
.high
,
3581 &tmp
.low
, &tmp
.high
,
3582 &res
.low
, &res
.high
))
3587 if (div_and_round_double (TRUNC_DIV_EXPR
, 1,
3588 o0
.low
, o0
.high
, o1
.low
, o1
.high
,
3589 &res
.low
, &res
.high
,
3590 &tmp
.low
, &tmp
.high
))
3595 if (div_and_round_double (TRUNC_DIV_EXPR
, 1,
3596 o0
.low
, o0
.high
, o1
.low
, o1
.high
,
3597 &tmp
.low
, &tmp
.high
,
3598 &res
.low
, &res
.high
))
3603 res
= double_int_and (o0
, o1
);
3607 res
= double_int_ior (o0
, o1
);
3611 res
= double_int_xor (o0
, o1
);
3615 res
= double_int_smin (o0
, o1
);
3619 res
= double_int_smax (o0
, o1
);
3623 res
= double_int_umin (o0
, o1
);
3627 res
= double_int_umax (o0
, o1
);
3630 case LSHIFTRT
: case ASHIFTRT
:
3632 case ROTATE
: case ROTATERT
:
3634 unsigned HOST_WIDE_INT cnt
;
3636 if (SHIFT_COUNT_TRUNCATED
)
3637 o1
= double_int_zext (o1
, GET_MODE_PRECISION (mode
));
3639 if (!double_int_fits_in_uhwi_p (o1
)
3640 || double_int_to_uhwi (o1
) >= GET_MODE_PRECISION (mode
))
3643 cnt
= double_int_to_uhwi (o1
);
3645 if (code
== LSHIFTRT
|| code
== ASHIFTRT
)
3646 res
= double_int_rshift (o0
, cnt
, GET_MODE_PRECISION (mode
),
3648 else if (code
== ASHIFT
)
3649 res
= double_int_lshift (o0
, cnt
, GET_MODE_PRECISION (mode
),
3651 else if (code
== ROTATE
)
3652 res
= double_int_lrotate (o0
, cnt
, GET_MODE_PRECISION (mode
));
3653 else /* code == ROTATERT */
3654 res
= double_int_rrotate (o0
, cnt
, GET_MODE_PRECISION (mode
));
3662 return immed_double_int_const (res
, mode
);
3665 if (CONST_INT_P (op0
) && CONST_INT_P (op1
)
3666 && width
<= HOST_BITS_PER_WIDE_INT
&& width
!= 0)
3668 /* Get the integer argument values in two forms:
3669 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
3671 arg0
= INTVAL (op0
);
3672 arg1
= INTVAL (op1
);
3674 if (width
< HOST_BITS_PER_WIDE_INT
)
3676 arg0
&= GET_MODE_MASK (mode
);
3677 arg1
&= GET_MODE_MASK (mode
);
3680 if (val_signbit_known_set_p (mode
, arg0s
))
3681 arg0s
|= ~GET_MODE_MASK (mode
);
3684 if (val_signbit_known_set_p (mode
, arg1s
))
3685 arg1s
|= ~GET_MODE_MASK (mode
);
3693 /* Compute the value of the arithmetic. */
3698 val
= arg0s
+ arg1s
;
3702 val
= arg0s
- arg1s
;
3706 val
= arg0s
* arg1s
;
3711 || ((unsigned HOST_WIDE_INT
) arg0s
3712 == (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)
3715 val
= arg0s
/ arg1s
;
3720 || ((unsigned HOST_WIDE_INT
) arg0s
3721 == (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)
3724 val
= arg0s
% arg1s
;
3729 || ((unsigned HOST_WIDE_INT
) arg0s
3730 == (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)
3733 val
= (unsigned HOST_WIDE_INT
) arg0
/ arg1
;
3738 || ((unsigned HOST_WIDE_INT
) arg0s
3739 == (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)
3742 val
= (unsigned HOST_WIDE_INT
) arg0
% arg1
;
3760 /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
3761 the value is in range. We can't return any old value for
3762 out-of-range arguments because either the middle-end (via
3763 shift_truncation_mask) or the back-end might be relying on
3764 target-specific knowledge. Nor can we rely on
3765 shift_truncation_mask, since the shift might not be part of an
3766 ashlM3, lshrM3 or ashrM3 instruction. */
3767 if (SHIFT_COUNT_TRUNCATED
)
3768 arg1
= (unsigned HOST_WIDE_INT
) arg1
% width
;
3769 else if (arg1
< 0 || arg1
>= GET_MODE_BITSIZE (mode
))
3772 val
= (code
== ASHIFT
3773 ? ((unsigned HOST_WIDE_INT
) arg0
) << arg1
3774 : ((unsigned HOST_WIDE_INT
) arg0
) >> arg1
);
3776 /* Sign-extend the result for arithmetic right shifts. */
3777 if (code
== ASHIFTRT
&& arg0s
< 0 && arg1
> 0)
3778 val
|= ((unsigned HOST_WIDE_INT
) (-1)) << (width
- arg1
);
3786 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << (width
- arg1
))
3787 | (((unsigned HOST_WIDE_INT
) arg0
) >> arg1
));
3795 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << arg1
)
3796 | (((unsigned HOST_WIDE_INT
) arg0
) >> (width
- arg1
)));
3800 /* Do nothing here. */
3804 val
= arg0s
<= arg1s
? arg0s
: arg1s
;
3808 val
= ((unsigned HOST_WIDE_INT
) arg0
3809 <= (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
3813 val
= arg0s
> arg1s
? arg0s
: arg1s
;
3817 val
= ((unsigned HOST_WIDE_INT
) arg0
3818 > (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
3831 /* ??? There are simplifications that can be done. */
3838 return gen_int_mode (val
, mode
);
3846 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
3849 Rather than test for specific case, we do this by a brute-force method
3850 and do all possible simplifications until no more changes occur. Then
3851 we rebuild the operation. */
3853 struct simplify_plus_minus_op_data
3860 simplify_plus_minus_op_data_cmp (rtx x
, rtx y
)
3864 result
= (commutative_operand_precedence (y
)
3865 - commutative_operand_precedence (x
));
3869 /* Group together equal REGs to do more simplification. */
3870 if (REG_P (x
) && REG_P (y
))
3871 return REGNO (x
) > REGNO (y
);
3877 simplify_plus_minus (enum rtx_code code
, enum machine_mode mode
, rtx op0
,
3880 struct simplify_plus_minus_op_data ops
[8];
3882 int n_ops
= 2, input_ops
= 2;
3883 int changed
, n_constants
= 0, canonicalized
= 0;
3886 memset (ops
, 0, sizeof ops
);
3888 /* Set up the two operands and then expand them until nothing has been
3889 changed. If we run out of room in our array, give up; this should
3890 almost never happen. */
3895 ops
[1].neg
= (code
== MINUS
);
3901 for (i
= 0; i
< n_ops
; i
++)
3903 rtx this_op
= ops
[i
].op
;
3904 int this_neg
= ops
[i
].neg
;
3905 enum rtx_code this_code
= GET_CODE (this_op
);
3914 ops
[n_ops
].op
= XEXP (this_op
, 1);
3915 ops
[n_ops
].neg
= (this_code
== MINUS
) ^ this_neg
;
3918 ops
[i
].op
= XEXP (this_op
, 0);
3921 canonicalized
|= this_neg
;
3925 ops
[i
].op
= XEXP (this_op
, 0);
3926 ops
[i
].neg
= ! this_neg
;
3933 && GET_CODE (XEXP (this_op
, 0)) == PLUS
3934 && CONSTANT_P (XEXP (XEXP (this_op
, 0), 0))
3935 && CONSTANT_P (XEXP (XEXP (this_op
, 0), 1)))
3937 ops
[i
].op
= XEXP (XEXP (this_op
, 0), 0);
3938 ops
[n_ops
].op
= XEXP (XEXP (this_op
, 0), 1);
3939 ops
[n_ops
].neg
= this_neg
;
3947 /* ~a -> (-a - 1) */
3950 ops
[n_ops
].op
= constm1_rtx
;
3951 ops
[n_ops
++].neg
= this_neg
;
3952 ops
[i
].op
= XEXP (this_op
, 0);
3953 ops
[i
].neg
= !this_neg
;
3963 ops
[i
].op
= neg_const_int (mode
, this_op
);
3977 if (n_constants
> 1)
3980 gcc_assert (n_ops
>= 2);
3982 /* If we only have two operands, we can avoid the loops. */
3985 enum rtx_code code
= ops
[0].neg
|| ops
[1].neg
? MINUS
: PLUS
;
3988 /* Get the two operands. Be careful with the order, especially for
3989 the cases where code == MINUS. */
3990 if (ops
[0].neg
&& ops
[1].neg
)
3992 lhs
= gen_rtx_NEG (mode
, ops
[0].op
);
3995 else if (ops
[0].neg
)
4006 return simplify_const_binary_operation (code
, mode
, lhs
, rhs
);
4009 /* Now simplify each pair of operands until nothing changes. */
4012 /* Insertion sort is good enough for an eight-element array. */
4013 for (i
= 1; i
< n_ops
; i
++)
4015 struct simplify_plus_minus_op_data save
;
4017 if (!simplify_plus_minus_op_data_cmp (ops
[j
].op
, ops
[i
].op
))
4023 ops
[j
+ 1] = ops
[j
];
4024 while (j
-- && simplify_plus_minus_op_data_cmp (ops
[j
].op
, save
.op
));
4029 for (i
= n_ops
- 1; i
> 0; i
--)
4030 for (j
= i
- 1; j
>= 0; j
--)
4032 rtx lhs
= ops
[j
].op
, rhs
= ops
[i
].op
;
4033 int lneg
= ops
[j
].neg
, rneg
= ops
[i
].neg
;
4035 if (lhs
!= 0 && rhs
!= 0)
4037 enum rtx_code ncode
= PLUS
;
4043 tem
= lhs
, lhs
= rhs
, rhs
= tem
;
4045 else if (swap_commutative_operands_p (lhs
, rhs
))
4046 tem
= lhs
, lhs
= rhs
, rhs
= tem
;
4048 if ((GET_CODE (lhs
) == CONST
|| CONST_INT_P (lhs
))
4049 && (GET_CODE (rhs
) == CONST
|| CONST_INT_P (rhs
)))
4051 rtx tem_lhs
, tem_rhs
;
4053 tem_lhs
= GET_CODE (lhs
) == CONST
? XEXP (lhs
, 0) : lhs
;
4054 tem_rhs
= GET_CODE (rhs
) == CONST
? XEXP (rhs
, 0) : rhs
;
4055 tem
= simplify_binary_operation (ncode
, mode
, tem_lhs
, tem_rhs
);
4057 if (tem
&& !CONSTANT_P (tem
))
4058 tem
= gen_rtx_CONST (GET_MODE (tem
), tem
);
4061 tem
= simplify_binary_operation (ncode
, mode
, lhs
, rhs
);
4063 /* Reject "simplifications" that just wrap the two
4064 arguments in a CONST. Failure to do so can result
4065 in infinite recursion with simplify_binary_operation
4066 when it calls us to simplify CONST operations. */
4068 && ! (GET_CODE (tem
) == CONST
4069 && GET_CODE (XEXP (tem
, 0)) == ncode
4070 && XEXP (XEXP (tem
, 0), 0) == lhs
4071 && XEXP (XEXP (tem
, 0), 1) == rhs
))
4074 if (GET_CODE (tem
) == NEG
)
4075 tem
= XEXP (tem
, 0), lneg
= !lneg
;
4076 if (CONST_INT_P (tem
) && lneg
)
4077 tem
= neg_const_int (mode
, tem
), lneg
= 0;
4081 ops
[j
].op
= NULL_RTX
;
4088 /* If nothing changed, fail. */
4092 /* Pack all the operands to the lower-numbered entries. */
4093 for (i
= 0, j
= 0; j
< n_ops
; j
++)
4103 /* Create (minus -C X) instead of (neg (const (plus X C))). */
4105 && CONST_INT_P (ops
[1].op
)
4106 && CONSTANT_P (ops
[0].op
)
4108 return gen_rtx_fmt_ee (MINUS
, mode
, ops
[1].op
, ops
[0].op
);
4110 /* We suppressed creation of trivial CONST expressions in the
4111 combination loop to avoid recursion. Create one manually now.
4112 The combination loop should have ensured that there is exactly
4113 one CONST_INT, and the sort will have ensured that it is last
4114 in the array and that any other constant will be next-to-last. */
4117 && CONST_INT_P (ops
[n_ops
- 1].op
)
4118 && CONSTANT_P (ops
[n_ops
- 2].op
))
4120 rtx value
= ops
[n_ops
- 1].op
;
4121 if (ops
[n_ops
- 1].neg
^ ops
[n_ops
- 2].neg
)
4122 value
= neg_const_int (mode
, value
);
4123 ops
[n_ops
- 2].op
= plus_constant (ops
[n_ops
- 2].op
, INTVAL (value
));
4127 /* Put a non-negated operand first, if possible. */
4129 for (i
= 0; i
< n_ops
&& ops
[i
].neg
; i
++)
4132 ops
[0].op
= gen_rtx_NEG (mode
, ops
[0].op
);
4141 /* Now make the result by performing the requested operations. */
4143 for (i
= 1; i
< n_ops
; i
++)
4144 result
= gen_rtx_fmt_ee (ops
[i
].neg
? MINUS
: PLUS
,
4145 mode
, result
, ops
[i
].op
);
4150 /* Check whether an operand is suitable for calling simplify_plus_minus. */
4152 plus_minus_operand_p (const_rtx x
)
4154 return GET_CODE (x
) == PLUS
4155 || GET_CODE (x
) == MINUS
4156 || (GET_CODE (x
) == CONST
4157 && GET_CODE (XEXP (x
, 0)) == PLUS
4158 && CONSTANT_P (XEXP (XEXP (x
, 0), 0))
4159 && CONSTANT_P (XEXP (XEXP (x
, 0), 1)));
4162 /* Like simplify_binary_operation except used for relational operators.
4163 MODE is the mode of the result. If MODE is VOIDmode, both operands must
4164 not also be VOIDmode.
4166 CMP_MODE specifies in which mode the comparison is done in, so it is
4167 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
4168 the operands or, if both are VOIDmode, the operands are compared in
4169 "infinite precision". */
4171 simplify_relational_operation (enum rtx_code code
, enum machine_mode mode
,
4172 enum machine_mode cmp_mode
, rtx op0
, rtx op1
)
4174 rtx tem
, trueop0
, trueop1
;
4176 if (cmp_mode
== VOIDmode
)
4177 cmp_mode
= GET_MODE (op0
);
4178 if (cmp_mode
== VOIDmode
)
4179 cmp_mode
= GET_MODE (op1
);
4181 tem
= simplify_const_relational_operation (code
, cmp_mode
, op0
, op1
);
4184 if (SCALAR_FLOAT_MODE_P (mode
))
4186 if (tem
== const0_rtx
)
4187 return CONST0_RTX (mode
);
4188 #ifdef FLOAT_STORE_FLAG_VALUE
4190 REAL_VALUE_TYPE val
;
4191 val
= FLOAT_STORE_FLAG_VALUE (mode
);
4192 return CONST_DOUBLE_FROM_REAL_VALUE (val
, mode
);
4198 if (VECTOR_MODE_P (mode
))
4200 if (tem
== const0_rtx
)
4201 return CONST0_RTX (mode
);
4202 #ifdef VECTOR_STORE_FLAG_VALUE
4207 rtx val
= VECTOR_STORE_FLAG_VALUE (mode
);
4208 if (val
== NULL_RTX
)
4210 if (val
== const1_rtx
)
4211 return CONST1_RTX (mode
);
4213 units
= GET_MODE_NUNITS (mode
);
4214 v
= rtvec_alloc (units
);
4215 for (i
= 0; i
< units
; i
++)
4216 RTVEC_ELT (v
, i
) = val
;
4217 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
4227 /* For the following tests, ensure const0_rtx is op1. */
4228 if (swap_commutative_operands_p (op0
, op1
)
4229 || (op0
== const0_rtx
&& op1
!= const0_rtx
))
4230 tem
= op0
, op0
= op1
, op1
= tem
, code
= swap_condition (code
);
4232 /* If op0 is a compare, extract the comparison arguments from it. */
4233 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4234 return simplify_gen_relational (code
, mode
, VOIDmode
,
4235 XEXP (op0
, 0), XEXP (op0
, 1));
4237 if (GET_MODE_CLASS (cmp_mode
) == MODE_CC
4241 trueop0
= avoid_constant_pool_reference (op0
);
4242 trueop1
= avoid_constant_pool_reference (op1
);
4243 return simplify_relational_operation_1 (code
, mode
, cmp_mode
,
4247 /* This part of simplify_relational_operation is only used when CMP_MODE
4248 is not in class MODE_CC (i.e. it is a real comparison).
4250 MODE is the mode of the result, while CMP_MODE specifies in which
4251 mode the comparison is done in, so it is the mode of the operands. */
4254 simplify_relational_operation_1 (enum rtx_code code
, enum machine_mode mode
,
4255 enum machine_mode cmp_mode
, rtx op0
, rtx op1
)
4257 enum rtx_code op0code
= GET_CODE (op0
);
4259 if (op1
== const0_rtx
&& COMPARISON_P (op0
))
4261 /* If op0 is a comparison, extract the comparison arguments
4265 if (GET_MODE (op0
) == mode
)
4266 return simplify_rtx (op0
);
4268 return simplify_gen_relational (GET_CODE (op0
), mode
, VOIDmode
,
4269 XEXP (op0
, 0), XEXP (op0
, 1));
4271 else if (code
== EQ
)
4273 enum rtx_code new_code
= reversed_comparison_code (op0
, NULL_RTX
);
4274 if (new_code
!= UNKNOWN
)
4275 return simplify_gen_relational (new_code
, mode
, VOIDmode
,
4276 XEXP (op0
, 0), XEXP (op0
, 1));
4280 /* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
4281 (GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
4282 if ((code
== LTU
|| code
== GEU
)
4283 && GET_CODE (op0
) == PLUS
4284 && CONST_INT_P (XEXP (op0
, 1))
4285 && (rtx_equal_p (op1
, XEXP (op0
, 0))
4286 || rtx_equal_p (op1
, XEXP (op0
, 1))))
4289 = simplify_gen_unary (NEG
, cmp_mode
, XEXP (op0
, 1), cmp_mode
);
4290 return simplify_gen_relational ((code
== LTU
? GEU
: LTU
), mode
,
4291 cmp_mode
, XEXP (op0
, 0), new_cmp
);
4294 /* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
4295 if ((code
== LTU
|| code
== GEU
)
4296 && GET_CODE (op0
) == PLUS
4297 && rtx_equal_p (op1
, XEXP (op0
, 1))
4298 /* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
4299 && !rtx_equal_p (op1
, XEXP (op0
, 0)))
4300 return simplify_gen_relational (code
, mode
, cmp_mode
, op0
,
4301 copy_rtx (XEXP (op0
, 0)));
4303 if (op1
== const0_rtx
)
4305 /* Canonicalize (GTU x 0) as (NE x 0). */
4307 return simplify_gen_relational (NE
, mode
, cmp_mode
, op0
, op1
);
4308 /* Canonicalize (LEU x 0) as (EQ x 0). */
4310 return simplify_gen_relational (EQ
, mode
, cmp_mode
, op0
, op1
);
4312 else if (op1
== const1_rtx
)
4317 /* Canonicalize (GE x 1) as (GT x 0). */
4318 return simplify_gen_relational (GT
, mode
, cmp_mode
,
4321 /* Canonicalize (GEU x 1) as (NE x 0). */
4322 return simplify_gen_relational (NE
, mode
, cmp_mode
,
4325 /* Canonicalize (LT x 1) as (LE x 0). */
4326 return simplify_gen_relational (LE
, mode
, cmp_mode
,
4329 /* Canonicalize (LTU x 1) as (EQ x 0). */
4330 return simplify_gen_relational (EQ
, mode
, cmp_mode
,
4336 else if (op1
== constm1_rtx
)
4338 /* Canonicalize (LE x -1) as (LT x 0). */
4340 return simplify_gen_relational (LT
, mode
, cmp_mode
, op0
, const0_rtx
);
4341 /* Canonicalize (GT x -1) as (GE x 0). */
4343 return simplify_gen_relational (GE
, mode
, cmp_mode
, op0
, const0_rtx
);
4346 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
4347 if ((code
== EQ
|| code
== NE
)
4348 && (op0code
== PLUS
|| op0code
== MINUS
)
4350 && CONSTANT_P (XEXP (op0
, 1))
4351 && (INTEGRAL_MODE_P (cmp_mode
) || flag_unsafe_math_optimizations
))
4353 rtx x
= XEXP (op0
, 0);
4354 rtx c
= XEXP (op0
, 1);
4355 enum rtx_code invcode
= op0code
== PLUS
? MINUS
: PLUS
;
4356 rtx tem
= simplify_gen_binary (invcode
, cmp_mode
, op1
, c
);
4358 /* Detect an infinite recursive condition, where we oscillate at this
4359 simplification case between:
4360 A + B == C <---> C - B == A,
4361 where A, B, and C are all constants with non-simplifiable expressions,
4362 usually SYMBOL_REFs. */
4363 if (GET_CODE (tem
) == invcode
4365 && rtx_equal_p (c
, XEXP (tem
, 1)))
4368 return simplify_gen_relational (code
, mode
, cmp_mode
, x
, tem
);
4371 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
4372 the same as (zero_extract:SI FOO (const_int 1) BAR). */
4374 && op1
== const0_rtx
4375 && GET_MODE_CLASS (mode
) == MODE_INT
4376 && cmp_mode
!= VOIDmode
4377 /* ??? Work-around BImode bugs in the ia64 backend. */
4379 && cmp_mode
!= BImode
4380 && nonzero_bits (op0
, cmp_mode
) == 1
4381 && STORE_FLAG_VALUE
== 1)
4382 return GET_MODE_SIZE (mode
) > GET_MODE_SIZE (cmp_mode
)
4383 ? simplify_gen_unary (ZERO_EXTEND
, mode
, op0
, cmp_mode
)
4384 : lowpart_subreg (mode
, op0
, cmp_mode
);
4386 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
4387 if ((code
== EQ
|| code
== NE
)
4388 && op1
== const0_rtx
4390 return simplify_gen_relational (code
, mode
, cmp_mode
,
4391 XEXP (op0
, 0), XEXP (op0
, 1));
4393 /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
4394 if ((code
== EQ
|| code
== NE
)
4396 && rtx_equal_p (XEXP (op0
, 0), op1
)
4397 && !side_effects_p (XEXP (op0
, 0)))
4398 return simplify_gen_relational (code
, mode
, cmp_mode
,
4399 XEXP (op0
, 1), const0_rtx
);
4401 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
4402 if ((code
== EQ
|| code
== NE
)
4404 && rtx_equal_p (XEXP (op0
, 1), op1
)
4405 && !side_effects_p (XEXP (op0
, 1)))
4406 return simplify_gen_relational (code
, mode
, cmp_mode
,
4407 XEXP (op0
, 0), const0_rtx
);
4409 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
4410 if ((code
== EQ
|| code
== NE
)
4412 && (CONST_INT_P (op1
)
4413 || GET_CODE (op1
) == CONST_DOUBLE
)
4414 && (CONST_INT_P (XEXP (op0
, 1))
4415 || GET_CODE (XEXP (op0
, 1)) == CONST_DOUBLE
))
4416 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 0),
4417 simplify_gen_binary (XOR
, cmp_mode
,
4418 XEXP (op0
, 1), op1
));
4420 if (op0code
== POPCOUNT
&& op1
== const0_rtx
)
4426 /* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
4427 return simplify_gen_relational (EQ
, mode
, GET_MODE (XEXP (op0
, 0)),
4428 XEXP (op0
, 0), const0_rtx
);
4433 /* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
4434 return simplify_gen_relational (NE
, mode
, GET_MODE (XEXP (op0
, 0)),
4435 XEXP (op0
, 0), const0_rtx
);
4454 /* Convert the known results for EQ, LT, GT, LTU, GTU contained in
4455 KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
4456 For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
4457 logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
4458 For floating-point comparisons, assume that the operands were ordered. */
4461 comparison_result (enum rtx_code code
, int known_results
)
4467 return (known_results
& CMP_EQ
) ? const_true_rtx
: const0_rtx
;
4470 return (known_results
& CMP_EQ
) ? const0_rtx
: const_true_rtx
;
4474 return (known_results
& CMP_LT
) ? const_true_rtx
: const0_rtx
;
4477 return (known_results
& CMP_LT
) ? const0_rtx
: const_true_rtx
;
4481 return (known_results
& CMP_GT
) ? const_true_rtx
: const0_rtx
;
4484 return (known_results
& CMP_GT
) ? const0_rtx
: const_true_rtx
;
4487 return (known_results
& CMP_LTU
) ? const_true_rtx
: const0_rtx
;
4489 return (known_results
& CMP_LTU
) ? const0_rtx
: const_true_rtx
;
4492 return (known_results
& CMP_GTU
) ? const_true_rtx
: const0_rtx
;
4494 return (known_results
& CMP_GTU
) ? const0_rtx
: const_true_rtx
;
4497 return const_true_rtx
;
4505 /* Check if the given comparison (done in the given MODE) is actually a
4506 tautology or a contradiction.
4507 If no simplification is possible, this function returns zero.
4508 Otherwise, it returns either const_true_rtx or const0_rtx. */
4511 simplify_const_relational_operation (enum rtx_code code
,
4512 enum machine_mode mode
,
4519 gcc_assert (mode
!= VOIDmode
4520 || (GET_MODE (op0
) == VOIDmode
4521 && GET_MODE (op1
) == VOIDmode
));
4523 /* If op0 is a compare, extract the comparison arguments from it. */
4524 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4526 op1
= XEXP (op0
, 1);
4527 op0
= XEXP (op0
, 0);
4529 if (GET_MODE (op0
) != VOIDmode
)
4530 mode
= GET_MODE (op0
);
4531 else if (GET_MODE (op1
) != VOIDmode
)
4532 mode
= GET_MODE (op1
);
4537 /* We can't simplify MODE_CC values since we don't know what the
4538 actual comparison is. */
4539 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
|| CC0_P (op0
))
4542 /* Make sure the constant is second. */
4543 if (swap_commutative_operands_p (op0
, op1
))
4545 tem
= op0
, op0
= op1
, op1
= tem
;
4546 code
= swap_condition (code
);
4549 trueop0
= avoid_constant_pool_reference (op0
);
4550 trueop1
= avoid_constant_pool_reference (op1
);
4552 /* For integer comparisons of A and B maybe we can simplify A - B and can
4553 then simplify a comparison of that with zero. If A and B are both either
4554 a register or a CONST_INT, this can't help; testing for these cases will
4555 prevent infinite recursion here and speed things up.
4557 We can only do this for EQ and NE comparisons as otherwise we may
4558 lose or introduce overflow which we cannot disregard as undefined as
4559 we do not know the signedness of the operation on either the left or
4560 the right hand side of the comparison. */
4562 if (INTEGRAL_MODE_P (mode
) && trueop1
!= const0_rtx
4563 && (code
== EQ
|| code
== NE
)
4564 && ! ((REG_P (op0
) || CONST_INT_P (trueop0
))
4565 && (REG_P (op1
) || CONST_INT_P (trueop1
)))
4566 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
, op0
, op1
))
4567 /* We cannot do this if tem is a nonzero address. */
4568 && ! nonzero_address_p (tem
))
4569 return simplify_const_relational_operation (signed_condition (code
),
4570 mode
, tem
, const0_rtx
);
4572 if (! HONOR_NANS (mode
) && code
== ORDERED
)
4573 return const_true_rtx
;
4575 if (! HONOR_NANS (mode
) && code
== UNORDERED
)
4578 /* For modes without NaNs, if the two operands are equal, we know the
4579 result except if they have side-effects. Even with NaNs we know
4580 the result of unordered comparisons and, if signaling NaNs are
4581 irrelevant, also the result of LT/GT/LTGT. */
4582 if ((! HONOR_NANS (GET_MODE (trueop0
))
4583 || code
== UNEQ
|| code
== UNLE
|| code
== UNGE
4584 || ((code
== LT
|| code
== GT
|| code
== LTGT
)
4585 && ! HONOR_SNANS (GET_MODE (trueop0
))))
4586 && rtx_equal_p (trueop0
, trueop1
)
4587 && ! side_effects_p (trueop0
))
4588 return comparison_result (code
, CMP_EQ
);
4590 /* If the operands are floating-point constants, see if we can fold
4592 if (GET_CODE (trueop0
) == CONST_DOUBLE
4593 && GET_CODE (trueop1
) == CONST_DOUBLE
4594 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0
)))
4596 REAL_VALUE_TYPE d0
, d1
;
4598 REAL_VALUE_FROM_CONST_DOUBLE (d0
, trueop0
);
4599 REAL_VALUE_FROM_CONST_DOUBLE (d1
, trueop1
);
4601 /* Comparisons are unordered iff at least one of the values is NaN. */
4602 if (REAL_VALUE_ISNAN (d0
) || REAL_VALUE_ISNAN (d1
))
4612 return const_true_rtx
;
4625 return comparison_result (code
,
4626 (REAL_VALUES_EQUAL (d0
, d1
) ? CMP_EQ
:
4627 REAL_VALUES_LESS (d0
, d1
) ? CMP_LT
: CMP_GT
));
4630 /* Otherwise, see if the operands are both integers. */
4631 if ((GET_MODE_CLASS (mode
) == MODE_INT
|| mode
== VOIDmode
)
4632 && (GET_CODE (trueop0
) == CONST_DOUBLE
4633 || CONST_INT_P (trueop0
))
4634 && (GET_CODE (trueop1
) == CONST_DOUBLE
4635 || CONST_INT_P (trueop1
)))
4637 int width
= GET_MODE_PRECISION (mode
);
4638 HOST_WIDE_INT l0s
, h0s
, l1s
, h1s
;
4639 unsigned HOST_WIDE_INT l0u
, h0u
, l1u
, h1u
;
4641 /* Get the two words comprising each integer constant. */
4642 if (GET_CODE (trueop0
) == CONST_DOUBLE
)
4644 l0u
= l0s
= CONST_DOUBLE_LOW (trueop0
);
4645 h0u
= h0s
= CONST_DOUBLE_HIGH (trueop0
);
4649 l0u
= l0s
= INTVAL (trueop0
);
4650 h0u
= h0s
= HWI_SIGN_EXTEND (l0s
);
4653 if (GET_CODE (trueop1
) == CONST_DOUBLE
)
4655 l1u
= l1s
= CONST_DOUBLE_LOW (trueop1
);
4656 h1u
= h1s
= CONST_DOUBLE_HIGH (trueop1
);
4660 l1u
= l1s
= INTVAL (trueop1
);
4661 h1u
= h1s
= HWI_SIGN_EXTEND (l1s
);
4664 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
4665 we have to sign or zero-extend the values. */
4666 if (width
!= 0 && width
< HOST_BITS_PER_WIDE_INT
)
4668 l0u
&= GET_MODE_MASK (mode
);
4669 l1u
&= GET_MODE_MASK (mode
);
4671 if (val_signbit_known_set_p (mode
, l0s
))
4672 l0s
|= ~GET_MODE_MASK (mode
);
4674 if (val_signbit_known_set_p (mode
, l1s
))
4675 l1s
|= ~GET_MODE_MASK (mode
);
4677 if (width
!= 0 && width
<= HOST_BITS_PER_WIDE_INT
)
4678 h0u
= h1u
= 0, h0s
= HWI_SIGN_EXTEND (l0s
), h1s
= HWI_SIGN_EXTEND (l1s
);
4680 if (h0u
== h1u
&& l0u
== l1u
)
4681 return comparison_result (code
, CMP_EQ
);
4685 cr
= (h0s
< h1s
|| (h0s
== h1s
&& l0u
< l1u
)) ? CMP_LT
: CMP_GT
;
4686 cr
|= (h0u
< h1u
|| (h0u
== h1u
&& l0u
< l1u
)) ? CMP_LTU
: CMP_GTU
;
4687 return comparison_result (code
, cr
);
4691 /* Optimize comparisons with upper and lower bounds. */
4692 if (HWI_COMPUTABLE_MODE_P (mode
)
4693 && CONST_INT_P (trueop1
))
4696 unsigned HOST_WIDE_INT nonzero
= nonzero_bits (trueop0
, mode
);
4697 HOST_WIDE_INT val
= INTVAL (trueop1
);
4698 HOST_WIDE_INT mmin
, mmax
;
4708 /* Get a reduced range if the sign bit is zero. */
4709 if (nonzero
<= (GET_MODE_MASK (mode
) >> 1))
4716 rtx mmin_rtx
, mmax_rtx
;
4717 get_mode_bounds (mode
, sign
, mode
, &mmin_rtx
, &mmax_rtx
);
4719 mmin
= INTVAL (mmin_rtx
);
4720 mmax
= INTVAL (mmax_rtx
);
4723 unsigned int sign_copies
= num_sign_bit_copies (trueop0
, mode
);
4725 mmin
>>= (sign_copies
- 1);
4726 mmax
>>= (sign_copies
- 1);
4732 /* x >= y is always true for y <= mmin, always false for y > mmax. */
4734 if ((unsigned HOST_WIDE_INT
) val
<= (unsigned HOST_WIDE_INT
) mmin
)
4735 return const_true_rtx
;
4736 if ((unsigned HOST_WIDE_INT
) val
> (unsigned HOST_WIDE_INT
) mmax
)
4741 return const_true_rtx
;
4746 /* x <= y is always true for y >= mmax, always false for y < mmin. */
4748 if ((unsigned HOST_WIDE_INT
) val
>= (unsigned HOST_WIDE_INT
) mmax
)
4749 return const_true_rtx
;
4750 if ((unsigned HOST_WIDE_INT
) val
< (unsigned HOST_WIDE_INT
) mmin
)
4755 return const_true_rtx
;
4761 /* x == y is always false for y out of range. */
4762 if (val
< mmin
|| val
> mmax
)
4766 /* x > y is always false for y >= mmax, always true for y < mmin. */
4768 if ((unsigned HOST_WIDE_INT
) val
>= (unsigned HOST_WIDE_INT
) mmax
)
4770 if ((unsigned HOST_WIDE_INT
) val
< (unsigned HOST_WIDE_INT
) mmin
)
4771 return const_true_rtx
;
4777 return const_true_rtx
;
4780 /* x < y is always false for y <= mmin, always true for y > mmax. */
4782 if ((unsigned HOST_WIDE_INT
) val
<= (unsigned HOST_WIDE_INT
) mmin
)
4784 if ((unsigned HOST_WIDE_INT
) val
> (unsigned HOST_WIDE_INT
) mmax
)
4785 return const_true_rtx
;
4791 return const_true_rtx
;
4795 /* x != y is always true for y out of range. */
4796 if (val
< mmin
|| val
> mmax
)
4797 return const_true_rtx
;
4805 /* Optimize integer comparisons with zero. */
4806 if (trueop1
== const0_rtx
)
4808 /* Some addresses are known to be nonzero. We don't know
4809 their sign, but equality comparisons are known. */
4810 if (nonzero_address_p (trueop0
))
4812 if (code
== EQ
|| code
== LEU
)
4814 if (code
== NE
|| code
== GTU
)
4815 return const_true_rtx
;
4818 /* See if the first operand is an IOR with a constant. If so, we
4819 may be able to determine the result of this comparison. */
4820 if (GET_CODE (op0
) == IOR
)
4822 rtx inner_const
= avoid_constant_pool_reference (XEXP (op0
, 1));
4823 if (CONST_INT_P (inner_const
) && inner_const
!= const0_rtx
)
4825 int sign_bitnum
= GET_MODE_PRECISION (mode
) - 1;
4826 int has_sign
= (HOST_BITS_PER_WIDE_INT
>= sign_bitnum
4827 && (UINTVAL (inner_const
)
4828 & ((unsigned HOST_WIDE_INT
) 1
4838 return const_true_rtx
;
4842 return const_true_rtx
;
4856 /* Optimize comparison of ABS with zero. */
4857 if (trueop1
== CONST0_RTX (mode
)
4858 && (GET_CODE (trueop0
) == ABS
4859 || (GET_CODE (trueop0
) == FLOAT_EXTEND
4860 && GET_CODE (XEXP (trueop0
, 0)) == ABS
)))
4865 /* Optimize abs(x) < 0.0. */
4866 if (!HONOR_SNANS (mode
)
4867 && (!INTEGRAL_MODE_P (mode
)
4868 || (!flag_wrapv
&& !flag_trapv
&& flag_strict_overflow
)))
4870 if (INTEGRAL_MODE_P (mode
)
4871 && (issue_strict_overflow_warning
4872 (WARN_STRICT_OVERFLOW_CONDITIONAL
)))
4873 warning (OPT_Wstrict_overflow
,
4874 ("assuming signed overflow does not occur when "
4875 "assuming abs (x) < 0 is false"));
4881 /* Optimize abs(x) >= 0.0. */
4882 if (!HONOR_NANS (mode
)
4883 && (!INTEGRAL_MODE_P (mode
)
4884 || (!flag_wrapv
&& !flag_trapv
&& flag_strict_overflow
)))
4886 if (INTEGRAL_MODE_P (mode
)
4887 && (issue_strict_overflow_warning
4888 (WARN_STRICT_OVERFLOW_CONDITIONAL
)))
4889 warning (OPT_Wstrict_overflow
,
4890 ("assuming signed overflow does not occur when "
4891 "assuming abs (x) >= 0 is true"));
4892 return const_true_rtx
;
4897 /* Optimize ! (abs(x) < 0.0). */
4898 return const_true_rtx
;
4908 /* Simplify CODE, an operation with result mode MODE and three operands,
4909 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4910 a constant. Return 0 if no simplifications is possible. */
4913 simplify_ternary_operation (enum rtx_code code
, enum machine_mode mode
,
4914 enum machine_mode op0_mode
, rtx op0
, rtx op1
,
4917 unsigned int width
= GET_MODE_PRECISION (mode
);
4918 bool any_change
= false;
4921 /* VOIDmode means "infinite" precision. */
4923 width
= HOST_BITS_PER_WIDE_INT
;
4928 /* Simplify negations around the multiplication. */
4929 /* -a * -b + c => a * b + c. */
4930 if (GET_CODE (op0
) == NEG
)
4932 tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
4934 op1
= tem
, op0
= XEXP (op0
, 0), any_change
= true;
4936 else if (GET_CODE (op1
) == NEG
)
4938 tem
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
4940 op0
= tem
, op1
= XEXP (op1
, 0), any_change
= true;
4943 /* Canonicalize the two multiplication operands. */
4944 /* a * -b + c => -b * a + c. */
4945 if (swap_commutative_operands_p (op0
, op1
))
4946 tem
= op0
, op0
= op1
, op1
= tem
, any_change
= true;
4949 return gen_rtx_FMA (mode
, op0
, op1
, op2
);
4954 if (CONST_INT_P (op0
)
4955 && CONST_INT_P (op1
)
4956 && CONST_INT_P (op2
)
4957 && ((unsigned) INTVAL (op1
) + (unsigned) INTVAL (op2
) <= width
)
4958 && width
<= (unsigned) HOST_BITS_PER_WIDE_INT
)
4960 /* Extracting a bit-field from a constant */
4961 unsigned HOST_WIDE_INT val
= UINTVAL (op0
);
4962 HOST_WIDE_INT op1val
= INTVAL (op1
);
4963 HOST_WIDE_INT op2val
= INTVAL (op2
);
4964 if (BITS_BIG_ENDIAN
)
4965 val
>>= GET_MODE_PRECISION (op0_mode
) - op2val
- op1val
;
4969 if (HOST_BITS_PER_WIDE_INT
!= op1val
)
4971 /* First zero-extend. */
4972 val
&= ((unsigned HOST_WIDE_INT
) 1 << op1val
) - 1;
4973 /* If desired, propagate sign bit. */
4974 if (code
== SIGN_EXTRACT
4975 && (val
& ((unsigned HOST_WIDE_INT
) 1 << (op1val
- 1)))
4977 val
|= ~ (((unsigned HOST_WIDE_INT
) 1 << op1val
) - 1);
4980 return gen_int_mode (val
, mode
);
4985 if (CONST_INT_P (op0
))
4986 return op0
!= const0_rtx
? op1
: op2
;
4988 /* Convert c ? a : a into "a". */
4989 if (rtx_equal_p (op1
, op2
) && ! side_effects_p (op0
))
4992 /* Convert a != b ? a : b into "a". */
4993 if (GET_CODE (op0
) == NE
4994 && ! side_effects_p (op0
)
4995 && ! HONOR_NANS (mode
)
4996 && ! HONOR_SIGNED_ZEROS (mode
)
4997 && ((rtx_equal_p (XEXP (op0
, 0), op1
)
4998 && rtx_equal_p (XEXP (op0
, 1), op2
))
4999 || (rtx_equal_p (XEXP (op0
, 0), op2
)
5000 && rtx_equal_p (XEXP (op0
, 1), op1
))))
5003 /* Convert a == b ? a : b into "b". */
5004 if (GET_CODE (op0
) == EQ
5005 && ! side_effects_p (op0
)
5006 && ! HONOR_NANS (mode
)
5007 && ! HONOR_SIGNED_ZEROS (mode
)
5008 && ((rtx_equal_p (XEXP (op0
, 0), op1
)
5009 && rtx_equal_p (XEXP (op0
, 1), op2
))
5010 || (rtx_equal_p (XEXP (op0
, 0), op2
)
5011 && rtx_equal_p (XEXP (op0
, 1), op1
))))
5014 if (COMPARISON_P (op0
) && ! side_effects_p (op0
))
5016 enum machine_mode cmp_mode
= (GET_MODE (XEXP (op0
, 0)) == VOIDmode
5017 ? GET_MODE (XEXP (op0
, 1))
5018 : GET_MODE (XEXP (op0
, 0)));
5021 /* Look for happy constants in op1 and op2. */
5022 if (CONST_INT_P (op1
) && CONST_INT_P (op2
))
5024 HOST_WIDE_INT t
= INTVAL (op1
);
5025 HOST_WIDE_INT f
= INTVAL (op2
);
5027 if (t
== STORE_FLAG_VALUE
&& f
== 0)
5028 code
= GET_CODE (op0
);
5029 else if (t
== 0 && f
== STORE_FLAG_VALUE
)
5032 tmp
= reversed_comparison_code (op0
, NULL_RTX
);
5040 return simplify_gen_relational (code
, mode
, cmp_mode
,
5041 XEXP (op0
, 0), XEXP (op0
, 1));
5044 if (cmp_mode
== VOIDmode
)
5045 cmp_mode
= op0_mode
;
5046 temp
= simplify_relational_operation (GET_CODE (op0
), op0_mode
,
5047 cmp_mode
, XEXP (op0
, 0),
5050 /* See if any simplifications were possible. */
5053 if (CONST_INT_P (temp
))
5054 return temp
== const0_rtx
? op2
: op1
;
5056 return gen_rtx_IF_THEN_ELSE (mode
, temp
, op1
, op2
);
5062 gcc_assert (GET_MODE (op0
) == mode
);
5063 gcc_assert (GET_MODE (op1
) == mode
);
5064 gcc_assert (VECTOR_MODE_P (mode
));
5065 op2
= avoid_constant_pool_reference (op2
);
5066 if (CONST_INT_P (op2
))
5068 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
5069 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
5070 int mask
= (1 << n_elts
) - 1;
5072 if (!(INTVAL (op2
) & mask
))
5074 if ((INTVAL (op2
) & mask
) == mask
)
5077 op0
= avoid_constant_pool_reference (op0
);
5078 op1
= avoid_constant_pool_reference (op1
);
5079 if (GET_CODE (op0
) == CONST_VECTOR
5080 && GET_CODE (op1
) == CONST_VECTOR
)
5082 rtvec v
= rtvec_alloc (n_elts
);
5085 for (i
= 0; i
< n_elts
; i
++)
5086 RTVEC_ELT (v
, i
) = (INTVAL (op2
) & (1 << i
)
5087 ? CONST_VECTOR_ELT (op0
, i
)
5088 : CONST_VECTOR_ELT (op1
, i
));
5089 return gen_rtx_CONST_VECTOR (mode
, v
);
5101 /* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_FIXED
5103 returning another CONST_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
5105 Works by unpacking OP into a collection of 8-bit values
5106 represented as a little-endian array of 'unsigned char', selecting by BYTE,
5107 and then repacking them again for OUTERMODE. */
5110 simplify_immed_subreg (enum machine_mode outermode
, rtx op
,
5111 enum machine_mode innermode
, unsigned int byte
)
5113 /* We support up to 512-bit values (for V8DFmode). */
5117 value_mask
= (1 << value_bit
) - 1
5119 unsigned char value
[max_bitsize
/ value_bit
];
5128 rtvec result_v
= NULL
;
5129 enum mode_class outer_class
;
5130 enum machine_mode outer_submode
;
5132 /* Some ports misuse CCmode. */
5133 if (GET_MODE_CLASS (outermode
) == MODE_CC
&& CONST_INT_P (op
))
5136 /* We have no way to represent a complex constant at the rtl level. */
5137 if (COMPLEX_MODE_P (outermode
))
5140 /* Unpack the value. */
5142 if (GET_CODE (op
) == CONST_VECTOR
)
5144 num_elem
= CONST_VECTOR_NUNITS (op
);
5145 elems
= &CONST_VECTOR_ELT (op
, 0);
5146 elem_bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (innermode
));
5152 elem_bitsize
= max_bitsize
;
5154 /* If this asserts, it is too complicated; reducing value_bit may help. */
5155 gcc_assert (BITS_PER_UNIT
% value_bit
== 0);
5156 /* I don't know how to handle endianness of sub-units. */
5157 gcc_assert (elem_bitsize
% BITS_PER_UNIT
== 0);
5159 for (elem
= 0; elem
< num_elem
; elem
++)
5162 rtx el
= elems
[elem
];
5164 /* Vectors are kept in target memory order. (This is probably
5167 unsigned byte
= (elem
* elem_bitsize
) / BITS_PER_UNIT
;
5168 unsigned ibyte
= (((num_elem
- 1 - elem
) * elem_bitsize
)
5170 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5171 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5172 unsigned bytele
= (subword_byte
% UNITS_PER_WORD
5173 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5174 vp
= value
+ (bytele
* BITS_PER_UNIT
) / value_bit
;
5177 switch (GET_CODE (el
))
5181 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
5183 *vp
++ = INTVAL (el
) >> i
;
5184 /* CONST_INTs are always logically sign-extended. */
5185 for (; i
< elem_bitsize
; i
+= value_bit
)
5186 *vp
++ = INTVAL (el
) < 0 ? -1 : 0;
5190 if (GET_MODE (el
) == VOIDmode
)
5192 /* If this triggers, someone should have generated a
5193 CONST_INT instead. */
5194 gcc_assert (elem_bitsize
> HOST_BITS_PER_WIDE_INT
);
5196 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
+= value_bit
)
5197 *vp
++ = CONST_DOUBLE_LOW (el
) >> i
;
5198 while (i
< HOST_BITS_PER_WIDE_INT
* 2 && i
< elem_bitsize
)
5201 = CONST_DOUBLE_HIGH (el
) >> (i
- HOST_BITS_PER_WIDE_INT
);
5204 /* It shouldn't matter what's done here, so fill it with
5206 for (; i
< elem_bitsize
; i
+= value_bit
)
5211 long tmp
[max_bitsize
/ 32];
5212 int bitsize
= GET_MODE_BITSIZE (GET_MODE (el
));
5214 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el
)));
5215 gcc_assert (bitsize
<= elem_bitsize
);
5216 gcc_assert (bitsize
% value_bit
== 0);
5218 real_to_target (tmp
, CONST_DOUBLE_REAL_VALUE (el
),
5221 /* real_to_target produces its result in words affected by
5222 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5223 and use WORDS_BIG_ENDIAN instead; see the documentation
5224 of SUBREG in rtl.texi. */
5225 for (i
= 0; i
< bitsize
; i
+= value_bit
)
5228 if (WORDS_BIG_ENDIAN
)
5229 ibase
= bitsize
- 1 - i
;
5232 *vp
++ = tmp
[ibase
/ 32] >> i
% 32;
5235 /* It shouldn't matter what's done here, so fill it with
5237 for (; i
< elem_bitsize
; i
+= value_bit
)
5243 if (elem_bitsize
<= HOST_BITS_PER_WIDE_INT
)
5245 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
5246 *vp
++ = CONST_FIXED_VALUE_LOW (el
) >> i
;
5250 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
+= value_bit
)
5251 *vp
++ = CONST_FIXED_VALUE_LOW (el
) >> i
;
5252 for (; i
< 2 * HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
5254 *vp
++ = CONST_FIXED_VALUE_HIGH (el
)
5255 >> (i
- HOST_BITS_PER_WIDE_INT
);
5256 for (; i
< elem_bitsize
; i
+= value_bit
)
5266 /* Now, pick the right byte to start with. */
5267 /* Renumber BYTE so that the least-significant byte is byte 0. A special
5268 case is paradoxical SUBREGs, which shouldn't be adjusted since they
5269 will already have offset 0. */
5270 if (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
))
5272 unsigned ibyte
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
)
5274 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5275 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5276 byte
= (subword_byte
% UNITS_PER_WORD
5277 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5280 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
5281 so if it's become negative it will instead be very large.) */
5282 gcc_assert (byte
< GET_MODE_SIZE (innermode
));
5284 /* Convert from bytes to chunks of size value_bit. */
5285 value_start
= byte
* (BITS_PER_UNIT
/ value_bit
);
5287 /* Re-pack the value. */
5289 if (VECTOR_MODE_P (outermode
))
5291 num_elem
= GET_MODE_NUNITS (outermode
);
5292 result_v
= rtvec_alloc (num_elem
);
5293 elems
= &RTVEC_ELT (result_v
, 0);
5294 outer_submode
= GET_MODE_INNER (outermode
);
5300 outer_submode
= outermode
;
5303 outer_class
= GET_MODE_CLASS (outer_submode
);
5304 elem_bitsize
= GET_MODE_BITSIZE (outer_submode
);
5306 gcc_assert (elem_bitsize
% value_bit
== 0);
5307 gcc_assert (elem_bitsize
+ value_start
* value_bit
<= max_bitsize
);
5309 for (elem
= 0; elem
< num_elem
; elem
++)
5313 /* Vectors are stored in target memory order. (This is probably
5316 unsigned byte
= (elem
* elem_bitsize
) / BITS_PER_UNIT
;
5317 unsigned ibyte
= (((num_elem
- 1 - elem
) * elem_bitsize
)
5319 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5320 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5321 unsigned bytele
= (subword_byte
% UNITS_PER_WORD
5322 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5323 vp
= value
+ value_start
+ (bytele
* BITS_PER_UNIT
) / value_bit
;
5326 switch (outer_class
)
5329 case MODE_PARTIAL_INT
:
5331 unsigned HOST_WIDE_INT hi
= 0, lo
= 0;
5334 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
5336 lo
|= (unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
) << i
;
5337 for (; i
< elem_bitsize
; i
+= value_bit
)
5338 hi
|= (unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
)
5339 << (i
- HOST_BITS_PER_WIDE_INT
);
5341 /* immed_double_const doesn't call trunc_int_for_mode. I don't
5343 if (elem_bitsize
<= HOST_BITS_PER_WIDE_INT
)
5344 elems
[elem
] = gen_int_mode (lo
, outer_submode
);
5345 else if (elem_bitsize
<= 2 * HOST_BITS_PER_WIDE_INT
)
5346 elems
[elem
] = immed_double_const (lo
, hi
, outer_submode
);
5353 case MODE_DECIMAL_FLOAT
:
5356 long tmp
[max_bitsize
/ 32];
5358 /* real_from_target wants its input in words affected by
5359 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5360 and use WORDS_BIG_ENDIAN instead; see the documentation
5361 of SUBREG in rtl.texi. */
5362 for (i
= 0; i
< max_bitsize
/ 32; i
++)
5364 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
5367 if (WORDS_BIG_ENDIAN
)
5368 ibase
= elem_bitsize
- 1 - i
;
5371 tmp
[ibase
/ 32] |= (*vp
++ & value_mask
) << i
% 32;
5374 real_from_target (&r
, tmp
, outer_submode
);
5375 elems
[elem
] = CONST_DOUBLE_FROM_REAL_VALUE (r
, outer_submode
);
5387 f
.mode
= outer_submode
;
5390 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
5392 f
.data
.low
|= (unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
) << i
;
5393 for (; i
< elem_bitsize
; i
+= value_bit
)
5394 f
.data
.high
|= ((unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
)
5395 << (i
- HOST_BITS_PER_WIDE_INT
));
5397 elems
[elem
] = CONST_FIXED_FROM_FIXED_VALUE (f
, outer_submode
);
5405 if (VECTOR_MODE_P (outermode
))
5406 return gen_rtx_CONST_VECTOR (outermode
, result_v
);
5411 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
5412 Return 0 if no simplifications are possible. */
5414 simplify_subreg (enum machine_mode outermode
, rtx op
,
5415 enum machine_mode innermode
, unsigned int byte
)
5417 /* Little bit of sanity checking. */
5418 gcc_assert (innermode
!= VOIDmode
);
5419 gcc_assert (outermode
!= VOIDmode
);
5420 gcc_assert (innermode
!= BLKmode
);
5421 gcc_assert (outermode
!= BLKmode
);
5423 gcc_assert (GET_MODE (op
) == innermode
5424 || GET_MODE (op
) == VOIDmode
);
5426 gcc_assert ((byte
% GET_MODE_SIZE (outermode
)) == 0);
5427 gcc_assert (byte
< GET_MODE_SIZE (innermode
));
5429 if (outermode
== innermode
&& !byte
)
5432 if (CONST_INT_P (op
)
5433 || GET_CODE (op
) == CONST_DOUBLE
5434 || GET_CODE (op
) == CONST_FIXED
5435 || GET_CODE (op
) == CONST_VECTOR
)
5436 return simplify_immed_subreg (outermode
, op
, innermode
, byte
);
5438 /* Changing mode twice with SUBREG => just change it once,
5439 or not at all if changing back op starting mode. */
5440 if (GET_CODE (op
) == SUBREG
)
5442 enum machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
5443 int final_offset
= byte
+ SUBREG_BYTE (op
);
5446 if (outermode
== innermostmode
5447 && byte
== 0 && SUBREG_BYTE (op
) == 0)
5448 return SUBREG_REG (op
);
5450 /* The SUBREG_BYTE represents offset, as if the value were stored
5451 in memory. Irritating exception is paradoxical subreg, where
5452 we define SUBREG_BYTE to be 0. On big endian machines, this
5453 value should be negative. For a moment, undo this exception. */
5454 if (byte
== 0 && GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
5456 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
5457 if (WORDS_BIG_ENDIAN
)
5458 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5459 if (BYTES_BIG_ENDIAN
)
5460 final_offset
+= difference
% UNITS_PER_WORD
;
5462 if (SUBREG_BYTE (op
) == 0
5463 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
5465 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
5466 if (WORDS_BIG_ENDIAN
)
5467 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5468 if (BYTES_BIG_ENDIAN
)
5469 final_offset
+= difference
% UNITS_PER_WORD
;
5472 /* See whether resulting subreg will be paradoxical. */
5473 if (GET_MODE_SIZE (innermostmode
) > GET_MODE_SIZE (outermode
))
5475 /* In nonparadoxical subregs we can't handle negative offsets. */
5476 if (final_offset
< 0)
5478 /* Bail out in case resulting subreg would be incorrect. */
5479 if (final_offset
% GET_MODE_SIZE (outermode
)
5480 || (unsigned) final_offset
>= GET_MODE_SIZE (innermostmode
))
5486 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (outermode
));
5488 /* In paradoxical subreg, see if we are still looking on lower part.
5489 If so, our SUBREG_BYTE will be 0. */
5490 if (WORDS_BIG_ENDIAN
)
5491 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5492 if (BYTES_BIG_ENDIAN
)
5493 offset
+= difference
% UNITS_PER_WORD
;
5494 if (offset
== final_offset
)
5500 /* Recurse for further possible simplifications. */
5501 newx
= simplify_subreg (outermode
, SUBREG_REG (op
), innermostmode
,
5505 if (validate_subreg (outermode
, innermostmode
,
5506 SUBREG_REG (op
), final_offset
))
5508 newx
= gen_rtx_SUBREG (outermode
, SUBREG_REG (op
), final_offset
);
5509 if (SUBREG_PROMOTED_VAR_P (op
)
5510 && SUBREG_PROMOTED_UNSIGNED_P (op
) >= 0
5511 && GET_MODE_CLASS (outermode
) == MODE_INT
5512 && IN_RANGE (GET_MODE_SIZE (outermode
),
5513 GET_MODE_SIZE (innermode
),
5514 GET_MODE_SIZE (innermostmode
))
5515 && subreg_lowpart_p (newx
))
5517 SUBREG_PROMOTED_VAR_P (newx
) = 1;
5518 SUBREG_PROMOTED_UNSIGNED_SET
5519 (newx
, SUBREG_PROMOTED_UNSIGNED_P (op
));
5526 /* Merge implicit and explicit truncations. */
5528 if (GET_CODE (op
) == TRUNCATE
5529 && GET_MODE_SIZE (outermode
) < GET_MODE_SIZE (innermode
)
5530 && subreg_lowpart_offset (outermode
, innermode
) == byte
)
5531 return simplify_gen_unary (TRUNCATE
, outermode
, XEXP (op
, 0),
5532 GET_MODE (XEXP (op
, 0)));
5534 /* SUBREG of a hard register => just change the register number
5535 and/or mode. If the hard register is not valid in that mode,
5536 suppress this simplification. If the hard register is the stack,
5537 frame, or argument pointer, leave this as a SUBREG. */
5539 if (REG_P (op
) && HARD_REGISTER_P (op
))
5541 unsigned int regno
, final_regno
;
5544 final_regno
= simplify_subreg_regno (regno
, innermode
, byte
, outermode
);
5545 if (HARD_REGISTER_NUM_P (final_regno
))
5548 int final_offset
= byte
;
5550 /* Adjust offset for paradoxical subregs. */
5552 && GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
5554 int difference
= (GET_MODE_SIZE (innermode
)
5555 - GET_MODE_SIZE (outermode
));
5556 if (WORDS_BIG_ENDIAN
)
5557 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5558 if (BYTES_BIG_ENDIAN
)
5559 final_offset
+= difference
% UNITS_PER_WORD
;
5562 x
= gen_rtx_REG_offset (op
, outermode
, final_regno
, final_offset
);
5564 /* Propagate original regno. We don't have any way to specify
5565 the offset inside original regno, so do so only for lowpart.
5566 The information is used only by alias analysis that can not
5567 grog partial register anyway. */
5569 if (subreg_lowpart_offset (outermode
, innermode
) == byte
)
5570 ORIGINAL_REGNO (x
) = ORIGINAL_REGNO (op
);
5575 /* If we have a SUBREG of a register that we are replacing and we are
5576 replacing it with a MEM, make a new MEM and try replacing the
5577 SUBREG with it. Don't do this if the MEM has a mode-dependent address
5578 or if we would be widening it. */
5581 && ! mode_dependent_address_p (XEXP (op
, 0))
5582 /* Allow splitting of volatile memory references in case we don't
5583 have instruction to move the whole thing. */
5584 && (! MEM_VOLATILE_P (op
)
5585 || ! have_insn_for (SET
, innermode
))
5586 && GET_MODE_SIZE (outermode
) <= GET_MODE_SIZE (GET_MODE (op
)))
5587 return adjust_address_nv (op
, outermode
, byte
);
5589 /* Handle complex values represented as CONCAT
5590 of real and imaginary part. */
5591 if (GET_CODE (op
) == CONCAT
)
5593 unsigned int part_size
, final_offset
;
5596 part_size
= GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op
, 0)));
5597 if (byte
< part_size
)
5599 part
= XEXP (op
, 0);
5600 final_offset
= byte
;
5604 part
= XEXP (op
, 1);
5605 final_offset
= byte
- part_size
;
5608 if (final_offset
+ GET_MODE_SIZE (outermode
) > part_size
)
5611 res
= simplify_subreg (outermode
, part
, GET_MODE (part
), final_offset
);
5614 if (validate_subreg (outermode
, GET_MODE (part
), part
, final_offset
))
5615 return gen_rtx_SUBREG (outermode
, part
, final_offset
);
5619 /* Optimize SUBREG truncations of zero and sign extended values. */
5620 if ((GET_CODE (op
) == ZERO_EXTEND
5621 || GET_CODE (op
) == SIGN_EXTEND
)
5622 && SCALAR_INT_MODE_P (innermode
)
5623 && GET_MODE_PRECISION (outermode
) < GET_MODE_PRECISION (innermode
))
5625 unsigned int bitpos
= subreg_lsb_1 (outermode
, innermode
, byte
);
5627 /* If we're requesting the lowpart of a zero or sign extension,
5628 there are three possibilities. If the outermode is the same
5629 as the origmode, we can omit both the extension and the subreg.
5630 If the outermode is not larger than the origmode, we can apply
5631 the truncation without the extension. Finally, if the outermode
5632 is larger than the origmode, but both are integer modes, we
5633 can just extend to the appropriate mode. */
5636 enum machine_mode origmode
= GET_MODE (XEXP (op
, 0));
5637 if (outermode
== origmode
)
5638 return XEXP (op
, 0);
5639 if (GET_MODE_PRECISION (outermode
) <= GET_MODE_PRECISION (origmode
))
5640 return simplify_gen_subreg (outermode
, XEXP (op
, 0), origmode
,
5641 subreg_lowpart_offset (outermode
,
5643 if (SCALAR_INT_MODE_P (outermode
))
5644 return simplify_gen_unary (GET_CODE (op
), outermode
,
5645 XEXP (op
, 0), origmode
);
5648 /* A SUBREG resulting from a zero extension may fold to zero if
5649 it extracts higher bits that the ZERO_EXTEND's source bits. */
5650 if (GET_CODE (op
) == ZERO_EXTEND
5651 && bitpos
>= GET_MODE_PRECISION (GET_MODE (XEXP (op
, 0))))
5652 return CONST0_RTX (outermode
);
5655 /* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
5656 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
5657 the outer subreg is effectively a truncation to the original mode. */
5658 if ((GET_CODE (op
) == LSHIFTRT
5659 || GET_CODE (op
) == ASHIFTRT
)
5660 && SCALAR_INT_MODE_P (outermode
)
5661 && SCALAR_INT_MODE_P (innermode
)
5662 /* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
5663 to avoid the possibility that an outer LSHIFTRT shifts by more
5664 than the sign extension's sign_bit_copies and introduces zeros
5665 into the high bits of the result. */
5666 && (2 * GET_MODE_PRECISION (outermode
)) <= GET_MODE_PRECISION (innermode
)
5667 && CONST_INT_P (XEXP (op
, 1))
5668 && GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
5669 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == outermode
5670 && INTVAL (XEXP (op
, 1)) < GET_MODE_PRECISION (outermode
)
5671 && subreg_lsb_1 (outermode
, innermode
, byte
) == 0)
5672 return simplify_gen_binary (ASHIFTRT
, outermode
,
5673 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
5675 /* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
5676 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
5677 the outer subreg is effectively a truncation to the original mode. */
5678 if ((GET_CODE (op
) == LSHIFTRT
5679 || GET_CODE (op
) == ASHIFTRT
)
5680 && SCALAR_INT_MODE_P (outermode
)
5681 && SCALAR_INT_MODE_P (innermode
)
5682 && GET_MODE_PRECISION (outermode
) < GET_MODE_PRECISION (innermode
)
5683 && CONST_INT_P (XEXP (op
, 1))
5684 && GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
5685 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == outermode
5686 && INTVAL (XEXP (op
, 1)) < GET_MODE_PRECISION (outermode
)
5687 && subreg_lsb_1 (outermode
, innermode
, byte
) == 0)
5688 return simplify_gen_binary (LSHIFTRT
, outermode
,
5689 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
5691 /* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
5692 to (ashift:QI (x:QI) C), where C is a suitable small constant and
5693 the outer subreg is effectively a truncation to the original mode. */
5694 if (GET_CODE (op
) == ASHIFT
5695 && SCALAR_INT_MODE_P (outermode
)
5696 && SCALAR_INT_MODE_P (innermode
)
5697 && GET_MODE_PRECISION (outermode
) < GET_MODE_PRECISION (innermode
)
5698 && CONST_INT_P (XEXP (op
, 1))
5699 && (GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
5700 || GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
)
5701 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == outermode
5702 && INTVAL (XEXP (op
, 1)) < GET_MODE_PRECISION (outermode
)
5703 && subreg_lsb_1 (outermode
, innermode
, byte
) == 0)
5704 return simplify_gen_binary (ASHIFT
, outermode
,
5705 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
5707 /* Recognize a word extraction from a multi-word subreg. */
5708 if ((GET_CODE (op
) == LSHIFTRT
5709 || GET_CODE (op
) == ASHIFTRT
)
5710 && SCALAR_INT_MODE_P (innermode
)
5711 && GET_MODE_PRECISION (outermode
) >= BITS_PER_WORD
5712 && GET_MODE_PRECISION (innermode
) >= (2 * GET_MODE_PRECISION (outermode
))
5713 && CONST_INT_P (XEXP (op
, 1))
5714 && (INTVAL (XEXP (op
, 1)) & (GET_MODE_PRECISION (outermode
) - 1)) == 0
5715 && INTVAL (XEXP (op
, 1)) >= 0
5716 && INTVAL (XEXP (op
, 1)) < GET_MODE_PRECISION (innermode
)
5717 && byte
== subreg_lowpart_offset (outermode
, innermode
))
5719 int shifted_bytes
= INTVAL (XEXP (op
, 1)) / BITS_PER_UNIT
;
5720 return simplify_gen_subreg (outermode
, XEXP (op
, 0), innermode
,
5722 ? byte
- shifted_bytes
5723 : byte
+ shifted_bytes
));
5726 /* If we have a lowpart SUBREG of a right shift of MEM, make a new MEM
5727 and try replacing the SUBREG and shift with it. Don't do this if
5728 the MEM has a mode-dependent address or if we would be widening it. */
5730 if ((GET_CODE (op
) == LSHIFTRT
5731 || GET_CODE (op
) == ASHIFTRT
)
5732 && SCALAR_INT_MODE_P (innermode
)
5733 && MEM_P (XEXP (op
, 0))
5734 && CONST_INT_P (XEXP (op
, 1))
5735 && GET_MODE_SIZE (outermode
) < GET_MODE_SIZE (GET_MODE (op
))
5736 && (INTVAL (XEXP (op
, 1)) % GET_MODE_BITSIZE (outermode
)) == 0
5737 && INTVAL (XEXP (op
, 1)) > 0
5738 && INTVAL (XEXP (op
, 1)) < GET_MODE_BITSIZE (innermode
)
5739 && ! mode_dependent_address_p (XEXP (XEXP (op
, 0), 0))
5740 && ! MEM_VOLATILE_P (XEXP (op
, 0))
5741 && byte
== subreg_lowpart_offset (outermode
, innermode
)
5742 && (GET_MODE_SIZE (outermode
) >= UNITS_PER_WORD
5743 || WORDS_BIG_ENDIAN
== BYTES_BIG_ENDIAN
))
5745 int shifted_bytes
= INTVAL (XEXP (op
, 1)) / BITS_PER_UNIT
;
5746 return adjust_address_nv (XEXP (op
, 0), outermode
,
5748 ? byte
- shifted_bytes
5749 : byte
+ shifted_bytes
));
5755 /* Make a SUBREG operation or equivalent if it folds. */
5758 simplify_gen_subreg (enum machine_mode outermode
, rtx op
,
5759 enum machine_mode innermode
, unsigned int byte
)
5763 newx
= simplify_subreg (outermode
, op
, innermode
, byte
);
5767 if (GET_CODE (op
) == SUBREG
5768 || GET_CODE (op
) == CONCAT
5769 || GET_MODE (op
) == VOIDmode
)
5772 if (validate_subreg (outermode
, innermode
, op
, byte
))
5773 return gen_rtx_SUBREG (outermode
, op
, byte
);
5778 /* Simplify X, an rtx expression.
5780 Return the simplified expression or NULL if no simplifications
5783 This is the preferred entry point into the simplification routines;
5784 however, we still allow passes to call the more specific routines.
5786 Right now GCC has three (yes, three) major bodies of RTL simplification
5787 code that need to be unified.
5789 1. fold_rtx in cse.c. This code uses various CSE specific
5790 information to aid in RTL simplification.
5792 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
5793 it uses combine specific information to aid in RTL
5796 3. The routines in this file.
5799 Long term we want to only have one body of simplification code; to
5800 get to that state I recommend the following steps:
5802 1. Pour over fold_rtx & simplify_rtx and move any simplifications
5803 which are not pass dependent state into these routines.
5805 2. As code is moved by #1, change fold_rtx & simplify_rtx to
5806 use this routine whenever possible.
5808 3. Allow for pass dependent state to be provided to these
5809 routines and add simplifications based on the pass dependent
5810 state. Remove code from cse.c & combine.c that becomes
5813 It will take time, but ultimately the compiler will be easier to
5814 maintain and improve. It's totally silly that when we add a
5815 simplification that it needs to be added to 4 places (3 for RTL
5816 simplification and 1 for tree simplification. */
5819 simplify_rtx (const_rtx x
)
5821 const enum rtx_code code
= GET_CODE (x
);
5822 const enum machine_mode mode
= GET_MODE (x
);
5824 switch (GET_RTX_CLASS (code
))
5827 return simplify_unary_operation (code
, mode
,
5828 XEXP (x
, 0), GET_MODE (XEXP (x
, 0)));
5829 case RTX_COMM_ARITH
:
5830 if (swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5831 return simplify_gen_binary (code
, mode
, XEXP (x
, 1), XEXP (x
, 0));
5833 /* Fall through.... */
5836 return simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5839 case RTX_BITFIELD_OPS
:
5840 return simplify_ternary_operation (code
, mode
, GET_MODE (XEXP (x
, 0)),
5841 XEXP (x
, 0), XEXP (x
, 1),
5845 case RTX_COMM_COMPARE
:
5846 return simplify_relational_operation (code
, mode
,
5847 ((GET_MODE (XEXP (x
, 0))
5849 ? GET_MODE (XEXP (x
, 0))
5850 : GET_MODE (XEXP (x
, 1))),
5856 return simplify_subreg (mode
, SUBREG_REG (x
),
5857 GET_MODE (SUBREG_REG (x
)),
5864 /* Convert (lo_sum (high FOO) FOO) to FOO. */
5865 if (GET_CODE (XEXP (x
, 0)) == HIGH
5866 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))