2009-07-22 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ira.c
blobe4caf31fb8d6674167f86ad146a28863139724a2
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
134 IRA major passes are:
136 o Building IRA internal representation which consists of the
137 following subpasses:
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
158 * IRA creates all caps (file ira-build.c).
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
171 * Optional aggressive coalescing of allocnos in the region.
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
277 Literature is worth to read for better understanding the code:
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
300 #include "config.h"
301 #include "system.h"
302 #include "coretypes.h"
303 #include "tm.h"
304 #include "regs.h"
305 #include "rtl.h"
306 #include "tm_p.h"
307 #include "target.h"
308 #include "flags.h"
309 #include "obstack.h"
310 #include "bitmap.h"
311 #include "hard-reg-set.h"
312 #include "basic-block.h"
313 #include "expr.h"
314 #include "recog.h"
315 #include "params.h"
316 #include "timevar.h"
317 #include "tree-pass.h"
318 #include "output.h"
319 #include "except.h"
320 #include "reload.h"
321 #include "errors.h"
322 #include "integrate.h"
323 #include "df.h"
324 #include "ggc.h"
325 #include "ira-int.h"
328 /* A modified value of flag `-fira-verbose' used internally. */
329 int internal_flag_ira_verbose;
331 /* Dump file of the allocator if it is not NULL. */
332 FILE *ira_dump_file;
334 /* Pools for allocnos, copies, allocno live ranges. */
335 alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
337 /* The number of elements in the following array. */
338 int ira_spilled_reg_stack_slots_num;
340 /* The following array contains info about spilled pseudo-registers
341 stack slots used in current function so far. */
342 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
344 /* Correspondingly overall cost of the allocation, cost of the
345 allocnos assigned to hard-registers, cost of the allocnos assigned
346 to memory, cost of loads, stores and register move insns generated
347 for pseudo-register live range splitting (see ira-emit.c). */
348 int ira_overall_cost;
349 int ira_reg_cost, ira_mem_cost;
350 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
351 int ira_move_loops_num, ira_additional_jumps_num;
353 /* All registers that can be eliminated. */
355 HARD_REG_SET eliminable_regset;
357 /* Map: hard regs X modes -> set of hard registers for storing value
358 of given mode starting with given hard register. */
359 HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
361 /* The following two variables are array analogs of the macros
362 MEMORY_MOVE_COST and REGISTER_MOVE_COST. */
363 short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
364 move_table *ira_register_move_cost[MAX_MACHINE_MODE];
366 /* Similar to may_move_in_cost but it is calculated in IRA instead of
367 regclass. Another difference is that we take only available hard
368 registers into account to figure out that one register class is a
369 subset of the another one. */
370 move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
372 /* Similar to may_move_out_cost but it is calculated in IRA instead of
373 regclass. Another difference is that we take only available hard
374 registers into account to figure out that one register class is a
375 subset of the another one. */
376 move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
378 /* Register class subset relation: TRUE if the first class is a subset
379 of the second one considering only hard registers available for the
380 allocation. */
381 int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
383 /* Temporary hard reg set used for a different calculation. */
384 static HARD_REG_SET temp_hard_regset;
388 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
389 static void
390 setup_reg_mode_hard_regset (void)
392 int i, m, hard_regno;
394 for (m = 0; m < NUM_MACHINE_MODES; m++)
395 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
397 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
398 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
399 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
400 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
401 hard_regno + i);
407 /* Hard registers that can not be used for the register allocator for
408 all functions of the current compilation unit. */
409 static HARD_REG_SET no_unit_alloc_regs;
411 /* Array of the number of hard registers of given class which are
412 available for allocation. The order is defined by the
413 allocation order. */
414 short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
416 /* The number of elements of the above array for given register
417 class. */
418 int ira_class_hard_regs_num[N_REG_CLASSES];
420 /* Index (in ira_class_hard_regs) for given register class and hard
421 register (in general case a hard register can belong to several
422 register classes). The index is negative for hard registers
423 unavailable for the allocation. */
424 short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
426 /* The function sets up the three arrays declared above. */
427 static void
428 setup_class_hard_regs (void)
430 int cl, i, hard_regno, n;
431 HARD_REG_SET processed_hard_reg_set;
433 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
434 /* We could call ORDER_REGS_FOR_LOCAL_ALLOC here (it is usually
435 putting hard callee-used hard registers first). But our
436 heuristics work better. */
437 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
439 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
440 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
441 CLEAR_HARD_REG_SET (processed_hard_reg_set);
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 ira_class_hard_reg_index[cl][0] = -1;
444 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
446 #ifdef REG_ALLOC_ORDER
447 hard_regno = reg_alloc_order[i];
448 #else
449 hard_regno = i;
450 #endif
451 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
452 continue;
453 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
454 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
455 ira_class_hard_reg_index[cl][hard_regno] = -1;
456 else
458 ira_class_hard_reg_index[cl][hard_regno] = n;
459 ira_class_hard_regs[cl][n++] = hard_regno;
462 ira_class_hard_regs_num[cl] = n;
466 /* Number of given class hard registers available for the register
467 allocation for given classes. */
468 int ira_available_class_regs[N_REG_CLASSES];
470 /* Set up IRA_AVAILABLE_CLASS_REGS. */
471 static void
472 setup_available_class_regs (void)
474 int i, j;
476 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
477 for (i = 0; i < N_REG_CLASSES; i++)
479 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
480 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
481 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
482 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
483 ira_available_class_regs[i]++;
487 /* Set up global variables defining info about hard registers for the
488 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
489 that we can use the hard frame pointer for the allocation. */
490 static void
491 setup_alloc_regs (bool use_hard_frame_p)
493 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
494 if (! use_hard_frame_p)
495 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
496 setup_class_hard_regs ();
497 setup_available_class_regs ();
502 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
503 static void
504 setup_class_subset_and_memory_move_costs (void)
506 int cl, cl2, mode;
507 HARD_REG_SET temp_hard_regset2;
509 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
510 ira_memory_move_cost[mode][NO_REGS][0]
511 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
512 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
514 if (cl != (int) NO_REGS)
515 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
517 ira_memory_move_cost[mode][cl][0] =
518 MEMORY_MOVE_COST ((enum machine_mode) mode,
519 (enum reg_class) cl, 0);
520 ira_memory_move_cost[mode][cl][1] =
521 MEMORY_MOVE_COST ((enum machine_mode) mode,
522 (enum reg_class) cl, 1);
523 /* Costs for NO_REGS are used in cost calculation on the
524 1st pass when the preferred register classes are not
525 known yet. In this case we take the best scenario. */
526 if (ira_memory_move_cost[mode][NO_REGS][0]
527 > ira_memory_move_cost[mode][cl][0])
528 ira_memory_move_cost[mode][NO_REGS][0]
529 = ira_memory_move_cost[mode][cl][0];
530 if (ira_memory_move_cost[mode][NO_REGS][1]
531 > ira_memory_move_cost[mode][cl][1])
532 ira_memory_move_cost[mode][NO_REGS][1]
533 = ira_memory_move_cost[mode][cl][1];
535 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
537 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
538 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
539 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
540 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
541 ira_class_subset_p[cl][cl2]
542 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
549 /* Define the following macro if allocation through malloc if
550 preferable. */
551 #define IRA_NO_OBSTACK
553 #ifndef IRA_NO_OBSTACK
554 /* Obstack used for storing all dynamic data (except bitmaps) of the
555 IRA. */
556 static struct obstack ira_obstack;
557 #endif
559 /* Obstack used for storing all bitmaps of the IRA. */
560 static struct bitmap_obstack ira_bitmap_obstack;
562 /* Allocate memory of size LEN for IRA data. */
563 void *
564 ira_allocate (size_t len)
566 void *res;
568 #ifndef IRA_NO_OBSTACK
569 res = obstack_alloc (&ira_obstack, len);
570 #else
571 res = xmalloc (len);
572 #endif
573 return res;
576 /* Reallocate memory PTR of size LEN for IRA data. */
577 void *
578 ira_reallocate (void *ptr, size_t len)
580 void *res;
582 #ifndef IRA_NO_OBSTACK
583 res = obstack_alloc (&ira_obstack, len);
584 #else
585 res = xrealloc (ptr, len);
586 #endif
587 return res;
590 /* Free memory ADDR allocated for IRA data. */
591 void
592 ira_free (void *addr ATTRIBUTE_UNUSED)
594 #ifndef IRA_NO_OBSTACK
595 /* do nothing */
596 #else
597 free (addr);
598 #endif
602 /* Allocate and returns bitmap for IRA. */
603 bitmap
604 ira_allocate_bitmap (void)
606 return BITMAP_ALLOC (&ira_bitmap_obstack);
609 /* Free bitmap B allocated for IRA. */
610 void
611 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
613 /* do nothing */
618 /* Output information about allocation of all allocnos (except for
619 caps) into file F. */
620 void
621 ira_print_disposition (FILE *f)
623 int i, n, max_regno;
624 ira_allocno_t a;
625 basic_block bb;
627 fprintf (f, "Disposition:");
628 max_regno = max_reg_num ();
629 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
630 for (a = ira_regno_allocno_map[i];
631 a != NULL;
632 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
634 if (n % 4 == 0)
635 fprintf (f, "\n");
636 n++;
637 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
638 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
639 fprintf (f, "b%-3d", bb->index);
640 else
641 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
642 if (ALLOCNO_HARD_REGNO (a) >= 0)
643 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
644 else
645 fprintf (f, " mem");
647 fprintf (f, "\n");
650 /* Outputs information about allocation of all allocnos into
651 stderr. */
652 void
653 ira_debug_disposition (void)
655 ira_print_disposition (stderr);
660 /* For each reg class, table listing all the classes contained in it
661 (excluding the class itself. Non-allocatable registers are
662 excluded from the consideration). */
663 static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
665 /* Initialize the table of subclasses of each reg class. */
666 static void
667 setup_reg_subclasses (void)
669 int i, j;
670 HARD_REG_SET temp_hard_regset2;
672 for (i = 0; i < N_REG_CLASSES; i++)
673 for (j = 0; j < N_REG_CLASSES; j++)
674 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
676 for (i = 0; i < N_REG_CLASSES; i++)
678 if (i == (int) NO_REGS)
679 continue;
681 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
682 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
683 if (hard_reg_set_empty_p (temp_hard_regset))
684 continue;
685 for (j = 0; j < N_REG_CLASSES; j++)
686 if (i != j)
688 enum reg_class *p;
690 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
691 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
692 if (! hard_reg_set_subset_p (temp_hard_regset,
693 temp_hard_regset2))
694 continue;
695 p = &alloc_reg_class_subclasses[j][0];
696 while (*p != LIM_REG_CLASSES) p++;
697 *p = (enum reg_class) i;
704 /* Number of cover classes. Cover classes is non-intersected register
705 classes containing all hard-registers available for the
706 allocation. */
707 int ira_reg_class_cover_size;
709 /* The array containing cover classes (see also comments for macro
710 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
711 used for this. */
712 enum reg_class ira_reg_class_cover[N_REG_CLASSES];
714 /* The number of elements in the subsequent array. */
715 int ira_important_classes_num;
717 /* The array containing non-empty classes (including non-empty cover
718 classes) which are subclasses of cover classes. Such classes is
719 important for calculation of the hard register usage costs. */
720 enum reg_class ira_important_classes[N_REG_CLASSES];
722 /* The array containing indexes of important classes in the previous
723 array. The array elements are defined only for important
724 classes. */
725 int ira_important_class_nums[N_REG_CLASSES];
727 /* Set the four global variables defined above. */
728 static void
729 setup_cover_and_important_classes (void)
731 int i, j, n, cl;
732 bool set_p;
733 const enum reg_class *cover_classes;
734 HARD_REG_SET temp_hard_regset2;
735 static enum reg_class classes[LIM_REG_CLASSES + 1];
737 if (targetm.ira_cover_classes == NULL)
738 cover_classes = NULL;
739 else
740 cover_classes = targetm.ira_cover_classes ();
741 if (cover_classes == NULL)
742 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
743 else
745 for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
746 classes[i] = (enum reg_class) cl;
747 classes[i] = LIM_REG_CLASSES;
750 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
752 n = 0;
753 for (i = 0; i <= LIM_REG_CLASSES; i++)
755 if (i == NO_REGS)
756 continue;
757 #ifdef CONSTRAINT_NUM_DEFINED_P
758 for (j = 0; j < CONSTRAINT__LIMIT; j++)
759 if ((int) REG_CLASS_FOR_CONSTRAINT ((enum constraint_num) j) == i)
760 break;
761 if (j < CONSTRAINT__LIMIT)
763 classes[n++] = (enum reg_class) i;
764 continue;
766 #endif
767 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
768 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
769 for (j = 0; j < LIM_REG_CLASSES; j++)
771 if (i == j)
772 continue;
773 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
774 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
775 no_unit_alloc_regs);
776 if (hard_reg_set_equal_p (temp_hard_regset,
777 temp_hard_regset2))
778 break;
780 if (j >= i)
781 classes[n++] = (enum reg_class) i;
783 classes[n] = LIM_REG_CLASSES;
786 ira_reg_class_cover_size = 0;
787 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
789 for (j = 0; j < i; j++)
790 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
791 && reg_classes_intersect_p ((enum reg_class) cl, classes[j]))
792 gcc_unreachable ();
793 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
794 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
795 if (! hard_reg_set_empty_p (temp_hard_regset))
796 ira_reg_class_cover[ira_reg_class_cover_size++] = (enum reg_class) cl;
798 ira_important_classes_num = 0;
799 for (cl = 0; cl < N_REG_CLASSES; cl++)
801 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
802 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
803 if (! hard_reg_set_empty_p (temp_hard_regset))
805 set_p = false;
806 for (j = 0; j < ira_reg_class_cover_size; j++)
808 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
809 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
810 COPY_HARD_REG_SET (temp_hard_regset2,
811 reg_class_contents[ira_reg_class_cover[j]]);
812 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
813 if ((enum reg_class) cl == ira_reg_class_cover[j]
814 || hard_reg_set_equal_p (temp_hard_regset,
815 temp_hard_regset2))
816 break;
817 else if (hard_reg_set_subset_p (temp_hard_regset,
818 temp_hard_regset2))
819 set_p = true;
821 if (set_p && j >= ira_reg_class_cover_size)
822 ira_important_classes[ira_important_classes_num++]
823 = (enum reg_class) cl;
826 for (j = 0; j < ira_reg_class_cover_size; j++)
827 ira_important_classes[ira_important_classes_num++]
828 = ira_reg_class_cover[j];
831 /* Map of all register classes to corresponding cover class containing
832 the given class. If given class is not a subset of a cover class,
833 we translate it into the cheapest cover class. */
834 enum reg_class ira_class_translate[N_REG_CLASSES];
836 /* Set up array IRA_CLASS_TRANSLATE. */
837 static void
838 setup_class_translate (void)
840 int cl, mode;
841 enum reg_class cover_class, best_class, *cl_ptr;
842 int i, cost, min_cost, best_cost;
844 for (cl = 0; cl < N_REG_CLASSES; cl++)
845 ira_class_translate[cl] = NO_REGS;
847 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
848 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
850 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
851 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
852 for (i = 0; i < ira_reg_class_cover_size; i++)
854 HARD_REG_SET temp_hard_regset2;
856 cover_class = ira_reg_class_cover[i];
857 COPY_HARD_REG_SET (temp_hard_regset2,
858 reg_class_contents[cover_class]);
859 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
860 if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
861 ira_class_translate[cl] = cover_class;
864 for (i = 0; i < ira_reg_class_cover_size; i++)
866 cover_class = ira_reg_class_cover[i];
867 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
868 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
869 (cl = *cl_ptr) != LIM_REG_CLASSES;
870 cl_ptr++)
872 if (ira_class_translate[cl] == NO_REGS)
873 ira_class_translate[cl] = cover_class;
874 #ifdef ENABLE_IRA_CHECKING
875 else
877 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
878 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
879 if (! hard_reg_set_empty_p (temp_hard_regset))
880 gcc_unreachable ();
882 #endif
884 ira_class_translate[cover_class] = cover_class;
886 /* For classes which are not fully covered by a cover class (in
887 other words covered by more one cover class), use the cheapest
888 cover class. */
889 for (cl = 0; cl < N_REG_CLASSES; cl++)
891 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
892 continue;
893 best_class = NO_REGS;
894 best_cost = INT_MAX;
895 for (i = 0; i < ira_reg_class_cover_size; i++)
897 cover_class = ira_reg_class_cover[i];
898 COPY_HARD_REG_SET (temp_hard_regset,
899 reg_class_contents[cover_class]);
900 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
901 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
902 if (! hard_reg_set_empty_p (temp_hard_regset))
904 min_cost = INT_MAX;
905 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
907 cost = (ira_memory_move_cost[mode][cl][0]
908 + ira_memory_move_cost[mode][cl][1]);
909 if (min_cost > cost)
910 min_cost = cost;
912 if (best_class == NO_REGS || best_cost > min_cost)
914 best_class = cover_class;
915 best_cost = min_cost;
919 ira_class_translate[cl] = best_class;
923 /* Order numbers of cover classes in original target cover class
924 array, -1 for non-cover classes. */
925 static int cover_class_order[N_REG_CLASSES];
927 /* The function used to sort the important classes. */
928 static int
929 comp_reg_classes_func (const void *v1p, const void *v2p)
931 enum reg_class cl1 = *(const enum reg_class *) v1p;
932 enum reg_class cl2 = *(const enum reg_class *) v2p;
933 int diff;
935 cl1 = ira_class_translate[cl1];
936 cl2 = ira_class_translate[cl2];
937 if (cl1 != NO_REGS && cl2 != NO_REGS
938 && (diff = cover_class_order[cl1] - cover_class_order[cl2]) != 0)
939 return diff;
940 return (int) cl1 - (int) cl2;
943 /* Reorder important classes according to the order of their cover
944 classes. Set up array ira_important_class_nums too. */
945 static void
946 reorder_important_classes (void)
948 int i;
950 for (i = 0; i < N_REG_CLASSES; i++)
951 cover_class_order[i] = -1;
952 for (i = 0; i < ira_reg_class_cover_size; i++)
953 cover_class_order[ira_reg_class_cover[i]] = i;
954 qsort (ira_important_classes, ira_important_classes_num,
955 sizeof (enum reg_class), comp_reg_classes_func);
956 for (i = 0; i < ira_important_classes_num; i++)
957 ira_important_class_nums[ira_important_classes[i]] = i;
960 /* The biggest important reg_class inside of intersection of the two
961 reg_classes (that is calculated taking only hard registers
962 available for allocation into account). If the both reg_classes
963 contain no hard registers available for allocation, the value is
964 calculated by taking all hard-registers including fixed ones into
965 account. */
966 enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
968 /* True if the two classes (that is calculated taking only hard
969 registers available for allocation into account) are
970 intersected. */
971 bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
973 /* Important classes with end marker LIM_REG_CLASSES which are
974 supersets with given important class (the first index). That
975 includes given class itself. This is calculated taking only hard
976 registers available for allocation into account. */
977 enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
979 /* The biggest important reg_class inside of union of the two
980 reg_classes (that is calculated taking only hard registers
981 available for allocation into account). If the both reg_classes
982 contain no hard registers available for allocation, the value is
983 calculated by taking all hard-registers including fixed ones into
984 account. In other words, the value is the corresponding
985 reg_class_subunion value. */
986 enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
988 /* Set up the above reg class relations. */
989 static void
990 setup_reg_class_relations (void)
992 int i, cl1, cl2, cl3;
993 HARD_REG_SET intersection_set, union_set, temp_set2;
994 bool important_class_p[N_REG_CLASSES];
996 memset (important_class_p, 0, sizeof (important_class_p));
997 for (i = 0; i < ira_important_classes_num; i++)
998 important_class_p[ira_important_classes[i]] = true;
999 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1001 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1002 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1004 ira_reg_classes_intersect_p[cl1][cl2] = false;
1005 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1006 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1007 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1008 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1009 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1010 if (hard_reg_set_empty_p (temp_hard_regset)
1011 && hard_reg_set_empty_p (temp_set2))
1013 for (i = 0;; i++)
1015 cl3 = reg_class_subclasses[cl1][i];
1016 if (cl3 == LIM_REG_CLASSES)
1017 break;
1018 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1019 (enum reg_class) cl3))
1020 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1022 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
1023 continue;
1025 ira_reg_classes_intersect_p[cl1][cl2]
1026 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1027 if (important_class_p[cl1] && important_class_p[cl2]
1028 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1030 enum reg_class *p;
1032 p = &ira_reg_class_super_classes[cl1][0];
1033 while (*p != LIM_REG_CLASSES)
1034 p++;
1035 *p++ = (enum reg_class) cl2;
1036 *p = LIM_REG_CLASSES;
1038 ira_reg_class_union[cl1][cl2] = NO_REGS;
1039 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1040 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1041 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1042 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1043 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1044 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1045 for (i = 0; i < ira_important_classes_num; i++)
1047 cl3 = ira_important_classes[i];
1048 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1049 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1050 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1052 COPY_HARD_REG_SET
1053 (temp_set2,
1054 reg_class_contents[(int)
1055 ira_reg_class_intersect[cl1][cl2]]);
1056 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1057 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1058 /* Ignore unavailable hard registers and prefer
1059 smallest class for debugging purposes. */
1060 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1061 && hard_reg_set_subset_p
1062 (reg_class_contents[cl3],
1063 reg_class_contents
1064 [(int) ira_reg_class_intersect[cl1][cl2]])))
1065 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1067 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1069 COPY_HARD_REG_SET
1070 (temp_set2,
1071 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
1072 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1073 if (ira_reg_class_union[cl1][cl2] == NO_REGS
1074 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1076 && (! hard_reg_set_equal_p (temp_set2,
1077 temp_hard_regset)
1078 /* Ignore unavailable hard registers and
1079 prefer smallest class for debugging
1080 purposes. */
1081 || hard_reg_set_subset_p
1082 (reg_class_contents[cl3],
1083 reg_class_contents
1084 [(int) ira_reg_class_union[cl1][cl2]]))))
1085 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
1092 /* Output all cover classes and the translation map into file F. */
1093 static void
1094 print_class_cover (FILE *f)
1096 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1097 int i;
1099 fprintf (f, "Class cover:\n");
1100 for (i = 0; i < ira_reg_class_cover_size; i++)
1101 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
1102 fprintf (f, "\nClass translation:\n");
1103 for (i = 0; i < N_REG_CLASSES; i++)
1104 fprintf (f, " %s -> %s\n", reg_class_names[i],
1105 reg_class_names[ira_class_translate[i]]);
1108 /* Output all cover classes and the translation map into
1109 stderr. */
1110 void
1111 ira_debug_class_cover (void)
1113 print_class_cover (stderr);
1116 /* Set up different arrays concerning class subsets, cover and
1117 important classes. */
1118 static void
1119 find_reg_class_closure (void)
1121 setup_reg_subclasses ();
1122 setup_cover_and_important_classes ();
1123 setup_class_translate ();
1124 reorder_important_classes ();
1125 setup_reg_class_relations ();
1130 /* Map: hard register number -> cover class it belongs to. If the
1131 corresponding class is NO_REGS, the hard register is not available
1132 for allocation. */
1133 enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
1135 /* Set up the array above. */
1136 static void
1137 setup_hard_regno_cover_class (void)
1139 int i, j;
1140 enum reg_class cl;
1142 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1144 ira_hard_regno_cover_class[i] = NO_REGS;
1145 for (j = 0; j < ira_reg_class_cover_size; j++)
1147 cl = ira_reg_class_cover[j];
1148 if (ira_class_hard_reg_index[cl][i] >= 0)
1150 ira_hard_regno_cover_class[i] = cl;
1151 break;
1160 /* Map: register class x machine mode -> number of hard registers of
1161 given class needed to store value of given mode. If the number is
1162 different, the size will be negative. */
1163 int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
1165 /* Maximal value of the previous array elements. */
1166 int ira_max_nregs;
1168 /* Form IRA_REG_CLASS_NREGS map. */
1169 static void
1170 setup_reg_class_nregs (void)
1172 int cl, m;
1174 ira_max_nregs = -1;
1175 for (cl = 0; cl < N_REG_CLASSES; cl++)
1176 for (m = 0; m < MAX_MACHINE_MODE; m++)
1178 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
1179 (enum machine_mode) m);
1180 if (ira_max_nregs < ira_reg_class_nregs[cl][m])
1181 ira_max_nregs = ira_reg_class_nregs[cl][m];
1187 /* Array whose values are hard regset of hard registers available for
1188 the allocation of given register class whose HARD_REGNO_MODE_OK
1189 values for given mode are zero. */
1190 HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
1192 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1193 static void
1194 setup_prohibited_class_mode_regs (void)
1196 int i, j, k, hard_regno;
1197 enum reg_class cl;
1199 for (i = 0; i < ira_reg_class_cover_size; i++)
1201 cl = ira_reg_class_cover[i];
1202 for (j = 0; j < NUM_MACHINE_MODES; j++)
1204 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1205 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1207 hard_regno = ira_class_hard_regs[cl][k];
1208 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1209 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1210 hard_regno);
1218 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1219 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1220 not done yet. */
1221 void
1222 ira_init_register_move_cost (enum machine_mode mode)
1224 int cl1, cl2;
1226 ira_assert (ira_register_move_cost[mode] == NULL
1227 && ira_may_move_in_cost[mode] == NULL
1228 && ira_may_move_out_cost[mode] == NULL);
1229 if (move_cost[mode] == NULL)
1230 init_move_cost (mode);
1231 ira_register_move_cost[mode] = move_cost[mode];
1232 /* Don't use ira_allocate because the tables exist out of scope of a
1233 IRA call. */
1234 ira_may_move_in_cost[mode]
1235 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1236 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1237 sizeof (move_table) * N_REG_CLASSES);
1238 ira_may_move_out_cost[mode]
1239 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1240 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1241 sizeof (move_table) * N_REG_CLASSES);
1242 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1244 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1246 if (ira_class_subset_p[cl1][cl2])
1247 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1248 if (ira_class_subset_p[cl2][cl1])
1249 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1256 /* This is called once during compiler work. It sets up
1257 different arrays whose values don't depend on the compiled
1258 function. */
1259 void
1260 ira_init_once (void)
1262 int mode;
1264 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1266 ira_register_move_cost[mode] = NULL;
1267 ira_may_move_in_cost[mode] = NULL;
1268 ira_may_move_out_cost[mode] = NULL;
1270 ira_init_costs_once ();
1273 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1274 ira_may_move_out_cost for each mode. */
1275 static void
1276 free_register_move_costs (void)
1278 int mode;
1280 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1282 if (ira_may_move_in_cost[mode] != NULL)
1283 free (ira_may_move_in_cost[mode]);
1284 if (ira_may_move_out_cost[mode] != NULL)
1285 free (ira_may_move_out_cost[mode]);
1286 ira_register_move_cost[mode] = NULL;
1287 ira_may_move_in_cost[mode] = NULL;
1288 ira_may_move_out_cost[mode] = NULL;
1292 /* This is called every time when register related information is
1293 changed. */
1294 void
1295 ira_init (void)
1297 free_register_move_costs ();
1298 setup_reg_mode_hard_regset ();
1299 setup_alloc_regs (flag_omit_frame_pointer != 0);
1300 setup_class_subset_and_memory_move_costs ();
1301 find_reg_class_closure ();
1302 setup_hard_regno_cover_class ();
1303 setup_reg_class_nregs ();
1304 setup_prohibited_class_mode_regs ();
1305 ira_init_costs ();
1308 /* Function called once at the end of compiler work. */
1309 void
1310 ira_finish_once (void)
1312 ira_finish_costs_once ();
1313 free_register_move_costs ();
1318 /* Array whose values are hard regset of hard registers for which
1319 move of the hard register in given mode into itself is
1320 prohibited. */
1321 HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
1323 /* Flag of that the above array has been initialized. */
1324 static bool ira_prohibited_mode_move_regs_initialized_p = false;
1326 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1327 static void
1328 setup_prohibited_mode_move_regs (void)
1330 int i, j;
1331 rtx test_reg1, test_reg2, move_pat, move_insn;
1333 if (ira_prohibited_mode_move_regs_initialized_p)
1334 return;
1335 ira_prohibited_mode_move_regs_initialized_p = true;
1336 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1337 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1338 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1339 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1340 for (i = 0; i < NUM_MACHINE_MODES; i++)
1342 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1343 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1345 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1346 continue;
1347 SET_REGNO (test_reg1, j);
1348 PUT_MODE (test_reg1, (enum machine_mode) i);
1349 SET_REGNO (test_reg2, j);
1350 PUT_MODE (test_reg2, (enum machine_mode) i);
1351 INSN_CODE (move_insn) = -1;
1352 recog_memoized (move_insn);
1353 if (INSN_CODE (move_insn) < 0)
1354 continue;
1355 extract_insn (move_insn);
1356 if (! constrain_operands (1))
1357 continue;
1358 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1365 /* Function specific hard registers that can not be used for the
1366 register allocation. */
1367 HARD_REG_SET ira_no_alloc_regs;
1369 /* Return TRUE if *LOC contains an asm. */
1370 static int
1371 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1373 if ( !*loc)
1374 return FALSE;
1375 if (GET_CODE (*loc) == ASM_OPERANDS)
1376 return TRUE;
1377 return FALSE;
1381 /* Return TRUE if INSN contains an ASM. */
1382 static bool
1383 insn_contains_asm (rtx insn)
1385 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1388 /* Set up regs_asm_clobbered. */
1389 static void
1390 compute_regs_asm_clobbered (char *regs_asm_clobbered)
1392 basic_block bb;
1394 memset (regs_asm_clobbered, 0, sizeof (char) * FIRST_PSEUDO_REGISTER);
1396 FOR_EACH_BB (bb)
1398 rtx insn;
1399 FOR_BB_INSNS_REVERSE (bb, insn)
1401 df_ref *def_rec;
1403 if (insn_contains_asm (insn))
1404 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1406 df_ref def = *def_rec;
1407 unsigned int dregno = DF_REF_REGNO (def);
1408 if (dregno < FIRST_PSEUDO_REGISTER)
1410 unsigned int i;
1411 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1412 unsigned int end = dregno
1413 + hard_regno_nregs[dregno][mode] - 1;
1415 for (i = dregno; i <= end; ++i)
1416 regs_asm_clobbered[i] = 1;
1424 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1425 static void
1426 setup_eliminable_regset (void)
1428 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an
1429 asm. Unlike regs_ever_live, elements of this array corresponding
1430 to eliminable regs (like the frame pointer) are set if an asm
1431 sets them. */
1432 char *regs_asm_clobbered
1433 = (char *) alloca (FIRST_PSEUDO_REGISTER * sizeof (char));
1434 #ifdef ELIMINABLE_REGS
1435 int i;
1436 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1437 #endif
1438 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1439 sp for alloca. So we can't eliminate the frame pointer in that
1440 case. At some point, we should improve this by emitting the
1441 sp-adjusting insns for this case. */
1442 int need_fp
1443 = (! flag_omit_frame_pointer
1444 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1445 || crtl->accesses_prior_frames
1446 || crtl->stack_realign_needed
1447 || targetm.frame_pointer_required ());
1449 frame_pointer_needed = need_fp;
1451 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1452 CLEAR_HARD_REG_SET (eliminable_regset);
1454 compute_regs_asm_clobbered (regs_asm_clobbered);
1455 /* Build the regset of all eliminable registers and show we can't
1456 use those that we already know won't be eliminated. */
1457 #ifdef ELIMINABLE_REGS
1458 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1460 bool cannot_elim
1461 = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
1462 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1464 if (! regs_asm_clobbered[eliminables[i].from])
1466 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1468 if (cannot_elim)
1469 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1471 else if (cannot_elim)
1472 error ("%s cannot be used in asm here",
1473 reg_names[eliminables[i].from]);
1474 else
1475 df_set_regs_ever_live (eliminables[i].from, true);
1477 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1478 if (! regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
1480 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1481 if (need_fp)
1482 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1484 else if (need_fp)
1485 error ("%s cannot be used in asm here",
1486 reg_names[HARD_FRAME_POINTER_REGNUM]);
1487 else
1488 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1489 #endif
1491 #else
1492 if (! regs_asm_clobbered[FRAME_POINTER_REGNUM])
1494 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1495 if (need_fp)
1496 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1498 else if (need_fp)
1499 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1500 else
1501 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1502 #endif
1507 /* The length of the following two arrays. */
1508 int ira_reg_equiv_len;
1510 /* The element value is TRUE if the corresponding regno value is
1511 invariant. */
1512 bool *ira_reg_equiv_invariant_p;
1514 /* The element value is equiv constant of given pseudo-register or
1515 NULL_RTX. */
1516 rtx *ira_reg_equiv_const;
1518 /* Set up the two arrays declared above. */
1519 static void
1520 find_reg_equiv_invariant_const (void)
1522 int i;
1523 bool invariant_p;
1524 rtx list, insn, note, constant, x;
1526 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1528 constant = NULL_RTX;
1529 invariant_p = false;
1530 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1532 insn = XEXP (list, 0);
1533 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1535 if (note == NULL_RTX)
1536 continue;
1538 x = XEXP (note, 0);
1540 if (! function_invariant_p (x)
1541 || ! flag_pic
1542 /* A function invariant is often CONSTANT_P but may
1543 include a register. We promise to only pass CONSTANT_P
1544 objects to LEGITIMATE_PIC_OPERAND_P. */
1545 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
1547 /* It can happen that a REG_EQUIV note contains a MEM
1548 that is not a legitimate memory operand. As later
1549 stages of the reload assume that all addresses found
1550 in the reg_equiv_* arrays were originally legitimate,
1551 we ignore such REG_EQUIV notes. */
1552 if (memory_operand (x, VOIDmode))
1553 invariant_p = MEM_READONLY_P (x);
1554 else if (function_invariant_p (x))
1556 if (GET_CODE (x) == PLUS
1557 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1558 invariant_p = true;
1559 else
1560 constant = x;
1564 ira_reg_equiv_invariant_p[i] = invariant_p;
1565 ira_reg_equiv_const[i] = constant;
1571 /* Vector of substitutions of register numbers,
1572 used to map pseudo regs into hardware regs.
1573 This is set up as a result of register allocation.
1574 Element N is the hard reg assigned to pseudo reg N,
1575 or is -1 if no hard reg was assigned.
1576 If N is a hard reg number, element N is N. */
1577 short *reg_renumber;
1579 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1580 the allocation found by IRA. */
1581 static void
1582 setup_reg_renumber (void)
1584 int regno, hard_regno;
1585 ira_allocno_t a;
1586 ira_allocno_iterator ai;
1588 caller_save_needed = 0;
1589 FOR_EACH_ALLOCNO (a, ai)
1591 /* There are no caps at this point. */
1592 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1593 if (! ALLOCNO_ASSIGNED_P (a))
1594 /* It can happen if A is not referenced but partially anticipated
1595 somewhere in a region. */
1596 ALLOCNO_ASSIGNED_P (a) = true;
1597 ira_free_allocno_updated_costs (a);
1598 hard_regno = ALLOCNO_HARD_REGNO (a);
1599 regno = (int) REGNO (ALLOCNO_REG (a));
1600 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1601 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1602 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1603 call_used_reg_set))
1605 ira_assert (!optimize || flag_caller_saves
1606 || regno >= ira_reg_equiv_len
1607 || ira_reg_equiv_const[regno]
1608 || ira_reg_equiv_invariant_p[regno]);
1609 caller_save_needed = 1;
1614 /* Set up allocno assignment flags for further allocation
1615 improvements. */
1616 static void
1617 setup_allocno_assignment_flags (void)
1619 int hard_regno;
1620 ira_allocno_t a;
1621 ira_allocno_iterator ai;
1623 FOR_EACH_ALLOCNO (a, ai)
1625 if (! ALLOCNO_ASSIGNED_P (a))
1626 /* It can happen if A is not referenced but partially anticipated
1627 somewhere in a region. */
1628 ira_free_allocno_updated_costs (a);
1629 hard_regno = ALLOCNO_HARD_REGNO (a);
1630 /* Don't assign hard registers to allocnos which are destination
1631 of removed store at the end of loop. It has no sense to keep
1632 the same value in different hard registers. It is also
1633 impossible to assign hard registers correctly to such
1634 allocnos because the cost info and info about intersected
1635 calls are incorrect for them. */
1636 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1637 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1638 || (ALLOCNO_MEMORY_COST (a)
1639 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1640 ira_assert (hard_regno < 0
1641 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1642 reg_class_contents
1643 [ALLOCNO_COVER_CLASS (a)]));
1647 /* Evaluate overall allocation cost and the costs for using hard
1648 registers and memory for allocnos. */
1649 static void
1650 calculate_allocation_cost (void)
1652 int hard_regno, cost;
1653 ira_allocno_t a;
1654 ira_allocno_iterator ai;
1656 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1657 FOR_EACH_ALLOCNO (a, ai)
1659 hard_regno = ALLOCNO_HARD_REGNO (a);
1660 ira_assert (hard_regno < 0
1661 || ! ira_hard_reg_not_in_set_p
1662 (hard_regno, ALLOCNO_MODE (a),
1663 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1664 if (hard_regno < 0)
1666 cost = ALLOCNO_MEMORY_COST (a);
1667 ira_mem_cost += cost;
1669 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1671 cost = (ALLOCNO_HARD_REG_COSTS (a)
1672 [ira_class_hard_reg_index
1673 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1674 ira_reg_cost += cost;
1676 else
1678 cost = ALLOCNO_COVER_CLASS_COST (a);
1679 ira_reg_cost += cost;
1681 ira_overall_cost += cost;
1684 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1686 fprintf (ira_dump_file,
1687 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1688 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1689 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1690 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1691 ira_move_loops_num, ira_additional_jumps_num);
1696 #ifdef ENABLE_IRA_CHECKING
1697 /* Check the correctness of the allocation. We do need this because
1698 of complicated code to transform more one region internal
1699 representation into one region representation. */
1700 static void
1701 check_allocation (void)
1703 ira_allocno_t a, conflict_a;
1704 int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
1705 ira_allocno_conflict_iterator aci;
1706 ira_allocno_iterator ai;
1708 FOR_EACH_ALLOCNO (a, ai)
1710 if (ALLOCNO_CAP_MEMBER (a) != NULL
1711 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1712 continue;
1713 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1714 FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
1715 if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
1717 conflict_nregs
1718 = (hard_regno_nregs
1719 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1720 if ((conflict_hard_regno <= hard_regno
1721 && hard_regno < conflict_hard_regno + conflict_nregs)
1722 || (hard_regno <= conflict_hard_regno
1723 && conflict_hard_regno < hard_regno + nregs))
1725 fprintf (stderr, "bad allocation for %d and %d\n",
1726 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1727 gcc_unreachable ();
1732 #endif
1734 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1735 by IRA. */
1736 static void
1737 fix_reg_equiv_init (void)
1739 int max_regno = max_reg_num ();
1740 int i, new_regno;
1741 rtx x, prev, next, insn, set;
1743 if (reg_equiv_init_size < max_regno)
1745 reg_equiv_init
1746 = (rtx *) ggc_realloc (reg_equiv_init, max_regno * sizeof (rtx));
1747 while (reg_equiv_init_size < max_regno)
1748 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1749 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1750 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1752 next = XEXP (x, 1);
1753 insn = XEXP (x, 0);
1754 set = single_set (insn);
1755 ira_assert (set != NULL_RTX
1756 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1757 if (REG_P (SET_DEST (set))
1758 && ((int) REGNO (SET_DEST (set)) == i
1759 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1760 new_regno = REGNO (SET_DEST (set));
1761 else if (REG_P (SET_SRC (set))
1762 && ((int) REGNO (SET_SRC (set)) == i
1763 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1764 new_regno = REGNO (SET_SRC (set));
1765 else
1766 gcc_unreachable ();
1767 if (new_regno == i)
1768 prev = x;
1769 else
1771 if (prev == NULL_RTX)
1772 reg_equiv_init[i] = next;
1773 else
1774 XEXP (prev, 1) = next;
1775 XEXP (x, 1) = reg_equiv_init[new_regno];
1776 reg_equiv_init[new_regno] = x;
1782 #ifdef ENABLE_IRA_CHECKING
1783 /* Print redundant memory-memory copies. */
1784 static void
1785 print_redundant_copies (void)
1787 int hard_regno;
1788 ira_allocno_t a;
1789 ira_copy_t cp, next_cp;
1790 ira_allocno_iterator ai;
1792 FOR_EACH_ALLOCNO (a, ai)
1794 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1795 /* It is a cap. */
1796 continue;
1797 hard_regno = ALLOCNO_HARD_REGNO (a);
1798 if (hard_regno >= 0)
1799 continue;
1800 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1801 if (cp->first == a)
1802 next_cp = cp->next_first_allocno_copy;
1803 else
1805 next_cp = cp->next_second_allocno_copy;
1806 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1807 && cp->insn != NULL_RTX
1808 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1809 fprintf (ira_dump_file,
1810 " Redundant move from %d(freq %d):%d\n",
1811 INSN_UID (cp->insn), cp->freq, hard_regno);
1815 #endif
1817 /* Setup preferred and alternative classes for new pseudo-registers
1818 created by IRA starting with START. */
1819 static void
1820 setup_preferred_alternate_classes_for_new_pseudos (int start)
1822 int i, old_regno;
1823 int max_regno = max_reg_num ();
1825 for (i = start; i < max_regno; i++)
1827 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1828 ira_assert (i != old_regno);
1829 setup_reg_classes (i, reg_preferred_class (old_regno),
1830 reg_alternate_class (old_regno));
1831 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1832 fprintf (ira_dump_file,
1833 " New r%d: setting preferred %s, alternative %s\n",
1834 i, reg_class_names[reg_preferred_class (old_regno)],
1835 reg_class_names[reg_alternate_class (old_regno)]);
1841 /* Regional allocation can create new pseudo-registers. This function
1842 expands some arrays for pseudo-registers. */
1843 static void
1844 expand_reg_info (int old_size)
1846 int i;
1847 int size = max_reg_num ();
1849 resize_reg_info ();
1850 for (i = old_size; i < size; i++)
1852 reg_renumber[i] = -1;
1853 setup_reg_classes (i, GENERAL_REGS, ALL_REGS);
1857 /* Return TRUE if there is too high register pressure in the function.
1858 It is used to decide when stack slot sharing is worth to do. */
1859 static bool
1860 too_high_register_pressure_p (void)
1862 int i;
1863 enum reg_class cover_class;
1865 for (i = 0; i < ira_reg_class_cover_size; i++)
1867 cover_class = ira_reg_class_cover[i];
1868 if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
1869 return true;
1871 return false;
1876 /* Indicate that hard register number FROM was eliminated and replaced with
1877 an offset from hard register number TO. The status of hard registers live
1878 at the start of a basic block is updated by replacing a use of FROM with
1879 a use of TO. */
1881 void
1882 mark_elimination (int from, int to)
1884 basic_block bb;
1886 FOR_EACH_BB (bb)
1888 /* We don't use LIVE info in IRA. */
1889 regset r = DF_LR_IN (bb);
1891 if (REGNO_REG_SET_P (r, from))
1893 CLEAR_REGNO_REG_SET (r, from);
1894 SET_REGNO_REG_SET (r, to);
1901 struct equivalence
1903 /* Set when a REG_EQUIV note is found or created. Use to
1904 keep track of what memory accesses might be created later,
1905 e.g. by reload. */
1906 rtx replacement;
1907 rtx *src_p;
1908 /* The list of each instruction which initializes this register. */
1909 rtx init_insns;
1910 /* Loop depth is used to recognize equivalences which appear
1911 to be present within the same loop (or in an inner loop). */
1912 int loop_depth;
1913 /* Nonzero if this had a preexisting REG_EQUIV note. */
1914 int is_arg_equivalence;
1915 /* Set when an attempt should be made to replace a register
1916 with the associated src_p entry. */
1917 char replace;
1920 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
1921 structure for that register. */
1922 static struct equivalence *reg_equiv;
1924 /* Used for communication between the following two functions: contains
1925 a MEM that we wish to ensure remains unchanged. */
1926 static rtx equiv_mem;
1928 /* Set nonzero if EQUIV_MEM is modified. */
1929 static int equiv_mem_modified;
1931 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
1932 Called via note_stores. */
1933 static void
1934 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
1935 void *data ATTRIBUTE_UNUSED)
1937 if ((REG_P (dest)
1938 && reg_overlap_mentioned_p (dest, equiv_mem))
1939 || (MEM_P (dest)
1940 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
1941 equiv_mem_modified = 1;
1944 /* Verify that no store between START and the death of REG invalidates
1945 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
1946 by storing into an overlapping memory location, or with a non-const
1947 CALL_INSN.
1949 Return 1 if MEMREF remains valid. */
1950 static int
1951 validate_equiv_mem (rtx start, rtx reg, rtx memref)
1953 rtx insn;
1954 rtx note;
1956 equiv_mem = memref;
1957 equiv_mem_modified = 0;
1959 /* If the memory reference has side effects or is volatile, it isn't a
1960 valid equivalence. */
1961 if (side_effects_p (memref))
1962 return 0;
1964 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
1966 if (! INSN_P (insn))
1967 continue;
1969 if (find_reg_note (insn, REG_DEAD, reg))
1970 return 1;
1972 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
1973 && ! RTL_CONST_OR_PURE_CALL_P (insn))
1974 return 0;
1976 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
1978 /* If a register mentioned in MEMREF is modified via an
1979 auto-increment, we lose the equivalence. Do the same if one
1980 dies; although we could extend the life, it doesn't seem worth
1981 the trouble. */
1983 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1984 if ((REG_NOTE_KIND (note) == REG_INC
1985 || REG_NOTE_KIND (note) == REG_DEAD)
1986 && REG_P (XEXP (note, 0))
1987 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
1988 return 0;
1991 return 0;
1994 /* Returns zero if X is known to be invariant. */
1995 static int
1996 equiv_init_varies_p (rtx x)
1998 RTX_CODE code = GET_CODE (x);
1999 int i;
2000 const char *fmt;
2002 switch (code)
2004 case MEM:
2005 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2007 case CONST:
2008 case CONST_INT:
2009 case CONST_DOUBLE:
2010 case CONST_FIXED:
2011 case CONST_VECTOR:
2012 case SYMBOL_REF:
2013 case LABEL_REF:
2014 return 0;
2016 case REG:
2017 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2019 case ASM_OPERANDS:
2020 if (MEM_VOLATILE_P (x))
2021 return 1;
2023 /* Fall through. */
2025 default:
2026 break;
2029 fmt = GET_RTX_FORMAT (code);
2030 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2031 if (fmt[i] == 'e')
2033 if (equiv_init_varies_p (XEXP (x, i)))
2034 return 1;
2036 else if (fmt[i] == 'E')
2038 int j;
2039 for (j = 0; j < XVECLEN (x, i); j++)
2040 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2041 return 1;
2044 return 0;
2047 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2048 X is only movable if the registers it uses have equivalent initializations
2049 which appear to be within the same loop (or in an inner loop) and movable
2050 or if they are not candidates for local_alloc and don't vary. */
2051 static int
2052 equiv_init_movable_p (rtx x, int regno)
2054 int i, j;
2055 const char *fmt;
2056 enum rtx_code code = GET_CODE (x);
2058 switch (code)
2060 case SET:
2061 return equiv_init_movable_p (SET_SRC (x), regno);
2063 case CC0:
2064 case CLOBBER:
2065 return 0;
2067 case PRE_INC:
2068 case PRE_DEC:
2069 case POST_INC:
2070 case POST_DEC:
2071 case PRE_MODIFY:
2072 case POST_MODIFY:
2073 return 0;
2075 case REG:
2076 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2077 && reg_equiv[REGNO (x)].replace)
2078 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
2080 case UNSPEC_VOLATILE:
2081 return 0;
2083 case ASM_OPERANDS:
2084 if (MEM_VOLATILE_P (x))
2085 return 0;
2087 /* Fall through. */
2089 default:
2090 break;
2093 fmt = GET_RTX_FORMAT (code);
2094 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2095 switch (fmt[i])
2097 case 'e':
2098 if (! equiv_init_movable_p (XEXP (x, i), regno))
2099 return 0;
2100 break;
2101 case 'E':
2102 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2103 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2104 return 0;
2105 break;
2108 return 1;
2111 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
2112 static int
2113 contains_replace_regs (rtx x)
2115 int i, j;
2116 const char *fmt;
2117 enum rtx_code code = GET_CODE (x);
2119 switch (code)
2121 case CONST_INT:
2122 case CONST:
2123 case LABEL_REF:
2124 case SYMBOL_REF:
2125 case CONST_DOUBLE:
2126 case CONST_FIXED:
2127 case CONST_VECTOR:
2128 case PC:
2129 case CC0:
2130 case HIGH:
2131 return 0;
2133 case REG:
2134 return reg_equiv[REGNO (x)].replace;
2136 default:
2137 break;
2140 fmt = GET_RTX_FORMAT (code);
2141 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2142 switch (fmt[i])
2144 case 'e':
2145 if (contains_replace_regs (XEXP (x, i)))
2146 return 1;
2147 break;
2148 case 'E':
2149 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2150 if (contains_replace_regs (XVECEXP (x, i, j)))
2151 return 1;
2152 break;
2155 return 0;
2158 /* TRUE if X references a memory location that would be affected by a store
2159 to MEMREF. */
2160 static int
2161 memref_referenced_p (rtx memref, rtx x)
2163 int i, j;
2164 const char *fmt;
2165 enum rtx_code code = GET_CODE (x);
2167 switch (code)
2169 case CONST_INT:
2170 case CONST:
2171 case LABEL_REF:
2172 case SYMBOL_REF:
2173 case CONST_DOUBLE:
2174 case CONST_FIXED:
2175 case CONST_VECTOR:
2176 case PC:
2177 case CC0:
2178 case HIGH:
2179 case LO_SUM:
2180 return 0;
2182 case REG:
2183 return (reg_equiv[REGNO (x)].replacement
2184 && memref_referenced_p (memref,
2185 reg_equiv[REGNO (x)].replacement));
2187 case MEM:
2188 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2189 return 1;
2190 break;
2192 case SET:
2193 /* If we are setting a MEM, it doesn't count (its address does), but any
2194 other SET_DEST that has a MEM in it is referencing the MEM. */
2195 if (MEM_P (SET_DEST (x)))
2197 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2198 return 1;
2200 else if (memref_referenced_p (memref, SET_DEST (x)))
2201 return 1;
2203 return memref_referenced_p (memref, SET_SRC (x));
2205 default:
2206 break;
2209 fmt = GET_RTX_FORMAT (code);
2210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2211 switch (fmt[i])
2213 case 'e':
2214 if (memref_referenced_p (memref, XEXP (x, i)))
2215 return 1;
2216 break;
2217 case 'E':
2218 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2219 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2220 return 1;
2221 break;
2224 return 0;
2227 /* TRUE if some insn in the range (START, END] references a memory location
2228 that would be affected by a store to MEMREF. */
2229 static int
2230 memref_used_between_p (rtx memref, rtx start, rtx end)
2232 rtx insn;
2234 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2235 insn = NEXT_INSN (insn))
2237 if (!INSN_P (insn))
2238 continue;
2240 if (memref_referenced_p (memref, PATTERN (insn)))
2241 return 1;
2243 /* Nonconst functions may access memory. */
2244 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2245 return 1;
2248 return 0;
2251 /* Mark REG as having no known equivalence.
2252 Some instructions might have been processed before and furnished
2253 with REG_EQUIV notes for this register; these notes will have to be
2254 removed.
2255 STORE is the piece of RTL that does the non-constant / conflicting
2256 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2257 but needs to be there because this function is called from note_stores. */
2258 static void
2259 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2261 int regno;
2262 rtx list;
2264 if (!REG_P (reg))
2265 return;
2266 regno = REGNO (reg);
2267 list = reg_equiv[regno].init_insns;
2268 if (list == const0_rtx)
2269 return;
2270 reg_equiv[regno].init_insns = const0_rtx;
2271 reg_equiv[regno].replacement = NULL_RTX;
2272 /* This doesn't matter for equivalences made for argument registers, we
2273 should keep their initialization insns. */
2274 if (reg_equiv[regno].is_arg_equivalence)
2275 return;
2276 reg_equiv_init[regno] = NULL_RTX;
2277 for (; list; list = XEXP (list, 1))
2279 rtx insn = XEXP (list, 0);
2280 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2284 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2285 static int recorded_label_ref;
2287 /* Find registers that are equivalent to a single value throughout the
2288 compilation (either because they can be referenced in memory or are set once
2289 from a single constant). Lower their priority for a register.
2291 If such a register is only referenced once, try substituting its value
2292 into the using insn. If it succeeds, we can eliminate the register
2293 completely.
2295 Initialize the REG_EQUIV_INIT array of initializing insns.
2297 Return non-zero if jump label rebuilding should be done. */
2298 static int
2299 update_equiv_regs (void)
2301 rtx insn;
2302 basic_block bb;
2303 int loop_depth;
2304 bitmap cleared_regs;
2306 /* We need to keep track of whether or not we recorded a LABEL_REF so
2307 that we know if the jump optimizer needs to be rerun. */
2308 recorded_label_ref = 0;
2310 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2311 reg_equiv_init = GGC_CNEWVEC (rtx, max_regno);
2312 reg_equiv_init_size = max_regno;
2314 init_alias_analysis ();
2316 /* Scan the insns and find which registers have equivalences. Do this
2317 in a separate scan of the insns because (due to -fcse-follow-jumps)
2318 a register can be set below its use. */
2319 FOR_EACH_BB (bb)
2321 loop_depth = bb->loop_depth;
2323 for (insn = BB_HEAD (bb);
2324 insn != NEXT_INSN (BB_END (bb));
2325 insn = NEXT_INSN (insn))
2327 rtx note;
2328 rtx set;
2329 rtx dest, src;
2330 int regno;
2332 if (! INSN_P (insn))
2333 continue;
2335 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2336 if (REG_NOTE_KIND (note) == REG_INC)
2337 no_equiv (XEXP (note, 0), note, NULL);
2339 set = single_set (insn);
2341 /* If this insn contains more (or less) than a single SET,
2342 only mark all destinations as having no known equivalence. */
2343 if (set == 0)
2345 note_stores (PATTERN (insn), no_equiv, NULL);
2346 continue;
2348 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2350 int i;
2352 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2354 rtx part = XVECEXP (PATTERN (insn), 0, i);
2355 if (part != set)
2356 note_stores (part, no_equiv, NULL);
2360 dest = SET_DEST (set);
2361 src = SET_SRC (set);
2363 /* See if this is setting up the equivalence between an argument
2364 register and its stack slot. */
2365 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2366 if (note)
2368 gcc_assert (REG_P (dest));
2369 regno = REGNO (dest);
2371 /* Note that we don't want to clear reg_equiv_init even if there
2372 are multiple sets of this register. */
2373 reg_equiv[regno].is_arg_equivalence = 1;
2375 /* Record for reload that this is an equivalencing insn. */
2376 if (rtx_equal_p (src, XEXP (note, 0)))
2377 reg_equiv_init[regno]
2378 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2380 /* Continue normally in case this is a candidate for
2381 replacements. */
2384 if (!optimize)
2385 continue;
2387 /* We only handle the case of a pseudo register being set
2388 once, or always to the same value. */
2389 /* ??? The mn10200 port breaks if we add equivalences for
2390 values that need an ADDRESS_REGS register and set them equivalent
2391 to a MEM of a pseudo. The actual problem is in the over-conservative
2392 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2393 calculate_needs, but we traditionally work around this problem
2394 here by rejecting equivalences when the destination is in a register
2395 that's likely spilled. This is fragile, of course, since the
2396 preferred class of a pseudo depends on all instructions that set
2397 or use it. */
2399 if (!REG_P (dest)
2400 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2401 || reg_equiv[regno].init_insns == const0_rtx
2402 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
2403 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2405 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2406 also set somewhere else to a constant. */
2407 note_stores (set, no_equiv, NULL);
2408 continue;
2411 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2413 /* cse sometimes generates function invariants, but doesn't put a
2414 REG_EQUAL note on the insn. Since this note would be redundant,
2415 there's no point creating it earlier than here. */
2416 if (! note && ! rtx_varies_p (src, 0))
2417 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2419 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2420 since it represents a function call */
2421 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2422 note = NULL_RTX;
2424 if (DF_REG_DEF_COUNT (regno) != 1
2425 && (! note
2426 || rtx_varies_p (XEXP (note, 0), 0)
2427 || (reg_equiv[regno].replacement
2428 && ! rtx_equal_p (XEXP (note, 0),
2429 reg_equiv[regno].replacement))))
2431 no_equiv (dest, set, NULL);
2432 continue;
2434 /* Record this insn as initializing this register. */
2435 reg_equiv[regno].init_insns
2436 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2438 /* If this register is known to be equal to a constant, record that
2439 it is always equivalent to the constant. */
2440 if (DF_REG_DEF_COUNT (regno) == 1
2441 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2443 rtx note_value = XEXP (note, 0);
2444 remove_note (insn, note);
2445 set_unique_reg_note (insn, REG_EQUIV, note_value);
2448 /* If this insn introduces a "constant" register, decrease the priority
2449 of that register. Record this insn if the register is only used once
2450 more and the equivalence value is the same as our source.
2452 The latter condition is checked for two reasons: First, it is an
2453 indication that it may be more efficient to actually emit the insn
2454 as written (if no registers are available, reload will substitute
2455 the equivalence). Secondly, it avoids problems with any registers
2456 dying in this insn whose death notes would be missed.
2458 If we don't have a REG_EQUIV note, see if this insn is loading
2459 a register used only in one basic block from a MEM. If so, and the
2460 MEM remains unchanged for the life of the register, add a REG_EQUIV
2461 note. */
2463 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2465 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2466 && MEM_P (SET_SRC (set))
2467 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2468 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2470 if (note)
2472 int regno = REGNO (dest);
2473 rtx x = XEXP (note, 0);
2475 /* If we haven't done so, record for reload that this is an
2476 equivalencing insn. */
2477 if (!reg_equiv[regno].is_arg_equivalence)
2478 reg_equiv_init[regno]
2479 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2481 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2482 We might end up substituting the LABEL_REF for uses of the
2483 pseudo here or later. That kind of transformation may turn an
2484 indirect jump into a direct jump, in which case we must rerun the
2485 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2486 if (GET_CODE (x) == LABEL_REF
2487 || (GET_CODE (x) == CONST
2488 && GET_CODE (XEXP (x, 0)) == PLUS
2489 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2490 recorded_label_ref = 1;
2492 reg_equiv[regno].replacement = x;
2493 reg_equiv[regno].src_p = &SET_SRC (set);
2494 reg_equiv[regno].loop_depth = loop_depth;
2496 /* Don't mess with things live during setjmp. */
2497 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2499 /* Note that the statement below does not affect the priority
2500 in local-alloc! */
2501 REG_LIVE_LENGTH (regno) *= 2;
2503 /* If the register is referenced exactly twice, meaning it is
2504 set once and used once, indicate that the reference may be
2505 replaced by the equivalence we computed above. Do this
2506 even if the register is only used in one block so that
2507 dependencies can be handled where the last register is
2508 used in a different block (i.e. HIGH / LO_SUM sequences)
2509 and to reduce the number of registers alive across
2510 calls. */
2512 if (REG_N_REFS (regno) == 2
2513 && (rtx_equal_p (x, src)
2514 || ! equiv_init_varies_p (src))
2515 && NONJUMP_INSN_P (insn)
2516 && equiv_init_movable_p (PATTERN (insn), regno))
2517 reg_equiv[regno].replace = 1;
2523 if (!optimize)
2524 goto out;
2526 /* A second pass, to gather additional equivalences with memory. This needs
2527 to be done after we know which registers we are going to replace. */
2529 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2531 rtx set, src, dest;
2532 unsigned regno;
2534 if (! INSN_P (insn))
2535 continue;
2537 set = single_set (insn);
2538 if (! set)
2539 continue;
2541 dest = SET_DEST (set);
2542 src = SET_SRC (set);
2544 /* If this sets a MEM to the contents of a REG that is only used
2545 in a single basic block, see if the register is always equivalent
2546 to that memory location and if moving the store from INSN to the
2547 insn that set REG is safe. If so, put a REG_EQUIV note on the
2548 initializing insn.
2550 Don't add a REG_EQUIV note if the insn already has one. The existing
2551 REG_EQUIV is likely more useful than the one we are adding.
2553 If one of the regs in the address has reg_equiv[REGNO].replace set,
2554 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2555 optimization may move the set of this register immediately before
2556 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2557 the mention in the REG_EQUIV note would be to an uninitialized
2558 pseudo. */
2560 if (MEM_P (dest) && REG_P (src)
2561 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2562 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2563 && DF_REG_DEF_COUNT (regno) == 1
2564 && reg_equiv[regno].init_insns != 0
2565 && reg_equiv[regno].init_insns != const0_rtx
2566 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2567 REG_EQUIV, NULL_RTX)
2568 && ! contains_replace_regs (XEXP (dest, 0)))
2570 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2571 if (validate_equiv_mem (init_insn, src, dest)
2572 && ! memref_used_between_p (dest, init_insn, insn)
2573 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2574 multiple sets. */
2575 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2577 /* This insn makes the equivalence, not the one initializing
2578 the register. */
2579 reg_equiv_init[regno]
2580 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2581 df_notes_rescan (init_insn);
2586 cleared_regs = BITMAP_ALLOC (NULL);
2587 /* Now scan all regs killed in an insn to see if any of them are
2588 registers only used that once. If so, see if we can replace the
2589 reference with the equivalent form. If we can, delete the
2590 initializing reference and this register will go away. If we
2591 can't replace the reference, and the initializing reference is
2592 within the same loop (or in an inner loop), then move the register
2593 initialization just before the use, so that they are in the same
2594 basic block. */
2595 FOR_EACH_BB_REVERSE (bb)
2597 loop_depth = bb->loop_depth;
2598 for (insn = BB_END (bb);
2599 insn != PREV_INSN (BB_HEAD (bb));
2600 insn = PREV_INSN (insn))
2602 rtx link;
2604 if (! INSN_P (insn))
2605 continue;
2607 /* Don't substitute into a non-local goto, this confuses CFG. */
2608 if (JUMP_P (insn)
2609 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2610 continue;
2612 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2614 if (REG_NOTE_KIND (link) == REG_DEAD
2615 /* Make sure this insn still refers to the register. */
2616 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2618 int regno = REGNO (XEXP (link, 0));
2619 rtx equiv_insn;
2621 if (! reg_equiv[regno].replace
2622 || reg_equiv[regno].loop_depth < loop_depth)
2623 continue;
2625 /* reg_equiv[REGNO].replace gets set only when
2626 REG_N_REFS[REGNO] is 2, i.e. the register is set
2627 once and used once. (If it were only set, but not used,
2628 flow would have deleted the setting insns.) Hence
2629 there can only be one insn in reg_equiv[REGNO].init_insns. */
2630 gcc_assert (reg_equiv[regno].init_insns
2631 && !XEXP (reg_equiv[regno].init_insns, 1));
2632 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2634 /* We may not move instructions that can throw, since
2635 that changes basic block boundaries and we are not
2636 prepared to adjust the CFG to match. */
2637 if (can_throw_internal (equiv_insn))
2638 continue;
2640 if (asm_noperands (PATTERN (equiv_insn)) < 0
2641 && validate_replace_rtx (regno_reg_rtx[regno],
2642 *(reg_equiv[regno].src_p), insn))
2644 rtx equiv_link;
2645 rtx last_link;
2646 rtx note;
2648 /* Find the last note. */
2649 for (last_link = link; XEXP (last_link, 1);
2650 last_link = XEXP (last_link, 1))
2653 /* Append the REG_DEAD notes from equiv_insn. */
2654 equiv_link = REG_NOTES (equiv_insn);
2655 while (equiv_link)
2657 note = equiv_link;
2658 equiv_link = XEXP (equiv_link, 1);
2659 if (REG_NOTE_KIND (note) == REG_DEAD)
2661 remove_note (equiv_insn, note);
2662 XEXP (last_link, 1) = note;
2663 XEXP (note, 1) = NULL_RTX;
2664 last_link = note;
2668 remove_death (regno, insn);
2669 SET_REG_N_REFS (regno, 0);
2670 REG_FREQ (regno) = 0;
2671 delete_insn (equiv_insn);
2673 reg_equiv[regno].init_insns
2674 = XEXP (reg_equiv[regno].init_insns, 1);
2676 reg_equiv_init[regno] = NULL_RTX;
2677 bitmap_set_bit (cleared_regs, regno);
2679 /* Move the initialization of the register to just before
2680 INSN. Update the flow information. */
2681 else if (PREV_INSN (insn) != equiv_insn)
2683 rtx new_insn;
2685 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
2686 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
2687 REG_NOTES (equiv_insn) = 0;
2688 /* Rescan it to process the notes. */
2689 df_insn_rescan (new_insn);
2691 /* Make sure this insn is recognized before
2692 reload begins, otherwise
2693 eliminate_regs_in_insn will die. */
2694 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
2696 delete_insn (equiv_insn);
2698 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2700 REG_BASIC_BLOCK (regno) = bb->index;
2701 REG_N_CALLS_CROSSED (regno) = 0;
2702 REG_FREQ_CALLS_CROSSED (regno) = 0;
2703 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2704 REG_LIVE_LENGTH (regno) = 2;
2706 if (insn == BB_HEAD (bb))
2707 BB_HEAD (bb) = PREV_INSN (insn);
2709 reg_equiv_init[regno]
2710 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
2711 bitmap_set_bit (cleared_regs, regno);
2718 if (!bitmap_empty_p (cleared_regs))
2719 FOR_EACH_BB (bb)
2721 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
2722 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
2723 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
2724 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
2727 BITMAP_FREE (cleared_regs);
2729 out:
2730 /* Clean up. */
2732 end_alias_analysis ();
2733 free (reg_equiv);
2734 return recorded_label_ref;
2739 /* Print chain C to FILE. */
2740 static void
2741 print_insn_chain (FILE *file, struct insn_chain *c)
2743 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
2744 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
2745 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
2749 /* Print all reload_insn_chains to FILE. */
2750 static void
2751 print_insn_chains (FILE *file)
2753 struct insn_chain *c;
2754 for (c = reload_insn_chain; c ; c = c->next)
2755 print_insn_chain (file, c);
2758 /* Return true if pseudo REGNO should be added to set live_throughout
2759 or dead_or_set of the insn chains for reload consideration. */
2760 static bool
2761 pseudo_for_reload_consideration_p (int regno)
2763 /* Consider spilled pseudos too for IRA because they still have a
2764 chance to get hard-registers in the reload when IRA is used. */
2765 return (reg_renumber[regno] >= 0
2766 || (ira_conflicts_p && flag_ira_share_spill_slots));
2769 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
2770 REG to the number of nregs, and INIT_VALUE to get the
2771 initialization. ALLOCNUM need not be the regno of REG. */
2772 static void
2773 init_live_subregs (bool init_value, sbitmap *live_subregs,
2774 int *live_subregs_used, int allocnum, rtx reg)
2776 unsigned int regno = REGNO (SUBREG_REG (reg));
2777 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
2779 gcc_assert (size > 0);
2781 /* Been there, done that. */
2782 if (live_subregs_used[allocnum])
2783 return;
2785 /* Create a new one with zeros. */
2786 if (live_subregs[allocnum] == NULL)
2787 live_subregs[allocnum] = sbitmap_alloc (size);
2789 /* If the entire reg was live before blasting into subregs, we need
2790 to init all of the subregs to ones else init to 0. */
2791 if (init_value)
2792 sbitmap_ones (live_subregs[allocnum]);
2793 else
2794 sbitmap_zero (live_subregs[allocnum]);
2796 /* Set the number of bits that we really want. */
2797 live_subregs_used[allocnum] = size;
2800 /* Walk the insns of the current function and build reload_insn_chain,
2801 and record register life information. */
2802 static void
2803 build_insn_chain (void)
2805 unsigned int i;
2806 struct insn_chain **p = &reload_insn_chain;
2807 basic_block bb;
2808 struct insn_chain *c = NULL;
2809 struct insn_chain *next = NULL;
2810 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
2811 bitmap elim_regset = BITMAP_ALLOC (NULL);
2812 /* live_subregs is a vector used to keep accurate information about
2813 which hardregs are live in multiword pseudos. live_subregs and
2814 live_subregs_used are indexed by pseudo number. The live_subreg
2815 entry for a particular pseudo is only used if the corresponding
2816 element is non zero in live_subregs_used. The value in
2817 live_subregs_used is number of bytes that the pseudo can
2818 occupy. */
2819 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
2820 int *live_subregs_used = XNEWVEC (int, max_regno);
2822 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2823 if (TEST_HARD_REG_BIT (eliminable_regset, i))
2824 bitmap_set_bit (elim_regset, i);
2825 FOR_EACH_BB_REVERSE (bb)
2827 bitmap_iterator bi;
2828 rtx insn;
2830 CLEAR_REG_SET (live_relevant_regs);
2831 memset (live_subregs_used, 0, max_regno * sizeof (int));
2833 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
2835 if (i >= FIRST_PSEUDO_REGISTER)
2836 break;
2837 bitmap_set_bit (live_relevant_regs, i);
2840 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
2841 FIRST_PSEUDO_REGISTER, i, bi)
2843 if (pseudo_for_reload_consideration_p (i))
2844 bitmap_set_bit (live_relevant_regs, i);
2847 FOR_BB_INSNS_REVERSE (bb, insn)
2849 if (!NOTE_P (insn) && !BARRIER_P (insn))
2851 unsigned int uid = INSN_UID (insn);
2852 df_ref *def_rec;
2853 df_ref *use_rec;
2855 c = new_insn_chain ();
2856 c->next = next;
2857 next = c;
2858 *p = c;
2859 p = &c->prev;
2861 c->insn = insn;
2862 c->block = bb->index;
2864 if (INSN_P (insn))
2865 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2867 df_ref def = *def_rec;
2868 unsigned int regno = DF_REF_REGNO (def);
2870 /* Ignore may clobbers because these are generated
2871 from calls. However, every other kind of def is
2872 added to dead_or_set. */
2873 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2875 if (regno < FIRST_PSEUDO_REGISTER)
2877 if (!fixed_regs[regno])
2878 bitmap_set_bit (&c->dead_or_set, regno);
2880 else if (pseudo_for_reload_consideration_p (regno))
2881 bitmap_set_bit (&c->dead_or_set, regno);
2884 if ((regno < FIRST_PSEUDO_REGISTER
2885 || reg_renumber[regno] >= 0
2886 || ira_conflicts_p)
2887 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
2889 rtx reg = DF_REF_REG (def);
2891 /* We can model subregs, but not if they are
2892 wrapped in ZERO_EXTRACTS. */
2893 if (GET_CODE (reg) == SUBREG
2894 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
2896 unsigned int start = SUBREG_BYTE (reg);
2897 unsigned int last = start
2898 + GET_MODE_SIZE (GET_MODE (reg));
2900 init_live_subregs
2901 (bitmap_bit_p (live_relevant_regs, regno),
2902 live_subregs, live_subregs_used, regno, reg);
2904 if (!DF_REF_FLAGS_IS_SET
2905 (def, DF_REF_STRICT_LOW_PART))
2907 /* Expand the range to cover entire words.
2908 Bytes added here are "don't care". */
2909 start
2910 = start / UNITS_PER_WORD * UNITS_PER_WORD;
2911 last = ((last + UNITS_PER_WORD - 1)
2912 / UNITS_PER_WORD * UNITS_PER_WORD);
2915 /* Ignore the paradoxical bits. */
2916 if ((int)last > live_subregs_used[regno])
2917 last = live_subregs_used[regno];
2919 while (start < last)
2921 RESET_BIT (live_subregs[regno], start);
2922 start++;
2925 if (sbitmap_empty_p (live_subregs[regno]))
2927 live_subregs_used[regno] = 0;
2928 bitmap_clear_bit (live_relevant_regs, regno);
2930 else
2931 /* Set live_relevant_regs here because
2932 that bit has to be true to get us to
2933 look at the live_subregs fields. */
2934 bitmap_set_bit (live_relevant_regs, regno);
2936 else
2938 /* DF_REF_PARTIAL is generated for
2939 subregs, STRICT_LOW_PART, and
2940 ZERO_EXTRACT. We handle the subreg
2941 case above so here we have to keep from
2942 modeling the def as a killing def. */
2943 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
2945 bitmap_clear_bit (live_relevant_regs, regno);
2946 live_subregs_used[regno] = 0;
2952 bitmap_and_compl_into (live_relevant_regs, elim_regset);
2953 bitmap_copy (&c->live_throughout, live_relevant_regs);
2955 if (INSN_P (insn))
2956 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
2958 df_ref use = *use_rec;
2959 unsigned int regno = DF_REF_REGNO (use);
2960 rtx reg = DF_REF_REG (use);
2962 /* DF_REF_READ_WRITE on a use means that this use
2963 is fabricated from a def that is a partial set
2964 to a multiword reg. Here, we only model the
2965 subreg case that is not wrapped in ZERO_EXTRACT
2966 precisely so we do not need to look at the
2967 fabricated use. */
2968 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
2969 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2970 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
2971 continue;
2973 /* Add the last use of each var to dead_or_set. */
2974 if (!bitmap_bit_p (live_relevant_regs, regno))
2976 if (regno < FIRST_PSEUDO_REGISTER)
2978 if (!fixed_regs[regno])
2979 bitmap_set_bit (&c->dead_or_set, regno);
2981 else if (pseudo_for_reload_consideration_p (regno))
2982 bitmap_set_bit (&c->dead_or_set, regno);
2985 if (regno < FIRST_PSEUDO_REGISTER
2986 || pseudo_for_reload_consideration_p (regno))
2988 if (GET_CODE (reg) == SUBREG
2989 && !DF_REF_FLAGS_IS_SET (use,
2990 DF_REF_SIGN_EXTRACT
2991 | DF_REF_ZERO_EXTRACT))
2993 unsigned int start = SUBREG_BYTE (reg);
2994 unsigned int last = start
2995 + GET_MODE_SIZE (GET_MODE (reg));
2997 init_live_subregs
2998 (bitmap_bit_p (live_relevant_regs, regno),
2999 live_subregs, live_subregs_used, regno, reg);
3001 /* Ignore the paradoxical bits. */
3002 if ((int)last > live_subregs_used[regno])
3003 last = live_subregs_used[regno];
3005 while (start < last)
3007 SET_BIT (live_subregs[regno], start);
3008 start++;
3011 else
3012 /* Resetting the live_subregs_used is
3013 effectively saying do not use the subregs
3014 because we are reading the whole
3015 pseudo. */
3016 live_subregs_used[regno] = 0;
3017 bitmap_set_bit (live_relevant_regs, regno);
3023 /* FIXME!! The following code is a disaster. Reload needs to see the
3024 labels and jump tables that are just hanging out in between
3025 the basic blocks. See pr33676. */
3026 insn = BB_HEAD (bb);
3028 /* Skip over the barriers and cruft. */
3029 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3030 || BLOCK_FOR_INSN (insn) == bb))
3031 insn = PREV_INSN (insn);
3033 /* While we add anything except barriers and notes, the focus is
3034 to get the labels and jump tables into the
3035 reload_insn_chain. */
3036 while (insn)
3038 if (!NOTE_P (insn) && !BARRIER_P (insn))
3040 if (BLOCK_FOR_INSN (insn))
3041 break;
3043 c = new_insn_chain ();
3044 c->next = next;
3045 next = c;
3046 *p = c;
3047 p = &c->prev;
3049 /* The block makes no sense here, but it is what the old
3050 code did. */
3051 c->block = bb->index;
3052 c->insn = insn;
3053 bitmap_copy (&c->live_throughout, live_relevant_regs);
3055 insn = PREV_INSN (insn);
3059 for (i = 0; i < (unsigned int) max_regno; i++)
3060 if (live_subregs[i])
3061 free (live_subregs[i]);
3063 reload_insn_chain = c;
3064 *p = NULL;
3066 free (live_subregs);
3067 free (live_subregs_used);
3068 BITMAP_FREE (live_relevant_regs);
3069 BITMAP_FREE (elim_regset);
3071 if (dump_file)
3072 print_insn_chains (dump_file);
3077 /* All natural loops. */
3078 struct loops ira_loops;
3080 /* True if we have allocno conflicts. It is false for non-optimized
3081 mode or when the conflict table is too big. */
3082 bool ira_conflicts_p;
3084 /* This is the main entry of IRA. */
3085 static void
3086 ira (FILE *f)
3088 int overall_cost_before, allocated_reg_info_size;
3089 bool loops_p;
3090 int max_regno_before_ira, ira_max_point_before_emit;
3091 int rebuild_p;
3092 int saved_flag_ira_share_spill_slots;
3093 basic_block bb;
3095 timevar_push (TV_IRA);
3097 if (flag_ira_verbose < 10)
3099 internal_flag_ira_verbose = flag_ira_verbose;
3100 ira_dump_file = f;
3102 else
3104 internal_flag_ira_verbose = flag_ira_verbose - 10;
3105 ira_dump_file = stderr;
3108 ira_conflicts_p = optimize > 0;
3109 setup_prohibited_mode_move_regs ();
3111 df_note_add_problem ();
3113 if (optimize == 1)
3115 df_live_add_problem ();
3116 df_live_set_all_dirty ();
3118 #ifdef ENABLE_CHECKING
3119 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3120 #endif
3121 df_analyze ();
3122 df_clear_flags (DF_NO_INSN_RESCAN);
3123 regstat_init_n_sets_and_refs ();
3124 regstat_compute_ri ();
3126 /* If we are not optimizing, then this is the only place before
3127 register allocation where dataflow is done. And that is needed
3128 to generate these warnings. */
3129 if (warn_clobbered)
3130 generate_setjmp_warnings ();
3132 /* Determine if the current function is a leaf before running IRA
3133 since this can impact optimizations done by the prologue and
3134 epilogue thus changing register elimination offsets. */
3135 current_function_is_leaf = leaf_function_p ();
3137 rebuild_p = update_equiv_regs ();
3139 #ifndef IRA_NO_OBSTACK
3140 gcc_obstack_init (&ira_obstack);
3141 #endif
3142 bitmap_obstack_initialize (&ira_bitmap_obstack);
3143 if (optimize)
3145 max_regno = max_reg_num ();
3146 ira_reg_equiv_len = max_regno;
3147 ira_reg_equiv_invariant_p
3148 = (bool *) ira_allocate (max_regno * sizeof (bool));
3149 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3150 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3151 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3152 find_reg_equiv_invariant_const ();
3153 if (rebuild_p)
3155 timevar_push (TV_JUMP);
3156 rebuild_jump_labels (get_insns ());
3157 purge_all_dead_edges ();
3158 timevar_pop (TV_JUMP);
3162 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3163 allocate_reg_info ();
3164 setup_eliminable_regset ();
3166 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3167 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3168 ira_move_loops_num = ira_additional_jumps_num = 0;
3170 ira_assert (current_loops == NULL);
3171 flow_loops_find (&ira_loops);
3172 current_loops = &ira_loops;
3174 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3175 fprintf (ira_dump_file, "Building IRA IR\n");
3176 loops_p = ira_build (optimize
3177 && (flag_ira_region == IRA_REGION_ALL
3178 || flag_ira_region == IRA_REGION_MIXED));
3180 ira_assert (ira_conflicts_p || !loops_p);
3182 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3183 if (too_high_register_pressure_p ())
3184 /* It is just wasting compiler's time to pack spilled pseudos into
3185 stack slots in this case -- prohibit it. */
3186 flag_ira_share_spill_slots = FALSE;
3188 ira_color ();
3190 ira_max_point_before_emit = ira_max_point;
3192 ira_emit (loops_p);
3194 if (ira_conflicts_p)
3196 max_regno = max_reg_num ();
3198 if (! loops_p)
3199 ira_initiate_assign ();
3200 else
3202 expand_reg_info (allocated_reg_info_size);
3203 setup_preferred_alternate_classes_for_new_pseudos
3204 (allocated_reg_info_size);
3205 allocated_reg_info_size = max_regno;
3207 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3208 fprintf (ira_dump_file, "Flattening IR\n");
3209 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3210 /* New insns were generated: add notes and recalculate live
3211 info. */
3212 df_analyze ();
3214 flow_loops_find (&ira_loops);
3215 current_loops = &ira_loops;
3217 setup_allocno_assignment_flags ();
3218 ira_initiate_assign ();
3219 ira_reassign_conflict_allocnos (max_regno);
3223 setup_reg_renumber ();
3225 calculate_allocation_cost ();
3227 #ifdef ENABLE_IRA_CHECKING
3228 if (ira_conflicts_p)
3229 check_allocation ();
3230 #endif
3232 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3233 max_regno = max_reg_num ();
3235 /* And the reg_equiv_memory_loc array. */
3236 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3237 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3238 sizeof (rtx) * max_regno);
3239 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3241 if (max_regno != max_regno_before_ira)
3243 regstat_free_n_sets_and_refs ();
3244 regstat_free_ri ();
3245 regstat_init_n_sets_and_refs ();
3246 regstat_compute_ri ();
3249 allocate_initial_values (reg_equiv_memory_loc);
3251 overall_cost_before = ira_overall_cost;
3252 if (ira_conflicts_p)
3254 fix_reg_equiv_init ();
3256 #ifdef ENABLE_IRA_CHECKING
3257 print_redundant_copies ();
3258 #endif
3260 ira_spilled_reg_stack_slots_num = 0;
3261 ira_spilled_reg_stack_slots
3262 = ((struct ira_spilled_reg_stack_slot *)
3263 ira_allocate (max_regno
3264 * sizeof (struct ira_spilled_reg_stack_slot)));
3265 memset (ira_spilled_reg_stack_slots, 0,
3266 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3269 timevar_pop (TV_IRA);
3271 timevar_push (TV_RELOAD);
3272 df_set_flags (DF_NO_INSN_RESCAN);
3273 build_insn_chain ();
3275 reload_completed = !reload (get_insns (), ira_conflicts_p);
3277 timevar_pop (TV_RELOAD);
3279 timevar_push (TV_IRA);
3281 if (ira_conflicts_p)
3283 ira_free (ira_spilled_reg_stack_slots);
3285 ira_finish_assign ();
3288 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3289 && overall_cost_before != ira_overall_cost)
3290 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3291 ira_destroy ();
3293 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3295 flow_loops_free (&ira_loops);
3296 free_dominance_info (CDI_DOMINATORS);
3297 FOR_ALL_BB (bb)
3298 bb->loop_father = NULL;
3299 current_loops = NULL;
3301 regstat_free_ri ();
3302 regstat_free_n_sets_and_refs ();
3304 if (optimize)
3306 cleanup_cfg (CLEANUP_EXPENSIVE);
3308 ira_free (ira_reg_equiv_invariant_p);
3309 ira_free (ira_reg_equiv_const);
3312 bitmap_obstack_release (&ira_bitmap_obstack);
3313 #ifndef IRA_NO_OBSTACK
3314 obstack_free (&ira_obstack, NULL);
3315 #endif
3317 /* The code after the reload has changed so much that at this point
3318 we might as well just rescan everything. Not that
3319 df_rescan_all_insns is not going to help here because it does not
3320 touch the artificial uses and defs. */
3321 df_finish_pass (true);
3322 if (optimize > 1)
3323 df_live_add_problem ();
3324 df_scan_alloc (NULL);
3325 df_scan_blocks ();
3327 if (optimize)
3328 df_analyze ();
3330 timevar_pop (TV_IRA);
3335 static bool
3336 gate_ira (void)
3338 return true;
3341 /* Run the integrated register allocator. */
3342 static unsigned int
3343 rest_of_handle_ira (void)
3345 ira (dump_file);
3346 return 0;
3349 struct rtl_opt_pass pass_ira =
3352 RTL_PASS,
3353 "ira", /* name */
3354 gate_ira, /* gate */
3355 rest_of_handle_ira, /* execute */
3356 NULL, /* sub */
3357 NULL, /* next */
3358 0, /* static_pass_number */
3359 TV_NONE, /* tv_id */
3360 0, /* properties_required */
3361 0, /* properties_provided */
3362 0, /* properties_destroyed */
3363 0, /* todo_flags_start */
3364 TODO_dump_func |
3365 TODO_ggc_collect /* todo_flags_finish */