PR ada/65156
[official-gcc.git] / gcc / emit-rtl.c
blob483eacb2d6c56b23c1855428b650f15d29913e39
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "hash-set.h"
41 #include "machmode.h"
42 #include "vec.h"
43 #include "double-int.h"
44 #include "input.h"
45 #include "alias.h"
46 #include "symtab.h"
47 #include "wide-int.h"
48 #include "inchash.h"
49 #include "real.h"
50 #include "tree.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "predict.h"
54 #include "hard-reg-set.h"
55 #include "function.h"
56 #include "cfgrtl.h"
57 #include "basic-block.h"
58 #include "tree-eh.h"
59 #include "tm_p.h"
60 #include "flags.h"
61 #include "stringpool.h"
62 #include "hashtab.h"
63 #include "statistics.h"
64 #include "fixed-value.h"
65 #include "insn-config.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "emit-rtl.h"
71 #include "stmt.h"
72 #include "expr.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "bitmap.h"
76 #include "debug.h"
77 #include "langhooks.h"
78 #include "df.h"
79 #include "params.h"
80 #include "target.h"
81 #include "builtins.h"
82 #include "rtl-iter.h"
84 struct target_rtl default_target_rtl;
85 #if SWITCHABLE_TARGET
86 struct target_rtl *this_target_rtl = &default_target_rtl;
87 #endif
89 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
91 /* Commonly used modes. */
93 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
94 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
95 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
96 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
98 /* Datastructures maintained for currently processed function in RTL form. */
100 struct rtl_data x_rtl;
102 /* Indexed by pseudo register number, gives the rtx for that pseudo.
103 Allocated in parallel with regno_pointer_align.
104 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
105 with length attribute nested in top level structures. */
107 rtx * regno_reg_rtx;
109 /* This is *not* reset after each function. It gives each CODE_LABEL
110 in the entire compilation a unique label number. */
112 static GTY(()) int label_num = 1;
114 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
115 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
116 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
117 is set only for MODE_INT and MODE_VECTOR_INT modes. */
119 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
121 rtx const_true_rtx;
123 REAL_VALUE_TYPE dconst0;
124 REAL_VALUE_TYPE dconst1;
125 REAL_VALUE_TYPE dconst2;
126 REAL_VALUE_TYPE dconstm1;
127 REAL_VALUE_TYPE dconsthalf;
129 /* Record fixed-point constant 0 and 1. */
130 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
131 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
133 /* We make one copy of (const_int C) where C is in
134 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
135 to save space during the compilation and simplify comparisons of
136 integers. */
138 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
140 /* Standard pieces of rtx, to be substituted directly into things. */
141 rtx pc_rtx;
142 rtx ret_rtx;
143 rtx simple_return_rtx;
144 rtx cc0_rtx;
146 /* A hash table storing CONST_INTs whose absolute value is greater
147 than MAX_SAVED_CONST_INT. */
149 struct const_int_hasher : ggc_cache_hasher<rtx>
151 typedef HOST_WIDE_INT compare_type;
153 static hashval_t hash (rtx i);
154 static bool equal (rtx i, HOST_WIDE_INT h);
157 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
159 struct const_wide_int_hasher : ggc_cache_hasher<rtx>
161 static hashval_t hash (rtx x);
162 static bool equal (rtx x, rtx y);
165 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
167 /* A hash table storing register attribute structures. */
168 struct reg_attr_hasher : ggc_cache_hasher<reg_attrs *>
170 static hashval_t hash (reg_attrs *x);
171 static bool equal (reg_attrs *a, reg_attrs *b);
174 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
176 /* A hash table storing all CONST_DOUBLEs. */
177 struct const_double_hasher : ggc_cache_hasher<rtx>
179 static hashval_t hash (rtx x);
180 static bool equal (rtx x, rtx y);
183 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
185 /* A hash table storing all CONST_FIXEDs. */
186 struct const_fixed_hasher : ggc_cache_hasher<rtx>
188 static hashval_t hash (rtx x);
189 static bool equal (rtx x, rtx y);
192 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
194 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
195 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
196 #define first_label_num (crtl->emit.x_first_label_num)
198 static void set_used_decls (tree);
199 static void mark_label_nuses (rtx);
200 #if TARGET_SUPPORTS_WIDE_INT
201 static rtx lookup_const_wide_int (rtx);
202 #endif
203 static rtx lookup_const_double (rtx);
204 static rtx lookup_const_fixed (rtx);
205 static reg_attrs *get_reg_attrs (tree, int);
206 static rtx gen_const_vector (machine_mode, int);
207 static void copy_rtx_if_shared_1 (rtx *orig);
209 /* Probability of the conditional branch currently proceeded by try_split.
210 Set to -1 otherwise. */
211 int split_branch_probability = -1;
213 /* Returns a hash code for X (which is a really a CONST_INT). */
215 hashval_t
216 const_int_hasher::hash (rtx x)
218 return (hashval_t) INTVAL (x);
221 /* Returns nonzero if the value represented by X (which is really a
222 CONST_INT) is the same as that given by Y (which is really a
223 HOST_WIDE_INT *). */
225 bool
226 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
228 return (INTVAL (x) == y);
231 #if TARGET_SUPPORTS_WIDE_INT
232 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
234 hashval_t
235 const_wide_int_hasher::hash (rtx x)
237 int i;
238 unsigned HOST_WIDE_INT hash = 0;
239 const_rtx xr = x;
241 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
242 hash += CONST_WIDE_INT_ELT (xr, i);
244 return (hashval_t) hash;
247 /* Returns nonzero if the value represented by X (which is really a
248 CONST_WIDE_INT) is the same as that given by Y (which is really a
249 CONST_WIDE_INT). */
251 bool
252 const_wide_int_hasher::equal (rtx x, rtx y)
254 int i;
255 const_rtx xr = x;
256 const_rtx yr = y;
257 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
258 return false;
260 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
261 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
262 return false;
264 return true;
266 #endif
268 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
269 hashval_t
270 const_double_hasher::hash (rtx x)
272 const_rtx const value = x;
273 hashval_t h;
275 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
276 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
277 else
279 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
280 /* MODE is used in the comparison, so it should be in the hash. */
281 h ^= GET_MODE (value);
283 return h;
286 /* Returns nonzero if the value represented by X (really a ...)
287 is the same as that represented by Y (really a ...) */
288 bool
289 const_double_hasher::equal (rtx x, rtx y)
291 const_rtx const a = x, b = y;
293 if (GET_MODE (a) != GET_MODE (b))
294 return 0;
295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
296 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
297 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
298 else
299 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
300 CONST_DOUBLE_REAL_VALUE (b));
303 /* Returns a hash code for X (which is really a CONST_FIXED). */
305 hashval_t
306 const_fixed_hasher::hash (rtx x)
308 const_rtx const value = x;
309 hashval_t h;
311 h = fixed_hash (CONST_FIXED_VALUE (value));
312 /* MODE is used in the comparison, so it should be in the hash. */
313 h ^= GET_MODE (value);
314 return h;
317 /* Returns nonzero if the value represented by X is the same as that
318 represented by Y. */
320 bool
321 const_fixed_hasher::equal (rtx x, rtx y)
323 const_rtx const a = x, b = y;
325 if (GET_MODE (a) != GET_MODE (b))
326 return 0;
327 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
330 /* Return true if the given memory attributes are equal. */
332 bool
333 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
335 if (p == q)
336 return true;
337 if (!p || !q)
338 return false;
339 return (p->alias == q->alias
340 && p->offset_known_p == q->offset_known_p
341 && (!p->offset_known_p || p->offset == q->offset)
342 && p->size_known_p == q->size_known_p
343 && (!p->size_known_p || p->size == q->size)
344 && p->align == q->align
345 && p->addrspace == q->addrspace
346 && (p->expr == q->expr
347 || (p->expr != NULL_TREE && q->expr != NULL_TREE
348 && operand_equal_p (p->expr, q->expr, 0))));
351 /* Set MEM's memory attributes so that they are the same as ATTRS. */
353 static void
354 set_mem_attrs (rtx mem, mem_attrs *attrs)
356 /* If everything is the default, we can just clear the attributes. */
357 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
359 MEM_ATTRS (mem) = 0;
360 return;
363 if (!MEM_ATTRS (mem)
364 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
366 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
367 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
371 /* Returns a hash code for X (which is a really a reg_attrs *). */
373 hashval_t
374 reg_attr_hasher::hash (reg_attrs *x)
376 const reg_attrs *const p = x;
378 return ((p->offset * 1000) ^ (intptr_t) p->decl);
381 /* Returns nonzero if the value represented by X is the same as that given by
382 Y. */
384 bool
385 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
387 const reg_attrs *const p = x;
388 const reg_attrs *const q = y;
390 return (p->decl == q->decl && p->offset == q->offset);
392 /* Allocate a new reg_attrs structure and insert it into the hash table if
393 one identical to it is not already in the table. We are doing this for
394 MEM of mode MODE. */
396 static reg_attrs *
397 get_reg_attrs (tree decl, int offset)
399 reg_attrs attrs;
401 /* If everything is the default, we can just return zero. */
402 if (decl == 0 && offset == 0)
403 return 0;
405 attrs.decl = decl;
406 attrs.offset = offset;
408 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
409 if (*slot == 0)
411 *slot = ggc_alloc<reg_attrs> ();
412 memcpy (*slot, &attrs, sizeof (reg_attrs));
415 return *slot;
419 #if !HAVE_blockage
420 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
421 and to block register equivalences to be seen across this insn. */
424 gen_blockage (void)
426 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
427 MEM_VOLATILE_P (x) = true;
428 return x;
430 #endif
433 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
434 don't attempt to share with the various global pieces of rtl (such as
435 frame_pointer_rtx). */
438 gen_raw_REG (machine_mode mode, int regno)
440 rtx x = gen_rtx_raw_REG (mode, regno);
441 ORIGINAL_REGNO (x) = regno;
442 return x;
445 /* There are some RTL codes that require special attention; the generation
446 functions do the raw handling. If you add to this list, modify
447 special_rtx in gengenrtl.c as well. */
449 rtx_expr_list *
450 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
452 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
453 expr_list));
456 rtx_insn_list *
457 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
459 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
460 insn_list));
463 rtx_insn *
464 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
465 basic_block bb, rtx pattern, int location, int code,
466 rtx reg_notes)
468 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
469 prev_insn, next_insn,
470 bb, pattern, location, code,
471 reg_notes));
475 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
477 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
478 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
480 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
481 if (const_true_rtx && arg == STORE_FLAG_VALUE)
482 return const_true_rtx;
483 #endif
485 /* Look up the CONST_INT in the hash table. */
486 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
487 INSERT);
488 if (*slot == 0)
489 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
491 return *slot;
495 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
497 return GEN_INT (trunc_int_for_mode (c, mode));
500 /* CONST_DOUBLEs might be created from pairs of integers, or from
501 REAL_VALUE_TYPEs. Also, their length is known only at run time,
502 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
504 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
505 hash table. If so, return its counterpart; otherwise add it
506 to the hash table and return it. */
507 static rtx
508 lookup_const_double (rtx real)
510 rtx *slot = const_double_htab->find_slot (real, INSERT);
511 if (*slot == 0)
512 *slot = real;
514 return *slot;
517 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
518 VALUE in mode MODE. */
520 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
522 rtx real = rtx_alloc (CONST_DOUBLE);
523 PUT_MODE (real, mode);
525 real->u.rv = value;
527 return lookup_const_double (real);
530 /* Determine whether FIXED, a CONST_FIXED, already exists in the
531 hash table. If so, return its counterpart; otherwise add it
532 to the hash table and return it. */
534 static rtx
535 lookup_const_fixed (rtx fixed)
537 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
538 if (*slot == 0)
539 *slot = fixed;
541 return *slot;
544 /* Return a CONST_FIXED rtx for a fixed-point value specified by
545 VALUE in mode MODE. */
548 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
550 rtx fixed = rtx_alloc (CONST_FIXED);
551 PUT_MODE (fixed, mode);
553 fixed->u.fv = value;
555 return lookup_const_fixed (fixed);
558 #if TARGET_SUPPORTS_WIDE_INT == 0
559 /* Constructs double_int from rtx CST. */
561 double_int
562 rtx_to_double_int (const_rtx cst)
564 double_int r;
566 if (CONST_INT_P (cst))
567 r = double_int::from_shwi (INTVAL (cst));
568 else if (CONST_DOUBLE_AS_INT_P (cst))
570 r.low = CONST_DOUBLE_LOW (cst);
571 r.high = CONST_DOUBLE_HIGH (cst);
573 else
574 gcc_unreachable ();
576 return r;
578 #endif
580 #if TARGET_SUPPORTS_WIDE_INT
581 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
582 If so, return its counterpart; otherwise add it to the hash table and
583 return it. */
585 static rtx
586 lookup_const_wide_int (rtx wint)
588 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
589 if (*slot == 0)
590 *slot = wint;
592 return *slot;
594 #endif
596 /* Return an rtx constant for V, given that the constant has mode MODE.
597 The returned rtx will be a CONST_INT if V fits, otherwise it will be
598 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
599 (if TARGET_SUPPORTS_WIDE_INT). */
602 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
604 unsigned int len = v.get_len ();
605 unsigned int prec = GET_MODE_PRECISION (mode);
607 /* Allow truncation but not extension since we do not know if the
608 number is signed or unsigned. */
609 gcc_assert (prec <= v.get_precision ());
611 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
612 return gen_int_mode (v.elt (0), mode);
614 #if TARGET_SUPPORTS_WIDE_INT
616 unsigned int i;
617 rtx value;
618 unsigned int blocks_needed
619 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
621 if (len > blocks_needed)
622 len = blocks_needed;
624 value = const_wide_int_alloc (len);
626 /* It is so tempting to just put the mode in here. Must control
627 myself ... */
628 PUT_MODE (value, VOIDmode);
629 CWI_PUT_NUM_ELEM (value, len);
631 for (i = 0; i < len; i++)
632 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
634 return lookup_const_wide_int (value);
636 #else
637 return immed_double_const (v.elt (0), v.elt (1), mode);
638 #endif
641 #if TARGET_SUPPORTS_WIDE_INT == 0
642 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
643 of ints: I0 is the low-order word and I1 is the high-order word.
644 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
645 implied upper bits are copies of the high bit of i1. The value
646 itself is neither signed nor unsigned. Do not use this routine for
647 non-integer modes; convert to REAL_VALUE_TYPE and use
648 CONST_DOUBLE_FROM_REAL_VALUE. */
651 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
653 rtx value;
654 unsigned int i;
656 /* There are the following cases (note that there are no modes with
657 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
659 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
660 gen_int_mode.
661 2) If the value of the integer fits into HOST_WIDE_INT anyway
662 (i.e., i1 consists only from copies of the sign bit, and sign
663 of i0 and i1 are the same), then we return a CONST_INT for i0.
664 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
665 if (mode != VOIDmode)
667 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
668 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
669 /* We can get a 0 for an error mark. */
670 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
671 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
672 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
674 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
675 return gen_int_mode (i0, mode);
678 /* If this integer fits in one word, return a CONST_INT. */
679 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
680 return GEN_INT (i0);
682 /* We use VOIDmode for integers. */
683 value = rtx_alloc (CONST_DOUBLE);
684 PUT_MODE (value, VOIDmode);
686 CONST_DOUBLE_LOW (value) = i0;
687 CONST_DOUBLE_HIGH (value) = i1;
689 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
690 XWINT (value, i) = 0;
692 return lookup_const_double (value);
694 #endif
697 gen_rtx_REG (machine_mode mode, unsigned int regno)
699 /* In case the MD file explicitly references the frame pointer, have
700 all such references point to the same frame pointer. This is
701 used during frame pointer elimination to distinguish the explicit
702 references to these registers from pseudos that happened to be
703 assigned to them.
705 If we have eliminated the frame pointer or arg pointer, we will
706 be using it as a normal register, for example as a spill
707 register. In such cases, we might be accessing it in a mode that
708 is not Pmode and therefore cannot use the pre-allocated rtx.
710 Also don't do this when we are making new REGs in reload, since
711 we don't want to get confused with the real pointers. */
713 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
715 if (regno == FRAME_POINTER_REGNUM
716 && (!reload_completed || frame_pointer_needed))
717 return frame_pointer_rtx;
718 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
719 if (regno == HARD_FRAME_POINTER_REGNUM
720 && (!reload_completed || frame_pointer_needed))
721 return hard_frame_pointer_rtx;
722 #endif
723 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
724 if (regno == ARG_POINTER_REGNUM)
725 return arg_pointer_rtx;
726 #endif
727 #ifdef RETURN_ADDRESS_POINTER_REGNUM
728 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
729 return return_address_pointer_rtx;
730 #endif
731 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
732 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
733 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
734 return pic_offset_table_rtx;
735 if (regno == STACK_POINTER_REGNUM)
736 return stack_pointer_rtx;
739 #if 0
740 /* If the per-function register table has been set up, try to re-use
741 an existing entry in that table to avoid useless generation of RTL.
743 This code is disabled for now until we can fix the various backends
744 which depend on having non-shared hard registers in some cases. Long
745 term we want to re-enable this code as it can significantly cut down
746 on the amount of useless RTL that gets generated.
748 We'll also need to fix some code that runs after reload that wants to
749 set ORIGINAL_REGNO. */
751 if (cfun
752 && cfun->emit
753 && regno_reg_rtx
754 && regno < FIRST_PSEUDO_REGISTER
755 && reg_raw_mode[regno] == mode)
756 return regno_reg_rtx[regno];
757 #endif
759 return gen_raw_REG (mode, regno);
763 gen_rtx_MEM (machine_mode mode, rtx addr)
765 rtx rt = gen_rtx_raw_MEM (mode, addr);
767 /* This field is not cleared by the mere allocation of the rtx, so
768 we clear it here. */
769 MEM_ATTRS (rt) = 0;
771 return rt;
774 /* Generate a memory referring to non-trapping constant memory. */
777 gen_const_mem (machine_mode mode, rtx addr)
779 rtx mem = gen_rtx_MEM (mode, addr);
780 MEM_READONLY_P (mem) = 1;
781 MEM_NOTRAP_P (mem) = 1;
782 return mem;
785 /* Generate a MEM referring to fixed portions of the frame, e.g., register
786 save areas. */
789 gen_frame_mem (machine_mode mode, rtx addr)
791 rtx mem = gen_rtx_MEM (mode, addr);
792 MEM_NOTRAP_P (mem) = 1;
793 set_mem_alias_set (mem, get_frame_alias_set ());
794 return mem;
797 /* Generate a MEM referring to a temporary use of the stack, not part
798 of the fixed stack frame. For example, something which is pushed
799 by a target splitter. */
801 gen_tmp_stack_mem (machine_mode mode, rtx addr)
803 rtx mem = gen_rtx_MEM (mode, addr);
804 MEM_NOTRAP_P (mem) = 1;
805 if (!cfun->calls_alloca)
806 set_mem_alias_set (mem, get_frame_alias_set ());
807 return mem;
810 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
811 this construct would be valid, and false otherwise. */
813 bool
814 validate_subreg (machine_mode omode, machine_mode imode,
815 const_rtx reg, unsigned int offset)
817 unsigned int isize = GET_MODE_SIZE (imode);
818 unsigned int osize = GET_MODE_SIZE (omode);
820 /* All subregs must be aligned. */
821 if (offset % osize != 0)
822 return false;
824 /* The subreg offset cannot be outside the inner object. */
825 if (offset >= isize)
826 return false;
828 /* ??? This should not be here. Temporarily continue to allow word_mode
829 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
830 Generally, backends are doing something sketchy but it'll take time to
831 fix them all. */
832 if (omode == word_mode)
834 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
835 is the culprit here, and not the backends. */
836 else if (osize >= UNITS_PER_WORD && isize >= osize)
838 /* Allow component subregs of complex and vector. Though given the below
839 extraction rules, it's not always clear what that means. */
840 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
841 && GET_MODE_INNER (imode) == omode)
843 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
844 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
845 represent this. It's questionable if this ought to be represented at
846 all -- why can't this all be hidden in post-reload splitters that make
847 arbitrarily mode changes to the registers themselves. */
848 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
850 /* Subregs involving floating point modes are not allowed to
851 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
852 (subreg:SI (reg:DF) 0) isn't. */
853 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
855 if (! (isize == osize
856 /* LRA can use subreg to store a floating point value in
857 an integer mode. Although the floating point and the
858 integer modes need the same number of hard registers,
859 the size of floating point mode can be less than the
860 integer mode. LRA also uses subregs for a register
861 should be used in different mode in on insn. */
862 || lra_in_progress))
863 return false;
866 /* Paradoxical subregs must have offset zero. */
867 if (osize > isize)
868 return offset == 0;
870 /* This is a normal subreg. Verify that the offset is representable. */
872 /* For hard registers, we already have most of these rules collected in
873 subreg_offset_representable_p. */
874 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
876 unsigned int regno = REGNO (reg);
878 #ifdef CANNOT_CHANGE_MODE_CLASS
879 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
880 && GET_MODE_INNER (imode) == omode)
882 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
883 return false;
884 #endif
886 return subreg_offset_representable_p (regno, imode, offset, omode);
889 /* For pseudo registers, we want most of the same checks. Namely:
890 If the register no larger than a word, the subreg must be lowpart.
891 If the register is larger than a word, the subreg must be the lowpart
892 of a subword. A subreg does *not* perform arbitrary bit extraction.
893 Given that we've already checked mode/offset alignment, we only have
894 to check subword subregs here. */
895 if (osize < UNITS_PER_WORD
896 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
898 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
899 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
900 if (offset % UNITS_PER_WORD != low_off)
901 return false;
903 return true;
907 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
909 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
910 return gen_rtx_raw_SUBREG (mode, reg, offset);
913 /* Generate a SUBREG representing the least-significant part of REG if MODE
914 is smaller than mode of REG, otherwise paradoxical SUBREG. */
917 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
919 machine_mode inmode;
921 inmode = GET_MODE (reg);
922 if (inmode == VOIDmode)
923 inmode = mode;
924 return gen_rtx_SUBREG (mode, reg,
925 subreg_lowpart_offset (mode, inmode));
929 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
930 enum var_init_status status)
932 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
933 PAT_VAR_LOCATION_STATUS (x) = status;
934 return x;
938 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
940 rtvec
941 gen_rtvec (int n, ...)
943 int i;
944 rtvec rt_val;
945 va_list p;
947 va_start (p, n);
949 /* Don't allocate an empty rtvec... */
950 if (n == 0)
952 va_end (p);
953 return NULL_RTVEC;
956 rt_val = rtvec_alloc (n);
958 for (i = 0; i < n; i++)
959 rt_val->elem[i] = va_arg (p, rtx);
961 va_end (p);
962 return rt_val;
965 rtvec
966 gen_rtvec_v (int n, rtx *argp)
968 int i;
969 rtvec rt_val;
971 /* Don't allocate an empty rtvec... */
972 if (n == 0)
973 return NULL_RTVEC;
975 rt_val = rtvec_alloc (n);
977 for (i = 0; i < n; i++)
978 rt_val->elem[i] = *argp++;
980 return rt_val;
983 rtvec
984 gen_rtvec_v (int n, rtx_insn **argp)
986 int i;
987 rtvec rt_val;
989 /* Don't allocate an empty rtvec... */
990 if (n == 0)
991 return NULL_RTVEC;
993 rt_val = rtvec_alloc (n);
995 for (i = 0; i < n; i++)
996 rt_val->elem[i] = *argp++;
998 return rt_val;
1002 /* Return the number of bytes between the start of an OUTER_MODE
1003 in-memory value and the start of an INNER_MODE in-memory value,
1004 given that the former is a lowpart of the latter. It may be a
1005 paradoxical lowpart, in which case the offset will be negative
1006 on big-endian targets. */
1009 byte_lowpart_offset (machine_mode outer_mode,
1010 machine_mode inner_mode)
1012 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1013 return subreg_lowpart_offset (outer_mode, inner_mode);
1014 else
1015 return -subreg_lowpart_offset (inner_mode, outer_mode);
1018 /* Generate a REG rtx for a new pseudo register of mode MODE.
1019 This pseudo is assigned the next sequential register number. */
1022 gen_reg_rtx (machine_mode mode)
1024 rtx val;
1025 unsigned int align = GET_MODE_ALIGNMENT (mode);
1027 gcc_assert (can_create_pseudo_p ());
1029 /* If a virtual register with bigger mode alignment is generated,
1030 increase stack alignment estimation because it might be spilled
1031 to stack later. */
1032 if (SUPPORTS_STACK_ALIGNMENT
1033 && crtl->stack_alignment_estimated < align
1034 && !crtl->stack_realign_processed)
1036 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1037 if (crtl->stack_alignment_estimated < min_align)
1038 crtl->stack_alignment_estimated = min_align;
1041 if (generating_concat_p
1042 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1043 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1045 /* For complex modes, don't make a single pseudo.
1046 Instead, make a CONCAT of two pseudos.
1047 This allows noncontiguous allocation of the real and imaginary parts,
1048 which makes much better code. Besides, allocating DCmode
1049 pseudos overstrains reload on some machines like the 386. */
1050 rtx realpart, imagpart;
1051 machine_mode partmode = GET_MODE_INNER (mode);
1053 realpart = gen_reg_rtx (partmode);
1054 imagpart = gen_reg_rtx (partmode);
1055 return gen_rtx_CONCAT (mode, realpart, imagpart);
1058 /* Do not call gen_reg_rtx with uninitialized crtl. */
1059 gcc_assert (crtl->emit.regno_pointer_align_length);
1061 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1062 enough to have an element for this pseudo reg number. */
1064 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1066 int old_size = crtl->emit.regno_pointer_align_length;
1067 char *tmp;
1068 rtx *new1;
1070 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1071 memset (tmp + old_size, 0, old_size);
1072 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1074 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1075 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1076 regno_reg_rtx = new1;
1078 crtl->emit.regno_pointer_align_length = old_size * 2;
1081 val = gen_raw_REG (mode, reg_rtx_no);
1082 regno_reg_rtx[reg_rtx_no++] = val;
1083 return val;
1086 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1088 bool
1089 reg_is_parm_p (rtx reg)
1091 tree decl;
1093 gcc_assert (REG_P (reg));
1094 decl = REG_EXPR (reg);
1095 return (decl && TREE_CODE (decl) == PARM_DECL);
1098 /* Update NEW with the same attributes as REG, but with OFFSET added
1099 to the REG_OFFSET. */
1101 static void
1102 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1104 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1105 REG_OFFSET (reg) + offset);
1108 /* Generate a register with same attributes as REG, but with OFFSET
1109 added to the REG_OFFSET. */
1112 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1113 int offset)
1115 rtx new_rtx = gen_rtx_REG (mode, regno);
1117 update_reg_offset (new_rtx, reg, offset);
1118 return new_rtx;
1121 /* Generate a new pseudo-register with the same attributes as REG, but
1122 with OFFSET added to the REG_OFFSET. */
1125 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1127 rtx new_rtx = gen_reg_rtx (mode);
1129 update_reg_offset (new_rtx, reg, offset);
1130 return new_rtx;
1133 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1134 new register is a (possibly paradoxical) lowpart of the old one. */
1136 void
1137 adjust_reg_mode (rtx reg, machine_mode mode)
1139 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1140 PUT_MODE (reg, mode);
1143 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1144 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1146 void
1147 set_reg_attrs_from_value (rtx reg, rtx x)
1149 int offset;
1150 bool can_be_reg_pointer = true;
1152 /* Don't call mark_reg_pointer for incompatible pointer sign
1153 extension. */
1154 while (GET_CODE (x) == SIGN_EXTEND
1155 || GET_CODE (x) == ZERO_EXTEND
1156 || GET_CODE (x) == TRUNCATE
1157 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1159 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1160 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1161 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1162 can_be_reg_pointer = false;
1163 #endif
1164 x = XEXP (x, 0);
1167 /* Hard registers can be reused for multiple purposes within the same
1168 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1169 on them is wrong. */
1170 if (HARD_REGISTER_P (reg))
1171 return;
1173 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1174 if (MEM_P (x))
1176 if (MEM_OFFSET_KNOWN_P (x))
1177 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1178 MEM_OFFSET (x) + offset);
1179 if (can_be_reg_pointer && MEM_POINTER (x))
1180 mark_reg_pointer (reg, 0);
1182 else if (REG_P (x))
1184 if (REG_ATTRS (x))
1185 update_reg_offset (reg, x, offset);
1186 if (can_be_reg_pointer && REG_POINTER (x))
1187 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1191 /* Generate a REG rtx for a new pseudo register, copying the mode
1192 and attributes from X. */
1195 gen_reg_rtx_and_attrs (rtx x)
1197 rtx reg = gen_reg_rtx (GET_MODE (x));
1198 set_reg_attrs_from_value (reg, x);
1199 return reg;
1202 /* Set the register attributes for registers contained in PARM_RTX.
1203 Use needed values from memory attributes of MEM. */
1205 void
1206 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1208 if (REG_P (parm_rtx))
1209 set_reg_attrs_from_value (parm_rtx, mem);
1210 else if (GET_CODE (parm_rtx) == PARALLEL)
1212 /* Check for a NULL entry in the first slot, used to indicate that the
1213 parameter goes both on the stack and in registers. */
1214 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1215 for (; i < XVECLEN (parm_rtx, 0); i++)
1217 rtx x = XVECEXP (parm_rtx, 0, i);
1218 if (REG_P (XEXP (x, 0)))
1219 REG_ATTRS (XEXP (x, 0))
1220 = get_reg_attrs (MEM_EXPR (mem),
1221 INTVAL (XEXP (x, 1)));
1226 /* Set the REG_ATTRS for registers in value X, given that X represents
1227 decl T. */
1229 void
1230 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1232 if (GET_CODE (x) == SUBREG)
1234 gcc_assert (subreg_lowpart_p (x));
1235 x = SUBREG_REG (x);
1237 if (REG_P (x))
1238 REG_ATTRS (x)
1239 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1240 DECL_MODE (t)));
1241 if (GET_CODE (x) == CONCAT)
1243 if (REG_P (XEXP (x, 0)))
1244 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1245 if (REG_P (XEXP (x, 1)))
1246 REG_ATTRS (XEXP (x, 1))
1247 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1249 if (GET_CODE (x) == PARALLEL)
1251 int i, start;
1253 /* Check for a NULL entry, used to indicate that the parameter goes
1254 both on the stack and in registers. */
1255 if (XEXP (XVECEXP (x, 0, 0), 0))
1256 start = 0;
1257 else
1258 start = 1;
1260 for (i = start; i < XVECLEN (x, 0); i++)
1262 rtx y = XVECEXP (x, 0, i);
1263 if (REG_P (XEXP (y, 0)))
1264 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1269 /* Assign the RTX X to declaration T. */
1271 void
1272 set_decl_rtl (tree t, rtx x)
1274 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1275 if (x)
1276 set_reg_attrs_for_decl_rtl (t, x);
1279 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1280 if the ABI requires the parameter to be passed by reference. */
1282 void
1283 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1285 DECL_INCOMING_RTL (t) = x;
1286 if (x && !by_reference_p)
1287 set_reg_attrs_for_decl_rtl (t, x);
1290 /* Identify REG (which may be a CONCAT) as a user register. */
1292 void
1293 mark_user_reg (rtx reg)
1295 if (GET_CODE (reg) == CONCAT)
1297 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1298 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1300 else
1302 gcc_assert (REG_P (reg));
1303 REG_USERVAR_P (reg) = 1;
1307 /* Identify REG as a probable pointer register and show its alignment
1308 as ALIGN, if nonzero. */
1310 void
1311 mark_reg_pointer (rtx reg, int align)
1313 if (! REG_POINTER (reg))
1315 REG_POINTER (reg) = 1;
1317 if (align)
1318 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1320 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1321 /* We can no-longer be sure just how aligned this pointer is. */
1322 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1325 /* Return 1 plus largest pseudo reg number used in the current function. */
1328 max_reg_num (void)
1330 return reg_rtx_no;
1333 /* Return 1 + the largest label number used so far in the current function. */
1336 max_label_num (void)
1338 return label_num;
1341 /* Return first label number used in this function (if any were used). */
1344 get_first_label_num (void)
1346 return first_label_num;
1349 /* If the rtx for label was created during the expansion of a nested
1350 function, then first_label_num won't include this label number.
1351 Fix this now so that array indices work later. */
1353 void
1354 maybe_set_first_label_num (rtx x)
1356 if (CODE_LABEL_NUMBER (x) < first_label_num)
1357 first_label_num = CODE_LABEL_NUMBER (x);
1360 /* Return a value representing some low-order bits of X, where the number
1361 of low-order bits is given by MODE. Note that no conversion is done
1362 between floating-point and fixed-point values, rather, the bit
1363 representation is returned.
1365 This function handles the cases in common between gen_lowpart, below,
1366 and two variants in cse.c and combine.c. These are the cases that can
1367 be safely handled at all points in the compilation.
1369 If this is not a case we can handle, return 0. */
1372 gen_lowpart_common (machine_mode mode, rtx x)
1374 int msize = GET_MODE_SIZE (mode);
1375 int xsize;
1376 int offset = 0;
1377 machine_mode innermode;
1379 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1380 so we have to make one up. Yuk. */
1381 innermode = GET_MODE (x);
1382 if (CONST_INT_P (x)
1383 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1384 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1385 else if (innermode == VOIDmode)
1386 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1388 xsize = GET_MODE_SIZE (innermode);
1390 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1392 if (innermode == mode)
1393 return x;
1395 /* MODE must occupy no more words than the mode of X. */
1396 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1397 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1398 return 0;
1400 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1401 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1402 return 0;
1404 offset = subreg_lowpart_offset (mode, innermode);
1406 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1407 && (GET_MODE_CLASS (mode) == MODE_INT
1408 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1410 /* If we are getting the low-order part of something that has been
1411 sign- or zero-extended, we can either just use the object being
1412 extended or make a narrower extension. If we want an even smaller
1413 piece than the size of the object being extended, call ourselves
1414 recursively.
1416 This case is used mostly by combine and cse. */
1418 if (GET_MODE (XEXP (x, 0)) == mode)
1419 return XEXP (x, 0);
1420 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1421 return gen_lowpart_common (mode, XEXP (x, 0));
1422 else if (msize < xsize)
1423 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1425 else if (GET_CODE (x) == SUBREG || REG_P (x)
1426 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1427 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1428 return simplify_gen_subreg (mode, x, innermode, offset);
1430 /* Otherwise, we can't do this. */
1431 return 0;
1435 gen_highpart (machine_mode mode, rtx x)
1437 unsigned int msize = GET_MODE_SIZE (mode);
1438 rtx result;
1440 /* This case loses if X is a subreg. To catch bugs early,
1441 complain if an invalid MODE is used even in other cases. */
1442 gcc_assert (msize <= UNITS_PER_WORD
1443 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1445 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1446 subreg_highpart_offset (mode, GET_MODE (x)));
1447 gcc_assert (result);
1449 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1450 the target if we have a MEM. gen_highpart must return a valid operand,
1451 emitting code if necessary to do so. */
1452 if (MEM_P (result))
1454 result = validize_mem (result);
1455 gcc_assert (result);
1458 return result;
1461 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1462 be VOIDmode constant. */
1464 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1466 if (GET_MODE (exp) != VOIDmode)
1468 gcc_assert (GET_MODE (exp) == innermode);
1469 return gen_highpart (outermode, exp);
1471 return simplify_gen_subreg (outermode, exp, innermode,
1472 subreg_highpart_offset (outermode, innermode));
1475 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1477 unsigned int
1478 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1480 unsigned int offset = 0;
1481 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1483 if (difference > 0)
1485 if (WORDS_BIG_ENDIAN)
1486 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1487 if (BYTES_BIG_ENDIAN)
1488 offset += difference % UNITS_PER_WORD;
1491 return offset;
1494 /* Return offset in bytes to get OUTERMODE high part
1495 of the value in mode INNERMODE stored in memory in target format. */
1496 unsigned int
1497 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1499 unsigned int offset = 0;
1500 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1502 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1504 if (difference > 0)
1506 if (! WORDS_BIG_ENDIAN)
1507 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1508 if (! BYTES_BIG_ENDIAN)
1509 offset += difference % UNITS_PER_WORD;
1512 return offset;
1515 /* Return 1 iff X, assumed to be a SUBREG,
1516 refers to the least significant part of its containing reg.
1517 If X is not a SUBREG, always return 1 (it is its own low part!). */
1520 subreg_lowpart_p (const_rtx x)
1522 if (GET_CODE (x) != SUBREG)
1523 return 1;
1524 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1525 return 0;
1527 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1528 == SUBREG_BYTE (x));
1531 /* Return true if X is a paradoxical subreg, false otherwise. */
1532 bool
1533 paradoxical_subreg_p (const_rtx x)
1535 if (GET_CODE (x) != SUBREG)
1536 return false;
1537 return (GET_MODE_PRECISION (GET_MODE (x))
1538 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1541 /* Return subword OFFSET of operand OP.
1542 The word number, OFFSET, is interpreted as the word number starting
1543 at the low-order address. OFFSET 0 is the low-order word if not
1544 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1546 If we cannot extract the required word, we return zero. Otherwise,
1547 an rtx corresponding to the requested word will be returned.
1549 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1550 reload has completed, a valid address will always be returned. After
1551 reload, if a valid address cannot be returned, we return zero.
1553 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1554 it is the responsibility of the caller.
1556 MODE is the mode of OP in case it is a CONST_INT.
1558 ??? This is still rather broken for some cases. The problem for the
1559 moment is that all callers of this thing provide no 'goal mode' to
1560 tell us to work with. This exists because all callers were written
1561 in a word based SUBREG world.
1562 Now use of this function can be deprecated by simplify_subreg in most
1563 cases.
1567 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1569 if (mode == VOIDmode)
1570 mode = GET_MODE (op);
1572 gcc_assert (mode != VOIDmode);
1574 /* If OP is narrower than a word, fail. */
1575 if (mode != BLKmode
1576 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1577 return 0;
1579 /* If we want a word outside OP, return zero. */
1580 if (mode != BLKmode
1581 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1582 return const0_rtx;
1584 /* Form a new MEM at the requested address. */
1585 if (MEM_P (op))
1587 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1589 if (! validate_address)
1590 return new_rtx;
1592 else if (reload_completed)
1594 if (! strict_memory_address_addr_space_p (word_mode,
1595 XEXP (new_rtx, 0),
1596 MEM_ADDR_SPACE (op)))
1597 return 0;
1599 else
1600 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1603 /* Rest can be handled by simplify_subreg. */
1604 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1607 /* Similar to `operand_subword', but never return 0. If we can't
1608 extract the required subword, put OP into a register and try again.
1609 The second attempt must succeed. We always validate the address in
1610 this case.
1612 MODE is the mode of OP, in case it is CONST_INT. */
1615 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1617 rtx result = operand_subword (op, offset, 1, mode);
1619 if (result)
1620 return result;
1622 if (mode != BLKmode && mode != VOIDmode)
1624 /* If this is a register which can not be accessed by words, copy it
1625 to a pseudo register. */
1626 if (REG_P (op))
1627 op = copy_to_reg (op);
1628 else
1629 op = force_reg (mode, op);
1632 result = operand_subword (op, offset, 1, mode);
1633 gcc_assert (result);
1635 return result;
1638 /* Returns 1 if both MEM_EXPR can be considered equal
1639 and 0 otherwise. */
1642 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1644 if (expr1 == expr2)
1645 return 1;
1647 if (! expr1 || ! expr2)
1648 return 0;
1650 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1651 return 0;
1653 return operand_equal_p (expr1, expr2, 0);
1656 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1657 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1658 -1 if not known. */
1661 get_mem_align_offset (rtx mem, unsigned int align)
1663 tree expr;
1664 unsigned HOST_WIDE_INT offset;
1666 /* This function can't use
1667 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1668 || (MAX (MEM_ALIGN (mem),
1669 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1670 < align))
1671 return -1;
1672 else
1673 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1674 for two reasons:
1675 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1676 for <variable>. get_inner_reference doesn't handle it and
1677 even if it did, the alignment in that case needs to be determined
1678 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1679 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1680 isn't sufficiently aligned, the object it is in might be. */
1681 gcc_assert (MEM_P (mem));
1682 expr = MEM_EXPR (mem);
1683 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1684 return -1;
1686 offset = MEM_OFFSET (mem);
1687 if (DECL_P (expr))
1689 if (DECL_ALIGN (expr) < align)
1690 return -1;
1692 else if (INDIRECT_REF_P (expr))
1694 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1695 return -1;
1697 else if (TREE_CODE (expr) == COMPONENT_REF)
1699 while (1)
1701 tree inner = TREE_OPERAND (expr, 0);
1702 tree field = TREE_OPERAND (expr, 1);
1703 tree byte_offset = component_ref_field_offset (expr);
1704 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1706 if (!byte_offset
1707 || !tree_fits_uhwi_p (byte_offset)
1708 || !tree_fits_uhwi_p (bit_offset))
1709 return -1;
1711 offset += tree_to_uhwi (byte_offset);
1712 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1714 if (inner == NULL_TREE)
1716 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1717 < (unsigned int) align)
1718 return -1;
1719 break;
1721 else if (DECL_P (inner))
1723 if (DECL_ALIGN (inner) < align)
1724 return -1;
1725 break;
1727 else if (TREE_CODE (inner) != COMPONENT_REF)
1728 return -1;
1729 expr = inner;
1732 else
1733 return -1;
1735 return offset & ((align / BITS_PER_UNIT) - 1);
1738 /* Given REF (a MEM) and T, either the type of X or the expression
1739 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1740 if we are making a new object of this type. BITPOS is nonzero if
1741 there is an offset outstanding on T that will be applied later. */
1743 void
1744 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1745 HOST_WIDE_INT bitpos)
1747 HOST_WIDE_INT apply_bitpos = 0;
1748 tree type;
1749 struct mem_attrs attrs, *defattrs, *refattrs;
1750 addr_space_t as;
1752 /* It can happen that type_for_mode was given a mode for which there
1753 is no language-level type. In which case it returns NULL, which
1754 we can see here. */
1755 if (t == NULL_TREE)
1756 return;
1758 type = TYPE_P (t) ? t : TREE_TYPE (t);
1759 if (type == error_mark_node)
1760 return;
1762 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1763 wrong answer, as it assumes that DECL_RTL already has the right alias
1764 info. Callers should not set DECL_RTL until after the call to
1765 set_mem_attributes. */
1766 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1768 memset (&attrs, 0, sizeof (attrs));
1770 /* Get the alias set from the expression or type (perhaps using a
1771 front-end routine) and use it. */
1772 attrs.alias = get_alias_set (t);
1774 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1775 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1777 /* Default values from pre-existing memory attributes if present. */
1778 refattrs = MEM_ATTRS (ref);
1779 if (refattrs)
1781 /* ??? Can this ever happen? Calling this routine on a MEM that
1782 already carries memory attributes should probably be invalid. */
1783 attrs.expr = refattrs->expr;
1784 attrs.offset_known_p = refattrs->offset_known_p;
1785 attrs.offset = refattrs->offset;
1786 attrs.size_known_p = refattrs->size_known_p;
1787 attrs.size = refattrs->size;
1788 attrs.align = refattrs->align;
1791 /* Otherwise, default values from the mode of the MEM reference. */
1792 else
1794 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1795 gcc_assert (!defattrs->expr);
1796 gcc_assert (!defattrs->offset_known_p);
1798 /* Respect mode size. */
1799 attrs.size_known_p = defattrs->size_known_p;
1800 attrs.size = defattrs->size;
1801 /* ??? Is this really necessary? We probably should always get
1802 the size from the type below. */
1804 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1805 if T is an object, always compute the object alignment below. */
1806 if (TYPE_P (t))
1807 attrs.align = defattrs->align;
1808 else
1809 attrs.align = BITS_PER_UNIT;
1810 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1811 e.g. if the type carries an alignment attribute. Should we be
1812 able to simply always use TYPE_ALIGN? */
1815 /* We can set the alignment from the type if we are making an object,
1816 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1817 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1818 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1820 /* If the size is known, we can set that. */
1821 tree new_size = TYPE_SIZE_UNIT (type);
1823 /* The address-space is that of the type. */
1824 as = TYPE_ADDR_SPACE (type);
1826 /* If T is not a type, we may be able to deduce some more information about
1827 the expression. */
1828 if (! TYPE_P (t))
1830 tree base;
1832 if (TREE_THIS_VOLATILE (t))
1833 MEM_VOLATILE_P (ref) = 1;
1835 /* Now remove any conversions: they don't change what the underlying
1836 object is. Likewise for SAVE_EXPR. */
1837 while (CONVERT_EXPR_P (t)
1838 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1839 || TREE_CODE (t) == SAVE_EXPR)
1840 t = TREE_OPERAND (t, 0);
1842 /* Note whether this expression can trap. */
1843 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1845 base = get_base_address (t);
1846 if (base)
1848 if (DECL_P (base)
1849 && TREE_READONLY (base)
1850 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1851 && !TREE_THIS_VOLATILE (base))
1852 MEM_READONLY_P (ref) = 1;
1854 /* Mark static const strings readonly as well. */
1855 if (TREE_CODE (base) == STRING_CST
1856 && TREE_READONLY (base)
1857 && TREE_STATIC (base))
1858 MEM_READONLY_P (ref) = 1;
1860 /* Address-space information is on the base object. */
1861 if (TREE_CODE (base) == MEM_REF
1862 || TREE_CODE (base) == TARGET_MEM_REF)
1863 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1864 0))));
1865 else
1866 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1869 /* If this expression uses it's parent's alias set, mark it such
1870 that we won't change it. */
1871 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1872 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1874 /* If this is a decl, set the attributes of the MEM from it. */
1875 if (DECL_P (t))
1877 attrs.expr = t;
1878 attrs.offset_known_p = true;
1879 attrs.offset = 0;
1880 apply_bitpos = bitpos;
1881 new_size = DECL_SIZE_UNIT (t);
1884 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1885 else if (CONSTANT_CLASS_P (t))
1888 /* If this is a field reference, record it. */
1889 else if (TREE_CODE (t) == COMPONENT_REF)
1891 attrs.expr = t;
1892 attrs.offset_known_p = true;
1893 attrs.offset = 0;
1894 apply_bitpos = bitpos;
1895 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1896 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1899 /* If this is an array reference, look for an outer field reference. */
1900 else if (TREE_CODE (t) == ARRAY_REF)
1902 tree off_tree = size_zero_node;
1903 /* We can't modify t, because we use it at the end of the
1904 function. */
1905 tree t2 = t;
1909 tree index = TREE_OPERAND (t2, 1);
1910 tree low_bound = array_ref_low_bound (t2);
1911 tree unit_size = array_ref_element_size (t2);
1913 /* We assume all arrays have sizes that are a multiple of a byte.
1914 First subtract the lower bound, if any, in the type of the
1915 index, then convert to sizetype and multiply by the size of
1916 the array element. */
1917 if (! integer_zerop (low_bound))
1918 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1919 index, low_bound);
1921 off_tree = size_binop (PLUS_EXPR,
1922 size_binop (MULT_EXPR,
1923 fold_convert (sizetype,
1924 index),
1925 unit_size),
1926 off_tree);
1927 t2 = TREE_OPERAND (t2, 0);
1929 while (TREE_CODE (t2) == ARRAY_REF);
1931 if (DECL_P (t2)
1932 || TREE_CODE (t2) == COMPONENT_REF)
1934 attrs.expr = t2;
1935 attrs.offset_known_p = false;
1936 if (tree_fits_uhwi_p (off_tree))
1938 attrs.offset_known_p = true;
1939 attrs.offset = tree_to_uhwi (off_tree);
1940 apply_bitpos = bitpos;
1943 /* Else do not record a MEM_EXPR. */
1946 /* If this is an indirect reference, record it. */
1947 else if (TREE_CODE (t) == MEM_REF
1948 || TREE_CODE (t) == TARGET_MEM_REF)
1950 attrs.expr = t;
1951 attrs.offset_known_p = true;
1952 attrs.offset = 0;
1953 apply_bitpos = bitpos;
1956 /* Compute the alignment. */
1957 unsigned int obj_align;
1958 unsigned HOST_WIDE_INT obj_bitpos;
1959 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1960 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1961 if (obj_bitpos != 0)
1962 obj_align = (obj_bitpos & -obj_bitpos);
1963 attrs.align = MAX (attrs.align, obj_align);
1966 if (tree_fits_uhwi_p (new_size))
1968 attrs.size_known_p = true;
1969 attrs.size = tree_to_uhwi (new_size);
1972 /* If we modified OFFSET based on T, then subtract the outstanding
1973 bit position offset. Similarly, increase the size of the accessed
1974 object to contain the negative offset. */
1975 if (apply_bitpos)
1977 gcc_assert (attrs.offset_known_p);
1978 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1979 if (attrs.size_known_p)
1980 attrs.size += apply_bitpos / BITS_PER_UNIT;
1983 /* Now set the attributes we computed above. */
1984 attrs.addrspace = as;
1985 set_mem_attrs (ref, &attrs);
1988 void
1989 set_mem_attributes (rtx ref, tree t, int objectp)
1991 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1994 /* Set the alias set of MEM to SET. */
1996 void
1997 set_mem_alias_set (rtx mem, alias_set_type set)
1999 struct mem_attrs attrs;
2001 /* If the new and old alias sets don't conflict, something is wrong. */
2002 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2003 attrs = *get_mem_attrs (mem);
2004 attrs.alias = set;
2005 set_mem_attrs (mem, &attrs);
2008 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2010 void
2011 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2013 struct mem_attrs attrs;
2015 attrs = *get_mem_attrs (mem);
2016 attrs.addrspace = addrspace;
2017 set_mem_attrs (mem, &attrs);
2020 /* Set the alignment of MEM to ALIGN bits. */
2022 void
2023 set_mem_align (rtx mem, unsigned int align)
2025 struct mem_attrs attrs;
2027 attrs = *get_mem_attrs (mem);
2028 attrs.align = align;
2029 set_mem_attrs (mem, &attrs);
2032 /* Set the expr for MEM to EXPR. */
2034 void
2035 set_mem_expr (rtx mem, tree expr)
2037 struct mem_attrs attrs;
2039 attrs = *get_mem_attrs (mem);
2040 attrs.expr = expr;
2041 set_mem_attrs (mem, &attrs);
2044 /* Set the offset of MEM to OFFSET. */
2046 void
2047 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2049 struct mem_attrs attrs;
2051 attrs = *get_mem_attrs (mem);
2052 attrs.offset_known_p = true;
2053 attrs.offset = offset;
2054 set_mem_attrs (mem, &attrs);
2057 /* Clear the offset of MEM. */
2059 void
2060 clear_mem_offset (rtx mem)
2062 struct mem_attrs attrs;
2064 attrs = *get_mem_attrs (mem);
2065 attrs.offset_known_p = false;
2066 set_mem_attrs (mem, &attrs);
2069 /* Set the size of MEM to SIZE. */
2071 void
2072 set_mem_size (rtx mem, HOST_WIDE_INT size)
2074 struct mem_attrs attrs;
2076 attrs = *get_mem_attrs (mem);
2077 attrs.size_known_p = true;
2078 attrs.size = size;
2079 set_mem_attrs (mem, &attrs);
2082 /* Clear the size of MEM. */
2084 void
2085 clear_mem_size (rtx mem)
2087 struct mem_attrs attrs;
2089 attrs = *get_mem_attrs (mem);
2090 attrs.size_known_p = false;
2091 set_mem_attrs (mem, &attrs);
2094 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2095 and its address changed to ADDR. (VOIDmode means don't change the mode.
2096 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2097 returned memory location is required to be valid. INPLACE is true if any
2098 changes can be made directly to MEMREF or false if MEMREF must be treated
2099 as immutable.
2101 The memory attributes are not changed. */
2103 static rtx
2104 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2105 bool inplace)
2107 addr_space_t as;
2108 rtx new_rtx;
2110 gcc_assert (MEM_P (memref));
2111 as = MEM_ADDR_SPACE (memref);
2112 if (mode == VOIDmode)
2113 mode = GET_MODE (memref);
2114 if (addr == 0)
2115 addr = XEXP (memref, 0);
2116 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2117 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2118 return memref;
2120 /* Don't validate address for LRA. LRA can make the address valid
2121 by itself in most efficient way. */
2122 if (validate && !lra_in_progress)
2124 if (reload_in_progress || reload_completed)
2125 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2126 else
2127 addr = memory_address_addr_space (mode, addr, as);
2130 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2131 return memref;
2133 if (inplace)
2135 XEXP (memref, 0) = addr;
2136 return memref;
2139 new_rtx = gen_rtx_MEM (mode, addr);
2140 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2141 return new_rtx;
2144 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2145 way we are changing MEMREF, so we only preserve the alias set. */
2148 change_address (rtx memref, machine_mode mode, rtx addr)
2150 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2151 machine_mode mmode = GET_MODE (new_rtx);
2152 struct mem_attrs attrs, *defattrs;
2154 attrs = *get_mem_attrs (memref);
2155 defattrs = mode_mem_attrs[(int) mmode];
2156 attrs.expr = NULL_TREE;
2157 attrs.offset_known_p = false;
2158 attrs.size_known_p = defattrs->size_known_p;
2159 attrs.size = defattrs->size;
2160 attrs.align = defattrs->align;
2162 /* If there are no changes, just return the original memory reference. */
2163 if (new_rtx == memref)
2165 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2166 return new_rtx;
2168 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2169 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2172 set_mem_attrs (new_rtx, &attrs);
2173 return new_rtx;
2176 /* Return a memory reference like MEMREF, but with its mode changed
2177 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2178 nonzero, the memory address is forced to be valid.
2179 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2180 and the caller is responsible for adjusting MEMREF base register.
2181 If ADJUST_OBJECT is zero, the underlying object associated with the
2182 memory reference is left unchanged and the caller is responsible for
2183 dealing with it. Otherwise, if the new memory reference is outside
2184 the underlying object, even partially, then the object is dropped.
2185 SIZE, if nonzero, is the size of an access in cases where MODE
2186 has no inherent size. */
2189 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2190 int validate, int adjust_address, int adjust_object,
2191 HOST_WIDE_INT size)
2193 rtx addr = XEXP (memref, 0);
2194 rtx new_rtx;
2195 machine_mode address_mode;
2196 int pbits;
2197 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2198 unsigned HOST_WIDE_INT max_align;
2199 #ifdef POINTERS_EXTEND_UNSIGNED
2200 machine_mode pointer_mode
2201 = targetm.addr_space.pointer_mode (attrs.addrspace);
2202 #endif
2204 /* VOIDmode means no mode change for change_address_1. */
2205 if (mode == VOIDmode)
2206 mode = GET_MODE (memref);
2208 /* Take the size of non-BLKmode accesses from the mode. */
2209 defattrs = mode_mem_attrs[(int) mode];
2210 if (defattrs->size_known_p)
2211 size = defattrs->size;
2213 /* If there are no changes, just return the original memory reference. */
2214 if (mode == GET_MODE (memref) && !offset
2215 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2216 && (!validate || memory_address_addr_space_p (mode, addr,
2217 attrs.addrspace)))
2218 return memref;
2220 /* ??? Prefer to create garbage instead of creating shared rtl.
2221 This may happen even if offset is nonzero -- consider
2222 (plus (plus reg reg) const_int) -- so do this always. */
2223 addr = copy_rtx (addr);
2225 /* Convert a possibly large offset to a signed value within the
2226 range of the target address space. */
2227 address_mode = get_address_mode (memref);
2228 pbits = GET_MODE_BITSIZE (address_mode);
2229 if (HOST_BITS_PER_WIDE_INT > pbits)
2231 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2232 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2233 >> shift);
2236 if (adjust_address)
2238 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2239 object, we can merge it into the LO_SUM. */
2240 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2241 && offset >= 0
2242 && (unsigned HOST_WIDE_INT) offset
2243 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2244 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2245 plus_constant (address_mode,
2246 XEXP (addr, 1), offset));
2247 #ifdef POINTERS_EXTEND_UNSIGNED
2248 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2249 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2250 the fact that pointers are not allowed to overflow. */
2251 else if (POINTERS_EXTEND_UNSIGNED > 0
2252 && GET_CODE (addr) == ZERO_EXTEND
2253 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2254 && trunc_int_for_mode (offset, pointer_mode) == offset)
2255 addr = gen_rtx_ZERO_EXTEND (address_mode,
2256 plus_constant (pointer_mode,
2257 XEXP (addr, 0), offset));
2258 #endif
2259 else
2260 addr = plus_constant (address_mode, addr, offset);
2263 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2265 /* If the address is a REG, change_address_1 rightfully returns memref,
2266 but this would destroy memref's MEM_ATTRS. */
2267 if (new_rtx == memref && offset != 0)
2268 new_rtx = copy_rtx (new_rtx);
2270 /* Conservatively drop the object if we don't know where we start from. */
2271 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2273 attrs.expr = NULL_TREE;
2274 attrs.alias = 0;
2277 /* Compute the new values of the memory attributes due to this adjustment.
2278 We add the offsets and update the alignment. */
2279 if (attrs.offset_known_p)
2281 attrs.offset += offset;
2283 /* Drop the object if the new left end is not within its bounds. */
2284 if (adjust_object && attrs.offset < 0)
2286 attrs.expr = NULL_TREE;
2287 attrs.alias = 0;
2291 /* Compute the new alignment by taking the MIN of the alignment and the
2292 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2293 if zero. */
2294 if (offset != 0)
2296 max_align = (offset & -offset) * BITS_PER_UNIT;
2297 attrs.align = MIN (attrs.align, max_align);
2300 if (size)
2302 /* Drop the object if the new right end is not within its bounds. */
2303 if (adjust_object && (offset + size) > attrs.size)
2305 attrs.expr = NULL_TREE;
2306 attrs.alias = 0;
2308 attrs.size_known_p = true;
2309 attrs.size = size;
2311 else if (attrs.size_known_p)
2313 gcc_assert (!adjust_object);
2314 attrs.size -= offset;
2315 /* ??? The store_by_pieces machinery generates negative sizes,
2316 so don't assert for that here. */
2319 set_mem_attrs (new_rtx, &attrs);
2321 return new_rtx;
2324 /* Return a memory reference like MEMREF, but with its mode changed
2325 to MODE and its address changed to ADDR, which is assumed to be
2326 MEMREF offset by OFFSET bytes. If VALIDATE is
2327 nonzero, the memory address is forced to be valid. */
2330 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2331 HOST_WIDE_INT offset, int validate)
2333 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2334 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2337 /* Return a memory reference like MEMREF, but whose address is changed by
2338 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2339 known to be in OFFSET (possibly 1). */
2342 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2344 rtx new_rtx, addr = XEXP (memref, 0);
2345 machine_mode address_mode;
2346 struct mem_attrs attrs, *defattrs;
2348 attrs = *get_mem_attrs (memref);
2349 address_mode = get_address_mode (memref);
2350 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2352 /* At this point we don't know _why_ the address is invalid. It
2353 could have secondary memory references, multiplies or anything.
2355 However, if we did go and rearrange things, we can wind up not
2356 being able to recognize the magic around pic_offset_table_rtx.
2357 This stuff is fragile, and is yet another example of why it is
2358 bad to expose PIC machinery too early. */
2359 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2360 attrs.addrspace)
2361 && GET_CODE (addr) == PLUS
2362 && XEXP (addr, 0) == pic_offset_table_rtx)
2364 addr = force_reg (GET_MODE (addr), addr);
2365 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2368 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2369 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2371 /* If there are no changes, just return the original memory reference. */
2372 if (new_rtx == memref)
2373 return new_rtx;
2375 /* Update the alignment to reflect the offset. Reset the offset, which
2376 we don't know. */
2377 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2378 attrs.offset_known_p = false;
2379 attrs.size_known_p = defattrs->size_known_p;
2380 attrs.size = defattrs->size;
2381 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2382 set_mem_attrs (new_rtx, &attrs);
2383 return new_rtx;
2386 /* Return a memory reference like MEMREF, but with its address changed to
2387 ADDR. The caller is asserting that the actual piece of memory pointed
2388 to is the same, just the form of the address is being changed, such as
2389 by putting something into a register. INPLACE is true if any changes
2390 can be made directly to MEMREF or false if MEMREF must be treated as
2391 immutable. */
2394 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2396 /* change_address_1 copies the memory attribute structure without change
2397 and that's exactly what we want here. */
2398 update_temp_slot_address (XEXP (memref, 0), addr);
2399 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2402 /* Likewise, but the reference is not required to be valid. */
2405 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2407 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2410 /* Return a memory reference like MEMREF, but with its mode widened to
2411 MODE and offset by OFFSET. This would be used by targets that e.g.
2412 cannot issue QImode memory operations and have to use SImode memory
2413 operations plus masking logic. */
2416 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2418 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2419 struct mem_attrs attrs;
2420 unsigned int size = GET_MODE_SIZE (mode);
2422 /* If there are no changes, just return the original memory reference. */
2423 if (new_rtx == memref)
2424 return new_rtx;
2426 attrs = *get_mem_attrs (new_rtx);
2428 /* If we don't know what offset we were at within the expression, then
2429 we can't know if we've overstepped the bounds. */
2430 if (! attrs.offset_known_p)
2431 attrs.expr = NULL_TREE;
2433 while (attrs.expr)
2435 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2437 tree field = TREE_OPERAND (attrs.expr, 1);
2438 tree offset = component_ref_field_offset (attrs.expr);
2440 if (! DECL_SIZE_UNIT (field))
2442 attrs.expr = NULL_TREE;
2443 break;
2446 /* Is the field at least as large as the access? If so, ok,
2447 otherwise strip back to the containing structure. */
2448 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2449 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2450 && attrs.offset >= 0)
2451 break;
2453 if (! tree_fits_uhwi_p (offset))
2455 attrs.expr = NULL_TREE;
2456 break;
2459 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2460 attrs.offset += tree_to_uhwi (offset);
2461 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2462 / BITS_PER_UNIT);
2464 /* Similarly for the decl. */
2465 else if (DECL_P (attrs.expr)
2466 && DECL_SIZE_UNIT (attrs.expr)
2467 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2468 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2469 && (! attrs.offset_known_p || attrs.offset >= 0))
2470 break;
2471 else
2473 /* The widened memory access overflows the expression, which means
2474 that it could alias another expression. Zap it. */
2475 attrs.expr = NULL_TREE;
2476 break;
2480 if (! attrs.expr)
2481 attrs.offset_known_p = false;
2483 /* The widened memory may alias other stuff, so zap the alias set. */
2484 /* ??? Maybe use get_alias_set on any remaining expression. */
2485 attrs.alias = 0;
2486 attrs.size_known_p = true;
2487 attrs.size = size;
2488 set_mem_attrs (new_rtx, &attrs);
2489 return new_rtx;
2492 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2493 static GTY(()) tree spill_slot_decl;
2495 tree
2496 get_spill_slot_decl (bool force_build_p)
2498 tree d = spill_slot_decl;
2499 rtx rd;
2500 struct mem_attrs attrs;
2502 if (d || !force_build_p)
2503 return d;
2505 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2506 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2507 DECL_ARTIFICIAL (d) = 1;
2508 DECL_IGNORED_P (d) = 1;
2509 TREE_USED (d) = 1;
2510 spill_slot_decl = d;
2512 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2513 MEM_NOTRAP_P (rd) = 1;
2514 attrs = *mode_mem_attrs[(int) BLKmode];
2515 attrs.alias = new_alias_set ();
2516 attrs.expr = d;
2517 set_mem_attrs (rd, &attrs);
2518 SET_DECL_RTL (d, rd);
2520 return d;
2523 /* Given MEM, a result from assign_stack_local, fill in the memory
2524 attributes as appropriate for a register allocator spill slot.
2525 These slots are not aliasable by other memory. We arrange for
2526 them all to use a single MEM_EXPR, so that the aliasing code can
2527 work properly in the case of shared spill slots. */
2529 void
2530 set_mem_attrs_for_spill (rtx mem)
2532 struct mem_attrs attrs;
2533 rtx addr;
2535 attrs = *get_mem_attrs (mem);
2536 attrs.expr = get_spill_slot_decl (true);
2537 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2538 attrs.addrspace = ADDR_SPACE_GENERIC;
2540 /* We expect the incoming memory to be of the form:
2541 (mem:MODE (plus (reg sfp) (const_int offset)))
2542 with perhaps the plus missing for offset = 0. */
2543 addr = XEXP (mem, 0);
2544 attrs.offset_known_p = true;
2545 attrs.offset = 0;
2546 if (GET_CODE (addr) == PLUS
2547 && CONST_INT_P (XEXP (addr, 1)))
2548 attrs.offset = INTVAL (XEXP (addr, 1));
2550 set_mem_attrs (mem, &attrs);
2551 MEM_NOTRAP_P (mem) = 1;
2554 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2556 rtx_code_label *
2557 gen_label_rtx (void)
2559 return as_a <rtx_code_label *> (
2560 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2561 NULL, label_num++, NULL));
2564 /* For procedure integration. */
2566 /* Install new pointers to the first and last insns in the chain.
2567 Also, set cur_insn_uid to one higher than the last in use.
2568 Used for an inline-procedure after copying the insn chain. */
2570 void
2571 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2573 rtx_insn *insn;
2575 set_first_insn (first);
2576 set_last_insn (last);
2577 cur_insn_uid = 0;
2579 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2581 int debug_count = 0;
2583 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2584 cur_debug_insn_uid = 0;
2586 for (insn = first; insn; insn = NEXT_INSN (insn))
2587 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2588 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2589 else
2591 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2592 if (DEBUG_INSN_P (insn))
2593 debug_count++;
2596 if (debug_count)
2597 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2598 else
2599 cur_debug_insn_uid++;
2601 else
2602 for (insn = first; insn; insn = NEXT_INSN (insn))
2603 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2605 cur_insn_uid++;
2608 /* Go through all the RTL insn bodies and copy any invalid shared
2609 structure. This routine should only be called once. */
2611 static void
2612 unshare_all_rtl_1 (rtx_insn *insn)
2614 /* Unshare just about everything else. */
2615 unshare_all_rtl_in_chain (insn);
2617 /* Make sure the addresses of stack slots found outside the insn chain
2618 (such as, in DECL_RTL of a variable) are not shared
2619 with the insn chain.
2621 This special care is necessary when the stack slot MEM does not
2622 actually appear in the insn chain. If it does appear, its address
2623 is unshared from all else at that point. */
2624 stack_slot_list = safe_as_a <rtx_expr_list *> (
2625 copy_rtx_if_shared (stack_slot_list));
2628 /* Go through all the RTL insn bodies and copy any invalid shared
2629 structure, again. This is a fairly expensive thing to do so it
2630 should be done sparingly. */
2632 void
2633 unshare_all_rtl_again (rtx_insn *insn)
2635 rtx_insn *p;
2636 tree decl;
2638 for (p = insn; p; p = NEXT_INSN (p))
2639 if (INSN_P (p))
2641 reset_used_flags (PATTERN (p));
2642 reset_used_flags (REG_NOTES (p));
2643 if (CALL_P (p))
2644 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2647 /* Make sure that virtual stack slots are not shared. */
2648 set_used_decls (DECL_INITIAL (cfun->decl));
2650 /* Make sure that virtual parameters are not shared. */
2651 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2652 set_used_flags (DECL_RTL (decl));
2654 reset_used_flags (stack_slot_list);
2656 unshare_all_rtl_1 (insn);
2659 unsigned int
2660 unshare_all_rtl (void)
2662 unshare_all_rtl_1 (get_insns ());
2663 return 0;
2667 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2668 Recursively does the same for subexpressions. */
2670 static void
2671 verify_rtx_sharing (rtx orig, rtx insn)
2673 rtx x = orig;
2674 int i;
2675 enum rtx_code code;
2676 const char *format_ptr;
2678 if (x == 0)
2679 return;
2681 code = GET_CODE (x);
2683 /* These types may be freely shared. */
2685 switch (code)
2687 case REG:
2688 case DEBUG_EXPR:
2689 case VALUE:
2690 CASE_CONST_ANY:
2691 case SYMBOL_REF:
2692 case LABEL_REF:
2693 case CODE_LABEL:
2694 case PC:
2695 case CC0:
2696 case RETURN:
2697 case SIMPLE_RETURN:
2698 case SCRATCH:
2699 /* SCRATCH must be shared because they represent distinct values. */
2700 return;
2701 case CLOBBER:
2702 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2703 clobbers or clobbers of hard registers that originated as pseudos.
2704 This is needed to allow safe register renaming. */
2705 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2707 return;
2708 break;
2710 case CONST:
2711 if (shared_const_p (orig))
2712 return;
2713 break;
2715 case MEM:
2716 /* A MEM is allowed to be shared if its address is constant. */
2717 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2718 || reload_completed || reload_in_progress)
2719 return;
2721 break;
2723 default:
2724 break;
2727 /* This rtx may not be shared. If it has already been seen,
2728 replace it with a copy of itself. */
2729 #ifdef ENABLE_CHECKING
2730 if (RTX_FLAG (x, used))
2732 error ("invalid rtl sharing found in the insn");
2733 debug_rtx (insn);
2734 error ("shared rtx");
2735 debug_rtx (x);
2736 internal_error ("internal consistency failure");
2738 #endif
2739 gcc_assert (!RTX_FLAG (x, used));
2741 RTX_FLAG (x, used) = 1;
2743 /* Now scan the subexpressions recursively. */
2745 format_ptr = GET_RTX_FORMAT (code);
2747 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2749 switch (*format_ptr++)
2751 case 'e':
2752 verify_rtx_sharing (XEXP (x, i), insn);
2753 break;
2755 case 'E':
2756 if (XVEC (x, i) != NULL)
2758 int j;
2759 int len = XVECLEN (x, i);
2761 for (j = 0; j < len; j++)
2763 /* We allow sharing of ASM_OPERANDS inside single
2764 instruction. */
2765 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2766 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2767 == ASM_OPERANDS))
2768 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2769 else
2770 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2773 break;
2776 return;
2779 /* Reset used-flags for INSN. */
2781 static void
2782 reset_insn_used_flags (rtx insn)
2784 gcc_assert (INSN_P (insn));
2785 reset_used_flags (PATTERN (insn));
2786 reset_used_flags (REG_NOTES (insn));
2787 if (CALL_P (insn))
2788 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2791 /* Go through all the RTL insn bodies and clear all the USED bits. */
2793 static void
2794 reset_all_used_flags (void)
2796 rtx_insn *p;
2798 for (p = get_insns (); p; p = NEXT_INSN (p))
2799 if (INSN_P (p))
2801 rtx pat = PATTERN (p);
2802 if (GET_CODE (pat) != SEQUENCE)
2803 reset_insn_used_flags (p);
2804 else
2806 gcc_assert (REG_NOTES (p) == NULL);
2807 for (int i = 0; i < XVECLEN (pat, 0); i++)
2809 rtx insn = XVECEXP (pat, 0, i);
2810 if (INSN_P (insn))
2811 reset_insn_used_flags (insn);
2817 /* Verify sharing in INSN. */
2819 static void
2820 verify_insn_sharing (rtx insn)
2822 gcc_assert (INSN_P (insn));
2823 reset_used_flags (PATTERN (insn));
2824 reset_used_flags (REG_NOTES (insn));
2825 if (CALL_P (insn))
2826 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2829 /* Go through all the RTL insn bodies and check that there is no unexpected
2830 sharing in between the subexpressions. */
2832 DEBUG_FUNCTION void
2833 verify_rtl_sharing (void)
2835 rtx_insn *p;
2837 timevar_push (TV_VERIFY_RTL_SHARING);
2839 reset_all_used_flags ();
2841 for (p = get_insns (); p; p = NEXT_INSN (p))
2842 if (INSN_P (p))
2844 rtx pat = PATTERN (p);
2845 if (GET_CODE (pat) != SEQUENCE)
2846 verify_insn_sharing (p);
2847 else
2848 for (int i = 0; i < XVECLEN (pat, 0); i++)
2850 rtx insn = XVECEXP (pat, 0, i);
2851 if (INSN_P (insn))
2852 verify_insn_sharing (insn);
2856 reset_all_used_flags ();
2858 timevar_pop (TV_VERIFY_RTL_SHARING);
2861 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2862 Assumes the mark bits are cleared at entry. */
2864 void
2865 unshare_all_rtl_in_chain (rtx_insn *insn)
2867 for (; insn; insn = NEXT_INSN (insn))
2868 if (INSN_P (insn))
2870 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2871 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2872 if (CALL_P (insn))
2873 CALL_INSN_FUNCTION_USAGE (insn)
2874 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2878 /* Go through all virtual stack slots of a function and mark them as
2879 shared. We never replace the DECL_RTLs themselves with a copy,
2880 but expressions mentioned into a DECL_RTL cannot be shared with
2881 expressions in the instruction stream.
2883 Note that reload may convert pseudo registers into memories in-place.
2884 Pseudo registers are always shared, but MEMs never are. Thus if we
2885 reset the used flags on MEMs in the instruction stream, we must set
2886 them again on MEMs that appear in DECL_RTLs. */
2888 static void
2889 set_used_decls (tree blk)
2891 tree t;
2893 /* Mark decls. */
2894 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2895 if (DECL_RTL_SET_P (t))
2896 set_used_flags (DECL_RTL (t));
2898 /* Now process sub-blocks. */
2899 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2900 set_used_decls (t);
2903 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2904 Recursively does the same for subexpressions. Uses
2905 copy_rtx_if_shared_1 to reduce stack space. */
2908 copy_rtx_if_shared (rtx orig)
2910 copy_rtx_if_shared_1 (&orig);
2911 return orig;
2914 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2915 use. Recursively does the same for subexpressions. */
2917 static void
2918 copy_rtx_if_shared_1 (rtx *orig1)
2920 rtx x;
2921 int i;
2922 enum rtx_code code;
2923 rtx *last_ptr;
2924 const char *format_ptr;
2925 int copied = 0;
2926 int length;
2928 /* Repeat is used to turn tail-recursion into iteration. */
2929 repeat:
2930 x = *orig1;
2932 if (x == 0)
2933 return;
2935 code = GET_CODE (x);
2937 /* These types may be freely shared. */
2939 switch (code)
2941 case REG:
2942 case DEBUG_EXPR:
2943 case VALUE:
2944 CASE_CONST_ANY:
2945 case SYMBOL_REF:
2946 case LABEL_REF:
2947 case CODE_LABEL:
2948 case PC:
2949 case CC0:
2950 case RETURN:
2951 case SIMPLE_RETURN:
2952 case SCRATCH:
2953 /* SCRATCH must be shared because they represent distinct values. */
2954 return;
2955 case CLOBBER:
2956 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2957 clobbers or clobbers of hard registers that originated as pseudos.
2958 This is needed to allow safe register renaming. */
2959 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2960 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2961 return;
2962 break;
2964 case CONST:
2965 if (shared_const_p (x))
2966 return;
2967 break;
2969 case DEBUG_INSN:
2970 case INSN:
2971 case JUMP_INSN:
2972 case CALL_INSN:
2973 case NOTE:
2974 case BARRIER:
2975 /* The chain of insns is not being copied. */
2976 return;
2978 default:
2979 break;
2982 /* This rtx may not be shared. If it has already been seen,
2983 replace it with a copy of itself. */
2985 if (RTX_FLAG (x, used))
2987 x = shallow_copy_rtx (x);
2988 copied = 1;
2990 RTX_FLAG (x, used) = 1;
2992 /* Now scan the subexpressions recursively.
2993 We can store any replaced subexpressions directly into X
2994 since we know X is not shared! Any vectors in X
2995 must be copied if X was copied. */
2997 format_ptr = GET_RTX_FORMAT (code);
2998 length = GET_RTX_LENGTH (code);
2999 last_ptr = NULL;
3001 for (i = 0; i < length; i++)
3003 switch (*format_ptr++)
3005 case 'e':
3006 if (last_ptr)
3007 copy_rtx_if_shared_1 (last_ptr);
3008 last_ptr = &XEXP (x, i);
3009 break;
3011 case 'E':
3012 if (XVEC (x, i) != NULL)
3014 int j;
3015 int len = XVECLEN (x, i);
3017 /* Copy the vector iff I copied the rtx and the length
3018 is nonzero. */
3019 if (copied && len > 0)
3020 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3022 /* Call recursively on all inside the vector. */
3023 for (j = 0; j < len; j++)
3025 if (last_ptr)
3026 copy_rtx_if_shared_1 (last_ptr);
3027 last_ptr = &XVECEXP (x, i, j);
3030 break;
3033 *orig1 = x;
3034 if (last_ptr)
3036 orig1 = last_ptr;
3037 goto repeat;
3039 return;
3042 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3044 static void
3045 mark_used_flags (rtx x, int flag)
3047 int i, j;
3048 enum rtx_code code;
3049 const char *format_ptr;
3050 int length;
3052 /* Repeat is used to turn tail-recursion into iteration. */
3053 repeat:
3054 if (x == 0)
3055 return;
3057 code = GET_CODE (x);
3059 /* These types may be freely shared so we needn't do any resetting
3060 for them. */
3062 switch (code)
3064 case REG:
3065 case DEBUG_EXPR:
3066 case VALUE:
3067 CASE_CONST_ANY:
3068 case SYMBOL_REF:
3069 case CODE_LABEL:
3070 case PC:
3071 case CC0:
3072 case RETURN:
3073 case SIMPLE_RETURN:
3074 return;
3076 case DEBUG_INSN:
3077 case INSN:
3078 case JUMP_INSN:
3079 case CALL_INSN:
3080 case NOTE:
3081 case LABEL_REF:
3082 case BARRIER:
3083 /* The chain of insns is not being copied. */
3084 return;
3086 default:
3087 break;
3090 RTX_FLAG (x, used) = flag;
3092 format_ptr = GET_RTX_FORMAT (code);
3093 length = GET_RTX_LENGTH (code);
3095 for (i = 0; i < length; i++)
3097 switch (*format_ptr++)
3099 case 'e':
3100 if (i == length-1)
3102 x = XEXP (x, i);
3103 goto repeat;
3105 mark_used_flags (XEXP (x, i), flag);
3106 break;
3108 case 'E':
3109 for (j = 0; j < XVECLEN (x, i); j++)
3110 mark_used_flags (XVECEXP (x, i, j), flag);
3111 break;
3116 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3117 to look for shared sub-parts. */
3119 void
3120 reset_used_flags (rtx x)
3122 mark_used_flags (x, 0);
3125 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3126 to look for shared sub-parts. */
3128 void
3129 set_used_flags (rtx x)
3131 mark_used_flags (x, 1);
3134 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3135 Return X or the rtx for the pseudo reg the value of X was copied into.
3136 OTHER must be valid as a SET_DEST. */
3139 make_safe_from (rtx x, rtx other)
3141 while (1)
3142 switch (GET_CODE (other))
3144 case SUBREG:
3145 other = SUBREG_REG (other);
3146 break;
3147 case STRICT_LOW_PART:
3148 case SIGN_EXTEND:
3149 case ZERO_EXTEND:
3150 other = XEXP (other, 0);
3151 break;
3152 default:
3153 goto done;
3155 done:
3156 if ((MEM_P (other)
3157 && ! CONSTANT_P (x)
3158 && !REG_P (x)
3159 && GET_CODE (x) != SUBREG)
3160 || (REG_P (other)
3161 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3162 || reg_mentioned_p (other, x))))
3164 rtx temp = gen_reg_rtx (GET_MODE (x));
3165 emit_move_insn (temp, x);
3166 return temp;
3168 return x;
3171 /* Emission of insns (adding them to the doubly-linked list). */
3173 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3175 rtx_insn *
3176 get_last_insn_anywhere (void)
3178 struct sequence_stack *stack;
3179 if (get_last_insn ())
3180 return get_last_insn ();
3181 for (stack = seq_stack; stack; stack = stack->next)
3182 if (stack->last != 0)
3183 return stack->last;
3184 return 0;
3187 /* Return the first nonnote insn emitted in current sequence or current
3188 function. This routine looks inside SEQUENCEs. */
3190 rtx_insn *
3191 get_first_nonnote_insn (void)
3193 rtx_insn *insn = get_insns ();
3195 if (insn)
3197 if (NOTE_P (insn))
3198 for (insn = next_insn (insn);
3199 insn && NOTE_P (insn);
3200 insn = next_insn (insn))
3201 continue;
3202 else
3204 if (NONJUMP_INSN_P (insn)
3205 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3206 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3210 return insn;
3213 /* Return the last nonnote insn emitted in current sequence or current
3214 function. This routine looks inside SEQUENCEs. */
3216 rtx_insn *
3217 get_last_nonnote_insn (void)
3219 rtx_insn *insn = get_last_insn ();
3221 if (insn)
3223 if (NOTE_P (insn))
3224 for (insn = previous_insn (insn);
3225 insn && NOTE_P (insn);
3226 insn = previous_insn (insn))
3227 continue;
3228 else
3230 if (NONJUMP_INSN_P (insn))
3231 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3232 insn = seq->insn (seq->len () - 1);
3236 return insn;
3239 /* Return the number of actual (non-debug) insns emitted in this
3240 function. */
3243 get_max_insn_count (void)
3245 int n = cur_insn_uid;
3247 /* The table size must be stable across -g, to avoid codegen
3248 differences due to debug insns, and not be affected by
3249 -fmin-insn-uid, to avoid excessive table size and to simplify
3250 debugging of -fcompare-debug failures. */
3251 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3252 n -= cur_debug_insn_uid;
3253 else
3254 n -= MIN_NONDEBUG_INSN_UID;
3256 return n;
3260 /* Return the next insn. If it is a SEQUENCE, return the first insn
3261 of the sequence. */
3263 rtx_insn *
3264 next_insn (rtx_insn *insn)
3266 if (insn)
3268 insn = NEXT_INSN (insn);
3269 if (insn && NONJUMP_INSN_P (insn)
3270 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3271 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3274 return insn;
3277 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3278 of the sequence. */
3280 rtx_insn *
3281 previous_insn (rtx_insn *insn)
3283 if (insn)
3285 insn = PREV_INSN (insn);
3286 if (insn && NONJUMP_INSN_P (insn))
3287 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3288 insn = seq->insn (seq->len () - 1);
3291 return insn;
3294 /* Return the next insn after INSN that is not a NOTE. This routine does not
3295 look inside SEQUENCEs. */
3297 rtx_insn *
3298 next_nonnote_insn (rtx uncast_insn)
3300 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3301 while (insn)
3303 insn = NEXT_INSN (insn);
3304 if (insn == 0 || !NOTE_P (insn))
3305 break;
3308 return insn;
3311 /* Return the next insn after INSN that is not a NOTE, but stop the
3312 search before we enter another basic block. This routine does not
3313 look inside SEQUENCEs. */
3315 rtx_insn *
3316 next_nonnote_insn_bb (rtx_insn *insn)
3318 while (insn)
3320 insn = NEXT_INSN (insn);
3321 if (insn == 0 || !NOTE_P (insn))
3322 break;
3323 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3324 return NULL;
3327 return insn;
3330 /* Return the previous insn before INSN that is not a NOTE. This routine does
3331 not look inside SEQUENCEs. */
3333 rtx_insn *
3334 prev_nonnote_insn (rtx uncast_insn)
3336 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3338 while (insn)
3340 insn = PREV_INSN (insn);
3341 if (insn == 0 || !NOTE_P (insn))
3342 break;
3345 return insn;
3348 /* Return the previous insn before INSN that is not a NOTE, but stop
3349 the search before we enter another basic block. This routine does
3350 not look inside SEQUENCEs. */
3352 rtx_insn *
3353 prev_nonnote_insn_bb (rtx uncast_insn)
3355 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3357 while (insn)
3359 insn = PREV_INSN (insn);
3360 if (insn == 0 || !NOTE_P (insn))
3361 break;
3362 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3363 return NULL;
3366 return insn;
3369 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3370 routine does not look inside SEQUENCEs. */
3372 rtx_insn *
3373 next_nondebug_insn (rtx uncast_insn)
3375 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3377 while (insn)
3379 insn = NEXT_INSN (insn);
3380 if (insn == 0 || !DEBUG_INSN_P (insn))
3381 break;
3384 return insn;
3387 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3388 This routine does not look inside SEQUENCEs. */
3390 rtx_insn *
3391 prev_nondebug_insn (rtx uncast_insn)
3393 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3395 while (insn)
3397 insn = PREV_INSN (insn);
3398 if (insn == 0 || !DEBUG_INSN_P (insn))
3399 break;
3402 return insn;
3405 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3406 This routine does not look inside SEQUENCEs. */
3408 rtx_insn *
3409 next_nonnote_nondebug_insn (rtx uncast_insn)
3411 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3413 while (insn)
3415 insn = NEXT_INSN (insn);
3416 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3417 break;
3420 return insn;
3423 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3424 This routine does not look inside SEQUENCEs. */
3426 rtx_insn *
3427 prev_nonnote_nondebug_insn (rtx uncast_insn)
3429 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3431 while (insn)
3433 insn = PREV_INSN (insn);
3434 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3435 break;
3438 return insn;
3441 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3442 or 0, if there is none. This routine does not look inside
3443 SEQUENCEs. */
3445 rtx_insn *
3446 next_real_insn (rtx uncast_insn)
3448 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3450 while (insn)
3452 insn = NEXT_INSN (insn);
3453 if (insn == 0 || INSN_P (insn))
3454 break;
3457 return insn;
3460 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3461 or 0, if there is none. This routine does not look inside
3462 SEQUENCEs. */
3464 rtx_insn *
3465 prev_real_insn (rtx uncast_insn)
3467 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3469 while (insn)
3471 insn = PREV_INSN (insn);
3472 if (insn == 0 || INSN_P (insn))
3473 break;
3476 return insn;
3479 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3480 This routine does not look inside SEQUENCEs. */
3482 rtx_call_insn *
3483 last_call_insn (void)
3485 rtx_insn *insn;
3487 for (insn = get_last_insn ();
3488 insn && !CALL_P (insn);
3489 insn = PREV_INSN (insn))
3492 return safe_as_a <rtx_call_insn *> (insn);
3495 /* Find the next insn after INSN that really does something. This routine
3496 does not look inside SEQUENCEs. After reload this also skips over
3497 standalone USE and CLOBBER insn. */
3500 active_insn_p (const_rtx insn)
3502 return (CALL_P (insn) || JUMP_P (insn)
3503 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3504 || (NONJUMP_INSN_P (insn)
3505 && (! reload_completed
3506 || (GET_CODE (PATTERN (insn)) != USE
3507 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3510 rtx_insn *
3511 next_active_insn (rtx uncast_insn)
3513 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3515 while (insn)
3517 insn = NEXT_INSN (insn);
3518 if (insn == 0 || active_insn_p (insn))
3519 break;
3522 return insn;
3525 /* Find the last insn before INSN that really does something. This routine
3526 does not look inside SEQUENCEs. After reload this also skips over
3527 standalone USE and CLOBBER insn. */
3529 rtx_insn *
3530 prev_active_insn (rtx uncast_insn)
3532 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3534 while (insn)
3536 insn = PREV_INSN (insn);
3537 if (insn == 0 || active_insn_p (insn))
3538 break;
3541 return insn;
3544 #ifdef HAVE_cc0
3545 /* Return the next insn that uses CC0 after INSN, which is assumed to
3546 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3547 applied to the result of this function should yield INSN).
3549 Normally, this is simply the next insn. However, if a REG_CC_USER note
3550 is present, it contains the insn that uses CC0.
3552 Return 0 if we can't find the insn. */
3554 rtx_insn *
3555 next_cc0_user (rtx uncast_insn)
3557 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3559 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3561 if (note)
3562 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3564 insn = next_nonnote_insn (insn);
3565 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3566 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3568 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3569 return insn;
3571 return 0;
3574 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3575 note, it is the previous insn. */
3577 rtx_insn *
3578 prev_cc0_setter (rtx uncast_insn)
3580 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3582 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3584 if (note)
3585 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3587 insn = prev_nonnote_insn (insn);
3588 gcc_assert (sets_cc0_p (PATTERN (insn)));
3590 return insn;
3592 #endif
3594 #ifdef AUTO_INC_DEC
3595 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3597 static int
3598 find_auto_inc (const_rtx x, const_rtx reg)
3600 subrtx_iterator::array_type array;
3601 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3603 const_rtx x = *iter;
3604 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3605 && rtx_equal_p (reg, XEXP (x, 0)))
3606 return true;
3608 return false;
3610 #endif
3612 /* Increment the label uses for all labels present in rtx. */
3614 static void
3615 mark_label_nuses (rtx x)
3617 enum rtx_code code;
3618 int i, j;
3619 const char *fmt;
3621 code = GET_CODE (x);
3622 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3623 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3625 fmt = GET_RTX_FORMAT (code);
3626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3628 if (fmt[i] == 'e')
3629 mark_label_nuses (XEXP (x, i));
3630 else if (fmt[i] == 'E')
3631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3632 mark_label_nuses (XVECEXP (x, i, j));
3637 /* Try splitting insns that can be split for better scheduling.
3638 PAT is the pattern which might split.
3639 TRIAL is the insn providing PAT.
3640 LAST is nonzero if we should return the last insn of the sequence produced.
3642 If this routine succeeds in splitting, it returns the first or last
3643 replacement insn depending on the value of LAST. Otherwise, it
3644 returns TRIAL. If the insn to be returned can be split, it will be. */
3646 rtx_insn *
3647 try_split (rtx pat, rtx uncast_trial, int last)
3649 rtx_insn *trial = as_a <rtx_insn *> (uncast_trial);
3650 rtx_insn *before = PREV_INSN (trial);
3651 rtx_insn *after = NEXT_INSN (trial);
3652 rtx note;
3653 rtx_insn *seq, *tem;
3654 int probability;
3655 rtx_insn *insn_last, *insn;
3656 int njumps = 0;
3657 rtx call_insn = NULL_RTX;
3659 /* We're not good at redistributing frame information. */
3660 if (RTX_FRAME_RELATED_P (trial))
3661 return trial;
3663 if (any_condjump_p (trial)
3664 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3665 split_branch_probability = XINT (note, 0);
3666 probability = split_branch_probability;
3668 seq = safe_as_a <rtx_insn *> (split_insns (pat, trial));
3670 split_branch_probability = -1;
3672 if (!seq)
3673 return trial;
3675 /* Avoid infinite loop if any insn of the result matches
3676 the original pattern. */
3677 insn_last = seq;
3678 while (1)
3680 if (INSN_P (insn_last)
3681 && rtx_equal_p (PATTERN (insn_last), pat))
3682 return trial;
3683 if (!NEXT_INSN (insn_last))
3684 break;
3685 insn_last = NEXT_INSN (insn_last);
3688 /* We will be adding the new sequence to the function. The splitters
3689 may have introduced invalid RTL sharing, so unshare the sequence now. */
3690 unshare_all_rtl_in_chain (seq);
3692 /* Mark labels and copy flags. */
3693 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3695 if (JUMP_P (insn))
3697 if (JUMP_P (trial))
3698 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3699 mark_jump_label (PATTERN (insn), insn, 0);
3700 njumps++;
3701 if (probability != -1
3702 && any_condjump_p (insn)
3703 && !find_reg_note (insn, REG_BR_PROB, 0))
3705 /* We can preserve the REG_BR_PROB notes only if exactly
3706 one jump is created, otherwise the machine description
3707 is responsible for this step using
3708 split_branch_probability variable. */
3709 gcc_assert (njumps == 1);
3710 add_int_reg_note (insn, REG_BR_PROB, probability);
3715 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3716 in SEQ and copy any additional information across. */
3717 if (CALL_P (trial))
3719 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3720 if (CALL_P (insn))
3722 rtx_insn *next;
3723 rtx *p;
3725 gcc_assert (call_insn == NULL_RTX);
3726 call_insn = insn;
3728 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3729 target may have explicitly specified. */
3730 p = &CALL_INSN_FUNCTION_USAGE (insn);
3731 while (*p)
3732 p = &XEXP (*p, 1);
3733 *p = CALL_INSN_FUNCTION_USAGE (trial);
3735 /* If the old call was a sibling call, the new one must
3736 be too. */
3737 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3739 /* If the new call is the last instruction in the sequence,
3740 it will effectively replace the old call in-situ. Otherwise
3741 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3742 so that it comes immediately after the new call. */
3743 if (NEXT_INSN (insn))
3744 for (next = NEXT_INSN (trial);
3745 next && NOTE_P (next);
3746 next = NEXT_INSN (next))
3747 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3749 remove_insn (next);
3750 add_insn_after (next, insn, NULL);
3751 break;
3756 /* Copy notes, particularly those related to the CFG. */
3757 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3759 switch (REG_NOTE_KIND (note))
3761 case REG_EH_REGION:
3762 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3763 break;
3765 case REG_NORETURN:
3766 case REG_SETJMP:
3767 case REG_TM:
3768 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3770 if (CALL_P (insn))
3771 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3773 break;
3775 case REG_NON_LOCAL_GOTO:
3776 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3778 if (JUMP_P (insn))
3779 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3781 break;
3783 #ifdef AUTO_INC_DEC
3784 case REG_INC:
3785 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3787 rtx reg = XEXP (note, 0);
3788 if (!FIND_REG_INC_NOTE (insn, reg)
3789 && find_auto_inc (PATTERN (insn), reg))
3790 add_reg_note (insn, REG_INC, reg);
3792 break;
3793 #endif
3795 case REG_ARGS_SIZE:
3796 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3797 break;
3799 case REG_CALL_DECL:
3800 gcc_assert (call_insn != NULL_RTX);
3801 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3802 break;
3804 default:
3805 break;
3809 /* If there are LABELS inside the split insns increment the
3810 usage count so we don't delete the label. */
3811 if (INSN_P (trial))
3813 insn = insn_last;
3814 while (insn != NULL_RTX)
3816 /* JUMP_P insns have already been "marked" above. */
3817 if (NONJUMP_INSN_P (insn))
3818 mark_label_nuses (PATTERN (insn));
3820 insn = PREV_INSN (insn);
3824 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3826 delete_insn (trial);
3828 /* Recursively call try_split for each new insn created; by the
3829 time control returns here that insn will be fully split, so
3830 set LAST and continue from the insn after the one returned.
3831 We can't use next_active_insn here since AFTER may be a note.
3832 Ignore deleted insns, which can be occur if not optimizing. */
3833 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3834 if (! tem->deleted () && INSN_P (tem))
3835 tem = try_split (PATTERN (tem), tem, 1);
3837 /* Return either the first or the last insn, depending on which was
3838 requested. */
3839 return last
3840 ? (after ? PREV_INSN (after) : get_last_insn ())
3841 : NEXT_INSN (before);
3844 /* Make and return an INSN rtx, initializing all its slots.
3845 Store PATTERN in the pattern slots. */
3847 rtx_insn *
3848 make_insn_raw (rtx pattern)
3850 rtx_insn *insn;
3852 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3854 INSN_UID (insn) = cur_insn_uid++;
3855 PATTERN (insn) = pattern;
3856 INSN_CODE (insn) = -1;
3857 REG_NOTES (insn) = NULL;
3858 INSN_LOCATION (insn) = curr_insn_location ();
3859 BLOCK_FOR_INSN (insn) = NULL;
3861 #ifdef ENABLE_RTL_CHECKING
3862 if (insn
3863 && INSN_P (insn)
3864 && (returnjump_p (insn)
3865 || (GET_CODE (insn) == SET
3866 && SET_DEST (insn) == pc_rtx)))
3868 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3869 debug_rtx (insn);
3871 #endif
3873 return insn;
3876 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3878 static rtx_insn *
3879 make_debug_insn_raw (rtx pattern)
3881 rtx_debug_insn *insn;
3883 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3884 INSN_UID (insn) = cur_debug_insn_uid++;
3885 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3886 INSN_UID (insn) = cur_insn_uid++;
3888 PATTERN (insn) = pattern;
3889 INSN_CODE (insn) = -1;
3890 REG_NOTES (insn) = NULL;
3891 INSN_LOCATION (insn) = curr_insn_location ();
3892 BLOCK_FOR_INSN (insn) = NULL;
3894 return insn;
3897 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3899 static rtx_insn *
3900 make_jump_insn_raw (rtx pattern)
3902 rtx_jump_insn *insn;
3904 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3905 INSN_UID (insn) = cur_insn_uid++;
3907 PATTERN (insn) = pattern;
3908 INSN_CODE (insn) = -1;
3909 REG_NOTES (insn) = NULL;
3910 JUMP_LABEL (insn) = NULL;
3911 INSN_LOCATION (insn) = curr_insn_location ();
3912 BLOCK_FOR_INSN (insn) = NULL;
3914 return insn;
3917 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3919 static rtx_insn *
3920 make_call_insn_raw (rtx pattern)
3922 rtx_call_insn *insn;
3924 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3925 INSN_UID (insn) = cur_insn_uid++;
3927 PATTERN (insn) = pattern;
3928 INSN_CODE (insn) = -1;
3929 REG_NOTES (insn) = NULL;
3930 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3931 INSN_LOCATION (insn) = curr_insn_location ();
3932 BLOCK_FOR_INSN (insn) = NULL;
3934 return insn;
3937 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3939 static rtx_note *
3940 make_note_raw (enum insn_note subtype)
3942 /* Some notes are never created this way at all. These notes are
3943 only created by patching out insns. */
3944 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3945 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3947 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3948 INSN_UID (note) = cur_insn_uid++;
3949 NOTE_KIND (note) = subtype;
3950 BLOCK_FOR_INSN (note) = NULL;
3951 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3952 return note;
3955 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3956 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3957 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3959 static inline void
3960 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3962 SET_PREV_INSN (insn) = prev;
3963 SET_NEXT_INSN (insn) = next;
3964 if (prev != NULL)
3966 SET_NEXT_INSN (prev) = insn;
3967 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3969 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3970 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3973 if (next != NULL)
3975 SET_PREV_INSN (next) = insn;
3976 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3978 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3979 SET_PREV_INSN (sequence->insn (0)) = insn;
3983 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3985 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3986 SET_PREV_INSN (sequence->insn (0)) = prev;
3987 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3991 /* Add INSN to the end of the doubly-linked list.
3992 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3994 void
3995 add_insn (rtx_insn *insn)
3997 rtx_insn *prev = get_last_insn ();
3998 link_insn_into_chain (insn, prev, NULL);
3999 if (NULL == get_insns ())
4000 set_first_insn (insn);
4001 set_last_insn (insn);
4004 /* Add INSN into the doubly-linked list after insn AFTER. */
4006 static void
4007 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4009 rtx_insn *next = NEXT_INSN (after);
4011 gcc_assert (!optimize || !after->deleted ());
4013 link_insn_into_chain (insn, after, next);
4015 if (next == NULL)
4017 if (get_last_insn () == after)
4018 set_last_insn (insn);
4019 else
4021 struct sequence_stack *stack = seq_stack;
4022 /* Scan all pending sequences too. */
4023 for (; stack; stack = stack->next)
4024 if (after == stack->last)
4026 stack->last = insn;
4027 break;
4033 /* Add INSN into the doubly-linked list before insn BEFORE. */
4035 static void
4036 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4038 rtx_insn *prev = PREV_INSN (before);
4040 gcc_assert (!optimize || !before->deleted ());
4042 link_insn_into_chain (insn, prev, before);
4044 if (prev == NULL)
4046 if (get_insns () == before)
4047 set_first_insn (insn);
4048 else
4050 struct sequence_stack *stack = seq_stack;
4051 /* Scan all pending sequences too. */
4052 for (; stack; stack = stack->next)
4053 if (before == stack->first)
4055 stack->first = insn;
4056 break;
4059 gcc_assert (stack);
4064 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4065 If BB is NULL, an attempt is made to infer the bb from before.
4067 This and the next function should be the only functions called
4068 to insert an insn once delay slots have been filled since only
4069 they know how to update a SEQUENCE. */
4071 void
4072 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4074 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4075 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4076 add_insn_after_nobb (insn, after);
4077 if (!BARRIER_P (after)
4078 && !BARRIER_P (insn)
4079 && (bb = BLOCK_FOR_INSN (after)))
4081 set_block_for_insn (insn, bb);
4082 if (INSN_P (insn))
4083 df_insn_rescan (insn);
4084 /* Should not happen as first in the BB is always
4085 either NOTE or LABEL. */
4086 if (BB_END (bb) == after
4087 /* Avoid clobbering of structure when creating new BB. */
4088 && !BARRIER_P (insn)
4089 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4090 BB_END (bb) = insn;
4094 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4095 If BB is NULL, an attempt is made to infer the bb from before.
4097 This and the previous function should be the only functions called
4098 to insert an insn once delay slots have been filled since only
4099 they know how to update a SEQUENCE. */
4101 void
4102 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4104 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4105 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4106 add_insn_before_nobb (insn, before);
4108 if (!bb
4109 && !BARRIER_P (before)
4110 && !BARRIER_P (insn))
4111 bb = BLOCK_FOR_INSN (before);
4113 if (bb)
4115 set_block_for_insn (insn, bb);
4116 if (INSN_P (insn))
4117 df_insn_rescan (insn);
4118 /* Should not happen as first in the BB is always either NOTE or
4119 LABEL. */
4120 gcc_assert (BB_HEAD (bb) != insn
4121 /* Avoid clobbering of structure when creating new BB. */
4122 || BARRIER_P (insn)
4123 || NOTE_INSN_BASIC_BLOCK_P (insn));
4127 /* Replace insn with an deleted instruction note. */
4129 void
4130 set_insn_deleted (rtx insn)
4132 if (INSN_P (insn))
4133 df_insn_delete (as_a <rtx_insn *> (insn));
4134 PUT_CODE (insn, NOTE);
4135 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4139 /* Unlink INSN from the insn chain.
4141 This function knows how to handle sequences.
4143 This function does not invalidate data flow information associated with
4144 INSN (i.e. does not call df_insn_delete). That makes this function
4145 usable for only disconnecting an insn from the chain, and re-emit it
4146 elsewhere later.
4148 To later insert INSN elsewhere in the insn chain via add_insn and
4149 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4150 the caller. Nullifying them here breaks many insn chain walks.
4152 To really delete an insn and related DF information, use delete_insn. */
4154 void
4155 remove_insn (rtx uncast_insn)
4157 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4158 rtx_insn *next = NEXT_INSN (insn);
4159 rtx_insn *prev = PREV_INSN (insn);
4160 basic_block bb;
4162 if (prev)
4164 SET_NEXT_INSN (prev) = next;
4165 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4167 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4168 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4171 else if (get_insns () == insn)
4173 if (next)
4174 SET_PREV_INSN (next) = NULL;
4175 set_first_insn (next);
4177 else
4179 struct sequence_stack *stack = seq_stack;
4180 /* Scan all pending sequences too. */
4181 for (; stack; stack = stack->next)
4182 if (insn == stack->first)
4184 stack->first = next;
4185 break;
4188 gcc_assert (stack);
4191 if (next)
4193 SET_PREV_INSN (next) = prev;
4194 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4196 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4197 SET_PREV_INSN (sequence->insn (0)) = prev;
4200 else if (get_last_insn () == insn)
4201 set_last_insn (prev);
4202 else
4204 struct sequence_stack *stack = seq_stack;
4205 /* Scan all pending sequences too. */
4206 for (; stack; stack = stack->next)
4207 if (insn == stack->last)
4209 stack->last = prev;
4210 break;
4213 gcc_assert (stack);
4216 /* Fix up basic block boundaries, if necessary. */
4217 if (!BARRIER_P (insn)
4218 && (bb = BLOCK_FOR_INSN (insn)))
4220 if (BB_HEAD (bb) == insn)
4222 /* Never ever delete the basic block note without deleting whole
4223 basic block. */
4224 gcc_assert (!NOTE_P (insn));
4225 BB_HEAD (bb) = next;
4227 if (BB_END (bb) == insn)
4228 BB_END (bb) = prev;
4232 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4234 void
4235 add_function_usage_to (rtx call_insn, rtx call_fusage)
4237 gcc_assert (call_insn && CALL_P (call_insn));
4239 /* Put the register usage information on the CALL. If there is already
4240 some usage information, put ours at the end. */
4241 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4243 rtx link;
4245 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4246 link = XEXP (link, 1))
4249 XEXP (link, 1) = call_fusage;
4251 else
4252 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4255 /* Delete all insns made since FROM.
4256 FROM becomes the new last instruction. */
4258 void
4259 delete_insns_since (rtx_insn *from)
4261 if (from == 0)
4262 set_first_insn (0);
4263 else
4264 SET_NEXT_INSN (from) = 0;
4265 set_last_insn (from);
4268 /* This function is deprecated, please use sequences instead.
4270 Move a consecutive bunch of insns to a different place in the chain.
4271 The insns to be moved are those between FROM and TO.
4272 They are moved to a new position after the insn AFTER.
4273 AFTER must not be FROM or TO or any insn in between.
4275 This function does not know about SEQUENCEs and hence should not be
4276 called after delay-slot filling has been done. */
4278 void
4279 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4281 #ifdef ENABLE_CHECKING
4282 rtx_insn *x;
4283 for (x = from; x != to; x = NEXT_INSN (x))
4284 gcc_assert (after != x);
4285 gcc_assert (after != to);
4286 #endif
4288 /* Splice this bunch out of where it is now. */
4289 if (PREV_INSN (from))
4290 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4291 if (NEXT_INSN (to))
4292 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4293 if (get_last_insn () == to)
4294 set_last_insn (PREV_INSN (from));
4295 if (get_insns () == from)
4296 set_first_insn (NEXT_INSN (to));
4298 /* Make the new neighbors point to it and it to them. */
4299 if (NEXT_INSN (after))
4300 SET_PREV_INSN (NEXT_INSN (after)) = to;
4302 SET_NEXT_INSN (to) = NEXT_INSN (after);
4303 SET_PREV_INSN (from) = after;
4304 SET_NEXT_INSN (after) = from;
4305 if (after == get_last_insn ())
4306 set_last_insn (to);
4309 /* Same as function above, but take care to update BB boundaries. */
4310 void
4311 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4313 rtx_insn *prev = PREV_INSN (from);
4314 basic_block bb, bb2;
4316 reorder_insns_nobb (from, to, after);
4318 if (!BARRIER_P (after)
4319 && (bb = BLOCK_FOR_INSN (after)))
4321 rtx_insn *x;
4322 df_set_bb_dirty (bb);
4324 if (!BARRIER_P (from)
4325 && (bb2 = BLOCK_FOR_INSN (from)))
4327 if (BB_END (bb2) == to)
4328 BB_END (bb2) = prev;
4329 df_set_bb_dirty (bb2);
4332 if (BB_END (bb) == after)
4333 BB_END (bb) = to;
4335 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4336 if (!BARRIER_P (x))
4337 df_insn_change_bb (x, bb);
4342 /* Emit insn(s) of given code and pattern
4343 at a specified place within the doubly-linked list.
4345 All of the emit_foo global entry points accept an object
4346 X which is either an insn list or a PATTERN of a single
4347 instruction.
4349 There are thus a few canonical ways to generate code and
4350 emit it at a specific place in the instruction stream. For
4351 example, consider the instruction named SPOT and the fact that
4352 we would like to emit some instructions before SPOT. We might
4353 do it like this:
4355 start_sequence ();
4356 ... emit the new instructions ...
4357 insns_head = get_insns ();
4358 end_sequence ();
4360 emit_insn_before (insns_head, SPOT);
4362 It used to be common to generate SEQUENCE rtl instead, but that
4363 is a relic of the past which no longer occurs. The reason is that
4364 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4365 generated would almost certainly die right after it was created. */
4367 static rtx_insn *
4368 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4369 rtx_insn *(*make_raw) (rtx))
4371 rtx_insn *insn;
4373 gcc_assert (before);
4375 if (x == NULL_RTX)
4376 return safe_as_a <rtx_insn *> (last);
4378 switch (GET_CODE (x))
4380 case DEBUG_INSN:
4381 case INSN:
4382 case JUMP_INSN:
4383 case CALL_INSN:
4384 case CODE_LABEL:
4385 case BARRIER:
4386 case NOTE:
4387 insn = as_a <rtx_insn *> (x);
4388 while (insn)
4390 rtx_insn *next = NEXT_INSN (insn);
4391 add_insn_before (insn, before, bb);
4392 last = insn;
4393 insn = next;
4395 break;
4397 #ifdef ENABLE_RTL_CHECKING
4398 case SEQUENCE:
4399 gcc_unreachable ();
4400 break;
4401 #endif
4403 default:
4404 last = (*make_raw) (x);
4405 add_insn_before (last, before, bb);
4406 break;
4409 return safe_as_a <rtx_insn *> (last);
4412 /* Make X be output before the instruction BEFORE. */
4414 rtx_insn *
4415 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4417 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4420 /* Make an instruction with body X and code JUMP_INSN
4421 and output it before the instruction BEFORE. */
4423 rtx_insn *
4424 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4426 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4427 make_jump_insn_raw);
4430 /* Make an instruction with body X and code CALL_INSN
4431 and output it before the instruction BEFORE. */
4433 rtx_insn *
4434 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4436 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4437 make_call_insn_raw);
4440 /* Make an instruction with body X and code DEBUG_INSN
4441 and output it before the instruction BEFORE. */
4443 rtx_insn *
4444 emit_debug_insn_before_noloc (rtx x, rtx before)
4446 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4447 make_debug_insn_raw);
4450 /* Make an insn of code BARRIER
4451 and output it before the insn BEFORE. */
4453 rtx_barrier *
4454 emit_barrier_before (rtx before)
4456 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4458 INSN_UID (insn) = cur_insn_uid++;
4460 add_insn_before (insn, before, NULL);
4461 return insn;
4464 /* Emit the label LABEL before the insn BEFORE. */
4466 rtx_insn *
4467 emit_label_before (rtx label, rtx_insn *before)
4469 gcc_checking_assert (INSN_UID (label) == 0);
4470 INSN_UID (label) = cur_insn_uid++;
4471 add_insn_before (label, before, NULL);
4472 return as_a <rtx_insn *> (label);
4475 /* Helper for emit_insn_after, handles lists of instructions
4476 efficiently. */
4478 static rtx_insn *
4479 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4481 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4482 rtx_insn *last;
4483 rtx_insn *after_after;
4484 if (!bb && !BARRIER_P (after))
4485 bb = BLOCK_FOR_INSN (after);
4487 if (bb)
4489 df_set_bb_dirty (bb);
4490 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4491 if (!BARRIER_P (last))
4493 set_block_for_insn (last, bb);
4494 df_insn_rescan (last);
4496 if (!BARRIER_P (last))
4498 set_block_for_insn (last, bb);
4499 df_insn_rescan (last);
4501 if (BB_END (bb) == after)
4502 BB_END (bb) = last;
4504 else
4505 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4506 continue;
4508 after_after = NEXT_INSN (after);
4510 SET_NEXT_INSN (after) = first;
4511 SET_PREV_INSN (first) = after;
4512 SET_NEXT_INSN (last) = after_after;
4513 if (after_after)
4514 SET_PREV_INSN (after_after) = last;
4516 if (after == get_last_insn ())
4517 set_last_insn (last);
4519 return last;
4522 static rtx_insn *
4523 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4524 rtx_insn *(*make_raw)(rtx))
4526 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4527 rtx_insn *last = after;
4529 gcc_assert (after);
4531 if (x == NULL_RTX)
4532 return last;
4534 switch (GET_CODE (x))
4536 case DEBUG_INSN:
4537 case INSN:
4538 case JUMP_INSN:
4539 case CALL_INSN:
4540 case CODE_LABEL:
4541 case BARRIER:
4542 case NOTE:
4543 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4544 break;
4546 #ifdef ENABLE_RTL_CHECKING
4547 case SEQUENCE:
4548 gcc_unreachable ();
4549 break;
4550 #endif
4552 default:
4553 last = (*make_raw) (x);
4554 add_insn_after (last, after, bb);
4555 break;
4558 return last;
4561 /* Make X be output after the insn AFTER and set the BB of insn. If
4562 BB is NULL, an attempt is made to infer the BB from AFTER. */
4564 rtx_insn *
4565 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4567 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4571 /* Make an insn of code JUMP_INSN with body X
4572 and output it after the insn AFTER. */
4574 rtx_insn *
4575 emit_jump_insn_after_noloc (rtx x, rtx after)
4577 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4580 /* Make an instruction with body X and code CALL_INSN
4581 and output it after the instruction AFTER. */
4583 rtx_insn *
4584 emit_call_insn_after_noloc (rtx x, rtx after)
4586 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4589 /* Make an instruction with body X and code CALL_INSN
4590 and output it after the instruction AFTER. */
4592 rtx_insn *
4593 emit_debug_insn_after_noloc (rtx x, rtx after)
4595 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4598 /* Make an insn of code BARRIER
4599 and output it after the insn AFTER. */
4601 rtx_barrier *
4602 emit_barrier_after (rtx after)
4604 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4606 INSN_UID (insn) = cur_insn_uid++;
4608 add_insn_after (insn, after, NULL);
4609 return insn;
4612 /* Emit the label LABEL after the insn AFTER. */
4614 rtx_insn *
4615 emit_label_after (rtx label, rtx_insn *after)
4617 gcc_checking_assert (INSN_UID (label) == 0);
4618 INSN_UID (label) = cur_insn_uid++;
4619 add_insn_after (label, after, NULL);
4620 return as_a <rtx_insn *> (label);
4623 /* Notes require a bit of special handling: Some notes need to have their
4624 BLOCK_FOR_INSN set, others should never have it set, and some should
4625 have it set or clear depending on the context. */
4627 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4628 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4629 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4631 static bool
4632 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4634 switch (subtype)
4636 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4637 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4638 return true;
4640 /* Notes for var tracking and EH region markers can appear between or
4641 inside basic blocks. If the caller is emitting on the basic block
4642 boundary, do not set BLOCK_FOR_INSN on the new note. */
4643 case NOTE_INSN_VAR_LOCATION:
4644 case NOTE_INSN_CALL_ARG_LOCATION:
4645 case NOTE_INSN_EH_REGION_BEG:
4646 case NOTE_INSN_EH_REGION_END:
4647 return on_bb_boundary_p;
4649 /* Otherwise, BLOCK_FOR_INSN must be set. */
4650 default:
4651 return false;
4655 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4657 rtx_note *
4658 emit_note_after (enum insn_note subtype, rtx uncast_after)
4660 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4661 rtx_note *note = make_note_raw (subtype);
4662 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4663 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4665 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4666 add_insn_after_nobb (note, after);
4667 else
4668 add_insn_after (note, after, bb);
4669 return note;
4672 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4674 rtx_note *
4675 emit_note_before (enum insn_note subtype, rtx uncast_before)
4677 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4678 rtx_note *note = make_note_raw (subtype);
4679 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4680 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4682 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4683 add_insn_before_nobb (note, before);
4684 else
4685 add_insn_before (note, before, bb);
4686 return note;
4689 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4690 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4692 static rtx_insn *
4693 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4694 rtx_insn *(*make_raw) (rtx))
4696 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4697 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4699 if (pattern == NULL_RTX || !loc)
4700 return safe_as_a <rtx_insn *> (last);
4702 after = NEXT_INSN (after);
4703 while (1)
4705 if (active_insn_p (after) && !INSN_LOCATION (after))
4706 INSN_LOCATION (after) = loc;
4707 if (after == last)
4708 break;
4709 after = NEXT_INSN (after);
4711 return safe_as_a <rtx_insn *> (last);
4714 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4715 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4716 any DEBUG_INSNs. */
4718 static rtx_insn *
4719 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4720 rtx_insn *(*make_raw) (rtx))
4722 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4723 rtx_insn *prev = after;
4725 if (skip_debug_insns)
4726 while (DEBUG_INSN_P (prev))
4727 prev = PREV_INSN (prev);
4729 if (INSN_P (prev))
4730 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4731 make_raw);
4732 else
4733 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4736 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4737 rtx_insn *
4738 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4740 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4743 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4744 rtx_insn *
4745 emit_insn_after (rtx pattern, rtx after)
4747 return emit_pattern_after (pattern, after, true, make_insn_raw);
4750 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4751 rtx_insn *
4752 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4754 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4757 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4758 rtx_insn *
4759 emit_jump_insn_after (rtx pattern, rtx after)
4761 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4764 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4765 rtx_insn *
4766 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4768 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4771 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4772 rtx_insn *
4773 emit_call_insn_after (rtx pattern, rtx after)
4775 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4778 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4779 rtx_insn *
4780 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4782 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4785 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4786 rtx_insn *
4787 emit_debug_insn_after (rtx pattern, rtx after)
4789 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4792 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4793 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4794 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4795 CALL_INSN, etc. */
4797 static rtx_insn *
4798 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4799 rtx_insn *(*make_raw) (rtx))
4801 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4802 rtx_insn *first = PREV_INSN (before);
4803 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4804 insnp ? before : NULL_RTX,
4805 NULL, make_raw);
4807 if (pattern == NULL_RTX || !loc)
4808 return last;
4810 if (!first)
4811 first = get_insns ();
4812 else
4813 first = NEXT_INSN (first);
4814 while (1)
4816 if (active_insn_p (first) && !INSN_LOCATION (first))
4817 INSN_LOCATION (first) = loc;
4818 if (first == last)
4819 break;
4820 first = NEXT_INSN (first);
4822 return last;
4825 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4826 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4827 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4828 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4830 static rtx_insn *
4831 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4832 bool insnp, rtx_insn *(*make_raw) (rtx))
4834 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4835 rtx_insn *next = before;
4837 if (skip_debug_insns)
4838 while (DEBUG_INSN_P (next))
4839 next = PREV_INSN (next);
4841 if (INSN_P (next))
4842 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4843 insnp, make_raw);
4844 else
4845 return emit_pattern_before_noloc (pattern, before,
4846 insnp ? before : NULL_RTX,
4847 NULL, make_raw);
4850 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4851 rtx_insn *
4852 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4854 return emit_pattern_before_setloc (pattern, before, loc, true,
4855 make_insn_raw);
4858 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4859 rtx_insn *
4860 emit_insn_before (rtx pattern, rtx before)
4862 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4865 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4866 rtx_insn *
4867 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4869 return emit_pattern_before_setloc (pattern, before, loc, false,
4870 make_jump_insn_raw);
4873 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4874 rtx_insn *
4875 emit_jump_insn_before (rtx pattern, rtx before)
4877 return emit_pattern_before (pattern, before, true, false,
4878 make_jump_insn_raw);
4881 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4882 rtx_insn *
4883 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4885 return emit_pattern_before_setloc (pattern, before, loc, false,
4886 make_call_insn_raw);
4889 /* Like emit_call_insn_before_noloc,
4890 but set insn_location according to BEFORE. */
4891 rtx_insn *
4892 emit_call_insn_before (rtx pattern, rtx_insn *before)
4894 return emit_pattern_before (pattern, before, true, false,
4895 make_call_insn_raw);
4898 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4899 rtx_insn *
4900 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4902 return emit_pattern_before_setloc (pattern, before, loc, false,
4903 make_debug_insn_raw);
4906 /* Like emit_debug_insn_before_noloc,
4907 but set insn_location according to BEFORE. */
4908 rtx_insn *
4909 emit_debug_insn_before (rtx pattern, rtx before)
4911 return emit_pattern_before (pattern, before, false, false,
4912 make_debug_insn_raw);
4915 /* Take X and emit it at the end of the doubly-linked
4916 INSN list.
4918 Returns the last insn emitted. */
4920 rtx_insn *
4921 emit_insn (rtx x)
4923 rtx_insn *last = get_last_insn ();
4924 rtx_insn *insn;
4926 if (x == NULL_RTX)
4927 return last;
4929 switch (GET_CODE (x))
4931 case DEBUG_INSN:
4932 case INSN:
4933 case JUMP_INSN:
4934 case CALL_INSN:
4935 case CODE_LABEL:
4936 case BARRIER:
4937 case NOTE:
4938 insn = as_a <rtx_insn *> (x);
4939 while (insn)
4941 rtx_insn *next = NEXT_INSN (insn);
4942 add_insn (insn);
4943 last = insn;
4944 insn = next;
4946 break;
4948 #ifdef ENABLE_RTL_CHECKING
4949 case JUMP_TABLE_DATA:
4950 case SEQUENCE:
4951 gcc_unreachable ();
4952 break;
4953 #endif
4955 default:
4956 last = make_insn_raw (x);
4957 add_insn (last);
4958 break;
4961 return last;
4964 /* Make an insn of code DEBUG_INSN with pattern X
4965 and add it to the end of the doubly-linked list. */
4967 rtx_insn *
4968 emit_debug_insn (rtx x)
4970 rtx_insn *last = get_last_insn ();
4971 rtx_insn *insn;
4973 if (x == NULL_RTX)
4974 return last;
4976 switch (GET_CODE (x))
4978 case DEBUG_INSN:
4979 case INSN:
4980 case JUMP_INSN:
4981 case CALL_INSN:
4982 case CODE_LABEL:
4983 case BARRIER:
4984 case NOTE:
4985 insn = as_a <rtx_insn *> (x);
4986 while (insn)
4988 rtx_insn *next = NEXT_INSN (insn);
4989 add_insn (insn);
4990 last = insn;
4991 insn = next;
4993 break;
4995 #ifdef ENABLE_RTL_CHECKING
4996 case JUMP_TABLE_DATA:
4997 case SEQUENCE:
4998 gcc_unreachable ();
4999 break;
5000 #endif
5002 default:
5003 last = make_debug_insn_raw (x);
5004 add_insn (last);
5005 break;
5008 return last;
5011 /* Make an insn of code JUMP_INSN with pattern X
5012 and add it to the end of the doubly-linked list. */
5014 rtx_insn *
5015 emit_jump_insn (rtx x)
5017 rtx_insn *last = NULL;
5018 rtx_insn *insn;
5020 switch (GET_CODE (x))
5022 case DEBUG_INSN:
5023 case INSN:
5024 case JUMP_INSN:
5025 case CALL_INSN:
5026 case CODE_LABEL:
5027 case BARRIER:
5028 case NOTE:
5029 insn = as_a <rtx_insn *> (x);
5030 while (insn)
5032 rtx_insn *next = NEXT_INSN (insn);
5033 add_insn (insn);
5034 last = insn;
5035 insn = next;
5037 break;
5039 #ifdef ENABLE_RTL_CHECKING
5040 case JUMP_TABLE_DATA:
5041 case SEQUENCE:
5042 gcc_unreachable ();
5043 break;
5044 #endif
5046 default:
5047 last = make_jump_insn_raw (x);
5048 add_insn (last);
5049 break;
5052 return last;
5055 /* Make an insn of code CALL_INSN with pattern X
5056 and add it to the end of the doubly-linked list. */
5058 rtx_insn *
5059 emit_call_insn (rtx x)
5061 rtx_insn *insn;
5063 switch (GET_CODE (x))
5065 case DEBUG_INSN:
5066 case INSN:
5067 case JUMP_INSN:
5068 case CALL_INSN:
5069 case CODE_LABEL:
5070 case BARRIER:
5071 case NOTE:
5072 insn = emit_insn (x);
5073 break;
5075 #ifdef ENABLE_RTL_CHECKING
5076 case SEQUENCE:
5077 case JUMP_TABLE_DATA:
5078 gcc_unreachable ();
5079 break;
5080 #endif
5082 default:
5083 insn = make_call_insn_raw (x);
5084 add_insn (insn);
5085 break;
5088 return insn;
5091 /* Add the label LABEL to the end of the doubly-linked list. */
5093 rtx_insn *
5094 emit_label (rtx label)
5096 gcc_checking_assert (INSN_UID (label) == 0);
5097 INSN_UID (label) = cur_insn_uid++;
5098 add_insn (as_a <rtx_insn *> (label));
5099 return as_a <rtx_insn *> (label);
5102 /* Make an insn of code JUMP_TABLE_DATA
5103 and add it to the end of the doubly-linked list. */
5105 rtx_jump_table_data *
5106 emit_jump_table_data (rtx table)
5108 rtx_jump_table_data *jump_table_data =
5109 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5110 INSN_UID (jump_table_data) = cur_insn_uid++;
5111 PATTERN (jump_table_data) = table;
5112 BLOCK_FOR_INSN (jump_table_data) = NULL;
5113 add_insn (jump_table_data);
5114 return jump_table_data;
5117 /* Make an insn of code BARRIER
5118 and add it to the end of the doubly-linked list. */
5120 rtx_barrier *
5121 emit_barrier (void)
5123 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5124 INSN_UID (barrier) = cur_insn_uid++;
5125 add_insn (barrier);
5126 return barrier;
5129 /* Emit a copy of note ORIG. */
5131 rtx_note *
5132 emit_note_copy (rtx_note *orig)
5134 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5135 rtx_note *note = make_note_raw (kind);
5136 NOTE_DATA (note) = NOTE_DATA (orig);
5137 add_insn (note);
5138 return note;
5141 /* Make an insn of code NOTE or type NOTE_NO
5142 and add it to the end of the doubly-linked list. */
5144 rtx_note *
5145 emit_note (enum insn_note kind)
5147 rtx_note *note = make_note_raw (kind);
5148 add_insn (note);
5149 return note;
5152 /* Emit a clobber of lvalue X. */
5154 rtx_insn *
5155 emit_clobber (rtx x)
5157 /* CONCATs should not appear in the insn stream. */
5158 if (GET_CODE (x) == CONCAT)
5160 emit_clobber (XEXP (x, 0));
5161 return emit_clobber (XEXP (x, 1));
5163 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5166 /* Return a sequence of insns to clobber lvalue X. */
5168 rtx_insn *
5169 gen_clobber (rtx x)
5171 rtx_insn *seq;
5173 start_sequence ();
5174 emit_clobber (x);
5175 seq = get_insns ();
5176 end_sequence ();
5177 return seq;
5180 /* Emit a use of rvalue X. */
5182 rtx_insn *
5183 emit_use (rtx x)
5185 /* CONCATs should not appear in the insn stream. */
5186 if (GET_CODE (x) == CONCAT)
5188 emit_use (XEXP (x, 0));
5189 return emit_use (XEXP (x, 1));
5191 return emit_insn (gen_rtx_USE (VOIDmode, x));
5194 /* Return a sequence of insns to use rvalue X. */
5196 rtx_insn *
5197 gen_use (rtx x)
5199 rtx_insn *seq;
5201 start_sequence ();
5202 emit_use (x);
5203 seq = get_insns ();
5204 end_sequence ();
5205 return seq;
5208 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5209 Return the set in INSN that such notes describe, or NULL if the notes
5210 have no meaning for INSN. */
5213 set_for_reg_notes (rtx insn)
5215 rtx pat, reg;
5217 if (!INSN_P (insn))
5218 return NULL_RTX;
5220 pat = PATTERN (insn);
5221 if (GET_CODE (pat) == PARALLEL)
5223 /* We do not use single_set because that ignores SETs of unused
5224 registers. REG_EQUAL and REG_EQUIV notes really do require the
5225 PARALLEL to have a single SET. */
5226 if (multiple_sets (insn))
5227 return NULL_RTX;
5228 pat = XVECEXP (pat, 0, 0);
5231 if (GET_CODE (pat) != SET)
5232 return NULL_RTX;
5234 reg = SET_DEST (pat);
5236 /* Notes apply to the contents of a STRICT_LOW_PART. */
5237 if (GET_CODE (reg) == STRICT_LOW_PART)
5238 reg = XEXP (reg, 0);
5240 /* Check that we have a register. */
5241 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5242 return NULL_RTX;
5244 return pat;
5247 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5248 note of this type already exists, remove it first. */
5251 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5253 rtx note = find_reg_note (insn, kind, NULL_RTX);
5255 switch (kind)
5257 case REG_EQUAL:
5258 case REG_EQUIV:
5259 if (!set_for_reg_notes (insn))
5260 return NULL_RTX;
5262 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5263 It serves no useful purpose and breaks eliminate_regs. */
5264 if (GET_CODE (datum) == ASM_OPERANDS)
5265 return NULL_RTX;
5267 /* Notes with side effects are dangerous. Even if the side-effect
5268 initially mirrors one in PATTERN (INSN), later optimizations
5269 might alter the way that the final register value is calculated
5270 and so move or alter the side-effect in some way. The note would
5271 then no longer be a valid substitution for SET_SRC. */
5272 if (side_effects_p (datum))
5273 return NULL_RTX;
5274 break;
5276 default:
5277 break;
5280 if (note)
5281 XEXP (note, 0) = datum;
5282 else
5284 add_reg_note (insn, kind, datum);
5285 note = REG_NOTES (insn);
5288 switch (kind)
5290 case REG_EQUAL:
5291 case REG_EQUIV:
5292 df_notes_rescan (as_a <rtx_insn *> (insn));
5293 break;
5294 default:
5295 break;
5298 return note;
5301 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5303 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5305 rtx set = set_for_reg_notes (insn);
5307 if (set && SET_DEST (set) == dst)
5308 return set_unique_reg_note (insn, kind, datum);
5309 return NULL_RTX;
5312 /* Return an indication of which type of insn should have X as a body.
5313 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5315 static enum rtx_code
5316 classify_insn (rtx x)
5318 if (LABEL_P (x))
5319 return CODE_LABEL;
5320 if (GET_CODE (x) == CALL)
5321 return CALL_INSN;
5322 if (ANY_RETURN_P (x))
5323 return JUMP_INSN;
5324 if (GET_CODE (x) == SET)
5326 if (SET_DEST (x) == pc_rtx)
5327 return JUMP_INSN;
5328 else if (GET_CODE (SET_SRC (x)) == CALL)
5329 return CALL_INSN;
5330 else
5331 return INSN;
5333 if (GET_CODE (x) == PARALLEL)
5335 int j;
5336 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5337 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5338 return CALL_INSN;
5339 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5340 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5341 return JUMP_INSN;
5342 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5343 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5344 return CALL_INSN;
5346 return INSN;
5349 /* Emit the rtl pattern X as an appropriate kind of insn.
5350 If X is a label, it is simply added into the insn chain. */
5352 rtx_insn *
5353 emit (rtx x)
5355 enum rtx_code code = classify_insn (x);
5357 switch (code)
5359 case CODE_LABEL:
5360 return emit_label (x);
5361 case INSN:
5362 return emit_insn (x);
5363 case JUMP_INSN:
5365 rtx_insn *insn = emit_jump_insn (x);
5366 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5367 return emit_barrier ();
5368 return insn;
5370 case CALL_INSN:
5371 return emit_call_insn (x);
5372 case DEBUG_INSN:
5373 return emit_debug_insn (x);
5374 default:
5375 gcc_unreachable ();
5379 /* Space for free sequence stack entries. */
5380 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5382 /* Begin emitting insns to a sequence. If this sequence will contain
5383 something that might cause the compiler to pop arguments to function
5384 calls (because those pops have previously been deferred; see
5385 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5386 before calling this function. That will ensure that the deferred
5387 pops are not accidentally emitted in the middle of this sequence. */
5389 void
5390 start_sequence (void)
5392 struct sequence_stack *tem;
5394 if (free_sequence_stack != NULL)
5396 tem = free_sequence_stack;
5397 free_sequence_stack = tem->next;
5399 else
5400 tem = ggc_alloc<sequence_stack> ();
5402 tem->next = seq_stack;
5403 tem->first = get_insns ();
5404 tem->last = get_last_insn ();
5406 seq_stack = tem;
5408 set_first_insn (0);
5409 set_last_insn (0);
5412 /* Set up the insn chain starting with FIRST as the current sequence,
5413 saving the previously current one. See the documentation for
5414 start_sequence for more information about how to use this function. */
5416 void
5417 push_to_sequence (rtx_insn *first)
5419 rtx_insn *last;
5421 start_sequence ();
5423 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5426 set_first_insn (first);
5427 set_last_insn (last);
5430 /* Like push_to_sequence, but take the last insn as an argument to avoid
5431 looping through the list. */
5433 void
5434 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5436 start_sequence ();
5438 set_first_insn (first);
5439 set_last_insn (last);
5442 /* Set up the outer-level insn chain
5443 as the current sequence, saving the previously current one. */
5445 void
5446 push_topmost_sequence (void)
5448 struct sequence_stack *stack, *top = NULL;
5450 start_sequence ();
5452 for (stack = seq_stack; stack; stack = stack->next)
5453 top = stack;
5455 set_first_insn (top->first);
5456 set_last_insn (top->last);
5459 /* After emitting to the outer-level insn chain, update the outer-level
5460 insn chain, and restore the previous saved state. */
5462 void
5463 pop_topmost_sequence (void)
5465 struct sequence_stack *stack, *top = NULL;
5467 for (stack = seq_stack; stack; stack = stack->next)
5468 top = stack;
5470 top->first = get_insns ();
5471 top->last = get_last_insn ();
5473 end_sequence ();
5476 /* After emitting to a sequence, restore previous saved state.
5478 To get the contents of the sequence just made, you must call
5479 `get_insns' *before* calling here.
5481 If the compiler might have deferred popping arguments while
5482 generating this sequence, and this sequence will not be immediately
5483 inserted into the instruction stream, use do_pending_stack_adjust
5484 before calling get_insns. That will ensure that the deferred
5485 pops are inserted into this sequence, and not into some random
5486 location in the instruction stream. See INHIBIT_DEFER_POP for more
5487 information about deferred popping of arguments. */
5489 void
5490 end_sequence (void)
5492 struct sequence_stack *tem = seq_stack;
5494 set_first_insn (tem->first);
5495 set_last_insn (tem->last);
5496 seq_stack = tem->next;
5498 memset (tem, 0, sizeof (*tem));
5499 tem->next = free_sequence_stack;
5500 free_sequence_stack = tem;
5503 /* Return 1 if currently emitting into a sequence. */
5506 in_sequence_p (void)
5508 return seq_stack != 0;
5511 /* Put the various virtual registers into REGNO_REG_RTX. */
5513 static void
5514 init_virtual_regs (void)
5516 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5517 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5518 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5519 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5520 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5521 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5522 = virtual_preferred_stack_boundary_rtx;
5526 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5527 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5528 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5529 static int copy_insn_n_scratches;
5531 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5532 copied an ASM_OPERANDS.
5533 In that case, it is the original input-operand vector. */
5534 static rtvec orig_asm_operands_vector;
5536 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5537 copied an ASM_OPERANDS.
5538 In that case, it is the copied input-operand vector. */
5539 static rtvec copy_asm_operands_vector;
5541 /* Likewise for the constraints vector. */
5542 static rtvec orig_asm_constraints_vector;
5543 static rtvec copy_asm_constraints_vector;
5545 /* Recursively create a new copy of an rtx for copy_insn.
5546 This function differs from copy_rtx in that it handles SCRATCHes and
5547 ASM_OPERANDs properly.
5548 Normally, this function is not used directly; use copy_insn as front end.
5549 However, you could first copy an insn pattern with copy_insn and then use
5550 this function afterwards to properly copy any REG_NOTEs containing
5551 SCRATCHes. */
5554 copy_insn_1 (rtx orig)
5556 rtx copy;
5557 int i, j;
5558 RTX_CODE code;
5559 const char *format_ptr;
5561 if (orig == NULL)
5562 return NULL;
5564 code = GET_CODE (orig);
5566 switch (code)
5568 case REG:
5569 case DEBUG_EXPR:
5570 CASE_CONST_ANY:
5571 case SYMBOL_REF:
5572 case CODE_LABEL:
5573 case PC:
5574 case CC0:
5575 case RETURN:
5576 case SIMPLE_RETURN:
5577 return orig;
5578 case CLOBBER:
5579 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5580 clobbers or clobbers of hard registers that originated as pseudos.
5581 This is needed to allow safe register renaming. */
5582 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5583 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5584 return orig;
5585 break;
5587 case SCRATCH:
5588 for (i = 0; i < copy_insn_n_scratches; i++)
5589 if (copy_insn_scratch_in[i] == orig)
5590 return copy_insn_scratch_out[i];
5591 break;
5593 case CONST:
5594 if (shared_const_p (orig))
5595 return orig;
5596 break;
5598 /* A MEM with a constant address is not sharable. The problem is that
5599 the constant address may need to be reloaded. If the mem is shared,
5600 then reloading one copy of this mem will cause all copies to appear
5601 to have been reloaded. */
5603 default:
5604 break;
5607 /* Copy the various flags, fields, and other information. We assume
5608 that all fields need copying, and then clear the fields that should
5609 not be copied. That is the sensible default behavior, and forces
5610 us to explicitly document why we are *not* copying a flag. */
5611 copy = shallow_copy_rtx (orig);
5613 /* We do not copy the USED flag, which is used as a mark bit during
5614 walks over the RTL. */
5615 RTX_FLAG (copy, used) = 0;
5617 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5618 if (INSN_P (orig))
5620 RTX_FLAG (copy, jump) = 0;
5621 RTX_FLAG (copy, call) = 0;
5622 RTX_FLAG (copy, frame_related) = 0;
5625 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5627 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5628 switch (*format_ptr++)
5630 case 'e':
5631 if (XEXP (orig, i) != NULL)
5632 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5633 break;
5635 case 'E':
5636 case 'V':
5637 if (XVEC (orig, i) == orig_asm_constraints_vector)
5638 XVEC (copy, i) = copy_asm_constraints_vector;
5639 else if (XVEC (orig, i) == orig_asm_operands_vector)
5640 XVEC (copy, i) = copy_asm_operands_vector;
5641 else if (XVEC (orig, i) != NULL)
5643 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5644 for (j = 0; j < XVECLEN (copy, i); j++)
5645 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5647 break;
5649 case 't':
5650 case 'w':
5651 case 'i':
5652 case 's':
5653 case 'S':
5654 case 'u':
5655 case '0':
5656 /* These are left unchanged. */
5657 break;
5659 default:
5660 gcc_unreachable ();
5663 if (code == SCRATCH)
5665 i = copy_insn_n_scratches++;
5666 gcc_assert (i < MAX_RECOG_OPERANDS);
5667 copy_insn_scratch_in[i] = orig;
5668 copy_insn_scratch_out[i] = copy;
5670 else if (code == ASM_OPERANDS)
5672 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5673 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5674 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5675 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5678 return copy;
5681 /* Create a new copy of an rtx.
5682 This function differs from copy_rtx in that it handles SCRATCHes and
5683 ASM_OPERANDs properly.
5684 INSN doesn't really have to be a full INSN; it could be just the
5685 pattern. */
5687 copy_insn (rtx insn)
5689 copy_insn_n_scratches = 0;
5690 orig_asm_operands_vector = 0;
5691 orig_asm_constraints_vector = 0;
5692 copy_asm_operands_vector = 0;
5693 copy_asm_constraints_vector = 0;
5694 return copy_insn_1 (insn);
5697 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5698 on that assumption that INSN itself remains in its original place. */
5700 rtx_insn *
5701 copy_delay_slot_insn (rtx_insn *insn)
5703 /* Copy INSN with its rtx_code, all its notes, location etc. */
5704 insn = as_a <rtx_insn *> (copy_rtx (insn));
5705 INSN_UID (insn) = cur_insn_uid++;
5706 return insn;
5709 /* Initialize data structures and variables in this file
5710 before generating rtl for each function. */
5712 void
5713 init_emit (void)
5715 set_first_insn (NULL);
5716 set_last_insn (NULL);
5717 if (MIN_NONDEBUG_INSN_UID)
5718 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5719 else
5720 cur_insn_uid = 1;
5721 cur_debug_insn_uid = 1;
5722 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5723 first_label_num = label_num;
5724 seq_stack = NULL;
5726 /* Init the tables that describe all the pseudo regs. */
5728 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5730 crtl->emit.regno_pointer_align
5731 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5733 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5735 /* Put copies of all the hard registers into regno_reg_rtx. */
5736 memcpy (regno_reg_rtx,
5737 initial_regno_reg_rtx,
5738 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5740 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5741 init_virtual_regs ();
5743 /* Indicate that the virtual registers and stack locations are
5744 all pointers. */
5745 REG_POINTER (stack_pointer_rtx) = 1;
5746 REG_POINTER (frame_pointer_rtx) = 1;
5747 REG_POINTER (hard_frame_pointer_rtx) = 1;
5748 REG_POINTER (arg_pointer_rtx) = 1;
5750 REG_POINTER (virtual_incoming_args_rtx) = 1;
5751 REG_POINTER (virtual_stack_vars_rtx) = 1;
5752 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5753 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5754 REG_POINTER (virtual_cfa_rtx) = 1;
5756 #ifdef STACK_BOUNDARY
5757 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5758 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5759 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5760 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5762 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5763 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5764 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5765 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5766 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5767 #endif
5769 #ifdef INIT_EXPANDERS
5770 INIT_EXPANDERS;
5771 #endif
5774 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5776 static rtx
5777 gen_const_vector (machine_mode mode, int constant)
5779 rtx tem;
5780 rtvec v;
5781 int units, i;
5782 machine_mode inner;
5784 units = GET_MODE_NUNITS (mode);
5785 inner = GET_MODE_INNER (mode);
5787 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5789 v = rtvec_alloc (units);
5791 /* We need to call this function after we set the scalar const_tiny_rtx
5792 entries. */
5793 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5795 for (i = 0; i < units; ++i)
5796 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5798 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5799 return tem;
5802 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5803 all elements are zero, and the one vector when all elements are one. */
5805 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5807 machine_mode inner = GET_MODE_INNER (mode);
5808 int nunits = GET_MODE_NUNITS (mode);
5809 rtx x;
5810 int i;
5812 /* Check to see if all of the elements have the same value. */
5813 x = RTVEC_ELT (v, nunits - 1);
5814 for (i = nunits - 2; i >= 0; i--)
5815 if (RTVEC_ELT (v, i) != x)
5816 break;
5818 /* If the values are all the same, check to see if we can use one of the
5819 standard constant vectors. */
5820 if (i == -1)
5822 if (x == CONST0_RTX (inner))
5823 return CONST0_RTX (mode);
5824 else if (x == CONST1_RTX (inner))
5825 return CONST1_RTX (mode);
5826 else if (x == CONSTM1_RTX (inner))
5827 return CONSTM1_RTX (mode);
5830 return gen_rtx_raw_CONST_VECTOR (mode, v);
5833 /* Initialise global register information required by all functions. */
5835 void
5836 init_emit_regs (void)
5838 int i;
5839 machine_mode mode;
5840 mem_attrs *attrs;
5842 /* Reset register attributes */
5843 reg_attrs_htab->empty ();
5845 /* We need reg_raw_mode, so initialize the modes now. */
5846 init_reg_modes_target ();
5848 /* Assign register numbers to the globally defined register rtx. */
5849 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5850 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5851 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5852 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5853 virtual_incoming_args_rtx =
5854 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5855 virtual_stack_vars_rtx =
5856 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5857 virtual_stack_dynamic_rtx =
5858 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5859 virtual_outgoing_args_rtx =
5860 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5861 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5862 virtual_preferred_stack_boundary_rtx =
5863 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5865 /* Initialize RTL for commonly used hard registers. These are
5866 copied into regno_reg_rtx as we begin to compile each function. */
5867 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5868 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5870 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5871 return_address_pointer_rtx
5872 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5873 #endif
5875 pic_offset_table_rtx = NULL_RTX;
5876 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5877 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5879 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5881 mode = (machine_mode) i;
5882 attrs = ggc_cleared_alloc<mem_attrs> ();
5883 attrs->align = BITS_PER_UNIT;
5884 attrs->addrspace = ADDR_SPACE_GENERIC;
5885 if (mode != BLKmode)
5887 attrs->size_known_p = true;
5888 attrs->size = GET_MODE_SIZE (mode);
5889 if (STRICT_ALIGNMENT)
5890 attrs->align = GET_MODE_ALIGNMENT (mode);
5892 mode_mem_attrs[i] = attrs;
5896 /* Initialize global machine_mode variables. */
5898 void
5899 init_derived_machine_modes (void)
5901 byte_mode = VOIDmode;
5902 word_mode = VOIDmode;
5904 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5905 mode != VOIDmode;
5906 mode = GET_MODE_WIDER_MODE (mode))
5908 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5909 && byte_mode == VOIDmode)
5910 byte_mode = mode;
5912 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5913 && word_mode == VOIDmode)
5914 word_mode = mode;
5917 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5920 /* Create some permanent unique rtl objects shared between all functions. */
5922 void
5923 init_emit_once (void)
5925 int i;
5926 machine_mode mode;
5927 machine_mode double_mode;
5929 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5930 CONST_FIXED, and memory attribute hash tables. */
5931 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5933 #if TARGET_SUPPORTS_WIDE_INT
5934 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5935 #endif
5936 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5938 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5940 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5942 #ifdef INIT_EXPANDERS
5943 /* This is to initialize {init|mark|free}_machine_status before the first
5944 call to push_function_context_to. This is needed by the Chill front
5945 end which calls push_function_context_to before the first call to
5946 init_function_start. */
5947 INIT_EXPANDERS;
5948 #endif
5950 /* Create the unique rtx's for certain rtx codes and operand values. */
5952 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5953 tries to use these variables. */
5954 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5955 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5956 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5958 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5959 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5960 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5961 else
5962 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5964 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5966 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5967 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5968 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5970 dconstm1 = dconst1;
5971 dconstm1.sign = 1;
5973 dconsthalf = dconst1;
5974 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5976 for (i = 0; i < 3; i++)
5978 const REAL_VALUE_TYPE *const r =
5979 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5981 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5982 mode != VOIDmode;
5983 mode = GET_MODE_WIDER_MODE (mode))
5984 const_tiny_rtx[i][(int) mode] =
5985 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5987 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5988 mode != VOIDmode;
5989 mode = GET_MODE_WIDER_MODE (mode))
5990 const_tiny_rtx[i][(int) mode] =
5991 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5993 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5995 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5996 mode != VOIDmode;
5997 mode = GET_MODE_WIDER_MODE (mode))
5998 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6000 for (mode = MIN_MODE_PARTIAL_INT;
6001 mode <= MAX_MODE_PARTIAL_INT;
6002 mode = (machine_mode)((int)(mode) + 1))
6003 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6006 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6008 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
6009 mode != VOIDmode;
6010 mode = GET_MODE_WIDER_MODE (mode))
6011 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6013 for (mode = MIN_MODE_PARTIAL_INT;
6014 mode <= MAX_MODE_PARTIAL_INT;
6015 mode = (machine_mode)((int)(mode) + 1))
6016 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6018 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
6019 mode != VOIDmode;
6020 mode = GET_MODE_WIDER_MODE (mode))
6022 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6023 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6026 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
6027 mode != VOIDmode;
6028 mode = GET_MODE_WIDER_MODE (mode))
6030 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6031 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6034 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
6035 mode != VOIDmode;
6036 mode = GET_MODE_WIDER_MODE (mode))
6038 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6039 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6040 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6043 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6044 mode != VOIDmode;
6045 mode = GET_MODE_WIDER_MODE (mode))
6047 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6048 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6051 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6052 mode != VOIDmode;
6053 mode = GET_MODE_WIDER_MODE (mode))
6055 FCONST0 (mode).data.high = 0;
6056 FCONST0 (mode).data.low = 0;
6057 FCONST0 (mode).mode = mode;
6058 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6059 FCONST0 (mode), mode);
6062 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6063 mode != VOIDmode;
6064 mode = GET_MODE_WIDER_MODE (mode))
6066 FCONST0 (mode).data.high = 0;
6067 FCONST0 (mode).data.low = 0;
6068 FCONST0 (mode).mode = mode;
6069 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6070 FCONST0 (mode), mode);
6073 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6074 mode != VOIDmode;
6075 mode = GET_MODE_WIDER_MODE (mode))
6077 FCONST0 (mode).data.high = 0;
6078 FCONST0 (mode).data.low = 0;
6079 FCONST0 (mode).mode = mode;
6080 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6081 FCONST0 (mode), mode);
6083 /* We store the value 1. */
6084 FCONST1 (mode).data.high = 0;
6085 FCONST1 (mode).data.low = 0;
6086 FCONST1 (mode).mode = mode;
6087 FCONST1 (mode).data
6088 = double_int_one.lshift (GET_MODE_FBIT (mode),
6089 HOST_BITS_PER_DOUBLE_INT,
6090 SIGNED_FIXED_POINT_MODE_P (mode));
6091 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6092 FCONST1 (mode), mode);
6095 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6096 mode != VOIDmode;
6097 mode = GET_MODE_WIDER_MODE (mode))
6099 FCONST0 (mode).data.high = 0;
6100 FCONST0 (mode).data.low = 0;
6101 FCONST0 (mode).mode = mode;
6102 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6103 FCONST0 (mode), mode);
6105 /* We store the value 1. */
6106 FCONST1 (mode).data.high = 0;
6107 FCONST1 (mode).data.low = 0;
6108 FCONST1 (mode).mode = mode;
6109 FCONST1 (mode).data
6110 = double_int_one.lshift (GET_MODE_FBIT (mode),
6111 HOST_BITS_PER_DOUBLE_INT,
6112 SIGNED_FIXED_POINT_MODE_P (mode));
6113 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6114 FCONST1 (mode), mode);
6117 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6118 mode != VOIDmode;
6119 mode = GET_MODE_WIDER_MODE (mode))
6121 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6124 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6125 mode != VOIDmode;
6126 mode = GET_MODE_WIDER_MODE (mode))
6128 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6131 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6132 mode != VOIDmode;
6133 mode = GET_MODE_WIDER_MODE (mode))
6135 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6136 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6139 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6140 mode != VOIDmode;
6141 mode = GET_MODE_WIDER_MODE (mode))
6143 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6144 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6147 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6148 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6149 const_tiny_rtx[0][i] = const0_rtx;
6151 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6152 if (STORE_FLAG_VALUE == 1)
6153 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6155 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6156 mode != VOIDmode;
6157 mode = GET_MODE_WIDER_MODE (mode))
6159 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6160 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6163 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6164 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6165 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6166 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6169 /* Produce exact duplicate of insn INSN after AFTER.
6170 Care updating of libcall regions if present. */
6172 rtx_insn *
6173 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6175 rtx_insn *new_rtx;
6176 rtx link;
6178 switch (GET_CODE (insn))
6180 case INSN:
6181 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6182 break;
6184 case JUMP_INSN:
6185 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6186 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6187 break;
6189 case DEBUG_INSN:
6190 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6191 break;
6193 case CALL_INSN:
6194 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6195 if (CALL_INSN_FUNCTION_USAGE (insn))
6196 CALL_INSN_FUNCTION_USAGE (new_rtx)
6197 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6198 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6199 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6200 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6201 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6202 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6203 break;
6205 default:
6206 gcc_unreachable ();
6209 /* Update LABEL_NUSES. */
6210 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6212 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6214 /* If the old insn is frame related, then so is the new one. This is
6215 primarily needed for IA-64 unwind info which marks epilogue insns,
6216 which may be duplicated by the basic block reordering code. */
6217 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6219 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6220 will make them. REG_LABEL_TARGETs are created there too, but are
6221 supposed to be sticky, so we copy them. */
6222 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6223 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6225 if (GET_CODE (link) == EXPR_LIST)
6226 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6227 copy_insn_1 (XEXP (link, 0)));
6228 else
6229 add_shallow_copy_of_reg_note (new_rtx, link);
6232 INSN_CODE (new_rtx) = INSN_CODE (insn);
6233 return new_rtx;
6236 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6238 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6240 if (hard_reg_clobbers[mode][regno])
6241 return hard_reg_clobbers[mode][regno];
6242 else
6243 return (hard_reg_clobbers[mode][regno] =
6244 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6247 location_t prologue_location;
6248 location_t epilogue_location;
6250 /* Hold current location information and last location information, so the
6251 datastructures are built lazily only when some instructions in given
6252 place are needed. */
6253 static location_t curr_location;
6255 /* Allocate insn location datastructure. */
6256 void
6257 insn_locations_init (void)
6259 prologue_location = epilogue_location = 0;
6260 curr_location = UNKNOWN_LOCATION;
6263 /* At the end of emit stage, clear current location. */
6264 void
6265 insn_locations_finalize (void)
6267 epilogue_location = curr_location;
6268 curr_location = UNKNOWN_LOCATION;
6271 /* Set current location. */
6272 void
6273 set_curr_insn_location (location_t location)
6275 curr_location = location;
6278 /* Get current location. */
6279 location_t
6280 curr_insn_location (void)
6282 return curr_location;
6285 /* Return lexical scope block insn belongs to. */
6286 tree
6287 insn_scope (const rtx_insn *insn)
6289 return LOCATION_BLOCK (INSN_LOCATION (insn));
6292 /* Return line number of the statement that produced this insn. */
6294 insn_line (const rtx_insn *insn)
6296 return LOCATION_LINE (INSN_LOCATION (insn));
6299 /* Return source file of the statement that produced this insn. */
6300 const char *
6301 insn_file (const rtx_insn *insn)
6303 return LOCATION_FILE (INSN_LOCATION (insn));
6306 /* Return expanded location of the statement that produced this insn. */
6307 expanded_location
6308 insn_location (const rtx_insn *insn)
6310 return expand_location (INSN_LOCATION (insn));
6313 /* Return true if memory model MODEL requires a pre-operation (release-style)
6314 barrier or a post-operation (acquire-style) barrier. While not universal,
6315 this function matches behavior of several targets. */
6317 bool
6318 need_atomic_barrier_p (enum memmodel model, bool pre)
6320 switch (model & MEMMODEL_MASK)
6322 case MEMMODEL_RELAXED:
6323 case MEMMODEL_CONSUME:
6324 return false;
6325 case MEMMODEL_RELEASE:
6326 return pre;
6327 case MEMMODEL_ACQUIRE:
6328 return !pre;
6329 case MEMMODEL_ACQ_REL:
6330 case MEMMODEL_SEQ_CST:
6331 return true;
6332 default:
6333 gcc_unreachable ();
6337 #include "gt-emit-rtl.h"