oops - minor formatting tidy ups to previous delta
[official-gcc.git] / gcc / tree.c
blob9e725db7958d28519261ed7a1c339d23560c3a47
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
32 #include "config.h"
33 #include "system.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "real.h"
37 #include "tm_p.h"
38 #include "function.h"
39 #include "obstack.h"
40 #include "toplev.h"
41 #include "ggc.h"
42 #include "hashtab.h"
43 #include "output.h"
44 #include "target.h"
45 #include "langhooks.h"
47 /* obstack.[ch] explicitly declined to prototype this. */
48 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
50 #ifdef GATHER_STATISTICS
51 /* Statistics-gathering stuff. */
52 typedef enum
54 d_kind,
55 t_kind,
56 b_kind,
57 s_kind,
58 r_kind,
59 e_kind,
60 c_kind,
61 id_kind,
62 perm_list_kind,
63 temp_list_kind,
64 vec_kind,
65 x_kind,
66 lang_decl,
67 lang_type,
68 all_kinds
69 } tree_node_kind;
71 int tree_node_counts[(int) all_kinds];
72 int tree_node_sizes[(int) all_kinds];
74 static const char * const tree_node_kind_names[] = {
75 "decls",
76 "types",
77 "blocks",
78 "stmts",
79 "refs",
80 "exprs",
81 "constants",
82 "identifiers",
83 "perm_tree_lists",
84 "temp_tree_lists",
85 "vecs",
86 "random kinds",
87 "lang_decl kinds",
88 "lang_type kinds"
90 #endif /* GATHER_STATISTICS */
92 /* Unique id for next decl created. */
93 static int next_decl_uid;
94 /* Unique id for next type created. */
95 static int next_type_uid = 1;
97 /* Since we cannot rehash a type after it is in the table, we have to
98 keep the hash code. */
100 struct type_hash GTY(())
102 unsigned long hash;
103 tree type;
106 /* Initial size of the hash table (rounded to next prime). */
107 #define TYPE_HASH_INITIAL_SIZE 1000
109 /* Now here is the hash table. When recording a type, it is added to
110 the slot whose index is the hash code. Note that the hash table is
111 used for several kinds of types (function types, array types and
112 array index range types, for now). While all these live in the
113 same table, they are completely independent, and the hash code is
114 computed differently for each of these. */
116 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
117 htab_t type_hash_table;
119 static void set_type_quals PARAMS ((tree, int));
120 static void append_random_chars PARAMS ((char *));
121 static int type_hash_eq PARAMS ((const void *, const void *));
122 static unsigned int type_hash_hash PARAMS ((const void *));
123 static void print_type_hash_statistics PARAMS((void));
124 static void finish_vector_type PARAMS((tree));
125 static tree make_vector PARAMS ((enum machine_mode, tree, int));
126 static int type_hash_marked_p PARAMS ((const void *));
128 tree global_trees[TI_MAX];
129 tree integer_types[itk_none];
131 /* Init tree.c. */
133 void
134 init_ttree ()
136 /* Initialize the hash table of types. */
137 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
138 type_hash_eq, 0);
142 /* The name of the object as the assembler will see it (but before any
143 translations made by ASM_OUTPUT_LABELREF). Often this is the same
144 as DECL_NAME. It is an IDENTIFIER_NODE. */
145 tree
146 decl_assembler_name (decl)
147 tree decl;
149 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
150 (*lang_hooks.set_decl_assembler_name) (decl);
151 return DECL_CHECK (decl)->decl.assembler_name;
154 /* Compute the number of bytes occupied by 'node'. This routine only
155 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
156 size_t
157 tree_size (node)
158 tree node;
160 enum tree_code code = TREE_CODE (node);
162 switch (TREE_CODE_CLASS (code))
164 case 'd': /* A decl node */
165 return sizeof (struct tree_decl);
167 case 't': /* a type node */
168 return sizeof (struct tree_type);
170 case 'b': /* a lexical block node */
171 return sizeof (struct tree_block);
173 case 'r': /* a reference */
174 case 'e': /* an expression */
175 case 's': /* an expression with side effects */
176 case '<': /* a comparison expression */
177 case '1': /* a unary arithmetic expression */
178 case '2': /* a binary arithmetic expression */
179 return (sizeof (struct tree_exp)
180 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
182 case 'c': /* a constant */
183 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
184 words is machine-dependent due to varying length of HOST_WIDE_INT,
185 which might be wider than a pointer (e.g., long long). Similarly
186 for REAL_CST, since the number of words is machine-dependent due
187 to varying size and alignment of `double'. */
188 if (code == INTEGER_CST)
189 return sizeof (struct tree_int_cst);
190 else if (code == REAL_CST)
191 return sizeof (struct tree_real_cst);
192 else
193 return (sizeof (struct tree_common)
194 + TREE_CODE_LENGTH (code) * sizeof (char *));
196 case 'x': /* something random, like an identifier. */
198 size_t length;
199 length = (sizeof (struct tree_common)
200 + TREE_CODE_LENGTH (code) * sizeof (char *));
201 if (code == TREE_VEC)
202 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
203 return length;
206 default:
207 abort ();
211 /* Return a newly allocated node of code CODE.
212 For decl and type nodes, some other fields are initialized.
213 The rest of the node is initialized to zero.
215 Achoo! I got a code in the node. */
217 tree
218 make_node (code)
219 enum tree_code code;
221 tree t;
222 int type = TREE_CODE_CLASS (code);
223 size_t length;
224 #ifdef GATHER_STATISTICS
225 tree_node_kind kind;
226 #endif
227 struct tree_common ttmp;
229 /* We can't allocate a TREE_VEC without knowing how many elements
230 it will have. */
231 if (code == TREE_VEC)
232 abort ();
234 TREE_SET_CODE ((tree)&ttmp, code);
235 length = tree_size ((tree)&ttmp);
237 #ifdef GATHER_STATISTICS
238 switch (type)
240 case 'd': /* A decl node */
241 kind = d_kind;
242 break;
244 case 't': /* a type node */
245 kind = t_kind;
246 break;
248 case 'b': /* a lexical block */
249 kind = b_kind;
250 break;
252 case 's': /* an expression with side effects */
253 kind = s_kind;
254 break;
256 case 'r': /* a reference */
257 kind = r_kind;
258 break;
260 case 'e': /* an expression */
261 case '<': /* a comparison expression */
262 case '1': /* a unary arithmetic expression */
263 case '2': /* a binary arithmetic expression */
264 kind = e_kind;
265 break;
267 case 'c': /* a constant */
268 kind = c_kind;
269 break;
271 case 'x': /* something random, like an identifier. */
272 if (code == IDENTIFIER_NODE)
273 kind = id_kind;
274 else if (code == TREE_VEC)
275 kind = vec_kind;
276 else
277 kind = x_kind;
278 break;
280 default:
281 abort ();
284 tree_node_counts[(int) kind]++;
285 tree_node_sizes[(int) kind] += length;
286 #endif
288 t = ggc_alloc_tree (length);
290 memset ((PTR) t, 0, length);
292 TREE_SET_CODE (t, code);
294 switch (type)
296 case 's':
297 TREE_SIDE_EFFECTS (t) = 1;
298 TREE_TYPE (t) = void_type_node;
299 break;
301 case 'd':
302 if (code != FUNCTION_DECL)
303 DECL_ALIGN (t) = 1;
304 DECL_USER_ALIGN (t) = 0;
305 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
306 DECL_SOURCE_LINE (t) = lineno;
307 DECL_SOURCE_FILE (t) =
308 (input_filename) ? input_filename : "<built-in>";
309 DECL_UID (t) = next_decl_uid++;
311 /* We have not yet computed the alias set for this declaration. */
312 DECL_POINTER_ALIAS_SET (t) = -1;
313 break;
315 case 't':
316 TYPE_UID (t) = next_type_uid++;
317 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
318 TYPE_USER_ALIGN (t) = 0;
319 TYPE_MAIN_VARIANT (t) = t;
321 /* Default to no attributes for type, but let target change that. */
322 TYPE_ATTRIBUTES (t) = NULL_TREE;
323 (*targetm.set_default_type_attributes) (t);
325 /* We have not yet computed the alias set for this type. */
326 TYPE_ALIAS_SET (t) = -1;
327 break;
329 case 'c':
330 TREE_CONSTANT (t) = 1;
331 break;
333 case 'e':
334 switch (code)
336 case INIT_EXPR:
337 case MODIFY_EXPR:
338 case VA_ARG_EXPR:
339 case RTL_EXPR:
340 case PREDECREMENT_EXPR:
341 case PREINCREMENT_EXPR:
342 case POSTDECREMENT_EXPR:
343 case POSTINCREMENT_EXPR:
344 /* All of these have side-effects, no matter what their
345 operands are. */
346 TREE_SIDE_EFFECTS (t) = 1;
347 break;
349 default:
350 break;
352 break;
355 return t;
358 /* Return a new node with the same contents as NODE except that its
359 TREE_CHAIN is zero and it has a fresh uid. */
361 tree
362 copy_node (node)
363 tree node;
365 tree t;
366 enum tree_code code = TREE_CODE (node);
367 size_t length;
369 length = tree_size (node);
370 t = ggc_alloc_tree (length);
371 memcpy (t, node, length);
373 TREE_CHAIN (t) = 0;
374 TREE_ASM_WRITTEN (t) = 0;
376 if (TREE_CODE_CLASS (code) == 'd')
377 DECL_UID (t) = next_decl_uid++;
378 else if (TREE_CODE_CLASS (code) == 't')
380 TYPE_UID (t) = next_type_uid++;
381 /* The following is so that the debug code for
382 the copy is different from the original type.
383 The two statements usually duplicate each other
384 (because they clear fields of the same union),
385 but the optimizer should catch that. */
386 TYPE_SYMTAB_POINTER (t) = 0;
387 TYPE_SYMTAB_ADDRESS (t) = 0;
390 return t;
393 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
394 For example, this can copy a list made of TREE_LIST nodes. */
396 tree
397 copy_list (list)
398 tree list;
400 tree head;
401 tree prev, next;
403 if (list == 0)
404 return 0;
406 head = prev = copy_node (list);
407 next = TREE_CHAIN (list);
408 while (next)
410 TREE_CHAIN (prev) = copy_node (next);
411 prev = TREE_CHAIN (prev);
412 next = TREE_CHAIN (next);
414 return head;
418 /* Return a newly constructed INTEGER_CST node whose constant value
419 is specified by the two ints LOW and HI.
420 The TREE_TYPE is set to `int'.
422 This function should be used via the `build_int_2' macro. */
424 tree
425 build_int_2_wide (low, hi)
426 unsigned HOST_WIDE_INT low;
427 HOST_WIDE_INT hi;
429 tree t = make_node (INTEGER_CST);
431 TREE_INT_CST_LOW (t) = low;
432 TREE_INT_CST_HIGH (t) = hi;
433 TREE_TYPE (t) = integer_type_node;
434 return t;
437 /* Return a new VECTOR_CST node whose type is TYPE and whose values
438 are in a list pointed by VALS. */
440 tree
441 build_vector (type, vals)
442 tree type, vals;
444 tree v = make_node (VECTOR_CST);
445 int over1 = 0, over2 = 0;
446 tree link;
448 TREE_VECTOR_CST_ELTS (v) = vals;
449 TREE_TYPE (v) = type;
451 /* Iterate through elements and check for overflow. */
452 for (link = vals; link; link = TREE_CHAIN (link))
454 tree value = TREE_VALUE (link);
456 over1 |= TREE_OVERFLOW (value);
457 over2 |= TREE_CONSTANT_OVERFLOW (value);
460 TREE_OVERFLOW (v) = over1;
461 TREE_CONSTANT_OVERFLOW (v) = over2;
463 return v;
466 /* Return a new REAL_CST node whose type is TYPE and value is D. */
468 tree
469 build_real (type, d)
470 tree type;
471 REAL_VALUE_TYPE d;
473 tree v;
474 REAL_VALUE_TYPE *dp;
475 int overflow = 0;
477 /* Check for valid float value for this type on this target machine;
478 if not, can print error message and store a valid value in D. */
479 #ifdef CHECK_FLOAT_VALUE
480 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
481 #endif
483 v = make_node (REAL_CST);
484 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
485 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
487 TREE_TYPE (v) = type;
488 TREE_REAL_CST_PTR (v) = dp;
489 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
490 return v;
493 /* Return a new REAL_CST node whose type is TYPE
494 and whose value is the integer value of the INTEGER_CST node I. */
496 REAL_VALUE_TYPE
497 real_value_from_int_cst (type, i)
498 tree type ATTRIBUTE_UNUSED, i;
500 REAL_VALUE_TYPE d;
502 /* Clear all bits of the real value type so that we can later do
503 bitwise comparisons to see if two values are the same. */
504 memset ((char *) &d, 0, sizeof d);
506 if (! TREE_UNSIGNED (TREE_TYPE (i)))
507 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
508 TYPE_MODE (type));
509 else
510 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
511 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
512 return d;
515 /* Given a tree representing an integer constant I, return a tree
516 representing the same value as a floating-point constant of type TYPE. */
518 tree
519 build_real_from_int_cst (type, i)
520 tree type;
521 tree i;
523 tree v;
524 int overflow = TREE_OVERFLOW (i);
526 v = build_real (type, real_value_from_int_cst (type, i));
528 TREE_OVERFLOW (v) |= overflow;
529 TREE_CONSTANT_OVERFLOW (v) |= overflow;
530 return v;
533 /* Return a newly constructed STRING_CST node whose value is
534 the LEN characters at STR.
535 The TREE_TYPE is not initialized. */
537 tree
538 build_string (len, str)
539 int len;
540 const char *str;
542 tree s = make_node (STRING_CST);
544 TREE_STRING_LENGTH (s) = len;
545 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
547 return s;
550 /* Return a newly constructed COMPLEX_CST node whose value is
551 specified by the real and imaginary parts REAL and IMAG.
552 Both REAL and IMAG should be constant nodes. TYPE, if specified,
553 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
555 tree
556 build_complex (type, real, imag)
557 tree type;
558 tree real, imag;
560 tree t = make_node (COMPLEX_CST);
562 TREE_REALPART (t) = real;
563 TREE_IMAGPART (t) = imag;
564 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
565 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
566 TREE_CONSTANT_OVERFLOW (t)
567 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
568 return t;
571 /* Build a newly constructed TREE_VEC node of length LEN. */
573 tree
574 make_tree_vec (len)
575 int len;
577 tree t;
578 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
580 #ifdef GATHER_STATISTICS
581 tree_node_counts[(int) vec_kind]++;
582 tree_node_sizes[(int) vec_kind] += length;
583 #endif
585 t = ggc_alloc_tree (length);
587 memset ((PTR) t, 0, length);
588 TREE_SET_CODE (t, TREE_VEC);
589 TREE_VEC_LENGTH (t) = len;
591 return t;
594 /* Return 1 if EXPR is the integer constant zero or a complex constant
595 of zero. */
598 integer_zerop (expr)
599 tree expr;
601 STRIP_NOPS (expr);
603 return ((TREE_CODE (expr) == INTEGER_CST
604 && ! TREE_CONSTANT_OVERFLOW (expr)
605 && TREE_INT_CST_LOW (expr) == 0
606 && TREE_INT_CST_HIGH (expr) == 0)
607 || (TREE_CODE (expr) == COMPLEX_CST
608 && integer_zerop (TREE_REALPART (expr))
609 && integer_zerop (TREE_IMAGPART (expr))));
612 /* Return 1 if EXPR is the integer constant one or the corresponding
613 complex constant. */
616 integer_onep (expr)
617 tree expr;
619 STRIP_NOPS (expr);
621 return ((TREE_CODE (expr) == INTEGER_CST
622 && ! TREE_CONSTANT_OVERFLOW (expr)
623 && TREE_INT_CST_LOW (expr) == 1
624 && TREE_INT_CST_HIGH (expr) == 0)
625 || (TREE_CODE (expr) == COMPLEX_CST
626 && integer_onep (TREE_REALPART (expr))
627 && integer_zerop (TREE_IMAGPART (expr))));
630 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
631 it contains. Likewise for the corresponding complex constant. */
634 integer_all_onesp (expr)
635 tree expr;
637 int prec;
638 int uns;
640 STRIP_NOPS (expr);
642 if (TREE_CODE (expr) == COMPLEX_CST
643 && integer_all_onesp (TREE_REALPART (expr))
644 && integer_zerop (TREE_IMAGPART (expr)))
645 return 1;
647 else if (TREE_CODE (expr) != INTEGER_CST
648 || TREE_CONSTANT_OVERFLOW (expr))
649 return 0;
651 uns = TREE_UNSIGNED (TREE_TYPE (expr));
652 if (!uns)
653 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
654 && TREE_INT_CST_HIGH (expr) == -1);
656 /* Note that using TYPE_PRECISION here is wrong. We care about the
657 actual bits, not the (arbitrary) range of the type. */
658 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
659 if (prec >= HOST_BITS_PER_WIDE_INT)
661 HOST_WIDE_INT high_value;
662 int shift_amount;
664 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
666 if (shift_amount > HOST_BITS_PER_WIDE_INT)
667 /* Can not handle precisions greater than twice the host int size. */
668 abort ();
669 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
670 /* Shifting by the host word size is undefined according to the ANSI
671 standard, so we must handle this as a special case. */
672 high_value = -1;
673 else
674 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
676 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
677 && TREE_INT_CST_HIGH (expr) == high_value);
679 else
680 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
683 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
684 one bit on). */
687 integer_pow2p (expr)
688 tree expr;
690 int prec;
691 HOST_WIDE_INT high, low;
693 STRIP_NOPS (expr);
695 if (TREE_CODE (expr) == COMPLEX_CST
696 && integer_pow2p (TREE_REALPART (expr))
697 && integer_zerop (TREE_IMAGPART (expr)))
698 return 1;
700 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
701 return 0;
703 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
704 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
705 high = TREE_INT_CST_HIGH (expr);
706 low = TREE_INT_CST_LOW (expr);
708 /* First clear all bits that are beyond the type's precision in case
709 we've been sign extended. */
711 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
713 else if (prec > HOST_BITS_PER_WIDE_INT)
714 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
715 else
717 high = 0;
718 if (prec < HOST_BITS_PER_WIDE_INT)
719 low &= ~((HOST_WIDE_INT) (-1) << prec);
722 if (high == 0 && low == 0)
723 return 0;
725 return ((high == 0 && (low & (low - 1)) == 0)
726 || (low == 0 && (high & (high - 1)) == 0));
729 /* Return the power of two represented by a tree node known to be a
730 power of two. */
733 tree_log2 (expr)
734 tree expr;
736 int prec;
737 HOST_WIDE_INT high, low;
739 STRIP_NOPS (expr);
741 if (TREE_CODE (expr) == COMPLEX_CST)
742 return tree_log2 (TREE_REALPART (expr));
744 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
745 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
747 high = TREE_INT_CST_HIGH (expr);
748 low = TREE_INT_CST_LOW (expr);
750 /* First clear all bits that are beyond the type's precision in case
751 we've been sign extended. */
753 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
755 else if (prec > HOST_BITS_PER_WIDE_INT)
756 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
757 else
759 high = 0;
760 if (prec < HOST_BITS_PER_WIDE_INT)
761 low &= ~((HOST_WIDE_INT) (-1) << prec);
764 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
765 : exact_log2 (low));
768 /* Similar, but return the largest integer Y such that 2 ** Y is less
769 than or equal to EXPR. */
772 tree_floor_log2 (expr)
773 tree expr;
775 int prec;
776 HOST_WIDE_INT high, low;
778 STRIP_NOPS (expr);
780 if (TREE_CODE (expr) == COMPLEX_CST)
781 return tree_log2 (TREE_REALPART (expr));
783 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
784 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
786 high = TREE_INT_CST_HIGH (expr);
787 low = TREE_INT_CST_LOW (expr);
789 /* First clear all bits that are beyond the type's precision in case
790 we've been sign extended. Ignore if type's precision hasn't been set
791 since what we are doing is setting it. */
793 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
795 else if (prec > HOST_BITS_PER_WIDE_INT)
796 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
797 else
799 high = 0;
800 if (prec < HOST_BITS_PER_WIDE_INT)
801 low &= ~((HOST_WIDE_INT) (-1) << prec);
804 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
805 : floor_log2 (low));
808 /* Return 1 if EXPR is the real constant zero. */
811 real_zerop (expr)
812 tree expr;
814 STRIP_NOPS (expr);
816 return ((TREE_CODE (expr) == REAL_CST
817 && ! TREE_CONSTANT_OVERFLOW (expr)
818 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
819 || (TREE_CODE (expr) == COMPLEX_CST
820 && real_zerop (TREE_REALPART (expr))
821 && real_zerop (TREE_IMAGPART (expr))));
824 /* Return 1 if EXPR is the real constant one in real or complex form. */
827 real_onep (expr)
828 tree expr;
830 STRIP_NOPS (expr);
832 return ((TREE_CODE (expr) == REAL_CST
833 && ! TREE_CONSTANT_OVERFLOW (expr)
834 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
835 || (TREE_CODE (expr) == COMPLEX_CST
836 && real_onep (TREE_REALPART (expr))
837 && real_zerop (TREE_IMAGPART (expr))));
840 /* Return 1 if EXPR is the real constant two. */
843 real_twop (expr)
844 tree expr;
846 STRIP_NOPS (expr);
848 return ((TREE_CODE (expr) == REAL_CST
849 && ! TREE_CONSTANT_OVERFLOW (expr)
850 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
851 || (TREE_CODE (expr) == COMPLEX_CST
852 && real_twop (TREE_REALPART (expr))
853 && real_zerop (TREE_IMAGPART (expr))));
856 /* Return 1 if EXPR is the real constant minus one. */
859 real_minus_onep (expr)
860 tree expr;
862 STRIP_NOPS (expr);
864 return ((TREE_CODE (expr) == REAL_CST
865 && ! TREE_CONSTANT_OVERFLOW (expr)
866 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
867 || (TREE_CODE (expr) == COMPLEX_CST
868 && real_minus_onep (TREE_REALPART (expr))
869 && real_zerop (TREE_IMAGPART (expr))));
872 /* Nonzero if EXP is a constant or a cast of a constant. */
875 really_constant_p (exp)
876 tree exp;
878 /* This is not quite the same as STRIP_NOPS. It does more. */
879 while (TREE_CODE (exp) == NOP_EXPR
880 || TREE_CODE (exp) == CONVERT_EXPR
881 || TREE_CODE (exp) == NON_LVALUE_EXPR)
882 exp = TREE_OPERAND (exp, 0);
883 return TREE_CONSTANT (exp);
886 /* Return first list element whose TREE_VALUE is ELEM.
887 Return 0 if ELEM is not in LIST. */
889 tree
890 value_member (elem, list)
891 tree elem, list;
893 while (list)
895 if (elem == TREE_VALUE (list))
896 return list;
897 list = TREE_CHAIN (list);
899 return NULL_TREE;
902 /* Return first list element whose TREE_PURPOSE is ELEM.
903 Return 0 if ELEM is not in LIST. */
905 tree
906 purpose_member (elem, list)
907 tree elem, list;
909 while (list)
911 if (elem == TREE_PURPOSE (list))
912 return list;
913 list = TREE_CHAIN (list);
915 return NULL_TREE;
918 /* Return first list element whose BINFO_TYPE is ELEM.
919 Return 0 if ELEM is not in LIST. */
921 tree
922 binfo_member (elem, list)
923 tree elem, list;
925 while (list)
927 if (elem == BINFO_TYPE (list))
928 return list;
929 list = TREE_CHAIN (list);
931 return NULL_TREE;
934 /* Return nonzero if ELEM is part of the chain CHAIN. */
937 chain_member (elem, chain)
938 tree elem, chain;
940 while (chain)
942 if (elem == chain)
943 return 1;
944 chain = TREE_CHAIN (chain);
947 return 0;
950 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
951 chain CHAIN. This and the next function are currently unused, but
952 are retained for completeness. */
955 chain_member_value (elem, chain)
956 tree elem, chain;
958 while (chain)
960 if (elem == TREE_VALUE (chain))
961 return 1;
962 chain = TREE_CHAIN (chain);
965 return 0;
968 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
969 for any piece of chain CHAIN. */
972 chain_member_purpose (elem, chain)
973 tree elem, chain;
975 while (chain)
977 if (elem == TREE_PURPOSE (chain))
978 return 1;
979 chain = TREE_CHAIN (chain);
982 return 0;
985 /* Return the length of a chain of nodes chained through TREE_CHAIN.
986 We expect a null pointer to mark the end of the chain.
987 This is the Lisp primitive `length'. */
990 list_length (t)
991 tree t;
993 tree tail;
994 int len = 0;
996 for (tail = t; tail; tail = TREE_CHAIN (tail))
997 len++;
999 return len;
1002 /* Returns the number of FIELD_DECLs in TYPE. */
1005 fields_length (type)
1006 tree type;
1008 tree t = TYPE_FIELDS (type);
1009 int count = 0;
1011 for (; t; t = TREE_CHAIN (t))
1012 if (TREE_CODE (t) == FIELD_DECL)
1013 ++count;
1015 return count;
1018 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1019 by modifying the last node in chain 1 to point to chain 2.
1020 This is the Lisp primitive `nconc'. */
1022 tree
1023 chainon (op1, op2)
1024 tree op1, op2;
1027 if (op1)
1029 tree t1;
1030 #ifdef ENABLE_TREE_CHECKING
1031 tree t2;
1032 #endif
1034 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1036 TREE_CHAIN (t1) = op2;
1037 #ifdef ENABLE_TREE_CHECKING
1038 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1039 if (t2 == t1)
1040 abort (); /* Circularity created. */
1041 #endif
1042 return op1;
1044 else
1045 return op2;
1048 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1050 tree
1051 tree_last (chain)
1052 tree chain;
1054 tree next;
1055 if (chain)
1056 while ((next = TREE_CHAIN (chain)))
1057 chain = next;
1058 return chain;
1061 /* Reverse the order of elements in the chain T,
1062 and return the new head of the chain (old last element). */
1064 tree
1065 nreverse (t)
1066 tree t;
1068 tree prev = 0, decl, next;
1069 for (decl = t; decl; decl = next)
1071 next = TREE_CHAIN (decl);
1072 TREE_CHAIN (decl) = prev;
1073 prev = decl;
1075 return prev;
1078 /* Given a chain CHAIN of tree nodes,
1079 construct and return a list of those nodes. */
1081 tree
1082 listify (chain)
1083 tree chain;
1085 tree result = NULL_TREE;
1086 tree in_tail = chain;
1087 tree out_tail = NULL_TREE;
1089 while (in_tail)
1091 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1092 if (out_tail)
1093 TREE_CHAIN (out_tail) = next;
1094 else
1095 result = next;
1096 out_tail = next;
1097 in_tail = TREE_CHAIN (in_tail);
1100 return result;
1103 /* Return a newly created TREE_LIST node whose
1104 purpose and value fields are PARM and VALUE. */
1106 tree
1107 build_tree_list (parm, value)
1108 tree parm, value;
1110 tree t = make_node (TREE_LIST);
1111 TREE_PURPOSE (t) = parm;
1112 TREE_VALUE (t) = value;
1113 return t;
1116 /* Return a newly created TREE_LIST node whose
1117 purpose and value fields are PARM and VALUE
1118 and whose TREE_CHAIN is CHAIN. */
1120 tree
1121 tree_cons (purpose, value, chain)
1122 tree purpose, value, chain;
1124 tree node;
1126 node = ggc_alloc_tree (sizeof (struct tree_list));
1128 memset (node, 0, sizeof (struct tree_common));
1130 #ifdef GATHER_STATISTICS
1131 tree_node_counts[(int) x_kind]++;
1132 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1133 #endif
1135 TREE_SET_CODE (node, TREE_LIST);
1136 TREE_CHAIN (node) = chain;
1137 TREE_PURPOSE (node) = purpose;
1138 TREE_VALUE (node) = value;
1139 return node;
1143 /* Return the size nominally occupied by an object of type TYPE
1144 when it resides in memory. The value is measured in units of bytes,
1145 and its data type is that normally used for type sizes
1146 (which is the first type created by make_signed_type or
1147 make_unsigned_type). */
1149 tree
1150 size_in_bytes (type)
1151 tree type;
1153 tree t;
1155 if (type == error_mark_node)
1156 return integer_zero_node;
1158 type = TYPE_MAIN_VARIANT (type);
1159 t = TYPE_SIZE_UNIT (type);
1161 if (t == 0)
1163 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1164 return size_zero_node;
1167 if (TREE_CODE (t) == INTEGER_CST)
1168 force_fit_type (t, 0);
1170 return t;
1173 /* Return the size of TYPE (in bytes) as a wide integer
1174 or return -1 if the size can vary or is larger than an integer. */
1176 HOST_WIDE_INT
1177 int_size_in_bytes (type)
1178 tree type;
1180 tree t;
1182 if (type == error_mark_node)
1183 return 0;
1185 type = TYPE_MAIN_VARIANT (type);
1186 t = TYPE_SIZE_UNIT (type);
1187 if (t == 0
1188 || TREE_CODE (t) != INTEGER_CST
1189 || TREE_OVERFLOW (t)
1190 || TREE_INT_CST_HIGH (t) != 0
1191 /* If the result would appear negative, it's too big to represent. */
1192 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1193 return -1;
1195 return TREE_INT_CST_LOW (t);
1198 /* Return the bit position of FIELD, in bits from the start of the record.
1199 This is a tree of type bitsizetype. */
1201 tree
1202 bit_position (field)
1203 tree field;
1206 return bit_from_pos (DECL_FIELD_OFFSET (field),
1207 DECL_FIELD_BIT_OFFSET (field));
1210 /* Likewise, but return as an integer. Abort if it cannot be represented
1211 in that way (since it could be a signed value, we don't have the option
1212 of returning -1 like int_size_in_byte can. */
1214 HOST_WIDE_INT
1215 int_bit_position (field)
1216 tree field;
1218 return tree_low_cst (bit_position (field), 0);
1221 /* Return the byte position of FIELD, in bytes from the start of the record.
1222 This is a tree of type sizetype. */
1224 tree
1225 byte_position (field)
1226 tree field;
1228 return byte_from_pos (DECL_FIELD_OFFSET (field),
1229 DECL_FIELD_BIT_OFFSET (field));
1232 /* Likewise, but return as an integer. Abort if it cannot be represented
1233 in that way (since it could be a signed value, we don't have the option
1234 of returning -1 like int_size_in_byte can. */
1236 HOST_WIDE_INT
1237 int_byte_position (field)
1238 tree field;
1240 return tree_low_cst (byte_position (field), 0);
1243 /* Return the strictest alignment, in bits, that T is known to have. */
1245 unsigned int
1246 expr_align (t)
1247 tree t;
1249 unsigned int align0, align1;
1251 switch (TREE_CODE (t))
1253 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1254 /* If we have conversions, we know that the alignment of the
1255 object must meet each of the alignments of the types. */
1256 align0 = expr_align (TREE_OPERAND (t, 0));
1257 align1 = TYPE_ALIGN (TREE_TYPE (t));
1258 return MAX (align0, align1);
1260 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1261 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1262 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1263 /* These don't change the alignment of an object. */
1264 return expr_align (TREE_OPERAND (t, 0));
1266 case COND_EXPR:
1267 /* The best we can do is say that the alignment is the least aligned
1268 of the two arms. */
1269 align0 = expr_align (TREE_OPERAND (t, 1));
1270 align1 = expr_align (TREE_OPERAND (t, 2));
1271 return MIN (align0, align1);
1273 case LABEL_DECL: case CONST_DECL:
1274 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1275 if (DECL_ALIGN (t) != 0)
1276 return DECL_ALIGN (t);
1277 break;
1279 case FUNCTION_DECL:
1280 return FUNCTION_BOUNDARY;
1282 default:
1283 break;
1286 /* Otherwise take the alignment from that of the type. */
1287 return TYPE_ALIGN (TREE_TYPE (t));
1290 /* Return, as a tree node, the number of elements for TYPE (which is an
1291 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1293 tree
1294 array_type_nelts (type)
1295 tree type;
1297 tree index_type, min, max;
1299 /* If they did it with unspecified bounds, then we should have already
1300 given an error about it before we got here. */
1301 if (! TYPE_DOMAIN (type))
1302 return error_mark_node;
1304 index_type = TYPE_DOMAIN (type);
1305 min = TYPE_MIN_VALUE (index_type);
1306 max = TYPE_MAX_VALUE (index_type);
1308 return (integer_zerop (min)
1309 ? max
1310 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1313 /* Return nonzero if arg is static -- a reference to an object in
1314 static storage. This is not the same as the C meaning of `static'. */
1317 staticp (arg)
1318 tree arg;
1320 switch (TREE_CODE (arg))
1322 case FUNCTION_DECL:
1323 /* Nested functions aren't static, since taking their address
1324 involves a trampoline. */
1325 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1326 && ! DECL_NON_ADDR_CONST_P (arg));
1328 case VAR_DECL:
1329 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1330 && ! DECL_THREAD_LOCAL (arg)
1331 && ! DECL_NON_ADDR_CONST_P (arg));
1333 case CONSTRUCTOR:
1334 return TREE_STATIC (arg);
1336 case LABEL_DECL:
1337 case STRING_CST:
1338 return 1;
1340 /* If we are referencing a bitfield, we can't evaluate an
1341 ADDR_EXPR at compile time and so it isn't a constant. */
1342 case COMPONENT_REF:
1343 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1344 && staticp (TREE_OPERAND (arg, 0)));
1346 case BIT_FIELD_REF:
1347 return 0;
1349 #if 0
1350 /* This case is technically correct, but results in setting
1351 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1352 compile time. */
1353 case INDIRECT_REF:
1354 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1355 #endif
1357 case ARRAY_REF:
1358 case ARRAY_RANGE_REF:
1359 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1360 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1361 return staticp (TREE_OPERAND (arg, 0));
1363 default:
1364 if ((unsigned int) TREE_CODE (arg)
1365 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1366 return (*lang_hooks.staticp) (arg);
1367 else
1368 return 0;
1372 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1373 Do this to any expression which may be used in more than one place,
1374 but must be evaluated only once.
1376 Normally, expand_expr would reevaluate the expression each time.
1377 Calling save_expr produces something that is evaluated and recorded
1378 the first time expand_expr is called on it. Subsequent calls to
1379 expand_expr just reuse the recorded value.
1381 The call to expand_expr that generates code that actually computes
1382 the value is the first call *at compile time*. Subsequent calls
1383 *at compile time* generate code to use the saved value.
1384 This produces correct result provided that *at run time* control
1385 always flows through the insns made by the first expand_expr
1386 before reaching the other places where the save_expr was evaluated.
1387 You, the caller of save_expr, must make sure this is so.
1389 Constants, and certain read-only nodes, are returned with no
1390 SAVE_EXPR because that is safe. Expressions containing placeholders
1391 are not touched; see tree.def for an explanation of what these
1392 are used for. */
1394 tree
1395 save_expr (expr)
1396 tree expr;
1398 tree t = fold (expr);
1399 tree inner;
1401 /* We don't care about whether this can be used as an lvalue in this
1402 context. */
1403 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1404 t = TREE_OPERAND (t, 0);
1406 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1407 a constant, it will be more efficient to not make another SAVE_EXPR since
1408 it will allow better simplification and GCSE will be able to merge the
1409 computations if they actualy occur. */
1410 for (inner = t;
1411 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1412 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1413 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1414 inner = TREE_OPERAND (inner, 0))
1417 /* If the tree evaluates to a constant, then we don't want to hide that
1418 fact (i.e. this allows further folding, and direct checks for constants).
1419 However, a read-only object that has side effects cannot be bypassed.
1420 Since it is no problem to reevaluate literals, we just return the
1421 literal node. */
1422 if (TREE_CONSTANT (inner)
1423 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1424 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1425 return t;
1427 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1428 it means that the size or offset of some field of an object depends on
1429 the value within another field.
1431 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1432 and some variable since it would then need to be both evaluated once and
1433 evaluated more than once. Front-ends must assure this case cannot
1434 happen by surrounding any such subexpressions in their own SAVE_EXPR
1435 and forcing evaluation at the proper time. */
1436 if (contains_placeholder_p (t))
1437 return t;
1439 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1441 /* This expression might be placed ahead of a jump to ensure that the
1442 value was computed on both sides of the jump. So make sure it isn't
1443 eliminated as dead. */
1444 TREE_SIDE_EFFECTS (t) = 1;
1445 TREE_READONLY (t) = 1;
1446 return t;
1449 /* Arrange for an expression to be expanded multiple independent
1450 times. This is useful for cleanup actions, as the backend can
1451 expand them multiple times in different places. */
1453 tree
1454 unsave_expr (expr)
1455 tree expr;
1457 tree t;
1459 /* If this is already protected, no sense in protecting it again. */
1460 if (TREE_CODE (expr) == UNSAVE_EXPR)
1461 return expr;
1463 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1464 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1465 return t;
1468 /* Returns the index of the first non-tree operand for CODE, or the number
1469 of operands if all are trees. */
1472 first_rtl_op (code)
1473 enum tree_code code;
1475 switch (code)
1477 case SAVE_EXPR:
1478 return 2;
1479 case GOTO_SUBROUTINE_EXPR:
1480 case RTL_EXPR:
1481 return 0;
1482 case WITH_CLEANUP_EXPR:
1483 return 2;
1484 case METHOD_CALL_EXPR:
1485 return 3;
1486 default:
1487 return TREE_CODE_LENGTH (code);
1491 /* Return which tree structure is used by T. */
1493 enum tree_node_structure_enum
1494 tree_node_structure (t)
1495 tree t;
1497 enum tree_code code = TREE_CODE (t);
1499 switch (TREE_CODE_CLASS (code))
1501 case 'd': return TS_DECL;
1502 case 't': return TS_TYPE;
1503 case 'b': return TS_BLOCK;
1504 case 'r': case '<': case '1': case '2': case 'e': case 's':
1505 return TS_EXP;
1506 default: /* 'c' and 'x' */
1507 break;
1509 switch (code)
1511 /* 'c' cases. */
1512 case INTEGER_CST: return TS_INT_CST;
1513 case REAL_CST: return TS_REAL_CST;
1514 case COMPLEX_CST: return TS_COMPLEX;
1515 case VECTOR_CST: return TS_VECTOR;
1516 case STRING_CST: return TS_STRING;
1517 /* 'x' cases. */
1518 case ERROR_MARK: return TS_COMMON;
1519 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1520 case TREE_LIST: return TS_LIST;
1521 case TREE_VEC: return TS_VEC;
1522 case PLACEHOLDER_EXPR: return TS_COMMON;
1524 default:
1525 abort ();
1529 /* Perform any modifications to EXPR required when it is unsaved. Does
1530 not recurse into EXPR's subtrees. */
1532 void
1533 unsave_expr_1 (expr)
1534 tree expr;
1536 switch (TREE_CODE (expr))
1538 case SAVE_EXPR:
1539 if (! SAVE_EXPR_PERSISTENT_P (expr))
1540 SAVE_EXPR_RTL (expr) = 0;
1541 break;
1543 case TARGET_EXPR:
1544 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1545 It's OK for this to happen if it was part of a subtree that
1546 isn't immediately expanded, such as operand 2 of another
1547 TARGET_EXPR. */
1548 if (TREE_OPERAND (expr, 1))
1549 break;
1551 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1552 TREE_OPERAND (expr, 3) = NULL_TREE;
1553 break;
1555 case RTL_EXPR:
1556 /* I don't yet know how to emit a sequence multiple times. */
1557 if (RTL_EXPR_SEQUENCE (expr) != 0)
1558 abort ();
1559 break;
1561 default:
1562 break;
1566 /* Default lang hook for "unsave_expr_now". */
1568 tree
1569 lhd_unsave_expr_now (expr)
1570 tree expr;
1572 enum tree_code code;
1574 /* There's nothing to do for NULL_TREE. */
1575 if (expr == 0)
1576 return expr;
1578 unsave_expr_1 (expr);
1580 code = TREE_CODE (expr);
1581 switch (TREE_CODE_CLASS (code))
1583 case 'c': /* a constant */
1584 case 't': /* a type node */
1585 case 'd': /* A decl node */
1586 case 'b': /* A block node */
1587 break;
1589 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1590 if (code == TREE_LIST)
1592 lhd_unsave_expr_now (TREE_VALUE (expr));
1593 lhd_unsave_expr_now (TREE_CHAIN (expr));
1595 break;
1597 case 'e': /* an expression */
1598 case 'r': /* a reference */
1599 case 's': /* an expression with side effects */
1600 case '<': /* a comparison expression */
1601 case '2': /* a binary arithmetic expression */
1602 case '1': /* a unary arithmetic expression */
1604 int i;
1606 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1607 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1609 break;
1611 default:
1612 abort ();
1615 return expr;
1618 /* Return 0 if it is safe to evaluate EXPR multiple times,
1619 return 1 if it is safe if EXPR is unsaved afterward, or
1620 return 2 if it is completely unsafe.
1622 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1623 an expression tree, so that it safe to unsave them and the surrounding
1624 context will be correct.
1626 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1627 occasionally across the whole of a function. It is therefore only
1628 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1629 below the UNSAVE_EXPR.
1631 RTL_EXPRs consume their rtl during evaluation. It is therefore
1632 never possible to unsave them. */
1635 unsafe_for_reeval (expr)
1636 tree expr;
1638 int unsafeness = 0;
1639 enum tree_code code;
1640 int i, tmp;
1641 tree exp;
1642 int first_rtl;
1644 if (expr == NULL_TREE)
1645 return 1;
1647 code = TREE_CODE (expr);
1648 first_rtl = first_rtl_op (code);
1650 switch (code)
1652 case SAVE_EXPR:
1653 case RTL_EXPR:
1654 return 2;
1656 case TREE_LIST:
1657 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1659 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1660 unsafeness = MAX (tmp, unsafeness);
1663 return unsafeness;
1665 case CALL_EXPR:
1666 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1667 return MAX (tmp, 1);
1669 case TARGET_EXPR:
1670 unsafeness = 1;
1671 break;
1673 default:
1674 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1675 if (tmp >= 0)
1676 return tmp;
1677 break;
1680 switch (TREE_CODE_CLASS (code))
1682 case 'c': /* a constant */
1683 case 't': /* a type node */
1684 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1685 case 'd': /* A decl node */
1686 case 'b': /* A block node */
1687 return 0;
1689 case 'e': /* an expression */
1690 case 'r': /* a reference */
1691 case 's': /* an expression with side effects */
1692 case '<': /* a comparison expression */
1693 case '2': /* a binary arithmetic expression */
1694 case '1': /* a unary arithmetic expression */
1695 for (i = first_rtl - 1; i >= 0; i--)
1697 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1698 unsafeness = MAX (tmp, unsafeness);
1701 return unsafeness;
1703 default:
1704 return 2;
1708 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1709 or offset that depends on a field within a record. */
1712 contains_placeholder_p (exp)
1713 tree exp;
1715 enum tree_code code;
1716 int result;
1718 if (!exp)
1719 return 0;
1721 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1722 in it since it is supplying a value for it. */
1723 code = TREE_CODE (exp);
1724 if (code == WITH_RECORD_EXPR)
1725 return 0;
1726 else if (code == PLACEHOLDER_EXPR)
1727 return 1;
1729 switch (TREE_CODE_CLASS (code))
1731 case 'r':
1732 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1733 position computations since they will be converted into a
1734 WITH_RECORD_EXPR involving the reference, which will assume
1735 here will be valid. */
1736 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1738 case 'x':
1739 if (code == TREE_LIST)
1740 return (contains_placeholder_p (TREE_VALUE (exp))
1741 || (TREE_CHAIN (exp) != 0
1742 && contains_placeholder_p (TREE_CHAIN (exp))));
1743 break;
1745 case '1':
1746 case '2': case '<':
1747 case 'e':
1748 switch (code)
1750 case COMPOUND_EXPR:
1751 /* Ignoring the first operand isn't quite right, but works best. */
1752 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1754 case RTL_EXPR:
1755 case CONSTRUCTOR:
1756 return 0;
1758 case COND_EXPR:
1759 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1760 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1761 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1763 case SAVE_EXPR:
1764 /* If we already know this doesn't have a placeholder, don't
1765 check again. */
1766 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1767 return 0;
1769 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1770 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1771 if (result)
1772 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1774 return result;
1776 case CALL_EXPR:
1777 return (TREE_OPERAND (exp, 1) != 0
1778 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1780 default:
1781 break;
1784 switch (TREE_CODE_LENGTH (code))
1786 case 1:
1787 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1788 case 2:
1789 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1790 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1791 default:
1792 return 0;
1795 default:
1796 return 0;
1798 return 0;
1801 /* Return 1 if EXP contains any expressions that produce cleanups for an
1802 outer scope to deal with. Used by fold. */
1805 has_cleanups (exp)
1806 tree exp;
1808 int i, nops, cmp;
1810 if (! TREE_SIDE_EFFECTS (exp))
1811 return 0;
1813 switch (TREE_CODE (exp))
1815 case TARGET_EXPR:
1816 case GOTO_SUBROUTINE_EXPR:
1817 case WITH_CLEANUP_EXPR:
1818 return 1;
1820 case CLEANUP_POINT_EXPR:
1821 return 0;
1823 case CALL_EXPR:
1824 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1826 cmp = has_cleanups (TREE_VALUE (exp));
1827 if (cmp)
1828 return cmp;
1830 return 0;
1832 default:
1833 break;
1836 /* This general rule works for most tree codes. All exceptions should be
1837 handled above. If this is a language-specific tree code, we can't
1838 trust what might be in the operand, so say we don't know
1839 the situation. */
1840 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1841 return -1;
1843 nops = first_rtl_op (TREE_CODE (exp));
1844 for (i = 0; i < nops; i++)
1845 if (TREE_OPERAND (exp, i) != 0)
1847 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1848 if (type == 'e' || type == '<' || type == '1' || type == '2'
1849 || type == 'r' || type == 's')
1851 cmp = has_cleanups (TREE_OPERAND (exp, i));
1852 if (cmp)
1853 return cmp;
1857 return 0;
1860 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1861 return a tree with all occurrences of references to F in a
1862 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1863 contains only arithmetic expressions or a CALL_EXPR with a
1864 PLACEHOLDER_EXPR occurring only in its arglist. */
1866 tree
1867 substitute_in_expr (exp, f, r)
1868 tree exp;
1869 tree f;
1870 tree r;
1872 enum tree_code code = TREE_CODE (exp);
1873 tree op0, op1, op2;
1874 tree new;
1875 tree inner;
1877 switch (TREE_CODE_CLASS (code))
1879 case 'c':
1880 case 'd':
1881 return exp;
1883 case 'x':
1884 if (code == PLACEHOLDER_EXPR)
1885 return exp;
1886 else if (code == TREE_LIST)
1888 op0 = (TREE_CHAIN (exp) == 0
1889 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1890 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1891 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1892 return exp;
1894 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1897 abort ();
1899 case '1':
1900 case '2':
1901 case '<':
1902 case 'e':
1903 switch (TREE_CODE_LENGTH (code))
1905 case 1:
1906 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1907 if (op0 == TREE_OPERAND (exp, 0))
1908 return exp;
1910 if (code == NON_LVALUE_EXPR)
1911 return op0;
1913 new = fold (build1 (code, TREE_TYPE (exp), op0));
1914 break;
1916 case 2:
1917 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1918 could, but we don't support it. */
1919 if (code == RTL_EXPR)
1920 return exp;
1921 else if (code == CONSTRUCTOR)
1922 abort ();
1924 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1925 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1926 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1927 return exp;
1929 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1930 break;
1932 case 3:
1933 /* It cannot be that anything inside a SAVE_EXPR contains a
1934 PLACEHOLDER_EXPR. */
1935 if (code == SAVE_EXPR)
1936 return exp;
1938 else if (code == CALL_EXPR)
1940 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1941 if (op1 == TREE_OPERAND (exp, 1))
1942 return exp;
1944 return build (code, TREE_TYPE (exp),
1945 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1948 else if (code != COND_EXPR)
1949 abort ();
1951 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1952 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1953 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1954 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1955 && op2 == TREE_OPERAND (exp, 2))
1956 return exp;
1958 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1959 break;
1961 default:
1962 abort ();
1965 break;
1967 case 'r':
1968 switch (code)
1970 case COMPONENT_REF:
1971 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1972 and it is the right field, replace it with R. */
1973 for (inner = TREE_OPERAND (exp, 0);
1974 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1975 inner = TREE_OPERAND (inner, 0))
1977 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1978 && TREE_OPERAND (exp, 1) == f)
1979 return r;
1981 /* If this expression hasn't been completed let, leave it
1982 alone. */
1983 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1984 && TREE_TYPE (inner) == 0)
1985 return exp;
1987 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1988 if (op0 == TREE_OPERAND (exp, 0))
1989 return exp;
1991 new = fold (build (code, TREE_TYPE (exp), op0,
1992 TREE_OPERAND (exp, 1)));
1993 break;
1995 case BIT_FIELD_REF:
1996 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1997 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1998 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1999 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2000 && op2 == TREE_OPERAND (exp, 2))
2001 return exp;
2003 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2004 break;
2006 case INDIRECT_REF:
2007 case BUFFER_REF:
2008 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2009 if (op0 == TREE_OPERAND (exp, 0))
2010 return exp;
2012 new = fold (build1 (code, TREE_TYPE (exp), op0));
2013 break;
2015 default:
2016 abort ();
2018 break;
2020 default:
2021 abort ();
2024 TREE_READONLY (new) = TREE_READONLY (exp);
2025 return new;
2028 /* Stabilize a reference so that we can use it any number of times
2029 without causing its operands to be evaluated more than once.
2030 Returns the stabilized reference. This works by means of save_expr,
2031 so see the caveats in the comments about save_expr.
2033 Also allows conversion expressions whose operands are references.
2034 Any other kind of expression is returned unchanged. */
2036 tree
2037 stabilize_reference (ref)
2038 tree ref;
2040 tree result;
2041 enum tree_code code = TREE_CODE (ref);
2043 switch (code)
2045 case VAR_DECL:
2046 case PARM_DECL:
2047 case RESULT_DECL:
2048 /* No action is needed in this case. */
2049 return ref;
2051 case NOP_EXPR:
2052 case CONVERT_EXPR:
2053 case FLOAT_EXPR:
2054 case FIX_TRUNC_EXPR:
2055 case FIX_FLOOR_EXPR:
2056 case FIX_ROUND_EXPR:
2057 case FIX_CEIL_EXPR:
2058 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2059 break;
2061 case INDIRECT_REF:
2062 result = build_nt (INDIRECT_REF,
2063 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2064 break;
2066 case COMPONENT_REF:
2067 result = build_nt (COMPONENT_REF,
2068 stabilize_reference (TREE_OPERAND (ref, 0)),
2069 TREE_OPERAND (ref, 1));
2070 break;
2072 case BIT_FIELD_REF:
2073 result = build_nt (BIT_FIELD_REF,
2074 stabilize_reference (TREE_OPERAND (ref, 0)),
2075 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2076 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2077 break;
2079 case ARRAY_REF:
2080 result = build_nt (ARRAY_REF,
2081 stabilize_reference (TREE_OPERAND (ref, 0)),
2082 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2083 break;
2085 case ARRAY_RANGE_REF:
2086 result = build_nt (ARRAY_RANGE_REF,
2087 stabilize_reference (TREE_OPERAND (ref, 0)),
2088 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2089 break;
2091 case COMPOUND_EXPR:
2092 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2093 it wouldn't be ignored. This matters when dealing with
2094 volatiles. */
2095 return stabilize_reference_1 (ref);
2097 case RTL_EXPR:
2098 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2099 save_expr (build1 (ADDR_EXPR,
2100 build_pointer_type (TREE_TYPE (ref)),
2101 ref)));
2102 break;
2104 /* If arg isn't a kind of lvalue we recognize, make no change.
2105 Caller should recognize the error for an invalid lvalue. */
2106 default:
2107 return ref;
2109 case ERROR_MARK:
2110 return error_mark_node;
2113 TREE_TYPE (result) = TREE_TYPE (ref);
2114 TREE_READONLY (result) = TREE_READONLY (ref);
2115 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2116 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2118 return result;
2121 /* Subroutine of stabilize_reference; this is called for subtrees of
2122 references. Any expression with side-effects must be put in a SAVE_EXPR
2123 to ensure that it is only evaluated once.
2125 We don't put SAVE_EXPR nodes around everything, because assigning very
2126 simple expressions to temporaries causes us to miss good opportunities
2127 for optimizations. Among other things, the opportunity to fold in the
2128 addition of a constant into an addressing mode often gets lost, e.g.
2129 "y[i+1] += x;". In general, we take the approach that we should not make
2130 an assignment unless we are forced into it - i.e., that any non-side effect
2131 operator should be allowed, and that cse should take care of coalescing
2132 multiple utterances of the same expression should that prove fruitful. */
2134 tree
2135 stabilize_reference_1 (e)
2136 tree e;
2138 tree result;
2139 enum tree_code code = TREE_CODE (e);
2141 /* We cannot ignore const expressions because it might be a reference
2142 to a const array but whose index contains side-effects. But we can
2143 ignore things that are actual constant or that already have been
2144 handled by this function. */
2146 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2147 return e;
2149 switch (TREE_CODE_CLASS (code))
2151 case 'x':
2152 case 't':
2153 case 'd':
2154 case 'b':
2155 case '<':
2156 case 's':
2157 case 'e':
2158 case 'r':
2159 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2160 so that it will only be evaluated once. */
2161 /* The reference (r) and comparison (<) classes could be handled as
2162 below, but it is generally faster to only evaluate them once. */
2163 if (TREE_SIDE_EFFECTS (e))
2164 return save_expr (e);
2165 return e;
2167 case 'c':
2168 /* Constants need no processing. In fact, we should never reach
2169 here. */
2170 return e;
2172 case '2':
2173 /* Division is slow and tends to be compiled with jumps,
2174 especially the division by powers of 2 that is often
2175 found inside of an array reference. So do it just once. */
2176 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2177 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2178 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2179 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2180 return save_expr (e);
2181 /* Recursively stabilize each operand. */
2182 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2183 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2184 break;
2186 case '1':
2187 /* Recursively stabilize each operand. */
2188 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2189 break;
2191 default:
2192 abort ();
2195 TREE_TYPE (result) = TREE_TYPE (e);
2196 TREE_READONLY (result) = TREE_READONLY (e);
2197 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2198 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2200 return result;
2203 /* Low-level constructors for expressions. */
2205 /* Build an expression of code CODE, data type TYPE,
2206 and operands as specified by the arguments ARG1 and following arguments.
2207 Expressions and reference nodes can be created this way.
2208 Constants, decls, types and misc nodes cannot be. */
2210 tree
2211 build VPARAMS ((enum tree_code code, tree tt, ...))
2213 tree t;
2214 int length;
2215 int i;
2216 int fro;
2217 int constant;
2219 VA_OPEN (p, tt);
2220 VA_FIXEDARG (p, enum tree_code, code);
2221 VA_FIXEDARG (p, tree, tt);
2223 t = make_node (code);
2224 length = TREE_CODE_LENGTH (code);
2225 TREE_TYPE (t) = tt;
2227 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2228 result based on those same flags for the arguments. But if the
2229 arguments aren't really even `tree' expressions, we shouldn't be trying
2230 to do this. */
2231 fro = first_rtl_op (code);
2233 /* Expressions without side effects may be constant if their
2234 arguments are as well. */
2235 constant = (TREE_CODE_CLASS (code) == '<'
2236 || TREE_CODE_CLASS (code) == '1'
2237 || TREE_CODE_CLASS (code) == '2'
2238 || TREE_CODE_CLASS (code) == 'c');
2240 if (length == 2)
2242 /* This is equivalent to the loop below, but faster. */
2243 tree arg0 = va_arg (p, tree);
2244 tree arg1 = va_arg (p, tree);
2246 TREE_OPERAND (t, 0) = arg0;
2247 TREE_OPERAND (t, 1) = arg1;
2248 TREE_READONLY (t) = 1;
2249 if (arg0 && fro > 0)
2251 if (TREE_SIDE_EFFECTS (arg0))
2252 TREE_SIDE_EFFECTS (t) = 1;
2253 if (!TREE_READONLY (arg0))
2254 TREE_READONLY (t) = 0;
2255 if (!TREE_CONSTANT (arg0))
2256 constant = 0;
2259 if (arg1 && fro > 1)
2261 if (TREE_SIDE_EFFECTS (arg1))
2262 TREE_SIDE_EFFECTS (t) = 1;
2263 if (!TREE_READONLY (arg1))
2264 TREE_READONLY (t) = 0;
2265 if (!TREE_CONSTANT (arg1))
2266 constant = 0;
2269 else if (length == 1)
2271 tree arg0 = va_arg (p, tree);
2273 /* The only one-operand cases we handle here are those with side-effects.
2274 Others are handled with build1. So don't bother checked if the
2275 arg has side-effects since we'll already have set it.
2277 ??? This really should use build1 too. */
2278 if (TREE_CODE_CLASS (code) != 's')
2279 abort ();
2280 TREE_OPERAND (t, 0) = arg0;
2282 else
2284 for (i = 0; i < length; i++)
2286 tree operand = va_arg (p, tree);
2288 TREE_OPERAND (t, i) = operand;
2289 if (operand && fro > i)
2291 if (TREE_SIDE_EFFECTS (operand))
2292 TREE_SIDE_EFFECTS (t) = 1;
2293 if (!TREE_CONSTANT (operand))
2294 constant = 0;
2298 VA_CLOSE (p);
2300 TREE_CONSTANT (t) = constant;
2301 return t;
2304 /* Same as above, but only builds for unary operators.
2305 Saves lions share of calls to `build'; cuts down use
2306 of varargs, which is expensive for RISC machines. */
2308 tree
2309 build1 (code, type, node)
2310 enum tree_code code;
2311 tree type;
2312 tree node;
2314 int length;
2315 #ifdef GATHER_STATISTICS
2316 tree_node_kind kind;
2317 #endif
2318 tree t;
2320 #ifdef GATHER_STATISTICS
2321 if (TREE_CODE_CLASS (code) == 'r')
2322 kind = r_kind;
2323 else
2324 kind = e_kind;
2325 #endif
2327 #ifdef ENABLE_CHECKING
2328 if (TREE_CODE_CLASS (code) == '2'
2329 || TREE_CODE_CLASS (code) == '<'
2330 || TREE_CODE_LENGTH (code) != 1)
2331 abort ();
2332 #endif /* ENABLE_CHECKING */
2334 length = sizeof (struct tree_exp);
2336 t = ggc_alloc_tree (length);
2338 memset ((PTR) t, 0, sizeof (struct tree_common));
2340 #ifdef GATHER_STATISTICS
2341 tree_node_counts[(int) kind]++;
2342 tree_node_sizes[(int) kind] += length;
2343 #endif
2345 TREE_SET_CODE (t, code);
2347 TREE_TYPE (t) = type;
2348 TREE_COMPLEXITY (t) = 0;
2349 TREE_OPERAND (t, 0) = node;
2350 if (node && first_rtl_op (code) != 0)
2352 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2353 TREE_READONLY (t) = TREE_READONLY (node);
2356 switch (code)
2358 case INIT_EXPR:
2359 case MODIFY_EXPR:
2360 case VA_ARG_EXPR:
2361 case RTL_EXPR:
2362 case PREDECREMENT_EXPR:
2363 case PREINCREMENT_EXPR:
2364 case POSTDECREMENT_EXPR:
2365 case POSTINCREMENT_EXPR:
2366 /* All of these have side-effects, no matter what their
2367 operands are. */
2368 TREE_SIDE_EFFECTS (t) = 1;
2369 TREE_READONLY (t) = 0;
2370 break;
2372 case INDIRECT_REF:
2373 /* Whether a dereference is readonly has nothing to do with whether
2374 its operand is readonly. */
2375 TREE_READONLY (t) = 0;
2376 break;
2378 default:
2379 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2380 TREE_CONSTANT (t) = 1;
2381 break;
2384 return t;
2387 /* Similar except don't specify the TREE_TYPE
2388 and leave the TREE_SIDE_EFFECTS as 0.
2389 It is permissible for arguments to be null,
2390 or even garbage if their values do not matter. */
2392 tree
2393 build_nt VPARAMS ((enum tree_code code, ...))
2395 tree t;
2396 int length;
2397 int i;
2399 VA_OPEN (p, code);
2400 VA_FIXEDARG (p, enum tree_code, code);
2402 t = make_node (code);
2403 length = TREE_CODE_LENGTH (code);
2405 for (i = 0; i < length; i++)
2406 TREE_OPERAND (t, i) = va_arg (p, tree);
2408 VA_CLOSE (p);
2409 return t;
2412 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2413 We do NOT enter this node in any sort of symbol table.
2415 layout_decl is used to set up the decl's storage layout.
2416 Other slots are initialized to 0 or null pointers. */
2418 tree
2419 build_decl (code, name, type)
2420 enum tree_code code;
2421 tree name, type;
2423 tree t;
2425 t = make_node (code);
2427 /* if (type == error_mark_node)
2428 type = integer_type_node; */
2429 /* That is not done, deliberately, so that having error_mark_node
2430 as the type can suppress useless errors in the use of this variable. */
2432 DECL_NAME (t) = name;
2433 TREE_TYPE (t) = type;
2435 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2436 layout_decl (t, 0);
2437 else if (code == FUNCTION_DECL)
2438 DECL_MODE (t) = FUNCTION_MODE;
2440 return t;
2443 /* BLOCK nodes are used to represent the structure of binding contours
2444 and declarations, once those contours have been exited and their contents
2445 compiled. This information is used for outputting debugging info. */
2447 tree
2448 build_block (vars, tags, subblocks, supercontext, chain)
2449 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2451 tree block = make_node (BLOCK);
2453 BLOCK_VARS (block) = vars;
2454 BLOCK_SUBBLOCKS (block) = subblocks;
2455 BLOCK_SUPERCONTEXT (block) = supercontext;
2456 BLOCK_CHAIN (block) = chain;
2457 return block;
2460 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2461 location where an expression or an identifier were encountered. It
2462 is necessary for languages where the frontend parser will handle
2463 recursively more than one file (Java is one of them). */
2465 tree
2466 build_expr_wfl (node, file, line, col)
2467 tree node;
2468 const char *file;
2469 int line, col;
2471 static const char *last_file = 0;
2472 static tree last_filenode = NULL_TREE;
2473 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2475 EXPR_WFL_NODE (wfl) = node;
2476 EXPR_WFL_SET_LINECOL (wfl, line, col);
2477 if (file != last_file)
2479 last_file = file;
2480 last_filenode = file ? get_identifier (file) : NULL_TREE;
2483 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2484 if (node)
2486 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2487 TREE_TYPE (wfl) = TREE_TYPE (node);
2490 return wfl;
2493 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2494 is ATTRIBUTE. */
2496 tree
2497 build_decl_attribute_variant (ddecl, attribute)
2498 tree ddecl, attribute;
2500 DECL_ATTRIBUTES (ddecl) = attribute;
2501 return ddecl;
2504 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2505 is ATTRIBUTE.
2507 Record such modified types already made so we don't make duplicates. */
2509 tree
2510 build_type_attribute_variant (ttype, attribute)
2511 tree ttype, attribute;
2513 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2515 unsigned int hashcode;
2516 tree ntype;
2518 ntype = copy_node (ttype);
2520 TYPE_POINTER_TO (ntype) = 0;
2521 TYPE_REFERENCE_TO (ntype) = 0;
2522 TYPE_ATTRIBUTES (ntype) = attribute;
2524 /* Create a new main variant of TYPE. */
2525 TYPE_MAIN_VARIANT (ntype) = ntype;
2526 TYPE_NEXT_VARIANT (ntype) = 0;
2527 set_type_quals (ntype, TYPE_UNQUALIFIED);
2529 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2530 + TYPE_HASH (TREE_TYPE (ntype))
2531 + attribute_hash_list (attribute));
2533 switch (TREE_CODE (ntype))
2535 case FUNCTION_TYPE:
2536 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2537 break;
2538 case ARRAY_TYPE:
2539 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2540 break;
2541 case INTEGER_TYPE:
2542 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2543 break;
2544 case REAL_TYPE:
2545 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2546 break;
2547 default:
2548 break;
2551 ntype = type_hash_canon (hashcode, ntype);
2552 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2555 return ttype;
2558 /* Default value of targetm.comp_type_attributes that always returns 1. */
2561 default_comp_type_attributes (type1, type2)
2562 tree type1 ATTRIBUTE_UNUSED;
2563 tree type2 ATTRIBUTE_UNUSED;
2565 return 1;
2568 /* Default version of targetm.set_default_type_attributes that always does
2569 nothing. */
2571 void
2572 default_set_default_type_attributes (type)
2573 tree type ATTRIBUTE_UNUSED;
2577 /* Default version of targetm.insert_attributes that always does nothing. */
2578 void
2579 default_insert_attributes (decl, attr_ptr)
2580 tree decl ATTRIBUTE_UNUSED;
2581 tree *attr_ptr ATTRIBUTE_UNUSED;
2585 /* Default value of targetm.function_attribute_inlinable_p that always
2586 returns false. */
2587 bool
2588 default_function_attribute_inlinable_p (fndecl)
2589 tree fndecl ATTRIBUTE_UNUSED;
2591 /* By default, functions with machine attributes cannot be inlined. */
2592 return false;
2595 /* Default value of targetm.ms_bitfield_layout_p that always returns
2596 false. */
2597 bool
2598 default_ms_bitfield_layout_p (record)
2599 tree record ATTRIBUTE_UNUSED;
2601 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2602 return false;
2605 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2606 or zero if not.
2608 We try both `text' and `__text__', ATTR may be either one. */
2609 /* ??? It might be a reasonable simplification to require ATTR to be only
2610 `text'. One might then also require attribute lists to be stored in
2611 their canonicalized form. */
2614 is_attribute_p (attr, ident)
2615 const char *attr;
2616 tree ident;
2618 int ident_len, attr_len;
2619 const char *p;
2621 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2622 return 0;
2624 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2625 return 1;
2627 p = IDENTIFIER_POINTER (ident);
2628 ident_len = strlen (p);
2629 attr_len = strlen (attr);
2631 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2632 if (attr[0] == '_')
2634 if (attr[1] != '_'
2635 || attr[attr_len - 2] != '_'
2636 || attr[attr_len - 1] != '_')
2637 abort ();
2638 if (ident_len == attr_len - 4
2639 && strncmp (attr + 2, p, attr_len - 4) == 0)
2640 return 1;
2642 else
2644 if (ident_len == attr_len + 4
2645 && p[0] == '_' && p[1] == '_'
2646 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2647 && strncmp (attr, p + 2, attr_len) == 0)
2648 return 1;
2651 return 0;
2654 /* Given an attribute name and a list of attributes, return a pointer to the
2655 attribute's list element if the attribute is part of the list, or NULL_TREE
2656 if not found. If the attribute appears more than once, this only
2657 returns the first occurrence; the TREE_CHAIN of the return value should
2658 be passed back in if further occurrences are wanted. */
2660 tree
2661 lookup_attribute (attr_name, list)
2662 const char *attr_name;
2663 tree list;
2665 tree l;
2667 for (l = list; l; l = TREE_CHAIN (l))
2669 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2670 abort ();
2671 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2672 return l;
2675 return NULL_TREE;
2678 /* Return an attribute list that is the union of a1 and a2. */
2680 tree
2681 merge_attributes (a1, a2)
2682 tree a1, a2;
2684 tree attributes;
2686 /* Either one unset? Take the set one. */
2688 if ((attributes = a1) == 0)
2689 attributes = a2;
2691 /* One that completely contains the other? Take it. */
2693 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2695 if (attribute_list_contained (a2, a1))
2696 attributes = a2;
2697 else
2699 /* Pick the longest list, and hang on the other list. */
2701 if (list_length (a1) < list_length (a2))
2702 attributes = a2, a2 = a1;
2704 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2706 tree a;
2707 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2708 attributes);
2709 a != NULL_TREE;
2710 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2711 TREE_CHAIN (a)))
2713 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2714 break;
2716 if (a == NULL_TREE)
2718 a1 = copy_node (a2);
2719 TREE_CHAIN (a1) = attributes;
2720 attributes = a1;
2725 return attributes;
2728 /* Given types T1 and T2, merge their attributes and return
2729 the result. */
2731 tree
2732 merge_type_attributes (t1, t2)
2733 tree t1, t2;
2735 return merge_attributes (TYPE_ATTRIBUTES (t1),
2736 TYPE_ATTRIBUTES (t2));
2739 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2740 the result. */
2742 tree
2743 merge_decl_attributes (olddecl, newdecl)
2744 tree olddecl, newdecl;
2746 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2747 DECL_ATTRIBUTES (newdecl));
2750 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2752 /* Specialization of merge_decl_attributes for various Windows targets.
2754 This handles the following situation:
2756 __declspec (dllimport) int foo;
2757 int foo;
2759 The second instance of `foo' nullifies the dllimport. */
2761 tree
2762 merge_dllimport_decl_attributes (old, new)
2763 tree old;
2764 tree new;
2766 tree a;
2767 int delete_dllimport_p;
2769 old = DECL_ATTRIBUTES (old);
2770 new = DECL_ATTRIBUTES (new);
2772 /* What we need to do here is remove from `old' dllimport if it doesn't
2773 appear in `new'. dllimport behaves like extern: if a declaration is
2774 marked dllimport and a definition appears later, then the object
2775 is not dllimport'd. */
2776 if (lookup_attribute ("dllimport", old) != NULL_TREE
2777 && lookup_attribute ("dllimport", new) == NULL_TREE)
2778 delete_dllimport_p = 1;
2779 else
2780 delete_dllimport_p = 0;
2782 a = merge_attributes (old, new);
2784 if (delete_dllimport_p)
2786 tree prev, t;
2788 /* Scan the list for dllimport and delete it. */
2789 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2791 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2793 if (prev == NULL_TREE)
2794 a = TREE_CHAIN (a);
2795 else
2796 TREE_CHAIN (prev) = TREE_CHAIN (t);
2797 break;
2802 return a;
2805 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2807 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2808 of the various TYPE_QUAL values. */
2810 static void
2811 set_type_quals (type, type_quals)
2812 tree type;
2813 int type_quals;
2815 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2816 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2817 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2820 /* Return a version of the TYPE, qualified as indicated by the
2821 TYPE_QUALS, if one exists. If no qualified version exists yet,
2822 return NULL_TREE. */
2824 tree
2825 get_qualified_type (type, type_quals)
2826 tree type;
2827 int type_quals;
2829 tree t;
2831 /* Search the chain of variants to see if there is already one there just
2832 like the one we need to have. If so, use that existing one. We must
2833 preserve the TYPE_NAME, since there is code that depends on this. */
2834 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2835 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2836 return t;
2838 return NULL_TREE;
2841 /* Like get_qualified_type, but creates the type if it does not
2842 exist. This function never returns NULL_TREE. */
2844 tree
2845 build_qualified_type (type, type_quals)
2846 tree type;
2847 int type_quals;
2849 tree t;
2851 /* See if we already have the appropriate qualified variant. */
2852 t = get_qualified_type (type, type_quals);
2854 /* If not, build it. */
2855 if (!t)
2857 t = build_type_copy (type);
2858 set_type_quals (t, type_quals);
2861 return t;
2864 /* Create a new variant of TYPE, equivalent but distinct.
2865 This is so the caller can modify it. */
2867 tree
2868 build_type_copy (type)
2869 tree type;
2871 tree t, m = TYPE_MAIN_VARIANT (type);
2873 t = copy_node (type);
2875 TYPE_POINTER_TO (t) = 0;
2876 TYPE_REFERENCE_TO (t) = 0;
2878 /* Add this type to the chain of variants of TYPE. */
2879 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2880 TYPE_NEXT_VARIANT (m) = t;
2882 return t;
2885 /* Hashing of types so that we don't make duplicates.
2886 The entry point is `type_hash_canon'. */
2888 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2889 with types in the TREE_VALUE slots), by adding the hash codes
2890 of the individual types. */
2892 unsigned int
2893 type_hash_list (list)
2894 tree list;
2896 unsigned int hashcode;
2897 tree tail;
2899 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2900 hashcode += TYPE_HASH (TREE_VALUE (tail));
2902 return hashcode;
2905 /* These are the Hashtable callback functions. */
2907 /* Returns true if the types are equal. */
2909 static int
2910 type_hash_eq (va, vb)
2911 const void *va;
2912 const void *vb;
2914 const struct type_hash *a = va, *b = vb;
2915 if (a->hash == b->hash
2916 && TREE_CODE (a->type) == TREE_CODE (b->type)
2917 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2918 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2919 TYPE_ATTRIBUTES (b->type))
2920 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2921 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2922 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2923 TYPE_MAX_VALUE (b->type)))
2924 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2925 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2926 TYPE_MIN_VALUE (b->type)))
2927 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2928 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2929 || (TYPE_DOMAIN (a->type)
2930 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2931 && TYPE_DOMAIN (b->type)
2932 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2933 && type_list_equal (TYPE_DOMAIN (a->type),
2934 TYPE_DOMAIN (b->type)))))
2935 return 1;
2936 return 0;
2939 /* Return the cached hash value. */
2941 static unsigned int
2942 type_hash_hash (item)
2943 const void *item;
2945 return ((const struct type_hash *) item)->hash;
2948 /* Look in the type hash table for a type isomorphic to TYPE.
2949 If one is found, return it. Otherwise return 0. */
2951 tree
2952 type_hash_lookup (hashcode, type)
2953 unsigned int hashcode;
2954 tree type;
2956 struct type_hash *h, in;
2958 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2959 must call that routine before comparing TYPE_ALIGNs. */
2960 layout_type (type);
2962 in.hash = hashcode;
2963 in.type = type;
2965 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2966 if (h)
2967 return h->type;
2968 return NULL_TREE;
2971 /* Add an entry to the type-hash-table
2972 for a type TYPE whose hash code is HASHCODE. */
2974 void
2975 type_hash_add (hashcode, type)
2976 unsigned int hashcode;
2977 tree type;
2979 struct type_hash *h;
2980 void **loc;
2982 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2983 h->hash = hashcode;
2984 h->type = type;
2985 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2986 *(struct type_hash **) loc = h;
2989 /* Given TYPE, and HASHCODE its hash code, return the canonical
2990 object for an identical type if one already exists.
2991 Otherwise, return TYPE, and record it as the canonical object
2992 if it is a permanent object.
2994 To use this function, first create a type of the sort you want.
2995 Then compute its hash code from the fields of the type that
2996 make it different from other similar types.
2997 Then call this function and use the value.
2998 This function frees the type you pass in if it is a duplicate. */
3000 /* Set to 1 to debug without canonicalization. Never set by program. */
3001 int debug_no_type_hash = 0;
3003 tree
3004 type_hash_canon (hashcode, type)
3005 unsigned int hashcode;
3006 tree type;
3008 tree t1;
3010 if (debug_no_type_hash)
3011 return type;
3013 /* See if the type is in the hash table already. If so, return it.
3014 Otherwise, add the type. */
3015 t1 = type_hash_lookup (hashcode, type);
3016 if (t1 != 0)
3018 #ifdef GATHER_STATISTICS
3019 tree_node_counts[(int) t_kind]--;
3020 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3021 #endif
3022 return t1;
3024 else
3026 type_hash_add (hashcode, type);
3027 return type;
3031 /* See if the data pointed to by the type hash table is marked. We consider
3032 it marked if the type is marked or if a debug type number or symbol
3033 table entry has been made for the type. This reduces the amount of
3034 debugging output and eliminates that dependency of the debug output on
3035 the number of garbage collections. */
3037 static int
3038 type_hash_marked_p (p)
3039 const void *p;
3041 tree type = ((struct type_hash *) p)->type;
3043 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3046 static void
3047 print_type_hash_statistics ()
3049 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3050 (long) htab_size (type_hash_table),
3051 (long) htab_elements (type_hash_table),
3052 htab_collisions (type_hash_table));
3055 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3056 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3057 by adding the hash codes of the individual attributes. */
3059 unsigned int
3060 attribute_hash_list (list)
3061 tree list;
3063 unsigned int hashcode;
3064 tree tail;
3066 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3067 /* ??? Do we want to add in TREE_VALUE too? */
3068 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3069 return hashcode;
3072 /* Given two lists of attributes, return true if list l2 is
3073 equivalent to l1. */
3076 attribute_list_equal (l1, l2)
3077 tree l1, l2;
3079 return attribute_list_contained (l1, l2)
3080 && attribute_list_contained (l2, l1);
3083 /* Given two lists of attributes, return true if list L2 is
3084 completely contained within L1. */
3085 /* ??? This would be faster if attribute names were stored in a canonicalized
3086 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3087 must be used to show these elements are equivalent (which they are). */
3088 /* ??? It's not clear that attributes with arguments will always be handled
3089 correctly. */
3092 attribute_list_contained (l1, l2)
3093 tree l1, l2;
3095 tree t1, t2;
3097 /* First check the obvious, maybe the lists are identical. */
3098 if (l1 == l2)
3099 return 1;
3101 /* Maybe the lists are similar. */
3102 for (t1 = l1, t2 = l2;
3103 t1 != 0 && t2 != 0
3104 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3105 && TREE_VALUE (t1) == TREE_VALUE (t2);
3106 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3108 /* Maybe the lists are equal. */
3109 if (t1 == 0 && t2 == 0)
3110 return 1;
3112 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3114 tree attr;
3115 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3116 attr != NULL_TREE;
3117 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3118 TREE_CHAIN (attr)))
3120 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3121 break;
3124 if (attr == 0)
3125 return 0;
3127 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3128 return 0;
3131 return 1;
3134 /* Given two lists of types
3135 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3136 return 1 if the lists contain the same types in the same order.
3137 Also, the TREE_PURPOSEs must match. */
3140 type_list_equal (l1, l2)
3141 tree l1, l2;
3143 tree t1, t2;
3145 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3146 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3147 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3148 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3149 && (TREE_TYPE (TREE_PURPOSE (t1))
3150 == TREE_TYPE (TREE_PURPOSE (t2))))))
3151 return 0;
3153 return t1 == t2;
3156 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3157 given by TYPE. If the argument list accepts variable arguments,
3158 then this function counts only the ordinary arguments. */
3161 type_num_arguments (type)
3162 tree type;
3164 int i = 0;
3165 tree t;
3167 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3168 /* If the function does not take a variable number of arguments,
3169 the last element in the list will have type `void'. */
3170 if (VOID_TYPE_P (TREE_VALUE (t)))
3171 break;
3172 else
3173 ++i;
3175 return i;
3178 /* Nonzero if integer constants T1 and T2
3179 represent the same constant value. */
3182 tree_int_cst_equal (t1, t2)
3183 tree t1, t2;
3185 if (t1 == t2)
3186 return 1;
3188 if (t1 == 0 || t2 == 0)
3189 return 0;
3191 if (TREE_CODE (t1) == INTEGER_CST
3192 && TREE_CODE (t2) == INTEGER_CST
3193 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3194 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3195 return 1;
3197 return 0;
3200 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3201 The precise way of comparison depends on their data type. */
3204 tree_int_cst_lt (t1, t2)
3205 tree t1, t2;
3207 if (t1 == t2)
3208 return 0;
3210 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3212 int t1_sgn = tree_int_cst_sgn (t1);
3213 int t2_sgn = tree_int_cst_sgn (t2);
3215 if (t1_sgn < t2_sgn)
3216 return 1;
3217 else if (t1_sgn > t2_sgn)
3218 return 0;
3219 /* Otherwise, both are non-negative, so we compare them as
3220 unsigned just in case one of them would overflow a signed
3221 type. */
3223 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3224 return INT_CST_LT (t1, t2);
3226 return INT_CST_LT_UNSIGNED (t1, t2);
3229 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3232 tree_int_cst_compare (t1, t2)
3233 tree t1;
3234 tree t2;
3236 if (tree_int_cst_lt (t1, t2))
3237 return -1;
3238 else if (tree_int_cst_lt (t2, t1))
3239 return 1;
3240 else
3241 return 0;
3244 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3245 the host. If POS is zero, the value can be represented in a single
3246 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3247 be represented in a single unsigned HOST_WIDE_INT. */
3250 host_integerp (t, pos)
3251 tree t;
3252 int pos;
3254 return (TREE_CODE (t) == INTEGER_CST
3255 && ! TREE_OVERFLOW (t)
3256 && ((TREE_INT_CST_HIGH (t) == 0
3257 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3258 || (! pos && TREE_INT_CST_HIGH (t) == -1
3259 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3260 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3261 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3264 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3265 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3266 be positive. Abort if we cannot satisfy the above conditions. */
3268 HOST_WIDE_INT
3269 tree_low_cst (t, pos)
3270 tree t;
3271 int pos;
3273 if (host_integerp (t, pos))
3274 return TREE_INT_CST_LOW (t);
3275 else
3276 abort ();
3279 /* Return the most significant bit of the integer constant T. */
3282 tree_int_cst_msb (t)
3283 tree t;
3285 int prec;
3286 HOST_WIDE_INT h;
3287 unsigned HOST_WIDE_INT l;
3289 /* Note that using TYPE_PRECISION here is wrong. We care about the
3290 actual bits, not the (arbitrary) range of the type. */
3291 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3292 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3293 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3294 return (l & 1) == 1;
3297 /* Return an indication of the sign of the integer constant T.
3298 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3299 Note that -1 will never be returned it T's type is unsigned. */
3302 tree_int_cst_sgn (t)
3303 tree t;
3305 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3306 return 0;
3307 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3308 return 1;
3309 else if (TREE_INT_CST_HIGH (t) < 0)
3310 return -1;
3311 else
3312 return 1;
3315 /* Compare two constructor-element-type constants. Return 1 if the lists
3316 are known to be equal; otherwise return 0. */
3319 simple_cst_list_equal (l1, l2)
3320 tree l1, l2;
3322 while (l1 != NULL_TREE && l2 != NULL_TREE)
3324 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3325 return 0;
3327 l1 = TREE_CHAIN (l1);
3328 l2 = TREE_CHAIN (l2);
3331 return l1 == l2;
3334 /* Return truthvalue of whether T1 is the same tree structure as T2.
3335 Return 1 if they are the same.
3336 Return 0 if they are understandably different.
3337 Return -1 if either contains tree structure not understood by
3338 this function. */
3341 simple_cst_equal (t1, t2)
3342 tree t1, t2;
3344 enum tree_code code1, code2;
3345 int cmp;
3346 int i;
3348 if (t1 == t2)
3349 return 1;
3350 if (t1 == 0 || t2 == 0)
3351 return 0;
3353 code1 = TREE_CODE (t1);
3354 code2 = TREE_CODE (t2);
3356 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3358 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3359 || code2 == NON_LVALUE_EXPR)
3360 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3361 else
3362 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3365 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3366 || code2 == NON_LVALUE_EXPR)
3367 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3369 if (code1 != code2)
3370 return 0;
3372 switch (code1)
3374 case INTEGER_CST:
3375 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3376 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3378 case REAL_CST:
3379 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3381 case STRING_CST:
3382 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3383 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3384 TREE_STRING_LENGTH (t1)));
3386 case CONSTRUCTOR:
3387 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3388 return 1;
3389 else
3390 abort ();
3392 case SAVE_EXPR:
3393 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3395 case CALL_EXPR:
3396 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3397 if (cmp <= 0)
3398 return cmp;
3399 return
3400 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3402 case TARGET_EXPR:
3403 /* Special case: if either target is an unallocated VAR_DECL,
3404 it means that it's going to be unified with whatever the
3405 TARGET_EXPR is really supposed to initialize, so treat it
3406 as being equivalent to anything. */
3407 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3408 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3409 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3410 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3411 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3412 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3413 cmp = 1;
3414 else
3415 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3417 if (cmp <= 0)
3418 return cmp;
3420 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3422 case WITH_CLEANUP_EXPR:
3423 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3424 if (cmp <= 0)
3425 return cmp;
3427 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3429 case COMPONENT_REF:
3430 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3431 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3433 return 0;
3435 case VAR_DECL:
3436 case PARM_DECL:
3437 case CONST_DECL:
3438 case FUNCTION_DECL:
3439 return 0;
3441 default:
3442 break;
3445 /* This general rule works for most tree codes. All exceptions should be
3446 handled above. If this is a language-specific tree code, we can't
3447 trust what might be in the operand, so say we don't know
3448 the situation. */
3449 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3450 return -1;
3452 switch (TREE_CODE_CLASS (code1))
3454 case '1':
3455 case '2':
3456 case '<':
3457 case 'e':
3458 case 'r':
3459 case 's':
3460 cmp = 1;
3461 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3463 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3464 if (cmp <= 0)
3465 return cmp;
3468 return cmp;
3470 default:
3471 return -1;
3475 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3476 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3477 than U, respectively. */
3480 compare_tree_int (t, u)
3481 tree t;
3482 unsigned HOST_WIDE_INT u;
3484 if (tree_int_cst_sgn (t) < 0)
3485 return -1;
3486 else if (TREE_INT_CST_HIGH (t) != 0)
3487 return 1;
3488 else if (TREE_INT_CST_LOW (t) == u)
3489 return 0;
3490 else if (TREE_INT_CST_LOW (t) < u)
3491 return -1;
3492 else
3493 return 1;
3496 /* Constructors for pointer, array and function types.
3497 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3498 constructed by language-dependent code, not here.) */
3500 /* Construct, lay out and return the type of pointers to TO_TYPE.
3501 If such a type has already been constructed, reuse it. */
3503 tree
3504 build_pointer_type (to_type)
3505 tree to_type;
3507 tree t = TYPE_POINTER_TO (to_type);
3509 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3511 if (t != 0)
3512 return t;
3514 /* We need a new one. */
3515 t = make_node (POINTER_TYPE);
3517 TREE_TYPE (t) = to_type;
3519 /* Record this type as the pointer to TO_TYPE. */
3520 TYPE_POINTER_TO (to_type) = t;
3522 /* Lay out the type. This function has many callers that are concerned
3523 with expression-construction, and this simplifies them all.
3524 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3525 layout_type (t);
3527 return t;
3530 /* Build the node for the type of references-to-TO_TYPE. */
3532 tree
3533 build_reference_type (to_type)
3534 tree to_type;
3536 tree t = TYPE_REFERENCE_TO (to_type);
3538 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3540 if (t)
3541 return t;
3543 /* We need a new one. */
3544 t = make_node (REFERENCE_TYPE);
3546 TREE_TYPE (t) = to_type;
3548 /* Record this type as the pointer to TO_TYPE. */
3549 TYPE_REFERENCE_TO (to_type) = t;
3551 layout_type (t);
3553 return t;
3556 /* Build a type that is compatible with t but has no cv quals anywhere
3557 in its type, thus
3559 const char *const *const * -> char ***. */
3561 tree
3562 build_type_no_quals (t)
3563 tree t;
3565 switch (TREE_CODE (t))
3567 case POINTER_TYPE:
3568 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3569 case REFERENCE_TYPE:
3570 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3571 default:
3572 return TYPE_MAIN_VARIANT (t);
3576 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3577 MAXVAL should be the maximum value in the domain
3578 (one less than the length of the array).
3580 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3581 We don't enforce this limit, that is up to caller (e.g. language front end).
3582 The limit exists because the result is a signed type and we don't handle
3583 sizes that use more than one HOST_WIDE_INT. */
3585 tree
3586 build_index_type (maxval)
3587 tree maxval;
3589 tree itype = make_node (INTEGER_TYPE);
3591 TREE_TYPE (itype) = sizetype;
3592 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3593 TYPE_MIN_VALUE (itype) = size_zero_node;
3594 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3595 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3596 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3597 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3598 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3599 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3601 if (host_integerp (maxval, 1))
3602 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3603 else
3604 return itype;
3607 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3608 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3609 low bound LOWVAL and high bound HIGHVAL.
3610 if TYPE==NULL_TREE, sizetype is used. */
3612 tree
3613 build_range_type (type, lowval, highval)
3614 tree type, lowval, highval;
3616 tree itype = make_node (INTEGER_TYPE);
3618 TREE_TYPE (itype) = type;
3619 if (type == NULL_TREE)
3620 type = sizetype;
3622 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3623 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3625 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3626 TYPE_MODE (itype) = TYPE_MODE (type);
3627 TYPE_SIZE (itype) = TYPE_SIZE (type);
3628 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3629 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3630 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3632 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3633 return type_hash_canon (tree_low_cst (highval, 0)
3634 - tree_low_cst (lowval, 0),
3635 itype);
3636 else
3637 return itype;
3640 /* Just like build_index_type, but takes lowval and highval instead
3641 of just highval (maxval). */
3643 tree
3644 build_index_2_type (lowval, highval)
3645 tree lowval, highval;
3647 return build_range_type (sizetype, lowval, highval);
3650 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3651 Needed because when index types are not hashed, equal index types
3652 built at different times appear distinct, even though structurally,
3653 they are not. */
3656 index_type_equal (itype1, itype2)
3657 tree itype1, itype2;
3659 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3660 return 0;
3662 if (TREE_CODE (itype1) == INTEGER_TYPE)
3664 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3665 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3666 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3667 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3668 return 0;
3670 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3671 TYPE_MIN_VALUE (itype2))
3672 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3673 TYPE_MAX_VALUE (itype2)))
3674 return 1;
3677 return 0;
3680 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3681 and number of elements specified by the range of values of INDEX_TYPE.
3682 If such a type has already been constructed, reuse it. */
3684 tree
3685 build_array_type (elt_type, index_type)
3686 tree elt_type, index_type;
3688 tree t;
3689 unsigned int hashcode;
3691 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3693 error ("arrays of functions are not meaningful");
3694 elt_type = integer_type_node;
3697 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3698 build_pointer_type (elt_type);
3700 /* Allocate the array after the pointer type,
3701 in case we free it in type_hash_canon. */
3702 t = make_node (ARRAY_TYPE);
3703 TREE_TYPE (t) = elt_type;
3704 TYPE_DOMAIN (t) = index_type;
3706 if (index_type == 0)
3708 return t;
3711 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3712 t = type_hash_canon (hashcode, t);
3714 if (!COMPLETE_TYPE_P (t))
3715 layout_type (t);
3716 return t;
3719 /* Return the TYPE of the elements comprising
3720 the innermost dimension of ARRAY. */
3722 tree
3723 get_inner_array_type (array)
3724 tree array;
3726 tree type = TREE_TYPE (array);
3728 while (TREE_CODE (type) == ARRAY_TYPE)
3729 type = TREE_TYPE (type);
3731 return type;
3734 /* Construct, lay out and return
3735 the type of functions returning type VALUE_TYPE
3736 given arguments of types ARG_TYPES.
3737 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3738 are data type nodes for the arguments of the function.
3739 If such a type has already been constructed, reuse it. */
3741 tree
3742 build_function_type (value_type, arg_types)
3743 tree value_type, arg_types;
3745 tree t;
3746 unsigned int hashcode;
3748 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3750 error ("function return type cannot be function");
3751 value_type = integer_type_node;
3754 /* Make a node of the sort we want. */
3755 t = make_node (FUNCTION_TYPE);
3756 TREE_TYPE (t) = value_type;
3757 TYPE_ARG_TYPES (t) = arg_types;
3759 /* If we already have such a type, use the old one and free this one. */
3760 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3761 t = type_hash_canon (hashcode, t);
3763 if (!COMPLETE_TYPE_P (t))
3764 layout_type (t);
3765 return t;
3768 /* Build a function type. The RETURN_TYPE is the type retured by the
3769 function. If additional arguments are provided, they are
3770 additional argument types. The list of argument types must always
3771 be terminated by NULL_TREE. */
3773 tree
3774 build_function_type_list VPARAMS ((tree return_type, ...))
3776 tree t, args, last;
3778 VA_OPEN (p, return_type);
3779 VA_FIXEDARG (p, tree, return_type);
3781 t = va_arg (p, tree);
3782 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3783 args = tree_cons (NULL_TREE, t, args);
3785 last = args;
3786 args = nreverse (args);
3787 TREE_CHAIN (last) = void_list_node;
3788 args = build_function_type (return_type, args);
3790 VA_CLOSE (p);
3791 return args;
3794 /* Construct, lay out and return the type of methods belonging to class
3795 BASETYPE and whose arguments and values are described by TYPE.
3796 If that type exists already, reuse it.
3797 TYPE must be a FUNCTION_TYPE node. */
3799 tree
3800 build_method_type (basetype, type)
3801 tree basetype, type;
3803 tree t;
3804 unsigned int hashcode;
3806 /* Make a node of the sort we want. */
3807 t = make_node (METHOD_TYPE);
3809 if (TREE_CODE (type) != FUNCTION_TYPE)
3810 abort ();
3812 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3813 TREE_TYPE (t) = TREE_TYPE (type);
3815 /* The actual arglist for this function includes a "hidden" argument
3816 which is "this". Put it into the list of argument types. */
3818 TYPE_ARG_TYPES (t)
3819 = tree_cons (NULL_TREE,
3820 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3822 /* If we already have such a type, use the old one and free this one. */
3823 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3824 t = type_hash_canon (hashcode, t);
3826 if (!COMPLETE_TYPE_P (t))
3827 layout_type (t);
3829 return t;
3832 /* Construct, lay out and return the type of offsets to a value
3833 of type TYPE, within an object of type BASETYPE.
3834 If a suitable offset type exists already, reuse it. */
3836 tree
3837 build_offset_type (basetype, type)
3838 tree basetype, type;
3840 tree t;
3841 unsigned int hashcode;
3843 /* Make a node of the sort we want. */
3844 t = make_node (OFFSET_TYPE);
3846 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3847 TREE_TYPE (t) = type;
3849 /* If we already have such a type, use the old one and free this one. */
3850 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3851 t = type_hash_canon (hashcode, t);
3853 if (!COMPLETE_TYPE_P (t))
3854 layout_type (t);
3856 return t;
3859 /* Create a complex type whose components are COMPONENT_TYPE. */
3861 tree
3862 build_complex_type (component_type)
3863 tree component_type;
3865 tree t;
3866 unsigned int hashcode;
3868 /* Make a node of the sort we want. */
3869 t = make_node (COMPLEX_TYPE);
3871 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3872 set_type_quals (t, TYPE_QUALS (component_type));
3874 /* If we already have such a type, use the old one and free this one. */
3875 hashcode = TYPE_HASH (component_type);
3876 t = type_hash_canon (hashcode, t);
3878 if (!COMPLETE_TYPE_P (t))
3879 layout_type (t);
3881 /* If we are writing Dwarf2 output we need to create a name,
3882 since complex is a fundamental type. */
3883 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3884 && ! TYPE_NAME (t))
3886 const char *name;
3887 if (component_type == char_type_node)
3888 name = "complex char";
3889 else if (component_type == signed_char_type_node)
3890 name = "complex signed char";
3891 else if (component_type == unsigned_char_type_node)
3892 name = "complex unsigned char";
3893 else if (component_type == short_integer_type_node)
3894 name = "complex short int";
3895 else if (component_type == short_unsigned_type_node)
3896 name = "complex short unsigned int";
3897 else if (component_type == integer_type_node)
3898 name = "complex int";
3899 else if (component_type == unsigned_type_node)
3900 name = "complex unsigned int";
3901 else if (component_type == long_integer_type_node)
3902 name = "complex long int";
3903 else if (component_type == long_unsigned_type_node)
3904 name = "complex long unsigned int";
3905 else if (component_type == long_long_integer_type_node)
3906 name = "complex long long int";
3907 else if (component_type == long_long_unsigned_type_node)
3908 name = "complex long long unsigned int";
3909 else
3910 name = 0;
3912 if (name != 0)
3913 TYPE_NAME (t) = get_identifier (name);
3916 return t;
3919 /* Return OP, stripped of any conversions to wider types as much as is safe.
3920 Converting the value back to OP's type makes a value equivalent to OP.
3922 If FOR_TYPE is nonzero, we return a value which, if converted to
3923 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3925 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3926 narrowest type that can hold the value, even if they don't exactly fit.
3927 Otherwise, bit-field references are changed to a narrower type
3928 only if they can be fetched directly from memory in that type.
3930 OP must have integer, real or enumeral type. Pointers are not allowed!
3932 There are some cases where the obvious value we could return
3933 would regenerate to OP if converted to OP's type,
3934 but would not extend like OP to wider types.
3935 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3936 For example, if OP is (unsigned short)(signed char)-1,
3937 we avoid returning (signed char)-1 if FOR_TYPE is int,
3938 even though extending that to an unsigned short would regenerate OP,
3939 since the result of extending (signed char)-1 to (int)
3940 is different from (int) OP. */
3942 tree
3943 get_unwidened (op, for_type)
3944 tree op;
3945 tree for_type;
3947 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3948 tree type = TREE_TYPE (op);
3949 unsigned final_prec
3950 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3951 int uns
3952 = (for_type != 0 && for_type != type
3953 && final_prec > TYPE_PRECISION (type)
3954 && TREE_UNSIGNED (type));
3955 tree win = op;
3957 while (TREE_CODE (op) == NOP_EXPR)
3959 int bitschange
3960 = TYPE_PRECISION (TREE_TYPE (op))
3961 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3963 /* Truncations are many-one so cannot be removed.
3964 Unless we are later going to truncate down even farther. */
3965 if (bitschange < 0
3966 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3967 break;
3969 /* See what's inside this conversion. If we decide to strip it,
3970 we will set WIN. */
3971 op = TREE_OPERAND (op, 0);
3973 /* If we have not stripped any zero-extensions (uns is 0),
3974 we can strip any kind of extension.
3975 If we have previously stripped a zero-extension,
3976 only zero-extensions can safely be stripped.
3977 Any extension can be stripped if the bits it would produce
3978 are all going to be discarded later by truncating to FOR_TYPE. */
3980 if (bitschange > 0)
3982 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3983 win = op;
3984 /* TREE_UNSIGNED says whether this is a zero-extension.
3985 Let's avoid computing it if it does not affect WIN
3986 and if UNS will not be needed again. */
3987 if ((uns || TREE_CODE (op) == NOP_EXPR)
3988 && TREE_UNSIGNED (TREE_TYPE (op)))
3990 uns = 1;
3991 win = op;
3996 if (TREE_CODE (op) == COMPONENT_REF
3997 /* Since type_for_size always gives an integer type. */
3998 && TREE_CODE (type) != REAL_TYPE
3999 /* Don't crash if field not laid out yet. */
4000 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4001 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4003 unsigned int innerprec
4004 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4005 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4006 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4008 /* We can get this structure field in the narrowest type it fits in.
4009 If FOR_TYPE is 0, do this only for a field that matches the
4010 narrower type exactly and is aligned for it
4011 The resulting extension to its nominal type (a fullword type)
4012 must fit the same conditions as for other extensions. */
4014 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4015 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4016 && (! uns || final_prec <= innerprec || unsignedp)
4017 && type != 0)
4019 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4020 TREE_OPERAND (op, 1));
4021 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4022 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4026 return win;
4029 /* Return OP or a simpler expression for a narrower value
4030 which can be sign-extended or zero-extended to give back OP.
4031 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4032 or 0 if the value should be sign-extended. */
4034 tree
4035 get_narrower (op, unsignedp_ptr)
4036 tree op;
4037 int *unsignedp_ptr;
4039 int uns = 0;
4040 int first = 1;
4041 tree win = op;
4043 while (TREE_CODE (op) == NOP_EXPR)
4045 int bitschange
4046 = (TYPE_PRECISION (TREE_TYPE (op))
4047 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4049 /* Truncations are many-one so cannot be removed. */
4050 if (bitschange < 0)
4051 break;
4053 /* See what's inside this conversion. If we decide to strip it,
4054 we will set WIN. */
4055 op = TREE_OPERAND (op, 0);
4057 if (bitschange > 0)
4059 /* An extension: the outermost one can be stripped,
4060 but remember whether it is zero or sign extension. */
4061 if (first)
4062 uns = TREE_UNSIGNED (TREE_TYPE (op));
4063 /* Otherwise, if a sign extension has been stripped,
4064 only sign extensions can now be stripped;
4065 if a zero extension has been stripped, only zero-extensions. */
4066 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4067 break;
4068 first = 0;
4070 else /* bitschange == 0 */
4072 /* A change in nominal type can always be stripped, but we must
4073 preserve the unsignedness. */
4074 if (first)
4075 uns = TREE_UNSIGNED (TREE_TYPE (op));
4076 first = 0;
4079 win = op;
4082 if (TREE_CODE (op) == COMPONENT_REF
4083 /* Since type_for_size always gives an integer type. */
4084 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4085 /* Ensure field is laid out already. */
4086 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4088 unsigned HOST_WIDE_INT innerprec
4089 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4090 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4091 TREE_UNSIGNED (op));
4093 /* We can get this structure field in a narrower type that fits it,
4094 but the resulting extension to its nominal type (a fullword type)
4095 must satisfy the same conditions as for other extensions.
4097 Do this only for fields that are aligned (not bit-fields),
4098 because when bit-field insns will be used there is no
4099 advantage in doing this. */
4101 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4102 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4103 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4104 && type != 0)
4106 if (first)
4107 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4108 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4109 TREE_OPERAND (op, 1));
4110 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4111 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4114 *unsignedp_ptr = uns;
4115 return win;
4118 /* Nonzero if integer constant C has a value that is permissible
4119 for type TYPE (an INTEGER_TYPE). */
4122 int_fits_type_p (c, type)
4123 tree c, type;
4125 /* If the bounds of the type are integers, we can check ourselves.
4126 If not, but this type is a subtype, try checking against that.
4127 Otherwise, use force_fit_type, which checks against the precision. */
4128 if (TYPE_MAX_VALUE (type) != NULL_TREE
4129 && TYPE_MIN_VALUE (type) != NULL_TREE
4130 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4131 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4133 if (TREE_UNSIGNED (type))
4134 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4135 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4136 /* Negative ints never fit unsigned types. */
4137 && ! (TREE_INT_CST_HIGH (c) < 0
4138 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4139 else
4140 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4141 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4142 /* Unsigned ints with top bit set never fit signed types. */
4143 && ! (TREE_INT_CST_HIGH (c) < 0
4144 && TREE_UNSIGNED (TREE_TYPE (c))));
4146 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4147 return int_fits_type_p (c, TREE_TYPE (type));
4148 else
4150 c = copy_node (c);
4151 TREE_TYPE (c) = type;
4152 return !force_fit_type (c, 0);
4156 /* Given a DECL or TYPE, return the scope in which it was declared, or
4157 NULL_TREE if there is no containing scope. */
4159 tree
4160 get_containing_scope (t)
4161 tree t;
4163 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4166 /* Return the innermost context enclosing DECL that is
4167 a FUNCTION_DECL, or zero if none. */
4169 tree
4170 decl_function_context (decl)
4171 tree decl;
4173 tree context;
4175 if (TREE_CODE (decl) == ERROR_MARK)
4176 return 0;
4178 if (TREE_CODE (decl) == SAVE_EXPR)
4179 context = SAVE_EXPR_CONTEXT (decl);
4181 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4182 where we look up the function at runtime. Such functions always take
4183 a first argument of type 'pointer to real context'.
4185 C++ should really be fixed to use DECL_CONTEXT for the real context,
4186 and use something else for the "virtual context". */
4187 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4188 context
4189 = TYPE_MAIN_VARIANT
4190 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4191 else
4192 context = DECL_CONTEXT (decl);
4194 while (context && TREE_CODE (context) != FUNCTION_DECL)
4196 if (TREE_CODE (context) == BLOCK)
4197 context = BLOCK_SUPERCONTEXT (context);
4198 else
4199 context = get_containing_scope (context);
4202 return context;
4205 /* Return the innermost context enclosing DECL that is
4206 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4207 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4209 tree
4210 decl_type_context (decl)
4211 tree decl;
4213 tree context = DECL_CONTEXT (decl);
4215 while (context)
4217 if (TREE_CODE (context) == NAMESPACE_DECL)
4218 return NULL_TREE;
4220 if (TREE_CODE (context) == RECORD_TYPE
4221 || TREE_CODE (context) == UNION_TYPE
4222 || TREE_CODE (context) == QUAL_UNION_TYPE)
4223 return context;
4225 if (TREE_CODE (context) == TYPE_DECL
4226 || TREE_CODE (context) == FUNCTION_DECL)
4227 context = DECL_CONTEXT (context);
4229 else if (TREE_CODE (context) == BLOCK)
4230 context = BLOCK_SUPERCONTEXT (context);
4232 else
4233 /* Unhandled CONTEXT!? */
4234 abort ();
4236 return NULL_TREE;
4239 /* CALL is a CALL_EXPR. Return the declaration for the function
4240 called, or NULL_TREE if the called function cannot be
4241 determined. */
4243 tree
4244 get_callee_fndecl (call)
4245 tree call;
4247 tree addr;
4249 /* It's invalid to call this function with anything but a
4250 CALL_EXPR. */
4251 if (TREE_CODE (call) != CALL_EXPR)
4252 abort ();
4254 /* The first operand to the CALL is the address of the function
4255 called. */
4256 addr = TREE_OPERAND (call, 0);
4258 STRIP_NOPS (addr);
4260 /* If this is a readonly function pointer, extract its initial value. */
4261 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4262 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4263 && DECL_INITIAL (addr))
4264 addr = DECL_INITIAL (addr);
4266 /* If the address is just `&f' for some function `f', then we know
4267 that `f' is being called. */
4268 if (TREE_CODE (addr) == ADDR_EXPR
4269 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4270 return TREE_OPERAND (addr, 0);
4272 /* We couldn't figure out what was being called. */
4273 return NULL_TREE;
4276 /* Print debugging information about the obstack O, named STR. */
4278 void
4279 print_obstack_statistics (str, o)
4280 const char *str;
4281 struct obstack *o;
4283 struct _obstack_chunk *chunk = o->chunk;
4284 int n_chunks = 1;
4285 int n_alloc = 0;
4287 n_alloc += o->next_free - chunk->contents;
4288 chunk = chunk->prev;
4289 while (chunk)
4291 n_chunks += 1;
4292 n_alloc += chunk->limit - &chunk->contents[0];
4293 chunk = chunk->prev;
4295 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4296 str, n_alloc, n_chunks);
4299 /* Print debugging information about tree nodes generated during the compile,
4300 and any language-specific information. */
4302 void
4303 dump_tree_statistics ()
4305 #ifdef GATHER_STATISTICS
4306 int i;
4307 int total_nodes, total_bytes;
4308 #endif
4310 fprintf (stderr, "\n??? tree nodes created\n\n");
4311 #ifdef GATHER_STATISTICS
4312 fprintf (stderr, "Kind Nodes Bytes\n");
4313 fprintf (stderr, "-------------------------------------\n");
4314 total_nodes = total_bytes = 0;
4315 for (i = 0; i < (int) all_kinds; i++)
4317 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4318 tree_node_counts[i], tree_node_sizes[i]);
4319 total_nodes += tree_node_counts[i];
4320 total_bytes += tree_node_sizes[i];
4322 fprintf (stderr, "-------------------------------------\n");
4323 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4324 fprintf (stderr, "-------------------------------------\n");
4325 #else
4326 fprintf (stderr, "(No per-node statistics)\n");
4327 #endif
4328 print_type_hash_statistics ();
4329 (*lang_hooks.print_statistics) ();
4332 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4334 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4335 clashes in cases where we can't reliably choose a unique name.
4337 Derived from mkstemp.c in libiberty. */
4339 static void
4340 append_random_chars (template)
4341 char *template;
4343 static const char letters[]
4344 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4345 static unsigned HOST_WIDE_INT value;
4346 unsigned HOST_WIDE_INT v;
4348 if (! value)
4350 struct stat st;
4352 /* VALUE should be unique for each file and must not change between
4353 compiles since this can cause bootstrap comparison errors. */
4355 if (stat (main_input_filename, &st) < 0)
4357 /* This can happen when preprocessed text is shipped between
4358 machines, e.g. with bug reports. Assume that uniqueness
4359 isn't actually an issue. */
4360 value = 1;
4362 else
4364 /* In VMS, ino is an array, so we have to use both values. We
4365 conditionalize that. */
4366 #ifdef VMS
4367 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4368 #else
4369 #define INO_TO_INT(INO) INO
4370 #endif
4371 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4375 template += strlen (template);
4377 v = value;
4379 /* Fill in the random bits. */
4380 template[0] = letters[v % 62];
4381 v /= 62;
4382 template[1] = letters[v % 62];
4383 v /= 62;
4384 template[2] = letters[v % 62];
4385 v /= 62;
4386 template[3] = letters[v % 62];
4387 v /= 62;
4388 template[4] = letters[v % 62];
4389 v /= 62;
4390 template[5] = letters[v % 62];
4392 template[6] = '\0';
4395 /* P is a string that will be used in a symbol. Mask out any characters
4396 that are not valid in that context. */
4398 void
4399 clean_symbol_name (p)
4400 char *p;
4402 for (; *p; p++)
4403 if (! (ISALNUM (*p)
4404 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4405 || *p == '$'
4406 #endif
4407 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4408 || *p == '.'
4409 #endif
4411 *p = '_';
4414 /* Generate a name for a function unique to this translation unit.
4415 TYPE is some string to identify the purpose of this function to the
4416 linker or collect2. */
4418 tree
4419 get_file_function_name_long (type)
4420 const char *type;
4422 char *buf;
4423 const char *p;
4424 char *q;
4426 if (first_global_object_name)
4427 p = first_global_object_name;
4428 else
4430 /* We don't have anything that we know to be unique to this translation
4431 unit, so use what we do have and throw in some randomness. */
4433 const char *name = weak_global_object_name;
4434 const char *file = main_input_filename;
4436 if (! name)
4437 name = "";
4438 if (! file)
4439 file = input_filename;
4441 q = (char *) alloca (7 + strlen (name) + strlen (file));
4443 sprintf (q, "%s%s", name, file);
4444 append_random_chars (q);
4445 p = q;
4448 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4449 + strlen (type));
4451 /* Set up the name of the file-level functions we may need.
4452 Use a global object (which is already required to be unique over
4453 the program) rather than the file name (which imposes extra
4454 constraints). */
4455 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4457 /* Don't need to pull weird characters out of global names. */
4458 if (p != first_global_object_name)
4459 clean_symbol_name (buf + 11);
4461 return get_identifier (buf);
4464 /* If KIND=='I', return a suitable global initializer (constructor) name.
4465 If KIND=='D', return a suitable global clean-up (destructor) name. */
4467 tree
4468 get_file_function_name (kind)
4469 int kind;
4471 char p[2];
4473 p[0] = kind;
4474 p[1] = 0;
4476 return get_file_function_name_long (p);
4479 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4480 The result is placed in BUFFER (which has length BIT_SIZE),
4481 with one bit in each char ('\000' or '\001').
4483 If the constructor is constant, NULL_TREE is returned.
4484 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4486 tree
4487 get_set_constructor_bits (init, buffer, bit_size)
4488 tree init;
4489 char *buffer;
4490 int bit_size;
4492 int i;
4493 tree vals;
4494 HOST_WIDE_INT domain_min
4495 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4496 tree non_const_bits = NULL_TREE;
4498 for (i = 0; i < bit_size; i++)
4499 buffer[i] = 0;
4501 for (vals = TREE_OPERAND (init, 1);
4502 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4504 if (!host_integerp (TREE_VALUE (vals), 0)
4505 || (TREE_PURPOSE (vals) != NULL_TREE
4506 && !host_integerp (TREE_PURPOSE (vals), 0)))
4507 non_const_bits
4508 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4509 else if (TREE_PURPOSE (vals) != NULL_TREE)
4511 /* Set a range of bits to ones. */
4512 HOST_WIDE_INT lo_index
4513 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4514 HOST_WIDE_INT hi_index
4515 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4517 if (lo_index < 0 || lo_index >= bit_size
4518 || hi_index < 0 || hi_index >= bit_size)
4519 abort ();
4520 for (; lo_index <= hi_index; lo_index++)
4521 buffer[lo_index] = 1;
4523 else
4525 /* Set a single bit to one. */
4526 HOST_WIDE_INT index
4527 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4528 if (index < 0 || index >= bit_size)
4530 error ("invalid initializer for bit string");
4531 return NULL_TREE;
4533 buffer[index] = 1;
4536 return non_const_bits;
4539 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4540 The result is placed in BUFFER (which is an array of bytes).
4541 If the constructor is constant, NULL_TREE is returned.
4542 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4544 tree
4545 get_set_constructor_bytes (init, buffer, wd_size)
4546 tree init;
4547 unsigned char *buffer;
4548 int wd_size;
4550 int i;
4551 int set_word_size = BITS_PER_UNIT;
4552 int bit_size = wd_size * set_word_size;
4553 int bit_pos = 0;
4554 unsigned char *bytep = buffer;
4555 char *bit_buffer = (char *) alloca (bit_size);
4556 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4558 for (i = 0; i < wd_size; i++)
4559 buffer[i] = 0;
4561 for (i = 0; i < bit_size; i++)
4563 if (bit_buffer[i])
4565 if (BYTES_BIG_ENDIAN)
4566 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4567 else
4568 *bytep |= 1 << bit_pos;
4570 bit_pos++;
4571 if (bit_pos >= set_word_size)
4572 bit_pos = 0, bytep++;
4574 return non_const_bits;
4577 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4578 /* Complain that the tree code of NODE does not match the expected CODE.
4579 FILE, LINE, and FUNCTION are of the caller. */
4581 void
4582 tree_check_failed (node, code, file, line, function)
4583 const tree node;
4584 enum tree_code code;
4585 const char *file;
4586 int line;
4587 const char *function;
4589 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4590 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4591 function, trim_filename (file), line);
4594 /* Similar to above, except that we check for a class of tree
4595 code, given in CL. */
4597 void
4598 tree_class_check_failed (node, cl, file, line, function)
4599 const tree node;
4600 int cl;
4601 const char *file;
4602 int line;
4603 const char *function;
4605 internal_error
4606 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4607 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4608 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4611 #endif /* ENABLE_TREE_CHECKING */
4613 /* For a new vector type node T, build the information necessary for
4614 debuggint output. */
4616 static void
4617 finish_vector_type (t)
4618 tree t;
4620 layout_type (t);
4623 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4624 tree array = build_array_type (TREE_TYPE (t),
4625 build_index_type (index));
4626 tree rt = make_node (RECORD_TYPE);
4628 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4629 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4630 layout_type (rt);
4631 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4632 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4633 the representation type, and we want to find that die when looking up
4634 the vector type. This is most easily achieved by making the TYPE_UID
4635 numbers equal. */
4636 TYPE_UID (rt) = TYPE_UID (t);
4640 /* Create nodes for all integer types (and error_mark_node) using the sizes
4641 of C datatypes. The caller should call set_sizetype soon after calling
4642 this function to select one of the types as sizetype. */
4644 void
4645 build_common_tree_nodes (signed_char)
4646 int signed_char;
4648 error_mark_node = make_node (ERROR_MARK);
4649 TREE_TYPE (error_mark_node) = error_mark_node;
4651 initialize_sizetypes ();
4653 /* Define both `signed char' and `unsigned char'. */
4654 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4655 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4657 /* Define `char', which is like either `signed char' or `unsigned char'
4658 but not the same as either. */
4659 char_type_node
4660 = (signed_char
4661 ? make_signed_type (CHAR_TYPE_SIZE)
4662 : make_unsigned_type (CHAR_TYPE_SIZE));
4664 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4665 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4666 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4667 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4668 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4669 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4670 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4671 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4673 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4674 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4675 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4676 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4677 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4679 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4680 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4681 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4682 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4683 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4686 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4687 It will create several other common tree nodes. */
4689 void
4690 build_common_tree_nodes_2 (short_double)
4691 int short_double;
4693 /* Define these next since types below may used them. */
4694 integer_zero_node = build_int_2 (0, 0);
4695 integer_one_node = build_int_2 (1, 0);
4696 integer_minus_one_node = build_int_2 (-1, -1);
4698 size_zero_node = size_int (0);
4699 size_one_node = size_int (1);
4700 bitsize_zero_node = bitsize_int (0);
4701 bitsize_one_node = bitsize_int (1);
4702 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4704 void_type_node = make_node (VOID_TYPE);
4705 layout_type (void_type_node);
4707 /* We are not going to have real types in C with less than byte alignment,
4708 so we might as well not have any types that claim to have it. */
4709 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4710 TYPE_USER_ALIGN (void_type_node) = 0;
4712 null_pointer_node = build_int_2 (0, 0);
4713 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4714 layout_type (TREE_TYPE (null_pointer_node));
4716 ptr_type_node = build_pointer_type (void_type_node);
4717 const_ptr_type_node
4718 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4720 float_type_node = make_node (REAL_TYPE);
4721 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4722 layout_type (float_type_node);
4724 double_type_node = make_node (REAL_TYPE);
4725 if (short_double)
4726 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4727 else
4728 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4729 layout_type (double_type_node);
4731 long_double_type_node = make_node (REAL_TYPE);
4732 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4733 layout_type (long_double_type_node);
4735 complex_integer_type_node = make_node (COMPLEX_TYPE);
4736 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4737 layout_type (complex_integer_type_node);
4739 complex_float_type_node = make_node (COMPLEX_TYPE);
4740 TREE_TYPE (complex_float_type_node) = float_type_node;
4741 layout_type (complex_float_type_node);
4743 complex_double_type_node = make_node (COMPLEX_TYPE);
4744 TREE_TYPE (complex_double_type_node) = double_type_node;
4745 layout_type (complex_double_type_node);
4747 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4748 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4749 layout_type (complex_long_double_type_node);
4752 tree t;
4753 BUILD_VA_LIST_TYPE (t);
4755 /* Many back-ends define record types without seting TYPE_NAME.
4756 If we copied the record type here, we'd keep the original
4757 record type without a name. This breaks name mangling. So,
4758 don't copy record types and let c_common_nodes_and_builtins()
4759 declare the type to be __builtin_va_list. */
4760 if (TREE_CODE (t) != RECORD_TYPE)
4761 t = build_type_copy (t);
4763 va_list_type_node = t;
4766 unsigned_V4SI_type_node
4767 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4768 unsigned_V2SI_type_node
4769 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4770 unsigned_V2DI_type_node
4771 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4772 unsigned_V4HI_type_node
4773 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4774 unsigned_V8QI_type_node
4775 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4776 unsigned_V8HI_type_node
4777 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4778 unsigned_V16QI_type_node
4779 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4781 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4782 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4783 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4784 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4785 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4786 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4787 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4788 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4789 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4790 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4791 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4794 /* Returns a vector tree node given a vector mode, the inner type, and
4795 the signness. */
4797 static tree
4798 make_vector (mode, innertype, unsignedp)
4799 enum machine_mode mode;
4800 tree innertype;
4801 int unsignedp;
4803 tree t;
4805 t = make_node (VECTOR_TYPE);
4806 TREE_TYPE (t) = innertype;
4807 TYPE_MODE (t) = mode;
4808 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4809 finish_vector_type (t);
4811 return t;
4814 /* Given an initializer INIT, return TRUE if INIT is zero or some
4815 aggregate of zeros. Otherwise return FALSE. */
4817 bool
4818 initializer_zerop (init)
4819 tree init;
4821 STRIP_NOPS (init);
4823 switch (TREE_CODE (init))
4825 case INTEGER_CST:
4826 return integer_zerop (init);
4827 case REAL_CST:
4828 return real_zerop (init)
4829 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4830 case COMPLEX_CST:
4831 return integer_zerop (init)
4832 || (real_zerop (init)
4833 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4834 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4835 case CONSTRUCTOR:
4837 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4839 tree aggr_init = TREE_OPERAND (init, 1);
4841 while (aggr_init)
4843 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4844 return false;
4845 aggr_init = TREE_CHAIN (aggr_init);
4847 return true;
4849 return false;
4851 default:
4852 return false;
4856 #include "gt-tree.h"