ada: Fix crash during function return analysis
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob6df1c8dedd35e1f7d9fe1840a0dd894c37776081
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Accessibility; use Accessibility;
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Checks; use Checks;
30 with Contracts; use Contracts;
31 with Debug; use Debug;
32 with Einfo; use Einfo;
33 with Einfo.Entities; use Einfo.Entities;
34 with Einfo.Utils; use Einfo.Utils;
35 with Elists; use Elists;
36 with Errout; use Errout;
37 with Expander; use Expander;
38 with Exp_Ch3; use Exp_Ch3;
39 with Exp_Ch6; use Exp_Ch6;
40 with Exp_Ch9; use Exp_Ch9;
41 with Exp_Dbug; use Exp_Dbug;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Freeze; use Freeze;
45 with Ghost; use Ghost;
46 with Inline; use Inline;
47 with Itypes; use Itypes;
48 with Lib.Xref; use Lib.Xref;
49 with Layout; use Layout;
50 with Namet; use Namet;
51 with Lib; use Lib;
52 with Nlists; use Nlists;
53 with Nmake; use Nmake;
54 with Opt; use Opt;
55 with Output; use Output;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch4; use Sem_Ch4;
62 with Sem_Ch5; use Sem_Ch5;
63 with Sem_Ch8; use Sem_Ch8;
64 with Sem_Ch9; use Sem_Ch9;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.Nodes; use Sinfo.Nodes;
83 with Sinfo.Utils; use Sinfo.Utils;
84 with Sinfo.CN; use Sinfo.CN;
85 with Snames; use Snames;
86 with Stringt; use Stringt;
87 with Style;
88 with Stylesw; use Stylesw;
89 with Tbuild; use Tbuild;
90 with Uintp; use Uintp;
91 with Urealp; use Urealp;
92 with Validsw; use Validsw;
93 with Warnsw; use Warnsw;
95 package body Sem_Ch6 is
97 May_Hide_Profile : Boolean := False;
98 -- This flag is used to indicate that two formals in two subprograms being
99 -- checked for conformance differ only in that one is an access parameter
100 -- while the other is of a general access type with the same designated
101 -- type. In this case, if the rest of the signatures match, a call to
102 -- either subprogram may be ambiguous, which is worth a warning. The flag
103 -- is set in Compatible_Types, and the warning emitted in
104 -- New_Overloaded_Entity.
106 -----------------------
107 -- Local Subprograms --
108 -----------------------
110 procedure Analyze_Function_Return (N : Node_Id);
111 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
112 -- applies to a [generic] function.
114 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
115 -- Analyze a generic subprogram body. N is the body to be analyzed, and
116 -- Gen_Id is the defining entity Id for the corresponding spec.
118 procedure Analyze_Null_Procedure
119 (N : Node_Id;
120 Is_Completion : out Boolean);
121 -- A null procedure can be a declaration or (Ada 2012) a completion
123 procedure Analyze_Return_Statement (N : Node_Id);
124 -- Common processing for simple and extended return statements
126 procedure Analyze_Return_Type (N : Node_Id);
127 -- Subsidiary to Process_Formals: analyze subtype mark in function
128 -- specification in a context where the formals are visible and hide
129 -- outer homographs.
131 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
132 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
133 -- that we can use RETURN but not skip the debug output at the end.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Formal_Subprogram_Conformance
157 (New_Id : Entity_Id;
158 Old_Id : Entity_Id;
159 Err_Loc : Node_Id;
160 Errmsg : Boolean;
161 Conforms : out Boolean);
162 -- Core implementation of Check_Formal_Subprogram_Conformance from spec.
163 -- Errmsg can be set to False to not emit error messages.
164 -- Conforms is set to True if there is conformance, False otherwise.
166 procedure Check_Limited_Return
167 (N : Node_Id;
168 Expr : Node_Id;
169 R_Type : Entity_Id);
170 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
171 -- types. Used only for simple return statements. Expr is the expression
172 -- returned.
174 procedure Check_Subprogram_Order (N : Node_Id);
175 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
176 -- the alpha ordering rule for N if this ordering requirement applicable.
178 procedure Check_Returns
179 (HSS : Node_Id;
180 Mode : Character;
181 Err : out Boolean;
182 Proc : Entity_Id := Empty);
183 -- Called to check for missing return statements in a function body, or for
184 -- returns present in a procedure body which has No_Return set. HSS is the
185 -- handled statement sequence for the subprogram body. This procedure
186 -- checks all flow paths to make sure they either have return (Mode = 'F',
187 -- used for functions) or do not have a return (Mode = 'P', used for
188 -- No_Return procedures). The flag Err is set if there are any control
189 -- paths not explicitly terminated by a return in the function case, and is
190 -- True otherwise. Proc is the entity for the procedure case and is used
191 -- in posting the warning message.
193 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
194 -- In Ada 2012, a primitive equality operator for an untagged record type
195 -- must appear before the type is frozen. This procedure checks that this
196 -- rule is met, and otherwise gives an error on the subprogram declaration
197 -- and a warning on the earlier freeze point if it is easy to pinpoint. In
198 -- earlier versions of Ada, the call has not effect, unless compatibility
199 -- warnings are requested by means of Warn_On_Ada_2012_Incompatibility.
201 procedure Enter_Overloaded_Entity (S : Entity_Id);
202 -- This procedure makes S, a new overloaded entity, into the first visible
203 -- entity with that name.
205 function Has_Reliable_Extra_Formals (E : Entity_Id) return Boolean;
206 -- E is the entity for a subprogram spec. Returns False for abstract
207 -- predefined dispatching primitives of Root_Controlled since they
208 -- cannot have extra formals (this is required to build the runtime);
209 -- it also returns False for predefined stream dispatching operations
210 -- not emitted by the frontend. Otherwise returns True.
212 function Is_Non_Overriding_Operation
213 (Prev_E : Entity_Id;
214 New_E : Entity_Id) return Boolean;
215 -- Enforce the rule given in 12.3(18): a private operation in an instance
216 -- overrides an inherited operation only if the corresponding operation
217 -- was overriding in the generic. This needs to be checked for primitive
218 -- operations of types derived (in the generic unit) from formal private
219 -- or formal derived types.
221 procedure Make_Inequality_Operator (S : Entity_Id);
222 -- Create the declaration for an inequality operator that is implicitly
223 -- created by a user-defined equality operator that yields a boolean.
225 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
226 -- Preanalysis of default expressions of subprogram formals. N is the
227 -- expression to be analyzed and T is the expected type.
229 procedure Set_Formal_Mode (Formal_Id : Entity_Id);
230 -- Set proper Ekind to reflect formal mode (in, out, in out), and set
231 -- miscellaneous other attributes.
233 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
234 -- Formal_Id is an formal parameter entity. This procedure deals with
235 -- setting the proper validity status for this entity, which depends on
236 -- the kind of parameter and the validity checking mode.
238 ---------------------------------------------
239 -- Analyze_Abstract_Subprogram_Declaration --
240 ---------------------------------------------
242 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
243 Scop : constant Entity_Id := Current_Scope;
244 Subp_Id : constant Entity_Id :=
245 Analyze_Subprogram_Specification (Specification (N));
247 begin
248 Generate_Definition (Subp_Id);
250 -- Set the SPARK mode from the current context (may be overwritten later
251 -- with explicit pragma).
253 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
254 Set_SPARK_Pragma_Inherited (Subp_Id);
256 -- Preserve relevant elaboration-related attributes of the context which
257 -- are no longer available or very expensive to recompute once analysis,
258 -- resolution, and expansion are over.
260 Mark_Elaboration_Attributes
261 (N_Id => Subp_Id,
262 Checks => True,
263 Warnings => True);
265 Set_Is_Abstract_Subprogram (Subp_Id);
266 New_Overloaded_Entity (Subp_Id);
267 Check_Delayed_Subprogram (Subp_Id);
269 Set_Categorization_From_Scope (Subp_Id, Scop);
271 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
272 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
274 -- Issue a warning if the abstract subprogram is neither a dispatching
275 -- operation nor an operation that overrides an inherited subprogram or
276 -- predefined operator, since this most likely indicates a mistake.
278 elsif Warn_On_Redundant_Constructs
279 and then not Is_Dispatching_Operation (Subp_Id)
280 and then No (Overridden_Operation (Subp_Id))
281 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
282 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
283 then
284 Error_Msg_N
285 ("abstract subprogram is not dispatching or overriding?r?", N);
286 end if;
288 Generate_Reference_To_Formals (Subp_Id);
289 Check_Eliminated (Subp_Id);
291 if Has_Aspects (N) then
292 Analyze_Aspect_Specifications (N, Subp_Id);
293 end if;
294 end Analyze_Abstract_Subprogram_Declaration;
296 ---------------------------------
297 -- Analyze_Expression_Function --
298 ---------------------------------
300 procedure Analyze_Expression_Function (N : Node_Id) is
301 Expr : constant Node_Id := Expression (N);
302 Loc : constant Source_Ptr := Sloc (N);
303 LocX : constant Source_Ptr := Sloc (Expr);
304 Spec : constant Node_Id := Specification (N);
306 -- Local variables
308 Asp : Node_Id;
309 New_Body : Node_Id;
310 New_Spec : Node_Id;
311 Orig_N : Node_Id := Empty;
312 Ret : Node_Id;
313 Typ : Entity_Id := Empty;
315 Def_Id : Entity_Id := Empty;
316 Prev : Entity_Id;
317 -- If the expression is a completion, Prev is the entity whose
318 -- declaration is completed. Def_Id is needed to analyze the spec.
320 begin
321 -- This is one of the occasions on which we transform the tree during
322 -- semantic analysis. If this is a completion, transform the expression
323 -- function into an equivalent subprogram body, and analyze it.
325 -- Expression functions are inlined unconditionally. The back-end will
326 -- determine whether this is possible.
328 Inline_Processing_Required := True;
330 -- Create a specification for the generated body. This must be done
331 -- prior to the analysis of the initial declaration.
333 New_Spec := Copy_Subprogram_Spec (Spec);
334 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
336 -- If there are previous overloadable entities with the same name,
337 -- check whether any of them is completed by the expression function.
338 -- In a generic context a formal subprogram has no completion.
340 if Present (Prev)
341 and then Is_Overloadable (Prev)
342 and then not Is_Formal_Subprogram (Prev)
343 then
344 Def_Id := Analyze_Subprogram_Specification (Spec);
345 Prev := Find_Corresponding_Spec (N);
347 Typ := Etype (Def_Id);
349 -- The previous entity may be an expression function as well, in
350 -- which case the redeclaration is illegal.
352 if Present (Prev)
353 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
354 N_Expression_Function
355 then
356 Error_Msg_Sloc := Sloc (Prev);
357 Error_Msg_N ("& conflicts with declaration#", Def_Id);
358 return;
359 end if;
360 end if;
362 Ret := Make_Simple_Return_Statement (LocX, Expr);
364 -- Remove parens around the expression, so that if the expression will
365 -- appear without them when pretty-printed in error messages.
367 if Paren_Count (Expr) > 0 then
368 Set_Paren_Count (Expr, Paren_Count (Expr) - 1);
369 end if;
371 New_Body :=
372 Make_Subprogram_Body (Loc,
373 Specification => New_Spec,
374 Declarations => Empty_List,
375 Handled_Statement_Sequence =>
376 Make_Handled_Sequence_Of_Statements (LocX,
377 Statements => New_List (Ret)));
378 Set_Was_Expression_Function (New_Body);
380 -- If the expression completes a generic subprogram, we must create a
381 -- separate node for the body, because at instantiation the original
382 -- node of the generic copy must be a generic subprogram body, and
383 -- cannot be a expression function. Otherwise we just rewrite the
384 -- expression with the non-generic body.
386 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
387 Insert_After (N, New_Body);
389 -- Propagate any aspects or pragmas that apply to the expression
390 -- function to the proper body when the expression function acts
391 -- as a completion.
393 Move_Aspects (N, To => New_Body);
395 Relocate_Pragmas_To_Body (New_Body);
397 Rewrite (N, Make_Null_Statement (Loc));
398 Set_Has_Completion (Prev, False);
399 Analyze (N);
400 Analyze (New_Body);
401 Set_Is_Inlined (Prev);
403 elsif Present (Prev)
404 and then Is_Overloadable (Prev)
405 and then not Is_Formal_Subprogram (Prev)
406 then
407 Set_Has_Completion (Prev, False);
408 Set_Is_Inlined (Prev);
410 -- AI12-0103: Expression functions that are a completion freeze their
411 -- expression but don't freeze anything else (unlike regular bodies).
413 -- Note that we cannot defer this freezing to the analysis of the
414 -- expression itself, because a freeze node might appear in a nested
415 -- scope, leading to an elaboration order issue in gigi.
416 -- As elsewhere, we do not emit freeze nodes within a generic unit.
418 if not Inside_A_Generic then
419 Freeze_Expr_Types
420 (Def_Id => Def_Id,
421 Typ => Typ,
422 Expr => Expr,
423 N => N);
424 end if;
426 -- For navigation purposes, indicate that the function is a body
428 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
429 Rewrite (N, New_Body);
431 -- Remove any existing aspects from the original node because the act
432 -- of rewriting causes the list to be shared between the two nodes.
434 Orig_N := Original_Node (N);
435 Remove_Aspects (Orig_N);
437 -- Propagate any pragmas that apply to expression function to the
438 -- proper body when the expression function acts as a completion.
439 -- Aspects are automatically transfered because of node rewriting.
441 Relocate_Pragmas_To_Body (N);
442 Analyze (N);
444 -- Prev is the previous entity with the same name, but it is can
445 -- be an unrelated spec that is not completed by the expression
446 -- function. In that case the relevant entity is the one in the body.
447 -- Not clear that the backend can inline it in this case ???
449 if Has_Completion (Prev) then
451 -- The formals of the expression function are body formals,
452 -- and do not appear in the ali file, which will only contain
453 -- references to the formals of the original subprogram spec.
455 declare
456 F1 : Entity_Id;
457 F2 : Entity_Id;
459 begin
460 F1 := First_Formal (Def_Id);
461 F2 := First_Formal (Prev);
463 while Present (F1) loop
464 Set_Spec_Entity (F1, F2);
465 Next_Formal (F1);
466 Next_Formal (F2);
467 end loop;
468 end;
470 else
471 Set_Is_Inlined (Defining_Entity (New_Body));
472 end if;
474 -- If this is not a completion, create both a declaration and a body, so
475 -- that the expression can be inlined whenever possible.
477 else
478 -- An expression function that is not a completion is not a
479 -- subprogram declaration, and thus cannot appear in a protected
480 -- definition.
482 if Nkind (Parent (N)) = N_Protected_Definition then
483 Error_Msg_N
484 ("an expression function is not a legal protected operation", N);
485 end if;
487 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
489 -- Remove any existing aspects from the original node because the act
490 -- of rewriting causes the list to be shared between the two nodes.
492 Orig_N := Original_Node (N);
493 Remove_Aspects (Orig_N);
495 Analyze (N);
497 -- If aspect SPARK_Mode was specified on the body, it needs to be
498 -- repeated both on the generated spec and the body.
500 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
502 if Present (Asp) then
503 Asp := New_Copy_Tree (Asp);
504 Set_Analyzed (Asp, False);
505 Set_Aspect_Specifications (New_Body, New_List (Asp));
506 end if;
508 Def_Id := Defining_Entity (N);
509 Set_Is_Inlined (Def_Id);
511 Typ := Etype (Def_Id);
513 -- Establish the linkages between the spec and the body. These are
514 -- used when the expression function acts as the prefix of attribute
515 -- 'Access in order to freeze the original expression which has been
516 -- moved to the generated body.
518 Set_Corresponding_Body (N, Defining_Entity (New_Body));
519 Set_Corresponding_Spec (New_Body, Def_Id);
521 -- Within a generic preanalyze the original expression for name
522 -- capture. The body is also generated but plays no role in
523 -- this because it is not part of the original source.
524 -- If this is an ignored Ghost entity, analysis of the generated
525 -- body is needed to hide external references (as is done in
526 -- Analyze_Subprogram_Body) after which the subprogram profile
527 -- can be frozen, which is needed to expand calls to such an ignored
528 -- Ghost subprogram.
530 if Inside_A_Generic then
531 Set_Has_Completion (Def_Id, not Is_Ignored_Ghost_Entity (Def_Id));
532 Push_Scope (Def_Id);
533 Install_Formals (Def_Id);
534 Preanalyze_Spec_Expression (Expr, Typ);
535 End_Scope;
536 else
537 Push_Scope (Def_Id);
538 Install_Formals (Def_Id);
539 Preanalyze_Formal_Expression (Expr, Typ);
540 Check_Limited_Return (Orig_N, Expr, Typ);
541 End_Scope;
542 end if;
544 -- If this is a wrapper created in an instance for a formal
545 -- subprogram, insert body after declaration, to be analyzed when the
546 -- enclosing instance is analyzed.
548 if GNATprove_Mode
549 and then Is_Generic_Actual_Subprogram (Def_Id)
550 then
551 Insert_After (N, New_Body);
553 -- To prevent premature freeze action, insert the new body at the end
554 -- of the current declarations, or at the end of the package spec.
555 -- However, resolve usage names now, to prevent spurious visibility
556 -- on later entities. Note that the function can now be called in
557 -- the current declarative part, which will appear to be prior to the
558 -- presence of the body in the code. There are nevertheless no order
559 -- of elaboration issues because all name resolution has taken place
560 -- at the point of declaration.
562 else
563 declare
564 Decls : List_Id := List_Containing (N);
565 Par : constant Node_Id := Parent (Decls);
567 begin
568 if Nkind (Par) = N_Package_Specification
569 and then Decls = Visible_Declarations (Par)
570 and then not Is_Empty_List (Private_Declarations (Par))
571 then
572 Decls := Private_Declarations (Par);
573 end if;
575 Insert_After (Last (Decls), New_Body);
576 end;
577 end if;
579 -- In the case of an expression function marked with the aspect
580 -- Static, we need to check the requirement that the function's
581 -- expression is a potentially static expression. This is done
582 -- by making a full copy of the expression tree and performing
583 -- a special preanalysis on that tree with the global flag
584 -- Checking_Potentially_Static_Expression enabled. If the
585 -- resulting expression is static, then it's OK, but if not, that
586 -- means the expression violates the requirements of the Ada 2022
587 -- RM in 4.9(3.2/5-3.4/5) and we flag an error.
589 if Is_Static_Function (Def_Id) then
590 declare
591 -- If a potentially static expr like "Parameter / 0"
592 -- is transformed into "(raise Constraint_Error)", then we
593 -- need to copy the Original_Node.
594 function Make_Expr_Copy return Node_Id is
595 (New_Copy_Tree (if Expr in N_Raise_xxx_Error_Id
596 then Original_Node (Expr)
597 else Expr));
598 begin
599 if not Is_Static_Expression (Expr) then
600 declare
601 Exp_Copy : constant Node_Id := Make_Expr_Copy;
602 begin
603 Set_Checking_Potentially_Static_Expression (True);
605 Preanalyze_Formal_Expression (Exp_Copy, Typ);
607 if not Is_Static_Expression (Exp_Copy) then
608 Error_Msg_N
609 ("static expression function requires "
610 & "potentially static expression", Expr);
611 end if;
613 Set_Checking_Potentially_Static_Expression (False);
614 end;
615 end if;
617 -- We also make an additional copy of the expression and
618 -- replace the expression of the expression function with
619 -- this copy, because the currently present expression is
620 -- now associated with the body created for the static
621 -- expression function, which will later be analyzed and
622 -- possibly rewritten, and we need to have the separate
623 -- unanalyzed copy available for use with later static
624 -- calls.
626 Set_Expression
627 (Original_Node (Subprogram_Spec (Def_Id)),
628 Make_Expr_Copy);
630 -- Mark static expression functions as inlined, to ensure
631 -- that even calls with nonstatic actuals will be inlined.
633 Set_Has_Pragma_Inline (Def_Id);
634 Set_Is_Inlined (Def_Id);
635 end;
636 end if;
637 end if;
639 -- Check incorrect use of dynamically tagged expression. This doesn't
640 -- fall out automatically when analyzing the generated function body,
641 -- because Check_Dynamically_Tagged_Expression deliberately ignores
642 -- nodes that don't come from source.
644 if Present (Def_Id)
645 and then Is_Tagged_Type (Typ)
646 then
647 Check_Dynamically_Tagged_Expression
648 (Expr => Expr,
649 Typ => Typ,
650 Related_Nod => Orig_N);
651 end if;
653 -- We must enforce checks for unreferenced formals in our newly
654 -- generated function, so we propagate the referenced flag from the
655 -- original spec to the new spec as well as setting Comes_From_Source.
657 if Present (Parameter_Specifications (New_Spec)) then
658 declare
659 Form_New_Def : Entity_Id;
660 Form_New_Spec : Node_Id;
661 Form_Old_Def : Entity_Id;
662 Form_Old_Spec : Node_Id;
664 begin
665 Form_New_Spec := First (Parameter_Specifications (New_Spec));
666 Form_Old_Spec := First (Parameter_Specifications (Spec));
668 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
669 Form_New_Def := Defining_Identifier (Form_New_Spec);
670 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
672 Set_Comes_From_Source (Form_New_Def, True);
674 -- Because of the usefulness of unreferenced controlling
675 -- formals we exempt them from unreferenced warnings by marking
676 -- them as always referenced.
678 Set_Referenced (Form_Old_Def,
679 (Is_Formal (Form_Old_Def)
680 and then Is_Controlling_Formal (Form_Old_Def))
681 or else Referenced (Form_Old_Def));
683 Next (Form_New_Spec);
684 Next (Form_Old_Spec);
685 end loop;
686 end;
687 end if;
688 end Analyze_Expression_Function;
690 ---------------------------------------
691 -- Analyze_Extended_Return_Statement --
692 ---------------------------------------
694 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
695 begin
696 Analyze_Return_Statement (N);
697 end Analyze_Extended_Return_Statement;
699 ----------------------------
700 -- Analyze_Function_Call --
701 ----------------------------
703 procedure Analyze_Function_Call (N : Node_Id) is
704 Actuals : constant List_Id := Parameter_Associations (N);
705 Func_Nam : constant Node_Id := Name (N);
706 Actual : Node_Id;
708 begin
709 Analyze (Func_Nam);
711 -- A call of the form A.B (X) may be an Ada 2005 call, which is
712 -- rewritten as B (A, X). If the rewriting is successful, the call
713 -- has been analyzed and we just return.
715 if Nkind (Func_Nam) = N_Selected_Component
716 and then Name (N) /= Func_Nam
717 and then Is_Rewrite_Substitution (N)
718 and then Present (Etype (N))
719 then
720 return;
721 end if;
723 -- If error analyzing name, then set Any_Type as result type and return
725 if Etype (Func_Nam) = Any_Type then
726 Set_Etype (N, Any_Type);
727 return;
728 end if;
730 -- Otherwise analyze the parameters
732 Actual := First (Actuals);
733 while Present (Actual) loop
734 Analyze (Actual);
735 Check_Parameterless_Call (Actual);
736 Next (Actual);
737 end loop;
739 Analyze_Call (N);
740 end Analyze_Function_Call;
742 -----------------------------
743 -- Analyze_Function_Return --
744 -----------------------------
746 procedure Analyze_Function_Return (N : Node_Id) is
747 Loc : constant Source_Ptr := Sloc (N);
748 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
749 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
751 R_Type : constant Entity_Id := Etype (Scope_Id);
752 -- Function result subtype
754 procedure Check_No_Return_Expression (Return_Expr : Node_Id);
755 -- Ada 2022: Check that the return expression in a No_Return function
756 -- meets the conditions specified by RM 6.5.1(5.1/5).
758 --------------------------------
759 -- Check_No_Return_Expression --
760 --------------------------------
762 procedure Check_No_Return_Expression (Return_Expr : Node_Id) is
763 Kind : constant Node_Kind := Nkind (Return_Expr);
765 begin
766 if Kind = N_Raise_Expression then
767 return;
769 elsif Kind = N_Function_Call
770 and then Is_Entity_Name (Name (Return_Expr))
771 and then Ekind (Entity (Name (Return_Expr))) in
772 E_Function | E_Generic_Function
773 and then No_Return (Entity (Name (Return_Expr)))
774 then
775 return;
776 end if;
778 Error_Msg_N
779 ("illegal expression in RETURN statement of No_Return function",
780 Return_Expr);
781 Error_Msg_N
782 ("\must be raise expression or call to No_Return (RM 6.5.1(5.1/5))",
783 Return_Expr);
784 end Check_No_Return_Expression;
786 ---------------------
787 -- Local Variables --
788 ---------------------
790 Expr : Node_Id;
791 Obj_Decl : Node_Id := Empty;
793 -- Start of processing for Analyze_Function_Return
795 begin
796 Set_Return_Present (Scope_Id);
798 if Nkind (N) = N_Simple_Return_Statement then
799 Expr := Expression (N);
801 -- Guard against a malformed expression. The parser may have tried to
802 -- recover but the node is not analyzable.
804 if Nkind (Expr) = N_Error then
805 Set_Etype (Expr, Any_Type);
806 Expander_Mode_Save_And_Set (False);
807 return;
809 else
810 -- The resolution of a controlled [extension] aggregate associated
811 -- with a return statement creates a temporary which needs to be
812 -- finalized on function exit. Wrap the return statement inside a
813 -- block so that the finalization machinery can detect this case.
814 -- This early expansion is done only when the return statement is
815 -- not part of a handled sequence of statements.
817 if Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
818 and then Needs_Finalization (R_Type)
819 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
820 then
821 Rewrite (N,
822 Make_Block_Statement (Loc,
823 Handled_Statement_Sequence =>
824 Make_Handled_Sequence_Of_Statements (Loc,
825 Statements => New_List (Relocate_Node (N)))));
827 Analyze (N);
828 return;
829 end if;
831 Analyze (Expr);
833 -- Ada 2005 (AI-251): If the type of the returned object is
834 -- an access to an interface type then we add an implicit type
835 -- conversion to force the displacement of the "this" pointer to
836 -- reference the secondary dispatch table. We cannot delay the
837 -- generation of this implicit conversion until the expansion
838 -- because in this case the type resolution changes the decoration
839 -- of the expression node to match R_Type; by contrast, if the
840 -- returned object is a class-wide interface type then it is too
841 -- early to generate here the implicit conversion since the return
842 -- statement may be rewritten by the expander into an extended
843 -- return statement whose expansion takes care of adding the
844 -- implicit type conversion to displace the pointer to the object.
846 if Expander_Active
847 and then Serious_Errors_Detected = 0
848 and then Is_Access_Type (R_Type)
849 and then Nkind (Expr) not in N_Null | N_Raise_Expression
850 and then Is_Access_Type (Etype (Expr))
851 and then Is_Interface (Designated_Type (R_Type))
852 and then Is_Progenitor (Designated_Type (R_Type),
853 Designated_Type (Etype (Expr)))
854 then
855 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
856 Analyze (Expr);
857 end if;
859 Resolve (Expr, R_Type);
860 Check_Limited_Return (N, Expr, R_Type);
862 Check_Return_Construct_Accessibility (N, Stm_Entity);
864 -- Ada 2022 (AI12-0269): Any return statement that applies to a
865 -- nonreturning function shall be a simple_return_statement with
866 -- an expression that is a raise_expression, or else a call on a
867 -- nonreturning function, or else a parenthesized expression of
868 -- one of these.
870 if Ada_Version >= Ada_2022
871 and then No_Return (Scope_Id)
872 and then Comes_From_Source (N)
873 then
874 Check_No_Return_Expression (Original_Node (Expr));
875 end if;
876 end if;
877 else
878 Obj_Decl := Last (Return_Object_Declarations (N));
880 -- Analyze parts specific to extended_return_statement:
882 declare
883 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
884 HSS : constant Node_Id := Handled_Statement_Sequence (N);
886 begin
887 Expr := Expression (Obj_Decl);
889 -- Note: The check for OK_For_Limited_Init will happen in
890 -- Analyze_Object_Declaration; we treat it as a normal
891 -- object declaration.
893 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
894 Analyze (Obj_Decl);
896 if Present (HSS) then
897 Analyze (HSS);
899 if Present (Exception_Handlers (HSS)) then
901 -- ???Has_Nested_Block_With_Handler needs to be set.
902 -- Probably by creating an actual N_Block_Statement.
903 -- Probably in Expand.
905 null;
906 end if;
907 end if;
909 -- Mark the return object as referenced, since the return is an
910 -- implicit reference of the object.
912 Set_Referenced (Defining_Identifier (Obj_Decl));
914 Check_References (Stm_Entity);
916 Check_Return_Construct_Accessibility (N, Stm_Entity);
918 -- Check RM 6.5 (5.9/3)
920 if Has_Aliased and then not Is_Immutably_Limited_Type (R_Type) then
921 if Ada_Version < Ada_2012
922 and then Warn_On_Ada_2012_Compatibility
923 then
924 Error_Msg_N
925 ("ALIASED only allowed for immutably limited return " &
926 "objects in Ada 2012?y?", N);
928 else
929 Error_Msg_N
930 ("ALIASED only allowed for immutably limited return " &
931 "objects", N);
932 end if;
933 end if;
935 -- Ada 2022 (AI12-0269): Any return statement that applies to a
936 -- nonreturning function shall be a simple_return_statement.
938 if Ada_Version >= Ada_2022
939 and then No_Return (Scope_Id)
940 and then Comes_From_Source (N)
941 then
942 Error_Msg_N
943 ("extended RETURN statement not allowed in No_Return "
944 & "function", N);
945 end if;
946 end;
947 end if;
949 -- Case of Expr present
951 if Present (Expr) then
953 -- Defend against previous errors
955 if Nkind (Expr) = N_Empty
956 or else No (Etype (Expr))
957 then
958 return;
959 end if;
961 -- Apply constraint check. Note that this is done before the implicit
962 -- conversion of the expression done for anonymous access types to
963 -- ensure correct generation of the null-excluding check associated
964 -- with null-excluding expressions found in return statements. We
965 -- don't need a check if the subtype of the return object is the
966 -- same as the result subtype of the function.
968 if Nkind (N) /= N_Extended_Return_Statement
969 or else Nkind (Obj_Decl) /= N_Object_Declaration
970 or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
971 or else Entity (Object_Definition (Obj_Decl)) /= R_Type
972 then
973 Apply_Constraint_Check (Expr, R_Type);
974 end if;
976 -- The return value is converted to the return type of the function,
977 -- which implies a predicate check if the return type is predicated.
978 -- We do not apply the check for an extended return statement because
979 -- Analyze_Object_Declaration has already done it on Obj_Decl above.
980 -- We do not apply the check to a case expression because it will
981 -- be expanded into a series of return statements, each of which
982 -- will receive a predicate check.
984 if Nkind (N) /= N_Extended_Return_Statement
985 and then Nkind (Expr) /= N_Case_Expression
986 then
987 Apply_Predicate_Check (Expr, R_Type);
988 end if;
990 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
991 -- type, apply an implicit conversion of the expression to that type
992 -- to force appropriate static and run-time accessibility checks.
993 -- But we want to apply the checks to an extended return statement
994 -- only once, i.e. not to the simple return statement generated at
995 -- the end of its expansion because, prior to leaving the function,
996 -- the accessibility level of the return object changes to be a level
997 -- determined by the point of call (RM 3.10.2(10.8/3)).
999 if Ada_Version >= Ada_2005
1000 and then Ekind (R_Type) = E_Anonymous_Access_Type
1001 and then (Nkind (N) = N_Extended_Return_Statement
1002 or else not Comes_From_Extended_Return_Statement (N))
1003 then
1004 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1005 Analyze_And_Resolve (Expr, R_Type);
1007 -- If this is a local anonymous access to subprogram, the
1008 -- accessibility check can be applied statically. The return is
1009 -- illegal if the access type of the return expression is declared
1010 -- inside of the subprogram (except if it is the subtype indication
1011 -- of an extended return statement).
1013 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1014 if not Comes_From_Source (Current_Scope)
1015 or else Ekind (Current_Scope) = E_Return_Statement
1016 then
1017 null;
1019 elsif
1020 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1021 then
1022 Error_Msg_N ("cannot return local access to subprogram", N);
1023 end if;
1025 -- The expression cannot be of a formal incomplete type
1027 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1028 and then Is_Generic_Type (Etype (Expr))
1029 then
1030 Error_Msg_N
1031 ("cannot return expression of a formal incomplete type", N);
1032 end if;
1034 -- If the result type is class-wide, then check that the return
1035 -- expression's type is not declared at a deeper level than the
1036 -- function (RM05-6.5(5.6/2)).
1038 if Ada_Version >= Ada_2005
1039 and then Is_Class_Wide_Type (R_Type)
1040 then
1041 if Type_Access_Level (Etype (Expr)) >
1042 Subprogram_Access_Level (Scope_Id)
1043 then
1044 Error_Msg_N
1045 ("level of return expression type is deeper than "
1046 & "class-wide function!", Expr);
1047 end if;
1048 end if;
1050 -- Check incorrect use of dynamically tagged expression
1052 if Is_Tagged_Type (R_Type) then
1053 Check_Dynamically_Tagged_Expression
1054 (Expr => Expr,
1055 Typ => R_Type,
1056 Related_Nod => N);
1057 end if;
1059 -- Perform static accessibility checks for cases involving
1060 -- dereferences of access parameters. Runtime accessibility checks
1061 -- get generated elsewhere.
1063 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1064 and then Is_Limited_View (Etype (Scope_Id))
1065 and then Static_Accessibility_Level (Expr, Zero_On_Dynamic_Level)
1066 > Subprogram_Access_Level (Scope_Id)
1067 then
1068 -- Suppress the message in a generic, where the rewriting
1069 -- is irrelevant.
1071 if Inside_A_Generic then
1072 null;
1074 else
1075 Rewrite (N,
1076 Make_Raise_Program_Error (Loc,
1077 Reason => PE_Accessibility_Check_Failed));
1078 Analyze (N);
1080 Error_Msg_Warn := SPARK_Mode /= On;
1081 Error_Msg_N ("cannot return a local value by reference<<", N);
1082 Error_Msg_N ("\Program_Error [<<", N);
1083 end if;
1084 end if;
1086 if Known_Null (Expr)
1087 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1088 and then Null_Exclusion_Present (Parent (Scope_Id))
1089 then
1090 Apply_Compile_Time_Constraint_Error
1091 (N => Expr,
1092 Msg => "(Ada 2005) null not allowed for "
1093 & "null-excluding return??",
1094 Reason => CE_Null_Not_Allowed);
1095 end if;
1097 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1098 -- has no initializing expression.
1100 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1101 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1102 Subprogram_Access_Level (Scope_Id)
1103 then
1104 Error_Msg_N
1105 ("level of return expression type is deeper than "
1106 & "class-wide function!", Obj_Decl);
1107 end if;
1108 end if;
1109 end Analyze_Function_Return;
1111 -------------------------------------
1112 -- Analyze_Generic_Subprogram_Body --
1113 -------------------------------------
1115 procedure Analyze_Generic_Subprogram_Body
1116 (N : Node_Id;
1117 Gen_Id : Entity_Id)
1119 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1120 Kind : constant Entity_Kind := Ekind (Gen_Id);
1121 Body_Id : Entity_Id;
1122 New_N : Node_Id;
1123 Spec : Node_Id;
1125 begin
1126 -- Copy body and disable expansion while analyzing the generic For a
1127 -- stub, do not copy the stub (which would load the proper body), this
1128 -- will be done when the proper body is analyzed.
1130 if Nkind (N) /= N_Subprogram_Body_Stub then
1131 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1132 Rewrite (N, New_N);
1134 -- Once the contents of the generic copy and the template are
1135 -- swapped, do the same for their respective aspect specifications.
1137 Exchange_Aspects (N, New_N);
1139 -- Collect all contract-related source pragmas found within the
1140 -- template and attach them to the contract of the subprogram body.
1141 -- This contract is used in the capture of global references within
1142 -- annotations.
1144 Create_Generic_Contract (N);
1146 Start_Generic;
1147 end if;
1149 Spec := Specification (N);
1151 -- Within the body of the generic, the subprogram is callable, and
1152 -- behaves like the corresponding non-generic unit.
1154 Body_Id := Defining_Entity (Spec);
1156 if Kind = E_Generic_Procedure
1157 and then Nkind (Spec) /= N_Procedure_Specification
1158 then
1159 Error_Msg_N ("invalid body for generic procedure", Body_Id);
1160 return;
1162 elsif Kind = E_Generic_Function
1163 and then Nkind (Spec) /= N_Function_Specification
1164 then
1165 Error_Msg_N ("invalid body for generic function", Body_Id);
1166 return;
1167 end if;
1169 Set_Corresponding_Body (Gen_Decl, Body_Id);
1171 if Has_Completion (Gen_Id)
1172 and then Nkind (Parent (N)) /= N_Subunit
1173 then
1174 Error_Msg_N ("duplicate generic body", N);
1175 return;
1176 else
1177 Set_Has_Completion (Gen_Id);
1178 end if;
1180 if Nkind (N) = N_Subprogram_Body_Stub then
1181 Mutate_Ekind (Defining_Entity (Specification (N)), Kind);
1182 else
1183 Set_Corresponding_Spec (N, Gen_Id);
1184 end if;
1186 if Nkind (Parent (N)) = N_Compilation_Unit then
1187 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1188 end if;
1190 -- Make generic parameters immediately visible in the body. They are
1191 -- needed to process the formals declarations. Then make the formals
1192 -- visible in a separate step.
1194 Push_Scope (Gen_Id);
1196 declare
1197 E : Entity_Id;
1198 First_Ent : Entity_Id;
1200 begin
1201 First_Ent := First_Entity (Gen_Id);
1203 E := First_Ent;
1204 while Present (E) and then not Is_Formal (E) loop
1205 Install_Entity (E);
1206 Next_Entity (E);
1207 end loop;
1209 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1211 -- Now generic formals are visible, and the specification can be
1212 -- analyzed, for subsequent conformance check.
1214 Body_Id := Analyze_Subprogram_Specification (Spec);
1216 -- Make formal parameters visible
1218 if Present (E) then
1220 -- E is the first formal parameter, we loop through the formals
1221 -- installing them so that they will be visible.
1223 Set_First_Entity (Gen_Id, E);
1224 while Present (E) loop
1225 Install_Entity (E);
1226 Next_Formal (E);
1227 end loop;
1228 end if;
1230 -- Visible generic entity is callable within its own body
1232 Mutate_Ekind (Gen_Id, Ekind (Body_Id));
1233 Reinit_Field_To_Zero (Body_Id, F_Has_Out_Or_In_Out_Parameter,
1234 Old_Ekind =>
1235 (E_Function | E_Procedure |
1236 E_Generic_Function | E_Generic_Procedure => True,
1237 others => False));
1238 Reinit_Field_To_Zero (Body_Id, F_Needs_No_Actuals);
1239 if Ekind (Body_Id) in E_Function | E_Procedure then
1240 Reinit_Field_To_Zero (Body_Id, F_Is_Inlined_Always);
1241 end if;
1242 Mutate_Ekind (Body_Id, E_Subprogram_Body);
1243 Set_Convention (Body_Id, Convention (Gen_Id));
1244 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1245 Set_Scope (Body_Id, Scope (Gen_Id));
1247 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1249 if Nkind (N) = N_Subprogram_Body_Stub then
1251 -- No body to analyze, so restore state of generic unit
1253 Mutate_Ekind (Gen_Id, Kind);
1254 Mutate_Ekind (Body_Id, Kind);
1256 if Present (First_Ent) then
1257 Set_First_Entity (Gen_Id, First_Ent);
1258 end if;
1260 End_Scope;
1261 return;
1262 end if;
1264 -- If this is a compilation unit, it must be made visible explicitly,
1265 -- because the compilation of the declaration, unlike other library
1266 -- unit declarations, does not. If it is not a unit, the following
1267 -- is redundant but harmless.
1269 Set_Is_Immediately_Visible (Gen_Id);
1270 Reference_Body_Formals (Gen_Id, Body_Id);
1272 if Is_Child_Unit (Gen_Id) then
1273 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1274 end if;
1276 Set_Actual_Subtypes (N, Current_Scope);
1278 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1279 Set_SPARK_Pragma_Inherited (Body_Id);
1281 -- Analyze any aspect specifications that appear on the generic
1282 -- subprogram body.
1284 if Has_Aspects (N) then
1285 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1286 end if;
1288 -- Process the contract of the subprogram body after analyzing all
1289 -- the contract-related pragmas within the declarations.
1291 Analyze_Pragmas_In_Declarations (Body_Id);
1292 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1294 -- Continue on with analyzing the declarations and statements once
1295 -- contract expansion is done and we are done expanding contract
1296 -- related wrappers.
1298 Analyze_Declarations (Declarations (N));
1299 Check_Completion;
1301 Analyze (Handled_Statement_Sequence (N));
1302 Save_Global_References (Original_Node (N));
1304 -- Prior to exiting the scope, include generic formals again (if any
1305 -- are present) in the set of local entities.
1307 if Present (First_Ent) then
1308 Set_First_Entity (Gen_Id, First_Ent);
1309 end if;
1311 Check_References (Gen_Id);
1312 end;
1314 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1315 Update_Use_Clause_Chain;
1316 Validate_Categorization_Dependency (N, Gen_Id);
1317 End_Scope;
1318 Check_Subprogram_Order (N);
1320 -- Outside of its body, unit is generic again
1322 Reinit_Field_To_Zero (Gen_Id, F_Has_Nested_Subprogram,
1323 Old_Ekind => (E_Function | E_Procedure => True, others => False));
1324 Mutate_Ekind (Gen_Id, Kind);
1325 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1327 if Style_Check then
1328 Style.Check_Identifier (Body_Id, Gen_Id);
1329 end if;
1331 End_Generic;
1332 end Analyze_Generic_Subprogram_Body;
1334 ----------------------------
1335 -- Analyze_Null_Procedure --
1336 ----------------------------
1338 -- WARNING: This routine manages Ghost regions. Return statements must be
1339 -- replaced by gotos that jump to the end of the routine and restore the
1340 -- Ghost mode.
1342 procedure Analyze_Null_Procedure
1343 (N : Node_Id;
1344 Is_Completion : out Boolean)
1346 Loc : constant Source_Ptr := Sloc (N);
1347 Spec : constant Node_Id := Specification (N);
1349 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1350 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1351 Saved_ISMP : constant Boolean :=
1352 Ignore_SPARK_Mode_Pragmas_In_Instance;
1353 -- Save the Ghost and SPARK mode-related data to restore on exit
1355 Designator : Entity_Id;
1356 Form : Node_Id;
1357 Null_Body : Node_Id := Empty;
1358 Null_Stmt : Node_Id := Null_Statement (Spec);
1359 Prev : Entity_Id;
1361 begin
1362 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1364 -- A null procedure is Ghost when it is stand-alone and is subject to
1365 -- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1366 -- now, to ensure that any nodes generated during analysis and expansion
1367 -- are properly marked as Ghost.
1369 if Present (Prev) then
1370 Mark_And_Set_Ghost_Body (N, Prev);
1371 end if;
1373 -- Capture the profile of the null procedure before analysis, for
1374 -- expansion at the freeze point and at each point of call. The body is
1375 -- used if the procedure has preconditions, or if it is a completion. In
1376 -- the first case the body is analyzed at the freeze point, in the other
1377 -- it replaces the null procedure declaration.
1379 -- For a null procedure that comes from source, a NULL statement is
1380 -- provided by the parser, which carries the source location of the
1381 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1382 -- from expansion, create one now.
1384 if No (Null_Stmt) then
1385 Null_Stmt := Make_Null_Statement (Loc);
1386 end if;
1388 Null_Body :=
1389 Make_Subprogram_Body (Loc,
1390 Specification => New_Copy_Tree (Spec),
1391 Declarations => New_List,
1392 Handled_Statement_Sequence =>
1393 Make_Handled_Sequence_Of_Statements (Loc,
1394 Statements => New_List (Null_Stmt)));
1396 -- Create new entities for body and formals
1398 Set_Defining_Unit_Name (Specification (Null_Body),
1399 Make_Defining_Identifier
1400 (Sloc (Defining_Entity (N)),
1401 Chars (Defining_Entity (N))));
1403 Form := First (Parameter_Specifications (Specification (Null_Body)));
1404 while Present (Form) loop
1405 Set_Defining_Identifier (Form,
1406 Make_Defining_Identifier
1407 (Sloc (Defining_Identifier (Form)),
1408 Chars (Defining_Identifier (Form))));
1409 Next (Form);
1410 end loop;
1412 -- Determine whether the null procedure may be a completion of a generic
1413 -- subprogram, in which case we use the new null body as the completion
1414 -- and set minimal semantic information on the original declaration,
1415 -- which is rewritten as a null statement.
1417 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1418 Insert_Before (N, Null_Body);
1419 Mutate_Ekind (Defining_Entity (N), Ekind (Prev));
1421 Rewrite (N, Make_Null_Statement (Loc));
1422 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1423 Is_Completion := True;
1425 -- Mark the newly generated subprogram body as trivial
1427 Set_Is_Trivial_Subprogram
1428 (Defining_Unit_Name (Specification (Null_Body)));
1430 goto Leave;
1432 else
1433 -- Resolve the types of the formals now, because the freeze point may
1434 -- appear in a different context, e.g. an instantiation.
1436 Form := First (Parameter_Specifications (Specification (Null_Body)));
1437 while Present (Form) loop
1438 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1439 Find_Type (Parameter_Type (Form));
1441 elsif No (Access_To_Subprogram_Definition
1442 (Parameter_Type (Form)))
1443 then
1444 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1446 -- The case of a null procedure with a formal that is an
1447 -- access-to-subprogram type, and that is used as an actual
1448 -- in an instantiation is left to the enthusiastic reader.
1450 else
1451 null;
1452 end if;
1454 Next (Form);
1455 end loop;
1456 end if;
1458 -- If there are previous overloadable entities with the same name, check
1459 -- whether any of them is completed by the null procedure.
1461 if Present (Prev) and then Is_Overloadable (Prev) then
1462 Designator := Analyze_Subprogram_Specification (Spec);
1463 Prev := Find_Corresponding_Spec (N);
1464 end if;
1466 if No (Prev) or else not Comes_From_Source (Prev) then
1467 Designator := Analyze_Subprogram_Specification (Spec);
1468 Set_Has_Completion (Designator);
1470 -- Signal to caller that this is a procedure declaration
1472 Is_Completion := False;
1474 -- Null procedures are always inlined, but generic formal subprograms
1475 -- which appear as such in the internal instance of formal packages,
1476 -- need no completion and are not marked Inline.
1478 if Expander_Active
1479 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1480 then
1481 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1482 Set_Body_To_Inline (N, Null_Body);
1483 Set_Is_Inlined (Designator);
1484 end if;
1486 else
1487 -- The null procedure is a completion. We unconditionally rewrite
1488 -- this as a null body (even if expansion is not active), because
1489 -- there are various error checks that are applied on this body
1490 -- when it is analyzed (e.g. correct aspect placement).
1492 if Has_Completion (Prev) then
1493 Error_Msg_Sloc := Sloc (Prev);
1494 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1495 end if;
1497 Check_Previous_Null_Procedure (N, Prev);
1499 Is_Completion := True;
1500 Rewrite (N, Null_Body);
1501 Analyze (N);
1502 end if;
1504 <<Leave>>
1505 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1506 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1507 end Analyze_Null_Procedure;
1509 -----------------------------
1510 -- Analyze_Operator_Symbol --
1511 -----------------------------
1513 -- An operator symbol such as "+" or "and" may appear in context where the
1514 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1515 -- is just a string, as in (conjunction = "or"). In these cases the parser
1516 -- generates this node, and the semantics does the disambiguation. Other
1517 -- such case are actuals in an instantiation, the generic unit in an
1518 -- instantiation, pragma arguments, and aspect specifications.
1520 procedure Analyze_Operator_Symbol (N : Node_Id) is
1521 Par : constant Node_Id := Parent (N);
1523 Maybe_Aspect_Spec : Node_Id := Par;
1524 begin
1525 if Nkind (Maybe_Aspect_Spec) /= N_Aspect_Specification then
1526 -- deal with N_Aggregate nodes
1527 Maybe_Aspect_Spec := Parent (Maybe_Aspect_Spec);
1528 end if;
1530 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1531 or else Nkind (Par) = N_Function_Instantiation
1532 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1533 or else (Nkind (Par) = N_Pragma_Argument_Association
1534 and then not Is_Pragma_String_Literal (Par))
1535 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1536 or else (Nkind (Par) = N_Attribute_Reference
1537 and then Attribute_Name (Par) /= Name_Value)
1538 or else (Nkind (Maybe_Aspect_Spec) = N_Aspect_Specification
1539 and then Get_Aspect_Id (Maybe_Aspect_Spec)
1541 -- Include aspects that can be specified by a
1542 -- subprogram name, which can be an operator.
1544 in Aspect_Stable_Properties
1545 | Aspect_Integer_Literal
1546 | Aspect_Real_Literal
1547 | Aspect_String_Literal
1548 | Aspect_Aggregate)
1549 then
1550 Find_Direct_Name (N);
1552 else
1553 Change_Operator_Symbol_To_String_Literal (N);
1554 Analyze (N);
1555 end if;
1556 end Analyze_Operator_Symbol;
1558 -----------------------------------
1559 -- Analyze_Parameter_Association --
1560 -----------------------------------
1562 procedure Analyze_Parameter_Association (N : Node_Id) is
1563 begin
1564 Analyze (Explicit_Actual_Parameter (N));
1565 end Analyze_Parameter_Association;
1567 ----------------------------
1568 -- Analyze_Procedure_Call --
1569 ----------------------------
1571 -- WARNING: This routine manages Ghost regions. Return statements must be
1572 -- replaced by gotos that jump to the end of the routine and restore the
1573 -- Ghost mode.
1575 procedure Analyze_Procedure_Call (N : Node_Id) is
1576 procedure Analyze_Call_And_Resolve;
1577 -- Do Analyze and Resolve calls for procedure call. At the end, check
1578 -- for illegal order dependence.
1579 -- ??? where is the check for illegal order dependencies?
1581 ------------------------------
1582 -- Analyze_Call_And_Resolve --
1583 ------------------------------
1585 procedure Analyze_Call_And_Resolve is
1586 begin
1587 if Nkind (N) = N_Procedure_Call_Statement then
1588 Analyze_Call (N);
1589 Resolve (N, Standard_Void_Type);
1590 else
1591 Analyze (N);
1592 end if;
1593 end Analyze_Call_And_Resolve;
1595 -- Local variables
1597 Actuals : constant List_Id := Parameter_Associations (N);
1598 Loc : constant Source_Ptr := Sloc (N);
1599 P : constant Node_Id := Name (N);
1601 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1602 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1603 -- Save the Ghost-related attributes to restore on exit
1605 Actual : Node_Id;
1606 New_N : Node_Id;
1608 -- Start of processing for Analyze_Procedure_Call
1610 begin
1611 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1612 -- a procedure call or an entry call. The prefix may denote an access
1613 -- to subprogram type, in which case an implicit dereference applies.
1614 -- If the prefix is an indexed component (without implicit dereference)
1615 -- then the construct denotes a call to a member of an entire family.
1616 -- If the prefix is a simple name, it may still denote a call to a
1617 -- parameterless member of an entry family. Resolution of these various
1618 -- interpretations is delicate.
1620 -- Do not analyze machine code statements to avoid rejecting them in
1621 -- CodePeer mode.
1623 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1624 Set_Etype (P, Standard_Void_Type);
1625 else
1626 Analyze (P);
1627 end if;
1629 -- If this is a call of the form Obj.Op, the call may have been analyzed
1630 -- and possibly rewritten into a block, in which case we are done.
1632 if Analyzed (N) then
1633 return;
1635 -- If there is an error analyzing the name (which may have been
1636 -- rewritten if the original call was in prefix notation) then error
1637 -- has been emitted already, mark node and return.
1639 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1640 Set_Etype (N, Any_Type);
1641 return;
1642 end if;
1644 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1645 -- Set the mode now to ensure that any nodes generated during analysis
1646 -- and expansion are properly marked as Ghost.
1648 Mark_And_Set_Ghost_Procedure_Call (N);
1650 -- Otherwise analyze the parameters
1652 Actual := First (Actuals);
1654 while Present (Actual) loop
1655 Analyze (Actual);
1656 Check_Parameterless_Call (Actual);
1657 Next (Actual);
1658 end loop;
1660 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1662 if Nkind (P) = N_Attribute_Reference
1663 and then Attribute_Name (P) in Name_Elab_Spec
1664 | Name_Elab_Body
1665 | Name_Elab_Subp_Body
1666 then
1667 if Present (Actuals) then
1668 Error_Msg_N
1669 ("no parameters allowed for this call", First (Actuals));
1670 goto Leave;
1671 end if;
1673 Set_Etype (N, Standard_Void_Type);
1674 Set_Analyzed (N);
1676 elsif Is_Entity_Name (P)
1677 and then Is_Record_Type (Etype (Entity (P)))
1678 and then Remote_AST_I_Dereference (P)
1679 then
1680 goto Leave;
1682 elsif Is_Entity_Name (P)
1683 and then Ekind (Entity (P)) /= E_Entry_Family
1684 then
1685 if Is_Access_Type (Etype (P))
1686 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1687 and then No (Actuals)
1688 and then Comes_From_Source (N)
1689 then
1690 Error_Msg_N ("missing explicit dereference in call", N);
1692 elsif Ekind (Entity (P)) = E_Operator then
1693 Error_Msg_Name_1 := Chars (P);
1694 Error_Msg_N ("operator % cannot be used as a procedure", N);
1695 end if;
1697 Analyze_Call_And_Resolve;
1699 -- If the prefix is the simple name of an entry family, this is a
1700 -- parameterless call from within the task body itself.
1702 elsif Is_Entity_Name (P)
1703 and then Nkind (P) = N_Identifier
1704 and then Ekind (Entity (P)) = E_Entry_Family
1705 and then Present (Actuals)
1706 and then No (Next (First (Actuals)))
1707 then
1708 -- Can be call to parameterless entry family. What appears to be the
1709 -- sole argument is in fact the entry index. Rewrite prefix of node
1710 -- accordingly. Source representation is unchanged by this
1711 -- transformation.
1713 New_N :=
1714 Make_Indexed_Component (Loc,
1715 Prefix =>
1716 Make_Selected_Component (Loc,
1717 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1718 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1719 Expressions => Actuals);
1720 Set_Name (N, New_N);
1721 Set_Etype (New_N, Standard_Void_Type);
1722 Set_Parameter_Associations (N, No_List);
1723 Analyze_Call_And_Resolve;
1725 elsif Nkind (P) = N_Explicit_Dereference then
1726 if Ekind (Etype (P)) = E_Subprogram_Type then
1727 Analyze_Call_And_Resolve;
1728 else
1729 Error_Msg_N ("expect access to procedure in call", P);
1730 end if;
1732 -- The name can be a selected component or an indexed component that
1733 -- yields an access to subprogram. Such a prefix is legal if the call
1734 -- has parameter associations.
1736 elsif Is_Access_Type (Etype (P))
1737 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1738 then
1739 if Present (Actuals) then
1740 Analyze_Call_And_Resolve;
1741 else
1742 Error_Msg_N ("missing explicit dereference in call", N);
1743 end if;
1745 -- If not an access to subprogram, then the prefix must resolve to the
1746 -- name of an entry, entry family, or protected operation.
1748 -- For the case of a simple entry call, P is a selected component where
1749 -- the prefix is the task and the selector name is the entry. A call to
1750 -- a protected procedure will have the same syntax. If the protected
1751 -- object contains overloaded operations, the entity may appear as a
1752 -- function, the context will select the operation whose type is Void.
1754 elsif Nkind (P) = N_Selected_Component
1755 and then Ekind (Entity (Selector_Name (P)))
1756 in E_Entry | E_Function | E_Procedure
1757 then
1758 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1759 -- in prefix notation may still be missing its controlling argument,
1760 -- so perform the transformation now.
1762 if SPARK_Mode = On and then In_Inlined_Body then
1763 declare
1764 Subp : constant Entity_Id := Entity (Selector_Name (P));
1765 Typ : constant Entity_Id := Etype (Prefix (P));
1767 begin
1768 if Is_Tagged_Type (Typ)
1769 and then Present (First_Formal (Subp))
1770 and then (Etype (First_Formal (Subp)) = Typ
1771 or else
1772 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1773 and then Try_Object_Operation (P)
1774 then
1775 goto Leave;
1777 else
1778 Analyze_Call_And_Resolve;
1779 end if;
1780 end;
1782 else
1783 Analyze_Call_And_Resolve;
1784 end if;
1786 elsif Nkind (P) = N_Selected_Component
1787 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1788 and then Present (Actuals)
1789 and then No (Next (First (Actuals)))
1790 then
1791 -- Can be call to parameterless entry family. What appears to be the
1792 -- sole argument is in fact the entry index. Rewrite prefix of node
1793 -- accordingly. Source representation is unchanged by this
1794 -- transformation.
1796 New_N :=
1797 Make_Indexed_Component (Loc,
1798 Prefix => New_Copy (P),
1799 Expressions => Actuals);
1800 Set_Name (N, New_N);
1801 Set_Etype (New_N, Standard_Void_Type);
1802 Set_Parameter_Associations (N, No_List);
1803 Analyze_Call_And_Resolve;
1805 -- For the case of a reference to an element of an entry family, P is
1806 -- an indexed component whose prefix is a selected component (task and
1807 -- entry family), and whose index is the entry family index.
1809 elsif Nkind (P) = N_Indexed_Component
1810 and then Nkind (Prefix (P)) = N_Selected_Component
1811 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1812 then
1813 Analyze_Call_And_Resolve;
1815 -- If the prefix is the name of an entry family, it is a call from
1816 -- within the task body itself.
1818 elsif Nkind (P) = N_Indexed_Component
1819 and then Nkind (Prefix (P)) = N_Identifier
1820 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1821 then
1822 New_N :=
1823 Make_Selected_Component (Loc,
1824 Prefix =>
1825 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1826 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1827 Rewrite (Prefix (P), New_N);
1828 Analyze (P);
1829 Analyze_Call_And_Resolve;
1831 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1832 -- procedure name, so the construct can only be a qualified expression.
1834 elsif Nkind (P) = N_Qualified_Expression
1835 and then Ada_Version >= Ada_2012
1836 then
1837 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1838 Analyze (N);
1840 -- Anything else is an error
1842 else
1843 Error_Msg_N ("invalid procedure or entry call", N);
1845 -- Specialize the error message in the case where both a primitive
1846 -- operation and a record component are visible at the same time.
1848 if Nkind (P) = N_Selected_Component
1849 and then Is_Entity_Name (Selector_Name (P))
1850 then
1851 declare
1852 Sel : constant Entity_Id := Entity (Selector_Name (P));
1853 begin
1854 if Ekind (Sel) = E_Component
1855 and then Present (Homonym (Sel))
1856 and then Ekind (Homonym (Sel)) = E_Procedure
1857 then
1858 Error_Msg_NE ("\component & conflicts with"
1859 & " homonym procedure (RM 4.1.3 (9.2/3))",
1860 Selector_Name (P), Sel);
1861 end if;
1862 end;
1863 end if;
1864 end if;
1866 <<Leave>>
1867 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1868 end Analyze_Procedure_Call;
1870 ------------------------------
1871 -- Analyze_Return_Statement --
1872 ------------------------------
1874 procedure Analyze_Return_Statement (N : Node_Id) is
1875 pragma Assert
1876 (Nkind (N) in N_Extended_Return_Statement | N_Simple_Return_Statement);
1878 Returns_Object : constant Boolean :=
1879 Nkind (N) = N_Extended_Return_Statement
1880 or else
1881 (Nkind (N) = N_Simple_Return_Statement
1882 and then Present (Expression (N)));
1883 -- True if we're returning something; that is, "return <expression>;"
1884 -- or "return Result : T [:= ...]". False for "return;". Used for error
1885 -- checking: If Returns_Object is True, N should apply to a function
1886 -- body; otherwise N should apply to a procedure body, entry body,
1887 -- accept statement, or extended return statement.
1889 function Find_What_It_Applies_To return Entity_Id;
1890 -- Find the entity representing the innermost enclosing body, accept
1891 -- statement, or extended return statement. If the result is a callable
1892 -- construct or extended return statement, then this will be the value
1893 -- of the Return_Applies_To attribute. Otherwise, the program is
1894 -- illegal. See RM-6.5(4/2).
1896 -----------------------------
1897 -- Find_What_It_Applies_To --
1898 -----------------------------
1900 function Find_What_It_Applies_To return Entity_Id is
1901 Result : Entity_Id := Empty;
1903 begin
1904 -- Loop outward through the Scope_Stack, skipping blocks, and loops
1906 for J in reverse 0 .. Scope_Stack.Last loop
1907 Result := Scope_Stack.Table (J).Entity;
1908 exit when Ekind (Result) not in E_Block | E_Loop;
1909 end loop;
1911 pragma Assert (Present (Result));
1912 return Result;
1913 end Find_What_It_Applies_To;
1915 -- Local declarations
1917 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1918 Kind : constant Entity_Kind := Ekind (Scope_Id);
1919 Loc : constant Source_Ptr := Sloc (N);
1920 Stm_Entity : constant Entity_Id :=
1921 New_Internal_Entity
1922 (E_Return_Statement, Current_Scope, Loc, 'R');
1924 -- Start of processing for Analyze_Return_Statement
1926 begin
1927 Set_Return_Statement_Entity (N, Stm_Entity);
1929 Set_Etype (Stm_Entity, Standard_Void_Type);
1930 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1932 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1933 -- (4/2): an inner return statement will apply to this extended return.
1935 if Nkind (N) = N_Extended_Return_Statement then
1936 Push_Scope (Stm_Entity);
1937 end if;
1939 -- Check that pragma No_Return is obeyed. Don't complain about the
1940 -- implicitly-generated return that is placed at the end.
1942 if No_Return (Scope_Id)
1943 and then Kind in E_Procedure | E_Generic_Procedure
1944 and then Comes_From_Source (N)
1945 then
1946 Error_Msg_N
1947 ("RETURN statement not allowed in No_Return procedure", N);
1948 end if;
1950 -- Warn on any unassigned OUT parameters if in procedure
1952 if Ekind (Scope_Id) = E_Procedure then
1953 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1954 end if;
1956 -- Check that functions return objects, and other things do not
1958 if Kind in E_Function | E_Generic_Function then
1959 if not Returns_Object then
1960 Error_Msg_N ("missing expression in return from function", N);
1961 end if;
1963 elsif Kind in E_Procedure | E_Generic_Procedure then
1964 if Returns_Object then
1965 Error_Msg_N ("procedure cannot return value (use function)", N);
1966 end if;
1968 elsif Kind in E_Entry | E_Entry_Family then
1969 if Returns_Object then
1970 if Is_Protected_Type (Scope (Scope_Id)) then
1971 Error_Msg_N ("entry body cannot return value", N);
1972 else
1973 Error_Msg_N ("accept statement cannot return value", N);
1974 end if;
1975 end if;
1977 elsif Kind = E_Return_Statement then
1979 -- We are nested within another return statement, which must be an
1980 -- extended_return_statement.
1982 if Returns_Object then
1983 if Nkind (N) = N_Extended_Return_Statement then
1984 Error_Msg_N
1985 ("extended return statement cannot be nested (use `RETURN;`)",
1988 -- Case of a simple return statement with a value inside extended
1989 -- return statement.
1991 else
1992 Error_Msg_N
1993 ("return nested in extended return statement cannot return "
1994 & "value (use `RETURN;`)", N);
1995 end if;
1996 end if;
1998 else
1999 Error_Msg_N ("illegal context for return statement", N);
2000 end if;
2002 if Kind in E_Function | E_Generic_Function then
2003 Analyze_Function_Return (N);
2005 elsif Kind in E_Procedure | E_Generic_Procedure then
2006 Set_Return_Present (Scope_Id);
2007 end if;
2009 if Nkind (N) = N_Extended_Return_Statement then
2010 End_Scope;
2011 end if;
2013 Kill_Current_Values (Last_Assignment_Only => True);
2014 Check_Unreachable_Code (N);
2016 Analyze_Dimension (N);
2017 end Analyze_Return_Statement;
2019 -----------------------------------
2020 -- Analyze_Return_When_Statement --
2021 -----------------------------------
2023 procedure Analyze_Return_When_Statement (N : Node_Id) is
2024 begin
2025 -- Verify the condition is a Boolean expression
2027 Analyze_And_Resolve (Condition (N), Any_Boolean);
2028 Check_Unset_Reference (Condition (N));
2029 end Analyze_Return_When_Statement;
2031 -------------------------------------
2032 -- Analyze_Simple_Return_Statement --
2033 -------------------------------------
2035 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2036 begin
2037 if Present (Expression (N)) then
2038 Mark_Coextensions (N, Expression (N));
2039 end if;
2041 Analyze_Return_Statement (N);
2042 end Analyze_Simple_Return_Statement;
2044 -------------------------
2045 -- Analyze_Return_Type --
2046 -------------------------
2048 procedure Analyze_Return_Type (N : Node_Id) is
2049 Designator : constant Entity_Id := Defining_Entity (N);
2050 Typ : Entity_Id;
2052 begin
2053 -- Normal case where result definition does not indicate an error
2055 if Result_Definition (N) /= Error then
2056 if Nkind (Result_Definition (N)) = N_Access_Definition then
2058 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2060 declare
2061 AD : constant Node_Id :=
2062 Access_To_Subprogram_Definition (Result_Definition (N));
2063 begin
2064 if Present (AD) and then Protected_Present (AD) then
2065 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2066 else
2067 Typ := Access_Definition (N, Result_Definition (N));
2068 end if;
2069 end;
2071 Set_Parent (Typ, Result_Definition (N));
2072 Set_Is_Local_Anonymous_Access (Typ);
2073 Set_Etype (Designator, Typ);
2075 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2077 Null_Exclusion_Static_Checks (N);
2079 -- Subtype_Mark case
2081 else
2082 Find_Type (Result_Definition (N));
2083 Typ := Entity (Result_Definition (N));
2084 Set_Etype (Designator, Typ);
2086 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2088 Null_Exclusion_Static_Checks (N);
2090 -- If a null exclusion is imposed on the result type, then create
2091 -- a null-excluding itype (an access subtype) and use it as the
2092 -- function's Etype. Note that the null exclusion checks are done
2093 -- right before this, because they don't get applied to types that
2094 -- do not come from source.
2096 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2097 Set_Etype (Designator,
2098 Create_Null_Excluding_Itype
2099 (T => Typ,
2100 Related_Nod => N,
2101 Scope_Id => Scope (Current_Scope)));
2103 -- The new subtype must be elaborated before use because
2104 -- it is visible outside of the function. However its base
2105 -- type may not be frozen yet, so the reference that will
2106 -- force elaboration must be attached to the freezing of
2107 -- the base type.
2109 -- If the return specification appears on a proper body,
2110 -- the subtype will have been created already on the spec.
2112 if Is_Frozen (Typ) then
2113 if Nkind (Parent (N)) = N_Subprogram_Body
2114 and then Nkind (Parent (Parent (N))) = N_Subunit
2115 then
2116 null;
2117 else
2118 Build_Itype_Reference (Etype (Designator), Parent (N));
2119 end if;
2121 else
2122 declare
2123 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2124 begin
2125 Set_Itype (IR, Etype (Designator));
2126 Append_Freeze_Action (Typ, IR);
2127 end;
2128 end if;
2130 else
2131 Set_Etype (Designator, Typ);
2132 end if;
2134 if Ekind (Typ) = E_Incomplete_Type
2135 or else (Is_Class_Wide_Type (Typ)
2136 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2137 then
2138 -- AI05-0151: Tagged incomplete types are allowed in all formal
2139 -- parts. Untagged incomplete types are not allowed in bodies.
2140 -- As a consequence, limited views cannot appear in a basic
2141 -- declaration that is itself within a body, because there is
2142 -- no point at which the non-limited view will become visible.
2144 if Ada_Version >= Ada_2012 then
2145 if From_Limited_With (Typ) and then In_Package_Body then
2146 Error_Msg_NE
2147 ("invalid use of incomplete type&",
2148 Result_Definition (N), Typ);
2150 -- The return type of a subprogram body cannot be of a
2151 -- formal incomplete type.
2153 elsif Is_Generic_Type (Typ)
2154 and then Nkind (Parent (N)) = N_Subprogram_Body
2155 then
2156 Error_Msg_N
2157 ("return type cannot be a formal incomplete type",
2158 Result_Definition (N));
2160 elsif Is_Class_Wide_Type (Typ)
2161 and then Is_Generic_Type (Root_Type (Typ))
2162 and then Nkind (Parent (N)) = N_Subprogram_Body
2163 then
2164 Error_Msg_N
2165 ("return type cannot be a formal incomplete type",
2166 Result_Definition (N));
2168 elsif Is_Tagged_Type (Typ) then
2169 null;
2171 -- Use is legal in a thunk generated for an operation
2172 -- inherited from a progenitor.
2174 elsif Is_Thunk (Designator)
2175 and then Present (Non_Limited_View (Typ))
2176 then
2177 null;
2179 elsif Nkind (Parent (N)) = N_Subprogram_Body
2180 or else Nkind (Parent (Parent (N))) in
2181 N_Accept_Statement | N_Entry_Body
2182 then
2183 Error_Msg_NE
2184 ("invalid use of untagged incomplete type&",
2185 Designator, Typ);
2186 end if;
2188 -- The type must be completed in the current package. This
2189 -- is checked at the end of the package declaration when
2190 -- Taft-amendment types are identified. If the return type
2191 -- is class-wide, there is no required check, the type can
2192 -- be a bona fide TAT.
2194 if Ekind (Scope (Current_Scope)) = E_Package
2195 and then In_Private_Part (Scope (Current_Scope))
2196 and then not Is_Class_Wide_Type (Typ)
2197 then
2198 Append_Elmt (Designator, Private_Dependents (Typ));
2199 end if;
2201 else
2202 Error_Msg_NE
2203 ("invalid use of incomplete type&", Designator, Typ);
2204 end if;
2205 end if;
2206 end if;
2208 -- Case where result definition does indicate an error
2210 else
2211 Set_Etype (Designator, Any_Type);
2212 end if;
2213 end Analyze_Return_Type;
2215 -----------------------------
2216 -- Analyze_Subprogram_Body --
2217 -----------------------------
2219 procedure Analyze_Subprogram_Body (N : Node_Id) is
2220 Loc : constant Source_Ptr := Sloc (N);
2221 Body_Spec : constant Node_Id := Specification (N);
2222 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2224 begin
2225 if Debug_Flag_C then
2226 Write_Str ("==> subprogram body ");
2227 Write_Name (Chars (Body_Id));
2228 Write_Str (" from ");
2229 Write_Location (Loc);
2230 Write_Eol;
2231 Indent;
2232 end if;
2234 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2236 -- The real work is split out into the helper, so it can do "return;"
2237 -- without skipping the debug output:
2239 Analyze_Subprogram_Body_Helper (N);
2241 if Debug_Flag_C then
2242 Outdent;
2243 Write_Str ("<== subprogram body ");
2244 Write_Name (Chars (Body_Id));
2245 Write_Str (" from ");
2246 Write_Location (Loc);
2247 Write_Eol;
2248 end if;
2249 end Analyze_Subprogram_Body;
2251 ------------------------------------
2252 -- Analyze_Subprogram_Body_Helper --
2253 ------------------------------------
2255 -- This procedure is called for regular subprogram bodies, generic bodies,
2256 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2257 -- specification matters, and is used to create a proper declaration for
2258 -- the subprogram, or to perform conformance checks.
2260 -- WARNING: This routine manages Ghost regions. Return statements must be
2261 -- replaced by gotos that jump to the end of the routine and restore the
2262 -- Ghost mode.
2264 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2265 Body_Spec : Node_Id := Specification (N);
2266 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2267 Loc : constant Source_Ptr := Sloc (N);
2268 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2270 Body_Nod : Node_Id := Empty;
2271 Minimum_Acc_Objs : List_Id := No_List;
2273 Conformant : Boolean;
2274 Desig_View : Entity_Id := Empty;
2275 Exch_Views : Elist_Id := No_Elist;
2276 Mask_Types : Elist_Id := No_Elist;
2277 Prot_Typ : Entity_Id := Empty;
2278 Spec_Decl : Node_Id := Empty;
2279 Spec_Id : Entity_Id := Empty;
2281 Last_Real_Spec_Entity : Entity_Id := Empty;
2282 -- When we analyze a separate spec, the entity chain ends up containing
2283 -- the formals, as well as any itypes generated during analysis of the
2284 -- default expressions for parameters, or the arguments of associated
2285 -- precondition/postcondition pragmas (which are analyzed in the context
2286 -- of the spec since they have visibility on formals).
2288 -- These entities belong with the spec and not the body. However we do
2289 -- the analysis of the body in the context of the spec (again to obtain
2290 -- visibility to the formals), and all the entities generated during
2291 -- this analysis end up also chained to the entity chain of the spec.
2292 -- But they really belong to the body, and there is circuitry to move
2293 -- them from the spec to the body.
2295 -- However, when we do this move, we don't want to move the real spec
2296 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2297 -- variable points to the last real spec entity, so we only move those
2298 -- chained beyond that point. It is initialized to Empty to deal with
2299 -- the case where there is no separate spec.
2301 function Body_Has_Contract return Boolean;
2302 -- Check whether unanalyzed body has an aspect or pragma that may
2303 -- generate a SPARK contract.
2305 function Body_Has_SPARK_Mode_On return Boolean;
2306 -- Check whether SPARK_Mode On applies to the subprogram body, either
2307 -- because it is specified directly on the body, or because it is
2308 -- inherited from the enclosing subprogram or package.
2310 function Build_Internal_Protected_Declaration
2311 (N : Node_Id) return Entity_Id;
2312 -- A subprogram body without a previous spec that appears in a protected
2313 -- body must be expanded separately to create a subprogram declaration
2314 -- for it, in order to resolve internal calls to it from other protected
2315 -- operations.
2317 -- Possibly factor this with Exp_Dist.Copy_Specification ???
2319 procedure Build_Subprogram_Declaration;
2320 -- Create a matching subprogram declaration for subprogram body N
2322 procedure Check_Anonymous_Return;
2323 -- Ada 2005: if a function returns an access type that denotes a task,
2324 -- or a type that contains tasks, we must create a master entity for
2325 -- the anonymous type, which typically will be used in an allocator
2326 -- in the body of the function.
2328 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2329 -- Look ahead to recognize a pragma that may appear after the body.
2330 -- If there is a previous spec, check that it appears in the same
2331 -- declarative part. If the pragma is Inline_Always, perform inlining
2332 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2333 -- If the body acts as a spec, and inlining is required, we create a
2334 -- subprogram declaration for it, in order to attach the body to inline.
2335 -- If pragma does not appear after the body, check whether there is
2336 -- an inline pragma before any local declarations.
2338 procedure Check_Missing_Return;
2339 -- Checks for a function with a no return statements, and also performs
2340 -- the warning checks implemented by Check_Returns.
2342 function Disambiguate_Spec return Entity_Id;
2343 -- When a primitive is declared between the private view and the full
2344 -- view of a concurrent type which implements an interface, a special
2345 -- mechanism is used to find the corresponding spec of the primitive
2346 -- body.
2348 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2349 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2350 -- incomplete types coming from a limited context and replace their
2351 -- limited views with the non-limited ones. Return the list of changes
2352 -- to be used to undo the transformation.
2354 procedure Generate_Minimum_Accessibility
2355 (Extra_Access : Entity_Id;
2356 Related_Form : Entity_Id := Empty);
2357 -- Generate a minimum accessibility object for a given extra
2358 -- accessibility formal (Extra_Access) and its related formal if it
2359 -- exists.
2361 function Is_Private_Concurrent_Primitive
2362 (Subp_Id : Entity_Id) return Boolean;
2363 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2364 -- type that implements an interface and has a private view.
2366 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2367 -- N is the body generated for an expression function that is not a
2368 -- completion and Spec_Id the defining entity of its spec. Mark all
2369 -- the not-yet-frozen types referenced by the simple return statement
2370 -- of the function as formally frozen.
2372 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2373 -- Find all suitable source pragmas at the top of subprogram body
2374 -- From's declarations and move them after arbitrary node To.
2375 -- One exception is pragma SPARK_Mode which is copied rather than moved,
2376 -- as it applies to the body too.
2378 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2379 -- Undo the transformation done by Exchange_Limited_Views.
2381 procedure Set_Trivial_Subprogram (N : Node_Id);
2382 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2383 -- subprogram whose body is being analyzed. N is the statement node
2384 -- causing the flag to be set, if the following statement is a return
2385 -- of an entity, we mark the entity as set in source to suppress any
2386 -- warning on the stylized use of function stubs with a dummy return.
2388 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2389 -- Undo the transformation done by Mask_Unfrozen_Types
2391 procedure Verify_Overriding_Indicator;
2392 -- If there was a previous spec, the entity has been entered in the
2393 -- current scope previously. If the body itself carries an overriding
2394 -- indicator, check that it is consistent with the known status of the
2395 -- entity.
2397 -----------------------
2398 -- Body_Has_Contract --
2399 -----------------------
2401 function Body_Has_Contract return Boolean is
2402 Decls : constant List_Id := Declarations (N);
2403 Item : Node_Id;
2405 begin
2406 -- Check for aspects that may generate a contract
2408 Item := First (Aspect_Specifications (N));
2409 while Present (Item) loop
2410 if Is_Subprogram_Contract_Annotation (Item) then
2411 return True;
2412 end if;
2414 Next (Item);
2415 end loop;
2417 -- Check for pragmas that may generate a contract
2419 Item := First (Decls);
2420 while Present (Item) loop
2421 if Nkind (Item) = N_Pragma
2422 and then Is_Subprogram_Contract_Annotation (Item)
2423 then
2424 return True;
2425 end if;
2427 Next (Item);
2428 end loop;
2430 return False;
2431 end Body_Has_Contract;
2433 ----------------------------
2434 -- Body_Has_SPARK_Mode_On --
2435 ----------------------------
2437 function Body_Has_SPARK_Mode_On return Boolean is
2438 Decls : constant List_Id := Declarations (N);
2439 Item : Node_Id;
2441 begin
2442 -- Check for SPARK_Mode aspect
2444 Item := First (Aspect_Specifications (N));
2445 while Present (Item) loop
2446 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2447 return Get_SPARK_Mode_From_Annotation (Item) = On;
2448 end if;
2450 Next (Item);
2451 end loop;
2453 -- Check for SPARK_Mode pragma
2455 Item := First (Decls);
2456 while Present (Item) loop
2458 -- Pragmas that apply to a subprogram body are usually grouped
2459 -- together. Look for a potential pragma SPARK_Mode among them.
2461 if Nkind (Item) = N_Pragma then
2462 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2463 return Get_SPARK_Mode_From_Annotation (Item) = On;
2464 end if;
2466 -- Otherwise the first non-pragma declarative item terminates the
2467 -- region where pragma SPARK_Mode may appear.
2469 else
2470 exit;
2471 end if;
2473 Next (Item);
2474 end loop;
2476 -- Otherwise, the applicable SPARK_Mode is inherited from the
2477 -- enclosing subprogram or package.
2479 return SPARK_Mode = On;
2480 end Body_Has_SPARK_Mode_On;
2482 ------------------------------------------
2483 -- Build_Internal_Protected_Declaration --
2484 ------------------------------------------
2486 function Build_Internal_Protected_Declaration
2487 (N : Node_Id) return Entity_Id
2489 procedure Analyze_Pragmas (From : Node_Id);
2490 -- Analyze all pragmas which follow arbitrary node From
2492 ---------------------
2493 -- Analyze_Pragmas --
2494 ---------------------
2496 procedure Analyze_Pragmas (From : Node_Id) is
2497 Decl : Node_Id;
2499 begin
2500 Decl := Next (From);
2501 while Present (Decl) loop
2502 if Nkind (Decl) = N_Pragma then
2503 Analyze_Pragma (Decl);
2505 -- No candidate pragmas are available for analysis
2507 else
2508 exit;
2509 end if;
2511 Next (Decl);
2512 end loop;
2513 end Analyze_Pragmas;
2515 -- Local variables
2517 Body_Id : constant Entity_Id := Defining_Entity (N);
2518 Loc : constant Source_Ptr := Sloc (N);
2519 Decl : Node_Id;
2520 Formal : Entity_Id;
2521 Formals : List_Id;
2522 Spec : Node_Id;
2523 Spec_Id : Entity_Id;
2525 -- Start of processing for Build_Internal_Protected_Declaration
2527 begin
2528 Formal := First_Formal (Body_Id);
2530 -- The protected operation always has at least one formal, namely the
2531 -- object itself, but it is only placed in the parameter list if
2532 -- expansion is enabled.
2534 if Present (Formal) or else Expander_Active then
2535 Formals := Copy_Parameter_List (Body_Id);
2536 else
2537 Formals := No_List;
2538 end if;
2540 Spec_Id :=
2541 Make_Defining_Identifier (Sloc (Body_Id),
2542 Chars => Chars (Body_Id));
2544 -- Indicate that the entity comes from source, to ensure that cross-
2545 -- reference information is properly generated. The body itself is
2546 -- rewritten during expansion, and the body entity will not appear in
2547 -- calls to the operation.
2549 Set_Comes_From_Source (Spec_Id, True);
2551 if Nkind (Specification (N)) = N_Procedure_Specification then
2552 Spec :=
2553 Make_Procedure_Specification (Loc,
2554 Defining_Unit_Name => Spec_Id,
2555 Parameter_Specifications => Formals);
2556 else
2557 Spec :=
2558 Make_Function_Specification (Loc,
2559 Defining_Unit_Name => Spec_Id,
2560 Parameter_Specifications => Formals,
2561 Result_Definition =>
2562 New_Occurrence_Of (Etype (Body_Id), Loc));
2563 end if;
2565 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2566 Set_Corresponding_Body (Decl, Body_Id);
2567 Set_Corresponding_Spec (N, Spec_Id);
2569 Insert_Before (N, Decl);
2571 -- Associate all aspects and pragmas of the body with the spec. This
2572 -- ensures that these annotations apply to the initial declaration of
2573 -- the subprogram body.
2575 Move_Aspects (From => N, To => Decl);
2576 Move_Pragmas (From => N, To => Decl);
2578 Analyze (Decl);
2580 -- The analysis of the spec may generate pragmas which require manual
2581 -- analysis. Since the generation of the spec and the relocation of
2582 -- the annotations is driven by the expansion of the stand-alone
2583 -- body, the pragmas will not be analyzed in a timely manner. Do this
2584 -- now.
2586 Analyze_Pragmas (Decl);
2588 -- This subprogram has convention Intrinsic as per RM 6.3.1(10/2)
2589 -- ensuring in particular that 'Access is illegal.
2591 Set_Convention (Spec_Id, Convention_Intrinsic);
2592 Set_Has_Completion (Spec_Id);
2594 return Spec_Id;
2595 end Build_Internal_Protected_Declaration;
2597 ----------------------------------
2598 -- Build_Subprogram_Declaration --
2599 ----------------------------------
2601 procedure Build_Subprogram_Declaration is
2602 Decl : Node_Id;
2603 Subp_Decl : Node_Id;
2605 begin
2606 -- Create a matching subprogram spec using the profile of the body.
2607 -- The structure of the tree is identical, but has new entities for
2608 -- the defining unit name and formal parameters.
2610 Subp_Decl :=
2611 Make_Subprogram_Declaration (Loc,
2612 Specification => Copy_Subprogram_Spec (Body_Spec));
2613 Set_Comes_From_Source (Subp_Decl, True);
2615 -- Also mark parameters as coming from source
2617 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2618 declare
2619 Form : Entity_Id;
2620 begin
2621 Form :=
2622 First (Parameter_Specifications (Specification (Subp_Decl)));
2624 while Present (Form) loop
2625 Set_Comes_From_Source (Defining_Identifier (Form), True);
2626 Next (Form);
2627 end loop;
2628 end;
2629 end if;
2631 -- Relocate the aspects and relevant pragmas from the subprogram body
2632 -- to the generated spec because it acts as the initial declaration.
2634 Insert_Before (N, Subp_Decl);
2635 Move_Aspects (N, To => Subp_Decl);
2636 Move_Pragmas (N, To => Subp_Decl);
2638 -- Ensure that the generated corresponding spec and original body
2639 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2640 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2641 -- correctly set for local subprograms.
2643 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2645 Analyze (Subp_Decl);
2647 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2648 -- the body since the expander may generate calls using that entity.
2649 -- Required to ensure that Expand_Call rewrites calls to this
2650 -- function by calls to the built procedure.
2652 if Transform_Function_Array
2653 and then Nkind (Body_Spec) = N_Function_Specification
2654 and then
2655 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2656 then
2657 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2658 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2659 Corresponding_Procedure
2660 (Defining_Entity (Specification (Subp_Decl))));
2661 end if;
2663 -- Analyze any relocated source pragmas or pragmas created for aspect
2664 -- specifications.
2666 Decl := Next (Subp_Decl);
2667 while Present (Decl) loop
2669 -- Stop the search for pragmas once the body has been reached as
2670 -- this terminates the region where pragmas may appear.
2672 if Decl = N then
2673 exit;
2675 elsif Nkind (Decl) = N_Pragma then
2676 Analyze (Decl);
2677 end if;
2679 Next (Decl);
2680 end loop;
2682 Spec_Id := Defining_Entity (Subp_Decl);
2683 Set_Corresponding_Spec (N, Spec_Id);
2685 -- Mark the generated spec as a source construct to ensure that all
2686 -- calls to it are properly registered in ALI files for GNATprove.
2688 Set_Comes_From_Source (Spec_Id, True);
2690 -- Ensure that the specs of the subprogram declaration and its body
2691 -- are identical, otherwise they will appear non-conformant due to
2692 -- rewritings in the default values of formal parameters.
2694 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2695 Set_Specification (N, Body_Spec);
2696 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2697 end Build_Subprogram_Declaration;
2699 ----------------------------
2700 -- Check_Anonymous_Return --
2701 ----------------------------
2703 procedure Check_Anonymous_Return is
2704 Decl : Node_Id;
2705 Par : Node_Id;
2706 Scop : Entity_Id;
2708 begin
2709 if Present (Spec_Id) then
2710 Scop := Spec_Id;
2711 else
2712 Scop := Body_Id;
2713 end if;
2715 if Ekind (Scop) = E_Function
2716 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2717 and then not Is_Thunk (Scop)
2719 -- Skip internally built functions which handle the case of
2720 -- a null access (see Expand_Interface_Conversion)
2722 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2723 and then not Comes_From_Source (Parent (Scop)))
2725 and then (Has_Task (Designated_Type (Etype (Scop)))
2726 or else
2727 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2728 and then
2729 Is_Limited_Record
2730 (Etype (Designated_Type (Etype (Scop))))))
2731 and then Expander_Active
2732 then
2733 Decl := Build_Master_Declaration (Loc);
2735 if Present (Declarations (N)) then
2736 Prepend (Decl, Declarations (N));
2737 else
2738 Set_Declarations (N, New_List (Decl));
2739 end if;
2741 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2742 Set_Has_Master_Entity (Scop);
2744 -- Now mark the containing scope as a task master
2746 Par := N;
2747 while Nkind (Par) /= N_Compilation_Unit loop
2748 Par := Parent (Par);
2749 pragma Assert (Present (Par));
2751 -- If we fall off the top, we are at the outer level, and
2752 -- the environment task is our effective master, so nothing
2753 -- to mark.
2755 if Nkind (Par)
2756 in N_Task_Body | N_Block_Statement | N_Subprogram_Body
2757 then
2758 Set_Is_Task_Master (Par, True);
2759 exit;
2760 end if;
2761 end loop;
2762 end if;
2763 end Check_Anonymous_Return;
2765 -------------------------
2766 -- Check_Inline_Pragma --
2767 -------------------------
2769 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2770 Prag : Node_Id;
2771 Plist : List_Id;
2773 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2774 -- True when N is a pragma Inline or Inline_Always that applies
2775 -- to this subprogram.
2777 -----------------------
2778 -- Is_Inline_Pragma --
2779 -----------------------
2781 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2782 begin
2783 if Nkind (N) = N_Pragma
2784 and then
2785 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2786 or else (Pragma_Name_Unmapped (N) = Name_Inline
2787 and then
2788 (Front_End_Inlining or else Optimization_Level > 0)))
2789 and then Present (Pragma_Argument_Associations (N))
2790 then
2791 declare
2792 Pragma_Arg : Node_Id :=
2793 Expression (First (Pragma_Argument_Associations (N)));
2794 begin
2795 if Nkind (Pragma_Arg) = N_Selected_Component then
2796 Pragma_Arg := Selector_Name (Pragma_Arg);
2797 end if;
2799 return Chars (Pragma_Arg) = Chars (Body_Id);
2800 end;
2802 else
2803 return False;
2804 end if;
2805 end Is_Inline_Pragma;
2807 -- Start of processing for Check_Inline_Pragma
2809 begin
2810 if not Expander_Active then
2811 return;
2812 end if;
2814 if Is_List_Member (N)
2815 and then Present (Next (N))
2816 and then Is_Inline_Pragma (Next (N))
2817 then
2818 Prag := Next (N);
2820 elsif Nkind (N) /= N_Subprogram_Body_Stub
2821 and then Present (Declarations (N))
2822 and then Is_Inline_Pragma (First (Declarations (N)))
2823 then
2824 Prag := First (Declarations (N));
2826 else
2827 Prag := Empty;
2828 end if;
2830 if Present (Prag) and then Is_List_Member (N) then
2831 if Present (Spec_Id) then
2832 if Is_List_Member (Unit_Declaration_Node (Spec_Id))
2833 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2834 then
2835 Analyze (Prag);
2836 end if;
2837 else
2838 -- Create a subprogram declaration, to make treatment uniform.
2839 -- Make the sloc of the subprogram name that of the entity in
2840 -- the body, so that style checks find identical strings.
2842 declare
2843 Subp : constant Entity_Id :=
2844 Make_Defining_Identifier
2845 (Sloc (Body_Id), Chars (Body_Id));
2846 Decl : constant Node_Id :=
2847 Make_Subprogram_Declaration (Loc,
2848 Specification =>
2849 New_Copy_Tree (Specification (N)));
2851 begin
2852 -- Link the body and the generated spec
2854 Set_Corresponding_Body (Decl, Body_Id);
2856 if Nkind (N) = N_Subprogram_Body_Stub then
2857 Set_Corresponding_Spec_Of_Stub (N, Subp);
2858 else
2859 Set_Corresponding_Spec (N, Subp);
2860 end if;
2862 Set_Defining_Unit_Name (Specification (Decl), Subp);
2864 -- To ensure proper coverage when body is inlined, indicate
2865 -- whether the subprogram comes from source.
2867 Preserve_Comes_From_Source (Subp, N);
2869 if Present (First_Formal (Body_Id)) then
2870 Plist := Copy_Parameter_List (Body_Id);
2871 Set_Parameter_Specifications
2872 (Specification (Decl), Plist);
2873 end if;
2875 -- Move aspects to the new spec
2877 Move_Aspects (N, To => Decl);
2879 Insert_Before (N, Decl);
2880 Analyze (Decl);
2881 Analyze (Prag);
2882 Set_Has_Pragma_Inline (Subp);
2884 if Pragma_Name (Prag) = Name_Inline_Always then
2885 Set_Is_Inlined (Subp);
2886 Set_Has_Pragma_Inline_Always (Subp);
2887 end if;
2889 -- Prior to copying the subprogram body to create a template
2890 -- for it for subsequent inlining, remove the pragma from
2891 -- the current body so that the copy that will produce the
2892 -- new body will start from a completely unanalyzed tree.
2894 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2895 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2896 end if;
2898 Spec := Subp;
2899 end;
2900 end if;
2901 end if;
2902 end Check_Inline_Pragma;
2904 --------------------------
2905 -- Check_Missing_Return --
2906 --------------------------
2908 procedure Check_Missing_Return is
2909 HSS : constant Node_Id := Handled_Statement_Sequence (N);
2911 Id : Entity_Id;
2912 Missing_Ret : Boolean;
2914 begin
2915 if Nkind (Body_Spec) = N_Function_Specification then
2916 if Present (Spec_Id) then
2917 Id := Spec_Id;
2918 else
2919 Id := Body_Id;
2920 end if;
2922 -- A function body shall contain at least one return statement
2923 -- that applies to the function body, unless the function contains
2924 -- code_statements; RM 6.5(5).
2926 if Return_Present (Id) then
2927 Check_Returns (HSS, 'F', Missing_Ret);
2929 if Missing_Ret then
2930 Set_Has_Missing_Return (Id);
2931 end if;
2933 -- Within a premature instantiation of a package with no body, we
2934 -- build completions of the functions therein, with a Raise
2935 -- statement. No point in complaining about a missing return in
2936 -- this case.
2938 elsif Ekind (Id) = E_Function
2939 and then In_Instance
2940 and then Present (Statements (HSS))
2941 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2942 then
2943 null;
2945 elsif Is_Generic_Subprogram (Id)
2946 or else not Is_Machine_Code_Subprogram (Id)
2947 then
2948 Error_Msg_N ("missing RETURN statement in function body", N);
2949 end if;
2951 -- If procedure with No_Return, check returns
2953 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2954 if Present (Spec_Id) then
2955 Id := Spec_Id;
2956 else
2957 Id := Body_Id;
2958 end if;
2960 if No_Return (Id) then
2961 Check_Returns (HSS, 'P', Missing_Ret, Id);
2962 end if;
2963 end if;
2964 end Check_Missing_Return;
2966 -----------------------
2967 -- Disambiguate_Spec --
2968 -----------------------
2970 function Disambiguate_Spec return Entity_Id is
2971 Priv_Spec : Entity_Id;
2972 Spec_N : Entity_Id;
2974 procedure Replace_Types (To_Corresponding : Boolean);
2975 -- Depending on the flag, replace the type of formal parameters of
2976 -- Body_Id if it is a concurrent type implementing interfaces with
2977 -- the corresponding record type or the other way around.
2979 procedure Replace_Types (To_Corresponding : Boolean) is
2980 Formal : Entity_Id;
2981 Formal_Typ : Entity_Id;
2983 begin
2984 Formal := First_Formal (Body_Id);
2985 while Present (Formal) loop
2986 Formal_Typ := Etype (Formal);
2988 if Is_Class_Wide_Type (Formal_Typ) then
2989 Formal_Typ := Root_Type (Formal_Typ);
2990 end if;
2992 -- From concurrent type to corresponding record
2994 if To_Corresponding then
2995 if Is_Concurrent_Type (Formal_Typ)
2996 and then Present (Corresponding_Record_Type (Formal_Typ))
2997 and then
2998 Present (Interfaces
2999 (Corresponding_Record_Type (Formal_Typ)))
3000 then
3001 Set_Etype (Formal,
3002 Corresponding_Record_Type (Formal_Typ));
3003 end if;
3005 -- From corresponding record to concurrent type
3007 else
3008 if Is_Concurrent_Record_Type (Formal_Typ)
3009 and then Present (Interfaces (Formal_Typ))
3010 then
3011 Set_Etype (Formal,
3012 Corresponding_Concurrent_Type (Formal_Typ));
3013 end if;
3014 end if;
3016 Next_Formal (Formal);
3017 end loop;
3018 end Replace_Types;
3020 -- Start of processing for Disambiguate_Spec
3022 begin
3023 -- Try to retrieve the specification of the body as is. All error
3024 -- messages are suppressed because the body may not have a spec in
3025 -- its current state.
3027 Spec_N := Find_Corresponding_Spec (N, False);
3029 -- It is possible that this is the body of a primitive declared
3030 -- between a private and a full view of a concurrent type. The
3031 -- controlling parameter of the spec carries the concurrent type,
3032 -- not the corresponding record type as transformed by Analyze_
3033 -- Subprogram_Specification. In such cases, we undo the change
3034 -- made by the analysis of the specification and try to find the
3035 -- spec again.
3037 -- Note that wrappers already have their corresponding specs and
3038 -- bodies set during their creation, so if the candidate spec is
3039 -- a wrapper, then we definitely need to swap all types to their
3040 -- original concurrent status.
3042 if No (Spec_N)
3043 or else Is_Primitive_Wrapper (Spec_N)
3044 then
3045 -- Restore all references of corresponding record types to the
3046 -- original concurrent types.
3048 Replace_Types (To_Corresponding => False);
3049 Priv_Spec := Find_Corresponding_Spec (N, False);
3051 -- The current body truly belongs to a primitive declared between
3052 -- a private and a full view. We leave the modified body as is,
3053 -- and return the true spec.
3055 if Present (Priv_Spec)
3056 and then Is_Private_Primitive (Priv_Spec)
3057 then
3058 return Priv_Spec;
3059 end if;
3061 -- In case that this is some sort of error, restore the original
3062 -- state of the body.
3064 Replace_Types (To_Corresponding => True);
3065 end if;
3067 return Spec_N;
3068 end Disambiguate_Spec;
3070 ----------------------------
3071 -- Exchange_Limited_Views --
3072 ----------------------------
3074 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3075 Result : Elist_Id := No_Elist;
3077 procedure Detect_And_Exchange (Id : Entity_Id);
3078 -- Determine whether Id's type denotes an incomplete type associated
3079 -- with a limited with clause and exchange the limited view with the
3080 -- non-limited one when available. Note that the non-limited view
3081 -- may exist because of a with_clause in another unit in the context,
3082 -- but cannot be used because the current view of the enclosing unit
3083 -- is still a limited view.
3085 -------------------------
3086 -- Detect_And_Exchange --
3087 -------------------------
3089 procedure Detect_And_Exchange (Id : Entity_Id) is
3090 Typ : constant Entity_Id := Etype (Id);
3092 begin
3093 if From_Limited_With (Typ)
3094 and then Has_Non_Limited_View (Typ)
3095 and then not From_Limited_With (Scope (Typ))
3096 then
3097 if No (Result) then
3098 Result := New_Elmt_List;
3099 end if;
3101 Prepend_Elmt (Typ, Result);
3102 Prepend_Elmt (Id, Result);
3103 Set_Etype (Id, Non_Limited_View (Typ));
3104 end if;
3105 end Detect_And_Exchange;
3107 -- Local variables
3109 Formal : Entity_Id;
3111 -- Start of processing for Exchange_Limited_Views
3113 begin
3114 -- Do not process subprogram bodies as they already use the non-
3115 -- limited view of types.
3117 if Ekind (Subp_Id) not in E_Function | E_Procedure then
3118 return No_Elist;
3119 end if;
3121 -- Examine all formals and swap views when applicable
3123 Formal := First_Formal (Subp_Id);
3124 while Present (Formal) loop
3125 Detect_And_Exchange (Formal);
3127 Next_Formal (Formal);
3128 end loop;
3130 -- Process the return type of a function
3132 if Ekind (Subp_Id) = E_Function then
3133 Detect_And_Exchange (Subp_Id);
3134 end if;
3136 return Result;
3137 end Exchange_Limited_Views;
3139 ------------------------------------
3140 -- Generate_Minimum_Accessibility --
3141 ------------------------------------
3143 procedure Generate_Minimum_Accessibility
3144 (Extra_Access : Entity_Id;
3145 Related_Form : Entity_Id := Empty)
3147 Loc : constant Source_Ptr := Sloc (Body_Nod);
3148 Form : Entity_Id;
3149 Obj_Node : Node_Id;
3150 begin
3151 -- When no related formal exists then we are dealing with an
3152 -- extra accessibility formal for a function result.
3154 if No (Related_Form) then
3155 Form := Extra_Access;
3156 else
3157 Form := Related_Form;
3158 end if;
3160 -- Create the minimum accessibility object
3162 Obj_Node :=
3163 Make_Object_Declaration (Loc,
3164 Defining_Identifier =>
3165 Make_Temporary
3166 (Loc, 'A', Extra_Access),
3167 Object_Definition => New_Occurrence_Of
3168 (Standard_Natural, Loc),
3169 Expression =>
3170 Make_Attribute_Reference (Loc,
3171 Prefix => New_Occurrence_Of
3172 (Standard_Natural, Loc),
3173 Attribute_Name => Name_Min,
3174 Expressions => New_List (
3175 Make_Integer_Literal (Loc,
3176 Scope_Depth (Body_Id)),
3177 New_Occurrence_Of
3178 (Extra_Access, Loc))));
3180 -- Add the new local object to the Minimum_Acc_Obj to
3181 -- be later prepended to the subprogram's list of
3182 -- declarations after we are sure all expansion is
3183 -- done.
3185 if Present (Minimum_Acc_Objs) then
3186 Prepend (Obj_Node, Minimum_Acc_Objs);
3187 else
3188 Minimum_Acc_Objs := New_List (Obj_Node);
3189 end if;
3191 -- Register the object and analyze it
3193 Set_Minimum_Accessibility
3194 (Form, Defining_Identifier (Obj_Node));
3196 Analyze (Obj_Node);
3197 end Generate_Minimum_Accessibility;
3199 -------------------------------------
3200 -- Is_Private_Concurrent_Primitive --
3201 -------------------------------------
3203 function Is_Private_Concurrent_Primitive
3204 (Subp_Id : Entity_Id) return Boolean
3206 Formal_Typ : Entity_Id;
3208 begin
3209 if Present (First_Formal (Subp_Id)) then
3210 Formal_Typ := Etype (First_Formal (Subp_Id));
3212 if Is_Concurrent_Record_Type (Formal_Typ) then
3213 if Is_Class_Wide_Type (Formal_Typ) then
3214 Formal_Typ := Root_Type (Formal_Typ);
3215 end if;
3217 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3218 end if;
3220 -- The type of the first formal is a concurrent tagged type with
3221 -- a private view.
3223 return
3224 Is_Concurrent_Type (Formal_Typ)
3225 and then Is_Tagged_Type (Formal_Typ)
3226 and then Has_Private_Declaration (Formal_Typ);
3227 end if;
3229 return False;
3230 end Is_Private_Concurrent_Primitive;
3232 -------------------------
3233 -- Mask_Unfrozen_Types --
3234 -------------------------
3236 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3237 Result : Elist_Id := No_Elist;
3239 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3240 -- Mask all types referenced in the subtree rooted at Node as
3241 -- formally frozen.
3243 --------------------
3244 -- Mask_Type_Refs --
3245 --------------------
3247 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3248 procedure Mask_Type (Typ : Entity_Id);
3249 -- Mask a given type as formally frozen when outside the current
3250 -- scope, or else freeze the type.
3252 ---------------
3253 -- Mask_Type --
3254 ---------------
3256 procedure Mask_Type (Typ : Entity_Id) is
3257 begin
3258 -- Skip Itypes created by the preanalysis
3260 if Is_Itype (Typ)
3261 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3262 then
3263 return;
3264 end if;
3266 if not Is_Frozen (Typ) then
3267 if Scope (Typ) /= Current_Scope then
3268 Set_Is_Frozen (Typ);
3269 Append_New_Elmt (Typ, Result);
3270 else
3271 Freeze_Before (N, Typ);
3272 end if;
3273 end if;
3274 end Mask_Type;
3276 -- Start of processing for Mask_Type_Refs
3278 begin
3279 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3280 Mask_Type (Etype (Entity (Node)));
3282 if Ekind (Entity (Node)) in E_Component | E_Discriminant then
3283 Mask_Type (Scope (Entity (Node)));
3284 end if;
3286 elsif Nkind (Node) in N_Aggregate | N_Null | N_Type_Conversion
3287 and then Present (Etype (Node))
3288 then
3289 Mask_Type (Etype (Node));
3290 end if;
3292 return OK;
3293 end Mask_Type_Refs;
3295 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3297 -- Local variables
3299 Return_Stmt : constant Node_Id :=
3300 First (Statements (Handled_Statement_Sequence (N)));
3302 -- Start of processing for Mask_Unfrozen_Types
3304 begin
3305 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3307 Mask_References (Expression (Return_Stmt));
3309 return Result;
3310 end Mask_Unfrozen_Types;
3312 ------------------
3313 -- Move_Pragmas --
3314 ------------------
3316 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
3317 Decl : Node_Id;
3318 Insert_Nod : Node_Id;
3319 Next_Decl : Node_Id;
3321 begin
3322 pragma Assert (Nkind (From) = N_Subprogram_Body);
3324 -- The pragmas are moved in an order-preserving fashion
3326 Insert_Nod := To;
3328 -- Inspect the declarations of the subprogram body and relocate all
3329 -- candidate pragmas.
3331 Decl := First (Declarations (From));
3332 while Present (Decl) loop
3334 -- Preserve the following declaration for iteration purposes, due
3335 -- to possible relocation of a pragma.
3337 Next_Decl := Next (Decl);
3339 if Nkind (Decl) = N_Pragma then
3340 -- Copy pragma SPARK_Mode if present in the declarative list
3341 -- of subprogram body From and insert it after node To. This
3342 -- pragma should not be moved, as it applies to the body too.
3344 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
3345 Insert_After (Insert_Nod, New_Copy_Tree (Decl));
3347 -- Move relevant pragmas to the spec
3349 elsif
3350 Pragma_Significant_To_Subprograms
3351 (Get_Pragma_Id (Decl))
3352 then
3353 Remove (Decl);
3354 Insert_After (Insert_Nod, Decl);
3355 Insert_Nod := Decl;
3356 end if;
3358 -- Skip internally generated code
3360 elsif not Comes_From_Source (Decl) then
3361 null;
3363 -- No candidate pragmas are available for relocation
3365 else
3366 exit;
3367 end if;
3369 Decl := Next_Decl;
3370 end loop;
3371 end Move_Pragmas;
3373 ---------------------------
3374 -- Restore_Limited_Views --
3375 ---------------------------
3377 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3378 Elmt : Elmt_Id := First_Elmt (Restore_List);
3379 Id : Entity_Id;
3381 begin
3382 while Present (Elmt) loop
3383 Id := Node (Elmt);
3384 Next_Elmt (Elmt);
3385 Set_Etype (Id, Node (Elmt));
3386 Next_Elmt (Elmt);
3387 end loop;
3388 end Restore_Limited_Views;
3390 ----------------------------
3391 -- Set_Trivial_Subprogram --
3392 ----------------------------
3394 procedure Set_Trivial_Subprogram (N : Node_Id) is
3395 Nxt : constant Node_Id := Next (N);
3397 begin
3398 Set_Is_Trivial_Subprogram (Body_Id);
3400 if Present (Spec_Id) then
3401 Set_Is_Trivial_Subprogram (Spec_Id);
3402 end if;
3404 if Present (Nxt)
3405 and then Nkind (Nxt) = N_Simple_Return_Statement
3406 and then No (Next (Nxt))
3407 and then Present (Expression (Nxt))
3408 and then Is_Entity_Name (Expression (Nxt))
3409 then
3410 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3411 end if;
3412 end Set_Trivial_Subprogram;
3414 ---------------------------
3415 -- Unmask_Unfrozen_Types --
3416 ---------------------------
3418 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3419 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3421 begin
3422 while Present (Elmt) loop
3423 Set_Is_Frozen (Node (Elmt), False);
3424 Next_Elmt (Elmt);
3425 end loop;
3426 end Unmask_Unfrozen_Types;
3428 ---------------------------------
3429 -- Verify_Overriding_Indicator --
3430 ---------------------------------
3432 procedure Verify_Overriding_Indicator is
3433 begin
3434 if Must_Override (Body_Spec) then
3435 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3436 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3437 then
3438 null;
3440 -- Overridden controlled primitives may have had their
3441 -- Overridden_Operation field cleared according to the setting of
3442 -- the Is_Hidden flag. An issue arises, however, when analyzing
3443 -- an instance that may have manipulated the flag during
3444 -- expansion. As a result, we add an exception for this case.
3446 elsif No (Overridden_Operation (Spec_Id))
3447 and then not (Chars (Spec_Id) in Name_Adjust
3448 | Name_Finalize
3449 | Name_Initialize
3450 and then In_Instance)
3451 then
3452 Error_Msg_NE
3453 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3455 -- Overriding indicators aren't allowed for protected subprogram
3456 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3457 -- this to a warning if -gnatd.E is enabled.
3459 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3460 Error_Msg_Warn := Error_To_Warning;
3461 Error_Msg_N
3462 ("<<overriding indicator not allowed for protected "
3463 & "subprogram body", Body_Spec);
3464 end if;
3466 elsif Must_Not_Override (Body_Spec) then
3467 if Present (Overridden_Operation (Spec_Id)) then
3468 Error_Msg_NE
3469 ("subprogram& overrides inherited operation",
3470 Body_Spec, Spec_Id);
3472 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3473 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3474 then
3475 Error_Msg_NE
3476 ("subprogram& overrides predefined operator",
3477 Body_Spec, Spec_Id);
3479 -- Overriding indicators aren't allowed for protected subprogram
3480 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3481 -- this to a warning if -gnatd.E is enabled.
3483 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3484 Error_Msg_Warn := Error_To_Warning;
3486 Error_Msg_N
3487 ("<<overriding indicator not allowed "
3488 & "for protected subprogram body", Body_Spec);
3490 -- If this is not a primitive operation, then the overriding
3491 -- indicator is altogether illegal.
3493 elsif not Is_Primitive (Spec_Id) then
3494 Error_Msg_N
3495 ("overriding indicator only allowed "
3496 & "if subprogram is primitive", Body_Spec);
3497 end if;
3499 -- If checking the style rule and the operation overrides, then
3500 -- issue a warning about a missing overriding_indicator. Protected
3501 -- subprogram bodies are excluded from this style checking, since
3502 -- they aren't primitives (even though their declarations can
3503 -- override) and aren't allowed to have an overriding_indicator.
3505 elsif Style_Check
3506 and then Present (Overridden_Operation (Spec_Id))
3507 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3508 then
3509 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3510 Style.Missing_Overriding (N, Body_Id);
3512 elsif Style_Check
3513 and then Can_Override_Operator (Spec_Id)
3514 and then not In_Predefined_Unit (Spec_Id)
3515 then
3516 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3517 Style.Missing_Overriding (N, Body_Id);
3518 end if;
3519 end Verify_Overriding_Indicator;
3521 -- Local variables
3523 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3524 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3525 Saved_EA : constant Boolean := Expander_Active;
3526 Saved_ISMP : constant Boolean :=
3527 Ignore_SPARK_Mode_Pragmas_In_Instance;
3528 -- Save the Ghost and SPARK mode-related data to restore on exit
3530 -- Start of processing for Analyze_Subprogram_Body_Helper
3532 begin
3533 -- A [generic] subprogram body freezes the contract of the nearest
3534 -- enclosing package body and all other contracts encountered in the
3535 -- same declarative part up to and excluding the subprogram body:
3537 -- package body Nearest_Enclosing_Package
3538 -- with Refined_State => (State => Constit)
3539 -- is
3540 -- Constit : ...;
3542 -- procedure Freezes_Enclosing_Package_Body
3543 -- with Refined_Depends => (Input => Constit) ...
3545 -- This ensures that any annotations referenced by the contract of the
3546 -- [generic] subprogram body are available. This form of freezing is
3547 -- decoupled from the usual Freeze_xxx mechanism because it must also
3548 -- work in the context of generics where normal freezing is disabled.
3550 -- Only bodies coming from source should cause this type of freezing.
3551 -- Expression functions that act as bodies and complete an initial
3552 -- declaration must be included in this category, hence the use of
3553 -- Original_Node.
3555 if Comes_From_Source (Original_Node (N)) then
3556 Freeze_Previous_Contracts (N);
3557 end if;
3559 -- Generic subprograms are handled separately. They always have a
3560 -- generic specification. Determine whether current scope has a
3561 -- previous declaration.
3563 -- If the subprogram body is defined within an instance of the same
3564 -- name, the instance appears as a package renaming, and will be hidden
3565 -- within the subprogram.
3567 if Present (Prev_Id)
3568 and then not Is_Overloadable (Prev_Id)
3569 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3570 or else Comes_From_Source (Prev_Id))
3571 then
3572 if Is_Generic_Subprogram (Prev_Id) then
3573 Spec_Id := Prev_Id;
3575 -- A subprogram body is Ghost when it is stand-alone and subject
3576 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3577 -- the mode now to ensure that any nodes generated during analysis
3578 -- and expansion are properly marked as Ghost.
3580 Mark_And_Set_Ghost_Body (N, Spec_Id);
3582 -- If the body completes the initial declaration of a compilation
3583 -- unit which is subject to pragma Elaboration_Checks, set the
3584 -- model specified by the pragma because it applies to all parts
3585 -- of the unit.
3587 Install_Elaboration_Model (Spec_Id);
3589 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3590 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3592 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3594 if Nkind (N) = N_Subprogram_Body then
3595 Check_Missing_Return;
3596 end if;
3598 goto Leave;
3600 -- Otherwise a previous entity conflicts with the subprogram name.
3601 -- Attempting to enter name will post error.
3603 else
3604 Enter_Name (Body_Id);
3605 goto Leave;
3606 end if;
3608 -- Non-generic case, find the subprogram declaration, if one was seen,
3609 -- or enter new overloaded entity in the current scope. If the
3610 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3611 -- part of the context of one of its subunits. No need to redo the
3612 -- analysis.
3614 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3615 goto Leave;
3617 else
3618 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3620 if Nkind (N) = N_Subprogram_Body_Stub
3621 or else No (Corresponding_Spec (N))
3622 then
3623 if Is_Private_Concurrent_Primitive (Body_Id) then
3624 Spec_Id := Disambiguate_Spec;
3626 -- A subprogram body is Ghost when it is stand-alone and
3627 -- subject to pragma Ghost or when the corresponding spec is
3628 -- Ghost. Set the mode now to ensure that any nodes generated
3629 -- during analysis and expansion are properly marked as Ghost.
3631 Mark_And_Set_Ghost_Body (N, Spec_Id);
3633 -- If the body completes a compilation unit which is subject
3634 -- to pragma Elaboration_Checks, set the model specified by
3635 -- the pragma because it applies to all parts of the unit.
3637 Install_Elaboration_Model (Spec_Id);
3639 else
3640 Spec_Id := Find_Corresponding_Spec (N);
3642 -- A subprogram body is Ghost when it is stand-alone and
3643 -- subject to pragma Ghost or when the corresponding spec is
3644 -- Ghost. Set the mode now to ensure that any nodes generated
3645 -- during analysis and expansion are properly marked as Ghost.
3647 Mark_And_Set_Ghost_Body (N, Spec_Id);
3649 -- If the body completes a compilation unit which is subject
3650 -- to pragma Elaboration_Checks, set the model specified by
3651 -- the pragma because it applies to all parts of the unit.
3653 Install_Elaboration_Model (Spec_Id);
3655 -- In GNATprove mode, if the body has no previous spec, create
3656 -- one so that the inlining machinery can operate properly.
3657 -- Transfer aspects, if any, to the new spec, so that they
3658 -- are legal and can be processed ahead of the body.
3659 -- We make two copies of the given spec, one for the new
3660 -- declaration, and one for the body.
3661 -- ??? This should be conditioned on front-end inlining rather
3662 -- than GNATprove_Mode.
3664 if No (Spec_Id) and then GNATprove_Mode
3666 -- Inlining does not apply during preanalysis of code
3668 and then Full_Analysis
3670 -- Inlining only applies to full bodies, not stubs
3672 and then Nkind (N) /= N_Subprogram_Body_Stub
3674 -- Inlining only applies to bodies in the source code, not to
3675 -- those generated by the compiler. In particular, expression
3676 -- functions, whose body is generated by the compiler, are
3677 -- treated specially by GNATprove.
3679 and then Comes_From_Source (Body_Id)
3681 -- This cannot be done for a compilation unit, which is not
3682 -- in a context where we can insert a new spec.
3684 and then Is_List_Member (N)
3686 -- Inlining only applies to subprograms without contracts,
3687 -- as a contract is a sign that GNATprove should perform a
3688 -- modular analysis of the subprogram instead of a contextual
3689 -- analysis at each call site. The same test is performed in
3690 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3691 -- here in another form (because the contract has not been
3692 -- attached to the body) to avoid front-end errors in case
3693 -- pragmas are used instead of aspects, because the
3694 -- corresponding pragmas in the body would not be transferred
3695 -- to the spec, leading to legality errors.
3697 and then not Body_Has_Contract
3698 and then not Inside_A_Generic
3699 then
3700 Build_Subprogram_Declaration;
3702 -- If this is a function that returns a constrained array, and
3703 -- Transform_Function_Array is set, create subprogram
3704 -- declaration to simplify e.g. subsequent C generation.
3706 elsif No (Spec_Id)
3707 and then Transform_Function_Array
3708 and then Nkind (Body_Spec) = N_Function_Specification
3709 and then Is_Array_Type (Etype (Body_Id))
3710 and then Is_Constrained (Etype (Body_Id))
3711 then
3712 Build_Subprogram_Declaration;
3713 end if;
3714 end if;
3716 -- If this is a duplicate body, no point in analyzing it
3718 if Error_Posted (N) then
3719 goto Leave;
3720 end if;
3722 -- A subprogram body should cause freezing of its own declaration,
3723 -- so, if the body and spec are compilation units, we must do it
3724 -- manually here. Moreover, if the return type is anonymous access
3725 -- to protected subprogram, it must be frozen before the body
3726 -- because its expansion has generated an equivalent type that is
3727 -- used when elaborating the body.
3729 if Present (Spec_Id)
3730 and then Nkind (Parent (N)) = N_Compilation_Unit
3731 then
3732 Freeze_Before (N, Spec_Id);
3734 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3735 Freeze_Before (N, Etype (Body_Id));
3736 end if;
3738 else
3739 Spec_Id := Corresponding_Spec (N);
3741 -- A subprogram body is Ghost when it is stand-alone and subject
3742 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3743 -- the mode now to ensure that any nodes generated during analysis
3744 -- and expansion are properly marked as Ghost.
3746 Mark_And_Set_Ghost_Body (N, Spec_Id);
3748 -- If the body completes the initial declaration of a compilation
3749 -- unit which is subject to pragma Elaboration_Checks, set the
3750 -- model specified by the pragma because it applies to all parts
3751 -- of the unit.
3753 Install_Elaboration_Model (Spec_Id);
3754 end if;
3755 end if;
3757 -- Deactivate expansion inside the body of ignored Ghost entities,
3758 -- as this code will ultimately be ignored. This avoids requiring the
3759 -- presence of run-time units which are not needed. Only do this for
3760 -- user entities, as internally generated entitities might still need
3761 -- to be expanded (e.g. those generated for types).
3763 if Present (Ignored_Ghost_Region)
3764 and then Comes_From_Source (Body_Id)
3765 then
3766 Expander_Active := False;
3767 end if;
3769 -- Previously we scanned the body to look for nested subprograms, and
3770 -- rejected an inline directive if nested subprograms were present,
3771 -- because the back-end would generate conflicting symbols for the
3772 -- nested bodies. This is now unnecessary.
3774 -- Look ahead to recognize a pragma Inline that appears after the body
3776 Check_Inline_Pragma (Spec_Id);
3778 -- Deal with special case of a fully private operation in the body of
3779 -- the protected type. We must create a declaration for the subprogram,
3780 -- in order to attach the subprogram that will be used in internal
3781 -- calls. We exclude compiler generated bodies from the expander since
3782 -- the issue does not arise for those cases.
3784 if No (Spec_Id)
3785 and then Comes_From_Source (N)
3786 and then Is_Protected_Type (Current_Scope)
3787 then
3788 Spec_Id := Build_Internal_Protected_Declaration (N);
3789 end if;
3791 -- If Transform_Function_Array is set and this is a function returning a
3792 -- constrained array type for which we must create a procedure with an
3793 -- extra out parameter, build and analyze the body now. The procedure
3794 -- declaration has already been created. We reuse the source body of the
3795 -- function, because in an instance it may contain global references
3796 -- that cannot be reanalyzed. The source function itself is not used any
3797 -- further, so we mark it as having a completion. If the subprogram is a
3798 -- stub the transformation is done later, when the proper body is
3799 -- analyzed.
3801 if Expander_Active
3802 and then Transform_Function_Array
3803 and then Nkind (N) /= N_Subprogram_Body_Stub
3804 then
3805 declare
3806 S : constant Entity_Id :=
3807 (if Present (Spec_Id)
3808 then Spec_Id
3809 else Defining_Unit_Name (Specification (N)));
3810 Proc_Body : Node_Id;
3812 begin
3813 if Ekind (S) = E_Function and then Rewritten_For_C (S) then
3814 Set_Has_Completion (S);
3815 Proc_Body := Build_Procedure_Body_Form (S, N);
3817 if Present (Spec_Id) then
3818 Rewrite (N, Proc_Body);
3819 Analyze (N);
3821 -- The entity for the created procedure must remain
3822 -- invisible, so it does not participate in resolution of
3823 -- subsequent references to the function.
3825 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3827 -- If we do not have a separate spec for N, build one and
3828 -- insert the new body right after.
3830 else
3831 Rewrite (N,
3832 Make_Subprogram_Declaration (Loc,
3833 Specification => Relocate_Node (Specification (N))));
3834 Analyze (N);
3835 Insert_After_And_Analyze (N, Proc_Body);
3836 Set_Is_Immediately_Visible
3837 (Corresponding_Spec (Proc_Body), False);
3838 end if;
3840 goto Leave;
3841 end if;
3842 end;
3843 end if;
3845 -- If a separate spec is present, then deal with freezing issues
3847 if Present (Spec_Id) then
3848 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3849 Verify_Overriding_Indicator;
3851 -- For functions with separate spec, if their return type was visible
3852 -- through a limited-with context clause, their extra formals were
3853 -- not added when the spec was frozen. Now the full view must be
3854 -- available, and the extra formals can be created and Returns_By_Ref
3855 -- computed (required to generate its return statements).
3857 if Ekind (Spec_Id) = E_Function
3858 and then From_Limited_With (Etype (Spec_Id))
3859 and then Is_Build_In_Place_Function (Spec_Id)
3860 and then not Has_BIP_Formals (Spec_Id)
3861 then
3862 Create_Extra_Formals (Spec_Id);
3863 Compute_Returns_By_Ref (Spec_Id);
3864 end if;
3866 -- In general, the spec will be frozen when we start analyzing the
3867 -- body. However, for internally generated operations, such as
3868 -- wrapper functions for inherited operations with controlling
3869 -- results, the spec may not have been frozen by the time we expand
3870 -- the freeze actions that include the bodies. In particular, extra
3871 -- formals for accessibility or for return-in-place may need to be
3872 -- generated. Freeze nodes, if any, are inserted before the current
3873 -- body. These freeze actions are also needed in Compile_Only mode to
3874 -- enable the proper back-end type annotations.
3875 -- They are necessary in any case to ensure proper elaboration order
3876 -- in gigi.
3878 if Nkind (N) = N_Subprogram_Body
3879 and then Was_Expression_Function (N)
3880 and then not Has_Completion (Spec_Id)
3881 and then Serious_Errors_Detected = 0
3882 and then (Expander_Active
3883 or else Operating_Mode = Check_Semantics
3884 or else Is_Ignored_Ghost_Entity (Spec_Id))
3885 then
3886 -- The body generated for an expression function that is not a
3887 -- completion is a freeze point neither for the profile nor for
3888 -- anything else. That's why, in order to prevent any freezing
3889 -- during analysis, we need to mask types declared outside the
3890 -- expression (and in an outer scope) that are not yet frozen.
3891 -- This also needs to be done in the case of an ignored Ghost
3892 -- expression function, where the expander isn't active.
3894 -- A further complication arises if the expression function is
3895 -- a primitive operation of a tagged type: in that case the
3896 -- function entity must be frozen before the dispatch table for
3897 -- the type is constructed, so it will be frozen like other local
3898 -- entities, at the end of the current scope.
3900 if not Is_Dispatching_Operation (Spec_Id) then
3901 Set_Is_Frozen (Spec_Id);
3902 end if;
3904 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3906 elsif not Is_Frozen (Spec_Id)
3907 and then Serious_Errors_Detected = 0
3908 then
3909 Set_Has_Delayed_Freeze (Spec_Id);
3910 Freeze_Before (N, Spec_Id);
3911 end if;
3912 end if;
3914 -- Place subprogram on scope stack, and make formals visible. If there
3915 -- is a spec, the visible entity remains that of the spec.
3917 if Present (Spec_Id) then
3918 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3920 if Is_Child_Unit (Spec_Id) then
3921 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3922 end if;
3924 if Style_Check then
3925 Style.Check_Identifier (Body_Id, Spec_Id);
3926 end if;
3928 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3929 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3931 if Is_Abstract_Subprogram (Spec_Id) then
3932 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3933 goto Leave;
3935 else
3936 Set_Convention (Body_Id, Convention (Spec_Id));
3937 Set_Has_Completion (Spec_Id);
3939 if Is_Protected_Type (Scope (Spec_Id)) then
3940 Prot_Typ := Scope (Spec_Id);
3941 end if;
3943 -- If this is a body generated for a renaming, do not check for
3944 -- full conformance. The check is redundant, because the spec of
3945 -- the body is a copy of the spec in the renaming declaration,
3946 -- and the test can lead to spurious errors on nested defaults.
3948 if Present (Spec_Decl)
3949 and then not Comes_From_Source (N)
3950 and then
3951 (Nkind (Original_Node (Spec_Decl)) =
3952 N_Subprogram_Renaming_Declaration
3953 or else (Present (Corresponding_Body (Spec_Decl))
3954 and then
3955 Nkind (Unit_Declaration_Node
3956 (Corresponding_Body (Spec_Decl))) =
3957 N_Subprogram_Renaming_Declaration))
3958 then
3959 Conformant := True;
3961 -- Conversely, the spec may have been generated for specless body
3962 -- with an inline pragma. The entity comes from source, which is
3963 -- both semantically correct and necessary for proper inlining.
3964 -- The subprogram declaration itself is not in the source.
3966 elsif Comes_From_Source (N)
3967 and then Present (Spec_Decl)
3968 and then not Comes_From_Source (Spec_Decl)
3969 and then Has_Pragma_Inline (Spec_Id)
3970 then
3971 Conformant := True;
3973 -- Finally, a body generated for an expression function copies
3974 -- the profile of the function and no check is needed either.
3975 -- If the body is the completion of a previous function
3976 -- declared elsewhere, the conformance check is required.
3978 elsif Nkind (N) = N_Subprogram_Body
3979 and then Was_Expression_Function (N)
3980 and then Sloc (Spec_Id) = Sloc (Body_Id)
3981 then
3982 Conformant := True;
3984 else
3985 Check_Conformance
3986 (Body_Id, Spec_Id,
3987 Fully_Conformant, True, Conformant, Body_Id);
3988 end if;
3990 -- If the body is not fully conformant, we have to decide if we
3991 -- should analyze it or not. If it has a really messed up profile
3992 -- then we probably should not analyze it, since we will get too
3993 -- many bogus messages.
3995 -- Our decision is to go ahead in the non-fully conformant case
3996 -- only if it is at least mode conformant with the spec. Note
3997 -- that the call to Check_Fully_Conformant has issued the proper
3998 -- error messages to complain about the lack of conformance.
4000 if not Conformant
4001 and then not Mode_Conformant (Body_Id, Spec_Id)
4002 then
4003 goto Leave;
4004 end if;
4005 end if;
4007 -- In the case we are dealing with an expression function we check
4008 -- the formals attached to the spec instead of the body - so we don't
4009 -- reference body formals.
4011 if Spec_Id /= Body_Id
4012 and then not Is_Expression_Function (Spec_Id)
4013 then
4014 Reference_Body_Formals (Spec_Id, Body_Id);
4015 end if;
4017 Reinit_Field_To_Zero (Body_Id, F_Has_Out_Or_In_Out_Parameter,
4018 Old_Ekind => (E_Function | E_Procedure => True, others => False));
4019 Reinit_Field_To_Zero (Body_Id, F_Needs_No_Actuals);
4020 Reinit_Field_To_Zero (Body_Id, F_Is_Predicate_Function);
4021 Reinit_Field_To_Zero (Body_Id, F_Protected_Subprogram);
4022 Reinit_Field_To_Zero (Body_Id, F_Is_Inlined_Always);
4023 Reinit_Field_To_Zero (Body_Id, F_Is_Generic_Actual_Subprogram);
4024 Reinit_Field_To_Zero (Body_Id, F_Is_Primitive_Wrapper);
4025 Reinit_Field_To_Zero (Body_Id, F_Is_Private_Primitive);
4026 Reinit_Field_To_Zero (Body_Id, F_Original_Protected_Subprogram);
4027 Reinit_Field_To_Zero (Body_Id, F_Wrapped_Entity);
4029 if Ekind (Body_Id) = E_Procedure then
4030 Reinit_Field_To_Zero (Body_Id, F_Receiving_Entry);
4031 end if;
4033 Mutate_Ekind (Body_Id, E_Subprogram_Body);
4035 if Nkind (N) = N_Subprogram_Body_Stub then
4036 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
4038 -- Regular body
4040 else
4041 Set_Corresponding_Spec (N, Spec_Id);
4043 -- Ada 2005 (AI-345): If the operation is a primitive operation
4044 -- of a concurrent type, the type of the first parameter has been
4045 -- replaced with the corresponding record, which is the proper
4046 -- run-time structure to use. However, within the body there may
4047 -- be uses of the formals that depend on primitive operations
4048 -- of the type (in particular calls in prefixed form) for which
4049 -- we need the original concurrent type. The operation may have
4050 -- several controlling formals, so the replacement must be done
4051 -- for all of them.
4053 if Comes_From_Source (Spec_Id)
4054 and then Present (First_Entity (Spec_Id))
4055 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
4056 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
4057 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
4058 and then Present (Corresponding_Concurrent_Type
4059 (Etype (First_Entity (Spec_Id))))
4060 then
4061 declare
4062 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
4063 Form : Entity_Id;
4065 begin
4066 Form := First_Formal (Spec_Id);
4067 while Present (Form) loop
4068 if Etype (Form) = Typ then
4069 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
4070 end if;
4072 Next_Formal (Form);
4073 end loop;
4074 end;
4075 end if;
4077 -- Make the formals visible, and place subprogram on scope stack.
4078 -- This is also the point at which we set Last_Real_Spec_Entity
4079 -- to mark the entities which will not be moved to the body.
4081 Install_Formals (Spec_Id);
4082 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
4084 -- Within an instance, add local renaming declarations so that
4085 -- gdb can retrieve the values of actuals more easily. This is
4086 -- only relevant if generating code.
4088 if Is_Generic_Instance (Spec_Id)
4089 and then Is_Wrapper_Package (Current_Scope)
4090 and then Expander_Active
4091 then
4092 Build_Subprogram_Instance_Renamings (N, Current_Scope);
4093 end if;
4095 Push_Scope (Spec_Id);
4097 -- Make sure that the subprogram is immediately visible. For
4098 -- child units that have no separate spec this is indispensable.
4099 -- Otherwise it is safe albeit redundant.
4101 Set_Is_Immediately_Visible (Spec_Id);
4102 end if;
4104 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
4105 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
4106 Set_Scope (Body_Id, Scope (Spec_Id));
4108 -- Case of subprogram body with no previous spec
4110 else
4111 -- Check for style warning required
4113 if Style_Check
4115 -- Only apply check for source level subprograms for which checks
4116 -- have not been suppressed.
4118 and then Comes_From_Source (Body_Id)
4119 and then not Suppress_Style_Checks (Body_Id)
4121 -- No warnings within an instance
4123 and then not In_Instance
4125 -- No warnings for expression functions
4127 and then (Nkind (N) /= N_Subprogram_Body
4128 or else not Was_Expression_Function (N))
4129 then
4130 Style.Body_With_No_Spec (N);
4131 end if;
4133 -- First set Acts_As_Spec if appropriate
4135 if Nkind (N) /= N_Subprogram_Body_Stub then
4136 Set_Acts_As_Spec (N);
4137 end if;
4139 New_Overloaded_Entity (Body_Id);
4141 -- A subprogram body should cause freezing of its own declaration,
4142 -- but if there was no previous explicit declaration, then the
4143 -- subprogram will get frozen too late (there may be code within
4144 -- the body that depends on the subprogram having been frozen,
4145 -- such as uses of extra formals), so we force it to be frozen here.
4146 -- An exception in Ada 2012 is that the body created for expression
4147 -- functions does not freeze.
4149 if Nkind (N) /= N_Subprogram_Body
4150 or else not Was_Expression_Function (N)
4151 then
4152 -- First clear the Is_Public flag on thunks since they are only
4153 -- referenced locally by dispatch tables and thus never inlined.
4155 if Is_Thunk (Body_Id) then
4156 Set_Is_Public (Body_Id, False);
4157 end if;
4159 Freeze_Before (N, Body_Id);
4160 end if;
4162 if Nkind (N) /= N_Subprogram_Body_Stub then
4163 Generate_Definition (Body_Id);
4164 Generate_Reference
4165 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
4167 -- If the body is an entry wrapper created for an entry with
4168 -- preconditions, it must be compiled in the context of the
4169 -- enclosing synchronized object, because it may mention other
4170 -- operations of the type.
4172 if Is_Entry_Wrapper (Body_Id) then
4173 declare
4174 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4175 begin
4176 Push_Scope (Prot);
4177 Install_Declarations (Prot);
4178 end;
4179 end if;
4181 Install_Formals (Body_Id);
4183 Push_Scope (Body_Id);
4184 end if;
4186 -- For stubs and bodies with no previous spec, generate references to
4187 -- formals.
4189 Generate_Reference_To_Formals (Body_Id);
4190 end if;
4192 -- Entry barrier functions are generated outside the protected type and
4193 -- should not carry the SPARK_Mode of the enclosing context.
4195 if Nkind (N) = N_Subprogram_Body
4196 and then Is_Entry_Barrier_Function (N)
4197 then
4198 null;
4200 -- The body is generated as part of expression function expansion. When
4201 -- the expression function appears in the visible declarations of a
4202 -- package, the body is added to the private declarations. Since both
4203 -- declarative lists may be subject to a different SPARK_Mode, inherit
4204 -- the mode of the spec.
4206 -- package P with SPARK_Mode is
4207 -- function Expr_Func ... is (...); -- original
4208 -- [function Expr_Func ...;] -- generated spec
4209 -- -- mode is ON
4210 -- private
4211 -- pragma SPARK_Mode (Off);
4212 -- [function Expr_Func ... is return ...;] -- generated body
4213 -- end P; -- mode is ON
4215 elsif not Comes_From_Source (N)
4216 and then Present (Spec_Id)
4217 and then Is_Expression_Function (Spec_Id)
4218 then
4219 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4220 Set_SPARK_Pragma_Inherited
4221 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4223 -- Set the SPARK_Mode from the current context (may be overwritten later
4224 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4225 -- initially on a stand-alone subprogram body, but is then relocated to
4226 -- a generated corresponding spec. In this scenario the mode is shared
4227 -- between the spec and body.
4229 elsif No (SPARK_Pragma (Body_Id)) then
4230 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4231 Set_SPARK_Pragma_Inherited (Body_Id);
4232 end if;
4234 -- A subprogram body may be instantiated or inlined at a later pass.
4235 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4236 -- applied to the initial declaration of the body.
4238 if Present (Spec_Id) then
4239 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4240 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4241 end if;
4243 else
4244 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4245 -- case the body is instantiated or inlined later and out of context.
4246 -- The body uses this attribute to restore the value of the global
4247 -- flag.
4249 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4250 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4252 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4253 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4254 end if;
4255 end if;
4257 -- Preserve relevant elaboration-related attributes of the context which
4258 -- are no longer available or very expensive to recompute once analysis,
4259 -- resolution, and expansion are over.
4261 if No (Spec_Id) then
4262 Mark_Elaboration_Attributes
4263 (N_Id => Body_Id,
4264 Checks => True,
4265 Warnings => True);
4266 end if;
4268 -- If this is the proper body of a stub, we must verify that the stub
4269 -- conforms to the body, and to the previous spec if one was present.
4270 -- We know already that the body conforms to that spec. This test is
4271 -- only required for subprograms that come from source.
4273 if Nkind (Parent (N)) = N_Subunit
4274 and then Comes_From_Source (N)
4275 and then not Error_Posted (Body_Id)
4276 and then Nkind (Corresponding_Stub (Parent (N))) =
4277 N_Subprogram_Body_Stub
4278 then
4279 declare
4280 Old_Id : constant Entity_Id :=
4281 Defining_Entity
4282 (Specification (Corresponding_Stub (Parent (N))));
4284 Conformant : Boolean := False;
4286 begin
4287 if No (Spec_Id) then
4288 Check_Fully_Conformant (Body_Id, Old_Id);
4290 else
4291 Check_Conformance
4292 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4294 if not Conformant then
4296 -- The stub was taken to be a new declaration. Indicate that
4297 -- it lacks a body.
4299 Set_Has_Completion (Old_Id, False);
4300 end if;
4301 end if;
4302 end;
4303 end if;
4305 Set_Has_Completion (Body_Id);
4306 Check_Eliminated (Body_Id);
4308 -- Analyze any aspect specifications that appear on the subprogram body
4309 -- stub. Stop the analysis now as the stub does not have a declarative
4310 -- or a statement part, and it cannot be inlined.
4312 if Nkind (N) = N_Subprogram_Body_Stub then
4313 if Has_Aspects (N) then
4314 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4315 end if;
4317 goto Leave;
4318 end if;
4320 -- Handle inlining
4322 if Expander_Active
4323 and then Serious_Errors_Detected = 0
4324 and then Present (Spec_Id)
4325 and then Has_Pragma_Inline (Spec_Id)
4326 then
4327 -- Legacy implementation (relying on front-end inlining)
4329 if not Back_End_Inlining then
4330 if Has_Pragma_Inline_Always (Spec_Id)
4331 or else (Front_End_Inlining
4332 and then not Opt.Disable_FE_Inline)
4333 then
4334 Build_Body_To_Inline (N, Spec_Id);
4335 end if;
4337 -- New implementation (relying on back-end inlining)
4339 else
4340 if Has_Pragma_Inline_Always (Spec_Id)
4341 or else Optimization_Level > 0
4342 then
4343 -- Handle function returning an unconstrained type
4345 if Comes_From_Source (Body_Id)
4346 and then Ekind (Spec_Id) = E_Function
4347 and then Returns_Unconstrained_Type (Spec_Id)
4349 -- If function builds in place, i.e. returns a limited type,
4350 -- inlining cannot be done.
4352 and then not Is_Limited_Type (Etype (Spec_Id))
4353 then
4354 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4356 else
4357 declare
4358 Subp_Body : constant Node_Id :=
4359 Unit_Declaration_Node (Body_Id);
4360 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4362 begin
4363 -- Do not pass inlining to the backend if the subprogram
4364 -- has declarations or statements which cannot be inlined
4365 -- by the backend. This check is done here to emit an
4366 -- error instead of the generic warning message reported
4367 -- by the GCC backend (ie. "function might not be
4368 -- inlinable").
4370 if Has_Excluded_Declaration (Spec_Id, Subp_Decl) then
4371 null;
4373 elsif Has_Excluded_Statement
4374 (Spec_Id,
4375 Statements
4376 (Handled_Statement_Sequence (Subp_Body)))
4377 then
4378 null;
4380 -- If the backend inlining is available then at this
4381 -- stage we only have to mark the subprogram as inlined.
4382 -- The expander will take care of registering it in the
4383 -- table of subprograms inlined by the backend a part of
4384 -- processing calls to it (cf. Expand_Call)
4386 else
4387 Set_Is_Inlined (Spec_Id);
4388 end if;
4389 end;
4390 end if;
4391 end if;
4392 end if;
4394 -- In GNATprove mode, inline only when there is a separate subprogram
4395 -- declaration for now, as inlining of subprogram bodies acting as
4396 -- declarations, or subprogram stubs, are not supported by front-end
4397 -- inlining. This inlining should occur after analysis of the body, so
4398 -- that it is known whether the value of SPARK_Mode, which can be
4399 -- defined by a pragma inside the body, is applicable to the body.
4400 -- Inlining can be disabled with switch -gnatdm
4402 elsif GNATprove_Mode
4403 and then Full_Analysis
4404 and then not Inside_A_Generic
4405 and then Present (Spec_Id)
4406 and then
4407 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4408 and then Body_Has_SPARK_Mode_On
4409 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4410 and then not Body_Has_Contract
4411 and then not Debug_Flag_M
4412 then
4413 Build_Body_To_Inline (N, Spec_Id);
4414 end if;
4416 -- When generating code, inherited pre/postconditions are handled when
4417 -- expanding the corresponding contract.
4419 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4420 -- of the specification we have to install the private withed units.
4421 -- This holds for child units as well.
4423 if Is_Compilation_Unit (Body_Id)
4424 or else Nkind (Parent (N)) = N_Compilation_Unit
4425 then
4426 Install_Private_With_Clauses (Body_Id);
4427 end if;
4429 Check_Anonymous_Return;
4431 -- Set the Protected_Formal field of each extra formal of the protected
4432 -- subprogram to reference the corresponding extra formal of the
4433 -- subprogram that implements it. For regular formals this occurs when
4434 -- the protected subprogram's declaration is expanded, but the extra
4435 -- formals don't get created until the subprogram is frozen. We need to
4436 -- do this before analyzing the protected subprogram's body so that any
4437 -- references to the original subprogram's extra formals will be changed
4438 -- refer to the implementing subprogram's formals (see Expand_Formal).
4440 if Present (Spec_Id)
4441 and then Is_Protected_Type (Scope (Spec_Id))
4442 and then Present (Protected_Body_Subprogram (Spec_Id))
4443 then
4444 declare
4445 Impl_Subp : constant Entity_Id :=
4446 Protected_Body_Subprogram (Spec_Id);
4447 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4448 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4450 begin
4451 while Present (Prot_Ext_Formal) loop
4452 pragma Assert (Present (Impl_Ext_Formal));
4453 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4454 Next_Formal_With_Extras (Prot_Ext_Formal);
4455 Next_Formal_With_Extras (Impl_Ext_Formal);
4456 end loop;
4457 end;
4458 end if;
4460 -- Generate minimum accessibility local objects to correspond with
4461 -- any extra formal added for anonymous access types. This new local
4462 -- object can then be used instead of the formal in case it is used
4463 -- in an actual to a call to a nested subprogram.
4465 -- This method is used to supplement our "small integer model" for
4466 -- accessibility-check generation (for more information see
4467 -- Accessibility_Level).
4469 -- Because we allow accessibility values greater than our expected value
4470 -- passing along the same extra accessibility formal as an actual
4471 -- to a nested subprogram becomes a problem because high values mean
4472 -- different things to the callee even though they are the same to the
4473 -- caller. So, as described in the first section, we create a local
4474 -- object representing the minimum of the accessibility level value that
4475 -- is passed in and the accessibility level of the callee's parameter
4476 -- and locals and use it in the case of a call to a nested subprogram.
4477 -- This generated object is referred to as a "minimum accessibility
4478 -- level."
4480 if Present (Spec_Id) or else Present (Body_Id) then
4481 Body_Nod := Unit_Declaration_Node (Body_Id);
4483 declare
4484 Form : Entity_Id;
4485 begin
4486 -- Grab the appropriate formal depending on whether there exists
4487 -- an actual spec for the subprogram or whether we are dealing
4488 -- with a protected subprogram.
4490 if Present (Spec_Id) then
4491 if Present (Protected_Body_Subprogram (Spec_Id)) then
4492 Form := First_Formal (Protected_Body_Subprogram (Spec_Id));
4493 else
4494 Form := First_Formal (Spec_Id);
4495 end if;
4496 else
4497 Form := First_Formal (Body_Id);
4498 end if;
4500 -- Loop through formals if the subprogram is capable of accepting
4501 -- a generated local object. If it is not then it is also not
4502 -- capable of having local subprograms meaning it would not need
4503 -- a minimum accessibility level object anyway.
4505 if Present (Body_Nod)
4506 and then Has_Declarations (Body_Nod)
4507 and then Nkind (Body_Nod) /= N_Package_Specification
4508 then
4509 while Present (Form) loop
4511 if Present (Extra_Accessibility (Form))
4512 and then No (Minimum_Accessibility (Form))
4513 then
4514 -- Generate the minimum accessibility level object
4516 -- A60b : constant natural := natural'min(1, paramL);
4518 Generate_Minimum_Accessibility
4519 (Extra_Accessibility (Form), Form);
4520 end if;
4522 Next_Formal (Form);
4523 end loop;
4525 -- Generate the minimum accessibility level object for the
4526 -- function's Extra_Accessibility_Of_Result.
4528 -- A31b : constant natural := natural'min (2, funcL);
4530 if Ekind (Body_Id) = E_Function
4531 and then Present (Extra_Accessibility_Of_Result (Body_Id))
4532 then
4533 Generate_Minimum_Accessibility
4534 (Extra_Accessibility_Of_Result (Body_Id));
4536 -- Replace the Extra_Accessibility_Of_Result with the new
4537 -- minimum accessibility object.
4539 Set_Extra_Accessibility_Of_Result
4540 (Body_Id, Minimum_Accessibility
4541 (Extra_Accessibility_Of_Result (Body_Id)));
4542 end if;
4543 end if;
4544 end;
4545 end if;
4547 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4548 -- may now appear in parameter and result profiles. Since the analysis
4549 -- of a subprogram body may use the parameter and result profile of the
4550 -- spec, swap any limited views with their non-limited counterpart.
4552 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4553 Exch_Views := Exchange_Limited_Views (Spec_Id);
4554 end if;
4556 -- Analyze any aspect specifications that appear on the subprogram body
4558 if Has_Aspects (N) then
4559 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4560 end if;
4562 -- Process the contract of the subprogram body after analyzing all the
4563 -- contract-related pragmas within the declarations.
4565 Analyze_Pragmas_In_Declarations (Body_Id);
4566 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4568 Set_Actual_Subtypes (N, Current_Scope);
4570 -- Add a declaration for the Protection object, renaming declarations
4571 -- for discriminals and privals and finally a declaration for the entry
4572 -- family index (if applicable). This form of early expansion is done
4573 -- when the Expander is active because Install_Private_Data_Declarations
4574 -- references entities which were created during regular expansion. The
4575 -- subprogram entity must come from source, and not be an internally
4576 -- generated subprogram.
4578 if Expander_Active
4579 and then Present (Prot_Typ)
4580 and then Present (Spec_Id)
4581 and then Comes_From_Source (Spec_Id)
4582 and then not Is_Eliminated (Spec_Id)
4583 then
4584 Install_Private_Data_Declarations
4585 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4586 end if;
4588 -- If the return type is an anonymous access type whose designated type
4589 -- is the limited view of a class-wide type and the non-limited view is
4590 -- available, update the return type accordingly.
4592 if Ada_Version >= Ada_2005
4593 and then Present (Spec_Id)
4594 and then Ekind (Etype (Spec_Id)) = E_Anonymous_Access_Type
4595 then
4596 declare
4597 Etyp : Entity_Id;
4599 begin
4600 Etyp := Directly_Designated_Type (Etype (Spec_Id));
4602 if Is_Class_Wide_Type (Etyp)
4603 and then From_Limited_With (Etyp)
4604 and then Has_Non_Limited_View (Etyp)
4605 then
4606 Desig_View := Etyp;
4607 Etyp := Non_Limited_View (Etyp);
4609 -- If the class-wide type has been created by the completion of
4610 -- an incomplete tagged type declaration, get the class-wide
4611 -- type of the incomplete tagged type to match Find_Type_Name.
4613 if Nkind (Parent (Etyp)) = N_Full_Type_Declaration
4614 and then Present (Incomplete_View (Parent (Etyp)))
4615 then
4616 Etyp := Class_Wide_Type (Incomplete_View (Parent (Etyp)));
4617 end if;
4619 Set_Directly_Designated_Type (Etype (Spec_Id), Etyp);
4620 end if;
4621 end;
4622 end if;
4624 Analyze_Declarations (Declarations (N));
4626 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4628 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4629 if Present (SPARK_Pragma (Spec_Id)) then
4630 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4631 and then
4632 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4633 then
4634 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4635 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4636 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4637 Error_Msg_NE
4638 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4639 end if;
4641 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4642 null;
4644 -- SPARK_Mode Off could complete no SPARK_Mode in a generic, either
4645 -- as specified in source code, or because SPARK_Mode On is ignored
4646 -- in an instance where the context is SPARK_Mode Off/Auto.
4648 elsif Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = Off
4649 and then (Is_Generic_Unit (Spec_Id) or else In_Instance)
4650 then
4651 null;
4653 else
4654 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4655 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4656 Error_Msg_Sloc := Sloc (Spec_Id);
4657 Error_Msg_NE
4658 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4659 end if;
4660 end if;
4662 -- Check completion, and analyze the statements
4664 Check_Completion;
4665 Inspect_Deferred_Constant_Completion (Declarations (N));
4666 Analyze (Handled_Statement_Sequence (N));
4668 -- Add the generated minimum accessibility objects to the subprogram
4669 -- body's list of declarations after analysis of the statements and
4670 -- contracts.
4672 while Is_Non_Empty_List (Minimum_Acc_Objs) loop
4673 if Present (Declarations (Body_Nod)) then
4674 Prepend (Remove_Head (Minimum_Acc_Objs), Declarations (Body_Nod));
4675 else
4676 Set_Declarations
4677 (Body_Nod, New_List (Remove_Head (Minimum_Acc_Objs)));
4678 end if;
4679 end loop;
4681 -- Deal with end of scope processing for the body
4683 Process_End_Label
4684 (Handled_Statement_Sequence (N), 't', Current_Scope);
4685 Update_Use_Clause_Chain;
4686 End_Scope;
4688 -- If we are compiling an entry wrapper, remove the enclosing
4689 -- synchronized object from the stack.
4691 if Is_Entry_Wrapper (Body_Id) then
4692 End_Scope;
4693 end if;
4695 Check_Subprogram_Order (N);
4696 Set_Analyzed (Body_Id);
4698 -- If we have a separate spec, then the analysis of the declarations
4699 -- caused the entities in the body to be chained to the spec id, but
4700 -- we want them chained to the body id. Only the formal parameters
4701 -- end up chained to the spec id in this case.
4703 if Present (Spec_Id) then
4705 -- We must conform to the categorization of our spec
4707 Validate_Categorization_Dependency (N, Spec_Id);
4709 -- And if this is a child unit, the parent units must conform
4711 if Is_Child_Unit (Spec_Id) then
4712 Validate_Categorization_Dependency
4713 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4714 end if;
4716 -- Here is where we move entities from the spec to the body
4718 -- Case where there are entities that stay with the spec
4720 if Present (Last_Real_Spec_Entity) then
4722 -- No body entities (happens when the only real spec entities come
4723 -- from precondition and postcondition pragmas).
4725 if No (Last_Entity (Body_Id)) then
4726 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4728 -- Body entities present (formals), so chain stuff past them
4730 else
4731 Link_Entities
4732 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4733 end if;
4735 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4736 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4737 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4739 -- Case where there are no spec entities, in this case there can be
4740 -- no body entities either, so just move everything.
4742 -- If the body is generated for an expression function, it may have
4743 -- been preanalyzed already, if 'access was applied to it.
4745 else
4746 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4747 N_Expression_Function
4748 then
4749 pragma Assert (No (Last_Entity (Body_Id)));
4750 null;
4751 end if;
4753 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4754 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4755 Set_First_Entity (Spec_Id, Empty);
4756 Set_Last_Entity (Spec_Id, Empty);
4757 end if;
4759 -- Otherwise the body does not complete a previous declaration. Check
4760 -- the categorization of the body against the units it withs.
4762 else
4763 Validate_Categorization_Dependency (N, Body_Id);
4764 end if;
4766 Check_Missing_Return;
4768 -- Now we are going to check for variables that are never modified in
4769 -- the body of the procedure. But first we deal with a special case
4770 -- where we want to modify this check. If the body of the subprogram
4771 -- starts with a raise statement or its equivalent, or if the body
4772 -- consists entirely of a null statement, then it is pretty obvious that
4773 -- it is OK to not reference the parameters. For example, this might be
4774 -- the following common idiom for a stubbed function: statement of the
4775 -- procedure raises an exception. In particular this deals with the
4776 -- common idiom of a stubbed function, which appears something like:
4778 -- function F (A : Integer) return Some_Type;
4779 -- X : Some_Type;
4780 -- begin
4781 -- raise Program_Error;
4782 -- return X;
4783 -- end F;
4785 -- Here the purpose of X is simply to satisfy the annoying requirement
4786 -- in Ada that there be at least one return, and we certainly do not
4787 -- want to go posting warnings on X that it is not initialized. On
4788 -- the other hand, if X is entirely unreferenced that should still
4789 -- get a warning.
4791 -- What we do is to detect these cases, and if we find them, flag the
4792 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4793 -- suppress unwanted warnings. For the case of the function stub above
4794 -- we have a special test to set X as apparently assigned to suppress
4795 -- the warning.
4797 declare
4798 Stm : Node_Id := First (Statements (Handled_Statement_Sequence (N)));
4799 begin
4800 -- Skip call markers installed by the ABE mechanism, labels, and
4801 -- Push_xxx_Error_Label to find the first real statement.
4803 while Nkind (Stm) in N_Call_Marker | N_Label | N_Push_xxx_Label loop
4804 Next (Stm);
4805 end loop;
4807 -- Do the test on the original statement before expansion
4809 declare
4810 Ostm : constant Node_Id := Original_Node (Stm);
4812 begin
4813 -- If explicit raise statement, turn on flag
4815 if Nkind (Ostm) = N_Raise_Statement then
4816 Set_Trivial_Subprogram (Stm);
4818 -- If null statement, and no following statements, turn on flag
4820 elsif Nkind (Stm) = N_Null_Statement
4821 and then Comes_From_Source (Stm)
4822 and then No (Next (Stm))
4823 then
4824 Set_Trivial_Subprogram (Stm);
4826 -- Check for explicit call cases which likely raise an exception
4828 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4829 if Is_Entity_Name (Name (Ostm)) then
4830 declare
4831 Ent : constant Entity_Id := Entity (Name (Ostm));
4833 begin
4834 -- If the procedure is marked No_Return, then likely it
4835 -- raises an exception, but in any case it is not coming
4836 -- back here, so turn on the flag.
4838 if Present (Ent)
4839 and then Ekind (Ent) = E_Procedure
4840 and then No_Return (Ent)
4841 then
4842 Set_Trivial_Subprogram (Stm);
4843 end if;
4844 end;
4845 end if;
4846 end if;
4847 end;
4848 end;
4850 -- Check if a Body_To_Inline was created, but the subprogram has
4851 -- references to object renamings which will be replaced by the special
4852 -- SPARK expansion into nodes of a different kind, which is not expected
4853 -- by the inlining mechanism. In that case, the Body_To_Inline is
4854 -- deleted prior to being analyzed. This check needs to take place
4855 -- after analysis of the subprogram body.
4857 if GNATprove_Mode
4858 and then Present (Spec_Id)
4859 and then
4860 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4861 and then Present (Body_To_Inline (Unit_Declaration_Node (Spec_Id)))
4862 then
4863 Check_Object_Renaming_In_GNATprove_Mode (Spec_Id);
4864 end if;
4866 -- Check for variables that are never modified
4868 declare
4869 F1 : Entity_Id;
4870 F2 : Entity_Id;
4872 begin
4873 -- If there is a separate spec, then transfer Never_Set_In_Source
4874 -- flags from out parameters to the corresponding entities in the
4875 -- body. The reason we do that is we want to post error flags on
4876 -- the body entities, not the spec entities.
4878 if Present (Spec_Id) then
4879 F1 := First_Formal (Spec_Id);
4880 while Present (F1) loop
4881 if Ekind (F1) = E_Out_Parameter then
4882 F2 := First_Formal (Body_Id);
4883 while Present (F2) loop
4884 exit when Chars (F1) = Chars (F2);
4885 Next_Formal (F2);
4886 end loop;
4888 if Present (F2) then
4889 Set_Never_Set_In_Source (F2, Never_Set_In_Source (F1));
4890 end if;
4891 end if;
4893 Next_Formal (F1);
4894 end loop;
4895 end if;
4897 -- Check references of the subprogram spec when we are dealing with
4898 -- an expression function due to it having a generated body.
4900 if Present (Spec_Id)
4901 and then Is_Expression_Function (Spec_Id)
4902 then
4903 Check_References (Spec_Id);
4905 -- Skip the check for subprograms generated for protected subprograms
4906 -- because it is also done for the protected subprograms themselves.
4908 elsif Present (Spec_Id)
4909 and then Present (Protected_Subprogram (Spec_Id))
4910 then
4911 null;
4913 -- Otherwise, we simply check the formals of the subprogram body.
4915 else
4916 Check_References (Body_Id);
4917 end if;
4918 end;
4920 -- Check for nested subprogram, and mark outer level subprogram if so
4922 declare
4923 Ent : Entity_Id;
4925 begin
4926 if Present (Spec_Id) then
4927 Ent := Spec_Id;
4928 else
4929 Ent := Body_Id;
4930 end if;
4932 loop
4933 Ent := Enclosing_Subprogram (Ent);
4934 exit when No (Ent) or else Is_Subprogram (Ent);
4935 end loop;
4937 if Present (Ent) then
4938 Set_Has_Nested_Subprogram (Ent);
4939 end if;
4940 end;
4942 -- Restore the limited views in the spec, if any, to let the back end
4943 -- process it without running into circularities.
4945 if Present (Exch_Views) then
4946 Restore_Limited_Views (Exch_Views);
4947 end if;
4949 if Present (Mask_Types) then
4950 Unmask_Unfrozen_Types (Mask_Types);
4951 end if;
4953 if Present (Desig_View) then
4954 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4955 end if;
4957 <<Leave>>
4958 if Present (Ignored_Ghost_Region) then
4959 Expander_Active := Saved_EA;
4960 end if;
4962 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4963 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4964 end Analyze_Subprogram_Body_Helper;
4966 ------------------------------------
4967 -- Analyze_Subprogram_Declaration --
4968 ------------------------------------
4970 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4971 Scop : constant Entity_Id := Current_Scope;
4972 Designator : Entity_Id;
4974 Is_Completion : Boolean;
4975 -- Indicates whether a null procedure declaration is a completion
4977 begin
4978 -- Null procedures are not allowed in SPARK
4980 if Nkind (Specification (N)) = N_Procedure_Specification
4981 and then Null_Present (Specification (N))
4982 then
4983 -- Null procedures are allowed in protected types, following the
4984 -- recent AI12-0147.
4986 if Is_Protected_Type (Current_Scope)
4987 and then Ada_Version < Ada_2012
4988 then
4989 Error_Msg_N ("protected operation cannot be a null procedure", N);
4990 end if;
4992 Analyze_Null_Procedure (N, Is_Completion);
4994 -- The null procedure acts as a body, nothing further is needed
4996 if Is_Completion then
4997 return;
4998 end if;
4999 end if;
5001 Designator := Analyze_Subprogram_Specification (Specification (N));
5003 -- A reference may already have been generated for the unit name, in
5004 -- which case the following call is redundant. However it is needed for
5005 -- declarations that are the rewriting of an expression function.
5007 Generate_Definition (Designator);
5009 -- Set the SPARK mode from the current context (may be overwritten later
5010 -- with explicit pragma). This is not done for entry barrier functions
5011 -- because they are generated outside the protected type and should not
5012 -- carry the mode of the enclosing context.
5014 if Nkind (N) = N_Subprogram_Declaration
5015 and then Is_Entry_Barrier_Function (N)
5016 then
5017 null;
5019 else
5020 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
5021 Set_SPARK_Pragma_Inherited (Designator);
5022 end if;
5024 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
5025 -- the body of this subprogram is instantiated or inlined later and out
5026 -- of context. The body uses this attribute to restore the value of the
5027 -- global flag.
5029 if Ignore_SPARK_Mode_Pragmas_In_Instance then
5030 Set_Ignore_SPARK_Mode_Pragmas (Designator);
5031 end if;
5033 -- Preserve relevant elaboration-related attributes of the context which
5034 -- are no longer available or very expensive to recompute once analysis,
5035 -- resolution, and expansion are over.
5037 Mark_Elaboration_Attributes
5038 (N_Id => Designator,
5039 Checks => True,
5040 Warnings => True);
5042 if Debug_Flag_C then
5043 Write_Str ("==> subprogram spec ");
5044 Write_Name (Chars (Designator));
5045 Write_Str (" from ");
5046 Write_Location (Sloc (N));
5047 Write_Eol;
5048 Indent;
5049 end if;
5051 Validate_RCI_Subprogram_Declaration (N);
5052 New_Overloaded_Entity (Designator);
5053 Check_Delayed_Subprogram (Designator);
5055 -- If the type of the first formal of the current subprogram is a non-
5056 -- generic tagged private type, mark the subprogram as being a private
5057 -- primitive. Ditto if this is a function with controlling result, and
5058 -- the return type is currently private. In both cases, the type of the
5059 -- controlling argument or result must be in the current scope for the
5060 -- operation to be primitive.
5062 if Has_Controlling_Result (Designator)
5063 and then Is_Private_Type (Etype (Designator))
5064 and then Scope (Etype (Designator)) = Current_Scope
5065 and then not Is_Generic_Actual_Type (Etype (Designator))
5066 then
5067 Set_Is_Private_Primitive (Designator);
5069 elsif Present (First_Formal (Designator)) then
5070 declare
5071 Formal_Typ : constant Entity_Id :=
5072 Etype (First_Formal (Designator));
5073 begin
5074 Set_Is_Private_Primitive (Designator,
5075 Is_Tagged_Type (Formal_Typ)
5076 and then Scope (Formal_Typ) = Current_Scope
5077 and then Is_Private_Type (Formal_Typ)
5078 and then not Is_Generic_Actual_Type (Formal_Typ));
5079 end;
5080 end if;
5082 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
5083 -- or null.
5085 if Ada_Version >= Ada_2005
5086 and then Comes_From_Source (N)
5087 and then Is_Dispatching_Operation (Designator)
5088 then
5089 declare
5090 E : Entity_Id;
5091 Etyp : Entity_Id;
5093 begin
5094 if Has_Controlling_Result (Designator) then
5095 Etyp := Etype (Designator);
5097 else
5098 E := First_Entity (Designator);
5099 while Present (E)
5100 and then Is_Formal (E)
5101 and then not Is_Controlling_Formal (E)
5102 loop
5103 Next_Entity (E);
5104 end loop;
5106 Etyp := Etype (E);
5107 end if;
5109 if Is_Access_Type (Etyp) then
5110 Etyp := Directly_Designated_Type (Etyp);
5111 end if;
5113 if Is_Interface (Etyp)
5114 and then not Is_Abstract_Subprogram (Designator)
5115 and then not (Ekind (Designator) = E_Procedure
5116 and then Null_Present (Specification (N)))
5117 then
5118 Error_Msg_Name_1 := Chars (Defining_Entity (N));
5120 -- Specialize error message based on procedures vs. functions,
5121 -- since functions can't be null subprograms.
5123 if Ekind (Designator) = E_Procedure then
5124 Error_Msg_N
5125 ("interface procedure % must be abstract or null", N);
5126 else
5127 Error_Msg_N
5128 ("interface function % must be abstract", N);
5129 end if;
5130 end if;
5131 end;
5132 end if;
5134 -- For a compilation unit, set body required. This flag will only be
5135 -- reset if a valid Import or Interface pragma is processed later on.
5137 if Nkind (Parent (N)) = N_Compilation_Unit then
5138 Set_Body_Required (Parent (N), True);
5140 if Ada_Version >= Ada_2005
5141 and then Nkind (Specification (N)) = N_Procedure_Specification
5142 and then Null_Present (Specification (N))
5143 then
5144 Error_Msg_N
5145 ("null procedure cannot be declared at library level", N);
5146 end if;
5147 end if;
5149 Generate_Reference_To_Formals (Designator);
5150 Check_Eliminated (Designator);
5152 if Debug_Flag_C then
5153 Outdent;
5154 Write_Str ("<== subprogram spec ");
5155 Write_Name (Chars (Designator));
5156 Write_Str (" from ");
5157 Write_Location (Sloc (N));
5158 Write_Eol;
5159 end if;
5161 -- Indicate that this is a protected operation, because it may be used
5162 -- in subsequent declarations within the protected type.
5164 if Is_Protected_Type (Current_Scope) then
5165 Set_Convention (Designator, Convention_Protected);
5166 end if;
5168 List_Inherited_Pre_Post_Aspects (Designator);
5170 -- Process the aspects before establishing the proper categorization in
5171 -- case the subprogram is a compilation unit and one of its aspects is
5172 -- converted into a categorization pragma.
5174 if Has_Aspects (N) then
5175 Analyze_Aspect_Specifications (N, Designator);
5176 end if;
5178 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
5179 Set_Categorization_From_Scope (Designator, Scop);
5181 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
5182 -- proper categorization of the unit based on its pragmas.
5184 else
5185 Push_Scope (Designator);
5186 Set_Categorization_From_Pragmas (N);
5187 Validate_Categorization_Dependency (N, Designator);
5188 Pop_Scope;
5189 end if;
5190 end Analyze_Subprogram_Declaration;
5192 --------------------------------------
5193 -- Analyze_Subprogram_Specification --
5194 --------------------------------------
5196 -- Reminder: N here really is a subprogram specification (not a subprogram
5197 -- declaration). This procedure is called to analyze the specification in
5198 -- both subprogram bodies and subprogram declarations (specs).
5200 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
5201 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
5202 -- Determine whether entity E denotes the spec or body of an invariant
5203 -- procedure.
5205 ------------------------------------
5206 -- Is_Invariant_Procedure_Or_Body --
5207 ------------------------------------
5209 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
5210 Decl : constant Node_Id := Unit_Declaration_Node (E);
5211 Spec : Entity_Id;
5213 begin
5214 if Nkind (Decl) = N_Subprogram_Body then
5215 Spec := Corresponding_Spec (Decl);
5216 else
5217 Spec := E;
5218 end if;
5220 return
5221 Present (Spec)
5222 and then Ekind (Spec) = E_Procedure
5223 and then (Is_Partial_Invariant_Procedure (Spec)
5224 or else Is_Invariant_Procedure (Spec));
5225 end Is_Invariant_Procedure_Or_Body;
5227 -- Local variables
5229 Designator : constant Entity_Id := Defining_Entity (N);
5230 Formals : constant List_Id := Parameter_Specifications (N);
5232 -- Start of processing for Analyze_Subprogram_Specification
5234 begin
5235 -- Proceed with analysis. Do not emit a cross-reference entry if the
5236 -- specification comes from an expression function, because it may be
5237 -- the completion of a previous declaration. If it is not, the cross-
5238 -- reference entry will be emitted for the new subprogram declaration.
5240 if Nkind (Parent (N)) /= N_Expression_Function then
5241 Generate_Definition (Designator);
5242 end if;
5244 if Nkind (N) = N_Function_Specification then
5245 Mutate_Ekind (Designator, E_Function);
5246 Set_Mechanism (Designator, Default_Mechanism);
5247 else
5248 Mutate_Ekind (Designator, E_Procedure);
5249 Set_Etype (Designator, Standard_Void_Type);
5250 end if;
5252 Set_Is_Not_Self_Hidden (Designator);
5254 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5255 -- those subprograms which could be inlined in GNATprove mode (because
5256 -- Body_To_Inline is non-Empty) but should not be inlined.
5258 if GNATprove_Mode then
5259 Set_Is_Inlined_Always (Designator);
5260 end if;
5262 -- Introduce new scope for analysis of the formals and the return type
5264 Set_Scope (Designator, Current_Scope);
5266 if Present (Formals) then
5267 Push_Scope (Designator);
5268 Process_Formals (Formals, N);
5270 -- Check dimensions in N for formals with default expression
5272 Analyze_Dimension_Formals (N, Formals);
5274 -- Ada 2005 (AI-345): If this is an overriding operation of an
5275 -- inherited interface operation, and the controlling type is
5276 -- a synchronized type, replace the type with its corresponding
5277 -- record, to match the proper signature of an overriding operation.
5278 -- Same processing for an access parameter whose designated type is
5279 -- derived from a synchronized interface.
5281 -- This modification is not done for invariant procedures because
5282 -- the corresponding record may not necessarely be visible when the
5283 -- concurrent type acts as the full view of a private type.
5285 -- package Pack is
5286 -- type Prot is private with Type_Invariant => ...;
5287 -- procedure ConcInvariant (Obj : Prot);
5288 -- private
5289 -- protected type Prot is ...;
5290 -- type Concurrent_Record_Prot is record ...;
5291 -- procedure ConcInvariant (Obj : Prot) is
5292 -- ...
5293 -- end ConcInvariant;
5294 -- end Pack;
5296 -- In the example above, both the spec and body of the invariant
5297 -- procedure must utilize the private type as the controlling type.
5299 if Ada_Version >= Ada_2005
5300 and then not Is_Invariant_Procedure_Or_Body (Designator)
5301 then
5302 declare
5303 Formal : Entity_Id;
5304 Formal_Typ : Entity_Id;
5305 Rec_Typ : Entity_Id;
5306 Desig_Typ : Entity_Id;
5308 begin
5309 Formal := First_Formal (Designator);
5310 while Present (Formal) loop
5311 Formal_Typ := Etype (Formal);
5313 if Is_Concurrent_Type (Formal_Typ)
5314 and then Present (Corresponding_Record_Type (Formal_Typ))
5315 then
5316 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5318 if Present (Interfaces (Rec_Typ)) then
5319 Set_Etype (Formal, Rec_Typ);
5320 end if;
5322 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5323 Desig_Typ := Designated_Type (Formal_Typ);
5325 if Is_Concurrent_Type (Desig_Typ)
5326 and then Present (Corresponding_Record_Type (Desig_Typ))
5327 then
5328 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5330 if Present (Interfaces (Rec_Typ)) then
5331 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5332 end if;
5333 end if;
5334 end if;
5336 Next_Formal (Formal);
5337 end loop;
5338 end;
5339 end if;
5341 End_Scope;
5343 -- The subprogram scope is pushed and popped around the processing of
5344 -- the return type for consistency with call above to Process_Formals
5345 -- (which itself can call Analyze_Return_Type), and to ensure that any
5346 -- itype created for the return type will be associated with the proper
5347 -- scope.
5349 elsif Nkind (N) = N_Function_Specification then
5350 Push_Scope (Designator);
5351 Analyze_Return_Type (N);
5352 End_Scope;
5353 end if;
5355 -- Function case
5357 if Nkind (N) = N_Function_Specification then
5359 -- Deal with operator symbol case
5361 if Nkind (Designator) = N_Defining_Operator_Symbol then
5362 Valid_Operator_Definition (Designator);
5363 end if;
5365 May_Need_Actuals (Designator);
5367 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5368 -- the subprogram is abstract also. This does not apply to renaming
5369 -- declarations, where abstractness is inherited, and to subprogram
5370 -- bodies generated for stream operations, which become renamings as
5371 -- bodies. We also skip the check for thunks.
5373 -- In case of primitives associated with abstract interface types
5374 -- the check is applied later (see Analyze_Subprogram_Declaration).
5376 if Nkind (Original_Node (Parent (N))) not in
5377 N_Abstract_Subprogram_Declaration |
5378 N_Formal_Abstract_Subprogram_Declaration |
5379 N_Subprogram_Renaming_Declaration
5380 and then not Is_Thunk (Designator)
5381 then
5382 if Is_Abstract_Type (Etype (Designator)) then
5383 Error_Msg_N
5384 ("function that returns abstract type must be abstract", N);
5386 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5387 -- access result whose designated type is abstract.
5389 elsif Ada_Version >= Ada_2012
5390 and then Nkind (Result_Definition (N)) = N_Access_Definition
5391 and then
5392 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5393 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5394 then
5395 Error_Msg_N
5396 ("function whose access result designates abstract type "
5397 & "must be abstract", N);
5398 end if;
5399 end if;
5400 end if;
5402 return Designator;
5403 end Analyze_Subprogram_Specification;
5405 -----------------------
5406 -- Check_Conformance --
5407 -----------------------
5409 procedure Check_Conformance
5410 (New_Id : Entity_Id;
5411 Old_Id : Entity_Id;
5412 Ctype : Conformance_Type;
5413 Errmsg : Boolean;
5414 Conforms : out Boolean;
5415 Err_Loc : Node_Id := Empty;
5416 Get_Inst : Boolean := False;
5417 Skip_Controlling_Formals : Boolean := False)
5419 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5420 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5421 -- If Errmsg is True, then processing continues to post an error message
5422 -- for conformance error on given node. Two messages are output. The
5423 -- first message points to the previous declaration with a general "no
5424 -- conformance" message. The second is the detailed reason, supplied as
5425 -- Msg. The parameter N provide information for a possible & insertion
5426 -- in the message, and also provides the location for posting the
5427 -- message in the absence of a specified Err_Loc location.
5429 function Conventions_Match (Id1, Id2 : Entity_Id) return Boolean;
5430 -- True if the conventions of entities Id1 and Id2 match.
5432 function Null_Exclusions_Match (F1, F2 : Entity_Id) return Boolean;
5433 -- True if the null exclusions of two formals of anonymous access type
5434 -- match.
5436 function Subprogram_Subtypes_Have_Same_Declaration
5437 (Subp : Entity_Id;
5438 Decl_Subtype : Entity_Id;
5439 Body_Subtype : Entity_Id) return Boolean;
5440 -- Checks whether corresponding subtypes named within a subprogram
5441 -- declaration and body originate from the same declaration, and returns
5442 -- True when they do. In the case of anonymous access-to-object types,
5443 -- checks the designated types. Also returns True when GNAT_Mode is
5444 -- enabled, or when the subprogram is marked Is_Internal or occurs
5445 -- within a generic instantiation or internal unit (GNAT library unit).
5447 -----------------------
5448 -- Conformance_Error --
5449 -----------------------
5451 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5452 Enode : Node_Id;
5454 begin
5455 Conforms := False;
5457 if Errmsg then
5458 if No (Err_Loc) then
5459 Enode := N;
5460 else
5461 Enode := Err_Loc;
5462 end if;
5464 Error_Msg_Sloc := Sloc (Old_Id);
5466 case Ctype is
5467 when Type_Conformant =>
5468 Error_Msg_N -- CODEFIX
5469 ("not type conformant with declaration#!", Enode);
5471 when Mode_Conformant =>
5472 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5473 Error_Msg_N
5474 ("not mode conformant with operation inherited#!",
5475 Enode);
5476 else
5477 Error_Msg_N
5478 ("not mode conformant with declaration#!", Enode);
5479 end if;
5481 when Subtype_Conformant =>
5482 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5483 Error_Msg_N
5484 ("not subtype conformant with operation inherited#!",
5485 Enode);
5486 else
5487 Error_Msg_N
5488 ("not subtype conformant with declaration#!", Enode);
5489 end if;
5491 when Fully_Conformant =>
5492 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5493 Error_Msg_N -- CODEFIX
5494 ("not fully conformant with operation inherited#!",
5495 Enode);
5496 else
5497 Error_Msg_N -- CODEFIX
5498 ("not fully conformant with declaration#!", Enode);
5499 end if;
5500 end case;
5502 Error_Msg_NE (Msg, Enode, N);
5503 end if;
5504 end Conformance_Error;
5506 -----------------------
5507 -- Conventions_Match --
5508 -----------------------
5510 function Conventions_Match
5511 (Id1 : Entity_Id;
5512 Id2 : Entity_Id) return Boolean
5514 begin
5515 -- Ignore the conventions of anonymous access-to-subprogram types
5516 -- and subprogram types because these are internally generated and
5517 -- the only way these may receive a convention is if they inherit
5518 -- the convention of a related subprogram.
5520 if Ekind (Id1) in E_Anonymous_Access_Subprogram_Type
5521 | E_Subprogram_Type
5522 or else
5523 Ekind (Id2) in E_Anonymous_Access_Subprogram_Type
5524 | E_Subprogram_Type
5525 then
5526 return True;
5528 -- Otherwise compare the conventions directly
5530 else
5531 return Convention (Id1) = Convention (Id2);
5532 end if;
5533 end Conventions_Match;
5535 ---------------------------
5536 -- Null_Exclusions_Match --
5537 ---------------------------
5539 function Null_Exclusions_Match (F1, F2 : Entity_Id) return Boolean is
5540 begin
5541 if not Is_Anonymous_Access_Type (Etype (F1))
5542 or else not Is_Anonymous_Access_Type (Etype (F2))
5543 then
5544 return True;
5545 end if;
5547 -- AI12-0289-1: Case of controlling access parameter; False if the
5548 -- partial view is untagged, the full view is tagged, and no explicit
5549 -- "not null". Note that at this point, we're processing the package
5550 -- body, so private/full types have been swapped. The Sloc test below
5551 -- is to detect the (legal) case where F1 comes after the full type
5552 -- declaration. This part is disabled pre-2005, because "not null" is
5553 -- not allowed on those language versions.
5555 if Ada_Version >= Ada_2005
5556 and then Is_Controlling_Formal (F1)
5557 and then not Null_Exclusion_Present (Parent (F1))
5558 and then not Null_Exclusion_Present (Parent (F2))
5559 then
5560 declare
5561 D : constant Entity_Id := Directly_Designated_Type (Etype (F1));
5562 Partial_View_Of_Desig : constant Entity_Id :=
5563 Incomplete_Or_Partial_View (D);
5564 begin
5565 return No (Partial_View_Of_Desig)
5566 or else Is_Tagged_Type (Partial_View_Of_Desig)
5567 or else Sloc (D) < Sloc (F1);
5568 end;
5570 -- Not a controlling parameter, or one or both views have an explicit
5571 -- "not null".
5573 else
5574 return Null_Exclusion_Present (Parent (F1)) =
5575 Null_Exclusion_Present (Parent (F2));
5576 end if;
5577 end Null_Exclusions_Match;
5579 function Subprogram_Subtypes_Have_Same_Declaration
5580 (Subp : Entity_Id;
5581 Decl_Subtype : Entity_Id;
5582 Body_Subtype : Entity_Id) return Boolean
5585 function Nonlimited_View_Of_Subtype
5586 (Subt : Entity_Id) return Entity_Id;
5587 -- Returns the nonlimited view of a type or subtype that is an
5588 -- incomplete or class-wide type that comes from a limited view of
5589 -- a package (From_Limited_With is True for the entity), or the
5590 -- full view when the subtype is an incomplete type. Otherwise
5591 -- returns the entity passed in.
5593 function Nonlimited_View_Of_Subtype
5594 (Subt : Entity_Id) return Entity_Id
5596 Subt_Temp : Entity_Id := Subt;
5597 begin
5598 if Ekind (Subt) in Incomplete_Kind | E_Class_Wide_Type
5599 and then From_Limited_With (Subt)
5600 then
5601 Subt_Temp := Non_Limited_View (Subt);
5602 end if;
5604 -- If the subtype is incomplete, return full view if present
5605 -- (and accounts for the case where a type from a limited view
5606 -- is itself an incomplete type).
5608 if Ekind (Subt_Temp) in Incomplete_Kind
5609 and then Present (Full_View (Subt_Temp))
5610 then
5611 Subt_Temp := Full_View (Subt_Temp);
5612 end if;
5614 return Subt_Temp;
5615 end Nonlimited_View_Of_Subtype;
5617 -- Start of processing for Subprogram_Subtypes_Have_Same_Declaration
5619 begin
5620 if not In_Instance
5621 and then not In_Internal_Unit (Subp)
5622 and then not Is_Internal (Subp)
5623 and then not GNAT_Mode
5624 and then
5625 Ekind (Etype (Decl_Subtype)) not in Access_Subprogram_Kind
5626 then
5627 if Ekind (Etype (Decl_Subtype)) = E_Anonymous_Access_Type then
5628 if Nonlimited_View_Of_Subtype (Designated_Type (Decl_Subtype))
5629 /= Nonlimited_View_Of_Subtype (Designated_Type (Body_Subtype))
5630 then
5631 return False;
5632 end if;
5634 elsif Nonlimited_View_Of_Subtype (Decl_Subtype)
5635 /= Nonlimited_View_Of_Subtype (Body_Subtype)
5636 then
5637 -- Avoid returning False (and a false-positive warning) for
5638 -- the case of "not null" itypes, which will appear to be
5639 -- different subtypes even when the subtype_marks denote
5640 -- the same subtype.
5642 if Ekind (Decl_Subtype) = E_Access_Subtype
5643 and then Ekind (Body_Subtype) = E_Access_Subtype
5644 and then Is_Itype (Body_Subtype)
5645 and then Can_Never_Be_Null (Body_Subtype)
5646 and then Etype (Decl_Subtype) = Etype (Body_Subtype)
5647 then
5648 return True;
5650 else
5651 return False;
5652 end if;
5653 end if;
5654 end if;
5656 return True;
5657 end Subprogram_Subtypes_Have_Same_Declaration;
5659 -- Local Variables
5661 Old_Type : constant Entity_Id := Etype (Old_Id);
5662 New_Type : constant Entity_Id := Etype (New_Id);
5663 Old_Formal : Entity_Id;
5664 New_Formal : Entity_Id;
5665 Old_Formal_Base : Entity_Id;
5666 New_Formal_Base : Entity_Id;
5668 -- Start of processing for Check_Conformance
5670 begin
5671 Conforms := True;
5673 -- We need a special case for operators, since they don't appear
5674 -- explicitly.
5676 if Ctype = Type_Conformant then
5677 if Ekind (New_Id) = E_Operator
5678 and then Operator_Matches_Spec (New_Id, Old_Id)
5679 then
5680 return;
5681 end if;
5682 end if;
5684 -- If both are functions/operators, check return types conform
5686 if Old_Type /= Standard_Void_Type
5687 and then
5688 New_Type /= Standard_Void_Type
5689 then
5690 -- If we are checking interface conformance we omit controlling
5691 -- arguments and result, because we are only checking the conformance
5692 -- of the remaining parameters.
5694 if Has_Controlling_Result (Old_Id)
5695 and then Has_Controlling_Result (New_Id)
5696 and then Skip_Controlling_Formals
5697 then
5698 null;
5700 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5701 if Ctype >= Subtype_Conformant
5702 and then not Predicates_Match (Old_Type, New_Type)
5703 then
5704 Conformance_Error
5705 ("\predicate of return type does not match!", New_Id);
5706 else
5707 Conformance_Error
5708 ("\return type does not match!", New_Id);
5709 end if;
5711 return;
5713 -- If the result subtypes conform and pedantic checks are enabled,
5714 -- check to see whether the subtypes originate from different
5715 -- declarations, and issue a warning when they do.
5717 elsif Ctype = Fully_Conformant
5718 and then Warn_On_Pedantic_Checks
5719 and then not Subprogram_Subtypes_Have_Same_Declaration
5720 (Old_Id, Old_Type, New_Type)
5721 then
5722 Error_Msg_N ("result subtypes conform but come from different "
5723 & "declarations?_p?", New_Id);
5724 end if;
5726 -- Ada 2005 (AI-231): In case of anonymous access types check the
5727 -- null-exclusion and access-to-constant attributes match.
5729 if Ada_Version >= Ada_2005
5730 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5731 and then
5732 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5733 or else Is_Access_Constant (Etype (Old_Type)) /=
5734 Is_Access_Constant (Etype (New_Type)))
5735 then
5736 Conformance_Error ("\return type does not match!", New_Id);
5737 return;
5738 end if;
5740 -- If either is a function/operator and the other isn't, error
5742 elsif Old_Type /= Standard_Void_Type
5743 or else New_Type /= Standard_Void_Type
5744 then
5745 Conformance_Error ("\functions can only match functions!", New_Id);
5746 return;
5747 end if;
5749 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5750 -- If this is a renaming as body, refine error message to indicate that
5751 -- the conflict is with the original declaration. If the entity is not
5752 -- frozen, the conventions don't have to match, the one of the renamed
5753 -- entity is inherited.
5755 if Ctype >= Subtype_Conformant then
5756 if not Conventions_Match (Old_Id, New_Id) then
5757 if not Is_Frozen (New_Id) then
5758 null;
5760 elsif Present (Err_Loc)
5761 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5762 and then Present (Corresponding_Spec (Err_Loc))
5763 then
5764 Error_Msg_Name_1 := Chars (New_Id);
5765 Error_Msg_Name_2 :=
5766 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5767 Conformance_Error ("\prior declaration for% has convention %!");
5768 return;
5770 else
5771 Conformance_Error ("\calling conventions do not match!");
5772 return;
5773 end if;
5774 else
5775 Check_Formal_Subprogram_Conformance
5776 (New_Id, Old_Id, Err_Loc, Errmsg, Conforms);
5778 if not Conforms then
5779 return;
5780 end if;
5781 end if;
5782 end if;
5784 -- Deal with parameters
5786 -- Note: we use the entity information, rather than going directly
5787 -- to the specification in the tree. This is not only simpler, but
5788 -- absolutely necessary for some cases of conformance tests between
5789 -- operators, where the declaration tree simply does not exist.
5791 Old_Formal := First_Formal (Old_Id);
5792 New_Formal := First_Formal (New_Id);
5793 while Present (Old_Formal) and then Present (New_Formal) loop
5794 if Is_Controlling_Formal (Old_Formal)
5795 and then Is_Controlling_Formal (New_Formal)
5796 and then Skip_Controlling_Formals
5797 then
5798 -- The controlling formals will have different types when
5799 -- comparing an interface operation with its match, but both
5800 -- or neither must be access parameters.
5802 if Is_Access_Type (Etype (Old_Formal))
5804 Is_Access_Type (Etype (New_Formal))
5805 then
5806 goto Skip_Controlling_Formal;
5807 else
5808 Conformance_Error
5809 ("\access parameter does not match!", New_Formal);
5810 end if;
5811 end if;
5813 -- Ada 2012: Mode conformance also requires that formal parameters
5814 -- be both aliased, or neither.
5816 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5817 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5818 Conformance_Error
5819 ("\aliased parameter mismatch!", New_Formal);
5820 end if;
5821 end if;
5823 if Ctype = Fully_Conformant then
5825 -- Names must match. Error message is more accurate if we do
5826 -- this before checking that the types of the formals match.
5828 if Chars (Old_Formal) /= Chars (New_Formal) then
5829 Conformance_Error ("\name& does not match!", New_Formal);
5831 -- Set error posted flag on new formal as well to stop
5832 -- junk cascaded messages in some cases.
5834 Set_Error_Posted (New_Formal);
5835 return;
5836 end if;
5838 -- Null exclusion must match
5840 if not Relaxed_RM_Semantics
5841 and then not Null_Exclusions_Match (Old_Formal, New_Formal)
5842 then
5843 Conformance_Error
5844 ("\null exclusion for& does not match", New_Formal);
5846 -- Mark error posted on the new formal to avoid duplicated
5847 -- complaint about types not matching.
5849 Set_Error_Posted (New_Formal);
5850 end if;
5851 end if;
5853 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5854 -- case occurs whenever a subprogram is being renamed and one of its
5855 -- parameters imposes a null exclusion. For example:
5857 -- type T is null record;
5858 -- type Acc_T is access T;
5859 -- subtype Acc_T_Sub is Acc_T;
5861 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5862 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5863 -- renames P;
5865 Old_Formal_Base := Etype (Old_Formal);
5866 New_Formal_Base := Etype (New_Formal);
5868 if Get_Inst then
5869 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5870 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5871 end if;
5873 -- Types must always match. In the visible part of an instance,
5874 -- usual overloading rules for dispatching operations apply, and
5875 -- we check base types (not the actual subtypes).
5877 if In_Instance_Visible_Part
5878 and then Is_Dispatching_Operation (New_Id)
5879 then
5880 if not Conforming_Types
5881 (T1 => Base_Type (Etype (Old_Formal)),
5882 T2 => Base_Type (Etype (New_Formal)),
5883 Ctype => Ctype,
5884 Get_Inst => Get_Inst)
5885 then
5886 Conformance_Error ("\type of & does not match!", New_Formal);
5887 return;
5888 end if;
5890 elsif not Conforming_Types
5891 (T1 => Old_Formal_Base,
5892 T2 => New_Formal_Base,
5893 Ctype => Ctype,
5894 Get_Inst => Get_Inst)
5895 then
5896 -- Don't give error message if old type is Any_Type. This test
5897 -- avoids some cascaded errors, e.g. in case of a bad spec.
5899 if Errmsg and then Old_Formal_Base = Any_Type then
5900 Conforms := False;
5901 else
5902 if Ctype >= Subtype_Conformant
5903 and then
5904 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5905 then
5906 Conformance_Error
5907 ("\predicate of & does not match!", New_Formal);
5908 else
5909 Conformance_Error
5910 ("\type of & does not match!", New_Formal);
5912 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5913 then
5914 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5915 end if;
5916 end if;
5917 end if;
5919 return;
5921 -- If the formals' subtypes conform and pedantic checks are enabled,
5922 -- check to see whether the subtypes originate from different
5923 -- declarations, and issue a warning when they do.
5925 elsif Ctype = Fully_Conformant
5926 and then Warn_On_Pedantic_Checks
5927 and then not Subprogram_Subtypes_Have_Same_Declaration
5928 (Old_Id, Old_Formal_Base, New_Formal_Base)
5929 then
5930 Error_Msg_N ("formal subtypes conform but come from "
5931 & "different declarations?_p?", New_Formal);
5932 end if;
5934 -- For mode conformance, mode must match
5936 if Ctype >= Mode_Conformant then
5937 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5938 if Ekind (New_Id) not in E_Function | E_Procedure
5939 or else not Is_Primitive_Wrapper (New_Id)
5940 then
5941 Conformance_Error ("\mode of & does not match!", New_Formal);
5943 else
5944 declare
5945 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5946 begin
5947 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5948 then
5949 Conforms := False;
5951 if Errmsg then
5952 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5953 end if;
5954 else
5955 Conformance_Error
5956 ("\mode of & does not match!", New_Formal);
5957 end if;
5958 end;
5959 end if;
5961 return;
5963 elsif Is_Access_Type (Old_Formal_Base)
5964 and then Is_Access_Type (New_Formal_Base)
5965 and then Is_Access_Constant (Old_Formal_Base) /=
5966 Is_Access_Constant (New_Formal_Base)
5967 then
5968 Conformance_Error
5969 ("\constant modifier does not match!", New_Formal);
5970 return;
5971 end if;
5972 end if;
5974 if Ctype >= Subtype_Conformant then
5976 -- Ada 2005 (AI-231): In case of anonymous access types check
5977 -- the null-exclusion and access-to-constant attributes must
5978 -- match. For null exclusion, we test the types rather than the
5979 -- formals themselves, since the attribute is only set reliably
5980 -- on the formals in the Ada 95 case, and we exclude the case
5981 -- where Old_Formal is marked as controlling, to avoid errors
5982 -- when matching completing bodies with dispatching declarations
5983 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5985 if Ada_Version >= Ada_2005
5986 and then Is_Anonymous_Access_Type (Etype (Old_Formal))
5987 and then Is_Anonymous_Access_Type (Etype (New_Formal))
5988 and then
5989 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5990 Can_Never_Be_Null (Etype (New_Formal))
5991 and then
5992 not Is_Controlling_Formal (Old_Formal))
5993 or else
5994 Is_Access_Constant (Etype (Old_Formal)) /=
5995 Is_Access_Constant (Etype (New_Formal)))
5997 -- Do not complain if error already posted on New_Formal. This
5998 -- avoids some redundant error messages.
6000 and then not Error_Posted (New_Formal)
6001 then
6002 -- It is allowed to omit the null-exclusion in case of stream
6003 -- attribute subprograms. We recognize stream subprograms
6004 -- through their TSS-generated suffix.
6006 declare
6007 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
6009 begin
6010 if TSS_Name /= TSS_Stream_Read
6011 and then TSS_Name /= TSS_Stream_Write
6012 and then TSS_Name /= TSS_Stream_Input
6013 and then TSS_Name /= TSS_Stream_Output
6014 then
6015 -- Here we have a definite conformance error. It is worth
6016 -- special casing the error message for the case of a
6017 -- controlling formal (which excludes null).
6019 if Is_Controlling_Formal (New_Formal) then
6020 Error_Msg_Node_2 := Scope (New_Formal);
6021 Conformance_Error
6022 ("\controlling formal & of & excludes null, "
6023 & "declaration must exclude null as well",
6024 New_Formal);
6026 -- Normal case (couldn't we give more detail here???)
6028 else
6029 Conformance_Error
6030 ("\type of & does not match!", New_Formal);
6031 end if;
6033 return;
6034 end if;
6035 end;
6036 end if;
6037 end if;
6039 -- Full conformance checks
6041 if Ctype = Fully_Conformant then
6043 -- We have checked already that names match
6045 if Parameter_Mode (Old_Formal) = E_In_Parameter then
6047 -- Check default expressions for in parameters
6049 declare
6050 NewD : constant Boolean :=
6051 Present (Default_Value (New_Formal));
6052 OldD : constant Boolean :=
6053 Present (Default_Value (Old_Formal));
6054 begin
6055 if NewD or OldD then
6057 -- The old default value has been analyzed because the
6058 -- current full declaration will have frozen everything
6059 -- before. The new default value has not been analyzed,
6060 -- so analyze it now before we check for conformance.
6062 if NewD then
6063 Push_Scope (New_Id);
6064 Preanalyze_Spec_Expression
6065 (Default_Value (New_Formal), Etype (New_Formal));
6066 End_Scope;
6067 end if;
6069 if not (NewD and OldD)
6070 or else not Fully_Conformant_Expressions
6071 (Default_Value (Old_Formal),
6072 Default_Value (New_Formal))
6073 then
6074 Conformance_Error
6075 ("\default expression for & does not match!",
6076 New_Formal);
6077 return;
6078 end if;
6079 end if;
6080 end;
6081 end if;
6082 end if;
6084 -- A couple of special checks for Ada 83 mode. These checks are
6085 -- skipped if either entity is an operator in package Standard,
6086 -- or if either old or new instance is not from the source program.
6088 if Ada_Version = Ada_83
6089 and then Sloc (Old_Id) > Standard_Location
6090 and then Sloc (New_Id) > Standard_Location
6091 and then Comes_From_Source (Old_Id)
6092 and then Comes_From_Source (New_Id)
6093 then
6094 declare
6095 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
6096 New_Param : constant Node_Id := Declaration_Node (New_Formal);
6098 begin
6099 -- Explicit IN must be present or absent in both cases. This
6100 -- test is required only in the full conformance case.
6102 if In_Present (Old_Param) /= In_Present (New_Param)
6103 and then Ctype = Fully_Conformant
6104 then
6105 Conformance_Error
6106 ("\(Ada 83) IN must appear in both declarations",
6107 New_Formal);
6108 return;
6109 end if;
6111 -- Grouping (use of comma in param lists) must be the same
6112 -- This is where we catch a misconformance like:
6114 -- A, B : Integer
6115 -- A : Integer; B : Integer
6117 -- which are represented identically in the tree except
6118 -- for the setting of the flags More_Ids and Prev_Ids.
6120 if More_Ids (Old_Param) /= More_Ids (New_Param)
6121 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
6122 then
6123 Conformance_Error
6124 ("\grouping of & does not match!", New_Formal);
6125 return;
6126 end if;
6127 end;
6128 end if;
6130 -- This label is required when skipping controlling formals
6132 <<Skip_Controlling_Formal>>
6134 Next_Formal (Old_Formal);
6135 Next_Formal (New_Formal);
6136 end loop;
6138 if Present (Old_Formal) then
6139 Conformance_Error ("\too few parameters!");
6140 return;
6142 elsif Present (New_Formal) then
6143 Conformance_Error ("\too many parameters!", New_Formal);
6144 return;
6145 end if;
6146 end Check_Conformance;
6148 -----------------------
6149 -- Check_Conventions --
6150 -----------------------
6152 procedure Check_Conventions (Typ : Entity_Id) is
6153 Ifaces_List : Elist_Id;
6155 procedure Check_Convention (Op : Entity_Id);
6156 -- Verify that the convention of inherited dispatching operation Op is
6157 -- consistent among all subprograms it overrides. In order to minimize
6158 -- the search, Search_From is utilized to designate a specific point in
6159 -- the list rather than iterating over the whole list once more.
6161 ----------------------
6162 -- Check_Convention --
6163 ----------------------
6165 procedure Check_Convention (Op : Entity_Id) is
6166 Op_Conv : constant Convention_Id := Convention (Op);
6167 Iface_Conv : Convention_Id;
6168 Iface_Elmt : Elmt_Id;
6169 Iface_Prim_Elmt : Elmt_Id;
6170 Iface_Prim : Entity_Id;
6172 begin
6173 Iface_Elmt := First_Elmt (Ifaces_List);
6174 while Present (Iface_Elmt) loop
6175 Iface_Prim_Elmt :=
6176 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
6177 while Present (Iface_Prim_Elmt) loop
6178 Iface_Prim := Node (Iface_Prim_Elmt);
6179 Iface_Conv := Convention (Iface_Prim);
6181 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
6182 and then Iface_Conv /= Op_Conv
6183 then
6184 Error_Msg_N
6185 ("inconsistent conventions in primitive operations", Typ);
6187 Error_Msg_Name_1 := Chars (Op);
6188 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
6189 Error_Msg_Sloc := Sloc (Op);
6191 if Comes_From_Source (Op) or else No (Alias (Op)) then
6192 if No (Overridden_Operation (Op)) then
6193 Error_Msg_N ("\\primitive % defined #", Typ);
6194 else
6195 Error_Msg_N
6196 ("\\overriding operation % with "
6197 & "convention % defined #", Typ);
6198 end if;
6200 else pragma Assert (Present (Alias (Op)));
6201 Error_Msg_Sloc := Sloc (Alias (Op));
6202 Error_Msg_N ("\\inherited operation % with "
6203 & "convention % defined #", Typ);
6204 end if;
6206 Error_Msg_Name_1 := Chars (Op);
6207 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
6208 Error_Msg_Sloc := Sloc (Iface_Prim);
6209 Error_Msg_N ("\\overridden operation % with "
6210 & "convention % defined #", Typ);
6212 -- Avoid cascading errors
6214 return;
6215 end if;
6217 Next_Elmt (Iface_Prim_Elmt);
6218 end loop;
6220 Next_Elmt (Iface_Elmt);
6221 end loop;
6222 end Check_Convention;
6224 -- Local variables
6226 Prim_Op : Entity_Id;
6227 Prim_Op_Elmt : Elmt_Id;
6229 -- Start of processing for Check_Conventions
6231 begin
6232 if not Has_Interfaces (Typ) then
6233 return;
6234 end if;
6236 Collect_Interfaces (Typ, Ifaces_List);
6238 -- The algorithm checks every overriding dispatching operation against
6239 -- all the corresponding overridden dispatching operations, detecting
6240 -- differences in conventions.
6242 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
6243 while Present (Prim_Op_Elmt) loop
6244 Prim_Op := Node (Prim_Op_Elmt);
6246 -- A small optimization: skip the predefined dispatching operations
6247 -- since they always have the same convention.
6249 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
6250 Check_Convention (Prim_Op);
6251 end if;
6253 Next_Elmt (Prim_Op_Elmt);
6254 end loop;
6255 end Check_Conventions;
6257 ------------------------------
6258 -- Check_Delayed_Subprogram --
6259 ------------------------------
6261 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
6262 procedure Possible_Freeze (T : Entity_Id);
6263 -- T is the type of either a formal parameter or of the return type. If
6264 -- T is not yet frozen and needs a delayed freeze, then the subprogram
6265 -- itself must be delayed.
6267 ---------------------
6268 -- Possible_Freeze --
6269 ---------------------
6271 procedure Possible_Freeze (T : Entity_Id) is
6272 Scop : constant Entity_Id := Scope (Designator);
6274 begin
6275 -- If the subprogram appears within a package instance (which may be
6276 -- the wrapper package of a subprogram instance) the freeze node for
6277 -- that package will freeze the subprogram at the proper place, so
6278 -- do not emit a freeze node for the subprogram, given that it may
6279 -- appear in the wrong scope.
6281 if Ekind (Scop) = E_Package
6282 and then not Comes_From_Source (Scop)
6283 and then Is_Generic_Instance (Scop)
6284 then
6285 null;
6287 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6288 Set_Has_Delayed_Freeze (Designator);
6290 elsif Is_Access_Type (T)
6291 and then Has_Delayed_Freeze (Designated_Type (T))
6292 and then not Is_Frozen (Designated_Type (T))
6293 then
6294 Set_Has_Delayed_Freeze (Designator);
6295 end if;
6296 end Possible_Freeze;
6298 -- Local variables
6300 F : Entity_Id;
6302 -- Start of processing for Check_Delayed_Subprogram
6304 begin
6305 -- All subprograms, including abstract subprograms, may need a freeze
6306 -- node if some formal type or the return type needs one.
6308 Possible_Freeze (Etype (Designator));
6309 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6311 -- Need delayed freeze if any of the formal types themselves need a
6312 -- delayed freeze and are not yet frozen.
6314 F := First_Formal (Designator);
6315 while Present (F) loop
6316 Possible_Freeze (Etype (F));
6317 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6318 Next_Formal (F);
6319 end loop;
6321 -- Mark functions that return by reference. Note that it cannot be done
6322 -- for delayed_freeze subprograms because the underlying returned type
6323 -- may not be known yet (for private types).
6325 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6326 Compute_Returns_By_Ref (Designator);
6327 end if;
6328 end Check_Delayed_Subprogram;
6330 ------------------------------------
6331 -- Check_Discriminant_Conformance --
6332 ------------------------------------
6334 procedure Check_Discriminant_Conformance
6335 (N : Node_Id;
6336 Prev : Entity_Id;
6337 Prev_Loc : Node_Id)
6339 Old_Discr : Entity_Id := First_Discriminant (Prev);
6340 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6341 New_Discr_Id : Entity_Id;
6342 New_Discr_Type : Entity_Id;
6344 procedure Conformance_Error (Msg : String; N : Node_Id);
6345 -- Post error message for conformance error on given node. Two messages
6346 -- are output. The first points to the previous declaration with a
6347 -- general "no conformance" message. The second is the detailed reason,
6348 -- supplied as Msg. The parameter N provide information for a possible
6349 -- & insertion in the message.
6351 -----------------------
6352 -- Conformance_Error --
6353 -----------------------
6355 procedure Conformance_Error (Msg : String; N : Node_Id) is
6356 begin
6357 Error_Msg_Sloc := Sloc (Prev_Loc);
6358 Error_Msg_N -- CODEFIX
6359 ("not fully conformant with declaration#!", N);
6360 Error_Msg_NE (Msg, N, N);
6361 end Conformance_Error;
6363 -- Start of processing for Check_Discriminant_Conformance
6365 begin
6366 while Present (Old_Discr) and then Present (New_Discr) loop
6367 New_Discr_Id := Defining_Identifier (New_Discr);
6369 -- The subtype mark of the discriminant on the full type has not
6370 -- been analyzed so we do it here. For an access discriminant a new
6371 -- type is created.
6373 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6374 New_Discr_Type :=
6375 Access_Definition (N, Discriminant_Type (New_Discr));
6377 else
6378 Find_Type (Discriminant_Type (New_Discr));
6379 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6381 -- Ada 2005: if the discriminant definition carries a null
6382 -- exclusion, create an itype to check properly for consistency
6383 -- with partial declaration.
6385 if Is_Access_Type (New_Discr_Type)
6386 and then Null_Exclusion_Present (New_Discr)
6387 then
6388 New_Discr_Type :=
6389 Create_Null_Excluding_Itype
6390 (T => New_Discr_Type,
6391 Related_Nod => New_Discr,
6392 Scope_Id => Current_Scope);
6393 end if;
6394 end if;
6396 if not Conforming_Types
6397 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6398 then
6399 Conformance_Error ("type of & does not match!", New_Discr_Id);
6400 return;
6401 else
6402 -- Treat the new discriminant as an occurrence of the old one,
6403 -- for navigation purposes, and fill in some semantic
6404 -- information, for completeness.
6406 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6407 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6408 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6409 end if;
6411 -- Names must match
6413 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6414 Conformance_Error ("name & does not match!", New_Discr_Id);
6415 return;
6416 end if;
6418 -- Default expressions must match
6420 declare
6421 NewD : constant Boolean :=
6422 Present (Expression (New_Discr));
6423 OldD : constant Boolean :=
6424 Present (Expression (Parent (Old_Discr)));
6426 begin
6427 if NewD or OldD then
6429 -- The old default value has been analyzed and expanded,
6430 -- because the current full declaration will have frozen
6431 -- everything before. The new default values have not been
6432 -- expanded, so expand now to check conformance.
6434 if NewD then
6435 Preanalyze_Spec_Expression
6436 (Expression (New_Discr), New_Discr_Type);
6437 end if;
6439 if not (NewD and OldD)
6440 or else not Fully_Conformant_Expressions
6441 (Expression (Parent (Old_Discr)),
6442 Expression (New_Discr))
6444 then
6445 Conformance_Error
6446 ("default expression for & does not match!",
6447 New_Discr_Id);
6448 return;
6449 end if;
6450 end if;
6451 end;
6453 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6455 if Ada_Version = Ada_83 then
6456 declare
6457 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6459 begin
6460 -- Grouping (use of comma in param lists) must be the same
6461 -- This is where we catch a misconformance like:
6463 -- A, B : Integer
6464 -- A : Integer; B : Integer
6466 -- which are represented identically in the tree except
6467 -- for the setting of the flags More_Ids and Prev_Ids.
6469 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6470 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6471 then
6472 Conformance_Error
6473 ("grouping of & does not match!", New_Discr_Id);
6474 return;
6475 end if;
6476 end;
6477 end if;
6479 Next_Discriminant (Old_Discr);
6480 Next (New_Discr);
6481 end loop;
6483 if Present (Old_Discr) then
6484 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6485 return;
6487 elsif Present (New_Discr) then
6488 Conformance_Error
6489 ("too many discriminants!", Defining_Identifier (New_Discr));
6490 return;
6491 end if;
6492 end Check_Discriminant_Conformance;
6494 -----------------------------------------
6495 -- Check_Formal_Subprogram_Conformance --
6496 -----------------------------------------
6498 procedure Check_Formal_Subprogram_Conformance
6499 (New_Id : Entity_Id;
6500 Old_Id : Entity_Id;
6501 Err_Loc : Node_Id;
6502 Errmsg : Boolean;
6503 Conforms : out Boolean)
6505 N : Node_Id;
6506 begin
6507 Conforms := True;
6509 if Is_Formal_Subprogram (Old_Id)
6510 or else Is_Formal_Subprogram (New_Id)
6511 or else (Is_Subprogram (New_Id)
6512 and then Present (Alias (New_Id))
6513 and then Is_Formal_Subprogram (Alias (New_Id)))
6514 then
6515 if Present (Err_Loc) then
6516 N := Err_Loc;
6517 else
6518 N := New_Id;
6519 end if;
6521 Conforms := False;
6523 if Errmsg then
6524 Error_Msg_Sloc := Sloc (Old_Id);
6525 Error_Msg_N ("not subtype conformant with declaration#!", N);
6526 Error_Msg_NE
6527 ("\formal subprograms are not subtype conformant "
6528 & "(RM 6.3.1 (17/3))", N, New_Id);
6529 end if;
6530 end if;
6531 end Check_Formal_Subprogram_Conformance;
6533 procedure Check_Formal_Subprogram_Conformance
6534 (New_Id : Entity_Id;
6535 Old_Id : Entity_Id;
6536 Err_Loc : Node_Id := Empty)
6538 Ignore : Boolean;
6539 begin
6540 Check_Formal_Subprogram_Conformance
6541 (New_Id, Old_Id, Err_Loc, True, Ignore);
6542 end Check_Formal_Subprogram_Conformance;
6544 ----------------------------
6545 -- Check_Fully_Conformant --
6546 ----------------------------
6548 procedure Check_Fully_Conformant
6549 (New_Id : Entity_Id;
6550 Old_Id : Entity_Id;
6551 Err_Loc : Node_Id := Empty)
6553 Result : Boolean;
6554 pragma Warnings (Off, Result);
6555 begin
6556 Check_Conformance
6557 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6558 end Check_Fully_Conformant;
6560 --------------------------
6561 -- Check_Limited_Return --
6562 --------------------------
6564 procedure Check_Limited_Return
6565 (N : Node_Id;
6566 Expr : Node_Id;
6567 R_Type : Entity_Id)
6569 begin
6570 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6571 -- replaced by anonymous access results. This is an incompatibility with
6572 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6573 -- controllable with special switch. ???
6575 -- A limited interface that is not immutably limited is OK
6577 if Is_Limited_Interface (R_Type)
6578 and then not Is_Concurrent_Interface (R_Type)
6579 then
6580 null;
6582 elsif Is_Limited_Type (R_Type)
6583 and then not Is_Interface (R_Type)
6584 and then not (Nkind (N) = N_Simple_Return_Statement
6585 and then Comes_From_Extended_Return_Statement (N))
6586 and then not In_Instance_Body
6587 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6588 then
6589 -- Error in Ada 2005
6591 if Ada_Version >= Ada_2005
6592 and then not Debug_Flag_Dot_L
6593 and then not GNAT_Mode
6594 then
6595 Error_Msg_N
6596 ("(Ada 2005) cannot copy object of a limited type "
6597 & "(RM-2005 6.5(5.5/2))", Expr);
6599 if Is_Limited_View (R_Type) then
6600 Error_Msg_N
6601 ("\return by reference not permitted in Ada 2005", Expr);
6602 end if;
6604 -- Warn in Ada 95 mode, to give folks a heads up about this
6605 -- incompatibility.
6607 -- In GNAT mode, this is just a warning, to allow it to be evilly
6608 -- turned off. Otherwise it is a real error.
6610 -- In a generic context, simplify the warning because it makes no
6611 -- sense to discuss pass-by-reference or copy.
6613 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6614 if Inside_A_Generic then
6615 Error_Msg_N
6616 ("return of limited object not permitted in Ada 2005 "
6617 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6619 elsif Is_Limited_View (R_Type) then
6620 Error_Msg_N
6621 ("return by reference not permitted in Ada 2005 "
6622 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6623 else
6624 Error_Msg_N
6625 ("cannot copy object of a limited type in Ada 2005 "
6626 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6627 end if;
6629 -- Ada 95 mode, and compatibility warnings disabled
6631 else
6632 pragma Assert (Ada_Version <= Ada_95);
6633 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6634 return; -- skip continuation messages below
6635 end if;
6637 if not Inside_A_Generic then
6638 Error_Msg_N
6639 ("\consider switching to return of access type", Expr);
6640 Explain_Limited_Type (R_Type, Expr);
6641 end if;
6642 end if;
6643 end Check_Limited_Return;
6645 ---------------------------
6646 -- Check_Mode_Conformant --
6647 ---------------------------
6649 procedure Check_Mode_Conformant
6650 (New_Id : Entity_Id;
6651 Old_Id : Entity_Id;
6652 Err_Loc : Node_Id := Empty;
6653 Get_Inst : Boolean := False)
6655 Result : Boolean;
6656 pragma Warnings (Off, Result);
6657 begin
6658 Check_Conformance
6659 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6660 end Check_Mode_Conformant;
6662 --------------------------------
6663 -- Check_Overriding_Indicator --
6664 --------------------------------
6666 procedure Check_Overriding_Indicator
6667 (Subp : Entity_Id;
6668 Overridden_Subp : Entity_Id;
6669 Is_Primitive : Boolean)
6671 Decl : Node_Id;
6672 Spec : Node_Id;
6674 begin
6675 -- No overriding indicator for literals
6677 if Ekind (Subp) = E_Enumeration_Literal then
6678 return;
6680 elsif Ekind (Subp) = E_Entry then
6681 Decl := Parent (Subp);
6683 -- No point in analyzing a malformed operator
6685 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6686 and then Error_Posted (Subp)
6687 then
6688 return;
6690 else
6691 Decl := Unit_Declaration_Node (Subp);
6692 end if;
6694 if Nkind (Decl) in N_Subprogram_Body
6695 | N_Subprogram_Body_Stub
6696 | N_Subprogram_Declaration
6697 | N_Abstract_Subprogram_Declaration
6698 | N_Subprogram_Renaming_Declaration
6699 then
6700 Spec := Specification (Decl);
6702 elsif Nkind (Decl) = N_Entry_Declaration then
6703 Spec := Decl;
6705 else
6706 return;
6707 end if;
6709 -- An overriding indication is illegal on a subprogram declared
6710 -- in a protected body, where there is no operation to override.
6712 if (Must_Override (Spec) or else Must_Not_Override (Spec))
6713 and then Is_List_Member (Decl)
6714 and then Present (Parent (List_Containing (Decl)))
6715 and then Nkind (Parent (List_Containing (Decl))) = N_Protected_Body
6716 then
6717 Error_Msg_N
6718 ("illegal overriding indication in protected body", Decl);
6719 return;
6720 end if;
6722 -- The overriding operation is type conformant with the overridden one,
6723 -- but the names of the formals are not required to match. If the names
6724 -- appear permuted in the overriding operation, this is a possible
6725 -- source of confusion that is worth diagnosing. Controlling formals
6726 -- often carry names that reflect the type, and it is not worthwhile
6727 -- requiring that their names match.
6729 if Present (Overridden_Subp)
6730 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6731 then
6732 declare
6733 Form1 : Entity_Id;
6734 Form2 : Entity_Id;
6736 begin
6737 Form1 := First_Formal (Subp);
6738 Form2 := First_Formal (Overridden_Subp);
6740 -- If the overriding operation is a synchronized operation, skip
6741 -- the first parameter of the overridden operation, which is
6742 -- implicit in the new one. If the operation is declared in the
6743 -- body it is not primitive and all formals must match.
6745 if Is_Concurrent_Type (Scope (Subp))
6746 and then Is_Tagged_Type (Scope (Subp))
6747 and then not Has_Completion (Scope (Subp))
6748 then
6749 Form2 := Next_Formal (Form2);
6750 end if;
6752 if Present (Form1) then
6753 Form1 := Next_Formal (Form1);
6754 Form2 := Next_Formal (Form2);
6755 end if;
6757 while Present (Form1) loop
6758 if not Is_Controlling_Formal (Form1)
6759 and then Present (Next_Formal (Form2))
6760 and then Chars (Form1) = Chars (Next_Formal (Form2))
6761 then
6762 Error_Msg_Node_2 := Alias (Overridden_Subp);
6763 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6764 Error_Msg_NE
6765 ("& does not match corresponding formal of&#",
6766 Form1, Form1);
6767 exit;
6768 end if;
6770 Next_Formal (Form1);
6771 Next_Formal (Form2);
6772 end loop;
6773 end;
6774 end if;
6776 -- If there is an overridden subprogram, then check that there is no
6777 -- "not overriding" indicator, and mark the subprogram as overriding.
6779 -- This is not done if the overridden subprogram is marked as hidden,
6780 -- which can occur for the case of inherited controlled operations
6781 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6782 -- subprogram is not itself hidden or we are within a generic instance,
6783 -- in which case the hidden flag may have been modified for the
6784 -- expansion of the instance.
6786 -- (Note: This condition could probably be simplified, leaving out the
6787 -- testing for the specific controlled cases, but it seems safer and
6788 -- clearer this way, and echoes similar special-case tests of this
6789 -- kind in other places.)
6791 if Present (Overridden_Subp)
6792 and then (not Is_Hidden (Overridden_Subp)
6793 or else
6794 (Chars (Overridden_Subp) in Name_Initialize
6795 | Name_Adjust
6796 | Name_Finalize
6797 and then Present (Alias (Overridden_Subp))
6798 and then (not Is_Hidden (Alias (Overridden_Subp))
6799 or else In_Instance)))
6800 then
6801 if Must_Not_Override (Spec) then
6802 Error_Msg_Sloc := Sloc (Overridden_Subp);
6804 if Ekind (Subp) = E_Entry then
6805 Error_Msg_NE
6806 ("entry & overrides inherited operation #", Spec, Subp);
6807 else
6808 Error_Msg_NE
6809 ("subprogram & overrides inherited operation #", Spec, Subp);
6810 end if;
6812 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6813 -- as an extension of Root_Controlled, and thus has a useless Adjust
6814 -- operation. This operation should not be inherited by other limited
6815 -- controlled types. An explicit Adjust for them is not overriding.
6817 elsif Must_Override (Spec)
6818 and then Chars (Overridden_Subp) = Name_Adjust
6819 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6820 and then Present (Alias (Overridden_Subp))
6821 and then In_Predefined_Unit (Alias (Overridden_Subp))
6822 then
6823 Get_Name_String
6824 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6825 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6827 elsif Is_Subprogram (Subp) then
6828 if Is_Init_Proc (Subp) then
6829 null;
6831 elsif No (Overridden_Operation (Subp)) then
6833 -- For entities generated by Derive_Subprograms the overridden
6834 -- operation is the inherited primitive (which is available
6835 -- through the attribute alias)
6837 if (Is_Dispatching_Operation (Subp)
6838 or else Is_Dispatching_Operation (Overridden_Subp))
6839 and then not Comes_From_Source (Overridden_Subp)
6840 and then Find_Dispatching_Type (Overridden_Subp) =
6841 Find_Dispatching_Type (Subp)
6842 and then Present (Alias (Overridden_Subp))
6843 and then Comes_From_Source (Alias (Overridden_Subp))
6844 then
6845 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6846 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6847 Set_Is_Ada_2022_Only (Subp,
6848 Is_Ada_2022_Only (Alias (Overridden_Subp)));
6850 else
6851 Set_Overridden_Operation (Subp, Overridden_Subp);
6852 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6853 Set_Is_Ada_2022_Only (Subp,
6854 Is_Ada_2022_Only (Overridden_Subp));
6855 end if;
6856 end if;
6857 end if;
6859 -- If primitive flag is set or this is a protected operation, then
6860 -- the operation is overriding at the point of its declaration, so
6861 -- warn if necessary. Otherwise it may have been declared before the
6862 -- operation it overrides and no check is required.
6864 if Style_Check
6865 and then not Must_Override (Spec)
6866 and then (Is_Primitive
6867 or else Ekind (Scope (Subp)) = E_Protected_Type)
6868 then
6869 Style.Missing_Overriding (Decl, Subp);
6870 end if;
6872 -- If Subp is an operator, it may override a predefined operation, if
6873 -- it is defined in the same scope as the type to which it applies.
6874 -- In that case Overridden_Subp is empty because of our implicit
6875 -- representation for predefined operators. We have to check whether the
6876 -- signature of Subp matches that of a predefined operator. Note that
6877 -- first argument provides the name of the operator, and the second
6878 -- argument the signature that may match that of a standard operation.
6879 -- If the indicator is overriding, then the operator must match a
6880 -- predefined signature, because we know already that there is no
6881 -- explicit overridden operation.
6883 elsif Chars (Subp) in Any_Operator_Name then
6884 if Must_Not_Override (Spec) then
6886 -- If this is not a primitive or a protected subprogram, then
6887 -- "not overriding" is illegal.
6889 if not Is_Primitive
6890 and then Ekind (Scope (Subp)) /= E_Protected_Type
6891 then
6892 Error_Msg_N ("overriding indicator only allowed "
6893 & "if subprogram is primitive", Subp);
6895 elsif Can_Override_Operator (Subp) then
6896 Error_Msg_NE
6897 ("subprogram& overrides predefined operator", Spec, Subp);
6898 end if;
6900 elsif Must_Override (Spec) then
6901 if No (Overridden_Operation (Subp))
6902 and then not Can_Override_Operator (Subp)
6903 then
6904 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6905 end if;
6907 elsif not Error_Posted (Subp)
6908 and then Style_Check
6909 and then Can_Override_Operator (Subp)
6910 and then not In_Predefined_Unit (Subp)
6911 then
6912 -- If style checks are enabled, indicate that the indicator is
6913 -- missing. However, at the point of declaration, the type of
6914 -- which this is a primitive operation may be private, in which
6915 -- case the indicator would be premature.
6917 if Has_Private_Declaration (Etype (Subp))
6918 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6919 then
6920 null;
6921 else
6922 Style.Missing_Overriding (Decl, Subp);
6923 end if;
6924 end if;
6926 elsif Must_Override (Spec) then
6927 if Ekind (Subp) = E_Entry then
6928 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6929 else
6930 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6931 end if;
6933 -- If the operation is marked "not overriding" and it's not primitive
6934 -- then an error is issued, unless this is an operation of a task or
6935 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6936 -- has been specified have already been checked above.
6938 elsif Must_Not_Override (Spec)
6939 and then not Is_Primitive
6940 and then Ekind (Subp) /= E_Entry
6941 and then Ekind (Scope (Subp)) /= E_Protected_Type
6942 then
6943 Error_Msg_N
6944 ("overriding indicator only allowed if subprogram is primitive",
6945 Subp);
6946 return;
6947 end if;
6948 end Check_Overriding_Indicator;
6950 -------------------
6951 -- Check_Returns --
6952 -------------------
6954 -- Note: this procedure needs to know far too much about how the expander
6955 -- messes with exceptions. The use of the flag Exception_Junk and the
6956 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6957 -- works, but is not very clean. It would be better if the expansion
6958 -- routines would leave Original_Node working nicely, and we could use
6959 -- Original_Node here to ignore all the peculiar expander messing ???
6961 procedure Check_Returns
6962 (HSS : Node_Id;
6963 Mode : Character;
6964 Err : out Boolean;
6965 Proc : Entity_Id := Empty)
6967 pragma Assert (Mode in 'F' | 'P');
6968 pragma Assert (if Mode = 'F' then No (Proc));
6969 Handler : Node_Id;
6971 procedure Check_Statement_Sequence (L : List_Id);
6972 -- Internal recursive procedure to check a list of statements for proper
6973 -- termination by a return statement (or a transfer of control or a
6974 -- compound statement that is itself internally properly terminated).
6976 ------------------------------
6977 -- Check_Statement_Sequence --
6978 ------------------------------
6980 procedure Check_Statement_Sequence (L : List_Id) is
6981 Last_Stm : Node_Id;
6982 Stm : Node_Id;
6983 Kind : Node_Kind;
6985 function Assert_False return Boolean;
6986 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6987 -- rewritten as a null statement when assertions are off. The assert
6988 -- is not active, but it is still enough to kill the warning.
6990 ------------------
6991 -- Assert_False --
6992 ------------------
6994 function Assert_False return Boolean is
6995 Orig : constant Node_Id := Original_Node (Last_Stm);
6997 begin
6998 if Nkind (Orig) = N_Pragma
6999 and then Pragma_Name (Orig) = Name_Assert
7000 and then not Error_Posted (Orig)
7001 then
7002 declare
7003 Arg : constant Node_Id :=
7004 First (Pragma_Argument_Associations (Orig));
7005 Exp : constant Node_Id := Expression (Arg);
7006 begin
7007 return Nkind (Exp) = N_Identifier
7008 and then Chars (Exp) = Name_False;
7009 end;
7011 else
7012 return False;
7013 end if;
7014 end Assert_False;
7016 -- Local variables
7018 Raise_Exception_Call : Boolean := False;
7019 -- Set True if statement sequence terminated by Raise_Exception call
7020 -- or a Reraise_Occurrence call.
7022 -- Start of processing for Check_Statement_Sequence
7024 begin
7025 -- Get last real statement
7027 Last_Stm := Last (L);
7029 -- Deal with digging out exception handler statement sequences that
7030 -- have been transformed by the local raise to goto optimization.
7031 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
7032 -- optimization has occurred, we are looking at something like:
7034 -- begin
7035 -- original stmts in block
7037 -- exception \
7038 -- when excep1 => |
7039 -- goto L1; | omitted if No_Exception_Propagation
7040 -- when excep2 => |
7041 -- goto L2; /
7042 -- end;
7044 -- goto L3; -- skip handler when exception not raised
7046 -- <<L1>> -- target label for local exception
7047 -- begin
7048 -- estmts1
7049 -- end;
7051 -- goto L3;
7053 -- <<L2>>
7054 -- begin
7055 -- estmts2
7056 -- end;
7058 -- <<L3>>
7060 -- and what we have to do is to dig out the estmts1 and estmts2
7061 -- sequences (which were the original sequences of statements in
7062 -- the exception handlers) and check them.
7064 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
7065 Stm := Last_Stm;
7066 loop
7067 Prev (Stm);
7068 exit when No (Stm);
7069 exit when Nkind (Stm) /= N_Block_Statement;
7070 exit when not Exception_Junk (Stm);
7071 Prev (Stm);
7072 exit when No (Stm);
7073 exit when Nkind (Stm) /= N_Label;
7074 exit when not Exception_Junk (Stm);
7075 Check_Statement_Sequence
7076 (Statements (Handled_Statement_Sequence (Next (Stm))));
7078 Prev (Stm);
7079 Last_Stm := Stm;
7080 exit when No (Stm);
7081 exit when Nkind (Stm) /= N_Goto_Statement;
7082 exit when not Exception_Junk (Stm);
7083 end loop;
7084 end if;
7086 -- Don't count pragmas
7088 while Nkind (Last_Stm) = N_Pragma
7090 -- Don't count call to SS_Release (can happen after
7091 -- Raise_Exception).
7093 or else
7094 (Nkind (Last_Stm) = N_Procedure_Call_Statement
7095 and then
7096 Nkind (Name (Last_Stm)) = N_Identifier
7097 and then
7098 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
7100 -- Don't count exception junk
7102 or else
7103 (Nkind (Last_Stm) in
7104 N_Goto_Statement | N_Label | N_Object_Declaration
7105 and then Exception_Junk (Last_Stm))
7106 or else Nkind (Last_Stm) in N_Push_xxx_Label | N_Pop_xxx_Label
7108 -- Inserted code, such as finalization calls, is irrelevant; we
7109 -- only need to check original source. If we see a transfer of
7110 -- control, we stop.
7112 or else (Is_Rewrite_Insertion (Last_Stm)
7113 and then not Is_Transfer (Last_Stm))
7114 loop
7115 Prev (Last_Stm);
7116 end loop;
7118 -- Here we have the "real" last statement
7120 Kind := Nkind (Last_Stm);
7122 -- Transfer of control, OK. Note that in the No_Return procedure
7123 -- case, we already diagnosed any explicit return statements, so
7124 -- we can treat them as OK in this context.
7126 if Is_Transfer (Last_Stm) then
7127 return;
7129 -- Check cases of explicit non-indirect procedure calls
7131 elsif Kind = N_Procedure_Call_Statement
7132 and then Is_Entity_Name (Name (Last_Stm))
7133 then
7134 -- Check call to Raise_Exception procedure which is treated
7135 -- specially, as is a call to Reraise_Occurrence.
7137 -- We suppress the warning in these cases since it is likely that
7138 -- the programmer really does not expect to deal with the case
7139 -- of Null_Occurrence, and thus would find a warning about a
7140 -- missing return curious, and raising Program_Error does not
7141 -- seem such a bad behavior if this does occur.
7143 -- Note that in the Ada 2005 case for Raise_Exception, the actual
7144 -- behavior will be to raise Constraint_Error (see AI-329).
7146 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
7147 or else
7148 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
7149 then
7150 Raise_Exception_Call := True;
7152 -- For Raise_Exception call, test first argument, if it is
7153 -- an attribute reference for a 'Identity call, then we know
7154 -- that the call cannot possibly return.
7156 declare
7157 Arg : constant Node_Id :=
7158 Original_Node (First_Actual (Last_Stm));
7159 begin
7160 if Nkind (Arg) = N_Attribute_Reference
7161 and then Attribute_Name (Arg) = Name_Identity
7162 then
7163 return;
7164 end if;
7165 end;
7166 end if;
7168 -- If statement, need to look inside if there is an else and check
7169 -- each constituent statement sequence for proper termination.
7171 elsif Kind = N_If_Statement
7172 and then Present (Else_Statements (Last_Stm))
7173 then
7174 Check_Statement_Sequence (Then_Statements (Last_Stm));
7175 Check_Statement_Sequence (Else_Statements (Last_Stm));
7177 declare
7178 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
7180 begin
7181 while Present (Elsif_Part) loop
7182 Check_Statement_Sequence (Then_Statements (Elsif_Part));
7183 Next (Elsif_Part);
7184 end loop;
7185 end;
7187 return;
7189 -- Case statement, check each case for proper termination
7191 elsif Kind = N_Case_Statement then
7192 declare
7193 Case_Alt : Node_Id;
7194 begin
7195 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
7196 while Present (Case_Alt) loop
7197 Check_Statement_Sequence (Statements (Case_Alt));
7198 Next_Non_Pragma (Case_Alt);
7199 end loop;
7200 end;
7202 return;
7204 -- Block statement, check its handled sequence of statements
7206 elsif Kind = N_Block_Statement then
7207 declare
7208 Err1 : Boolean;
7210 begin
7211 Check_Returns
7212 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
7214 if Err1 then
7215 Err := True;
7216 end if;
7218 return;
7219 end;
7221 -- Loop statement. If there is an iteration scheme, we can definitely
7222 -- fall out of the loop. Similarly if there is an exit statement, we
7223 -- can fall out. In either case we need a following return.
7225 elsif Kind = N_Loop_Statement then
7226 if Present (Iteration_Scheme (Last_Stm))
7227 or else Has_Exit (Entity (Identifier (Last_Stm)))
7228 then
7229 null;
7231 -- A loop with no exit statement or iteration scheme is either
7232 -- an infinite loop, or it has some other exit (raise/return).
7233 -- In either case, no warning is required.
7235 else
7236 return;
7237 end if;
7239 -- Timed entry call, check entry call and delay alternatives
7241 -- Note: in expanded code, the timed entry call has been converted
7242 -- to a set of expanded statements on which the check will work
7243 -- correctly in any case.
7245 elsif Kind = N_Timed_Entry_Call then
7246 declare
7247 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7248 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
7250 begin
7251 -- If statement sequence of entry call alternative is missing,
7252 -- then we can definitely fall through, and we post the error
7253 -- message on the entry call alternative itself.
7255 if No (Statements (ECA)) then
7256 Last_Stm := ECA;
7258 -- If statement sequence of delay alternative is missing, then
7259 -- we can definitely fall through, and we post the error
7260 -- message on the delay alternative itself.
7262 -- Note: if both ECA and DCA are missing the return, then we
7263 -- post only one message, should be enough to fix the bugs.
7264 -- If not we will get a message next time on the DCA when the
7265 -- ECA is fixed.
7267 elsif No (Statements (DCA)) then
7268 Last_Stm := DCA;
7270 -- Else check both statement sequences
7272 else
7273 Check_Statement_Sequence (Statements (ECA));
7274 Check_Statement_Sequence (Statements (DCA));
7275 return;
7276 end if;
7277 end;
7279 -- Conditional entry call, check entry call and else part
7281 -- Note: in expanded code, the conditional entry call has been
7282 -- converted to a set of expanded statements on which the check
7283 -- will work correctly in any case.
7285 elsif Kind = N_Conditional_Entry_Call then
7286 declare
7287 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7289 begin
7290 -- If statement sequence of entry call alternative is missing,
7291 -- then we can definitely fall through, and we post the error
7292 -- message on the entry call alternative itself.
7294 if No (Statements (ECA)) then
7295 Last_Stm := ECA;
7297 -- Else check statement sequence and else part
7299 else
7300 Check_Statement_Sequence (Statements (ECA));
7301 Check_Statement_Sequence (Else_Statements (Last_Stm));
7302 return;
7303 end if;
7304 end;
7305 end if;
7307 -- If we fall through, issue appropriate message
7309 if Mode = 'F' then
7311 -- Kill warning if last statement is a raise exception call,
7312 -- or a pragma Assert (False). Note that with assertions enabled,
7313 -- such a pragma has been converted into a raise exception call
7314 -- already, so the Assert_False is for the assertions off case.
7316 if not Raise_Exception_Call and then not Assert_False then
7318 -- In GNATprove mode, it is an error to have a missing return
7320 Error_Msg_Warn := SPARK_Mode /= On;
7322 -- Issue error message or warning
7324 Error_Msg_N
7325 ("RETURN statement missing following this statement<<!",
7326 Last_Stm);
7327 Error_Msg_N
7328 ("\Program_Error [<<!", Last_Stm);
7329 end if;
7331 -- Note: we set Err even though we have not issued a warning
7332 -- because we still have a case of a missing return. This is
7333 -- an extremely marginal case, probably will never be noticed
7334 -- but we might as well get it right.
7336 Err := True;
7338 -- Otherwise we have the case of a procedure marked No_Return
7340 else
7341 if not Raise_Exception_Call then
7342 if GNATprove_Mode then
7343 Error_Msg_N
7344 ("implied return after this statement would have raised "
7345 & "Program_Error", Last_Stm);
7347 -- In normal compilation mode, do not warn on a generated call
7348 -- (e.g. in the body of a renaming as completion).
7350 elsif Comes_From_Source (Last_Stm) then
7351 Error_Msg_N
7352 ("implied return after this statement will raise "
7353 & "Program_Error??", Last_Stm);
7354 end if;
7356 Error_Msg_Warn := SPARK_Mode /= On;
7357 Error_Msg_NE
7358 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7359 end if;
7361 declare
7362 RE : constant Node_Id :=
7363 Make_Raise_Program_Error (Sloc (Last_Stm),
7364 Reason => PE_Implicit_Return);
7365 begin
7366 Insert_After (Last_Stm, RE);
7367 Analyze (RE);
7368 end;
7369 end if;
7370 end Check_Statement_Sequence;
7372 -- Start of processing for Check_Returns
7374 begin
7375 Err := False;
7376 Check_Statement_Sequence (Statements (HSS));
7378 if Present (Exception_Handlers (HSS)) then
7379 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7380 while Present (Handler) loop
7381 Check_Statement_Sequence (Statements (Handler));
7382 Next_Non_Pragma (Handler);
7383 end loop;
7384 end if;
7385 end Check_Returns;
7387 ----------------------------
7388 -- Check_Subprogram_Order --
7389 ----------------------------
7391 procedure Check_Subprogram_Order (N : Node_Id) is
7393 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7394 -- This is used to check if S1 > S2 in the sense required by this test,
7395 -- for example nameab < namec, but name2 < name10.
7397 -----------------------------
7398 -- Subprogram_Name_Greater --
7399 -----------------------------
7401 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7402 L1, L2 : Positive;
7403 N1, N2 : Natural;
7405 begin
7406 -- Deal with special case where names are identical except for a
7407 -- numerical suffix. These are handled specially, taking the numeric
7408 -- ordering from the suffix into account.
7410 L1 := S1'Last;
7411 while S1 (L1) in '0' .. '9' loop
7412 L1 := L1 - 1;
7413 end loop;
7415 L2 := S2'Last;
7416 while S2 (L2) in '0' .. '9' loop
7417 L2 := L2 - 1;
7418 end loop;
7420 -- If non-numeric parts non-equal, do straight compare
7422 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7423 return S1 > S2;
7425 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7426 -- that a missing suffix is treated as numeric zero in this test.
7428 else
7429 N1 := 0;
7430 while L1 < S1'Last loop
7431 L1 := L1 + 1;
7432 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7433 end loop;
7435 N2 := 0;
7436 while L2 < S2'Last loop
7437 L2 := L2 + 1;
7438 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7439 end loop;
7441 return N1 > N2;
7442 end if;
7443 end Subprogram_Name_Greater;
7445 -- Start of processing for Check_Subprogram_Order
7447 begin
7448 -- Check body in alpha order if this is option
7450 if Style_Check
7451 and then Style_Check_Order_Subprograms
7452 and then Nkind (N) = N_Subprogram_Body
7453 and then Comes_From_Source (N)
7454 and then In_Extended_Main_Source_Unit (N)
7455 then
7456 declare
7457 LSN : String_Ptr
7458 renames Scope_Stack.Table
7459 (Scope_Stack.Last).Last_Subprogram_Name;
7461 Body_Id : constant Entity_Id :=
7462 Defining_Entity (Specification (N));
7464 begin
7465 Get_Decoded_Name_String (Chars (Body_Id));
7467 if LSN /= null then
7468 if Subprogram_Name_Greater
7469 (LSN.all, Name_Buffer (1 .. Name_Len))
7470 then
7471 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7472 end if;
7474 Free (LSN);
7475 end if;
7477 LSN := new String'(Name_Buffer (1 .. Name_Len));
7478 end;
7479 end if;
7480 end Check_Subprogram_Order;
7482 ------------------------------
7483 -- Check_Subtype_Conformant --
7484 ------------------------------
7486 procedure Check_Subtype_Conformant
7487 (New_Id : Entity_Id;
7488 Old_Id : Entity_Id;
7489 Err_Loc : Node_Id := Empty;
7490 Skip_Controlling_Formals : Boolean := False;
7491 Get_Inst : Boolean := False)
7493 Result : Boolean;
7494 pragma Warnings (Off, Result);
7495 begin
7496 Check_Conformance
7497 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7498 Skip_Controlling_Formals => Skip_Controlling_Formals,
7499 Get_Inst => Get_Inst);
7500 end Check_Subtype_Conformant;
7502 -----------------------------------
7503 -- Check_Synchronized_Overriding --
7504 -----------------------------------
7506 procedure Check_Synchronized_Overriding
7507 (Def_Id : Entity_Id;
7508 Overridden_Subp : out Entity_Id)
7510 Ifaces_List : Elist_Id;
7511 In_Scope : Boolean;
7512 Typ : Entity_Id;
7514 function Is_Valid_Formal (F : Entity_Id) return Boolean;
7515 -- Predicate for legality rule in 9.4 (11.9/2): If an inherited
7516 -- subprogram is implemented by a protected procedure or entry,
7517 -- its first parameter must be out, in out, or access-to-variable.
7519 function Matches_Prefixed_View_Profile
7520 (Prim_Params : List_Id;
7521 Iface_Params : List_Id) return Boolean;
7522 -- Determine whether a subprogram's parameter profile Prim_Params
7523 -- matches that of a potentially overridden interface subprogram
7524 -- Iface_Params. Also determine if the type of first parameter of
7525 -- Iface_Params is an implemented interface.
7527 ----------------------
7528 -- Is_Valid_Formal --
7529 ----------------------
7531 function Is_Valid_Formal (F : Entity_Id) return Boolean is
7532 begin
7533 return
7534 Ekind (F) in E_In_Out_Parameter | E_Out_Parameter
7535 or else
7536 (Nkind (Parameter_Type (Parent (F))) = N_Access_Definition
7537 and then not Constant_Present (Parameter_Type (Parent (F))));
7538 end Is_Valid_Formal;
7540 -----------------------------------
7541 -- Matches_Prefixed_View_Profile --
7542 -----------------------------------
7544 function Matches_Prefixed_View_Profile
7545 (Prim_Params : List_Id;
7546 Iface_Params : List_Id) return Boolean
7548 function Is_Implemented
7549 (Ifaces_List : Elist_Id;
7550 Iface : Entity_Id) return Boolean;
7551 -- Determine if Iface is implemented by the current task or
7552 -- protected type.
7554 --------------------
7555 -- Is_Implemented --
7556 --------------------
7558 function Is_Implemented
7559 (Ifaces_List : Elist_Id;
7560 Iface : Entity_Id) return Boolean
7562 Iface_Elmt : Elmt_Id;
7564 begin
7565 Iface_Elmt := First_Elmt (Ifaces_List);
7566 while Present (Iface_Elmt) loop
7567 if Node (Iface_Elmt) = Iface then
7568 return True;
7569 end if;
7571 Next_Elmt (Iface_Elmt);
7572 end loop;
7574 return False;
7575 end Is_Implemented;
7577 -- Local variables
7579 Iface_Id : Entity_Id;
7580 Iface_Param : Node_Id;
7581 Iface_Typ : Entity_Id;
7582 Prim_Id : Entity_Id;
7583 Prim_Param : Node_Id;
7584 Prim_Typ : Entity_Id;
7586 -- Start of processing for Matches_Prefixed_View_Profile
7588 begin
7589 Iface_Param := First (Iface_Params);
7590 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7592 if Is_Access_Type (Iface_Typ) then
7593 Iface_Typ := Designated_Type (Iface_Typ);
7594 end if;
7596 Prim_Param := First (Prim_Params);
7598 -- The first parameter of the potentially overridden subprogram must
7599 -- be an interface implemented by Prim.
7601 if not Is_Interface (Iface_Typ)
7602 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7603 then
7604 return False;
7605 end if;
7607 -- The checks on the object parameters are done, so move on to the
7608 -- rest of the parameters.
7610 if not In_Scope then
7611 Next (Prim_Param);
7612 end if;
7614 Next (Iface_Param);
7615 while Present (Iface_Param) and then Present (Prim_Param) loop
7616 Iface_Id := Defining_Identifier (Iface_Param);
7617 Iface_Typ := Find_Parameter_Type (Iface_Param);
7619 Prim_Id := Defining_Identifier (Prim_Param);
7620 Prim_Typ := Find_Parameter_Type (Prim_Param);
7622 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7623 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7624 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7625 then
7626 Iface_Typ := Designated_Type (Iface_Typ);
7627 Prim_Typ := Designated_Type (Prim_Typ);
7628 end if;
7630 -- Case of multiple interface types inside a parameter profile
7632 -- (Obj_Param : in out Iface; ...; Param : Iface)
7634 -- If the interface type is implemented, then the matching type in
7635 -- the primitive should be the implementing record type.
7637 if Ekind (Iface_Typ) = E_Record_Type
7638 and then Is_Interface (Iface_Typ)
7639 and then Is_Implemented (Ifaces_List, Iface_Typ)
7640 then
7641 if Prim_Typ /= Typ then
7642 return False;
7643 end if;
7645 -- The two parameters must be both mode and subtype conformant
7647 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7648 or else not
7649 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7650 then
7651 return False;
7652 end if;
7654 Next (Iface_Param);
7655 Next (Prim_Param);
7656 end loop;
7658 -- One of the two lists contains more parameters than the other
7660 if Present (Iface_Param) or else Present (Prim_Param) then
7661 return False;
7662 end if;
7664 return True;
7665 end Matches_Prefixed_View_Profile;
7667 -- Start of processing for Check_Synchronized_Overriding
7669 begin
7670 Overridden_Subp := Empty;
7672 -- Def_Id must be an entry or a subprogram. We should skip predefined
7673 -- primitives internally generated by the front end; however at this
7674 -- stage predefined primitives are still not fully decorated. As a
7675 -- minor optimization we skip here internally generated subprograms.
7677 if (Ekind (Def_Id) /= E_Entry
7678 and then Ekind (Def_Id) /= E_Function
7679 and then Ekind (Def_Id) /= E_Procedure)
7680 or else not Comes_From_Source (Def_Id)
7681 then
7682 return;
7683 end if;
7685 -- Search for the concurrent declaration since it contains the list of
7686 -- all implemented interfaces. In this case, the subprogram is declared
7687 -- within the scope of a protected or a task type.
7689 if Present (Scope (Def_Id))
7690 and then Is_Concurrent_Type (Scope (Def_Id))
7691 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7692 then
7693 Typ := Scope (Def_Id);
7694 In_Scope := True;
7696 -- The enclosing scope is not a synchronized type and the subprogram
7697 -- has no formals.
7699 elsif No (First_Formal (Def_Id)) then
7700 return;
7702 -- The subprogram has formals and hence it may be a primitive of a
7703 -- concurrent type.
7705 else
7706 Typ := Etype (First_Formal (Def_Id));
7708 if Is_Access_Type (Typ) then
7709 Typ := Directly_Designated_Type (Typ);
7710 end if;
7712 if Is_Concurrent_Type (Typ)
7713 and then not Is_Generic_Actual_Type (Typ)
7714 then
7715 In_Scope := False;
7717 -- This case occurs when the concurrent type is declared within a
7718 -- generic unit. As a result the corresponding record has been built
7719 -- and used as the type of the first formal, we just have to retrieve
7720 -- the corresponding concurrent type.
7722 elsif Is_Concurrent_Record_Type (Typ)
7723 and then not Is_Class_Wide_Type (Typ)
7724 and then Present (Corresponding_Concurrent_Type (Typ))
7725 then
7726 Typ := Corresponding_Concurrent_Type (Typ);
7727 In_Scope := False;
7729 else
7730 return;
7731 end if;
7732 end if;
7734 -- There is no overriding to check if this is an inherited operation in
7735 -- a type derivation for a generic actual.
7737 Collect_Interfaces (Typ, Ifaces_List);
7739 if Is_Empty_Elmt_List (Ifaces_List) then
7740 return;
7741 end if;
7743 -- Determine whether entry or subprogram Def_Id overrides a primitive
7744 -- operation that belongs to one of the interfaces in Ifaces_List.
7746 declare
7747 Candidate : Entity_Id := Empty;
7748 Hom : Entity_Id := Empty;
7749 Subp : Entity_Id := Empty;
7751 begin
7752 -- Traverse the homonym chain, looking for a potentially overridden
7753 -- subprogram that belongs to an implemented interface.
7755 Hom := Current_Entity_In_Scope (Def_Id);
7756 while Present (Hom) loop
7757 Subp := Hom;
7759 if Subp = Def_Id
7760 or else not Is_Overloadable (Subp)
7761 or else not Is_Primitive (Subp)
7762 or else not Is_Dispatching_Operation (Subp)
7763 or else No (Find_Dispatching_Type (Subp))
7764 or else not Is_Interface (Find_Dispatching_Type (Subp))
7765 then
7766 null;
7768 -- Entries and procedures can override abstract or null interface
7769 -- procedures.
7771 elsif Ekind (Def_Id) in E_Entry | E_Procedure
7772 and then Ekind (Subp) = E_Procedure
7773 and then Matches_Prefixed_View_Profile
7774 (Parameter_Specifications (Parent (Def_Id)),
7775 Parameter_Specifications (Parent (Subp)))
7776 then
7777 Candidate := Subp;
7779 -- For an overridden subprogram Subp, check whether the mode
7780 -- of its first parameter is correct depending on the kind of
7781 -- synchronized type.
7783 declare
7784 Formal : constant Node_Id := First_Formal (Candidate);
7786 begin
7787 -- In order for an entry or a protected procedure to
7788 -- override, the first parameter of the overridden routine
7789 -- must be of mode "out", "in out", or access-to-variable.
7791 if Ekind (Candidate) in E_Entry | E_Procedure
7792 and then Is_Protected_Type (Typ)
7793 and then not Is_Valid_Formal (Formal)
7794 then
7795 null;
7797 -- All other cases are OK since a task entry or routine does
7798 -- not have a restriction on the mode of the first parameter
7799 -- of the overridden interface routine.
7801 else
7802 Overridden_Subp := Candidate;
7803 return;
7804 end if;
7805 end;
7807 -- Functions can override abstract interface functions. Return
7808 -- types must be subtype conformant.
7810 elsif Ekind (Def_Id) = E_Function
7811 and then Ekind (Subp) = E_Function
7812 and then Matches_Prefixed_View_Profile
7813 (Parameter_Specifications (Parent (Def_Id)),
7814 Parameter_Specifications (Parent (Subp)))
7815 and then Conforming_Types
7816 (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7817 then
7818 Candidate := Subp;
7820 -- If an inherited subprogram is implemented by a protected
7821 -- function, then the first parameter of the inherited
7822 -- subprogram shall be of mode in, but not an access-to-
7823 -- variable parameter (RM 9.4(11/9)).
7825 if Present (First_Formal (Subp))
7826 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7827 and then
7828 (not Is_Access_Type (Etype (First_Formal (Subp)))
7829 or else
7830 Is_Access_Constant (Etype (First_Formal (Subp))))
7831 then
7832 Overridden_Subp := Subp;
7833 return;
7834 end if;
7835 end if;
7837 Hom := Homonym (Hom);
7838 end loop;
7840 -- After examining all candidates for overriding, we are left with
7841 -- the best match, which is a mode-incompatible interface routine.
7843 if In_Scope and then Present (Candidate) then
7844 Error_Msg_PT (Def_Id, Candidate);
7845 end if;
7847 Overridden_Subp := Candidate;
7848 return;
7849 end;
7850 end Check_Synchronized_Overriding;
7852 ---------------------------
7853 -- Check_Type_Conformant --
7854 ---------------------------
7856 procedure Check_Type_Conformant
7857 (New_Id : Entity_Id;
7858 Old_Id : Entity_Id;
7859 Err_Loc : Node_Id := Empty)
7861 Result : Boolean;
7862 pragma Warnings (Off, Result);
7863 begin
7864 Check_Conformance
7865 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7866 end Check_Type_Conformant;
7868 -----------------------------
7869 -- Check_Untagged_Equality --
7870 -----------------------------
7872 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7873 Eq_Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7874 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7876 procedure Freezing_Point_Warning (N : Node_Id; S : String);
7877 -- Output a warning about the freezing point N of Typ
7879 function Is_Actual_Of_Instantiation
7880 (E : Entity_Id;
7881 Inst : Node_Id) return Boolean;
7882 -- Return True if E is an actual parameter of instantiation Inst
7884 -----------------------------------
7885 -- Output_Freezing_Point_Warning --
7886 -----------------------------------
7888 procedure Freezing_Point_Warning (N : Node_Id; S : String) is
7889 begin
7890 Error_Msg_String (1 .. S'Length) := S;
7891 Error_Msg_Strlen := S'Length;
7893 if Ada_Version >= Ada_2012 then
7894 Error_Msg_NE ("type& is frozen by ~??", N, Typ);
7895 Error_Msg_N
7896 ("\an equality operator cannot be declared after this point??",
7899 else
7900 Error_Msg_NE ("type& is frozen by ~ (Ada 2012)?y?", N, Typ);
7901 Error_Msg_N
7902 ("\an equality operator cannot be declared after this point"
7903 & " (Ada 2012)?y?", N);
7904 end if;
7905 end Freezing_Point_Warning;
7907 --------------------------------
7908 -- Is_Actual_Of_Instantiation --
7909 --------------------------------
7911 function Is_Actual_Of_Instantiation
7912 (E : Entity_Id;
7913 Inst : Node_Id) return Boolean
7915 Assoc : Node_Id;
7917 begin
7918 if Present (Generic_Associations (Inst)) then
7919 Assoc := First (Generic_Associations (Inst));
7921 while Present (Assoc) loop
7922 if Present (Explicit_Generic_Actual_Parameter (Assoc))
7923 and then
7924 Is_Entity_Name (Explicit_Generic_Actual_Parameter (Assoc))
7925 and then
7926 Entity (Explicit_Generic_Actual_Parameter (Assoc)) = E
7927 then
7928 return True;
7929 end if;
7931 Next (Assoc);
7932 end loop;
7933 end if;
7935 return False;
7936 end Is_Actual_Of_Instantiation;
7938 -- Local variable
7940 Decl : Node_Id;
7942 -- Start of processing for Check_Untagged_Equality
7944 begin
7945 -- This check applies only if we have a subprogram declaration or a
7946 -- subprogram body that is not a completion, for an untagged record
7947 -- type, and that is conformant with the predefined operator.
7949 if (Nkind (Eq_Decl) /= N_Subprogram_Declaration
7950 and then not (Nkind (Eq_Decl) = N_Subprogram_Body
7951 and then Acts_As_Spec (Eq_Decl)))
7952 or else not Is_Record_Type (Typ)
7953 or else Is_Tagged_Type (Typ)
7954 or else not Is_User_Defined_Equality (Eq_Op)
7955 then
7956 return;
7957 end if;
7959 -- In Ada 2012 case, we will output errors or warnings depending on
7960 -- the setting of debug flag -gnatd.E.
7962 if Ada_Version >= Ada_2012 then
7963 Error_Msg_Warn := Debug_Flag_Dot_EE;
7965 -- In earlier versions of Ada, nothing to do unless we are warning on
7966 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7968 else
7969 if not Warn_On_Ada_2012_Compatibility then
7970 return;
7971 end if;
7972 end if;
7974 -- Cases where the type has already been frozen
7976 if Is_Frozen (Typ) then
7978 -- The check applies to a primitive operation, so check that type
7979 -- and equality operation are in the same scope.
7981 if Scope (Typ) /= Current_Scope then
7982 return;
7984 -- If the type is a generic actual (sub)type, the operation is not
7985 -- primitive either because the base type is declared elsewhere.
7987 elsif Is_Generic_Actual_Type (Typ) then
7988 return;
7990 -- Here we may have an error of declaration after freezing, but we
7991 -- must make sure not to flag the equality operator itself causing
7992 -- the freezing when it is a subprogram body.
7994 else
7995 Decl := Next (Declaration_Node (Typ));
7997 while Present (Decl) and then Decl /= Eq_Decl loop
7999 -- The declaration of an object of the type
8001 if Nkind (Decl) = N_Object_Declaration
8002 and then Etype (Defining_Identifier (Decl)) = Typ
8003 then
8004 Freezing_Point_Warning (Decl, "declaration");
8005 exit;
8007 -- The instantiation of a generic on the type
8009 elsif Nkind (Decl) in N_Generic_Instantiation
8010 and then Is_Actual_Of_Instantiation (Typ, Decl)
8011 then
8012 Freezing_Point_Warning (Decl, "instantiation");
8013 exit;
8015 -- A noninstance proper body, body stub or entry body
8017 elsif Nkind (Decl) in N_Proper_Body
8018 | N_Body_Stub
8019 | N_Entry_Body
8020 and then not Is_Generic_Instance (Defining_Entity (Decl))
8021 then
8022 Freezing_Point_Warning (Decl, "body");
8023 exit;
8025 -- If we have reached the freeze node and immediately after we
8026 -- have the body or generated code for the body, then it is the
8027 -- body that caused the freezing and this is legal.
8029 elsif Nkind (Decl) = N_Freeze_Entity
8030 and then Entity (Decl) = Typ
8031 and then (Next (Decl) = Eq_Decl
8032 or else
8033 Sloc (Next (Decl)) = Sloc (Eq_Decl))
8034 then
8035 return;
8036 end if;
8038 Next (Decl);
8039 end loop;
8041 -- Here we have a definite error of declaration after freezing
8043 if Ada_Version >= Ada_2012 then
8044 Error_Msg_NE
8045 ("equality operator must be declared before type & is "
8046 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8048 -- In Ada 2012 mode with error turned to warning, output one
8049 -- more warning to warn that the equality operation may not
8050 -- compose. This is the consequence of ignoring the error.
8052 if Error_Msg_Warn then
8053 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8054 end if;
8056 else
8057 Error_Msg_NE
8058 ("equality operator must be declared before type& is "
8059 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8060 end if;
8062 -- If we have found no freezing point and the declaration of the
8063 -- operator could not be reached from that of the type and we are
8064 -- in a package body, this must be because the type is declared
8065 -- in the spec of the package. Add a message tailored to this.
8067 if No (Decl) and then In_Package_Body (Scope (Typ)) then
8068 if Ada_Version >= Ada_2012 then
8069 if Nkind (Eq_Decl) = N_Subprogram_Body then
8070 Error_Msg_N
8071 ("\put declaration in package spec<<", Eq_Op);
8072 else
8073 Error_Msg_N
8074 ("\move declaration to package spec<<", Eq_Op);
8075 end if;
8077 else
8078 if Nkind (Eq_Decl) = N_Subprogram_Body then
8079 Error_Msg_N
8080 ("\put declaration in package spec (Ada 2012)?y?",
8081 Eq_Op);
8082 else
8083 Error_Msg_N
8084 ("\move declaration to package spec (Ada 2012)?y?",
8085 Eq_Op);
8086 end if;
8087 end if;
8088 end if;
8089 end if;
8091 -- Now check for AI12-0352: the declaration of a user-defined primitive
8092 -- equality operation for a record type T is illegal if it occurs after
8093 -- a type has been derived from T.
8095 else
8096 Decl := Next (Declaration_Node (Typ));
8098 while Present (Decl) and then Decl /= Eq_Decl loop
8099 if Nkind (Decl) = N_Full_Type_Declaration
8100 and then Etype (Defining_Identifier (Decl)) = Typ
8101 then
8102 Error_Msg_N
8103 ("equality operator cannot appear after derivation", Eq_Op);
8104 Error_Msg_NE
8105 ("an equality operator for& cannot be declared after "
8106 & "this point??",
8107 Decl, Typ);
8108 end if;
8110 Next (Decl);
8111 end loop;
8112 end if;
8113 end Check_Untagged_Equality;
8115 ---------------------------
8116 -- Can_Override_Operator --
8117 ---------------------------
8119 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
8120 Typ : Entity_Id;
8122 begin
8123 -- Return False if not an operator. We test the name rather than testing
8124 -- that the Nkind is N_Defining_Operator_Symbol, because there are cases
8125 -- where an operator entity can be an N_Defining_Identifier (such as for
8126 -- function instantiations).
8128 if Chars (Subp) not in Any_Operator_Name then
8129 return False;
8131 else
8132 Typ := Base_Type (Etype (First_Formal (Subp)));
8134 -- Check explicitly that the operation is a primitive of the type
8136 return Operator_Matches_Spec (Subp, Subp)
8137 and then not Is_Generic_Type (Typ)
8138 and then Scope (Subp) = Scope (Typ)
8139 and then not Is_Class_Wide_Type (Typ);
8140 end if;
8141 end Can_Override_Operator;
8143 ----------------------
8144 -- Conforming_Types --
8145 ----------------------
8147 function Conforming_Types
8148 (T1 : Entity_Id;
8149 T2 : Entity_Id;
8150 Ctype : Conformance_Type;
8151 Get_Inst : Boolean := False) return Boolean
8153 function Base_Types_Match
8154 (Typ_1 : Entity_Id;
8155 Typ_2 : Entity_Id) return Boolean;
8156 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
8157 -- in different scopes (e.g. parent and child instances), then verify
8158 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
8159 -- the same subtype chain. The whole purpose of this procedure is to
8160 -- prevent spurious ambiguities in an instantiation that may arise if
8161 -- two distinct generic types are instantiated with the same actual.
8163 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
8164 -- An access parameter can designate an incomplete type. If the
8165 -- incomplete type is the limited view of a type from a limited_
8166 -- with_clause, check whether the non-limited view is available.
8167 -- If it is a (non-limited) incomplete type, get the full view.
8169 function Matches_Limited_With_View
8170 (Typ_1 : Entity_Id;
8171 Typ_2 : Entity_Id) return Boolean;
8172 -- Returns True if and only if either Typ_1 denotes a limited view of
8173 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
8174 -- the limited with view of a type is used in a subprogram declaration
8175 -- and the subprogram body is in the scope of a regular with clause for
8176 -- the same unit. In such a case, the two type entities are considered
8177 -- identical for purposes of conformance checking.
8179 ----------------------
8180 -- Base_Types_Match --
8181 ----------------------
8183 function Base_Types_Match
8184 (Typ_1 : Entity_Id;
8185 Typ_2 : Entity_Id) return Boolean
8187 Base_1 : constant Entity_Id := Base_Type (Typ_1);
8188 Base_2 : constant Entity_Id := Base_Type (Typ_2);
8190 begin
8191 if Typ_1 = Typ_2 then
8192 return True;
8194 elsif Base_1 = Base_2 then
8196 -- The following is too permissive. A more precise test should
8197 -- check that the generic actual is an ancestor subtype of the
8198 -- other ???.
8200 -- See code in Find_Corresponding_Spec that applies an additional
8201 -- filter to handle accidental amiguities in instances.
8203 return
8204 not Is_Generic_Actual_Type (Typ_1)
8205 or else not Is_Generic_Actual_Type (Typ_2)
8206 or else Scope (Typ_1) /= Scope (Typ_2);
8208 -- If Typ_2 is a generic actual type it is declared as the subtype of
8209 -- the actual. If that actual is itself a subtype we need to use its
8210 -- own base type to check for compatibility.
8212 elsif Ekind (Base_2) = Ekind (Typ_2)
8213 and then Base_1 = Base_Type (Base_2)
8214 then
8215 return True;
8217 elsif Ekind (Base_1) = Ekind (Typ_1)
8218 and then Base_2 = Base_Type (Base_1)
8219 then
8220 return True;
8222 else
8223 return False;
8224 end if;
8225 end Base_Types_Match;
8227 --------------------------
8228 -- Find_Designated_Type --
8229 --------------------------
8231 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
8232 Desig : Entity_Id;
8234 begin
8235 Desig := Directly_Designated_Type (Typ);
8237 if Ekind (Desig) = E_Incomplete_Type then
8239 -- If regular incomplete type, get full view if available
8241 if Present (Full_View (Desig)) then
8242 Desig := Full_View (Desig);
8244 -- If limited view of a type, get non-limited view if available,
8245 -- and check again for a regular incomplete type.
8247 elsif Present (Non_Limited_View (Desig)) then
8248 Desig := Get_Full_View (Non_Limited_View (Desig));
8249 end if;
8250 end if;
8252 return Desig;
8253 end Find_Designated_Type;
8255 -------------------------------
8256 -- Matches_Limited_With_View --
8257 -------------------------------
8259 function Matches_Limited_With_View
8260 (Typ_1 : Entity_Id;
8261 Typ_2 : Entity_Id) return Boolean
8263 function Is_Matching_Limited_View
8264 (Typ : Entity_Id;
8265 View : Entity_Id) return Boolean;
8266 -- Determine whether non-limited view View denotes type Typ in some
8267 -- conformant fashion.
8269 ------------------------------
8270 -- Is_Matching_Limited_View --
8271 ------------------------------
8273 function Is_Matching_Limited_View
8274 (Typ : Entity_Id;
8275 View : Entity_Id) return Boolean
8277 Root_Typ : Entity_Id;
8278 Root_View : Entity_Id;
8280 begin
8281 -- The non-limited view directly denotes the type
8283 if Typ = View then
8284 return True;
8286 -- The type is a subtype of the non-limited view
8288 elsif Is_Subtype_Of (Typ, View) then
8289 return True;
8291 -- Both the non-limited view and the type denote class-wide types
8293 elsif Is_Class_Wide_Type (Typ)
8294 and then Is_Class_Wide_Type (View)
8295 then
8296 Root_Typ := Root_Type (Typ);
8297 Root_View := Root_Type (View);
8299 if Root_Typ = Root_View then
8300 return True;
8302 -- An incomplete tagged type and its full view may receive two
8303 -- distinct class-wide types when the related package has not
8304 -- been analyzed yet.
8306 -- package Pack is
8307 -- type T is tagged; -- CW_1
8308 -- type T is tagged null record; -- CW_2
8309 -- end Pack;
8311 -- This is because the package lacks any semantic information
8312 -- that may eventually link both views of T. As a consequence,
8313 -- a client of the limited view of Pack will see CW_2 while a
8314 -- client of the non-limited view of Pack will see CW_1.
8316 elsif Is_Incomplete_Type (Root_Typ)
8317 and then Present (Full_View (Root_Typ))
8318 and then Full_View (Root_Typ) = Root_View
8319 then
8320 return True;
8322 elsif Is_Incomplete_Type (Root_View)
8323 and then Present (Full_View (Root_View))
8324 and then Full_View (Root_View) = Root_Typ
8325 then
8326 return True;
8327 end if;
8328 end if;
8330 return False;
8331 end Is_Matching_Limited_View;
8333 -- Start of processing for Matches_Limited_With_View
8335 begin
8336 -- In some cases a type imported through a limited_with clause, and
8337 -- its non-limited view are both visible, for example in an anonymous
8338 -- access-to-class-wide type in a formal, or when building the body
8339 -- for a subprogram renaming after the subprogram has been frozen.
8340 -- In these cases both entities designate the same type. In addition,
8341 -- if one of them is an actual in an instance, it may be a subtype of
8342 -- the non-limited view of the other.
8344 if From_Limited_With (Typ_1)
8345 and then From_Limited_With (Typ_2)
8346 and then Available_View (Typ_1) = Available_View (Typ_2)
8347 then
8348 return True;
8350 elsif From_Limited_With (Typ_1) then
8351 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
8353 elsif From_Limited_With (Typ_2) then
8354 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
8356 else
8357 return False;
8358 end if;
8359 end Matches_Limited_With_View;
8361 -- Local variables
8363 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
8365 Type_1 : Entity_Id := T1;
8366 Type_2 : Entity_Id := T2;
8368 -- Start of processing for Conforming_Types
8370 begin
8371 -- The context is an instance association for a formal access-to-
8372 -- subprogram type; the formal parameter types require mapping because
8373 -- they may denote other formal parameters of the generic unit.
8375 if Get_Inst then
8376 Type_1 := Get_Instance_Of (T1);
8377 Type_2 := Get_Instance_Of (T2);
8378 end if;
8380 -- If one of the types is a view of the other introduced by a limited
8381 -- with clause, treat these as conforming for all purposes.
8383 if Matches_Limited_With_View (T1, T2) then
8384 return True;
8386 elsif Base_Types_Match (Type_1, Type_2) then
8387 if Ctype <= Mode_Conformant then
8388 return True;
8390 else
8391 return
8392 Subtypes_Statically_Match (Type_1, Type_2)
8393 and then Dimensions_Match (Type_1, Type_2);
8394 end if;
8396 elsif Is_Incomplete_Or_Private_Type (Type_1)
8397 and then Present (Full_View (Type_1))
8398 and then Base_Types_Match (Full_View (Type_1), Type_2)
8399 then
8400 return
8401 Ctype <= Mode_Conformant
8402 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
8404 elsif Ekind (Type_2) = E_Incomplete_Type
8405 and then Present (Full_View (Type_2))
8406 and then Base_Types_Match (Type_1, Full_View (Type_2))
8407 then
8408 return
8409 Ctype <= Mode_Conformant
8410 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
8412 elsif Is_Private_Type (Type_2)
8413 and then In_Instance
8414 and then Present (Full_View (Type_2))
8415 and then Base_Types_Match (Type_1, Full_View (Type_2))
8416 then
8417 return
8418 Ctype <= Mode_Conformant
8419 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
8421 -- Another confusion between views in a nested instance with an
8422 -- actual private type whose full view is not in scope.
8424 elsif Ekind (Type_2) = E_Private_Subtype
8425 and then In_Instance
8426 and then Etype (Type_2) = Type_1
8427 then
8428 return True;
8430 -- In Ada 2012, incomplete types (including limited views) can appear
8431 -- as actuals in instantiations, where they are conformant to the
8432 -- corresponding incomplete formal.
8434 elsif Is_Incomplete_Type (Type_1)
8435 and then Is_Incomplete_Type (Type_2)
8436 and then In_Instance
8437 and then (Used_As_Generic_Actual (Type_1)
8438 or else Used_As_Generic_Actual (Type_2))
8439 then
8440 return True;
8441 end if;
8443 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
8444 -- treated recursively because they carry a signature. As far as
8445 -- conformance is concerned, convention plays no role, and either
8446 -- or both could be access to protected subprograms.
8448 Are_Anonymous_Access_To_Subprogram_Types :=
8449 Ekind (Type_1) in E_Anonymous_Access_Subprogram_Type
8450 | E_Anonymous_Access_Protected_Subprogram_Type
8451 and then
8452 Ekind (Type_2) in E_Anonymous_Access_Subprogram_Type
8453 | E_Anonymous_Access_Protected_Subprogram_Type;
8455 -- Test anonymous access type case. For this case, static subtype
8456 -- matching is required for mode conformance (RM 6.3.1(15)). We check
8457 -- the base types because we may have built internal subtype entities
8458 -- to handle null-excluding types (see Process_Formals).
8460 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
8461 and then
8462 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
8464 -- Ada 2005 (AI-254)
8466 or else Are_Anonymous_Access_To_Subprogram_Types
8467 then
8468 declare
8469 Desig_1 : Entity_Id;
8470 Desig_2 : Entity_Id;
8472 begin
8473 -- In Ada 2005, access constant indicators must match for
8474 -- subtype conformance.
8476 if Ada_Version >= Ada_2005
8477 and then Ctype >= Subtype_Conformant
8478 and then
8479 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
8480 then
8481 return False;
8482 end if;
8484 Desig_1 := Find_Designated_Type (Type_1);
8485 Desig_2 := Find_Designated_Type (Type_2);
8487 -- If the context is an instance association for a formal
8488 -- access-to-subprogram type; formal access parameter designated
8489 -- types require mapping because they may denote other formal
8490 -- parameters of the generic unit.
8492 if Get_Inst then
8493 Desig_1 := Get_Instance_Of (Desig_1);
8494 Desig_2 := Get_Instance_Of (Desig_2);
8495 end if;
8497 -- It is possible for a Class_Wide_Type to be introduced for an
8498 -- incomplete type, in which case there is a separate class_ wide
8499 -- type for the full view. The types conform if their Etypes
8500 -- conform, i.e. one may be the full view of the other. This can
8501 -- only happen in the context of an access parameter, other uses
8502 -- of an incomplete Class_Wide_Type are illegal.
8504 if Is_Class_Wide_Type (Desig_1)
8505 and then
8506 Is_Class_Wide_Type (Desig_2)
8507 then
8508 return
8509 Conforming_Types
8510 (Etype (Base_Type (Desig_1)),
8511 Etype (Base_Type (Desig_2)), Ctype);
8513 elsif Are_Anonymous_Access_To_Subprogram_Types then
8514 if Ada_Version < Ada_2005 then
8515 return
8516 Ctype = Type_Conformant
8517 or else Subtypes_Statically_Match (Desig_1, Desig_2);
8519 -- We must check the conformance of the signatures themselves
8521 else
8522 declare
8523 Conformant : Boolean;
8524 begin
8525 Check_Conformance
8526 (Desig_1, Desig_2, Ctype, False, Conformant);
8527 return Conformant;
8528 end;
8529 end if;
8531 -- A limited view of an actual matches the corresponding
8532 -- incomplete formal.
8534 elsif Ekind (Desig_2) = E_Incomplete_Subtype
8535 and then From_Limited_With (Desig_2)
8536 and then Used_As_Generic_Actual (Etype (Desig_2))
8537 then
8538 return True;
8540 else
8541 return Base_Type (Desig_1) = Base_Type (Desig_2)
8542 and then (Ctype = Type_Conformant
8543 or else
8544 Subtypes_Statically_Match (Desig_1, Desig_2));
8545 end if;
8546 end;
8548 -- Otherwise definitely no match
8550 else
8551 if ((Ekind (Type_1) = E_Anonymous_Access_Type
8552 and then Is_Access_Type (Type_2))
8553 or else (Ekind (Type_2) = E_Anonymous_Access_Type
8554 and then Is_Access_Type (Type_1)))
8555 and then
8556 Conforming_Types
8557 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
8558 then
8559 May_Hide_Profile := True;
8560 end if;
8562 return False;
8563 end if;
8564 end Conforming_Types;
8566 --------------------------
8567 -- Create_Extra_Formals --
8568 --------------------------
8570 procedure Create_Extra_Formals (E : Entity_Id) is
8571 First_Extra : Entity_Id := Empty;
8572 Formal : Entity_Id;
8573 Last_Extra : Entity_Id := Empty;
8575 function Add_Extra_Formal
8576 (Assoc_Entity : Entity_Id;
8577 Typ : Entity_Id;
8578 Scope : Entity_Id;
8579 Suffix : String) return Entity_Id;
8580 -- Add an extra formal to the current list of formals and extra formals.
8581 -- The extra formal is added to the end of the list of extra formals,
8582 -- and also returned as the result. These formals are always of mode IN.
8583 -- The new formal has the type Typ, is declared in Scope, and its name
8584 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
8585 -- The following suffixes are currently used. They should not be changed
8586 -- without coordinating with CodePeer, which makes use of these to
8587 -- provide better messages.
8589 -- O denotes the Constrained bit.
8590 -- L denotes the accessibility level.
8591 -- BIP_xxx denotes an extra formal for a build-in-place function. See
8592 -- the full list in exp_ch6.BIP_Formal_Kind.
8594 function Has_Extra_Formals (E : Entity_Id) return Boolean;
8595 -- Determines if E has its extra formals
8597 function Needs_Accessibility_Check_Extra
8598 (E : Entity_Id;
8599 Formal : Node_Id) return Boolean;
8600 -- Determines whether the given formal of E needs an extra formal for
8601 -- supporting accessibility checking. Returns True for both anonymous
8602 -- access formals and formals of named access types that are marked as
8603 -- controlling formals. The latter case can occur when the subprogram
8604 -- Expand_Dispatching_Call creates a subprogram-type and substitutes
8605 -- the types of access-to-class-wide actuals for the anonymous access-
8606 -- to-specific-type of controlling formals.
8608 function Parent_Subprogram (Subp_Id : Entity_Id) return Entity_Id;
8609 -- Subp_Id is a subprogram of a derived type; return its parent
8610 -- subprogram if Subp_Id overrides a parent primitive or derives
8611 -- from a parent primitive, and such parent primitive can have extra
8612 -- formals. Otherwise return Empty.
8614 ----------------------
8615 -- Add_Extra_Formal --
8616 ----------------------
8618 function Add_Extra_Formal
8619 (Assoc_Entity : Entity_Id;
8620 Typ : Entity_Id;
8621 Scope : Entity_Id;
8622 Suffix : String) return Entity_Id
8624 EF : Entity_Id;
8626 begin
8627 -- A little optimization. Never generate an extra formal for the
8628 -- _init operand of an initialization procedure, since it could
8629 -- never be used.
8631 if Chars (Formal) = Name_uInit then
8632 return Empty;
8633 end if;
8635 EF := Make_Defining_Identifier (Sloc (Assoc_Entity),
8636 Chars => New_External_Name (Chars (Assoc_Entity),
8637 Suffix => Suffix));
8639 Mutate_Ekind (EF, E_In_Parameter);
8640 Set_Actual_Subtype (EF, Typ);
8641 Set_Etype (EF, Typ);
8642 Set_Scope (EF, Scope);
8643 Set_Mechanism (EF, Default_Mechanism);
8644 Set_Formal_Validity (EF);
8646 if No (First_Extra) then
8647 First_Extra := EF;
8648 Set_Extra_Formals (Scope, EF);
8649 end if;
8651 if Present (Last_Extra) then
8652 Set_Extra_Formal (Last_Extra, EF);
8653 end if;
8655 Last_Extra := EF;
8657 return EF;
8658 end Add_Extra_Formal;
8660 -----------------------
8661 -- Has_Extra_Formals --
8662 -----------------------
8664 function Has_Extra_Formals (E : Entity_Id) return Boolean is
8665 begin
8666 return Present (Extra_Formals (E))
8667 or else
8668 (Ekind (E) = E_Function
8669 and then Present (Extra_Accessibility_Of_Result (E)));
8670 end Has_Extra_Formals;
8672 -------------------------------------
8673 -- Needs_Accessibility_Check_Extra --
8674 -------------------------------------
8676 function Needs_Accessibility_Check_Extra
8677 (E : Entity_Id;
8678 Formal : Node_Id) return Boolean is
8680 begin
8681 -- For dispatching operations this extra formal is not suppressed
8682 -- since all the derivations must have matching formals.
8684 -- For nondispatching operations it is suppressed if we specifically
8685 -- suppress accessibility checks at the package level for either the
8686 -- subprogram, or the package in which it resides. However, we do
8687 -- not suppress it simply if the scope has accessibility checks
8688 -- suppressed, since this could cause trouble when clients are
8689 -- compiled with a different suppression setting. The explicit checks
8690 -- at the package level are safe from this point of view.
8692 if not Is_Dispatching_Operation (E)
8693 and then
8694 (Explicit_Suppress (E, Accessibility_Check)
8695 or else Explicit_Suppress (Scope (E), Accessibility_Check))
8696 then
8697 return False;
8698 end if;
8700 -- Base_Type is applied to handle cases where there is a null
8701 -- exclusion the formal may have an access subtype.
8703 return
8704 Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8705 or else
8706 (Is_Controlling_Formal (Formal)
8707 and then Is_Access_Type (Base_Type (Etype (Formal))));
8708 end Needs_Accessibility_Check_Extra;
8710 -----------------------
8711 -- Parent_Subprogram --
8712 -----------------------
8714 function Parent_Subprogram (Subp_Id : Entity_Id) return Entity_Id is
8715 pragma Assert (not Is_Thunk (Subp_Id));
8716 Ovr_E : Entity_Id := Overridden_Operation (Subp_Id);
8717 Ovr_Alias : Entity_Id;
8719 begin
8720 if Present (Ovr_E) then
8721 Ovr_Alias := Ultimate_Alias (Ovr_E);
8723 -- There is no real overridden subprogram if there is a mutual
8724 -- reference between the E and its overridden operation. This
8725 -- weird scenery occurs in the following cases:
8727 -- 1) Controlling function wrappers internally built by
8728 -- Make_Controlling_Function_Wrappers.
8730 -- 2) Hidden overridden primitives of type extensions or private
8731 -- extensions (cf. Find_Hidden_Overridden_Primitive). These
8732 -- hidden primitives have suffix 'P'.
8734 -- 3) Overriding primitives of stub types (see the subprogram
8735 -- Add_RACW_Primitive_Declarations_And_Bodies).
8737 if Ovr_Alias = Subp_Id then
8738 pragma Assert
8739 ((Is_Wrapper (Subp_Id)
8740 and then Has_Controlling_Result (Subp_Id))
8741 or else Has_Suffix (Ovr_E, 'P')
8742 or else Is_RACW_Stub_Type
8743 (Find_Dispatching_Type (Subp_Id)));
8745 if Present (Overridden_Operation (Ovr_E)) then
8746 Ovr_E := Overridden_Operation (Ovr_E);
8748 -- Ovr_E is an internal entity built by Derive_Subprogram and
8749 -- we have no direct way to climb to the corresponding parent
8750 -- subprogram but this internal entity has the extra formals
8751 -- (if any) required for the purpose of checking the extra
8752 -- formals of Subp_Id.
8754 else
8755 pragma Assert (not Comes_From_Source (Ovr_E));
8756 end if;
8758 -- Use as our reference entity the ultimate renaming of the
8759 -- overridden subprogram.
8761 elsif Present (Alias (Ovr_E)) then
8762 pragma Assert (No (Overridden_Operation (Ovr_Alias))
8763 or else Overridden_Operation (Ovr_Alias) /= Ovr_E);
8765 Ovr_E := Ovr_Alias;
8766 end if;
8767 end if;
8769 if Present (Ovr_E) and then Has_Reliable_Extra_Formals (Ovr_E) then
8770 return Ovr_E;
8771 else
8772 return Empty;
8773 end if;
8774 end Parent_Subprogram;
8776 -- Local variables
8778 Formal_Type : Entity_Id;
8779 May_Have_Alias : Boolean;
8780 Alias_Formal : Entity_Id := Empty;
8781 Alias_Subp : Entity_Id := Empty;
8782 Parent_Formal : Entity_Id := Empty;
8783 Parent_Subp : Entity_Id := Empty;
8784 Ref_E : Entity_Id;
8786 -- Start of processing for Create_Extra_Formals
8788 begin
8789 pragma Assert (Is_Subprogram_Or_Entry (E)
8790 or else Ekind (E) in E_Subprogram_Type);
8792 -- We never generate extra formals if expansion is not active because we
8793 -- don't need them unless we are generating code.
8795 if not Expander_Active then
8796 return;
8798 -- Enumeration literals have no extra formal; this case occurs when
8799 -- a function renames it.
8801 elsif Ekind (E) = E_Function
8802 and then Ekind (Ultimate_Alias (E)) = E_Enumeration_Literal
8803 then
8804 return;
8806 -- Initialization procedures don't have extra formals
8808 elsif Is_Init_Proc (E) then
8809 return;
8811 -- No need to generate extra formals in thunks whose target has no extra
8812 -- formals, but we can have two of them chained (interface and stack).
8814 elsif Is_Thunk (E) and then No (Extra_Formals (Thunk_Target (E))) then
8815 return;
8817 -- If Extra_Formals were already created, don't do it again. This
8818 -- situation may arise for subprogram types created as part of
8819 -- dispatching calls (see Expand_Dispatching_Call).
8821 elsif Has_Extra_Formals (E) then
8822 return;
8824 -- Extra formals of renamings of generic actual subprograms and
8825 -- renamings of instances of generic subprograms are shared. The
8826 -- check performed on the last formal is required to ensure that
8827 -- this is the renaming built by Analyze_Instance_And_Renamings
8828 -- (which shares all the formals); otherwise this would be wrong.
8830 elsif Ekind (E) in E_Function | E_Procedure
8831 and then Is_Generic_Instance (E)
8832 and then Present (Alias (E))
8833 and then Last_Formal (Ultimate_Alias (E)) = Last_Formal (E)
8834 then
8835 pragma Assert (Is_Generic_Instance (E)
8836 = Is_Generic_Instance (Ultimate_Alias (E)));
8838 Create_Extra_Formals (Ultimate_Alias (E));
8840 -- Share the extra formals
8842 Set_Extra_Formals (E, Extra_Formals (Ultimate_Alias (E)));
8844 if Ekind (E) = E_Function then
8845 Set_Extra_Accessibility_Of_Result (E,
8846 Extra_Accessibility_Of_Result (Ultimate_Alias (E)));
8847 end if;
8849 pragma Assert (Extra_Formals_OK (E));
8850 return;
8851 end if;
8853 -- Locate the last formal; required by Add_Extra_Formal.
8855 Formal := First_Formal (E);
8856 while Present (Formal) loop
8857 Last_Extra := Formal;
8858 Next_Formal (Formal);
8859 end loop;
8861 -- We rely on three entities to ensure consistency of extra formals of
8862 -- entity E:
8864 -- 1. A reference entity (Ref_E). For thunks it is their target
8865 -- primitive since this ensures that they have exactly the
8866 -- same extra formals; otherwise it is the identity.
8868 -- 2. The parent subprogram; only for derived types and references
8869 -- either the overridden subprogram or the internal entity built
8870 -- by Derive_Subprogram that has the extra formals of the parent
8871 -- subprogram; otherwise it is Empty. This entity ensures matching
8872 -- extra formals in derived types.
8874 -- 3. For renamings, their ultimate alias; this ensures taking the
8875 -- same decision in all the renamings (independently of the Ada
8876 -- mode on which they are compiled). For example:
8878 -- pragma Ada_2012;
8879 -- function Id_A (I : access Integer) return access Integer;
8881 -- pragma Ada_2005;
8882 -- function Id_B (I : access Integer) return access Integer
8883 -- renames Id_A;
8885 if Is_Thunk (E) then
8886 Ref_E := Thunk_Target (E);
8887 else
8888 Ref_E := E;
8889 end if;
8891 if Is_Subprogram (Ref_E) then
8892 Parent_Subp := Parent_Subprogram (Ref_E);
8893 end if;
8895 May_Have_Alias :=
8896 (Is_Subprogram (Ref_E) or else Ekind (Ref_E) = E_Subprogram_Type);
8898 -- If the parent subprogram is available then its ultimate alias of
8899 -- Ref_E is not needed since it will not be used to check its extra
8900 -- formals.
8902 if No (Parent_Subp)
8903 and then May_Have_Alias
8904 and then Present (Alias (Ref_E))
8905 and then Has_Reliable_Extra_Formals (Ultimate_Alias (Ref_E))
8906 then
8907 Alias_Subp := Ultimate_Alias (Ref_E);
8908 end if;
8910 -- Cannot add extra formals to subprograms and access types that have
8911 -- foreign convention nor to subprograms overriding primitives that
8912 -- have foreign convention since the foreign language does not know
8913 -- how to handle these extra formals; same for renamings of entities
8914 -- with foreign convention.
8916 if Has_Foreign_Convention (Ref_E)
8917 or else (Present (Alias_Subp)
8918 and then Has_Foreign_Convention (Alias_Subp))
8919 then
8920 return;
8921 end if;
8923 -- If the subprogram is a predefined dispatching subprogram then don't
8924 -- generate any extra constrained or accessibility level formals. In
8925 -- general we suppress these for internal subprograms (by not calling
8926 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8927 -- generated stream attributes do get passed through because extra
8928 -- build-in-place formals are needed in some cases (limited 'Input).
8930 if Is_Predefined_Internal_Operation (E) then
8931 goto Test_For_Func_Result_Extras;
8932 end if;
8934 -- Process the formals relying on the formals of our reference entities:
8935 -- Parent_Formal, Alias_Formal and Formal. Notice that we don't use the
8936 -- formal of Ref_E; we must use the formal of E which is the entity to
8937 -- which we are adding the extra formals.
8939 -- If this is a derived subprogram then the subtypes of the parent
8940 -- subprogram's formal parameters will be used to determine the need
8941 -- for extra formals.
8943 if Present (Parent_Subp) then
8944 Parent_Formal := First_Formal (Parent_Subp);
8946 -- For concurrent types, the controlling argument of a dispatching
8947 -- primitive implementing an interface primitive is implicit. For
8948 -- example:
8950 -- type Iface is protected interface;
8951 -- function Prim
8952 -- (Obj : Iface;
8953 -- Value : Integer) return Natural is abstract;
8955 -- protected type PO is new Iface with
8956 -- function Prim (Value : Integer) return Natural;
8957 -- end PO;
8959 if Convention (Ref_E) = Convention_Protected
8960 and then Is_Abstract_Subprogram (Parent_Subp)
8961 and then Is_Interface (Find_Dispatching_Type (Parent_Subp))
8962 then
8963 Parent_Formal := Next_Formal (Parent_Formal);
8965 -- This is the nondispatching subprogram of a concurrent type
8966 -- that overrides the interface primitive; the expander will
8967 -- create the dispatching primitive (without Convention_Protected)
8968 -- with all the matching formals (see exp_ch9.Build_Wrapper_Specs)
8970 pragma Assert (not Is_Dispatching_Operation (Ref_E));
8971 end if;
8973 -- Ensure that the ultimate alias has all its extra formals
8975 elsif Present (Alias_Subp) then
8976 Create_Extra_Formals (Alias_Subp);
8977 Alias_Formal := First_Formal (Alias_Subp);
8978 end if;
8980 Formal := First_Formal (E);
8981 while Present (Formal) loop
8983 -- Here we establish our priority for deciding on the extra
8984 -- formals: 1) Parent primitive 2) Aliased primitive 3) Identity
8986 if Present (Parent_Formal) then
8987 Formal_Type := Etype (Parent_Formal);
8989 elsif Present (Alias_Formal) then
8990 Formal_Type := Etype (Alias_Formal);
8992 else
8993 Formal_Type := Etype (Formal);
8994 end if;
8996 -- Create extra formal for supporting the attribute 'Constrained.
8997 -- The case of a private type view without discriminants also
8998 -- requires the extra formal if the underlying type has defaulted
8999 -- discriminants.
9001 if Ekind (Formal) /= E_In_Parameter then
9003 -- Do not produce extra formals for Unchecked_Union parameters.
9004 -- Jump directly to the end of the loop.
9006 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
9007 goto Skip_Extra_Formal_Generation;
9008 end if;
9010 if not Has_Discriminants (Formal_Type)
9011 and then Is_Private_Type (Formal_Type)
9012 and then Present (Underlying_Type (Formal_Type))
9013 then
9014 Formal_Type := Underlying_Type (Formal_Type);
9015 end if;
9017 -- Suppress the extra formal if formal's subtype is constrained or
9018 -- indefinite, or we're compiling for Ada 2012 and the underlying
9019 -- type is tagged and limited. In Ada 2012, a limited tagged type
9020 -- can have defaulted discriminants, but 'Constrained is required
9021 -- to return True, so the formal is never needed (see AI05-0214).
9022 -- Note that this ensures consistency of calling sequences for
9023 -- dispatching operations when some types in a class have defaults
9024 -- on discriminants and others do not (and requiring the extra
9025 -- formal would introduce distributed overhead).
9027 -- If the type does not have a completion yet, treat as prior to
9028 -- Ada 2012 for consistency.
9030 if Has_Discriminants (Formal_Type)
9031 and then not Is_Constrained (Formal_Type)
9032 and then Is_Definite_Subtype (Formal_Type)
9033 and then (Ada_Version < Ada_2012
9034 or else No (Underlying_Type (Formal_Type))
9035 or else not
9036 (Is_Limited_Type (Formal_Type)
9037 and then
9038 Is_Tagged_Type
9039 (Underlying_Type (Formal_Type))))
9040 then
9041 Set_Extra_Constrained
9042 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
9043 end if;
9044 end if;
9046 -- Extra formal for supporting accessibility checking
9048 if Needs_Accessibility_Check_Extra (Ref_E, Formal) then
9049 pragma Assert (No (Parent_Formal)
9050 or else Present (Extra_Accessibility (Parent_Formal)));
9051 pragma Assert (No (Alias_Formal)
9052 or else Present (Extra_Accessibility (Alias_Formal)));
9054 Set_Extra_Accessibility
9055 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
9057 else
9058 pragma Assert (No (Parent_Formal)
9059 or else No (Extra_Accessibility (Parent_Formal)));
9060 pragma Assert (No (Alias_Formal)
9061 or else No (Extra_Accessibility (Alias_Formal)));
9062 end if;
9064 -- This label is required when skipping extra formal generation for
9065 -- Unchecked_Union parameters.
9067 <<Skip_Extra_Formal_Generation>>
9069 if Present (Parent_Formal) then
9070 Next_Formal (Parent_Formal);
9071 end if;
9073 if Present (Alias_Formal) then
9074 Next_Formal (Alias_Formal);
9075 end if;
9077 Next_Formal (Formal);
9078 end loop;
9080 <<Test_For_Func_Result_Extras>>
9082 -- Assume the worst case (Ada 2022) to evaluate this extra formal;
9083 -- required to ensure matching of extra formals between subprograms
9084 -- and access-to-subprogram types in projects with mixed Ada dialects.
9086 declare
9087 Save_Ada_Version : constant Ada_Version_Type := Ada_Version;
9089 begin
9090 Ada_Version := Ada_2022;
9092 if Needs_Result_Accessibility_Level (Ref_E) then
9093 pragma Assert (No (Parent_Subp)
9094 or else Needs_Result_Accessibility_Level (Parent_Subp));
9095 pragma Assert (No (Alias_Subp)
9096 or else Needs_Result_Accessibility_Level (Alias_Subp));
9098 Set_Extra_Accessibility_Of_Result (E,
9099 Add_Extra_Formal (E, Standard_Natural, E, "L"));
9101 else
9102 pragma Assert (No (Parent_Subp)
9103 or else not Needs_Result_Accessibility_Level (Parent_Subp));
9104 pragma Assert (No (Alias_Subp)
9105 or else not Needs_Result_Accessibility_Level (Alias_Subp));
9106 end if;
9108 Ada_Version := Save_Ada_Version;
9109 end;
9111 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
9112 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
9114 if (Present (Parent_Subp) and then Has_BIP_Formals (Parent_Subp))
9115 or else
9116 (Present (Alias_Subp) and then Has_BIP_Formals (Alias_Subp))
9117 or else
9118 (Is_Build_In_Place_Function (Ref_E)
9119 and then Has_Reliable_Extra_Formals (Ref_E))
9120 then
9121 declare
9122 Result_Subt : constant Entity_Id := Etype (Ref_E);
9123 Formal_Typ : Entity_Id;
9124 Subp_Decl : Node_Id;
9125 Discard : Entity_Id;
9127 begin
9128 -- In the case of functions with unconstrained result subtypes,
9129 -- add a 4-state formal indicating whether the return object is
9130 -- allocated by the caller (1), or should be allocated by the
9131 -- callee on the secondary stack (2), in the global heap (3), or
9132 -- in a user-defined storage pool (4). For the moment we just use
9133 -- Natural for the type of this formal. Note that this formal
9134 -- isn't usually needed in the case where the result subtype is
9135 -- constrained, but it is needed when the function has a tagged
9136 -- result, because generally such functions can be called in a
9137 -- dispatching context and such calls must be handled like calls
9138 -- to a class-wide function.
9140 if Needs_BIP_Alloc_Form (Ref_E) then
9141 pragma Assert (No (Parent_Subp)
9142 or else Has_BIP_Extra_Formal (Parent_Subp, BIP_Alloc_Form,
9143 Must_Be_Frozen => False));
9144 pragma Assert (No (Alias_Subp)
9145 or else Has_BIP_Extra_Formal (Alias_Subp, BIP_Alloc_Form,
9146 Must_Be_Frozen => False));
9148 Discard :=
9149 Add_Extra_Formal
9150 (E, Standard_Natural,
9151 E, BIP_Formal_Suffix (BIP_Alloc_Form));
9153 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
9154 -- use a user-defined pool. This formal is not added on
9155 -- ZFP as those targets do not support pools.
9157 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
9158 Discard :=
9159 Add_Extra_Formal
9160 (E, RTE (RE_Root_Storage_Pool_Ptr),
9161 E, BIP_Formal_Suffix (BIP_Storage_Pool));
9162 end if;
9164 else
9165 pragma Assert (No (Parent_Subp)
9166 or else not
9167 Has_BIP_Extra_Formal (Parent_Subp, BIP_Alloc_Form,
9168 Must_Be_Frozen => False));
9169 pragma Assert (No (Alias_Subp)
9170 or else not
9171 Has_BIP_Extra_Formal (Alias_Subp, BIP_Alloc_Form,
9172 Must_Be_Frozen => False));
9173 end if;
9175 -- In the case of functions whose result type needs finalization,
9176 -- add an extra formal which represents the finalization master.
9178 if Needs_BIP_Finalization_Master (Ref_E) then
9179 pragma Assert (No (Parent_Subp)
9180 or else Has_BIP_Extra_Formal (Parent_Subp,
9181 Kind => BIP_Finalization_Master,
9182 Must_Be_Frozen => False));
9183 pragma Assert (No (Alias_Subp)
9184 or else Has_BIP_Extra_Formal (Alias_Subp,
9185 Kind => BIP_Finalization_Master,
9186 Must_Be_Frozen => False));
9188 Discard :=
9189 Add_Extra_Formal
9190 (E, RTE (RE_Finalization_Master_Ptr),
9191 E, BIP_Formal_Suffix (BIP_Finalization_Master));
9193 else
9194 pragma Assert (No (Parent_Subp)
9195 or else not
9196 Has_BIP_Extra_Formal (Parent_Subp,
9197 Kind => BIP_Finalization_Master,
9198 Must_Be_Frozen => False));
9199 pragma Assert (No (Alias_Subp)
9200 or else not
9201 Has_BIP_Extra_Formal (Alias_Subp,
9202 Kind => BIP_Finalization_Master,
9203 Must_Be_Frozen => False));
9204 end if;
9206 -- When the result type contains tasks, add two extra formals: the
9207 -- master of the tasks to be created, and the caller's activation
9208 -- chain.
9210 if Needs_BIP_Task_Actuals (Ref_E) then
9211 pragma Assert (No (Parent_Subp)
9212 or else Has_BIP_Extra_Formal (Parent_Subp, BIP_Task_Master,
9213 Must_Be_Frozen => False));
9214 pragma Assert (No (Alias_Subp)
9215 or else Has_BIP_Extra_Formal (Alias_Subp, BIP_Task_Master,
9216 Must_Be_Frozen => False)
9217 or else
9218 (Is_Abstract_Subprogram (Ref_E)
9219 and then Is_Predefined_Dispatching_Operation (Ref_E)
9220 and then Is_Interface
9221 (Find_Dispatching_Type (Alias_Subp))));
9223 Discard :=
9224 Add_Extra_Formal
9225 (E, Standard_Integer,
9226 E, BIP_Formal_Suffix (BIP_Task_Master));
9228 Set_Has_Master_Entity (E);
9230 Discard :=
9231 Add_Extra_Formal
9232 (E, RTE (RE_Activation_Chain_Access),
9233 E, BIP_Formal_Suffix (BIP_Activation_Chain));
9235 else
9236 pragma Assert (No (Parent_Subp)
9237 or else not
9238 Has_BIP_Extra_Formal (Parent_Subp, BIP_Task_Master,
9239 Must_Be_Frozen => False));
9240 pragma Assert (No (Alias_Subp)
9241 or else not
9242 Has_BIP_Extra_Formal (Alias_Subp, BIP_Task_Master,
9243 Must_Be_Frozen => False));
9244 end if;
9246 -- All build-in-place functions get an extra formal that will be
9247 -- passed the address of the return object within the caller.
9249 Formal_Typ :=
9250 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
9252 -- Incomplete_View_From_Limited_With is needed here because
9253 -- gigi gets confused if the designated type is the full view
9254 -- coming from a limited-with'ed package. In the normal case,
9255 -- (no limited with) Incomplete_View_From_Limited_With
9256 -- returns Result_Subt.
9258 Set_Directly_Designated_Type
9259 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
9260 Set_Etype (Formal_Typ, Formal_Typ);
9261 Set_Depends_On_Private
9262 (Formal_Typ, Has_Private_Component (Formal_Typ));
9263 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
9264 Set_Is_Access_Constant (Formal_Typ, False);
9266 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
9267 -- the designated type comes from the limited view (for back-end
9268 -- purposes).
9270 Set_From_Limited_With
9271 (Formal_Typ, From_Limited_With (Result_Subt));
9273 Layout_Type (Formal_Typ);
9275 -- Force the definition of the Itype in case of internal function
9276 -- calls within the same or nested scope.
9278 if Is_Subprogram_Or_Generic_Subprogram (E)
9279 and then not Is_Compilation_Unit (E)
9280 then
9281 Subp_Decl := Parent (E);
9283 -- The insertion point for an Itype reference should be after
9284 -- the unit declaration node of the subprogram. An exception
9285 -- to this are inherited operations from a parent type in which
9286 -- case the derived type acts as their parent.
9288 if Nkind (Subp_Decl) in N_Function_Specification
9289 | N_Procedure_Specification
9290 then
9291 Subp_Decl := Parent (Subp_Decl);
9292 end if;
9294 Build_Itype_Reference (Formal_Typ, Subp_Decl);
9295 end if;
9297 Discard :=
9298 Add_Extra_Formal
9299 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
9300 end;
9301 end if;
9303 -- If this is an instance of a generic, we need to have extra formals
9304 -- for the Alias.
9306 if Is_Generic_Instance (E) and then Present (Alias (E)) then
9307 Set_Extra_Formals (Alias (E), Extra_Formals (E));
9308 end if;
9310 pragma Assert (No (Alias_Subp)
9311 or else Extra_Formals_Match_OK (E, Alias_Subp));
9313 pragma Assert (No (Parent_Subp)
9314 or else Extra_Formals_Match_OK (E, Parent_Subp));
9316 pragma Assert (Extra_Formals_OK (E));
9317 end Create_Extra_Formals;
9319 -----------------------------
9320 -- Enter_Overloaded_Entity --
9321 -----------------------------
9323 procedure Enter_Overloaded_Entity (S : Entity_Id) is
9324 function Matches_Predefined_Op return Boolean;
9325 -- This returns an approximation of whether S matches a predefined
9326 -- operator, based on the operator symbol, and the parameter and result
9327 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
9329 ---------------------------
9330 -- Matches_Predefined_Op --
9331 ---------------------------
9333 function Matches_Predefined_Op return Boolean is
9334 Formal_1 : constant Entity_Id := First_Formal (S);
9335 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
9336 Op : constant Name_Id := Chars (S);
9337 Result_Type : constant Entity_Id := Base_Type (Etype (S));
9338 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
9340 begin
9341 -- Binary operator
9343 if Present (Formal_2) then
9344 declare
9345 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
9347 begin
9348 -- All but "&" and "**" have same-types parameters
9350 case Op is
9351 when Name_Op_Concat
9352 | Name_Op_Expon
9354 null;
9356 when others =>
9357 if Type_1 /= Type_2 then
9358 return False;
9359 end if;
9360 end case;
9362 -- Check parameter and result types
9364 case Op is
9365 when Name_Op_And
9366 | Name_Op_Or
9367 | Name_Op_Xor
9369 return
9370 Is_Boolean_Type (Result_Type)
9371 and then Result_Type = Type_1;
9373 when Name_Op_Mod
9374 | Name_Op_Rem
9376 return
9377 Is_Integer_Type (Result_Type)
9378 and then Result_Type = Type_1;
9380 when Name_Op_Add
9381 | Name_Op_Divide
9382 | Name_Op_Multiply
9383 | Name_Op_Subtract
9385 return
9386 Is_Numeric_Type (Result_Type)
9387 and then Result_Type = Type_1;
9389 when Name_Op_Eq
9390 | Name_Op_Ne
9392 return
9393 Is_Boolean_Type (Result_Type)
9394 and then not Is_Limited_Type (Type_1);
9396 when Name_Op_Ge
9397 | Name_Op_Gt
9398 | Name_Op_Le
9399 | Name_Op_Lt
9401 return
9402 Is_Boolean_Type (Result_Type)
9403 and then (Is_Array_Type (Type_1)
9404 or else Is_Scalar_Type (Type_1));
9406 when Name_Op_Concat =>
9407 return Is_Array_Type (Result_Type);
9409 when Name_Op_Expon =>
9410 return
9411 (Is_Integer_Type (Result_Type)
9412 or else Is_Floating_Point_Type (Result_Type))
9413 and then Result_Type = Type_1
9414 and then Type_2 = Standard_Integer;
9416 when others =>
9417 raise Program_Error;
9418 end case;
9419 end;
9421 -- Unary operator
9423 else
9424 case Op is
9425 when Name_Op_Abs
9426 | Name_Op_Add
9427 | Name_Op_Subtract
9429 return
9430 Is_Numeric_Type (Result_Type)
9431 and then Result_Type = Type_1;
9433 when Name_Op_Not =>
9434 return
9435 Is_Boolean_Type (Result_Type)
9436 and then Result_Type = Type_1;
9438 when others =>
9439 raise Program_Error;
9440 end case;
9441 end if;
9442 end Matches_Predefined_Op;
9444 -- Local variables
9446 E : Entity_Id := Current_Entity_In_Scope (S);
9447 C_E : Entity_Id := Current_Entity (S);
9449 -- Start of processing for Enter_Overloaded_Entity
9451 begin
9452 if Present (E) then
9453 Set_Has_Homonym (E);
9454 Set_Has_Homonym (S);
9455 end if;
9457 Set_Is_Immediately_Visible (S);
9458 Set_Scope (S, Current_Scope);
9460 -- Chain new entity if front of homonym in current scope, so that
9461 -- homonyms are contiguous.
9463 if Present (E) and then E /= C_E then
9464 while Homonym (C_E) /= E loop
9465 C_E := Homonym (C_E);
9466 end loop;
9468 Set_Homonym (C_E, S);
9470 else
9471 E := C_E;
9472 Set_Current_Entity (S);
9473 end if;
9475 Set_Homonym (S, E);
9477 if Is_Inherited_Operation (S) then
9478 Append_Inherited_Subprogram (S);
9479 else
9480 Append_Entity (S, Current_Scope);
9481 end if;
9483 Set_Public_Status (S);
9485 if Debug_Flag_E then
9486 Write_Str ("New overloaded entity chain: ");
9487 Write_Name (Chars (S));
9489 E := S;
9490 while Present (E) loop
9491 Write_Str (" "); Write_Int (Int (E));
9492 E := Homonym (E);
9493 end loop;
9495 Write_Eol;
9496 end if;
9498 -- Generate warning for hiding
9500 if Warn_On_Hiding
9501 and then Comes_From_Source (S)
9502 and then In_Extended_Main_Source_Unit (S)
9503 then
9504 E := S;
9505 loop
9506 E := Homonym (E);
9507 exit when No (E);
9509 -- Warn unless genuine overloading. Do not emit warning on
9510 -- hiding predefined operators in Standard (these are either an
9511 -- artifact of our implicit declarations, or simple noise) but
9512 -- keep warning on a operator defined on a local subtype, because
9513 -- of the real danger that different operators may be applied in
9514 -- various parts of the program.
9516 -- Note that if E and S have the same scope, there is never any
9517 -- hiding. Either the two conflict, and the program is illegal,
9518 -- or S is overriding an implicit inherited subprogram.
9520 if Scope (E) /= Scope (S)
9521 and then (not Is_Overloadable (E)
9522 or else Subtype_Conformant (E, S))
9523 and then (Is_Immediately_Visible (E)
9524 or else Is_Potentially_Use_Visible (S))
9525 then
9526 if Scope (E) = Standard_Standard then
9527 if Nkind (S) = N_Defining_Operator_Symbol
9528 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
9529 Scope (S)
9530 and then Matches_Predefined_Op
9531 then
9532 Error_Msg_N
9533 ("declaration of & hides predefined operator?h?", S);
9534 end if;
9536 -- E not immediately within Standard
9538 else
9539 Error_Msg_Sloc := Sloc (E);
9540 Error_Msg_N ("declaration of & hides one #?h?", S);
9541 end if;
9542 end if;
9543 end loop;
9544 end if;
9545 end Enter_Overloaded_Entity;
9547 ----------------------------
9548 -- Extra_Formals_Match_OK --
9549 ----------------------------
9551 function Extra_Formals_Match_OK
9552 (E : Entity_Id;
9553 Ref_E : Entity_Id) return Boolean is
9554 begin
9555 pragma Assert (Is_Subprogram (E));
9557 -- Cases where no check can be performed:
9558 -- 1) When expansion is not active (since we never generate extra
9559 -- formals if expansion is not active because we don't need them
9560 -- unless we are generating code).
9561 -- 2) On abstract predefined dispatching operations of Root_Controlled
9562 -- and predefined stream operations not emitted by the frontend.
9563 -- 3) On renamings of abstract predefined dispatching operations of
9564 -- interface types (since limitedness is not inherited in such
9565 -- case (AI-419)).
9566 -- 4) The controlling formal of the nondispatching subprogram of
9567 -- a concurrent type that overrides an interface primitive is
9568 -- implicit and hence we cannot check here if all its extra
9569 -- formals match; the expander will create the dispatching
9570 -- primitive (without Convention_Protected) with the matching
9571 -- formals (see exp_ch9.Build_Wrapper_Specs) which will be
9572 -- checked later.
9574 if Debug_Flag_Underscore_XX
9575 or else not Expander_Active
9576 or else
9577 (Is_Predefined_Dispatching_Operation (E)
9578 and then (not Has_Reliable_Extra_Formals (E)
9579 or else not Has_Reliable_Extra_Formals (Ref_E)))
9580 or else
9581 (Is_Predefined_Dispatching_Operation (E)
9582 and then Is_Abstract_Subprogram (E)
9583 and then Is_Interface (Find_Dispatching_Type (Ref_E)))
9584 then
9585 return True;
9587 elsif Convention (E) = Convention_Protected
9588 and then not Is_Dispatching_Operation (E)
9589 and then Is_Abstract_Subprogram (Ref_E)
9590 and then Is_Interface (Find_Dispatching_Type (Ref_E))
9591 then
9592 return True;
9593 end if;
9595 -- Perform the checks
9597 if No (Extra_Formals (E)) then
9598 return No (Extra_Formals (Ref_E));
9599 end if;
9601 if Ekind (E) in E_Function | E_Subprogram_Type
9602 and then Present (Extra_Accessibility_Of_Result (E))
9603 /= Present (Extra_Accessibility_Of_Result (Ref_E))
9604 then
9605 return False;
9606 end if;
9608 declare
9609 Formal_1 : Entity_Id := Extra_Formals (E);
9610 Formal_2 : Entity_Id := Extra_Formals (Ref_E);
9612 begin
9613 while Present (Formal_1) and then Present (Formal_2) loop
9614 if Has_Suffix (Formal_1, 'L') then
9615 if not Has_Suffix (Formal_2, 'L') then
9616 return False;
9617 end if;
9619 elsif Has_Suffix (Formal_1, 'O') then
9620 if not Has_Suffix (Formal_2, 'O') then
9621 return False;
9622 end if;
9624 elsif BIP_Suffix_Kind (Formal_1) /= BIP_Suffix_Kind (Formal_2) then
9625 return False;
9626 end if;
9628 Formal_1 := Next_Formal_With_Extras (Formal_1);
9629 Formal_2 := Next_Formal_With_Extras (Formal_2);
9630 end loop;
9632 return No (Formal_1) and then No (Formal_2);
9633 end;
9634 end Extra_Formals_Match_OK;
9636 ----------------------
9637 -- Extra_Formals_OK --
9638 ----------------------
9640 function Extra_Formals_OK (E : Entity_Id) return Boolean is
9641 Last_Formal : Entity_Id := Empty;
9642 Formal : Entity_Id;
9643 Has_Extra_Formals : Boolean := False;
9645 begin
9646 -- No check required if explicitly disabled
9648 if Debug_Flag_Underscore_XX then
9649 return True;
9651 -- No check required if expansion is disabled because extra
9652 -- formals are only generated when we are generating code.
9653 -- See Create_Extra_Formals.
9655 elsif not Expander_Active then
9656 return True;
9657 end if;
9659 -- Check attribute Extra_Formal: If available, it must be set only
9660 -- on the last formal of E.
9662 Formal := First_Formal (E);
9663 while Present (Formal) loop
9664 if Present (Extra_Formal (Formal)) then
9665 if Has_Extra_Formals then
9666 return False;
9667 end if;
9669 Has_Extra_Formals := True;
9670 end if;
9672 Last_Formal := Formal;
9673 Next_Formal (Formal);
9674 end loop;
9676 -- Check attribute Extra_Accessibility_Of_Result
9678 if Ekind (E) in E_Function | E_Subprogram_Type
9679 and then Needs_Result_Accessibility_Level (E)
9680 and then No (Extra_Accessibility_Of_Result (E))
9681 then
9682 return False;
9683 end if;
9685 -- Check attribute Extra_Formals: If E has extra formals, then this
9686 -- attribute must point to the first extra formal of E.
9688 if Has_Extra_Formals then
9689 return Present (Extra_Formals (E))
9690 and then Present (Extra_Formal (Last_Formal))
9691 and then Extra_Formal (Last_Formal) = Extra_Formals (E);
9693 -- When E has no formals, the first extra formal is available through
9694 -- the Extra_Formals attribute.
9696 elsif Present (Extra_Formals (E)) then
9697 return No (First_Formal (E));
9699 else
9700 return True;
9701 end if;
9702 end Extra_Formals_OK;
9704 -----------------------------
9705 -- Find_Corresponding_Spec --
9706 -----------------------------
9708 function Find_Corresponding_Spec
9709 (N : Node_Id;
9710 Post_Error : Boolean := True) return Entity_Id
9712 Spec : constant Node_Id := Specification (N);
9713 Designator : constant Entity_Id := Defining_Entity (Spec);
9715 E : Entity_Id;
9717 function Different_Generic_Profile (E : Entity_Id) return Boolean;
9718 -- Even if fully conformant, a body may depend on a generic actual when
9719 -- the spec does not, or vice versa, in which case they were distinct
9720 -- entities in the generic.
9722 -------------------------------
9723 -- Different_Generic_Profile --
9724 -------------------------------
9726 function Different_Generic_Profile (E : Entity_Id) return Boolean is
9727 F1, F2 : Entity_Id;
9729 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
9730 -- Check that the types of corresponding formals have the same
9731 -- generic actual if any. We have to account for subtypes of a
9732 -- generic formal, declared between a spec and a body, which may
9733 -- appear distinct in an instance but matched in the generic, and
9734 -- the subtype may be used either in the spec or the body of the
9735 -- subprogram being checked.
9737 -------------------------
9738 -- Same_Generic_Actual --
9739 -------------------------
9741 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
9743 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
9744 -- Predicate to check whether S1 is a subtype of S2 in the source
9745 -- of the instance.
9747 -------------------------
9748 -- Is_Declared_Subtype --
9749 -------------------------
9751 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
9752 begin
9753 return Comes_From_Source (Parent (S1))
9754 and then Nkind (Parent (S1)) = N_Subtype_Declaration
9755 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
9756 and then Entity (Subtype_Indication (Parent (S1))) = S2;
9757 end Is_Declared_Subtype;
9759 -- Start of processing for Same_Generic_Actual
9761 begin
9762 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
9763 or else Is_Declared_Subtype (T1, T2)
9764 or else Is_Declared_Subtype (T2, T1);
9765 end Same_Generic_Actual;
9767 -- Start of processing for Different_Generic_Profile
9769 begin
9770 if not In_Instance then
9771 return False;
9773 elsif Ekind (E) = E_Function
9774 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
9775 then
9776 return True;
9777 end if;
9779 F1 := First_Formal (Designator);
9780 F2 := First_Formal (E);
9781 while Present (F1) loop
9782 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
9783 return True;
9784 end if;
9786 Next_Formal (F1);
9787 Next_Formal (F2);
9788 end loop;
9790 return False;
9791 end Different_Generic_Profile;
9793 -- Start of processing for Find_Corresponding_Spec
9795 begin
9796 E := Current_Entity (Designator);
9797 while Present (E) loop
9799 -- We are looking for a matching spec. It must have the same scope,
9800 -- and the same name, and either be type conformant, or be the case
9801 -- of a library procedure spec and its body (which belong to one
9802 -- another regardless of whether they are type conformant or not).
9804 if Scope (E) = Current_Scope then
9805 if Current_Scope = Standard_Standard
9806 or else (Ekind (E) = Ekind (Designator)
9807 and then Type_Conformant (E, Designator))
9808 then
9809 -- Within an instantiation, we know that spec and body are
9810 -- subtype conformant, because they were subtype conformant in
9811 -- the generic. We choose the subtype-conformant entity here as
9812 -- well, to resolve spurious ambiguities in the instance that
9813 -- were not present in the generic (i.e. when two different
9814 -- types are given the same actual). If we are looking for a
9815 -- spec to match a body, full conformance is expected.
9817 if In_Instance then
9819 -- Inherit the convention and "ghostness" of the matching
9820 -- spec to ensure proper full and subtype conformance.
9822 Set_Convention (Designator, Convention (E));
9824 -- Skip past subprogram bodies and subprogram renamings that
9825 -- may appear to have a matching spec, but that aren't fully
9826 -- conformant with it. That can occur in cases where an
9827 -- actual type causes unrelated homographs in the instance.
9829 if Nkind (N) in N_Subprogram_Body
9830 | N_Subprogram_Renaming_Declaration
9831 and then Present (Homonym (E))
9832 and then not Fully_Conformant (Designator, E)
9833 then
9834 goto Next_Entity;
9836 elsif not Subtype_Conformant (Designator, E) then
9837 goto Next_Entity;
9839 elsif Different_Generic_Profile (E) then
9840 goto Next_Entity;
9841 end if;
9842 end if;
9844 -- Ada 2012 (AI05-0165): For internally generated bodies of
9845 -- null procedures locate the internally generated spec. We
9846 -- enforce mode conformance since a tagged type may inherit
9847 -- from interfaces several null primitives which differ only
9848 -- in the mode of the formals.
9850 if not (Comes_From_Source (E))
9851 and then Is_Null_Procedure (E)
9852 and then not Mode_Conformant (Designator, E)
9853 then
9854 null;
9856 -- For null procedures coming from source that are completions,
9857 -- analysis of the generated body will establish the link.
9859 elsif Comes_From_Source (E)
9860 and then Nkind (Spec) = N_Procedure_Specification
9861 and then Null_Present (Spec)
9862 then
9863 return E;
9865 -- Expression functions can be completions, but cannot be
9866 -- completed by an explicit body.
9868 elsif Comes_From_Source (E)
9869 and then Comes_From_Source (N)
9870 and then Nkind (N) = N_Subprogram_Body
9871 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
9872 N_Expression_Function
9873 then
9874 Error_Msg_Sloc := Sloc (E);
9875 Error_Msg_N ("body conflicts with expression function#", N);
9876 return Empty;
9878 elsif not Has_Completion (E) then
9879 if Nkind (N) /= N_Subprogram_Body_Stub then
9880 Set_Corresponding_Spec (N, E);
9881 end if;
9883 Set_Has_Completion (E);
9884 return E;
9886 elsif Nkind (Parent (N)) = N_Subunit then
9888 -- If this is the proper body of a subunit, the completion
9889 -- flag is set when analyzing the stub.
9891 return E;
9893 -- If E is an internal function with a controlling result that
9894 -- was created for an operation inherited by a null extension,
9895 -- it may be overridden by a body without a previous spec (one
9896 -- more reason why these should be shunned). In that case we
9897 -- remove the generated body if present, because the current
9898 -- one is the explicit overriding.
9900 elsif Ekind (E) = E_Function
9901 and then Ada_Version >= Ada_2005
9902 and then not Comes_From_Source (E)
9903 and then Has_Controlling_Result (E)
9904 and then (not Is_Class_Wide_Type (Etype (E))
9905 and then Is_Null_Extension (Etype (E)))
9906 and then Comes_From_Source (Spec)
9907 then
9908 Set_Has_Completion (E, False);
9910 if Expander_Active
9911 and then Nkind (Parent (E)) = N_Function_Specification
9912 then
9913 Remove
9914 (Unit_Declaration_Node
9915 (Corresponding_Body (Unit_Declaration_Node (E))));
9917 return E;
9919 -- If expansion is disabled, or if the wrapper function has
9920 -- not been generated yet, this a late body overriding an
9921 -- inherited operation, or it is an overriding by some other
9922 -- declaration before the controlling result is frozen. In
9923 -- either case this is a declaration of a new entity.
9925 else
9926 return Empty;
9927 end if;
9929 -- If the body already exists, then this is an error unless
9930 -- the previous declaration is the implicit declaration of a
9931 -- derived subprogram. It is also legal for an instance to
9932 -- contain type conformant overloadable declarations (but the
9933 -- generic declaration may not), per 8.3(26/2).
9935 elsif No (Alias (E))
9936 and then not Is_Intrinsic_Subprogram (E)
9937 and then not In_Instance
9938 and then Post_Error
9939 then
9940 Error_Msg_Sloc := Sloc (E);
9942 if Is_Imported (E) then
9943 Error_Msg_NE
9944 ("body not allowed for imported subprogram & declared#",
9945 N, E);
9946 else
9947 Error_Msg_NE ("duplicate body for & declared#", N, E);
9948 end if;
9949 end if;
9951 -- Child units cannot be overloaded, so a conformance mismatch
9952 -- between body and a previous spec is an error.
9954 elsif Is_Child_Unit (E)
9955 and then
9956 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
9957 and then
9958 Nkind (Parent (Unit_Declaration_Node (Designator))) =
9959 N_Compilation_Unit
9960 and then Post_Error
9961 then
9962 Error_Msg_N
9963 ("body of child unit does not match previous declaration", N);
9964 end if;
9965 end if;
9967 <<Next_Entity>>
9968 E := Homonym (E);
9969 end loop;
9971 -- On exit, we know that no previous declaration of subprogram exists
9973 return Empty;
9974 end Find_Corresponding_Spec;
9976 ----------------------
9977 -- Fully_Conformant --
9978 ----------------------
9980 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9981 Result : Boolean;
9982 begin
9983 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
9984 return Result;
9985 end Fully_Conformant;
9987 ----------------------------------
9988 -- Fully_Conformant_Expressions --
9989 ----------------------------------
9991 function Fully_Conformant_Expressions
9992 (Given_E1 : Node_Id;
9993 Given_E2 : Node_Id;
9994 Report : Boolean := False) return Boolean
9996 E1 : constant Node_Id := Original_Node (Given_E1);
9997 E2 : constant Node_Id := Original_Node (Given_E2);
9998 -- We always test conformance on original nodes, since it is possible
9999 -- for analysis and/or expansion to make things look as though they
10000 -- conform when they do not, e.g. by converting 1+2 into 3.
10002 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
10003 -- Convenience function to abbreviate recursive calls to
10004 -- Fully_Conformant_Expressions without having to pass Report.
10006 function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
10007 -- Compare elements of two lists for conformance. Elements have to be
10008 -- conformant, and actuals inserted as default parameters do not match
10009 -- explicit actuals with the same value.
10011 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
10012 -- Compare an operator node with a function call
10014 ---------
10015 -- FCE --
10016 ---------
10018 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
10019 begin
10020 return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
10021 end FCE;
10023 ---------
10024 -- FCL --
10025 ---------
10027 function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
10028 N1 : Node_Id;
10029 N2 : Node_Id;
10031 begin
10032 N1 := First (L1);
10033 N2 := First (L2);
10035 -- Compare two lists, skipping rewrite insertions (we want to compare
10036 -- the original trees, not the expanded versions).
10038 loop
10039 if Is_Rewrite_Insertion (N1) then
10040 Next (N1);
10041 elsif Is_Rewrite_Insertion (N2) then
10042 Next (N2);
10043 elsif No (N1) then
10044 return No (N2);
10045 elsif No (N2) then
10046 return False;
10047 elsif not FCE (N1, N2) then
10048 return False;
10049 else
10050 Next (N1);
10051 Next (N2);
10052 end if;
10053 end loop;
10054 end FCL;
10056 ---------
10057 -- FCO --
10058 ---------
10060 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
10061 Actuals : constant List_Id := Parameter_Associations (Call_Node);
10062 Act : Node_Id;
10064 begin
10065 if No (Actuals)
10066 or else Entity (Op_Node) /= Entity (Name (Call_Node))
10067 then
10068 return False;
10070 else
10071 Act := First (Actuals);
10073 if Nkind (Op_Node) in N_Binary_Op then
10074 if not FCE (Left_Opnd (Op_Node), Act) then
10075 return False;
10076 end if;
10078 Next (Act);
10079 end if;
10081 return Present (Act)
10082 and then FCE (Right_Opnd (Op_Node), Act)
10083 and then No (Next (Act));
10084 end if;
10085 end FCO;
10087 function User_Defined_Numeric_Literal_Mismatch return Boolean;
10088 -- Usually literals with the same value like 12345 and 12_345
10089 -- or 123.0 and 123.00 conform, but not if they are
10090 -- user-defined literals.
10092 -------------------------------------------
10093 -- User_Defined_Numeric_Literal_Mismatch --
10094 -------------------------------------------
10096 function User_Defined_Numeric_Literal_Mismatch return Boolean is
10097 E1_Is_User_Defined : constant Boolean :=
10098 Nkind (Given_E1) not in N_Integer_Literal | N_Real_Literal;
10099 E2_Is_User_Defined : constant Boolean :=
10100 Nkind (Given_E2) not in N_Integer_Literal | N_Real_Literal;
10102 begin
10103 pragma Assert (E1_Is_User_Defined = E2_Is_User_Defined);
10105 return E1_Is_User_Defined and then
10106 not String_Equal (String_From_Numeric_Literal (E1),
10107 String_From_Numeric_Literal (E2));
10108 end User_Defined_Numeric_Literal_Mismatch;
10110 -- Local variables
10112 Result : Boolean;
10114 -- Start of processing for Fully_Conformant_Expressions
10116 begin
10117 Result := True;
10119 -- Nonconformant if paren count does not match. Note: if some idiot
10120 -- complains that we don't do this right for more than 3 levels of
10121 -- parentheses, they will be treated with the respect they deserve.
10123 if Paren_Count (E1) /= Paren_Count (E2) then
10124 return False;
10126 -- If same entities are referenced, then they are conformant even if
10127 -- they have different forms (RM 8.3.1(19-20)).
10129 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
10130 if Present (Entity (E1)) then
10131 Result := Entity (E1) = Entity (E2)
10133 -- One may be a discriminant that has been replaced by the
10134 -- corresponding discriminal.
10136 or else
10137 (Chars (Entity (E1)) = Chars (Entity (E2))
10138 and then Ekind (Entity (E1)) = E_Discriminant
10139 and then Ekind (Entity (E2)) = E_In_Parameter)
10141 -- The discriminant of a protected type is transformed into
10142 -- a local constant and then into a parameter of a protected
10143 -- operation.
10145 or else
10146 (Ekind (Entity (E1)) = E_Constant
10147 and then Ekind (Entity (E2)) = E_In_Parameter
10148 and then Present (Discriminal_Link (Entity (E1)))
10149 and then Discriminal_Link (Entity (E1)) =
10150 Discriminal_Link (Entity (E2)))
10152 -- AI12-050: The entities of quantified expressions match if they
10153 -- have the same identifier, even if they may be distinct nodes.
10155 or else
10156 (Chars (Entity (E1)) = Chars (Entity (E2))
10157 and then Is_Entity_Of_Quantified_Expression (Entity (E1))
10158 and then Is_Entity_Of_Quantified_Expression (Entity (E2)))
10160 -- A call to an instantiation of Unchecked_Conversion is
10161 -- rewritten with the name of the generated function created for
10162 -- the instance, and this must be special-cased.
10164 or else
10165 (Ekind (Entity (E1)) = E_Function
10166 and then Is_Intrinsic_Subprogram (Entity (E1))
10167 and then Is_Generic_Instance (Entity (E1))
10168 and then Entity (E2) = Alias (Entity (E1)));
10169 if Report and not Result then
10170 Error_Msg_Sloc :=
10171 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
10172 Error_Msg_NE
10173 ("meaning of& differs because of declaration#", E1, E2);
10174 end if;
10176 return Result;
10178 elsif Nkind (E1) = N_Expanded_Name
10179 and then Nkind (E2) = N_Expanded_Name
10180 and then Nkind (Selector_Name (E1)) = N_Character_Literal
10181 and then Nkind (Selector_Name (E2)) = N_Character_Literal
10182 then
10183 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
10185 else
10186 -- Identifiers in component associations don't always have
10187 -- entities, but their names must conform.
10189 return Nkind (E1) = N_Identifier
10190 and then Nkind (E2) = N_Identifier
10191 and then Chars (E1) = Chars (E2);
10192 end if;
10194 elsif Nkind (E1) = N_Character_Literal
10195 and then Nkind (E2) = N_Expanded_Name
10196 then
10197 return Nkind (Selector_Name (E2)) = N_Character_Literal
10198 and then Chars (E1) = Chars (Selector_Name (E2));
10200 elsif Nkind (E2) = N_Character_Literal
10201 and then Nkind (E1) = N_Expanded_Name
10202 then
10203 return Nkind (Selector_Name (E1)) = N_Character_Literal
10204 and then Chars (E2) = Chars (Selector_Name (E1));
10206 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
10207 return FCO (E1, E2);
10209 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
10210 return FCO (E2, E1);
10212 -- Otherwise we must have the same syntactic entity
10214 elsif Nkind (E1) /= Nkind (E2) then
10215 return False;
10217 -- At this point, we specialize by node type
10219 else
10220 case Nkind (E1) is
10221 when N_Aggregate =>
10222 return
10223 FCL (Expressions (E1), Expressions (E2))
10224 and then
10225 FCL (Component_Associations (E1),
10226 Component_Associations (E2));
10228 when N_Allocator =>
10229 if Nkind (Expression (E1)) = N_Qualified_Expression
10230 or else
10231 Nkind (Expression (E2)) = N_Qualified_Expression
10232 then
10233 return FCE (Expression (E1), Expression (E2));
10235 -- Check that the subtype marks and any constraints
10236 -- are conformant
10238 else
10239 declare
10240 Indic1 : constant Node_Id := Expression (E1);
10241 Indic2 : constant Node_Id := Expression (E2);
10242 Elt1 : Node_Id;
10243 Elt2 : Node_Id;
10245 begin
10246 if Nkind (Indic1) /= N_Subtype_Indication then
10247 return
10248 Nkind (Indic2) /= N_Subtype_Indication
10249 and then Entity (Indic1) = Entity (Indic2);
10251 elsif Nkind (Indic2) /= N_Subtype_Indication then
10252 return
10253 Nkind (Indic1) /= N_Subtype_Indication
10254 and then Entity (Indic1) = Entity (Indic2);
10256 else
10257 if Entity (Subtype_Mark (Indic1)) /=
10258 Entity (Subtype_Mark (Indic2))
10259 then
10260 return False;
10261 end if;
10263 Elt1 := First (Constraints (Constraint (Indic1)));
10264 Elt2 := First (Constraints (Constraint (Indic2)));
10265 while Present (Elt1) and then Present (Elt2) loop
10266 if not FCE (Elt1, Elt2) then
10267 return False;
10268 end if;
10270 Next (Elt1);
10271 Next (Elt2);
10272 end loop;
10274 return True;
10275 end if;
10276 end;
10277 end if;
10279 when N_Attribute_Reference =>
10280 return
10281 Attribute_Name (E1) = Attribute_Name (E2)
10282 and then FCL (Expressions (E1), Expressions (E2));
10284 when N_Binary_Op =>
10285 return
10286 Entity (E1) = Entity (E2)
10287 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
10288 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
10290 when N_Membership_Test
10291 | N_Short_Circuit
10293 return
10294 FCE (Left_Opnd (E1), Left_Opnd (E2))
10295 and then
10296 FCE (Right_Opnd (E1), Right_Opnd (E2));
10298 when N_Case_Expression =>
10299 declare
10300 Alt1 : Node_Id;
10301 Alt2 : Node_Id;
10303 begin
10304 if not FCE (Expression (E1), Expression (E2)) then
10305 return False;
10307 else
10308 Alt1 := First (Alternatives (E1));
10309 Alt2 := First (Alternatives (E2));
10310 loop
10311 if Present (Alt1) /= Present (Alt2) then
10312 return False;
10313 elsif No (Alt1) then
10314 return True;
10315 end if;
10317 if not FCE (Expression (Alt1), Expression (Alt2))
10318 or else not FCL (Discrete_Choices (Alt1),
10319 Discrete_Choices (Alt2))
10320 then
10321 return False;
10322 end if;
10324 Next (Alt1);
10325 Next (Alt2);
10326 end loop;
10327 end if;
10328 end;
10330 when N_Character_Literal =>
10331 return
10332 Char_Literal_Value (E1) = Char_Literal_Value (E2);
10334 when N_Component_Association =>
10335 return
10336 FCL (Choices (E1), Choices (E2))
10337 and then
10338 FCE (Expression (E1), Expression (E2));
10340 when N_Explicit_Dereference =>
10341 return
10342 FCE (Prefix (E1), Prefix (E2));
10344 when N_Extension_Aggregate =>
10345 return
10346 FCL (Expressions (E1), Expressions (E2))
10347 and then Null_Record_Present (E1) =
10348 Null_Record_Present (E2)
10349 and then FCL (Component_Associations (E1),
10350 Component_Associations (E2));
10352 when N_Function_Call =>
10353 return
10354 FCE (Name (E1), Name (E2))
10355 and then
10356 FCL (Parameter_Associations (E1),
10357 Parameter_Associations (E2));
10359 when N_If_Expression =>
10360 return
10361 FCL (Expressions (E1), Expressions (E2));
10363 when N_Indexed_Component =>
10364 return
10365 FCE (Prefix (E1), Prefix (E2))
10366 and then
10367 FCL (Expressions (E1), Expressions (E2));
10369 when N_Integer_Literal =>
10370 return Intval (E1) = Intval (E2)
10371 and then not User_Defined_Numeric_Literal_Mismatch;
10373 when N_Null =>
10374 return True;
10376 when N_Operator_Symbol =>
10377 return
10378 Chars (E1) = Chars (E2);
10380 when N_Others_Choice =>
10381 return True;
10383 when N_Parameter_Association =>
10384 return
10385 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
10386 and then FCE (Explicit_Actual_Parameter (E1),
10387 Explicit_Actual_Parameter (E2));
10389 when N_Qualified_Expression
10390 | N_Type_Conversion
10391 | N_Unchecked_Type_Conversion
10393 return
10394 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
10395 and then
10396 FCE (Expression (E1), Expression (E2));
10398 when N_Quantified_Expression =>
10399 if not FCE (Condition (E1), Condition (E2)) then
10400 return False;
10401 end if;
10403 if Present (Loop_Parameter_Specification (E1))
10404 and then Present (Loop_Parameter_Specification (E2))
10405 then
10406 declare
10407 L1 : constant Node_Id :=
10408 Loop_Parameter_Specification (E1);
10409 L2 : constant Node_Id :=
10410 Loop_Parameter_Specification (E2);
10412 begin
10413 return
10414 Reverse_Present (L1) = Reverse_Present (L2)
10415 and then
10416 FCE (Defining_Identifier (L1),
10417 Defining_Identifier (L2))
10418 and then
10419 FCE (Discrete_Subtype_Definition (L1),
10420 Discrete_Subtype_Definition (L2));
10421 end;
10423 elsif Present (Iterator_Specification (E1))
10424 and then Present (Iterator_Specification (E2))
10425 then
10426 declare
10427 I1 : constant Node_Id := Iterator_Specification (E1);
10428 I2 : constant Node_Id := Iterator_Specification (E2);
10430 begin
10431 return
10432 FCE (Defining_Identifier (I1),
10433 Defining_Identifier (I2))
10434 and then
10435 Of_Present (I1) = Of_Present (I2)
10436 and then
10437 Reverse_Present (I1) = Reverse_Present (I2)
10438 and then FCE (Name (I1), Name (I2))
10439 and then FCE (Subtype_Indication (I1),
10440 Subtype_Indication (I2));
10441 end;
10443 -- The quantified expressions used different specifications to
10444 -- walk their respective ranges.
10446 else
10447 return False;
10448 end if;
10450 when N_Range =>
10451 return
10452 FCE (Low_Bound (E1), Low_Bound (E2))
10453 and then
10454 FCE (High_Bound (E1), High_Bound (E2));
10456 when N_Real_Literal =>
10457 return Realval (E1) = Realval (E2)
10458 and then not User_Defined_Numeric_Literal_Mismatch;
10460 when N_Selected_Component =>
10461 return
10462 FCE (Prefix (E1), Prefix (E2))
10463 and then
10464 FCE (Selector_Name (E1), Selector_Name (E2));
10466 when N_Slice =>
10467 return
10468 FCE (Prefix (E1), Prefix (E2))
10469 and then
10470 FCE (Discrete_Range (E1), Discrete_Range (E2));
10472 when N_String_Literal =>
10473 declare
10474 S1 : constant String_Id := Strval (E1);
10475 S2 : constant String_Id := Strval (E2);
10476 L1 : constant Nat := String_Length (S1);
10477 L2 : constant Nat := String_Length (S2);
10479 begin
10480 if L1 /= L2 then
10481 return False;
10483 else
10484 for J in 1 .. L1 loop
10485 if Get_String_Char (S1, J) /=
10486 Get_String_Char (S2, J)
10487 then
10488 return False;
10489 end if;
10490 end loop;
10492 return True;
10493 end if;
10494 end;
10496 when N_Unary_Op =>
10497 return
10498 Entity (E1) = Entity (E2)
10499 and then
10500 FCE (Right_Opnd (E1), Right_Opnd (E2));
10502 -- All other node types cannot appear in this context. Strictly
10503 -- we should raise a fatal internal error. Instead we just ignore
10504 -- the nodes. This means that if anyone makes a mistake in the
10505 -- expander and mucks an expression tree irretrievably, the result
10506 -- will be a failure to detect a (probably very obscure) case
10507 -- of non-conformance, which is better than bombing on some
10508 -- case where two expressions do in fact conform.
10510 when others =>
10511 return True;
10512 end case;
10513 end if;
10514 end Fully_Conformant_Expressions;
10516 ----------------------------------------
10517 -- Fully_Conformant_Discrete_Subtypes --
10518 ----------------------------------------
10520 function Fully_Conformant_Discrete_Subtypes
10521 (Given_S1 : Node_Id;
10522 Given_S2 : Node_Id) return Boolean
10524 S1 : constant Node_Id := Original_Node (Given_S1);
10525 S2 : constant Node_Id := Original_Node (Given_S2);
10527 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
10528 -- Special-case for a bound given by a discriminant, which in the body
10529 -- is replaced with the discriminal of the enclosing type.
10531 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
10532 -- Check both bounds
10534 -----------------------
10535 -- Conforming_Bounds --
10536 -----------------------
10538 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
10539 begin
10540 if Is_Entity_Name (B1)
10541 and then Is_Entity_Name (B2)
10542 and then Ekind (Entity (B1)) = E_Discriminant
10543 then
10544 return Chars (B1) = Chars (B2);
10546 else
10547 return Fully_Conformant_Expressions (B1, B2);
10548 end if;
10549 end Conforming_Bounds;
10551 -----------------------
10552 -- Conforming_Ranges --
10553 -----------------------
10555 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
10556 begin
10557 return
10558 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
10559 and then
10560 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
10561 end Conforming_Ranges;
10563 -- Start of processing for Fully_Conformant_Discrete_Subtypes
10565 begin
10566 if Nkind (S1) /= Nkind (S2) then
10567 return False;
10569 elsif Is_Entity_Name (S1) then
10570 return Entity (S1) = Entity (S2);
10572 elsif Nkind (S1) = N_Range then
10573 return Conforming_Ranges (S1, S2);
10575 elsif Nkind (S1) = N_Subtype_Indication then
10576 return
10577 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
10578 and then
10579 Conforming_Ranges
10580 (Range_Expression (Constraint (S1)),
10581 Range_Expression (Constraint (S2)));
10582 else
10583 return True;
10584 end if;
10585 end Fully_Conformant_Discrete_Subtypes;
10587 ---------------------
10588 -- Has_BIP_Formals --
10589 ---------------------
10591 function Has_BIP_Formals (E : Entity_Id) return Boolean is
10592 Formal : Entity_Id := First_Formal_With_Extras (E);
10594 begin
10595 while Present (Formal) loop
10596 if Is_Build_In_Place_Entity (Formal) then
10597 return True;
10598 end if;
10600 Next_Formal_With_Extras (Formal);
10601 end loop;
10603 return False;
10604 end Has_BIP_Formals;
10606 --------------------------------
10607 -- Has_Reliable_Extra_Formals --
10608 --------------------------------
10610 function Has_Reliable_Extra_Formals (E : Entity_Id) return Boolean is
10611 Alias_E : Entity_Id;
10613 begin
10614 -- Extra formals are not added if expansion is not active (and hence if
10615 -- available they are not reliable for extra formals check).
10617 if not Expander_Active then
10618 return False;
10620 -- Currently the unique cases where extra formals are not reliable
10621 -- are associated with predefined dispatching operations; otherwise
10622 -- they are properly added when required.
10624 elsif not Is_Predefined_Dispatching_Operation (E) then
10625 return True;
10626 end if;
10628 Alias_E := Ultimate_Alias (E);
10630 -- Abstract predefined primitives of Root_Controlled don't have
10631 -- extra formals; this is required to build the runtime.
10633 if Ekind (Alias_E) = E_Function
10634 and then Is_Abstract_Subprogram (Alias_E)
10635 and then Is_RTE (Underlying_Type (Etype (Alias_E)),
10636 RE_Root_Controlled)
10637 then
10638 return False;
10640 -- Predefined stream dispatching operations that are not emitted by
10641 -- the frontend; they have a renaming of the corresponding primitive
10642 -- of their parent type and hence they don't have extra formals.
10644 else
10645 declare
10646 Typ : constant Entity_Id :=
10647 Underlying_Type (Find_Dispatching_Type (Alias_E));
10649 begin
10650 if (Get_TSS_Name (E) = TSS_Stream_Input
10651 and then not Stream_Operation_OK (Typ, TSS_Stream_Input))
10652 or else
10653 (Get_TSS_Name (E) = TSS_Stream_Output
10654 and then not Stream_Operation_OK (Typ, TSS_Stream_Output))
10655 or else
10656 (Get_TSS_Name (E) = TSS_Stream_Read
10657 and then not Stream_Operation_OK (Typ, TSS_Stream_Read))
10658 or else
10659 (Get_TSS_Name (E) = TSS_Stream_Write
10660 and then not Stream_Operation_OK (Typ, TSS_Stream_Write))
10661 then
10662 return False;
10663 end if;
10664 end;
10665 end if;
10667 return True;
10668 end Has_Reliable_Extra_Formals;
10670 --------------------
10671 -- Install_Entity --
10672 --------------------
10674 procedure Install_Entity (E : Entity_Id) is
10675 Prev : constant Entity_Id := Current_Entity (E);
10676 begin
10677 Set_Is_Immediately_Visible (E);
10678 Set_Current_Entity (E);
10679 pragma Assert (Prev /= E);
10680 Set_Homonym (E, Prev);
10681 end Install_Entity;
10683 ---------------------
10684 -- Install_Formals --
10685 ---------------------
10687 procedure Install_Formals (Id : Entity_Id) is
10688 F : Entity_Id;
10689 begin
10690 F := First_Formal (Id);
10691 while Present (F) loop
10692 Install_Entity (F);
10693 Next_Formal (F);
10694 end loop;
10695 end Install_Formals;
10697 -----------------------------
10698 -- Is_Interface_Conformant --
10699 -----------------------------
10701 function Is_Interface_Conformant
10702 (Tagged_Type : Entity_Id;
10703 Iface_Prim : Entity_Id;
10704 Prim : Entity_Id) return Boolean
10706 -- The operation may in fact be an inherited (implicit) operation
10707 -- rather than the original interface primitive, so retrieve the
10708 -- ultimate ancestor.
10710 Iface : constant Entity_Id :=
10711 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
10712 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
10714 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
10715 -- Return the controlling formal of Prim
10717 ------------------------
10718 -- Controlling_Formal --
10719 ------------------------
10721 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
10722 E : Entity_Id;
10724 begin
10725 E := First_Formal (Prim);
10726 while Present (E) loop
10727 if Is_Controlling_Formal (E) then
10728 return E;
10729 end if;
10731 Next_Formal (E);
10732 end loop;
10734 return Empty;
10735 end Controlling_Formal;
10737 -- Local variables
10739 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
10740 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
10742 -- Start of processing for Is_Interface_Conformant
10744 begin
10745 pragma Assert (Is_Subprogram (Iface_Prim)
10746 and then Is_Subprogram (Prim)
10747 and then Is_Dispatching_Operation (Iface_Prim)
10748 and then Is_Dispatching_Operation (Prim));
10750 pragma Assert (Is_Interface (Iface)
10751 or else (Present (Alias (Iface_Prim))
10752 and then
10753 Is_Interface
10754 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
10756 if Prim = Iface_Prim
10757 or else not Is_Subprogram (Prim)
10758 or else Ekind (Prim) /= Ekind (Iface_Prim)
10759 or else not Is_Dispatching_Operation (Prim)
10760 or else Scope (Prim) /= Scope (Tagged_Type)
10761 or else No (Typ)
10762 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
10763 or else not Primitive_Names_Match (Iface_Prim, Prim)
10764 then
10765 return False;
10767 -- The mode of the controlling formals must match
10769 elsif Present (Iface_Ctrl_F)
10770 and then Present (Prim_Ctrl_F)
10771 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
10772 then
10773 return False;
10775 -- Case of a procedure, or a function whose result type matches the
10776 -- result type of the interface primitive, or a function that has no
10777 -- controlling result (I or access I).
10779 elsif Ekind (Iface_Prim) = E_Procedure
10780 or else Etype (Prim) = Etype (Iface_Prim)
10781 or else not Has_Controlling_Result (Prim)
10782 then
10783 return Type_Conformant
10784 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
10786 -- Case of a function returning an interface, or an access to one. Check
10787 -- that the return types correspond.
10789 elsif Implements_Interface (Typ, Iface) then
10790 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
10792 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
10793 then
10794 return False;
10795 else
10796 return
10797 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
10798 Skip_Controlling_Formals => True);
10799 end if;
10801 else
10802 return False;
10803 end if;
10804 end Is_Interface_Conformant;
10806 ---------------------------------
10807 -- Is_Non_Overriding_Operation --
10808 ---------------------------------
10810 function Is_Non_Overriding_Operation
10811 (Prev_E : Entity_Id;
10812 New_E : Entity_Id) return Boolean
10814 Formal : Entity_Id;
10815 F_Typ : Entity_Id;
10816 G_Typ : Entity_Id := Empty;
10818 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
10819 -- If F_Type is a derived type associated with a generic actual subtype,
10820 -- then return its Generic_Parent_Type attribute, else return Empty.
10822 function Types_Correspond
10823 (P_Type : Entity_Id;
10824 N_Type : Entity_Id) return Boolean;
10825 -- Returns true if and only if the types (or designated types in the
10826 -- case of anonymous access types) are the same or N_Type is derived
10827 -- directly or indirectly from P_Type.
10829 -----------------------------
10830 -- Get_Generic_Parent_Type --
10831 -----------------------------
10833 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
10834 G_Typ : Entity_Id;
10835 Defn : Node_Id;
10836 Indic : Node_Id;
10838 begin
10839 if Is_Derived_Type (F_Typ)
10840 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
10841 then
10842 -- The tree must be traversed to determine the parent subtype in
10843 -- the generic unit, which unfortunately isn't always available
10844 -- via semantic attributes. ??? (Note: The use of Original_Node
10845 -- is needed for cases where a full derived type has been
10846 -- rewritten.)
10848 -- If the parent type is a scalar type, the derivation creates
10849 -- an anonymous base type for it, and the source type is its
10850 -- first subtype.
10852 if Is_Scalar_Type (F_Typ)
10853 and then not Comes_From_Source (F_Typ)
10854 then
10855 Defn :=
10856 Type_Definition
10857 (Original_Node (Parent (First_Subtype (F_Typ))));
10858 else
10859 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
10860 end if;
10861 if Nkind (Defn) = N_Derived_Type_Definition then
10862 Indic := Subtype_Indication (Defn);
10864 if Nkind (Indic) = N_Subtype_Indication then
10865 G_Typ := Entity (Subtype_Mark (Indic));
10866 else
10867 G_Typ := Entity (Indic);
10868 end if;
10870 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
10871 and then Present (Generic_Parent_Type (Parent (G_Typ)))
10872 then
10873 return Generic_Parent_Type (Parent (G_Typ));
10874 end if;
10875 end if;
10876 end if;
10878 return Empty;
10879 end Get_Generic_Parent_Type;
10881 ----------------------
10882 -- Types_Correspond --
10883 ----------------------
10885 function Types_Correspond
10886 (P_Type : Entity_Id;
10887 N_Type : Entity_Id) return Boolean
10889 Prev_Type : Entity_Id := Base_Type (P_Type);
10890 New_Type : Entity_Id := Base_Type (N_Type);
10892 begin
10893 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
10894 Prev_Type := Designated_Type (Prev_Type);
10895 end if;
10897 if Ekind (New_Type) = E_Anonymous_Access_Type then
10898 New_Type := Designated_Type (New_Type);
10899 end if;
10901 if Prev_Type = New_Type then
10902 return True;
10904 elsif not Is_Class_Wide_Type (New_Type) then
10905 while Etype (New_Type) /= New_Type loop
10906 New_Type := Etype (New_Type);
10908 if New_Type = Prev_Type then
10909 return True;
10910 end if;
10911 end loop;
10912 end if;
10913 return False;
10914 end Types_Correspond;
10916 -- Start of processing for Is_Non_Overriding_Operation
10918 begin
10919 -- In the case where both operations are implicit derived subprograms
10920 -- then neither overrides the other. This can only occur in certain
10921 -- obscure cases (e.g., derivation from homographs created in a generic
10922 -- instantiation).
10924 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
10925 return True;
10927 elsif Ekind (Current_Scope) = E_Package
10928 and then Is_Generic_Instance (Current_Scope)
10929 and then In_Private_Part (Current_Scope)
10930 and then Comes_From_Source (New_E)
10931 then
10932 -- We examine the formals and result type of the inherited operation,
10933 -- to determine whether their type is derived from (the instance of)
10934 -- a generic type. The first such formal or result type is the one
10935 -- tested.
10937 Formal := First_Formal (Prev_E);
10938 F_Typ := Empty;
10939 while Present (Formal) loop
10940 F_Typ := Base_Type (Etype (Formal));
10942 if Ekind (F_Typ) = E_Anonymous_Access_Type then
10943 F_Typ := Designated_Type (F_Typ);
10944 end if;
10946 G_Typ := Get_Generic_Parent_Type (F_Typ);
10947 exit when Present (G_Typ);
10949 Next_Formal (Formal);
10950 end loop;
10952 -- If the function dispatches on result check the result type
10954 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
10955 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
10956 end if;
10958 if No (G_Typ) then
10959 return False;
10960 end if;
10962 -- If the generic type is a private type, then the original operation
10963 -- was not overriding in the generic, because there was no primitive
10964 -- operation to override.
10966 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
10967 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
10968 N_Formal_Private_Type_Definition
10969 then
10970 return True;
10972 -- The generic parent type is the ancestor of a formal derived
10973 -- type declaration. We need to check whether it has a primitive
10974 -- operation that should be overridden by New_E in the generic.
10976 else
10977 declare
10978 P_Formal : Entity_Id;
10979 N_Formal : Entity_Id;
10980 P_Typ : Entity_Id;
10981 N_Typ : Entity_Id;
10982 P_Prim : Entity_Id;
10983 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
10985 begin
10986 while Present (Prim_Elt) loop
10987 P_Prim := Node (Prim_Elt);
10989 if Chars (P_Prim) = Chars (New_E)
10990 and then Ekind (P_Prim) = Ekind (New_E)
10991 then
10992 P_Formal := First_Formal (P_Prim);
10993 N_Formal := First_Formal (New_E);
10994 while Present (P_Formal) and then Present (N_Formal) loop
10995 P_Typ := Etype (P_Formal);
10996 N_Typ := Etype (N_Formal);
10998 if not Types_Correspond (P_Typ, N_Typ) then
10999 exit;
11000 end if;
11002 Next_Formal (P_Formal);
11003 Next_Formal (N_Formal);
11004 end loop;
11006 -- Found a matching primitive operation belonging to the
11007 -- formal ancestor type, so the new subprogram is
11008 -- overriding.
11010 if No (P_Formal)
11011 and then No (N_Formal)
11012 and then (Ekind (New_E) /= E_Function
11013 or else
11014 Types_Correspond
11015 (Etype (P_Prim), Etype (New_E)))
11016 then
11017 return False;
11018 end if;
11019 end if;
11021 Next_Elmt (Prim_Elt);
11022 end loop;
11024 -- If no match found, then the new subprogram does not override
11025 -- in the generic (nor in the instance).
11027 -- If the type in question is not abstract, and the subprogram
11028 -- is, this will be an error if the new operation is in the
11029 -- private part of the instance. Emit a warning now, which will
11030 -- make the subsequent error message easier to understand.
11032 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
11033 and then Is_Abstract_Subprogram (Prev_E)
11034 and then In_Private_Part (Current_Scope)
11035 then
11036 Error_Msg_Node_2 := F_Typ;
11037 Error_Msg_NE
11038 ("private operation& in generic unit does not override "
11039 & "any primitive operation of& (RM 12.3(18))??",
11040 New_E, New_E);
11041 end if;
11043 return True;
11044 end;
11045 end if;
11046 else
11047 return False;
11048 end if;
11049 end Is_Non_Overriding_Operation;
11051 -------------------------------------
11052 -- List_Inherited_Pre_Post_Aspects --
11053 -------------------------------------
11055 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
11056 begin
11057 if List_Inherited_Aspects
11058 and then Is_Subprogram_Or_Generic_Subprogram (E)
11059 then
11060 declare
11061 Subps : constant Subprogram_List := Inherited_Subprograms (E);
11062 Items : Node_Id;
11063 Prag : Node_Id;
11065 begin
11066 for Index in Subps'Range loop
11067 Items := Contract (Subps (Index));
11069 if Present (Items) then
11070 Prag := Pre_Post_Conditions (Items);
11071 while Present (Prag) loop
11072 Error_Msg_Sloc := Sloc (Prag);
11074 if Class_Present (Prag)
11075 and then not Split_PPC (Prag)
11076 then
11077 if Pragma_Name (Prag) = Name_Precondition then
11078 Error_Msg_N
11079 ("info: & inherits `Pre''Class` aspect from "
11080 & "#?.l?", E);
11081 else
11082 Error_Msg_N
11083 ("info: & inherits `Post''Class` aspect from "
11084 & "#?.l?", E);
11085 end if;
11086 end if;
11088 Prag := Next_Pragma (Prag);
11089 end loop;
11090 end if;
11091 end loop;
11092 end;
11093 end if;
11094 end List_Inherited_Pre_Post_Aspects;
11096 ------------------------------
11097 -- Make_Inequality_Operator --
11098 ------------------------------
11100 -- S is the defining identifier of an equality operator. We build a
11101 -- subprogram declaration with the right signature. This operation is
11102 -- intrinsic, because it is always expanded as the negation of the
11103 -- call to the equality function.
11105 procedure Make_Inequality_Operator (S : Entity_Id) is
11106 Loc : constant Source_Ptr := Sloc (S);
11107 Decl : Node_Id;
11108 Formals : List_Id;
11109 Op_Name : Entity_Id;
11111 FF : constant Entity_Id := First_Formal (S);
11112 NF : constant Entity_Id := Next_Formal (FF);
11114 begin
11115 -- Check that equality was properly defined, ignore call if not
11117 if No (NF) then
11118 return;
11119 end if;
11121 declare
11122 A : constant Entity_Id :=
11123 Make_Defining_Identifier (Sloc (FF),
11124 Chars => Chars (FF));
11126 B : constant Entity_Id :=
11127 Make_Defining_Identifier (Sloc (NF),
11128 Chars => Chars (NF));
11130 begin
11131 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
11133 Formals := New_List (
11134 Make_Parameter_Specification (Loc,
11135 Defining_Identifier => A,
11136 Parameter_Type =>
11137 New_Occurrence_Of (Etype (First_Formal (S)),
11138 Sloc (Etype (First_Formal (S))))),
11140 Make_Parameter_Specification (Loc,
11141 Defining_Identifier => B,
11142 Parameter_Type =>
11143 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
11144 Sloc (Etype (Next_Formal (First_Formal (S)))))));
11146 Decl :=
11147 Make_Subprogram_Declaration (Loc,
11148 Specification =>
11149 Make_Function_Specification (Loc,
11150 Defining_Unit_Name => Op_Name,
11151 Parameter_Specifications => Formals,
11152 Result_Definition =>
11153 New_Occurrence_Of (Standard_Boolean, Loc)));
11155 -- Insert inequality right after equality if it is explicit or after
11156 -- the derived type when implicit. These entities are created only
11157 -- for visibility purposes, and eventually replaced in the course
11158 -- of expansion, so they do not need to be attached to the tree and
11159 -- seen by the back-end. Keeping them internal also avoids spurious
11160 -- freezing problems. The declaration is inserted in the tree for
11161 -- analysis, and removed afterwards. If the equality operator comes
11162 -- from an explicit declaration, attach the inequality immediately
11163 -- after. Else the equality is inherited from a derived type
11164 -- declaration, so insert inequality after that declaration.
11166 if No (Alias (S)) then
11167 Insert_After (Unit_Declaration_Node (S), Decl);
11168 elsif Is_List_Member (Parent (S)) then
11169 Insert_After (Parent (S), Decl);
11170 else
11171 Insert_After (Parent (Etype (First_Formal (S))), Decl);
11172 end if;
11174 Mark_Rewrite_Insertion (Decl);
11175 Set_Is_Intrinsic_Subprogram (Op_Name);
11176 Analyze (Decl);
11177 Remove (Decl);
11178 Set_Has_Completion (Op_Name);
11179 Set_Corresponding_Equality (Op_Name, S);
11180 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
11181 end;
11182 end Make_Inequality_Operator;
11184 ----------------------
11185 -- May_Need_Actuals --
11186 ----------------------
11188 procedure May_Need_Actuals (Fun : Entity_Id) is
11189 F : Entity_Id;
11190 B : Boolean;
11192 begin
11193 F := First_Formal (Fun);
11194 B := True;
11195 while Present (F) loop
11196 if No (Default_Value (F)) then
11197 B := False;
11198 exit;
11199 end if;
11201 Next_Formal (F);
11202 end loop;
11204 Set_Needs_No_Actuals (Fun, B);
11205 end May_Need_Actuals;
11207 ---------------------
11208 -- Mode_Conformant --
11209 ---------------------
11211 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
11212 Result : Boolean;
11213 begin
11214 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
11215 return Result;
11216 end Mode_Conformant;
11218 ---------------------------
11219 -- New_Overloaded_Entity --
11220 ---------------------------
11222 procedure New_Overloaded_Entity
11223 (S : Entity_Id;
11224 Derived_Type : Entity_Id := Empty)
11226 Overridden_Subp : Entity_Id := Empty;
11227 -- Set if the current scope has an operation that is type-conformant
11228 -- with S, and becomes hidden by S.
11230 Is_Primitive_Subp : Boolean;
11231 -- Set to True if the new subprogram is primitive
11233 E : Entity_Id;
11234 -- Entity that S overrides
11236 procedure Check_For_Primitive_Subprogram
11237 (Is_Primitive : out Boolean;
11238 Is_Overriding : Boolean := False);
11239 -- If the subprogram being analyzed is a primitive operation of the type
11240 -- of a formal or result, set the Has_Primitive_Operations flag on the
11241 -- type, and set Is_Primitive to True (otherwise set to False). Set the
11242 -- corresponding flag on the entity itself for later use.
11244 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
11245 -- True if a) E is a subprogram whose first formal is a concurrent type
11246 -- defined in the scope of E that has some entry or subprogram whose
11247 -- profile matches E, or b) E is an internally built dispatching
11248 -- subprogram of a protected type and there is a matching subprogram
11249 -- defined in the enclosing scope of the protected type, or c) E is
11250 -- an entry of a synchronized type and a matching procedure has been
11251 -- previously defined in the enclosing scope of the synchronized type.
11253 function Is_Private_Declaration (E : Entity_Id) return Boolean;
11254 -- Check that E is declared in the private part of the current package,
11255 -- or in the package body, where it may hide a previous declaration.
11256 -- We can't use In_Private_Part by itself because this flag is also
11257 -- set when freezing entities, so we must examine the place of the
11258 -- declaration in the tree, and recognize wrapper packages as well.
11260 function Is_Overriding_Alias
11261 (Old_E : Entity_Id;
11262 New_E : Entity_Id) return Boolean;
11263 -- Check whether new subprogram and old subprogram are both inherited
11264 -- from subprograms that have distinct dispatch table entries. This can
11265 -- occur with derivations from instances with accidental homonyms. The
11266 -- function is conservative given that the converse is only true within
11267 -- instances that contain accidental overloadings.
11269 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
11270 -- Report conflict between entities S and E
11272 ------------------------------------
11273 -- Check_For_Primitive_Subprogram --
11274 ------------------------------------
11276 procedure Check_For_Primitive_Subprogram
11277 (Is_Primitive : out Boolean;
11278 Is_Overriding : Boolean := False)
11280 procedure Add_Or_Replace_Untagged_Primitive (Typ : Entity_Id);
11281 -- Either add the new subprogram to the list of primitives for
11282 -- untagged type Typ, or if it overrides a primitive of Typ, then
11283 -- replace the overridden primitive in Typ's primitives list with
11284 -- the new subprogram.
11286 function Visible_Part_Type (T : Entity_Id) return Boolean;
11287 -- Returns true if T is declared in the visible part of the current
11288 -- package scope; otherwise returns false. Assumes that T is declared
11289 -- in a package.
11291 procedure Check_Private_Overriding (T : Entity_Id);
11292 -- Checks that if a primitive abstract subprogram of a visible
11293 -- abstract type is declared in a private part, then it must override
11294 -- an abstract subprogram declared in the visible part. Also checks
11295 -- that if a primitive function with a controlling result is declared
11296 -- in a private part, then it must override a function declared in
11297 -- the visible part.
11299 ---------------------------------------
11300 -- Add_Or_Replace_Untagged_Primitive --
11301 ---------------------------------------
11303 procedure Add_Or_Replace_Untagged_Primitive (Typ : Entity_Id) is
11304 Replaced_Overridden_Subp : Boolean := False;
11306 begin
11307 pragma Assert (not Is_Tagged_Type (Typ));
11309 -- Anonymous access types don't have a primitives list. Normally
11310 -- such types wouldn't make it here, but the case of anonymous
11311 -- access-to-subprogram types can.
11313 if not Is_Anonymous_Access_Type (Typ) then
11315 -- If S overrides a subprogram that's a primitive of
11316 -- the formal's type, then replace the overridden
11317 -- subprogram with the new subprogram in the type's
11318 -- list of primitives.
11320 if Is_Overriding then
11321 pragma Assert (Present (Overridden_Subp)
11322 and then Overridden_Subp = E); -- Added for now
11324 declare
11325 Prim_Ops : constant Elist_Id :=
11326 Primitive_Operations (Typ);
11327 Elmt : Elmt_Id;
11328 begin
11329 if Present (Prim_Ops) then
11330 Elmt := First_Elmt (Prim_Ops);
11332 while Present (Elmt)
11333 and then Node (Elmt) /= Overridden_Subp
11334 loop
11335 Next_Elmt (Elmt);
11336 end loop;
11338 if Present (Elmt) then
11339 Replace_Elmt (Elmt, S);
11340 Replaced_Overridden_Subp := True;
11341 end if;
11342 end if;
11343 end;
11344 end if;
11346 -- If the new subprogram did not override an operation
11347 -- of the formal's type, then add it to the primitives
11348 -- list of the type.
11350 if not Replaced_Overridden_Subp then
11351 Append_Unique_Elmt (S, Primitive_Operations (Typ));
11352 end if;
11353 end if;
11354 end Add_Or_Replace_Untagged_Primitive;
11356 ------------------------------
11357 -- Check_Private_Overriding --
11358 ------------------------------
11360 procedure Check_Private_Overriding (T : Entity_Id) is
11361 function Overrides_Private_Part_Op return Boolean;
11362 -- This detects the special case where the overriding subprogram
11363 -- is overriding a subprogram that was declared in the same
11364 -- private part. That case is illegal by 3.9.3(10).
11366 function Overrides_Visible_Function
11367 (Partial_View : Entity_Id) return Boolean;
11368 -- True if S overrides a function in the visible part. The
11369 -- overridden function could be explicitly or implicitly declared.
11371 -------------------------------
11372 -- Overrides_Private_Part_Op --
11373 -------------------------------
11375 function Overrides_Private_Part_Op return Boolean is
11376 Over_Decl : constant Node_Id :=
11377 Unit_Declaration_Node
11378 (Ultimate_Alias (Overridden_Operation (S)));
11379 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
11381 begin
11382 pragma Assert (Is_Overriding);
11383 pragma Assert
11384 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
11385 pragma Assert
11386 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
11388 return In_Same_List (Over_Decl, Subp_Decl);
11389 end Overrides_Private_Part_Op;
11391 --------------------------------
11392 -- Overrides_Visible_Function --
11393 --------------------------------
11395 function Overrides_Visible_Function
11396 (Partial_View : Entity_Id) return Boolean
11398 begin
11399 if not Is_Overriding or else not Has_Homonym (S) then
11400 return False;
11401 end if;
11403 if No (Partial_View) then
11404 return True;
11405 end if;
11407 -- Search through all the homonyms H of S in the current
11408 -- package spec, and return True if we find one that matches.
11409 -- Note that Parent (H) will be the declaration of the
11410 -- partial view of T for a match.
11412 declare
11413 H : Entity_Id := S;
11414 begin
11415 loop
11416 H := Homonym (H);
11417 exit when No (H) or else Scope (H) /= Scope (S);
11419 if Nkind (Parent (H)) in
11420 N_Private_Extension_Declaration |
11421 N_Private_Type_Declaration
11422 and then Defining_Identifier (Parent (H)) = Partial_View
11423 then
11424 return True;
11425 end if;
11426 end loop;
11427 end;
11429 return False;
11430 end Overrides_Visible_Function;
11432 -- Start of processing for Check_Private_Overriding
11434 begin
11435 if Is_Package_Or_Generic_Package (Current_Scope)
11436 and then In_Private_Part (Current_Scope)
11437 and then Visible_Part_Type (T)
11438 and then not In_Instance
11439 then
11440 if Is_Abstract_Type (T)
11441 and then Is_Abstract_Subprogram (S)
11442 and then (not Is_Overriding
11443 or else not Is_Abstract_Subprogram (E)
11444 or else Overrides_Private_Part_Op)
11445 then
11446 Error_Msg_N
11447 ("abstract subprograms must be visible (RM 3.9.3(10))!",
11450 elsif Ekind (S) = E_Function then
11451 declare
11452 Partial_View : constant Entity_Id :=
11453 Incomplete_Or_Partial_View (T);
11455 begin
11456 if not Overrides_Visible_Function (Partial_View) then
11458 -- Here, S is "function ... return T;" declared in
11459 -- the private part, not overriding some visible
11460 -- operation. That's illegal in the tagged case
11461 -- (but not if the private type is untagged).
11463 if ((Present (Partial_View)
11464 and then Is_Tagged_Type (Partial_View))
11465 or else (No (Partial_View)
11466 and then Is_Tagged_Type (T)))
11467 and then T = Base_Type (Etype (S))
11468 then
11469 Error_Msg_N
11470 ("private function with tagged result must"
11471 & " override visible-part function", S);
11472 Error_Msg_N
11473 ("\move subprogram to the visible part"
11474 & " (RM 3.9.3(10))", S);
11476 -- Ada 2012 (AI05-0073): Extend this check to the case
11477 -- of a function whose result subtype is defined by an
11478 -- access_definition designating specific tagged type.
11480 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
11481 and then Is_Tagged_Type (Designated_Type (Etype (S)))
11482 and then
11483 not Is_Class_Wide_Type
11484 (Designated_Type (Etype (S)))
11485 and then Ada_Version >= Ada_2012
11486 then
11487 Error_Msg_N
11488 ("private function with controlling access "
11489 & "result must override visible-part function",
11491 Error_Msg_N
11492 ("\move subprogram to the visible part"
11493 & " (RM 3.9.3(10))", S);
11494 end if;
11495 end if;
11496 end;
11497 end if;
11498 end if;
11499 end Check_Private_Overriding;
11501 -----------------------
11502 -- Visible_Part_Type --
11503 -----------------------
11505 function Visible_Part_Type (T : Entity_Id) return Boolean is
11506 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
11508 begin
11509 -- If the entity is a private type, then it must be declared in a
11510 -- visible part.
11512 if Is_Private_Type (T) then
11513 return True;
11515 elsif Is_Type (T) and then Has_Private_Declaration (T) then
11516 return True;
11518 elsif Is_List_Member (Declaration_Node (T))
11519 and then List_Containing (Declaration_Node (T)) =
11520 Visible_Declarations (Specification (P))
11521 then
11522 return True;
11524 else
11525 return False;
11526 end if;
11527 end Visible_Part_Type;
11529 -- Local variables
11531 Formal : Entity_Id;
11532 F_Typ : Entity_Id;
11533 B_Typ : Entity_Id;
11535 -- Start of processing for Check_For_Primitive_Subprogram
11537 begin
11538 Is_Primitive := False;
11540 if not Comes_From_Source (S) then
11542 -- Add an inherited primitive for an untagged derived type to
11543 -- Derived_Type's list of primitives. Tagged primitives are
11544 -- dealt with in Check_Dispatching_Operation. Do this even when
11545 -- Extensions_Allowed is False to issue better error messages.
11547 if Present (Derived_Type)
11548 and then not Is_Tagged_Type (Derived_Type)
11549 then
11550 Append_Unique_Elmt (S, Primitive_Operations (Derived_Type));
11551 end if;
11553 -- If subprogram is at library level, it is not primitive operation
11555 elsif Current_Scope = Standard_Standard then
11556 null;
11558 elsif (Is_Package_Or_Generic_Package (Current_Scope)
11559 and then not In_Package_Body (Current_Scope))
11560 or else Is_Overriding
11561 then
11562 -- For function, check return type
11564 if Ekind (S) = E_Function then
11565 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
11566 F_Typ := Designated_Type (Etype (S));
11567 else
11568 F_Typ := Etype (S);
11569 end if;
11571 B_Typ := Base_Type (F_Typ);
11573 if Scope (B_Typ) = Current_Scope
11574 and then not Is_Class_Wide_Type (B_Typ)
11575 and then not Is_Generic_Type (B_Typ)
11576 then
11577 Is_Primitive := True;
11578 Set_Has_Primitive_Operations (B_Typ);
11579 Set_Is_Primitive (S);
11581 -- Add a primitive for an untagged type to B_Typ's
11582 -- list of primitives. Tagged primitives are dealt with
11583 -- in Check_Dispatching_Operation. Do this even when
11584 -- Extensions_Allowed is False to issue better error
11585 -- messages.
11587 if not Is_Tagged_Type (B_Typ) then
11588 Add_Or_Replace_Untagged_Primitive (B_Typ);
11589 end if;
11591 Check_Private_Overriding (B_Typ);
11592 -- The Ghost policy in effect at the point of declaration
11593 -- or a tagged type and a primitive operation must match
11594 -- (SPARK RM 6.9(16)).
11596 Check_Ghost_Primitive (S, B_Typ);
11597 end if;
11598 end if;
11600 -- For all subprograms, check formals
11602 Formal := First_Formal (S);
11603 while Present (Formal) loop
11604 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
11605 F_Typ := Designated_Type (Etype (Formal));
11606 else
11607 F_Typ := Etype (Formal);
11608 end if;
11610 B_Typ := Base_Type (F_Typ);
11612 if Ekind (B_Typ) = E_Access_Subtype then
11613 B_Typ := Base_Type (B_Typ);
11614 end if;
11616 if Scope (B_Typ) = Current_Scope
11617 and then not Is_Class_Wide_Type (B_Typ)
11618 and then not Is_Generic_Type (B_Typ)
11619 then
11620 Is_Primitive := True;
11621 Set_Is_Primitive (S);
11622 Set_Has_Primitive_Operations (B_Typ);
11624 -- Add a primitive for an untagged type to B_Typ's list
11625 -- of primitives. Tagged primitives are dealt with in
11626 -- Check_Dispatching_Operation. Do this even when
11627 -- Extensions_Allowed is False to issue better error
11628 -- messages.
11630 if not Is_Tagged_Type (B_Typ) then
11631 Add_Or_Replace_Untagged_Primitive (B_Typ);
11632 end if;
11634 Check_Private_Overriding (B_Typ);
11636 -- The Ghost policy in effect at the point of declaration
11637 -- of a tagged type and a primitive operation must match
11638 -- (SPARK RM 6.9(16)).
11640 Check_Ghost_Primitive (S, B_Typ);
11641 end if;
11643 Next_Formal (Formal);
11644 end loop;
11646 -- Special case: An equality function can be redefined for a type
11647 -- occurring in a declarative part, and won't otherwise be treated as
11648 -- a primitive because it doesn't occur in a package spec and doesn't
11649 -- override an inherited subprogram. It's important that we mark it
11650 -- primitive so it can be returned by Collect_Primitive_Operations
11651 -- and be used in composing the equality operation of later types
11652 -- that have a component of the type.
11654 elsif Chars (S) = Name_Op_Eq
11655 and then Etype (S) = Standard_Boolean
11656 then
11657 B_Typ := Base_Type (Etype (First_Formal (S)));
11659 if Scope (B_Typ) = Current_Scope
11660 and then
11661 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
11662 and then not Is_Limited_Type (B_Typ)
11663 then
11664 Is_Primitive := True;
11665 Set_Is_Primitive (S);
11666 Set_Has_Primitive_Operations (B_Typ);
11667 Check_Private_Overriding (B_Typ);
11669 -- The Ghost policy in effect at the point of declaration of a
11670 -- tagged type and a primitive operation must match
11671 -- (SPARK RM 6.9(16)).
11673 Check_Ghost_Primitive (S, B_Typ);
11674 end if;
11675 end if;
11676 end Check_For_Primitive_Subprogram;
11678 --------------------------------------
11679 -- Has_Matching_Entry_Or_Subprogram --
11680 --------------------------------------
11682 function Has_Matching_Entry_Or_Subprogram
11683 (E : Entity_Id) return Boolean
11685 function Check_Conforming_Parameters
11686 (E1_Param : Node_Id;
11687 E2_Param : Node_Id;
11688 Ctype : Conformance_Type) return Boolean;
11689 -- Starting from the given parameters, check that all the parameters
11690 -- of two entries or subprograms are conformant. Used to skip
11691 -- the check on the controlling argument.
11693 function Matching_Entry_Or_Subprogram
11694 (Conc_Typ : Entity_Id;
11695 Subp : Entity_Id) return Entity_Id;
11696 -- Return the first entry or subprogram of the given concurrent type
11697 -- whose name matches the name of Subp and has a profile conformant
11698 -- with Subp; return Empty if not found.
11700 function Matching_Dispatching_Subprogram
11701 (Conc_Typ : Entity_Id;
11702 Ent : Entity_Id) return Entity_Id;
11703 -- Return the first dispatching primitive of Conc_Type defined in the
11704 -- enclosing scope of Conc_Type (i.e. before the full definition of
11705 -- this concurrent type) whose name matches the entry Ent and has a
11706 -- profile conformant with the profile of the corresponding (not yet
11707 -- built) dispatching primitive of Ent; return Empty if not found.
11709 function Matching_Original_Protected_Subprogram
11710 (Prot_Typ : Entity_Id;
11711 Subp : Entity_Id) return Entity_Id;
11712 -- Return the first subprogram defined in the enclosing scope of
11713 -- Prot_Typ (before the full definition of this protected type)
11714 -- whose name matches the original name of Subp and has a profile
11715 -- conformant with the profile of Subp; return Empty if not found.
11717 function Normalized_First_Parameter_Type
11718 (E : Entity_Id) return Entity_Id;
11719 -- Return the type of the first parameter unless that type
11720 -- is an anonymous access type, in which case return the
11721 -- designated type. Used to treat anonymous-access-to-synchronized
11722 -- the same as synchronized for purposes of checking for
11723 -- prefixed view profile conflicts.
11725 ---------------------------------
11726 -- Check_Conforming_Parameters --
11727 ---------------------------------
11729 function Check_Conforming_Parameters
11730 (E1_Param : Node_Id;
11731 E2_Param : Node_Id;
11732 Ctype : Conformance_Type) return Boolean
11734 Param_E1 : Node_Id := E1_Param;
11735 Param_E2 : Node_Id := E2_Param;
11737 begin
11738 while Present (Param_E1) and then Present (Param_E2) loop
11739 if Ctype >= Mode_Conformant and then
11740 Ekind (Defining_Identifier (Param_E1)) /=
11741 Ekind (Defining_Identifier (Param_E2))
11742 then
11743 return False;
11744 elsif not
11745 Conforming_Types
11746 (Find_Parameter_Type (Param_E1),
11747 Find_Parameter_Type (Param_E2),
11748 Ctype)
11749 then
11750 return False;
11751 end if;
11753 Next (Param_E1);
11754 Next (Param_E2);
11755 end loop;
11757 -- The candidate is not valid if one of the two lists contains
11758 -- more parameters than the other
11760 return No (Param_E1) and then No (Param_E2);
11761 end Check_Conforming_Parameters;
11763 ----------------------------------
11764 -- Matching_Entry_Or_Subprogram --
11765 ----------------------------------
11767 function Matching_Entry_Or_Subprogram
11768 (Conc_Typ : Entity_Id;
11769 Subp : Entity_Id) return Entity_Id
11771 E : Entity_Id;
11773 begin
11774 E := First_Entity (Conc_Typ);
11775 while Present (E) loop
11776 if Chars (Subp) = Chars (E)
11777 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
11778 and then
11779 Check_Conforming_Parameters
11780 (First (Parameter_Specifications (Parent (E))),
11781 Next (First (Parameter_Specifications (Parent (Subp)))),
11782 Type_Conformant)
11783 then
11784 return E;
11785 end if;
11787 Next_Entity (E);
11788 end loop;
11790 return Empty;
11791 end Matching_Entry_Or_Subprogram;
11793 -------------------------------------
11794 -- Matching_Dispatching_Subprogram --
11795 -------------------------------------
11797 function Matching_Dispatching_Subprogram
11798 (Conc_Typ : Entity_Id;
11799 Ent : Entity_Id) return Entity_Id
11801 E : Entity_Id;
11803 begin
11804 -- Search for entities in the enclosing scope of this synchronized
11805 -- type.
11807 pragma Assert (Is_Concurrent_Type (Conc_Typ));
11808 Push_Scope (Scope (Conc_Typ));
11809 E := Current_Entity_In_Scope (Ent);
11810 Pop_Scope;
11812 while Present (E) loop
11813 if Scope (E) = Scope (Conc_Typ)
11814 and then Comes_From_Source (E)
11815 and then Ekind (E) = E_Procedure
11816 and then Present (First_Entity (E))
11817 and then Is_Controlling_Formal (First_Entity (E))
11818 and then Etype (First_Entity (E)) = Conc_Typ
11819 and then
11820 Check_Conforming_Parameters
11821 (First (Parameter_Specifications (Parent (Ent))),
11822 Next (First (Parameter_Specifications (Parent (E)))),
11823 Subtype_Conformant)
11824 then
11825 return E;
11826 end if;
11828 E := Homonym (E);
11829 end loop;
11831 return Empty;
11832 end Matching_Dispatching_Subprogram;
11834 --------------------------------------------
11835 -- Matching_Original_Protected_Subprogram --
11836 --------------------------------------------
11838 function Matching_Original_Protected_Subprogram
11839 (Prot_Typ : Entity_Id;
11840 Subp : Entity_Id) return Entity_Id
11842 ICF : constant Boolean :=
11843 Is_Controlling_Formal (First_Entity (Subp));
11844 E : Entity_Id;
11846 begin
11847 -- Temporarily decorate the first parameter of Subp as controlling
11848 -- formal, required to invoke Subtype_Conformant.
11850 Set_Is_Controlling_Formal (First_Entity (Subp));
11852 E :=
11853 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
11855 while Present (E) loop
11856 if Scope (E) = Scope (Prot_Typ)
11857 and then Comes_From_Source (E)
11858 and then Ekind (Subp) = Ekind (E)
11859 and then Present (First_Entity (E))
11860 and then Is_Controlling_Formal (First_Entity (E))
11861 and then Etype (First_Entity (E)) = Prot_Typ
11862 and then Subtype_Conformant (Subp, E,
11863 Skip_Controlling_Formals => True)
11864 then
11865 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
11866 return E;
11867 end if;
11869 E := Homonym (E);
11870 end loop;
11872 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
11874 return Empty;
11875 end Matching_Original_Protected_Subprogram;
11877 -------------------------------------
11878 -- Normalized_First_Parameter_Type --
11879 -------------------------------------
11881 function Normalized_First_Parameter_Type
11882 (E : Entity_Id) return Entity_Id
11884 Result : Entity_Id := Etype (First_Entity (E));
11885 begin
11886 if Ekind (Result) = E_Anonymous_Access_Type then
11887 Result := Designated_Type (Result);
11888 end if;
11889 return Result;
11890 end Normalized_First_Parameter_Type;
11892 -- Start of processing for Has_Matching_Entry_Or_Subprogram
11894 begin
11895 -- Case 1: E is a subprogram whose first formal is a concurrent type
11896 -- defined in the scope of E that has an entry or subprogram whose
11897 -- profile matches E.
11899 if Comes_From_Source (E)
11900 and then Is_Subprogram (E)
11901 and then Present (First_Entity (E))
11902 and then Is_Concurrent_Record_Type
11903 (Normalized_First_Parameter_Type (E))
11904 then
11905 if Scope (E) =
11906 Scope (Corresponding_Concurrent_Type
11907 (Normalized_First_Parameter_Type (E)))
11908 and then
11909 Present
11910 (Matching_Entry_Or_Subprogram
11911 (Corresponding_Concurrent_Type
11912 (Normalized_First_Parameter_Type (E)),
11913 Subp => E))
11914 then
11915 Report_Conflict (E,
11916 Matching_Entry_Or_Subprogram
11917 (Corresponding_Concurrent_Type
11918 (Normalized_First_Parameter_Type (E)),
11919 Subp => E));
11920 return True;
11921 end if;
11923 -- Case 2: E is an internally built dispatching subprogram of a
11924 -- protected type and there is a subprogram defined in the enclosing
11925 -- scope of the protected type that has the original name of E and
11926 -- its profile is conformant with the profile of E. We check the
11927 -- name of the original protected subprogram associated with E since
11928 -- the expander builds dispatching primitives of protected functions
11929 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
11931 elsif not Comes_From_Source (E)
11932 and then Is_Subprogram (E)
11933 and then Present (First_Entity (E))
11934 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
11935 and then Present (Original_Protected_Subprogram (E))
11936 and then
11937 Present
11938 (Matching_Original_Protected_Subprogram
11939 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
11940 Subp => E))
11941 then
11942 Report_Conflict (E,
11943 Matching_Original_Protected_Subprogram
11944 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
11945 Subp => E));
11946 return True;
11948 -- Case 3: E is an entry of a synchronized type and a matching
11949 -- procedure has been previously defined in the enclosing scope
11950 -- of the synchronized type.
11952 elsif Comes_From_Source (E)
11953 and then Ekind (E) = E_Entry
11954 and then
11955 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
11956 then
11957 Report_Conflict (E,
11958 Matching_Dispatching_Subprogram (Current_Scope, E));
11959 return True;
11960 end if;
11962 return False;
11963 end Has_Matching_Entry_Or_Subprogram;
11965 ----------------------------
11966 -- Is_Private_Declaration --
11967 ----------------------------
11969 function Is_Private_Declaration (E : Entity_Id) return Boolean is
11970 Decl : constant Node_Id := Unit_Declaration_Node (E);
11971 Priv_Decls : List_Id;
11973 begin
11974 if Is_Package_Or_Generic_Package (Current_Scope)
11975 and then In_Private_Part (Current_Scope)
11976 then
11977 Priv_Decls :=
11978 Private_Declarations (Package_Specification (Current_Scope));
11980 return In_Package_Body (Current_Scope)
11981 or else
11982 (Is_List_Member (Decl)
11983 and then List_Containing (Decl) = Priv_Decls)
11984 or else (Nkind (Parent (Decl)) = N_Package_Specification
11985 and then not
11986 Is_Compilation_Unit
11987 (Defining_Entity (Parent (Decl)))
11988 and then List_Containing (Parent (Parent (Decl))) =
11989 Priv_Decls);
11990 else
11991 return False;
11992 end if;
11993 end Is_Private_Declaration;
11995 --------------------------
11996 -- Is_Overriding_Alias --
11997 --------------------------
11999 function Is_Overriding_Alias
12000 (Old_E : Entity_Id;
12001 New_E : Entity_Id) return Boolean
12003 AO : constant Entity_Id := Alias (Old_E);
12004 AN : constant Entity_Id := Alias (New_E);
12006 begin
12007 return Scope (AO) /= Scope (AN)
12008 or else No (DTC_Entity (AO))
12009 or else No (DTC_Entity (AN))
12010 or else DT_Position (AO) = DT_Position (AN);
12011 end Is_Overriding_Alias;
12013 ---------------------
12014 -- Report_Conflict --
12015 ---------------------
12017 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
12018 begin
12019 Error_Msg_Sloc := Sloc (E);
12021 -- Generate message, with useful additional warning if in generic
12023 if Is_Generic_Unit (E) then
12024 Error_Msg_N ("previous generic unit cannot be overloaded", S);
12025 Error_Msg_N ("\& conflicts with declaration#", S);
12026 else
12027 Error_Msg_N ("& conflicts with declaration#", S);
12028 end if;
12029 end Report_Conflict;
12031 -- Start of processing for New_Overloaded_Entity
12033 begin
12034 -- We need to look for an entity that S may override. This must be a
12035 -- homonym in the current scope, so we look for the first homonym of
12036 -- S in the current scope as the starting point for the search.
12038 E := Current_Entity_In_Scope (S);
12040 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
12041 -- They are directly added to the list of primitive operations of
12042 -- Derived_Type, unless this is a rederivation in the private part
12043 -- of an operation that was already derived in the visible part of
12044 -- the current package.
12046 if Ada_Version >= Ada_2005
12047 and then Present (Derived_Type)
12048 and then Present (Alias (S))
12049 and then Is_Dispatching_Operation (Alias (S))
12050 and then Present (Find_Dispatching_Type (Alias (S)))
12051 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
12052 then
12053 -- For private types, when the full-view is processed we propagate to
12054 -- the full view the non-overridden entities whose attribute "alias"
12055 -- references an interface primitive. These entities were added by
12056 -- Derive_Subprograms to ensure that interface primitives are
12057 -- covered.
12059 -- Inside_Freeze_Actions is non zero when S corresponds with an
12060 -- internal entity that links an interface primitive with its
12061 -- covering primitive through attribute Interface_Alias (see
12062 -- Add_Internal_Interface_Entities).
12064 if Inside_Freezing_Actions = 0
12065 and then Is_Package_Or_Generic_Package (Current_Scope)
12066 and then In_Private_Part (Current_Scope)
12067 and then Parent_Kind (E) = N_Private_Extension_Declaration
12068 and then Nkind (Parent (S)) = N_Full_Type_Declaration
12069 and then Full_View (Defining_Identifier (Parent (E)))
12070 = Defining_Identifier (Parent (S))
12071 and then Alias (E) = Alias (S)
12072 then
12073 Check_Operation_From_Private_View (S, E);
12074 Set_Is_Dispatching_Operation (S);
12076 -- Common case
12078 else
12079 Enter_Overloaded_Entity (S);
12080 Check_Dispatching_Operation (S, Empty);
12081 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
12082 end if;
12084 return;
12085 end if;
12087 -- For synchronized types check conflicts of this entity with previously
12088 -- defined entities.
12090 if Ada_Version >= Ada_2005
12091 and then Has_Matching_Entry_Or_Subprogram (S)
12092 then
12093 return;
12094 end if;
12096 -- If there is no homonym then this is definitely not overriding
12098 if No (E) then
12099 Enter_Overloaded_Entity (S);
12100 Check_Dispatching_Operation (S, Empty);
12101 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
12103 -- If subprogram has an explicit declaration, check whether it has an
12104 -- overriding indicator.
12106 if Comes_From_Source (S) then
12107 Check_Synchronized_Overriding (S, Overridden_Subp);
12109 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
12110 -- it may have overridden some hidden inherited primitive. Update
12111 -- Overridden_Subp to avoid spurious errors when checking the
12112 -- overriding indicator.
12114 if Ada_Version >= Ada_2012
12115 and then No (Overridden_Subp)
12116 and then Is_Dispatching_Operation (S)
12117 and then Present (Overridden_Operation (S))
12118 then
12119 Overridden_Subp := Overridden_Operation (S);
12120 end if;
12122 Check_Overriding_Indicator
12123 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
12125 -- The Ghost policy in effect at the point of declaration of a
12126 -- parent subprogram and an overriding subprogram must match
12127 -- (SPARK RM 6.9(17)).
12129 Check_Ghost_Overriding (S, Overridden_Subp);
12130 end if;
12132 -- If there is a homonym that is not overloadable, then we have an
12133 -- error, except for the special cases checked explicitly below.
12135 elsif not Is_Overloadable (E) then
12137 -- Check for spurious conflict produced by a subprogram that has the
12138 -- same name as that of the enclosing generic package. The conflict
12139 -- occurs within an instance, between the subprogram and the renaming
12140 -- declaration for the package. After the subprogram, the package
12141 -- renaming declaration becomes hidden.
12143 if Ekind (E) = E_Package
12144 and then Present (Renamed_Entity (E))
12145 and then Renamed_Entity (E) = Current_Scope
12146 and then Nkind (Parent (Renamed_Entity (E))) =
12147 N_Package_Specification
12148 and then Present (Generic_Parent (Parent (Renamed_Entity (E))))
12149 then
12150 Set_Is_Hidden (E);
12151 Set_Is_Immediately_Visible (E, False);
12152 Enter_Overloaded_Entity (S);
12153 Set_Homonym (S, Homonym (E));
12154 Check_Dispatching_Operation (S, Empty);
12155 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
12157 -- If the subprogram is implicit it is hidden by the previous
12158 -- declaration. However if it is dispatching, it must appear in the
12159 -- dispatch table anyway, because it can be dispatched to even if it
12160 -- cannot be called directly.
12162 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
12163 Set_Scope (S, Current_Scope);
12165 if Is_Dispatching_Operation (Alias (S)) then
12166 Check_Dispatching_Operation (S, Empty);
12167 end if;
12169 return;
12171 else
12172 Report_Conflict (S, E);
12173 return;
12174 end if;
12176 -- E exists and is overloadable
12178 else
12179 Check_Synchronized_Overriding (S, Overridden_Subp);
12181 -- Loop through E and its homonyms to determine if any of them is
12182 -- the candidate for overriding by S.
12184 while Present (E) loop
12186 -- Definitely not interesting if not in the current scope
12188 if Scope (E) /= Current_Scope then
12189 null;
12191 -- A function can overload the name of an abstract state. The
12192 -- state can be viewed as a function with a profile that cannot
12193 -- be matched by anything.
12195 elsif Ekind (S) = E_Function
12196 and then Ekind (E) = E_Abstract_State
12197 then
12198 Enter_Overloaded_Entity (S);
12199 return;
12201 -- Ada 2012 (AI05-0165): For internally generated bodies of null
12202 -- procedures locate the internally generated spec. We enforce
12203 -- mode conformance since a tagged type may inherit from
12204 -- interfaces several null primitives which differ only in
12205 -- the mode of the formals.
12207 elsif not Comes_From_Source (S)
12208 and then Is_Null_Procedure (S)
12209 and then not Mode_Conformant (E, S)
12210 then
12211 null;
12213 -- Check if we have type conformance
12215 elsif Type_Conformant (E, S) then
12217 -- If the old and new entities have the same profile and one
12218 -- is not the body of the other, then this is an error, unless
12219 -- one of them is implicitly declared.
12221 -- There are some cases when both can be implicit, for example
12222 -- when both a literal and a function that overrides it are
12223 -- inherited in a derivation, or when an inherited operation
12224 -- of a tagged full type overrides the inherited operation of
12225 -- a private extension. Ada 83 had a special rule for the
12226 -- literal case. In Ada 95, the later implicit operation hides
12227 -- the former, and the literal is always the former. In the
12228 -- odd case where both are derived operations declared at the
12229 -- same point, both operations should be declared, and in that
12230 -- case we bypass the following test and proceed to the next
12231 -- part. This can only occur for certain obscure cases in
12232 -- instances, when an operation on a type derived from a formal
12233 -- private type does not override a homograph inherited from
12234 -- the actual. In subsequent derivations of such a type, the
12235 -- DT positions of these operations remain distinct, if they
12236 -- have been set.
12238 if Present (Alias (S))
12239 and then (No (Alias (E))
12240 or else Comes_From_Source (E)
12241 or else Is_Abstract_Subprogram (S)
12242 or else
12243 (Is_Dispatching_Operation (E)
12244 and then Is_Overriding_Alias (E, S)))
12245 and then Ekind (E) /= E_Enumeration_Literal
12246 then
12247 -- When an derived operation is overloaded it may be due to
12248 -- the fact that the full view of a private extension
12249 -- re-inherits. It has to be dealt with.
12251 if Is_Package_Or_Generic_Package (Current_Scope)
12252 and then In_Private_Part (Current_Scope)
12253 then
12254 Check_Operation_From_Private_View (S, E);
12255 end if;
12257 -- In any case the implicit operation remains hidden by the
12258 -- existing declaration, which is overriding. Indicate that
12259 -- E overrides the operation from which S is inherited.
12261 if Present (Alias (S)) then
12262 Set_Overridden_Operation (E, Alias (S));
12263 Inherit_Subprogram_Contract (E, Alias (S));
12264 Set_Is_Ada_2022_Only (E,
12265 Is_Ada_2022_Only (Alias (S)));
12267 else
12268 Set_Overridden_Operation (E, S);
12269 Inherit_Subprogram_Contract (E, S);
12270 Set_Is_Ada_2022_Only (E, Is_Ada_2022_Only (S));
12271 end if;
12273 -- When a dispatching operation overrides an inherited
12274 -- subprogram, it shall be subtype conformant with the
12275 -- inherited subprogram (RM 3.9.2 (10.2)).
12277 if Comes_From_Source (E)
12278 and then Is_Dispatching_Operation (E)
12279 and then Find_Dispatching_Type (S)
12280 = Find_Dispatching_Type (E)
12281 then
12282 Check_Subtype_Conformant (E, S);
12283 end if;
12285 if Comes_From_Source (E) then
12286 Check_Overriding_Indicator (E, S, Is_Primitive => False);
12288 -- The Ghost policy in effect at the point of declaration
12289 -- of a parent subprogram and an overriding subprogram
12290 -- must match (SPARK RM 6.9(17)).
12292 Check_Ghost_Overriding (E, S);
12293 end if;
12295 return;
12297 -- Within an instance, the renaming declarations for actual
12298 -- subprograms may become ambiguous, but they do not hide each
12299 -- other.
12301 elsif Ekind (E) /= E_Entry
12302 and then not Comes_From_Source (E)
12303 and then not Is_Generic_Instance (E)
12304 and then (Present (Alias (E))
12305 or else Is_Intrinsic_Subprogram (E))
12306 and then (not In_Instance
12307 or else No (Parent (E))
12308 or else Nkind (Unit_Declaration_Node (E)) /=
12309 N_Subprogram_Renaming_Declaration)
12310 then
12311 -- A subprogram child unit is not allowed to override an
12312 -- inherited subprogram (10.1.1(20)).
12314 if Is_Child_Unit (S) then
12315 Error_Msg_N
12316 ("child unit overrides inherited subprogram in parent",
12318 return;
12319 end if;
12321 if Is_Non_Overriding_Operation (E, S) then
12322 Enter_Overloaded_Entity (S);
12324 if No (Derived_Type)
12325 or else Is_Tagged_Type (Derived_Type)
12326 then
12327 Check_Dispatching_Operation (S, Empty);
12328 end if;
12330 return;
12331 end if;
12333 -- E is a derived operation or an internal operator which
12334 -- is being overridden. Remove E from further visibility.
12335 -- Furthermore, if E is a dispatching operation, it must be
12336 -- replaced in the list of primitive operations of its type
12337 -- (see Override_Dispatching_Operation).
12339 Overridden_Subp := E;
12341 -- It is possible for E to be in the current scope and
12342 -- yet not in the entity chain. This can only occur in a
12343 -- generic context where E is an implicit concatenation
12344 -- in the formal part, because in a generic body the
12345 -- entity chain starts with the formals.
12347 -- In GNATprove mode, a wrapper for an operation with
12348 -- axiomatization may be a homonym of another declaration
12349 -- for an actual subprogram (needs refinement ???).
12351 if No (Prev_Entity (E)) then
12352 if In_Instance
12353 and then GNATprove_Mode
12354 and then
12355 Nkind (Original_Node (Unit_Declaration_Node (S))) =
12356 N_Subprogram_Renaming_Declaration
12357 then
12358 return;
12359 else
12360 pragma Assert (Chars (E) = Name_Op_Concat);
12361 null;
12362 end if;
12363 end if;
12365 -- E must be removed both from the entity_list of the
12366 -- current scope, and from the visibility chain.
12368 if Debug_Flag_E then
12369 Write_Str ("Override implicit operation ");
12370 Write_Int (Int (E));
12371 Write_Eol;
12372 end if;
12374 -- If E is a predefined concatenation, it stands for four
12375 -- different operations. As a result, a single explicit
12376 -- declaration does not hide it. In a possible ambiguous
12377 -- situation, Disambiguate chooses the user-defined op,
12378 -- so it is correct to retain the previous internal one.
12380 if Chars (E) /= Name_Op_Concat
12381 or else Ekind (E) /= E_Operator
12382 then
12383 -- For nondispatching derived operations that are
12384 -- overridden by a subprogram declared in the private
12385 -- part of a package, we retain the derived subprogram
12386 -- but mark it as not immediately visible. If the
12387 -- derived operation was declared in the visible part
12388 -- then this ensures that it will still be visible
12389 -- outside the package with the proper signature
12390 -- (calls from outside must also be directed to this
12391 -- version rather than the overriding one, unlike the
12392 -- dispatching case). Calls from inside the package
12393 -- will still resolve to the overriding subprogram
12394 -- since the derived one is marked as not visible
12395 -- within the package.
12397 -- If the private operation is dispatching, we achieve
12398 -- the overriding by keeping the implicit operation
12399 -- but setting its alias to be the overriding one. In
12400 -- this fashion the proper body is executed in all
12401 -- cases, but the original signature is used outside
12402 -- of the package.
12404 -- If the overriding is not in the private part, we
12405 -- remove the implicit operation altogether.
12407 if Is_Private_Declaration (S) then
12408 if not Is_Dispatching_Operation (E) then
12409 Set_Is_Immediately_Visible (E, False);
12410 else
12411 -- Work done in Override_Dispatching_Operation, so
12412 -- nothing else needs to be done here.
12414 -- ??? Special case to keep supporting the hiding
12415 -- of the predefined "=" operator for a nonlimited
12416 -- tagged type by a user-defined "=" operator for
12417 -- its class-wide type when the type is private.
12419 if Chars (E) = Name_Op_Eq then
12420 declare
12421 Typ : constant Entity_Id
12422 := Etype (First_Entity (E));
12423 H : Entity_Id := Homonym (E);
12425 begin
12426 while Present (H)
12427 and then Scope (H) = Scope (E)
12428 loop
12429 if Is_User_Defined_Equality (H)
12430 and then Is_Immediately_Visible (H)
12431 and then Etype (First_Entity (H))
12432 = Class_Wide_Type (Typ)
12433 then
12434 Remove_Entity_And_Homonym (E);
12435 exit;
12436 end if;
12438 H := Homonym (H);
12439 end loop;
12440 end;
12441 end if;
12442 end if;
12444 else
12445 Remove_Entity_And_Homonym (E);
12446 end if;
12447 end if;
12449 Enter_Overloaded_Entity (S);
12451 -- For entities generated by Derive_Subprograms the
12452 -- overridden operation is the inherited primitive
12453 -- (which is available through the attribute alias).
12455 if not (Comes_From_Source (E))
12456 and then Is_Dispatching_Operation (E)
12457 and then Find_Dispatching_Type (E) =
12458 Find_Dispatching_Type (S)
12459 and then Present (Alias (E))
12460 and then Comes_From_Source (Alias (E))
12461 then
12462 Set_Overridden_Operation (S, Alias (E));
12463 Inherit_Subprogram_Contract (S, Alias (E));
12464 Set_Is_Ada_2022_Only (S,
12465 Is_Ada_2022_Only (Alias (E)));
12467 -- Normal case of setting entity as overridden
12469 -- Note: Static_Initialization and Overridden_Operation
12470 -- attributes use the same field in subprogram entities.
12471 -- Static_Initialization is only defined for internal
12472 -- initialization procedures, where Overridden_Operation
12473 -- is irrelevant. Therefore the setting of this attribute
12474 -- must check whether the target is an init_proc.
12476 elsif not Is_Init_Proc (S) then
12478 -- LSP wrappers must override the ultimate alias of their
12479 -- wrapped dispatching primitive E; required to traverse
12480 -- the chain of ancestor primitives (c.f. Map_Primitives)
12481 -- They don't inherit contracts.
12483 if Is_Wrapper (S)
12484 and then Present (LSP_Subprogram (S))
12485 then
12486 Set_Overridden_Operation (S, Ultimate_Alias (E));
12487 else
12488 Set_Overridden_Operation (S, E);
12489 Inherit_Subprogram_Contract (S, E);
12490 end if;
12492 Set_Is_Ada_2022_Only (S, Is_Ada_2022_Only (E));
12493 end if;
12495 Check_Overriding_Indicator (S, E, Is_Primitive => True);
12497 -- The Ghost policy in effect at the point of declaration
12498 -- of a parent subprogram and an overriding subprogram
12499 -- must match (SPARK RM 6.9(17)).
12501 Check_Ghost_Overriding (S, E);
12503 -- If S is a user-defined subprogram or a null procedure
12504 -- expanded to override an inherited null procedure, or a
12505 -- predefined dispatching primitive then indicate that E
12506 -- overrides the operation from which S is inherited.
12508 if Comes_From_Source (S)
12509 or else
12510 (Present (Parent (S))
12511 and then Nkind (Parent (S)) = N_Procedure_Specification
12512 and then Null_Present (Parent (S)))
12513 or else
12514 (Present (Alias (E))
12515 and then
12516 Is_Predefined_Dispatching_Operation (Alias (E)))
12517 then
12518 if Present (Alias (E)) then
12520 -- LSP wrappers must override the ultimate alias of
12521 -- their wrapped dispatching primitive E; required to
12522 -- traverse the chain of ancestor primitives (see
12523 -- Map_Primitives). They don't inherit contracts.
12525 if Is_Wrapper (S)
12526 and then Present (LSP_Subprogram (S))
12527 then
12528 Set_Overridden_Operation (S, Ultimate_Alias (E));
12529 else
12530 Set_Overridden_Operation (S, Alias (E));
12531 Inherit_Subprogram_Contract (S, Alias (E));
12532 end if;
12534 Set_Is_Ada_2022_Only (S, Is_Ada_2022_Only (Alias (E)));
12535 end if;
12536 end if;
12538 if Is_Dispatching_Operation (E) then
12540 -- An overriding dispatching subprogram inherits the
12541 -- convention of the overridden subprogram (AI95-117).
12543 Set_Convention (S, Convention (E));
12544 Check_Dispatching_Operation (S, E);
12546 else
12547 Check_Dispatching_Operation (S, Empty);
12548 end if;
12550 Check_For_Primitive_Subprogram
12551 (Is_Primitive_Subp, Is_Overriding => True);
12552 goto Check_Inequality;
12554 -- Apparent redeclarations in instances can occur when two
12555 -- formal types get the same actual type. The subprograms in
12556 -- in the instance are legal, even if not callable from the
12557 -- outside. Calls from within are disambiguated elsewhere.
12558 -- For dispatching operations in the visible part, the usual
12559 -- rules apply, and operations with the same profile are not
12560 -- legal (B830001).
12562 elsif (In_Instance_Visible_Part
12563 and then not Is_Dispatching_Operation (E))
12564 or else In_Instance_Not_Visible
12565 then
12566 null;
12568 -- Here we have a real error (identical profile)
12570 else
12571 Error_Msg_Sloc := Sloc (E);
12573 -- Avoid cascaded errors if the entity appears in
12574 -- subsequent calls.
12576 Set_Scope (S, Current_Scope);
12578 -- Generate error, with extra useful warning for the case
12579 -- of a generic instance with no completion.
12581 if Is_Generic_Instance (S)
12582 and then not Has_Completion (E)
12583 then
12584 Error_Msg_N
12585 ("instantiation cannot provide body for&", S);
12586 Error_Msg_N ("\& conflicts with declaration#", S);
12587 else
12588 Error_Msg_N ("& conflicts with declaration#", S);
12589 end if;
12591 return;
12592 end if;
12594 else
12595 -- If one subprogram has an access parameter and the other
12596 -- a parameter of an access type, calls to either might be
12597 -- ambiguous. Verify that parameters match except for the
12598 -- access parameter.
12600 if May_Hide_Profile then
12601 declare
12602 F1 : Entity_Id;
12603 F2 : Entity_Id;
12605 begin
12606 F1 := First_Formal (S);
12607 F2 := First_Formal (E);
12608 while Present (F1) and then Present (F2) loop
12609 if Is_Access_Type (Etype (F1)) then
12610 if not Is_Access_Type (Etype (F2))
12611 or else not Conforming_Types
12612 (Designated_Type (Etype (F1)),
12613 Designated_Type (Etype (F2)),
12614 Type_Conformant)
12615 then
12616 May_Hide_Profile := False;
12617 end if;
12619 elsif
12620 not Conforming_Types
12621 (Etype (F1), Etype (F2), Type_Conformant)
12622 then
12623 May_Hide_Profile := False;
12624 end if;
12626 Next_Formal (F1);
12627 Next_Formal (F2);
12628 end loop;
12630 if May_Hide_Profile
12631 and then No (F1)
12632 and then No (F2)
12633 then
12634 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
12635 end if;
12636 end;
12637 end if;
12638 end if;
12640 E := Homonym (E);
12641 end loop;
12643 -- On exit, we know that S is a new entity
12645 Enter_Overloaded_Entity (S);
12646 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
12647 Check_Overriding_Indicator
12648 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
12650 -- The Ghost policy in effect at the point of declaration of a parent
12651 -- subprogram and an overriding subprogram must match
12652 -- (SPARK RM 6.9(17)).
12654 Check_Ghost_Overriding (S, Overridden_Subp);
12656 -- If S is a derived operation for an untagged type then by
12657 -- definition it's not a dispatching operation (even if the parent
12658 -- operation was dispatching), so Check_Dispatching_Operation is not
12659 -- called in that case.
12661 if No (Derived_Type)
12662 or else Is_Tagged_Type (Derived_Type)
12663 then
12664 Check_Dispatching_Operation (S, Empty);
12665 end if;
12666 end if;
12668 -- If this is a user-defined equality operator that is not a derived
12669 -- subprogram, create the corresponding inequality. If the operation is
12670 -- dispatching, the expansion is done elsewhere, and we do not create
12671 -- an explicit inequality operation.
12673 <<Check_Inequality>>
12674 if Chars (S) = Name_Op_Eq
12675 and then Etype (S) = Standard_Boolean
12676 and then Present (Parent (S))
12677 and then not Is_Dispatching_Operation (S)
12678 then
12679 Make_Inequality_Operator (S);
12680 Check_Untagged_Equality (S);
12681 end if;
12682 end New_Overloaded_Entity;
12684 ----------------------------------
12685 -- Preanalyze_Formal_Expression --
12686 ----------------------------------
12688 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
12689 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
12690 begin
12691 In_Spec_Expression := True;
12692 Preanalyze_With_Freezing_And_Resolve (N, T);
12693 In_Spec_Expression := Save_In_Spec_Expression;
12694 end Preanalyze_Formal_Expression;
12696 ---------------------
12697 -- Process_Formals --
12698 ---------------------
12700 procedure Process_Formals
12701 (T : List_Id;
12702 Related_Nod : Node_Id)
12704 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
12705 -- Determine whether an access type designates a type coming from a
12706 -- limited view.
12708 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
12709 -- Check whether the default has a class-wide type. After analysis the
12710 -- default has the type of the formal, so we must also check explicitly
12711 -- for an access attribute.
12713 ----------------------------------
12714 -- Designates_From_Limited_With --
12715 ----------------------------------
12717 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
12718 Desig : Entity_Id := Typ;
12720 begin
12721 if Is_Access_Type (Desig) then
12722 Desig := Directly_Designated_Type (Desig);
12723 end if;
12725 if Is_Class_Wide_Type (Desig) then
12726 Desig := Root_Type (Desig);
12727 end if;
12729 return
12730 Ekind (Desig) = E_Incomplete_Type
12731 and then From_Limited_With (Desig);
12732 end Designates_From_Limited_With;
12734 ---------------------------
12735 -- Is_Class_Wide_Default --
12736 ---------------------------
12738 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
12739 begin
12740 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
12741 or else (Nkind (D) = N_Attribute_Reference
12742 and then Attribute_Name (D) = Name_Access
12743 and then Is_Class_Wide_Type (Etype (Prefix (D))));
12744 end Is_Class_Wide_Default;
12746 -- Local variables
12748 Context : constant Node_Id := Parent (Parent (T));
12749 Default : Node_Id;
12750 Formal : Entity_Id;
12751 Formal_Type : Entity_Id;
12752 Param_Spec : Node_Id;
12753 Ptype : Entity_Id;
12755 Num_Out_Params : Nat := 0;
12756 First_Out_Param : Entity_Id := Empty;
12757 -- Used for setting Is_Only_Out_Parameter
12759 -- Start of processing for Process_Formals
12761 begin
12762 -- In order to prevent premature use of the formals in the same formal
12763 -- part, the Ekind is left undefined until all default expressions are
12764 -- analyzed. The Ekind is established in a separate loop at the end.
12766 Param_Spec := First (T);
12767 while Present (Param_Spec) loop
12768 Formal := Defining_Identifier (Param_Spec);
12769 Set_Never_Set_In_Source (Formal, True);
12770 Enter_Name (Formal);
12772 -- Case of ordinary parameters
12774 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
12775 Find_Type (Parameter_Type (Param_Spec));
12776 Ptype := Parameter_Type (Param_Spec);
12778 if Ptype = Error then
12779 goto Continue;
12780 end if;
12782 -- Protect against malformed parameter types
12784 if Nkind (Ptype) not in N_Has_Entity then
12785 Formal_Type := Any_Type;
12786 else
12787 Formal_Type := Entity (Ptype);
12788 end if;
12790 if Is_Incomplete_Type (Formal_Type)
12791 or else
12792 (Is_Class_Wide_Type (Formal_Type)
12793 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
12794 then
12795 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
12796 -- primitive operations, as long as their completion is
12797 -- in the same declarative part. If in the private part
12798 -- this means that the type cannot be a Taft-amendment type.
12799 -- Check is done on package exit. For access to subprograms,
12800 -- the use is legal for Taft-amendment types.
12802 -- Ada 2012: tagged incomplete types are allowed as generic
12803 -- formal types. They do not introduce dependencies and the
12804 -- corresponding generic subprogram does not have a delayed
12805 -- freeze, because it does not need a freeze node. However,
12806 -- it is still the case that untagged incomplete types cannot
12807 -- be Taft-amendment types and must be completed in private
12808 -- part, so the subprogram must appear in the list of private
12809 -- dependents of the type.
12811 if Is_Tagged_Type (Formal_Type)
12812 or else (Ada_Version >= Ada_2012
12813 and then not From_Limited_With (Formal_Type)
12814 and then not Is_Generic_Type (Formal_Type))
12815 then
12816 if Ekind (Scope (Current_Scope)) = E_Package
12817 and then not Is_Generic_Type (Formal_Type)
12818 and then not Is_Class_Wide_Type (Formal_Type)
12819 then
12820 if Nkind (Parent (T)) not in
12821 N_Access_Function_Definition |
12822 N_Access_Procedure_Definition
12823 then
12824 Append_Elmt (Current_Scope,
12825 Private_Dependents (Base_Type (Formal_Type)));
12827 -- Freezing is delayed to ensure that Register_Prim
12828 -- will get called for this operation, which is needed
12829 -- in cases where static dispatch tables aren't built.
12830 -- (Note that the same is done for controlling access
12831 -- parameter cases in function Access_Definition.)
12833 if not Is_Thunk (Current_Scope) then
12834 Set_Has_Delayed_Freeze (Current_Scope);
12835 end if;
12836 end if;
12837 end if;
12839 elsif Nkind (Parent (T)) not in N_Access_Function_Definition
12840 | N_Access_Procedure_Definition
12841 then
12842 -- AI05-0151: Tagged incomplete types are allowed in all
12843 -- formal parts. Untagged incomplete types are not allowed
12844 -- in bodies. Limited views of either kind are not allowed
12845 -- if there is no place at which the non-limited view can
12846 -- become available.
12848 -- Incomplete formal untagged types are not allowed in
12849 -- subprogram bodies (but are legal in their declarations).
12850 -- This excludes bodies created for null procedures, which
12851 -- are basic declarations.
12853 if Is_Generic_Type (Formal_Type)
12854 and then not Is_Tagged_Type (Formal_Type)
12855 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
12856 then
12857 Error_Msg_N
12858 ("invalid use of formal incomplete type", Param_Spec);
12860 elsif Ada_Version >= Ada_2012 then
12861 if Is_Tagged_Type (Formal_Type)
12862 and then (not From_Limited_With (Formal_Type)
12863 or else not In_Package_Body)
12864 then
12865 null;
12867 elsif Nkind (Context) in N_Accept_Statement
12868 | N_Accept_Alternative
12869 | N_Entry_Body
12870 or else (Nkind (Context) = N_Subprogram_Body
12871 and then Comes_From_Source (Context))
12872 then
12873 Error_Msg_NE
12874 ("invalid use of untagged incomplete type &",
12875 Ptype, Formal_Type);
12876 end if;
12878 else
12879 Error_Msg_NE
12880 ("invalid use of incomplete type&",
12881 Param_Spec, Formal_Type);
12883 -- Further checks on the legality of incomplete types
12884 -- in formal parts are delayed until the freeze point
12885 -- of the enclosing subprogram or access to subprogram.
12886 end if;
12887 end if;
12889 elsif Ekind (Formal_Type) = E_Void then
12890 Error_Msg_NE
12891 ("premature use of&",
12892 Parameter_Type (Param_Spec), Formal_Type);
12893 end if;
12895 -- Ada 2012 (AI-142): Handle aliased parameters
12897 if Ada_Version >= Ada_2012
12898 and then Aliased_Present (Param_Spec)
12899 then
12900 Set_Is_Aliased (Formal);
12902 -- AI12-001: All aliased objects are considered to be specified
12903 -- as independently addressable (RM C.6(8.1/4)).
12905 Set_Is_Independent (Formal);
12906 end if;
12908 -- Ada 2005 (AI-231): Create and decorate an internal subtype
12909 -- declaration corresponding to the null-excluding type of the
12910 -- formal in the enclosing scope. Finally, replace the parameter
12911 -- type of the formal with the internal subtype.
12913 if Ada_Version >= Ada_2005
12914 and then Null_Exclusion_Present (Param_Spec)
12915 then
12916 if not Is_Access_Type (Formal_Type) then
12917 Error_Msg_N
12918 ("`NOT NULL` allowed only for an access type", Param_Spec);
12920 else
12921 if Can_Never_Be_Null (Formal_Type)
12922 and then Comes_From_Source (Related_Nod)
12923 then
12924 Error_Msg_NE
12925 ("`NOT NULL` not allowed (& already excludes null)",
12926 Param_Spec, Formal_Type);
12927 end if;
12929 Formal_Type :=
12930 Create_Null_Excluding_Itype
12931 (T => Formal_Type,
12932 Related_Nod => Related_Nod,
12933 Scope_Id => Scope (Current_Scope));
12935 -- If the designated type of the itype is an itype that is
12936 -- not frozen yet, we set the Has_Delayed_Freeze attribute
12937 -- on the access subtype, to prevent order-of-elaboration
12938 -- issues in the backend.
12940 -- Example:
12941 -- type T is access procedure;
12942 -- procedure Op (O : not null T);
12944 if Is_Itype (Directly_Designated_Type (Formal_Type))
12945 and then
12946 not Is_Frozen (Directly_Designated_Type (Formal_Type))
12947 then
12948 Set_Has_Delayed_Freeze (Formal_Type);
12949 end if;
12950 end if;
12951 end if;
12953 -- An access formal type
12955 else
12956 Formal_Type :=
12957 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
12959 -- No need to continue if we already notified errors
12961 if No (Formal_Type) then
12962 return;
12963 end if;
12965 -- Ada 2005 (AI-254)
12967 declare
12968 AD : constant Node_Id :=
12969 Access_To_Subprogram_Definition
12970 (Parameter_Type (Param_Spec));
12971 begin
12972 if Present (AD) and then Protected_Present (AD) then
12973 Formal_Type :=
12974 Replace_Anonymous_Access_To_Protected_Subprogram
12975 (Param_Spec);
12976 end if;
12977 end;
12978 end if;
12980 Set_Etype (Formal, Formal_Type);
12982 -- Deal with default expression if present
12984 Default := Expression (Param_Spec);
12986 if Present (Default) then
12987 if Out_Present (Param_Spec) then
12988 Error_Msg_N
12989 ("default initialization only allowed for IN parameters",
12990 Param_Spec);
12991 end if;
12993 -- Do the special preanalysis of the expression (see section on
12994 -- "Handling of Default Expressions" in the spec of package Sem).
12996 Preanalyze_Formal_Expression (Default, Formal_Type);
12998 -- An access to constant cannot be the default for
12999 -- an access parameter that is an access to variable.
13001 if Ekind (Formal_Type) = E_Anonymous_Access_Type
13002 and then not Is_Access_Constant (Formal_Type)
13003 and then Is_Access_Type (Etype (Default))
13004 and then Is_Access_Constant (Etype (Default))
13005 then
13006 Error_Msg_N
13007 ("formal that is access to variable cannot be initialized "
13008 & "with an access-to-constant expression", Default);
13009 end if;
13011 -- Check that the designated type of an access parameter's default
13012 -- is not a class-wide type unless the parameter's designated type
13013 -- is also class-wide.
13015 if Ekind (Formal_Type) = E_Anonymous_Access_Type
13016 and then not Designates_From_Limited_With (Formal_Type)
13017 and then Is_Class_Wide_Default (Default)
13018 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
13019 then
13020 Error_Msg_N
13021 ("access to class-wide expression not allowed here", Default);
13022 end if;
13024 -- Check incorrect use of dynamically tagged expressions
13026 if Is_Tagged_Type (Formal_Type) then
13027 Check_Dynamically_Tagged_Expression
13028 (Expr => Default,
13029 Typ => Formal_Type,
13030 Related_Nod => Default);
13031 end if;
13032 end if;
13034 -- Ada 2005 (AI-231): Static checks
13036 if Ada_Version >= Ada_2005
13037 and then Is_Access_Type (Etype (Formal))
13038 and then Can_Never_Be_Null (Etype (Formal))
13039 then
13040 Null_Exclusion_Static_Checks (Param_Spec);
13041 end if;
13043 -- The following checks are relevant only when SPARK_Mode is on as
13044 -- these are not standard Ada legality rules.
13046 if SPARK_Mode = On then
13047 if Ekind (Scope (Formal)) in E_Function | E_Generic_Function then
13049 -- A function cannot have a parameter of mode IN OUT or OUT
13050 -- (SPARK RM 6.1).
13052 if Ekind (Formal) in E_In_Out_Parameter | E_Out_Parameter then
13053 Error_Msg_N
13054 ("function cannot have parameter of mode `OUT` or "
13055 & "`IN OUT`", Formal);
13056 end if;
13058 -- A procedure cannot have an effectively volatile formal
13059 -- parameter of mode IN because it behaves as a constant
13060 -- (SPARK RM 7.1.3(4)).
13062 elsif Ekind (Scope (Formal)) = E_Procedure
13063 and then Ekind (Formal) = E_In_Parameter
13064 and then Is_Effectively_Volatile (Formal)
13065 then
13066 Error_Msg_N
13067 ("formal parameter of mode `IN` cannot be volatile", Formal);
13068 end if;
13069 end if;
13071 -- Deal with aspects on formal parameters. Only Unreferenced is
13072 -- supported for the time being.
13074 if Has_Aspects (Param_Spec) then
13075 declare
13076 Aspect : Node_Id := First (Aspect_Specifications (Param_Spec));
13077 begin
13078 while Present (Aspect) loop
13079 if Chars (Identifier (Aspect)) = Name_Unreferenced then
13080 Set_Has_Pragma_Unreferenced (Formal);
13081 else
13082 Error_Msg_NE
13083 ("unsupported aspect& on parameter",
13084 Aspect, Identifier (Aspect));
13085 end if;
13087 Next (Aspect);
13088 end loop;
13089 end;
13090 end if;
13092 <<Continue>>
13093 Next (Param_Spec);
13094 end loop;
13096 -- If this is the formal part of a function specification, analyze the
13097 -- subtype mark in the context where the formals are visible but not
13098 -- yet usable, and may hide outer homographs.
13100 if Nkind (Related_Nod) = N_Function_Specification then
13101 Analyze_Return_Type (Related_Nod);
13102 end if;
13104 -- Now set the kind (mode) of each formal
13106 Param_Spec := First (T);
13107 while Present (Param_Spec) loop
13108 Formal := Defining_Identifier (Param_Spec);
13109 Set_Formal_Mode (Formal);
13111 if Ekind (Formal) = E_In_Parameter then
13112 Default := Expression (Param_Spec);
13114 if Present (Default) then
13115 Set_Default_Value (Formal, Default);
13117 if Is_Scalar_Type (Etype (Default)) then
13118 if Nkind (Parameter_Type (Param_Spec)) /=
13119 N_Access_Definition
13120 then
13121 Formal_Type := Entity (Parameter_Type (Param_Spec));
13122 else
13123 Formal_Type :=
13124 Access_Definition
13125 (Related_Nod, Parameter_Type (Param_Spec));
13126 end if;
13128 Apply_Scalar_Range_Check (Default, Formal_Type);
13129 end if;
13130 end if;
13132 elsif Ekind (Formal) = E_Out_Parameter then
13133 Num_Out_Params := Num_Out_Params + 1;
13135 if Num_Out_Params = 1 then
13136 First_Out_Param := Formal;
13137 end if;
13139 elsif Ekind (Formal) = E_In_Out_Parameter then
13140 Num_Out_Params := Num_Out_Params + 1;
13141 end if;
13143 -- Skip remaining processing if formal type was in error
13145 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
13146 goto Next_Parameter;
13147 end if;
13149 -- Force call by reference if aliased
13151 declare
13152 Conv : constant Convention_Id := Convention (Etype (Formal));
13153 begin
13154 if Is_Aliased (Formal) then
13155 Set_Mechanism (Formal, By_Reference);
13157 -- Warn if user asked this to be passed by copy
13159 if Conv = Convention_Ada_Pass_By_Copy then
13160 Error_Msg_N
13161 ("cannot pass aliased parameter & by copy??", Formal);
13162 end if;
13164 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
13166 elsif Conv = Convention_Ada_Pass_By_Copy then
13167 Set_Mechanism (Formal, By_Copy);
13169 elsif Conv = Convention_Ada_Pass_By_Reference then
13170 Set_Mechanism (Formal, By_Reference);
13171 end if;
13172 end;
13174 <<Next_Parameter>>
13175 Next (Param_Spec);
13176 end loop;
13178 if Present (First_Out_Param) and then Num_Out_Params = 1 then
13179 Set_Is_Only_Out_Parameter (First_Out_Param);
13180 end if;
13181 end Process_Formals;
13183 ----------------------------
13184 -- Reference_Body_Formals --
13185 ----------------------------
13187 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
13188 Fs : Entity_Id;
13189 Fb : Entity_Id;
13191 begin
13192 if Error_Posted (Spec) then
13193 return;
13194 end if;
13196 -- Iterate over both lists. They may be of different lengths if the two
13197 -- specs are not conformant.
13199 Fs := First_Formal (Spec);
13200 Fb := First_Formal (Bod);
13201 while Present (Fs) and then Present (Fb) loop
13202 Generate_Reference (Fs, Fb, 'b');
13204 if Style_Check then
13205 Style.Check_Identifier (Fb, Fs);
13206 end if;
13208 Set_Spec_Entity (Fb, Fs);
13209 Set_Referenced (Fs, False);
13210 Next_Formal (Fs);
13211 Next_Formal (Fb);
13212 end loop;
13213 end Reference_Body_Formals;
13215 -------------------------
13216 -- Set_Actual_Subtypes --
13217 -------------------------
13219 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
13220 Decl : Node_Id;
13221 Formal : Entity_Id;
13222 T : Entity_Id;
13223 First_Stmt : Node_Id := Empty;
13224 AS_Needed : Boolean;
13226 begin
13227 -- If this is an empty initialization procedure, no need to create
13228 -- actual subtypes (small optimization).
13230 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
13231 return;
13233 -- Within a predicate function we do not want to generate local
13234 -- subtypes that may generate nested predicate functions.
13236 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
13237 return;
13238 end if;
13240 -- The subtype declarations may freeze the formals. The body generated
13241 -- for an expression function is not a freeze point, so do not emit
13242 -- these declarations (small loss of efficiency in rare cases).
13244 if Nkind (N) = N_Subprogram_Body
13245 and then Was_Expression_Function (N)
13246 then
13247 return;
13248 end if;
13250 Formal := First_Formal (Subp);
13251 while Present (Formal) loop
13252 T := Etype (Formal);
13254 -- We never need an actual subtype for a constrained formal
13256 if Is_Constrained (T) then
13257 AS_Needed := False;
13259 -- If we have unknown discriminants, then we do not need an actual
13260 -- subtype, or more accurately we cannot figure it out. Note that
13261 -- all class-wide types have unknown discriminants.
13263 elsif Has_Unknown_Discriminants (T) then
13264 AS_Needed := False;
13266 -- At this stage we have an unconstrained type that may need an
13267 -- actual subtype. For sure the actual subtype is needed if we have
13268 -- an unconstrained array type. However, in an instance, the type
13269 -- may appear as a subtype of the full view, while the actual is
13270 -- in fact private (in which case no actual subtype is needed) so
13271 -- check the kind of the base type.
13273 elsif Is_Array_Type (Base_Type (T)) then
13274 AS_Needed := True;
13276 -- The only other case needing an actual subtype is an unconstrained
13277 -- record type which is an IN parameter (we cannot generate actual
13278 -- subtypes for the OUT or IN OUT case, since an assignment can
13279 -- change the discriminant values. However we exclude the case of
13280 -- initialization procedures, since discriminants are handled very
13281 -- specially in this context, see the section entitled "Handling of
13282 -- Discriminants" in Einfo.
13284 -- We also exclude the case of Discrim_SO_Functions (functions used
13285 -- in front-end layout mode for size/offset values), since in such
13286 -- functions only discriminants are referenced, and not only are such
13287 -- subtypes not needed, but they cannot always be generated, because
13288 -- of order of elaboration issues.
13290 elsif Is_Record_Type (T)
13291 and then Ekind (Formal) = E_In_Parameter
13292 and then Chars (Formal) /= Name_uInit
13293 and then not Is_Unchecked_Union (T)
13294 and then not Is_Discrim_SO_Function (Subp)
13295 then
13296 AS_Needed := True;
13298 -- All other cases do not need an actual subtype
13300 else
13301 AS_Needed := False;
13302 end if;
13304 -- Generate actual subtypes for unconstrained arrays and
13305 -- unconstrained discriminated records.
13307 if AS_Needed then
13308 if Nkind (N) = N_Accept_Statement then
13310 -- If expansion is active, the formal is replaced by a local
13311 -- variable that renames the corresponding entry of the
13312 -- parameter block, and it is this local variable that may
13313 -- require an actual subtype.
13315 if Expander_Active then
13316 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
13317 else
13318 Decl := Build_Actual_Subtype (T, Formal);
13319 end if;
13321 if Present (Handled_Statement_Sequence (N)) then
13322 First_Stmt :=
13323 First (Statements (Handled_Statement_Sequence (N)));
13324 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
13325 Mark_Rewrite_Insertion (Decl);
13326 else
13327 -- If the accept statement has no body, there will be no
13328 -- reference to the actuals, so no need to compute actual
13329 -- subtypes.
13331 return;
13332 end if;
13334 else
13335 Decl := Build_Actual_Subtype (T, Formal);
13336 Prepend (Decl, Declarations (N));
13337 Mark_Rewrite_Insertion (Decl);
13338 end if;
13340 -- The declaration uses the bounds of an existing object, and
13341 -- therefore needs no constraint checks.
13343 Analyze (Decl, Suppress => All_Checks);
13344 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
13346 -- We need to freeze manually the generated type when it is
13347 -- inserted anywhere else than in a declarative part.
13349 if Present (First_Stmt) then
13350 Insert_List_Before_And_Analyze (First_Stmt,
13351 Freeze_Entity (Defining_Identifier (Decl), N));
13353 -- Ditto if the type has a dynamic predicate, because the
13354 -- generated function will mention the actual subtype. The
13355 -- predicate may come from an explicit aspect of be inherited.
13357 elsif Has_Predicates (T) then
13358 Insert_List_After_And_Analyze (Decl,
13359 Freeze_Entity (Defining_Identifier (Decl), N));
13360 end if;
13362 if Nkind (N) = N_Accept_Statement
13363 and then Expander_Active
13364 then
13365 Set_Actual_Subtype (Renamed_Object (Formal),
13366 Defining_Identifier (Decl));
13367 else
13368 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
13369 end if;
13370 end if;
13372 Next_Formal (Formal);
13373 end loop;
13374 end Set_Actual_Subtypes;
13376 ---------------------
13377 -- Set_Formal_Mode --
13378 ---------------------
13380 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
13381 Spec : constant Node_Id := Parent (Formal_Id);
13382 Id : constant Entity_Id := Scope (Formal_Id);
13384 begin
13385 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
13386 -- since we ensure that corresponding actuals are always valid at the
13387 -- point of the call.
13389 if Out_Present (Spec) then
13390 if Is_Entry (Id)
13391 or else Is_Subprogram_Or_Generic_Subprogram (Id)
13392 then
13393 Set_Has_Out_Or_In_Out_Parameter (Id, True);
13394 end if;
13396 if Ekind (Id) in E_Function | E_Generic_Function then
13398 -- [IN] OUT parameters allowed for functions in Ada 2012
13400 if Ada_Version >= Ada_2012 then
13402 -- Even in Ada 2012 operators can only have IN parameters
13404 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
13405 Error_Msg_N ("operators can only have IN parameters", Spec);
13406 end if;
13408 if In_Present (Spec) then
13409 Mutate_Ekind (Formal_Id, E_In_Out_Parameter);
13410 else
13411 Mutate_Ekind (Formal_Id, E_Out_Parameter);
13412 end if;
13414 -- But not in earlier versions of Ada
13416 else
13417 Error_Msg_N ("functions can only have IN parameters", Spec);
13418 Mutate_Ekind (Formal_Id, E_In_Parameter);
13419 end if;
13421 elsif In_Present (Spec) then
13422 Mutate_Ekind (Formal_Id, E_In_Out_Parameter);
13424 else
13425 Mutate_Ekind (Formal_Id, E_Out_Parameter);
13426 Set_Is_True_Constant (Formal_Id, False);
13427 Set_Current_Value (Formal_Id, Empty);
13428 end if;
13430 else
13431 Mutate_Ekind (Formal_Id, E_In_Parameter);
13432 end if;
13434 Set_Is_Not_Self_Hidden (Formal_Id);
13436 -- Set Is_Known_Non_Null for access parameters since the language
13437 -- guarantees that access parameters are always non-null. We also set
13438 -- Can_Never_Be_Null, since there is no way to change the value.
13440 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
13442 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
13443 -- null; In Ada 2005, only if then null_exclusion is explicit.
13445 if Ada_Version < Ada_2005
13446 or else Can_Never_Be_Null (Etype (Formal_Id))
13447 then
13448 Set_Is_Known_Non_Null (Formal_Id);
13449 Set_Can_Never_Be_Null (Formal_Id);
13450 end if;
13452 -- Ada 2005 (AI-231): Null-exclusion access subtype
13454 elsif Is_Access_Type (Etype (Formal_Id))
13455 and then Can_Never_Be_Null (Etype (Formal_Id))
13456 then
13457 Set_Is_Known_Non_Null (Formal_Id);
13459 -- We can also set Can_Never_Be_Null (thus preventing some junk
13460 -- access checks) for the case of an IN parameter, which cannot
13461 -- be changed, or for an IN OUT parameter, which can be changed but
13462 -- not to a null value. But for an OUT parameter, the initial value
13463 -- passed in can be null, so we can't set this flag in that case.
13465 if Ekind (Formal_Id) /= E_Out_Parameter then
13466 Set_Can_Never_Be_Null (Formal_Id);
13467 end if;
13468 end if;
13470 Set_Mechanism (Formal_Id, Default_Mechanism);
13471 Set_Formal_Validity (Formal_Id);
13472 end Set_Formal_Mode;
13474 -------------------------
13475 -- Set_Formal_Validity --
13476 -------------------------
13478 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
13479 begin
13480 -- If no validity checking, then we cannot assume anything about the
13481 -- validity of parameters, since we do not know there is any checking
13482 -- of the validity on the call side.
13484 if not Validity_Checks_On then
13485 return;
13487 -- If validity checking for parameters is enabled, this means we are
13488 -- not supposed to make any assumptions about argument values.
13490 elsif Validity_Check_Parameters then
13491 return;
13493 -- If we are checking in parameters, we will assume that the caller is
13494 -- also checking parameters, so we can assume the parameter is valid.
13496 elsif Ekind (Formal_Id) = E_In_Parameter
13497 and then Validity_Check_In_Params
13498 then
13499 Set_Is_Known_Valid (Formal_Id, True);
13501 -- Similar treatment for IN OUT parameters
13503 elsif Ekind (Formal_Id) = E_In_Out_Parameter
13504 and then Validity_Check_In_Out_Params
13505 then
13506 Set_Is_Known_Valid (Formal_Id, True);
13507 end if;
13508 end Set_Formal_Validity;
13510 ------------------------
13511 -- Subtype_Conformant --
13512 ------------------------
13514 function Subtype_Conformant
13515 (New_Id : Entity_Id;
13516 Old_Id : Entity_Id;
13517 Skip_Controlling_Formals : Boolean := False) return Boolean
13519 Result : Boolean;
13520 begin
13521 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
13522 Skip_Controlling_Formals => Skip_Controlling_Formals);
13523 return Result;
13524 end Subtype_Conformant;
13526 ---------------------
13527 -- Type_Conformant --
13528 ---------------------
13530 function Type_Conformant
13531 (New_Id : Entity_Id;
13532 Old_Id : Entity_Id;
13533 Skip_Controlling_Formals : Boolean := False) return Boolean
13535 Result : Boolean;
13536 begin
13537 May_Hide_Profile := False;
13538 Check_Conformance
13539 (New_Id, Old_Id, Type_Conformant, False, Result,
13540 Skip_Controlling_Formals => Skip_Controlling_Formals);
13541 return Result;
13542 end Type_Conformant;
13544 -------------------------------
13545 -- Valid_Operator_Definition --
13546 -------------------------------
13548 procedure Valid_Operator_Definition (Designator : Entity_Id) is
13549 N : Integer := 0;
13550 F : Entity_Id;
13551 Id : constant Name_Id := Chars (Designator);
13552 N_OK : Boolean;
13554 begin
13555 F := First_Formal (Designator);
13556 while Present (F) loop
13557 N := N + 1;
13559 if Present (Default_Value (F)) then
13560 Error_Msg_N
13561 ("default values not allowed for operator parameters",
13562 Parent (F));
13564 -- For function instantiations that are operators, we must check
13565 -- separately that the corresponding generic only has in-parameters.
13566 -- For subprogram declarations this is done in Set_Formal_Mode. Such
13567 -- an error could not arise in earlier versions of the language.
13569 elsif Ekind (F) /= E_In_Parameter then
13570 Error_Msg_N ("operators can only have IN parameters", F);
13571 end if;
13573 Next_Formal (F);
13574 end loop;
13576 -- Verify that user-defined operators have proper number of arguments
13577 -- First case of operators which can only be unary
13579 if Id in Name_Op_Not | Name_Op_Abs then
13580 N_OK := (N = 1);
13582 -- Case of operators which can be unary or binary
13584 elsif Id in Name_Op_Add | Name_Op_Subtract then
13585 N_OK := (N in 1 .. 2);
13587 -- All other operators can only be binary
13589 else
13590 N_OK := (N = 2);
13591 end if;
13593 if not N_OK then
13594 Error_Msg_N
13595 ("incorrect number of arguments for operator", Designator);
13596 end if;
13598 if Id = Name_Op_Ne
13599 and then Base_Type (Etype (Designator)) = Standard_Boolean
13600 and then not Is_Intrinsic_Subprogram (Designator)
13601 then
13602 Error_Msg_N
13603 ("explicit definition of inequality not allowed", Designator);
13604 end if;
13605 end Valid_Operator_Definition;
13607 end Sem_Ch6;