Daily bump.
[official-gcc.git] / gcc / sched-deps.c
blob7efc9376a81107d7dd9098137090b70c91861d25
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h" /* FIXME: Used by call_may_noreturn_p. */
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "emit-rtl.h"
40 #include "sched-int.h"
41 #include "params.h"
42 #include "cselib.h"
43 #include "ira.h"
44 #include "target.h"
46 #ifdef INSN_SCHEDULING
48 #ifdef ENABLE_CHECKING
49 #define CHECK (true)
50 #else
51 #define CHECK (false)
52 #endif
54 /* Holds current parameters for the dependency analyzer. */
55 struct sched_deps_info_def *sched_deps_info;
57 /* The data is specific to the Haifa scheduler. */
58 vec<haifa_deps_insn_data_def>
59 h_d_i_d = vNULL;
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
74 gcc_assert (ds & DEP_ANTI);
76 return REG_DEP_ANTI;
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
83 switch (dk)
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
100 /* Functions to operate with dependence information container - dep_t. */
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
111 DEP_NONREG (dep) = 0;
112 DEP_MULTIPLE (dep) = 0;
113 DEP_REPLACE (dep) = NULL;
116 /* Init DEP with the arguments.
117 While most of the scheduler (including targets) only need the major type
118 of the dependency, it is convenient to hide full dep_status from them. */
119 void
120 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
122 ds_t ds;
124 if ((current_sched_info->flags & USE_DEPS_LIST))
125 ds = dk_to_ds (kind);
126 else
127 ds = 0;
129 init_dep_1 (dep, pro, con, kind, ds);
132 /* Make a copy of FROM in TO. */
133 static void
134 copy_dep (dep_t to, dep_t from)
136 memcpy (to, from, sizeof (*to));
139 static void dump_ds (FILE *, ds_t);
141 /* Define flags for dump_dep (). */
143 /* Dump producer of the dependence. */
144 #define DUMP_DEP_PRO (2)
146 /* Dump consumer of the dependence. */
147 #define DUMP_DEP_CON (4)
149 /* Dump type of the dependence. */
150 #define DUMP_DEP_TYPE (8)
152 /* Dump status of the dependence. */
153 #define DUMP_DEP_STATUS (16)
155 /* Dump all information about the dependence. */
156 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
157 |DUMP_DEP_STATUS)
159 /* Dump DEP to DUMP.
160 FLAGS is a bit mask specifying what information about DEP needs
161 to be printed.
162 If FLAGS has the very first bit set, then dump all information about DEP
163 and propagate this bit into the callee dump functions. */
164 static void
165 dump_dep (FILE *dump, dep_t dep, int flags)
167 if (flags & 1)
168 flags |= DUMP_DEP_ALL;
170 fprintf (dump, "<");
172 if (flags & DUMP_DEP_PRO)
173 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
175 if (flags & DUMP_DEP_CON)
176 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
178 if (flags & DUMP_DEP_TYPE)
180 char t;
181 enum reg_note type = DEP_TYPE (dep);
183 switch (type)
185 case REG_DEP_TRUE:
186 t = 't';
187 break;
189 case REG_DEP_OUTPUT:
190 t = 'o';
191 break;
193 case REG_DEP_CONTROL:
194 t = 'c';
195 break;
197 case REG_DEP_ANTI:
198 t = 'a';
199 break;
201 default:
202 gcc_unreachable ();
203 break;
206 fprintf (dump, "%c; ", t);
209 if (flags & DUMP_DEP_STATUS)
211 if (current_sched_info->flags & USE_DEPS_LIST)
212 dump_ds (dump, DEP_STATUS (dep));
215 fprintf (dump, ">");
218 /* Default flags for dump_dep (). */
219 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
221 /* Dump all fields of DEP to STDERR. */
222 void
223 sd_debug_dep (dep_t dep)
225 dump_dep (stderr, dep, 1);
226 fprintf (stderr, "\n");
229 /* Determine whether DEP is a dependency link of a non-debug insn on a
230 debug insn. */
232 static inline bool
233 depl_on_debug_p (dep_link_t dep)
235 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
236 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
239 /* Functions to operate with a single link from the dependencies lists -
240 dep_link_t. */
242 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
243 PREV_NEXT_P. */
244 static void
245 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
247 dep_link_t next = *prev_nextp;
249 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
250 && DEP_LINK_NEXT (l) == NULL);
252 /* Init node being inserted. */
253 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
254 DEP_LINK_NEXT (l) = next;
256 /* Fix next node. */
257 if (next != NULL)
259 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
261 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
264 /* Fix prev node. */
265 *prev_nextp = l;
268 /* Add dep_link LINK to deps_list L. */
269 static void
270 add_to_deps_list (dep_link_t link, deps_list_t l)
272 attach_dep_link (link, &DEPS_LIST_FIRST (l));
274 /* Don't count debug deps. */
275 if (!depl_on_debug_p (link))
276 ++DEPS_LIST_N_LINKS (l);
279 /* Detach dep_link L from the list. */
280 static void
281 detach_dep_link (dep_link_t l)
283 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
284 dep_link_t next = DEP_LINK_NEXT (l);
286 *prev_nextp = next;
288 if (next != NULL)
289 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
291 DEP_LINK_PREV_NEXTP (l) = NULL;
292 DEP_LINK_NEXT (l) = NULL;
295 /* Remove link LINK from list LIST. */
296 static void
297 remove_from_deps_list (dep_link_t link, deps_list_t list)
299 detach_dep_link (link);
301 /* Don't count debug deps. */
302 if (!depl_on_debug_p (link))
303 --DEPS_LIST_N_LINKS (list);
306 /* Move link LINK from list FROM to list TO. */
307 static void
308 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
310 remove_from_deps_list (link, from);
311 add_to_deps_list (link, to);
314 /* Return true of LINK is not attached to any list. */
315 static bool
316 dep_link_is_detached_p (dep_link_t link)
318 return DEP_LINK_PREV_NEXTP (link) == NULL;
321 /* Pool to hold all dependency nodes (dep_node_t). */
322 static alloc_pool dn_pool;
324 /* Number of dep_nodes out there. */
325 static int dn_pool_diff = 0;
327 /* Create a dep_node. */
328 static dep_node_t
329 create_dep_node (void)
331 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
332 dep_link_t back = DEP_NODE_BACK (n);
333 dep_link_t forw = DEP_NODE_FORW (n);
335 DEP_LINK_NODE (back) = n;
336 DEP_LINK_NEXT (back) = NULL;
337 DEP_LINK_PREV_NEXTP (back) = NULL;
339 DEP_LINK_NODE (forw) = n;
340 DEP_LINK_NEXT (forw) = NULL;
341 DEP_LINK_PREV_NEXTP (forw) = NULL;
343 ++dn_pool_diff;
345 return n;
348 /* Delete dep_node N. N must not be connected to any deps_list. */
349 static void
350 delete_dep_node (dep_node_t n)
352 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
353 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
355 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
357 --dn_pool_diff;
359 pool_free (dn_pool, n);
362 /* Pool to hold dependencies lists (deps_list_t). */
363 static alloc_pool dl_pool;
365 /* Number of deps_lists out there. */
366 static int dl_pool_diff = 0;
368 /* Functions to operate with dependences lists - deps_list_t. */
370 /* Return true if list L is empty. */
371 static bool
372 deps_list_empty_p (deps_list_t l)
374 return DEPS_LIST_N_LINKS (l) == 0;
377 /* Create a new deps_list. */
378 static deps_list_t
379 create_deps_list (void)
381 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
383 DEPS_LIST_FIRST (l) = NULL;
384 DEPS_LIST_N_LINKS (l) = 0;
386 ++dl_pool_diff;
387 return l;
390 /* Free deps_list L. */
391 static void
392 free_deps_list (deps_list_t l)
394 gcc_assert (deps_list_empty_p (l));
396 --dl_pool_diff;
398 pool_free (dl_pool, l);
401 /* Return true if there is no dep_nodes and deps_lists out there.
402 After the region is scheduled all the dependency nodes and lists
403 should [generally] be returned to pool. */
404 bool
405 deps_pools_are_empty_p (void)
407 return dn_pool_diff == 0 && dl_pool_diff == 0;
410 /* Remove all elements from L. */
411 static void
412 clear_deps_list (deps_list_t l)
416 dep_link_t link = DEPS_LIST_FIRST (l);
418 if (link == NULL)
419 break;
421 remove_from_deps_list (link, l);
423 while (1);
426 /* Decide whether a dependency should be treated as a hard or a speculative
427 dependency. */
428 static bool
429 dep_spec_p (dep_t dep)
431 if (current_sched_info->flags & DO_SPECULATION)
433 if (DEP_STATUS (dep) & SPECULATIVE)
434 return true;
436 if (current_sched_info->flags & DO_PREDICATION)
438 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
439 return true;
441 if (DEP_REPLACE (dep) != NULL)
442 return true;
443 return false;
446 static regset reg_pending_sets;
447 static regset reg_pending_clobbers;
448 static regset reg_pending_uses;
449 static regset reg_pending_control_uses;
450 static enum reg_pending_barrier_mode reg_pending_barrier;
452 /* Hard registers implicitly clobbered or used (or may be implicitly
453 clobbered or used) by the currently analyzed insn. For example,
454 insn in its constraint has one register class. Even if there is
455 currently no hard register in the insn, the particular hard
456 register will be in the insn after reload pass because the
457 constraint requires it. */
458 static HARD_REG_SET implicit_reg_pending_clobbers;
459 static HARD_REG_SET implicit_reg_pending_uses;
461 /* To speed up the test for duplicate dependency links we keep a
462 record of dependencies created by add_dependence when the average
463 number of instructions in a basic block is very large.
465 Studies have shown that there is typically around 5 instructions between
466 branches for typical C code. So we can make a guess that the average
467 basic block is approximately 5 instructions long; we will choose 100X
468 the average size as a very large basic block.
470 Each insn has associated bitmaps for its dependencies. Each bitmap
471 has enough entries to represent a dependency on any other insn in
472 the insn chain. All bitmap for true dependencies cache is
473 allocated then the rest two ones are also allocated. */
474 static bitmap_head *true_dependency_cache = NULL;
475 static bitmap_head *output_dependency_cache = NULL;
476 static bitmap_head *anti_dependency_cache = NULL;
477 static bitmap_head *control_dependency_cache = NULL;
478 static bitmap_head *spec_dependency_cache = NULL;
479 static int cache_size;
481 /* True if we should mark added dependencies as a non-register deps. */
482 static bool mark_as_hard;
484 static int deps_may_trap_p (const_rtx);
485 static void add_dependence_1 (rtx, rtx, enum reg_note);
486 static void add_dependence_list (rtx, rtx, int, enum reg_note, bool);
487 static void add_dependence_list_and_free (struct deps_desc *, rtx,
488 rtx *, int, enum reg_note, bool);
489 static void delete_all_dependences (rtx);
490 static void chain_to_prev_insn (rtx);
492 static void flush_pending_lists (struct deps_desc *, rtx, int, int);
493 static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
494 static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
495 static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
497 static bool sched_has_condition_p (const_rtx);
498 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
500 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
501 rtx, rtx);
502 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
504 #ifdef ENABLE_CHECKING
505 static void check_dep (dep_t, bool);
506 #endif
508 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
510 static int
511 deps_may_trap_p (const_rtx mem)
513 const_rtx addr = XEXP (mem, 0);
515 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
517 const_rtx t = get_reg_known_value (REGNO (addr));
518 if (t)
519 addr = t;
521 return rtx_addr_can_trap_p (addr);
525 /* Find the condition under which INSN is executed. If REV is not NULL,
526 it is set to TRUE when the returned comparison should be reversed
527 to get the actual condition. */
528 static rtx
529 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
531 rtx pat = PATTERN (insn);
532 rtx src;
534 if (rev)
535 *rev = false;
537 if (GET_CODE (pat) == COND_EXEC)
538 return COND_EXEC_TEST (pat);
540 if (!any_condjump_p (insn) || !onlyjump_p (insn))
541 return 0;
543 src = SET_SRC (pc_set (insn));
545 if (XEXP (src, 2) == pc_rtx)
546 return XEXP (src, 0);
547 else if (XEXP (src, 1) == pc_rtx)
549 rtx cond = XEXP (src, 0);
550 enum rtx_code revcode = reversed_comparison_code (cond, insn);
552 if (revcode == UNKNOWN)
553 return 0;
555 if (rev)
556 *rev = true;
557 return cond;
560 return 0;
563 /* Return the condition under which INSN does not execute (i.e. the
564 not-taken condition for a conditional branch), or NULL if we cannot
565 find such a condition. The caller should make a copy of the condition
566 before using it. */
568 sched_get_reverse_condition_uncached (const_rtx insn)
570 bool rev;
571 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
572 if (cond == NULL_RTX)
573 return cond;
574 if (!rev)
576 enum rtx_code revcode = reversed_comparison_code (cond, insn);
577 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
578 XEXP (cond, 0),
579 XEXP (cond, 1));
581 return cond;
584 /* Caching variant of sched_get_condition_with_rev_uncached.
585 We only do actual work the first time we come here for an insn; the
586 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
587 static rtx
588 sched_get_condition_with_rev (const_rtx insn, bool *rev)
590 bool tmp;
592 if (INSN_LUID (insn) == 0)
593 return sched_get_condition_with_rev_uncached (insn, rev);
595 if (INSN_CACHED_COND (insn) == const_true_rtx)
596 return NULL_RTX;
598 if (INSN_CACHED_COND (insn) != NULL_RTX)
600 if (rev)
601 *rev = INSN_REVERSE_COND (insn);
602 return INSN_CACHED_COND (insn);
605 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
606 INSN_REVERSE_COND (insn) = tmp;
608 if (INSN_CACHED_COND (insn) == NULL_RTX)
610 INSN_CACHED_COND (insn) = const_true_rtx;
611 return NULL_RTX;
614 if (rev)
615 *rev = INSN_REVERSE_COND (insn);
616 return INSN_CACHED_COND (insn);
619 /* True when we can find a condition under which INSN is executed. */
620 static bool
621 sched_has_condition_p (const_rtx insn)
623 return !! sched_get_condition_with_rev (insn, NULL);
628 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
629 static int
630 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
632 if (COMPARISON_P (cond1)
633 && COMPARISON_P (cond2)
634 && GET_CODE (cond1) ==
635 (rev1==rev2
636 ? reversed_comparison_code (cond2, NULL)
637 : GET_CODE (cond2))
638 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
639 && XEXP (cond1, 1) == XEXP (cond2, 1))
640 return 1;
641 return 0;
644 /* Return true if insn1 and insn2 can never depend on one another because
645 the conditions under which they are executed are mutually exclusive. */
646 bool
647 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
649 rtx cond1, cond2;
650 bool rev1 = false, rev2 = false;
652 /* df doesn't handle conditional lifetimes entirely correctly;
653 calls mess up the conditional lifetimes. */
654 if (!CALL_P (insn1) && !CALL_P (insn2))
656 cond1 = sched_get_condition_with_rev (insn1, &rev1);
657 cond2 = sched_get_condition_with_rev (insn2, &rev2);
658 if (cond1 && cond2
659 && conditions_mutex_p (cond1, cond2, rev1, rev2)
660 /* Make sure first instruction doesn't affect condition of second
661 instruction if switched. */
662 && !modified_in_p (cond1, insn2)
663 /* Make sure second instruction doesn't affect condition of first
664 instruction if switched. */
665 && !modified_in_p (cond2, insn1))
666 return true;
668 return false;
672 /* Return true if INSN can potentially be speculated with type DS. */
673 bool
674 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
676 if (HAS_INTERNAL_DEP (insn))
677 return false;
679 if (!NONJUMP_INSN_P (insn))
680 return false;
682 if (SCHED_GROUP_P (insn))
683 return false;
685 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
686 return false;
688 if (side_effects_p (PATTERN (insn)))
689 return false;
691 if (ds & BE_IN_SPEC)
692 /* The following instructions, which depend on a speculatively scheduled
693 instruction, cannot be speculatively scheduled along. */
695 if (may_trap_or_fault_p (PATTERN (insn)))
696 /* If instruction might fault, it cannot be speculatively scheduled.
697 For control speculation it's obvious why and for data speculation
698 it's because the insn might get wrong input if speculation
699 wasn't successful. */
700 return false;
702 if ((ds & BE_IN_DATA)
703 && sched_has_condition_p (insn))
704 /* If this is a predicated instruction, then it cannot be
705 speculatively scheduled. See PR35659. */
706 return false;
709 return true;
712 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
713 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
714 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
715 This function is used to switch sd_iterator to the next list.
716 !!! For internal use only. Might consider moving it to sched-int.h. */
717 void
718 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
719 deps_list_t *list_ptr, bool *resolved_p_ptr)
721 sd_list_types_def types = *types_ptr;
723 if (types & SD_LIST_HARD_BACK)
725 *list_ptr = INSN_HARD_BACK_DEPS (insn);
726 *resolved_p_ptr = false;
727 *types_ptr = types & ~SD_LIST_HARD_BACK;
729 else if (types & SD_LIST_SPEC_BACK)
731 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
732 *resolved_p_ptr = false;
733 *types_ptr = types & ~SD_LIST_SPEC_BACK;
735 else if (types & SD_LIST_FORW)
737 *list_ptr = INSN_FORW_DEPS (insn);
738 *resolved_p_ptr = false;
739 *types_ptr = types & ~SD_LIST_FORW;
741 else if (types & SD_LIST_RES_BACK)
743 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
744 *resolved_p_ptr = true;
745 *types_ptr = types & ~SD_LIST_RES_BACK;
747 else if (types & SD_LIST_RES_FORW)
749 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
750 *resolved_p_ptr = true;
751 *types_ptr = types & ~SD_LIST_RES_FORW;
753 else
755 *list_ptr = NULL;
756 *resolved_p_ptr = false;
757 *types_ptr = SD_LIST_NONE;
761 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
763 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
765 int size = 0;
767 while (list_types != SD_LIST_NONE)
769 deps_list_t list;
770 bool resolved_p;
772 sd_next_list (insn, &list_types, &list, &resolved_p);
773 if (list)
774 size += DEPS_LIST_N_LINKS (list);
777 return size;
780 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
782 bool
783 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
785 while (list_types != SD_LIST_NONE)
787 deps_list_t list;
788 bool resolved_p;
790 sd_next_list (insn, &list_types, &list, &resolved_p);
791 if (!deps_list_empty_p (list))
792 return false;
795 return true;
798 /* Initialize data for INSN. */
799 void
800 sd_init_insn (rtx insn)
802 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
803 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
804 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
805 INSN_FORW_DEPS (insn) = create_deps_list ();
806 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
808 /* ??? It would be nice to allocate dependency caches here. */
811 /* Free data for INSN. */
812 void
813 sd_finish_insn (rtx insn)
815 /* ??? It would be nice to deallocate dependency caches here. */
817 free_deps_list (INSN_HARD_BACK_DEPS (insn));
818 INSN_HARD_BACK_DEPS (insn) = NULL;
820 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
821 INSN_SPEC_BACK_DEPS (insn) = NULL;
823 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
824 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
826 free_deps_list (INSN_FORW_DEPS (insn));
827 INSN_FORW_DEPS (insn) = NULL;
829 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
830 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
833 /* Find a dependency between producer PRO and consumer CON.
834 Search through resolved dependency lists if RESOLVED_P is true.
835 If no such dependency is found return NULL,
836 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
837 with an iterator pointing to it. */
838 static dep_t
839 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
840 sd_iterator_def *sd_it_ptr)
842 sd_list_types_def pro_list_type;
843 sd_list_types_def con_list_type;
844 sd_iterator_def sd_it;
845 dep_t dep;
846 bool found_p = false;
848 if (resolved_p)
850 pro_list_type = SD_LIST_RES_FORW;
851 con_list_type = SD_LIST_RES_BACK;
853 else
855 pro_list_type = SD_LIST_FORW;
856 con_list_type = SD_LIST_BACK;
859 /* Walk through either back list of INSN or forw list of ELEM
860 depending on which one is shorter. */
861 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
863 /* Find the dep_link with producer PRO in consumer's back_deps. */
864 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
865 if (DEP_PRO (dep) == pro)
867 found_p = true;
868 break;
871 else
873 /* Find the dep_link with consumer CON in producer's forw_deps. */
874 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
875 if (DEP_CON (dep) == con)
877 found_p = true;
878 break;
882 if (found_p)
884 if (sd_it_ptr != NULL)
885 *sd_it_ptr = sd_it;
887 return dep;
890 return NULL;
893 /* Find a dependency between producer PRO and consumer CON.
894 Use dependency [if available] to check if dependency is present at all.
895 Search through resolved dependency lists if RESOLVED_P is true.
896 If the dependency or NULL if none found. */
897 dep_t
898 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
900 if (true_dependency_cache != NULL)
901 /* Avoiding the list walk below can cut compile times dramatically
902 for some code. */
904 int elem_luid = INSN_LUID (pro);
905 int insn_luid = INSN_LUID (con);
907 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
908 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
909 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
910 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
911 return NULL;
914 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
917 /* Add or update a dependence described by DEP.
918 MEM1 and MEM2, if non-null, correspond to memory locations in case of
919 data speculation.
921 The function returns a value indicating if an old entry has been changed
922 or a new entry has been added to insn's backward deps.
924 This function merely checks if producer and consumer is the same insn
925 and doesn't create a dep in this case. Actual manipulation of
926 dependence data structures is performed in add_or_update_dep_1. */
927 static enum DEPS_ADJUST_RESULT
928 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
930 rtx elem = DEP_PRO (dep);
931 rtx insn = DEP_CON (dep);
933 gcc_assert (INSN_P (insn) && INSN_P (elem));
935 /* Don't depend an insn on itself. */
936 if (insn == elem)
938 if (sched_deps_info->generate_spec_deps)
939 /* INSN has an internal dependence, which we can't overcome. */
940 HAS_INTERNAL_DEP (insn) = 1;
942 return DEP_NODEP;
945 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
948 /* Ask dependency caches what needs to be done for dependence DEP.
949 Return DEP_CREATED if new dependence should be created and there is no
950 need to try to find one searching the dependencies lists.
951 Return DEP_PRESENT if there already is a dependence described by DEP and
952 hence nothing is to be done.
953 Return DEP_CHANGED if there already is a dependence, but it should be
954 updated to incorporate additional information from DEP. */
955 static enum DEPS_ADJUST_RESULT
956 ask_dependency_caches (dep_t dep)
958 int elem_luid = INSN_LUID (DEP_PRO (dep));
959 int insn_luid = INSN_LUID (DEP_CON (dep));
961 gcc_assert (true_dependency_cache != NULL
962 && output_dependency_cache != NULL
963 && anti_dependency_cache != NULL
964 && control_dependency_cache != NULL);
966 if (!(current_sched_info->flags & USE_DEPS_LIST))
968 enum reg_note present_dep_type;
970 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
971 present_dep_type = REG_DEP_TRUE;
972 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
973 present_dep_type = REG_DEP_OUTPUT;
974 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
975 present_dep_type = REG_DEP_ANTI;
976 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
977 present_dep_type = REG_DEP_CONTROL;
978 else
979 /* There is no existing dep so it should be created. */
980 return DEP_CREATED;
982 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
983 /* DEP does not add anything to the existing dependence. */
984 return DEP_PRESENT;
986 else
988 ds_t present_dep_types = 0;
990 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
991 present_dep_types |= DEP_TRUE;
992 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
993 present_dep_types |= DEP_OUTPUT;
994 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
995 present_dep_types |= DEP_ANTI;
996 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
997 present_dep_types |= DEP_CONTROL;
999 if (present_dep_types == 0)
1000 /* There is no existing dep so it should be created. */
1001 return DEP_CREATED;
1003 if (!(current_sched_info->flags & DO_SPECULATION)
1004 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
1006 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
1007 == present_dep_types)
1008 /* DEP does not add anything to the existing dependence. */
1009 return DEP_PRESENT;
1011 else
1013 /* Only true dependencies can be data speculative and
1014 only anti dependencies can be control speculative. */
1015 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1016 == present_dep_types);
1018 /* if (DEP is SPECULATIVE) then
1019 ..we should update DEP_STATUS
1020 else
1021 ..we should reset existing dep to non-speculative. */
1025 return DEP_CHANGED;
1028 /* Set dependency caches according to DEP. */
1029 static void
1030 set_dependency_caches (dep_t dep)
1032 int elem_luid = INSN_LUID (DEP_PRO (dep));
1033 int insn_luid = INSN_LUID (DEP_CON (dep));
1035 if (!(current_sched_info->flags & USE_DEPS_LIST))
1037 switch (DEP_TYPE (dep))
1039 case REG_DEP_TRUE:
1040 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1041 break;
1043 case REG_DEP_OUTPUT:
1044 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1045 break;
1047 case REG_DEP_ANTI:
1048 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1049 break;
1051 case REG_DEP_CONTROL:
1052 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1053 break;
1055 default:
1056 gcc_unreachable ();
1059 else
1061 ds_t ds = DEP_STATUS (dep);
1063 if (ds & DEP_TRUE)
1064 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1065 if (ds & DEP_OUTPUT)
1066 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1067 if (ds & DEP_ANTI)
1068 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1069 if (ds & DEP_CONTROL)
1070 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1072 if (ds & SPECULATIVE)
1074 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1075 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1080 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1081 caches accordingly. */
1082 static void
1083 update_dependency_caches (dep_t dep, enum reg_note old_type)
1085 int elem_luid = INSN_LUID (DEP_PRO (dep));
1086 int insn_luid = INSN_LUID (DEP_CON (dep));
1088 /* Clear corresponding cache entry because type of the link
1089 may have changed. Keep them if we use_deps_list. */
1090 if (!(current_sched_info->flags & USE_DEPS_LIST))
1092 switch (old_type)
1094 case REG_DEP_OUTPUT:
1095 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1096 break;
1098 case REG_DEP_ANTI:
1099 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1100 break;
1102 case REG_DEP_CONTROL:
1103 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1104 break;
1106 default:
1107 gcc_unreachable ();
1111 set_dependency_caches (dep);
1114 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1115 static void
1116 change_spec_dep_to_hard (sd_iterator_def sd_it)
1118 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1119 dep_link_t link = DEP_NODE_BACK (node);
1120 dep_t dep = DEP_NODE_DEP (node);
1121 rtx elem = DEP_PRO (dep);
1122 rtx insn = DEP_CON (dep);
1124 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1126 DEP_STATUS (dep) &= ~SPECULATIVE;
1128 if (true_dependency_cache != NULL)
1129 /* Clear the cache entry. */
1130 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1131 INSN_LUID (elem));
1134 /* Update DEP to incorporate information from NEW_DEP.
1135 SD_IT points to DEP in case it should be moved to another list.
1136 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1137 data-speculative dependence should be updated. */
1138 static enum DEPS_ADJUST_RESULT
1139 update_dep (dep_t dep, dep_t new_dep,
1140 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1141 rtx mem1 ATTRIBUTE_UNUSED,
1142 rtx mem2 ATTRIBUTE_UNUSED)
1144 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1145 enum reg_note old_type = DEP_TYPE (dep);
1146 bool was_spec = dep_spec_p (dep);
1148 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1149 DEP_MULTIPLE (dep) = 1;
1151 /* If this is a more restrictive type of dependence than the
1152 existing one, then change the existing dependence to this
1153 type. */
1154 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1156 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1157 res = DEP_CHANGED;
1160 if (current_sched_info->flags & USE_DEPS_LIST)
1161 /* Update DEP_STATUS. */
1163 ds_t dep_status = DEP_STATUS (dep);
1164 ds_t ds = DEP_STATUS (new_dep);
1165 ds_t new_status = ds | dep_status;
1167 if (new_status & SPECULATIVE)
1169 /* Either existing dep or a dep we're adding or both are
1170 speculative. */
1171 if (!(ds & SPECULATIVE)
1172 || !(dep_status & SPECULATIVE))
1173 /* The new dep can't be speculative. */
1174 new_status &= ~SPECULATIVE;
1175 else
1177 /* Both are speculative. Merge probabilities. */
1178 if (mem1 != NULL)
1180 dw_t dw;
1182 dw = estimate_dep_weak (mem1, mem2);
1183 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1186 new_status = ds_merge (dep_status, ds);
1190 ds = new_status;
1192 if (dep_status != ds)
1194 DEP_STATUS (dep) = ds;
1195 res = DEP_CHANGED;
1199 if (was_spec && !dep_spec_p (dep))
1200 /* The old dep was speculative, but now it isn't. */
1201 change_spec_dep_to_hard (sd_it);
1203 if (true_dependency_cache != NULL
1204 && res == DEP_CHANGED)
1205 update_dependency_caches (dep, old_type);
1207 return res;
1210 /* Add or update a dependence described by DEP.
1211 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1212 data speculation.
1214 The function returns a value indicating if an old entry has been changed
1215 or a new entry has been added to insn's backward deps or nothing has
1216 been updated at all. */
1217 static enum DEPS_ADJUST_RESULT
1218 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1219 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1221 bool maybe_present_p = true;
1222 bool present_p = false;
1224 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1225 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1227 #ifdef ENABLE_CHECKING
1228 check_dep (new_dep, mem1 != NULL);
1229 #endif
1231 if (true_dependency_cache != NULL)
1233 switch (ask_dependency_caches (new_dep))
1235 case DEP_PRESENT:
1236 return DEP_PRESENT;
1238 case DEP_CHANGED:
1239 maybe_present_p = true;
1240 present_p = true;
1241 break;
1243 case DEP_CREATED:
1244 maybe_present_p = false;
1245 present_p = false;
1246 break;
1248 default:
1249 gcc_unreachable ();
1250 break;
1254 /* Check that we don't already have this dependence. */
1255 if (maybe_present_p)
1257 dep_t present_dep;
1258 sd_iterator_def sd_it;
1260 gcc_assert (true_dependency_cache == NULL || present_p);
1262 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1263 DEP_CON (new_dep),
1264 resolved_p, &sd_it);
1266 if (present_dep != NULL)
1267 /* We found an existing dependency between ELEM and INSN. */
1268 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1269 else
1270 /* We didn't find a dep, it shouldn't present in the cache. */
1271 gcc_assert (!present_p);
1274 /* Might want to check one level of transitivity to save conses.
1275 This check should be done in maybe_add_or_update_dep_1.
1276 Since we made it to add_or_update_dep_1, we must create
1277 (or update) a link. */
1279 if (mem1 != NULL_RTX)
1281 gcc_assert (sched_deps_info->generate_spec_deps);
1282 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1283 estimate_dep_weak (mem1, mem2));
1286 sd_add_dep (new_dep, resolved_p);
1288 return DEP_CREATED;
1291 /* Initialize BACK_LIST_PTR with consumer's backward list and
1292 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1293 initialize with lists that hold resolved deps. */
1294 static void
1295 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1296 deps_list_t *back_list_ptr,
1297 deps_list_t *forw_list_ptr)
1299 rtx con = DEP_CON (dep);
1301 if (!resolved_p)
1303 if (dep_spec_p (dep))
1304 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1305 else
1306 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1308 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1310 else
1312 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1313 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1317 /* Add dependence described by DEP.
1318 If RESOLVED_P is true treat the dependence as a resolved one. */
1319 void
1320 sd_add_dep (dep_t dep, bool resolved_p)
1322 dep_node_t n = create_dep_node ();
1323 deps_list_t con_back_deps;
1324 deps_list_t pro_forw_deps;
1325 rtx elem = DEP_PRO (dep);
1326 rtx insn = DEP_CON (dep);
1328 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1330 if ((current_sched_info->flags & DO_SPECULATION) == 0
1331 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1332 DEP_STATUS (dep) &= ~SPECULATIVE;
1334 copy_dep (DEP_NODE_DEP (n), dep);
1336 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1338 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1340 #ifdef ENABLE_CHECKING
1341 check_dep (dep, false);
1342 #endif
1344 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1346 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1347 in the bitmap caches of dependency information. */
1348 if (true_dependency_cache != NULL)
1349 set_dependency_caches (dep);
1352 /* Add or update backward dependence between INSN and ELEM
1353 with given type DEP_TYPE and dep_status DS.
1354 This function is a convenience wrapper. */
1355 enum DEPS_ADJUST_RESULT
1356 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1358 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1361 /* Resolved dependence pointed to by SD_IT.
1362 SD_IT will advance to the next element. */
1363 void
1364 sd_resolve_dep (sd_iterator_def sd_it)
1366 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1367 dep_t dep = DEP_NODE_DEP (node);
1368 rtx pro = DEP_PRO (dep);
1369 rtx con = DEP_CON (dep);
1371 if (dep_spec_p (dep))
1372 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1373 INSN_RESOLVED_BACK_DEPS (con));
1374 else
1375 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1376 INSN_RESOLVED_BACK_DEPS (con));
1378 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1379 INSN_RESOLVED_FORW_DEPS (pro));
1382 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1383 pointed to by SD_IT to unresolved state. */
1384 void
1385 sd_unresolve_dep (sd_iterator_def sd_it)
1387 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1388 dep_t dep = DEP_NODE_DEP (node);
1389 rtx pro = DEP_PRO (dep);
1390 rtx con = DEP_CON (dep);
1392 if (dep_spec_p (dep))
1393 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1394 INSN_SPEC_BACK_DEPS (con));
1395 else
1396 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1397 INSN_HARD_BACK_DEPS (con));
1399 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1400 INSN_FORW_DEPS (pro));
1403 /* Make TO depend on all the FROM's producers.
1404 If RESOLVED_P is true add dependencies to the resolved lists. */
1405 void
1406 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1408 sd_list_types_def list_type;
1409 sd_iterator_def sd_it;
1410 dep_t dep;
1412 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1414 FOR_EACH_DEP (from, list_type, sd_it, dep)
1416 dep_def _new_dep, *new_dep = &_new_dep;
1418 copy_dep (new_dep, dep);
1419 DEP_CON (new_dep) = to;
1420 sd_add_dep (new_dep, resolved_p);
1424 /* Remove a dependency referred to by SD_IT.
1425 SD_IT will point to the next dependence after removal. */
1426 void
1427 sd_delete_dep (sd_iterator_def sd_it)
1429 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1430 dep_t dep = DEP_NODE_DEP (n);
1431 rtx pro = DEP_PRO (dep);
1432 rtx con = DEP_CON (dep);
1433 deps_list_t con_back_deps;
1434 deps_list_t pro_forw_deps;
1436 if (true_dependency_cache != NULL)
1438 int elem_luid = INSN_LUID (pro);
1439 int insn_luid = INSN_LUID (con);
1441 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1442 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1443 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1444 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1446 if (current_sched_info->flags & DO_SPECULATION)
1447 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1450 get_back_and_forw_lists (dep, sd_it.resolved_p,
1451 &con_back_deps, &pro_forw_deps);
1453 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1454 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1456 delete_dep_node (n);
1459 /* Dump size of the lists. */
1460 #define DUMP_LISTS_SIZE (2)
1462 /* Dump dependencies of the lists. */
1463 #define DUMP_LISTS_DEPS (4)
1465 /* Dump all information about the lists. */
1466 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1468 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1469 FLAGS is a bit mask specifying what information about the lists needs
1470 to be printed.
1471 If FLAGS has the very first bit set, then dump all information about
1472 the lists and propagate this bit into the callee dump functions. */
1473 static void
1474 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1476 sd_iterator_def sd_it;
1477 dep_t dep;
1478 int all;
1480 all = (flags & 1);
1482 if (all)
1483 flags |= DUMP_LISTS_ALL;
1485 fprintf (dump, "[");
1487 if (flags & DUMP_LISTS_SIZE)
1488 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1490 if (flags & DUMP_LISTS_DEPS)
1492 FOR_EACH_DEP (insn, types, sd_it, dep)
1494 dump_dep (dump, dep, dump_dep_flags | all);
1495 fprintf (dump, " ");
1500 /* Dump all information about deps_lists of INSN specified by TYPES
1501 to STDERR. */
1502 void
1503 sd_debug_lists (rtx insn, sd_list_types_def types)
1505 dump_lists (stderr, insn, types, 1);
1506 fprintf (stderr, "\n");
1509 /* A wrapper around add_dependence_1, to add a dependence of CON on
1510 PRO, with type DEP_TYPE. This function implements special handling
1511 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1512 the type to REG_DEP_ANTI if we can determine that predication is
1513 impossible; otherwise we add additional true dependencies on the
1514 INSN_COND_DEPS list of the jump (which PRO must be). */
1515 void
1516 add_dependence (rtx con, rtx pro, enum reg_note dep_type)
1518 if (dep_type == REG_DEP_CONTROL
1519 && !(current_sched_info->flags & DO_PREDICATION))
1520 dep_type = REG_DEP_ANTI;
1522 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1523 so we must also make the insn dependent on the setter of the
1524 condition. */
1525 if (dep_type == REG_DEP_CONTROL)
1527 rtx real_pro = pro;
1528 rtx other = real_insn_for_shadow (real_pro);
1529 rtx cond;
1531 if (other != NULL_RTX)
1532 real_pro = other;
1533 cond = sched_get_reverse_condition_uncached (real_pro);
1534 /* Verify that the insn does not use a different value in
1535 the condition register than the one that was present at
1536 the jump. */
1537 if (cond == NULL_RTX)
1538 dep_type = REG_DEP_ANTI;
1539 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1541 HARD_REG_SET uses;
1542 CLEAR_HARD_REG_SET (uses);
1543 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1544 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1545 dep_type = REG_DEP_ANTI;
1547 if (dep_type == REG_DEP_CONTROL)
1549 if (sched_verbose >= 5)
1550 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1551 INSN_UID (real_pro));
1552 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1553 REG_DEP_TRUE, false);
1557 add_dependence_1 (con, pro, dep_type);
1560 /* A convenience wrapper to operate on an entire list. HARD should be
1561 true if DEP_NONREG should be set on newly created dependencies. */
1563 static void
1564 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type,
1565 bool hard)
1567 mark_as_hard = hard;
1568 for (; list; list = XEXP (list, 1))
1570 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1571 add_dependence (insn, XEXP (list, 0), dep_type);
1573 mark_as_hard = false;
1576 /* Similar, but free *LISTP at the same time, when the context
1577 is not readonly. HARD should be true if DEP_NONREG should be set on
1578 newly created dependencies. */
1580 static void
1581 add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
1582 int uncond, enum reg_note dep_type, bool hard)
1584 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1586 /* We don't want to short-circuit dependencies involving debug
1587 insns, because they may cause actual dependencies to be
1588 disregarded. */
1589 if (deps->readonly || DEBUG_INSN_P (insn))
1590 return;
1592 free_INSN_LIST_list (listp);
1595 /* Remove all occurrences of INSN from LIST. Return the number of
1596 occurrences removed. */
1598 static int
1599 remove_from_dependence_list (rtx insn, rtx* listp)
1601 int removed = 0;
1603 while (*listp)
1605 if (XEXP (*listp, 0) == insn)
1607 remove_free_INSN_LIST_node (listp);
1608 removed++;
1609 continue;
1612 listp = &XEXP (*listp, 1);
1615 return removed;
1618 /* Same as above, but process two lists at once. */
1619 static int
1620 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1622 int removed = 0;
1624 while (*listp)
1626 if (XEXP (*listp, 0) == insn)
1628 remove_free_INSN_LIST_node (listp);
1629 remove_free_EXPR_LIST_node (exprp);
1630 removed++;
1631 continue;
1634 listp = &XEXP (*listp, 1);
1635 exprp = &XEXP (*exprp, 1);
1638 return removed;
1641 /* Clear all dependencies for an insn. */
1642 static void
1643 delete_all_dependences (rtx insn)
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1648 /* The below cycle can be optimized to clear the caches and back_deps
1649 in one call but that would provoke duplication of code from
1650 delete_dep (). */
1652 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1653 sd_iterator_cond (&sd_it, &dep);)
1654 sd_delete_dep (sd_it);
1657 /* All insns in a scheduling group except the first should only have
1658 dependencies on the previous insn in the group. So we find the
1659 first instruction in the scheduling group by walking the dependence
1660 chains backwards. Then we add the dependencies for the group to
1661 the previous nonnote insn. */
1663 static void
1664 chain_to_prev_insn (rtx insn)
1666 sd_iterator_def sd_it;
1667 dep_t dep;
1668 rtx prev_nonnote;
1670 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1672 rtx i = insn;
1673 rtx pro = DEP_PRO (dep);
1677 i = prev_nonnote_insn (i);
1679 if (pro == i)
1680 goto next_link;
1681 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1683 if (! sched_insns_conditions_mutex_p (i, pro))
1684 add_dependence (i, pro, DEP_TYPE (dep));
1685 next_link:;
1688 delete_all_dependences (insn);
1690 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1691 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1692 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1693 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1696 /* Process an insn's memory dependencies. There are four kinds of
1697 dependencies:
1699 (0) read dependence: read follows read
1700 (1) true dependence: read follows write
1701 (2) output dependence: write follows write
1702 (3) anti dependence: write follows read
1704 We are careful to build only dependencies which actually exist, and
1705 use transitivity to avoid building too many links. */
1707 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1708 The MEM is a memory reference contained within INSN, which we are saving
1709 so that we can do memory aliasing on it. */
1711 static void
1712 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1713 rtx insn, rtx mem)
1715 rtx *insn_list;
1716 rtx *mem_list;
1717 rtx link;
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1727 else
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1734 link = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = link;
1737 if (sched_deps_info->use_cselib)
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1743 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = link;
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
1753 int for_write)
1755 if (for_write)
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1778 if (DEBUG_INSN_P (insn))
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1787 if (!deps->readonly)
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1795 mark_as_hard = false;
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx cur_insn = NULL_RTX;
1801 /* Implement hooks for haifa scheduler. */
1803 static void
1804 haifa_start_insn (rtx insn)
1806 gcc_assert (insn && !cur_insn);
1808 cur_insn = insn;
1811 static void
1812 haifa_finish_insn (void)
1814 cur_insn = NULL;
1817 void
1818 haifa_note_reg_set (int regno)
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1823 void
1824 haifa_note_reg_clobber (int regno)
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1829 void
1830 haifa_note_reg_use (int regno)
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
1838 if (!(ds & SPECULATIVE))
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1847 dep_def _dep, *dep = &_dep;
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1857 static void
1858 haifa_note_dep (rtx elem, ds_t ds)
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1869 static void
1870 note_reg_use (int r)
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1876 static void
1877 note_reg_set (int r)
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1883 static void
1884 note_reg_clobber (int r)
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1897 static void
1898 note_dep (rtx e, ds_t ds)
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx insn)
1931 struct reg_use_data *use;
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1945 struct reg_set_data *set;
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 rtx list;
1961 struct reg_use_data *use, *use2, *next;
1962 struct deps_reg *reg_last;
1964 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1966 if (i < FIRST_PSEUDO_REGISTER
1967 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1968 continue;
1970 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1971 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1972 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1973 /* Ignore use which is not dying. */
1974 continue;
1976 use = create_insn_reg_use (i, insn);
1977 use->next_regno_use = use;
1978 reg_last = &deps->reg_last[i];
1980 /* Create the cycle list of uses. */
1981 for (list = reg_last->uses; list; list = XEXP (list, 1))
1983 use2 = create_insn_reg_use (i, XEXP (list, 0));
1984 next = use->next_regno_use;
1985 use->next_regno_use = use2;
1986 use2->next_regno_use = next;
1991 /* Register pressure info for the currently processed insn. */
1992 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1994 /* Return TRUE if INSN has the use structure for REGNO. */
1995 static bool
1996 insn_use_p (rtx insn, int regno)
1998 struct reg_use_data *use;
2000 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2001 if (use->regno == regno)
2002 return true;
2003 return false;
2006 /* Update the register pressure info after birth of pseudo register REGNO
2007 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2008 the register is in clobber or unused after the insn. */
2009 static void
2010 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2012 int incr, new_incr;
2013 enum reg_class cl;
2015 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2016 cl = sched_regno_pressure_class[regno];
2017 if (cl != NO_REGS)
2019 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2020 if (clobber_p)
2022 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2023 reg_pressure_info[cl].clobber_increase = new_incr;
2025 else if (unused_p)
2027 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2028 reg_pressure_info[cl].unused_set_increase = new_incr;
2030 else
2032 new_incr = reg_pressure_info[cl].set_increase + incr;
2033 reg_pressure_info[cl].set_increase = new_incr;
2034 if (! insn_use_p (insn, regno))
2035 reg_pressure_info[cl].change += incr;
2036 create_insn_reg_set (regno, insn);
2038 gcc_assert (new_incr < (1 << INCREASE_BITS));
2042 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2043 hard registers involved in the birth. */
2044 static void
2045 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2046 bool clobber_p, bool unused_p)
2048 enum reg_class cl;
2049 int new_incr, last = regno + nregs;
2051 while (regno < last)
2053 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2054 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2056 cl = sched_regno_pressure_class[regno];
2057 if (cl != NO_REGS)
2059 if (clobber_p)
2061 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2062 reg_pressure_info[cl].clobber_increase = new_incr;
2064 else if (unused_p)
2066 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2067 reg_pressure_info[cl].unused_set_increase = new_incr;
2069 else
2071 new_incr = reg_pressure_info[cl].set_increase + 1;
2072 reg_pressure_info[cl].set_increase = new_incr;
2073 if (! insn_use_p (insn, regno))
2074 reg_pressure_info[cl].change += 1;
2075 create_insn_reg_set (regno, insn);
2077 gcc_assert (new_incr < (1 << INCREASE_BITS));
2080 regno++;
2084 /* Update the register pressure info after birth of pseudo or hard
2085 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2086 correspondingly that the register is in clobber or unused after the
2087 insn. */
2088 static void
2089 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2091 int regno;
2093 if (GET_CODE (reg) == SUBREG)
2094 reg = SUBREG_REG (reg);
2096 if (! REG_P (reg))
2097 return;
2099 regno = REGNO (reg);
2100 if (regno < FIRST_PSEUDO_REGISTER)
2101 mark_insn_hard_regno_birth (insn, regno,
2102 hard_regno_nregs[regno][GET_MODE (reg)],
2103 clobber_p, unused_p);
2104 else
2105 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2108 /* Update the register pressure info after death of pseudo register
2109 REGNO. */
2110 static void
2111 mark_pseudo_death (int regno)
2113 int incr;
2114 enum reg_class cl;
2116 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2117 cl = sched_regno_pressure_class[regno];
2118 if (cl != NO_REGS)
2120 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2121 reg_pressure_info[cl].change -= incr;
2125 /* Like mark_pseudo_death except that NREGS saying how many hard
2126 registers involved in the death. */
2127 static void
2128 mark_hard_regno_death (int regno, int nregs)
2130 enum reg_class cl;
2131 int last = regno + nregs;
2133 while (regno < last)
2135 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2136 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2138 cl = sched_regno_pressure_class[regno];
2139 if (cl != NO_REGS)
2140 reg_pressure_info[cl].change -= 1;
2142 regno++;
2146 /* Update the register pressure info after death of pseudo or hard
2147 register REG. */
2148 static void
2149 mark_reg_death (rtx reg)
2151 int regno;
2153 if (GET_CODE (reg) == SUBREG)
2154 reg = SUBREG_REG (reg);
2156 if (! REG_P (reg))
2157 return;
2159 regno = REGNO (reg);
2160 if (regno < FIRST_PSEUDO_REGISTER)
2161 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2162 else
2163 mark_pseudo_death (regno);
2166 /* Process SETTER of REG. DATA is an insn containing the setter. */
2167 static void
2168 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2170 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2171 return;
2172 mark_insn_reg_birth
2173 ((rtx) data, reg, false,
2174 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2177 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2178 static void
2179 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2181 if (GET_CODE (setter) == CLOBBER)
2182 mark_insn_reg_birth ((rtx) data, reg, true, false);
2185 /* Set up reg pressure info related to INSN. */
2186 void
2187 init_insn_reg_pressure_info (rtx insn)
2189 int i, len;
2190 enum reg_class cl;
2191 static struct reg_pressure_data *pressure_info;
2192 rtx link;
2194 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2196 if (! INSN_P (insn))
2197 return;
2199 for (i = 0; i < ira_pressure_classes_num; i++)
2201 cl = ira_pressure_classes[i];
2202 reg_pressure_info[cl].clobber_increase = 0;
2203 reg_pressure_info[cl].set_increase = 0;
2204 reg_pressure_info[cl].unused_set_increase = 0;
2205 reg_pressure_info[cl].change = 0;
2208 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2210 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2212 #ifdef AUTO_INC_DEC
2213 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2214 if (REG_NOTE_KIND (link) == REG_INC)
2215 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2216 #endif
2218 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2219 if (REG_NOTE_KIND (link) == REG_DEAD)
2220 mark_reg_death (XEXP (link, 0));
2222 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2223 pressure_info
2224 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2225 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2226 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2227 * sizeof (int), 1);
2228 for (i = 0; i < ira_pressure_classes_num; i++)
2230 cl = ira_pressure_classes[i];
2231 pressure_info[i].clobber_increase
2232 = reg_pressure_info[cl].clobber_increase;
2233 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2234 pressure_info[i].unused_set_increase
2235 = reg_pressure_info[cl].unused_set_increase;
2236 pressure_info[i].change = reg_pressure_info[cl].change;
2243 /* Internal variable for sched_analyze_[12] () functions.
2244 If it is nonzero, this means that sched_analyze_[12] looks
2245 at the most toplevel SET. */
2246 static bool can_start_lhs_rhs_p;
2248 /* Extend reg info for the deps context DEPS given that
2249 we have just generated a register numbered REGNO. */
2250 static void
2251 extend_deps_reg_info (struct deps_desc *deps, int regno)
2253 int max_regno = regno + 1;
2255 gcc_assert (!reload_completed);
2257 /* In a readonly context, it would not hurt to extend info,
2258 but it should not be needed. */
2259 if (reload_completed && deps->readonly)
2261 deps->max_reg = max_regno;
2262 return;
2265 if (max_regno > deps->max_reg)
2267 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2268 max_regno);
2269 memset (&deps->reg_last[deps->max_reg],
2270 0, (max_regno - deps->max_reg)
2271 * sizeof (struct deps_reg));
2272 deps->max_reg = max_regno;
2276 /* Extends REG_INFO_P if needed. */
2277 void
2278 maybe_extend_reg_info_p (void)
2280 /* Extend REG_INFO_P, if needed. */
2281 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2283 size_t new_reg_info_p_size = max_regno + 128;
2285 gcc_assert (!reload_completed && sel_sched_p ());
2287 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2288 new_reg_info_p_size,
2289 reg_info_p_size,
2290 sizeof (*reg_info_p));
2291 reg_info_p_size = new_reg_info_p_size;
2295 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2296 The type of the reference is specified by REF and can be SET,
2297 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2299 static void
2300 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2301 enum rtx_code ref, rtx insn)
2303 /* We could emit new pseudos in renaming. Extend the reg structures. */
2304 if (!reload_completed && sel_sched_p ()
2305 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2306 extend_deps_reg_info (deps, regno);
2308 maybe_extend_reg_info_p ();
2310 /* A hard reg in a wide mode may really be multiple registers.
2311 If so, mark all of them just like the first. */
2312 if (regno < FIRST_PSEUDO_REGISTER)
2314 int i = hard_regno_nregs[regno][mode];
2315 if (ref == SET)
2317 while (--i >= 0)
2318 note_reg_set (regno + i);
2320 else if (ref == USE)
2322 while (--i >= 0)
2323 note_reg_use (regno + i);
2325 else
2327 while (--i >= 0)
2328 note_reg_clobber (regno + i);
2332 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2333 it does not reload. Ignore these as they have served their
2334 purpose already. */
2335 else if (regno >= deps->max_reg)
2337 enum rtx_code code = GET_CODE (PATTERN (insn));
2338 gcc_assert (code == USE || code == CLOBBER);
2341 else
2343 if (ref == SET)
2344 note_reg_set (regno);
2345 else if (ref == USE)
2346 note_reg_use (regno);
2347 else
2348 note_reg_clobber (regno);
2350 /* Pseudos that are REG_EQUIV to something may be replaced
2351 by that during reloading. We need only add dependencies for
2352 the address in the REG_EQUIV note. */
2353 if (!reload_completed && get_reg_known_equiv_p (regno))
2355 rtx t = get_reg_known_value (regno);
2356 if (MEM_P (t))
2357 sched_analyze_2 (deps, XEXP (t, 0), insn);
2360 /* Don't let it cross a call after scheduling if it doesn't
2361 already cross one. */
2362 if (REG_N_CALLS_CROSSED (regno) == 0)
2364 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2365 deps->sched_before_next_call
2366 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2367 else
2368 add_dependence_list (insn, deps->last_function_call, 1,
2369 REG_DEP_ANTI, false);
2374 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2375 rtx, X, creating all dependencies generated by the write to the
2376 destination of X, and reads of everything mentioned. */
2378 static void
2379 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
2381 rtx dest = XEXP (x, 0);
2382 enum rtx_code code = GET_CODE (x);
2383 bool cslr_p = can_start_lhs_rhs_p;
2385 can_start_lhs_rhs_p = false;
2387 gcc_assert (dest);
2388 if (dest == 0)
2389 return;
2391 if (cslr_p && sched_deps_info->start_lhs)
2392 sched_deps_info->start_lhs (dest);
2394 if (GET_CODE (dest) == PARALLEL)
2396 int i;
2398 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2399 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2400 sched_analyze_1 (deps,
2401 gen_rtx_CLOBBER (VOIDmode,
2402 XEXP (XVECEXP (dest, 0, i), 0)),
2403 insn);
2405 if (cslr_p && sched_deps_info->finish_lhs)
2406 sched_deps_info->finish_lhs ();
2408 if (code == SET)
2410 can_start_lhs_rhs_p = cslr_p;
2412 sched_analyze_2 (deps, SET_SRC (x), insn);
2414 can_start_lhs_rhs_p = false;
2417 return;
2420 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2421 || GET_CODE (dest) == ZERO_EXTRACT)
2423 if (GET_CODE (dest) == STRICT_LOW_PART
2424 || GET_CODE (dest) == ZERO_EXTRACT
2425 || df_read_modify_subreg_p (dest))
2427 /* These both read and modify the result. We must handle
2428 them as writes to get proper dependencies for following
2429 instructions. We must handle them as reads to get proper
2430 dependencies from this to previous instructions.
2431 Thus we need to call sched_analyze_2. */
2433 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2435 if (GET_CODE (dest) == ZERO_EXTRACT)
2437 /* The second and third arguments are values read by this insn. */
2438 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2439 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2441 dest = XEXP (dest, 0);
2444 if (REG_P (dest))
2446 int regno = REGNO (dest);
2447 enum machine_mode mode = GET_MODE (dest);
2449 sched_analyze_reg (deps, regno, mode, code, insn);
2451 #ifdef STACK_REGS
2452 /* Treat all writes to a stack register as modifying the TOS. */
2453 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2455 /* Avoid analyzing the same register twice. */
2456 if (regno != FIRST_STACK_REG)
2457 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2459 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2460 FIRST_STACK_REG);
2462 #endif
2464 else if (MEM_P (dest))
2466 /* Writing memory. */
2467 rtx t = dest;
2469 if (sched_deps_info->use_cselib)
2471 enum machine_mode address_mode = get_address_mode (dest);
2473 t = shallow_copy_rtx (dest);
2474 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2475 GET_MODE (t), insn);
2476 XEXP (t, 0)
2477 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2478 insn);
2480 t = canon_rtx (t);
2482 /* Pending lists can't get larger with a readonly context. */
2483 if (!deps->readonly
2484 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2485 > MAX_PENDING_LIST_LENGTH))
2487 /* Flush all pending reads and writes to prevent the pending lists
2488 from getting any larger. Insn scheduling runs too slowly when
2489 these lists get long. When compiling GCC with itself,
2490 this flush occurs 8 times for sparc, and 10 times for m88k using
2491 the default value of 32. */
2492 flush_pending_lists (deps, insn, false, true);
2494 else
2496 rtx pending, pending_mem;
2498 pending = deps->pending_read_insns;
2499 pending_mem = deps->pending_read_mems;
2500 while (pending)
2502 if (anti_dependence (XEXP (pending_mem, 0), t)
2503 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2504 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2505 DEP_ANTI);
2507 pending = XEXP (pending, 1);
2508 pending_mem = XEXP (pending_mem, 1);
2511 pending = deps->pending_write_insns;
2512 pending_mem = deps->pending_write_mems;
2513 while (pending)
2515 if (output_dependence (XEXP (pending_mem, 0), t)
2516 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2517 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2518 DEP_OUTPUT);
2520 pending = XEXP (pending, 1);
2521 pending_mem = XEXP (pending_mem, 1);
2524 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2525 REG_DEP_ANTI, true);
2526 add_dependence_list (insn, deps->pending_jump_insns, 1,
2527 REG_DEP_CONTROL, true);
2529 if (!deps->readonly)
2530 add_insn_mem_dependence (deps, false, insn, dest);
2532 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2535 if (cslr_p && sched_deps_info->finish_lhs)
2536 sched_deps_info->finish_lhs ();
2538 /* Analyze reads. */
2539 if (GET_CODE (x) == SET)
2541 can_start_lhs_rhs_p = cslr_p;
2543 sched_analyze_2 (deps, SET_SRC (x), insn);
2545 can_start_lhs_rhs_p = false;
2549 /* Analyze the uses of memory and registers in rtx X in INSN. */
2550 static void
2551 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
2553 int i;
2554 int j;
2555 enum rtx_code code;
2556 const char *fmt;
2557 bool cslr_p = can_start_lhs_rhs_p;
2559 can_start_lhs_rhs_p = false;
2561 gcc_assert (x);
2562 if (x == 0)
2563 return;
2565 if (cslr_p && sched_deps_info->start_rhs)
2566 sched_deps_info->start_rhs (x);
2568 code = GET_CODE (x);
2570 switch (code)
2572 CASE_CONST_ANY:
2573 case SYMBOL_REF:
2574 case CONST:
2575 case LABEL_REF:
2576 /* Ignore constants. */
2577 if (cslr_p && sched_deps_info->finish_rhs)
2578 sched_deps_info->finish_rhs ();
2580 return;
2582 #ifdef HAVE_cc0
2583 case CC0:
2584 /* User of CC0 depends on immediately preceding insn. */
2585 SCHED_GROUP_P (insn) = 1;
2586 /* Don't move CC0 setter to another block (it can set up the
2587 same flag for previous CC0 users which is safe). */
2588 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2590 if (cslr_p && sched_deps_info->finish_rhs)
2591 sched_deps_info->finish_rhs ();
2593 return;
2594 #endif
2596 case REG:
2598 int regno = REGNO (x);
2599 enum machine_mode mode = GET_MODE (x);
2601 sched_analyze_reg (deps, regno, mode, USE, insn);
2603 #ifdef STACK_REGS
2604 /* Treat all reads of a stack register as modifying the TOS. */
2605 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2607 /* Avoid analyzing the same register twice. */
2608 if (regno != FIRST_STACK_REG)
2609 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2610 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2612 #endif
2614 if (cslr_p && sched_deps_info->finish_rhs)
2615 sched_deps_info->finish_rhs ();
2617 return;
2620 case MEM:
2622 /* Reading memory. */
2623 rtx u;
2624 rtx pending, pending_mem;
2625 rtx t = x;
2627 if (sched_deps_info->use_cselib)
2629 enum machine_mode address_mode = get_address_mode (t);
2631 t = shallow_copy_rtx (t);
2632 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2633 GET_MODE (t), insn);
2634 XEXP (t, 0)
2635 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2636 insn);
2639 if (!DEBUG_INSN_P (insn))
2641 t = canon_rtx (t);
2642 pending = deps->pending_read_insns;
2643 pending_mem = deps->pending_read_mems;
2644 while (pending)
2646 if (read_dependence (XEXP (pending_mem, 0), t)
2647 && ! sched_insns_conditions_mutex_p (insn,
2648 XEXP (pending, 0)))
2649 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2650 DEP_ANTI);
2652 pending = XEXP (pending, 1);
2653 pending_mem = XEXP (pending_mem, 1);
2656 pending = deps->pending_write_insns;
2657 pending_mem = deps->pending_write_mems;
2658 while (pending)
2660 if (true_dependence (XEXP (pending_mem, 0), VOIDmode, t)
2661 && ! sched_insns_conditions_mutex_p (insn,
2662 XEXP (pending, 0)))
2663 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2664 sched_deps_info->generate_spec_deps
2665 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2667 pending = XEXP (pending, 1);
2668 pending_mem = XEXP (pending_mem, 1);
2671 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2672 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2674 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2675 if (deps_may_trap_p (x))
2677 if ((sched_deps_info->generate_spec_deps)
2678 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2680 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2681 MAX_DEP_WEAK);
2683 note_dep (XEXP (u, 0), ds);
2685 else
2686 add_dependence (insn, XEXP (u, 0), REG_DEP_CONTROL);
2690 /* Always add these dependencies to pending_reads, since
2691 this insn may be followed by a write. */
2692 if (!deps->readonly)
2694 if ((deps->pending_read_list_length
2695 + deps->pending_write_list_length)
2696 > MAX_PENDING_LIST_LENGTH
2697 && !DEBUG_INSN_P (insn))
2698 flush_pending_lists (deps, insn, true, true);
2699 add_insn_mem_dependence (deps, true, insn, x);
2702 sched_analyze_2 (deps, XEXP (x, 0), insn);
2704 if (cslr_p && sched_deps_info->finish_rhs)
2705 sched_deps_info->finish_rhs ();
2707 return;
2710 /* Force pending stores to memory in case a trap handler needs them. */
2711 case TRAP_IF:
2712 flush_pending_lists (deps, insn, true, false);
2713 break;
2715 case PREFETCH:
2716 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2717 reg_pending_barrier = TRUE_BARRIER;
2718 /* Prefetch insn contains addresses only. So if the prefetch
2719 address has no registers, there will be no dependencies on
2720 the prefetch insn. This is wrong with result code
2721 correctness point of view as such prefetch can be moved below
2722 a jump insn which usually generates MOVE_BARRIER preventing
2723 to move insns containing registers or memories through the
2724 barrier. It is also wrong with generated code performance
2725 point of view as prefetch withouth dependecies will have a
2726 tendency to be issued later instead of earlier. It is hard
2727 to generate accurate dependencies for prefetch insns as
2728 prefetch has only the start address but it is better to have
2729 something than nothing. */
2730 if (!deps->readonly)
2732 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2733 if (sched_deps_info->use_cselib)
2734 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2735 add_insn_mem_dependence (deps, true, insn, x);
2737 break;
2739 case UNSPEC_VOLATILE:
2740 flush_pending_lists (deps, insn, true, true);
2741 /* FALLTHRU */
2743 case ASM_OPERANDS:
2744 case ASM_INPUT:
2746 /* Traditional and volatile asm instructions must be considered to use
2747 and clobber all hard registers, all pseudo-registers and all of
2748 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2750 Consider for instance a volatile asm that changes the fpu rounding
2751 mode. An insn should not be moved across this even if it only uses
2752 pseudo-regs because it might give an incorrectly rounded result. */
2753 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2754 reg_pending_barrier = TRUE_BARRIER;
2756 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2757 We can not just fall through here since then we would be confused
2758 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2759 traditional asms unlike their normal usage. */
2761 if (code == ASM_OPERANDS)
2763 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2764 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2766 if (cslr_p && sched_deps_info->finish_rhs)
2767 sched_deps_info->finish_rhs ();
2769 return;
2771 break;
2774 case PRE_DEC:
2775 case POST_DEC:
2776 case PRE_INC:
2777 case POST_INC:
2778 /* These both read and modify the result. We must handle them as writes
2779 to get proper dependencies for following instructions. We must handle
2780 them as reads to get proper dependencies from this to previous
2781 instructions. Thus we need to pass them to both sched_analyze_1
2782 and sched_analyze_2. We must call sched_analyze_2 first in order
2783 to get the proper antecedent for the read. */
2784 sched_analyze_2 (deps, XEXP (x, 0), insn);
2785 sched_analyze_1 (deps, x, insn);
2787 if (cslr_p && sched_deps_info->finish_rhs)
2788 sched_deps_info->finish_rhs ();
2790 return;
2792 case POST_MODIFY:
2793 case PRE_MODIFY:
2794 /* op0 = op0 + op1 */
2795 sched_analyze_2 (deps, XEXP (x, 0), insn);
2796 sched_analyze_2 (deps, XEXP (x, 1), insn);
2797 sched_analyze_1 (deps, x, insn);
2799 if (cslr_p && sched_deps_info->finish_rhs)
2800 sched_deps_info->finish_rhs ();
2802 return;
2804 default:
2805 break;
2808 /* Other cases: walk the insn. */
2809 fmt = GET_RTX_FORMAT (code);
2810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2812 if (fmt[i] == 'e')
2813 sched_analyze_2 (deps, XEXP (x, i), insn);
2814 else if (fmt[i] == 'E')
2815 for (j = 0; j < XVECLEN (x, i); j++)
2816 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2819 if (cslr_p && sched_deps_info->finish_rhs)
2820 sched_deps_info->finish_rhs ();
2823 /* Try to group comparison and the following conditional jump INSN if
2824 they're already adjacent. This is to prevent scheduler from scheduling
2825 them apart. */
2827 static void
2828 try_group_insn (rtx insn)
2830 unsigned int condreg1, condreg2;
2831 rtx cc_reg_1;
2832 rtx prev;
2834 if (!any_condjump_p (insn))
2835 return;
2837 targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2838 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2839 prev = prev_nonnote_nondebug_insn (insn);
2840 if (!reg_referenced_p (cc_reg_1, PATTERN (insn))
2841 || !prev
2842 || !modified_in_p (cc_reg_1, prev))
2843 return;
2845 /* Different microarchitectures support macro fusions for different
2846 combinations of insn pairs. */
2847 if (!targetm.sched.macro_fusion_pair_p
2848 || !targetm.sched.macro_fusion_pair_p (prev, insn))
2849 return;
2851 SCHED_GROUP_P (insn) = 1;
2854 /* Analyze an INSN with pattern X to find all dependencies. */
2855 static void
2856 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
2858 RTX_CODE code = GET_CODE (x);
2859 rtx link;
2860 unsigned i;
2861 reg_set_iterator rsi;
2863 if (! reload_completed)
2865 HARD_REG_SET temp;
2867 extract_insn (insn);
2868 preprocess_constraints ();
2869 ira_implicitly_set_insn_hard_regs (&temp);
2870 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2871 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2874 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2875 && code == SET);
2877 /* Group compare and branch insns for macro-fusion. */
2878 if (targetm.sched.macro_fusion_p
2879 && targetm.sched.macro_fusion_p ())
2880 try_group_insn (insn);
2882 if (may_trap_p (x))
2883 /* Avoid moving trapping instructions across function calls that might
2884 not always return. */
2885 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2886 1, REG_DEP_ANTI, true);
2888 /* We must avoid creating a situation in which two successors of the
2889 current block have different unwind info after scheduling. If at any
2890 point the two paths re-join this leads to incorrect unwind info. */
2891 /* ??? There are certain situations involving a forced frame pointer in
2892 which, with extra effort, we could fix up the unwind info at a later
2893 CFG join. However, it seems better to notice these cases earlier
2894 during prologue generation and avoid marking the frame pointer setup
2895 as frame-related at all. */
2896 if (RTX_FRAME_RELATED_P (insn))
2898 /* Make sure prologue insn is scheduled before next jump. */
2899 deps->sched_before_next_jump
2900 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2902 /* Make sure epilogue insn is scheduled after preceding jumps. */
2903 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2904 true);
2907 if (code == COND_EXEC)
2909 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2911 /* ??? Should be recording conditions so we reduce the number of
2912 false dependencies. */
2913 x = COND_EXEC_CODE (x);
2914 code = GET_CODE (x);
2916 if (code == SET || code == CLOBBER)
2918 sched_analyze_1 (deps, x, insn);
2920 /* Bare clobber insns are used for letting life analysis, reg-stack
2921 and others know that a value is dead. Depend on the last call
2922 instruction so that reg-stack won't get confused. */
2923 if (code == CLOBBER)
2924 add_dependence_list (insn, deps->last_function_call, 1,
2925 REG_DEP_OUTPUT, true);
2927 else if (code == PARALLEL)
2929 for (i = XVECLEN (x, 0); i--;)
2931 rtx sub = XVECEXP (x, 0, i);
2932 code = GET_CODE (sub);
2934 if (code == COND_EXEC)
2936 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2937 sub = COND_EXEC_CODE (sub);
2938 code = GET_CODE (sub);
2940 if (code == SET || code == CLOBBER)
2941 sched_analyze_1 (deps, sub, insn);
2942 else
2943 sched_analyze_2 (deps, sub, insn);
2946 else
2947 sched_analyze_2 (deps, x, insn);
2949 /* Mark registers CLOBBERED or used by called function. */
2950 if (CALL_P (insn))
2952 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2954 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2955 sched_analyze_1 (deps, XEXP (link, 0), insn);
2956 else if (GET_CODE (XEXP (link, 0)) != SET)
2957 sched_analyze_2 (deps, XEXP (link, 0), insn);
2959 /* Don't schedule anything after a tail call, tail call needs
2960 to use at least all call-saved registers. */
2961 if (SIBLING_CALL_P (insn))
2962 reg_pending_barrier = TRUE_BARRIER;
2963 else if (find_reg_note (insn, REG_SETJMP, NULL))
2964 reg_pending_barrier = MOVE_BARRIER;
2967 if (JUMP_P (insn))
2969 rtx next;
2970 next = next_nonnote_nondebug_insn (insn);
2971 if (next && BARRIER_P (next))
2972 reg_pending_barrier = MOVE_BARRIER;
2973 else
2975 rtx pending, pending_mem;
2977 if (sched_deps_info->compute_jump_reg_dependencies)
2979 (*sched_deps_info->compute_jump_reg_dependencies)
2980 (insn, reg_pending_control_uses);
2982 /* Make latency of jump equal to 0 by using anti-dependence. */
2983 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
2985 struct deps_reg *reg_last = &deps->reg_last[i];
2986 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
2987 false);
2988 add_dependence_list (insn, reg_last->implicit_sets,
2989 0, REG_DEP_ANTI, false);
2990 add_dependence_list (insn, reg_last->clobbers, 0,
2991 REG_DEP_ANTI, false);
2995 /* All memory writes and volatile reads must happen before the
2996 jump. Non-volatile reads must happen before the jump iff
2997 the result is needed by the above register used mask. */
2999 pending = deps->pending_write_insns;
3000 pending_mem = deps->pending_write_mems;
3001 while (pending)
3003 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
3004 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
3005 pending = XEXP (pending, 1);
3006 pending_mem = XEXP (pending_mem, 1);
3009 pending = deps->pending_read_insns;
3010 pending_mem = deps->pending_read_mems;
3011 while (pending)
3013 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
3014 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
3015 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
3016 pending = XEXP (pending, 1);
3017 pending_mem = XEXP (pending_mem, 1);
3020 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3021 REG_DEP_ANTI, true);
3022 add_dependence_list (insn, deps->pending_jump_insns, 1,
3023 REG_DEP_ANTI, true);
3027 /* If this instruction can throw an exception, then moving it changes
3028 where block boundaries fall. This is mighty confusing elsewhere.
3029 Therefore, prevent such an instruction from being moved. Same for
3030 non-jump instructions that define block boundaries.
3031 ??? Unclear whether this is still necessary in EBB mode. If not,
3032 add_branch_dependences should be adjusted for RGN mode instead. */
3033 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3034 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3035 reg_pending_barrier = MOVE_BARRIER;
3037 if (sched_pressure != SCHED_PRESSURE_NONE)
3039 setup_insn_reg_uses (deps, insn);
3040 init_insn_reg_pressure_info (insn);
3043 /* Add register dependencies for insn. */
3044 if (DEBUG_INSN_P (insn))
3046 rtx prev = deps->last_debug_insn;
3047 rtx u;
3049 if (!deps->readonly)
3050 deps->last_debug_insn = insn;
3052 if (prev)
3053 add_dependence (insn, prev, REG_DEP_ANTI);
3055 add_dependence_list (insn, deps->last_function_call, 1,
3056 REG_DEP_ANTI, false);
3058 if (!sel_sched_p ())
3059 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
3060 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3062 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3064 struct deps_reg *reg_last = &deps->reg_last[i];
3065 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3066 /* There's no point in making REG_DEP_CONTROL dependencies for
3067 debug insns. */
3068 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3069 false);
3071 if (!deps->readonly)
3072 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3074 CLEAR_REG_SET (reg_pending_uses);
3076 /* Quite often, a debug insn will refer to stuff in the
3077 previous instruction, but the reason we want this
3078 dependency here is to make sure the scheduler doesn't
3079 gratuitously move a debug insn ahead. This could dirty
3080 DF flags and cause additional analysis that wouldn't have
3081 occurred in compilation without debug insns, and such
3082 additional analysis can modify the generated code. */
3083 prev = PREV_INSN (insn);
3085 if (prev && NONDEBUG_INSN_P (prev))
3086 add_dependence (insn, prev, REG_DEP_ANTI);
3088 else
3090 regset_head set_or_clobbered;
3092 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3094 struct deps_reg *reg_last = &deps->reg_last[i];
3095 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3096 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3097 false);
3098 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3099 false);
3101 if (!deps->readonly)
3103 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3104 reg_last->uses_length++;
3108 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3109 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3111 struct deps_reg *reg_last = &deps->reg_last[i];
3112 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3113 add_dependence_list (insn, reg_last->implicit_sets, 0,
3114 REG_DEP_ANTI, false);
3115 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3116 false);
3118 if (!deps->readonly)
3120 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3121 reg_last->uses_length++;
3125 if (targetm.sched.exposed_pipeline)
3127 INIT_REG_SET (&set_or_clobbered);
3128 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3129 reg_pending_sets);
3130 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3132 struct deps_reg *reg_last = &deps->reg_last[i];
3133 rtx list;
3134 for (list = reg_last->uses; list; list = XEXP (list, 1))
3136 rtx other = XEXP (list, 0);
3137 if (INSN_CACHED_COND (other) != const_true_rtx
3138 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3139 INSN_CACHED_COND (other) = const_true_rtx;
3144 /* If the current insn is conditional, we can't free any
3145 of the lists. */
3146 if (sched_has_condition_p (insn))
3148 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3150 struct deps_reg *reg_last = &deps->reg_last[i];
3151 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3152 false);
3153 add_dependence_list (insn, reg_last->implicit_sets, 0,
3154 REG_DEP_ANTI, false);
3155 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3156 false);
3157 add_dependence_list (insn, reg_last->control_uses, 0,
3158 REG_DEP_CONTROL, false);
3160 if (!deps->readonly)
3162 reg_last->clobbers
3163 = alloc_INSN_LIST (insn, reg_last->clobbers);
3164 reg_last->clobbers_length++;
3167 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3169 struct deps_reg *reg_last = &deps->reg_last[i];
3170 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3171 false);
3172 add_dependence_list (insn, reg_last->implicit_sets, 0,
3173 REG_DEP_ANTI, false);
3174 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3175 false);
3176 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3177 false);
3178 add_dependence_list (insn, reg_last->control_uses, 0,
3179 REG_DEP_CONTROL, false);
3181 if (!deps->readonly)
3182 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3185 else
3187 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3189 struct deps_reg *reg_last = &deps->reg_last[i];
3190 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3191 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3193 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3194 REG_DEP_OUTPUT, false);
3195 add_dependence_list_and_free (deps, insn,
3196 &reg_last->implicit_sets, 0,
3197 REG_DEP_ANTI, false);
3198 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3199 REG_DEP_ANTI, false);
3200 add_dependence_list_and_free (deps, insn,
3201 &reg_last->control_uses, 0,
3202 REG_DEP_ANTI, false);
3203 add_dependence_list_and_free (deps, insn,
3204 &reg_last->clobbers, 0,
3205 REG_DEP_OUTPUT, false);
3207 if (!deps->readonly)
3209 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3210 reg_last->clobbers_length = 0;
3211 reg_last->uses_length = 0;
3214 else
3216 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3217 false);
3218 add_dependence_list (insn, reg_last->implicit_sets, 0,
3219 REG_DEP_ANTI, false);
3220 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3221 false);
3222 add_dependence_list (insn, reg_last->control_uses, 0,
3223 REG_DEP_CONTROL, false);
3226 if (!deps->readonly)
3228 reg_last->clobbers_length++;
3229 reg_last->clobbers
3230 = alloc_INSN_LIST (insn, reg_last->clobbers);
3233 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3235 struct deps_reg *reg_last = &deps->reg_last[i];
3237 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3238 REG_DEP_OUTPUT, false);
3239 add_dependence_list_and_free (deps, insn,
3240 &reg_last->implicit_sets,
3241 0, REG_DEP_ANTI, false);
3242 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3243 REG_DEP_OUTPUT, false);
3244 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3245 REG_DEP_ANTI, false);
3246 add_dependence_list (insn, reg_last->control_uses, 0,
3247 REG_DEP_CONTROL, false);
3249 if (!deps->readonly)
3251 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3252 reg_last->uses_length = 0;
3253 reg_last->clobbers_length = 0;
3257 if (!deps->readonly)
3259 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3261 struct deps_reg *reg_last = &deps->reg_last[i];
3262 reg_last->control_uses
3263 = alloc_INSN_LIST (insn, reg_last->control_uses);
3268 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3269 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3271 struct deps_reg *reg_last = &deps->reg_last[i];
3272 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3273 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3274 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3275 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3276 false);
3278 if (!deps->readonly)
3279 reg_last->implicit_sets
3280 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3283 if (!deps->readonly)
3285 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3286 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3287 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3288 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3289 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3290 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3291 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3293 /* Set up the pending barrier found. */
3294 deps->last_reg_pending_barrier = reg_pending_barrier;
3297 CLEAR_REG_SET (reg_pending_uses);
3298 CLEAR_REG_SET (reg_pending_clobbers);
3299 CLEAR_REG_SET (reg_pending_sets);
3300 CLEAR_REG_SET (reg_pending_control_uses);
3301 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3302 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3304 /* Add dependencies if a scheduling barrier was found. */
3305 if (reg_pending_barrier)
3307 /* In the case of barrier the most added dependencies are not
3308 real, so we use anti-dependence here. */
3309 if (sched_has_condition_p (insn))
3311 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3313 struct deps_reg *reg_last = &deps->reg_last[i];
3314 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3315 true);
3316 add_dependence_list (insn, reg_last->sets, 0,
3317 reg_pending_barrier == TRUE_BARRIER
3318 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3319 add_dependence_list (insn, reg_last->implicit_sets, 0,
3320 REG_DEP_ANTI, true);
3321 add_dependence_list (insn, reg_last->clobbers, 0,
3322 reg_pending_barrier == TRUE_BARRIER
3323 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3326 else
3328 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3330 struct deps_reg *reg_last = &deps->reg_last[i];
3331 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3332 REG_DEP_ANTI, true);
3333 add_dependence_list_and_free (deps, insn,
3334 &reg_last->control_uses, 0,
3335 REG_DEP_CONTROL, true);
3336 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3337 reg_pending_barrier == TRUE_BARRIER
3338 ? REG_DEP_TRUE : REG_DEP_ANTI,
3339 true);
3340 add_dependence_list_and_free (deps, insn,
3341 &reg_last->implicit_sets, 0,
3342 REG_DEP_ANTI, true);
3343 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3344 reg_pending_barrier == TRUE_BARRIER
3345 ? REG_DEP_TRUE : REG_DEP_ANTI,
3346 true);
3348 if (!deps->readonly)
3350 reg_last->uses_length = 0;
3351 reg_last->clobbers_length = 0;
3356 if (!deps->readonly)
3357 for (i = 0; i < (unsigned)deps->max_reg; i++)
3359 struct deps_reg *reg_last = &deps->reg_last[i];
3360 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3361 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3364 /* Don't flush pending lists on speculative checks for
3365 selective scheduling. */
3366 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3367 flush_pending_lists (deps, insn, true, true);
3369 reg_pending_barrier = NOT_A_BARRIER;
3372 /* If a post-call group is still open, see if it should remain so.
3373 This insn must be a simple move of a hard reg to a pseudo or
3374 vice-versa.
3376 We must avoid moving these insns for correctness on targets
3377 with small register classes, and for special registers like
3378 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3379 hard regs for all targets. */
3381 if (deps->in_post_call_group_p)
3383 rtx tmp, set = single_set (insn);
3384 int src_regno, dest_regno;
3386 if (set == NULL)
3388 if (DEBUG_INSN_P (insn))
3389 /* We don't want to mark debug insns as part of the same
3390 sched group. We know they really aren't, but if we use
3391 debug insns to tell that a call group is over, we'll
3392 get different code if debug insns are not there and
3393 instructions that follow seem like they should be part
3394 of the call group.
3396 Also, if we did, chain_to_prev_insn would move the
3397 deps of the debug insn to the call insn, modifying
3398 non-debug post-dependency counts of the debug insn
3399 dependencies and otherwise messing with the scheduling
3400 order.
3402 Instead, let such debug insns be scheduled freely, but
3403 keep the call group open in case there are insns that
3404 should be part of it afterwards. Since we grant debug
3405 insns higher priority than even sched group insns, it
3406 will all turn out all right. */
3407 goto debug_dont_end_call_group;
3408 else
3409 goto end_call_group;
3412 tmp = SET_DEST (set);
3413 if (GET_CODE (tmp) == SUBREG)
3414 tmp = SUBREG_REG (tmp);
3415 if (REG_P (tmp))
3416 dest_regno = REGNO (tmp);
3417 else
3418 goto end_call_group;
3420 tmp = SET_SRC (set);
3421 if (GET_CODE (tmp) == SUBREG)
3422 tmp = SUBREG_REG (tmp);
3423 if ((GET_CODE (tmp) == PLUS
3424 || GET_CODE (tmp) == MINUS)
3425 && REG_P (XEXP (tmp, 0))
3426 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3427 && dest_regno == STACK_POINTER_REGNUM)
3428 src_regno = STACK_POINTER_REGNUM;
3429 else if (REG_P (tmp))
3430 src_regno = REGNO (tmp);
3431 else
3432 goto end_call_group;
3434 if (src_regno < FIRST_PSEUDO_REGISTER
3435 || dest_regno < FIRST_PSEUDO_REGISTER)
3437 if (!deps->readonly
3438 && deps->in_post_call_group_p == post_call_initial)
3439 deps->in_post_call_group_p = post_call;
3441 if (!sel_sched_p () || sched_emulate_haifa_p)
3443 SCHED_GROUP_P (insn) = 1;
3444 CANT_MOVE (insn) = 1;
3447 else
3449 end_call_group:
3450 if (!deps->readonly)
3451 deps->in_post_call_group_p = not_post_call;
3455 debug_dont_end_call_group:
3456 if ((current_sched_info->flags & DO_SPECULATION)
3457 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3458 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3459 be speculated. */
3461 if (sel_sched_p ())
3462 sel_mark_hard_insn (insn);
3463 else
3465 sd_iterator_def sd_it;
3466 dep_t dep;
3468 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3469 sd_iterator_cond (&sd_it, &dep);)
3470 change_spec_dep_to_hard (sd_it);
3475 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3476 longjmp, loop forever, ...). */
3477 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3478 test for ECF_NORETURN? */
3479 static bool
3480 call_may_noreturn_p (rtx insn)
3482 rtx call;
3484 /* const or pure calls that aren't looping will always return. */
3485 if (RTL_CONST_OR_PURE_CALL_P (insn)
3486 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3487 return false;
3489 call = get_call_rtx_from (insn);
3490 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3492 rtx symbol = XEXP (XEXP (call, 0), 0);
3493 if (SYMBOL_REF_DECL (symbol)
3494 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3496 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3497 == BUILT_IN_NORMAL)
3498 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3500 case BUILT_IN_BCMP:
3501 case BUILT_IN_BCOPY:
3502 case BUILT_IN_BZERO:
3503 case BUILT_IN_INDEX:
3504 case BUILT_IN_MEMCHR:
3505 case BUILT_IN_MEMCMP:
3506 case BUILT_IN_MEMCPY:
3507 case BUILT_IN_MEMMOVE:
3508 case BUILT_IN_MEMPCPY:
3509 case BUILT_IN_MEMSET:
3510 case BUILT_IN_RINDEX:
3511 case BUILT_IN_STPCPY:
3512 case BUILT_IN_STPNCPY:
3513 case BUILT_IN_STRCAT:
3514 case BUILT_IN_STRCHR:
3515 case BUILT_IN_STRCMP:
3516 case BUILT_IN_STRCPY:
3517 case BUILT_IN_STRCSPN:
3518 case BUILT_IN_STRLEN:
3519 case BUILT_IN_STRNCAT:
3520 case BUILT_IN_STRNCMP:
3521 case BUILT_IN_STRNCPY:
3522 case BUILT_IN_STRPBRK:
3523 case BUILT_IN_STRRCHR:
3524 case BUILT_IN_STRSPN:
3525 case BUILT_IN_STRSTR:
3526 /* Assume certain string/memory builtins always return. */
3527 return false;
3528 default:
3529 break;
3534 /* For all other calls assume that they might not always return. */
3535 return true;
3538 /* Return true if INSN should be made dependent on the previous instruction
3539 group, and if all INSN's dependencies should be moved to the first
3540 instruction of that group. */
3542 static bool
3543 chain_to_prev_insn_p (rtx insn)
3545 rtx prev, x;
3547 /* INSN forms a group with the previous instruction. */
3548 if (SCHED_GROUP_P (insn))
3549 return true;
3551 /* If the previous instruction clobbers a register R and this one sets
3552 part of R, the clobber was added specifically to help us track the
3553 liveness of R. There's no point scheduling the clobber and leaving
3554 INSN behind, especially if we move the clobber to another block. */
3555 prev = prev_nonnote_nondebug_insn (insn);
3556 if (prev
3557 && INSN_P (prev)
3558 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3559 && GET_CODE (PATTERN (prev)) == CLOBBER)
3561 x = XEXP (PATTERN (prev), 0);
3562 if (set_of (x, insn))
3563 return true;
3566 return false;
3569 /* Analyze INSN with DEPS as a context. */
3570 void
3571 deps_analyze_insn (struct deps_desc *deps, rtx insn)
3573 if (sched_deps_info->start_insn)
3574 sched_deps_info->start_insn (insn);
3576 /* Record the condition for this insn. */
3577 if (NONDEBUG_INSN_P (insn))
3579 rtx t;
3580 sched_get_condition_with_rev (insn, NULL);
3581 t = INSN_CACHED_COND (insn);
3582 INSN_COND_DEPS (insn) = NULL_RTX;
3583 if (reload_completed
3584 && (current_sched_info->flags & DO_PREDICATION)
3585 && COMPARISON_P (t)
3586 && REG_P (XEXP (t, 0))
3587 && CONSTANT_P (XEXP (t, 1)))
3589 unsigned int regno;
3590 int nregs;
3591 t = XEXP (t, 0);
3592 regno = REGNO (t);
3593 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3594 t = NULL_RTX;
3595 while (nregs-- > 0)
3597 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3598 t = concat_INSN_LIST (reg_last->sets, t);
3599 t = concat_INSN_LIST (reg_last->clobbers, t);
3600 t = concat_INSN_LIST (reg_last->implicit_sets, t);
3602 INSN_COND_DEPS (insn) = t;
3606 if (JUMP_P (insn))
3608 /* Make each JUMP_INSN (but not a speculative check)
3609 a scheduling barrier for memory references. */
3610 if (!deps->readonly
3611 && !(sel_sched_p ()
3612 && sel_insn_is_speculation_check (insn)))
3614 /* Keep the list a reasonable size. */
3615 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3616 flush_pending_lists (deps, insn, true, true);
3617 else
3618 deps->pending_jump_insns
3619 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3622 /* For each insn which shouldn't cross a jump, add a dependence. */
3623 add_dependence_list_and_free (deps, insn,
3624 &deps->sched_before_next_jump, 1,
3625 REG_DEP_ANTI, true);
3627 sched_analyze_insn (deps, PATTERN (insn), insn);
3629 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3631 sched_analyze_insn (deps, PATTERN (insn), insn);
3633 else if (CALL_P (insn))
3635 int i;
3637 CANT_MOVE (insn) = 1;
3639 if (find_reg_note (insn, REG_SETJMP, NULL))
3641 /* This is setjmp. Assume that all registers, not just
3642 hard registers, may be clobbered by this call. */
3643 reg_pending_barrier = MOVE_BARRIER;
3645 else
3647 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3648 /* A call may read and modify global register variables. */
3649 if (global_regs[i])
3651 SET_REGNO_REG_SET (reg_pending_sets, i);
3652 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3654 /* Other call-clobbered hard regs may be clobbered.
3655 Since we only have a choice between 'might be clobbered'
3656 and 'definitely not clobbered', we must include all
3657 partly call-clobbered registers here. */
3658 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3659 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3660 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3661 /* We don't know what set of fixed registers might be used
3662 by the function, but it is certain that the stack pointer
3663 is among them, but be conservative. */
3664 else if (fixed_regs[i])
3665 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3666 /* The frame pointer is normally not used by the function
3667 itself, but by the debugger. */
3668 /* ??? MIPS o32 is an exception. It uses the frame pointer
3669 in the macro expansion of jal but does not represent this
3670 fact in the call_insn rtl. */
3671 else if (i == FRAME_POINTER_REGNUM
3672 || (i == HARD_FRAME_POINTER_REGNUM
3673 && (! reload_completed || frame_pointer_needed)))
3674 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3677 /* For each insn which shouldn't cross a call, add a dependence
3678 between that insn and this call insn. */
3679 add_dependence_list_and_free (deps, insn,
3680 &deps->sched_before_next_call, 1,
3681 REG_DEP_ANTI, true);
3683 sched_analyze_insn (deps, PATTERN (insn), insn);
3685 /* If CALL would be in a sched group, then this will violate
3686 convention that sched group insns have dependencies only on the
3687 previous instruction.
3689 Of course one can say: "Hey! What about head of the sched group?"
3690 And I will answer: "Basic principles (one dep per insn) are always
3691 the same." */
3692 gcc_assert (!SCHED_GROUP_P (insn));
3694 /* In the absence of interprocedural alias analysis, we must flush
3695 all pending reads and writes, and start new dependencies starting
3696 from here. But only flush writes for constant calls (which may
3697 be passed a pointer to something we haven't written yet). */
3698 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3700 if (!deps->readonly)
3702 /* Remember the last function call for limiting lifetimes. */
3703 free_INSN_LIST_list (&deps->last_function_call);
3704 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3706 if (call_may_noreturn_p (insn))
3708 /* Remember the last function call that might not always return
3709 normally for limiting moves of trapping insns. */
3710 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3711 deps->last_function_call_may_noreturn
3712 = alloc_INSN_LIST (insn, NULL_RTX);
3715 /* Before reload, begin a post-call group, so as to keep the
3716 lifetimes of hard registers correct. */
3717 if (! reload_completed)
3718 deps->in_post_call_group_p = post_call;
3722 if (sched_deps_info->use_cselib)
3723 cselib_process_insn (insn);
3725 if (sched_deps_info->finish_insn)
3726 sched_deps_info->finish_insn ();
3728 /* Fixup the dependencies in the sched group. */
3729 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3730 && chain_to_prev_insn_p (insn)
3731 && !sel_sched_p ())
3732 chain_to_prev_insn (insn);
3735 /* Initialize DEPS for the new block beginning with HEAD. */
3736 void
3737 deps_start_bb (struct deps_desc *deps, rtx head)
3739 gcc_assert (!deps->readonly);
3741 /* Before reload, if the previous block ended in a call, show that
3742 we are inside a post-call group, so as to keep the lifetimes of
3743 hard registers correct. */
3744 if (! reload_completed && !LABEL_P (head))
3746 rtx insn = prev_nonnote_nondebug_insn (head);
3748 if (insn && CALL_P (insn))
3749 deps->in_post_call_group_p = post_call_initial;
3753 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3754 dependencies for each insn. */
3755 void
3756 sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
3758 rtx insn;
3760 if (sched_deps_info->use_cselib)
3761 cselib_init (CSELIB_RECORD_MEMORY);
3763 deps_start_bb (deps, head);
3765 for (insn = head;; insn = NEXT_INSN (insn))
3768 if (INSN_P (insn))
3770 /* And initialize deps_lists. */
3771 sd_init_insn (insn);
3772 /* Clean up SCHED_GROUP_P which may be set by last
3773 scheduler pass. */
3774 if (SCHED_GROUP_P (insn))
3775 SCHED_GROUP_P (insn) = 0;
3778 deps_analyze_insn (deps, insn);
3780 if (insn == tail)
3782 if (sched_deps_info->use_cselib)
3783 cselib_finish ();
3784 return;
3787 gcc_unreachable ();
3790 /* Helper for sched_free_deps ().
3791 Delete INSN's (RESOLVED_P) backward dependencies. */
3792 static void
3793 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3795 sd_iterator_def sd_it;
3796 dep_t dep;
3797 sd_list_types_def types;
3799 if (resolved_p)
3800 types = SD_LIST_RES_BACK;
3801 else
3802 types = SD_LIST_BACK;
3804 for (sd_it = sd_iterator_start (insn, types);
3805 sd_iterator_cond (&sd_it, &dep);)
3807 dep_link_t link = *sd_it.linkp;
3808 dep_node_t node = DEP_LINK_NODE (link);
3809 deps_list_t back_list;
3810 deps_list_t forw_list;
3812 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3813 remove_from_deps_list (link, back_list);
3814 delete_dep_node (node);
3818 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3819 deps_lists. */
3820 void
3821 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3823 rtx insn;
3824 rtx next_tail = NEXT_INSN (tail);
3826 /* We make two passes since some insns may be scheduled before their
3827 dependencies are resolved. */
3828 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3829 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3831 /* Clear forward deps and leave the dep_nodes to the
3832 corresponding back_deps list. */
3833 if (resolved_p)
3834 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3835 else
3836 clear_deps_list (INSN_FORW_DEPS (insn));
3838 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3839 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3841 /* Clear resolved back deps together with its dep_nodes. */
3842 delete_dep_nodes_in_back_deps (insn, resolved_p);
3844 sd_finish_insn (insn);
3848 /* Initialize variables for region data dependence analysis.
3849 When LAZY_REG_LAST is true, do not allocate reg_last array
3850 of struct deps_desc immediately. */
3852 void
3853 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3855 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3857 deps->max_reg = max_reg;
3858 if (lazy_reg_last)
3859 deps->reg_last = NULL;
3860 else
3861 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3862 INIT_REG_SET (&deps->reg_last_in_use);
3864 deps->pending_read_insns = 0;
3865 deps->pending_read_mems = 0;
3866 deps->pending_write_insns = 0;
3867 deps->pending_write_mems = 0;
3868 deps->pending_jump_insns = 0;
3869 deps->pending_read_list_length = 0;
3870 deps->pending_write_list_length = 0;
3871 deps->pending_flush_length = 0;
3872 deps->last_pending_memory_flush = 0;
3873 deps->last_function_call = 0;
3874 deps->last_function_call_may_noreturn = 0;
3875 deps->sched_before_next_call = 0;
3876 deps->sched_before_next_jump = 0;
3877 deps->in_post_call_group_p = not_post_call;
3878 deps->last_debug_insn = 0;
3879 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3880 deps->readonly = 0;
3883 /* Init only reg_last field of DEPS, which was not allocated before as
3884 we inited DEPS lazily. */
3885 void
3886 init_deps_reg_last (struct deps_desc *deps)
3888 gcc_assert (deps && deps->max_reg > 0);
3889 gcc_assert (deps->reg_last == NULL);
3891 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3895 /* Free insn lists found in DEPS. */
3897 void
3898 free_deps (struct deps_desc *deps)
3900 unsigned i;
3901 reg_set_iterator rsi;
3903 /* We set max_reg to 0 when this context was already freed. */
3904 if (deps->max_reg == 0)
3906 gcc_assert (deps->reg_last == NULL);
3907 return;
3909 deps->max_reg = 0;
3911 free_INSN_LIST_list (&deps->pending_read_insns);
3912 free_EXPR_LIST_list (&deps->pending_read_mems);
3913 free_INSN_LIST_list (&deps->pending_write_insns);
3914 free_EXPR_LIST_list (&deps->pending_write_mems);
3915 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3917 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3918 times. For a testcase with 42000 regs and 8000 small basic blocks,
3919 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3920 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3922 struct deps_reg *reg_last = &deps->reg_last[i];
3923 if (reg_last->uses)
3924 free_INSN_LIST_list (&reg_last->uses);
3925 if (reg_last->sets)
3926 free_INSN_LIST_list (&reg_last->sets);
3927 if (reg_last->implicit_sets)
3928 free_INSN_LIST_list (&reg_last->implicit_sets);
3929 if (reg_last->control_uses)
3930 free_INSN_LIST_list (&reg_last->control_uses);
3931 if (reg_last->clobbers)
3932 free_INSN_LIST_list (&reg_last->clobbers);
3934 CLEAR_REG_SET (&deps->reg_last_in_use);
3936 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3937 it at all. */
3938 free (deps->reg_last);
3939 deps->reg_last = NULL;
3941 deps = NULL;
3944 /* Remove INSN from dependence contexts DEPS. */
3945 void
3946 remove_from_deps (struct deps_desc *deps, rtx insn)
3948 int removed;
3949 unsigned i;
3950 reg_set_iterator rsi;
3952 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3953 &deps->pending_read_mems);
3954 if (!DEBUG_INSN_P (insn))
3955 deps->pending_read_list_length -= removed;
3956 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3957 &deps->pending_write_mems);
3958 deps->pending_write_list_length -= removed;
3960 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
3961 deps->pending_flush_length -= removed;
3962 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3963 deps->pending_flush_length -= removed;
3965 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3967 struct deps_reg *reg_last = &deps->reg_last[i];
3968 if (reg_last->uses)
3969 remove_from_dependence_list (insn, &reg_last->uses);
3970 if (reg_last->sets)
3971 remove_from_dependence_list (insn, &reg_last->sets);
3972 if (reg_last->implicit_sets)
3973 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3974 if (reg_last->clobbers)
3975 remove_from_dependence_list (insn, &reg_last->clobbers);
3976 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
3977 && !reg_last->clobbers)
3978 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
3981 if (CALL_P (insn))
3983 remove_from_dependence_list (insn, &deps->last_function_call);
3984 remove_from_dependence_list (insn,
3985 &deps->last_function_call_may_noreturn);
3987 remove_from_dependence_list (insn, &deps->sched_before_next_call);
3990 /* Init deps data vector. */
3991 static void
3992 init_deps_data_vector (void)
3994 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
3995 if (reserve > 0 && ! h_d_i_d.space (reserve))
3996 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
3999 /* If it is profitable to use them, initialize or extend (depending on
4000 GLOBAL_P) dependency data. */
4001 void
4002 sched_deps_init (bool global_p)
4004 /* Average number of insns in the basic block.
4005 '+ 1' is used to make it nonzero. */
4006 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4008 init_deps_data_vector ();
4010 /* We use another caching mechanism for selective scheduling, so
4011 we don't use this one. */
4012 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4014 /* ?!? We could save some memory by computing a per-region luid mapping
4015 which could reduce both the number of vectors in the cache and the
4016 size of each vector. Instead we just avoid the cache entirely unless
4017 the average number of instructions in a basic block is very high. See
4018 the comment before the declaration of true_dependency_cache for
4019 what we consider "very high". */
4020 cache_size = 0;
4021 extend_dependency_caches (sched_max_luid, true);
4024 if (global_p)
4026 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
4027 /* Allocate lists for one block at a time. */
4028 insns_in_block);
4029 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
4030 /* Allocate nodes for one block at a time.
4031 We assume that average insn has
4032 5 producers. */
4033 5 * insns_in_block);
4038 /* Create or extend (depending on CREATE_P) dependency caches to
4039 size N. */
4040 void
4041 extend_dependency_caches (int n, bool create_p)
4043 if (create_p || true_dependency_cache)
4045 int i, luid = cache_size + n;
4047 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4048 luid);
4049 output_dependency_cache = XRESIZEVEC (bitmap_head,
4050 output_dependency_cache, luid);
4051 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4052 luid);
4053 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4054 luid);
4056 if (current_sched_info->flags & DO_SPECULATION)
4057 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4058 luid);
4060 for (i = cache_size; i < luid; i++)
4062 bitmap_initialize (&true_dependency_cache[i], 0);
4063 bitmap_initialize (&output_dependency_cache[i], 0);
4064 bitmap_initialize (&anti_dependency_cache[i], 0);
4065 bitmap_initialize (&control_dependency_cache[i], 0);
4067 if (current_sched_info->flags & DO_SPECULATION)
4068 bitmap_initialize (&spec_dependency_cache[i], 0);
4070 cache_size = luid;
4074 /* Finalize dependency information for the whole function. */
4075 void
4076 sched_deps_finish (void)
4078 gcc_assert (deps_pools_are_empty_p ());
4079 free_alloc_pool_if_empty (&dn_pool);
4080 free_alloc_pool_if_empty (&dl_pool);
4081 gcc_assert (dn_pool == NULL && dl_pool == NULL);
4083 h_d_i_d.release ();
4084 cache_size = 0;
4086 if (true_dependency_cache)
4088 int i;
4090 for (i = 0; i < cache_size; i++)
4092 bitmap_clear (&true_dependency_cache[i]);
4093 bitmap_clear (&output_dependency_cache[i]);
4094 bitmap_clear (&anti_dependency_cache[i]);
4095 bitmap_clear (&control_dependency_cache[i]);
4097 if (sched_deps_info->generate_spec_deps)
4098 bitmap_clear (&spec_dependency_cache[i]);
4100 free (true_dependency_cache);
4101 true_dependency_cache = NULL;
4102 free (output_dependency_cache);
4103 output_dependency_cache = NULL;
4104 free (anti_dependency_cache);
4105 anti_dependency_cache = NULL;
4106 free (control_dependency_cache);
4107 control_dependency_cache = NULL;
4109 if (sched_deps_info->generate_spec_deps)
4111 free (spec_dependency_cache);
4112 spec_dependency_cache = NULL;
4118 /* Initialize some global variables needed by the dependency analysis
4119 code. */
4121 void
4122 init_deps_global (void)
4124 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4125 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4126 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4127 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4128 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4129 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4130 reg_pending_barrier = NOT_A_BARRIER;
4132 if (!sel_sched_p () || sched_emulate_haifa_p)
4134 sched_deps_info->start_insn = haifa_start_insn;
4135 sched_deps_info->finish_insn = haifa_finish_insn;
4137 sched_deps_info->note_reg_set = haifa_note_reg_set;
4138 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4139 sched_deps_info->note_reg_use = haifa_note_reg_use;
4141 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4142 sched_deps_info->note_dep = haifa_note_dep;
4146 /* Free everything used by the dependency analysis code. */
4148 void
4149 finish_deps_global (void)
4151 FREE_REG_SET (reg_pending_sets);
4152 FREE_REG_SET (reg_pending_clobbers);
4153 FREE_REG_SET (reg_pending_uses);
4154 FREE_REG_SET (reg_pending_control_uses);
4157 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4158 dw_t
4159 estimate_dep_weak (rtx mem1, rtx mem2)
4161 rtx r1, r2;
4163 if (mem1 == mem2)
4164 /* MEMs are the same - don't speculate. */
4165 return MIN_DEP_WEAK;
4167 r1 = XEXP (mem1, 0);
4168 r2 = XEXP (mem2, 0);
4170 if (r1 == r2
4171 || (REG_P (r1) && REG_P (r2)
4172 && REGNO (r1) == REGNO (r2)))
4173 /* Again, MEMs are the same. */
4174 return MIN_DEP_WEAK;
4175 else if ((REG_P (r1) && !REG_P (r2))
4176 || (!REG_P (r1) && REG_P (r2)))
4177 /* Different addressing modes - reason to be more speculative,
4178 than usual. */
4179 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4180 else
4181 /* We can't say anything about the dependence. */
4182 return UNCERTAIN_DEP_WEAK;
4185 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4186 This function can handle same INSN and ELEM (INSN == ELEM).
4187 It is a convenience wrapper. */
4188 static void
4189 add_dependence_1 (rtx insn, rtx elem, enum reg_note dep_type)
4191 ds_t ds;
4192 bool internal;
4194 if (dep_type == REG_DEP_TRUE)
4195 ds = DEP_TRUE;
4196 else if (dep_type == REG_DEP_OUTPUT)
4197 ds = DEP_OUTPUT;
4198 else if (dep_type == REG_DEP_CONTROL)
4199 ds = DEP_CONTROL;
4200 else
4202 gcc_assert (dep_type == REG_DEP_ANTI);
4203 ds = DEP_ANTI;
4206 /* When add_dependence is called from inside sched-deps.c, we expect
4207 cur_insn to be non-null. */
4208 internal = cur_insn != NULL;
4209 if (internal)
4210 gcc_assert (insn == cur_insn);
4211 else
4212 cur_insn = insn;
4214 note_dep (elem, ds);
4215 if (!internal)
4216 cur_insn = NULL;
4219 /* Return weakness of speculative type TYPE in the dep_status DS,
4220 without checking to prevent ICEs on malformed input. */
4221 static dw_t
4222 get_dep_weak_1 (ds_t ds, ds_t type)
4224 ds = ds & type;
4226 switch (type)
4228 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4229 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4230 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4231 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4232 default: gcc_unreachable ();
4235 return (dw_t) ds;
4238 /* Return weakness of speculative type TYPE in the dep_status DS. */
4239 dw_t
4240 get_dep_weak (ds_t ds, ds_t type)
4242 dw_t dw = get_dep_weak_1 (ds, type);
4244 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4245 return dw;
4248 /* Return the dep_status, which has the same parameters as DS, except for
4249 speculative type TYPE, that will have weakness DW. */
4250 ds_t
4251 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4253 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4255 ds &= ~type;
4256 switch (type)
4258 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4259 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4260 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4261 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4262 default: gcc_unreachable ();
4264 return ds;
4267 /* Return the join of two dep_statuses DS1 and DS2.
4268 If MAX_P is true then choose the greater probability,
4269 otherwise multiply probabilities.
4270 This function assumes that both DS1 and DS2 contain speculative bits. */
4271 static ds_t
4272 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4274 ds_t ds, t;
4276 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4278 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4280 t = FIRST_SPEC_TYPE;
4283 if ((ds1 & t) && !(ds2 & t))
4284 ds |= ds1 & t;
4285 else if (!(ds1 & t) && (ds2 & t))
4286 ds |= ds2 & t;
4287 else if ((ds1 & t) && (ds2 & t))
4289 dw_t dw1 = get_dep_weak (ds1, t);
4290 dw_t dw2 = get_dep_weak (ds2, t);
4291 ds_t dw;
4293 if (!max_p)
4295 dw = ((ds_t) dw1) * ((ds_t) dw2);
4296 dw /= MAX_DEP_WEAK;
4297 if (dw < MIN_DEP_WEAK)
4298 dw = MIN_DEP_WEAK;
4300 else
4302 if (dw1 >= dw2)
4303 dw = dw1;
4304 else
4305 dw = dw2;
4308 ds = set_dep_weak (ds, t, (dw_t) dw);
4311 if (t == LAST_SPEC_TYPE)
4312 break;
4313 t <<= SPEC_TYPE_SHIFT;
4315 while (1);
4317 return ds;
4320 /* Return the join of two dep_statuses DS1 and DS2.
4321 This function assumes that both DS1 and DS2 contain speculative bits. */
4322 ds_t
4323 ds_merge (ds_t ds1, ds_t ds2)
4325 return ds_merge_1 (ds1, ds2, false);
4328 /* Return the join of two dep_statuses DS1 and DS2. */
4329 ds_t
4330 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4332 ds_t new_status = ds | ds2;
4334 if (new_status & SPECULATIVE)
4336 if ((ds && !(ds & SPECULATIVE))
4337 || (ds2 && !(ds2 & SPECULATIVE)))
4338 /* Then this dep can't be speculative. */
4339 new_status &= ~SPECULATIVE;
4340 else
4342 /* Both are speculative. Merging probabilities. */
4343 if (mem1)
4345 dw_t dw;
4347 dw = estimate_dep_weak (mem1, mem2);
4348 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4351 if (!ds)
4352 new_status = ds2;
4353 else if (!ds2)
4354 new_status = ds;
4355 else
4356 new_status = ds_merge (ds2, ds);
4360 return new_status;
4363 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4364 probabilities. */
4365 ds_t
4366 ds_max_merge (ds_t ds1, ds_t ds2)
4368 if (ds1 == 0 && ds2 == 0)
4369 return 0;
4371 if (ds1 == 0 && ds2 != 0)
4372 return ds2;
4374 if (ds1 != 0 && ds2 == 0)
4375 return ds1;
4377 return ds_merge_1 (ds1, ds2, true);
4380 /* Return the probability of speculation success for the speculation
4381 status DS. */
4382 dw_t
4383 ds_weak (ds_t ds)
4385 ds_t res = 1, dt;
4386 int n = 0;
4388 dt = FIRST_SPEC_TYPE;
4391 if (ds & dt)
4393 res *= (ds_t) get_dep_weak (ds, dt);
4394 n++;
4397 if (dt == LAST_SPEC_TYPE)
4398 break;
4399 dt <<= SPEC_TYPE_SHIFT;
4401 while (1);
4403 gcc_assert (n);
4404 while (--n)
4405 res /= MAX_DEP_WEAK;
4407 if (res < MIN_DEP_WEAK)
4408 res = MIN_DEP_WEAK;
4410 gcc_assert (res <= MAX_DEP_WEAK);
4412 return (dw_t) res;
4415 /* Return a dep status that contains all speculation types of DS. */
4416 ds_t
4417 ds_get_speculation_types (ds_t ds)
4419 if (ds & BEGIN_DATA)
4420 ds |= BEGIN_DATA;
4421 if (ds & BE_IN_DATA)
4422 ds |= BE_IN_DATA;
4423 if (ds & BEGIN_CONTROL)
4424 ds |= BEGIN_CONTROL;
4425 if (ds & BE_IN_CONTROL)
4426 ds |= BE_IN_CONTROL;
4428 return ds & SPECULATIVE;
4431 /* Return a dep status that contains maximal weakness for each speculation
4432 type present in DS. */
4433 ds_t
4434 ds_get_max_dep_weak (ds_t ds)
4436 if (ds & BEGIN_DATA)
4437 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4438 if (ds & BE_IN_DATA)
4439 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4440 if (ds & BEGIN_CONTROL)
4441 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4442 if (ds & BE_IN_CONTROL)
4443 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4445 return ds;
4448 /* Dump information about the dependence status S. */
4449 static void
4450 dump_ds (FILE *f, ds_t s)
4452 fprintf (f, "{");
4454 if (s & BEGIN_DATA)
4455 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4456 if (s & BE_IN_DATA)
4457 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4458 if (s & BEGIN_CONTROL)
4459 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4460 if (s & BE_IN_CONTROL)
4461 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4463 if (s & HARD_DEP)
4464 fprintf (f, "HARD_DEP; ");
4466 if (s & DEP_TRUE)
4467 fprintf (f, "DEP_TRUE; ");
4468 if (s & DEP_OUTPUT)
4469 fprintf (f, "DEP_OUTPUT; ");
4470 if (s & DEP_ANTI)
4471 fprintf (f, "DEP_ANTI; ");
4472 if (s & DEP_CONTROL)
4473 fprintf (f, "DEP_CONTROL; ");
4475 fprintf (f, "}");
4478 DEBUG_FUNCTION void
4479 debug_ds (ds_t s)
4481 dump_ds (stderr, s);
4482 fprintf (stderr, "\n");
4485 #ifdef ENABLE_CHECKING
4486 /* Verify that dependence type and status are consistent.
4487 If RELAXED_P is true, then skip dep_weakness checks. */
4488 static void
4489 check_dep (dep_t dep, bool relaxed_p)
4491 enum reg_note dt = DEP_TYPE (dep);
4492 ds_t ds = DEP_STATUS (dep);
4494 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4496 if (!(current_sched_info->flags & USE_DEPS_LIST))
4498 gcc_assert (ds == 0);
4499 return;
4502 /* Check that dependence type contains the same bits as the status. */
4503 if (dt == REG_DEP_TRUE)
4504 gcc_assert (ds & DEP_TRUE);
4505 else if (dt == REG_DEP_OUTPUT)
4506 gcc_assert ((ds & DEP_OUTPUT)
4507 && !(ds & DEP_TRUE));
4508 else if (dt == REG_DEP_ANTI)
4509 gcc_assert ((ds & DEP_ANTI)
4510 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4511 else
4512 gcc_assert (dt == REG_DEP_CONTROL
4513 && (ds & DEP_CONTROL)
4514 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4516 /* HARD_DEP can not appear in dep_status of a link. */
4517 gcc_assert (!(ds & HARD_DEP));
4519 /* Check that dependence status is set correctly when speculation is not
4520 supported. */
4521 if (!sched_deps_info->generate_spec_deps)
4522 gcc_assert (!(ds & SPECULATIVE));
4523 else if (ds & SPECULATIVE)
4525 if (!relaxed_p)
4527 ds_t type = FIRST_SPEC_TYPE;
4529 /* Check that dependence weakness is in proper range. */
4532 if (ds & type)
4533 get_dep_weak (ds, type);
4535 if (type == LAST_SPEC_TYPE)
4536 break;
4537 type <<= SPEC_TYPE_SHIFT;
4539 while (1);
4542 if (ds & BEGIN_SPEC)
4544 /* Only true dependence can be data speculative. */
4545 if (ds & BEGIN_DATA)
4546 gcc_assert (ds & DEP_TRUE);
4548 /* Control dependencies in the insn scheduler are represented by
4549 anti-dependencies, therefore only anti dependence can be
4550 control speculative. */
4551 if (ds & BEGIN_CONTROL)
4552 gcc_assert (ds & DEP_ANTI);
4554 else
4556 /* Subsequent speculations should resolve true dependencies. */
4557 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4560 /* Check that true and anti dependencies can't have other speculative
4561 statuses. */
4562 if (ds & DEP_TRUE)
4563 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4564 /* An output dependence can't be speculative at all. */
4565 gcc_assert (!(ds & DEP_OUTPUT));
4566 if (ds & DEP_ANTI)
4567 gcc_assert (ds & BEGIN_CONTROL);
4570 #endif /* ENABLE_CHECKING */
4572 /* The following code discovers opportunities to switch a memory reference
4573 and an increment by modifying the address. We ensure that this is done
4574 only for dependencies that are only used to show a single register
4575 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4576 instruction involved is subject to only one dep that can cause a pattern
4577 change.
4579 When we discover a suitable dependency, we fill in the dep_replacement
4580 structure to show how to modify the memory reference. */
4582 /* Holds information about a pair of memory reference and register increment
4583 insns which depend on each other, but could possibly be interchanged. */
4584 struct mem_inc_info
4586 rtx inc_insn;
4587 rtx mem_insn;
4589 rtx *mem_loc;
4590 /* A register occurring in the memory address for which we wish to break
4591 the dependence. This must be identical to the destination register of
4592 the increment. */
4593 rtx mem_reg0;
4594 /* Any kind of index that is added to that register. */
4595 rtx mem_index;
4596 /* The constant offset used in the memory address. */
4597 HOST_WIDE_INT mem_constant;
4598 /* The constant added in the increment insn. Negated if the increment is
4599 after the memory address. */
4600 HOST_WIDE_INT inc_constant;
4601 /* The source register used in the increment. May be different from mem_reg0
4602 if the increment occurs before the memory address. */
4603 rtx inc_input;
4606 /* Verify that the memory location described in MII can be replaced with
4607 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4608 insn remains unchanged by this function. */
4610 static rtx
4611 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4613 rtx mem = *mii->mem_loc;
4614 rtx new_mem;
4616 /* Jump through a lot of hoops to keep the attributes up to date. We
4617 do not want to call one of the change address variants that take
4618 an offset even though we know the offset in many cases. These
4619 assume you are changing where the address is pointing by the
4620 offset. */
4621 new_mem = replace_equiv_address_nv (mem, new_addr);
4622 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4624 if (sched_verbose >= 5)
4625 fprintf (sched_dump, "validation failure\n");
4626 return NULL_RTX;
4629 /* Put back the old one. */
4630 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4632 return new_mem;
4635 /* Return true if INSN is of a form "a = b op c" where a and b are
4636 regs. op is + if c is a reg and +|- if c is a const. Fill in
4637 informantion in MII about what is found.
4638 BEFORE_MEM indicates whether the increment is found before or after
4639 a corresponding memory reference. */
4641 static bool
4642 parse_add_or_inc (struct mem_inc_info *mii, rtx insn, bool before_mem)
4644 rtx pat = single_set (insn);
4645 rtx src, cst;
4646 bool regs_equal;
4648 if (RTX_FRAME_RELATED_P (insn) || !pat)
4649 return false;
4651 /* Result must be single reg. */
4652 if (!REG_P (SET_DEST (pat)))
4653 return false;
4655 if (GET_CODE (SET_SRC (pat)) != PLUS)
4656 return false;
4658 mii->inc_insn = insn;
4659 src = SET_SRC (pat);
4660 mii->inc_input = XEXP (src, 0);
4662 if (!REG_P (XEXP (src, 0)))
4663 return false;
4665 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4666 return false;
4668 cst = XEXP (src, 1);
4669 if (!CONST_INT_P (cst))
4670 return false;
4671 mii->inc_constant = INTVAL (cst);
4673 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4675 if (!before_mem)
4677 mii->inc_constant = -mii->inc_constant;
4678 if (!regs_equal)
4679 return false;
4682 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4684 /* Note that the sign has already been reversed for !before_mem. */
4685 #ifdef STACK_GROWS_DOWNWARD
4686 return mii->inc_constant > 0;
4687 #else
4688 return mii->inc_constant < 0;
4689 #endif
4691 return true;
4694 /* Once a suitable mem reference has been found and the corresponding data
4695 in MII has been filled in, this function is called to find a suitable
4696 add or inc insn involving the register we found in the memory
4697 reference. */
4699 static bool
4700 find_inc (struct mem_inc_info *mii, bool backwards)
4702 sd_iterator_def sd_it;
4703 dep_t dep;
4705 sd_it = sd_iterator_start (mii->mem_insn,
4706 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4707 while (sd_iterator_cond (&sd_it, &dep))
4709 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4710 rtx pro = DEP_PRO (dep);
4711 rtx con = DEP_CON (dep);
4712 rtx inc_cand = backwards ? pro : con;
4713 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4714 goto next;
4715 if (parse_add_or_inc (mii, inc_cand, backwards))
4717 struct dep_replacement *desc;
4718 df_ref *def_rec;
4719 rtx newaddr, newmem;
4721 if (sched_verbose >= 5)
4722 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4723 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4725 /* Need to assure that none of the operands of the inc
4726 instruction are assigned to by the mem insn. */
4727 for (def_rec = DF_INSN_DEFS (mii->mem_insn); *def_rec; def_rec++)
4729 df_ref def = *def_rec;
4730 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4731 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4733 if (sched_verbose >= 5)
4734 fprintf (sched_dump,
4735 "inc conflicts with store failure.\n");
4736 goto next;
4739 newaddr = mii->inc_input;
4740 if (mii->mem_index != NULL_RTX)
4741 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4742 mii->mem_index);
4743 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4744 mii->mem_constant + mii->inc_constant);
4745 newmem = attempt_change (mii, newaddr);
4746 if (newmem == NULL_RTX)
4747 goto next;
4748 if (sched_verbose >= 5)
4749 fprintf (sched_dump, "successful address replacement\n");
4750 desc = XCNEW (struct dep_replacement);
4751 DEP_REPLACE (dep) = desc;
4752 desc->loc = mii->mem_loc;
4753 desc->newval = newmem;
4754 desc->orig = *desc->loc;
4755 desc->insn = mii->mem_insn;
4756 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4757 INSN_SPEC_BACK_DEPS (con));
4758 if (backwards)
4760 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4761 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4762 REG_DEP_TRUE);
4764 else
4766 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4767 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4768 REG_DEP_ANTI);
4770 return true;
4772 next:
4773 sd_iterator_next (&sd_it);
4775 return false;
4778 /* A recursive function that walks ADDRESS_OF_X to find memory references
4779 which could be modified during scheduling. We call find_inc for each
4780 one we find that has a recognizable form. MII holds information about
4781 the pair of memory/increment instructions.
4782 We ensure that every instruction with a memory reference (which will be
4783 the location of the replacement) is assigned at most one breakable
4784 dependency. */
4786 static bool
4787 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4789 rtx x = *address_of_x;
4790 enum rtx_code code = GET_CODE (x);
4791 const char *const fmt = GET_RTX_FORMAT (code);
4792 int i;
4794 if (code == MEM)
4796 rtx reg0 = XEXP (x, 0);
4798 mii->mem_loc = address_of_x;
4799 mii->mem_index = NULL_RTX;
4800 mii->mem_constant = 0;
4801 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4803 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4804 reg0 = XEXP (reg0, 0);
4806 if (GET_CODE (reg0) == PLUS)
4808 mii->mem_index = XEXP (reg0, 1);
4809 reg0 = XEXP (reg0, 0);
4811 if (REG_P (reg0))
4813 df_ref *def_rec;
4814 int occurrences = 0;
4816 /* Make sure this reg appears only once in this insn. Can't use
4817 count_occurrences since that only works for pseudos. */
4818 for (def_rec = DF_INSN_USES (mii->mem_insn); *def_rec; def_rec++)
4820 df_ref def = *def_rec;
4821 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (def)))
4822 if (++occurrences > 1)
4824 if (sched_verbose >= 5)
4825 fprintf (sched_dump, "mem count failure\n");
4826 return false;
4830 mii->mem_reg0 = reg0;
4831 return find_inc (mii, true) || find_inc (mii, false);
4833 return false;
4836 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4838 /* If REG occurs inside a MEM used in a bit-field reference,
4839 that is unacceptable. */
4840 return false;
4843 /* Time for some deep diving. */
4844 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4846 if (fmt[i] == 'e')
4848 if (find_mem (mii, &XEXP (x, i)))
4849 return true;
4851 else if (fmt[i] == 'E')
4853 int j;
4854 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4855 if (find_mem (mii, &XVECEXP (x, i, j)))
4856 return true;
4859 return false;
4863 /* Examine the instructions between HEAD and TAIL and try to find
4864 dependencies that can be broken by modifying one of the patterns. */
4866 void
4867 find_modifiable_mems (rtx head, rtx tail)
4869 rtx insn, next_tail = NEXT_INSN (tail);
4870 int success_in_block = 0;
4872 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4874 struct mem_inc_info mii;
4876 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4877 continue;
4879 mii.mem_insn = insn;
4880 if (find_mem (&mii, &PATTERN (insn)))
4881 success_in_block++;
4883 if (success_in_block && sched_verbose >= 5)
4884 fprintf (sched_dump, "%d candidates for address modification found.\n",
4885 success_in_block);
4888 #endif /* INSN_SCHEDULING */