* tm.texi: Fix markup.
[official-gcc.git] / gcc / config / i386 / i386.h
blobee5b615e59e72ec4ee3946d587e2c6707ecba738
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
37 /* Stubs for half-pic support if not OSF/1 reference platform. */
39 #ifndef HALF_PIC_P
40 #define HALF_PIC_P() 0
41 #define HALF_PIC_NUMBER_PTRS 0
42 #define HALF_PIC_NUMBER_REFS 0
43 #define HALF_PIC_ENCODE(DECL)
44 #define HALF_PIC_DECLARE(NAME)
45 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
46 #define HALF_PIC_ADDRESS_P(X) 0
47 #define HALF_PIC_PTR(X) X
48 #define HALF_PIC_FINISH(STREAM)
49 #endif
51 /* Define the specific costs for a given cpu */
53 struct processor_costs {
54 int add; /* cost of an add instruction */
55 int lea; /* cost of a lea instruction */
56 int shift_var; /* variable shift costs */
57 int shift_const; /* constant shift costs */
58 int mult_init; /* cost of starting a multiply */
59 int mult_bit; /* cost of multiply per each bit set */
60 int divide; /* cost of a divide/mod */
61 int large_insn; /* insns larger than this cost more */
62 int move_ratio; /* The threshold of number of scalar
63 memory-to-memory move insns. */
64 int movzbl_load; /* cost of loading using movzbl */
65 int int_load[3]; /* cost of loading integer registers
66 in QImode, HImode and SImode relative
67 to reg-reg move (2). */
68 int int_store[3]; /* cost of storing integer register
69 in QImode, HImode and SImode */
70 int fp_move; /* cost of reg,reg fld/fst */
71 int fp_load[3]; /* cost of loading FP register
72 in SFmode, DFmode and XFmode */
73 int fp_store[3]; /* cost of storing FP register
74 in SFmode, DFmode and XFmode */
75 int mmx_move; /* cost of moving MMX register. */
76 int mmx_load[2]; /* cost of loading MMX register
77 in SImode and DImode */
78 int mmx_store[2]; /* cost of storing MMX register
79 in SImode and DImode */
80 int sse_move; /* cost of moving SSE register. */
81 int sse_load[3]; /* cost of loading SSE register
82 in SImode, DImode and TImode*/
83 int sse_store[3]; /* cost of storing SSE register
84 in SImode, DImode and TImode*/
85 int mmxsse_to_integer; /* cost of moving mmxsse register to
86 integer and vice versa. */
89 extern struct processor_costs *ix86_cost;
91 /* Run-time compilation parameters selecting different hardware subsets. */
93 extern int target_flags;
95 /* Macros used in the machine description to test the flags. */
97 /* configure can arrange to make this 2, to force a 486. */
99 #ifndef TARGET_CPU_DEFAULT
100 #define TARGET_CPU_DEFAULT 0
101 #endif
103 /* Masks for the -m switches */
104 #define MASK_80387 0x00000001 /* Hardware floating point */
105 #define MASK_RTD 0x00000002 /* Use ret that pops args */
106 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
113 #define MASK_NO_ALIGN_STROPS 0x00001000 /* Enable aligning of string ops. */
114 #define MASK_INLINE_ALL_STROPS 0x00002000 /* Inline stringops in all cases */
115 #define MASK_NO_PUSH_ARGS 0x00004000 /* Use push instructions */
116 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00008000/* Accumulate outgoing args */
117 #define MASK_NO_ACCUMULATE_OUTGOING_ARGS 0x00010000
118 #define MASK_MMX 0x00020000 /* Support MMX regs/builtins */
119 #define MASK_SSE 0x00040000 /* Support SSE regs/builtins */
120 #define MASK_SSE2 0x00080000 /* Support SSE2 regs/builtins */
121 #define MASK_128BIT_LONG_DOUBLE 0x00100000 /* long double size is 128bit */
122 #define MASK_MIX_SSE_I387 0x00200000 /* Mix SSE and i387 instructions */
123 #define MASK_64BIT 0x00400000 /* Produce 64bit code */
124 #define MASK_NO_RED_ZONE 0x00800000 /* Do not use red zone */
126 /* Temporary codegen switches */
127 #define MASK_INTEL_SYNTAX 0x00000200
128 #define MASK_DEBUG_ARG 0x00000400 /* function_arg */
129 #define MASK_DEBUG_ADDR 0x00000800 /* GO_IF_LEGITIMATE_ADDRESS */
131 /* Use the floating point instructions */
132 #define TARGET_80387 (target_flags & MASK_80387)
134 /* Compile using ret insn that pops args.
135 This will not work unless you use prototypes at least
136 for all functions that can take varying numbers of args. */
137 #define TARGET_RTD (target_flags & MASK_RTD)
139 /* Align doubles to a two word boundary. This breaks compatibility with
140 the published ABI's for structures containing doubles, but produces
141 faster code on the pentium. */
142 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
144 /* Use push instructions to save outgoing args. */
145 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
147 /* Accumulate stack adjustments to prologue/epilogue. */
148 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
149 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
151 /* Put uninitialized locals into bss, not data.
152 Meaningful only on svr3. */
153 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
155 /* Use IEEE floating point comparisons. These handle correctly the cases
156 where the result of a comparison is unordered. Normally SIGFPE is
157 generated in such cases, in which case this isn't needed. */
158 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
160 /* Functions that return a floating point value may return that value
161 in the 387 FPU or in 386 integer registers. If set, this flag causes
162 the 387 to be used, which is compatible with most calling conventions. */
163 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
165 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
166 This mode wastes cache, but avoid missaligned data accesses and simplifies
167 address calculations. */
168 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
170 /* Disable generation of FP sin, cos and sqrt operations for 387.
171 This is because FreeBSD lacks these in the math-emulator-code */
172 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
174 /* Don't create frame pointers for leaf functions */
175 #define TARGET_OMIT_LEAF_FRAME_POINTER \
176 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
178 /* Debug GO_IF_LEGITIMATE_ADDRESS */
179 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
181 /* Debug FUNCTION_ARG macros */
182 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
184 /* 64bit Sledgehammer mode */
185 #ifdef TARGET_BI_ARCH
186 #define TARGET_64BIT (target_flags & MASK_64BIT)
187 #else
188 #ifdef TARGET_64BIT_DEFAULT
189 #define TARGET_64BIT 1
190 #else
191 #define TARGET_64BIT 0
192 #endif
193 #endif
195 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
196 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
197 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
198 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
199 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
200 #define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
201 #define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
203 #define CPUMASK (1 << ix86_cpu)
204 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
205 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
206 extern const int x86_branch_hints, x86_unroll_strlen;
207 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
208 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
209 extern const int x86_use_cltd, x86_read_modify_write;
210 extern const int x86_read_modify, x86_split_long_moves;
211 extern const int x86_promote_QImode, x86_single_stringop;
212 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
213 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
214 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
215 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
216 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
217 extern const int x86_epilogue_using_move;
219 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
220 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
221 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
222 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
223 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
224 /* For sane SSE instruction set generation we need fcomi instruction. It is
225 safe to enable all CMOVE instructions. */
226 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
227 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
228 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
229 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
230 #define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
231 #define TARGET_MOVX (x86_movx & CPUMASK)
232 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
233 #define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
234 #define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
235 #define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
236 #define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
237 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
238 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
239 #define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
240 #define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
241 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
242 #define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
243 #define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
244 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
245 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
246 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
247 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
248 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
249 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
250 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
251 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
252 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
253 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
254 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
256 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
258 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
259 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
261 #define ASSEMBLER_DIALECT ((target_flags & MASK_INTEL_SYNTAX) != 0)
263 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
264 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
265 #define TARGET_MIX_SSE_I387 ((target_flags & MASK_MIX_SSE_I387) != 0)
266 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
268 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
270 #define TARGET_SWITCHES \
271 { { "80387", MASK_80387, N_("Use hardware fp") }, \
272 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
273 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
274 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
275 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
276 { "386", 0, N_("Same as -mcpu=i386") }, \
277 { "486", 0, N_("Same as -mcpu=i486") }, \
278 { "pentium", 0, N_("Same as -mcpu=pentium") }, \
279 { "pentiumpro", 0, N_("Same as -mcpu=pentiumpro") }, \
280 { "rtd", MASK_RTD, \
281 N_("Alternate calling convention") }, \
282 { "no-rtd", -MASK_RTD, \
283 N_("Use normal calling convention") }, \
284 { "align-double", MASK_ALIGN_DOUBLE, \
285 N_("Align some doubles on dword boundary") }, \
286 { "no-align-double", -MASK_ALIGN_DOUBLE, \
287 N_("Align doubles on word boundary") }, \
288 { "svr3-shlib", MASK_SVR3_SHLIB, \
289 N_("Uninitialized locals in .bss") }, \
290 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
291 N_("Uninitialized locals in .data") }, \
292 { "ieee-fp", MASK_IEEE_FP, \
293 N_("Use IEEE math for fp comparisons") }, \
294 { "no-ieee-fp", -MASK_IEEE_FP, \
295 N_("Do not use IEEE math for fp comparisons") }, \
296 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
297 N_("Return values of functions in FPU registers") }, \
298 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
299 N_("Do not return values of functions in FPU registers")}, \
300 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
301 N_("Do not generate sin, cos, sqrt for FPU") }, \
302 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
303 N_("Generate sin, cos, sqrt for FPU")}, \
304 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
305 N_("Omit the frame pointer in leaf functions") }, \
306 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
307 { "debug-addr", MASK_DEBUG_ADDR, 0 /* undocumented */ }, \
308 { "no-debug-addr", -MASK_DEBUG_ADDR, 0 /* undocumented */ }, \
309 { "debug-arg", MASK_DEBUG_ARG, 0 /* undocumented */ }, \
310 { "no-debug-arg", -MASK_DEBUG_ARG, 0 /* undocumented */ }, \
311 { "stack-arg-probe", MASK_STACK_PROBE, \
312 N_("Enable stack probing") }, \
313 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
314 { "windows", 0, 0 /* undocumented */ }, \
315 { "dll", 0, 0 /* undocumented */ }, \
316 { "intel-syntax", MASK_INTEL_SYNTAX, \
317 N_("Emit Intel syntax assembler opcodes") }, \
318 { "no-intel-syntax", -MASK_INTEL_SYNTAX, "" }, \
319 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
320 N_("Align destination of the string operations") }, \
321 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
322 N_("Do not align destination of the string operations") }, \
323 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
324 N_("Inline all known string operations") }, \
325 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
326 N_("Do not inline all known string operations") }, \
327 { "push-args", -MASK_NO_PUSH_ARGS, \
328 N_("Use push instructions to save outgoing arguments") }, \
329 { "no-push-args", MASK_NO_PUSH_ARGS, \
330 N_("Do not use push instructions to save outgoing arguments") }, \
331 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
332 N_("Use push instructions to save outgoing arguments") }, \
333 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
334 N_("Do not use push instructions to save outgoing arguments") }, \
335 { "mmx", MASK_MMX, N_("Support MMX builtins") }, \
336 { "no-mmx", -MASK_MMX, \
337 N_("Do not support MMX builtins") }, \
338 { "sse", MASK_SSE, \
339 N_("Support MMX and SSE builtins and code generation") }, \
340 { "no-sse", -MASK_SSE, \
341 N_("Do not support MMX and SSE builtins and code generation") }, \
342 { "sse2", MASK_SSE2, \
343 N_("Support MMX, SSE and SSE2 builtins and code generation") }, \
344 { "no-sse2", -MASK_SSE2, \
345 N_("Do not support MMX, SSE and SSE2 builtins and code generation") }, \
346 { "mix-sse-i387", MASK_MIX_SSE_I387, \
347 N_("Use both SSE and i387 instruction sets for floating point arithmetics") },\
348 { "nomix-sse-i387", -MASK_MIX_SSE_I387, \
349 N_("Use both SSE and i387 instruction sets for floating point arithmetics") },\
350 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
351 N_("sizeof(long double) is 16.") }, \
352 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
353 N_("sizeof(long double) is 12.") }, \
354 { "64", MASK_64BIT, \
355 N_("Generate 64bit x86-64 code") }, \
356 { "32", -MASK_64BIT, \
357 N_("Generate 32bit i386 code") }, \
358 { "red-zone", -MASK_NO_RED_ZONE, \
359 N_("Use red-zone in the x86-64 code") }, \
360 { "no-red-zone", MASK_NO_RED_ZONE, \
361 N_("do not use red-zone in the x86-64 code") }, \
362 SUBTARGET_SWITCHES \
363 { "", TARGET_DEFAULT, 0 }}
365 #ifdef TARGET_64BIT_DEFAULT
366 #define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
367 #else
368 #define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
369 #endif
371 /* Which processor to schedule for. The cpu attribute defines a list that
372 mirrors this list, so changes to i386.md must be made at the same time. */
374 enum processor_type
376 PROCESSOR_I386, /* 80386 */
377 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
378 PROCESSOR_PENTIUM,
379 PROCESSOR_PENTIUMPRO,
380 PROCESSOR_K6,
381 PROCESSOR_ATHLON,
382 PROCESSOR_PENTIUM4,
383 PROCESSOR_max
386 extern enum processor_type ix86_cpu;
388 extern int ix86_arch;
390 /* This macro is similar to `TARGET_SWITCHES' but defines names of
391 command options that have values. Its definition is an
392 initializer with a subgrouping for each command option.
394 Each subgrouping contains a string constant, that defines the
395 fixed part of the option name, and the address of a variable. The
396 variable, type `char *', is set to the variable part of the given
397 option if the fixed part matches. The actual option name is made
398 by appending `-m' to the specified name. */
399 #define TARGET_OPTIONS \
400 { { "cpu=", &ix86_cpu_string, \
401 N_("Schedule code for given CPU")}, \
402 { "arch=", &ix86_arch_string, \
403 N_("Generate code for given CPU")}, \
404 { "regparm=", &ix86_regparm_string, \
405 N_("Number of registers used to pass integer arguments") }, \
406 { "align-loops=", &ix86_align_loops_string, \
407 N_("Loop code aligned to this power of 2") }, \
408 { "align-jumps=", &ix86_align_jumps_string, \
409 N_("Jump targets are aligned to this power of 2") }, \
410 { "align-functions=", &ix86_align_funcs_string, \
411 N_("Function starts are aligned to this power of 2") }, \
412 { "preferred-stack-boundary=", \
413 &ix86_preferred_stack_boundary_string, \
414 N_("Attempt to keep stack aligned to this power of 2") }, \
415 { "branch-cost=", &ix86_branch_cost_string, \
416 N_("Branches are this expensive (1-5, arbitrary units)") }, \
417 { "cmodel=", &ix86_cmodel_string, \
418 N_("Use given x86-64 code model") }, \
419 SUBTARGET_OPTIONS \
422 /* Sometimes certain combinations of command options do not make
423 sense on a particular target machine. You can define a macro
424 `OVERRIDE_OPTIONS' to take account of this. This macro, if
425 defined, is executed once just after all the command options have
426 been parsed.
428 Don't use this macro to turn on various extra optimizations for
429 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
431 #define OVERRIDE_OPTIONS override_options ()
433 /* These are meant to be redefined in the host dependent files */
434 #define SUBTARGET_SWITCHES
435 #define SUBTARGET_OPTIONS
437 /* Define this to change the optimizations performed by default. */
438 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
440 /* Specs for the compiler proper */
442 #ifndef CC1_CPU_SPEC
443 #define CC1_CPU_SPEC "\
444 %{!mcpu*: \
445 %{m386:-mcpu=i386 \
446 %n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
447 %{m486:-mcpu=i486 \
448 %n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
449 %{mpentium:-mcpu=pentium \
450 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
451 %{mpentiumpro:-mcpu=pentiumpro \
452 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}}"
453 #endif
455 #ifndef CPP_CPU_DEFAULT_SPEC
456 #if TARGET_CPU_DEFAULT == 1
457 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
458 #endif
459 #if TARGET_CPU_DEFAULT == 2
460 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
461 #endif
462 #if TARGET_CPU_DEFAULT == 3
463 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
464 #endif
465 #if TARGET_CPU_DEFAULT == 4
466 #define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
467 #endif
468 #if TARGET_CPU_DEFAULT == 5
469 #define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
470 #endif
471 #if TARGET_CPU_DEFAULT == 6
472 #define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
473 #endif
474 #ifndef CPP_CPU_DEFAULT_SPEC
475 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
476 #endif
477 #endif /* CPP_CPU_DEFAULT_SPEC */
479 #ifdef NO_BUILTIN_SIZE_TYPE
480 #define CPP_CPU32_SIZE_TYPE_SPEC \
481 " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
482 #define CPP_CPU64_SIZE_TYPE_SPEC \
483 " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
484 #else
485 #define CPP_CPU32_SIZE_TYPE_SPEC ""
486 #define CPP_CPU64_SIZE_TYPE_SPEC ""
487 #endif
489 #define CPP_CPU32_SPEC \
490 "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
491 -D__i386__ %(cpp_cpu32sizet)"
493 #define CPP_CPU64_SPEC \
494 "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
496 #define CPP_CPUCOMMON_SPEC "\
497 %{march=i386:%{!mcpu*:-D__tune_i386__ }}\
498 %{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
499 %{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
500 %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
501 %{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
502 -D__pentiumpro -D__pentiumpro__ \
503 %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
504 %{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
505 %{march=athlon:-D__athlon -D__athlon__ %{!mcpu*:-D__tune_athlon__ }}\
506 %{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
507 %{m386|mcpu=i386:-D__tune_i386__ }\
508 %{m486|mcpu=i486:-D__tune_i486__ }\
509 %{mpentium|mcpu=pentium|mcpu=i586:-D__tune_i586__ -D__tune_pentium__ }\
510 %{mpentiumpro|mcpu=pentiumpro|mcpu=i686:-D__tune_i686__ -D__tune_pentiumpro__ }\
511 %{mcpu=k6:-D__tune_k6__ }\
512 %{mcpu=athlon:-D__tune_athlon__ }\
513 %{mcpu=pentium4:-D__tune_pentium4__ }\
514 %{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
516 #ifndef CPP_CPU_SPEC
517 #ifdef TARGET_BI_ARCH
518 #ifdef TARGET_64BIT_DEFAULT
519 #define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
520 #else
521 #define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
522 #endif
523 #else
524 #ifdef TARGET_64BIT_DEFAULT
525 #define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
526 #else
527 #define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
528 #endif
529 #endif
530 #endif
532 #ifndef CC1_SPEC
533 #define CC1_SPEC "%(cc1_cpu) "
534 #endif
536 /* This macro defines names of additional specifications to put in the
537 specs that can be used in various specifications like CC1_SPEC. Its
538 definition is an initializer with a subgrouping for each command option.
540 Each subgrouping contains a string constant, that defines the
541 specification name, and a string constant that used by the GNU CC driver
542 program.
544 Do not define this macro if it does not need to do anything. */
546 #ifndef SUBTARGET_EXTRA_SPECS
547 #define SUBTARGET_EXTRA_SPECS
548 #endif
550 #define EXTRA_SPECS \
551 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
552 { "cpp_cpu", CPP_CPU_SPEC }, \
553 { "cpp_cpu32", CPP_CPU32_SPEC }, \
554 { "cpp_cpu64", CPP_CPU64_SPEC }, \
555 { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \
556 { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \
557 { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \
558 { "cc1_cpu", CC1_CPU_SPEC }, \
559 SUBTARGET_EXTRA_SPECS
561 /* target machine storage layout */
563 /* Define for XFmode or TFmode extended real floating point support.
564 This will automatically cause REAL_ARITHMETIC to be defined.
566 The XFmode is specified by i386 ABI, while TFmode may be faster
567 due to alignment and simplifications in the address calculations.
569 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
570 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
571 #ifdef __x86_64__
572 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
573 #else
574 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
575 #endif
576 /* Tell real.c that this is the 80-bit Intel extended float format
577 packaged in a 128-bit or 96bit entity. */
578 #define INTEL_EXTENDED_IEEE_FORMAT 1
581 #define SHORT_TYPE_SIZE 16
582 #define INT_TYPE_SIZE 32
583 #define FLOAT_TYPE_SIZE 32
584 #define LONG_TYPE_SIZE BITS_PER_WORD
585 #define MAX_WCHAR_TYPE_SIZE 32
586 #define DOUBLE_TYPE_SIZE 64
587 #define LONG_LONG_TYPE_SIZE 64
589 #if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
590 #define MAX_BITS_PER_WORD 64
591 #define MAX_LONG_TYPE_SIZE 64
592 #else
593 #define MAX_BITS_PER_WORD 32
594 #define MAX_LONG_TYPE_SIZE 32
595 #endif
597 /* Define if you don't want extended real, but do want to use the
598 software floating point emulator for REAL_ARITHMETIC and
599 decimal <-> binary conversion. */
600 /* #define REAL_ARITHMETIC */
602 /* Define this if most significant byte of a word is the lowest numbered. */
603 /* That is true on the 80386. */
605 #define BITS_BIG_ENDIAN 0
607 /* Define this if most significant byte of a word is the lowest numbered. */
608 /* That is not true on the 80386. */
609 #define BYTES_BIG_ENDIAN 0
611 /* Define this if most significant word of a multiword number is the lowest
612 numbered. */
613 /* Not true for 80386 */
614 #define WORDS_BIG_ENDIAN 0
616 /* number of bits in an addressable storage unit */
617 #define BITS_PER_UNIT 8
619 /* Width in bits of a "word", which is the contents of a machine register.
620 Note that this is not necessarily the width of data type `int';
621 if using 16-bit ints on a 80386, this would still be 32.
622 But on a machine with 16-bit registers, this would be 16. */
623 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
625 /* Width of a word, in units (bytes). */
626 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
627 #define MIN_UNITS_PER_WORD 4
629 /* Width in bits of a pointer.
630 See also the macro `Pmode' defined below. */
631 #define POINTER_SIZE BITS_PER_WORD
633 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
634 #define PARM_BOUNDARY BITS_PER_WORD
636 /* Boundary (in *bits*) on which stack pointer should be aligned. */
637 #define STACK_BOUNDARY BITS_PER_WORD
639 /* Boundary (in *bits*) on which the stack pointer preferrs to be
640 aligned; the compiler cannot rely on having this alignment. */
641 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
643 /* Allocation boundary for the code of a function. */
644 #define FUNCTION_BOUNDARY 16
646 /* Alignment of field after `int : 0' in a structure. */
648 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
650 /* Minimum size in bits of the largest boundary to which any
651 and all fundamental data types supported by the hardware
652 might need to be aligned. No data type wants to be aligned
653 rounder than this.
655 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
656 and Pentium Pro XFmode values at 128 bit boundaries. */
658 #define BIGGEST_ALIGNMENT 128
660 /* Decide whether a variable of mode MODE must be 128 bit aligned. */
661 #define ALIGN_MODE_128(MODE) \
662 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
663 || (MODE) == V4SFmode || (MODE) == V4SImode)
665 /* The published ABIs say that doubles should be aligned on word
666 boundaries, so lower the aligment for structure fields unless
667 -malign-double is set. */
668 /* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
669 constant. Use the smaller value in that context. */
670 #ifndef IN_TARGET_LIBS
671 #define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
672 #else
673 #define BIGGEST_FIELD_ALIGNMENT 32
674 #endif
676 /* If defined, a C expression to compute the alignment given to a
677 constant that is being placed in memory. EXP is the constant
678 and ALIGN is the alignment that the object would ordinarily have.
679 The value of this macro is used instead of that alignment to align
680 the object.
682 If this macro is not defined, then ALIGN is used.
684 The typical use of this macro is to increase alignment for string
685 constants to be word aligned so that `strcpy' calls that copy
686 constants can be done inline. */
688 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment (EXP, ALIGN)
690 /* If defined, a C expression to compute the alignment for a static
691 variable. TYPE is the data type, and ALIGN is the alignment that
692 the object would ordinarily have. The value of this macro is used
693 instead of that alignment to align the object.
695 If this macro is not defined, then ALIGN is used.
697 One use of this macro is to increase alignment of medium-size
698 data to make it all fit in fewer cache lines. Another is to
699 cause character arrays to be word-aligned so that `strcpy' calls
700 that copy constants to character arrays can be done inline. */
702 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment (TYPE, ALIGN)
704 /* If defined, a C expression to compute the alignment for a local
705 variable. TYPE is the data type, and ALIGN is the alignment that
706 the object would ordinarily have. The value of this macro is used
707 instead of that alignment to align the object.
709 If this macro is not defined, then ALIGN is used.
711 One use of this macro is to increase alignment of medium-size
712 data to make it all fit in fewer cache lines. */
714 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment (TYPE, ALIGN)
716 /* Set this non-zero if move instructions will actually fail to work
717 when given unaligned data. */
718 #define STRICT_ALIGNMENT 0
720 /* If bit field type is int, don't let it cross an int,
721 and give entire struct the alignment of an int. */
722 /* Required on the 386 since it doesn't have bitfield insns. */
723 #define PCC_BITFIELD_TYPE_MATTERS 1
725 /* Standard register usage. */
727 /* This processor has special stack-like registers. See reg-stack.c
728 for details. */
730 #define STACK_REGS
731 #define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode \
732 || mode==XFmode || mode==TFmode)
734 /* Number of actual hardware registers.
735 The hardware registers are assigned numbers for the compiler
736 from 0 to just below FIRST_PSEUDO_REGISTER.
737 All registers that the compiler knows about must be given numbers,
738 even those that are not normally considered general registers.
740 In the 80386 we give the 8 general purpose registers the numbers 0-7.
741 We number the floating point registers 8-15.
742 Note that registers 0-7 can be accessed as a short or int,
743 while only 0-3 may be used with byte `mov' instructions.
745 Reg 16 does not correspond to any hardware register, but instead
746 appears in the RTL as an argument pointer prior to reload, and is
747 eliminated during reloading in favor of either the stack or frame
748 pointer. */
750 #define FIRST_PSEUDO_REGISTER 53
752 /* Number of hardware registers that go into the DWARF-2 unwind info.
753 If not defined, equals FIRST_PSEUDO_REGISTER. */
755 #define DWARF_FRAME_REGISTERS 17
757 /* 1 for registers that have pervasive standard uses
758 and are not available for the register allocator.
759 On the 80386, the stack pointer is such, as is the arg pointer.
761 The value is an mask - bit 1 is set for fixed registers
762 for 32bit target, while 2 is set for fixed registers for 64bit.
763 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
765 #define FIXED_REGISTERS \
766 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
767 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
768 /*arg,flags,fpsr,dir,frame*/ \
769 3, 3, 3, 3, 3, \
770 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
771 0, 0, 0, 0, 0, 0, 0, 0, \
772 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
773 0, 0, 0, 0, 0, 0, 0, 0, \
774 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
775 1, 1, 1, 1, 1, 1, 1, 1, \
776 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
777 1, 1, 1, 1, 1, 1, 1, 1}
780 /* 1 for registers not available across function calls.
781 These must include the FIXED_REGISTERS and also any
782 registers that can be used without being saved.
783 The latter must include the registers where values are returned
784 and the register where structure-value addresses are passed.
785 Aside from that, you can include as many other registers as you like.
787 The value is an mask - bit 1 is set for call used
788 for 32bit target, while 2 is set for call used for 64bit.
789 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
791 #define CALL_USED_REGISTERS \
792 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
793 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
794 /*arg,flags,fpsr,dir,frame*/ \
795 3, 3, 3, 3, 3, \
796 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
797 3, 3, 3, 3, 3, 3, 3, 3, \
798 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
799 3, 3, 3, 3, 3, 3, 3, 3, \
800 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
801 3, 3, 3, 3, 1, 1, 1, 1, \
802 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
803 3, 3, 3, 3, 3, 3, 3, 3} \
805 /* Order in which to allocate registers. Each register must be
806 listed once, even those in FIXED_REGISTERS. List frame pointer
807 late and fixed registers last. Note that, in general, we prefer
808 registers listed in CALL_USED_REGISTERS, keeping the others
809 available for storage of persistent values.
811 Three different versions of REG_ALLOC_ORDER have been tried:
813 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
814 but slower code on simple functions returning values in eax.
816 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
817 perl 4.036 due to not being able to create a DImode register (to hold a 2
818 word union).
820 If the order is eax, edx, ecx, ... it produces better code for simple
821 functions, and a slightly slower compiler. Users complained about the code
822 generated by allocating edx first, so restore the 'natural' order of things. */
824 #define REG_ALLOC_ORDER \
825 /*ax,dx,cx,*/ \
826 { 0, 1, 2, \
827 /* bx,si,di,bp,sp,*/ \
828 3, 4, 5, 6, 7, \
829 /*r8,r9,r10,r11,*/ \
830 37,38, 39, 40, \
831 /*r12,r15,r14,r13*/ \
832 41, 44, 43, 42, \
833 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
834 21, 22, 23, 24, 25, 26, 27, 28, \
835 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
836 45, 46, 47, 48, 49, 50, 51, 52, \
837 /*st,st1,st2,st3,st4,st5,st6,st7*/ \
838 8, 9, 10, 11, 12, 13, 14, 15, \
839 /*,arg,cc,fpsr,dir,frame*/ \
840 16,17, 18, 19, 20, \
841 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
842 29, 30, 31, 32, 33, 34, 35, 36 }
844 /* Macro to conditionally modify fixed_regs/call_used_regs. */
845 #define CONDITIONAL_REGISTER_USAGE \
847 int i; \
848 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
850 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
851 call_used_regs[i] = (call_used_regs[i] \
852 & (TARGET_64BIT ? 2 : 1)) != 0; \
854 if (flag_pic) \
856 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
857 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
859 if (! TARGET_MMX) \
861 int i; \
862 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
863 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
864 fixed_regs[i] = call_used_regs[i] = 1; \
866 if (! TARGET_SSE) \
868 int i; \
869 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
870 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
871 fixed_regs[i] = call_used_regs[i] = 1; \
873 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
875 int i; \
876 HARD_REG_SET x; \
877 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
878 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
879 if (TEST_HARD_REG_BIT (x, i)) \
880 fixed_regs[i] = call_used_regs[i] = 1; \
884 /* Return number of consecutive hard regs needed starting at reg REGNO
885 to hold something of mode MODE.
886 This is ordinarily the length in words of a value of mode MODE
887 but can be less for certain modes in special long registers.
889 Actually there are no two word move instructions for consecutive
890 registers. And only registers 0-3 may have mov byte instructions
891 applied to them.
894 #define HARD_REGNO_NREGS(REGNO, MODE) \
895 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
896 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
897 : (MODE == TFmode \
898 ? (TARGET_64BIT ? 2 : 3) \
899 : MODE == TCmode \
900 ? (TARGET_64BIT ? 4 : 6) \
901 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
903 #define VALID_SSE_REG_MODE(MODE) \
904 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
905 || (MODE) == SFmode \
906 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
908 #define VALID_MMX_REG_MODE(MODE) \
909 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
910 || (MODE) == V2SImode || (MODE) == SImode)
912 #define VECTOR_MODE_SUPPORTED_P(MODE) \
913 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
914 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 : 0)
916 #define VALID_FP_MODE_P(mode) \
917 ((mode) == SFmode || (mode) == DFmode || (mode) == TFmode \
918 || (!TARGET_64BIT && (mode) == XFmode) \
919 || (mode) == SCmode || (mode) == DCmode || (mode) == TCmode\
920 || (!TARGET_64BIT && (mode) == XCmode))
922 #define VALID_INT_MODE_P(mode) \
923 ((mode) == QImode || (mode) == HImode || (mode) == SImode \
924 || (mode) == DImode \
925 || (mode) == CQImode || (mode) == CHImode || (mode) == CSImode \
926 || (mode) == CDImode)
928 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
930 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
931 ix86_hard_regno_mode_ok (REGNO, MODE)
933 /* Value is 1 if it is a good idea to tie two pseudo registers
934 when one has mode MODE1 and one has mode MODE2.
935 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
936 for any hard reg, then this must be 0 for correct output. */
938 #define MODES_TIEABLE_P(MODE1, MODE2) \
939 ((MODE1) == (MODE2) \
940 || (((MODE1) == HImode || (MODE1) == SImode \
941 || ((MODE1) == QImode \
942 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
943 || ((MODE1) == DImode && TARGET_64BIT)) \
944 && ((MODE2) == HImode || (MODE2) == SImode \
945 || ((MODE1) == QImode \
946 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
947 || ((MODE2) == DImode && TARGET_64BIT))))
950 /* Specify the modes required to caller save a given hard regno.
951 We do this on i386 to prevent flags from being saved at all.
953 Kill any attempts to combine saving of modes. */
955 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
956 (CC_REGNO_P (REGNO) ? VOIDmode \
957 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
958 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
959 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
960 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
961 : (MODE))
962 /* Specify the registers used for certain standard purposes.
963 The values of these macros are register numbers. */
965 /* on the 386 the pc register is %eip, and is not usable as a general
966 register. The ordinary mov instructions won't work */
967 /* #define PC_REGNUM */
969 /* Register to use for pushing function arguments. */
970 #define STACK_POINTER_REGNUM 7
972 /* Base register for access to local variables of the function. */
973 #define HARD_FRAME_POINTER_REGNUM 6
975 /* Base register for access to local variables of the function. */
976 #define FRAME_POINTER_REGNUM 20
978 /* First floating point reg */
979 #define FIRST_FLOAT_REG 8
981 /* First & last stack-like regs */
982 #define FIRST_STACK_REG FIRST_FLOAT_REG
983 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
985 #define FLAGS_REG 17
986 #define FPSR_REG 18
987 #define DIRFLAG_REG 19
989 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
990 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
992 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
993 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
995 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
996 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
998 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
999 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1001 /* Value should be nonzero if functions must have frame pointers.
1002 Zero means the frame pointer need not be set up (and parms
1003 may be accessed via the stack pointer) in functions that seem suitable.
1004 This is computed in `reload', in reload1.c. */
1005 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1007 /* Override this in other tm.h files to cope with various OS losage
1008 requiring a frame pointer. */
1009 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1010 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1011 #endif
1013 /* Make sure we can access arbitrary call frames. */
1014 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1016 /* Base register for access to arguments of the function. */
1017 #define ARG_POINTER_REGNUM 16
1019 /* Register in which static-chain is passed to a function.
1020 We do use ECX as static chain register for 32 bit ABI. On the
1021 64bit ABI, ECX is an argument register, so we use R10 instead. */
1022 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1024 /* Register to hold the addressing base for position independent
1025 code access to data items.
1026 We don't use PIC pointer for 64bit mode. Define the regnum to
1027 dummy value to prevent gcc from pesimizing code dealing with EBX.
1029 #define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? INVALID_REGNUM : 3)
1031 /* Register in which address to store a structure value
1032 arrives in the function. On the 386, the prologue
1033 copies this from the stack to register %eax. */
1034 #define STRUCT_VALUE_INCOMING 0
1036 /* Place in which caller passes the structure value address.
1037 0 means push the value on the stack like an argument. */
1038 #define STRUCT_VALUE 0
1040 /* A C expression which can inhibit the returning of certain function
1041 values in registers, based on the type of value. A nonzero value
1042 says to return the function value in memory, just as large
1043 structures are always returned. Here TYPE will be a C expression
1044 of type `tree', representing the data type of the value.
1046 Note that values of mode `BLKmode' must be explicitly handled by
1047 this macro. Also, the option `-fpcc-struct-return' takes effect
1048 regardless of this macro. On most systems, it is possible to
1049 leave the macro undefined; this causes a default definition to be
1050 used, whose value is the constant 1 for `BLKmode' values, and 0
1051 otherwise.
1053 Do not use this macro to indicate that structures and unions
1054 should always be returned in memory. You should instead use
1055 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1057 #define RETURN_IN_MEMORY(TYPE) \
1058 ((TYPE_MODE (TYPE) == BLKmode) \
1059 || (VECTOR_MODE_P (TYPE_MODE (TYPE)) && int_size_in_bytes (TYPE) == 8)\
1060 || (int_size_in_bytes (TYPE) > 12 && TYPE_MODE (TYPE) != TImode \
1061 && TYPE_MODE (TYPE) != TFmode && ! VECTOR_MODE_P (TYPE_MODE (TYPE))))
1064 /* Define the classes of registers for register constraints in the
1065 machine description. Also define ranges of constants.
1067 One of the classes must always be named ALL_REGS and include all hard regs.
1068 If there is more than one class, another class must be named NO_REGS
1069 and contain no registers.
1071 The name GENERAL_REGS must be the name of a class (or an alias for
1072 another name such as ALL_REGS). This is the class of registers
1073 that is allowed by "g" or "r" in a register constraint.
1074 Also, registers outside this class are allocated only when
1075 instructions express preferences for them.
1077 The classes must be numbered in nondecreasing order; that is,
1078 a larger-numbered class must never be contained completely
1079 in a smaller-numbered class.
1081 For any two classes, it is very desirable that there be another
1082 class that represents their union.
1084 It might seem that class BREG is unnecessary, since no useful 386
1085 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1086 and the "b" register constraint is useful in asms for syscalls.
1088 The flags and fpsr registers are in no class. */
1090 enum reg_class
1092 NO_REGS,
1093 AREG, DREG, CREG, BREG, SIREG, DIREG,
1094 AD_REGS, /* %eax/%edx for DImode */
1095 Q_REGS, /* %eax %ebx %ecx %edx */
1096 NON_Q_REGS, /* %esi %edi %ebp %esp */
1097 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1098 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1099 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1100 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1101 FLOAT_REGS,
1102 SSE_REGS,
1103 MMX_REGS,
1104 FP_TOP_SSE_REGS,
1105 FP_SECOND_SSE_REGS,
1106 FLOAT_SSE_REGS,
1107 FLOAT_INT_REGS,
1108 INT_SSE_REGS,
1109 FLOAT_INT_SSE_REGS,
1110 ALL_REGS, LIM_REG_CLASSES
1113 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1115 #define INTEGER_CLASS_P(CLASS) (reg_class_subset_p (CLASS, GENERAL_REGS))
1116 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
1117 #define SSE_CLASS_P(CLASS) (reg_class_subset_p (CLASS, SSE_REGS))
1118 #define MMX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, MMX_REGS))
1119 #define MAYBE_INTEGER_CLASS_P(CLASS) (reg_classes_intersect_p (CLASS, GENERAL_REGS))
1120 #define MAYBE_FLOAT_CLASS_P(CLASS) (reg_classes_intersect_p (CLASS, FLOAT_REGS))
1121 #define MAYBE_SSE_CLASS_P(CLASS) (reg_classes_intersect_p (SSE_REGS, CLASS))
1122 #define MAYBE_MMX_CLASS_P(CLASS) (reg_classes_intersect_p (MMX_REGS, CLASS))
1124 #define Q_CLASS_P(CLASS) (reg_class_subset_p (CLASS, Q_REGS))
1126 /* Give names of register classes as strings for dump file. */
1128 #define REG_CLASS_NAMES \
1129 { "NO_REGS", \
1130 "AREG", "DREG", "CREG", "BREG", \
1131 "SIREG", "DIREG", \
1132 "AD_REGS", \
1133 "Q_REGS", "NON_Q_REGS", \
1134 "INDEX_REGS", \
1135 "LEGACY_REGS", \
1136 "GENERAL_REGS", \
1137 "FP_TOP_REG", "FP_SECOND_REG", \
1138 "FLOAT_REGS", \
1139 "SSE_REGS", \
1140 "MMX_REGS", \
1141 "FP_TOP_SSE_REGS", \
1142 "FP_SECOND_SSE_REGS", \
1143 "FLOAT_SSE_REGS", \
1144 "FLOAT_INT_REGS", \
1145 "INT_SSE_REGS", \
1146 "FLOAT_INT_SSE_REGS", \
1147 "ALL_REGS" }
1149 /* Define which registers fit in which classes.
1150 This is an initializer for a vector of HARD_REG_SET
1151 of length N_REG_CLASSES. */
1153 #define REG_CLASS_CONTENTS \
1154 { { 0x00, 0x0 }, \
1155 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1156 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1157 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1158 { 0x03, 0x0 }, /* AD_REGS */ \
1159 { 0x0f, 0x0 }, /* Q_REGS */ \
1160 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1161 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1162 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1163 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1164 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1165 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1166 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1167 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1168 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1169 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1170 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1171 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1172 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1173 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1174 { 0xffffffff,0x1fffff } \
1177 /* The same information, inverted:
1178 Return the class number of the smallest class containing
1179 reg number REGNO. This could be a conditional expression
1180 or could index an array. */
1182 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1184 /* When defined, the compiler allows registers explicitly used in the
1185 rtl to be used as spill registers but prevents the compiler from
1186 extending the lifetime of these registers. */
1188 #define SMALL_REGISTER_CLASSES 1
1190 #define QI_REG_P(X) \
1191 (REG_P (X) && REGNO (X) < 4)
1193 #define GENERAL_REGNO_P(n) \
1194 ((n) < 8 || REX_INT_REGNO_P (n))
1196 #define GENERAL_REG_P(X) \
1197 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1199 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1201 #define NON_QI_REG_P(X) \
1202 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1204 #define REX_INT_REGNO_P(n) ((n) >= FIRST_REX_INT_REG && (n) <= LAST_REX_INT_REG)
1205 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1207 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1208 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
1209 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1210 #define ANY_FP_REGNO_P(n) (FP_REGNO_P (n) || SSE_REGNO_P (n))
1212 #define SSE_REGNO_P(n) \
1213 (((n) >= FIRST_SSE_REG && (n) <= LAST_SSE_REG) \
1214 || ((n) >= FIRST_REX_SSE_REG && (n) <= LAST_REX_SSE_REG))
1216 #define SSE_REGNO(n) \
1217 ((n) < 8 ? FIRST_SSE_REG + (n) : FIRST_REX_SSE_REG + (n) - 8)
1218 #define SSE_REG_P(n) (REG_P (n) && SSE_REGNO_P (REGNO (n)))
1220 #define SSE_FLOAT_MODE_P(m) \
1221 ((TARGET_SSE && (m) == SFmode) || (TARGET_SSE2 && (m) == DFmode))
1223 #define MMX_REGNO_P(n) ((n) >= FIRST_MMX_REG && (n) <= LAST_MMX_REG)
1224 #define MMX_REG_P(xop) (REG_P (xop) && MMX_REGNO_P (REGNO (xop)))
1226 #define STACK_REG_P(xop) (REG_P (xop) && \
1227 REGNO (xop) >= FIRST_STACK_REG && \
1228 REGNO (xop) <= LAST_STACK_REG)
1230 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
1232 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
1234 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1235 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1237 /* Indicate whether hard register numbered REG_NO should be converted
1238 to SSA form. */
1239 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1240 (REG_NO == FLAGS_REG || REG_NO == ARG_POINTER_REGNUM)
1242 /* The class value for index registers, and the one for base regs. */
1244 #define INDEX_REG_CLASS INDEX_REGS
1245 #define BASE_REG_CLASS GENERAL_REGS
1247 /* Get reg_class from a letter such as appears in the machine description. */
1249 #define REG_CLASS_FROM_LETTER(C) \
1250 ((C) == 'r' ? GENERAL_REGS : \
1251 (C) == 'R' ? LEGACY_REGS : \
1252 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1253 (C) == 'Q' ? Q_REGS : \
1254 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1255 ? FLOAT_REGS \
1256 : NO_REGS) : \
1257 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1258 ? FP_TOP_REG \
1259 : NO_REGS) : \
1260 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1261 ? FP_SECOND_REG \
1262 : NO_REGS) : \
1263 (C) == 'a' ? AREG : \
1264 (C) == 'b' ? BREG : \
1265 (C) == 'c' ? CREG : \
1266 (C) == 'd' ? DREG : \
1267 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1268 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1269 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1270 (C) == 'A' ? AD_REGS : \
1271 (C) == 'D' ? DIREG : \
1272 (C) == 'S' ? SIREG : NO_REGS)
1274 /* The letters I, J, K, L and M in a register constraint string
1275 can be used to stand for particular ranges of immediate operands.
1276 This macro defines what the ranges are.
1277 C is the letter, and VALUE is a constant value.
1278 Return 1 if VALUE is in the range specified by C.
1280 I is for non-DImode shifts.
1281 J is for DImode shifts.
1282 K is for signed imm8 operands.
1283 L is for andsi as zero-extending move.
1284 M is for shifts that can be executed by the "lea" opcode.
1285 N is for immedaite operands for out/in instructions (0-255)
1288 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1289 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1290 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1291 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1292 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1293 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1294 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1295 : 0)
1297 /* Similar, but for floating constants, and defining letters G and H.
1298 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1299 TARGET_387 isn't set, because the stack register converter may need to
1300 load 0.0 into the function value register. */
1302 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1303 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1304 : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
1306 /* A C expression that defines the optional machine-dependent
1307 constraint letters that can be used to segregate specific types of
1308 operands, usually memory references, for the target machine. Any
1309 letter that is not elsewhere defined and not matched by
1310 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1311 be defined.
1313 If it is required for a particular target machine, it should
1314 return 1 if VALUE corresponds to the operand type represented by
1315 the constraint letter C. If C is not defined as an extra
1316 constraint, the value returned should be 0 regardless of VALUE. */
1318 #define EXTRA_CONSTRAINT(VALUE, C) \
1319 ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
1320 : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1321 : 0)
1323 /* Place additional restrictions on the register class to use when it
1324 is necessary to be able to hold a value of mode MODE in a reload
1325 register for which class CLASS would ordinarily be used. */
1327 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1328 ((MODE) == QImode && !TARGET_64BIT \
1329 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
1330 ? Q_REGS : (CLASS))
1332 /* Given an rtx X being reloaded into a reg required to be
1333 in class CLASS, return the class of reg to actually use.
1334 In general this is just CLASS; but on some machines
1335 in some cases it is preferable to use a more restrictive class.
1336 On the 80386 series, we prevent floating constants from being
1337 reloaded into floating registers (since no move-insn can do that)
1338 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1340 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1341 QImode must go into class Q_REGS.
1342 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1343 movdf to do mem-to-mem moves through integer regs. */
1345 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1346 ix86_preferred_reload_class (X, CLASS)
1348 /* If we are copying between general and FP registers, we need a memory
1349 location. The same is true for SSE and MMX registers. */
1350 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1351 ix86_secondary_memory_needed (CLASS1, CLASS2, MODE, 1)
1353 /* QImode spills from non-QI registers need a scratch. This does not
1354 happen often -- the only example so far requires an uninitialized
1355 pseudo. */
1357 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
1358 ((CLASS) == GENERAL_REGS && !TARGET_64BIT && (MODE) == QImode \
1359 ? Q_REGS : NO_REGS)
1361 /* Return the maximum number of consecutive registers
1362 needed to represent mode MODE in a register of class CLASS. */
1363 /* On the 80386, this is the size of MODE in words,
1364 except in the FP regs, where a single reg is always enough.
1365 The TFmodes are really just 80bit values, so we use only 3 registers
1366 to hold them, instead of 4, as the size would suggest.
1368 #define CLASS_MAX_NREGS(CLASS, MODE) \
1369 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1370 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1371 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1372 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1374 /* A C expression whose value is nonzero if pseudos that have been
1375 assigned to registers of class CLASS would likely be spilled
1376 because registers of CLASS are needed for spill registers.
1378 The default value of this macro returns 1 if CLASS has exactly one
1379 register and zero otherwise. On most machines, this default
1380 should be used. Only define this macro to some other expression
1381 if pseudo allocated by `local-alloc.c' end up in memory because
1382 their hard registers were needed for spill registers. If this
1383 macro returns nonzero for those classes, those pseudos will only
1384 be allocated by `global.c', which knows how to reallocate the
1385 pseudo to another register. If there would not be another
1386 register available for reallocation, you should not change the
1387 definition of this macro since the only effect of such a
1388 definition would be to slow down register allocation. */
1390 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1391 (((CLASS) == AREG) \
1392 || ((CLASS) == DREG) \
1393 || ((CLASS) == CREG) \
1394 || ((CLASS) == BREG) \
1395 || ((CLASS) == AD_REGS) \
1396 || ((CLASS) == SIREG) \
1397 || ((CLASS) == DIREG))
1399 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1400 to automatically clobber for all asms.
1402 We do this in the new i386 backend to maintain source compatibility
1403 with the old cc0-based compiler. */
1405 #define MD_ASM_CLOBBERS(CLOBBERS) \
1406 do { \
1407 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), (CLOBBERS));\
1408 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), (CLOBBERS)); \
1409 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), (CLOBBERS)); \
1410 } while (0)
1412 /* Stack layout; function entry, exit and calling. */
1414 /* Define this if pushing a word on the stack
1415 makes the stack pointer a smaller address. */
1416 #define STACK_GROWS_DOWNWARD
1418 /* Define this if the nominal address of the stack frame
1419 is at the high-address end of the local variables;
1420 that is, each additional local variable allocated
1421 goes at a more negative offset in the frame. */
1422 #define FRAME_GROWS_DOWNWARD
1424 /* Offset within stack frame to start allocating local variables at.
1425 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1426 first local allocated. Otherwise, it is the offset to the BEGINNING
1427 of the first local allocated. */
1428 #define STARTING_FRAME_OFFSET 0
1430 /* If we generate an insn to push BYTES bytes,
1431 this says how many the stack pointer really advances by.
1432 On 386 pushw decrements by exactly 2 no matter what the position was.
1433 On the 386 there is no pushb; we use pushw instead, and this
1434 has the effect of rounding up to 2.
1436 For 64bit ABI we round up to 8 bytes.
1439 #define PUSH_ROUNDING(BYTES) \
1440 (TARGET_64BIT \
1441 ? (((BYTES) + 7) & (-8)) \
1442 : (((BYTES) + 1) & (-2)))
1444 /* If defined, the maximum amount of space required for outgoing arguments will
1445 be computed and placed into the variable
1446 `current_function_outgoing_args_size'. No space will be pushed onto the
1447 stack for each call; instead, the function prologue should increase the stack
1448 frame size by this amount. */
1450 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1452 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1453 instructions to pass outgoing arguments. */
1455 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1457 /* Offset of first parameter from the argument pointer register value. */
1458 #define FIRST_PARM_OFFSET(FNDECL) 0
1460 /* Define this macro if functions should assume that stack space has been
1461 allocated for arguments even when their values are passed in registers.
1463 The value of this macro is the size, in bytes, of the area reserved for
1464 arguments passed in registers for the function represented by FNDECL.
1466 This space can be allocated by the caller, or be a part of the
1467 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1468 which. */
1469 #define REG_PARM_STACK_SPACE(FNDECL) 0
1471 /* Define as a C expression that evaluates to nonzero if we do not know how
1472 to pass TYPE solely in registers. The file expr.h defines a
1473 definition that is usually appropriate, refer to expr.h for additional
1474 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1475 computed in the stack and then loaded into a register. */
1476 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1477 ((TYPE) != 0 \
1478 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1479 || TREE_ADDRESSABLE (TYPE) \
1480 || ((MODE) == TImode) \
1481 || ((MODE) == BLKmode \
1482 && ! ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1483 && 0 == (int_size_in_bytes (TYPE) \
1484 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1485 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
1486 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1488 /* Value is the number of bytes of arguments automatically
1489 popped when returning from a subroutine call.
1490 FUNDECL is the declaration node of the function (as a tree),
1491 FUNTYPE is the data type of the function (as a tree),
1492 or for a library call it is an identifier node for the subroutine name.
1493 SIZE is the number of bytes of arguments passed on the stack.
1495 On the 80386, the RTD insn may be used to pop them if the number
1496 of args is fixed, but if the number is variable then the caller
1497 must pop them all. RTD can't be used for library calls now
1498 because the library is compiled with the Unix compiler.
1499 Use of RTD is a selectable option, since it is incompatible with
1500 standard Unix calling sequences. If the option is not selected,
1501 the caller must always pop the args.
1503 The attribute stdcall is equivalent to RTD on a per module basis. */
1505 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
1506 (ix86_return_pops_args (FUNDECL, FUNTYPE, SIZE))
1508 /* Define how to find the value returned by a function.
1509 VALTYPE is the data type of the value (as a tree).
1510 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1511 otherwise, FUNC is 0. */
1512 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1513 gen_rtx_REG (TYPE_MODE (VALTYPE), \
1514 VALUE_REGNO (TYPE_MODE (VALTYPE)))
1516 /* Define how to find the value returned by a library function
1517 assuming the value has mode MODE. */
1519 #define LIBCALL_VALUE(MODE) \
1520 gen_rtx_REG (MODE, VALUE_REGNO (MODE))
1522 /* Define the size of the result block used for communication between
1523 untyped_call and untyped_return. The block contains a DImode value
1524 followed by the block used by fnsave and frstor. */
1526 #define APPLY_RESULT_SIZE (8+108)
1528 /* 1 if N is a possible register number for function argument passing. */
1529 #define FUNCTION_ARG_REGNO_P(N) ((N) < REGPARM_MAX)
1531 /* Define a data type for recording info about an argument list
1532 during the scan of that argument list. This data type should
1533 hold all necessary information about the function itself
1534 and about the args processed so far, enough to enable macros
1535 such as FUNCTION_ARG to determine where the next arg should go. */
1537 typedef struct ix86_args {
1538 int words; /* # words passed so far */
1539 int nregs; /* # registers available for passing */
1540 int regno; /* next available register number */
1541 int sse_words; /* # sse words passed so far */
1542 int sse_nregs; /* # sse registers available for passing */
1543 int sse_regno; /* next available sse register number */
1544 } CUMULATIVE_ARGS;
1546 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1547 for a call to a function whose data type is FNTYPE.
1548 For a library call, FNTYPE is 0. */
1550 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1551 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1553 /* Update the data in CUM to advance over an argument
1554 of mode MODE and data type TYPE.
1555 (TYPE is null for libcalls where that information may not be available.) */
1557 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1558 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
1560 /* Define where to put the arguments to a function.
1561 Value is zero to push the argument on the stack,
1562 or a hard register in which to store the argument.
1564 MODE is the argument's machine mode.
1565 TYPE is the data type of the argument (as a tree).
1566 This is null for libcalls where that information may
1567 not be available.
1568 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1569 the preceding args and about the function being called.
1570 NAMED is nonzero if this argument is a named parameter
1571 (otherwise it is an extra parameter matching an ellipsis). */
1573 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1574 (function_arg (&CUM, MODE, TYPE, NAMED))
1576 /* For an arg passed partly in registers and partly in memory,
1577 this is the number of registers used.
1578 For args passed entirely in registers or entirely in memory, zero. */
1580 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1582 /* If PIC, we cannot make sibling calls to global functions
1583 because the PLT requires %ebx live.
1584 If we are returning floats on the register stack, we cannot make
1585 sibling calls to functions that return floats. (The stack adjust
1586 instruction will wind up after the sibcall jump, and not be executed.) */
1587 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1588 (DECL \
1589 && (! flag_pic || ! TREE_PUBLIC (DECL)) \
1590 && (! TARGET_FLOAT_RETURNS_IN_80387 \
1591 || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
1592 || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1594 /* This macro is invoked at the end of compilation. It is used here to
1595 output code for -fpic that will load the return address into %ebx. */
1597 #undef ASM_FILE_END
1598 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1600 /* Output assembler code to FILE to increment profiler label # LABELNO
1601 for profiling a function entry. */
1603 #define FUNCTION_PROFILER(FILE, LABELNO) \
1605 if (flag_pic) \
1607 fprintf (FILE, "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
1608 LPREFIX, (LABELNO)); \
1609 fprintf (FILE, "\tcall\t*_mcount@GOT(%%ebx)\n"); \
1611 else \
1613 fprintf (FILE, "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1614 fprintf (FILE, "\tcall\t_mcount\n"); \
1619 /* There are three profiling modes for basic blocks available.
1620 The modes are selected at compile time by using the options
1621 -a or -ax of the gnu compiler.
1622 The variable `profile_block_flag' will be set according to the
1623 selected option.
1625 profile_block_flag == 0, no option used:
1627 No profiling done.
1629 profile_block_flag == 1, -a option used.
1631 Count frequency of execution of every basic block.
1633 profile_block_flag == 2, -ax option used.
1635 Generate code to allow several different profiling modes at run time.
1636 Available modes are:
1637 Produce a trace of all basic blocks.
1638 Count frequency of jump instructions executed.
1639 In every mode it is possible to start profiling upon entering
1640 certain functions and to disable profiling of some other functions.
1642 The result of basic-block profiling will be written to a file `bb.out'.
1643 If the -ax option is used parameters for the profiling will be read
1644 from file `bb.in'.
1648 /* The following macro shall output assembler code to FILE
1649 to initialize basic-block profiling. */
1651 #undef FUNCTION_BLOCK_PROFILER
1652 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1653 ix86_output_function_block_profiler (FILE, BLOCK_OR_LABEL)
1655 /* The following macro shall output assembler code to FILE
1656 to increment a counter associated with basic block number BLOCKNO. */
1658 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1659 ix86_output_block_profiler (FILE, BLOCKNO)
1661 /* The following macro shall output rtl for the epilogue
1662 to indicate a return from function during basic-block profiling.
1664 If profiling_block_flag == 2:
1666 Output assembler code to call function `__bb_trace_ret'.
1668 Note that function `__bb_trace_ret' must not change the
1669 machine state, especially the flag register. To grant
1670 this, you must output code to save and restore registers
1671 either in this macro or in the macros MACHINE_STATE_SAVE
1672 and MACHINE_STATE_RESTORE. The last two macros will be
1673 used in the function `__bb_trace_ret', so you must make
1674 sure that the function prologue does not change any
1675 register prior to saving it with MACHINE_STATE_SAVE.
1677 else if profiling_block_flag != 0:
1679 The macro will not be used, so it need not distinguish
1680 these cases.
1683 #define FUNCTION_BLOCK_PROFILER_EXIT \
1684 emit_call_insn (gen_call (gen_rtx_MEM (QImode, \
1685 gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")), \
1686 const0_rtx, constm1_rtx))
1688 /* The function `__bb_trace_func' is called in every basic block
1689 and is not allowed to change the machine state. Saving (restoring)
1690 the state can either be done in the BLOCK_PROFILER macro,
1691 before calling function (rsp. after returning from function)
1692 `__bb_trace_func', or it can be done inside the function by
1693 defining the macros:
1695 MACHINE_STATE_SAVE(ID)
1696 MACHINE_STATE_RESTORE(ID)
1698 In the latter case care must be taken, that the prologue code
1699 of function `__bb_trace_func' does not already change the
1700 state prior to saving it with MACHINE_STATE_SAVE.
1702 The parameter `ID' is a string identifying a unique macro use.
1704 On the i386 the initialization code at the begin of
1705 function `__bb_trace_func' contains a `sub' instruction
1706 therefore we handle save and restore of the flag register
1707 in the BLOCK_PROFILER macro.
1709 Note that ebx, esi, and edi are callee-save, so we don't have to
1710 preserve them explicitly. */
1712 #define MACHINE_STATE_SAVE(ID) \
1713 do { \
1714 register int eax_ __asm__("eax"); \
1715 register int ecx_ __asm__("ecx"); \
1716 register int edx_ __asm__("edx"); \
1717 __asm__ __volatile__ ("\
1718 push{l} %0\n\t\
1719 push{l} %1\n\t\
1720 push{l} %2" \
1721 : : "r"(eax_), "r"(ecx_), "r"(edx_)); \
1722 } while (0);
1724 #define MACHINE_STATE_RESTORE(ID) \
1725 do { \
1726 register int eax_ __asm__("eax"); \
1727 register int ecx_ __asm__("ecx"); \
1728 register int edx_ __asm__("edx"); \
1729 __asm__ __volatile__ ("\
1730 pop{l} %2\n\t\
1731 pop{l} %1\n\t\
1732 pop{l} %0" \
1733 : "=r"(eax_), "=r"(ecx_), "=r"(edx_)); \
1734 } while (0);
1736 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1737 the stack pointer does not matter. The value is tested only in
1738 functions that have frame pointers.
1739 No definition is equivalent to always zero. */
1740 /* Note on the 386 it might be more efficient not to define this since
1741 we have to restore it ourselves from the frame pointer, in order to
1742 use pop */
1744 #define EXIT_IGNORE_STACK 1
1746 /* Output assembler code for a block containing the constant parts
1747 of a trampoline, leaving space for the variable parts. */
1749 /* On the 386, the trampoline contains two instructions:
1750 mov #STATIC,ecx
1751 jmp FUNCTION
1752 The trampoline is generated entirely at runtime. The operand of JMP
1753 is the address of FUNCTION relative to the instruction following the
1754 JMP (which is 5 bytes long). */
1756 /* Length in units of the trampoline for entering a nested function. */
1758 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1760 /* Emit RTL insns to initialize the variable parts of a trampoline.
1761 FNADDR is an RTX for the address of the function's pure code.
1762 CXT is an RTX for the static chain value for the function. */
1764 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1765 x86_initialize_trampoline (TRAMP, FNADDR, CXT)
1767 /* Definitions for register eliminations.
1769 This is an array of structures. Each structure initializes one pair
1770 of eliminable registers. The "from" register number is given first,
1771 followed by "to". Eliminations of the same "from" register are listed
1772 in order of preference.
1774 There are two registers that can always be eliminated on the i386.
1775 The frame pointer and the arg pointer can be replaced by either the
1776 hard frame pointer or to the stack pointer, depending upon the
1777 circumstances. The hard frame pointer is not used before reload and
1778 so it is not eligible for elimination. */
1780 #define ELIMINABLE_REGS \
1781 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1782 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1783 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1784 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1786 /* Given FROM and TO register numbers, say whether this elimination is
1787 allowed. Frame pointer elimination is automatically handled.
1789 All other eliminations are valid. */
1791 #define CAN_ELIMINATE(FROM, TO) \
1792 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1794 /* Define the offset between two registers, one to be eliminated, and the other
1795 its replacement, at the start of a routine. */
1797 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1798 (OFFSET) = ix86_initial_elimination_offset (FROM, TO)
1800 /* Addressing modes, and classification of registers for them. */
1802 /* #define HAVE_POST_INCREMENT 0 */
1803 /* #define HAVE_POST_DECREMENT 0 */
1805 /* #define HAVE_PRE_DECREMENT 0 */
1806 /* #define HAVE_PRE_INCREMENT 0 */
1808 /* Macros to check register numbers against specific register classes. */
1810 /* These assume that REGNO is a hard or pseudo reg number.
1811 They give nonzero only if REGNO is a hard reg of the suitable class
1812 or a pseudo reg currently allocated to a suitable hard reg.
1813 Since they use reg_renumber, they are safe only once reg_renumber
1814 has been allocated, which happens in local-alloc.c. */
1816 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1817 ((REGNO) < STACK_POINTER_REGNUM \
1818 || (REGNO >= FIRST_REX_INT_REG \
1819 && (REGNO) <= LAST_REX_INT_REG) \
1820 || ((unsigned) reg_renumber[REGNO] >= FIRST_REX_INT_REG \
1821 && (unsigned) reg_renumber[REGNO] <= LAST_REX_INT_REG) \
1822 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1824 #define REGNO_OK_FOR_BASE_P(REGNO) \
1825 ((REGNO) <= STACK_POINTER_REGNUM \
1826 || (REGNO) == ARG_POINTER_REGNUM \
1827 || (REGNO) == FRAME_POINTER_REGNUM \
1828 || (REGNO >= FIRST_REX_INT_REG \
1829 && (REGNO) <= LAST_REX_INT_REG) \
1830 || ((unsigned) reg_renumber[REGNO] >= FIRST_REX_INT_REG \
1831 && (unsigned) reg_renumber[REGNO] <= LAST_REX_INT_REG) \
1832 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1834 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1835 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1837 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1838 and check its validity for a certain class.
1839 We have two alternate definitions for each of them.
1840 The usual definition accepts all pseudo regs; the other rejects
1841 them unless they have been allocated suitable hard regs.
1842 The symbol REG_OK_STRICT causes the latter definition to be used.
1844 Most source files want to accept pseudo regs in the hope that
1845 they will get allocated to the class that the insn wants them to be in.
1846 Source files for reload pass need to be strict.
1847 After reload, it makes no difference, since pseudo regs have
1848 been eliminated by then. */
1851 /* Non strict versions, pseudos are ok */
1852 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1853 (REGNO (X) < STACK_POINTER_REGNUM \
1854 || (REGNO (X) >= FIRST_REX_INT_REG \
1855 && REGNO (X) <= LAST_REX_INT_REG) \
1856 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1858 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1859 (REGNO (X) <= STACK_POINTER_REGNUM \
1860 || REGNO (X) == ARG_POINTER_REGNUM \
1861 || REGNO (X) == FRAME_POINTER_REGNUM \
1862 || (REGNO (X) >= FIRST_REX_INT_REG \
1863 && REGNO (X) <= LAST_REX_INT_REG) \
1864 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1866 /* Strict versions, hard registers only */
1867 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1868 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1870 #ifndef REG_OK_STRICT
1871 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1872 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1874 #else
1875 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1876 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1877 #endif
1879 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1880 that is a valid memory address for an instruction.
1881 The MODE argument is the machine mode for the MEM expression
1882 that wants to use this address.
1884 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1885 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1887 See legitimize_pic_address in i386.c for details as to what
1888 constitutes a legitimate address when -fpic is used. */
1890 #define MAX_REGS_PER_ADDRESS 2
1892 #define CONSTANT_ADDRESS_P(X) \
1893 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1894 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1895 || GET_CODE (X) == CONST_DOUBLE)
1897 /* Nonzero if the constant value X is a legitimate general operand.
1898 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1900 #define LEGITIMATE_CONSTANT_P(X) 1
1902 #ifdef REG_OK_STRICT
1903 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1905 if (legitimate_address_p (MODE, X, 1)) \
1906 goto ADDR; \
1909 #else
1910 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1912 if (legitimate_address_p (MODE, X, 0)) \
1913 goto ADDR; \
1916 #endif
1918 /* If defined, a C expression to determine the base term of address X.
1919 This macro is used in only one place: `find_base_term' in alias.c.
1921 It is always safe for this macro to not be defined. It exists so
1922 that alias analysis can understand machine-dependent addresses.
1924 The typical use of this macro is to handle addresses containing
1925 a label_ref or symbol_ref within an UNSPEC. */
1927 #define FIND_BASE_TERM(X) ix86_find_base_term (x)
1929 /* Try machine-dependent ways of modifying an illegitimate address
1930 to be legitimate. If we find one, return the new, valid address.
1931 This macro is used in only one place: `memory_address' in explow.c.
1933 OLDX is the address as it was before break_out_memory_refs was called.
1934 In some cases it is useful to look at this to decide what needs to be done.
1936 MODE and WIN are passed so that this macro can use
1937 GO_IF_LEGITIMATE_ADDRESS.
1939 It is always safe for this macro to do nothing. It exists to recognize
1940 opportunities to optimize the output.
1942 For the 80386, we handle X+REG by loading X into a register R and
1943 using R+REG. R will go in a general reg and indexing will be used.
1944 However, if REG is a broken-out memory address or multiplication,
1945 nothing needs to be done because REG can certainly go in a general reg.
1947 When -fpic is used, special handling is needed for symbolic references.
1948 See comments by legitimize_pic_address in i386.c for details. */
1950 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1952 (X) = legitimize_address (X, OLDX, MODE); \
1953 if (memory_address_p (MODE, X)) \
1954 goto WIN; \
1957 #define REWRITE_ADDRESS(x) rewrite_address(x)
1959 /* Nonzero if the constant value X is a legitimate general operand
1960 when generating PIC code. It is given that flag_pic is on and
1961 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1963 #define LEGITIMATE_PIC_OPERAND_P(X) \
1964 (! SYMBOLIC_CONST (X) \
1965 || legitimate_pic_address_disp_p (X))
1967 #define SYMBOLIC_CONST(X) \
1968 (GET_CODE (X) == SYMBOL_REF \
1969 || GET_CODE (X) == LABEL_REF \
1970 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1972 /* Go to LABEL if ADDR (a legitimate address expression)
1973 has an effect that depends on the machine mode it is used for.
1974 On the 80386, only postdecrement and postincrement address depend thus
1975 (the amount of decrement or increment being the length of the operand). */
1976 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1977 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1979 /* Codes for all the SSE/MMX builtins. */
1980 enum ix86_builtins
1982 IX86_BUILTIN_ADDPS,
1983 IX86_BUILTIN_ADDSS,
1984 IX86_BUILTIN_DIVPS,
1985 IX86_BUILTIN_DIVSS,
1986 IX86_BUILTIN_MULPS,
1987 IX86_BUILTIN_MULSS,
1988 IX86_BUILTIN_SUBPS,
1989 IX86_BUILTIN_SUBSS,
1991 IX86_BUILTIN_CMPEQPS,
1992 IX86_BUILTIN_CMPLTPS,
1993 IX86_BUILTIN_CMPLEPS,
1994 IX86_BUILTIN_CMPGTPS,
1995 IX86_BUILTIN_CMPGEPS,
1996 IX86_BUILTIN_CMPNEQPS,
1997 IX86_BUILTIN_CMPNLTPS,
1998 IX86_BUILTIN_CMPNLEPS,
1999 IX86_BUILTIN_CMPNGTPS,
2000 IX86_BUILTIN_CMPNGEPS,
2001 IX86_BUILTIN_CMPORDPS,
2002 IX86_BUILTIN_CMPUNORDPS,
2003 IX86_BUILTIN_CMPNEPS,
2004 IX86_BUILTIN_CMPEQSS,
2005 IX86_BUILTIN_CMPLTSS,
2006 IX86_BUILTIN_CMPLESS,
2007 IX86_BUILTIN_CMPGTSS,
2008 IX86_BUILTIN_CMPGESS,
2009 IX86_BUILTIN_CMPNEQSS,
2010 IX86_BUILTIN_CMPNLTSS,
2011 IX86_BUILTIN_CMPNLESS,
2012 IX86_BUILTIN_CMPNGTSS,
2013 IX86_BUILTIN_CMPNGESS,
2014 IX86_BUILTIN_CMPORDSS,
2015 IX86_BUILTIN_CMPUNORDSS,
2016 IX86_BUILTIN_CMPNESS,
2018 IX86_BUILTIN_COMIEQSS,
2019 IX86_BUILTIN_COMILTSS,
2020 IX86_BUILTIN_COMILESS,
2021 IX86_BUILTIN_COMIGTSS,
2022 IX86_BUILTIN_COMIGESS,
2023 IX86_BUILTIN_COMINEQSS,
2024 IX86_BUILTIN_UCOMIEQSS,
2025 IX86_BUILTIN_UCOMILTSS,
2026 IX86_BUILTIN_UCOMILESS,
2027 IX86_BUILTIN_UCOMIGTSS,
2028 IX86_BUILTIN_UCOMIGESS,
2029 IX86_BUILTIN_UCOMINEQSS,
2031 IX86_BUILTIN_CVTPI2PS,
2032 IX86_BUILTIN_CVTPS2PI,
2033 IX86_BUILTIN_CVTSI2SS,
2034 IX86_BUILTIN_CVTSS2SI,
2035 IX86_BUILTIN_CVTTPS2PI,
2036 IX86_BUILTIN_CVTTSS2SI,
2037 IX86_BUILTIN_M_FROM_INT,
2038 IX86_BUILTIN_M_TO_INT,
2040 IX86_BUILTIN_MAXPS,
2041 IX86_BUILTIN_MAXSS,
2042 IX86_BUILTIN_MINPS,
2043 IX86_BUILTIN_MINSS,
2045 IX86_BUILTIN_LOADAPS,
2046 IX86_BUILTIN_LOADUPS,
2047 IX86_BUILTIN_STOREAPS,
2048 IX86_BUILTIN_STOREUPS,
2049 IX86_BUILTIN_LOADSS,
2050 IX86_BUILTIN_STORESS,
2051 IX86_BUILTIN_MOVSS,
2053 IX86_BUILTIN_MOVHLPS,
2054 IX86_BUILTIN_MOVLHPS,
2055 IX86_BUILTIN_LOADHPS,
2056 IX86_BUILTIN_LOADLPS,
2057 IX86_BUILTIN_STOREHPS,
2058 IX86_BUILTIN_STORELPS,
2060 IX86_BUILTIN_MASKMOVQ,
2061 IX86_BUILTIN_MOVMSKPS,
2062 IX86_BUILTIN_PMOVMSKB,
2064 IX86_BUILTIN_MOVNTPS,
2065 IX86_BUILTIN_MOVNTQ,
2067 IX86_BUILTIN_PACKSSWB,
2068 IX86_BUILTIN_PACKSSDW,
2069 IX86_BUILTIN_PACKUSWB,
2071 IX86_BUILTIN_PADDB,
2072 IX86_BUILTIN_PADDW,
2073 IX86_BUILTIN_PADDD,
2074 IX86_BUILTIN_PADDSB,
2075 IX86_BUILTIN_PADDSW,
2076 IX86_BUILTIN_PADDUSB,
2077 IX86_BUILTIN_PADDUSW,
2078 IX86_BUILTIN_PSUBB,
2079 IX86_BUILTIN_PSUBW,
2080 IX86_BUILTIN_PSUBD,
2081 IX86_BUILTIN_PSUBSB,
2082 IX86_BUILTIN_PSUBSW,
2083 IX86_BUILTIN_PSUBUSB,
2084 IX86_BUILTIN_PSUBUSW,
2086 IX86_BUILTIN_PAND,
2087 IX86_BUILTIN_PANDN,
2088 IX86_BUILTIN_POR,
2089 IX86_BUILTIN_PXOR,
2091 IX86_BUILTIN_PAVGB,
2092 IX86_BUILTIN_PAVGW,
2094 IX86_BUILTIN_PCMPEQB,
2095 IX86_BUILTIN_PCMPEQW,
2096 IX86_BUILTIN_PCMPEQD,
2097 IX86_BUILTIN_PCMPGTB,
2098 IX86_BUILTIN_PCMPGTW,
2099 IX86_BUILTIN_PCMPGTD,
2101 IX86_BUILTIN_PEXTRW,
2102 IX86_BUILTIN_PINSRW,
2104 IX86_BUILTIN_PMADDWD,
2106 IX86_BUILTIN_PMAXSW,
2107 IX86_BUILTIN_PMAXUB,
2108 IX86_BUILTIN_PMINSW,
2109 IX86_BUILTIN_PMINUB,
2111 IX86_BUILTIN_PMULHUW,
2112 IX86_BUILTIN_PMULHW,
2113 IX86_BUILTIN_PMULLW,
2115 IX86_BUILTIN_PSADBW,
2116 IX86_BUILTIN_PSHUFW,
2118 IX86_BUILTIN_PSLLW,
2119 IX86_BUILTIN_PSLLD,
2120 IX86_BUILTIN_PSLLQ,
2121 IX86_BUILTIN_PSRAW,
2122 IX86_BUILTIN_PSRAD,
2123 IX86_BUILTIN_PSRLW,
2124 IX86_BUILTIN_PSRLD,
2125 IX86_BUILTIN_PSRLQ,
2126 IX86_BUILTIN_PSLLWI,
2127 IX86_BUILTIN_PSLLDI,
2128 IX86_BUILTIN_PSLLQI,
2129 IX86_BUILTIN_PSRAWI,
2130 IX86_BUILTIN_PSRADI,
2131 IX86_BUILTIN_PSRLWI,
2132 IX86_BUILTIN_PSRLDI,
2133 IX86_BUILTIN_PSRLQI,
2135 IX86_BUILTIN_PUNPCKHBW,
2136 IX86_BUILTIN_PUNPCKHWD,
2137 IX86_BUILTIN_PUNPCKHDQ,
2138 IX86_BUILTIN_PUNPCKLBW,
2139 IX86_BUILTIN_PUNPCKLWD,
2140 IX86_BUILTIN_PUNPCKLDQ,
2142 IX86_BUILTIN_SHUFPS,
2144 IX86_BUILTIN_RCPPS,
2145 IX86_BUILTIN_RCPSS,
2146 IX86_BUILTIN_RSQRTPS,
2147 IX86_BUILTIN_RSQRTSS,
2148 IX86_BUILTIN_SQRTPS,
2149 IX86_BUILTIN_SQRTSS,
2151 IX86_BUILTIN_UNPCKHPS,
2152 IX86_BUILTIN_UNPCKLPS,
2154 IX86_BUILTIN_ANDPS,
2155 IX86_BUILTIN_ANDNPS,
2156 IX86_BUILTIN_ORPS,
2157 IX86_BUILTIN_XORPS,
2159 IX86_BUILTIN_EMMS,
2160 IX86_BUILTIN_LDMXCSR,
2161 IX86_BUILTIN_STMXCSR,
2162 IX86_BUILTIN_SFENCE,
2163 IX86_BUILTIN_PREFETCH,
2165 /* Composite builtins, expand to more than one insn. */
2166 IX86_BUILTIN_SETPS1,
2167 IX86_BUILTIN_SETPS,
2168 IX86_BUILTIN_CLRPS,
2169 IX86_BUILTIN_SETRPS,
2170 IX86_BUILTIN_LOADPS1,
2171 IX86_BUILTIN_LOADRPS,
2172 IX86_BUILTIN_STOREPS1,
2173 IX86_BUILTIN_STORERPS,
2175 IX86_BUILTIN_MMX_ZERO,
2177 IX86_BUILTIN_MAX
2180 /* Initialize the target-specific builtin functions. Only do something
2181 if TARGET_MMX is nonzero; we take care in ix86_init_builtins not to
2182 enable any SSE builtins if TARGET_SSE is zero. */
2183 #define MD_INIT_BUILTINS \
2184 do \
2186 if (TARGET_MMX) \
2187 ix86_init_builtins (); \
2189 while (0)
2191 /* Expand a target-specific builtin function. */
2192 #define MD_EXPAND_BUILTIN(EXP, TARGET, SUBTARGET, MODE, IGNORE) \
2193 ix86_expand_builtin (EXP, TARGET, SUBTARGET, MODE, IGNORE)
2195 /* Define this macro if references to a symbol must be treated
2196 differently depending on something about the variable or
2197 function named by the symbol (such as what section it is in).
2199 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
2200 so that we may access it directly in the GOT. */
2202 #define ENCODE_SECTION_INFO(DECL) \
2203 do \
2205 if (flag_pic) \
2207 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2208 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
2210 if (GET_CODE (rtl) == MEM) \
2212 if (TARGET_DEBUG_ADDR \
2213 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
2215 fprintf (stderr, "Encode %s, public = %d\n", \
2216 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
2217 TREE_PUBLIC (DECL)); \
2220 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
2221 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2222 || ! TREE_PUBLIC (DECL)); \
2226 while (0)
2228 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
2229 codes once the function is being compiled into assembly code, but
2230 not before. (It is not done before, because in the case of
2231 compiling an inline function, it would lead to multiple PIC
2232 prologues being included in functions which used inline functions
2233 and were compiled to assembly language.) */
2235 #define FINALIZE_PIC \
2236 do \
2238 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
2240 while (0)
2243 /* Max number of args passed in registers. If this is more than 3, we will
2244 have problems with ebx (register #4), since it is a caller save register and
2245 is also used as the pic register in ELF. So for now, don't allow more than
2246 3 registers to be passed in registers. */
2248 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2250 #define SSE_REGPARM_MAX (TARGET_64BIT ? 16 : 0)
2253 /* Specify the machine mode that this machine uses
2254 for the index in the tablejump instruction. */
2255 #define CASE_VECTOR_MODE Pmode
2257 /* Define as C expression which evaluates to nonzero if the tablejump
2258 instruction expects the table to contain offsets from the address of the
2259 table.
2260 Do not define this if the table should contain absolute addresses. */
2261 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2263 /* Specify the tree operation to be used to convert reals to integers.
2264 This should be changed to take advantage of fist --wfs ??
2266 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2268 /* This is the kind of divide that is easiest to do in the general case. */
2269 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2271 /* Define this as 1 if `char' should by default be signed; else as 0. */
2272 #define DEFAULT_SIGNED_CHAR 1
2274 /* Max number of bytes we can move from memory to memory
2275 in one reasonably fast instruction. */
2276 #define MOVE_MAX 16
2278 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2279 move efficiently, as opposed to MOVE_MAX which is the maximum
2280 number of bytes we can move with a single instruction. */
2281 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2283 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2284 move-instruction pairs, we will do a movstr or libcall instead.
2285 Increasing the value will always make code faster, but eventually
2286 incurs high cost in increased code size.
2288 If you don't define this, a reasonable default is used. */
2290 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2292 /* Define if shifts truncate the shift count
2293 which implies one can omit a sign-extension or zero-extension
2294 of a shift count. */
2295 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2297 /* #define SHIFT_COUNT_TRUNCATED */
2299 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2300 is done just by pretending it is already truncated. */
2301 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2303 /* We assume that the store-condition-codes instructions store 0 for false
2304 and some other value for true. This is the value stored for true. */
2306 #define STORE_FLAG_VALUE 1
2308 /* When a prototype says `char' or `short', really pass an `int'.
2309 (The 386 can't easily push less than an int.) */
2311 #define PROMOTE_PROTOTYPES 1
2313 /* A macro to update M and UNSIGNEDP when an object whose type is
2314 TYPE and which has the specified mode and signedness is to be
2315 stored in a register. This macro is only called when TYPE is a
2316 scalar type.
2318 On i386 it is sometimes usefull to promote HImode and QImode
2319 quantities to SImode. The choice depends on target type. */
2321 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2322 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2323 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2324 (MODE) = SImode;
2326 /* Specify the machine mode that pointers have.
2327 After generation of rtl, the compiler makes no further distinction
2328 between pointers and any other objects of this machine mode. */
2329 #define Pmode (TARGET_64BIT ? DImode : SImode)
2331 /* A function address in a call instruction
2332 is a byte address (for indexing purposes)
2333 so give the MEM rtx a byte's mode. */
2334 #define FUNCTION_MODE QImode
2336 /* A part of a C `switch' statement that describes the relative costs
2337 of constant RTL expressions. It must contain `case' labels for
2338 expression codes `const_int', `const', `symbol_ref', `label_ref'
2339 and `const_double'. Each case must ultimately reach a `return'
2340 statement to return the relative cost of the use of that kind of
2341 constant value in an expression. The cost may depend on the
2342 precise value of the constant, which is available for examination
2343 in X, and the rtx code of the expression in which it is contained,
2344 found in OUTER_CODE.
2346 CODE is the expression code--redundant, since it can be obtained
2347 with `GET_CODE (X)'. */
2349 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2350 case CONST_INT: \
2351 case CONST: \
2352 case LABEL_REF: \
2353 case SYMBOL_REF: \
2354 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
2356 case CONST_DOUBLE: \
2358 int code; \
2359 if (GET_MODE (RTX) == VOIDmode) \
2360 return 0; \
2362 code = standard_80387_constant_p (RTX); \
2363 return code == 1 ? 1 : \
2364 code == 2 ? 2 : \
2365 3; \
2368 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2369 #define TOPLEVEL_COSTS_N_INSNS(N) \
2370 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2372 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2373 This can be used, for example, to indicate how costly a multiply
2374 instruction is. In writing this macro, you can use the construct
2375 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2376 instructions. OUTER_CODE is the code of the expression in which X
2377 is contained.
2379 This macro is optional; do not define it if the default cost
2380 assumptions are adequate for the target machine. */
2382 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2383 case ASHIFT: \
2384 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2385 && GET_MODE (XEXP (X, 0)) == SImode) \
2387 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2388 if (value == 1) \
2389 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2390 if (value == 2 || value == 3) \
2391 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
2393 /* fall through */ \
2395 case ROTATE: \
2396 case ASHIFTRT: \
2397 case LSHIFTRT: \
2398 case ROTATERT: \
2399 if (GET_MODE (XEXP (X, 0)) == DImode) \
2401 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2403 if (INTVAL (XEXP (X, 1)) > 32) \
2404 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2405 else \
2406 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2408 else \
2410 if (GET_CODE (XEXP (X, 1)) == AND) \
2411 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2412 else \
2413 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
2416 else \
2418 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2419 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2420 else \
2421 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2423 break; \
2425 case MULT: \
2426 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2428 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2429 int nbits = 0; \
2431 while (value != 0) \
2433 nbits++; \
2434 value >>= 1; \
2437 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2438 + nbits * ix86_cost->mult_bit); \
2440 else /* This is arbitrary */ \
2441 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2442 + 7 * ix86_cost->mult_bit); \
2444 case DIV: \
2445 case UDIV: \
2446 case MOD: \
2447 case UMOD: \
2448 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2450 case PLUS: \
2451 if (GET_CODE (XEXP (X, 0)) == PLUS \
2452 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2453 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2454 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2456 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1)); \
2457 if (val == 2 || val == 4 || val == 8) \
2459 return (COSTS_N_INSNS (ix86_cost->lea) \
2460 + rtx_cost (XEXP (XEXP (X, 0), 1), OUTER_CODE) \
2461 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), OUTER_CODE) \
2462 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
2465 else if (GET_CODE (XEXP (X, 0)) == MULT \
2466 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2468 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2469 if (val == 2 || val == 4 || val == 8) \
2471 return (COSTS_N_INSNS (ix86_cost->lea) \
2472 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
2473 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
2476 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
2478 return (COSTS_N_INSNS (ix86_cost->lea) \
2479 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
2480 + rtx_cost (XEXP (XEXP (X, 0), 1), OUTER_CODE) \
2481 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
2484 /* fall through */ \
2485 case AND: \
2486 case IOR: \
2487 case XOR: \
2488 case MINUS: \
2489 if (GET_MODE (X) == DImode) \
2490 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
2491 + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
2492 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2493 + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
2494 << (GET_MODE (XEXP (X, 1)) != DImode))); \
2496 /* fall through */ \
2497 case NEG: \
2498 case NOT: \
2499 if (GET_MODE (X) == DImode) \
2500 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2501 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2503 egress_rtx_costs: \
2504 break;
2507 /* An expression giving the cost of an addressing mode that contains
2508 ADDRESS. If not defined, the cost is computed from the ADDRESS
2509 expression and the `CONST_COSTS' values.
2511 For most CISC machines, the default cost is a good approximation
2512 of the true cost of the addressing mode. However, on RISC
2513 machines, all instructions normally have the same length and
2514 execution time. Hence all addresses will have equal costs.
2516 In cases where more than one form of an address is known, the form
2517 with the lowest cost will be used. If multiple forms have the
2518 same, lowest, cost, the one that is the most complex will be used.
2520 For example, suppose an address that is equal to the sum of a
2521 register and a constant is used twice in the same basic block.
2522 When this macro is not defined, the address will be computed in a
2523 register and memory references will be indirect through that
2524 register. On machines where the cost of the addressing mode
2525 containing the sum is no higher than that of a simple indirect
2526 reference, this will produce an additional instruction and
2527 possibly require an additional register. Proper specification of
2528 this macro eliminates this overhead for such machines.
2530 Similar use of this macro is made in strength reduction of loops.
2532 ADDRESS need not be valid as an address. In such a case, the cost
2533 is not relevant and can be any value; invalid addresses need not be
2534 assigned a different cost.
2536 On machines where an address involving more than one register is as
2537 cheap as an address computation involving only one register,
2538 defining `ADDRESS_COST' to reflect this can cause two registers to
2539 be live over a region of code where only one would have been if
2540 `ADDRESS_COST' were not defined in that manner. This effect should
2541 be considered in the definition of this macro. Equivalent costs
2542 should probably only be given to addresses with different numbers
2543 of registers on machines with lots of registers.
2545 This macro will normally either not be defined or be defined as a
2546 constant.
2548 For i386, it is better to use a complex address than let gcc copy
2549 the address into a reg and make a new pseudo. But not if the address
2550 requires to two regs - that would mean more pseudos with longer
2551 lifetimes. */
2553 #define ADDRESS_COST(RTX) \
2554 ix86_address_cost (RTX)
2556 /* A C expression for the cost of moving data from a register in class FROM to
2557 one in class TO. The classes are expressed using the enumeration values
2558 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2559 interpreted relative to that.
2561 It is not required that the cost always equal 2 when FROM is the same as TO;
2562 on some machines it is expensive to move between registers if they are not
2563 general registers. */
2565 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2566 ix86_register_move_cost (MODE, CLASS1, CLASS2)
2568 /* A C expression for the cost of moving data of mode M between a
2569 register and memory. A value of 2 is the default; this cost is
2570 relative to those in `REGISTER_MOVE_COST'.
2572 If moving between registers and memory is more expensive than
2573 between two registers, you should define this macro to express the
2574 relative cost. */
2576 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
2577 ix86_memory_move_cost (MODE, CLASS, IN)
2579 /* A C expression for the cost of a branch instruction. A value of 1
2580 is the default; other values are interpreted relative to that. */
2582 #define BRANCH_COST ix86_branch_cost
2584 /* Define this macro as a C expression which is nonzero if accessing
2585 less than a word of memory (i.e. a `char' or a `short') is no
2586 faster than accessing a word of memory, i.e., if such access
2587 require more than one instruction or if there is no difference in
2588 cost between byte and (aligned) word loads.
2590 When this macro is not defined, the compiler will access a field by
2591 finding the smallest containing object; when it is defined, a
2592 fullword load will be used if alignment permits. Unless bytes
2593 accesses are faster than word accesses, using word accesses is
2594 preferable since it may eliminate subsequent memory access if
2595 subsequent accesses occur to other fields in the same word of the
2596 structure, but to different bytes. */
2598 #define SLOW_BYTE_ACCESS 0
2600 /* Nonzero if access to memory by shorts is slow and undesirable. */
2601 #define SLOW_SHORT_ACCESS 0
2603 /* Define this macro if zero-extension (of a `char' or `short' to an
2604 `int') can be done faster if the destination is a register that is
2605 known to be zero.
2607 If you define this macro, you must have instruction patterns that
2608 recognize RTL structures like this:
2610 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2612 and likewise for `HImode'. */
2614 /* #define SLOW_ZERO_EXTEND */
2616 /* Define this macro to be the value 1 if unaligned accesses have a
2617 cost many times greater than aligned accesses, for example if they
2618 are emulated in a trap handler.
2620 When this macro is non-zero, the compiler will act as if
2621 `STRICT_ALIGNMENT' were non-zero when generating code for block
2622 moves. This can cause significantly more instructions to be
2623 produced. Therefore, do not set this macro non-zero if unaligned
2624 accesses only add a cycle or two to the time for a memory access.
2626 If the value of this macro is always zero, it need not be defined. */
2628 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2630 /* Define this macro to inhibit strength reduction of memory
2631 addresses. (On some machines, such strength reduction seems to do
2632 harm rather than good.) */
2634 /* #define DONT_REDUCE_ADDR */
2636 /* Define this macro if it is as good or better to call a constant
2637 function address than to call an address kept in a register.
2639 Desirable on the 386 because a CALL with a constant address is
2640 faster than one with a register address. */
2642 #define NO_FUNCTION_CSE
2644 /* Define this macro if it is as good or better for a function to call
2645 itself with an explicit address than to call an address kept in a
2646 register. */
2648 #define NO_RECURSIVE_FUNCTION_CSE
2650 /* A C statement (sans semicolon) to update the integer variable COST
2651 based on the relationship between INSN that is dependent on
2652 DEP_INSN through the dependence LINK. The default is to make no
2653 adjustment to COST. This can be used for example to specify to
2654 the scheduler that an output- or anti-dependence does not incur
2655 the same cost as a data-dependence. */
2657 #define ADJUST_COST(insn,link,dep_insn,cost) \
2658 (cost) = ix86_adjust_cost(insn, link, dep_insn, cost)
2660 #define ISSUE_RATE \
2661 ix86_issue_rate ()
2663 #define MD_SCHED_INIT(DUMP, SCHED_VERBOSE, MAX_READY) \
2664 ix86_sched_init (DUMP, SCHED_VERBOSE)
2666 #define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
2667 (CIM) = ix86_sched_reorder (DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK)
2669 #define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
2670 ((CAN_ISSUE_MORE) = \
2671 ix86_variable_issue (DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE))
2673 /* Add any extra modes needed to represent the condition code.
2675 For the i386, we need separate modes when floating-point
2676 equality comparisons are being done.
2678 Add CCNO to indicate comparisons against zero that requires
2679 Overflow flag to be unset. Sign bit test is used instead and
2680 thus can be used to form "a&b>0" type of tests.
2682 Add CCGC to indicate comparisons agains zero that allows
2683 unspecified garbage in the Carry flag. This mode is used
2684 by inc/dec instructions.
2686 Add CCGOC to indicate comparisons agains zero that allows
2687 unspecified garbage in the Carry and Overflow flag. This
2688 mode is used to simulate comparisons of (a-b) and (a+b)
2689 against zero using sub/cmp/add operations.
2691 Add CCZ to indicate that only the Zero flag is valid. */
2693 #define EXTRA_CC_MODES \
2694 CC(CCGCmode, "CCGC") \
2695 CC(CCGOCmode, "CCGOC") \
2696 CC(CCNOmode, "CCNO") \
2697 CC(CCZmode, "CCZ") \
2698 CC(CCFPmode, "CCFP") \
2699 CC(CCFPUmode, "CCFPU")
2701 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2702 return the mode to be used for the comparison.
2704 For floating-point equality comparisons, CCFPEQmode should be used.
2705 VOIDmode should be used in all other cases.
2707 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2708 possible, to allow for more combinations. */
2710 #define SELECT_CC_MODE(OP,X,Y) ix86_cc_mode (OP, X, Y)
2712 /* Return non-zero if MODE implies a floating point inequality can be
2713 reversed. */
2715 #define REVERSIBLE_CC_MODE(MODE) 1
2717 /* A C expression whose value is reversed condition code of the CODE for
2718 comparison done in CC_MODE mode. */
2719 #define REVERSE_CONDITION(CODE, MODE) \
2720 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2721 : reverse_condition_maybe_unordered (CODE))
2724 /* Control the assembler format that we output, to the extent
2725 this does not vary between assemblers. */
2727 /* How to refer to registers in assembler output.
2728 This sequence is indexed by compiler's hard-register-number (see above). */
2730 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2731 For non floating point regs, the following are the HImode names.
2733 For float regs, the stack top is sometimes referred to as "%st(0)"
2734 instead of just "%st". PRINT_REG handles this with the "y" code. */
2736 #undef HI_REGISTER_NAMES
2737 #define HI_REGISTER_NAMES \
2738 {"ax","dx","cx","bx","si","di","bp","sp", \
2739 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2740 "flags","fpsr", "dirflag", "frame", \
2741 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2742 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2743 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2744 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2746 #define REGISTER_NAMES HI_REGISTER_NAMES
2748 /* Table of additional register names to use in user input. */
2750 #define ADDITIONAL_REGISTER_NAMES \
2751 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2752 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2753 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2754 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2755 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2756 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2757 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2758 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2760 /* Note we are omitting these since currently I don't know how
2761 to get gcc to use these, since they want the same but different
2762 number as al, and ax.
2765 #define QI_REGISTER_NAMES \
2766 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2768 /* These parallel the array above, and can be used to access bits 8:15
2769 of regs 0 through 3. */
2771 #define QI_HIGH_REGISTER_NAMES \
2772 {"ah", "dh", "ch", "bh", }
2774 /* How to renumber registers for dbx and gdb. */
2776 #define DBX_REGISTER_NUMBER(n) \
2777 (TARGET_64BIT ? dbx64_register_map[n] : dbx_register_map[n])
2779 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2780 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2781 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2783 /* Before the prologue, RA is at 0(%esp). */
2784 #define INCOMING_RETURN_ADDR_RTX \
2785 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2787 /* After the prologue, RA is at -4(AP) in the current frame. */
2788 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2789 ((COUNT) == 0 \
2790 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2791 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2793 /* PC is dbx register 8; let's use that column for RA. */
2794 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2796 /* Before the prologue, the top of the frame is at 4(%esp). */
2797 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2799 /* Describe how we implement __builtin_eh_return. */
2800 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2801 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2803 /* Select a format to encode pointers in exception handling data. CODE
2804 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2805 true if the symbol may be affected by dynamic relocations.
2807 ??? All x86 object file formats are capable of representing this.
2808 After all, the relocation needed is the same as for the call insn.
2809 Whether or not a particular assembler allows us to enter such, I
2810 guess we'll have to see. */
2811 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2812 (flag_pic ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel \
2813 : DW_EH_PE_absptr)
2815 /* This is how to output the definition of a user-level label named NAME,
2816 such as the label on a static function or variable NAME. */
2818 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2819 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2821 /* This is how to output an assembler line defining a `double' constant. */
2823 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2824 do { long l[2]; \
2825 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2826 fprintf (FILE, "%s0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
2827 } while (0)
2829 /* This is how to output a `long double' extended real constant. */
2831 #undef ASM_OUTPUT_LONG_DOUBLE
2832 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2833 do { long l[4]; \
2834 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
2835 if (TARGET_128BIT_LONG_DOUBLE) \
2836 fprintf (FILE, "%s0x%lx,0x%lx,0x%lx,0x0\n", ASM_LONG, l[0], l[1], l[2]); \
2837 else \
2838 fprintf (FILE, "%s0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
2839 } while (0)
2841 /* This is how to output an assembler line defining a `float' constant. */
2843 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2844 do { long l; \
2845 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2846 fprintf ((FILE), "%s0x%lx\n", ASM_LONG, l); \
2847 } while (0)
2849 /* Store in OUTPUT a string (made with alloca) containing
2850 an assembler-name for a local static variable named NAME.
2851 LABELNO is an integer which is different for each call. */
2853 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2854 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2855 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2857 /* This is how to output an assembler line defining an `int' constant. */
2859 #define ASM_OUTPUT_INT(FILE,VALUE) \
2860 ( fputs (ASM_LONG, FILE), \
2861 output_addr_const (FILE,(VALUE)), \
2862 putc('\n',FILE))
2864 /* Likewise for `char' and `short' constants. */
2866 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2867 ( fputs (ASM_SHORT, FILE), \
2868 output_addr_const (FILE,(VALUE)), \
2869 putc('\n',FILE))
2871 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2872 ( fputs (ASM_BYTE_OP, FILE), \
2873 output_addr_const (FILE, (VALUE)), \
2874 putc ('\n', FILE))
2876 /* Given that x86 natively supports unaligned data, it's reasonable to
2877 assume that all x86 assemblers don't auto-align data. Thus the
2878 unaligned output macros required by dwarf2 frame unwind information
2879 degenerate to the macros used above. */
2880 #define UNALIGNED_SHORT_ASM_OP ASM_SHORT
2881 #define UNALIGNED_INT_ASM_OP ASM_LONG
2882 #define INT_ASM_OP ASM_LONG
2884 /* This is how to output an assembler line for a numeric constant byte. */
2886 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2887 asm_fprintf ((FILE), "%s0x%x\n", ASM_BYTE_OP, (VALUE))
2889 /* This is how to output an insn to push a register on the stack.
2890 It need not be very fast code. */
2892 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2893 asm_fprintf (FILE, "\tpush{l}\t%%e%s\n", reg_names[REGNO])
2895 /* This is how to output an insn to pop a register from the stack.
2896 It need not be very fast code. */
2898 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2899 asm_fprintf (FILE, "\tpop{l}\t%%e%s\n", reg_names[REGNO])
2901 /* This is how to output an element of a case-vector that is absolute.
2904 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2905 fprintf (FILE, "%s%s%d\n", ASM_LONG, LPREFIX, VALUE)
2907 /* This is how to output an element of a case-vector that is relative.
2908 We don't use these on the 386 yet, because the ATT assembler can't do
2909 forward reference the differences.
2912 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2913 fprintf (FILE, "%s%s%d-%s%d\n",ASM_LONG, LPREFIX, VALUE, LPREFIX, REL)
2915 /* A C statement that outputs an address constant appropriate to
2916 for DWARF debugging. */
2918 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,X) \
2919 i386_dwarf_output_addr_const((FILE),(X))
2921 /* Either simplify a location expression, or return the original. */
2923 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
2924 i386_simplify_dwarf_addr(X)
2926 /* Print operand X (an rtx) in assembler syntax to file FILE.
2927 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2928 Effect of various CODE letters is described in i386.c near
2929 print_operand function. */
2931 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2932 ((CODE) == '*' || (CODE) == '+')
2934 /* Print the name of a register based on its machine mode and number.
2935 If CODE is 'w', pretend the mode is HImode.
2936 If CODE is 'b', pretend the mode is QImode.
2937 If CODE is 'k', pretend the mode is SImode.
2938 If CODE is 'q', pretend the mode is DImode.
2939 If CODE is 'h', pretend the reg is the `high' byte register.
2940 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2942 #define PRINT_REG(X, CODE, FILE) \
2943 print_reg (X, CODE, FILE)
2945 #define PRINT_OPERAND(FILE, X, CODE) \
2946 print_operand (FILE, X, CODE)
2948 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2949 print_operand_address (FILE, ADDR)
2951 /* Print the name of a register for based on its machine mode and number.
2952 This macro is used to print debugging output.
2953 This macro is different from PRINT_REG in that it may be used in
2954 programs that are not linked with aux-output.o. */
2956 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2957 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2958 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2959 fprintf (FILE, "%d ", REGNO (X)); \
2960 if (REGNO (X) == FLAGS_REG) \
2961 { fputs ("flags", FILE); break; } \
2962 if (REGNO (X) == DIRFLAG_REG) \
2963 { fputs ("dirflag", FILE); break; } \
2964 if (REGNO (X) == FPSR_REG) \
2965 { fputs ("fpsr", FILE); break; } \
2966 if (REGNO (X) == ARG_POINTER_REGNUM) \
2967 { fputs ("argp", FILE); break; } \
2968 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2969 { fputs ("frame", FILE); break; } \
2970 if (STACK_TOP_P (X)) \
2971 { fputs ("st(0)", FILE); break; } \
2972 if (FP_REG_P (X)) \
2973 { fputs (hi_name[REGNO(X)], FILE); break; } \
2974 if (REX_INT_REG_P (X)) \
2976 switch (GET_MODE_SIZE (GET_MODE (X))) \
2978 default: \
2979 case 8: \
2980 fprintf (FILE, "r%i", REGNO (X) \
2981 - FIRST_REX_INT_REG + 8); \
2982 break; \
2983 case 4: \
2984 fprintf (FILE, "r%id", REGNO (X) \
2985 - FIRST_REX_INT_REG + 8); \
2986 break; \
2987 case 2: \
2988 fprintf (FILE, "r%iw", REGNO (X) \
2989 - FIRST_REX_INT_REG + 8); \
2990 break; \
2991 case 1: \
2992 fprintf (FILE, "r%ib", REGNO (X) \
2993 - FIRST_REX_INT_REG + 8); \
2994 break; \
2996 break; \
2998 switch (GET_MODE_SIZE (GET_MODE (X))) \
3000 case 8: \
3001 fputs ("r", FILE); \
3002 fputs (hi_name[REGNO (X)], FILE); \
3003 break; \
3004 default: \
3005 fputs ("e", FILE); \
3006 case 2: \
3007 fputs (hi_name[REGNO (X)], FILE); \
3008 break; \
3009 case 1: \
3010 fputs (qi_name[REGNO (X)], FILE); \
3011 break; \
3013 } while (0)
3015 /* a letter which is not needed by the normal asm syntax, which
3016 we can use for operand syntax in the extended asm */
3018 #define ASM_OPERAND_LETTER '#'
3019 #define RET return ""
3020 #define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
3022 /* Define the codes that are matched by predicates in i386.c. */
3024 #define PREDICATE_CODES \
3025 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3026 SYMBOL_REF, LABEL_REF, CONST}}, \
3027 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3028 SYMBOL_REF, LABEL_REF, CONST}}, \
3029 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3030 SYMBOL_REF, LABEL_REF, CONST}}, \
3031 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3032 SYMBOL_REF, LABEL_REF, CONST}}, \
3033 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3034 SYMBOL_REF, LABEL_REF, CONST}}, \
3035 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3036 SYMBOL_REF, LABEL_REF, CONST}}, \
3037 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3038 SYMBOL_REF, LABEL_REF}}, \
3039 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
3040 {"const_int_1_operand", {CONST_INT}}, \
3041 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3042 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3043 LABEL_REF, SUBREG, REG, MEM}}, \
3044 {"pic_symbolic_operand", {CONST}}, \
3045 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
3046 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
3047 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3048 {"const1_operand", {CONST_INT}}, \
3049 {"const248_operand", {CONST_INT}}, \
3050 {"incdec_operand", {CONST_INT}}, \
3051 {"mmx_reg_operand", {REG}}, \
3052 {"reg_no_sp_operand", {SUBREG, REG}}, \
3053 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3054 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3055 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3056 {"q_regs_operand", {SUBREG, REG}}, \
3057 {"non_q_regs_operand", {SUBREG, REG}}, \
3058 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3059 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3060 GE, UNGE, LTGT, UNEQ}}, \
3061 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3062 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3063 }}, \
3064 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3065 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3066 UNGE, UNGT, LTGT, UNEQ }}, \
3067 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3068 {"ext_register_operand", {SUBREG, REG}}, \
3069 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3070 {"mult_operator", {MULT}}, \
3071 {"div_operator", {DIV}}, \
3072 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3073 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3074 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3075 LSHIFTRT, ROTATERT}}, \
3076 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3077 {"memory_displacement_operand", {MEM}}, \
3078 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3079 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3080 {"long_memory_operand", {MEM}},
3082 /* A list of predicates that do special things with modes, and so
3083 should not elicit warnings for VOIDmode match_operand. */
3085 #define SPECIAL_MODE_PREDICATES \
3086 "ext_register_operand",
3088 /* CM_32 is used by 32bit ABI
3089 CM_SMALL is small model assuming that all code and data fits in the first
3090 31bits of address space.
3091 CM_KERNEL is model assuming that all code and data fits in the negative
3092 31bits of address space.
3093 CM_MEDIUM is model assuming that code fits in the first 31bits of address
3094 space. Size of data is unlimited.
3095 CM_LARGE is model making no assumptions about size of particular sections.
3097 CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
3098 tables first in 31bits of address space.
3100 enum cmodel {
3101 CM_32,
3102 CM_SMALL,
3103 CM_KERNEL,
3104 CM_MEDIUM,
3105 CM_LARGE,
3106 CM_SMALL_PIC
3109 /* Size of the RED_ZONE area. */
3110 #define RED_ZONE_SIZE 128
3111 /* Reserved area of the red zone for temporaries. */
3112 #define RED_ZONE_RESERVE 8
3113 /* Valud of -mcmodel specified by user. */
3114 extern const char *ix86_cmodel_string;
3115 extern enum cmodel ix86_cmodel;
3117 /* Variables in i386.c */
3118 extern const char *ix86_cpu_string; /* for -mcpu=<xxx> */
3119 extern const char *ix86_arch_string; /* for -march=<xxx> */
3120 extern const char *ix86_regparm_string; /* # registers to use to pass args */
3121 extern const char *ix86_align_loops_string; /* power of two alignment for loops */
3122 extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */
3123 extern const char *ix86_align_funcs_string; /* power of two alignment for functions */
3124 extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
3125 extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */
3126 extern int ix86_regparm; /* ix86_regparm_string as a number */
3127 extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
3128 extern int ix86_branch_cost; /* values 1-5: see jump.c */
3129 extern const char * const hi_reg_name[]; /* names for 16 bit regs */
3130 extern const char * const qi_reg_name[]; /* names for 8 bit regs (low) */
3131 extern const char * const qi_high_reg_name[]; /* names for 8 bit regs (high) */
3132 extern enum reg_class const regclass_map[]; /* smalled class containing REGNO */
3133 extern struct rtx_def *ix86_compare_op0; /* operand 0 for comparisons */
3134 extern struct rtx_def *ix86_compare_op1; /* operand 1 for comparisons */
3137 Local variables:
3138 version-control: t
3139 End: