Add PR target/17277 to ChangeLog entry.
[official-gcc.git] / gcc / rtlanal.c
blob21879d63684cfdeb149e45ee7047e471dbcc8dc8
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
41 /* Forward declarations */
42 static int global_reg_mentioned_p_1 (rtx *, void *);
43 static void set_of_1 (rtx, rtx, void *);
44 static void insn_dependent_p_1 (rtx, rtx, void *);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
48 static bool hoist_test_store (rtx, rtx, regset);
49 static void hoist_update_store (rtx, rtx *, rtx, rtx);
51 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
52 rtx, enum machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
55 enum machine_mode,
56 unsigned HOST_WIDE_INT);
57 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
58 enum machine_mode,
59 unsigned int);
60 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
61 enum machine_mode, unsigned int);
63 /* Bit flags that specify the machine subtype we are compiling for.
64 Bits are tested using macros TARGET_... defined in the tm.h file
65 and set by `-m...' switches. Must be defined in rtlanal.c. */
67 int target_flags;
69 /* Return 1 if the value of X is unstable
70 (would be different at a different point in the program).
71 The frame pointer, arg pointer, etc. are considered stable
72 (within one function) and so is anything marked `unchanging'. */
74 int
75 rtx_unstable_p (rtx x)
77 RTX_CODE code = GET_CODE (x);
78 int i;
79 const char *fmt;
81 switch (code)
83 case MEM:
84 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
86 case CONST:
87 case CONST_INT:
88 case CONST_DOUBLE:
89 case CONST_VECTOR:
90 case SYMBOL_REF:
91 case LABEL_REF:
92 return 0;
94 case REG:
95 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
96 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
97 /* The arg pointer varies if it is not a fixed register. */
98 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
99 return 0;
100 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
101 /* ??? When call-clobbered, the value is stable modulo the restore
102 that must happen after a call. This currently screws up local-alloc
103 into believing that the restore is not needed. */
104 if (x == pic_offset_table_rtx)
105 return 0;
106 #endif
107 return 1;
109 case ASM_OPERANDS:
110 if (MEM_VOLATILE_P (x))
111 return 1;
113 /* Fall through. */
115 default:
116 break;
119 fmt = GET_RTX_FORMAT (code);
120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
121 if (fmt[i] == 'e')
123 if (rtx_unstable_p (XEXP (x, i)))
124 return 1;
126 else if (fmt[i] == 'E')
128 int j;
129 for (j = 0; j < XVECLEN (x, i); j++)
130 if (rtx_unstable_p (XVECEXP (x, i, j)))
131 return 1;
134 return 0;
137 /* Return 1 if X has a value that can vary even between two
138 executions of the program. 0 means X can be compared reliably
139 against certain constants or near-constants.
140 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
141 zero, we are slightly more conservative.
142 The frame pointer and the arg pointer are considered constant. */
145 rtx_varies_p (rtx x, int for_alias)
147 RTX_CODE code;
148 int i;
149 const char *fmt;
151 if (!x)
152 return 0;
154 code = GET_CODE (x);
155 switch (code)
157 case MEM:
158 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
160 case CONST:
161 case CONST_INT:
162 case CONST_DOUBLE:
163 case CONST_VECTOR:
164 case SYMBOL_REF:
165 case LABEL_REF:
166 return 0;
168 case REG:
169 /* Note that we have to test for the actual rtx used for the frame
170 and arg pointers and not just the register number in case we have
171 eliminated the frame and/or arg pointer and are using it
172 for pseudos. */
173 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
174 /* The arg pointer varies if it is not a fixed register. */
175 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
176 return 0;
177 if (x == pic_offset_table_rtx
178 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
179 /* ??? When call-clobbered, the value is stable modulo the restore
180 that must happen after a call. This currently screws up
181 local-alloc into believing that the restore is not needed, so we
182 must return 0 only if we are called from alias analysis. */
183 && for_alias
184 #endif
186 return 0;
187 return 1;
189 case LO_SUM:
190 /* The operand 0 of a LO_SUM is considered constant
191 (in fact it is related specifically to operand 1)
192 during alias analysis. */
193 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
194 || rtx_varies_p (XEXP (x, 1), for_alias);
196 case ASM_OPERANDS:
197 if (MEM_VOLATILE_P (x))
198 return 1;
200 /* Fall through. */
202 default:
203 break;
206 fmt = GET_RTX_FORMAT (code);
207 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
208 if (fmt[i] == 'e')
210 if (rtx_varies_p (XEXP (x, i), for_alias))
211 return 1;
213 else if (fmt[i] == 'E')
215 int j;
216 for (j = 0; j < XVECLEN (x, i); j++)
217 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
218 return 1;
221 return 0;
224 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
227 rtx_addr_can_trap_p (rtx x)
229 enum rtx_code code = GET_CODE (x);
231 switch (code)
233 case SYMBOL_REF:
234 return SYMBOL_REF_WEAK (x);
236 case LABEL_REF:
237 return 0;
239 case REG:
240 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
241 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
242 || x == stack_pointer_rtx
243 /* The arg pointer varies if it is not a fixed register. */
244 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
245 return 0;
246 /* All of the virtual frame registers are stack references. */
247 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
248 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
249 return 0;
250 return 1;
252 case CONST:
253 return rtx_addr_can_trap_p (XEXP (x, 0));
255 case PLUS:
256 /* An address is assumed not to trap if it is an address that can't
257 trap plus a constant integer or it is the pic register plus a
258 constant. */
259 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
260 && GET_CODE (XEXP (x, 1)) == CONST_INT)
261 || (XEXP (x, 0) == pic_offset_table_rtx
262 && CONSTANT_P (XEXP (x, 1))));
264 case LO_SUM:
265 case PRE_MODIFY:
266 return rtx_addr_can_trap_p (XEXP (x, 1));
268 case PRE_DEC:
269 case PRE_INC:
270 case POST_DEC:
271 case POST_INC:
272 case POST_MODIFY:
273 return rtx_addr_can_trap_p (XEXP (x, 0));
275 default:
276 break;
279 /* If it isn't one of the case above, it can cause a trap. */
280 return 1;
283 /* Return true if X is an address that is known to not be zero. */
285 bool
286 nonzero_address_p (rtx x)
288 enum rtx_code code = GET_CODE (x);
290 switch (code)
292 case SYMBOL_REF:
293 return !SYMBOL_REF_WEAK (x);
295 case LABEL_REF:
296 return true;
298 case REG:
299 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
300 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
301 || x == stack_pointer_rtx
302 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
303 return true;
304 /* All of the virtual frame registers are stack references. */
305 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
306 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
307 return true;
308 return false;
310 case CONST:
311 return nonzero_address_p (XEXP (x, 0));
313 case PLUS:
314 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
316 /* Pointers aren't allowed to wrap. If we've got a register
317 that is known to be a pointer, and a positive offset, then
318 the composite can't be zero. */
319 if (INTVAL (XEXP (x, 1)) > 0
320 && REG_P (XEXP (x, 0))
321 && REG_POINTER (XEXP (x, 0)))
322 return true;
324 return nonzero_address_p (XEXP (x, 0));
326 /* Handle PIC references. */
327 else if (XEXP (x, 0) == pic_offset_table_rtx
328 && CONSTANT_P (XEXP (x, 1)))
329 return true;
330 return false;
332 case PRE_MODIFY:
333 /* Similar to the above; allow positive offsets. Further, since
334 auto-inc is only allowed in memories, the register must be a
335 pointer. */
336 if (GET_CODE (XEXP (x, 1)) == CONST_INT
337 && INTVAL (XEXP (x, 1)) > 0)
338 return true;
339 return nonzero_address_p (XEXP (x, 0));
341 case PRE_INC:
342 /* Similarly. Further, the offset is always positive. */
343 return true;
345 case PRE_DEC:
346 case POST_DEC:
347 case POST_INC:
348 case POST_MODIFY:
349 return nonzero_address_p (XEXP (x, 0));
351 case LO_SUM:
352 return nonzero_address_p (XEXP (x, 1));
354 default:
355 break;
358 /* If it isn't one of the case above, might be zero. */
359 return false;
362 /* Return 1 if X refers to a memory location whose address
363 cannot be compared reliably with constant addresses,
364 or if X refers to a BLKmode memory object.
365 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
366 zero, we are slightly more conservative. */
369 rtx_addr_varies_p (rtx x, int for_alias)
371 enum rtx_code code;
372 int i;
373 const char *fmt;
375 if (x == 0)
376 return 0;
378 code = GET_CODE (x);
379 if (code == MEM)
380 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
382 fmt = GET_RTX_FORMAT (code);
383 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
384 if (fmt[i] == 'e')
386 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
387 return 1;
389 else if (fmt[i] == 'E')
391 int j;
392 for (j = 0; j < XVECLEN (x, i); j++)
393 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
394 return 1;
396 return 0;
399 /* Return the value of the integer term in X, if one is apparent;
400 otherwise return 0.
401 Only obvious integer terms are detected.
402 This is used in cse.c with the `related_value' field. */
404 HOST_WIDE_INT
405 get_integer_term (rtx x)
407 if (GET_CODE (x) == CONST)
408 x = XEXP (x, 0);
410 if (GET_CODE (x) == MINUS
411 && GET_CODE (XEXP (x, 1)) == CONST_INT)
412 return - INTVAL (XEXP (x, 1));
413 if (GET_CODE (x) == PLUS
414 && GET_CODE (XEXP (x, 1)) == CONST_INT)
415 return INTVAL (XEXP (x, 1));
416 return 0;
419 /* If X is a constant, return the value sans apparent integer term;
420 otherwise return 0.
421 Only obvious integer terms are detected. */
424 get_related_value (rtx x)
426 if (GET_CODE (x) != CONST)
427 return 0;
428 x = XEXP (x, 0);
429 if (GET_CODE (x) == PLUS
430 && GET_CODE (XEXP (x, 1)) == CONST_INT)
431 return XEXP (x, 0);
432 else if (GET_CODE (x) == MINUS
433 && GET_CODE (XEXP (x, 1)) == CONST_INT)
434 return XEXP (x, 0);
435 return 0;
438 /* Given a tablejump insn INSN, return the RTL expression for the offset
439 into the jump table. If the offset cannot be determined, then return
440 NULL_RTX.
442 If EARLIEST is nonzero, it is a pointer to a place where the earliest
443 insn used in locating the offset was found. */
446 get_jump_table_offset (rtx insn, rtx *earliest)
448 rtx label = NULL;
449 rtx table = NULL;
450 rtx set;
451 rtx old_insn;
452 rtx x;
453 rtx old_x;
454 rtx y;
455 rtx old_y;
456 int i;
458 if (!tablejump_p (insn, &label, &table) || !(set = single_set (insn)))
459 return NULL_RTX;
461 x = SET_SRC (set);
463 /* Some targets (eg, ARM) emit a tablejump that also
464 contains the out-of-range target. */
465 if (GET_CODE (x) == IF_THEN_ELSE
466 && GET_CODE (XEXP (x, 2)) == LABEL_REF)
467 x = XEXP (x, 1);
469 /* Search backwards and locate the expression stored in X. */
470 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
471 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
474 /* If X is an expression using a relative address then strip
475 off the addition / subtraction of PC, PIC_OFFSET_TABLE_REGNUM,
476 or the jump table label. */
477 if (GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC
478 && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS))
480 for (i = 0; i < 2; i++)
482 old_insn = insn;
483 y = XEXP (x, i);
485 if (y == pc_rtx || y == pic_offset_table_rtx)
486 break;
488 for (old_y = NULL_RTX; REG_P (y) && y != old_y;
489 old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
492 if ((GET_CODE (y) == LABEL_REF && XEXP (y, 0) == label))
493 break;
496 if (i >= 2)
497 return NULL_RTX;
499 x = XEXP (x, 1 - i);
501 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
502 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
506 /* Strip off any sign or zero extension. */
507 if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND)
509 x = XEXP (x, 0);
511 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
512 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
516 /* If X isn't a MEM then this isn't a tablejump we understand. */
517 if (!MEM_P (x))
518 return NULL_RTX;
520 /* Strip off the MEM. */
521 x = XEXP (x, 0);
523 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
524 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
527 /* If X isn't a PLUS than this isn't a tablejump we understand. */
528 if (GET_CODE (x) != PLUS)
529 return NULL_RTX;
531 /* At this point we should have an expression representing the jump table
532 plus an offset. Examine each operand in order to determine which one
533 represents the jump table. Knowing that tells us that the other operand
534 must represent the offset. */
535 for (i = 0; i < 2; i++)
537 old_insn = insn;
538 y = XEXP (x, i);
540 for (old_y = NULL_RTX; REG_P (y) && y != old_y;
541 old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
544 if ((GET_CODE (y) == CONST || GET_CODE (y) == LABEL_REF)
545 && reg_mentioned_p (label, y))
546 break;
549 if (i >= 2)
550 return NULL_RTX;
552 x = XEXP (x, 1 - i);
554 /* Strip off the addition / subtraction of PIC_OFFSET_TABLE_REGNUM. */
555 if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
556 for (i = 0; i < 2; i++)
557 if (XEXP (x, i) == pic_offset_table_rtx)
559 x = XEXP (x, 1 - i);
560 break;
563 if (earliest)
564 *earliest = insn;
566 /* Return the RTL expression representing the offset. */
567 return x;
570 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
571 a global register. */
573 static int
574 global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
576 int regno;
577 rtx x = *loc;
579 if (! x)
580 return 0;
582 switch (GET_CODE (x))
584 case SUBREG:
585 if (REG_P (SUBREG_REG (x)))
587 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
588 && global_regs[subreg_regno (x)])
589 return 1;
590 return 0;
592 break;
594 case REG:
595 regno = REGNO (x);
596 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
597 return 1;
598 return 0;
600 case SCRATCH:
601 case PC:
602 case CC0:
603 case CONST_INT:
604 case CONST_DOUBLE:
605 case CONST:
606 case LABEL_REF:
607 return 0;
609 case CALL:
610 /* A non-constant call might use a global register. */
611 return 1;
613 default:
614 break;
617 return 0;
620 /* Returns nonzero if X mentions a global register. */
623 global_reg_mentioned_p (rtx x)
625 if (INSN_P (x))
627 if (CALL_P (x))
629 if (! CONST_OR_PURE_CALL_P (x))
630 return 1;
631 x = CALL_INSN_FUNCTION_USAGE (x);
632 if (x == 0)
633 return 0;
635 else
636 x = PATTERN (x);
639 return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
642 /* Return the number of places FIND appears within X. If COUNT_DEST is
643 zero, we do not count occurrences inside the destination of a SET. */
646 count_occurrences (rtx x, rtx find, int count_dest)
648 int i, j;
649 enum rtx_code code;
650 const char *format_ptr;
651 int count;
653 if (x == find)
654 return 1;
656 code = GET_CODE (x);
658 switch (code)
660 case REG:
661 case CONST_INT:
662 case CONST_DOUBLE:
663 case CONST_VECTOR:
664 case SYMBOL_REF:
665 case CODE_LABEL:
666 case PC:
667 case CC0:
668 return 0;
670 case MEM:
671 if (MEM_P (find) && rtx_equal_p (x, find))
672 return 1;
673 break;
675 case SET:
676 if (SET_DEST (x) == find && ! count_dest)
677 return count_occurrences (SET_SRC (x), find, count_dest);
678 break;
680 default:
681 break;
684 format_ptr = GET_RTX_FORMAT (code);
685 count = 0;
687 for (i = 0; i < GET_RTX_LENGTH (code); i++)
689 switch (*format_ptr++)
691 case 'e':
692 count += count_occurrences (XEXP (x, i), find, count_dest);
693 break;
695 case 'E':
696 for (j = 0; j < XVECLEN (x, i); j++)
697 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
698 break;
701 return count;
704 /* Nonzero if register REG appears somewhere within IN.
705 Also works if REG is not a register; in this case it checks
706 for a subexpression of IN that is Lisp "equal" to REG. */
709 reg_mentioned_p (rtx reg, rtx in)
711 const char *fmt;
712 int i;
713 enum rtx_code code;
715 if (in == 0)
716 return 0;
718 if (reg == in)
719 return 1;
721 if (GET_CODE (in) == LABEL_REF)
722 return reg == XEXP (in, 0);
724 code = GET_CODE (in);
726 switch (code)
728 /* Compare registers by number. */
729 case REG:
730 return REG_P (reg) && REGNO (in) == REGNO (reg);
732 /* These codes have no constituent expressions
733 and are unique. */
734 case SCRATCH:
735 case CC0:
736 case PC:
737 return 0;
739 case CONST_INT:
740 case CONST_VECTOR:
741 case CONST_DOUBLE:
742 /* These are kept unique for a given value. */
743 return 0;
745 default:
746 break;
749 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
750 return 1;
752 fmt = GET_RTX_FORMAT (code);
754 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
756 if (fmt[i] == 'E')
758 int j;
759 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
760 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
761 return 1;
763 else if (fmt[i] == 'e'
764 && reg_mentioned_p (reg, XEXP (in, i)))
765 return 1;
767 return 0;
770 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
771 no CODE_LABEL insn. */
774 no_labels_between_p (rtx beg, rtx end)
776 rtx p;
777 if (beg == end)
778 return 0;
779 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
780 if (LABEL_P (p))
781 return 0;
782 return 1;
785 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
786 no JUMP_INSN insn. */
789 no_jumps_between_p (rtx beg, rtx end)
791 rtx p;
792 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
793 if (JUMP_P (p))
794 return 0;
795 return 1;
798 /* Nonzero if register REG is used in an insn between
799 FROM_INSN and TO_INSN (exclusive of those two). */
802 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
804 rtx insn;
806 if (from_insn == to_insn)
807 return 0;
809 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
810 if (INSN_P (insn)
811 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
812 || (CALL_P (insn)
813 && (find_reg_fusage (insn, USE, reg)
814 || find_reg_fusage (insn, CLOBBER, reg)))))
815 return 1;
816 return 0;
819 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
820 is entirely replaced by a new value and the only use is as a SET_DEST,
821 we do not consider it a reference. */
824 reg_referenced_p (rtx x, rtx body)
826 int i;
828 switch (GET_CODE (body))
830 case SET:
831 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
832 return 1;
834 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
835 of a REG that occupies all of the REG, the insn references X if
836 it is mentioned in the destination. */
837 if (GET_CODE (SET_DEST (body)) != CC0
838 && GET_CODE (SET_DEST (body)) != PC
839 && !REG_P (SET_DEST (body))
840 && ! (GET_CODE (SET_DEST (body)) == SUBREG
841 && REG_P (SUBREG_REG (SET_DEST (body)))
842 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
843 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
844 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
845 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
846 && reg_overlap_mentioned_p (x, SET_DEST (body)))
847 return 1;
848 return 0;
850 case ASM_OPERANDS:
851 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
852 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
853 return 1;
854 return 0;
856 case CALL:
857 case USE:
858 case IF_THEN_ELSE:
859 return reg_overlap_mentioned_p (x, body);
861 case TRAP_IF:
862 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
864 case PREFETCH:
865 return reg_overlap_mentioned_p (x, XEXP (body, 0));
867 case UNSPEC:
868 case UNSPEC_VOLATILE:
869 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
870 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
871 return 1;
872 return 0;
874 case PARALLEL:
875 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
876 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
877 return 1;
878 return 0;
880 case CLOBBER:
881 if (MEM_P (XEXP (body, 0)))
882 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
883 return 1;
884 return 0;
886 case COND_EXEC:
887 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
888 return 1;
889 return reg_referenced_p (x, COND_EXEC_CODE (body));
891 default:
892 return 0;
896 /* Nonzero if register REG is referenced in an insn between
897 FROM_INSN and TO_INSN (exclusive of those two). Sets of REG do
898 not count. */
901 reg_referenced_between_p (rtx reg, rtx from_insn, rtx to_insn)
903 rtx insn;
905 if (from_insn == to_insn)
906 return 0;
908 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
909 if (INSN_P (insn)
910 && (reg_referenced_p (reg, PATTERN (insn))
911 || (CALL_P (insn)
912 && find_reg_fusage (insn, USE, reg))))
913 return 1;
914 return 0;
917 /* Nonzero if register REG is set or clobbered in an insn between
918 FROM_INSN and TO_INSN (exclusive of those two). */
921 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
923 rtx insn;
925 if (from_insn == to_insn)
926 return 0;
928 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
929 if (INSN_P (insn) && reg_set_p (reg, insn))
930 return 1;
931 return 0;
934 /* Internals of reg_set_between_p. */
936 reg_set_p (rtx reg, rtx insn)
938 /* We can be passed an insn or part of one. If we are passed an insn,
939 check if a side-effect of the insn clobbers REG. */
940 if (INSN_P (insn)
941 && (FIND_REG_INC_NOTE (insn, reg)
942 || (CALL_P (insn)
943 && ((REG_P (reg)
944 && REGNO (reg) < FIRST_PSEUDO_REGISTER
945 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
946 REGNO (reg)))
947 || MEM_P (reg)
948 || find_reg_fusage (insn, CLOBBER, reg)))))
949 return 1;
951 return set_of (reg, insn) != NULL_RTX;
954 /* Similar to reg_set_between_p, but check all registers in X. Return 0
955 only if none of them are modified between START and END. Do not
956 consider non-registers one way or the other. */
959 regs_set_between_p (rtx x, rtx start, rtx end)
961 enum rtx_code code = GET_CODE (x);
962 const char *fmt;
963 int i, j;
965 switch (code)
967 case CONST_INT:
968 case CONST_DOUBLE:
969 case CONST_VECTOR:
970 case CONST:
971 case SYMBOL_REF:
972 case LABEL_REF:
973 case PC:
974 case CC0:
975 return 0;
977 case REG:
978 return reg_set_between_p (x, start, end);
980 default:
981 break;
984 fmt = GET_RTX_FORMAT (code);
985 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
987 if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
988 return 1;
990 else if (fmt[i] == 'E')
991 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
992 if (regs_set_between_p (XVECEXP (x, i, j), start, end))
993 return 1;
996 return 0;
999 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1000 only if none of them are modified between START and END. Return 1 if
1001 X contains a MEM; this routine does usememory aliasing. */
1004 modified_between_p (rtx x, rtx start, rtx end)
1006 enum rtx_code code = GET_CODE (x);
1007 const char *fmt;
1008 int i, j;
1009 rtx insn;
1011 if (start == end)
1012 return 0;
1014 switch (code)
1016 case CONST_INT:
1017 case CONST_DOUBLE:
1018 case CONST_VECTOR:
1019 case CONST:
1020 case SYMBOL_REF:
1021 case LABEL_REF:
1022 return 0;
1024 case PC:
1025 case CC0:
1026 return 1;
1028 case MEM:
1029 if (MEM_READONLY_P (x))
1030 return 0;
1031 if (modified_between_p (XEXP (x, 0), start, end))
1032 return 1;
1033 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1034 if (memory_modified_in_insn_p (x, insn))
1035 return 1;
1036 return 0;
1037 break;
1039 case REG:
1040 return reg_set_between_p (x, start, end);
1042 default:
1043 break;
1046 fmt = GET_RTX_FORMAT (code);
1047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1049 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1050 return 1;
1052 else if (fmt[i] == 'E')
1053 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1054 if (modified_between_p (XVECEXP (x, i, j), start, end))
1055 return 1;
1058 return 0;
1061 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1062 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1063 does use memory aliasing. */
1066 modified_in_p (rtx x, rtx insn)
1068 enum rtx_code code = GET_CODE (x);
1069 const char *fmt;
1070 int i, j;
1072 switch (code)
1074 case CONST_INT:
1075 case CONST_DOUBLE:
1076 case CONST_VECTOR:
1077 case CONST:
1078 case SYMBOL_REF:
1079 case LABEL_REF:
1080 return 0;
1082 case PC:
1083 case CC0:
1084 return 1;
1086 case MEM:
1087 if (MEM_READONLY_P (x))
1088 return 0;
1089 if (modified_in_p (XEXP (x, 0), insn))
1090 return 1;
1091 if (memory_modified_in_insn_p (x, insn))
1092 return 1;
1093 return 0;
1094 break;
1096 case REG:
1097 return reg_set_p (x, insn);
1099 default:
1100 break;
1103 fmt = GET_RTX_FORMAT (code);
1104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1107 return 1;
1109 else if (fmt[i] == 'E')
1110 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1111 if (modified_in_p (XVECEXP (x, i, j), insn))
1112 return 1;
1115 return 0;
1118 /* Return true if anything in insn X is (anti,output,true) dependent on
1119 anything in insn Y. */
1122 insn_dependent_p (rtx x, rtx y)
1124 rtx tmp;
1126 gcc_assert (INSN_P (x));
1127 gcc_assert (INSN_P (y));
1129 tmp = PATTERN (y);
1130 note_stores (PATTERN (x), insn_dependent_p_1, &tmp);
1131 if (tmp == NULL_RTX)
1132 return 1;
1134 tmp = PATTERN (x);
1135 note_stores (PATTERN (y), insn_dependent_p_1, &tmp);
1136 if (tmp == NULL_RTX)
1137 return 1;
1139 return 0;
1142 /* A helper routine for insn_dependent_p called through note_stores. */
1144 static void
1145 insn_dependent_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
1147 rtx * pinsn = (rtx *) data;
1149 if (*pinsn && reg_mentioned_p (x, *pinsn))
1150 *pinsn = NULL_RTX;
1153 /* Helper function for set_of. */
1154 struct set_of_data
1156 rtx found;
1157 rtx pat;
1160 static void
1161 set_of_1 (rtx x, rtx pat, void *data1)
1163 struct set_of_data *data = (struct set_of_data *) (data1);
1164 if (rtx_equal_p (x, data->pat)
1165 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1166 data->found = pat;
1169 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1170 (either directly or via STRICT_LOW_PART and similar modifiers). */
1172 set_of (rtx pat, rtx insn)
1174 struct set_of_data data;
1175 data.found = NULL_RTX;
1176 data.pat = pat;
1177 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1178 return data.found;
1181 /* Given an INSN, return a SET expression if this insn has only a single SET.
1182 It may also have CLOBBERs, USEs, or SET whose output
1183 will not be used, which we ignore. */
1186 single_set_2 (rtx insn, rtx pat)
1188 rtx set = NULL;
1189 int set_verified = 1;
1190 int i;
1192 if (GET_CODE (pat) == PARALLEL)
1194 for (i = 0; i < XVECLEN (pat, 0); i++)
1196 rtx sub = XVECEXP (pat, 0, i);
1197 switch (GET_CODE (sub))
1199 case USE:
1200 case CLOBBER:
1201 break;
1203 case SET:
1204 /* We can consider insns having multiple sets, where all
1205 but one are dead as single set insns. In common case
1206 only single set is present in the pattern so we want
1207 to avoid checking for REG_UNUSED notes unless necessary.
1209 When we reach set first time, we just expect this is
1210 the single set we are looking for and only when more
1211 sets are found in the insn, we check them. */
1212 if (!set_verified)
1214 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1215 && !side_effects_p (set))
1216 set = NULL;
1217 else
1218 set_verified = 1;
1220 if (!set)
1221 set = sub, set_verified = 0;
1222 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1223 || side_effects_p (sub))
1224 return NULL_RTX;
1225 break;
1227 default:
1228 return NULL_RTX;
1232 return set;
1235 /* Given an INSN, return nonzero if it has more than one SET, else return
1236 zero. */
1239 multiple_sets (rtx insn)
1241 int found;
1242 int i;
1244 /* INSN must be an insn. */
1245 if (! INSN_P (insn))
1246 return 0;
1248 /* Only a PARALLEL can have multiple SETs. */
1249 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1251 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1252 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1254 /* If we have already found a SET, then return now. */
1255 if (found)
1256 return 1;
1257 else
1258 found = 1;
1262 /* Either zero or one SET. */
1263 return 0;
1266 /* Return nonzero if the destination of SET equals the source
1267 and there are no side effects. */
1270 set_noop_p (rtx set)
1272 rtx src = SET_SRC (set);
1273 rtx dst = SET_DEST (set);
1275 if (dst == pc_rtx && src == pc_rtx)
1276 return 1;
1278 if (MEM_P (dst) && MEM_P (src))
1279 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1281 if (GET_CODE (dst) == SIGN_EXTRACT
1282 || GET_CODE (dst) == ZERO_EXTRACT)
1283 return rtx_equal_p (XEXP (dst, 0), src)
1284 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1285 && !side_effects_p (src);
1287 if (GET_CODE (dst) == STRICT_LOW_PART)
1288 dst = XEXP (dst, 0);
1290 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1292 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1293 return 0;
1294 src = SUBREG_REG (src);
1295 dst = SUBREG_REG (dst);
1298 return (REG_P (src) && REG_P (dst)
1299 && REGNO (src) == REGNO (dst));
1302 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1303 value to itself. */
1306 noop_move_p (rtx insn)
1308 rtx pat = PATTERN (insn);
1310 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1311 return 1;
1313 /* Insns carrying these notes are useful later on. */
1314 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1315 return 0;
1317 /* For now treat an insn with a REG_RETVAL note as a
1318 a special insn which should not be considered a no-op. */
1319 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1320 return 0;
1322 if (GET_CODE (pat) == SET && set_noop_p (pat))
1323 return 1;
1325 if (GET_CODE (pat) == PARALLEL)
1327 int i;
1328 /* If nothing but SETs of registers to themselves,
1329 this insn can also be deleted. */
1330 for (i = 0; i < XVECLEN (pat, 0); i++)
1332 rtx tem = XVECEXP (pat, 0, i);
1334 if (GET_CODE (tem) == USE
1335 || GET_CODE (tem) == CLOBBER)
1336 continue;
1338 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1339 return 0;
1342 return 1;
1344 return 0;
1348 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1349 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1350 If the object was modified, if we hit a partial assignment to X, or hit a
1351 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1352 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1353 be the src. */
1356 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1358 rtx p;
1360 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1361 p = PREV_INSN (p))
1362 if (INSN_P (p))
1364 rtx set = single_set (p);
1365 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1367 if (set && rtx_equal_p (x, SET_DEST (set)))
1369 rtx src = SET_SRC (set);
1371 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1372 src = XEXP (note, 0);
1374 if ((valid_to == NULL_RTX
1375 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1376 /* Reject hard registers because we don't usually want
1377 to use them; we'd rather use a pseudo. */
1378 && (! (REG_P (src)
1379 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1381 *pinsn = p;
1382 return src;
1386 /* If set in non-simple way, we don't have a value. */
1387 if (reg_set_p (x, p))
1388 break;
1391 return x;
1394 /* Return nonzero if register in range [REGNO, ENDREGNO)
1395 appears either explicitly or implicitly in X
1396 other than being stored into.
1398 References contained within the substructure at LOC do not count.
1399 LOC may be zero, meaning don't ignore anything. */
1402 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1403 rtx *loc)
1405 int i;
1406 unsigned int x_regno;
1407 RTX_CODE code;
1408 const char *fmt;
1410 repeat:
1411 /* The contents of a REG_NONNEG note is always zero, so we must come here
1412 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1413 if (x == 0)
1414 return 0;
1416 code = GET_CODE (x);
1418 switch (code)
1420 case REG:
1421 x_regno = REGNO (x);
1423 /* If we modifying the stack, frame, or argument pointer, it will
1424 clobber a virtual register. In fact, we could be more precise,
1425 but it isn't worth it. */
1426 if ((x_regno == STACK_POINTER_REGNUM
1427 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1428 || x_regno == ARG_POINTER_REGNUM
1429 #endif
1430 || x_regno == FRAME_POINTER_REGNUM)
1431 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1432 return 1;
1434 return (endregno > x_regno
1435 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1436 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1437 : 1));
1439 case SUBREG:
1440 /* If this is a SUBREG of a hard reg, we can see exactly which
1441 registers are being modified. Otherwise, handle normally. */
1442 if (REG_P (SUBREG_REG (x))
1443 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1445 unsigned int inner_regno = subreg_regno (x);
1446 unsigned int inner_endregno
1447 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1448 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1450 return endregno > inner_regno && regno < inner_endregno;
1452 break;
1454 case CLOBBER:
1455 case SET:
1456 if (&SET_DEST (x) != loc
1457 /* Note setting a SUBREG counts as referring to the REG it is in for
1458 a pseudo but not for hard registers since we can
1459 treat each word individually. */
1460 && ((GET_CODE (SET_DEST (x)) == SUBREG
1461 && loc != &SUBREG_REG (SET_DEST (x))
1462 && REG_P (SUBREG_REG (SET_DEST (x)))
1463 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1464 && refers_to_regno_p (regno, endregno,
1465 SUBREG_REG (SET_DEST (x)), loc))
1466 || (!REG_P (SET_DEST (x))
1467 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1468 return 1;
1470 if (code == CLOBBER || loc == &SET_SRC (x))
1471 return 0;
1472 x = SET_SRC (x);
1473 goto repeat;
1475 default:
1476 break;
1479 /* X does not match, so try its subexpressions. */
1481 fmt = GET_RTX_FORMAT (code);
1482 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1484 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1486 if (i == 0)
1488 x = XEXP (x, 0);
1489 goto repeat;
1491 else
1492 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1493 return 1;
1495 else if (fmt[i] == 'E')
1497 int j;
1498 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1499 if (loc != &XVECEXP (x, i, j)
1500 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1501 return 1;
1504 return 0;
1507 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1508 we check if any register number in X conflicts with the relevant register
1509 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1510 contains a MEM (we don't bother checking for memory addresses that can't
1511 conflict because we expect this to be a rare case. */
1514 reg_overlap_mentioned_p (rtx x, rtx in)
1516 unsigned int regno, endregno;
1518 /* If either argument is a constant, then modifying X can not
1519 affect IN. Here we look at IN, we can profitably combine
1520 CONSTANT_P (x) with the switch statement below. */
1521 if (CONSTANT_P (in))
1522 return 0;
1524 recurse:
1525 switch (GET_CODE (x))
1527 case STRICT_LOW_PART:
1528 case ZERO_EXTRACT:
1529 case SIGN_EXTRACT:
1530 /* Overly conservative. */
1531 x = XEXP (x, 0);
1532 goto recurse;
1534 case SUBREG:
1535 regno = REGNO (SUBREG_REG (x));
1536 if (regno < FIRST_PSEUDO_REGISTER)
1537 regno = subreg_regno (x);
1538 goto do_reg;
1540 case REG:
1541 regno = REGNO (x);
1542 do_reg:
1543 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1544 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1545 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1547 case MEM:
1549 const char *fmt;
1550 int i;
1552 if (MEM_P (in))
1553 return 1;
1555 fmt = GET_RTX_FORMAT (GET_CODE (in));
1556 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1557 if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
1558 return 1;
1560 return 0;
1563 case SCRATCH:
1564 case PC:
1565 case CC0:
1566 return reg_mentioned_p (x, in);
1568 case PARALLEL:
1570 int i;
1572 /* If any register in here refers to it we return true. */
1573 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1574 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1575 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1576 return 1;
1577 return 0;
1580 default:
1581 gcc_assert (CONSTANT_P (x));
1582 return 0;
1586 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1587 (X would be the pattern of an insn).
1588 FUN receives two arguments:
1589 the REG, MEM, CC0 or PC being stored in or clobbered,
1590 the SET or CLOBBER rtx that does the store.
1592 If the item being stored in or clobbered is a SUBREG of a hard register,
1593 the SUBREG will be passed. */
1595 void
1596 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1598 int i;
1600 if (GET_CODE (x) == COND_EXEC)
1601 x = COND_EXEC_CODE (x);
1603 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1605 rtx dest = SET_DEST (x);
1607 while ((GET_CODE (dest) == SUBREG
1608 && (!REG_P (SUBREG_REG (dest))
1609 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1610 || GET_CODE (dest) == ZERO_EXTRACT
1611 || GET_CODE (dest) == SIGN_EXTRACT
1612 || GET_CODE (dest) == STRICT_LOW_PART)
1613 dest = XEXP (dest, 0);
1615 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1616 each of whose first operand is a register. */
1617 if (GET_CODE (dest) == PARALLEL)
1619 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1620 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1621 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1623 else
1624 (*fun) (dest, x, data);
1627 else if (GET_CODE (x) == PARALLEL)
1628 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1629 note_stores (XVECEXP (x, 0, i), fun, data);
1632 /* Like notes_stores, but call FUN for each expression that is being
1633 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1634 FUN for each expression, not any interior subexpressions. FUN receives a
1635 pointer to the expression and the DATA passed to this function.
1637 Note that this is not quite the same test as that done in reg_referenced_p
1638 since that considers something as being referenced if it is being
1639 partially set, while we do not. */
1641 void
1642 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1644 rtx body = *pbody;
1645 int i;
1647 switch (GET_CODE (body))
1649 case COND_EXEC:
1650 (*fun) (&COND_EXEC_TEST (body), data);
1651 note_uses (&COND_EXEC_CODE (body), fun, data);
1652 return;
1654 case PARALLEL:
1655 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1656 note_uses (&XVECEXP (body, 0, i), fun, data);
1657 return;
1659 case USE:
1660 (*fun) (&XEXP (body, 0), data);
1661 return;
1663 case ASM_OPERANDS:
1664 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1665 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1666 return;
1668 case TRAP_IF:
1669 (*fun) (&TRAP_CONDITION (body), data);
1670 return;
1672 case PREFETCH:
1673 (*fun) (&XEXP (body, 0), data);
1674 return;
1676 case UNSPEC:
1677 case UNSPEC_VOLATILE:
1678 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1679 (*fun) (&XVECEXP (body, 0, i), data);
1680 return;
1682 case CLOBBER:
1683 if (MEM_P (XEXP (body, 0)))
1684 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1685 return;
1687 case SET:
1689 rtx dest = SET_DEST (body);
1691 /* For sets we replace everything in source plus registers in memory
1692 expression in store and operands of a ZERO_EXTRACT. */
1693 (*fun) (&SET_SRC (body), data);
1695 if (GET_CODE (dest) == ZERO_EXTRACT)
1697 (*fun) (&XEXP (dest, 1), data);
1698 (*fun) (&XEXP (dest, 2), data);
1701 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1702 dest = XEXP (dest, 0);
1704 if (MEM_P (dest))
1705 (*fun) (&XEXP (dest, 0), data);
1707 return;
1709 default:
1710 /* All the other possibilities never store. */
1711 (*fun) (pbody, data);
1712 return;
1716 /* Return nonzero if X's old contents don't survive after INSN.
1717 This will be true if X is (cc0) or if X is a register and
1718 X dies in INSN or because INSN entirely sets X.
1720 "Entirely set" means set directly and not through a SUBREG,
1721 ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
1722 Likewise, REG_INC does not count.
1724 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1725 but for this use that makes no difference, since regs don't overlap
1726 during their lifetimes. Therefore, this function may be used
1727 at any time after deaths have been computed (in flow.c).
1729 If REG is a hard reg that occupies multiple machine registers, this
1730 function will only return 1 if each of those registers will be replaced
1731 by INSN. */
1734 dead_or_set_p (rtx insn, rtx x)
1736 unsigned int regno, last_regno;
1737 unsigned int i;
1739 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1740 if (GET_CODE (x) == CC0)
1741 return 1;
1743 gcc_assert (REG_P (x));
1745 regno = REGNO (x);
1746 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1747 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1749 for (i = regno; i <= last_regno; i++)
1750 if (! dead_or_set_regno_p (insn, i))
1751 return 0;
1753 return 1;
1756 /* Utility function for dead_or_set_p to check an individual register. Also
1757 called from flow.c. */
1760 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1762 unsigned int regno, endregno;
1763 rtx pattern;
1765 /* See if there is a death note for something that includes TEST_REGNO. */
1766 if (find_regno_note (insn, REG_DEAD, test_regno))
1767 return 1;
1769 if (CALL_P (insn)
1770 && find_regno_fusage (insn, CLOBBER, test_regno))
1771 return 1;
1773 pattern = PATTERN (insn);
1775 if (GET_CODE (pattern) == COND_EXEC)
1776 pattern = COND_EXEC_CODE (pattern);
1778 if (GET_CODE (pattern) == SET)
1780 rtx dest = SET_DEST (pattern);
1782 /* A value is totally replaced if it is the destination or the
1783 destination is a SUBREG of REGNO that does not change the number of
1784 words in it. */
1785 if (GET_CODE (dest) == SUBREG
1786 && (((GET_MODE_SIZE (GET_MODE (dest))
1787 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1788 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1789 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1790 dest = SUBREG_REG (dest);
1792 if (!REG_P (dest))
1793 return 0;
1795 regno = REGNO (dest);
1796 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1797 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1799 return (test_regno >= regno && test_regno < endregno);
1801 else if (GET_CODE (pattern) == PARALLEL)
1803 int i;
1805 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1807 rtx body = XVECEXP (pattern, 0, i);
1809 if (GET_CODE (body) == COND_EXEC)
1810 body = COND_EXEC_CODE (body);
1812 if (GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1814 rtx dest = SET_DEST (body);
1816 if (GET_CODE (dest) == SUBREG
1817 && (((GET_MODE_SIZE (GET_MODE (dest))
1818 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1819 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1820 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1821 dest = SUBREG_REG (dest);
1823 if (!REG_P (dest))
1824 continue;
1826 regno = REGNO (dest);
1827 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1828 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1830 if (test_regno >= regno && test_regno < endregno)
1831 return 1;
1836 return 0;
1839 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1840 If DATUM is nonzero, look for one whose datum is DATUM. */
1843 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1845 rtx link;
1847 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1848 if (! INSN_P (insn))
1849 return 0;
1850 if (datum == 0)
1852 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1853 if (REG_NOTE_KIND (link) == kind)
1854 return link;
1855 return 0;
1858 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1859 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1860 return link;
1861 return 0;
1864 /* Return the reg-note of kind KIND in insn INSN which applies to register
1865 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1866 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1867 it might be the case that the note overlaps REGNO. */
1870 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1872 rtx link;
1874 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1875 if (! INSN_P (insn))
1876 return 0;
1878 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1879 if (REG_NOTE_KIND (link) == kind
1880 /* Verify that it is a register, so that scratch and MEM won't cause a
1881 problem here. */
1882 && REG_P (XEXP (link, 0))
1883 && REGNO (XEXP (link, 0)) <= regno
1884 && ((REGNO (XEXP (link, 0))
1885 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1886 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1887 [GET_MODE (XEXP (link, 0))]))
1888 > regno))
1889 return link;
1890 return 0;
1893 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1894 has such a note. */
1897 find_reg_equal_equiv_note (rtx insn)
1899 rtx link;
1901 if (!INSN_P (insn))
1902 return 0;
1903 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1904 if (REG_NOTE_KIND (link) == REG_EQUAL
1905 || REG_NOTE_KIND (link) == REG_EQUIV)
1907 if (single_set (insn) == 0)
1908 return 0;
1909 return link;
1911 return NULL;
1914 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1915 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1918 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1920 /* If it's not a CALL_INSN, it can't possibly have a
1921 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1922 if (!CALL_P (insn))
1923 return 0;
1925 gcc_assert (datum);
1927 if (!REG_P (datum))
1929 rtx link;
1931 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1932 link;
1933 link = XEXP (link, 1))
1934 if (GET_CODE (XEXP (link, 0)) == code
1935 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1936 return 1;
1938 else
1940 unsigned int regno = REGNO (datum);
1942 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1943 to pseudo registers, so don't bother checking. */
1945 if (regno < FIRST_PSEUDO_REGISTER)
1947 unsigned int end_regno
1948 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1949 unsigned int i;
1951 for (i = regno; i < end_regno; i++)
1952 if (find_regno_fusage (insn, code, i))
1953 return 1;
1957 return 0;
1960 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1961 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1964 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1966 rtx link;
1968 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1969 to pseudo registers, so don't bother checking. */
1971 if (regno >= FIRST_PSEUDO_REGISTER
1972 || !CALL_P (insn) )
1973 return 0;
1975 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1977 unsigned int regnote;
1978 rtx op, reg;
1980 if (GET_CODE (op = XEXP (link, 0)) == code
1981 && REG_P (reg = XEXP (op, 0))
1982 && (regnote = REGNO (reg)) <= regno
1983 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1984 return 1;
1987 return 0;
1990 /* Return true if INSN is a call to a pure function. */
1993 pure_call_p (rtx insn)
1995 rtx link;
1997 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1998 return 0;
2000 /* Look for the note that differentiates const and pure functions. */
2001 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2003 rtx u, m;
2005 if (GET_CODE (u = XEXP (link, 0)) == USE
2006 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
2007 && GET_CODE (XEXP (m, 0)) == SCRATCH)
2008 return 1;
2011 return 0;
2014 /* Remove register note NOTE from the REG_NOTES of INSN. */
2016 void
2017 remove_note (rtx insn, rtx note)
2019 rtx link;
2021 if (note == NULL_RTX)
2022 return;
2024 if (REG_NOTES (insn) == note)
2026 REG_NOTES (insn) = XEXP (note, 1);
2027 return;
2030 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2031 if (XEXP (link, 1) == note)
2033 XEXP (link, 1) = XEXP (note, 1);
2034 return;
2037 gcc_unreachable ();
2040 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2041 return 1 if it is found. A simple equality test is used to determine if
2042 NODE matches. */
2045 in_expr_list_p (rtx listp, rtx node)
2047 rtx x;
2049 for (x = listp; x; x = XEXP (x, 1))
2050 if (node == XEXP (x, 0))
2051 return 1;
2053 return 0;
2056 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2057 remove that entry from the list if it is found.
2059 A simple equality test is used to determine if NODE matches. */
2061 void
2062 remove_node_from_expr_list (rtx node, rtx *listp)
2064 rtx temp = *listp;
2065 rtx prev = NULL_RTX;
2067 while (temp)
2069 if (node == XEXP (temp, 0))
2071 /* Splice the node out of the list. */
2072 if (prev)
2073 XEXP (prev, 1) = XEXP (temp, 1);
2074 else
2075 *listp = XEXP (temp, 1);
2077 return;
2080 prev = temp;
2081 temp = XEXP (temp, 1);
2085 /* Nonzero if X contains any volatile instructions. These are instructions
2086 which may cause unpredictable machine state instructions, and thus no
2087 instructions should be moved or combined across them. This includes
2088 only volatile asms and UNSPEC_VOLATILE instructions. */
2091 volatile_insn_p (rtx x)
2093 RTX_CODE code;
2095 code = GET_CODE (x);
2096 switch (code)
2098 case LABEL_REF:
2099 case SYMBOL_REF:
2100 case CONST_INT:
2101 case CONST:
2102 case CONST_DOUBLE:
2103 case CONST_VECTOR:
2104 case CC0:
2105 case PC:
2106 case REG:
2107 case SCRATCH:
2108 case CLOBBER:
2109 case ADDR_VEC:
2110 case ADDR_DIFF_VEC:
2111 case CALL:
2112 case MEM:
2113 return 0;
2115 case UNSPEC_VOLATILE:
2116 /* case TRAP_IF: This isn't clear yet. */
2117 return 1;
2119 case ASM_INPUT:
2120 case ASM_OPERANDS:
2121 if (MEM_VOLATILE_P (x))
2122 return 1;
2124 default:
2125 break;
2128 /* Recursively scan the operands of this expression. */
2131 const char *fmt = GET_RTX_FORMAT (code);
2132 int i;
2134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2136 if (fmt[i] == 'e')
2138 if (volatile_insn_p (XEXP (x, i)))
2139 return 1;
2141 else if (fmt[i] == 'E')
2143 int j;
2144 for (j = 0; j < XVECLEN (x, i); j++)
2145 if (volatile_insn_p (XVECEXP (x, i, j)))
2146 return 1;
2150 return 0;
2153 /* Nonzero if X contains any volatile memory references
2154 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2157 volatile_refs_p (rtx x)
2159 RTX_CODE code;
2161 code = GET_CODE (x);
2162 switch (code)
2164 case LABEL_REF:
2165 case SYMBOL_REF:
2166 case CONST_INT:
2167 case CONST:
2168 case CONST_DOUBLE:
2169 case CONST_VECTOR:
2170 case CC0:
2171 case PC:
2172 case REG:
2173 case SCRATCH:
2174 case CLOBBER:
2175 case ADDR_VEC:
2176 case ADDR_DIFF_VEC:
2177 return 0;
2179 case UNSPEC_VOLATILE:
2180 return 1;
2182 case MEM:
2183 case ASM_INPUT:
2184 case ASM_OPERANDS:
2185 if (MEM_VOLATILE_P (x))
2186 return 1;
2188 default:
2189 break;
2192 /* Recursively scan the operands of this expression. */
2195 const char *fmt = GET_RTX_FORMAT (code);
2196 int i;
2198 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2200 if (fmt[i] == 'e')
2202 if (volatile_refs_p (XEXP (x, i)))
2203 return 1;
2205 else if (fmt[i] == 'E')
2207 int j;
2208 for (j = 0; j < XVECLEN (x, i); j++)
2209 if (volatile_refs_p (XVECEXP (x, i, j)))
2210 return 1;
2214 return 0;
2217 /* Similar to above, except that it also rejects register pre- and post-
2218 incrementing. */
2221 side_effects_p (rtx x)
2223 RTX_CODE code;
2225 code = GET_CODE (x);
2226 switch (code)
2228 case LABEL_REF:
2229 case SYMBOL_REF:
2230 case CONST_INT:
2231 case CONST:
2232 case CONST_DOUBLE:
2233 case CONST_VECTOR:
2234 case CC0:
2235 case PC:
2236 case REG:
2237 case SCRATCH:
2238 case ADDR_VEC:
2239 case ADDR_DIFF_VEC:
2240 return 0;
2242 case CLOBBER:
2243 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2244 when some combination can't be done. If we see one, don't think
2245 that we can simplify the expression. */
2246 return (GET_MODE (x) != VOIDmode);
2248 case PRE_INC:
2249 case PRE_DEC:
2250 case POST_INC:
2251 case POST_DEC:
2252 case PRE_MODIFY:
2253 case POST_MODIFY:
2254 case CALL:
2255 case UNSPEC_VOLATILE:
2256 /* case TRAP_IF: This isn't clear yet. */
2257 return 1;
2259 case MEM:
2260 case ASM_INPUT:
2261 case ASM_OPERANDS:
2262 if (MEM_VOLATILE_P (x))
2263 return 1;
2265 default:
2266 break;
2269 /* Recursively scan the operands of this expression. */
2272 const char *fmt = GET_RTX_FORMAT (code);
2273 int i;
2275 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2277 if (fmt[i] == 'e')
2279 if (side_effects_p (XEXP (x, i)))
2280 return 1;
2282 else if (fmt[i] == 'E')
2284 int j;
2285 for (j = 0; j < XVECLEN (x, i); j++)
2286 if (side_effects_p (XVECEXP (x, i, j)))
2287 return 1;
2291 return 0;
2294 /* Return nonzero if evaluating rtx X might cause a trap. */
2297 may_trap_p (rtx x)
2299 int i;
2300 enum rtx_code code;
2301 const char *fmt;
2303 if (x == 0)
2304 return 0;
2305 code = GET_CODE (x);
2306 switch (code)
2308 /* Handle these cases quickly. */
2309 case CONST_INT:
2310 case CONST_DOUBLE:
2311 case CONST_VECTOR:
2312 case SYMBOL_REF:
2313 case LABEL_REF:
2314 case CONST:
2315 case PC:
2316 case CC0:
2317 case REG:
2318 case SCRATCH:
2319 return 0;
2321 case ASM_INPUT:
2322 case UNSPEC_VOLATILE:
2323 case TRAP_IF:
2324 return 1;
2326 case ASM_OPERANDS:
2327 return MEM_VOLATILE_P (x);
2329 /* Memory ref can trap unless it's a static var or a stack slot. */
2330 case MEM:
2331 if (MEM_NOTRAP_P (x))
2332 return 0;
2333 return rtx_addr_can_trap_p (XEXP (x, 0));
2335 /* Division by a non-constant might trap. */
2336 case DIV:
2337 case MOD:
2338 case UDIV:
2339 case UMOD:
2340 if (HONOR_SNANS (GET_MODE (x)))
2341 return 1;
2342 if (! CONSTANT_P (XEXP (x, 1))
2343 || (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2344 && flag_trapping_math))
2345 return 1;
2346 if (XEXP (x, 1) == const0_rtx)
2347 return 1;
2348 break;
2350 case EXPR_LIST:
2351 /* An EXPR_LIST is used to represent a function call. This
2352 certainly may trap. */
2353 return 1;
2355 case GE:
2356 case GT:
2357 case LE:
2358 case LT:
2359 case LTGT:
2360 case COMPARE:
2361 /* Some floating point comparisons may trap. */
2362 if (!flag_trapping_math)
2363 break;
2364 /* ??? There is no machine independent way to check for tests that trap
2365 when COMPARE is used, though many targets do make this distinction.
2366 For instance, sparc uses CCFPE for compares which generate exceptions
2367 and CCFP for compares which do not generate exceptions. */
2368 if (HONOR_NANS (GET_MODE (x)))
2369 return 1;
2370 /* But often the compare has some CC mode, so check operand
2371 modes as well. */
2372 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2373 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2374 return 1;
2375 break;
2377 case EQ:
2378 case NE:
2379 if (HONOR_SNANS (GET_MODE (x)))
2380 return 1;
2381 /* Often comparison is CC mode, so check operand modes. */
2382 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2383 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2384 return 1;
2385 break;
2387 case FIX:
2388 /* Conversion of floating point might trap. */
2389 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2390 return 1;
2391 break;
2393 case NEG:
2394 case ABS:
2395 /* These operations don't trap even with floating point. */
2396 break;
2398 default:
2399 /* Any floating arithmetic may trap. */
2400 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2401 && flag_trapping_math)
2402 return 1;
2405 fmt = GET_RTX_FORMAT (code);
2406 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2408 if (fmt[i] == 'e')
2410 if (may_trap_p (XEXP (x, i)))
2411 return 1;
2413 else if (fmt[i] == 'E')
2415 int j;
2416 for (j = 0; j < XVECLEN (x, i); j++)
2417 if (may_trap_p (XVECEXP (x, i, j)))
2418 return 1;
2421 return 0;
2424 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2425 i.e., an inequality. */
2428 inequality_comparisons_p (rtx x)
2430 const char *fmt;
2431 int len, i;
2432 enum rtx_code code = GET_CODE (x);
2434 switch (code)
2436 case REG:
2437 case SCRATCH:
2438 case PC:
2439 case CC0:
2440 case CONST_INT:
2441 case CONST_DOUBLE:
2442 case CONST_VECTOR:
2443 case CONST:
2444 case LABEL_REF:
2445 case SYMBOL_REF:
2446 return 0;
2448 case LT:
2449 case LTU:
2450 case GT:
2451 case GTU:
2452 case LE:
2453 case LEU:
2454 case GE:
2455 case GEU:
2456 return 1;
2458 default:
2459 break;
2462 len = GET_RTX_LENGTH (code);
2463 fmt = GET_RTX_FORMAT (code);
2465 for (i = 0; i < len; i++)
2467 if (fmt[i] == 'e')
2469 if (inequality_comparisons_p (XEXP (x, i)))
2470 return 1;
2472 else if (fmt[i] == 'E')
2474 int j;
2475 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2476 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2477 return 1;
2481 return 0;
2484 /* Replace any occurrence of FROM in X with TO. The function does
2485 not enter into CONST_DOUBLE for the replace.
2487 Note that copying is not done so X must not be shared unless all copies
2488 are to be modified. */
2491 replace_rtx (rtx x, rtx from, rtx to)
2493 int i, j;
2494 const char *fmt;
2496 /* The following prevents loops occurrence when we change MEM in
2497 CONST_DOUBLE onto the same CONST_DOUBLE. */
2498 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2499 return x;
2501 if (x == from)
2502 return to;
2504 /* Allow this function to make replacements in EXPR_LISTs. */
2505 if (x == 0)
2506 return 0;
2508 if (GET_CODE (x) == SUBREG)
2510 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2512 if (GET_CODE (new) == CONST_INT)
2514 x = simplify_subreg (GET_MODE (x), new,
2515 GET_MODE (SUBREG_REG (x)),
2516 SUBREG_BYTE (x));
2517 gcc_assert (x);
2519 else
2520 SUBREG_REG (x) = new;
2522 return x;
2524 else if (GET_CODE (x) == ZERO_EXTEND)
2526 rtx new = replace_rtx (XEXP (x, 0), from, to);
2528 if (GET_CODE (new) == CONST_INT)
2530 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2531 new, GET_MODE (XEXP (x, 0)));
2532 gcc_assert (x);
2534 else
2535 XEXP (x, 0) = new;
2537 return x;
2540 fmt = GET_RTX_FORMAT (GET_CODE (x));
2541 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2543 if (fmt[i] == 'e')
2544 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2545 else if (fmt[i] == 'E')
2546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2547 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2550 return x;
2553 /* Throughout the rtx X, replace many registers according to REG_MAP.
2554 Return the replacement for X (which may be X with altered contents).
2555 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2556 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2558 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2559 should not be mapped to pseudos or vice versa since validate_change
2560 is not called.
2562 If REPLACE_DEST is 1, replacements are also done in destinations;
2563 otherwise, only sources are replaced. */
2566 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2568 enum rtx_code code;
2569 int i;
2570 const char *fmt;
2572 if (x == 0)
2573 return x;
2575 code = GET_CODE (x);
2576 switch (code)
2578 case SCRATCH:
2579 case PC:
2580 case CC0:
2581 case CONST_INT:
2582 case CONST_DOUBLE:
2583 case CONST_VECTOR:
2584 case CONST:
2585 case SYMBOL_REF:
2586 case LABEL_REF:
2587 return x;
2589 case REG:
2590 /* Verify that the register has an entry before trying to access it. */
2591 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2593 /* SUBREGs can't be shared. Always return a copy to ensure that if
2594 this replacement occurs more than once then each instance will
2595 get distinct rtx. */
2596 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2597 return copy_rtx (reg_map[REGNO (x)]);
2598 return reg_map[REGNO (x)];
2600 return x;
2602 case SUBREG:
2603 /* Prevent making nested SUBREGs. */
2604 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2605 && reg_map[REGNO (SUBREG_REG (x))] != 0
2606 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2608 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2609 return simplify_gen_subreg (GET_MODE (x), map_val,
2610 GET_MODE (SUBREG_REG (x)),
2611 SUBREG_BYTE (x));
2613 break;
2615 case SET:
2616 if (replace_dest)
2617 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2619 else if (MEM_P (SET_DEST (x))
2620 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2621 /* Even if we are not to replace destinations, replace register if it
2622 is CONTAINED in destination (destination is memory or
2623 STRICT_LOW_PART). */
2624 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2625 reg_map, nregs, 0);
2626 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2627 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2628 break;
2630 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2631 return x;
2633 default:
2634 break;
2637 fmt = GET_RTX_FORMAT (code);
2638 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2640 if (fmt[i] == 'e')
2641 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2642 else if (fmt[i] == 'E')
2644 int j;
2645 for (j = 0; j < XVECLEN (x, i); j++)
2646 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2647 nregs, replace_dest);
2650 return x;
2653 /* Replace occurrences of the old label in *X with the new one.
2654 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2657 replace_label (rtx *x, void *data)
2659 rtx l = *x;
2660 rtx old_label = ((replace_label_data *) data)->r1;
2661 rtx new_label = ((replace_label_data *) data)->r2;
2662 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2664 if (l == NULL_RTX)
2665 return 0;
2667 if (GET_CODE (l) == SYMBOL_REF
2668 && CONSTANT_POOL_ADDRESS_P (l))
2670 rtx c = get_pool_constant (l);
2671 if (rtx_referenced_p (old_label, c))
2673 rtx new_c, new_l;
2674 replace_label_data *d = (replace_label_data *) data;
2676 /* Create a copy of constant C; replace the label inside
2677 but do not update LABEL_NUSES because uses in constant pool
2678 are not counted. */
2679 new_c = copy_rtx (c);
2680 d->update_label_nuses = false;
2681 for_each_rtx (&new_c, replace_label, data);
2682 d->update_label_nuses = update_label_nuses;
2684 /* Add the new constant NEW_C to constant pool and replace
2685 the old reference to constant by new reference. */
2686 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2687 *x = replace_rtx (l, l, new_l);
2689 return 0;
2692 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2693 field. This is not handled by for_each_rtx because it doesn't
2694 handle unprinted ('0') fields. */
2695 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2696 JUMP_LABEL (l) = new_label;
2698 if ((GET_CODE (l) == LABEL_REF
2699 || GET_CODE (l) == INSN_LIST)
2700 && XEXP (l, 0) == old_label)
2702 XEXP (l, 0) = new_label;
2703 if (update_label_nuses)
2705 ++LABEL_NUSES (new_label);
2706 --LABEL_NUSES (old_label);
2708 return 0;
2711 return 0;
2714 /* When *BODY is equal to X or X is directly referenced by *BODY
2715 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2716 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2718 static int
2719 rtx_referenced_p_1 (rtx *body, void *x)
2721 rtx y = (rtx) x;
2723 if (*body == NULL_RTX)
2724 return y == NULL_RTX;
2726 /* Return true if a label_ref *BODY refers to label Y. */
2727 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2728 return XEXP (*body, 0) == y;
2730 /* If *BODY is a reference to pool constant traverse the constant. */
2731 if (GET_CODE (*body) == SYMBOL_REF
2732 && CONSTANT_POOL_ADDRESS_P (*body))
2733 return rtx_referenced_p (y, get_pool_constant (*body));
2735 /* By default, compare the RTL expressions. */
2736 return rtx_equal_p (*body, y);
2739 /* Return true if X is referenced in BODY. */
2742 rtx_referenced_p (rtx x, rtx body)
2744 return for_each_rtx (&body, rtx_referenced_p_1, x);
2747 /* If INSN is a tablejump return true and store the label (before jump table) to
2748 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2750 bool
2751 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2753 rtx label, table;
2755 if (JUMP_P (insn)
2756 && (label = JUMP_LABEL (insn)) != NULL_RTX
2757 && (table = next_active_insn (label)) != NULL_RTX
2758 && JUMP_P (table)
2759 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2760 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2762 if (labelp)
2763 *labelp = label;
2764 if (tablep)
2765 *tablep = table;
2766 return true;
2768 return false;
2771 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2772 constant that is not in the constant pool and not in the condition
2773 of an IF_THEN_ELSE. */
2775 static int
2776 computed_jump_p_1 (rtx x)
2778 enum rtx_code code = GET_CODE (x);
2779 int i, j;
2780 const char *fmt;
2782 switch (code)
2784 case LABEL_REF:
2785 case PC:
2786 return 0;
2788 case CONST:
2789 case CONST_INT:
2790 case CONST_DOUBLE:
2791 case CONST_VECTOR:
2792 case SYMBOL_REF:
2793 case REG:
2794 return 1;
2796 case MEM:
2797 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2798 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2800 case IF_THEN_ELSE:
2801 return (computed_jump_p_1 (XEXP (x, 1))
2802 || computed_jump_p_1 (XEXP (x, 2)));
2804 default:
2805 break;
2808 fmt = GET_RTX_FORMAT (code);
2809 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2811 if (fmt[i] == 'e'
2812 && computed_jump_p_1 (XEXP (x, i)))
2813 return 1;
2815 else if (fmt[i] == 'E')
2816 for (j = 0; j < XVECLEN (x, i); j++)
2817 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2818 return 1;
2821 return 0;
2824 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2826 Tablejumps and casesi insns are not considered indirect jumps;
2827 we can recognize them by a (use (label_ref)). */
2830 computed_jump_p (rtx insn)
2832 int i;
2833 if (JUMP_P (insn))
2835 rtx pat = PATTERN (insn);
2837 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2838 return 0;
2839 else if (GET_CODE (pat) == PARALLEL)
2841 int len = XVECLEN (pat, 0);
2842 int has_use_labelref = 0;
2844 for (i = len - 1; i >= 0; i--)
2845 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2846 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2847 == LABEL_REF))
2848 has_use_labelref = 1;
2850 if (! has_use_labelref)
2851 for (i = len - 1; i >= 0; i--)
2852 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2853 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2854 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2855 return 1;
2857 else if (GET_CODE (pat) == SET
2858 && SET_DEST (pat) == pc_rtx
2859 && computed_jump_p_1 (SET_SRC (pat)))
2860 return 1;
2862 return 0;
2865 /* Traverse X via depth-first search, calling F for each
2866 sub-expression (including X itself). F is also passed the DATA.
2867 If F returns -1, do not traverse sub-expressions, but continue
2868 traversing the rest of the tree. If F ever returns any other
2869 nonzero value, stop the traversal, and return the value returned
2870 by F. Otherwise, return 0. This function does not traverse inside
2871 tree structure that contains RTX_EXPRs, or into sub-expressions
2872 whose format code is `0' since it is not known whether or not those
2873 codes are actually RTL.
2875 This routine is very general, and could (should?) be used to
2876 implement many of the other routines in this file. */
2879 for_each_rtx (rtx *x, rtx_function f, void *data)
2881 int result;
2882 int length;
2883 const char *format;
2884 int i;
2886 /* Call F on X. */
2887 result = (*f) (x, data);
2888 if (result == -1)
2889 /* Do not traverse sub-expressions. */
2890 return 0;
2891 else if (result != 0)
2892 /* Stop the traversal. */
2893 return result;
2895 if (*x == NULL_RTX)
2896 /* There are no sub-expressions. */
2897 return 0;
2899 length = GET_RTX_LENGTH (GET_CODE (*x));
2900 format = GET_RTX_FORMAT (GET_CODE (*x));
2902 for (i = 0; i < length; ++i)
2904 switch (format[i])
2906 case 'e':
2907 result = for_each_rtx (&XEXP (*x, i), f, data);
2908 if (result != 0)
2909 return result;
2910 break;
2912 case 'V':
2913 case 'E':
2914 if (XVEC (*x, i) != 0)
2916 int j;
2917 for (j = 0; j < XVECLEN (*x, i); ++j)
2919 result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
2920 if (result != 0)
2921 return result;
2924 break;
2926 default:
2927 /* Nothing to do. */
2928 break;
2933 return 0;
2936 /* Searches X for any reference to REGNO, returning the rtx of the
2937 reference found if any. Otherwise, returns NULL_RTX. */
2940 regno_use_in (unsigned int regno, rtx x)
2942 const char *fmt;
2943 int i, j;
2944 rtx tem;
2946 if (REG_P (x) && REGNO (x) == regno)
2947 return x;
2949 fmt = GET_RTX_FORMAT (GET_CODE (x));
2950 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2952 if (fmt[i] == 'e')
2954 if ((tem = regno_use_in (regno, XEXP (x, i))))
2955 return tem;
2957 else if (fmt[i] == 'E')
2958 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2959 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2960 return tem;
2963 return NULL_RTX;
2966 /* Return a value indicating whether OP, an operand of a commutative
2967 operation, is preferred as the first or second operand. The higher
2968 the value, the stronger the preference for being the first operand.
2969 We use negative values to indicate a preference for the first operand
2970 and positive values for the second operand. */
2973 commutative_operand_precedence (rtx op)
2975 enum rtx_code code = GET_CODE (op);
2977 /* Constants always come the second operand. Prefer "nice" constants. */
2978 if (code == CONST_INT)
2979 return -7;
2980 if (code == CONST_DOUBLE)
2981 return -6;
2982 op = avoid_constant_pool_reference (op);
2984 switch (GET_RTX_CLASS (code))
2986 case RTX_CONST_OBJ:
2987 if (code == CONST_INT)
2988 return -5;
2989 if (code == CONST_DOUBLE)
2990 return -4;
2991 return -3;
2993 case RTX_EXTRA:
2994 /* SUBREGs of objects should come second. */
2995 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2996 return -2;
2998 if (!CONSTANT_P (op))
2999 return 0;
3000 else
3001 /* As for RTX_CONST_OBJ. */
3002 return -3;
3004 case RTX_OBJ:
3005 /* Complex expressions should be the first, so decrease priority
3006 of objects. */
3007 return -1;
3009 case RTX_COMM_ARITH:
3010 /* Prefer operands that are themselves commutative to be first.
3011 This helps to make things linear. In particular,
3012 (and (and (reg) (reg)) (not (reg))) is canonical. */
3013 return 4;
3015 case RTX_BIN_ARITH:
3016 /* If only one operand is a binary expression, it will be the first
3017 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3018 is canonical, although it will usually be further simplified. */
3019 return 2;
3021 case RTX_UNARY:
3022 /* Then prefer NEG and NOT. */
3023 if (code == NEG || code == NOT)
3024 return 1;
3026 default:
3027 return 0;
3031 /* Return 1 iff it is necessary to swap operands of commutative operation
3032 in order to canonicalize expression. */
3035 swap_commutative_operands_p (rtx x, rtx y)
3037 return (commutative_operand_precedence (x)
3038 < commutative_operand_precedence (y));
3041 /* Return 1 if X is an autoincrement side effect and the register is
3042 not the stack pointer. */
3044 auto_inc_p (rtx x)
3046 switch (GET_CODE (x))
3048 case PRE_INC:
3049 case POST_INC:
3050 case PRE_DEC:
3051 case POST_DEC:
3052 case PRE_MODIFY:
3053 case POST_MODIFY:
3054 /* There are no REG_INC notes for SP. */
3055 if (XEXP (x, 0) != stack_pointer_rtx)
3056 return 1;
3057 default:
3058 break;
3060 return 0;
3063 /* Return 1 if the sequence of instructions beginning with FROM and up
3064 to and including TO is safe to move. If NEW_TO is non-NULL, and
3065 the sequence is not already safe to move, but can be easily
3066 extended to a sequence which is safe, then NEW_TO will point to the
3067 end of the extended sequence.
3069 For now, this function only checks that the region contains whole
3070 exception regions, but it could be extended to check additional
3071 conditions as well. */
3074 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
3076 int eh_region_count = 0;
3077 int past_to_p = 0;
3078 rtx r = from;
3080 /* By default, assume the end of the region will be what was
3081 suggested. */
3082 if (new_to)
3083 *new_to = to;
3085 while (r)
3087 if (NOTE_P (r))
3089 switch (NOTE_LINE_NUMBER (r))
3091 case NOTE_INSN_EH_REGION_BEG:
3092 ++eh_region_count;
3093 break;
3095 case NOTE_INSN_EH_REGION_END:
3096 if (eh_region_count == 0)
3097 /* This sequence of instructions contains the end of
3098 an exception region, but not he beginning. Moving
3099 it will cause chaos. */
3100 return 0;
3102 --eh_region_count;
3103 break;
3105 default:
3106 break;
3109 else if (past_to_p)
3110 /* If we've passed TO, and we see a non-note instruction, we
3111 can't extend the sequence to a movable sequence. */
3112 return 0;
3114 if (r == to)
3116 if (!new_to)
3117 /* It's OK to move the sequence if there were matched sets of
3118 exception region notes. */
3119 return eh_region_count == 0;
3121 past_to_p = 1;
3124 /* It's OK to move the sequence if there were matched sets of
3125 exception region notes. */
3126 if (past_to_p && eh_region_count == 0)
3128 *new_to = r;
3129 return 1;
3132 /* Go to the next instruction. */
3133 r = NEXT_INSN (r);
3136 return 0;
3139 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3141 loc_mentioned_in_p (rtx *loc, rtx in)
3143 enum rtx_code code = GET_CODE (in);
3144 const char *fmt = GET_RTX_FORMAT (code);
3145 int i, j;
3147 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3149 if (loc == &in->u.fld[i].rt_rtx)
3150 return 1;
3151 if (fmt[i] == 'e')
3153 if (loc_mentioned_in_p (loc, XEXP (in, i)))
3154 return 1;
3156 else if (fmt[i] == 'E')
3157 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3158 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3159 return 1;
3161 return 0;
3164 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3165 and SUBREG_BYTE, return the bit offset where the subreg begins
3166 (counting from the least significant bit of the operand). */
3168 unsigned int
3169 subreg_lsb_1 (enum machine_mode outer_mode,
3170 enum machine_mode inner_mode,
3171 unsigned int subreg_byte)
3173 unsigned int bitpos;
3174 unsigned int byte;
3175 unsigned int word;
3177 /* A paradoxical subreg begins at bit position 0. */
3178 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3179 return 0;
3181 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3182 /* If the subreg crosses a word boundary ensure that
3183 it also begins and ends on a word boundary. */
3184 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3185 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3186 && (subreg_byte % UNITS_PER_WORD
3187 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3189 if (WORDS_BIG_ENDIAN)
3190 word = (GET_MODE_SIZE (inner_mode)
3191 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3192 else
3193 word = subreg_byte / UNITS_PER_WORD;
3194 bitpos = word * BITS_PER_WORD;
3196 if (BYTES_BIG_ENDIAN)
3197 byte = (GET_MODE_SIZE (inner_mode)
3198 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3199 else
3200 byte = subreg_byte % UNITS_PER_WORD;
3201 bitpos += byte * BITS_PER_UNIT;
3203 return bitpos;
3206 /* Given a subreg X, return the bit offset where the subreg begins
3207 (counting from the least significant bit of the reg). */
3209 unsigned int
3210 subreg_lsb (rtx x)
3212 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3213 SUBREG_BYTE (x));
3216 /* This function returns the regno offset of a subreg expression.
3217 xregno - A regno of an inner hard subreg_reg (or what will become one).
3218 xmode - The mode of xregno.
3219 offset - The byte offset.
3220 ymode - The mode of a top level SUBREG (or what may become one).
3221 RETURN - The regno offset which would be used. */
3222 unsigned int
3223 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3224 unsigned int offset, enum machine_mode ymode)
3226 int nregs_xmode, nregs_ymode;
3227 int mode_multiple, nregs_multiple;
3228 int y_offset;
3230 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3232 nregs_xmode = hard_regno_nregs[xregno][xmode];
3233 nregs_ymode = hard_regno_nregs[xregno][ymode];
3235 /* If this is a big endian paradoxical subreg, which uses more actual
3236 hard registers than the original register, we must return a negative
3237 offset so that we find the proper highpart of the register. */
3238 if (offset == 0
3239 && nregs_ymode > nregs_xmode
3240 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3241 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3242 return nregs_xmode - nregs_ymode;
3244 if (offset == 0 || nregs_xmode == nregs_ymode)
3245 return 0;
3247 /* size of ymode must not be greater than the size of xmode. */
3248 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3249 gcc_assert (mode_multiple != 0);
3251 y_offset = offset / GET_MODE_SIZE (ymode);
3252 nregs_multiple = nregs_xmode / nregs_ymode;
3253 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3256 /* This function returns true when the offset is representable via
3257 subreg_offset in the given regno.
3258 xregno - A regno of an inner hard subreg_reg (or what will become one).
3259 xmode - The mode of xregno.
3260 offset - The byte offset.
3261 ymode - The mode of a top level SUBREG (or what may become one).
3262 RETURN - The regno offset which would be used. */
3263 bool
3264 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3265 unsigned int offset, enum machine_mode ymode)
3267 int nregs_xmode, nregs_ymode;
3268 int mode_multiple, nregs_multiple;
3269 int y_offset;
3271 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3273 nregs_xmode = hard_regno_nregs[xregno][xmode];
3274 nregs_ymode = hard_regno_nregs[xregno][ymode];
3276 /* Paradoxical subregs are always valid. */
3277 if (offset == 0
3278 && nregs_ymode > nregs_xmode
3279 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3280 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3281 return true;
3283 /* Lowpart subregs are always valid. */
3284 if (offset == subreg_lowpart_offset (ymode, xmode))
3285 return true;
3287 /* This should always pass, otherwise we don't know how to verify the
3288 constraint. These conditions may be relaxed but subreg_offset would
3289 need to be redesigned. */
3290 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3291 gcc_assert ((GET_MODE_SIZE (ymode) % nregs_ymode) == 0);
3292 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3294 /* The XMODE value can be seen as a vector of NREGS_XMODE
3295 values. The subreg must represent a lowpart of given field.
3296 Compute what field it is. */
3297 offset -= subreg_lowpart_offset (ymode,
3298 mode_for_size (GET_MODE_BITSIZE (xmode)
3299 / nregs_xmode,
3300 MODE_INT, 0));
3302 /* size of ymode must not be greater than the size of xmode. */
3303 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3304 gcc_assert (mode_multiple != 0);
3306 y_offset = offset / GET_MODE_SIZE (ymode);
3307 nregs_multiple = nregs_xmode / nregs_ymode;
3309 gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3310 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3312 return (!(y_offset % (mode_multiple / nregs_multiple)));
3315 /* Return the final regno that a subreg expression refers to. */
3316 unsigned int
3317 subreg_regno (rtx x)
3319 unsigned int ret;
3320 rtx subreg = SUBREG_REG (x);
3321 int regno = REGNO (subreg);
3323 ret = regno + subreg_regno_offset (regno,
3324 GET_MODE (subreg),
3325 SUBREG_BYTE (x),
3326 GET_MODE (x));
3327 return ret;
3330 struct parms_set_data
3332 int nregs;
3333 HARD_REG_SET regs;
3336 /* Helper function for noticing stores to parameter registers. */
3337 static void
3338 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3340 struct parms_set_data *d = data;
3341 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3342 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3344 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3345 d->nregs--;
3349 /* Look backward for first parameter to be loaded.
3350 Do not skip BOUNDARY. */
3352 find_first_parameter_load (rtx call_insn, rtx boundary)
3354 struct parms_set_data parm;
3355 rtx p, before;
3357 /* Since different machines initialize their parameter registers
3358 in different orders, assume nothing. Collect the set of all
3359 parameter registers. */
3360 CLEAR_HARD_REG_SET (parm.regs);
3361 parm.nregs = 0;
3362 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3363 if (GET_CODE (XEXP (p, 0)) == USE
3364 && REG_P (XEXP (XEXP (p, 0), 0)))
3366 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3368 /* We only care about registers which can hold function
3369 arguments. */
3370 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3371 continue;
3373 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3374 parm.nregs++;
3376 before = call_insn;
3378 /* Search backward for the first set of a register in this set. */
3379 while (parm.nregs && before != boundary)
3381 before = PREV_INSN (before);
3383 /* It is possible that some loads got CSEed from one call to
3384 another. Stop in that case. */
3385 if (CALL_P (before))
3386 break;
3388 /* Our caller needs either ensure that we will find all sets
3389 (in case code has not been optimized yet), or take care
3390 for possible labels in a way by setting boundary to preceding
3391 CODE_LABEL. */
3392 if (LABEL_P (before))
3394 gcc_assert (before == boundary);
3395 break;
3398 if (INSN_P (before))
3399 note_stores (PATTERN (before), parms_set, &parm);
3401 return before;
3404 /* Return true if we should avoid inserting code between INSN and preceding
3405 call instruction. */
3407 bool
3408 keep_with_call_p (rtx insn)
3410 rtx set;
3412 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3414 if (REG_P (SET_DEST (set))
3415 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3416 && fixed_regs[REGNO (SET_DEST (set))]
3417 && general_operand (SET_SRC (set), VOIDmode))
3418 return true;
3419 if (REG_P (SET_SRC (set))
3420 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3421 && REG_P (SET_DEST (set))
3422 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3423 return true;
3424 /* There may be a stack pop just after the call and before the store
3425 of the return register. Search for the actual store when deciding
3426 if we can break or not. */
3427 if (SET_DEST (set) == stack_pointer_rtx)
3429 rtx i2 = next_nonnote_insn (insn);
3430 if (i2 && keep_with_call_p (i2))
3431 return true;
3434 return false;
3437 /* Return true when store to register X can be hoisted to the place
3438 with LIVE registers (can be NULL). Value VAL contains destination
3439 whose value will be used. */
3441 static bool
3442 hoist_test_store (rtx x, rtx val, regset live)
3444 if (GET_CODE (x) == SCRATCH)
3445 return true;
3447 if (rtx_equal_p (x, val))
3448 return true;
3450 /* Allow subreg of X in case it is not writing just part of multireg pseudo.
3451 Then we would need to update all users to care hoisting the store too.
3452 Caller may represent that by specifying whole subreg as val. */
3454 if (GET_CODE (x) == SUBREG && rtx_equal_p (SUBREG_REG (x), val))
3456 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
3457 && GET_MODE_BITSIZE (GET_MODE (x)) <
3458 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
3459 return false;
3460 return true;
3462 if (GET_CODE (x) == SUBREG)
3463 x = SUBREG_REG (x);
3465 /* Anything except register store is not hoistable. This includes the
3466 partial stores to registers. */
3468 if (!REG_P (x))
3469 return false;
3471 /* Pseudo registers can be always replaced by another pseudo to avoid
3472 the side effect, for hard register we must ensure that they are dead.
3473 Eventually we may want to add code to try turn pseudos to hards, but it
3474 is unlikely useful. */
3476 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3478 int regno = REGNO (x);
3479 int n = hard_regno_nregs[regno][GET_MODE (x)];
3481 if (!live)
3482 return false;
3483 if (REGNO_REG_SET_P (live, regno))
3484 return false;
3485 while (--n > 0)
3486 if (REGNO_REG_SET_P (live, regno + n))
3487 return false;
3489 return true;
3493 /* Return true if INSN can be hoisted to place with LIVE hard registers
3494 (LIVE can be NULL when unknown). VAL is expected to be stored by the insn
3495 and used by the hoisting pass. */
3497 bool
3498 can_hoist_insn_p (rtx insn, rtx val, regset live)
3500 rtx pat = PATTERN (insn);
3501 int i;
3503 /* It probably does not worth the complexity to handle multiple
3504 set stores. */
3505 if (!single_set (insn))
3506 return false;
3507 /* We can move CALL_INSN, but we need to check that all caller clobbered
3508 regs are dead. */
3509 if (CALL_P (insn))
3510 return false;
3511 /* In future we will handle hoisting of libcall sequences, but
3512 give up for now. */
3513 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
3514 return false;
3515 switch (GET_CODE (pat))
3517 case SET:
3518 if (!hoist_test_store (SET_DEST (pat), val, live))
3519 return false;
3520 break;
3521 case USE:
3522 /* USES do have sick semantics, so do not move them. */
3523 return false;
3524 break;
3525 case CLOBBER:
3526 if (!hoist_test_store (XEXP (pat, 0), val, live))
3527 return false;
3528 break;
3529 case PARALLEL:
3530 for (i = 0; i < XVECLEN (pat, 0); i++)
3532 rtx x = XVECEXP (pat, 0, i);
3533 switch (GET_CODE (x))
3535 case SET:
3536 if (!hoist_test_store (SET_DEST (x), val, live))
3537 return false;
3538 break;
3539 case USE:
3540 /* We need to fix callers to really ensure availability
3541 of all values insn uses, but for now it is safe to prohibit
3542 hoisting of any insn having such a hidden uses. */
3543 return false;
3544 break;
3545 case CLOBBER:
3546 if (!hoist_test_store (SET_DEST (x), val, live))
3547 return false;
3548 break;
3549 default:
3550 break;
3553 break;
3554 default:
3555 gcc_unreachable ();
3557 return true;
3560 /* Update store after hoisting - replace all stores to pseudo registers
3561 by new ones to avoid clobbering of values except for store to VAL that will
3562 be updated to NEW. */
3564 static void
3565 hoist_update_store (rtx insn, rtx *xp, rtx val, rtx new)
3567 rtx x = *xp;
3569 if (GET_CODE (x) == SCRATCH)
3570 return;
3572 if (GET_CODE (x) == SUBREG && SUBREG_REG (x) == val)
3573 validate_change (insn, xp,
3574 simplify_gen_subreg (GET_MODE (x), new, GET_MODE (new),
3575 SUBREG_BYTE (x)), 1);
3576 if (rtx_equal_p (x, val))
3578 validate_change (insn, xp, new, 1);
3579 return;
3581 if (GET_CODE (x) == SUBREG)
3583 xp = &SUBREG_REG (x);
3584 x = *xp;
3587 gcc_assert (REG_P (x));
3589 /* We've verified that hard registers are dead, so we may keep the side
3590 effect. Otherwise replace it by new pseudo. */
3591 if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
3592 validate_change (insn, xp, gen_reg_rtx (GET_MODE (x)), 1);
3593 REG_NOTES (insn)
3594 = alloc_EXPR_LIST (REG_UNUSED, *xp, REG_NOTES (insn));
3597 /* Create a copy of INSN after AFTER replacing store of VAL to NEW
3598 and each other side effect to pseudo register by new pseudo register. */
3601 hoist_insn_after (rtx insn, rtx after, rtx val, rtx new)
3603 rtx pat;
3604 int i;
3605 rtx note;
3606 int applied;
3608 insn = emit_copy_of_insn_after (insn, after);
3609 pat = PATTERN (insn);
3611 /* Remove REG_UNUSED notes as we will re-emit them. */
3612 while ((note = find_reg_note (insn, REG_UNUSED, NULL_RTX)))
3613 remove_note (insn, note);
3615 /* To get this working callers must ensure to move everything referenced
3616 by REG_EQUAL/REG_EQUIV notes too. Lets remove them, it is probably
3617 easier. */
3618 while ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX)))
3619 remove_note (insn, note);
3620 while ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)))
3621 remove_note (insn, note);
3623 /* Remove REG_DEAD notes as they might not be valid anymore in case
3624 we create redundancy. */
3625 while ((note = find_reg_note (insn, REG_DEAD, NULL_RTX)))
3626 remove_note (insn, note);
3627 switch (GET_CODE (pat))
3629 case SET:
3630 hoist_update_store (insn, &SET_DEST (pat), val, new);
3631 break;
3632 case USE:
3633 break;
3634 case CLOBBER:
3635 hoist_update_store (insn, &XEXP (pat, 0), val, new);
3636 break;
3637 case PARALLEL:
3638 for (i = 0; i < XVECLEN (pat, 0); i++)
3640 rtx x = XVECEXP (pat, 0, i);
3641 switch (GET_CODE (x))
3643 case SET:
3644 hoist_update_store (insn, &SET_DEST (x), val, new);
3645 break;
3646 case USE:
3647 break;
3648 case CLOBBER:
3649 hoist_update_store (insn, &SET_DEST (x), val, new);
3650 break;
3651 default:
3652 break;
3655 break;
3656 default:
3657 gcc_unreachable ();
3659 applied = apply_change_group ();
3660 gcc_assert (applied);
3662 return insn;
3666 hoist_insn_to_edge (rtx insn, edge e, rtx val, rtx new)
3668 rtx new_insn;
3670 /* We cannot insert instructions on an abnormal critical edge.
3671 It will be easier to find the culprit if we die now. */
3672 gcc_assert (!(e->flags & EDGE_ABNORMAL) || !EDGE_CRITICAL_P (e));
3674 /* Do not use emit_insn_on_edge as we want to preserve notes and similar
3675 stuff. We also emit CALL_INSNS and firends. */
3676 if (e->insns.r == NULL_RTX)
3678 start_sequence ();
3679 emit_note (NOTE_INSN_DELETED);
3681 else
3682 push_to_sequence (e->insns.r);
3684 new_insn = hoist_insn_after (insn, get_last_insn (), val, new);
3686 e->insns.r = get_insns ();
3687 end_sequence ();
3688 return new_insn;
3691 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3692 to non-complex jumps. That is, direct unconditional, conditional,
3693 and tablejumps, but not computed jumps or returns. It also does
3694 not apply to the fallthru case of a conditional jump. */
3696 bool
3697 label_is_jump_target_p (rtx label, rtx jump_insn)
3699 rtx tmp = JUMP_LABEL (jump_insn);
3701 if (label == tmp)
3702 return true;
3704 if (tablejump_p (jump_insn, NULL, &tmp))
3706 rtvec vec = XVEC (PATTERN (tmp),
3707 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3708 int i, veclen = GET_NUM_ELEM (vec);
3710 for (i = 0; i < veclen; ++i)
3711 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3712 return true;
3715 return false;
3719 /* Return an estimate of the cost of computing rtx X.
3720 One use is in cse, to decide which expression to keep in the hash table.
3721 Another is in rtl generation, to pick the cheapest way to multiply.
3722 Other uses like the latter are expected in the future. */
3725 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3727 int i, j;
3728 enum rtx_code code;
3729 const char *fmt;
3730 int total;
3732 if (x == 0)
3733 return 0;
3735 /* Compute the default costs of certain things.
3736 Note that targetm.rtx_costs can override the defaults. */
3738 code = GET_CODE (x);
3739 switch (code)
3741 case MULT:
3742 total = COSTS_N_INSNS (5);
3743 break;
3744 case DIV:
3745 case UDIV:
3746 case MOD:
3747 case UMOD:
3748 total = COSTS_N_INSNS (7);
3749 break;
3750 case USE:
3751 /* Used in loop.c and combine.c as a marker. */
3752 total = 0;
3753 break;
3754 default:
3755 total = COSTS_N_INSNS (1);
3758 switch (code)
3760 case REG:
3761 return 0;
3763 case SUBREG:
3764 /* If we can't tie these modes, make this expensive. The larger
3765 the mode, the more expensive it is. */
3766 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3767 return COSTS_N_INSNS (2
3768 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3769 break;
3771 default:
3772 if (targetm.rtx_costs (x, code, outer_code, &total))
3773 return total;
3774 break;
3777 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3778 which is already in total. */
3780 fmt = GET_RTX_FORMAT (code);
3781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3782 if (fmt[i] == 'e')
3783 total += rtx_cost (XEXP (x, i), code);
3784 else if (fmt[i] == 'E')
3785 for (j = 0; j < XVECLEN (x, i); j++)
3786 total += rtx_cost (XVECEXP (x, i, j), code);
3788 return total;
3791 /* Return cost of address expression X.
3792 Expect that X is properly formed address reference. */
3795 address_cost (rtx x, enum machine_mode mode)
3797 /* We may be asked for cost of various unusual addresses, such as operands
3798 of push instruction. It is not worthwhile to complicate writing
3799 of the target hook by such cases. */
3801 if (!memory_address_p (mode, x))
3802 return 1000;
3804 return targetm.address_cost (x);
3807 /* If the target doesn't override, compute the cost as with arithmetic. */
3810 default_address_cost (rtx x)
3812 return rtx_cost (x, MEM);
3816 unsigned HOST_WIDE_INT
3817 nonzero_bits (rtx x, enum machine_mode mode)
3819 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3822 unsigned int
3823 num_sign_bit_copies (rtx x, enum machine_mode mode)
3825 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3828 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3829 It avoids exponential behavior in nonzero_bits1 when X has
3830 identical subexpressions on the first or the second level. */
3832 static unsigned HOST_WIDE_INT
3833 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3834 enum machine_mode known_mode,
3835 unsigned HOST_WIDE_INT known_ret)
3837 if (x == known_x && mode == known_mode)
3838 return known_ret;
3840 /* Try to find identical subexpressions. If found call
3841 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3842 precomputed value for the subexpression as KNOWN_RET. */
3844 if (ARITHMETIC_P (x))
3846 rtx x0 = XEXP (x, 0);
3847 rtx x1 = XEXP (x, 1);
3849 /* Check the first level. */
3850 if (x0 == x1)
3851 return nonzero_bits1 (x, mode, x0, mode,
3852 cached_nonzero_bits (x0, mode, known_x,
3853 known_mode, known_ret));
3855 /* Check the second level. */
3856 if (ARITHMETIC_P (x0)
3857 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3858 return nonzero_bits1 (x, mode, x1, mode,
3859 cached_nonzero_bits (x1, mode, known_x,
3860 known_mode, known_ret));
3862 if (ARITHMETIC_P (x1)
3863 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3864 return nonzero_bits1 (x, mode, x0, mode,
3865 cached_nonzero_bits (x0, mode, known_x,
3866 known_mode, known_ret));
3869 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3872 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3873 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3874 is less useful. We can't allow both, because that results in exponential
3875 run time recursion. There is a nullstone testcase that triggered
3876 this. This macro avoids accidental uses of num_sign_bit_copies. */
3877 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3879 /* Given an expression, X, compute which bits in X can be nonzero.
3880 We don't care about bits outside of those defined in MODE.
3882 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3883 an arithmetic operation, we can do better. */
3885 static unsigned HOST_WIDE_INT
3886 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3887 enum machine_mode known_mode,
3888 unsigned HOST_WIDE_INT known_ret)
3890 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3891 unsigned HOST_WIDE_INT inner_nz;
3892 enum rtx_code code;
3893 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3895 /* For floating-point values, assume all bits are needed. */
3896 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3897 return nonzero;
3899 /* If X is wider than MODE, use its mode instead. */
3900 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3902 mode = GET_MODE (x);
3903 nonzero = GET_MODE_MASK (mode);
3904 mode_width = GET_MODE_BITSIZE (mode);
3907 if (mode_width > HOST_BITS_PER_WIDE_INT)
3908 /* Our only callers in this case look for single bit values. So
3909 just return the mode mask. Those tests will then be false. */
3910 return nonzero;
3912 #ifndef WORD_REGISTER_OPERATIONS
3913 /* If MODE is wider than X, but both are a single word for both the host
3914 and target machines, we can compute this from which bits of the
3915 object might be nonzero in its own mode, taking into account the fact
3916 that on many CISC machines, accessing an object in a wider mode
3917 causes the high-order bits to become undefined. So they are
3918 not known to be zero. */
3920 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3921 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3922 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3923 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3925 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3926 known_x, known_mode, known_ret);
3927 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3928 return nonzero;
3930 #endif
3932 code = GET_CODE (x);
3933 switch (code)
3935 case REG:
3936 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3937 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3938 all the bits above ptr_mode are known to be zero. */
3939 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3940 && REG_POINTER (x))
3941 nonzero &= GET_MODE_MASK (ptr_mode);
3942 #endif
3944 /* Include declared information about alignment of pointers. */
3945 /* ??? We don't properly preserve REG_POINTER changes across
3946 pointer-to-integer casts, so we can't trust it except for
3947 things that we know must be pointers. See execute/960116-1.c. */
3948 if ((x == stack_pointer_rtx
3949 || x == frame_pointer_rtx
3950 || x == arg_pointer_rtx)
3951 && REGNO_POINTER_ALIGN (REGNO (x)))
3953 unsigned HOST_WIDE_INT alignment
3954 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3956 #ifdef PUSH_ROUNDING
3957 /* If PUSH_ROUNDING is defined, it is possible for the
3958 stack to be momentarily aligned only to that amount,
3959 so we pick the least alignment. */
3960 if (x == stack_pointer_rtx && PUSH_ARGS)
3961 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3962 alignment);
3963 #endif
3965 nonzero &= ~(alignment - 1);
3969 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3970 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3971 known_mode, known_ret,
3972 &nonzero_for_hook);
3974 if (new)
3975 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3976 known_mode, known_ret);
3978 return nonzero_for_hook;
3981 case CONST_INT:
3982 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3983 /* If X is negative in MODE, sign-extend the value. */
3984 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3985 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3986 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3987 #endif
3989 return INTVAL (x);
3991 case MEM:
3992 #ifdef LOAD_EXTEND_OP
3993 /* In many, if not most, RISC machines, reading a byte from memory
3994 zeros the rest of the register. Noticing that fact saves a lot
3995 of extra zero-extends. */
3996 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3997 nonzero &= GET_MODE_MASK (GET_MODE (x));
3998 #endif
3999 break;
4001 case EQ: case NE:
4002 case UNEQ: case LTGT:
4003 case GT: case GTU: case UNGT:
4004 case LT: case LTU: case UNLT:
4005 case GE: case GEU: case UNGE:
4006 case LE: case LEU: case UNLE:
4007 case UNORDERED: case ORDERED:
4009 /* If this produces an integer result, we know which bits are set.
4010 Code here used to clear bits outside the mode of X, but that is
4011 now done above. */
4013 if (GET_MODE_CLASS (mode) == MODE_INT
4014 && mode_width <= HOST_BITS_PER_WIDE_INT)
4015 nonzero = STORE_FLAG_VALUE;
4016 break;
4018 case NEG:
4019 #if 0
4020 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4021 and num_sign_bit_copies. */
4022 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4023 == GET_MODE_BITSIZE (GET_MODE (x)))
4024 nonzero = 1;
4025 #endif
4027 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
4028 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4029 break;
4031 case ABS:
4032 #if 0
4033 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4034 and num_sign_bit_copies. */
4035 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4036 == GET_MODE_BITSIZE (GET_MODE (x)))
4037 nonzero = 1;
4038 #endif
4039 break;
4041 case TRUNCATE:
4042 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4043 known_x, known_mode, known_ret)
4044 & GET_MODE_MASK (mode));
4045 break;
4047 case ZERO_EXTEND:
4048 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4049 known_x, known_mode, known_ret);
4050 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4051 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4052 break;
4054 case SIGN_EXTEND:
4055 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4056 Otherwise, show all the bits in the outer mode but not the inner
4057 may be nonzero. */
4058 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4059 known_x, known_mode, known_ret);
4060 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4062 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4063 if (inner_nz
4064 & (((HOST_WIDE_INT) 1
4065 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
4066 inner_nz |= (GET_MODE_MASK (mode)
4067 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4070 nonzero &= inner_nz;
4071 break;
4073 case AND:
4074 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4075 known_x, known_mode, known_ret)
4076 & cached_nonzero_bits (XEXP (x, 1), mode,
4077 known_x, known_mode, known_ret);
4078 break;
4080 case XOR: case IOR:
4081 case UMIN: case UMAX: case SMIN: case SMAX:
4083 unsigned HOST_WIDE_INT nonzero0 =
4084 cached_nonzero_bits (XEXP (x, 0), mode,
4085 known_x, known_mode, known_ret);
4087 /* Don't call nonzero_bits for the second time if it cannot change
4088 anything. */
4089 if ((nonzero & nonzero0) != nonzero)
4090 nonzero &= nonzero0
4091 | cached_nonzero_bits (XEXP (x, 1), mode,
4092 known_x, known_mode, known_ret);
4094 break;
4096 case PLUS: case MINUS:
4097 case MULT:
4098 case DIV: case UDIV:
4099 case MOD: case UMOD:
4100 /* We can apply the rules of arithmetic to compute the number of
4101 high- and low-order zero bits of these operations. We start by
4102 computing the width (position of the highest-order nonzero bit)
4103 and the number of low-order zero bits for each value. */
4105 unsigned HOST_WIDE_INT nz0 =
4106 cached_nonzero_bits (XEXP (x, 0), mode,
4107 known_x, known_mode, known_ret);
4108 unsigned HOST_WIDE_INT nz1 =
4109 cached_nonzero_bits (XEXP (x, 1), mode,
4110 known_x, known_mode, known_ret);
4111 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
4112 int width0 = floor_log2 (nz0) + 1;
4113 int width1 = floor_log2 (nz1) + 1;
4114 int low0 = floor_log2 (nz0 & -nz0);
4115 int low1 = floor_log2 (nz1 & -nz1);
4116 HOST_WIDE_INT op0_maybe_minusp
4117 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
4118 HOST_WIDE_INT op1_maybe_minusp
4119 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
4120 unsigned int result_width = mode_width;
4121 int result_low = 0;
4123 switch (code)
4125 case PLUS:
4126 result_width = MAX (width0, width1) + 1;
4127 result_low = MIN (low0, low1);
4128 break;
4129 case MINUS:
4130 result_low = MIN (low0, low1);
4131 break;
4132 case MULT:
4133 result_width = width0 + width1;
4134 result_low = low0 + low1;
4135 break;
4136 case DIV:
4137 if (width1 == 0)
4138 break;
4139 if (! op0_maybe_minusp && ! op1_maybe_minusp)
4140 result_width = width0;
4141 break;
4142 case UDIV:
4143 if (width1 == 0)
4144 break;
4145 result_width = width0;
4146 break;
4147 case MOD:
4148 if (width1 == 0)
4149 break;
4150 if (! op0_maybe_minusp && ! op1_maybe_minusp)
4151 result_width = MIN (width0, width1);
4152 result_low = MIN (low0, low1);
4153 break;
4154 case UMOD:
4155 if (width1 == 0)
4156 break;
4157 result_width = MIN (width0, width1);
4158 result_low = MIN (low0, low1);
4159 break;
4160 default:
4161 gcc_unreachable ();
4164 if (result_width < mode_width)
4165 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
4167 if (result_low > 0)
4168 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
4170 #ifdef POINTERS_EXTEND_UNSIGNED
4171 /* If pointers extend unsigned and this is an addition or subtraction
4172 to a pointer in Pmode, all the bits above ptr_mode are known to be
4173 zero. */
4174 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
4175 && (code == PLUS || code == MINUS)
4176 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4177 nonzero &= GET_MODE_MASK (ptr_mode);
4178 #endif
4180 break;
4182 case ZERO_EXTRACT:
4183 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4184 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4185 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4186 break;
4188 case SUBREG:
4189 /* If this is a SUBREG formed for a promoted variable that has
4190 been zero-extended, we know that at least the high-order bits
4191 are zero, though others might be too. */
4193 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4194 nonzero = GET_MODE_MASK (GET_MODE (x))
4195 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4196 known_x, known_mode, known_ret);
4198 /* If the inner mode is a single word for both the host and target
4199 machines, we can compute this from which bits of the inner
4200 object might be nonzero. */
4201 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4202 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4203 <= HOST_BITS_PER_WIDE_INT))
4205 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4206 known_x, known_mode, known_ret);
4208 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4209 /* If this is a typical RISC machine, we only have to worry
4210 about the way loads are extended. */
4211 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4212 ? (((nonzero
4213 & (((unsigned HOST_WIDE_INT) 1
4214 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4215 != 0))
4216 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4217 || !MEM_P (SUBREG_REG (x)))
4218 #endif
4220 /* On many CISC machines, accessing an object in a wider mode
4221 causes the high-order bits to become undefined. So they are
4222 not known to be zero. */
4223 if (GET_MODE_SIZE (GET_MODE (x))
4224 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4225 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4226 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4229 break;
4231 case ASHIFTRT:
4232 case LSHIFTRT:
4233 case ASHIFT:
4234 case ROTATE:
4235 /* The nonzero bits are in two classes: any bits within MODE
4236 that aren't in GET_MODE (x) are always significant. The rest of the
4237 nonzero bits are those that are significant in the operand of
4238 the shift when shifted the appropriate number of bits. This
4239 shows that high-order bits are cleared by the right shift and
4240 low-order bits by left shifts. */
4241 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4242 && INTVAL (XEXP (x, 1)) >= 0
4243 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4245 enum machine_mode inner_mode = GET_MODE (x);
4246 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4247 int count = INTVAL (XEXP (x, 1));
4248 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4249 unsigned HOST_WIDE_INT op_nonzero =
4250 cached_nonzero_bits (XEXP (x, 0), mode,
4251 known_x, known_mode, known_ret);
4252 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4253 unsigned HOST_WIDE_INT outer = 0;
4255 if (mode_width > width)
4256 outer = (op_nonzero & nonzero & ~mode_mask);
4258 if (code == LSHIFTRT)
4259 inner >>= count;
4260 else if (code == ASHIFTRT)
4262 inner >>= count;
4264 /* If the sign bit may have been nonzero before the shift, we
4265 need to mark all the places it could have been copied to
4266 by the shift as possibly nonzero. */
4267 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4268 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4270 else if (code == ASHIFT)
4271 inner <<= count;
4272 else
4273 inner = ((inner << (count % width)
4274 | (inner >> (width - (count % width)))) & mode_mask);
4276 nonzero &= (outer | inner);
4278 break;
4280 case FFS:
4281 case POPCOUNT:
4282 /* This is at most the number of bits in the mode. */
4283 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4284 break;
4286 case CLZ:
4287 /* If CLZ has a known value at zero, then the nonzero bits are
4288 that value, plus the number of bits in the mode minus one. */
4289 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4290 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4291 else
4292 nonzero = -1;
4293 break;
4295 case CTZ:
4296 /* If CTZ has a known value at zero, then the nonzero bits are
4297 that value, plus the number of bits in the mode minus one. */
4298 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4299 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4300 else
4301 nonzero = -1;
4302 break;
4304 case PARITY:
4305 nonzero = 1;
4306 break;
4308 case IF_THEN_ELSE:
4310 unsigned HOST_WIDE_INT nonzero_true =
4311 cached_nonzero_bits (XEXP (x, 1), mode,
4312 known_x, known_mode, known_ret);
4314 /* Don't call nonzero_bits for the second time if it cannot change
4315 anything. */
4316 if ((nonzero & nonzero_true) != nonzero)
4317 nonzero &= nonzero_true
4318 | cached_nonzero_bits (XEXP (x, 2), mode,
4319 known_x, known_mode, known_ret);
4321 break;
4323 default:
4324 break;
4327 return nonzero;
4330 /* See the macro definition above. */
4331 #undef cached_num_sign_bit_copies
4334 /* The function cached_num_sign_bit_copies is a wrapper around
4335 num_sign_bit_copies1. It avoids exponential behavior in
4336 num_sign_bit_copies1 when X has identical subexpressions on the
4337 first or the second level. */
4339 static unsigned int
4340 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4341 enum machine_mode known_mode,
4342 unsigned int known_ret)
4344 if (x == known_x && mode == known_mode)
4345 return known_ret;
4347 /* Try to find identical subexpressions. If found call
4348 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4349 the precomputed value for the subexpression as KNOWN_RET. */
4351 if (ARITHMETIC_P (x))
4353 rtx x0 = XEXP (x, 0);
4354 rtx x1 = XEXP (x, 1);
4356 /* Check the first level. */
4357 if (x0 == x1)
4358 return
4359 num_sign_bit_copies1 (x, mode, x0, mode,
4360 cached_num_sign_bit_copies (x0, mode, known_x,
4361 known_mode,
4362 known_ret));
4364 /* Check the second level. */
4365 if (ARITHMETIC_P (x0)
4366 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4367 return
4368 num_sign_bit_copies1 (x, mode, x1, mode,
4369 cached_num_sign_bit_copies (x1, mode, known_x,
4370 known_mode,
4371 known_ret));
4373 if (ARITHMETIC_P (x1)
4374 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4375 return
4376 num_sign_bit_copies1 (x, mode, x0, mode,
4377 cached_num_sign_bit_copies (x0, mode, known_x,
4378 known_mode,
4379 known_ret));
4382 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4385 /* Return the number of bits at the high-order end of X that are known to
4386 be equal to the sign bit. X will be used in mode MODE; if MODE is
4387 VOIDmode, X will be used in its own mode. The returned value will always
4388 be between 1 and the number of bits in MODE. */
4390 static unsigned int
4391 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4392 enum machine_mode known_mode,
4393 unsigned int known_ret)
4395 enum rtx_code code = GET_CODE (x);
4396 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4397 int num0, num1, result;
4398 unsigned HOST_WIDE_INT nonzero;
4400 /* If we weren't given a mode, use the mode of X. If the mode is still
4401 VOIDmode, we don't know anything. Likewise if one of the modes is
4402 floating-point. */
4404 if (mode == VOIDmode)
4405 mode = GET_MODE (x);
4407 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4408 return 1;
4410 /* For a smaller object, just ignore the high bits. */
4411 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4413 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4414 known_x, known_mode, known_ret);
4415 return MAX (1,
4416 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4419 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4421 #ifndef WORD_REGISTER_OPERATIONS
4422 /* If this machine does not do all register operations on the entire
4423 register and MODE is wider than the mode of X, we can say nothing
4424 at all about the high-order bits. */
4425 return 1;
4426 #else
4427 /* Likewise on machines that do, if the mode of the object is smaller
4428 than a word and loads of that size don't sign extend, we can say
4429 nothing about the high order bits. */
4430 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4431 #ifdef LOAD_EXTEND_OP
4432 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4433 #endif
4435 return 1;
4436 #endif
4439 switch (code)
4441 case REG:
4443 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4444 /* If pointers extend signed and this is a pointer in Pmode, say that
4445 all the bits above ptr_mode are known to be sign bit copies. */
4446 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4447 && REG_POINTER (x))
4448 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4449 #endif
4452 unsigned int copies_for_hook = 1, copies = 1;
4453 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4454 known_mode, known_ret,
4455 &copies_for_hook);
4457 if (new)
4458 copies = cached_num_sign_bit_copies (new, mode, known_x,
4459 known_mode, known_ret);
4461 if (copies > 1 || copies_for_hook > 1)
4462 return MAX (copies, copies_for_hook);
4464 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4466 break;
4468 case MEM:
4469 #ifdef LOAD_EXTEND_OP
4470 /* Some RISC machines sign-extend all loads of smaller than a word. */
4471 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4472 return MAX (1, ((int) bitwidth
4473 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4474 #endif
4475 break;
4477 case CONST_INT:
4478 /* If the constant is negative, take its 1's complement and remask.
4479 Then see how many zero bits we have. */
4480 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4481 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4482 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4483 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4485 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4487 case SUBREG:
4488 /* If this is a SUBREG for a promoted object that is sign-extended
4489 and we are looking at it in a wider mode, we know that at least the
4490 high-order bits are known to be sign bit copies. */
4492 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4494 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4495 known_x, known_mode, known_ret);
4496 return MAX ((int) bitwidth
4497 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4498 num0);
4501 /* For a smaller object, just ignore the high bits. */
4502 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4504 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4505 known_x, known_mode, known_ret);
4506 return MAX (1, (num0
4507 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4508 - bitwidth)));
4511 #ifdef WORD_REGISTER_OPERATIONS
4512 #ifdef LOAD_EXTEND_OP
4513 /* For paradoxical SUBREGs on machines where all register operations
4514 affect the entire register, just look inside. Note that we are
4515 passing MODE to the recursive call, so the number of sign bit copies
4516 will remain relative to that mode, not the inner mode. */
4518 /* This works only if loads sign extend. Otherwise, if we get a
4519 reload for the inner part, it may be loaded from the stack, and
4520 then we lose all sign bit copies that existed before the store
4521 to the stack. */
4523 if ((GET_MODE_SIZE (GET_MODE (x))
4524 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4525 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4526 && MEM_P (SUBREG_REG (x)))
4527 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4528 known_x, known_mode, known_ret);
4529 #endif
4530 #endif
4531 break;
4533 case SIGN_EXTRACT:
4534 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4535 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4536 break;
4538 case SIGN_EXTEND:
4539 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4540 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4541 known_x, known_mode, known_ret));
4543 case TRUNCATE:
4544 /* For a smaller object, just ignore the high bits. */
4545 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4546 known_x, known_mode, known_ret);
4547 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4548 - bitwidth)));
4550 case NOT:
4551 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4552 known_x, known_mode, known_ret);
4554 case ROTATE: case ROTATERT:
4555 /* If we are rotating left by a number of bits less than the number
4556 of sign bit copies, we can just subtract that amount from the
4557 number. */
4558 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4559 && INTVAL (XEXP (x, 1)) >= 0
4560 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4562 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4563 known_x, known_mode, known_ret);
4564 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4565 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4567 break;
4569 case NEG:
4570 /* In general, this subtracts one sign bit copy. But if the value
4571 is known to be positive, the number of sign bit copies is the
4572 same as that of the input. Finally, if the input has just one bit
4573 that might be nonzero, all the bits are copies of the sign bit. */
4574 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4575 known_x, known_mode, known_ret);
4576 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4577 return num0 > 1 ? num0 - 1 : 1;
4579 nonzero = nonzero_bits (XEXP (x, 0), mode);
4580 if (nonzero == 1)
4581 return bitwidth;
4583 if (num0 > 1
4584 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4585 num0--;
4587 return num0;
4589 case IOR: case AND: case XOR:
4590 case SMIN: case SMAX: case UMIN: case UMAX:
4591 /* Logical operations will preserve the number of sign-bit copies.
4592 MIN and MAX operations always return one of the operands. */
4593 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4594 known_x, known_mode, known_ret);
4595 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4596 known_x, known_mode, known_ret);
4597 return MIN (num0, num1);
4599 case PLUS: case MINUS:
4600 /* For addition and subtraction, we can have a 1-bit carry. However,
4601 if we are subtracting 1 from a positive number, there will not
4602 be such a carry. Furthermore, if the positive number is known to
4603 be 0 or 1, we know the result is either -1 or 0. */
4605 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4606 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4608 nonzero = nonzero_bits (XEXP (x, 0), mode);
4609 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4610 return (nonzero == 1 || nonzero == 0 ? bitwidth
4611 : bitwidth - floor_log2 (nonzero) - 1);
4614 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4615 known_x, known_mode, known_ret);
4616 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4617 known_x, known_mode, known_ret);
4618 result = MAX (1, MIN (num0, num1) - 1);
4620 #ifdef POINTERS_EXTEND_UNSIGNED
4621 /* If pointers extend signed and this is an addition or subtraction
4622 to a pointer in Pmode, all the bits above ptr_mode are known to be
4623 sign bit copies. */
4624 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4625 && (code == PLUS || code == MINUS)
4626 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4627 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4628 - GET_MODE_BITSIZE (ptr_mode) + 1),
4629 result);
4630 #endif
4631 return result;
4633 case MULT:
4634 /* The number of bits of the product is the sum of the number of
4635 bits of both terms. However, unless one of the terms if known
4636 to be positive, we must allow for an additional bit since negating
4637 a negative number can remove one sign bit copy. */
4639 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4640 known_x, known_mode, known_ret);
4641 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4642 known_x, known_mode, known_ret);
4644 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4645 if (result > 0
4646 && (bitwidth > HOST_BITS_PER_WIDE_INT
4647 || (((nonzero_bits (XEXP (x, 0), mode)
4648 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4649 && ((nonzero_bits (XEXP (x, 1), mode)
4650 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4651 result--;
4653 return MAX (1, result);
4655 case UDIV:
4656 /* The result must be <= the first operand. If the first operand
4657 has the high bit set, we know nothing about the number of sign
4658 bit copies. */
4659 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4660 return 1;
4661 else if ((nonzero_bits (XEXP (x, 0), mode)
4662 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4663 return 1;
4664 else
4665 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4666 known_x, known_mode, known_ret);
4668 case UMOD:
4669 /* The result must be <= the second operand. */
4670 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4671 known_x, known_mode, known_ret);
4673 case DIV:
4674 /* Similar to unsigned division, except that we have to worry about
4675 the case where the divisor is negative, in which case we have
4676 to add 1. */
4677 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4678 known_x, known_mode, known_ret);
4679 if (result > 1
4680 && (bitwidth > HOST_BITS_PER_WIDE_INT
4681 || (nonzero_bits (XEXP (x, 1), mode)
4682 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4683 result--;
4685 return result;
4687 case MOD:
4688 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4689 known_x, known_mode, known_ret);
4690 if (result > 1
4691 && (bitwidth > HOST_BITS_PER_WIDE_INT
4692 || (nonzero_bits (XEXP (x, 1), mode)
4693 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4694 result--;
4696 return result;
4698 case ASHIFTRT:
4699 /* Shifts by a constant add to the number of bits equal to the
4700 sign bit. */
4701 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4702 known_x, known_mode, known_ret);
4703 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4704 && INTVAL (XEXP (x, 1)) > 0)
4705 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4707 return num0;
4709 case ASHIFT:
4710 /* Left shifts destroy copies. */
4711 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4712 || INTVAL (XEXP (x, 1)) < 0
4713 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4714 return 1;
4716 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4717 known_x, known_mode, known_ret);
4718 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4720 case IF_THEN_ELSE:
4721 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4722 known_x, known_mode, known_ret);
4723 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4724 known_x, known_mode, known_ret);
4725 return MIN (num0, num1);
4727 case EQ: case NE: case GE: case GT: case LE: case LT:
4728 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4729 case GEU: case GTU: case LEU: case LTU:
4730 case UNORDERED: case ORDERED:
4731 /* If the constant is negative, take its 1's complement and remask.
4732 Then see how many zero bits we have. */
4733 nonzero = STORE_FLAG_VALUE;
4734 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4735 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4736 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4738 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4740 default:
4741 break;
4744 /* If we haven't been able to figure it out by one of the above rules,
4745 see if some of the high-order bits are known to be zero. If so,
4746 count those bits and return one less than that amount. If we can't
4747 safely compute the mask for this mode, always return BITWIDTH. */
4749 bitwidth = GET_MODE_BITSIZE (mode);
4750 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4751 return 1;
4753 nonzero = nonzero_bits (x, mode);
4754 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4755 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4758 /* Calculate the rtx_cost of a single instruction. A return value of
4759 zero indicates an instruction pattern without a known cost. */
4762 insn_rtx_cost (rtx pat)
4764 int i, cost;
4765 rtx set;
4767 /* Extract the single set rtx from the instruction pattern.
4768 We can't use single_set since we only have the pattern. */
4769 if (GET_CODE (pat) == SET)
4770 set = pat;
4771 else if (GET_CODE (pat) == PARALLEL)
4773 set = NULL_RTX;
4774 for (i = 0; i < XVECLEN (pat, 0); i++)
4776 rtx x = XVECEXP (pat, 0, i);
4777 if (GET_CODE (x) == SET)
4779 if (set)
4780 return 0;
4781 set = x;
4784 if (!set)
4785 return 0;
4787 else
4788 return 0;
4790 cost = rtx_cost (SET_SRC (set), SET);
4791 return cost > 0 ? cost : COSTS_N_INSNS (1);