poly_int: SUBREG_BYTE
[official-gcc.git] / gcc / expmed.c
blob6b22946f69a100a3910d88980adbcb67337a1c38
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2017 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "predict.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "expr.h"
42 #include "langhooks.h"
43 #include "tree-vector-builder.h"
45 struct target_expmed default_target_expmed;
46 #if SWITCHABLE_TARGET
47 struct target_expmed *this_target_expmed = &default_target_expmed;
48 #endif
50 static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
51 unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT,
53 poly_uint64, poly_uint64,
54 machine_mode, rtx, bool, bool);
55 static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
56 unsigned HOST_WIDE_INT,
57 unsigned HOST_WIDE_INT,
58 poly_uint64, poly_uint64,
59 rtx, scalar_int_mode, bool);
60 static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
61 unsigned HOST_WIDE_INT,
62 unsigned HOST_WIDE_INT,
63 rtx, scalar_int_mode, bool);
64 static void store_split_bit_field (rtx, opt_scalar_int_mode,
65 unsigned HOST_WIDE_INT,
66 unsigned HOST_WIDE_INT,
67 poly_uint64, poly_uint64,
68 rtx, scalar_int_mode, bool);
69 static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
70 unsigned HOST_WIDE_INT,
71 unsigned HOST_WIDE_INT, int, rtx,
72 machine_mode, machine_mode, bool, bool);
73 static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
74 unsigned HOST_WIDE_INT,
75 unsigned HOST_WIDE_INT, rtx, int, bool);
76 static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
77 unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT, rtx, int, bool);
79 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
80 static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT, int, bool);
83 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
84 static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
85 static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
87 /* Return a constant integer mask value of mode MODE with BITSIZE ones
88 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
89 The mask is truncated if necessary to the width of mode MODE. The
90 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
92 static inline rtx
93 mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
95 return immed_wide_int_const
96 (wi::shifted_mask (bitpos, bitsize, complement,
97 GET_MODE_PRECISION (mode)), mode);
100 /* Test whether a value is zero of a power of two. */
101 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
102 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
104 struct init_expmed_rtl
106 rtx reg;
107 rtx plus;
108 rtx neg;
109 rtx mult;
110 rtx sdiv;
111 rtx udiv;
112 rtx sdiv_32;
113 rtx smod_32;
114 rtx wide_mult;
115 rtx wide_lshr;
116 rtx wide_trunc;
117 rtx shift;
118 rtx shift_mult;
119 rtx shift_add;
120 rtx shift_sub0;
121 rtx shift_sub1;
122 rtx zext;
123 rtx trunc;
125 rtx pow2[MAX_BITS_PER_WORD];
126 rtx cint[MAX_BITS_PER_WORD];
129 static void
130 init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
131 scalar_int_mode from_mode, bool speed)
133 int to_size, from_size;
134 rtx which;
136 to_size = GET_MODE_PRECISION (to_mode);
137 from_size = GET_MODE_PRECISION (from_mode);
139 /* Most partial integers have a precision less than the "full"
140 integer it requires for storage. In case one doesn't, for
141 comparison purposes here, reduce the bit size by one in that
142 case. */
143 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
144 && pow2p_hwi (to_size))
145 to_size --;
146 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
147 && pow2p_hwi (from_size))
148 from_size --;
150 /* Assume cost of zero-extend and sign-extend is the same. */
151 which = (to_size < from_size ? all->trunc : all->zext);
153 PUT_MODE (all->reg, from_mode);
154 set_convert_cost (to_mode, from_mode, speed,
155 set_src_cost (which, to_mode, speed));
158 static void
159 init_expmed_one_mode (struct init_expmed_rtl *all,
160 machine_mode mode, int speed)
162 int m, n, mode_bitsize;
163 machine_mode mode_from;
165 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
167 PUT_MODE (all->reg, mode);
168 PUT_MODE (all->plus, mode);
169 PUT_MODE (all->neg, mode);
170 PUT_MODE (all->mult, mode);
171 PUT_MODE (all->sdiv, mode);
172 PUT_MODE (all->udiv, mode);
173 PUT_MODE (all->sdiv_32, mode);
174 PUT_MODE (all->smod_32, mode);
175 PUT_MODE (all->wide_trunc, mode);
176 PUT_MODE (all->shift, mode);
177 PUT_MODE (all->shift_mult, mode);
178 PUT_MODE (all->shift_add, mode);
179 PUT_MODE (all->shift_sub0, mode);
180 PUT_MODE (all->shift_sub1, mode);
181 PUT_MODE (all->zext, mode);
182 PUT_MODE (all->trunc, mode);
184 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
185 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
186 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
187 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
188 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
190 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
191 <= 2 * add_cost (speed, mode)));
192 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
193 <= 4 * add_cost (speed, mode)));
195 set_shift_cost (speed, mode, 0, 0);
197 int cost = add_cost (speed, mode);
198 set_shiftadd_cost (speed, mode, 0, cost);
199 set_shiftsub0_cost (speed, mode, 0, cost);
200 set_shiftsub1_cost (speed, mode, 0, cost);
203 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
204 for (m = 1; m < n; m++)
206 XEXP (all->shift, 1) = all->cint[m];
207 XEXP (all->shift_mult, 1) = all->pow2[m];
209 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
210 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
211 speed));
212 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
213 speed));
214 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
215 speed));
218 scalar_int_mode int_mode_to;
219 if (is_a <scalar_int_mode> (mode, &int_mode_to))
221 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
222 mode_from = (machine_mode)(mode_from + 1))
223 init_expmed_one_conv (all, int_mode_to,
224 as_a <scalar_int_mode> (mode_from), speed);
226 scalar_int_mode wider_mode;
227 if (GET_MODE_CLASS (int_mode_to) == MODE_INT
228 && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
230 PUT_MODE (all->zext, wider_mode);
231 PUT_MODE (all->wide_mult, wider_mode);
232 PUT_MODE (all->wide_lshr, wider_mode);
233 XEXP (all->wide_lshr, 1)
234 = gen_int_shift_amount (wider_mode, mode_bitsize);
236 set_mul_widen_cost (speed, wider_mode,
237 set_src_cost (all->wide_mult, wider_mode, speed));
238 set_mul_highpart_cost (speed, int_mode_to,
239 set_src_cost (all->wide_trunc,
240 int_mode_to, speed));
245 void
246 init_expmed (void)
248 struct init_expmed_rtl all;
249 machine_mode mode = QImode;
250 int m, speed;
252 memset (&all, 0, sizeof all);
253 for (m = 1; m < MAX_BITS_PER_WORD; m++)
255 all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
256 all.cint[m] = GEN_INT (m);
259 /* Avoid using hard regs in ways which may be unsupported. */
260 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
261 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
262 all.neg = gen_rtx_NEG (mode, all.reg);
263 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
264 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
265 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
266 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
267 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
268 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
269 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
270 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
271 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
272 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
273 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
274 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
275 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
276 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
277 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
279 for (speed = 0; speed < 2; speed++)
281 crtl->maybe_hot_insn_p = speed;
282 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
284 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
285 mode = (machine_mode)(mode + 1))
286 init_expmed_one_mode (&all, mode, speed);
288 if (MIN_MODE_PARTIAL_INT != VOIDmode)
289 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
290 mode = (machine_mode)(mode + 1))
291 init_expmed_one_mode (&all, mode, speed);
293 if (MIN_MODE_VECTOR_INT != VOIDmode)
294 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
295 mode = (machine_mode)(mode + 1))
296 init_expmed_one_mode (&all, mode, speed);
299 if (alg_hash_used_p ())
301 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
302 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
304 else
305 set_alg_hash_used_p (true);
306 default_rtl_profile ();
308 ggc_free (all.trunc);
309 ggc_free (all.shift_sub1);
310 ggc_free (all.shift_sub0);
311 ggc_free (all.shift_add);
312 ggc_free (all.shift_mult);
313 ggc_free (all.shift);
314 ggc_free (all.wide_trunc);
315 ggc_free (all.wide_lshr);
316 ggc_free (all.wide_mult);
317 ggc_free (all.zext);
318 ggc_free (all.smod_32);
319 ggc_free (all.sdiv_32);
320 ggc_free (all.udiv);
321 ggc_free (all.sdiv);
322 ggc_free (all.mult);
323 ggc_free (all.neg);
324 ggc_free (all.plus);
325 ggc_free (all.reg);
328 /* Return an rtx representing minus the value of X.
329 MODE is the intended mode of the result,
330 useful if X is a CONST_INT. */
333 negate_rtx (machine_mode mode, rtx x)
335 rtx result = simplify_unary_operation (NEG, mode, x, mode);
337 if (result == 0)
338 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
340 return result;
343 /* Whether reverse storage order is supported on the target. */
344 static int reverse_storage_order_supported = -1;
346 /* Check whether reverse storage order is supported on the target. */
348 static void
349 check_reverse_storage_order_support (void)
351 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
353 reverse_storage_order_supported = 0;
354 sorry ("reverse scalar storage order");
356 else
357 reverse_storage_order_supported = 1;
360 /* Whether reverse FP storage order is supported on the target. */
361 static int reverse_float_storage_order_supported = -1;
363 /* Check whether reverse FP storage order is supported on the target. */
365 static void
366 check_reverse_float_storage_order_support (void)
368 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
370 reverse_float_storage_order_supported = 0;
371 sorry ("reverse floating-point scalar storage order");
373 else
374 reverse_float_storage_order_supported = 1;
377 /* Return an rtx representing value of X with reverse storage order.
378 MODE is the intended mode of the result,
379 useful if X is a CONST_INT. */
382 flip_storage_order (machine_mode mode, rtx x)
384 scalar_int_mode int_mode;
385 rtx result;
387 if (mode == QImode)
388 return x;
390 if (COMPLEX_MODE_P (mode))
392 rtx real = read_complex_part (x, false);
393 rtx imag = read_complex_part (x, true);
395 real = flip_storage_order (GET_MODE_INNER (mode), real);
396 imag = flip_storage_order (GET_MODE_INNER (mode), imag);
398 return gen_rtx_CONCAT (mode, real, imag);
401 if (__builtin_expect (reverse_storage_order_supported < 0, 0))
402 check_reverse_storage_order_support ();
404 if (!is_a <scalar_int_mode> (mode, &int_mode))
406 if (FLOAT_MODE_P (mode)
407 && __builtin_expect (reverse_float_storage_order_supported < 0, 0))
408 check_reverse_float_storage_order_support ();
410 if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode))
412 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
413 return x;
415 x = gen_lowpart (int_mode, x);
418 result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
419 if (result == 0)
420 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
422 if (int_mode != mode)
423 result = gen_lowpart (mode, result);
425 return result;
428 /* If MODE is set, adjust bitfield memory MEM so that it points to the
429 first unit of mode MODE that contains a bitfield of size BITSIZE at
430 bit position BITNUM. If MODE is not set, return a BLKmode reference
431 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
432 of the field within the new memory. */
434 static rtx
435 narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
436 unsigned HOST_WIDE_INT bitsize,
437 unsigned HOST_WIDE_INT bitnum,
438 unsigned HOST_WIDE_INT *new_bitnum)
440 scalar_int_mode imode;
441 if (mode.exists (&imode))
443 unsigned int unit = GET_MODE_BITSIZE (imode);
444 *new_bitnum = bitnum % unit;
445 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
446 return adjust_bitfield_address (mem, imode, offset);
448 else
450 *new_bitnum = bitnum % BITS_PER_UNIT;
451 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
452 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
453 / BITS_PER_UNIT);
454 return adjust_bitfield_address_size (mem, BLKmode, offset, size);
458 /* The caller wants to perform insertion or extraction PATTERN on a
459 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
460 BITREGION_START and BITREGION_END are as for store_bit_field
461 and FIELDMODE is the natural mode of the field.
463 Search for a mode that is compatible with the memory access
464 restrictions and (where applicable) with a register insertion or
465 extraction. Return the new memory on success, storing the adjusted
466 bit position in *NEW_BITNUM. Return null otherwise. */
468 static rtx
469 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
470 rtx op0, HOST_WIDE_INT bitsize,
471 HOST_WIDE_INT bitnum,
472 poly_uint64 bitregion_start,
473 poly_uint64 bitregion_end,
474 machine_mode fieldmode,
475 unsigned HOST_WIDE_INT *new_bitnum)
477 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
478 bitregion_end, MEM_ALIGN (op0),
479 MEM_VOLATILE_P (op0));
480 scalar_int_mode best_mode;
481 if (iter.next_mode (&best_mode))
483 /* We can use a memory in BEST_MODE. See whether this is true for
484 any wider modes. All other things being equal, we prefer to
485 use the widest mode possible because it tends to expose more
486 CSE opportunities. */
487 if (!iter.prefer_smaller_modes ())
489 /* Limit the search to the mode required by the corresponding
490 register insertion or extraction instruction, if any. */
491 scalar_int_mode limit_mode = word_mode;
492 extraction_insn insn;
493 if (get_best_reg_extraction_insn (&insn, pattern,
494 GET_MODE_BITSIZE (best_mode),
495 fieldmode))
496 limit_mode = insn.field_mode;
498 scalar_int_mode wider_mode;
499 while (iter.next_mode (&wider_mode)
500 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
501 best_mode = wider_mode;
503 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
504 new_bitnum);
506 return NULL_RTX;
509 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
510 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
511 offset is then BITNUM / BITS_PER_UNIT. */
513 static bool
514 lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
515 machine_mode struct_mode)
517 poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
518 if (BYTES_BIG_ENDIAN)
519 return (multiple_p (bitnum, BITS_PER_UNIT)
520 && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
521 || multiple_p (bitnum + bitsize,
522 regsize * BITS_PER_UNIT)));
523 else
524 return multiple_p (bitnum, regsize * BITS_PER_UNIT);
527 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
528 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
529 Return false if the access would touch memory outside the range
530 BITREGION_START to BITREGION_END for conformance to the C++ memory
531 model. */
533 static bool
534 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
535 unsigned HOST_WIDE_INT bitnum,
536 scalar_int_mode fieldmode,
537 poly_uint64 bitregion_start,
538 poly_uint64 bitregion_end)
540 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
542 /* -fstrict-volatile-bitfields must be enabled and we must have a
543 volatile MEM. */
544 if (!MEM_P (op0)
545 || !MEM_VOLATILE_P (op0)
546 || flag_strict_volatile_bitfields <= 0)
547 return false;
549 /* The bit size must not be larger than the field mode, and
550 the field mode must not be larger than a word. */
551 if (bitsize > modesize || modesize > BITS_PER_WORD)
552 return false;
554 /* Check for cases of unaligned fields that must be split. */
555 if (bitnum % modesize + bitsize > modesize)
556 return false;
558 /* The memory must be sufficiently aligned for a MODESIZE access.
559 This condition guarantees, that the memory access will not
560 touch anything after the end of the structure. */
561 if (MEM_ALIGN (op0) < modesize)
562 return false;
564 /* Check for cases where the C++ memory model applies. */
565 if (maybe_ne (bitregion_end, 0U)
566 && (maybe_lt (bitnum - bitnum % modesize, bitregion_start)
567 || maybe_gt (bitnum - bitnum % modesize + modesize - 1,
568 bitregion_end)))
569 return false;
571 return true;
574 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
575 bit number BITNUM can be treated as a simple value of mode MODE.
576 Store the byte offset in *BYTENUM if so. */
578 static bool
579 simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
580 machine_mode mode, poly_uint64 *bytenum)
582 return (MEM_P (op0)
583 && multiple_p (bitnum, BITS_PER_UNIT, bytenum)
584 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
585 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
586 || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode))
587 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
590 /* Try to use instruction INSV to store VALUE into a field of OP0.
591 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
592 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
593 are as for store_bit_field. */
595 static bool
596 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
597 opt_scalar_int_mode op0_mode,
598 unsigned HOST_WIDE_INT bitsize,
599 unsigned HOST_WIDE_INT bitnum,
600 rtx value, scalar_int_mode value_mode)
602 struct expand_operand ops[4];
603 rtx value1;
604 rtx xop0 = op0;
605 rtx_insn *last = get_last_insn ();
606 bool copy_back = false;
608 scalar_int_mode op_mode = insv->field_mode;
609 unsigned int unit = GET_MODE_BITSIZE (op_mode);
610 if (bitsize == 0 || bitsize > unit)
611 return false;
613 if (MEM_P (xop0))
614 /* Get a reference to the first byte of the field. */
615 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
616 &bitnum);
617 else
619 /* Convert from counting within OP0 to counting in OP_MODE. */
620 if (BYTES_BIG_ENDIAN)
621 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
623 /* If xop0 is a register, we need it in OP_MODE
624 to make it acceptable to the format of insv. */
625 if (GET_CODE (xop0) == SUBREG)
626 /* We can't just change the mode, because this might clobber op0,
627 and we will need the original value of op0 if insv fails. */
628 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
629 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
630 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
633 /* If the destination is a paradoxical subreg such that we need a
634 truncate to the inner mode, perform the insertion on a temporary and
635 truncate the result to the original destination. Note that we can't
636 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
637 X) 0)) is (reg:N X). */
638 if (GET_CODE (xop0) == SUBREG
639 && REG_P (SUBREG_REG (xop0))
640 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
641 op_mode))
643 rtx tem = gen_reg_rtx (op_mode);
644 emit_move_insn (tem, xop0);
645 xop0 = tem;
646 copy_back = true;
649 /* There are similar overflow check at the start of store_bit_field_1,
650 but that only check the situation where the field lies completely
651 outside the register, while there do have situation where the field
652 lies partialy in the register, we need to adjust bitsize for this
653 partial overflow situation. Without this fix, pr48335-2.c on big-endian
654 will broken on those arch support bit insert instruction, like arm, aarch64
655 etc. */
656 if (bitsize + bitnum > unit && bitnum < unit)
658 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
659 "destination object, data truncated into %wu-bit",
660 bitsize, unit - bitnum);
661 bitsize = unit - bitnum;
664 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
665 "backwards" from the size of the unit we are inserting into.
666 Otherwise, we count bits from the most significant on a
667 BYTES/BITS_BIG_ENDIAN machine. */
669 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
670 bitnum = unit - bitsize - bitnum;
672 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
673 value1 = value;
674 if (value_mode != op_mode)
676 if (GET_MODE_BITSIZE (value_mode) >= bitsize)
678 rtx tmp;
679 /* Optimization: Don't bother really extending VALUE
680 if it has all the bits we will actually use. However,
681 if we must narrow it, be sure we do it correctly. */
683 if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
685 tmp = simplify_subreg (op_mode, value1, value_mode, 0);
686 if (! tmp)
687 tmp = simplify_gen_subreg (op_mode,
688 force_reg (value_mode, value1),
689 value_mode, 0);
691 else
693 tmp = gen_lowpart_if_possible (op_mode, value1);
694 if (! tmp)
695 tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
697 value1 = tmp;
699 else if (CONST_INT_P (value))
700 value1 = gen_int_mode (INTVAL (value), op_mode);
701 else
702 /* Parse phase is supposed to make VALUE's data type
703 match that of the component reference, which is a type
704 at least as wide as the field; so VALUE should have
705 a mode that corresponds to that type. */
706 gcc_assert (CONSTANT_P (value));
709 create_fixed_operand (&ops[0], xop0);
710 create_integer_operand (&ops[1], bitsize);
711 create_integer_operand (&ops[2], bitnum);
712 create_input_operand (&ops[3], value1, op_mode);
713 if (maybe_expand_insn (insv->icode, 4, ops))
715 if (copy_back)
716 convert_move (op0, xop0, true);
717 return true;
719 delete_insns_since (last);
720 return false;
723 /* A subroutine of store_bit_field, with the same arguments. Return true
724 if the operation could be implemented.
726 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
727 no other way of implementing the operation. If FALLBACK_P is false,
728 return false instead. */
730 static bool
731 store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
732 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
733 machine_mode fieldmode,
734 rtx value, bool reverse, bool fallback_p)
736 rtx op0 = str_rtx;
738 while (GET_CODE (op0) == SUBREG)
740 bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
741 op0 = SUBREG_REG (op0);
744 /* No action is needed if the target is a register and if the field
745 lies completely outside that register. This can occur if the source
746 code contains an out-of-bounds access to a small array. */
747 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
748 return true;
750 /* Use vec_set patterns for inserting parts of vectors whenever
751 available. */
752 machine_mode outermode = GET_MODE (op0);
753 scalar_mode innermode = GET_MODE_INNER (outermode);
754 poly_uint64 pos;
755 if (VECTOR_MODE_P (outermode)
756 && !MEM_P (op0)
757 && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
758 && fieldmode == innermode
759 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
760 && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
762 struct expand_operand ops[3];
763 enum insn_code icode = optab_handler (vec_set_optab, outermode);
765 create_fixed_operand (&ops[0], op0);
766 create_input_operand (&ops[1], value, innermode);
767 create_integer_operand (&ops[2], pos);
768 if (maybe_expand_insn (icode, 3, ops))
769 return true;
772 /* If the target is a register, overwriting the entire object, or storing
773 a full-word or multi-word field can be done with just a SUBREG. */
774 if (!MEM_P (op0)
775 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
777 /* Use the subreg machinery either to narrow OP0 to the required
778 words or to cope with mode punning between equal-sized modes.
779 In the latter case, use subreg on the rhs side, not lhs. */
780 rtx sub;
781 HOST_WIDE_INT regnum;
782 HOST_WIDE_INT regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
783 if (known_eq (bitnum, 0U)
784 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
786 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
787 if (sub)
789 if (reverse)
790 sub = flip_storage_order (GET_MODE (op0), sub);
791 emit_move_insn (op0, sub);
792 return true;
795 else if (constant_multiple_p (bitnum, regsize * BITS_PER_UNIT, &regnum)
796 && multiple_p (bitsize, regsize * BITS_PER_UNIT))
798 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
799 regnum * regsize);
800 if (sub)
802 if (reverse)
803 value = flip_storage_order (fieldmode, value);
804 emit_move_insn (sub, value);
805 return true;
810 /* If the target is memory, storing any naturally aligned field can be
811 done with a simple store. For targets that support fast unaligned
812 memory, any naturally sized, unit aligned field can be done directly. */
813 poly_uint64 bytenum;
814 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum))
816 op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
817 if (reverse)
818 value = flip_storage_order (fieldmode, value);
819 emit_move_insn (op0, value);
820 return true;
823 /* It's possible we'll need to handle other cases here for
824 polynomial bitnum and bitsize. */
826 /* From here on we need to be looking at a fixed-size insertion. */
827 unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
828 unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();
830 /* Make sure we are playing with integral modes. Pun with subregs
831 if we aren't. This must come after the entire register case above,
832 since that case is valid for any mode. The following cases are only
833 valid for integral modes. */
834 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
835 scalar_int_mode imode;
836 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
838 if (MEM_P (op0))
839 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
840 0, MEM_SIZE (op0));
841 else
842 op0 = gen_lowpart (op0_mode.require (), op0);
845 return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
846 bitregion_start, bitregion_end,
847 fieldmode, value, reverse, fallback_p);
850 /* Subroutine of store_bit_field_1, with the same arguments, except
851 that BITSIZE and BITNUM are constant. Handle cases specific to
852 integral modes. If OP0_MODE is defined, it is the mode of OP0,
853 otherwise OP0 is a BLKmode MEM. */
855 static bool
856 store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
857 unsigned HOST_WIDE_INT bitsize,
858 unsigned HOST_WIDE_INT bitnum,
859 poly_uint64 bitregion_start,
860 poly_uint64 bitregion_end,
861 machine_mode fieldmode,
862 rtx value, bool reverse, bool fallback_p)
864 /* Storing an lsb-aligned field in a register
865 can be done with a movstrict instruction. */
867 if (!MEM_P (op0)
868 && !reverse
869 && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
870 && bitsize == GET_MODE_BITSIZE (fieldmode)
871 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
873 struct expand_operand ops[2];
874 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
875 rtx arg0 = op0;
876 unsigned HOST_WIDE_INT subreg_off;
878 if (GET_CODE (arg0) == SUBREG)
880 /* Else we've got some float mode source being extracted into
881 a different float mode destination -- this combination of
882 subregs results in Severe Tire Damage. */
883 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
884 || GET_MODE_CLASS (fieldmode) == MODE_INT
885 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
886 arg0 = SUBREG_REG (arg0);
889 subreg_off = bitnum / BITS_PER_UNIT;
890 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
892 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
894 create_fixed_operand (&ops[0], arg0);
895 /* Shrink the source operand to FIELDMODE. */
896 create_convert_operand_to (&ops[1], value, fieldmode, false);
897 if (maybe_expand_insn (icode, 2, ops))
898 return true;
902 /* Handle fields bigger than a word. */
904 if (bitsize > BITS_PER_WORD)
906 /* Here we transfer the words of the field
907 in the order least significant first.
908 This is because the most significant word is the one which may
909 be less than full.
910 However, only do that if the value is not BLKmode. */
912 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
913 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
914 unsigned int i;
915 rtx_insn *last;
917 /* This is the mode we must force value to, so that there will be enough
918 subwords to extract. Note that fieldmode will often (always?) be
919 VOIDmode, because that is what store_field uses to indicate that this
920 is a bit field, but passing VOIDmode to operand_subword_force
921 is not allowed.
923 The mode must be fixed-size, since insertions into variable-sized
924 objects are meant to be handled before calling this function. */
925 fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
926 if (value_mode == VOIDmode)
927 value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);
929 last = get_last_insn ();
930 for (i = 0; i < nwords; i++)
932 /* If I is 0, use the low-order word in both field and target;
933 if I is 1, use the next to lowest word; and so on. */
934 unsigned int wordnum = (backwards
935 ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD
936 - i - 1
937 : i);
938 unsigned int bit_offset = (backwards ^ reverse
939 ? MAX ((int) bitsize - ((int) i + 1)
940 * BITS_PER_WORD,
942 : (int) i * BITS_PER_WORD);
943 rtx value_word = operand_subword_force (value, wordnum, value_mode);
944 unsigned HOST_WIDE_INT new_bitsize =
945 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
947 /* If the remaining chunk doesn't have full wordsize we have
948 to make sure that for big-endian machines the higher order
949 bits are used. */
950 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
952 int shift = BITS_PER_WORD - new_bitsize;
953 rtx shift_rtx = gen_int_shift_amount (word_mode, shift);
954 value_word = simplify_expand_binop (word_mode, lshr_optab,
955 value_word, shift_rtx,
956 NULL_RTX, true,
957 OPTAB_LIB_WIDEN);
960 if (!store_bit_field_1 (op0, new_bitsize,
961 bitnum + bit_offset,
962 bitregion_start, bitregion_end,
963 word_mode,
964 value_word, reverse, fallback_p))
966 delete_insns_since (last);
967 return false;
970 return true;
973 /* If VALUE has a floating-point or complex mode, access it as an
974 integer of the corresponding size. This can occur on a machine
975 with 64 bit registers that uses SFmode for float. It can also
976 occur for unaligned float or complex fields. */
977 rtx orig_value = value;
978 scalar_int_mode value_mode;
979 if (GET_MODE (value) == VOIDmode)
980 /* By this point we've dealt with values that are bigger than a word,
981 so word_mode is a conservatively correct choice. */
982 value_mode = word_mode;
983 else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
985 value_mode = int_mode_for_mode (GET_MODE (value)).require ();
986 value = gen_reg_rtx (value_mode);
987 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
990 /* If OP0 is a multi-word register, narrow it to the affected word.
991 If the region spans two words, defer to store_split_bit_field.
992 Don't do this if op0 is a single hard register wider than word
993 such as a float or vector register. */
994 if (!MEM_P (op0)
995 && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
996 && (!REG_P (op0)
997 || !HARD_REGISTER_P (op0)
998 || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
1000 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1002 if (!fallback_p)
1003 return false;
1005 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1006 bitregion_start, bitregion_end,
1007 value, value_mode, reverse);
1008 return true;
1010 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
1011 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1012 gcc_assert (op0);
1013 op0_mode = word_mode;
1014 bitnum %= BITS_PER_WORD;
1017 /* From here on we can assume that the field to be stored in fits
1018 within a word. If the destination is a register, it too fits
1019 in a word. */
1021 extraction_insn insv;
1022 if (!MEM_P (op0)
1023 && !reverse
1024 && get_best_reg_extraction_insn (&insv, EP_insv,
1025 GET_MODE_BITSIZE (op0_mode.require ()),
1026 fieldmode)
1027 && store_bit_field_using_insv (&insv, op0, op0_mode,
1028 bitsize, bitnum, value, value_mode))
1029 return true;
1031 /* If OP0 is a memory, try copying it to a register and seeing if a
1032 cheap register alternative is available. */
1033 if (MEM_P (op0) && !reverse)
1035 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
1036 fieldmode)
1037 && store_bit_field_using_insv (&insv, op0, op0_mode,
1038 bitsize, bitnum, value, value_mode))
1039 return true;
1041 rtx_insn *last = get_last_insn ();
1043 /* Try loading part of OP0 into a register, inserting the bitfield
1044 into that, and then copying the result back to OP0. */
1045 unsigned HOST_WIDE_INT bitpos;
1046 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
1047 bitregion_start, bitregion_end,
1048 fieldmode, &bitpos);
1049 if (xop0)
1051 rtx tempreg = copy_to_reg (xop0);
1052 if (store_bit_field_1 (tempreg, bitsize, bitpos,
1053 bitregion_start, bitregion_end,
1054 fieldmode, orig_value, reverse, false))
1056 emit_move_insn (xop0, tempreg);
1057 return true;
1059 delete_insns_since (last);
1063 if (!fallback_p)
1064 return false;
1066 store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
1067 bitregion_end, value, value_mode, reverse);
1068 return true;
1071 /* Generate code to store value from rtx VALUE
1072 into a bit-field within structure STR_RTX
1073 containing BITSIZE bits starting at bit BITNUM.
1075 BITREGION_START is bitpos of the first bitfield in this region.
1076 BITREGION_END is the bitpos of the ending bitfield in this region.
1077 These two fields are 0, if the C++ memory model does not apply,
1078 or we are not interested in keeping track of bitfield regions.
1080 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1082 If REVERSE is true, the store is to be done in reverse order. */
1084 void
1085 store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1086 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1087 machine_mode fieldmode,
1088 rtx value, bool reverse)
1090 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1091 unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
1092 scalar_int_mode int_mode;
1093 if (bitsize.is_constant (&ibitsize)
1094 && bitnum.is_constant (&ibitnum)
1095 && is_a <scalar_int_mode> (fieldmode, &int_mode)
1096 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode,
1097 bitregion_start, bitregion_end))
1099 /* Storing of a full word can be done with a simple store.
1100 We know here that the field can be accessed with one single
1101 instruction. For targets that support unaligned memory,
1102 an unaligned access may be necessary. */
1103 if (ibitsize == GET_MODE_BITSIZE (int_mode))
1105 str_rtx = adjust_bitfield_address (str_rtx, int_mode,
1106 ibitnum / BITS_PER_UNIT);
1107 if (reverse)
1108 value = flip_storage_order (int_mode, value);
1109 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
1110 emit_move_insn (str_rtx, value);
1112 else
1114 rtx temp;
1116 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize,
1117 ibitnum, &ibitnum);
1118 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
1119 temp = copy_to_reg (str_rtx);
1120 if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0,
1121 int_mode, value, reverse, true))
1122 gcc_unreachable ();
1124 emit_move_insn (str_rtx, temp);
1127 return;
1130 /* Under the C++0x memory model, we must not touch bits outside the
1131 bit region. Adjust the address to start at the beginning of the
1132 bit region. */
1133 if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U))
1135 scalar_int_mode best_mode;
1136 machine_mode addr_mode = VOIDmode;
1138 poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT);
1139 bitnum -= bitregion_start;
1140 poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
1141 bitregion_end -= bitregion_start;
1142 bitregion_start = 0;
1143 if (bitsize.is_constant (&ibitsize)
1144 && bitnum.is_constant (&ibitnum)
1145 && get_best_mode (ibitsize, ibitnum,
1146 bitregion_start, bitregion_end,
1147 MEM_ALIGN (str_rtx), INT_MAX,
1148 MEM_VOLATILE_P (str_rtx), &best_mode))
1149 addr_mode = best_mode;
1150 str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
1151 offset, size);
1154 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1155 bitregion_start, bitregion_end,
1156 fieldmode, value, reverse, true))
1157 gcc_unreachable ();
1160 /* Use shifts and boolean operations to store VALUE into a bit field of
1161 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1162 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1163 the mode of VALUE.
1165 If REVERSE is true, the store is to be done in reverse order. */
1167 static void
1168 store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1169 unsigned HOST_WIDE_INT bitsize,
1170 unsigned HOST_WIDE_INT bitnum,
1171 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1172 rtx value, scalar_int_mode value_mode, bool reverse)
1174 /* There is a case not handled here:
1175 a structure with a known alignment of just a halfword
1176 and a field split across two aligned halfwords within the structure.
1177 Or likewise a structure with a known alignment of just a byte
1178 and a field split across two bytes.
1179 Such cases are not supposed to be able to occur. */
1181 scalar_int_mode best_mode;
1182 if (MEM_P (op0))
1184 unsigned int max_bitsize = BITS_PER_WORD;
1185 scalar_int_mode imode;
1186 if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
1187 max_bitsize = GET_MODE_BITSIZE (imode);
1189 if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1190 MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
1191 &best_mode))
1193 /* The only way this should occur is if the field spans word
1194 boundaries. */
1195 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1196 bitregion_start, bitregion_end,
1197 value, value_mode, reverse);
1198 return;
1201 op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
1203 else
1204 best_mode = op0_mode.require ();
1206 store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
1207 value, value_mode, reverse);
1210 /* Helper function for store_fixed_bit_field, stores
1211 the bit field always using MODE, which is the mode of OP0. The other
1212 arguments are as for store_fixed_bit_field. */
1214 static void
1215 store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
1216 unsigned HOST_WIDE_INT bitsize,
1217 unsigned HOST_WIDE_INT bitnum,
1218 rtx value, scalar_int_mode value_mode, bool reverse)
1220 rtx temp;
1221 int all_zero = 0;
1222 int all_one = 0;
1224 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1225 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1227 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1228 /* BITNUM is the distance between our msb
1229 and that of the containing datum.
1230 Convert it to the distance from the lsb. */
1231 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1233 /* Now BITNUM is always the distance between our lsb
1234 and that of OP0. */
1236 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1237 we must first convert its mode to MODE. */
1239 if (CONST_INT_P (value))
1241 unsigned HOST_WIDE_INT v = UINTVAL (value);
1243 if (bitsize < HOST_BITS_PER_WIDE_INT)
1244 v &= (HOST_WIDE_INT_1U << bitsize) - 1;
1246 if (v == 0)
1247 all_zero = 1;
1248 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1249 && v == (HOST_WIDE_INT_1U << bitsize) - 1)
1250 || (bitsize == HOST_BITS_PER_WIDE_INT
1251 && v == HOST_WIDE_INT_M1U))
1252 all_one = 1;
1254 value = lshift_value (mode, v, bitnum);
1256 else
1258 int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
1259 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1261 if (value_mode != mode)
1262 value = convert_to_mode (mode, value, 1);
1264 if (must_and)
1265 value = expand_binop (mode, and_optab, value,
1266 mask_rtx (mode, 0, bitsize, 0),
1267 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1268 if (bitnum > 0)
1269 value = expand_shift (LSHIFT_EXPR, mode, value,
1270 bitnum, NULL_RTX, 1);
1273 if (reverse)
1274 value = flip_storage_order (mode, value);
1276 /* Now clear the chosen bits in OP0,
1277 except that if VALUE is -1 we need not bother. */
1278 /* We keep the intermediates in registers to allow CSE to combine
1279 consecutive bitfield assignments. */
1281 temp = force_reg (mode, op0);
1283 if (! all_one)
1285 rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
1286 if (reverse)
1287 mask = flip_storage_order (mode, mask);
1288 temp = expand_binop (mode, and_optab, temp, mask,
1289 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1290 temp = force_reg (mode, temp);
1293 /* Now logical-or VALUE into OP0, unless it is zero. */
1295 if (! all_zero)
1297 temp = expand_binop (mode, ior_optab, temp, value,
1298 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1299 temp = force_reg (mode, temp);
1302 if (op0 != temp)
1304 op0 = copy_rtx (op0);
1305 emit_move_insn (op0, temp);
1309 /* Store a bit field that is split across multiple accessible memory objects.
1311 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1312 BITSIZE is the field width; BITPOS the position of its first bit
1313 (within the word).
1314 VALUE is the value to store, which has mode VALUE_MODE.
1315 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1316 a BLKmode MEM.
1318 If REVERSE is true, the store is to be done in reverse order.
1320 This does not yet handle fields wider than BITS_PER_WORD. */
1322 static void
1323 store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1324 unsigned HOST_WIDE_INT bitsize,
1325 unsigned HOST_WIDE_INT bitpos,
1326 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1327 rtx value, scalar_int_mode value_mode, bool reverse)
1329 unsigned int unit, total_bits, bitsdone = 0;
1331 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1332 much at a time. */
1333 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1334 unit = BITS_PER_WORD;
1335 else
1336 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1338 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1339 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1340 again, and we will mutually recurse forever. */
1341 if (MEM_P (op0) && op0_mode.exists ())
1342 unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
1344 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1345 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1346 that VALUE might be a floating-point constant. */
1347 if (CONSTANT_P (value) && !CONST_INT_P (value))
1349 rtx word = gen_lowpart_common (word_mode, value);
1351 if (word && (value != word))
1352 value = word;
1353 else
1354 value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
1355 value_mode = word_mode;
1358 total_bits = GET_MODE_BITSIZE (value_mode);
1360 while (bitsdone < bitsize)
1362 unsigned HOST_WIDE_INT thissize;
1363 unsigned HOST_WIDE_INT thispos;
1364 unsigned HOST_WIDE_INT offset;
1365 rtx part;
1367 offset = (bitpos + bitsdone) / unit;
1368 thispos = (bitpos + bitsdone) % unit;
1370 /* When region of bytes we can touch is restricted, decrease
1371 UNIT close to the end of the region as needed. If op0 is a REG
1372 or SUBREG of REG, don't do this, as there can't be data races
1373 on a register and we can expand shorter code in some cases. */
1374 if (maybe_ne (bitregion_end, 0U)
1375 && unit > BITS_PER_UNIT
1376 && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
1377 && !REG_P (op0)
1378 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1380 unit = unit / 2;
1381 continue;
1384 /* THISSIZE must not overrun a word boundary. Otherwise,
1385 store_fixed_bit_field will call us again, and we will mutually
1386 recurse forever. */
1387 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1388 thissize = MIN (thissize, unit - thispos);
1390 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1392 /* Fetch successively less significant portions. */
1393 if (CONST_INT_P (value))
1394 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1395 >> (bitsize - bitsdone - thissize))
1396 & ((HOST_WIDE_INT_1 << thissize) - 1));
1397 /* Likewise, but the source is little-endian. */
1398 else if (reverse)
1399 part = extract_fixed_bit_field (word_mode, value, value_mode,
1400 thissize,
1401 bitsize - bitsdone - thissize,
1402 NULL_RTX, 1, false);
1403 else
1404 /* The args are chosen so that the last part includes the
1405 lsb. Give extract_bit_field the value it needs (with
1406 endianness compensation) to fetch the piece we want. */
1407 part = extract_fixed_bit_field (word_mode, value, value_mode,
1408 thissize,
1409 total_bits - bitsize + bitsdone,
1410 NULL_RTX, 1, false);
1412 else
1414 /* Fetch successively more significant portions. */
1415 if (CONST_INT_P (value))
1416 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1417 >> bitsdone)
1418 & ((HOST_WIDE_INT_1 << thissize) - 1));
1419 /* Likewise, but the source is big-endian. */
1420 else if (reverse)
1421 part = extract_fixed_bit_field (word_mode, value, value_mode,
1422 thissize,
1423 total_bits - bitsdone - thissize,
1424 NULL_RTX, 1, false);
1425 else
1426 part = extract_fixed_bit_field (word_mode, value, value_mode,
1427 thissize, bitsdone, NULL_RTX,
1428 1, false);
1431 /* If OP0 is a register, then handle OFFSET here. */
1432 rtx op0_piece = op0;
1433 opt_scalar_int_mode op0_piece_mode = op0_mode;
1434 if (SUBREG_P (op0) || REG_P (op0))
1436 scalar_int_mode imode;
1437 if (op0_mode.exists (&imode)
1438 && GET_MODE_SIZE (imode) < UNITS_PER_WORD)
1440 if (offset)
1441 op0_piece = const0_rtx;
1443 else
1445 op0_piece = operand_subword_force (op0,
1446 offset * unit / BITS_PER_WORD,
1447 GET_MODE (op0));
1448 op0_piece_mode = word_mode;
1450 offset &= BITS_PER_WORD / unit - 1;
1453 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1454 it is just an out-of-bounds access. Ignore it. */
1455 if (op0_piece != const0_rtx)
1456 store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
1457 offset * unit + thispos, bitregion_start,
1458 bitregion_end, part, word_mode, reverse);
1459 bitsdone += thissize;
1463 /* A subroutine of extract_bit_field_1 that converts return value X
1464 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1465 to extract_bit_field. */
1467 static rtx
1468 convert_extracted_bit_field (rtx x, machine_mode mode,
1469 machine_mode tmode, bool unsignedp)
1471 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1472 return x;
1474 /* If the x mode is not a scalar integral, first convert to the
1475 integer mode of that size and then access it as a floating-point
1476 value via a SUBREG. */
1477 if (!SCALAR_INT_MODE_P (tmode))
1479 scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
1480 x = convert_to_mode (int_mode, x, unsignedp);
1481 x = force_reg (int_mode, x);
1482 return gen_lowpart (tmode, x);
1485 return convert_to_mode (tmode, x, unsignedp);
1488 /* Try to use an ext(z)v pattern to extract a field from OP0.
1489 Return the extracted value on success, otherwise return null.
1490 EXTV describes the extraction instruction to use. If OP0_MODE
1491 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1492 The other arguments are as for extract_bit_field. */
1494 static rtx
1495 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1496 opt_scalar_int_mode op0_mode,
1497 unsigned HOST_WIDE_INT bitsize,
1498 unsigned HOST_WIDE_INT bitnum,
1499 int unsignedp, rtx target,
1500 machine_mode mode, machine_mode tmode)
1502 struct expand_operand ops[4];
1503 rtx spec_target = target;
1504 rtx spec_target_subreg = 0;
1505 scalar_int_mode ext_mode = extv->field_mode;
1506 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1508 if (bitsize == 0 || unit < bitsize)
1509 return NULL_RTX;
1511 if (MEM_P (op0))
1512 /* Get a reference to the first byte of the field. */
1513 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1514 &bitnum);
1515 else
1517 /* Convert from counting within OP0 to counting in EXT_MODE. */
1518 if (BYTES_BIG_ENDIAN)
1519 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
1521 /* If op0 is a register, we need it in EXT_MODE to make it
1522 acceptable to the format of ext(z)v. */
1523 if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
1524 return NULL_RTX;
1525 if (REG_P (op0) && op0_mode.require () != ext_mode)
1526 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1529 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1530 "backwards" from the size of the unit we are extracting from.
1531 Otherwise, we count bits from the most significant on a
1532 BYTES/BITS_BIG_ENDIAN machine. */
1534 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1535 bitnum = unit - bitsize - bitnum;
1537 if (target == 0)
1538 target = spec_target = gen_reg_rtx (tmode);
1540 if (GET_MODE (target) != ext_mode)
1542 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1543 between the mode of the extraction (word_mode) and the target
1544 mode. Instead, create a temporary and use convert_move to set
1545 the target. */
1546 if (REG_P (target)
1547 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1549 target = gen_lowpart (ext_mode, target);
1550 if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
1551 spec_target_subreg = target;
1553 else
1554 target = gen_reg_rtx (ext_mode);
1557 create_output_operand (&ops[0], target, ext_mode);
1558 create_fixed_operand (&ops[1], op0);
1559 create_integer_operand (&ops[2], bitsize);
1560 create_integer_operand (&ops[3], bitnum);
1561 if (maybe_expand_insn (extv->icode, 4, ops))
1563 target = ops[0].value;
1564 if (target == spec_target)
1565 return target;
1566 if (target == spec_target_subreg)
1567 return spec_target;
1568 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1570 return NULL_RTX;
1573 /* See whether it would be valid to extract the part of OP0 described
1574 by BITNUM and BITSIZE into a value of mode MODE using a subreg
1575 operation. Return the subreg if so, otherwise return null. */
1577 static rtx
1578 extract_bit_field_as_subreg (machine_mode mode, rtx op0,
1579 poly_uint64 bitsize, poly_uint64 bitnum)
1581 poly_uint64 bytenum;
1582 if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
1583 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
1584 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1585 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op0)))
1586 return simplify_gen_subreg (mode, op0, GET_MODE (op0), bytenum);
1587 return NULL_RTX;
1590 /* A subroutine of extract_bit_field, with the same arguments.
1591 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1592 if we can find no other means of implementing the operation.
1593 if FALLBACK_P is false, return NULL instead. */
1595 static rtx
1596 extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1597 int unsignedp, rtx target, machine_mode mode,
1598 machine_mode tmode, bool reverse, bool fallback_p,
1599 rtx *alt_rtl)
1601 rtx op0 = str_rtx;
1602 machine_mode mode1;
1604 if (tmode == VOIDmode)
1605 tmode = mode;
1607 while (GET_CODE (op0) == SUBREG)
1609 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1610 op0 = SUBREG_REG (op0);
1613 /* If we have an out-of-bounds access to a register, just return an
1614 uninitialized register of the required mode. This can occur if the
1615 source code contains an out-of-bounds access to a small array. */
1616 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
1617 return gen_reg_rtx (tmode);
1619 if (REG_P (op0)
1620 && mode == GET_MODE (op0)
1621 && known_eq (bitnum, 0U)
1622 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
1624 if (reverse)
1625 op0 = flip_storage_order (mode, op0);
1626 /* We're trying to extract a full register from itself. */
1627 return op0;
1630 /* First try to check for vector from vector extractions. */
1631 if (VECTOR_MODE_P (GET_MODE (op0))
1632 && !MEM_P (op0)
1633 && VECTOR_MODE_P (tmode)
1634 && known_eq (bitsize, GET_MODE_SIZE (tmode))
1635 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (tmode))
1637 machine_mode new_mode = GET_MODE (op0);
1638 if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
1640 scalar_mode inner_mode = GET_MODE_INNER (tmode);
1641 unsigned int nunits = (GET_MODE_BITSIZE (GET_MODE (op0))
1642 / GET_MODE_UNIT_BITSIZE (tmode));
1643 if (!mode_for_vector (inner_mode, nunits).exists (&new_mode)
1644 || !VECTOR_MODE_P (new_mode)
1645 || GET_MODE_SIZE (new_mode) != GET_MODE_SIZE (GET_MODE (op0))
1646 || GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode)
1647 || !targetm.vector_mode_supported_p (new_mode))
1648 new_mode = VOIDmode;
1650 poly_uint64 pos;
1651 if (new_mode != VOIDmode
1652 && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
1653 != CODE_FOR_nothing)
1654 && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos))
1656 struct expand_operand ops[3];
1657 machine_mode outermode = new_mode;
1658 machine_mode innermode = tmode;
1659 enum insn_code icode
1660 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1662 if (new_mode != GET_MODE (op0))
1663 op0 = gen_lowpart (new_mode, op0);
1664 create_output_operand (&ops[0], target, innermode);
1665 ops[0].target = 1;
1666 create_input_operand (&ops[1], op0, outermode);
1667 create_integer_operand (&ops[2], pos);
1668 if (maybe_expand_insn (icode, 3, ops))
1670 if (alt_rtl && ops[0].target)
1671 *alt_rtl = target;
1672 target = ops[0].value;
1673 if (GET_MODE (target) != mode)
1674 return gen_lowpart (tmode, target);
1675 return target;
1680 /* See if we can get a better vector mode before extracting. */
1681 if (VECTOR_MODE_P (GET_MODE (op0))
1682 && !MEM_P (op0)
1683 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1685 machine_mode new_mode;
1687 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1688 new_mode = MIN_MODE_VECTOR_FLOAT;
1689 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1690 new_mode = MIN_MODE_VECTOR_FRACT;
1691 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1692 new_mode = MIN_MODE_VECTOR_UFRACT;
1693 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1694 new_mode = MIN_MODE_VECTOR_ACCUM;
1695 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1696 new_mode = MIN_MODE_VECTOR_UACCUM;
1697 else
1698 new_mode = MIN_MODE_VECTOR_INT;
1700 FOR_EACH_MODE_FROM (new_mode, new_mode)
1701 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1702 && GET_MODE_UNIT_SIZE (new_mode) == GET_MODE_SIZE (tmode)
1703 && targetm.vector_mode_supported_p (new_mode))
1704 break;
1705 if (new_mode != VOIDmode)
1706 op0 = gen_lowpart (new_mode, op0);
1709 /* Use vec_extract patterns for extracting parts of vectors whenever
1710 available. */
1711 machine_mode outermode = GET_MODE (op0);
1712 scalar_mode innermode = GET_MODE_INNER (outermode);
1713 poly_uint64 pos;
1714 if (VECTOR_MODE_P (outermode)
1715 && !MEM_P (op0)
1716 && (convert_optab_handler (vec_extract_optab, outermode, innermode)
1717 != CODE_FOR_nothing)
1718 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
1719 && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
1721 struct expand_operand ops[3];
1722 enum insn_code icode
1723 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1725 create_output_operand (&ops[0], target, innermode);
1726 ops[0].target = 1;
1727 create_input_operand (&ops[1], op0, outermode);
1728 create_integer_operand (&ops[2], pos);
1729 if (maybe_expand_insn (icode, 3, ops))
1731 if (alt_rtl && ops[0].target)
1732 *alt_rtl = target;
1733 target = ops[0].value;
1734 if (GET_MODE (target) != mode)
1735 return gen_lowpart (tmode, target);
1736 return target;
1740 /* Make sure we are playing with integral modes. Pun with subregs
1741 if we aren't. */
1742 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
1743 scalar_int_mode imode;
1744 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
1746 if (MEM_P (op0))
1747 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
1748 0, MEM_SIZE (op0));
1749 else if (op0_mode.exists (&imode))
1751 op0 = gen_lowpart (imode, op0);
1753 /* If we got a SUBREG, force it into a register since we
1754 aren't going to be able to do another SUBREG on it. */
1755 if (GET_CODE (op0) == SUBREG)
1756 op0 = force_reg (imode, op0);
1758 else
1760 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1761 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1762 emit_move_insn (mem, op0);
1763 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1767 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1768 If that's wrong, the solution is to test for it and set TARGET to 0
1769 if needed. */
1771 /* Get the mode of the field to use for atomic access or subreg
1772 conversion. */
1773 if (!SCALAR_INT_MODE_P (tmode)
1774 || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
1775 mode1 = mode;
1776 gcc_assert (mode1 != BLKmode);
1778 /* Extraction of a full MODE1 value can be done with a subreg as long
1779 as the least significant bit of the value is the least significant
1780 bit of either OP0 or a word of OP0. */
1781 if (!MEM_P (op0) && !reverse)
1783 rtx sub = extract_bit_field_as_subreg (mode1, op0, bitsize, bitnum);
1784 if (sub)
1785 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1788 /* Extraction of a full MODE1 value can be done with a load as long as
1789 the field is on a byte boundary and is sufficiently aligned. */
1790 poly_uint64 bytenum;
1791 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum))
1793 op0 = adjust_bitfield_address (op0, mode1, bytenum);
1794 if (reverse)
1795 op0 = flip_storage_order (mode1, op0);
1796 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1799 /* If we have a memory source and a non-constant bit offset, restrict
1800 the memory to the referenced bytes. This is a worst-case fallback
1801 but is useful for things like vector booleans. */
1802 if (MEM_P (op0) && !bitnum.is_constant ())
1804 bytenum = bits_to_bytes_round_down (bitnum);
1805 bitnum = num_trailing_bits (bitnum);
1806 poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
1807 op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
1808 op0_mode = opt_scalar_int_mode ();
1811 /* It's possible we'll need to handle other cases here for
1812 polynomial bitnum and bitsize. */
1814 /* From here on we need to be looking at a fixed-size insertion. */
1815 return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
1816 bitnum.to_constant (), unsignedp,
1817 target, mode, tmode, reverse, fallback_p);
1820 /* Subroutine of extract_bit_field_1, with the same arguments, except
1821 that BITSIZE and BITNUM are constant. Handle cases specific to
1822 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1823 otherwise OP0 is a BLKmode MEM. */
1825 static rtx
1826 extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1827 unsigned HOST_WIDE_INT bitsize,
1828 unsigned HOST_WIDE_INT bitnum, int unsignedp,
1829 rtx target, machine_mode mode, machine_mode tmode,
1830 bool reverse, bool fallback_p)
1832 /* Handle fields bigger than a word. */
1834 if (bitsize > BITS_PER_WORD)
1836 /* Here we transfer the words of the field
1837 in the order least significant first.
1838 This is because the most significant word is the one which may
1839 be less than full. */
1841 const bool backwards = WORDS_BIG_ENDIAN;
1842 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1843 unsigned int i;
1844 rtx_insn *last;
1846 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1847 target = gen_reg_rtx (mode);
1849 /* In case we're about to clobber a base register or something
1850 (see gcc.c-torture/execute/20040625-1.c). */
1851 if (reg_mentioned_p (target, op0))
1852 target = gen_reg_rtx (mode);
1854 /* Indicate for flow that the entire target reg is being set. */
1855 emit_clobber (target);
1857 /* The mode must be fixed-size, since extract_bit_field_1 handles
1858 extractions from variable-sized objects before calling this
1859 function. */
1860 unsigned int target_size = GET_MODE_SIZE (GET_MODE (target));
1861 last = get_last_insn ();
1862 for (i = 0; i < nwords; i++)
1864 /* If I is 0, use the low-order word in both field and target;
1865 if I is 1, use the next to lowest word; and so on. */
1866 /* Word number in TARGET to use. */
1867 unsigned int wordnum
1868 = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
1869 /* Offset from start of field in OP0. */
1870 unsigned int bit_offset = (backwards ^ reverse
1871 ? MAX ((int) bitsize - ((int) i + 1)
1872 * BITS_PER_WORD,
1874 : (int) i * BITS_PER_WORD);
1875 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1876 rtx result_part
1877 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1878 bitsize - i * BITS_PER_WORD),
1879 bitnum + bit_offset, 1, target_part,
1880 mode, word_mode, reverse, fallback_p, NULL);
1882 gcc_assert (target_part);
1883 if (!result_part)
1885 delete_insns_since (last);
1886 return NULL;
1889 if (result_part != target_part)
1890 emit_move_insn (target_part, result_part);
1893 if (unsignedp)
1895 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1896 need to be zero'd out. */
1897 if (target_size > nwords * UNITS_PER_WORD)
1899 unsigned int i, total_words;
1901 total_words = target_size / UNITS_PER_WORD;
1902 for (i = nwords; i < total_words; i++)
1903 emit_move_insn
1904 (operand_subword (target,
1905 backwards ? total_words - i - 1 : i,
1906 1, VOIDmode),
1907 const0_rtx);
1909 return target;
1912 /* Signed bit field: sign-extend with two arithmetic shifts. */
1913 target = expand_shift (LSHIFT_EXPR, mode, target,
1914 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1915 return expand_shift (RSHIFT_EXPR, mode, target,
1916 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1919 /* If OP0 is a multi-word register, narrow it to the affected word.
1920 If the region spans two words, defer to extract_split_bit_field. */
1921 if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
1923 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1925 if (!fallback_p)
1926 return NULL_RTX;
1927 target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
1928 unsignedp, reverse);
1929 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1931 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
1932 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1933 op0_mode = word_mode;
1934 bitnum %= BITS_PER_WORD;
1937 /* From here on we know the desired field is smaller than a word.
1938 If OP0 is a register, it too fits within a word. */
1939 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1940 extraction_insn extv;
1941 if (!MEM_P (op0)
1942 && !reverse
1943 /* ??? We could limit the structure size to the part of OP0 that
1944 contains the field, with appropriate checks for endianness
1945 and TARGET_TRULY_NOOP_TRUNCATION. */
1946 && get_best_reg_extraction_insn (&extv, pattern,
1947 GET_MODE_BITSIZE (op0_mode.require ()),
1948 tmode))
1950 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1951 bitsize, bitnum,
1952 unsignedp, target, mode,
1953 tmode);
1954 if (result)
1955 return result;
1958 /* If OP0 is a memory, try copying it to a register and seeing if a
1959 cheap register alternative is available. */
1960 if (MEM_P (op0) & !reverse)
1962 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1963 tmode))
1965 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1966 bitsize, bitnum,
1967 unsignedp, target, mode,
1968 tmode);
1969 if (result)
1970 return result;
1973 rtx_insn *last = get_last_insn ();
1975 /* Try loading part of OP0 into a register and extracting the
1976 bitfield from that. */
1977 unsigned HOST_WIDE_INT bitpos;
1978 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1979 0, 0, tmode, &bitpos);
1980 if (xop0)
1982 xop0 = copy_to_reg (xop0);
1983 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1984 unsignedp, target,
1985 mode, tmode, reverse, false, NULL);
1986 if (result)
1987 return result;
1988 delete_insns_since (last);
1992 if (!fallback_p)
1993 return NULL;
1995 /* Find a correspondingly-sized integer field, so we can apply
1996 shifts and masks to it. */
1997 scalar_int_mode int_mode;
1998 if (!int_mode_for_mode (tmode).exists (&int_mode))
1999 /* If this fails, we should probably push op0 out to memory and then
2000 do a load. */
2001 int_mode = int_mode_for_mode (mode).require ();
2003 target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
2004 bitnum, target, unsignedp, reverse);
2006 /* Complex values must be reversed piecewise, so we need to undo the global
2007 reversal, convert to the complex mode and reverse again. */
2008 if (reverse && COMPLEX_MODE_P (tmode))
2010 target = flip_storage_order (int_mode, target);
2011 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2012 target = flip_storage_order (tmode, target);
2014 else
2015 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2017 return target;
2020 /* Generate code to extract a byte-field from STR_RTX
2021 containing BITSIZE bits, starting at BITNUM,
2022 and put it in TARGET if possible (if TARGET is nonzero).
2023 Regardless of TARGET, we return the rtx for where the value is placed.
2025 STR_RTX is the structure containing the byte (a REG or MEM).
2026 UNSIGNEDP is nonzero if this is an unsigned bit field.
2027 MODE is the natural mode of the field value once extracted.
2028 TMODE is the mode the caller would like the value to have;
2029 but the value may be returned with type MODE instead.
2031 If REVERSE is true, the extraction is to be done in reverse order.
2033 If a TARGET is specified and we can store in it at no extra cost,
2034 we do so, and return TARGET.
2035 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
2036 if they are equally easy. */
2039 extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
2040 int unsignedp, rtx target, machine_mode mode,
2041 machine_mode tmode, bool reverse, rtx *alt_rtl)
2043 machine_mode mode1;
2045 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2046 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
2047 mode1 = GET_MODE (str_rtx);
2048 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
2049 mode1 = GET_MODE (target);
2050 else
2051 mode1 = tmode;
2053 unsigned HOST_WIDE_INT ibitsize, ibitnum;
2054 scalar_int_mode int_mode;
2055 if (bitsize.is_constant (&ibitsize)
2056 && bitnum.is_constant (&ibitnum)
2057 && is_a <scalar_int_mode> (mode1, &int_mode)
2058 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum,
2059 int_mode, 0, 0))
2061 /* Extraction of a full INT_MODE value can be done with a simple load.
2062 We know here that the field can be accessed with one single
2063 instruction. For targets that support unaligned memory,
2064 an unaligned access may be necessary. */
2065 if (ibitsize == GET_MODE_BITSIZE (int_mode))
2067 rtx result = adjust_bitfield_address (str_rtx, int_mode,
2068 ibitnum / BITS_PER_UNIT);
2069 if (reverse)
2070 result = flip_storage_order (int_mode, result);
2071 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
2072 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
2075 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum,
2076 &ibitnum);
2077 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
2078 str_rtx = copy_to_reg (str_rtx);
2079 return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp,
2080 target, mode, tmode, reverse, true, alt_rtl);
2083 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
2084 target, mode, tmode, reverse, true, alt_rtl);
2087 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2088 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2089 otherwise OP0 is a BLKmode MEM.
2091 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2092 If REVERSE is true, the extraction is to be done in reverse order.
2094 If TARGET is nonzero, attempts to store the value there
2095 and return TARGET, but this is not guaranteed.
2096 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2098 static rtx
2099 extract_fixed_bit_field (machine_mode tmode, rtx op0,
2100 opt_scalar_int_mode op0_mode,
2101 unsigned HOST_WIDE_INT bitsize,
2102 unsigned HOST_WIDE_INT bitnum, rtx target,
2103 int unsignedp, bool reverse)
2105 scalar_int_mode mode;
2106 if (MEM_P (op0))
2108 if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
2109 BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
2110 /* The only way this should occur is if the field spans word
2111 boundaries. */
2112 return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
2113 unsignedp, reverse);
2115 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
2117 else
2118 mode = op0_mode.require ();
2120 return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
2121 target, unsignedp, reverse);
2124 /* Helper function for extract_fixed_bit_field, extracts
2125 the bit field always using MODE, which is the mode of OP0.
2126 The other arguments are as for extract_fixed_bit_field. */
2128 static rtx
2129 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
2130 unsigned HOST_WIDE_INT bitsize,
2131 unsigned HOST_WIDE_INT bitnum, rtx target,
2132 int unsignedp, bool reverse)
2134 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2135 for invalid input, such as extract equivalent of f5 from
2136 gcc.dg/pr48335-2.c. */
2138 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2139 /* BITNUM is the distance between our msb and that of OP0.
2140 Convert it to the distance from the lsb. */
2141 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
2143 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2144 We have reduced the big-endian case to the little-endian case. */
2145 if (reverse)
2146 op0 = flip_storage_order (mode, op0);
2148 if (unsignedp)
2150 if (bitnum)
2152 /* If the field does not already start at the lsb,
2153 shift it so it does. */
2154 /* Maybe propagate the target for the shift. */
2155 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2156 if (tmode != mode)
2157 subtarget = 0;
2158 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
2160 /* Convert the value to the desired mode. TMODE must also be a
2161 scalar integer for this conversion to make sense, since we
2162 shouldn't reinterpret the bits. */
2163 scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
2164 if (mode != new_mode)
2165 op0 = convert_to_mode (new_mode, op0, 1);
2167 /* Unless the msb of the field used to be the msb when we shifted,
2168 mask out the upper bits. */
2170 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
2171 return expand_binop (new_mode, and_optab, op0,
2172 mask_rtx (new_mode, 0, bitsize, 0),
2173 target, 1, OPTAB_LIB_WIDEN);
2174 return op0;
2177 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2178 then arithmetic-shift its lsb to the lsb of the word. */
2179 op0 = force_reg (mode, op0);
2181 /* Find the narrowest integer mode that contains the field. */
2183 opt_scalar_int_mode mode_iter;
2184 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2185 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
2186 break;
2188 mode = mode_iter.require ();
2189 op0 = convert_to_mode (mode, op0, 0);
2191 if (mode != tmode)
2192 target = 0;
2194 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
2196 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
2197 /* Maybe propagate the target for the shift. */
2198 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2199 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2202 return expand_shift (RSHIFT_EXPR, mode, op0,
2203 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
2206 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2207 VALUE << BITPOS. */
2209 static rtx
2210 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
2211 int bitpos)
2213 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
2216 /* Extract a bit field that is split across two words
2217 and return an RTX for the result.
2219 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2220 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2221 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2222 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2223 a BLKmode MEM.
2225 If REVERSE is true, the extraction is to be done in reverse order. */
2227 static rtx
2228 extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
2229 unsigned HOST_WIDE_INT bitsize,
2230 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2231 bool reverse)
2233 unsigned int unit;
2234 unsigned int bitsdone = 0;
2235 rtx result = NULL_RTX;
2236 int first = 1;
2238 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2239 much at a time. */
2240 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2241 unit = BITS_PER_WORD;
2242 else
2243 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2245 while (bitsdone < bitsize)
2247 unsigned HOST_WIDE_INT thissize;
2248 rtx part;
2249 unsigned HOST_WIDE_INT thispos;
2250 unsigned HOST_WIDE_INT offset;
2252 offset = (bitpos + bitsdone) / unit;
2253 thispos = (bitpos + bitsdone) % unit;
2255 /* THISSIZE must not overrun a word boundary. Otherwise,
2256 extract_fixed_bit_field will call us again, and we will mutually
2257 recurse forever. */
2258 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2259 thissize = MIN (thissize, unit - thispos);
2261 /* If OP0 is a register, then handle OFFSET here. */
2262 rtx op0_piece = op0;
2263 opt_scalar_int_mode op0_piece_mode = op0_mode;
2264 if (SUBREG_P (op0) || REG_P (op0))
2266 op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
2267 op0_piece_mode = word_mode;
2268 offset = 0;
2271 /* Extract the parts in bit-counting order,
2272 whose meaning is determined by BYTES_PER_UNIT.
2273 OFFSET is in UNITs, and UNIT is in bits. */
2274 part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
2275 thissize, offset * unit + thispos,
2276 0, 1, reverse);
2277 bitsdone += thissize;
2279 /* Shift this part into place for the result. */
2280 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2282 if (bitsize != bitsdone)
2283 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2284 bitsize - bitsdone, 0, 1);
2286 else
2288 if (bitsdone != thissize)
2289 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2290 bitsdone - thissize, 0, 1);
2293 if (first)
2294 result = part;
2295 else
2296 /* Combine the parts with bitwise or. This works
2297 because we extracted each part as an unsigned bit field. */
2298 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2299 OPTAB_LIB_WIDEN);
2301 first = 0;
2304 /* Unsigned bit field: we are done. */
2305 if (unsignedp)
2306 return result;
2307 /* Signed bit field: sign-extend with two arithmetic shifts. */
2308 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2309 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2310 return expand_shift (RSHIFT_EXPR, word_mode, result,
2311 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2314 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2315 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2316 MODE, fill the upper bits with zeros. Fail if the layout of either
2317 mode is unknown (as for CC modes) or if the extraction would involve
2318 unprofitable mode punning. Return the value on success, otherwise
2319 return null.
2321 This is different from gen_lowpart* in these respects:
2323 - the returned value must always be considered an rvalue
2325 - when MODE is wider than SRC_MODE, the extraction involves
2326 a zero extension
2328 - when MODE is smaller than SRC_MODE, the extraction involves
2329 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2331 In other words, this routine performs a computation, whereas the
2332 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2333 operations. */
2336 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2338 scalar_int_mode int_mode, src_int_mode;
2340 if (mode == src_mode)
2341 return src;
2343 if (CONSTANT_P (src))
2345 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2346 fails, it will happily create (subreg (symbol_ref)) or similar
2347 invalid SUBREGs. */
2348 poly_uint64 byte = subreg_lowpart_offset (mode, src_mode);
2349 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2350 if (ret)
2351 return ret;
2353 if (GET_MODE (src) == VOIDmode
2354 || !validate_subreg (mode, src_mode, src, byte))
2355 return NULL_RTX;
2357 src = force_reg (GET_MODE (src), src);
2358 return gen_rtx_SUBREG (mode, src, byte);
2361 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2362 return NULL_RTX;
2364 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2365 && targetm.modes_tieable_p (mode, src_mode))
2367 rtx x = gen_lowpart_common (mode, src);
2368 if (x)
2369 return x;
2372 if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
2373 || !int_mode_for_mode (mode).exists (&int_mode))
2374 return NULL_RTX;
2376 if (!targetm.modes_tieable_p (src_int_mode, src_mode))
2377 return NULL_RTX;
2378 if (!targetm.modes_tieable_p (int_mode, mode))
2379 return NULL_RTX;
2381 src = gen_lowpart (src_int_mode, src);
2382 src = convert_modes (int_mode, src_int_mode, src, true);
2383 src = gen_lowpart (mode, src);
2384 return src;
2387 /* Add INC into TARGET. */
2389 void
2390 expand_inc (rtx target, rtx inc)
2392 rtx value = expand_binop (GET_MODE (target), add_optab,
2393 target, inc,
2394 target, 0, OPTAB_LIB_WIDEN);
2395 if (value != target)
2396 emit_move_insn (target, value);
2399 /* Subtract DEC from TARGET. */
2401 void
2402 expand_dec (rtx target, rtx dec)
2404 rtx value = expand_binop (GET_MODE (target), sub_optab,
2405 target, dec,
2406 target, 0, OPTAB_LIB_WIDEN);
2407 if (value != target)
2408 emit_move_insn (target, value);
2411 /* Output a shift instruction for expression code CODE,
2412 with SHIFTED being the rtx for the value to shift,
2413 and AMOUNT the rtx for the amount to shift by.
2414 Store the result in the rtx TARGET, if that is convenient.
2415 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2416 Return the rtx for where the value is.
2417 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2418 in which case 0 is returned. */
2420 static rtx
2421 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2422 rtx amount, rtx target, int unsignedp, bool may_fail = false)
2424 rtx op1, temp = 0;
2425 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2426 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2427 optab lshift_optab = ashl_optab;
2428 optab rshift_arith_optab = ashr_optab;
2429 optab rshift_uns_optab = lshr_optab;
2430 optab lrotate_optab = rotl_optab;
2431 optab rrotate_optab = rotr_optab;
2432 machine_mode op1_mode;
2433 scalar_mode scalar_mode = GET_MODE_INNER (mode);
2434 int attempt;
2435 bool speed = optimize_insn_for_speed_p ();
2437 op1 = amount;
2438 op1_mode = GET_MODE (op1);
2440 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2441 shift amount is a vector, use the vector/vector shift patterns. */
2442 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2444 lshift_optab = vashl_optab;
2445 rshift_arith_optab = vashr_optab;
2446 rshift_uns_optab = vlshr_optab;
2447 lrotate_optab = vrotl_optab;
2448 rrotate_optab = vrotr_optab;
2451 /* Previously detected shift-counts computed by NEGATE_EXPR
2452 and shifted in the other direction; but that does not work
2453 on all machines. */
2455 if (SHIFT_COUNT_TRUNCATED)
2457 if (CONST_INT_P (op1)
2458 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2459 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2460 op1 = gen_int_shift_amount (mode,
2461 (unsigned HOST_WIDE_INT) INTVAL (op1)
2462 % GET_MODE_BITSIZE (scalar_mode));
2463 else if (GET_CODE (op1) == SUBREG
2464 && subreg_lowpart_p (op1)
2465 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2466 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2467 op1 = SUBREG_REG (op1);
2470 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2471 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2472 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2473 amount instead. */
2474 if (rotate
2475 && CONST_INT_P (op1)
2476 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2477 GET_MODE_BITSIZE (scalar_mode) - 1))
2479 op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
2480 - INTVAL (op1)));
2481 left = !left;
2482 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2485 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2486 Note that this is not the case for bigger values. For instance a rotation
2487 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2488 0x04030201 (bswapsi). */
2489 if (rotate
2490 && CONST_INT_P (op1)
2491 && INTVAL (op1) == BITS_PER_UNIT
2492 && GET_MODE_SIZE (scalar_mode) == 2
2493 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2494 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2495 unsignedp);
2497 if (op1 == const0_rtx)
2498 return shifted;
2500 /* Check whether its cheaper to implement a left shift by a constant
2501 bit count by a sequence of additions. */
2502 if (code == LSHIFT_EXPR
2503 && CONST_INT_P (op1)
2504 && INTVAL (op1) > 0
2505 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2506 && INTVAL (op1) < MAX_BITS_PER_WORD
2507 && (shift_cost (speed, mode, INTVAL (op1))
2508 > INTVAL (op1) * add_cost (speed, mode))
2509 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2511 int i;
2512 for (i = 0; i < INTVAL (op1); i++)
2514 temp = force_reg (mode, shifted);
2515 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2516 unsignedp, OPTAB_LIB_WIDEN);
2518 return shifted;
2521 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2523 enum optab_methods methods;
2525 if (attempt == 0)
2526 methods = OPTAB_DIRECT;
2527 else if (attempt == 1)
2528 methods = OPTAB_WIDEN;
2529 else
2530 methods = OPTAB_LIB_WIDEN;
2532 if (rotate)
2534 /* Widening does not work for rotation. */
2535 if (methods == OPTAB_WIDEN)
2536 continue;
2537 else if (methods == OPTAB_LIB_WIDEN)
2539 /* If we have been unable to open-code this by a rotation,
2540 do it as the IOR of two shifts. I.e., to rotate A
2541 by N bits, compute
2542 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2543 where C is the bitsize of A.
2545 It is theoretically possible that the target machine might
2546 not be able to perform either shift and hence we would
2547 be making two libcalls rather than just the one for the
2548 shift (similarly if IOR could not be done). We will allow
2549 this extremely unlikely lossage to avoid complicating the
2550 code below. */
2552 rtx subtarget = target == shifted ? 0 : target;
2553 rtx new_amount, other_amount;
2554 rtx temp1;
2556 new_amount = op1;
2557 if (op1 == const0_rtx)
2558 return shifted;
2559 else if (CONST_INT_P (op1))
2560 other_amount = gen_int_shift_amount
2561 (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2562 else
2564 other_amount
2565 = simplify_gen_unary (NEG, GET_MODE (op1),
2566 op1, GET_MODE (op1));
2567 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2568 other_amount
2569 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2570 gen_int_mode (mask, GET_MODE (op1)));
2573 shifted = force_reg (mode, shifted);
2575 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2576 mode, shifted, new_amount, 0, 1);
2577 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2578 mode, shifted, other_amount,
2579 subtarget, 1);
2580 return expand_binop (mode, ior_optab, temp, temp1, target,
2581 unsignedp, methods);
2584 temp = expand_binop (mode,
2585 left ? lrotate_optab : rrotate_optab,
2586 shifted, op1, target, unsignedp, methods);
2588 else if (unsignedp)
2589 temp = expand_binop (mode,
2590 left ? lshift_optab : rshift_uns_optab,
2591 shifted, op1, target, unsignedp, methods);
2593 /* Do arithmetic shifts.
2594 Also, if we are going to widen the operand, we can just as well
2595 use an arithmetic right-shift instead of a logical one. */
2596 if (temp == 0 && ! rotate
2597 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2599 enum optab_methods methods1 = methods;
2601 /* If trying to widen a log shift to an arithmetic shift,
2602 don't accept an arithmetic shift of the same size. */
2603 if (unsignedp)
2604 methods1 = OPTAB_MUST_WIDEN;
2606 /* Arithmetic shift */
2608 temp = expand_binop (mode,
2609 left ? lshift_optab : rshift_arith_optab,
2610 shifted, op1, target, unsignedp, methods1);
2613 /* We used to try extzv here for logical right shifts, but that was
2614 only useful for one machine, the VAX, and caused poor code
2615 generation there for lshrdi3, so the code was deleted and a
2616 define_expand for lshrsi3 was added to vax.md. */
2619 gcc_assert (temp != NULL_RTX || may_fail);
2620 return temp;
2623 /* Output a shift instruction for expression code CODE,
2624 with SHIFTED being the rtx for the value to shift,
2625 and AMOUNT the amount to shift by.
2626 Store the result in the rtx TARGET, if that is convenient.
2627 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2628 Return the rtx for where the value is. */
2631 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2632 poly_int64 amount, rtx target, int unsignedp)
2634 return expand_shift_1 (code, mode, shifted,
2635 gen_int_shift_amount (mode, amount),
2636 target, unsignedp);
2639 /* Likewise, but return 0 if that cannot be done. */
2641 static rtx
2642 maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2643 int amount, rtx target, int unsignedp)
2645 return expand_shift_1 (code, mode,
2646 shifted, GEN_INT (amount), target, unsignedp, true);
2649 /* Output a shift instruction for expression code CODE,
2650 with SHIFTED being the rtx for the value to shift,
2651 and AMOUNT the tree for the amount to shift by.
2652 Store the result in the rtx TARGET, if that is convenient.
2653 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2654 Return the rtx for where the value is. */
2657 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2658 tree amount, rtx target, int unsignedp)
2660 return expand_shift_1 (code, mode,
2661 shifted, expand_normal (amount), target, unsignedp);
2665 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2666 const struct mult_cost *, machine_mode mode);
2667 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2668 const struct algorithm *, enum mult_variant);
2669 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2670 static rtx extract_high_half (scalar_int_mode, rtx);
2671 static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
2672 static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
2673 int, int);
2674 /* Compute and return the best algorithm for multiplying by T.
2675 The algorithm must cost less than cost_limit
2676 If retval.cost >= COST_LIMIT, no algorithm was found and all
2677 other field of the returned struct are undefined.
2678 MODE is the machine mode of the multiplication. */
2680 static void
2681 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2682 const struct mult_cost *cost_limit, machine_mode mode)
2684 int m;
2685 struct algorithm *alg_in, *best_alg;
2686 struct mult_cost best_cost;
2687 struct mult_cost new_limit;
2688 int op_cost, op_latency;
2689 unsigned HOST_WIDE_INT orig_t = t;
2690 unsigned HOST_WIDE_INT q;
2691 int maxm, hash_index;
2692 bool cache_hit = false;
2693 enum alg_code cache_alg = alg_zero;
2694 bool speed = optimize_insn_for_speed_p ();
2695 scalar_int_mode imode;
2696 struct alg_hash_entry *entry_ptr;
2698 /* Indicate that no algorithm is yet found. If no algorithm
2699 is found, this value will be returned and indicate failure. */
2700 alg_out->cost.cost = cost_limit->cost + 1;
2701 alg_out->cost.latency = cost_limit->latency + 1;
2703 if (cost_limit->cost < 0
2704 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2705 return;
2707 /* Be prepared for vector modes. */
2708 imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
2710 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2712 /* Restrict the bits of "t" to the multiplication's mode. */
2713 t &= GET_MODE_MASK (imode);
2715 /* t == 1 can be done in zero cost. */
2716 if (t == 1)
2718 alg_out->ops = 1;
2719 alg_out->cost.cost = 0;
2720 alg_out->cost.latency = 0;
2721 alg_out->op[0] = alg_m;
2722 return;
2725 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2726 fail now. */
2727 if (t == 0)
2729 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2730 return;
2731 else
2733 alg_out->ops = 1;
2734 alg_out->cost.cost = zero_cost (speed);
2735 alg_out->cost.latency = zero_cost (speed);
2736 alg_out->op[0] = alg_zero;
2737 return;
2741 /* We'll be needing a couple extra algorithm structures now. */
2743 alg_in = XALLOCA (struct algorithm);
2744 best_alg = XALLOCA (struct algorithm);
2745 best_cost = *cost_limit;
2747 /* Compute the hash index. */
2748 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2750 /* See if we already know what to do for T. */
2751 entry_ptr = alg_hash_entry_ptr (hash_index);
2752 if (entry_ptr->t == t
2753 && entry_ptr->mode == mode
2754 && entry_ptr->speed == speed
2755 && entry_ptr->alg != alg_unknown)
2757 cache_alg = entry_ptr->alg;
2759 if (cache_alg == alg_impossible)
2761 /* The cache tells us that it's impossible to synthesize
2762 multiplication by T within entry_ptr->cost. */
2763 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2764 /* COST_LIMIT is at least as restrictive as the one
2765 recorded in the hash table, in which case we have no
2766 hope of synthesizing a multiplication. Just
2767 return. */
2768 return;
2770 /* If we get here, COST_LIMIT is less restrictive than the
2771 one recorded in the hash table, so we may be able to
2772 synthesize a multiplication. Proceed as if we didn't
2773 have the cache entry. */
2775 else
2777 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2778 /* The cached algorithm shows that this multiplication
2779 requires more cost than COST_LIMIT. Just return. This
2780 way, we don't clobber this cache entry with
2781 alg_impossible but retain useful information. */
2782 return;
2784 cache_hit = true;
2786 switch (cache_alg)
2788 case alg_shift:
2789 goto do_alg_shift;
2791 case alg_add_t_m2:
2792 case alg_sub_t_m2:
2793 goto do_alg_addsub_t_m2;
2795 case alg_add_factor:
2796 case alg_sub_factor:
2797 goto do_alg_addsub_factor;
2799 case alg_add_t2_m:
2800 goto do_alg_add_t2_m;
2802 case alg_sub_t2_m:
2803 goto do_alg_sub_t2_m;
2805 default:
2806 gcc_unreachable ();
2811 /* If we have a group of zero bits at the low-order part of T, try
2812 multiplying by the remaining bits and then doing a shift. */
2814 if ((t & 1) == 0)
2816 do_alg_shift:
2817 m = ctz_or_zero (t); /* m = number of low zero bits */
2818 if (m < maxm)
2820 q = t >> m;
2821 /* The function expand_shift will choose between a shift and
2822 a sequence of additions, so the observed cost is given as
2823 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2824 op_cost = m * add_cost (speed, mode);
2825 if (shift_cost (speed, mode, m) < op_cost)
2826 op_cost = shift_cost (speed, mode, m);
2827 new_limit.cost = best_cost.cost - op_cost;
2828 new_limit.latency = best_cost.latency - op_cost;
2829 synth_mult (alg_in, q, &new_limit, mode);
2831 alg_in->cost.cost += op_cost;
2832 alg_in->cost.latency += op_cost;
2833 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2835 best_cost = alg_in->cost;
2836 std::swap (alg_in, best_alg);
2837 best_alg->log[best_alg->ops] = m;
2838 best_alg->op[best_alg->ops] = alg_shift;
2841 /* See if treating ORIG_T as a signed number yields a better
2842 sequence. Try this sequence only for a negative ORIG_T
2843 as it would be useless for a non-negative ORIG_T. */
2844 if ((HOST_WIDE_INT) orig_t < 0)
2846 /* Shift ORIG_T as follows because a right shift of a
2847 negative-valued signed type is implementation
2848 defined. */
2849 q = ~(~orig_t >> m);
2850 /* The function expand_shift will choose between a shift
2851 and a sequence of additions, so the observed cost is
2852 given as MIN (m * add_cost(speed, mode),
2853 shift_cost(speed, mode, m)). */
2854 op_cost = m * add_cost (speed, mode);
2855 if (shift_cost (speed, mode, m) < op_cost)
2856 op_cost = shift_cost (speed, mode, m);
2857 new_limit.cost = best_cost.cost - op_cost;
2858 new_limit.latency = best_cost.latency - op_cost;
2859 synth_mult (alg_in, q, &new_limit, mode);
2861 alg_in->cost.cost += op_cost;
2862 alg_in->cost.latency += op_cost;
2863 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2865 best_cost = alg_in->cost;
2866 std::swap (alg_in, best_alg);
2867 best_alg->log[best_alg->ops] = m;
2868 best_alg->op[best_alg->ops] = alg_shift;
2872 if (cache_hit)
2873 goto done;
2876 /* If we have an odd number, add or subtract one. */
2877 if ((t & 1) != 0)
2879 unsigned HOST_WIDE_INT w;
2881 do_alg_addsub_t_m2:
2882 for (w = 1; (w & t) != 0; w <<= 1)
2884 /* If T was -1, then W will be zero after the loop. This is another
2885 case where T ends with ...111. Handling this with (T + 1) and
2886 subtract 1 produces slightly better code and results in algorithm
2887 selection much faster than treating it like the ...0111 case
2888 below. */
2889 if (w == 0
2890 || (w > 2
2891 /* Reject the case where t is 3.
2892 Thus we prefer addition in that case. */
2893 && t != 3))
2895 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2897 op_cost = add_cost (speed, mode);
2898 new_limit.cost = best_cost.cost - op_cost;
2899 new_limit.latency = best_cost.latency - op_cost;
2900 synth_mult (alg_in, t + 1, &new_limit, mode);
2902 alg_in->cost.cost += op_cost;
2903 alg_in->cost.latency += op_cost;
2904 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2906 best_cost = alg_in->cost;
2907 std::swap (alg_in, best_alg);
2908 best_alg->log[best_alg->ops] = 0;
2909 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2912 else
2914 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2916 op_cost = add_cost (speed, mode);
2917 new_limit.cost = best_cost.cost - op_cost;
2918 new_limit.latency = best_cost.latency - op_cost;
2919 synth_mult (alg_in, t - 1, &new_limit, mode);
2921 alg_in->cost.cost += op_cost;
2922 alg_in->cost.latency += op_cost;
2923 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2925 best_cost = alg_in->cost;
2926 std::swap (alg_in, best_alg);
2927 best_alg->log[best_alg->ops] = 0;
2928 best_alg->op[best_alg->ops] = alg_add_t_m2;
2932 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2933 quickly with a - a * n for some appropriate constant n. */
2934 m = exact_log2 (-orig_t + 1);
2935 if (m >= 0 && m < maxm)
2937 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2938 /* If the target has a cheap shift-and-subtract insn use
2939 that in preference to a shift insn followed by a sub insn.
2940 Assume that the shift-and-sub is "atomic" with a latency
2941 equal to it's cost, otherwise assume that on superscalar
2942 hardware the shift may be executed concurrently with the
2943 earlier steps in the algorithm. */
2944 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2946 op_cost = shiftsub1_cost (speed, mode, m);
2947 op_latency = op_cost;
2949 else
2950 op_latency = add_cost (speed, mode);
2952 new_limit.cost = best_cost.cost - op_cost;
2953 new_limit.latency = best_cost.latency - op_latency;
2954 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2955 &new_limit, mode);
2957 alg_in->cost.cost += op_cost;
2958 alg_in->cost.latency += op_latency;
2959 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2961 best_cost = alg_in->cost;
2962 std::swap (alg_in, best_alg);
2963 best_alg->log[best_alg->ops] = m;
2964 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2968 if (cache_hit)
2969 goto done;
2972 /* Look for factors of t of the form
2973 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2974 If we find such a factor, we can multiply by t using an algorithm that
2975 multiplies by q, shift the result by m and add/subtract it to itself.
2977 We search for large factors first and loop down, even if large factors
2978 are less probable than small; if we find a large factor we will find a
2979 good sequence quickly, and therefore be able to prune (by decreasing
2980 COST_LIMIT) the search. */
2982 do_alg_addsub_factor:
2983 for (m = floor_log2 (t - 1); m >= 2; m--)
2985 unsigned HOST_WIDE_INT d;
2987 d = (HOST_WIDE_INT_1U << m) + 1;
2988 if (t % d == 0 && t > d && m < maxm
2989 && (!cache_hit || cache_alg == alg_add_factor))
2991 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2992 if (shiftadd_cost (speed, mode, m) <= op_cost)
2993 op_cost = shiftadd_cost (speed, mode, m);
2995 op_latency = op_cost;
2998 new_limit.cost = best_cost.cost - op_cost;
2999 new_limit.latency = best_cost.latency - op_latency;
3000 synth_mult (alg_in, t / d, &new_limit, mode);
3002 alg_in->cost.cost += op_cost;
3003 alg_in->cost.latency += op_latency;
3004 if (alg_in->cost.latency < op_cost)
3005 alg_in->cost.latency = op_cost;
3006 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3008 best_cost = alg_in->cost;
3009 std::swap (alg_in, best_alg);
3010 best_alg->log[best_alg->ops] = m;
3011 best_alg->op[best_alg->ops] = alg_add_factor;
3013 /* Other factors will have been taken care of in the recursion. */
3014 break;
3017 d = (HOST_WIDE_INT_1U << m) - 1;
3018 if (t % d == 0 && t > d && m < maxm
3019 && (!cache_hit || cache_alg == alg_sub_factor))
3021 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
3022 if (shiftsub0_cost (speed, mode, m) <= op_cost)
3023 op_cost = shiftsub0_cost (speed, mode, m);
3025 op_latency = op_cost;
3027 new_limit.cost = best_cost.cost - op_cost;
3028 new_limit.latency = best_cost.latency - op_latency;
3029 synth_mult (alg_in, t / d, &new_limit, mode);
3031 alg_in->cost.cost += op_cost;
3032 alg_in->cost.latency += op_latency;
3033 if (alg_in->cost.latency < op_cost)
3034 alg_in->cost.latency = op_cost;
3035 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3037 best_cost = alg_in->cost;
3038 std::swap (alg_in, best_alg);
3039 best_alg->log[best_alg->ops] = m;
3040 best_alg->op[best_alg->ops] = alg_sub_factor;
3042 break;
3045 if (cache_hit)
3046 goto done;
3048 /* Try shift-and-add (load effective address) instructions,
3049 i.e. do a*3, a*5, a*9. */
3050 if ((t & 1) != 0)
3052 do_alg_add_t2_m:
3053 q = t - 1;
3054 m = ctz_hwi (q);
3055 if (q && m < maxm)
3057 op_cost = shiftadd_cost (speed, mode, m);
3058 new_limit.cost = best_cost.cost - op_cost;
3059 new_limit.latency = best_cost.latency - op_cost;
3060 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
3062 alg_in->cost.cost += op_cost;
3063 alg_in->cost.latency += op_cost;
3064 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3066 best_cost = alg_in->cost;
3067 std::swap (alg_in, best_alg);
3068 best_alg->log[best_alg->ops] = m;
3069 best_alg->op[best_alg->ops] = alg_add_t2_m;
3072 if (cache_hit)
3073 goto done;
3075 do_alg_sub_t2_m:
3076 q = t + 1;
3077 m = ctz_hwi (q);
3078 if (q && m < maxm)
3080 op_cost = shiftsub0_cost (speed, mode, m);
3081 new_limit.cost = best_cost.cost - op_cost;
3082 new_limit.latency = best_cost.latency - op_cost;
3083 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
3085 alg_in->cost.cost += op_cost;
3086 alg_in->cost.latency += op_cost;
3087 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3089 best_cost = alg_in->cost;
3090 std::swap (alg_in, best_alg);
3091 best_alg->log[best_alg->ops] = m;
3092 best_alg->op[best_alg->ops] = alg_sub_t2_m;
3095 if (cache_hit)
3096 goto done;
3099 done:
3100 /* If best_cost has not decreased, we have not found any algorithm. */
3101 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
3103 /* We failed to find an algorithm. Record alg_impossible for
3104 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3105 we are asked to find an algorithm for T within the same or
3106 lower COST_LIMIT, we can immediately return to the
3107 caller. */
3108 entry_ptr->t = t;
3109 entry_ptr->mode = mode;
3110 entry_ptr->speed = speed;
3111 entry_ptr->alg = alg_impossible;
3112 entry_ptr->cost = *cost_limit;
3113 return;
3116 /* Cache the result. */
3117 if (!cache_hit)
3119 entry_ptr->t = t;
3120 entry_ptr->mode = mode;
3121 entry_ptr->speed = speed;
3122 entry_ptr->alg = best_alg->op[best_alg->ops];
3123 entry_ptr->cost.cost = best_cost.cost;
3124 entry_ptr->cost.latency = best_cost.latency;
3127 /* If we are getting a too long sequence for `struct algorithm'
3128 to record, make this search fail. */
3129 if (best_alg->ops == MAX_BITS_PER_WORD)
3130 return;
3132 /* Copy the algorithm from temporary space to the space at alg_out.
3133 We avoid using structure assignment because the majority of
3134 best_alg is normally undefined, and this is a critical function. */
3135 alg_out->ops = best_alg->ops + 1;
3136 alg_out->cost = best_cost;
3137 memcpy (alg_out->op, best_alg->op,
3138 alg_out->ops * sizeof *alg_out->op);
3139 memcpy (alg_out->log, best_alg->log,
3140 alg_out->ops * sizeof *alg_out->log);
3143 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3144 Try three variations:
3146 - a shift/add sequence based on VAL itself
3147 - a shift/add sequence based on -VAL, followed by a negation
3148 - a shift/add sequence based on VAL - 1, followed by an addition.
3150 Return true if the cheapest of these cost less than MULT_COST,
3151 describing the algorithm in *ALG and final fixup in *VARIANT. */
3153 bool
3154 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
3155 struct algorithm *alg, enum mult_variant *variant,
3156 int mult_cost)
3158 struct algorithm alg2;
3159 struct mult_cost limit;
3160 int op_cost;
3161 bool speed = optimize_insn_for_speed_p ();
3163 /* Fail quickly for impossible bounds. */
3164 if (mult_cost < 0)
3165 return false;
3167 /* Ensure that mult_cost provides a reasonable upper bound.
3168 Any constant multiplication can be performed with less
3169 than 2 * bits additions. */
3170 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
3171 if (mult_cost > op_cost)
3172 mult_cost = op_cost;
3174 *variant = basic_variant;
3175 limit.cost = mult_cost;
3176 limit.latency = mult_cost;
3177 synth_mult (alg, val, &limit, mode);
3179 /* This works only if the inverted value actually fits in an
3180 `unsigned int' */
3181 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
3183 op_cost = neg_cost (speed, mode);
3184 if (MULT_COST_LESS (&alg->cost, mult_cost))
3186 limit.cost = alg->cost.cost - op_cost;
3187 limit.latency = alg->cost.latency - op_cost;
3189 else
3191 limit.cost = mult_cost - op_cost;
3192 limit.latency = mult_cost - op_cost;
3195 synth_mult (&alg2, -val, &limit, mode);
3196 alg2.cost.cost += op_cost;
3197 alg2.cost.latency += op_cost;
3198 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3199 *alg = alg2, *variant = negate_variant;
3202 /* This proves very useful for division-by-constant. */
3203 op_cost = add_cost (speed, mode);
3204 if (MULT_COST_LESS (&alg->cost, mult_cost))
3206 limit.cost = alg->cost.cost - op_cost;
3207 limit.latency = alg->cost.latency - op_cost;
3209 else
3211 limit.cost = mult_cost - op_cost;
3212 limit.latency = mult_cost - op_cost;
3215 synth_mult (&alg2, val - 1, &limit, mode);
3216 alg2.cost.cost += op_cost;
3217 alg2.cost.latency += op_cost;
3218 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3219 *alg = alg2, *variant = add_variant;
3221 return MULT_COST_LESS (&alg->cost, mult_cost);
3224 /* A subroutine of expand_mult, used for constant multiplications.
3225 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3226 convenient. Use the shift/add sequence described by ALG and apply
3227 the final fixup specified by VARIANT. */
3229 static rtx
3230 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
3231 rtx target, const struct algorithm *alg,
3232 enum mult_variant variant)
3234 unsigned HOST_WIDE_INT val_so_far;
3235 rtx_insn *insn;
3236 rtx accum, tem;
3237 int opno;
3238 machine_mode nmode;
3240 /* Avoid referencing memory over and over and invalid sharing
3241 on SUBREGs. */
3242 op0 = force_reg (mode, op0);
3244 /* ACCUM starts out either as OP0 or as a zero, depending on
3245 the first operation. */
3247 if (alg->op[0] == alg_zero)
3249 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
3250 val_so_far = 0;
3252 else if (alg->op[0] == alg_m)
3254 accum = copy_to_mode_reg (mode, op0);
3255 val_so_far = 1;
3257 else
3258 gcc_unreachable ();
3260 for (opno = 1; opno < alg->ops; opno++)
3262 int log = alg->log[opno];
3263 rtx shift_subtarget = optimize ? 0 : accum;
3264 rtx add_target
3265 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3266 && !optimize)
3267 ? target : 0;
3268 rtx accum_target = optimize ? 0 : accum;
3269 rtx accum_inner;
3271 switch (alg->op[opno])
3273 case alg_shift:
3274 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3275 /* REG_EQUAL note will be attached to the following insn. */
3276 emit_move_insn (accum, tem);
3277 val_so_far <<= log;
3278 break;
3280 case alg_add_t_m2:
3281 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3282 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3283 add_target ? add_target : accum_target);
3284 val_so_far += HOST_WIDE_INT_1U << log;
3285 break;
3287 case alg_sub_t_m2:
3288 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3289 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3290 add_target ? add_target : accum_target);
3291 val_so_far -= HOST_WIDE_INT_1U << log;
3292 break;
3294 case alg_add_t2_m:
3295 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3296 log, shift_subtarget, 0);
3297 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3298 add_target ? add_target : accum_target);
3299 val_so_far = (val_so_far << log) + 1;
3300 break;
3302 case alg_sub_t2_m:
3303 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3304 log, shift_subtarget, 0);
3305 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3306 add_target ? add_target : accum_target);
3307 val_so_far = (val_so_far << log) - 1;
3308 break;
3310 case alg_add_factor:
3311 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3312 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3313 add_target ? add_target : accum_target);
3314 val_so_far += val_so_far << log;
3315 break;
3317 case alg_sub_factor:
3318 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3319 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3320 (add_target
3321 ? add_target : (optimize ? 0 : tem)));
3322 val_so_far = (val_so_far << log) - val_so_far;
3323 break;
3325 default:
3326 gcc_unreachable ();
3329 if (SCALAR_INT_MODE_P (mode))
3331 /* Write a REG_EQUAL note on the last insn so that we can cse
3332 multiplication sequences. Note that if ACCUM is a SUBREG,
3333 we've set the inner register and must properly indicate that. */
3334 tem = op0, nmode = mode;
3335 accum_inner = accum;
3336 if (GET_CODE (accum) == SUBREG)
3338 accum_inner = SUBREG_REG (accum);
3339 nmode = GET_MODE (accum_inner);
3340 tem = gen_lowpart (nmode, op0);
3343 insn = get_last_insn ();
3344 set_dst_reg_note (insn, REG_EQUAL,
3345 gen_rtx_MULT (nmode, tem,
3346 gen_int_mode (val_so_far, nmode)),
3347 accum_inner);
3351 if (variant == negate_variant)
3353 val_so_far = -val_so_far;
3354 accum = expand_unop (mode, neg_optab, accum, target, 0);
3356 else if (variant == add_variant)
3358 val_so_far = val_so_far + 1;
3359 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3362 /* Compare only the bits of val and val_so_far that are significant
3363 in the result mode, to avoid sign-/zero-extension confusion. */
3364 nmode = GET_MODE_INNER (mode);
3365 val &= GET_MODE_MASK (nmode);
3366 val_so_far &= GET_MODE_MASK (nmode);
3367 gcc_assert (val == (HOST_WIDE_INT) val_so_far);
3369 return accum;
3372 /* Perform a multiplication and return an rtx for the result.
3373 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3374 TARGET is a suggestion for where to store the result (an rtx).
3376 We check specially for a constant integer as OP1.
3377 If you want this check for OP0 as well, then before calling
3378 you should swap the two operands if OP0 would be constant. */
3381 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3382 int unsignedp, bool no_libcall)
3384 enum mult_variant variant;
3385 struct algorithm algorithm;
3386 rtx scalar_op1;
3387 int max_cost;
3388 bool speed = optimize_insn_for_speed_p ();
3389 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3391 if (CONSTANT_P (op0))
3392 std::swap (op0, op1);
3394 /* For vectors, there are several simplifications that can be made if
3395 all elements of the vector constant are identical. */
3396 scalar_op1 = unwrap_const_vec_duplicate (op1);
3398 if (INTEGRAL_MODE_P (mode))
3400 rtx fake_reg;
3401 HOST_WIDE_INT coeff;
3402 bool is_neg;
3403 int mode_bitsize;
3405 if (op1 == CONST0_RTX (mode))
3406 return op1;
3407 if (op1 == CONST1_RTX (mode))
3408 return op0;
3409 if (op1 == CONSTM1_RTX (mode))
3410 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3411 op0, target, 0);
3413 if (do_trapv)
3414 goto skip_synth;
3416 /* If mode is integer vector mode, check if the backend supports
3417 vector lshift (by scalar or vector) at all. If not, we can't use
3418 synthetized multiply. */
3419 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3420 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3421 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3422 goto skip_synth;
3424 /* These are the operations that are potentially turned into
3425 a sequence of shifts and additions. */
3426 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3428 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3429 less than or equal in size to `unsigned int' this doesn't matter.
3430 If the mode is larger than `unsigned int', then synth_mult works
3431 only if the constant value exactly fits in an `unsigned int' without
3432 any truncation. This means that multiplying by negative values does
3433 not work; results are off by 2^32 on a 32 bit machine. */
3434 if (CONST_INT_P (scalar_op1))
3436 coeff = INTVAL (scalar_op1);
3437 is_neg = coeff < 0;
3439 #if TARGET_SUPPORTS_WIDE_INT
3440 else if (CONST_WIDE_INT_P (scalar_op1))
3441 #else
3442 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3443 #endif
3445 int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
3446 /* Perfect power of 2 (other than 1, which is handled above). */
3447 if (shift > 0)
3448 return expand_shift (LSHIFT_EXPR, mode, op0,
3449 shift, target, unsignedp);
3450 else
3451 goto skip_synth;
3453 else
3454 goto skip_synth;
3456 /* We used to test optimize here, on the grounds that it's better to
3457 produce a smaller program when -O is not used. But this causes
3458 such a terrible slowdown sometimes that it seems better to always
3459 use synth_mult. */
3461 /* Special case powers of two. */
3462 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3463 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3464 return expand_shift (LSHIFT_EXPR, mode, op0,
3465 floor_log2 (coeff), target, unsignedp);
3467 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3469 /* Attempt to handle multiplication of DImode values by negative
3470 coefficients, by performing the multiplication by a positive
3471 multiplier and then inverting the result. */
3472 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3474 /* Its safe to use -coeff even for INT_MIN, as the
3475 result is interpreted as an unsigned coefficient.
3476 Exclude cost of op0 from max_cost to match the cost
3477 calculation of the synth_mult. */
3478 coeff = -(unsigned HOST_WIDE_INT) coeff;
3479 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3480 mode, speed)
3481 - neg_cost (speed, mode));
3482 if (max_cost <= 0)
3483 goto skip_synth;
3485 /* Special case powers of two. */
3486 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3488 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3489 floor_log2 (coeff), target, unsignedp);
3490 return expand_unop (mode, neg_optab, temp, target, 0);
3493 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3494 max_cost))
3496 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3497 &algorithm, variant);
3498 return expand_unop (mode, neg_optab, temp, target, 0);
3500 goto skip_synth;
3503 /* Exclude cost of op0 from max_cost to match the cost
3504 calculation of the synth_mult. */
3505 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3506 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3507 return expand_mult_const (mode, op0, coeff, target,
3508 &algorithm, variant);
3510 skip_synth:
3512 /* Expand x*2.0 as x+x. */
3513 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3514 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3516 op0 = force_reg (GET_MODE (op0), op0);
3517 return expand_binop (mode, add_optab, op0, op0,
3518 target, unsignedp,
3519 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3522 /* This used to use umul_optab if unsigned, but for non-widening multiply
3523 there is no difference between signed and unsigned. */
3524 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3525 op0, op1, target, unsignedp,
3526 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3527 gcc_assert (op0 || no_libcall);
3528 return op0;
3531 /* Return a cost estimate for multiplying a register by the given
3532 COEFFicient in the given MODE and SPEED. */
3535 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3537 int max_cost;
3538 struct algorithm algorithm;
3539 enum mult_variant variant;
3541 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3542 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3543 mode, speed);
3544 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3545 return algorithm.cost.cost;
3546 else
3547 return max_cost;
3550 /* Perform a widening multiplication and return an rtx for the result.
3551 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3552 TARGET is a suggestion for where to store the result (an rtx).
3553 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3554 or smul_widen_optab.
3556 We check specially for a constant integer as OP1, comparing the
3557 cost of a widening multiply against the cost of a sequence of shifts
3558 and adds. */
3561 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3562 int unsignedp, optab this_optab)
3564 bool speed = optimize_insn_for_speed_p ();
3565 rtx cop1;
3567 if (CONST_INT_P (op1)
3568 && GET_MODE (op0) != VOIDmode
3569 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3570 this_optab == umul_widen_optab))
3571 && CONST_INT_P (cop1)
3572 && (INTVAL (cop1) >= 0
3573 || HWI_COMPUTABLE_MODE_P (mode)))
3575 HOST_WIDE_INT coeff = INTVAL (cop1);
3576 int max_cost;
3577 enum mult_variant variant;
3578 struct algorithm algorithm;
3580 if (coeff == 0)
3581 return CONST0_RTX (mode);
3583 /* Special case powers of two. */
3584 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3586 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3587 return expand_shift (LSHIFT_EXPR, mode, op0,
3588 floor_log2 (coeff), target, unsignedp);
3591 /* Exclude cost of op0 from max_cost to match the cost
3592 calculation of the synth_mult. */
3593 max_cost = mul_widen_cost (speed, mode);
3594 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3595 max_cost))
3597 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3598 return expand_mult_const (mode, op0, coeff, target,
3599 &algorithm, variant);
3602 return expand_binop (mode, this_optab, op0, op1, target,
3603 unsignedp, OPTAB_LIB_WIDEN);
3606 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3607 replace division by D, and put the least significant N bits of the result
3608 in *MULTIPLIER_PTR and return the most significant bit.
3610 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3611 needed precision is in PRECISION (should be <= N).
3613 PRECISION should be as small as possible so this function can choose
3614 multiplier more freely.
3616 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3617 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3619 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3620 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3622 unsigned HOST_WIDE_INT
3623 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3624 unsigned HOST_WIDE_INT *multiplier_ptr,
3625 int *post_shift_ptr, int *lgup_ptr)
3627 int lgup, post_shift;
3628 int pow, pow2;
3630 /* lgup = ceil(log2(divisor)); */
3631 lgup = ceil_log2 (d);
3633 gcc_assert (lgup <= n);
3635 pow = n + lgup;
3636 pow2 = n + lgup - precision;
3638 /* mlow = 2^(N + lgup)/d */
3639 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3640 wide_int mlow = wi::udiv_trunc (val, d);
3642 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3643 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3644 wide_int mhigh = wi::udiv_trunc (val, d);
3646 /* If precision == N, then mlow, mhigh exceed 2^N
3647 (but they do not exceed 2^(N+1)). */
3649 /* Reduce to lowest terms. */
3650 for (post_shift = lgup; post_shift > 0; post_shift--)
3652 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3653 HOST_BITS_PER_WIDE_INT);
3654 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3655 HOST_BITS_PER_WIDE_INT);
3656 if (ml_lo >= mh_lo)
3657 break;
3659 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3660 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3663 *post_shift_ptr = post_shift;
3664 *lgup_ptr = lgup;
3665 if (n < HOST_BITS_PER_WIDE_INT)
3667 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
3668 *multiplier_ptr = mhigh.to_uhwi () & mask;
3669 return mhigh.to_uhwi () >= mask;
3671 else
3673 *multiplier_ptr = mhigh.to_uhwi ();
3674 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3678 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3679 congruent to 1 (mod 2**N). */
3681 static unsigned HOST_WIDE_INT
3682 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3684 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3686 /* The algorithm notes that the choice y = x satisfies
3687 x*y == 1 mod 2^3, since x is assumed odd.
3688 Each iteration doubles the number of bits of significance in y. */
3690 unsigned HOST_WIDE_INT mask;
3691 unsigned HOST_WIDE_INT y = x;
3692 int nbit = 3;
3694 mask = (n == HOST_BITS_PER_WIDE_INT
3695 ? HOST_WIDE_INT_M1U
3696 : (HOST_WIDE_INT_1U << n) - 1);
3698 while (nbit < n)
3700 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3701 nbit *= 2;
3703 return y;
3706 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3707 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3708 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3709 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3710 become signed.
3712 The result is put in TARGET if that is convenient.
3714 MODE is the mode of operation. */
3717 expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
3718 rtx op1, rtx target, int unsignedp)
3720 rtx tem;
3721 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3723 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3724 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3725 tem = expand_and (mode, tem, op1, NULL_RTX);
3726 adj_operand
3727 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3728 adj_operand);
3730 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3731 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3732 tem = expand_and (mode, tem, op0, NULL_RTX);
3733 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3734 target);
3736 return target;
3739 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3741 static rtx
3742 extract_high_half (scalar_int_mode mode, rtx op)
3744 if (mode == word_mode)
3745 return gen_highpart (mode, op);
3747 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3749 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3750 GET_MODE_BITSIZE (mode), 0, 1);
3751 return convert_modes (mode, wider_mode, op, 0);
3754 /* Like expmed_mult_highpart, but only consider using a multiplication
3755 optab. OP1 is an rtx for the constant operand. */
3757 static rtx
3758 expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
3759 rtx target, int unsignedp, int max_cost)
3761 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3762 optab moptab;
3763 rtx tem;
3764 int size;
3765 bool speed = optimize_insn_for_speed_p ();
3767 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3769 size = GET_MODE_BITSIZE (mode);
3771 /* Firstly, try using a multiplication insn that only generates the needed
3772 high part of the product, and in the sign flavor of unsignedp. */
3773 if (mul_highpart_cost (speed, mode) < max_cost)
3775 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3776 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3777 unsignedp, OPTAB_DIRECT);
3778 if (tem)
3779 return tem;
3782 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3783 Need to adjust the result after the multiplication. */
3784 if (size - 1 < BITS_PER_WORD
3785 && (mul_highpart_cost (speed, mode)
3786 + 2 * shift_cost (speed, mode, size-1)
3787 + 4 * add_cost (speed, mode) < max_cost))
3789 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3790 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3791 unsignedp, OPTAB_DIRECT);
3792 if (tem)
3793 /* We used the wrong signedness. Adjust the result. */
3794 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3795 tem, unsignedp);
3798 /* Try widening multiplication. */
3799 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3800 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3801 && mul_widen_cost (speed, wider_mode) < max_cost)
3803 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3804 unsignedp, OPTAB_WIDEN);
3805 if (tem)
3806 return extract_high_half (mode, tem);
3809 /* Try widening the mode and perform a non-widening multiplication. */
3810 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3811 && size - 1 < BITS_PER_WORD
3812 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3813 < max_cost))
3815 rtx_insn *insns;
3816 rtx wop0, wop1;
3818 /* We need to widen the operands, for example to ensure the
3819 constant multiplier is correctly sign or zero extended.
3820 Use a sequence to clean-up any instructions emitted by
3821 the conversions if things don't work out. */
3822 start_sequence ();
3823 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3824 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3825 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3826 unsignedp, OPTAB_WIDEN);
3827 insns = get_insns ();
3828 end_sequence ();
3830 if (tem)
3832 emit_insn (insns);
3833 return extract_high_half (mode, tem);
3837 /* Try widening multiplication of opposite signedness, and adjust. */
3838 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3839 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3840 && size - 1 < BITS_PER_WORD
3841 && (mul_widen_cost (speed, wider_mode)
3842 + 2 * shift_cost (speed, mode, size-1)
3843 + 4 * add_cost (speed, mode) < max_cost))
3845 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3846 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3847 if (tem != 0)
3849 tem = extract_high_half (mode, tem);
3850 /* We used the wrong signedness. Adjust the result. */
3851 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3852 target, unsignedp);
3856 return 0;
3859 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3860 putting the high half of the result in TARGET if that is convenient,
3861 and return where the result is. If the operation can not be performed,
3862 0 is returned.
3864 MODE is the mode of operation and result.
3866 UNSIGNEDP nonzero means unsigned multiply.
3868 MAX_COST is the total allowed cost for the expanded RTL. */
3870 static rtx
3871 expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
3872 rtx target, int unsignedp, int max_cost)
3874 unsigned HOST_WIDE_INT cnst1;
3875 int extra_cost;
3876 bool sign_adjust = false;
3877 enum mult_variant variant;
3878 struct algorithm alg;
3879 rtx tem;
3880 bool speed = optimize_insn_for_speed_p ();
3882 /* We can't support modes wider than HOST_BITS_PER_INT. */
3883 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3885 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3887 /* We can't optimize modes wider than BITS_PER_WORD.
3888 ??? We might be able to perform double-word arithmetic if
3889 mode == word_mode, however all the cost calculations in
3890 synth_mult etc. assume single-word operations. */
3891 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3892 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3893 return expmed_mult_highpart_optab (mode, op0, op1, target,
3894 unsignedp, max_cost);
3896 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3898 /* Check whether we try to multiply by a negative constant. */
3899 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3901 sign_adjust = true;
3902 extra_cost += add_cost (speed, mode);
3905 /* See whether shift/add multiplication is cheap enough. */
3906 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3907 max_cost - extra_cost))
3909 /* See whether the specialized multiplication optabs are
3910 cheaper than the shift/add version. */
3911 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3912 alg.cost.cost + extra_cost);
3913 if (tem)
3914 return tem;
3916 tem = convert_to_mode (wider_mode, op0, unsignedp);
3917 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3918 tem = extract_high_half (mode, tem);
3920 /* Adjust result for signedness. */
3921 if (sign_adjust)
3922 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3924 return tem;
3926 return expmed_mult_highpart_optab (mode, op0, op1, target,
3927 unsignedp, max_cost);
3931 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3933 static rtx
3934 expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
3936 rtx result, temp, shift;
3937 rtx_code_label *label;
3938 int logd;
3939 int prec = GET_MODE_PRECISION (mode);
3941 logd = floor_log2 (d);
3942 result = gen_reg_rtx (mode);
3944 /* Avoid conditional branches when they're expensive. */
3945 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3946 && optimize_insn_for_speed_p ())
3948 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3949 mode, 0, -1);
3950 if (signmask)
3952 HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
3953 signmask = force_reg (mode, signmask);
3954 shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
3956 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3957 which instruction sequence to use. If logical right shifts
3958 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3959 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3961 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3962 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3963 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
3964 > COSTS_N_INSNS (2)))
3966 temp = expand_binop (mode, xor_optab, op0, signmask,
3967 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3968 temp = expand_binop (mode, sub_optab, temp, signmask,
3969 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3970 temp = expand_binop (mode, and_optab, temp,
3971 gen_int_mode (masklow, mode),
3972 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3973 temp = expand_binop (mode, xor_optab, temp, signmask,
3974 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3975 temp = expand_binop (mode, sub_optab, temp, signmask,
3976 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3978 else
3980 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3981 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3982 signmask = force_reg (mode, signmask);
3984 temp = expand_binop (mode, add_optab, op0, signmask,
3985 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3986 temp = expand_binop (mode, and_optab, temp,
3987 gen_int_mode (masklow, mode),
3988 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3989 temp = expand_binop (mode, sub_optab, temp, signmask,
3990 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3992 return temp;
3996 /* Mask contains the mode's signbit and the significant bits of the
3997 modulus. By including the signbit in the operation, many targets
3998 can avoid an explicit compare operation in the following comparison
3999 against zero. */
4000 wide_int mask = wi::mask (logd, false, prec);
4001 mask = wi::set_bit (mask, prec - 1);
4003 temp = expand_binop (mode, and_optab, op0,
4004 immed_wide_int_const (mask, mode),
4005 result, 1, OPTAB_LIB_WIDEN);
4006 if (temp != result)
4007 emit_move_insn (result, temp);
4009 label = gen_label_rtx ();
4010 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
4012 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
4013 0, OPTAB_LIB_WIDEN);
4015 mask = wi::mask (logd, true, prec);
4016 temp = expand_binop (mode, ior_optab, temp,
4017 immed_wide_int_const (mask, mode),
4018 result, 1, OPTAB_LIB_WIDEN);
4019 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
4020 0, OPTAB_LIB_WIDEN);
4021 if (temp != result)
4022 emit_move_insn (result, temp);
4023 emit_label (label);
4024 return result;
4027 /* Expand signed division of OP0 by a power of two D in mode MODE.
4028 This routine is only called for positive values of D. */
4030 static rtx
4031 expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
4033 rtx temp;
4034 rtx_code_label *label;
4035 int logd;
4037 logd = floor_log2 (d);
4039 if (d == 2
4040 && BRANCH_COST (optimize_insn_for_speed_p (),
4041 false) >= 1)
4043 temp = gen_reg_rtx (mode);
4044 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
4045 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4046 0, OPTAB_LIB_WIDEN);
4047 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4050 if (HAVE_conditional_move
4051 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
4053 rtx temp2;
4055 start_sequence ();
4056 temp2 = copy_to_mode_reg (mode, op0);
4057 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
4058 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4059 temp = force_reg (mode, temp);
4061 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4062 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
4063 mode, temp, temp2, mode, 0);
4064 if (temp2)
4066 rtx_insn *seq = get_insns ();
4067 end_sequence ();
4068 emit_insn (seq);
4069 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
4071 end_sequence ();
4074 if (BRANCH_COST (optimize_insn_for_speed_p (),
4075 false) >= 2)
4077 int ushift = GET_MODE_BITSIZE (mode) - logd;
4079 temp = gen_reg_rtx (mode);
4080 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
4081 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
4082 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
4083 > COSTS_N_INSNS (1))
4084 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
4085 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4086 else
4087 temp = expand_shift (RSHIFT_EXPR, mode, temp,
4088 ushift, NULL_RTX, 1);
4089 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4090 0, OPTAB_LIB_WIDEN);
4091 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4094 label = gen_label_rtx ();
4095 temp = copy_to_mode_reg (mode, op0);
4096 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
4097 expand_inc (temp, gen_int_mode (d - 1, mode));
4098 emit_label (label);
4099 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4102 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4103 if that is convenient, and returning where the result is.
4104 You may request either the quotient or the remainder as the result;
4105 specify REM_FLAG nonzero to get the remainder.
4107 CODE is the expression code for which kind of division this is;
4108 it controls how rounding is done. MODE is the machine mode to use.
4109 UNSIGNEDP nonzero means do unsigned division. */
4111 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4112 and then correct it by or'ing in missing high bits
4113 if result of ANDI is nonzero.
4114 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4115 This could optimize to a bfexts instruction.
4116 But C doesn't use these operations, so their optimizations are
4117 left for later. */
4118 /* ??? For modulo, we don't actually need the highpart of the first product,
4119 the low part will do nicely. And for small divisors, the second multiply
4120 can also be a low-part only multiply or even be completely left out.
4121 E.g. to calculate the remainder of a division by 3 with a 32 bit
4122 multiply, multiply with 0x55555556 and extract the upper two bits;
4123 the result is exact for inputs up to 0x1fffffff.
4124 The input range can be reduced by using cross-sum rules.
4125 For odd divisors >= 3, the following table gives right shift counts
4126 so that if a number is shifted by an integer multiple of the given
4127 amount, the remainder stays the same:
4128 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4129 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4130 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4131 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4132 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4134 Cross-sum rules for even numbers can be derived by leaving as many bits
4135 to the right alone as the divisor has zeros to the right.
4136 E.g. if x is an unsigned 32 bit number:
4137 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4141 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
4142 rtx op0, rtx op1, rtx target, int unsignedp)
4144 machine_mode compute_mode;
4145 rtx tquotient;
4146 rtx quotient = 0, remainder = 0;
4147 rtx_insn *last;
4148 rtx_insn *insn;
4149 optab optab1, optab2;
4150 int op1_is_constant, op1_is_pow2 = 0;
4151 int max_cost, extra_cost;
4152 static HOST_WIDE_INT last_div_const = 0;
4153 bool speed = optimize_insn_for_speed_p ();
4155 op1_is_constant = CONST_INT_P (op1);
4156 if (op1_is_constant)
4158 wide_int ext_op1 = rtx_mode_t (op1, mode);
4159 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4160 || (! unsignedp
4161 && wi::popcount (wi::neg (ext_op1)) == 1));
4165 This is the structure of expand_divmod:
4167 First comes code to fix up the operands so we can perform the operations
4168 correctly and efficiently.
4170 Second comes a switch statement with code specific for each rounding mode.
4171 For some special operands this code emits all RTL for the desired
4172 operation, for other cases, it generates only a quotient and stores it in
4173 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4174 to indicate that it has not done anything.
4176 Last comes code that finishes the operation. If QUOTIENT is set and
4177 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4178 QUOTIENT is not set, it is computed using trunc rounding.
4180 We try to generate special code for division and remainder when OP1 is a
4181 constant. If |OP1| = 2**n we can use shifts and some other fast
4182 operations. For other values of OP1, we compute a carefully selected
4183 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4184 by m.
4186 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4187 half of the product. Different strategies for generating the product are
4188 implemented in expmed_mult_highpart.
4190 If what we actually want is the remainder, we generate that by another
4191 by-constant multiplication and a subtraction. */
4193 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4194 code below will malfunction if we are, so check here and handle
4195 the special case if so. */
4196 if (op1 == const1_rtx)
4197 return rem_flag ? const0_rtx : op0;
4199 /* When dividing by -1, we could get an overflow.
4200 negv_optab can handle overflows. */
4201 if (! unsignedp && op1 == constm1_rtx)
4203 if (rem_flag)
4204 return const0_rtx;
4205 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
4206 ? negv_optab : neg_optab, op0, target, 0);
4209 if (target
4210 /* Don't use the function value register as a target
4211 since we have to read it as well as write it,
4212 and function-inlining gets confused by this. */
4213 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4214 /* Don't clobber an operand while doing a multi-step calculation. */
4215 || ((rem_flag || op1_is_constant)
4216 && (reg_mentioned_p (target, op0)
4217 || (MEM_P (op0) && MEM_P (target))))
4218 || reg_mentioned_p (target, op1)
4219 || (MEM_P (op1) && MEM_P (target))))
4220 target = 0;
4222 /* Get the mode in which to perform this computation. Normally it will
4223 be MODE, but sometimes we can't do the desired operation in MODE.
4224 If so, pick a wider mode in which we can do the operation. Convert
4225 to that mode at the start to avoid repeated conversions.
4227 First see what operations we need. These depend on the expression
4228 we are evaluating. (We assume that divxx3 insns exist under the
4229 same conditions that modxx3 insns and that these insns don't normally
4230 fail. If these assumptions are not correct, we may generate less
4231 efficient code in some cases.)
4233 Then see if we find a mode in which we can open-code that operation
4234 (either a division, modulus, or shift). Finally, check for the smallest
4235 mode for which we can do the operation with a library call. */
4237 /* We might want to refine this now that we have division-by-constant
4238 optimization. Since expmed_mult_highpart tries so many variants, it is
4239 not straightforward to generalize this. Maybe we should make an array
4240 of possible modes in init_expmed? Save this for GCC 2.7. */
4242 optab1 = (op1_is_pow2
4243 ? (unsignedp ? lshr_optab : ashr_optab)
4244 : (unsignedp ? udiv_optab : sdiv_optab));
4245 optab2 = (op1_is_pow2 ? optab1
4246 : (unsignedp ? udivmod_optab : sdivmod_optab));
4248 FOR_EACH_MODE_FROM (compute_mode, mode)
4249 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4250 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4251 break;
4253 if (compute_mode == VOIDmode)
4254 FOR_EACH_MODE_FROM (compute_mode, mode)
4255 if (optab_libfunc (optab1, compute_mode)
4256 || optab_libfunc (optab2, compute_mode))
4257 break;
4259 /* If we still couldn't find a mode, use MODE, but expand_binop will
4260 probably die. */
4261 if (compute_mode == VOIDmode)
4262 compute_mode = mode;
4264 if (target && GET_MODE (target) == compute_mode)
4265 tquotient = target;
4266 else
4267 tquotient = gen_reg_rtx (compute_mode);
4269 #if 0
4270 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4271 (mode), and thereby get better code when OP1 is a constant. Do that
4272 later. It will require going over all usages of SIZE below. */
4273 size = GET_MODE_BITSIZE (mode);
4274 #endif
4276 /* Only deduct something for a REM if the last divide done was
4277 for a different constant. Then set the constant of the last
4278 divide. */
4279 max_cost = (unsignedp
4280 ? udiv_cost (speed, compute_mode)
4281 : sdiv_cost (speed, compute_mode));
4282 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4283 && INTVAL (op1) == last_div_const))
4284 max_cost -= (mul_cost (speed, compute_mode)
4285 + add_cost (speed, compute_mode));
4287 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4289 /* Now convert to the best mode to use. */
4290 if (compute_mode != mode)
4292 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4293 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4295 /* convert_modes may have placed op1 into a register, so we
4296 must recompute the following. */
4297 op1_is_constant = CONST_INT_P (op1);
4298 if (op1_is_constant)
4300 wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
4301 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4302 || (! unsignedp
4303 && wi::popcount (wi::neg (ext_op1)) == 1));
4305 else
4306 op1_is_pow2 = 0;
4309 /* If one of the operands is a volatile MEM, copy it into a register. */
4311 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4312 op0 = force_reg (compute_mode, op0);
4313 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4314 op1 = force_reg (compute_mode, op1);
4316 /* If we need the remainder or if OP1 is constant, we need to
4317 put OP0 in a register in case it has any queued subexpressions. */
4318 if (rem_flag || op1_is_constant)
4319 op0 = force_reg (compute_mode, op0);
4321 last = get_last_insn ();
4323 /* Promote floor rounding to trunc rounding for unsigned operations. */
4324 if (unsignedp)
4326 if (code == FLOOR_DIV_EXPR)
4327 code = TRUNC_DIV_EXPR;
4328 if (code == FLOOR_MOD_EXPR)
4329 code = TRUNC_MOD_EXPR;
4330 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4331 code = TRUNC_DIV_EXPR;
4334 if (op1 != const0_rtx)
4335 switch (code)
4337 case TRUNC_MOD_EXPR:
4338 case TRUNC_DIV_EXPR:
4339 if (op1_is_constant)
4341 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4342 int size = GET_MODE_BITSIZE (int_mode);
4343 if (unsignedp)
4345 unsigned HOST_WIDE_INT mh, ml;
4346 int pre_shift, post_shift;
4347 int dummy;
4348 wide_int wd = rtx_mode_t (op1, int_mode);
4349 unsigned HOST_WIDE_INT d = wd.to_uhwi ();
4351 if (wi::popcount (wd) == 1)
4353 pre_shift = floor_log2 (d);
4354 if (rem_flag)
4356 unsigned HOST_WIDE_INT mask
4357 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4358 remainder
4359 = expand_binop (int_mode, and_optab, op0,
4360 gen_int_mode (mask, int_mode),
4361 remainder, 1,
4362 OPTAB_LIB_WIDEN);
4363 if (remainder)
4364 return gen_lowpart (mode, remainder);
4366 quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
4367 pre_shift, tquotient, 1);
4369 else if (size <= HOST_BITS_PER_WIDE_INT)
4371 if (d >= (HOST_WIDE_INT_1U << (size - 1)))
4373 /* Most significant bit of divisor is set; emit an scc
4374 insn. */
4375 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4376 int_mode, 1, 1);
4378 else
4380 /* Find a suitable multiplier and right shift count
4381 instead of multiplying with D. */
4383 mh = choose_multiplier (d, size, size,
4384 &ml, &post_shift, &dummy);
4386 /* If the suggested multiplier is more than SIZE bits,
4387 we can do better for even divisors, using an
4388 initial right shift. */
4389 if (mh != 0 && (d & 1) == 0)
4391 pre_shift = ctz_or_zero (d);
4392 mh = choose_multiplier (d >> pre_shift, size,
4393 size - pre_shift,
4394 &ml, &post_shift, &dummy);
4395 gcc_assert (!mh);
4397 else
4398 pre_shift = 0;
4400 if (mh != 0)
4402 rtx t1, t2, t3, t4;
4404 if (post_shift - 1 >= BITS_PER_WORD)
4405 goto fail1;
4407 extra_cost
4408 = (shift_cost (speed, int_mode, post_shift - 1)
4409 + shift_cost (speed, int_mode, 1)
4410 + 2 * add_cost (speed, int_mode));
4411 t1 = expmed_mult_highpart
4412 (int_mode, op0, gen_int_mode (ml, int_mode),
4413 NULL_RTX, 1, max_cost - extra_cost);
4414 if (t1 == 0)
4415 goto fail1;
4416 t2 = force_operand (gen_rtx_MINUS (int_mode,
4417 op0, t1),
4418 NULL_RTX);
4419 t3 = expand_shift (RSHIFT_EXPR, int_mode,
4420 t2, 1, NULL_RTX, 1);
4421 t4 = force_operand (gen_rtx_PLUS (int_mode,
4422 t1, t3),
4423 NULL_RTX);
4424 quotient = expand_shift
4425 (RSHIFT_EXPR, int_mode, t4,
4426 post_shift - 1, tquotient, 1);
4428 else
4430 rtx t1, t2;
4432 if (pre_shift >= BITS_PER_WORD
4433 || post_shift >= BITS_PER_WORD)
4434 goto fail1;
4436 t1 = expand_shift
4437 (RSHIFT_EXPR, int_mode, op0,
4438 pre_shift, NULL_RTX, 1);
4439 extra_cost
4440 = (shift_cost (speed, int_mode, pre_shift)
4441 + shift_cost (speed, int_mode, post_shift));
4442 t2 = expmed_mult_highpart
4443 (int_mode, t1,
4444 gen_int_mode (ml, int_mode),
4445 NULL_RTX, 1, max_cost - extra_cost);
4446 if (t2 == 0)
4447 goto fail1;
4448 quotient = expand_shift
4449 (RSHIFT_EXPR, int_mode, t2,
4450 post_shift, tquotient, 1);
4454 else /* Too wide mode to use tricky code */
4455 break;
4457 insn = get_last_insn ();
4458 if (insn != last)
4459 set_dst_reg_note (insn, REG_EQUAL,
4460 gen_rtx_UDIV (int_mode, op0, op1),
4461 quotient);
4463 else /* TRUNC_DIV, signed */
4465 unsigned HOST_WIDE_INT ml;
4466 int lgup, post_shift;
4467 rtx mlr;
4468 HOST_WIDE_INT d = INTVAL (op1);
4469 unsigned HOST_WIDE_INT abs_d;
4471 /* Since d might be INT_MIN, we have to cast to
4472 unsigned HOST_WIDE_INT before negating to avoid
4473 undefined signed overflow. */
4474 abs_d = (d >= 0
4475 ? (unsigned HOST_WIDE_INT) d
4476 : - (unsigned HOST_WIDE_INT) d);
4478 /* n rem d = n rem -d */
4479 if (rem_flag && d < 0)
4481 d = abs_d;
4482 op1 = gen_int_mode (abs_d, int_mode);
4485 if (d == 1)
4486 quotient = op0;
4487 else if (d == -1)
4488 quotient = expand_unop (int_mode, neg_optab, op0,
4489 tquotient, 0);
4490 else if (size <= HOST_BITS_PER_WIDE_INT
4491 && abs_d == HOST_WIDE_INT_1U << (size - 1))
4493 /* This case is not handled correctly below. */
4494 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4495 int_mode, 1, 1);
4496 if (quotient == 0)
4497 goto fail1;
4499 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4500 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
4501 && (rem_flag
4502 ? smod_pow2_cheap (speed, int_mode)
4503 : sdiv_pow2_cheap (speed, int_mode))
4504 /* We assume that cheap metric is true if the
4505 optab has an expander for this mode. */
4506 && ((optab_handler ((rem_flag ? smod_optab
4507 : sdiv_optab),
4508 int_mode)
4509 != CODE_FOR_nothing)
4510 || (optab_handler (sdivmod_optab, int_mode)
4511 != CODE_FOR_nothing)))
4513 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d)
4514 && (size <= HOST_BITS_PER_WIDE_INT
4515 || abs_d != (unsigned HOST_WIDE_INT) d))
4517 if (rem_flag)
4519 remainder = expand_smod_pow2 (int_mode, op0, d);
4520 if (remainder)
4521 return gen_lowpart (mode, remainder);
4524 if (sdiv_pow2_cheap (speed, int_mode)
4525 && ((optab_handler (sdiv_optab, int_mode)
4526 != CODE_FOR_nothing)
4527 || (optab_handler (sdivmod_optab, int_mode)
4528 != CODE_FOR_nothing)))
4529 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4530 int_mode, op0,
4531 gen_int_mode (abs_d,
4532 int_mode),
4533 NULL_RTX, 0);
4534 else
4535 quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);
4537 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4538 negate the quotient. */
4539 if (d < 0)
4541 insn = get_last_insn ();
4542 if (insn != last
4543 && abs_d < (HOST_WIDE_INT_1U
4544 << (HOST_BITS_PER_WIDE_INT - 1)))
4545 set_dst_reg_note (insn, REG_EQUAL,
4546 gen_rtx_DIV (int_mode, op0,
4547 gen_int_mode
4548 (abs_d,
4549 int_mode)),
4550 quotient);
4552 quotient = expand_unop (int_mode, neg_optab,
4553 quotient, quotient, 0);
4556 else if (size <= HOST_BITS_PER_WIDE_INT)
4558 choose_multiplier (abs_d, size, size - 1,
4559 &ml, &post_shift, &lgup);
4560 if (ml < HOST_WIDE_INT_1U << (size - 1))
4562 rtx t1, t2, t3;
4564 if (post_shift >= BITS_PER_WORD
4565 || size - 1 >= BITS_PER_WORD)
4566 goto fail1;
4568 extra_cost = (shift_cost (speed, int_mode, post_shift)
4569 + shift_cost (speed, int_mode, size - 1)
4570 + add_cost (speed, int_mode));
4571 t1 = expmed_mult_highpart
4572 (int_mode, op0, gen_int_mode (ml, int_mode),
4573 NULL_RTX, 0, max_cost - extra_cost);
4574 if (t1 == 0)
4575 goto fail1;
4576 t2 = expand_shift
4577 (RSHIFT_EXPR, int_mode, t1,
4578 post_shift, NULL_RTX, 0);
4579 t3 = expand_shift
4580 (RSHIFT_EXPR, int_mode, op0,
4581 size - 1, NULL_RTX, 0);
4582 if (d < 0)
4583 quotient
4584 = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
4585 tquotient);
4586 else
4587 quotient
4588 = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
4589 tquotient);
4591 else
4593 rtx t1, t2, t3, t4;
4595 if (post_shift >= BITS_PER_WORD
4596 || size - 1 >= BITS_PER_WORD)
4597 goto fail1;
4599 ml |= HOST_WIDE_INT_M1U << (size - 1);
4600 mlr = gen_int_mode (ml, int_mode);
4601 extra_cost = (shift_cost (speed, int_mode, post_shift)
4602 + shift_cost (speed, int_mode, size - 1)
4603 + 2 * add_cost (speed, int_mode));
4604 t1 = expmed_mult_highpart (int_mode, op0, mlr,
4605 NULL_RTX, 0,
4606 max_cost - extra_cost);
4607 if (t1 == 0)
4608 goto fail1;
4609 t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
4610 NULL_RTX);
4611 t3 = expand_shift
4612 (RSHIFT_EXPR, int_mode, t2,
4613 post_shift, NULL_RTX, 0);
4614 t4 = expand_shift
4615 (RSHIFT_EXPR, int_mode, op0,
4616 size - 1, NULL_RTX, 0);
4617 if (d < 0)
4618 quotient
4619 = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
4620 tquotient);
4621 else
4622 quotient
4623 = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
4624 tquotient);
4627 else /* Too wide mode to use tricky code */
4628 break;
4630 insn = get_last_insn ();
4631 if (insn != last)
4632 set_dst_reg_note (insn, REG_EQUAL,
4633 gen_rtx_DIV (int_mode, op0, op1),
4634 quotient);
4636 break;
4638 fail1:
4639 delete_insns_since (last);
4640 break;
4642 case FLOOR_DIV_EXPR:
4643 case FLOOR_MOD_EXPR:
4644 /* We will come here only for signed operations. */
4645 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
4647 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4648 int size = GET_MODE_BITSIZE (int_mode);
4649 unsigned HOST_WIDE_INT mh, ml;
4650 int pre_shift, lgup, post_shift;
4651 HOST_WIDE_INT d = INTVAL (op1);
4653 if (d > 0)
4655 /* We could just as easily deal with negative constants here,
4656 but it does not seem worth the trouble for GCC 2.6. */
4657 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4659 pre_shift = floor_log2 (d);
4660 if (rem_flag)
4662 unsigned HOST_WIDE_INT mask
4663 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4664 remainder = expand_binop
4665 (int_mode, and_optab, op0,
4666 gen_int_mode (mask, int_mode),
4667 remainder, 0, OPTAB_LIB_WIDEN);
4668 if (remainder)
4669 return gen_lowpart (mode, remainder);
4671 quotient = expand_shift
4672 (RSHIFT_EXPR, int_mode, op0,
4673 pre_shift, tquotient, 0);
4675 else
4677 rtx t1, t2, t3, t4;
4679 mh = choose_multiplier (d, size, size - 1,
4680 &ml, &post_shift, &lgup);
4681 gcc_assert (!mh);
4683 if (post_shift < BITS_PER_WORD
4684 && size - 1 < BITS_PER_WORD)
4686 t1 = expand_shift
4687 (RSHIFT_EXPR, int_mode, op0,
4688 size - 1, NULL_RTX, 0);
4689 t2 = expand_binop (int_mode, xor_optab, op0, t1,
4690 NULL_RTX, 0, OPTAB_WIDEN);
4691 extra_cost = (shift_cost (speed, int_mode, post_shift)
4692 + shift_cost (speed, int_mode, size - 1)
4693 + 2 * add_cost (speed, int_mode));
4694 t3 = expmed_mult_highpart
4695 (int_mode, t2, gen_int_mode (ml, int_mode),
4696 NULL_RTX, 1, max_cost - extra_cost);
4697 if (t3 != 0)
4699 t4 = expand_shift
4700 (RSHIFT_EXPR, int_mode, t3,
4701 post_shift, NULL_RTX, 1);
4702 quotient = expand_binop (int_mode, xor_optab,
4703 t4, t1, tquotient, 0,
4704 OPTAB_WIDEN);
4709 else
4711 rtx nsign, t1, t2, t3, t4;
4712 t1 = force_operand (gen_rtx_PLUS (int_mode,
4713 op0, constm1_rtx), NULL_RTX);
4714 t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
4715 0, OPTAB_WIDEN);
4716 nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
4717 size - 1, NULL_RTX, 0);
4718 t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
4719 NULL_RTX);
4720 t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1,
4721 NULL_RTX, 0);
4722 if (t4)
4724 rtx t5;
4725 t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
4726 NULL_RTX, 0);
4727 quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
4728 tquotient);
4733 if (quotient != 0)
4734 break;
4735 delete_insns_since (last);
4737 /* Try using an instruction that produces both the quotient and
4738 remainder, using truncation. We can easily compensate the quotient
4739 or remainder to get floor rounding, once we have the remainder.
4740 Notice that we compute also the final remainder value here,
4741 and return the result right away. */
4742 if (target == 0 || GET_MODE (target) != compute_mode)
4743 target = gen_reg_rtx (compute_mode);
4745 if (rem_flag)
4747 remainder
4748 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4749 quotient = gen_reg_rtx (compute_mode);
4751 else
4753 quotient
4754 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4755 remainder = gen_reg_rtx (compute_mode);
4758 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4759 quotient, remainder, 0))
4761 /* This could be computed with a branch-less sequence.
4762 Save that for later. */
4763 rtx tem;
4764 rtx_code_label *label = gen_label_rtx ();
4765 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4766 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4767 NULL_RTX, 0, OPTAB_WIDEN);
4768 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4769 expand_dec (quotient, const1_rtx);
4770 expand_inc (remainder, op1);
4771 emit_label (label);
4772 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4775 /* No luck with division elimination or divmod. Have to do it
4776 by conditionally adjusting op0 *and* the result. */
4778 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4779 rtx adjusted_op0;
4780 rtx tem;
4782 quotient = gen_reg_rtx (compute_mode);
4783 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4784 label1 = gen_label_rtx ();
4785 label2 = gen_label_rtx ();
4786 label3 = gen_label_rtx ();
4787 label4 = gen_label_rtx ();
4788 label5 = gen_label_rtx ();
4789 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4790 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4791 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4792 quotient, 0, OPTAB_LIB_WIDEN);
4793 if (tem != quotient)
4794 emit_move_insn (quotient, tem);
4795 emit_jump_insn (targetm.gen_jump (label5));
4796 emit_barrier ();
4797 emit_label (label1);
4798 expand_inc (adjusted_op0, const1_rtx);
4799 emit_jump_insn (targetm.gen_jump (label4));
4800 emit_barrier ();
4801 emit_label (label2);
4802 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4803 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4804 quotient, 0, OPTAB_LIB_WIDEN);
4805 if (tem != quotient)
4806 emit_move_insn (quotient, tem);
4807 emit_jump_insn (targetm.gen_jump (label5));
4808 emit_barrier ();
4809 emit_label (label3);
4810 expand_dec (adjusted_op0, const1_rtx);
4811 emit_label (label4);
4812 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4813 quotient, 0, OPTAB_LIB_WIDEN);
4814 if (tem != quotient)
4815 emit_move_insn (quotient, tem);
4816 expand_dec (quotient, const1_rtx);
4817 emit_label (label5);
4819 break;
4821 case CEIL_DIV_EXPR:
4822 case CEIL_MOD_EXPR:
4823 if (unsignedp)
4825 if (op1_is_constant
4826 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4827 && (HWI_COMPUTABLE_MODE_P (compute_mode)
4828 || INTVAL (op1) >= 0))
4830 scalar_int_mode int_mode
4831 = as_a <scalar_int_mode> (compute_mode);
4832 rtx t1, t2, t3;
4833 unsigned HOST_WIDE_INT d = INTVAL (op1);
4834 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
4835 floor_log2 (d), tquotient, 1);
4836 t2 = expand_binop (int_mode, and_optab, op0,
4837 gen_int_mode (d - 1, int_mode),
4838 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4839 t3 = gen_reg_rtx (int_mode);
4840 t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
4841 if (t3 == 0)
4843 rtx_code_label *lab;
4844 lab = gen_label_rtx ();
4845 do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
4846 expand_inc (t1, const1_rtx);
4847 emit_label (lab);
4848 quotient = t1;
4850 else
4851 quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
4852 tquotient);
4853 break;
4856 /* Try using an instruction that produces both the quotient and
4857 remainder, using truncation. We can easily compensate the
4858 quotient or remainder to get ceiling rounding, once we have the
4859 remainder. Notice that we compute also the final remainder
4860 value here, and return the result right away. */
4861 if (target == 0 || GET_MODE (target) != compute_mode)
4862 target = gen_reg_rtx (compute_mode);
4864 if (rem_flag)
4866 remainder = (REG_P (target)
4867 ? target : gen_reg_rtx (compute_mode));
4868 quotient = gen_reg_rtx (compute_mode);
4870 else
4872 quotient = (REG_P (target)
4873 ? target : gen_reg_rtx (compute_mode));
4874 remainder = gen_reg_rtx (compute_mode);
4877 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4878 remainder, 1))
4880 /* This could be computed with a branch-less sequence.
4881 Save that for later. */
4882 rtx_code_label *label = gen_label_rtx ();
4883 do_cmp_and_jump (remainder, const0_rtx, EQ,
4884 compute_mode, label);
4885 expand_inc (quotient, const1_rtx);
4886 expand_dec (remainder, op1);
4887 emit_label (label);
4888 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4891 /* No luck with division elimination or divmod. Have to do it
4892 by conditionally adjusting op0 *and* the result. */
4894 rtx_code_label *label1, *label2;
4895 rtx adjusted_op0, tem;
4897 quotient = gen_reg_rtx (compute_mode);
4898 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4899 label1 = gen_label_rtx ();
4900 label2 = gen_label_rtx ();
4901 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4902 compute_mode, label1);
4903 emit_move_insn (quotient, const0_rtx);
4904 emit_jump_insn (targetm.gen_jump (label2));
4905 emit_barrier ();
4906 emit_label (label1);
4907 expand_dec (adjusted_op0, const1_rtx);
4908 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4909 quotient, 1, OPTAB_LIB_WIDEN);
4910 if (tem != quotient)
4911 emit_move_insn (quotient, tem);
4912 expand_inc (quotient, const1_rtx);
4913 emit_label (label2);
4916 else /* signed */
4918 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4919 && INTVAL (op1) >= 0)
4921 /* This is extremely similar to the code for the unsigned case
4922 above. For 2.7 we should merge these variants, but for
4923 2.6.1 I don't want to touch the code for unsigned since that
4924 get used in C. The signed case will only be used by other
4925 languages (Ada). */
4927 rtx t1, t2, t3;
4928 unsigned HOST_WIDE_INT d = INTVAL (op1);
4929 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4930 floor_log2 (d), tquotient, 0);
4931 t2 = expand_binop (compute_mode, and_optab, op0,
4932 gen_int_mode (d - 1, compute_mode),
4933 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4934 t3 = gen_reg_rtx (compute_mode);
4935 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4936 compute_mode, 1, 1);
4937 if (t3 == 0)
4939 rtx_code_label *lab;
4940 lab = gen_label_rtx ();
4941 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4942 expand_inc (t1, const1_rtx);
4943 emit_label (lab);
4944 quotient = t1;
4946 else
4947 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4948 t1, t3),
4949 tquotient);
4950 break;
4953 /* Try using an instruction that produces both the quotient and
4954 remainder, using truncation. We can easily compensate the
4955 quotient or remainder to get ceiling rounding, once we have the
4956 remainder. Notice that we compute also the final remainder
4957 value here, and return the result right away. */
4958 if (target == 0 || GET_MODE (target) != compute_mode)
4959 target = gen_reg_rtx (compute_mode);
4960 if (rem_flag)
4962 remainder= (REG_P (target)
4963 ? target : gen_reg_rtx (compute_mode));
4964 quotient = gen_reg_rtx (compute_mode);
4966 else
4968 quotient = (REG_P (target)
4969 ? target : gen_reg_rtx (compute_mode));
4970 remainder = gen_reg_rtx (compute_mode);
4973 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4974 remainder, 0))
4976 /* This could be computed with a branch-less sequence.
4977 Save that for later. */
4978 rtx tem;
4979 rtx_code_label *label = gen_label_rtx ();
4980 do_cmp_and_jump (remainder, const0_rtx, EQ,
4981 compute_mode, label);
4982 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4983 NULL_RTX, 0, OPTAB_WIDEN);
4984 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4985 expand_inc (quotient, const1_rtx);
4986 expand_dec (remainder, op1);
4987 emit_label (label);
4988 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4991 /* No luck with division elimination or divmod. Have to do it
4992 by conditionally adjusting op0 *and* the result. */
4994 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4995 rtx adjusted_op0;
4996 rtx tem;
4998 quotient = gen_reg_rtx (compute_mode);
4999 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
5000 label1 = gen_label_rtx ();
5001 label2 = gen_label_rtx ();
5002 label3 = gen_label_rtx ();
5003 label4 = gen_label_rtx ();
5004 label5 = gen_label_rtx ();
5005 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
5006 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
5007 compute_mode, label1);
5008 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5009 quotient, 0, OPTAB_LIB_WIDEN);
5010 if (tem != quotient)
5011 emit_move_insn (quotient, tem);
5012 emit_jump_insn (targetm.gen_jump (label5));
5013 emit_barrier ();
5014 emit_label (label1);
5015 expand_dec (adjusted_op0, const1_rtx);
5016 emit_jump_insn (targetm.gen_jump (label4));
5017 emit_barrier ();
5018 emit_label (label2);
5019 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
5020 compute_mode, label3);
5021 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5022 quotient, 0, OPTAB_LIB_WIDEN);
5023 if (tem != quotient)
5024 emit_move_insn (quotient, tem);
5025 emit_jump_insn (targetm.gen_jump (label5));
5026 emit_barrier ();
5027 emit_label (label3);
5028 expand_inc (adjusted_op0, const1_rtx);
5029 emit_label (label4);
5030 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5031 quotient, 0, OPTAB_LIB_WIDEN);
5032 if (tem != quotient)
5033 emit_move_insn (quotient, tem);
5034 expand_inc (quotient, const1_rtx);
5035 emit_label (label5);
5038 break;
5040 case EXACT_DIV_EXPR:
5041 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
5043 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5044 int size = GET_MODE_BITSIZE (int_mode);
5045 HOST_WIDE_INT d = INTVAL (op1);
5046 unsigned HOST_WIDE_INT ml;
5047 int pre_shift;
5048 rtx t1;
5050 pre_shift = ctz_or_zero (d);
5051 ml = invert_mod2n (d >> pre_shift, size);
5052 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5053 pre_shift, NULL_RTX, unsignedp);
5054 quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
5055 NULL_RTX, 1);
5057 insn = get_last_insn ();
5058 set_dst_reg_note (insn, REG_EQUAL,
5059 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
5060 int_mode, op0, op1),
5061 quotient);
5063 break;
5065 case ROUND_DIV_EXPR:
5066 case ROUND_MOD_EXPR:
5067 if (unsignedp)
5069 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5070 rtx tem;
5071 rtx_code_label *label;
5072 label = gen_label_rtx ();
5073 quotient = gen_reg_rtx (int_mode);
5074 remainder = gen_reg_rtx (int_mode);
5075 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
5077 rtx tem;
5078 quotient = expand_binop (int_mode, udiv_optab, op0, op1,
5079 quotient, 1, OPTAB_LIB_WIDEN);
5080 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
5081 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5082 remainder, 1, OPTAB_LIB_WIDEN);
5084 tem = plus_constant (int_mode, op1, -1);
5085 tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
5086 do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
5087 expand_inc (quotient, const1_rtx);
5088 expand_dec (remainder, op1);
5089 emit_label (label);
5091 else
5093 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5094 int size = GET_MODE_BITSIZE (int_mode);
5095 rtx abs_rem, abs_op1, tem, mask;
5096 rtx_code_label *label;
5097 label = gen_label_rtx ();
5098 quotient = gen_reg_rtx (int_mode);
5099 remainder = gen_reg_rtx (int_mode);
5100 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
5102 rtx tem;
5103 quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
5104 quotient, 0, OPTAB_LIB_WIDEN);
5105 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
5106 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5107 remainder, 0, OPTAB_LIB_WIDEN);
5109 abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
5110 abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
5111 tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
5112 1, NULL_RTX, 1);
5113 do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
5114 tem = expand_binop (int_mode, xor_optab, op0, op1,
5115 NULL_RTX, 0, OPTAB_WIDEN);
5116 mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
5117 size - 1, NULL_RTX, 0);
5118 tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
5119 NULL_RTX, 0, OPTAB_WIDEN);
5120 tem = expand_binop (int_mode, sub_optab, tem, mask,
5121 NULL_RTX, 0, OPTAB_WIDEN);
5122 expand_inc (quotient, tem);
5123 tem = expand_binop (int_mode, xor_optab, mask, op1,
5124 NULL_RTX, 0, OPTAB_WIDEN);
5125 tem = expand_binop (int_mode, sub_optab, tem, mask,
5126 NULL_RTX, 0, OPTAB_WIDEN);
5127 expand_dec (remainder, tem);
5128 emit_label (label);
5130 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5132 default:
5133 gcc_unreachable ();
5136 if (quotient == 0)
5138 if (target && GET_MODE (target) != compute_mode)
5139 target = 0;
5141 if (rem_flag)
5143 /* Try to produce the remainder without producing the quotient.
5144 If we seem to have a divmod pattern that does not require widening,
5145 don't try widening here. We should really have a WIDEN argument
5146 to expand_twoval_binop, since what we'd really like to do here is
5147 1) try a mod insn in compute_mode
5148 2) try a divmod insn in compute_mode
5149 3) try a div insn in compute_mode and multiply-subtract to get
5150 remainder
5151 4) try the same things with widening allowed. */
5152 remainder
5153 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5154 op0, op1, target,
5155 unsignedp,
5156 ((optab_handler (optab2, compute_mode)
5157 != CODE_FOR_nothing)
5158 ? OPTAB_DIRECT : OPTAB_WIDEN));
5159 if (remainder == 0)
5161 /* No luck there. Can we do remainder and divide at once
5162 without a library call? */
5163 remainder = gen_reg_rtx (compute_mode);
5164 if (! expand_twoval_binop ((unsignedp
5165 ? udivmod_optab
5166 : sdivmod_optab),
5167 op0, op1,
5168 NULL_RTX, remainder, unsignedp))
5169 remainder = 0;
5172 if (remainder)
5173 return gen_lowpart (mode, remainder);
5176 /* Produce the quotient. Try a quotient insn, but not a library call.
5177 If we have a divmod in this mode, use it in preference to widening
5178 the div (for this test we assume it will not fail). Note that optab2
5179 is set to the one of the two optabs that the call below will use. */
5180 quotient
5181 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5182 op0, op1, rem_flag ? NULL_RTX : target,
5183 unsignedp,
5184 ((optab_handler (optab2, compute_mode)
5185 != CODE_FOR_nothing)
5186 ? OPTAB_DIRECT : OPTAB_WIDEN));
5188 if (quotient == 0)
5190 /* No luck there. Try a quotient-and-remainder insn,
5191 keeping the quotient alone. */
5192 quotient = gen_reg_rtx (compute_mode);
5193 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
5194 op0, op1,
5195 quotient, NULL_RTX, unsignedp))
5197 quotient = 0;
5198 if (! rem_flag)
5199 /* Still no luck. If we are not computing the remainder,
5200 use a library call for the quotient. */
5201 quotient = sign_expand_binop (compute_mode,
5202 udiv_optab, sdiv_optab,
5203 op0, op1, target,
5204 unsignedp, OPTAB_LIB_WIDEN);
5209 if (rem_flag)
5211 if (target && GET_MODE (target) != compute_mode)
5212 target = 0;
5214 if (quotient == 0)
5216 /* No divide instruction either. Use library for remainder. */
5217 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5218 op0, op1, target,
5219 unsignedp, OPTAB_LIB_WIDEN);
5220 /* No remainder function. Try a quotient-and-remainder
5221 function, keeping the remainder. */
5222 if (!remainder)
5224 remainder = gen_reg_rtx (compute_mode);
5225 if (!expand_twoval_binop_libfunc
5226 (unsignedp ? udivmod_optab : sdivmod_optab,
5227 op0, op1,
5228 NULL_RTX, remainder,
5229 unsignedp ? UMOD : MOD))
5230 remainder = NULL_RTX;
5233 else
5235 /* We divided. Now finish doing X - Y * (X / Y). */
5236 remainder = expand_mult (compute_mode, quotient, op1,
5237 NULL_RTX, unsignedp);
5238 remainder = expand_binop (compute_mode, sub_optab, op0,
5239 remainder, target, unsignedp,
5240 OPTAB_LIB_WIDEN);
5244 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5247 /* Return a tree node with data type TYPE, describing the value of X.
5248 Usually this is an VAR_DECL, if there is no obvious better choice.
5249 X may be an expression, however we only support those expressions
5250 generated by loop.c. */
5252 tree
5253 make_tree (tree type, rtx x)
5255 tree t;
5257 switch (GET_CODE (x))
5259 case CONST_INT:
5260 case CONST_WIDE_INT:
5261 t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
5262 return t;
5264 case CONST_DOUBLE:
5265 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5266 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5267 t = wide_int_to_tree (type,
5268 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5269 HOST_BITS_PER_WIDE_INT * 2));
5270 else
5271 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
5273 return t;
5275 case CONST_VECTOR:
5277 int units = CONST_VECTOR_NUNITS (x);
5278 tree itype = TREE_TYPE (type);
5279 int i;
5281 /* Build a tree with vector elements. */
5282 tree_vector_builder elts (type, units, 1);
5283 for (i = 0; i < units; ++i)
5285 rtx elt = CONST_VECTOR_ELT (x, i);
5286 elts.quick_push (make_tree (itype, elt));
5289 return elts.build ();
5292 case PLUS:
5293 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5294 make_tree (type, XEXP (x, 1)));
5296 case MINUS:
5297 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5298 make_tree (type, XEXP (x, 1)));
5300 case NEG:
5301 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5303 case MULT:
5304 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5305 make_tree (type, XEXP (x, 1)));
5307 case ASHIFT:
5308 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5309 make_tree (type, XEXP (x, 1)));
5311 case LSHIFTRT:
5312 t = unsigned_type_for (type);
5313 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5314 make_tree (t, XEXP (x, 0)),
5315 make_tree (type, XEXP (x, 1))));
5317 case ASHIFTRT:
5318 t = signed_type_for (type);
5319 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5320 make_tree (t, XEXP (x, 0)),
5321 make_tree (type, XEXP (x, 1))));
5323 case DIV:
5324 if (TREE_CODE (type) != REAL_TYPE)
5325 t = signed_type_for (type);
5326 else
5327 t = type;
5329 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5330 make_tree (t, XEXP (x, 0)),
5331 make_tree (t, XEXP (x, 1))));
5332 case UDIV:
5333 t = unsigned_type_for (type);
5334 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5335 make_tree (t, XEXP (x, 0)),
5336 make_tree (t, XEXP (x, 1))));
5338 case SIGN_EXTEND:
5339 case ZERO_EXTEND:
5340 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5341 GET_CODE (x) == ZERO_EXTEND);
5342 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5344 case CONST:
5346 rtx op = XEXP (x, 0);
5347 if (GET_CODE (op) == VEC_DUPLICATE)
5349 tree elt_tree = make_tree (TREE_TYPE (type), XEXP (op, 0));
5350 return build_vector_from_val (type, elt_tree);
5352 if (GET_CODE (op) == VEC_SERIES)
5354 tree itype = TREE_TYPE (type);
5355 tree base_tree = make_tree (itype, XEXP (op, 0));
5356 tree step_tree = make_tree (itype, XEXP (op, 1));
5357 return build_vec_series (type, base_tree, step_tree);
5359 return make_tree (type, op);
5362 case SYMBOL_REF:
5363 t = SYMBOL_REF_DECL (x);
5364 if (t)
5365 return fold_convert (type, build_fold_addr_expr (t));
5366 /* fall through. */
5368 default:
5369 if (CONST_POLY_INT_P (x))
5370 return wide_int_to_tree (t, const_poly_int_value (x));
5372 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5374 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5375 address mode to pointer mode. */
5376 if (POINTER_TYPE_P (type))
5377 x = convert_memory_address_addr_space
5378 (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5380 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5381 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5382 t->decl_with_rtl.rtl = x;
5384 return t;
5388 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5389 and returning TARGET.
5391 If TARGET is 0, a pseudo-register or constant is returned. */
5394 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5396 rtx tem = 0;
5398 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5399 tem = simplify_binary_operation (AND, mode, op0, op1);
5400 if (tem == 0)
5401 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5403 if (target == 0)
5404 target = tem;
5405 else if (tem != target)
5406 emit_move_insn (target, tem);
5407 return target;
5410 /* Helper function for emit_store_flag. */
5412 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5413 machine_mode mode, machine_mode compare_mode,
5414 int unsignedp, rtx x, rtx y, int normalizep,
5415 machine_mode target_mode)
5417 struct expand_operand ops[4];
5418 rtx op0, comparison, subtarget;
5419 rtx_insn *last;
5420 scalar_int_mode result_mode = targetm.cstore_mode (icode);
5421 scalar_int_mode int_target_mode;
5423 last = get_last_insn ();
5424 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5425 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5426 if (!x || !y)
5428 delete_insns_since (last);
5429 return NULL_RTX;
5432 if (target_mode == VOIDmode)
5433 int_target_mode = result_mode;
5434 else
5435 int_target_mode = as_a <scalar_int_mode> (target_mode);
5436 if (!target)
5437 target = gen_reg_rtx (int_target_mode);
5439 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5441 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5442 create_fixed_operand (&ops[1], comparison);
5443 create_fixed_operand (&ops[2], x);
5444 create_fixed_operand (&ops[3], y);
5445 if (!maybe_expand_insn (icode, 4, ops))
5447 delete_insns_since (last);
5448 return NULL_RTX;
5450 subtarget = ops[0].value;
5452 /* If we are converting to a wider mode, first convert to
5453 INT_TARGET_MODE, then normalize. This produces better combining
5454 opportunities on machines that have a SIGN_EXTRACT when we are
5455 testing a single bit. This mostly benefits the 68k.
5457 If STORE_FLAG_VALUE does not have the sign bit set when
5458 interpreted in MODE, we can do this conversion as unsigned, which
5459 is usually more efficient. */
5460 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (result_mode))
5462 convert_move (target, subtarget,
5463 val_signbit_known_clear_p (result_mode,
5464 STORE_FLAG_VALUE));
5465 op0 = target;
5466 result_mode = int_target_mode;
5468 else
5469 op0 = subtarget;
5471 /* If we want to keep subexpressions around, don't reuse our last
5472 target. */
5473 if (optimize)
5474 subtarget = 0;
5476 /* Now normalize to the proper value in MODE. Sometimes we don't
5477 have to do anything. */
5478 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5480 /* STORE_FLAG_VALUE might be the most negative number, so write
5481 the comparison this way to avoid a compiler-time warning. */
5482 else if (- normalizep == STORE_FLAG_VALUE)
5483 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5485 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5486 it hard to use a value of just the sign bit due to ANSI integer
5487 constant typing rules. */
5488 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5489 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5490 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5491 normalizep == 1);
5492 else
5494 gcc_assert (STORE_FLAG_VALUE & 1);
5496 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5497 if (normalizep == -1)
5498 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5501 /* If we were converting to a smaller mode, do the conversion now. */
5502 if (int_target_mode != result_mode)
5504 convert_move (target, op0, 0);
5505 return target;
5507 else
5508 return op0;
5512 /* A subroutine of emit_store_flag only including "tricks" that do not
5513 need a recursive call. These are kept separate to avoid infinite
5514 loops. */
5516 static rtx
5517 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5518 machine_mode mode, int unsignedp, int normalizep,
5519 machine_mode target_mode)
5521 rtx subtarget;
5522 enum insn_code icode;
5523 machine_mode compare_mode;
5524 enum mode_class mclass;
5525 enum rtx_code scode;
5527 if (unsignedp)
5528 code = unsigned_condition (code);
5529 scode = swap_condition (code);
5531 /* If one operand is constant, make it the second one. Only do this
5532 if the other operand is not constant as well. */
5534 if (swap_commutative_operands_p (op0, op1))
5536 std::swap (op0, op1);
5537 code = swap_condition (code);
5540 if (mode == VOIDmode)
5541 mode = GET_MODE (op0);
5543 /* For some comparisons with 1 and -1, we can convert this to
5544 comparisons with zero. This will often produce more opportunities for
5545 store-flag insns. */
5547 switch (code)
5549 case LT:
5550 if (op1 == const1_rtx)
5551 op1 = const0_rtx, code = LE;
5552 break;
5553 case LE:
5554 if (op1 == constm1_rtx)
5555 op1 = const0_rtx, code = LT;
5556 break;
5557 case GE:
5558 if (op1 == const1_rtx)
5559 op1 = const0_rtx, code = GT;
5560 break;
5561 case GT:
5562 if (op1 == constm1_rtx)
5563 op1 = const0_rtx, code = GE;
5564 break;
5565 case GEU:
5566 if (op1 == const1_rtx)
5567 op1 = const0_rtx, code = NE;
5568 break;
5569 case LTU:
5570 if (op1 == const1_rtx)
5571 op1 = const0_rtx, code = EQ;
5572 break;
5573 default:
5574 break;
5577 /* If we are comparing a double-word integer with zero or -1, we can
5578 convert the comparison into one involving a single word. */
5579 scalar_int_mode int_mode;
5580 if (is_int_mode (mode, &int_mode)
5581 && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
5582 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5584 rtx tem;
5585 if ((code == EQ || code == NE)
5586 && (op1 == const0_rtx || op1 == constm1_rtx))
5588 rtx op00, op01;
5590 /* Do a logical OR or AND of the two words and compare the
5591 result. */
5592 op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
5593 op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
5594 tem = expand_binop (word_mode,
5595 op1 == const0_rtx ? ior_optab : and_optab,
5596 op00, op01, NULL_RTX, unsignedp,
5597 OPTAB_DIRECT);
5599 if (tem != 0)
5600 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5601 unsignedp, normalizep);
5603 else if ((code == LT || code == GE) && op1 == const0_rtx)
5605 rtx op0h;
5607 /* If testing the sign bit, can just test on high word. */
5608 op0h = simplify_gen_subreg (word_mode, op0, int_mode,
5609 subreg_highpart_offset (word_mode,
5610 int_mode));
5611 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5612 unsignedp, normalizep);
5614 else
5615 tem = NULL_RTX;
5617 if (tem)
5619 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5620 return tem;
5621 if (!target)
5622 target = gen_reg_rtx (target_mode);
5624 convert_move (target, tem,
5625 !val_signbit_known_set_p (word_mode,
5626 (normalizep ? normalizep
5627 : STORE_FLAG_VALUE)));
5628 return target;
5632 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5633 complement of A (for GE) and shifting the sign bit to the low bit. */
5634 if (op1 == const0_rtx && (code == LT || code == GE)
5635 && is_int_mode (mode, &int_mode)
5636 && (normalizep || STORE_FLAG_VALUE == 1
5637 || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
5639 scalar_int_mode int_target_mode;
5640 subtarget = target;
5642 if (!target)
5643 int_target_mode = int_mode;
5644 else
5646 /* If the result is to be wider than OP0, it is best to convert it
5647 first. If it is to be narrower, it is *incorrect* to convert it
5648 first. */
5649 int_target_mode = as_a <scalar_int_mode> (target_mode);
5650 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
5652 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5653 int_mode = int_target_mode;
5657 if (int_target_mode != int_mode)
5658 subtarget = 0;
5660 if (code == GE)
5661 op0 = expand_unop (int_mode, one_cmpl_optab, op0,
5662 ((STORE_FLAG_VALUE == 1 || normalizep)
5663 ? 0 : subtarget), 0);
5665 if (STORE_FLAG_VALUE == 1 || normalizep)
5666 /* If we are supposed to produce a 0/1 value, we want to do
5667 a logical shift from the sign bit to the low-order bit; for
5668 a -1/0 value, we do an arithmetic shift. */
5669 op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5670 GET_MODE_BITSIZE (int_mode) - 1,
5671 subtarget, normalizep != -1);
5673 if (int_mode != int_target_mode)
5674 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5676 return op0;
5679 mclass = GET_MODE_CLASS (mode);
5680 FOR_EACH_MODE_FROM (compare_mode, mode)
5682 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5683 icode = optab_handler (cstore_optab, optab_mode);
5684 if (icode != CODE_FOR_nothing)
5686 do_pending_stack_adjust ();
5687 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5688 unsignedp, op0, op1, normalizep, target_mode);
5689 if (tem)
5690 return tem;
5692 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5694 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5695 unsignedp, op1, op0, normalizep, target_mode);
5696 if (tem)
5697 return tem;
5699 break;
5703 return 0;
5706 /* Subroutine of emit_store_flag that handles cases in which the operands
5707 are scalar integers. SUBTARGET is the target to use for temporary
5708 operations and TRUEVAL is the value to store when the condition is
5709 true. All other arguments are as for emit_store_flag. */
5712 emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
5713 rtx op1, scalar_int_mode mode, int unsignedp,
5714 int normalizep, rtx trueval)
5716 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5717 rtx_insn *last = get_last_insn ();
5719 /* If this is an equality comparison of integers, we can try to exclusive-or
5720 (or subtract) the two operands and use a recursive call to try the
5721 comparison with zero. Don't do any of these cases if branches are
5722 very cheap. */
5724 if ((code == EQ || code == NE) && op1 != const0_rtx)
5726 rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5727 OPTAB_WIDEN);
5729 if (tem == 0)
5730 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5731 OPTAB_WIDEN);
5732 if (tem != 0)
5733 tem = emit_store_flag (target, code, tem, const0_rtx,
5734 mode, unsignedp, normalizep);
5735 if (tem != 0)
5736 return tem;
5738 delete_insns_since (last);
5741 /* For integer comparisons, try the reverse comparison. However, for
5742 small X and if we'd have anyway to extend, implementing "X != 0"
5743 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5744 rtx_code rcode = reverse_condition (code);
5745 if (can_compare_p (rcode, mode, ccp_store_flag)
5746 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5747 && code == NE
5748 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5749 && op1 == const0_rtx))
5751 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5752 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5754 /* Again, for the reverse comparison, use either an addition or a XOR. */
5755 if (want_add
5756 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5757 optimize_insn_for_speed_p ()) == 0)
5759 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5760 STORE_FLAG_VALUE, target_mode);
5761 if (tem != 0)
5762 tem = expand_binop (target_mode, add_optab, tem,
5763 gen_int_mode (normalizep, target_mode),
5764 target, 0, OPTAB_WIDEN);
5765 if (tem != 0)
5766 return tem;
5768 else if (!want_add
5769 && rtx_cost (trueval, mode, XOR, 1,
5770 optimize_insn_for_speed_p ()) == 0)
5772 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5773 normalizep, target_mode);
5774 if (tem != 0)
5775 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5776 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5777 if (tem != 0)
5778 return tem;
5781 delete_insns_since (last);
5784 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5785 the constant zero. Reject all other comparisons at this point. Only
5786 do LE and GT if branches are expensive since they are expensive on
5787 2-operand machines. */
5789 if (op1 != const0_rtx
5790 || (code != EQ && code != NE
5791 && (BRANCH_COST (optimize_insn_for_speed_p (),
5792 false) <= 1 || (code != LE && code != GT))))
5793 return 0;
5795 /* Try to put the result of the comparison in the sign bit. Assume we can't
5796 do the necessary operation below. */
5798 rtx tem = 0;
5800 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5801 the sign bit set. */
5803 if (code == LE)
5805 /* This is destructive, so SUBTARGET can't be OP0. */
5806 if (rtx_equal_p (subtarget, op0))
5807 subtarget = 0;
5809 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5810 OPTAB_WIDEN);
5811 if (tem)
5812 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5813 OPTAB_WIDEN);
5816 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5817 number of bits in the mode of OP0, minus one. */
5819 if (code == GT)
5821 if (rtx_equal_p (subtarget, op0))
5822 subtarget = 0;
5824 tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
5825 GET_MODE_BITSIZE (mode) - 1,
5826 subtarget, 0);
5827 if (tem)
5828 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5829 OPTAB_WIDEN);
5832 if (code == EQ || code == NE)
5834 /* For EQ or NE, one way to do the comparison is to apply an operation
5835 that converts the operand into a positive number if it is nonzero
5836 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5837 for NE we negate. This puts the result in the sign bit. Then we
5838 normalize with a shift, if needed.
5840 Two operations that can do the above actions are ABS and FFS, so try
5841 them. If that doesn't work, and MODE is smaller than a full word,
5842 we can use zero-extension to the wider mode (an unsigned conversion)
5843 as the operation. */
5845 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5846 that is compensated by the subsequent overflow when subtracting
5847 one / negating. */
5849 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5850 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5851 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5852 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5853 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5855 tem = convert_modes (word_mode, mode, op0, 1);
5856 mode = word_mode;
5859 if (tem != 0)
5861 if (code == EQ)
5862 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5863 0, OPTAB_WIDEN);
5864 else
5865 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5868 /* If we couldn't do it that way, for NE we can "or" the two's complement
5869 of the value with itself. For EQ, we take the one's complement of
5870 that "or", which is an extra insn, so we only handle EQ if branches
5871 are expensive. */
5873 if (tem == 0
5874 && (code == NE
5875 || BRANCH_COST (optimize_insn_for_speed_p (),
5876 false) > 1))
5878 if (rtx_equal_p (subtarget, op0))
5879 subtarget = 0;
5881 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5882 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5883 OPTAB_WIDEN);
5885 if (tem && code == EQ)
5886 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5890 if (tem && normalizep)
5891 tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
5892 GET_MODE_BITSIZE (mode) - 1,
5893 subtarget, normalizep == 1);
5895 if (tem)
5897 if (!target)
5899 else if (GET_MODE (tem) != target_mode)
5901 convert_move (target, tem, 0);
5902 tem = target;
5904 else if (!subtarget)
5906 emit_move_insn (target, tem);
5907 tem = target;
5910 else
5911 delete_insns_since (last);
5913 return tem;
5916 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5917 and storing in TARGET. Normally return TARGET.
5918 Return 0 if that cannot be done.
5920 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5921 it is VOIDmode, they cannot both be CONST_INT.
5923 UNSIGNEDP is for the case where we have to widen the operands
5924 to perform the operation. It says to use zero-extension.
5926 NORMALIZEP is 1 if we should convert the result to be either zero
5927 or one. Normalize is -1 if we should convert the result to be
5928 either zero or -1. If NORMALIZEP is zero, the result will be left
5929 "raw" out of the scc insn. */
5932 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5933 machine_mode mode, int unsignedp, int normalizep)
5935 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5936 enum rtx_code rcode;
5937 rtx subtarget;
5938 rtx tem, trueval;
5939 rtx_insn *last;
5941 /* If we compare constants, we shouldn't use a store-flag operation,
5942 but a constant load. We can get there via the vanilla route that
5943 usually generates a compare-branch sequence, but will in this case
5944 fold the comparison to a constant, and thus elide the branch. */
5945 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5946 return NULL_RTX;
5948 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5949 target_mode);
5950 if (tem)
5951 return tem;
5953 /* If we reached here, we can't do this with a scc insn, however there
5954 are some comparisons that can be done in other ways. Don't do any
5955 of these cases if branches are very cheap. */
5956 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5957 return 0;
5959 /* See what we need to return. We can only return a 1, -1, or the
5960 sign bit. */
5962 if (normalizep == 0)
5964 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5965 normalizep = STORE_FLAG_VALUE;
5967 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5969 else
5970 return 0;
5973 last = get_last_insn ();
5975 /* If optimizing, use different pseudo registers for each insn, instead
5976 of reusing the same pseudo. This leads to better CSE, but slows
5977 down the compiler, since there are more pseudos. */
5978 subtarget = (!optimize
5979 && (target_mode == mode)) ? target : NULL_RTX;
5980 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5982 /* For floating-point comparisons, try the reverse comparison or try
5983 changing the "orderedness" of the comparison. */
5984 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5986 enum rtx_code first_code;
5987 bool and_them;
5989 rcode = reverse_condition_maybe_unordered (code);
5990 if (can_compare_p (rcode, mode, ccp_store_flag)
5991 && (code == ORDERED || code == UNORDERED
5992 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5993 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5995 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5996 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5998 /* For the reverse comparison, use either an addition or a XOR. */
5999 if (want_add
6000 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
6001 optimize_insn_for_speed_p ()) == 0)
6003 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6004 STORE_FLAG_VALUE, target_mode);
6005 if (tem)
6006 return expand_binop (target_mode, add_optab, tem,
6007 gen_int_mode (normalizep, target_mode),
6008 target, 0, OPTAB_WIDEN);
6010 else if (!want_add
6011 && rtx_cost (trueval, mode, XOR, 1,
6012 optimize_insn_for_speed_p ()) == 0)
6014 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6015 normalizep, target_mode);
6016 if (tem)
6017 return expand_binop (target_mode, xor_optab, tem, trueval,
6018 target, INTVAL (trueval) >= 0,
6019 OPTAB_WIDEN);
6023 delete_insns_since (last);
6025 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6026 if (code == ORDERED || code == UNORDERED)
6027 return 0;
6029 and_them = split_comparison (code, mode, &first_code, &code);
6031 /* If there are no NaNs, the first comparison should always fall through.
6032 Effectively change the comparison to the other one. */
6033 if (!HONOR_NANS (mode))
6035 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
6036 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
6037 target_mode);
6040 if (!HAVE_conditional_move)
6041 return 0;
6043 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6044 conditional move. */
6045 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
6046 normalizep, target_mode);
6047 if (tem == 0)
6048 return 0;
6050 if (and_them)
6051 tem = emit_conditional_move (target, code, op0, op1, mode,
6052 tem, const0_rtx, GET_MODE (tem), 0);
6053 else
6054 tem = emit_conditional_move (target, code, op0, op1, mode,
6055 trueval, tem, GET_MODE (tem), 0);
6057 if (tem == 0)
6058 delete_insns_since (last);
6059 return tem;
6062 /* The remaining tricks only apply to integer comparisons. */
6064 scalar_int_mode int_mode;
6065 if (is_int_mode (mode, &int_mode))
6066 return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
6067 unsignedp, normalizep, trueval);
6069 return 0;
6072 /* Like emit_store_flag, but always succeeds. */
6075 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
6076 machine_mode mode, int unsignedp, int normalizep)
6078 rtx tem;
6079 rtx_code_label *label;
6080 rtx trueval, falseval;
6082 /* First see if emit_store_flag can do the job. */
6083 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
6084 if (tem != 0)
6085 return tem;
6087 if (!target)
6088 target = gen_reg_rtx (word_mode);
6090 /* If this failed, we have to do this with set/compare/jump/set code.
6091 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6092 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
6093 if (code == NE
6094 && GET_MODE_CLASS (mode) == MODE_INT
6095 && REG_P (target)
6096 && op0 == target
6097 && op1 == const0_rtx)
6099 label = gen_label_rtx ();
6100 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
6101 NULL_RTX, NULL, label,
6102 profile_probability::uninitialized ());
6103 emit_move_insn (target, trueval);
6104 emit_label (label);
6105 return target;
6108 if (!REG_P (target)
6109 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
6110 target = gen_reg_rtx (GET_MODE (target));
6112 /* Jump in the right direction if the target cannot implement CODE
6113 but can jump on its reverse condition. */
6114 falseval = const0_rtx;
6115 if (! can_compare_p (code, mode, ccp_jump)
6116 && (! FLOAT_MODE_P (mode)
6117 || code == ORDERED || code == UNORDERED
6118 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6119 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6121 enum rtx_code rcode;
6122 if (FLOAT_MODE_P (mode))
6123 rcode = reverse_condition_maybe_unordered (code);
6124 else
6125 rcode = reverse_condition (code);
6127 /* Canonicalize to UNORDERED for the libcall. */
6128 if (can_compare_p (rcode, mode, ccp_jump)
6129 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
6131 falseval = trueval;
6132 trueval = const0_rtx;
6133 code = rcode;
6137 emit_move_insn (target, trueval);
6138 label = gen_label_rtx ();
6139 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
6140 label, profile_probability::uninitialized ());
6142 emit_move_insn (target, falseval);
6143 emit_label (label);
6145 return target;
6148 /* Perform possibly multi-word comparison and conditional jump to LABEL
6149 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6150 now a thin wrapper around do_compare_rtx_and_jump. */
6152 static void
6153 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
6154 rtx_code_label *label)
6156 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
6157 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
6158 NULL, label, profile_probability::uninitialized ());