gcc/
[official-gcc.git] / gcc / sel-sched.c
blob5c49d8e0e9a5a03b987ef98720428c62cfedcbea
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "vec.h"
31 #include "input.h"
32 #include "function.h"
33 #include "predict.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "cfgbuild.h"
37 #include "basic-block.h"
38 #include "flags.h"
39 #include "insn-config.h"
40 #include "insn-attr.h"
41 #include "except.h"
42 #include "recog.h"
43 #include "params.h"
44 #include "target.h"
45 #include "output.h"
46 #include "sched-int.h"
47 #include "ggc.h"
48 #include "symtab.h"
49 #include "inchash.h"
50 #include "tree.h"
51 #include "langhooks.h"
52 #include "rtlhooks-def.h"
53 #include "emit-rtl.h"
54 #include "ira.h"
55 #include "rtl-iter.h"
57 #ifdef INSN_SCHEDULING
58 #include "sel-sched-ir.h"
59 #include "sel-sched-dump.h"
60 #include "sel-sched.h"
61 #include "dbgcnt.h"
63 /* Implementation of selective scheduling approach.
64 The below implementation follows the original approach with the following
65 changes:
67 o the scheduler works after register allocation (but can be also tuned
68 to work before RA);
69 o some instructions are not copied or register renamed;
70 o conditional jumps are not moved with code duplication;
71 o several jumps in one parallel group are not supported;
72 o when pipelining outer loops, code motion through inner loops
73 is not supported;
74 o control and data speculation are supported;
75 o some improvements for better compile time/performance were made.
77 Terminology
78 ===========
80 A vinsn, or virtual insn, is an insn with additional data characterizing
81 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
82 Vinsns also act as smart pointers to save memory by reusing them in
83 different expressions. A vinsn is described by vinsn_t type.
85 An expression is a vinsn with additional data characterizing its properties
86 at some point in the control flow graph. The data may be its usefulness,
87 priority, speculative status, whether it was renamed/subsituted, etc.
88 An expression is described by expr_t type.
90 Availability set (av_set) is a set of expressions at a given control flow
91 point. It is represented as av_set_t. The expressions in av sets are kept
92 sorted in the terms of expr_greater_p function. It allows to truncate
93 the set while leaving the best expressions.
95 A fence is a point through which code motion is prohibited. On each step,
96 we gather a parallel group of insns at a fence. It is possible to have
97 multiple fences. A fence is represented via fence_t.
99 A boundary is the border between the fence group and the rest of the code.
100 Currently, we never have more than one boundary per fence, as we finalize
101 the fence group when a jump is scheduled. A boundary is represented
102 via bnd_t.
104 High-level overview
105 ===================
107 The scheduler finds regions to schedule, schedules each one, and finalizes.
108 The regions are formed starting from innermost loops, so that when the inner
109 loop is pipelined, its prologue can be scheduled together with yet unprocessed
110 outer loop. The rest of acyclic regions are found using extend_rgns:
111 the blocks that are not yet allocated to any regions are traversed in top-down
112 order, and a block is added to a region to which all its predecessors belong;
113 otherwise, the block starts its own region.
115 The main scheduling loop (sel_sched_region_2) consists of just
116 scheduling on each fence and updating fences. For each fence,
117 we fill a parallel group of insns (fill_insns) until some insns can be added.
118 First, we compute available exprs (av-set) at the boundary of the current
119 group. Second, we choose the best expression from it. If the stall is
120 required to schedule any of the expressions, we advance the current cycle
121 appropriately. So, the final group does not exactly correspond to a VLIW
122 word. Third, we move the chosen expression to the boundary (move_op)
123 and update the intermediate av sets and liveness sets. We quit fill_insns
124 when either no insns left for scheduling or we have scheduled enough insns
125 so we feel like advancing a scheduling point.
127 Computing available expressions
128 ===============================
130 The computation (compute_av_set) is a bottom-up traversal. At each insn,
131 we're moving the union of its successors' sets through it via
132 moveup_expr_set. The dependent expressions are removed. Local
133 transformations (substitution, speculation) are applied to move more
134 exprs. Then the expr corresponding to the current insn is added.
135 The result is saved on each basic block header.
137 When traversing the CFG, we're moving down for no more than max_ws insns.
138 Also, we do not move down to ineligible successors (is_ineligible_successor),
139 which include moving along a back-edge, moving to already scheduled code,
140 and moving to another fence. The first two restrictions are lifted during
141 pipelining, which allows us to move insns along a back-edge. We always have
142 an acyclic region for scheduling because we forbid motion through fences.
144 Choosing the best expression
145 ============================
147 We sort the final availability set via sel_rank_for_schedule, then we remove
148 expressions which are not yet ready (tick_check_p) or which dest registers
149 cannot be used. For some of them, we choose another register via
150 find_best_reg. To do this, we run find_used_regs to calculate the set of
151 registers which cannot be used. The find_used_regs function performs
152 a traversal of code motion paths for an expr. We consider for renaming
153 only registers which are from the same regclass as the original one and
154 using which does not interfere with any live ranges. Finally, we convert
155 the resulting set to the ready list format and use max_issue and reorder*
156 hooks similarly to the Haifa scheduler.
158 Scheduling the best expression
159 ==============================
161 We run the move_op routine to perform the same type of code motion paths
162 traversal as in find_used_regs. (These are working via the same driver,
163 code_motion_path_driver.) When moving down the CFG, we look for original
164 instruction that gave birth to a chosen expression. We undo
165 the transformations performed on an expression via the history saved in it.
166 When found, we remove the instruction or leave a reg-reg copy/speculation
167 check if needed. On a way up, we insert bookkeeping copies at each join
168 point. If a copy is not needed, it will be removed later during this
169 traversal. We update the saved av sets and liveness sets on the way up, too.
171 Finalizing the schedule
172 =======================
174 When pipelining, we reschedule the blocks from which insns were pipelined
175 to get a tighter schedule. On Itanium, we also perform bundling via
176 the same routine from ia64.c.
178 Dependence analysis changes
179 ===========================
181 We augmented the sched-deps.c with hooks that get called when a particular
182 dependence is found in a particular part of an insn. Using these hooks, we
183 can do several actions such as: determine whether an insn can be moved through
184 another (has_dependence_p, moveup_expr); find out whether an insn can be
185 scheduled on the current cycle (tick_check_p); find out registers that
186 are set/used/clobbered by an insn and find out all the strange stuff that
187 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
188 init_global_and_expr_for_insn).
190 Initialization changes
191 ======================
193 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
194 reused in all of the schedulers. We have split up the initialization of data
195 of such parts into different functions prefixed with scheduler type and
196 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
197 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
198 The same splitting is done with current_sched_info structure:
199 dependence-related parts are in sched_deps_info, common part is in
200 common_sched_info, and haifa/sel/etc part is in current_sched_info.
202 Target contexts
203 ===============
205 As we now have multiple-point scheduling, this would not work with backends
206 which save some of the scheduler state to use it in the target hooks.
207 For this purpose, we introduce a concept of target contexts, which
208 encapsulate such information. The backend should implement simple routines
209 of allocating/freeing/setting such a context. The scheduler calls these
210 as target hooks and handles the target context as an opaque pointer (similar
211 to the DFA state type, state_t).
213 Various speedups
214 ================
216 As the correct data dependence graph is not supported during scheduling (which
217 is to be changed in mid-term), we cache as much of the dependence analysis
218 results as possible to avoid reanalyzing. This includes: bitmap caches on
219 each insn in stream of the region saying yes/no for a query with a pair of
220 UIDs; hashtables with the previously done transformations on each insn in
221 stream; a vector keeping a history of transformations on each expr.
223 Also, we try to minimize the dependence context used on each fence to check
224 whether the given expression is ready for scheduling by removing from it
225 insns that are definitely completed the execution. The results of
226 tick_check_p checks are also cached in a vector on each fence.
228 We keep a valid liveness set on each insn in a region to avoid the high
229 cost of recomputation on large basic blocks.
231 Finally, we try to minimize the number of needed updates to the availability
232 sets. The updates happen in two cases: when fill_insns terminates,
233 we advance all fences and increase the stage number to show that the region
234 has changed and the sets are to be recomputed; and when the next iteration
235 of a loop in fill_insns happens (but this one reuses the saved av sets
236 on bb headers.) Thus, we try to break the fill_insns loop only when
237 "significant" number of insns from the current scheduling window was
238 scheduled. This should be made a target param.
241 TODO: correctly support the data dependence graph at all stages and get rid
242 of all caches. This should speed up the scheduler.
243 TODO: implement moving cond jumps with bookkeeping copies on both targets.
244 TODO: tune the scheduler before RA so it does not create too much pseudos.
247 References:
248 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
249 selective scheduling and software pipelining.
250 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
252 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
253 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
254 for GCC. In Proceedings of GCC Developers' Summit 2006.
256 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
257 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
258 http://rogue.colorado.edu/EPIC7/.
262 /* True when pipelining is enabled. */
263 bool pipelining_p;
265 /* True if bookkeeping is enabled. */
266 bool bookkeeping_p;
268 /* Maximum number of insns that are eligible for renaming. */
269 int max_insns_to_rename;
272 /* Definitions of local types and macros. */
274 /* Represents possible outcomes of moving an expression through an insn. */
275 enum MOVEUP_EXPR_CODE
277 /* The expression is not changed. */
278 MOVEUP_EXPR_SAME,
280 /* Not changed, but requires a new destination register. */
281 MOVEUP_EXPR_AS_RHS,
283 /* Cannot be moved. */
284 MOVEUP_EXPR_NULL,
286 /* Changed (substituted or speculated). */
287 MOVEUP_EXPR_CHANGED
290 /* The container to be passed into rtx search & replace functions. */
291 struct rtx_search_arg
293 /* What we are searching for. */
294 rtx x;
296 /* The occurrence counter. */
297 int n;
300 typedef struct rtx_search_arg *rtx_search_arg_p;
302 /* This struct contains precomputed hard reg sets that are needed when
303 computing registers available for renaming. */
304 struct hard_regs_data
306 /* For every mode, this stores registers available for use with
307 that mode. */
308 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
310 /* True when regs_for_mode[mode] is initialized. */
311 bool regs_for_mode_ok[NUM_MACHINE_MODES];
313 /* For every register, it has regs that are ok to rename into it.
314 The register in question is always set. If not, this means
315 that the whole set is not computed yet. */
316 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
318 /* For every mode, this stores registers not available due to
319 call clobbering. */
320 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
322 /* All registers that are used or call used. */
323 HARD_REG_SET regs_ever_used;
325 #ifdef STACK_REGS
326 /* Stack registers. */
327 HARD_REG_SET stack_regs;
328 #endif
331 /* Holds the results of computation of available for renaming and
332 unavailable hard registers. */
333 struct reg_rename
335 /* These are unavailable due to calls crossing, globalness, etc. */
336 HARD_REG_SET unavailable_hard_regs;
338 /* These are *available* for renaming. */
339 HARD_REG_SET available_for_renaming;
341 /* Whether this code motion path crosses a call. */
342 bool crosses_call;
345 /* A global structure that contains the needed information about harg
346 regs. */
347 static struct hard_regs_data sel_hrd;
350 /* This structure holds local data used in code_motion_path_driver hooks on
351 the same or adjacent levels of recursion. Here we keep those parameters
352 that are not used in code_motion_path_driver routine itself, but only in
353 its hooks. Moreover, all parameters that can be modified in hooks are
354 in this structure, so all other parameters passed explicitly to hooks are
355 read-only. */
356 struct cmpd_local_params
358 /* Local params used in move_op_* functions. */
360 /* Edges for bookkeeping generation. */
361 edge e1, e2;
363 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
364 expr_t c_expr_merged, c_expr_local;
366 /* Local params used in fur_* functions. */
367 /* Copy of the ORIGINAL_INSN list, stores the original insns already
368 found before entering the current level of code_motion_path_driver. */
369 def_list_t old_original_insns;
371 /* Local params used in move_op_* functions. */
372 /* True when we have removed last insn in the block which was
373 also a boundary. Do not update anything or create bookkeeping copies. */
374 BOOL_BITFIELD removed_last_insn : 1;
377 /* Stores the static parameters for move_op_* calls. */
378 struct moveop_static_params
380 /* Destination register. */
381 rtx dest;
383 /* Current C_EXPR. */
384 expr_t c_expr;
386 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
387 they are to be removed. */
388 int uid;
390 #ifdef ENABLE_CHECKING
391 /* This is initialized to the insn on which the driver stopped its traversal. */
392 insn_t failed_insn;
393 #endif
395 /* True if we scheduled an insn with different register. */
396 bool was_renamed;
399 /* Stores the static parameters for fur_* calls. */
400 struct fur_static_params
402 /* Set of registers unavailable on the code motion path. */
403 regset used_regs;
405 /* Pointer to the list of original insns definitions. */
406 def_list_t *original_insns;
408 /* True if a code motion path contains a CALL insn. */
409 bool crosses_call;
412 typedef struct fur_static_params *fur_static_params_p;
413 typedef struct cmpd_local_params *cmpd_local_params_p;
414 typedef struct moveop_static_params *moveop_static_params_p;
416 /* Set of hooks and parameters that determine behaviour specific to
417 move_op or find_used_regs functions. */
418 struct code_motion_path_driver_info_def
420 /* Called on enter to the basic block. */
421 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
423 /* Called when original expr is found. */
424 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
426 /* Called while descending current basic block if current insn is not
427 the original EXPR we're searching for. */
428 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
430 /* Function to merge C_EXPRes from different successors. */
431 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
433 /* Function to finalize merge from different successors and possibly
434 deallocate temporary data structures used for merging. */
435 void (*after_merge_succs) (cmpd_local_params_p, void *);
437 /* Called on the backward stage of recursion to do moveup_expr.
438 Used only with move_op_*. */
439 void (*ascend) (insn_t, void *);
441 /* Called on the ascending pass, before returning from the current basic
442 block or from the whole traversal. */
443 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
445 /* When processing successors in move_op we need only descend into
446 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
447 int succ_flags;
449 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
450 const char *routine_name;
453 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
454 FUR_HOOKS. */
455 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
457 /* Set of hooks for performing move_op and find_used_regs routines with
458 code_motion_path_driver. */
459 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
461 /* True if/when we want to emulate Haifa scheduler in the common code.
462 This is used in sched_rgn_local_init and in various places in
463 sched-deps.c. */
464 int sched_emulate_haifa_p;
466 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
467 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
468 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
469 scheduling window. */
470 int global_level;
472 /* Current fences. */
473 flist_t fences;
475 /* True when separable insns should be scheduled as RHSes. */
476 static bool enable_schedule_as_rhs_p;
478 /* Used in verify_target_availability to assert that target reg is reported
479 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
480 we haven't scheduled anything on the previous fence.
481 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
482 have more conservative value than the one returned by the
483 find_used_regs, thus we shouldn't assert that these values are equal. */
484 static bool scheduled_something_on_previous_fence;
486 /* All newly emitted insns will have their uids greater than this value. */
487 static int first_emitted_uid;
489 /* Set of basic blocks that are forced to start new ebbs. This is a subset
490 of all the ebb heads. */
491 static bitmap_head _forced_ebb_heads;
492 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
494 /* Blocks that need to be rescheduled after pipelining. */
495 bitmap blocks_to_reschedule = NULL;
497 /* True when the first lv set should be ignored when updating liveness. */
498 static bool ignore_first = false;
500 /* Number of insns max_issue has initialized data structures for. */
501 static int max_issue_size = 0;
503 /* Whether we can issue more instructions. */
504 static int can_issue_more;
506 /* Maximum software lookahead window size, reduced when rescheduling after
507 pipelining. */
508 static int max_ws;
510 /* Number of insns scheduled in current region. */
511 static int num_insns_scheduled;
513 /* A vector of expressions is used to be able to sort them. */
514 static vec<expr_t> vec_av_set = vNULL;
516 /* A vector of vinsns is used to hold temporary lists of vinsns. */
517 typedef vec<vinsn_t> vinsn_vec_t;
519 /* This vector has the exprs which may still present in av_sets, but actually
520 can't be moved up due to bookkeeping created during code motion to another
521 fence. See comment near the call to update_and_record_unavailable_insns
522 for the detailed explanations. */
523 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
525 /* This vector has vinsns which are scheduled with renaming on the first fence
526 and then seen on the second. For expressions with such vinsns, target
527 availability information may be wrong. */
528 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
530 /* Vector to store temporary nops inserted in move_op to prevent removal
531 of empty bbs. */
532 static vec<insn_t> vec_temp_moveop_nops = vNULL;
534 /* These bitmaps record original instructions scheduled on the current
535 iteration and bookkeeping copies created by them. */
536 static bitmap current_originators = NULL;
537 static bitmap current_copies = NULL;
539 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
540 visit them afterwards. */
541 static bitmap code_motion_visited_blocks = NULL;
543 /* Variables to accumulate different statistics. */
545 /* The number of bookkeeping copies created. */
546 static int stat_bookkeeping_copies;
548 /* The number of insns that required bookkeeiping for their scheduling. */
549 static int stat_insns_needed_bookkeeping;
551 /* The number of insns that got renamed. */
552 static int stat_renamed_scheduled;
554 /* The number of substitutions made during scheduling. */
555 static int stat_substitutions_total;
558 /* Forward declarations of static functions. */
559 static bool rtx_ok_for_substitution_p (rtx, rtx);
560 static int sel_rank_for_schedule (const void *, const void *);
561 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
562 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
564 static rtx get_dest_from_orig_ops (av_set_t);
565 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
566 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
567 def_list_t *);
568 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
569 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
570 cmpd_local_params_p, void *);
571 static void sel_sched_region_1 (void);
572 static void sel_sched_region_2 (int);
573 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
575 static void debug_state (state_t);
578 /* Functions that work with fences. */
580 /* Advance one cycle on FENCE. */
581 static void
582 advance_one_cycle (fence_t fence)
584 unsigned i;
585 int cycle;
586 rtx_insn *insn;
588 advance_state (FENCE_STATE (fence));
589 cycle = ++FENCE_CYCLE (fence);
590 FENCE_ISSUED_INSNS (fence) = 0;
591 FENCE_STARTS_CYCLE_P (fence) = 1;
592 can_issue_more = issue_rate;
593 FENCE_ISSUE_MORE (fence) = can_issue_more;
595 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
597 if (INSN_READY_CYCLE (insn) < cycle)
599 remove_from_deps (FENCE_DC (fence), insn);
600 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
601 continue;
603 i++;
605 if (sched_verbose >= 2)
607 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
608 debug_state (FENCE_STATE (fence));
612 /* Returns true when SUCC in a fallthru bb of INSN, possibly
613 skipping empty basic blocks. */
614 static bool
615 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
617 basic_block bb = BLOCK_FOR_INSN (insn);
618 edge e;
620 if (bb == BLOCK_FOR_INSN (succ))
621 return true;
623 e = find_fallthru_edge_from (bb);
624 if (e)
625 bb = e->dest;
626 else
627 return false;
629 while (sel_bb_empty_p (bb))
630 bb = bb->next_bb;
632 return bb == BLOCK_FOR_INSN (succ);
635 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
636 When a successor will continue a ebb, transfer all parameters of a fence
637 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
638 of scheduling helping to distinguish between the old and the new code. */
639 static void
640 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
641 int orig_max_seqno)
643 bool was_here_p = false;
644 insn_t insn = NULL;
645 insn_t succ;
646 succ_iterator si;
647 ilist_iterator ii;
648 fence_t fence = FLIST_FENCE (old_fences);
649 basic_block bb;
651 /* Get the only element of FENCE_BNDS (fence). */
652 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
654 gcc_assert (!was_here_p);
655 was_here_p = true;
657 gcc_assert (was_here_p && insn != NULL_RTX);
659 /* When in the "middle" of the block, just move this fence
660 to the new list. */
661 bb = BLOCK_FOR_INSN (insn);
662 if (! sel_bb_end_p (insn)
663 || (single_succ_p (bb)
664 && single_pred_p (single_succ (bb))))
666 insn_t succ;
668 succ = (sel_bb_end_p (insn)
669 ? sel_bb_head (single_succ (bb))
670 : NEXT_INSN (insn));
672 if (INSN_SEQNO (succ) > 0
673 && INSN_SEQNO (succ) <= orig_max_seqno
674 && INSN_SCHED_TIMES (succ) <= 0)
676 FENCE_INSN (fence) = succ;
677 move_fence_to_fences (old_fences, new_fences);
679 if (sched_verbose >= 1)
680 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
681 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
683 return;
686 /* Otherwise copy fence's structures to (possibly) multiple successors. */
687 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
689 int seqno = INSN_SEQNO (succ);
691 if (0 < seqno && seqno <= orig_max_seqno
692 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
694 bool b = (in_same_ebb_p (insn, succ)
695 || in_fallthru_bb_p (insn, succ));
697 if (sched_verbose >= 1)
698 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
699 INSN_UID (insn), INSN_UID (succ),
700 BLOCK_NUM (succ), b ? "continue" : "reset");
702 if (b)
703 add_dirty_fence_to_fences (new_fences, succ, fence);
704 else
706 /* Mark block of the SUCC as head of the new ebb. */
707 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
708 add_clean_fence_to_fences (new_fences, succ, fence);
715 /* Functions to support substitution. */
717 /* Returns whether INSN with dependence status DS is eligible for
718 substitution, i.e. it's a copy operation x := y, and RHS that is
719 moved up through this insn should be substituted. */
720 static bool
721 can_substitute_through_p (insn_t insn, ds_t ds)
723 /* We can substitute only true dependencies. */
724 if ((ds & DEP_OUTPUT)
725 || (ds & DEP_ANTI)
726 || ! INSN_RHS (insn)
727 || ! INSN_LHS (insn))
728 return false;
730 /* Now we just need to make sure the INSN_RHS consists of only one
731 simple REG rtx. */
732 if (REG_P (INSN_LHS (insn))
733 && REG_P (INSN_RHS (insn)))
734 return true;
735 return false;
738 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
739 source (if INSN is eligible for substitution). Returns TRUE if
740 substitution was actually performed, FALSE otherwise. Substitution might
741 be not performed because it's either EXPR' vinsn doesn't contain INSN's
742 destination or the resulting insn is invalid for the target machine.
743 When UNDO is true, perform unsubstitution instead (the difference is in
744 the part of rtx on which validate_replace_rtx is called). */
745 static bool
746 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
748 rtx *where;
749 bool new_insn_valid;
750 vinsn_t *vi = &EXPR_VINSN (expr);
751 bool has_rhs = VINSN_RHS (*vi) != NULL;
752 rtx old, new_rtx;
754 /* Do not try to replace in SET_DEST. Although we'll choose new
755 register for the RHS, we don't want to change RHS' original reg.
756 If the insn is not SET, we may still be able to substitute something
757 in it, and if we're here (don't have deps), it doesn't write INSN's
758 dest. */
759 where = (has_rhs
760 ? &VINSN_RHS (*vi)
761 : &PATTERN (VINSN_INSN_RTX (*vi)));
762 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
764 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
765 if (rtx_ok_for_substitution_p (old, *where))
767 rtx_insn *new_insn;
768 rtx *where_replace;
770 /* We should copy these rtxes before substitution. */
771 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
772 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
774 /* Where we'll replace.
775 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
776 used instead of SET_SRC. */
777 where_replace = (has_rhs
778 ? &SET_SRC (PATTERN (new_insn))
779 : &PATTERN (new_insn));
781 new_insn_valid
782 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
783 new_insn);
785 /* ??? Actually, constrain_operands result depends upon choice of
786 destination register. E.g. if we allow single register to be an rhs,
787 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
788 in invalid insn dx=dx, so we'll loose this rhs here.
789 Just can't come up with significant testcase for this, so just
790 leaving it for now. */
791 if (new_insn_valid)
793 change_vinsn_in_expr (expr,
794 create_vinsn_from_insn_rtx (new_insn, false));
796 /* Do not allow clobbering the address register of speculative
797 insns. */
798 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
799 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
800 expr_dest_reg (expr)))
801 EXPR_TARGET_AVAILABLE (expr) = false;
803 return true;
805 else
806 return false;
808 else
809 return false;
812 /* Return the number of places WHAT appears within WHERE.
813 Bail out when we found a reference occupying several hard registers. */
814 static int
815 count_occurrences_equiv (const_rtx what, const_rtx where)
817 int count = 0;
818 subrtx_iterator::array_type array;
819 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
821 const_rtx x = *iter;
822 if (REG_P (x) && REGNO (x) == REGNO (what))
824 /* Bail out if mode is different or more than one register is
825 used. */
826 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
827 return 0;
828 count += 1;
830 else if (GET_CODE (x) == SUBREG
831 && (!REG_P (SUBREG_REG (x))
832 || REGNO (SUBREG_REG (x)) == REGNO (what)))
833 /* ??? Do not support substituting regs inside subregs. In that case,
834 simplify_subreg will be called by validate_replace_rtx, and
835 unsubstitution will fail later. */
836 return 0;
838 return count;
841 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
842 static bool
843 rtx_ok_for_substitution_p (rtx what, rtx where)
845 return (count_occurrences_equiv (what, where) > 0);
849 /* Functions to support register renaming. */
851 /* Substitute VI's set source with REGNO. Returns newly created pattern
852 that has REGNO as its source. */
853 static rtx_insn *
854 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
856 rtx lhs_rtx;
857 rtx pattern;
858 rtx_insn *insn_rtx;
860 lhs_rtx = copy_rtx (VINSN_LHS (vi));
862 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
863 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
865 return insn_rtx;
868 /* Returns whether INSN's src can be replaced with register number
869 NEW_SRC_REG. E.g. the following insn is valid for i386:
871 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
872 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
873 (reg:SI 0 ax [orig:770 c1 ] [770]))
874 (const_int 288 [0x120])) [0 str S1 A8])
875 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
876 (nil))
878 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
879 because of operand constraints:
881 (define_insn "*movqi_1"
882 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
883 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
886 So do constrain_operands here, before choosing NEW_SRC_REG as best
887 reg for rhs. */
889 static bool
890 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
892 vinsn_t vi = INSN_VINSN (insn);
893 machine_mode mode;
894 rtx dst_loc;
895 bool res;
897 gcc_assert (VINSN_SEPARABLE_P (vi));
899 get_dest_and_mode (insn, &dst_loc, &mode);
900 gcc_assert (mode == GET_MODE (new_src_reg));
902 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
903 return true;
905 /* See whether SET_SRC can be replaced with this register. */
906 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
907 res = verify_changes (0);
908 cancel_changes (0);
910 return res;
913 /* Returns whether INSN still be valid after replacing it's DEST with
914 register NEW_REG. */
915 static bool
916 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
918 vinsn_t vi = INSN_VINSN (insn);
919 bool res;
921 /* We should deal here only with separable insns. */
922 gcc_assert (VINSN_SEPARABLE_P (vi));
923 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
925 /* See whether SET_DEST can be replaced with this register. */
926 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
927 res = verify_changes (0);
928 cancel_changes (0);
930 return res;
933 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
934 static rtx_insn *
935 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
937 rtx rhs_rtx;
938 rtx pattern;
939 rtx_insn *insn_rtx;
941 rhs_rtx = copy_rtx (VINSN_RHS (vi));
943 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
944 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
946 return insn_rtx;
949 /* Substitute lhs in the given expression EXPR for the register with number
950 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
951 static void
952 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
954 rtx_insn *insn_rtx;
955 vinsn_t vinsn;
957 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
958 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
960 change_vinsn_in_expr (expr, vinsn);
961 EXPR_WAS_RENAMED (expr) = 1;
962 EXPR_TARGET_AVAILABLE (expr) = 1;
965 /* Returns whether VI writes either one of the USED_REGS registers or,
966 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
967 static bool
968 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
969 HARD_REG_SET unavailable_hard_regs)
971 unsigned regno;
972 reg_set_iterator rsi;
974 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
976 if (REGNO_REG_SET_P (used_regs, regno))
977 return true;
978 if (HARD_REGISTER_NUM_P (regno)
979 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
980 return true;
983 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
985 if (REGNO_REG_SET_P (used_regs, regno))
986 return true;
987 if (HARD_REGISTER_NUM_P (regno)
988 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
989 return true;
992 return false;
995 /* Returns register class of the output register in INSN.
996 Returns NO_REGS for call insns because some targets have constraints on
997 destination register of a call insn.
999 Code adopted from regrename.c::build_def_use. */
1000 static enum reg_class
1001 get_reg_class (rtx_insn *insn)
1003 int i, n_ops;
1005 extract_constrain_insn (insn);
1006 preprocess_constraints (insn);
1007 n_ops = recog_data.n_operands;
1009 const operand_alternative *op_alt = which_op_alt ();
1010 if (asm_noperands (PATTERN (insn)) > 0)
1012 for (i = 0; i < n_ops; i++)
1013 if (recog_data.operand_type[i] == OP_OUT)
1015 rtx *loc = recog_data.operand_loc[i];
1016 rtx op = *loc;
1017 enum reg_class cl = alternative_class (op_alt, i);
1019 if (REG_P (op)
1020 && REGNO (op) == ORIGINAL_REGNO (op))
1021 continue;
1023 return cl;
1026 else if (!CALL_P (insn))
1028 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1030 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1031 enum reg_class cl = alternative_class (op_alt, opn);
1033 if (recog_data.operand_type[opn] == OP_OUT ||
1034 recog_data.operand_type[opn] == OP_INOUT)
1035 return cl;
1039 /* Insns like
1040 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1041 may result in returning NO_REGS, cause flags is written implicitly through
1042 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1043 return NO_REGS;
1046 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1047 static void
1048 init_hard_regno_rename (int regno)
1050 int cur_reg;
1052 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1054 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1056 /* We are not interested in renaming in other regs. */
1057 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1058 continue;
1060 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1061 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1065 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1066 data first. */
1067 static inline bool
1068 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1070 /* Check whether this is all calculated. */
1071 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1072 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1074 init_hard_regno_rename (from);
1076 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1079 /* Calculate set of registers that are capable of holding MODE. */
1080 static void
1081 init_regs_for_mode (machine_mode mode)
1083 int cur_reg;
1085 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1086 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1088 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1090 int nregs;
1091 int i;
1093 /* See whether it accepts all modes that occur in
1094 original insns. */
1095 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1096 continue;
1098 nregs = hard_regno_nregs[cur_reg][mode];
1100 for (i = nregs - 1; i >= 0; --i)
1101 if (fixed_regs[cur_reg + i]
1102 || global_regs[cur_reg + i]
1103 /* Can't use regs which aren't saved by
1104 the prologue. */
1105 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1106 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1107 it affects aliasing globally and invalidates all AV sets. */
1108 || get_reg_base_value (cur_reg + i)
1109 #ifdef LEAF_REGISTERS
1110 /* We can't use a non-leaf register if we're in a
1111 leaf function. */
1112 || (crtl->is_leaf
1113 && !LEAF_REGISTERS[cur_reg + i])
1114 #endif
1116 break;
1118 if (i >= 0)
1119 continue;
1121 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1122 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1123 cur_reg);
1125 /* If the CUR_REG passed all the checks above,
1126 then it's ok. */
1127 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1130 sel_hrd.regs_for_mode_ok[mode] = true;
1133 /* Init all register sets gathered in HRD. */
1134 static void
1135 init_hard_regs_data (void)
1137 int cur_reg = 0;
1138 int cur_mode = 0;
1140 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1141 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1142 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1143 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1145 /* Initialize registers that are valid based on mode when this is
1146 really needed. */
1147 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1148 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1150 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1151 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1152 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1154 #ifdef STACK_REGS
1155 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1157 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1158 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1159 #endif
1162 /* Mark hardware regs in REG_RENAME_P that are not suitable
1163 for renaming rhs in INSN due to hardware restrictions (register class,
1164 modes compatibility etc). This doesn't affect original insn's dest reg,
1165 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1166 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1167 Registers that are in used_regs are always marked in
1168 unavailable_hard_regs as well. */
1170 static void
1171 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1172 regset used_regs ATTRIBUTE_UNUSED)
1174 machine_mode mode;
1175 enum reg_class cl = NO_REGS;
1176 rtx orig_dest;
1177 unsigned cur_reg, regno;
1178 hard_reg_set_iterator hrsi;
1180 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1181 gcc_assert (reg_rename_p);
1183 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1185 /* We have decided not to rename 'mem = something;' insns, as 'something'
1186 is usually a register. */
1187 if (!REG_P (orig_dest))
1188 return;
1190 regno = REGNO (orig_dest);
1192 /* If before reload, don't try to work with pseudos. */
1193 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1194 return;
1196 if (reload_completed)
1197 cl = get_reg_class (def->orig_insn);
1199 /* Stop if the original register is one of the fixed_regs, global_regs or
1200 frame pointer, or we could not discover its class. */
1201 if (fixed_regs[regno]
1202 || global_regs[regno]
1203 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1204 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1205 #else
1206 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1207 #endif
1208 || (reload_completed && cl == NO_REGS))
1210 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1212 /* Give a chance for original register, if it isn't in used_regs. */
1213 if (!def->crosses_call)
1214 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1216 return;
1219 /* If something allocated on stack in this function, mark frame pointer
1220 register unavailable, considering also modes.
1221 FIXME: it is enough to do this once per all original defs. */
1222 if (frame_pointer_needed)
1224 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1225 Pmode, FRAME_POINTER_REGNUM);
1227 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1228 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1229 Pmode, HARD_FRAME_POINTER_REGNUM);
1232 #ifdef STACK_REGS
1233 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1234 is equivalent to as if all stack regs were in this set.
1235 I.e. no stack register can be renamed, and even if it's an original
1236 register here we make sure it won't be lifted over it's previous def
1237 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1238 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1239 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1240 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1241 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1242 sel_hrd.stack_regs);
1243 #endif
1245 /* If there's a call on this path, make regs from call_used_reg_set
1246 unavailable. */
1247 if (def->crosses_call)
1248 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1249 call_used_reg_set);
1251 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1252 but not register classes. */
1253 if (!reload_completed)
1254 return;
1256 /* Leave regs as 'available' only from the current
1257 register class. */
1258 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1259 reg_class_contents[cl]);
1261 mode = GET_MODE (orig_dest);
1263 /* Leave only registers available for this mode. */
1264 if (!sel_hrd.regs_for_mode_ok[mode])
1265 init_regs_for_mode (mode);
1266 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1267 sel_hrd.regs_for_mode[mode]);
1269 /* Exclude registers that are partially call clobbered. */
1270 if (def->crosses_call
1271 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1272 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1273 sel_hrd.regs_for_call_clobbered[mode]);
1275 /* Leave only those that are ok to rename. */
1276 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1277 0, cur_reg, hrsi)
1279 int nregs;
1280 int i;
1282 nregs = hard_regno_nregs[cur_reg][mode];
1283 gcc_assert (nregs > 0);
1285 for (i = nregs - 1; i >= 0; --i)
1286 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1287 break;
1289 if (i >= 0)
1290 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1291 cur_reg);
1294 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1295 reg_rename_p->unavailable_hard_regs);
1297 /* Regno is always ok from the renaming part of view, but it really
1298 could be in *unavailable_hard_regs already, so set it here instead
1299 of there. */
1300 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1303 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1304 best register more recently than REG2. */
1305 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1307 /* Indicates the number of times renaming happened before the current one. */
1308 static int reg_rename_this_tick;
1310 /* Choose the register among free, that is suitable for storing
1311 the rhs value.
1313 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1314 originally appears. There could be multiple original operations
1315 for single rhs since we moving it up and merging along different
1316 paths.
1318 Some code is adapted from regrename.c (regrename_optimize).
1319 If original register is available, function returns it.
1320 Otherwise it performs the checks, so the new register should
1321 comply with the following:
1322 - it should not violate any live ranges (such registers are in
1323 REG_RENAME_P->available_for_renaming set);
1324 - it should not be in the HARD_REGS_USED regset;
1325 - it should be in the class compatible with original uses;
1326 - it should not be clobbered through reference with different mode;
1327 - if we're in the leaf function, then the new register should
1328 not be in the LEAF_REGISTERS;
1329 - etc.
1331 If several registers meet the conditions, the register with smallest
1332 tick is returned to achieve more even register allocation.
1334 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1336 If no register satisfies the above conditions, NULL_RTX is returned. */
1337 static rtx
1338 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1339 struct reg_rename *reg_rename_p,
1340 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1342 int best_new_reg;
1343 unsigned cur_reg;
1344 machine_mode mode = VOIDmode;
1345 unsigned regno, i, n;
1346 hard_reg_set_iterator hrsi;
1347 def_list_iterator di;
1348 def_t def;
1350 /* If original register is available, return it. */
1351 *is_orig_reg_p_ptr = true;
1353 FOR_EACH_DEF (def, di, original_insns)
1355 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1357 gcc_assert (REG_P (orig_dest));
1359 /* Check that all original operations have the same mode.
1360 This is done for the next loop; if we'd return from this
1361 loop, we'd check only part of them, but in this case
1362 it doesn't matter. */
1363 if (mode == VOIDmode)
1364 mode = GET_MODE (orig_dest);
1365 gcc_assert (mode == GET_MODE (orig_dest));
1367 regno = REGNO (orig_dest);
1368 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1369 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1370 break;
1372 /* All hard registers are available. */
1373 if (i == n)
1375 gcc_assert (mode != VOIDmode);
1377 /* Hard registers should not be shared. */
1378 return gen_rtx_REG (mode, regno);
1382 *is_orig_reg_p_ptr = false;
1383 best_new_reg = -1;
1385 /* Among all available regs choose the register that was
1386 allocated earliest. */
1387 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1388 0, cur_reg, hrsi)
1389 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1391 /* Check that all hard regs for mode are available. */
1392 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1393 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1394 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1395 cur_reg + i))
1396 break;
1398 if (i < n)
1399 continue;
1401 /* All hard registers are available. */
1402 if (best_new_reg < 0
1403 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1405 best_new_reg = cur_reg;
1407 /* Return immediately when we know there's no better reg. */
1408 if (! reg_rename_tick[best_new_reg])
1409 break;
1413 if (best_new_reg >= 0)
1415 /* Use the check from the above loop. */
1416 gcc_assert (mode != VOIDmode);
1417 return gen_rtx_REG (mode, best_new_reg);
1420 return NULL_RTX;
1423 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1424 assumptions about available registers in the function. */
1425 static rtx
1426 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1427 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1429 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1430 original_insns, is_orig_reg_p_ptr);
1432 /* FIXME loop over hard_regno_nregs here. */
1433 gcc_assert (best_reg == NULL_RTX
1434 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1436 return best_reg;
1439 /* Choose the pseudo register for storing rhs value. As this is supposed
1440 to work before reload, we return either the original register or make
1441 the new one. The parameters are the same that in choose_nest_reg_1
1442 functions, except that USED_REGS may contain pseudos.
1443 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1445 TODO: take into account register pressure while doing this. Up to this
1446 moment, this function would never return NULL for pseudos, but we should
1447 not rely on this. */
1448 static rtx
1449 choose_best_pseudo_reg (regset used_regs,
1450 struct reg_rename *reg_rename_p,
1451 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1453 def_list_iterator i;
1454 def_t def;
1455 machine_mode mode = VOIDmode;
1456 bool bad_hard_regs = false;
1458 /* We should not use this after reload. */
1459 gcc_assert (!reload_completed);
1461 /* If original register is available, return it. */
1462 *is_orig_reg_p_ptr = true;
1464 FOR_EACH_DEF (def, i, original_insns)
1466 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1467 int orig_regno;
1469 gcc_assert (REG_P (dest));
1471 /* Check that all original operations have the same mode. */
1472 if (mode == VOIDmode)
1473 mode = GET_MODE (dest);
1474 else
1475 gcc_assert (mode == GET_MODE (dest));
1476 orig_regno = REGNO (dest);
1478 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1480 if (orig_regno < FIRST_PSEUDO_REGISTER)
1482 gcc_assert (df_regs_ever_live_p (orig_regno));
1484 /* For hard registers, we have to check hardware imposed
1485 limitations (frame/stack registers, calls crossed). */
1486 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1487 orig_regno))
1489 /* Don't let register cross a call if it doesn't already
1490 cross one. This condition is written in accordance with
1491 that in sched-deps.c sched_analyze_reg(). */
1492 if (!reg_rename_p->crosses_call
1493 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1494 return gen_rtx_REG (mode, orig_regno);
1497 bad_hard_regs = true;
1499 else
1500 return dest;
1504 *is_orig_reg_p_ptr = false;
1506 /* We had some original hard registers that couldn't be used.
1507 Those were likely special. Don't try to create a pseudo. */
1508 if (bad_hard_regs)
1509 return NULL_RTX;
1511 /* We haven't found a register from original operations. Get a new one.
1512 FIXME: control register pressure somehow. */
1514 rtx new_reg = gen_reg_rtx (mode);
1516 gcc_assert (mode != VOIDmode);
1518 max_regno = max_reg_num ();
1519 maybe_extend_reg_info_p ();
1520 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1522 return new_reg;
1526 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1527 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1528 static void
1529 verify_target_availability (expr_t expr, regset used_regs,
1530 struct reg_rename *reg_rename_p)
1532 unsigned n, i, regno;
1533 machine_mode mode;
1534 bool target_available, live_available, hard_available;
1536 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1537 return;
1539 regno = expr_dest_regno (expr);
1540 mode = GET_MODE (EXPR_LHS (expr));
1541 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1542 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1544 live_available = hard_available = true;
1545 for (i = 0; i < n; i++)
1547 if (bitmap_bit_p (used_regs, regno + i))
1548 live_available = false;
1549 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1550 hard_available = false;
1553 /* When target is not available, it may be due to hard register
1554 restrictions, e.g. crosses calls, so we check hard_available too. */
1555 if (target_available)
1556 gcc_assert (live_available);
1557 else
1558 /* Check only if we haven't scheduled something on the previous fence,
1559 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1560 and having more than one fence, we may end having targ_un in a block
1561 in which successors target register is actually available.
1563 The last condition handles the case when a dependence from a call insn
1564 was created in sched-deps.c for insns with destination registers that
1565 never crossed a call before, but do cross one after our code motion.
1567 FIXME: in the latter case, we just uselessly called find_used_regs,
1568 because we can't move this expression with any other register
1569 as well. */
1570 gcc_assert (scheduled_something_on_previous_fence || !live_available
1571 || !hard_available
1572 || (!reload_completed && reg_rename_p->crosses_call
1573 && REG_N_CALLS_CROSSED (regno) == 0));
1576 /* Collect unavailable registers due to liveness for EXPR from BNDS
1577 into USED_REGS. Save additional information about available
1578 registers and unavailable due to hardware restriction registers
1579 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1580 list. */
1581 static void
1582 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1583 struct reg_rename *reg_rename_p,
1584 def_list_t *original_insns)
1586 for (; bnds; bnds = BLIST_NEXT (bnds))
1588 bool res;
1589 av_set_t orig_ops = NULL;
1590 bnd_t bnd = BLIST_BND (bnds);
1592 /* If the chosen best expr doesn't belong to current boundary,
1593 skip it. */
1594 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1595 continue;
1597 /* Put in ORIG_OPS all exprs from this boundary that became
1598 RES on top. */
1599 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1601 /* Compute used regs and OR it into the USED_REGS. */
1602 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1603 reg_rename_p, original_insns);
1605 /* FIXME: the assert is true until we'd have several boundaries. */
1606 gcc_assert (res);
1607 av_set_clear (&orig_ops);
1611 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1612 If BEST_REG is valid, replace LHS of EXPR with it. */
1613 static bool
1614 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1616 /* Try whether we'll be able to generate the insn
1617 'dest := best_reg' at the place of the original operation. */
1618 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1620 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1622 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1624 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1625 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1626 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1627 return false;
1630 /* Make sure that EXPR has the right destination
1631 register. */
1632 if (expr_dest_regno (expr) != REGNO (best_reg))
1633 replace_dest_with_reg_in_expr (expr, best_reg);
1634 else
1635 EXPR_TARGET_AVAILABLE (expr) = 1;
1637 return true;
1640 /* Select and assign best register to EXPR searching from BNDS.
1641 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1642 Return FALSE if no register can be chosen, which could happen when:
1643 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1644 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1645 that are used on the moving path. */
1646 static bool
1647 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1649 static struct reg_rename reg_rename_data;
1651 regset used_regs;
1652 def_list_t original_insns = NULL;
1653 bool reg_ok;
1655 *is_orig_reg_p = false;
1657 /* Don't bother to do anything if this insn doesn't set any registers. */
1658 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1659 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1660 return true;
1662 used_regs = get_clear_regset_from_pool ();
1663 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1665 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1666 &original_insns);
1668 #ifdef ENABLE_CHECKING
1669 /* If after reload, make sure we're working with hard regs here. */
1670 if (reload_completed)
1672 reg_set_iterator rsi;
1673 unsigned i;
1675 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1676 gcc_unreachable ();
1678 #endif
1680 if (EXPR_SEPARABLE_P (expr))
1682 rtx best_reg = NULL_RTX;
1683 /* Check that we have computed availability of a target register
1684 correctly. */
1685 verify_target_availability (expr, used_regs, &reg_rename_data);
1687 /* Turn everything in hard regs after reload. */
1688 if (reload_completed)
1690 HARD_REG_SET hard_regs_used;
1691 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1693 /* Join hard registers unavailable due to register class
1694 restrictions and live range intersection. */
1695 IOR_HARD_REG_SET (hard_regs_used,
1696 reg_rename_data.unavailable_hard_regs);
1698 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1699 original_insns, is_orig_reg_p);
1701 else
1702 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1703 original_insns, is_orig_reg_p);
1705 if (!best_reg)
1706 reg_ok = false;
1707 else if (*is_orig_reg_p)
1709 /* In case of unification BEST_REG may be different from EXPR's LHS
1710 when EXPR's LHS is unavailable, and there is another LHS among
1711 ORIGINAL_INSNS. */
1712 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1714 else
1716 /* Forbid renaming of low-cost insns. */
1717 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1718 reg_ok = false;
1719 else
1720 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1723 else
1725 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1726 any of the HARD_REGS_USED set. */
1727 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1728 reg_rename_data.unavailable_hard_regs))
1730 reg_ok = false;
1731 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1733 else
1735 reg_ok = true;
1736 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1740 ilist_clear (&original_insns);
1741 return_regset_to_pool (used_regs);
1743 return reg_ok;
1747 /* Return true if dependence described by DS can be overcomed. */
1748 static bool
1749 can_speculate_dep_p (ds_t ds)
1751 if (spec_info == NULL)
1752 return false;
1754 /* Leave only speculative data. */
1755 ds &= SPECULATIVE;
1757 if (ds == 0)
1758 return false;
1761 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1762 that we can overcome. */
1763 ds_t spec_mask = spec_info->mask;
1765 if ((ds & spec_mask) != ds)
1766 return false;
1769 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1770 return false;
1772 return true;
1775 /* Get a speculation check instruction.
1776 C_EXPR is a speculative expression,
1777 CHECK_DS describes speculations that should be checked,
1778 ORIG_INSN is the original non-speculative insn in the stream. */
1779 static insn_t
1780 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1782 rtx check_pattern;
1783 rtx_insn *insn_rtx;
1784 insn_t insn;
1785 basic_block recovery_block;
1786 rtx_insn *label;
1788 /* Create a recovery block if target is going to emit branchy check, or if
1789 ORIG_INSN was speculative already. */
1790 if (targetm.sched.needs_block_p (check_ds)
1791 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1793 recovery_block = sel_create_recovery_block (orig_insn);
1794 label = BB_HEAD (recovery_block);
1796 else
1798 recovery_block = NULL;
1799 label = NULL;
1802 /* Get pattern of the check. */
1803 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1804 check_ds);
1806 gcc_assert (check_pattern != NULL);
1808 /* Emit check. */
1809 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1811 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1812 INSN_SEQNO (orig_insn), orig_insn);
1814 /* Make check to be non-speculative. */
1815 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1816 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1818 /* Decrease priority of check by difference of load/check instruction
1819 latencies. */
1820 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1821 - sel_vinsn_cost (INSN_VINSN (insn)));
1823 /* Emit copy of original insn (though with replaced target register,
1824 if needed) to the recovery block. */
1825 if (recovery_block != NULL)
1827 rtx twin_rtx;
1829 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1830 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1831 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1832 INSN_EXPR (orig_insn),
1833 INSN_SEQNO (insn),
1834 bb_note (recovery_block));
1837 /* If we've generated a data speculation check, make sure
1838 that all the bookkeeping instruction we'll create during
1839 this move_op () will allocate an ALAT entry so that the
1840 check won't fail.
1841 In case of control speculation we must convert C_EXPR to control
1842 speculative mode, because failing to do so will bring us an exception
1843 thrown by the non-control-speculative load. */
1844 check_ds = ds_get_max_dep_weak (check_ds);
1845 speculate_expr (c_expr, check_ds);
1847 return insn;
1850 /* True when INSN is a "regN = regN" copy. */
1851 static bool
1852 identical_copy_p (rtx_insn *insn)
1854 rtx lhs, rhs, pat;
1856 pat = PATTERN (insn);
1858 if (GET_CODE (pat) != SET)
1859 return false;
1861 lhs = SET_DEST (pat);
1862 if (!REG_P (lhs))
1863 return false;
1865 rhs = SET_SRC (pat);
1866 if (!REG_P (rhs))
1867 return false;
1869 return REGNO (lhs) == REGNO (rhs);
1872 /* Undo all transformations on *AV_PTR that were done when
1873 moving through INSN. */
1874 static void
1875 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1877 av_set_iterator av_iter;
1878 expr_t expr;
1879 av_set_t new_set = NULL;
1881 /* First, kill any EXPR that uses registers set by an insn. This is
1882 required for correctness. */
1883 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1884 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1885 && bitmap_intersect_p (INSN_REG_SETS (insn),
1886 VINSN_REG_USES (EXPR_VINSN (expr)))
1887 /* When an insn looks like 'r1 = r1', we could substitute through
1888 it, but the above condition will still hold. This happened with
1889 gcc.c-torture/execute/961125-1.c. */
1890 && !identical_copy_p (insn))
1892 if (sched_verbose >= 6)
1893 sel_print ("Expr %d removed due to use/set conflict\n",
1894 INSN_UID (EXPR_INSN_RTX (expr)));
1895 av_set_iter_remove (&av_iter);
1898 /* Undo transformations looking at the history vector. */
1899 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1901 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1902 insn, EXPR_VINSN (expr), true);
1904 if (index >= 0)
1906 expr_history_def *phist;
1908 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1910 switch (phist->type)
1912 case TRANS_SPECULATION:
1914 ds_t old_ds, new_ds;
1916 /* Compute the difference between old and new speculative
1917 statuses: that's what we need to check.
1918 Earlier we used to assert that the status will really
1919 change. This no longer works because only the probability
1920 bits in the status may have changed during compute_av_set,
1921 and in the case of merging different probabilities of the
1922 same speculative status along different paths we do not
1923 record this in the history vector. */
1924 old_ds = phist->spec_ds;
1925 new_ds = EXPR_SPEC_DONE_DS (expr);
1927 old_ds &= SPECULATIVE;
1928 new_ds &= SPECULATIVE;
1929 new_ds &= ~old_ds;
1931 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1932 break;
1934 case TRANS_SUBSTITUTION:
1936 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1937 vinsn_t new_vi;
1938 bool add = true;
1940 new_vi = phist->old_expr_vinsn;
1942 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1943 == EXPR_SEPARABLE_P (expr));
1944 copy_expr (tmp_expr, expr);
1946 if (vinsn_equal_p (phist->new_expr_vinsn,
1947 EXPR_VINSN (tmp_expr)))
1948 change_vinsn_in_expr (tmp_expr, new_vi);
1949 else
1950 /* This happens when we're unsubstituting on a bookkeeping
1951 copy, which was in turn substituted. The history is wrong
1952 in this case. Do it the hard way. */
1953 add = substitute_reg_in_expr (tmp_expr, insn, true);
1954 if (add)
1955 av_set_add (&new_set, tmp_expr);
1956 clear_expr (tmp_expr);
1957 break;
1959 default:
1960 gcc_unreachable ();
1966 av_set_union_and_clear (av_ptr, &new_set, NULL);
1970 /* Moveup_* helpers for code motion and computing av sets. */
1972 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1973 The difference from the below function is that only substitution is
1974 performed. */
1975 static enum MOVEUP_EXPR_CODE
1976 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1978 vinsn_t vi = EXPR_VINSN (expr);
1979 ds_t *has_dep_p;
1980 ds_t full_ds;
1982 /* Do this only inside insn group. */
1983 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1985 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1986 if (full_ds == 0)
1987 return MOVEUP_EXPR_SAME;
1989 /* Substitution is the possible choice in this case. */
1990 if (has_dep_p[DEPS_IN_RHS])
1992 /* Can't substitute UNIQUE VINSNs. */
1993 gcc_assert (!VINSN_UNIQUE_P (vi));
1995 if (can_substitute_through_p (through_insn,
1996 has_dep_p[DEPS_IN_RHS])
1997 && substitute_reg_in_expr (expr, through_insn, false))
1999 EXPR_WAS_SUBSTITUTED (expr) = true;
2000 return MOVEUP_EXPR_CHANGED;
2003 /* Don't care about this, as even true dependencies may be allowed
2004 in an insn group. */
2005 return MOVEUP_EXPR_SAME;
2008 /* This can catch output dependencies in COND_EXECs. */
2009 if (has_dep_p[DEPS_IN_INSN])
2010 return MOVEUP_EXPR_NULL;
2012 /* This is either an output or an anti dependence, which usually have
2013 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2014 will fix this. */
2015 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2016 return MOVEUP_EXPR_AS_RHS;
2019 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2020 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2021 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2022 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2023 && !sel_insn_is_speculation_check (through_insn))
2025 /* True when a conflict on a target register was found during moveup_expr. */
2026 static bool was_target_conflict = false;
2028 /* Return true when moving a debug INSN across THROUGH_INSN will
2029 create a bookkeeping block. We don't want to create such blocks,
2030 for they would cause codegen differences between compilations with
2031 and without debug info. */
2033 static bool
2034 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2035 insn_t through_insn)
2037 basic_block bbi, bbt;
2038 edge e1, e2;
2039 edge_iterator ei1, ei2;
2041 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2043 if (sched_verbose >= 9)
2044 sel_print ("no bookkeeping required: ");
2045 return FALSE;
2048 bbi = BLOCK_FOR_INSN (insn);
2050 if (EDGE_COUNT (bbi->preds) == 1)
2052 if (sched_verbose >= 9)
2053 sel_print ("only one pred edge: ");
2054 return TRUE;
2057 bbt = BLOCK_FOR_INSN (through_insn);
2059 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2061 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2063 if (find_block_for_bookkeeping (e1, e2, TRUE))
2065 if (sched_verbose >= 9)
2066 sel_print ("found existing block: ");
2067 return FALSE;
2072 if (sched_verbose >= 9)
2073 sel_print ("would create bookkeeping block: ");
2075 return TRUE;
2078 /* Return true when the conflict with newly created implicit clobbers
2079 between EXPR and THROUGH_INSN is found because of renaming. */
2080 static bool
2081 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2083 HARD_REG_SET temp;
2084 rtx_insn *insn;
2085 rtx reg, rhs, pat;
2086 hard_reg_set_iterator hrsi;
2087 unsigned regno;
2088 bool valid;
2090 /* Make a new pseudo register. */
2091 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2092 max_regno = max_reg_num ();
2093 maybe_extend_reg_info_p ();
2095 /* Validate a change and bail out early. */
2096 insn = EXPR_INSN_RTX (expr);
2097 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2098 valid = verify_changes (0);
2099 cancel_changes (0);
2100 if (!valid)
2102 if (sched_verbose >= 6)
2103 sel_print ("implicit clobbers failed validation, ");
2104 return true;
2107 /* Make a new insn with it. */
2108 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2109 pat = gen_rtx_SET (reg, rhs);
2110 start_sequence ();
2111 insn = emit_insn (pat);
2112 end_sequence ();
2114 /* Calculate implicit clobbers. */
2115 extract_insn (insn);
2116 preprocess_constraints (insn);
2117 ira_implicitly_set_insn_hard_regs (&temp);
2118 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2120 /* If any implicit clobber registers intersect with regular ones in
2121 through_insn, we have a dependency and thus bail out. */
2122 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2124 vinsn_t vi = INSN_VINSN (through_insn);
2125 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2126 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2127 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2128 return true;
2131 return false;
2134 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2135 performing necessary transformations. Record the type of transformation
2136 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2137 permit all dependencies except true ones, and try to remove those
2138 too via forward substitution. All cases when a non-eliminable
2139 non-zero cost dependency exists inside an insn group will be fixed
2140 in tick_check_p instead. */
2141 static enum MOVEUP_EXPR_CODE
2142 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2143 enum local_trans_type *ptrans_type)
2145 vinsn_t vi = EXPR_VINSN (expr);
2146 insn_t insn = VINSN_INSN_RTX (vi);
2147 bool was_changed = false;
2148 bool as_rhs = false;
2149 ds_t *has_dep_p;
2150 ds_t full_ds;
2152 /* ??? We use dependencies of non-debug insns on debug insns to
2153 indicate that the debug insns need to be reset if the non-debug
2154 insn is pulled ahead of it. It's hard to figure out how to
2155 introduce such a notion in sel-sched, but it already fails to
2156 support debug insns in other ways, so we just go ahead and
2157 let the deug insns go corrupt for now. */
2158 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2159 return MOVEUP_EXPR_SAME;
2161 /* When inside_insn_group, delegate to the helper. */
2162 if (inside_insn_group)
2163 return moveup_expr_inside_insn_group (expr, through_insn);
2165 /* Deal with unique insns and control dependencies. */
2166 if (VINSN_UNIQUE_P (vi))
2168 /* We can move jumps without side-effects or jumps that are
2169 mutually exclusive with instruction THROUGH_INSN (all in cases
2170 dependencies allow to do so and jump is not speculative). */
2171 if (control_flow_insn_p (insn))
2173 basic_block fallthru_bb;
2175 /* Do not move checks and do not move jumps through other
2176 jumps. */
2177 if (control_flow_insn_p (through_insn)
2178 || sel_insn_is_speculation_check (insn))
2179 return MOVEUP_EXPR_NULL;
2181 /* Don't move jumps through CFG joins. */
2182 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2183 return MOVEUP_EXPR_NULL;
2185 /* The jump should have a clear fallthru block, and
2186 this block should be in the current region. */
2187 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2188 || ! in_current_region_p (fallthru_bb))
2189 return MOVEUP_EXPR_NULL;
2191 /* And it should be mutually exclusive with through_insn. */
2192 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2193 && ! DEBUG_INSN_P (through_insn))
2194 return MOVEUP_EXPR_NULL;
2197 /* Don't move what we can't move. */
2198 if (EXPR_CANT_MOVE (expr)
2199 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2200 return MOVEUP_EXPR_NULL;
2202 /* Don't move SCHED_GROUP instruction through anything.
2203 If we don't force this, then it will be possible to start
2204 scheduling a sched_group before all its dependencies are
2205 resolved.
2206 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2207 as late as possible through rank_for_schedule. */
2208 if (SCHED_GROUP_P (insn))
2209 return MOVEUP_EXPR_NULL;
2211 else
2212 gcc_assert (!control_flow_insn_p (insn));
2214 /* Don't move debug insns if this would require bookkeeping. */
2215 if (DEBUG_INSN_P (insn)
2216 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2217 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2218 return MOVEUP_EXPR_NULL;
2220 /* Deal with data dependencies. */
2221 was_target_conflict = false;
2222 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2223 if (full_ds == 0)
2225 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2226 return MOVEUP_EXPR_SAME;
2228 else
2230 /* We can move UNIQUE insn up only as a whole and unchanged,
2231 so it shouldn't have any dependencies. */
2232 if (VINSN_UNIQUE_P (vi))
2233 return MOVEUP_EXPR_NULL;
2236 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2238 int res;
2240 res = speculate_expr (expr, full_ds);
2241 if (res >= 0)
2243 /* Speculation was successful. */
2244 full_ds = 0;
2245 was_changed = (res > 0);
2246 if (res == 2)
2247 was_target_conflict = true;
2248 if (ptrans_type)
2249 *ptrans_type = TRANS_SPECULATION;
2250 sel_clear_has_dependence ();
2254 if (has_dep_p[DEPS_IN_INSN])
2255 /* We have some dependency that cannot be discarded. */
2256 return MOVEUP_EXPR_NULL;
2258 if (has_dep_p[DEPS_IN_LHS])
2260 /* Only separable insns can be moved up with the new register.
2261 Anyways, we should mark that the original register is
2262 unavailable. */
2263 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2264 return MOVEUP_EXPR_NULL;
2266 /* When renaming a hard register to a pseudo before reload, extra
2267 dependencies can occur from the implicit clobbers of the insn.
2268 Filter out such cases here. */
2269 if (!reload_completed && REG_P (EXPR_LHS (expr))
2270 && HARD_REGISTER_P (EXPR_LHS (expr))
2271 && implicit_clobber_conflict_p (through_insn, expr))
2273 if (sched_verbose >= 6)
2274 sel_print ("implicit clobbers conflict detected, ");
2275 return MOVEUP_EXPR_NULL;
2277 EXPR_TARGET_AVAILABLE (expr) = false;
2278 was_target_conflict = true;
2279 as_rhs = true;
2282 /* At this point we have either separable insns, that will be lifted
2283 up only as RHSes, or non-separable insns with no dependency in lhs.
2284 If dependency is in RHS, then try to perform substitution and move up
2285 substituted RHS:
2287 Ex. 1: Ex.2
2288 y = x; y = x;
2289 z = y*2; y = y*2;
2291 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2292 moved above y=x assignment as z=x*2.
2294 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2295 side can be moved because of the output dependency. The operation was
2296 cropped to its rhs above. */
2297 if (has_dep_p[DEPS_IN_RHS])
2299 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2301 /* Can't substitute UNIQUE VINSNs. */
2302 gcc_assert (!VINSN_UNIQUE_P (vi));
2304 if (can_speculate_dep_p (*rhs_dsp))
2306 int res;
2308 res = speculate_expr (expr, *rhs_dsp);
2309 if (res >= 0)
2311 /* Speculation was successful. */
2312 *rhs_dsp = 0;
2313 was_changed = (res > 0);
2314 if (res == 2)
2315 was_target_conflict = true;
2316 if (ptrans_type)
2317 *ptrans_type = TRANS_SPECULATION;
2319 else
2320 return MOVEUP_EXPR_NULL;
2322 else if (can_substitute_through_p (through_insn,
2323 *rhs_dsp)
2324 && substitute_reg_in_expr (expr, through_insn, false))
2326 /* ??? We cannot perform substitution AND speculation on the same
2327 insn. */
2328 gcc_assert (!was_changed);
2329 was_changed = true;
2330 if (ptrans_type)
2331 *ptrans_type = TRANS_SUBSTITUTION;
2332 EXPR_WAS_SUBSTITUTED (expr) = true;
2334 else
2335 return MOVEUP_EXPR_NULL;
2338 /* Don't move trapping insns through jumps.
2339 This check should be at the end to give a chance to control speculation
2340 to perform its duties. */
2341 if (CANT_MOVE_TRAPPING (expr, through_insn))
2342 return MOVEUP_EXPR_NULL;
2344 return (was_changed
2345 ? MOVEUP_EXPR_CHANGED
2346 : (as_rhs
2347 ? MOVEUP_EXPR_AS_RHS
2348 : MOVEUP_EXPR_SAME));
2351 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2352 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2353 that can exist within a parallel group. Write to RES the resulting
2354 code for moveup_expr. */
2355 static bool
2356 try_bitmap_cache (expr_t expr, insn_t insn,
2357 bool inside_insn_group,
2358 enum MOVEUP_EXPR_CODE *res)
2360 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2362 /* First check whether we've analyzed this situation already. */
2363 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2365 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2367 if (sched_verbose >= 6)
2368 sel_print ("removed (cached)\n");
2369 *res = MOVEUP_EXPR_NULL;
2370 return true;
2372 else
2374 if (sched_verbose >= 6)
2375 sel_print ("unchanged (cached)\n");
2376 *res = MOVEUP_EXPR_SAME;
2377 return true;
2380 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2382 if (inside_insn_group)
2384 if (sched_verbose >= 6)
2385 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2386 *res = MOVEUP_EXPR_SAME;
2387 return true;
2390 else
2391 EXPR_TARGET_AVAILABLE (expr) = false;
2393 /* This is the only case when propagation result can change over time,
2394 as we can dynamically switch off scheduling as RHS. In this case,
2395 just check the flag to reach the correct decision. */
2396 if (enable_schedule_as_rhs_p)
2398 if (sched_verbose >= 6)
2399 sel_print ("unchanged (as RHS, cached)\n");
2400 *res = MOVEUP_EXPR_AS_RHS;
2401 return true;
2403 else
2405 if (sched_verbose >= 6)
2406 sel_print ("removed (cached as RHS, but renaming"
2407 " is now disabled)\n");
2408 *res = MOVEUP_EXPR_NULL;
2409 return true;
2413 return false;
2416 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2417 if successful. Write to RES the resulting code for moveup_expr. */
2418 static bool
2419 try_transformation_cache (expr_t expr, insn_t insn,
2420 enum MOVEUP_EXPR_CODE *res)
2422 struct transformed_insns *pti
2423 = (struct transformed_insns *)
2424 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2425 &EXPR_VINSN (expr),
2426 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2427 if (pti)
2429 /* This EXPR was already moved through this insn and was
2430 changed as a result. Fetch the proper data from
2431 the hashtable. */
2432 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2433 INSN_UID (insn), pti->type,
2434 pti->vinsn_old, pti->vinsn_new,
2435 EXPR_SPEC_DONE_DS (expr));
2437 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2438 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2439 change_vinsn_in_expr (expr, pti->vinsn_new);
2440 if (pti->was_target_conflict)
2441 EXPR_TARGET_AVAILABLE (expr) = false;
2442 if (pti->type == TRANS_SPECULATION)
2444 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2445 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2448 if (sched_verbose >= 6)
2450 sel_print ("changed (cached): ");
2451 dump_expr (expr);
2452 sel_print ("\n");
2455 *res = MOVEUP_EXPR_CHANGED;
2456 return true;
2459 return false;
2462 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2463 static void
2464 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2465 enum MOVEUP_EXPR_CODE res)
2467 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2469 /* Do not cache result of propagating jumps through an insn group,
2470 as it is always true, which is not useful outside the group. */
2471 if (inside_insn_group)
2472 return;
2474 if (res == MOVEUP_EXPR_NULL)
2476 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2479 else if (res == MOVEUP_EXPR_SAME)
2481 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2482 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2484 else if (res == MOVEUP_EXPR_AS_RHS)
2486 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2487 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2489 else
2490 gcc_unreachable ();
2493 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2494 and transformation type TRANS_TYPE. */
2495 static void
2496 update_transformation_cache (expr_t expr, insn_t insn,
2497 bool inside_insn_group,
2498 enum local_trans_type trans_type,
2499 vinsn_t expr_old_vinsn)
2501 struct transformed_insns *pti;
2503 if (inside_insn_group)
2504 return;
2506 pti = XNEW (struct transformed_insns);
2507 pti->vinsn_old = expr_old_vinsn;
2508 pti->vinsn_new = EXPR_VINSN (expr);
2509 pti->type = trans_type;
2510 pti->was_target_conflict = was_target_conflict;
2511 pti->ds = EXPR_SPEC_DONE_DS (expr);
2512 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2513 vinsn_attach (pti->vinsn_old);
2514 vinsn_attach (pti->vinsn_new);
2515 *((struct transformed_insns **)
2516 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2517 pti, VINSN_HASH_RTX (expr_old_vinsn),
2518 INSERT)) = pti;
2521 /* Same as moveup_expr, but first looks up the result of
2522 transformation in caches. */
2523 static enum MOVEUP_EXPR_CODE
2524 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2526 enum MOVEUP_EXPR_CODE res;
2527 bool got_answer = false;
2529 if (sched_verbose >= 6)
2531 sel_print ("Moving ");
2532 dump_expr (expr);
2533 sel_print (" through %d: ", INSN_UID (insn));
2536 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2537 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2538 == EXPR_INSN_RTX (expr)))
2539 /* Don't use cached information for debug insns that are heads of
2540 basic blocks. */;
2541 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2542 /* When inside insn group, we do not want remove stores conflicting
2543 with previosly issued loads. */
2544 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2545 else if (try_transformation_cache (expr, insn, &res))
2546 got_answer = true;
2548 if (! got_answer)
2550 /* Invoke moveup_expr and record the results. */
2551 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2552 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2553 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2554 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2555 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2557 /* ??? Invent something better than this. We can't allow old_vinsn
2558 to go, we need it for the history vector. */
2559 vinsn_attach (expr_old_vinsn);
2561 res = moveup_expr (expr, insn, inside_insn_group,
2562 &trans_type);
2563 switch (res)
2565 case MOVEUP_EXPR_NULL:
2566 update_bitmap_cache (expr, insn, inside_insn_group, res);
2567 if (sched_verbose >= 6)
2568 sel_print ("removed\n");
2569 break;
2571 case MOVEUP_EXPR_SAME:
2572 update_bitmap_cache (expr, insn, inside_insn_group, res);
2573 if (sched_verbose >= 6)
2574 sel_print ("unchanged\n");
2575 break;
2577 case MOVEUP_EXPR_AS_RHS:
2578 gcc_assert (!unique_p || inside_insn_group);
2579 update_bitmap_cache (expr, insn, inside_insn_group, res);
2580 if (sched_verbose >= 6)
2581 sel_print ("unchanged (as RHS)\n");
2582 break;
2584 case MOVEUP_EXPR_CHANGED:
2585 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2586 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2587 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2588 INSN_UID (insn), trans_type,
2589 expr_old_vinsn, EXPR_VINSN (expr),
2590 expr_old_spec_ds);
2591 update_transformation_cache (expr, insn, inside_insn_group,
2592 trans_type, expr_old_vinsn);
2593 if (sched_verbose >= 6)
2595 sel_print ("changed: ");
2596 dump_expr (expr);
2597 sel_print ("\n");
2599 break;
2600 default:
2601 gcc_unreachable ();
2604 vinsn_detach (expr_old_vinsn);
2607 return res;
2610 /* Moves an av set AVP up through INSN, performing necessary
2611 transformations. */
2612 static void
2613 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2615 av_set_iterator i;
2616 expr_t expr;
2618 FOR_EACH_EXPR_1 (expr, i, avp)
2621 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2623 case MOVEUP_EXPR_SAME:
2624 case MOVEUP_EXPR_AS_RHS:
2625 break;
2627 case MOVEUP_EXPR_NULL:
2628 av_set_iter_remove (&i);
2629 break;
2631 case MOVEUP_EXPR_CHANGED:
2632 expr = merge_with_other_exprs (avp, &i, expr);
2633 break;
2635 default:
2636 gcc_unreachable ();
2641 /* Moves AVP set along PATH. */
2642 static void
2643 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2645 int last_cycle;
2647 if (sched_verbose >= 6)
2648 sel_print ("Moving expressions up in the insn group...\n");
2649 if (! path)
2650 return;
2651 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2652 while (path
2653 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2655 moveup_set_expr (avp, ILIST_INSN (path), true);
2656 path = ILIST_NEXT (path);
2660 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2661 static bool
2662 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2664 expr_def _tmp, *tmp = &_tmp;
2665 int last_cycle;
2666 bool res = true;
2668 copy_expr_onside (tmp, expr);
2669 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2670 while (path
2671 && res
2672 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2674 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2675 != MOVEUP_EXPR_NULL);
2676 path = ILIST_NEXT (path);
2679 if (res)
2681 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2682 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2684 if (tmp_vinsn != expr_vliw_vinsn)
2685 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2688 clear_expr (tmp);
2689 return res;
2693 /* Functions that compute av and lv sets. */
2695 /* Returns true if INSN is not a downward continuation of the given path P in
2696 the current stage. */
2697 static bool
2698 is_ineligible_successor (insn_t insn, ilist_t p)
2700 insn_t prev_insn;
2702 /* Check if insn is not deleted. */
2703 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2704 gcc_unreachable ();
2705 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2706 gcc_unreachable ();
2708 /* If it's the first insn visited, then the successor is ok. */
2709 if (!p)
2710 return false;
2712 prev_insn = ILIST_INSN (p);
2714 if (/* a backward edge. */
2715 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2716 /* is already visited. */
2717 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2718 && (ilist_is_in_p (p, insn)
2719 /* We can reach another fence here and still seqno of insn
2720 would be equal to seqno of prev_insn. This is possible
2721 when prev_insn is a previously created bookkeeping copy.
2722 In that case it'd get a seqno of insn. Thus, check here
2723 whether insn is in current fence too. */
2724 || IN_CURRENT_FENCE_P (insn)))
2725 /* Was already scheduled on this round. */
2726 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2727 && IN_CURRENT_FENCE_P (insn))
2728 /* An insn from another fence could also be
2729 scheduled earlier even if this insn is not in
2730 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2731 || (!pipelining_p
2732 && INSN_SCHED_TIMES (insn) > 0))
2733 return true;
2734 else
2735 return false;
2738 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2739 of handling multiple successors and properly merging its av_sets. P is
2740 the current path traversed. WS is the size of lookahead window.
2741 Return the av set computed. */
2742 static av_set_t
2743 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2745 struct succs_info *sinfo;
2746 av_set_t expr_in_all_succ_branches = NULL;
2747 int is;
2748 insn_t succ, zero_succ = NULL;
2749 av_set_t av1 = NULL;
2751 gcc_assert (sel_bb_end_p (insn));
2753 /* Find different kind of successors needed for correct computing of
2754 SPEC and TARGET_AVAILABLE attributes. */
2755 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2757 /* Debug output. */
2758 if (sched_verbose >= 6)
2760 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2761 dump_insn_vector (sinfo->succs_ok);
2762 sel_print ("\n");
2763 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2764 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2767 /* Add insn to the tail of current path. */
2768 ilist_add (&p, insn);
2770 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2772 av_set_t succ_set;
2774 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2775 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2777 av_set_split_usefulness (succ_set,
2778 sinfo->probs_ok[is],
2779 sinfo->all_prob);
2781 if (sinfo->all_succs_n > 1)
2783 /* Find EXPR'es that came from *all* successors and save them
2784 into expr_in_all_succ_branches. This set will be used later
2785 for calculating speculation attributes of EXPR'es. */
2786 if (is == 0)
2788 expr_in_all_succ_branches = av_set_copy (succ_set);
2790 /* Remember the first successor for later. */
2791 zero_succ = succ;
2793 else
2795 av_set_iterator i;
2796 expr_t expr;
2798 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2799 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2800 av_set_iter_remove (&i);
2804 /* Union the av_sets. Check liveness restrictions on target registers
2805 in special case of two successors. */
2806 if (sinfo->succs_ok_n == 2 && is == 1)
2808 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2809 basic_block bb1 = BLOCK_FOR_INSN (succ);
2811 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2812 av_set_union_and_live (&av1, &succ_set,
2813 BB_LV_SET (bb0),
2814 BB_LV_SET (bb1),
2815 insn);
2817 else
2818 av_set_union_and_clear (&av1, &succ_set, insn);
2821 /* Check liveness restrictions via hard way when there are more than
2822 two successors. */
2823 if (sinfo->succs_ok_n > 2)
2824 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2826 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2828 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2829 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2830 BB_LV_SET (succ_bb));
2833 /* Finally, check liveness restrictions on paths leaving the region. */
2834 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2835 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2836 mark_unavailable_targets
2837 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2839 if (sinfo->all_succs_n > 1)
2841 av_set_iterator i;
2842 expr_t expr;
2844 /* Increase the spec attribute of all EXPR'es that didn't come
2845 from all successors. */
2846 FOR_EACH_EXPR (expr, i, av1)
2847 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2848 EXPR_SPEC (expr)++;
2850 av_set_clear (&expr_in_all_succ_branches);
2852 /* Do not move conditional branches through other
2853 conditional branches. So, remove all conditional
2854 branches from av_set if current operator is a conditional
2855 branch. */
2856 av_set_substract_cond_branches (&av1);
2859 ilist_remove (&p);
2860 free_succs_info (sinfo);
2862 if (sched_verbose >= 6)
2864 sel_print ("av_succs (%d): ", INSN_UID (insn));
2865 dump_av_set (av1);
2866 sel_print ("\n");
2869 return av1;
2872 /* This function computes av_set for the FIRST_INSN by dragging valid
2873 av_set through all basic block insns either from the end of basic block
2874 (computed using compute_av_set_at_bb_end) or from the insn on which
2875 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2876 below the basic block and handling conditional branches.
2877 FIRST_INSN - the basic block head, P - path consisting of the insns
2878 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2879 and bb ends are added to the path), WS - current window size,
2880 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2881 static av_set_t
2882 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2883 bool need_copy_p)
2885 insn_t cur_insn;
2886 int end_ws = ws;
2887 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2888 insn_t after_bb_end = NEXT_INSN (bb_end);
2889 insn_t last_insn;
2890 av_set_t av = NULL;
2891 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2893 /* Return NULL if insn is not on the legitimate downward path. */
2894 if (is_ineligible_successor (first_insn, p))
2896 if (sched_verbose >= 6)
2897 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2899 return NULL;
2902 /* If insn already has valid av(insn) computed, just return it. */
2903 if (AV_SET_VALID_P (first_insn))
2905 av_set_t av_set;
2907 if (sel_bb_head_p (first_insn))
2908 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2909 else
2910 av_set = NULL;
2912 if (sched_verbose >= 6)
2914 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2915 dump_av_set (av_set);
2916 sel_print ("\n");
2919 return need_copy_p ? av_set_copy (av_set) : av_set;
2922 ilist_add (&p, first_insn);
2924 /* As the result after this loop have completed, in LAST_INSN we'll
2925 have the insn which has valid av_set to start backward computation
2926 from: it either will be NULL because on it the window size was exceeded
2927 or other valid av_set as returned by compute_av_set for the last insn
2928 of the basic block. */
2929 for (last_insn = first_insn; last_insn != after_bb_end;
2930 last_insn = NEXT_INSN (last_insn))
2932 /* We may encounter valid av_set not only on bb_head, but also on
2933 those insns on which previously MAX_WS was exceeded. */
2934 if (AV_SET_VALID_P (last_insn))
2936 if (sched_verbose >= 6)
2937 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2938 break;
2941 /* The special case: the last insn of the BB may be an
2942 ineligible_successor due to its SEQ_NO that was set on
2943 it as a bookkeeping. */
2944 if (last_insn != first_insn
2945 && is_ineligible_successor (last_insn, p))
2947 if (sched_verbose >= 6)
2948 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2949 break;
2952 if (DEBUG_INSN_P (last_insn))
2953 continue;
2955 if (end_ws > max_ws)
2957 /* We can reach max lookahead size at bb_header, so clean av_set
2958 first. */
2959 INSN_WS_LEVEL (last_insn) = global_level;
2961 if (sched_verbose >= 6)
2962 sel_print ("Insn %d is beyond the software lookahead window size\n",
2963 INSN_UID (last_insn));
2964 break;
2967 end_ws++;
2970 /* Get the valid av_set into AV above the LAST_INSN to start backward
2971 computation from. It either will be empty av_set or av_set computed from
2972 the successors on the last insn of the current bb. */
2973 if (last_insn != after_bb_end)
2975 av = NULL;
2977 /* This is needed only to obtain av_sets that are identical to
2978 those computed by the old compute_av_set version. */
2979 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2980 av_set_add (&av, INSN_EXPR (last_insn));
2982 else
2983 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2984 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2986 /* Compute av_set in AV starting from below the LAST_INSN up to
2987 location above the FIRST_INSN. */
2988 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2989 cur_insn = PREV_INSN (cur_insn))
2990 if (!INSN_NOP_P (cur_insn))
2992 expr_t expr;
2994 moveup_set_expr (&av, cur_insn, false);
2996 /* If the expression for CUR_INSN is already in the set,
2997 replace it by the new one. */
2998 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2999 if (expr != NULL)
3001 clear_expr (expr);
3002 copy_expr (expr, INSN_EXPR (cur_insn));
3004 else
3005 av_set_add (&av, INSN_EXPR (cur_insn));
3008 /* Clear stale bb_av_set. */
3009 if (sel_bb_head_p (first_insn))
3011 av_set_clear (&BB_AV_SET (cur_bb));
3012 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3013 BB_AV_LEVEL (cur_bb) = global_level;
3016 if (sched_verbose >= 6)
3018 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3019 dump_av_set (av);
3020 sel_print ("\n");
3023 ilist_remove (&p);
3024 return av;
3027 /* Compute av set before INSN.
3028 INSN - the current operation (actual rtx INSN)
3029 P - the current path, which is list of insns visited so far
3030 WS - software lookahead window size.
3031 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3032 if we want to save computed av_set in s_i_d, we should make a copy of it.
3034 In the resulting set we will have only expressions that don't have delay
3035 stalls and nonsubstitutable dependences. */
3036 static av_set_t
3037 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3039 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3042 /* Propagate a liveness set LV through INSN. */
3043 static void
3044 propagate_lv_set (regset lv, insn_t insn)
3046 gcc_assert (INSN_P (insn));
3048 if (INSN_NOP_P (insn))
3049 return;
3051 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3054 /* Return livness set at the end of BB. */
3055 static regset
3056 compute_live_after_bb (basic_block bb)
3058 edge e;
3059 edge_iterator ei;
3060 regset lv = get_clear_regset_from_pool ();
3062 gcc_assert (!ignore_first);
3064 FOR_EACH_EDGE (e, ei, bb->succs)
3065 if (sel_bb_empty_p (e->dest))
3067 if (! BB_LV_SET_VALID_P (e->dest))
3069 gcc_unreachable ();
3070 gcc_assert (BB_LV_SET (e->dest) == NULL);
3071 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3072 BB_LV_SET_VALID_P (e->dest) = true;
3074 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3076 else
3077 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3079 return lv;
3082 /* Compute the set of all live registers at the point before INSN and save
3083 it at INSN if INSN is bb header. */
3084 regset
3085 compute_live (insn_t insn)
3087 basic_block bb = BLOCK_FOR_INSN (insn);
3088 insn_t final, temp;
3089 regset lv;
3091 /* Return the valid set if we're already on it. */
3092 if (!ignore_first)
3094 regset src = NULL;
3096 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3097 src = BB_LV_SET (bb);
3098 else
3100 gcc_assert (in_current_region_p (bb));
3101 if (INSN_LIVE_VALID_P (insn))
3102 src = INSN_LIVE (insn);
3105 if (src)
3107 lv = get_regset_from_pool ();
3108 COPY_REG_SET (lv, src);
3110 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3112 COPY_REG_SET (BB_LV_SET (bb), lv);
3113 BB_LV_SET_VALID_P (bb) = true;
3116 return_regset_to_pool (lv);
3117 return lv;
3121 /* We've skipped the wrong lv_set. Don't skip the right one. */
3122 ignore_first = false;
3123 gcc_assert (in_current_region_p (bb));
3125 /* Find a valid LV set in this block or below, if needed.
3126 Start searching from the next insn: either ignore_first is true, or
3127 INSN doesn't have a correct live set. */
3128 temp = NEXT_INSN (insn);
3129 final = NEXT_INSN (BB_END (bb));
3130 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3131 temp = NEXT_INSN (temp);
3132 if (temp == final)
3134 lv = compute_live_after_bb (bb);
3135 temp = PREV_INSN (temp);
3137 else
3139 lv = get_regset_from_pool ();
3140 COPY_REG_SET (lv, INSN_LIVE (temp));
3143 /* Put correct lv sets on the insns which have bad sets. */
3144 final = PREV_INSN (insn);
3145 while (temp != final)
3147 propagate_lv_set (lv, temp);
3148 COPY_REG_SET (INSN_LIVE (temp), lv);
3149 INSN_LIVE_VALID_P (temp) = true;
3150 temp = PREV_INSN (temp);
3153 /* Also put it in a BB. */
3154 if (sel_bb_head_p (insn))
3156 basic_block bb = BLOCK_FOR_INSN (insn);
3158 COPY_REG_SET (BB_LV_SET (bb), lv);
3159 BB_LV_SET_VALID_P (bb) = true;
3162 /* We return LV to the pool, but will not clear it there. Thus we can
3163 legimatelly use LV till the next use of regset_pool_get (). */
3164 return_regset_to_pool (lv);
3165 return lv;
3168 /* Update liveness sets for INSN. */
3169 static inline void
3170 update_liveness_on_insn (rtx_insn *insn)
3172 ignore_first = true;
3173 compute_live (insn);
3176 /* Compute liveness below INSN and write it into REGS. */
3177 static inline void
3178 compute_live_below_insn (rtx_insn *insn, regset regs)
3180 rtx_insn *succ;
3181 succ_iterator si;
3183 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3184 IOR_REG_SET (regs, compute_live (succ));
3187 /* Update the data gathered in av and lv sets starting from INSN. */
3188 static void
3189 update_data_sets (rtx_insn *insn)
3191 update_liveness_on_insn (insn);
3192 if (sel_bb_head_p (insn))
3194 gcc_assert (AV_LEVEL (insn) != 0);
3195 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3196 compute_av_set (insn, NULL, 0, 0);
3201 /* Helper for move_op () and find_used_regs ().
3202 Return speculation type for which a check should be created on the place
3203 of INSN. EXPR is one of the original ops we are searching for. */
3204 static ds_t
3205 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3207 ds_t to_check_ds;
3208 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3210 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3212 if (targetm.sched.get_insn_checked_ds)
3213 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3215 if (spec_info != NULL
3216 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3217 already_checked_ds |= BEGIN_CONTROL;
3219 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3221 to_check_ds &= ~already_checked_ds;
3223 return to_check_ds;
3226 /* Find the set of registers that are unavailable for storing expres
3227 while moving ORIG_OPS up on the path starting from INSN due to
3228 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3230 All the original operations found during the traversal are saved in the
3231 ORIGINAL_INSNS list.
3233 REG_RENAME_P denotes the set of hardware registers that
3234 can not be used with renaming due to the register class restrictions,
3235 mode restrictions and other (the register we'll choose should be
3236 compatible class with the original uses, shouldn't be in call_used_regs,
3237 should be HARD_REGNO_RENAME_OK etc).
3239 Returns TRUE if we've found all original insns, FALSE otherwise.
3241 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3242 to traverse the code motion paths. This helper function finds registers
3243 that are not available for storing expres while moving ORIG_OPS up on the
3244 path starting from INSN. A register considered as used on the moving path,
3245 if one of the following conditions is not satisfied:
3247 (1) a register not set or read on any path from xi to an instance of
3248 the original operation,
3249 (2) not among the live registers of the point immediately following the
3250 first original operation on a given downward path, except for the
3251 original target register of the operation,
3252 (3) not live on the other path of any conditional branch that is passed
3253 by the operation, in case original operations are not present on
3254 both paths of the conditional branch.
3256 All the original operations found during the traversal are saved in the
3257 ORIGINAL_INSNS list.
3259 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3260 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3261 to unavailable hard regs at the point original operation is found. */
3263 static bool
3264 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3265 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3267 def_list_iterator i;
3268 def_t def;
3269 int res;
3270 bool needs_spec_check_p = false;
3271 expr_t expr;
3272 av_set_iterator expr_iter;
3273 struct fur_static_params sparams;
3274 struct cmpd_local_params lparams;
3276 /* We haven't visited any blocks yet. */
3277 bitmap_clear (code_motion_visited_blocks);
3279 /* Init parameters for code_motion_path_driver. */
3280 sparams.crosses_call = false;
3281 sparams.original_insns = original_insns;
3282 sparams.used_regs = used_regs;
3284 /* Set the appropriate hooks and data. */
3285 code_motion_path_driver_info = &fur_hooks;
3287 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3289 reg_rename_p->crosses_call |= sparams.crosses_call;
3291 gcc_assert (res == 1);
3292 gcc_assert (original_insns && *original_insns);
3294 /* ??? We calculate whether an expression needs a check when computing
3295 av sets. This information is not as precise as it could be due to
3296 merging this bit in merge_expr. We can do better in find_used_regs,
3297 but we want to avoid multiple traversals of the same code motion
3298 paths. */
3299 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3300 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3302 /* Mark hardware regs in REG_RENAME_P that are not suitable
3303 for renaming expr in INSN due to hardware restrictions (register class,
3304 modes compatibility etc). */
3305 FOR_EACH_DEF (def, i, *original_insns)
3307 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3309 if (VINSN_SEPARABLE_P (vinsn))
3310 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3312 /* Do not allow clobbering of ld.[sa] address in case some of the
3313 original operations need a check. */
3314 if (needs_spec_check_p)
3315 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3318 return true;
3322 /* Functions to choose the best insn from available ones. */
3324 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3325 static int
3326 sel_target_adjust_priority (expr_t expr)
3328 int priority = EXPR_PRIORITY (expr);
3329 int new_priority;
3331 if (targetm.sched.adjust_priority)
3332 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3333 else
3334 new_priority = priority;
3336 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3337 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3339 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3341 if (sched_verbose >= 4)
3342 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3343 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3344 EXPR_PRIORITY_ADJ (expr), new_priority);
3346 return new_priority;
3349 /* Rank two available exprs for schedule. Never return 0 here. */
3350 static int
3351 sel_rank_for_schedule (const void *x, const void *y)
3353 expr_t tmp = *(const expr_t *) y;
3354 expr_t tmp2 = *(const expr_t *) x;
3355 insn_t tmp_insn, tmp2_insn;
3356 vinsn_t tmp_vinsn, tmp2_vinsn;
3357 int val;
3359 tmp_vinsn = EXPR_VINSN (tmp);
3360 tmp2_vinsn = EXPR_VINSN (tmp2);
3361 tmp_insn = EXPR_INSN_RTX (tmp);
3362 tmp2_insn = EXPR_INSN_RTX (tmp2);
3364 /* Schedule debug insns as early as possible. */
3365 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3366 return -1;
3367 else if (DEBUG_INSN_P (tmp2_insn))
3368 return 1;
3370 /* Prefer SCHED_GROUP_P insns to any others. */
3371 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3373 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3374 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3376 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3377 cannot be cloned. */
3378 if (VINSN_UNIQUE_P (tmp2_vinsn))
3379 return 1;
3380 return -1;
3383 /* Discourage scheduling of speculative checks. */
3384 val = (sel_insn_is_speculation_check (tmp_insn)
3385 - sel_insn_is_speculation_check (tmp2_insn));
3386 if (val)
3387 return val;
3389 /* Prefer not scheduled insn over scheduled one. */
3390 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3392 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3393 if (val)
3394 return val;
3397 /* Prefer jump over non-jump instruction. */
3398 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3399 return -1;
3400 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3401 return 1;
3403 /* Prefer an expr with greater priority. */
3404 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3406 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3407 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3409 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3411 else
3412 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3413 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3414 if (val)
3415 return val;
3417 if (spec_info != NULL && spec_info->mask != 0)
3418 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3420 ds_t ds1, ds2;
3421 dw_t dw1, dw2;
3422 int dw;
3424 ds1 = EXPR_SPEC_DONE_DS (tmp);
3425 if (ds1)
3426 dw1 = ds_weak (ds1);
3427 else
3428 dw1 = NO_DEP_WEAK;
3430 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3431 if (ds2)
3432 dw2 = ds_weak (ds2);
3433 else
3434 dw2 = NO_DEP_WEAK;
3436 dw = dw2 - dw1;
3437 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3438 return dw;
3441 /* Prefer an old insn to a bookkeeping insn. */
3442 if (INSN_UID (tmp_insn) < first_emitted_uid
3443 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3444 return -1;
3445 if (INSN_UID (tmp_insn) >= first_emitted_uid
3446 && INSN_UID (tmp2_insn) < first_emitted_uid)
3447 return 1;
3449 /* Prefer an insn with smaller UID, as a last resort.
3450 We can't safely use INSN_LUID as it is defined only for those insns
3451 that are in the stream. */
3452 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3455 /* Filter out expressions from av set pointed to by AV_PTR
3456 that are pipelined too many times. */
3457 static void
3458 process_pipelined_exprs (av_set_t *av_ptr)
3460 expr_t expr;
3461 av_set_iterator si;
3463 /* Don't pipeline already pipelined code as that would increase
3464 number of unnecessary register moves. */
3465 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3467 if (EXPR_SCHED_TIMES (expr)
3468 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3469 av_set_iter_remove (&si);
3473 /* Filter speculative insns from AV_PTR if we don't want them. */
3474 static void
3475 process_spec_exprs (av_set_t *av_ptr)
3477 expr_t expr;
3478 av_set_iterator si;
3480 if (spec_info == NULL)
3481 return;
3483 /* Scan *AV_PTR to find out if we want to consider speculative
3484 instructions for scheduling. */
3485 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3487 ds_t ds;
3489 ds = EXPR_SPEC_DONE_DS (expr);
3491 /* The probability of a success is too low - don't speculate. */
3492 if ((ds & SPECULATIVE)
3493 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3494 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3495 || (pipelining_p && false
3496 && (ds & DATA_SPEC)
3497 && (ds & CONTROL_SPEC))))
3499 av_set_iter_remove (&si);
3500 continue;
3505 /* Search for any use-like insns in AV_PTR and decide on scheduling
3506 them. Return one when found, and NULL otherwise.
3507 Note that we check here whether a USE could be scheduled to avoid
3508 an infinite loop later. */
3509 static expr_t
3510 process_use_exprs (av_set_t *av_ptr)
3512 expr_t expr;
3513 av_set_iterator si;
3514 bool uses_present_p = false;
3515 bool try_uses_p = true;
3517 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3519 /* This will also initialize INSN_CODE for later use. */
3520 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3522 /* If we have a USE in *AV_PTR that was not scheduled yet,
3523 do so because it will do good only. */
3524 if (EXPR_SCHED_TIMES (expr) <= 0)
3526 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3527 return expr;
3529 av_set_iter_remove (&si);
3531 else
3533 gcc_assert (pipelining_p);
3535 uses_present_p = true;
3538 else
3539 try_uses_p = false;
3542 if (uses_present_p)
3544 /* If we don't want to schedule any USEs right now and we have some
3545 in *AV_PTR, remove them, else just return the first one found. */
3546 if (!try_uses_p)
3548 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3549 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3550 av_set_iter_remove (&si);
3552 else
3554 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3558 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3559 return expr;
3561 av_set_iter_remove (&si);
3566 return NULL;
3569 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3570 EXPR's history of changes. */
3571 static bool
3572 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3574 vinsn_t vinsn, expr_vinsn;
3575 int n;
3576 unsigned i;
3578 /* Start with checking expr itself and then proceed with all the old forms
3579 of expr taken from its history vector. */
3580 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3581 expr_vinsn;
3582 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3583 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3584 : NULL))
3585 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3586 if (VINSN_SEPARABLE_P (vinsn))
3588 if (vinsn_equal_p (vinsn, expr_vinsn))
3589 return true;
3591 else
3593 /* For non-separable instructions, the blocking insn can have
3594 another pattern due to substitution, and we can't choose
3595 different register as in the above case. Check all registers
3596 being written instead. */
3597 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3598 VINSN_REG_SETS (expr_vinsn)))
3599 return true;
3602 return false;
3605 #ifdef ENABLE_CHECKING
3606 /* Return true if either of expressions from ORIG_OPS can be blocked
3607 by previously created bookkeeping code. STATIC_PARAMS points to static
3608 parameters of move_op. */
3609 static bool
3610 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3612 expr_t expr;
3613 av_set_iterator iter;
3614 moveop_static_params_p sparams;
3616 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3617 created while scheduling on another fence. */
3618 FOR_EACH_EXPR (expr, iter, orig_ops)
3619 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3620 return true;
3622 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3623 sparams = (moveop_static_params_p) static_params;
3625 /* Expressions can be also blocked by bookkeeping created during current
3626 move_op. */
3627 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3628 FOR_EACH_EXPR (expr, iter, orig_ops)
3629 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3630 return true;
3632 /* Expressions in ORIG_OPS may have wrong destination register due to
3633 renaming. Check with the right register instead. */
3634 if (sparams->dest && REG_P (sparams->dest))
3636 rtx reg = sparams->dest;
3637 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3639 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3640 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3641 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3642 return true;
3645 return false;
3647 #endif
3649 /* Clear VINSN_VEC and detach vinsns. */
3650 static void
3651 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3653 unsigned len = vinsn_vec->length ();
3654 if (len > 0)
3656 vinsn_t vinsn;
3657 int n;
3659 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3660 vinsn_detach (vinsn);
3661 vinsn_vec->block_remove (0, len);
3665 /* Add the vinsn of EXPR to the VINSN_VEC. */
3666 static void
3667 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3669 vinsn_attach (EXPR_VINSN (expr));
3670 vinsn_vec->safe_push (EXPR_VINSN (expr));
3673 /* Free the vector representing blocked expressions. */
3674 static void
3675 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3677 vinsn_vec.release ();
3680 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3682 void sel_add_to_insn_priority (rtx insn, int amount)
3684 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3686 if (sched_verbose >= 2)
3687 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3688 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3689 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3692 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3693 true if there is something to schedule. BNDS and FENCE are current
3694 boundaries and fence, respectively. If we need to stall for some cycles
3695 before an expr from AV would become available, write this number to
3696 *PNEED_STALL. */
3697 static bool
3698 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3699 int *pneed_stall)
3701 av_set_iterator si;
3702 expr_t expr;
3703 int sched_next_worked = 0, stalled, n;
3704 static int av_max_prio, est_ticks_till_branch;
3705 int min_need_stall = -1;
3706 deps_t dc = BND_DC (BLIST_BND (bnds));
3708 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3709 already scheduled. */
3710 if (av == NULL)
3711 return false;
3713 /* Empty vector from the previous stuff. */
3714 if (vec_av_set.length () > 0)
3715 vec_av_set.block_remove (0, vec_av_set.length ());
3717 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3718 for each insn. */
3719 gcc_assert (vec_av_set.is_empty ());
3720 FOR_EACH_EXPR (expr, si, av)
3722 vec_av_set.safe_push (expr);
3724 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3726 /* Adjust priority using target backend hook. */
3727 sel_target_adjust_priority (expr);
3730 /* Sort the vector. */
3731 vec_av_set.qsort (sel_rank_for_schedule);
3733 /* We record maximal priority of insns in av set for current instruction
3734 group. */
3735 if (FENCE_STARTS_CYCLE_P (fence))
3736 av_max_prio = est_ticks_till_branch = INT_MIN;
3738 /* Filter out inappropriate expressions. Loop's direction is reversed to
3739 visit "best" instructions first. We assume that vec::unordered_remove
3740 moves last element in place of one being deleted. */
3741 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3743 expr_t expr = vec_av_set[n];
3744 insn_t insn = EXPR_INSN_RTX (expr);
3745 signed char target_available;
3746 bool is_orig_reg_p = true;
3747 int need_cycles, new_prio;
3748 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3750 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3751 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3753 vec_av_set.unordered_remove (n);
3754 continue;
3757 /* Set number of sched_next insns (just in case there
3758 could be several). */
3759 if (FENCE_SCHED_NEXT (fence))
3760 sched_next_worked++;
3762 /* Check all liveness requirements and try renaming.
3763 FIXME: try to minimize calls to this. */
3764 target_available = EXPR_TARGET_AVAILABLE (expr);
3766 /* If insn was already scheduled on the current fence,
3767 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3768 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3769 && !fence_insn_p)
3770 target_available = -1;
3772 /* If the availability of the EXPR is invalidated by the insertion of
3773 bookkeeping earlier, make sure that we won't choose this expr for
3774 scheduling if it's not separable, and if it is separable, then
3775 we have to recompute the set of available registers for it. */
3776 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3778 vec_av_set.unordered_remove (n);
3779 if (sched_verbose >= 4)
3780 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3781 INSN_UID (insn));
3782 continue;
3785 if (target_available == true)
3787 /* Do nothing -- we can use an existing register. */
3788 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3790 else if (/* Non-separable instruction will never
3791 get another register. */
3792 (target_available == false
3793 && !EXPR_SEPARABLE_P (expr))
3794 /* Don't try to find a register for low-priority expression. */
3795 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3796 /* ??? FIXME: Don't try to rename data speculation. */
3797 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3798 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3800 vec_av_set.unordered_remove (n);
3801 if (sched_verbose >= 4)
3802 sel_print ("Expr %d has no suitable target register\n",
3803 INSN_UID (insn));
3805 /* A fence insn should not get here. */
3806 gcc_assert (!fence_insn_p);
3807 continue;
3810 /* At this point a fence insn should always be available. */
3811 gcc_assert (!fence_insn_p
3812 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3814 /* Filter expressions that need to be renamed or speculated when
3815 pipelining, because compensating register copies or speculation
3816 checks are likely to be placed near the beginning of the loop,
3817 causing a stall. */
3818 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3819 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3821 /* Estimation of number of cycles until loop branch for
3822 renaming/speculation to be successful. */
3823 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3825 if ((int) current_loop_nest->ninsns < 9)
3827 vec_av_set.unordered_remove (n);
3828 if (sched_verbose >= 4)
3829 sel_print ("Pipelining expr %d will likely cause stall\n",
3830 INSN_UID (insn));
3831 continue;
3834 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3835 < need_n_ticks_till_branch * issue_rate / 2
3836 && est_ticks_till_branch < need_n_ticks_till_branch)
3838 vec_av_set.unordered_remove (n);
3839 if (sched_verbose >= 4)
3840 sel_print ("Pipelining expr %d will likely cause stall\n",
3841 INSN_UID (insn));
3842 continue;
3846 /* We want to schedule speculation checks as late as possible. Discard
3847 them from av set if there are instructions with higher priority. */
3848 if (sel_insn_is_speculation_check (insn)
3849 && EXPR_PRIORITY (expr) < av_max_prio)
3851 stalled++;
3852 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3853 vec_av_set.unordered_remove (n);
3854 if (sched_verbose >= 4)
3855 sel_print ("Delaying speculation check %d until its first use\n",
3856 INSN_UID (insn));
3857 continue;
3860 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3861 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3862 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3864 /* Don't allow any insns whose data is not yet ready.
3865 Check first whether we've already tried them and failed. */
3866 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3868 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3869 - FENCE_CYCLE (fence));
3870 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3871 est_ticks_till_branch = MAX (est_ticks_till_branch,
3872 EXPR_PRIORITY (expr) + need_cycles);
3874 if (need_cycles > 0)
3876 stalled++;
3877 min_need_stall = (min_need_stall < 0
3878 ? need_cycles
3879 : MIN (min_need_stall, need_cycles));
3880 vec_av_set.unordered_remove (n);
3882 if (sched_verbose >= 4)
3883 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3884 INSN_UID (insn),
3885 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3886 continue;
3890 /* Now resort to dependence analysis to find whether EXPR might be
3891 stalled due to dependencies from FENCE's context. */
3892 need_cycles = tick_check_p (expr, dc, fence);
3893 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3895 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3896 est_ticks_till_branch = MAX (est_ticks_till_branch,
3897 new_prio);
3899 if (need_cycles > 0)
3901 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3903 int new_size = INSN_UID (insn) * 3 / 2;
3905 FENCE_READY_TICKS (fence)
3906 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3907 new_size, FENCE_READY_TICKS_SIZE (fence),
3908 sizeof (int));
3910 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3911 = FENCE_CYCLE (fence) + need_cycles;
3913 stalled++;
3914 min_need_stall = (min_need_stall < 0
3915 ? need_cycles
3916 : MIN (min_need_stall, need_cycles));
3918 vec_av_set.unordered_remove (n);
3920 if (sched_verbose >= 4)
3921 sel_print ("Expr %d is not ready yet until cycle %d\n",
3922 INSN_UID (insn),
3923 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3924 continue;
3927 if (sched_verbose >= 4)
3928 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3929 min_need_stall = 0;
3932 /* Clear SCHED_NEXT. */
3933 if (FENCE_SCHED_NEXT (fence))
3935 gcc_assert (sched_next_worked == 1);
3936 FENCE_SCHED_NEXT (fence) = NULL;
3939 /* No need to stall if this variable was not initialized. */
3940 if (min_need_stall < 0)
3941 min_need_stall = 0;
3943 if (vec_av_set.is_empty ())
3945 /* We need to set *pneed_stall here, because later we skip this code
3946 when ready list is empty. */
3947 *pneed_stall = min_need_stall;
3948 return false;
3950 else
3951 gcc_assert (min_need_stall == 0);
3953 /* Sort the vector. */
3954 vec_av_set.qsort (sel_rank_for_schedule);
3956 if (sched_verbose >= 4)
3958 sel_print ("Total ready exprs: %d, stalled: %d\n",
3959 vec_av_set.length (), stalled);
3960 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3961 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3962 dump_expr (expr);
3963 sel_print ("\n");
3966 *pneed_stall = 0;
3967 return true;
3970 /* Convert a vectored and sorted av set to the ready list that
3971 the rest of the backend wants to see. */
3972 static void
3973 convert_vec_av_set_to_ready (void)
3975 int n;
3976 expr_t expr;
3978 /* Allocate and fill the ready list from the sorted vector. */
3979 ready.n_ready = vec_av_set.length ();
3980 ready.first = ready.n_ready - 1;
3982 gcc_assert (ready.n_ready > 0);
3984 if (ready.n_ready > max_issue_size)
3986 max_issue_size = ready.n_ready;
3987 sched_extend_ready_list (ready.n_ready);
3990 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3992 vinsn_t vi = EXPR_VINSN (expr);
3993 insn_t insn = VINSN_INSN_RTX (vi);
3995 ready_try[n] = 0;
3996 ready.vec[n] = insn;
4000 /* Initialize ready list from *AV_PTR for the max_issue () call.
4001 If any unrecognizable insn found in *AV_PTR, return it (and skip
4002 max_issue). BND and FENCE are current boundary and fence,
4003 respectively. If we need to stall for some cycles before an expr
4004 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4005 static expr_t
4006 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4007 int *pneed_stall)
4009 expr_t expr;
4011 /* We do not support multiple boundaries per fence. */
4012 gcc_assert (BLIST_NEXT (bnds) == NULL);
4014 /* Process expressions required special handling, i.e. pipelined,
4015 speculative and recog() < 0 expressions first. */
4016 process_pipelined_exprs (av_ptr);
4017 process_spec_exprs (av_ptr);
4019 /* A USE could be scheduled immediately. */
4020 expr = process_use_exprs (av_ptr);
4021 if (expr)
4023 *pneed_stall = 0;
4024 return expr;
4027 /* Turn the av set to a vector for sorting. */
4028 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4030 ready.n_ready = 0;
4031 return NULL;
4034 /* Build the final ready list. */
4035 convert_vec_av_set_to_ready ();
4036 return NULL;
4039 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4040 static bool
4041 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4043 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4044 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4045 : FENCE_CYCLE (fence) - 1;
4046 bool res = false;
4047 int sort_p = 0;
4049 if (!targetm.sched.dfa_new_cycle)
4050 return false;
4052 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4054 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4055 insn, last_scheduled_cycle,
4056 FENCE_CYCLE (fence), &sort_p))
4058 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4059 advance_one_cycle (fence);
4060 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4061 res = true;
4064 return res;
4067 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4068 we can issue. FENCE is the current fence. */
4069 static int
4070 invoke_reorder_hooks (fence_t fence)
4072 int issue_more;
4073 bool ran_hook = false;
4075 /* Call the reorder hook at the beginning of the cycle, and call
4076 the reorder2 hook in the middle of the cycle. */
4077 if (FENCE_ISSUED_INSNS (fence) == 0)
4079 if (targetm.sched.reorder
4080 && !SCHED_GROUP_P (ready_element (&ready, 0))
4081 && ready.n_ready > 1)
4083 /* Don't give reorder the most prioritized insn as it can break
4084 pipelining. */
4085 if (pipelining_p)
4086 --ready.n_ready;
4088 issue_more
4089 = targetm.sched.reorder (sched_dump, sched_verbose,
4090 ready_lastpos (&ready),
4091 &ready.n_ready, FENCE_CYCLE (fence));
4093 if (pipelining_p)
4094 ++ready.n_ready;
4096 ran_hook = true;
4098 else
4099 /* Initialize can_issue_more for variable_issue. */
4100 issue_more = issue_rate;
4102 else if (targetm.sched.reorder2
4103 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4105 if (ready.n_ready == 1)
4106 issue_more =
4107 targetm.sched.reorder2 (sched_dump, sched_verbose,
4108 ready_lastpos (&ready),
4109 &ready.n_ready, FENCE_CYCLE (fence));
4110 else
4112 if (pipelining_p)
4113 --ready.n_ready;
4115 issue_more =
4116 targetm.sched.reorder2 (sched_dump, sched_verbose,
4117 ready.n_ready
4118 ? ready_lastpos (&ready) : NULL,
4119 &ready.n_ready, FENCE_CYCLE (fence));
4121 if (pipelining_p)
4122 ++ready.n_ready;
4125 ran_hook = true;
4127 else
4128 issue_more = FENCE_ISSUE_MORE (fence);
4130 /* Ensure that ready list and vec_av_set are in line with each other,
4131 i.e. vec_av_set[i] == ready_element (&ready, i). */
4132 if (issue_more && ran_hook)
4134 int i, j, n;
4135 rtx_insn **arr = ready.vec;
4136 expr_t *vec = vec_av_set.address ();
4138 for (i = 0, n = ready.n_ready; i < n; i++)
4139 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4141 for (j = i; j < n; j++)
4142 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4143 break;
4144 gcc_assert (j < n);
4146 std::swap (vec[i], vec[j]);
4150 return issue_more;
4153 /* Return an EXPR corresponding to INDEX element of ready list, if
4154 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4155 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4156 ready.vec otherwise. */
4157 static inline expr_t
4158 find_expr_for_ready (int index, bool follow_ready_element)
4160 expr_t expr;
4161 int real_index;
4163 real_index = follow_ready_element ? ready.first - index : index;
4165 expr = vec_av_set[real_index];
4166 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4168 return expr;
4171 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4172 of such insns found. */
4173 static int
4174 invoke_dfa_lookahead_guard (void)
4176 int i, n;
4177 bool have_hook
4178 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4180 if (sched_verbose >= 2)
4181 sel_print ("ready after reorder: ");
4183 for (i = 0, n = 0; i < ready.n_ready; i++)
4185 expr_t expr;
4186 insn_t insn;
4187 int r;
4189 /* In this loop insn is Ith element of the ready list given by
4190 ready_element, not Ith element of ready.vec. */
4191 insn = ready_element (&ready, i);
4193 if (! have_hook || i == 0)
4194 r = 0;
4195 else
4196 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4198 gcc_assert (INSN_CODE (insn) >= 0);
4200 /* Only insns with ready_try = 0 can get here
4201 from fill_ready_list. */
4202 gcc_assert (ready_try [i] == 0);
4203 ready_try[i] = r;
4204 if (!r)
4205 n++;
4207 expr = find_expr_for_ready (i, true);
4209 if (sched_verbose >= 2)
4211 dump_vinsn (EXPR_VINSN (expr));
4212 sel_print (":%d; ", ready_try[i]);
4216 if (sched_verbose >= 2)
4217 sel_print ("\n");
4218 return n;
4221 /* Calculate the number of privileged insns and return it. */
4222 static int
4223 calculate_privileged_insns (void)
4225 expr_t cur_expr, min_spec_expr = NULL;
4226 int privileged_n = 0, i;
4228 for (i = 0; i < ready.n_ready; i++)
4230 if (ready_try[i])
4231 continue;
4233 if (! min_spec_expr)
4234 min_spec_expr = find_expr_for_ready (i, true);
4236 cur_expr = find_expr_for_ready (i, true);
4238 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4239 break;
4241 ++privileged_n;
4244 if (i == ready.n_ready)
4245 privileged_n = 0;
4247 if (sched_verbose >= 2)
4248 sel_print ("privileged_n: %d insns with SPEC %d\n",
4249 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4250 return privileged_n;
4253 /* Call the rest of the hooks after the choice was made. Return
4254 the number of insns that still can be issued given that the current
4255 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4256 and the insn chosen for scheduling, respectively. */
4257 static int
4258 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4260 gcc_assert (INSN_P (best_insn));
4262 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4263 sel_dfa_new_cycle (best_insn, fence);
4265 if (targetm.sched.variable_issue)
4267 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4268 issue_more =
4269 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4270 issue_more);
4271 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4273 else if (GET_CODE (PATTERN (best_insn)) != USE
4274 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4275 issue_more--;
4277 return issue_more;
4280 /* Estimate the cost of issuing INSN on DFA state STATE. */
4281 static int
4282 estimate_insn_cost (rtx_insn *insn, state_t state)
4284 static state_t temp = NULL;
4285 int cost;
4287 if (!temp)
4288 temp = xmalloc (dfa_state_size);
4290 memcpy (temp, state, dfa_state_size);
4291 cost = state_transition (temp, insn);
4293 if (cost < 0)
4294 return 0;
4295 else if (cost == 0)
4296 return 1;
4297 return cost;
4300 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4301 This function properly handles ASMs, USEs etc. */
4302 static int
4303 get_expr_cost (expr_t expr, fence_t fence)
4305 rtx_insn *insn = EXPR_INSN_RTX (expr);
4307 if (recog_memoized (insn) < 0)
4309 if (!FENCE_STARTS_CYCLE_P (fence)
4310 && INSN_ASM_P (insn))
4311 /* This is asm insn which is tryed to be issued on the
4312 cycle not first. Issue it on the next cycle. */
4313 return 1;
4314 else
4315 /* A USE insn, or something else we don't need to
4316 understand. We can't pass these directly to
4317 state_transition because it will trigger a
4318 fatal error for unrecognizable insns. */
4319 return 0;
4321 else
4322 return estimate_insn_cost (insn, FENCE_STATE (fence));
4325 /* Find the best insn for scheduling, either via max_issue or just take
4326 the most prioritized available. */
4327 static int
4328 choose_best_insn (fence_t fence, int privileged_n, int *index)
4330 int can_issue = 0;
4332 if (dfa_lookahead > 0)
4334 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4335 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4336 can_issue = max_issue (&ready, privileged_n,
4337 FENCE_STATE (fence), true, index);
4338 if (sched_verbose >= 2)
4339 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4340 can_issue, FENCE_ISSUED_INSNS (fence));
4342 else
4344 /* We can't use max_issue; just return the first available element. */
4345 int i;
4347 for (i = 0; i < ready.n_ready; i++)
4349 expr_t expr = find_expr_for_ready (i, true);
4351 if (get_expr_cost (expr, fence) < 1)
4353 can_issue = can_issue_more;
4354 *index = i;
4356 if (sched_verbose >= 2)
4357 sel_print ("using %dth insn from the ready list\n", i + 1);
4359 break;
4363 if (i == ready.n_ready)
4365 can_issue = 0;
4366 *index = -1;
4370 return can_issue;
4373 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4374 BNDS and FENCE are current boundaries and scheduling fence respectively.
4375 Return the expr found and NULL if nothing can be issued atm.
4376 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4377 static expr_t
4378 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4379 int *pneed_stall)
4381 expr_t best;
4383 /* Choose the best insn for scheduling via:
4384 1) sorting the ready list based on priority;
4385 2) calling the reorder hook;
4386 3) calling max_issue. */
4387 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4388 if (best == NULL && ready.n_ready > 0)
4390 int privileged_n, index;
4392 can_issue_more = invoke_reorder_hooks (fence);
4393 if (can_issue_more > 0)
4395 /* Try choosing the best insn until we find one that is could be
4396 scheduled due to liveness restrictions on its destination register.
4397 In the future, we'd like to choose once and then just probe insns
4398 in the order of their priority. */
4399 invoke_dfa_lookahead_guard ();
4400 privileged_n = calculate_privileged_insns ();
4401 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4402 if (can_issue_more)
4403 best = find_expr_for_ready (index, true);
4405 /* We had some available insns, so if we can't issue them,
4406 we have a stall. */
4407 if (can_issue_more == 0)
4409 best = NULL;
4410 *pneed_stall = 1;
4414 if (best != NULL)
4416 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4417 can_issue_more);
4418 if (targetm.sched.variable_issue
4419 && can_issue_more == 0)
4420 *pneed_stall = 1;
4423 if (sched_verbose >= 2)
4425 if (best != NULL)
4427 sel_print ("Best expression (vliw form): ");
4428 dump_expr (best);
4429 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4431 else
4432 sel_print ("No best expr found!\n");
4435 return best;
4439 /* Functions that implement the core of the scheduler. */
4442 /* Emit an instruction from EXPR with SEQNO and VINSN after
4443 PLACE_TO_INSERT. */
4444 static insn_t
4445 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4446 insn_t place_to_insert)
4448 /* This assert fails when we have identical instructions
4449 one of which dominates the other. In this case move_op ()
4450 finds the first instruction and doesn't search for second one.
4451 The solution would be to compute av_set after the first found
4452 insn and, if insn present in that set, continue searching.
4453 For now we workaround this issue in move_op. */
4454 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4456 if (EXPR_WAS_RENAMED (expr))
4458 unsigned regno = expr_dest_regno (expr);
4460 if (HARD_REGISTER_NUM_P (regno))
4462 df_set_regs_ever_live (regno, true);
4463 reg_rename_tick[regno] = ++reg_rename_this_tick;
4467 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4468 place_to_insert);
4471 /* Return TRUE if BB can hold bookkeeping code. */
4472 static bool
4473 block_valid_for_bookkeeping_p (basic_block bb)
4475 insn_t bb_end = BB_END (bb);
4477 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4478 return false;
4480 if (INSN_P (bb_end))
4482 if (INSN_SCHED_TIMES (bb_end) > 0)
4483 return false;
4485 else
4486 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4488 return true;
4491 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4492 into E2->dest, except from E1->src (there may be a sequence of empty basic
4493 blocks between E1->src and E2->dest). Return found block, or NULL if new
4494 one must be created. If LAX holds, don't assume there is a simple path
4495 from E1->src to E2->dest. */
4496 static basic_block
4497 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4499 basic_block candidate_block = NULL;
4500 edge e;
4502 /* Loop over edges from E1 to E2, inclusive. */
4503 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4504 EDGE_SUCC (e->dest, 0))
4506 if (EDGE_COUNT (e->dest->preds) == 2)
4508 if (candidate_block == NULL)
4509 candidate_block = (EDGE_PRED (e->dest, 0) == e
4510 ? EDGE_PRED (e->dest, 1)->src
4511 : EDGE_PRED (e->dest, 0)->src);
4512 else
4513 /* Found additional edge leading to path from e1 to e2
4514 from aside. */
4515 return NULL;
4517 else if (EDGE_COUNT (e->dest->preds) > 2)
4518 /* Several edges leading to path from e1 to e2 from aside. */
4519 return NULL;
4521 if (e == e2)
4522 return ((!lax || candidate_block)
4523 && block_valid_for_bookkeeping_p (candidate_block)
4524 ? candidate_block
4525 : NULL);
4527 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4528 return NULL;
4531 if (lax)
4532 return NULL;
4534 gcc_unreachable ();
4537 /* Create new basic block for bookkeeping code for path(s) incoming into
4538 E2->dest, except from E1->src. Return created block. */
4539 static basic_block
4540 create_block_for_bookkeeping (edge e1, edge e2)
4542 basic_block new_bb, bb = e2->dest;
4544 /* Check that we don't spoil the loop structure. */
4545 if (current_loop_nest)
4547 basic_block latch = current_loop_nest->latch;
4549 /* We do not split header. */
4550 gcc_assert (e2->dest != current_loop_nest->header);
4552 /* We do not redirect the only edge to the latch block. */
4553 gcc_assert (e1->dest != latch
4554 || !single_pred_p (latch)
4555 || e1 != single_pred_edge (latch));
4558 /* Split BB to insert BOOK_INSN there. */
4559 new_bb = sched_split_block (bb, NULL);
4561 /* Move note_list from the upper bb. */
4562 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4563 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4564 BB_NOTE_LIST (bb) = NULL;
4566 gcc_assert (e2->dest == bb);
4568 /* Skip block for bookkeeping copy when leaving E1->src. */
4569 if (e1->flags & EDGE_FALLTHRU)
4570 sel_redirect_edge_and_branch_force (e1, new_bb);
4571 else
4572 sel_redirect_edge_and_branch (e1, new_bb);
4574 gcc_assert (e1->dest == new_bb);
4575 gcc_assert (sel_bb_empty_p (bb));
4577 /* To keep basic block numbers in sync between debug and non-debug
4578 compilations, we have to rotate blocks here. Consider that we
4579 started from (a,b)->d, (c,d)->e, and d contained only debug
4580 insns. It would have been removed before if the debug insns
4581 weren't there, so we'd have split e rather than d. So what we do
4582 now is to swap the block numbers of new_bb and
4583 single_succ(new_bb) == e, so that the insns that were in e before
4584 get the new block number. */
4586 if (MAY_HAVE_DEBUG_INSNS)
4588 basic_block succ;
4589 insn_t insn = sel_bb_head (new_bb);
4590 insn_t last;
4592 if (DEBUG_INSN_P (insn)
4593 && single_succ_p (new_bb)
4594 && (succ = single_succ (new_bb))
4595 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4596 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4598 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4599 insn = NEXT_INSN (insn);
4601 if (insn == last)
4603 sel_global_bb_info_def gbi;
4604 sel_region_bb_info_def rbi;
4606 if (sched_verbose >= 2)
4607 sel_print ("Swapping block ids %i and %i\n",
4608 new_bb->index, succ->index);
4610 std::swap (new_bb->index, succ->index);
4612 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4613 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4615 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4616 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4617 sizeof (gbi));
4618 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4620 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4621 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4622 sizeof (rbi));
4623 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4625 std::swap (BLOCK_TO_BB (new_bb->index),
4626 BLOCK_TO_BB (succ->index));
4628 std::swap (CONTAINING_RGN (new_bb->index),
4629 CONTAINING_RGN (succ->index));
4631 for (int i = 0; i < current_nr_blocks; i++)
4632 if (BB_TO_BLOCK (i) == succ->index)
4633 BB_TO_BLOCK (i) = new_bb->index;
4634 else if (BB_TO_BLOCK (i) == new_bb->index)
4635 BB_TO_BLOCK (i) = succ->index;
4637 FOR_BB_INSNS (new_bb, insn)
4638 if (INSN_P (insn))
4639 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4641 FOR_BB_INSNS (succ, insn)
4642 if (INSN_P (insn))
4643 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4645 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4646 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4648 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4649 && LABEL_P (BB_HEAD (succ)));
4651 if (sched_verbose >= 4)
4652 sel_print ("Swapping code labels %i and %i\n",
4653 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4654 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4656 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4657 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4662 return bb;
4665 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4666 into E2->dest, except from E1->src. If the returned insn immediately
4667 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4668 static insn_t
4669 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4671 insn_t place_to_insert;
4672 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4673 create new basic block, but insert bookkeeping there. */
4674 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4676 if (book_block)
4678 place_to_insert = BB_END (book_block);
4680 /* Don't use a block containing only debug insns for
4681 bookkeeping, this causes scheduling differences between debug
4682 and non-debug compilations, for the block would have been
4683 removed already. */
4684 if (DEBUG_INSN_P (place_to_insert))
4686 rtx_insn *insn = sel_bb_head (book_block);
4688 while (insn != place_to_insert &&
4689 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4690 insn = NEXT_INSN (insn);
4692 if (insn == place_to_insert)
4693 book_block = NULL;
4697 if (!book_block)
4699 book_block = create_block_for_bookkeeping (e1, e2);
4700 place_to_insert = BB_END (book_block);
4701 if (sched_verbose >= 9)
4702 sel_print ("New block is %i, split from bookkeeping block %i\n",
4703 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4705 else
4707 if (sched_verbose >= 9)
4708 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4711 *fence_to_rewind = NULL;
4712 /* If basic block ends with a jump, insert bookkeeping code right before it.
4713 Notice if we are crossing a fence when taking PREV_INSN. */
4714 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4716 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4717 place_to_insert = PREV_INSN (place_to_insert);
4720 return place_to_insert;
4723 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4724 for JOIN_POINT. */
4725 static int
4726 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4728 int seqno;
4730 /* Check if we are about to insert bookkeeping copy before a jump, and use
4731 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4732 rtx_insn *next = NEXT_INSN (place_to_insert);
4733 if (INSN_P (next)
4734 && JUMP_P (next)
4735 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4737 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4738 seqno = INSN_SEQNO (next);
4740 else if (INSN_SEQNO (join_point) > 0)
4741 seqno = INSN_SEQNO (join_point);
4742 else
4744 seqno = get_seqno_by_preds (place_to_insert);
4746 /* Sometimes the fences can move in such a way that there will be
4747 no instructions with positive seqno around this bookkeeping.
4748 This means that there will be no way to get to it by a regular
4749 fence movement. Never mind because we pick up such pieces for
4750 rescheduling anyways, so any positive value will do for now. */
4751 if (seqno < 0)
4753 gcc_assert (pipelining_p);
4754 seqno = 1;
4758 gcc_assert (seqno > 0);
4759 return seqno;
4762 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4763 NEW_SEQNO to it. Return created insn. */
4764 static insn_t
4765 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4767 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4769 vinsn_t new_vinsn
4770 = create_vinsn_from_insn_rtx (new_insn_rtx,
4771 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4773 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4774 place_to_insert);
4776 INSN_SCHED_TIMES (new_insn) = 0;
4777 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4779 return new_insn;
4782 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4783 E2->dest, except from E1->src (there may be a sequence of empty blocks
4784 between E1->src and E2->dest). Return block containing the copy.
4785 All scheduler data is initialized for the newly created insn. */
4786 static basic_block
4787 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4789 insn_t join_point, place_to_insert, new_insn;
4790 int new_seqno;
4791 bool need_to_exchange_data_sets;
4792 fence_t fence_to_rewind;
4794 if (sched_verbose >= 4)
4795 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4796 e2->dest->index);
4798 join_point = sel_bb_head (e2->dest);
4799 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4800 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4801 need_to_exchange_data_sets
4802 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4804 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4806 if (fence_to_rewind)
4807 FENCE_INSN (fence_to_rewind) = new_insn;
4809 /* When inserting bookkeeping insn in new block, av sets should be
4810 following: old basic block (that now holds bookkeeping) data sets are
4811 the same as was before generation of bookkeeping, and new basic block
4812 (that now hold all other insns of old basic block) data sets are
4813 invalid. So exchange data sets for these basic blocks as sel_split_block
4814 mistakenly exchanges them in this case. Cannot do it earlier because
4815 when single instruction is added to new basic block it should hold NULL
4816 lv_set. */
4817 if (need_to_exchange_data_sets)
4818 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4819 BLOCK_FOR_INSN (join_point));
4821 stat_bookkeeping_copies++;
4822 return BLOCK_FOR_INSN (new_insn);
4825 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4826 on FENCE, but we are unable to copy them. */
4827 static void
4828 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4830 expr_t expr;
4831 av_set_iterator i;
4833 /* An expression does not need bookkeeping if it is available on all paths
4834 from current block to original block and current block dominates
4835 original block. We check availability on all paths by examining
4836 EXPR_SPEC; this is not equivalent, because it may be positive even
4837 if expr is available on all paths (but if expr is not available on
4838 any path, EXPR_SPEC will be positive). */
4840 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4842 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4843 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4844 && (EXPR_SPEC (expr)
4845 || !EXPR_ORIG_BB_INDEX (expr)
4846 || !dominated_by_p (CDI_DOMINATORS,
4847 BASIC_BLOCK_FOR_FN (cfun,
4848 EXPR_ORIG_BB_INDEX (expr)),
4849 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4851 if (sched_verbose >= 4)
4852 sel_print ("Expr %d removed because it would need bookkeeping, which "
4853 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4854 av_set_iter_remove (&i);
4859 /* Moving conditional jump through some instructions.
4861 Consider example:
4863 ... <- current scheduling point
4864 NOTE BASIC BLOCK: <- bb header
4865 (p8) add r14=r14+0x9;;
4866 (p8) mov [r14]=r23
4867 (!p8) jump L1;;
4868 NOTE BASIC BLOCK:
4871 We can schedule jump one cycle earlier, than mov, because they cannot be
4872 executed together as their predicates are mutually exclusive.
4874 This is done in this way: first, new fallthrough basic block is created
4875 after jump (it is always can be done, because there already should be a
4876 fallthrough block, where control flow goes in case of predicate being true -
4877 in our example; otherwise there should be a dependence between those
4878 instructions and jump and we cannot schedule jump right now);
4879 next, all instructions between jump and current scheduling point are moved
4880 to this new block. And the result is this:
4882 NOTE BASIC BLOCK:
4883 (!p8) jump L1 <- current scheduling point
4884 NOTE BASIC BLOCK: <- bb header
4885 (p8) add r14=r14+0x9;;
4886 (p8) mov [r14]=r23
4887 NOTE BASIC BLOCK:
4890 static void
4891 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4893 edge ft_edge;
4894 basic_block block_from, block_next, block_new, block_bnd, bb;
4895 rtx_insn *next, *prev, *link, *head;
4897 block_from = BLOCK_FOR_INSN (insn);
4898 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4899 prev = BND_TO (bnd);
4901 #ifdef ENABLE_CHECKING
4902 /* Moving of jump should not cross any other jumps or beginnings of new
4903 basic blocks. The only exception is when we move a jump through
4904 mutually exclusive insns along fallthru edges. */
4905 if (block_from != block_bnd)
4907 bb = block_from;
4908 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4909 link = PREV_INSN (link))
4911 if (INSN_P (link))
4912 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4913 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4915 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4916 bb = BLOCK_FOR_INSN (link);
4920 #endif
4922 /* Jump is moved to the boundary. */
4923 next = PREV_INSN (insn);
4924 BND_TO (bnd) = insn;
4926 ft_edge = find_fallthru_edge_from (block_from);
4927 block_next = ft_edge->dest;
4928 /* There must be a fallthrough block (or where should go
4929 control flow in case of false jump predicate otherwise?). */
4930 gcc_assert (block_next);
4932 /* Create new empty basic block after source block. */
4933 block_new = sel_split_edge (ft_edge);
4934 gcc_assert (block_new->next_bb == block_next
4935 && block_from->next_bb == block_new);
4937 /* Move all instructions except INSN to BLOCK_NEW. */
4938 bb = block_bnd;
4939 head = BB_HEAD (block_new);
4940 while (bb != block_from->next_bb)
4942 rtx_insn *from, *to;
4943 from = bb == block_bnd ? prev : sel_bb_head (bb);
4944 to = bb == block_from ? next : sel_bb_end (bb);
4946 /* The jump being moved can be the first insn in the block.
4947 In this case we don't have to move anything in this block. */
4948 if (NEXT_INSN (to) != from)
4950 reorder_insns (from, to, head);
4952 for (link = to; link != head; link = PREV_INSN (link))
4953 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4954 head = to;
4957 /* Cleanup possibly empty blocks left. */
4958 block_next = bb->next_bb;
4959 if (bb != block_from)
4960 tidy_control_flow (bb, false);
4961 bb = block_next;
4964 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4965 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4967 gcc_assert (!sel_bb_empty_p (block_from)
4968 && !sel_bb_empty_p (block_new));
4970 /* Update data sets for BLOCK_NEW to represent that INSN and
4971 instructions from the other branch of INSN is no longer
4972 available at BLOCK_NEW. */
4973 BB_AV_LEVEL (block_new) = global_level;
4974 gcc_assert (BB_LV_SET (block_new) == NULL);
4975 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4976 update_data_sets (sel_bb_head (block_new));
4978 /* INSN is a new basic block header - so prepare its data
4979 structures and update availability and liveness sets. */
4980 update_data_sets (insn);
4982 if (sched_verbose >= 4)
4983 sel_print ("Moving jump %d\n", INSN_UID (insn));
4986 /* Remove nops generated during move_op for preventing removal of empty
4987 basic blocks. */
4988 static void
4989 remove_temp_moveop_nops (bool full_tidying)
4991 int i;
4992 insn_t insn;
4994 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4996 gcc_assert (INSN_NOP_P (insn));
4997 return_nop_to_pool (insn, full_tidying);
5000 /* Empty the vector. */
5001 if (vec_temp_moveop_nops.length () > 0)
5002 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5005 /* Records the maximal UID before moving up an instruction. Used for
5006 distinguishing between bookkeeping copies and original insns. */
5007 static int max_uid_before_move_op = 0;
5009 /* Remove from AV_VLIW_P all instructions but next when debug counter
5010 tells us so. Next instruction is fetched from BNDS. */
5011 static void
5012 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5014 if (! dbg_cnt (sel_sched_insn_cnt))
5015 /* Leave only the next insn in av_vliw. */
5017 av_set_iterator av_it;
5018 expr_t expr;
5019 bnd_t bnd = BLIST_BND (bnds);
5020 insn_t next = BND_TO (bnd);
5022 gcc_assert (BLIST_NEXT (bnds) == NULL);
5024 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5025 if (EXPR_INSN_RTX (expr) != next)
5026 av_set_iter_remove (&av_it);
5030 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5031 the computed set to *AV_VLIW_P. */
5032 static void
5033 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5035 if (sched_verbose >= 2)
5037 sel_print ("Boundaries: ");
5038 dump_blist (bnds);
5039 sel_print ("\n");
5042 for (; bnds; bnds = BLIST_NEXT (bnds))
5044 bnd_t bnd = BLIST_BND (bnds);
5045 av_set_t av1_copy;
5046 insn_t bnd_to = BND_TO (bnd);
5048 /* Rewind BND->TO to the basic block header in case some bookkeeping
5049 instructions were inserted before BND->TO and it needs to be
5050 adjusted. */
5051 if (sel_bb_head_p (bnd_to))
5052 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5053 else
5054 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5056 bnd_to = PREV_INSN (bnd_to);
5057 if (sel_bb_head_p (bnd_to))
5058 break;
5061 if (BND_TO (bnd) != bnd_to)
5063 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5064 FENCE_INSN (fence) = bnd_to;
5065 BND_TO (bnd) = bnd_to;
5068 av_set_clear (&BND_AV (bnd));
5069 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5071 av_set_clear (&BND_AV1 (bnd));
5072 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5074 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5076 av1_copy = av_set_copy (BND_AV1 (bnd));
5077 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5080 if (sched_verbose >= 2)
5082 sel_print ("Available exprs (vliw form): ");
5083 dump_av_set (*av_vliw_p);
5084 sel_print ("\n");
5088 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5089 expression. When FOR_MOVEOP is true, also replace the register of
5090 expressions found with the register from EXPR_VLIW. */
5091 static av_set_t
5092 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5094 av_set_t expr_seq = NULL;
5095 expr_t expr;
5096 av_set_iterator i;
5098 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5100 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5102 if (for_moveop)
5104 /* The sequential expression has the right form to pass
5105 to move_op except when renaming happened. Put the
5106 correct register in EXPR then. */
5107 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5109 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5111 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5112 stat_renamed_scheduled++;
5114 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5115 This is needed when renaming came up with original
5116 register. */
5117 else if (EXPR_TARGET_AVAILABLE (expr)
5118 != EXPR_TARGET_AVAILABLE (expr_vliw))
5120 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5121 EXPR_TARGET_AVAILABLE (expr) = 1;
5124 if (EXPR_WAS_SUBSTITUTED (expr))
5125 stat_substitutions_total++;
5128 av_set_add (&expr_seq, expr);
5130 /* With substitution inside insn group, it is possible
5131 that more than one expression in expr_seq will correspond
5132 to expr_vliw. In this case, choose one as the attempt to
5133 move both leads to miscompiles. */
5134 break;
5138 if (for_moveop && sched_verbose >= 2)
5140 sel_print ("Best expression(s) (sequential form): ");
5141 dump_av_set (expr_seq);
5142 sel_print ("\n");
5145 return expr_seq;
5149 /* Move nop to previous block. */
5150 static void ATTRIBUTE_UNUSED
5151 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5153 insn_t prev_insn, next_insn;
5155 gcc_assert (sel_bb_head_p (nop)
5156 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5157 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5158 prev_insn = sel_bb_end (prev_bb);
5159 next_insn = NEXT_INSN (nop);
5160 gcc_assert (prev_insn != NULL_RTX
5161 && PREV_INSN (note) == prev_insn);
5163 SET_NEXT_INSN (prev_insn) = nop;
5164 SET_PREV_INSN (nop) = prev_insn;
5166 SET_PREV_INSN (note) = nop;
5167 SET_NEXT_INSN (note) = next_insn;
5169 SET_NEXT_INSN (nop) = note;
5170 SET_PREV_INSN (next_insn) = note;
5172 BB_END (prev_bb) = nop;
5173 BLOCK_FOR_INSN (nop) = prev_bb;
5176 /* Prepare a place to insert the chosen expression on BND. */
5177 static insn_t
5178 prepare_place_to_insert (bnd_t bnd)
5180 insn_t place_to_insert;
5182 /* Init place_to_insert before calling move_op, as the later
5183 can possibly remove BND_TO (bnd). */
5184 if (/* If this is not the first insn scheduled. */
5185 BND_PTR (bnd))
5187 /* Add it after last scheduled. */
5188 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5189 if (DEBUG_INSN_P (place_to_insert))
5191 ilist_t l = BND_PTR (bnd);
5192 while ((l = ILIST_NEXT (l)) &&
5193 DEBUG_INSN_P (ILIST_INSN (l)))
5195 if (!l)
5196 place_to_insert = NULL;
5199 else
5200 place_to_insert = NULL;
5202 if (!place_to_insert)
5204 /* Add it before BND_TO. The difference is in the
5205 basic block, where INSN will be added. */
5206 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5207 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5208 == BLOCK_FOR_INSN (BND_TO (bnd)));
5211 return place_to_insert;
5214 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5215 Return the expression to emit in C_EXPR. */
5216 static bool
5217 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5218 av_set_t expr_seq, expr_t c_expr)
5220 bool b, should_move;
5221 unsigned book_uid;
5222 bitmap_iterator bi;
5223 int n_bookkeeping_copies_before_moveop;
5225 /* Make a move. This call will remove the original operation,
5226 insert all necessary bookkeeping instructions and update the
5227 data sets. After that all we have to do is add the operation
5228 at before BND_TO (BND). */
5229 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5230 max_uid_before_move_op = get_max_uid ();
5231 bitmap_clear (current_copies);
5232 bitmap_clear (current_originators);
5234 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5235 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5237 /* We should be able to find the expression we've chosen for
5238 scheduling. */
5239 gcc_assert (b);
5241 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5242 stat_insns_needed_bookkeeping++;
5244 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5246 unsigned uid;
5247 bitmap_iterator bi;
5249 /* We allocate these bitmaps lazily. */
5250 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5251 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5253 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5254 current_originators);
5256 /* Transitively add all originators' originators. */
5257 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5258 if (INSN_ORIGINATORS_BY_UID (uid))
5259 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5260 INSN_ORIGINATORS_BY_UID (uid));
5263 return should_move;
5267 /* Debug a DFA state as an array of bytes. */
5268 static void
5269 debug_state (state_t state)
5271 unsigned char *p;
5272 unsigned int i, size = dfa_state_size;
5274 sel_print ("state (%u):", size);
5275 for (i = 0, p = (unsigned char *) state; i < size; i++)
5276 sel_print (" %d", p[i]);
5277 sel_print ("\n");
5280 /* Advance state on FENCE with INSN. Return true if INSN is
5281 an ASM, and we should advance state once more. */
5282 static bool
5283 advance_state_on_fence (fence_t fence, insn_t insn)
5285 bool asm_p;
5287 if (recog_memoized (insn) >= 0)
5289 int res;
5290 state_t temp_state = alloca (dfa_state_size);
5292 gcc_assert (!INSN_ASM_P (insn));
5293 asm_p = false;
5295 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5296 res = state_transition (FENCE_STATE (fence), insn);
5297 gcc_assert (res < 0);
5299 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5301 FENCE_ISSUED_INSNS (fence)++;
5303 /* We should never issue more than issue_rate insns. */
5304 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5305 gcc_unreachable ();
5308 else
5310 /* This could be an ASM insn which we'd like to schedule
5311 on the next cycle. */
5312 asm_p = INSN_ASM_P (insn);
5313 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5314 advance_one_cycle (fence);
5317 if (sched_verbose >= 2)
5318 debug_state (FENCE_STATE (fence));
5319 if (!DEBUG_INSN_P (insn))
5320 FENCE_STARTS_CYCLE_P (fence) = 0;
5321 FENCE_ISSUE_MORE (fence) = can_issue_more;
5322 return asm_p;
5325 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5326 is nonzero if we need to stall after issuing INSN. */
5327 static void
5328 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5330 bool asm_p;
5332 /* First, reflect that something is scheduled on this fence. */
5333 asm_p = advance_state_on_fence (fence, insn);
5334 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5335 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5336 if (SCHED_GROUP_P (insn))
5338 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5339 SCHED_GROUP_P (insn) = 0;
5341 else
5342 FENCE_SCHED_NEXT (fence) = NULL;
5343 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5344 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5346 /* Set instruction scheduling info. This will be used in bundling,
5347 pipelining, tick computations etc. */
5348 ++INSN_SCHED_TIMES (insn);
5349 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5350 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5351 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5352 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5354 /* This does not account for adjust_cost hooks, just add the biggest
5355 constant the hook may add to the latency. TODO: make this
5356 a target dependent constant. */
5357 INSN_READY_CYCLE (insn)
5358 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5360 : maximal_insn_latency (insn) + 1);
5362 /* Change these fields last, as they're used above. */
5363 FENCE_AFTER_STALL_P (fence) = 0;
5364 if (asm_p || need_stall)
5365 advance_one_cycle (fence);
5367 /* Indicate that we've scheduled something on this fence. */
5368 FENCE_SCHEDULED_P (fence) = true;
5369 scheduled_something_on_previous_fence = true;
5371 /* Print debug information when insn's fields are updated. */
5372 if (sched_verbose >= 2)
5374 sel_print ("Scheduling insn: ");
5375 dump_insn_1 (insn, 1);
5376 sel_print ("\n");
5380 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5381 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5382 return it. */
5383 static blist_t *
5384 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5385 blist_t *bnds_tailp)
5387 succ_iterator si;
5388 insn_t succ;
5390 advance_deps_context (BND_DC (bnd), insn);
5391 FOR_EACH_SUCC_1 (succ, si, insn,
5392 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5394 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5396 ilist_add (&ptr, insn);
5398 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5399 && is_ineligible_successor (succ, ptr))
5401 ilist_clear (&ptr);
5402 continue;
5405 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5407 if (sched_verbose >= 9)
5408 sel_print ("Updating fence insn from %i to %i\n",
5409 INSN_UID (insn), INSN_UID (succ));
5410 FENCE_INSN (fence) = succ;
5412 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5413 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5416 blist_remove (bndsp);
5417 return bnds_tailp;
5420 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5421 static insn_t
5422 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5424 av_set_t expr_seq;
5425 expr_t c_expr = XALLOCA (expr_def);
5426 insn_t place_to_insert;
5427 insn_t insn;
5428 bool should_move;
5430 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5432 /* In case of scheduling a jump skipping some other instructions,
5433 prepare CFG. After this, jump is at the boundary and can be
5434 scheduled as usual insn by MOVE_OP. */
5435 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5437 insn = EXPR_INSN_RTX (expr_vliw);
5439 /* Speculative jumps are not handled. */
5440 if (insn != BND_TO (bnd)
5441 && !sel_insn_is_speculation_check (insn))
5442 move_cond_jump (insn, bnd);
5445 /* Find a place for C_EXPR to schedule. */
5446 place_to_insert = prepare_place_to_insert (bnd);
5447 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5448 clear_expr (c_expr);
5450 /* Add the instruction. The corner case to care about is when
5451 the expr_seq set has more than one expr, and we chose the one that
5452 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5453 we can't use it. Generate the new vinsn. */
5454 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5456 vinsn_t vinsn_new;
5458 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5459 change_vinsn_in_expr (expr_vliw, vinsn_new);
5460 should_move = false;
5462 if (should_move)
5463 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5464 else
5465 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5466 place_to_insert);
5468 /* Return the nops generated for preserving of data sets back
5469 into pool. */
5470 if (INSN_NOP_P (place_to_insert))
5471 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5472 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5474 av_set_clear (&expr_seq);
5476 /* Save the expression scheduled so to reset target availability if we'll
5477 meet it later on the same fence. */
5478 if (EXPR_WAS_RENAMED (expr_vliw))
5479 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5481 /* Check that the recent movement didn't destroyed loop
5482 structure. */
5483 gcc_assert (!pipelining_p
5484 || current_loop_nest == NULL
5485 || loop_latch_edge (current_loop_nest));
5486 return insn;
5489 /* Stall for N cycles on FENCE. */
5490 static void
5491 stall_for_cycles (fence_t fence, int n)
5493 int could_more;
5495 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5496 while (n--)
5497 advance_one_cycle (fence);
5498 if (could_more)
5499 FENCE_AFTER_STALL_P (fence) = 1;
5502 /* Gather a parallel group of insns at FENCE and assign their seqno
5503 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5504 list for later recalculation of seqnos. */
5505 static void
5506 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5508 blist_t bnds = NULL, *bnds_tailp;
5509 av_set_t av_vliw = NULL;
5510 insn_t insn = FENCE_INSN (fence);
5512 if (sched_verbose >= 2)
5513 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5514 INSN_UID (insn), FENCE_CYCLE (fence));
5516 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5517 bnds_tailp = &BLIST_NEXT (bnds);
5518 set_target_context (FENCE_TC (fence));
5519 can_issue_more = FENCE_ISSUE_MORE (fence);
5520 target_bb = INSN_BB (insn);
5522 /* Do while we can add any operation to the current group. */
5525 blist_t *bnds_tailp1, *bndsp;
5526 expr_t expr_vliw;
5527 int need_stall = false;
5528 int was_stall = 0, scheduled_insns = 0;
5529 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5530 int max_stall = pipelining_p ? 1 : 3;
5531 bool last_insn_was_debug = false;
5532 bool was_debug_bb_end_p = false;
5534 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5535 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5536 remove_insns_for_debug (bnds, &av_vliw);
5538 /* Return early if we have nothing to schedule. */
5539 if (av_vliw == NULL)
5540 break;
5542 /* Choose the best expression and, if needed, destination register
5543 for it. */
5546 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5547 if (! expr_vliw && need_stall)
5549 /* All expressions required a stall. Do not recompute av sets
5550 as we'll get the same answer (modulo the insns between
5551 the fence and its boundary, which will not be available for
5552 pipelining).
5553 If we are going to stall for too long, break to recompute av
5554 sets and bring more insns for pipelining. */
5555 was_stall++;
5556 if (need_stall <= 3)
5557 stall_for_cycles (fence, need_stall);
5558 else
5560 stall_for_cycles (fence, 1);
5561 break;
5565 while (! expr_vliw && need_stall);
5567 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5568 if (!expr_vliw)
5570 av_set_clear (&av_vliw);
5571 break;
5574 bndsp = &bnds;
5575 bnds_tailp1 = bnds_tailp;
5578 /* This code will be executed only once until we'd have several
5579 boundaries per fence. */
5581 bnd_t bnd = BLIST_BND (*bndsp);
5583 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5585 bndsp = &BLIST_NEXT (*bndsp);
5586 continue;
5589 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5590 last_insn_was_debug = DEBUG_INSN_P (insn);
5591 if (last_insn_was_debug)
5592 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5593 update_fence_and_insn (fence, insn, need_stall);
5594 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5596 /* Add insn to the list of scheduled on this cycle instructions. */
5597 ilist_add (*scheduled_insns_tailpp, insn);
5598 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5600 while (*bndsp != *bnds_tailp1);
5602 av_set_clear (&av_vliw);
5603 if (!last_insn_was_debug)
5604 scheduled_insns++;
5606 /* We currently support information about candidate blocks only for
5607 one 'target_bb' block. Hence we can't schedule after jump insn,
5608 as this will bring two boundaries and, hence, necessity to handle
5609 information for two or more blocks concurrently. */
5610 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5611 || (was_stall
5612 && (was_stall >= max_stall
5613 || scheduled_insns >= max_insns)))
5614 break;
5616 while (bnds);
5618 gcc_assert (!FENCE_BNDS (fence));
5620 /* Update boundaries of the FENCE. */
5621 while (bnds)
5623 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5625 if (ptr)
5627 insn = ILIST_INSN (ptr);
5629 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5630 ilist_add (&FENCE_BNDS (fence), insn);
5633 blist_remove (&bnds);
5636 /* Update target context on the fence. */
5637 reset_target_context (FENCE_TC (fence), false);
5640 /* All exprs in ORIG_OPS must have the same destination register or memory.
5641 Return that destination. */
5642 static rtx
5643 get_dest_from_orig_ops (av_set_t orig_ops)
5645 rtx dest = NULL_RTX;
5646 av_set_iterator av_it;
5647 expr_t expr;
5648 bool first_p = true;
5650 FOR_EACH_EXPR (expr, av_it, orig_ops)
5652 rtx x = EXPR_LHS (expr);
5654 if (first_p)
5656 first_p = false;
5657 dest = x;
5659 else
5660 gcc_assert (dest == x
5661 || (dest != NULL_RTX && x != NULL_RTX
5662 && rtx_equal_p (dest, x)));
5665 return dest;
5668 /* Update data sets for the bookkeeping block and record those expressions
5669 which become no longer available after inserting this bookkeeping. */
5670 static void
5671 update_and_record_unavailable_insns (basic_block book_block)
5673 av_set_iterator i;
5674 av_set_t old_av_set = NULL;
5675 expr_t cur_expr;
5676 rtx_insn *bb_end = sel_bb_end (book_block);
5678 /* First, get correct liveness in the bookkeeping block. The problem is
5679 the range between the bookeeping insn and the end of block. */
5680 update_liveness_on_insn (bb_end);
5681 if (control_flow_insn_p (bb_end))
5682 update_liveness_on_insn (PREV_INSN (bb_end));
5684 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5685 fence above, where we may choose to schedule an insn which is
5686 actually blocked from moving up with the bookkeeping we create here. */
5687 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5689 old_av_set = av_set_copy (BB_AV_SET (book_block));
5690 update_data_sets (sel_bb_head (book_block));
5692 /* Traverse all the expressions in the old av_set and check whether
5693 CUR_EXPR is in new AV_SET. */
5694 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5696 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5697 EXPR_VINSN (cur_expr));
5699 if (! new_expr
5700 /* In this case, we can just turn off the E_T_A bit, but we can't
5701 represent this information with the current vector. */
5702 || EXPR_TARGET_AVAILABLE (new_expr)
5703 != EXPR_TARGET_AVAILABLE (cur_expr))
5704 /* Unfortunately, the below code could be also fired up on
5705 separable insns, e.g. when moving insns through the new
5706 speculation check as in PR 53701. */
5707 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5710 av_set_clear (&old_av_set);
5714 /* The main effect of this function is that sparams->c_expr is merged
5715 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5716 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5717 lparams->c_expr_merged is copied back to sparams->c_expr after all
5718 successors has been traversed. lparams->c_expr_local is an expr allocated
5719 on stack in the caller function, and is used if there is more than one
5720 successor.
5722 SUCC is one of the SUCCS_NORMAL successors of INSN,
5723 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5724 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5725 static void
5726 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5727 insn_t succ ATTRIBUTE_UNUSED,
5728 int moveop_drv_call_res,
5729 cmpd_local_params_p lparams, void *static_params)
5731 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5733 /* Nothing to do, if original expr wasn't found below. */
5734 if (moveop_drv_call_res != 1)
5735 return;
5737 /* If this is a first successor. */
5738 if (!lparams->c_expr_merged)
5740 lparams->c_expr_merged = sparams->c_expr;
5741 sparams->c_expr = lparams->c_expr_local;
5743 else
5745 /* We must merge all found expressions to get reasonable
5746 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5747 do so then we can first find the expr with epsilon
5748 speculation success probability and only then with the
5749 good probability. As a result the insn will get epsilon
5750 probability and will never be scheduled because of
5751 weakness_cutoff in find_best_expr.
5753 We call merge_expr_data here instead of merge_expr
5754 because due to speculation C_EXPR and X may have the
5755 same insns with different speculation types. And as of
5756 now such insns are considered non-equal.
5758 However, EXPR_SCHED_TIMES is different -- we must get
5759 SCHED_TIMES from a real insn, not a bookkeeping copy.
5760 We force this here. Instead, we may consider merging
5761 SCHED_TIMES to the maximum instead of minimum in the
5762 below function. */
5763 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5765 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5766 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5767 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5769 clear_expr (sparams->c_expr);
5773 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5775 SUCC is one of the SUCCS_NORMAL successors of INSN,
5776 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5777 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5778 STATIC_PARAMS contain USED_REGS set. */
5779 static void
5780 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5781 int moveop_drv_call_res,
5782 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5783 void *static_params)
5785 regset succ_live;
5786 fur_static_params_p sparams = (fur_static_params_p) static_params;
5788 /* Here we compute live regsets only for branches that do not lie
5789 on the code motion paths. These branches correspond to value
5790 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5791 for such branches code_motion_path_driver is not called. */
5792 if (moveop_drv_call_res != 0)
5793 return;
5795 /* Mark all registers that do not meet the following condition:
5796 (3) not live on the other path of any conditional branch
5797 that is passed by the operation, in case original
5798 operations are not present on both paths of the
5799 conditional branch. */
5800 succ_live = compute_live (succ);
5801 IOR_REG_SET (sparams->used_regs, succ_live);
5804 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5805 into SP->CEXPR. */
5806 static void
5807 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5809 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5811 sp->c_expr = lp->c_expr_merged;
5814 /* Track bookkeeping copies created, insns scheduled, and blocks for
5815 rescheduling when INSN is found by move_op. */
5816 static void
5817 track_scheduled_insns_and_blocks (rtx_insn *insn)
5819 /* Even if this insn can be a copy that will be removed during current move_op,
5820 we still need to count it as an originator. */
5821 bitmap_set_bit (current_originators, INSN_UID (insn));
5823 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5825 /* Note that original block needs to be rescheduled, as we pulled an
5826 instruction out of it. */
5827 if (INSN_SCHED_TIMES (insn) > 0)
5828 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5829 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5830 num_insns_scheduled++;
5833 /* For instructions we must immediately remove insn from the
5834 stream, so subsequent update_data_sets () won't include this
5835 insn into av_set.
5836 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5837 if (INSN_UID (insn) > max_uid_before_move_op)
5838 stat_bookkeeping_copies--;
5841 /* Emit a register-register copy for INSN if needed. Return true if
5842 emitted one. PARAMS is the move_op static parameters. */
5843 static bool
5844 maybe_emit_renaming_copy (rtx_insn *insn,
5845 moveop_static_params_p params)
5847 bool insn_emitted = false;
5848 rtx cur_reg;
5850 /* Bail out early when expression can not be renamed at all. */
5851 if (!EXPR_SEPARABLE_P (params->c_expr))
5852 return false;
5854 cur_reg = expr_dest_reg (params->c_expr);
5855 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5857 /* If original operation has expr and the register chosen for
5858 that expr is not original operation's dest reg, substitute
5859 operation's right hand side with the register chosen. */
5860 if (REGNO (params->dest) != REGNO (cur_reg))
5862 insn_t reg_move_insn, reg_move_insn_rtx;
5864 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5865 params->dest);
5866 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5867 INSN_EXPR (insn),
5868 INSN_SEQNO (insn),
5869 insn);
5870 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5871 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5873 insn_emitted = true;
5874 params->was_renamed = true;
5877 return insn_emitted;
5880 /* Emit a speculative check for INSN speculated as EXPR if needed.
5881 Return true if we've emitted one. PARAMS is the move_op static
5882 parameters. */
5883 static bool
5884 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5885 moveop_static_params_p params)
5887 bool insn_emitted = false;
5888 insn_t x;
5889 ds_t check_ds;
5891 check_ds = get_spec_check_type_for_insn (insn, expr);
5892 if (check_ds != 0)
5894 /* A speculation check should be inserted. */
5895 x = create_speculation_check (params->c_expr, check_ds, insn);
5896 insn_emitted = true;
5898 else
5900 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5901 x = insn;
5904 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5905 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5906 return insn_emitted;
5909 /* Handle transformations that leave an insn in place of original
5910 insn such as renaming/speculation. Return true if one of such
5911 transformations actually happened, and we have emitted this insn. */
5912 static bool
5913 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5914 moveop_static_params_p params)
5916 bool insn_emitted = false;
5918 insn_emitted = maybe_emit_renaming_copy (insn, params);
5919 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5921 return insn_emitted;
5924 /* If INSN is the only insn in the basic block (not counting JUMP,
5925 which may be a jump to next insn, and DEBUG_INSNs), we want to
5926 leave a NOP there till the return to fill_insns. */
5928 static bool
5929 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5931 insn_t bb_head, bb_end, bb_next, in_next;
5932 basic_block bb = BLOCK_FOR_INSN (insn);
5934 bb_head = sel_bb_head (bb);
5935 bb_end = sel_bb_end (bb);
5937 if (bb_head == bb_end)
5938 return true;
5940 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5941 bb_head = NEXT_INSN (bb_head);
5943 if (bb_head == bb_end)
5944 return true;
5946 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5947 bb_end = PREV_INSN (bb_end);
5949 if (bb_head == bb_end)
5950 return true;
5952 bb_next = NEXT_INSN (bb_head);
5953 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5954 bb_next = NEXT_INSN (bb_next);
5956 if (bb_next == bb_end && JUMP_P (bb_end))
5957 return true;
5959 in_next = NEXT_INSN (insn);
5960 while (DEBUG_INSN_P (in_next))
5961 in_next = NEXT_INSN (in_next);
5963 if (IN_CURRENT_FENCE_P (in_next))
5964 return true;
5966 return false;
5969 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5970 is not removed but reused when INSN is re-emitted. */
5971 static void
5972 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5974 /* If there's only one insn in the BB, make sure that a nop is
5975 inserted into it, so the basic block won't disappear when we'll
5976 delete INSN below with sel_remove_insn. It should also survive
5977 till the return to fill_insns. */
5978 if (need_nop_to_preserve_insn_bb (insn))
5980 insn_t nop = get_nop_from_pool (insn);
5981 gcc_assert (INSN_NOP_P (nop));
5982 vec_temp_moveop_nops.safe_push (nop);
5985 sel_remove_insn (insn, only_disconnect, false);
5988 /* This function is called when original expr is found.
5989 INSN - current insn traversed, EXPR - the corresponding expr found.
5990 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5991 is static parameters of move_op. */
5992 static void
5993 move_op_orig_expr_found (insn_t insn, expr_t expr,
5994 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5995 void *static_params)
5997 bool only_disconnect;
5998 moveop_static_params_p params = (moveop_static_params_p) static_params;
6000 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6001 track_scheduled_insns_and_blocks (insn);
6002 handle_emitting_transformations (insn, expr, params);
6003 only_disconnect = params->uid == INSN_UID (insn);
6005 /* Mark that we've disconnected an insn. */
6006 if (only_disconnect)
6007 params->uid = -1;
6008 remove_insn_from_stream (insn, only_disconnect);
6011 /* The function is called when original expr is found.
6012 INSN - current insn traversed, EXPR - the corresponding expr found,
6013 crosses_call and original_insns in STATIC_PARAMS are updated. */
6014 static void
6015 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6016 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6017 void *static_params)
6019 fur_static_params_p params = (fur_static_params_p) static_params;
6020 regset tmp;
6022 if (CALL_P (insn))
6023 params->crosses_call = true;
6025 def_list_add (params->original_insns, insn, params->crosses_call);
6027 /* Mark the registers that do not meet the following condition:
6028 (2) not among the live registers of the point
6029 immediately following the first original operation on
6030 a given downward path, except for the original target
6031 register of the operation. */
6032 tmp = get_clear_regset_from_pool ();
6033 compute_live_below_insn (insn, tmp);
6034 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6035 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6036 IOR_REG_SET (params->used_regs, tmp);
6037 return_regset_to_pool (tmp);
6039 /* (*1) We need to add to USED_REGS registers that are read by
6040 INSN's lhs. This may lead to choosing wrong src register.
6041 E.g. (scheduling const expr enabled):
6043 429: ax=0x0 <- Can't use AX for this expr (0x0)
6044 433: dx=[bp-0x18]
6045 427: [ax+dx+0x1]=ax
6046 REG_DEAD: ax
6047 168: di=dx
6048 REG_DEAD: dx
6050 /* FIXME: see comment above and enable MEM_P
6051 in vinsn_separable_p. */
6052 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6053 || !MEM_P (INSN_LHS (insn)));
6056 /* This function is called on the ascending pass, before returning from
6057 current basic block. */
6058 static void
6059 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6060 void *static_params)
6062 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6063 basic_block book_block = NULL;
6065 /* When we have removed the boundary insn for scheduling, which also
6066 happened to be the end insn in its bb, we don't need to update sets. */
6067 if (!lparams->removed_last_insn
6068 && lparams->e1
6069 && sel_bb_head_p (insn))
6071 /* We should generate bookkeeping code only if we are not at the
6072 top level of the move_op. */
6073 if (sel_num_cfg_preds_gt_1 (insn))
6074 book_block = generate_bookkeeping_insn (sparams->c_expr,
6075 lparams->e1, lparams->e2);
6076 /* Update data sets for the current insn. */
6077 update_data_sets (insn);
6080 /* If bookkeeping code was inserted, we need to update av sets of basic
6081 block that received bookkeeping. After generation of bookkeeping insn,
6082 bookkeeping block does not contain valid av set because we are not following
6083 the original algorithm in every detail with regards to e.g. renaming
6084 simple reg-reg copies. Consider example:
6086 bookkeeping block scheduling fence
6088 \ join /
6089 ----------
6091 ----------
6094 r1 := r2 r1 := r3
6096 We try to schedule insn "r1 := r3" on the current
6097 scheduling fence. Also, note that av set of bookkeeping block
6098 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6099 been scheduled, the CFG is as follows:
6101 r1 := r3 r1 := r3
6102 bookkeeping block scheduling fence
6104 \ join /
6105 ----------
6107 ----------
6110 r1 := r2
6112 Here, insn "r1 := r3" was scheduled at the current scheduling point
6113 and bookkeeping code was generated at the bookeeping block. This
6114 way insn "r1 := r2" is no longer available as a whole instruction
6115 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6116 This situation is handled by calling update_data_sets.
6118 Since update_data_sets is called only on the bookkeeping block, and
6119 it also may have predecessors with av_sets, containing instructions that
6120 are no longer available, we save all such expressions that become
6121 unavailable during data sets update on the bookkeeping block in
6122 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6123 expressions for scheduling. This allows us to avoid recomputation of
6124 av_sets outside the code motion path. */
6126 if (book_block)
6127 update_and_record_unavailable_insns (book_block);
6129 /* If INSN was previously marked for deletion, it's time to do it. */
6130 if (lparams->removed_last_insn)
6131 insn = PREV_INSN (insn);
6133 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6134 kill a block with a single nop in which the insn should be emitted. */
6135 if (lparams->e1)
6136 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6139 /* This function is called on the ascending pass, before returning from the
6140 current basic block. */
6141 static void
6142 fur_at_first_insn (insn_t insn,
6143 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6144 void *static_params ATTRIBUTE_UNUSED)
6146 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6147 || AV_LEVEL (insn) == -1);
6150 /* Called on the backward stage of recursion to call moveup_expr for insn
6151 and sparams->c_expr. */
6152 static void
6153 move_op_ascend (insn_t insn, void *static_params)
6155 enum MOVEUP_EXPR_CODE res;
6156 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6158 if (! INSN_NOP_P (insn))
6160 res = moveup_expr_cached (sparams->c_expr, insn, false);
6161 gcc_assert (res != MOVEUP_EXPR_NULL);
6164 /* Update liveness for this insn as it was invalidated. */
6165 update_liveness_on_insn (insn);
6168 /* This function is called on enter to the basic block.
6169 Returns TRUE if this block already have been visited and
6170 code_motion_path_driver should return 1, FALSE otherwise. */
6171 static int
6172 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6173 void *static_params, bool visited_p)
6175 fur_static_params_p sparams = (fur_static_params_p) static_params;
6177 if (visited_p)
6179 /* If we have found something below this block, there should be at
6180 least one insn in ORIGINAL_INSNS. */
6181 gcc_assert (*sparams->original_insns);
6183 /* Adjust CROSSES_CALL, since we may have come to this block along
6184 different path. */
6185 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6186 |= sparams->crosses_call;
6188 else
6189 local_params->old_original_insns = *sparams->original_insns;
6191 return 1;
6194 /* Same as above but for move_op. */
6195 static int
6196 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6197 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6198 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6200 if (visited_p)
6201 return -1;
6202 return 1;
6205 /* This function is called while descending current basic block if current
6206 insn is not the original EXPR we're searching for.
6208 Return value: FALSE, if code_motion_path_driver should perform a local
6209 cleanup and return 0 itself;
6210 TRUE, if code_motion_path_driver should continue. */
6211 static bool
6212 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6213 void *static_params)
6215 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6217 #ifdef ENABLE_CHECKING
6218 sparams->failed_insn = insn;
6219 #endif
6221 /* If we're scheduling separate expr, in order to generate correct code
6222 we need to stop the search at bookkeeping code generated with the
6223 same destination register or memory. */
6224 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6225 return false;
6226 return true;
6229 /* This function is called while descending current basic block if current
6230 insn is not the original EXPR we're searching for.
6232 Return value: TRUE (code_motion_path_driver should continue). */
6233 static bool
6234 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6236 bool mutexed;
6237 expr_t r;
6238 av_set_iterator avi;
6239 fur_static_params_p sparams = (fur_static_params_p) static_params;
6241 if (CALL_P (insn))
6242 sparams->crosses_call = true;
6243 else if (DEBUG_INSN_P (insn))
6244 return true;
6246 /* If current insn we are looking at cannot be executed together
6247 with original insn, then we can skip it safely.
6249 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6250 INSN = (!p6) r14 = r14 + 1;
6252 Here we can schedule ORIG_OP with lhs = r14, though only
6253 looking at the set of used and set registers of INSN we must
6254 forbid it. So, add set/used in INSN registers to the
6255 untouchable set only if there is an insn in ORIG_OPS that can
6256 affect INSN. */
6257 mutexed = true;
6258 FOR_EACH_EXPR (r, avi, orig_ops)
6259 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6261 mutexed = false;
6262 break;
6265 /* Mark all registers that do not meet the following condition:
6266 (1) Not set or read on any path from xi to an instance of the
6267 original operation. */
6268 if (!mutexed)
6270 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6271 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6272 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6275 return true;
6278 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6279 struct code_motion_path_driver_info_def move_op_hooks = {
6280 move_op_on_enter,
6281 move_op_orig_expr_found,
6282 move_op_orig_expr_not_found,
6283 move_op_merge_succs,
6284 move_op_after_merge_succs,
6285 move_op_ascend,
6286 move_op_at_first_insn,
6287 SUCCS_NORMAL,
6288 "move_op"
6291 /* Hooks and data to perform find_used_regs operations
6292 with code_motion_path_driver. */
6293 struct code_motion_path_driver_info_def fur_hooks = {
6294 fur_on_enter,
6295 fur_orig_expr_found,
6296 fur_orig_expr_not_found,
6297 fur_merge_succs,
6298 NULL, /* fur_after_merge_succs */
6299 NULL, /* fur_ascend */
6300 fur_at_first_insn,
6301 SUCCS_ALL,
6302 "find_used_regs"
6305 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6306 code_motion_path_driver is called recursively. Original operation
6307 was found at least on one path that is starting with one of INSN's
6308 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6309 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6310 of either move_op or find_used_regs depending on the caller.
6312 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6313 know for sure at this point. */
6314 static int
6315 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6316 ilist_t path, void *static_params)
6318 int res = 0;
6319 succ_iterator succ_i;
6320 insn_t succ;
6321 basic_block bb;
6322 int old_index;
6323 unsigned old_succs;
6325 struct cmpd_local_params lparams;
6326 expr_def _x;
6328 lparams.c_expr_local = &_x;
6329 lparams.c_expr_merged = NULL;
6331 /* We need to process only NORMAL succs for move_op, and collect live
6332 registers from ALL branches (including those leading out of the
6333 region) for find_used_regs.
6335 In move_op, there can be a case when insn's bb number has changed
6336 due to created bookkeeping. This happens very rare, as we need to
6337 move expression from the beginning to the end of the same block.
6338 Rescan successors in this case. */
6340 rescan:
6341 bb = BLOCK_FOR_INSN (insn);
6342 old_index = bb->index;
6343 old_succs = EDGE_COUNT (bb->succs);
6345 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6347 int b;
6349 lparams.e1 = succ_i.e1;
6350 lparams.e2 = succ_i.e2;
6352 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6353 current region). */
6354 if (succ_i.current_flags == SUCCS_NORMAL)
6355 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6356 static_params);
6357 else
6358 b = 0;
6360 /* Merge c_expres found or unify live register sets from different
6361 successors. */
6362 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6363 static_params);
6364 if (b == 1)
6365 res = b;
6366 else if (b == -1 && res != 1)
6367 res = b;
6369 /* We have simplified the control flow below this point. In this case,
6370 the iterator becomes invalid. We need to try again.
6371 If we have removed the insn itself, it could be only an
6372 unconditional jump. Thus, do not rescan but break immediately --
6373 we have already visited the only successor block. */
6374 if (!BLOCK_FOR_INSN (insn))
6376 if (sched_verbose >= 6)
6377 sel_print ("Not doing rescan: already visited the only successor"
6378 " of block %d\n", old_index);
6379 break;
6381 if (BLOCK_FOR_INSN (insn)->index != old_index
6382 || EDGE_COUNT (bb->succs) != old_succs)
6384 if (sched_verbose >= 6)
6385 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6386 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6387 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6388 goto rescan;
6392 #ifdef ENABLE_CHECKING
6393 /* Here, RES==1 if original expr was found at least for one of the
6394 successors. After the loop, RES may happen to have zero value
6395 only if at some point the expr searched is present in av_set, but is
6396 not found below. In most cases, this situation is an error.
6397 The exception is when the original operation is blocked by
6398 bookkeeping generated for another fence or for another path in current
6399 move_op. */
6400 gcc_assert (res == 1
6401 || (res == 0
6402 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6403 static_params))
6404 || res == -1);
6405 #endif
6407 /* Merge data, clean up, etc. */
6408 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6409 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6411 return res;
6415 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6416 is the pointer to the av set with expressions we were looking for,
6417 PATH_P is the pointer to the traversed path. */
6418 static inline void
6419 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6421 ilist_remove (path_p);
6422 av_set_clear (orig_ops_p);
6425 /* The driver function that implements move_op or find_used_regs
6426 functionality dependent whether code_motion_path_driver_INFO is set to
6427 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6428 of code (CFG traversal etc) that are shared among both functions. INSN
6429 is the insn we're starting the search from, ORIG_OPS are the expressions
6430 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6431 parameters of the driver, and STATIC_PARAMS are static parameters of
6432 the caller.
6434 Returns whether original instructions were found. Note that top-level
6435 code_motion_path_driver always returns true. */
6436 static int
6437 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6438 cmpd_local_params_p local_params_in,
6439 void *static_params)
6441 expr_t expr = NULL;
6442 basic_block bb = BLOCK_FOR_INSN (insn);
6443 insn_t first_insn, bb_tail, before_first;
6444 bool removed_last_insn = false;
6446 if (sched_verbose >= 6)
6448 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6449 dump_insn (insn);
6450 sel_print (",");
6451 dump_av_set (orig_ops);
6452 sel_print (")\n");
6455 gcc_assert (orig_ops);
6457 /* If no original operations exist below this insn, return immediately. */
6458 if (is_ineligible_successor (insn, path))
6460 if (sched_verbose >= 6)
6461 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6462 return false;
6465 /* The block can have invalid av set, in which case it was created earlier
6466 during move_op. Return immediately. */
6467 if (sel_bb_head_p (insn))
6469 if (! AV_SET_VALID_P (insn))
6471 if (sched_verbose >= 6)
6472 sel_print ("Returned from block %d as it had invalid av set\n",
6473 bb->index);
6474 return false;
6477 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6479 /* We have already found an original operation on this branch, do not
6480 go any further and just return TRUE here. If we don't stop here,
6481 function can have exponential behaviour even on the small code
6482 with many different paths (e.g. with data speculation and
6483 recovery blocks). */
6484 if (sched_verbose >= 6)
6485 sel_print ("Block %d already visited in this traversal\n", bb->index);
6486 if (code_motion_path_driver_info->on_enter)
6487 return code_motion_path_driver_info->on_enter (insn,
6488 local_params_in,
6489 static_params,
6490 true);
6494 if (code_motion_path_driver_info->on_enter)
6495 code_motion_path_driver_info->on_enter (insn, local_params_in,
6496 static_params, false);
6497 orig_ops = av_set_copy (orig_ops);
6499 /* Filter the orig_ops set. */
6500 if (AV_SET_VALID_P (insn))
6501 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6503 /* If no more original ops, return immediately. */
6504 if (!orig_ops)
6506 if (sched_verbose >= 6)
6507 sel_print ("No intersection with av set of block %d\n", bb->index);
6508 return false;
6511 /* For non-speculative insns we have to leave only one form of the
6512 original operation, because if we don't, we may end up with
6513 different C_EXPRes and, consequently, with bookkeepings for different
6514 expression forms along the same code motion path. That may lead to
6515 generation of incorrect code. So for each code motion we stick to
6516 the single form of the instruction, except for speculative insns
6517 which we need to keep in different forms with all speculation
6518 types. */
6519 av_set_leave_one_nonspec (&orig_ops);
6521 /* It is not possible that all ORIG_OPS are filtered out. */
6522 gcc_assert (orig_ops);
6524 /* It is enough to place only heads and tails of visited basic blocks into
6525 the PATH. */
6526 ilist_add (&path, insn);
6527 first_insn = insn;
6528 bb_tail = sel_bb_end (bb);
6530 /* Descend the basic block in search of the original expr; this part
6531 corresponds to the part of the original move_op procedure executed
6532 before the recursive call. */
6533 for (;;)
6535 /* Look at the insn and decide if it could be an ancestor of currently
6536 scheduling operation. If it is so, then the insn "dest = op" could
6537 either be replaced with "dest = reg", because REG now holds the result
6538 of OP, or just removed, if we've scheduled the insn as a whole.
6540 If this insn doesn't contain currently scheduling OP, then proceed
6541 with searching and look at its successors. Operations we're searching
6542 for could have changed when moving up through this insn via
6543 substituting. In this case, perform unsubstitution on them first.
6545 When traversing the DAG below this insn is finished, insert
6546 bookkeeping code, if the insn is a joint point, and remove
6547 leftovers. */
6549 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6550 if (expr)
6552 insn_t last_insn = PREV_INSN (insn);
6554 /* We have found the original operation. */
6555 if (sched_verbose >= 6)
6556 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6558 code_motion_path_driver_info->orig_expr_found
6559 (insn, expr, local_params_in, static_params);
6561 /* Step back, so on the way back we'll start traversing from the
6562 previous insn (or we'll see that it's bb_note and skip that
6563 loop). */
6564 if (insn == first_insn)
6566 first_insn = NEXT_INSN (last_insn);
6567 removed_last_insn = sel_bb_end_p (last_insn);
6569 insn = last_insn;
6570 break;
6572 else
6574 /* We haven't found the original expr, continue descending the basic
6575 block. */
6576 if (code_motion_path_driver_info->orig_expr_not_found
6577 (insn, orig_ops, static_params))
6579 /* Av set ops could have been changed when moving through this
6580 insn. To find them below it, we have to un-substitute them. */
6581 undo_transformations (&orig_ops, insn);
6583 else
6585 /* Clean up and return, if the hook tells us to do so. It may
6586 happen if we've encountered the previously created
6587 bookkeeping. */
6588 code_motion_path_driver_cleanup (&orig_ops, &path);
6589 return -1;
6592 gcc_assert (orig_ops);
6595 /* Stop at insn if we got to the end of BB. */
6596 if (insn == bb_tail)
6597 break;
6599 insn = NEXT_INSN (insn);
6602 /* Here INSN either points to the insn before the original insn (may be
6603 bb_note, if original insn was a bb_head) or to the bb_end. */
6604 if (!expr)
6606 int res;
6607 rtx_insn *last_insn = PREV_INSN (insn);
6608 bool added_to_path;
6610 gcc_assert (insn == sel_bb_end (bb));
6612 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6613 it's already in PATH then). */
6614 if (insn != first_insn)
6616 ilist_add (&path, insn);
6617 added_to_path = true;
6619 else
6620 added_to_path = false;
6622 /* Process_successors should be able to find at least one
6623 successor for which code_motion_path_driver returns TRUE. */
6624 res = code_motion_process_successors (insn, orig_ops,
6625 path, static_params);
6627 /* Jump in the end of basic block could have been removed or replaced
6628 during code_motion_process_successors, so recompute insn as the
6629 last insn in bb. */
6630 if (NEXT_INSN (last_insn) != insn)
6632 insn = sel_bb_end (bb);
6633 first_insn = sel_bb_head (bb);
6636 /* Remove bb tail from path. */
6637 if (added_to_path)
6638 ilist_remove (&path);
6640 if (res != 1)
6642 /* This is the case when one of the original expr is no longer available
6643 due to bookkeeping created on this branch with the same register.
6644 In the original algorithm, which doesn't have update_data_sets call
6645 on a bookkeeping block, it would simply result in returning
6646 FALSE when we've encountered a previously generated bookkeeping
6647 insn in moveop_orig_expr_not_found. */
6648 code_motion_path_driver_cleanup (&orig_ops, &path);
6649 return res;
6653 /* Don't need it any more. */
6654 av_set_clear (&orig_ops);
6656 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6657 the beginning of the basic block. */
6658 before_first = PREV_INSN (first_insn);
6659 while (insn != before_first)
6661 if (code_motion_path_driver_info->ascend)
6662 code_motion_path_driver_info->ascend (insn, static_params);
6664 insn = PREV_INSN (insn);
6667 /* Now we're at the bb head. */
6668 insn = first_insn;
6669 ilist_remove (&path);
6670 local_params_in->removed_last_insn = removed_last_insn;
6671 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6673 /* This should be the very last operation as at bb head we could change
6674 the numbering by creating bookkeeping blocks. */
6675 if (removed_last_insn)
6676 insn = PREV_INSN (insn);
6678 /* If we have simplified the control flow and removed the first jump insn,
6679 there's no point in marking this block in the visited blocks bitmap. */
6680 if (BLOCK_FOR_INSN (insn))
6681 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6682 return true;
6685 /* Move up the operations from ORIG_OPS set traversing the dag starting
6686 from INSN. PATH represents the edges traversed so far.
6687 DEST is the register chosen for scheduling the current expr. Insert
6688 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6689 C_EXPR is how it looks like at the given cfg point.
6690 Set *SHOULD_MOVE to indicate whether we have only disconnected
6691 one of the insns found.
6693 Returns whether original instructions were found, which is asserted
6694 to be true in the caller. */
6695 static bool
6696 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6697 rtx dest, expr_t c_expr, bool *should_move)
6699 struct moveop_static_params sparams;
6700 struct cmpd_local_params lparams;
6701 int res;
6703 /* Init params for code_motion_path_driver. */
6704 sparams.dest = dest;
6705 sparams.c_expr = c_expr;
6706 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6707 #ifdef ENABLE_CHECKING
6708 sparams.failed_insn = NULL;
6709 #endif
6710 sparams.was_renamed = false;
6711 lparams.e1 = NULL;
6713 /* We haven't visited any blocks yet. */
6714 bitmap_clear (code_motion_visited_blocks);
6716 /* Set appropriate hooks and data. */
6717 code_motion_path_driver_info = &move_op_hooks;
6718 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6720 gcc_assert (res != -1);
6722 if (sparams.was_renamed)
6723 EXPR_WAS_RENAMED (expr_vliw) = true;
6725 *should_move = (sparams.uid == -1);
6727 return res;
6731 /* Functions that work with regions. */
6733 /* Current number of seqno used in init_seqno and init_seqno_1. */
6734 static int cur_seqno;
6736 /* A helper for init_seqno. Traverse the region starting from BB and
6737 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6738 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6739 static void
6740 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6742 int bbi = BLOCK_TO_BB (bb->index);
6743 insn_t insn;
6744 insn_t succ_insn;
6745 succ_iterator si;
6747 rtx_note *note = bb_note (bb);
6748 bitmap_set_bit (visited_bbs, bbi);
6749 if (blocks_to_reschedule)
6750 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6752 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6753 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6755 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6756 int succ_bbi = BLOCK_TO_BB (succ->index);
6758 gcc_assert (in_current_region_p (succ));
6760 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6762 gcc_assert (succ_bbi > bbi);
6764 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6766 else if (blocks_to_reschedule)
6767 bitmap_set_bit (forced_ebb_heads, succ->index);
6770 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6771 INSN_SEQNO (insn) = cur_seqno--;
6774 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6775 blocks on which we're rescheduling when pipelining, FROM is the block where
6776 traversing region begins (it may not be the head of the region when
6777 pipelining, but the head of the loop instead).
6779 Returns the maximal seqno found. */
6780 static int
6781 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6783 sbitmap visited_bbs;
6784 bitmap_iterator bi;
6785 unsigned bbi;
6787 visited_bbs = sbitmap_alloc (current_nr_blocks);
6789 if (blocks_to_reschedule)
6791 bitmap_ones (visited_bbs);
6792 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6794 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6795 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6798 else
6800 bitmap_clear (visited_bbs);
6801 from = EBB_FIRST_BB (0);
6804 cur_seqno = sched_max_luid - 1;
6805 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6807 /* cur_seqno may be positive if the number of instructions is less than
6808 sched_max_luid - 1 (when rescheduling or if some instructions have been
6809 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6810 gcc_assert (cur_seqno >= 0);
6812 sbitmap_free (visited_bbs);
6813 return sched_max_luid - 1;
6816 /* Initialize scheduling parameters for current region. */
6817 static void
6818 sel_setup_region_sched_flags (void)
6820 enable_schedule_as_rhs_p = 1;
6821 bookkeeping_p = 1;
6822 pipelining_p = (bookkeeping_p
6823 && (flag_sel_sched_pipelining != 0)
6824 && current_loop_nest != NULL
6825 && loop_has_exit_edges (current_loop_nest));
6826 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6827 max_ws = MAX_WS;
6830 /* Return true if all basic blocks of current region are empty. */
6831 static bool
6832 current_region_empty_p (void)
6834 int i;
6835 for (i = 0; i < current_nr_blocks; i++)
6836 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6837 return false;
6839 return true;
6842 /* Prepare and verify loop nest for pipelining. */
6843 static void
6844 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6846 current_loop_nest = get_loop_nest_for_rgn (rgn);
6848 if (!current_loop_nest)
6849 return;
6851 /* If this loop has any saved loop preheaders from nested loops,
6852 add these basic blocks to the current region. */
6853 sel_add_loop_preheaders (bbs);
6855 /* Check that we're starting with a valid information. */
6856 gcc_assert (loop_latch_edge (current_loop_nest));
6857 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6860 /* Compute instruction priorities for current region. */
6861 static void
6862 sel_compute_priorities (int rgn)
6864 sched_rgn_compute_dependencies (rgn);
6866 /* Compute insn priorities in haifa style. Then free haifa style
6867 dependencies that we've calculated for this. */
6868 compute_priorities ();
6870 if (sched_verbose >= 5)
6871 debug_rgn_dependencies (0);
6873 free_rgn_deps ();
6876 /* Init scheduling data for RGN. Returns true when this region should not
6877 be scheduled. */
6878 static bool
6879 sel_region_init (int rgn)
6881 int i;
6882 bb_vec_t bbs;
6884 rgn_setup_region (rgn);
6886 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6887 do region initialization here so the region can be bundled correctly,
6888 but we'll skip the scheduling in sel_sched_region (). */
6889 if (current_region_empty_p ())
6890 return true;
6892 bbs.create (current_nr_blocks);
6894 for (i = 0; i < current_nr_blocks; i++)
6895 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6897 sel_init_bbs (bbs);
6899 if (flag_sel_sched_pipelining)
6900 setup_current_loop_nest (rgn, &bbs);
6902 sel_setup_region_sched_flags ();
6904 /* Initialize luids and dependence analysis which both sel-sched and haifa
6905 need. */
6906 sched_init_luids (bbs);
6907 sched_deps_init (false);
6909 /* Initialize haifa data. */
6910 rgn_setup_sched_infos ();
6911 sel_set_sched_flags ();
6912 haifa_init_h_i_d (bbs);
6914 sel_compute_priorities (rgn);
6915 init_deps_global ();
6917 /* Main initialization. */
6918 sel_setup_sched_infos ();
6919 sel_init_global_and_expr (bbs);
6921 bbs.release ();
6923 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6925 /* Init correct liveness sets on each instruction of a single-block loop.
6926 This is the only situation when we can't update liveness when calling
6927 compute_live for the first insn of the loop. */
6928 if (current_loop_nest)
6930 int header =
6931 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6933 : 0);
6935 if (current_nr_blocks == header + 1)
6936 update_liveness_on_insn
6937 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6940 /* Set hooks so that no newly generated insn will go out unnoticed. */
6941 sel_register_cfg_hooks ();
6943 /* !!! We call target.sched.init () for the whole region, but we invoke
6944 targetm.sched.finish () for every ebb. */
6945 if (targetm.sched.init)
6946 /* None of the arguments are actually used in any target. */
6947 targetm.sched.init (sched_dump, sched_verbose, -1);
6949 first_emitted_uid = get_max_uid () + 1;
6950 preheader_removed = false;
6952 /* Reset register allocation ticks array. */
6953 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6954 reg_rename_this_tick = 0;
6956 bitmap_initialize (forced_ebb_heads, 0);
6957 bitmap_clear (forced_ebb_heads);
6959 setup_nop_vinsn ();
6960 current_copies = BITMAP_ALLOC (NULL);
6961 current_originators = BITMAP_ALLOC (NULL);
6962 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6964 return false;
6967 /* Simplify insns after the scheduling. */
6968 static void
6969 simplify_changed_insns (void)
6971 int i;
6973 for (i = 0; i < current_nr_blocks; i++)
6975 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6976 rtx_insn *insn;
6978 FOR_BB_INSNS (bb, insn)
6979 if (INSN_P (insn))
6981 expr_t expr = INSN_EXPR (insn);
6983 if (EXPR_WAS_SUBSTITUTED (expr))
6984 validate_simplify_insn (insn);
6989 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6990 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6991 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6992 static void
6993 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6995 rtx_insn *head, *tail;
6996 basic_block bb1 = bb;
6997 if (sched_verbose >= 2)
6998 sel_print ("Finishing schedule in bbs: ");
7002 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7004 if (sched_verbose >= 2)
7005 sel_print ("%d; ", bb1->index);
7007 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7009 if (sched_verbose >= 2)
7010 sel_print ("\n");
7012 get_ebb_head_tail (bb, bb1, &head, &tail);
7014 current_sched_info->head = head;
7015 current_sched_info->tail = tail;
7016 current_sched_info->prev_head = PREV_INSN (head);
7017 current_sched_info->next_tail = NEXT_INSN (tail);
7020 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7021 static void
7022 reset_sched_cycles_in_current_ebb (void)
7024 int last_clock = 0;
7025 int haifa_last_clock = -1;
7026 int haifa_clock = 0;
7027 int issued_insns = 0;
7028 insn_t insn;
7030 if (targetm.sched.init)
7032 /* None of the arguments are actually used in any target.
7033 NB: We should have md_reset () hook for cases like this. */
7034 targetm.sched.init (sched_dump, sched_verbose, -1);
7037 state_reset (curr_state);
7038 advance_state (curr_state);
7040 for (insn = current_sched_info->head;
7041 insn != current_sched_info->next_tail;
7042 insn = NEXT_INSN (insn))
7044 int cost, haifa_cost;
7045 int sort_p;
7046 bool asm_p, real_insn, after_stall, all_issued;
7047 int clock;
7049 if (!INSN_P (insn))
7050 continue;
7052 asm_p = false;
7053 real_insn = recog_memoized (insn) >= 0;
7054 clock = INSN_SCHED_CYCLE (insn);
7056 cost = clock - last_clock;
7058 /* Initialize HAIFA_COST. */
7059 if (! real_insn)
7061 asm_p = INSN_ASM_P (insn);
7063 if (asm_p)
7064 /* This is asm insn which *had* to be scheduled first
7065 on the cycle. */
7066 haifa_cost = 1;
7067 else
7068 /* This is a use/clobber insn. It should not change
7069 cost. */
7070 haifa_cost = 0;
7072 else
7073 haifa_cost = estimate_insn_cost (insn, curr_state);
7075 /* Stall for whatever cycles we've stalled before. */
7076 after_stall = 0;
7077 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7079 haifa_cost = cost;
7080 after_stall = 1;
7082 all_issued = issued_insns == issue_rate;
7083 if (haifa_cost == 0 && all_issued)
7084 haifa_cost = 1;
7085 if (haifa_cost > 0)
7087 int i = 0;
7089 while (haifa_cost--)
7091 advance_state (curr_state);
7092 issued_insns = 0;
7093 i++;
7095 if (sched_verbose >= 2)
7097 sel_print ("advance_state (state_transition)\n");
7098 debug_state (curr_state);
7101 /* The DFA may report that e.g. insn requires 2 cycles to be
7102 issued, but on the next cycle it says that insn is ready
7103 to go. Check this here. */
7104 if (!after_stall
7105 && real_insn
7106 && haifa_cost > 0
7107 && estimate_insn_cost (insn, curr_state) == 0)
7108 break;
7110 /* When the data dependency stall is longer than the DFA stall,
7111 and when we have issued exactly issue_rate insns and stalled,
7112 it could be that after this longer stall the insn will again
7113 become unavailable to the DFA restrictions. Looks strange
7114 but happens e.g. on x86-64. So recheck DFA on the last
7115 iteration. */
7116 if ((after_stall || all_issued)
7117 && real_insn
7118 && haifa_cost == 0)
7119 haifa_cost = estimate_insn_cost (insn, curr_state);
7122 haifa_clock += i;
7123 if (sched_verbose >= 2)
7124 sel_print ("haifa clock: %d\n", haifa_clock);
7126 else
7127 gcc_assert (haifa_cost == 0);
7129 if (sched_verbose >= 2)
7130 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7132 if (targetm.sched.dfa_new_cycle)
7133 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7134 haifa_last_clock, haifa_clock,
7135 &sort_p))
7137 advance_state (curr_state);
7138 issued_insns = 0;
7139 haifa_clock++;
7140 if (sched_verbose >= 2)
7142 sel_print ("advance_state (dfa_new_cycle)\n");
7143 debug_state (curr_state);
7144 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7148 if (real_insn)
7150 static state_t temp = NULL;
7152 if (!temp)
7153 temp = xmalloc (dfa_state_size);
7154 memcpy (temp, curr_state, dfa_state_size);
7156 cost = state_transition (curr_state, insn);
7157 if (memcmp (temp, curr_state, dfa_state_size))
7158 issued_insns++;
7160 if (sched_verbose >= 2)
7162 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7163 haifa_clock + 1);
7164 debug_state (curr_state);
7166 gcc_assert (cost < 0);
7169 if (targetm.sched.variable_issue)
7170 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7172 INSN_SCHED_CYCLE (insn) = haifa_clock;
7174 last_clock = clock;
7175 haifa_last_clock = haifa_clock;
7179 /* Put TImode markers on insns starting a new issue group. */
7180 static void
7181 put_TImodes (void)
7183 int last_clock = -1;
7184 insn_t insn;
7186 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7187 insn = NEXT_INSN (insn))
7189 int cost, clock;
7191 if (!INSN_P (insn))
7192 continue;
7194 clock = INSN_SCHED_CYCLE (insn);
7195 cost = (last_clock == -1) ? 1 : clock - last_clock;
7197 gcc_assert (cost >= 0);
7199 if (issue_rate > 1
7200 && GET_CODE (PATTERN (insn)) != USE
7201 && GET_CODE (PATTERN (insn)) != CLOBBER)
7203 if (reload_completed && cost > 0)
7204 PUT_MODE (insn, TImode);
7206 last_clock = clock;
7209 if (sched_verbose >= 2)
7210 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7214 /* Perform MD_FINISH on EBBs comprising current region. When
7215 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7216 to produce correct sched cycles on insns. */
7217 static void
7218 sel_region_target_finish (bool reset_sched_cycles_p)
7220 int i;
7221 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7223 for (i = 0; i < current_nr_blocks; i++)
7225 if (bitmap_bit_p (scheduled_blocks, i))
7226 continue;
7228 /* While pipelining outer loops, skip bundling for loop
7229 preheaders. Those will be rescheduled in the outer loop. */
7230 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7231 continue;
7233 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7235 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7236 continue;
7238 if (reset_sched_cycles_p)
7239 reset_sched_cycles_in_current_ebb ();
7241 if (targetm.sched.init)
7242 targetm.sched.init (sched_dump, sched_verbose, -1);
7244 put_TImodes ();
7246 if (targetm.sched.finish)
7248 targetm.sched.finish (sched_dump, sched_verbose);
7250 /* Extend luids so that insns generated by the target will
7251 get zero luid. */
7252 sched_extend_luids ();
7256 BITMAP_FREE (scheduled_blocks);
7259 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7260 is true, make an additional pass emulating scheduler to get correct insn
7261 cycles for md_finish calls. */
7262 static void
7263 sel_region_finish (bool reset_sched_cycles_p)
7265 simplify_changed_insns ();
7266 sched_finish_ready_list ();
7267 free_nop_pool ();
7269 /* Free the vectors. */
7270 vec_av_set.release ();
7271 BITMAP_FREE (current_copies);
7272 BITMAP_FREE (current_originators);
7273 BITMAP_FREE (code_motion_visited_blocks);
7274 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7275 vinsn_vec_free (vec_target_unavailable_vinsns);
7277 /* If LV_SET of the region head should be updated, do it now because
7278 there will be no other chance. */
7280 succ_iterator si;
7281 insn_t insn;
7283 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7284 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7286 basic_block bb = BLOCK_FOR_INSN (insn);
7288 if (!BB_LV_SET_VALID_P (bb))
7289 compute_live (insn);
7293 /* Emulate the Haifa scheduler for bundling. */
7294 if (reload_completed)
7295 sel_region_target_finish (reset_sched_cycles_p);
7297 sel_finish_global_and_expr ();
7299 bitmap_clear (forced_ebb_heads);
7301 free_nop_vinsn ();
7303 finish_deps_global ();
7304 sched_finish_luids ();
7305 h_d_i_d.release ();
7307 sel_finish_bbs ();
7308 BITMAP_FREE (blocks_to_reschedule);
7310 sel_unregister_cfg_hooks ();
7312 max_issue_size = 0;
7316 /* Functions that implement the scheduler driver. */
7318 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7319 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7320 of insns scheduled -- these would be postprocessed later. */
7321 static void
7322 schedule_on_fences (flist_t fences, int max_seqno,
7323 ilist_t **scheduled_insns_tailpp)
7325 flist_t old_fences = fences;
7327 if (sched_verbose >= 1)
7329 sel_print ("\nScheduling on fences: ");
7330 dump_flist (fences);
7331 sel_print ("\n");
7334 scheduled_something_on_previous_fence = false;
7335 for (; fences; fences = FLIST_NEXT (fences))
7337 fence_t fence = NULL;
7338 int seqno = 0;
7339 flist_t fences2;
7340 bool first_p = true;
7342 /* Choose the next fence group to schedule.
7343 The fact that insn can be scheduled only once
7344 on the cycle is guaranteed by two properties:
7345 1. seqnos of parallel groups decrease with each iteration.
7346 2. If is_ineligible_successor () sees the larger seqno, it
7347 checks if candidate insn is_in_current_fence_p (). */
7348 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7350 fence_t f = FLIST_FENCE (fences2);
7352 if (!FENCE_PROCESSED_P (f))
7354 int i = INSN_SEQNO (FENCE_INSN (f));
7356 if (first_p || i > seqno)
7358 seqno = i;
7359 fence = f;
7360 first_p = false;
7362 else
7363 /* ??? Seqnos of different groups should be different. */
7364 gcc_assert (1 || i != seqno);
7368 gcc_assert (fence);
7370 /* As FENCE is nonnull, SEQNO is initialized. */
7371 seqno -= max_seqno + 1;
7372 fill_insns (fence, seqno, scheduled_insns_tailpp);
7373 FENCE_PROCESSED_P (fence) = true;
7376 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7377 don't need to keep bookkeeping-invalidated and target-unavailable
7378 vinsns any more. */
7379 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7380 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7383 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7384 static void
7385 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7387 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7389 /* The first element is already processed. */
7390 while ((fences = FLIST_NEXT (fences)))
7392 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7394 if (*min_seqno > seqno)
7395 *min_seqno = seqno;
7396 else if (*max_seqno < seqno)
7397 *max_seqno = seqno;
7401 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7402 static flist_t
7403 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7405 flist_t old_fences = fences;
7406 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7407 int max_time = 0;
7409 flist_tail_init (new_fences);
7410 for (; fences; fences = FLIST_NEXT (fences))
7412 fence_t fence = FLIST_FENCE (fences);
7413 insn_t insn;
7415 if (!FENCE_BNDS (fence))
7417 /* This fence doesn't have any successors. */
7418 if (!FENCE_SCHEDULED_P (fence))
7420 /* Nothing was scheduled on this fence. */
7421 int seqno;
7423 insn = FENCE_INSN (fence);
7424 seqno = INSN_SEQNO (insn);
7425 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7427 if (sched_verbose >= 1)
7428 sel_print ("Fence %d[%d] has not changed\n",
7429 INSN_UID (insn),
7430 BLOCK_NUM (insn));
7431 move_fence_to_fences (fences, new_fences);
7434 else
7435 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7436 max_time = MAX (max_time, FENCE_CYCLE (fence));
7439 flist_clear (&old_fences);
7440 *ptime = max_time;
7441 return FLIST_TAIL_HEAD (new_fences);
7444 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7445 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7446 the highest seqno used in a region. Return the updated highest seqno. */
7447 static int
7448 update_seqnos_and_stage (int min_seqno, int max_seqno,
7449 int highest_seqno_in_use,
7450 ilist_t *pscheduled_insns)
7452 int new_hs;
7453 ilist_iterator ii;
7454 insn_t insn;
7456 /* Actually, new_hs is the seqno of the instruction, that was
7457 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7458 if (*pscheduled_insns)
7460 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7461 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7462 gcc_assert (new_hs > highest_seqno_in_use);
7464 else
7465 new_hs = highest_seqno_in_use;
7467 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7469 gcc_assert (INSN_SEQNO (insn) < 0);
7470 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7471 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7473 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7474 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7475 require > 1GB of memory e.g. on limit-fnargs.c. */
7476 if (! pipelining_p)
7477 free_data_for_scheduled_insn (insn);
7480 ilist_clear (pscheduled_insns);
7481 global_level++;
7483 return new_hs;
7486 /* The main driver for scheduling a region. This function is responsible
7487 for correct propagation of fences (i.e. scheduling points) and creating
7488 a group of parallel insns at each of them. It also supports
7489 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7490 of scheduling. */
7491 static void
7492 sel_sched_region_2 (int orig_max_seqno)
7494 int highest_seqno_in_use = orig_max_seqno;
7495 int max_time = 0;
7497 stat_bookkeeping_copies = 0;
7498 stat_insns_needed_bookkeeping = 0;
7499 stat_renamed_scheduled = 0;
7500 stat_substitutions_total = 0;
7501 num_insns_scheduled = 0;
7503 while (fences)
7505 int min_seqno, max_seqno;
7506 ilist_t scheduled_insns = NULL;
7507 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7509 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7510 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7511 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7512 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7513 highest_seqno_in_use,
7514 &scheduled_insns);
7517 if (sched_verbose >= 1)
7519 sel_print ("Total scheduling time: %d cycles\n", max_time);
7520 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7521 "bookkeeping, %d insns renamed, %d insns substituted\n",
7522 stat_bookkeeping_copies,
7523 stat_insns_needed_bookkeeping,
7524 stat_renamed_scheduled,
7525 stat_substitutions_total);
7529 /* Schedule a region. When pipelining, search for possibly never scheduled
7530 bookkeeping code and schedule it. Reschedule pipelined code without
7531 pipelining after. */
7532 static void
7533 sel_sched_region_1 (void)
7535 int orig_max_seqno;
7537 /* Remove empty blocks that might be in the region from the beginning. */
7538 purge_empty_blocks ();
7540 orig_max_seqno = init_seqno (NULL, NULL);
7541 gcc_assert (orig_max_seqno >= 1);
7543 /* When pipelining outer loops, create fences on the loop header,
7544 not preheader. */
7545 fences = NULL;
7546 if (current_loop_nest)
7547 init_fences (BB_END (EBB_FIRST_BB (0)));
7548 else
7549 init_fences (bb_note (EBB_FIRST_BB (0)));
7550 global_level = 1;
7552 sel_sched_region_2 (orig_max_seqno);
7554 gcc_assert (fences == NULL);
7556 if (pipelining_p)
7558 int i;
7559 basic_block bb;
7560 struct flist_tail_def _new_fences;
7561 flist_tail_t new_fences = &_new_fences;
7562 bool do_p = true;
7564 pipelining_p = false;
7565 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7566 bookkeeping_p = false;
7567 enable_schedule_as_rhs_p = false;
7569 /* Schedule newly created code, that has not been scheduled yet. */
7570 do_p = true;
7572 while (do_p)
7574 do_p = false;
7576 for (i = 0; i < current_nr_blocks; i++)
7578 basic_block bb = EBB_FIRST_BB (i);
7580 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7582 if (! bb_ends_ebb_p (bb))
7583 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7584 if (sel_bb_empty_p (bb))
7586 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7587 continue;
7589 clear_outdated_rtx_info (bb);
7590 if (sel_insn_is_speculation_check (BB_END (bb))
7591 && JUMP_P (BB_END (bb)))
7592 bitmap_set_bit (blocks_to_reschedule,
7593 BRANCH_EDGE (bb)->dest->index);
7595 else if (! sel_bb_empty_p (bb)
7596 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7597 bitmap_set_bit (blocks_to_reschedule, bb->index);
7600 for (i = 0; i < current_nr_blocks; i++)
7602 bb = EBB_FIRST_BB (i);
7604 /* While pipelining outer loops, skip bundling for loop
7605 preheaders. Those will be rescheduled in the outer
7606 loop. */
7607 if (sel_is_loop_preheader_p (bb))
7609 clear_outdated_rtx_info (bb);
7610 continue;
7613 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7615 flist_tail_init (new_fences);
7617 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7619 /* Mark BB as head of the new ebb. */
7620 bitmap_set_bit (forced_ebb_heads, bb->index);
7622 gcc_assert (fences == NULL);
7624 init_fences (bb_note (bb));
7626 sel_sched_region_2 (orig_max_seqno);
7628 do_p = true;
7629 break;
7636 /* Schedule the RGN region. */
7637 void
7638 sel_sched_region (int rgn)
7640 bool schedule_p;
7641 bool reset_sched_cycles_p;
7643 if (sel_region_init (rgn))
7644 return;
7646 if (sched_verbose >= 1)
7647 sel_print ("Scheduling region %d\n", rgn);
7649 schedule_p = (!sched_is_disabled_for_current_region_p ()
7650 && dbg_cnt (sel_sched_region_cnt));
7651 reset_sched_cycles_p = pipelining_p;
7652 if (schedule_p)
7653 sel_sched_region_1 ();
7654 else
7655 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7656 reset_sched_cycles_p = true;
7658 sel_region_finish (reset_sched_cycles_p);
7661 /* Perform global init for the scheduler. */
7662 static void
7663 sel_global_init (void)
7665 calculate_dominance_info (CDI_DOMINATORS);
7666 alloc_sched_pools ();
7668 /* Setup the infos for sched_init. */
7669 sel_setup_sched_infos ();
7670 setup_sched_dump ();
7672 sched_rgn_init (false);
7673 sched_init ();
7675 sched_init_bbs ();
7676 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7677 after_recovery = 0;
7678 can_issue_more = issue_rate;
7680 sched_extend_target ();
7681 sched_deps_init (true);
7682 setup_nop_and_exit_insns ();
7683 sel_extend_global_bb_info ();
7684 init_lv_sets ();
7685 init_hard_regs_data ();
7688 /* Free the global data of the scheduler. */
7689 static void
7690 sel_global_finish (void)
7692 free_bb_note_pool ();
7693 free_lv_sets ();
7694 sel_finish_global_bb_info ();
7696 free_regset_pool ();
7697 free_nop_and_exit_insns ();
7699 sched_rgn_finish ();
7700 sched_deps_finish ();
7701 sched_finish ();
7703 if (current_loops)
7704 sel_finish_pipelining ();
7706 free_sched_pools ();
7707 free_dominance_info (CDI_DOMINATORS);
7710 /* Return true when we need to skip selective scheduling. Used for debugging. */
7711 bool
7712 maybe_skip_selective_scheduling (void)
7714 return ! dbg_cnt (sel_sched_cnt);
7717 /* The entry point. */
7718 void
7719 run_selective_scheduling (void)
7721 int rgn;
7723 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7724 return;
7726 sel_global_init ();
7728 for (rgn = 0; rgn < nr_regions; rgn++)
7729 sel_sched_region (rgn);
7731 sel_global_finish ();
7734 #endif