gcc/
[official-gcc.git] / gcc / reload1.c
blob7c57227ae01224790f4c854ac1fdba5d62d328e7
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "hard-reg-set.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "obstack.h"
29 #include "insn-config.h"
30 #include "ggc.h"
31 #include "flags.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "input.h"
36 #include "function.h"
37 #include "symtab.h"
38 #include "rtl.h"
39 #include "statistics.h"
40 #include "alias.h"
41 #include "inchash.h"
42 #include "tree.h"
43 #include "expmed.h"
44 #include "dojump.h"
45 #include "explow.h"
46 #include "calls.h"
47 #include "emit-rtl.h"
48 #include "varasm.h"
49 #include "stmt.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "optabs.h"
53 #include "regs.h"
54 #include "addresses.h"
55 #include "predict.h"
56 #include "dominance.h"
57 #include "cfg.h"
58 #include "cfgrtl.h"
59 #include "cfgbuild.h"
60 #include "basic-block.h"
61 #include "df.h"
62 #include "reload.h"
63 #include "recog.h"
64 #include "except.h"
65 #include "ira.h"
66 #include "target.h"
67 #include "dumpfile.h"
68 #include "rtl-iter.h"
70 /* This file contains the reload pass of the compiler, which is
71 run after register allocation has been done. It checks that
72 each insn is valid (operands required to be in registers really
73 are in registers of the proper class) and fixes up invalid ones
74 by copying values temporarily into registers for the insns
75 that need them.
77 The results of register allocation are described by the vector
78 reg_renumber; the insns still contain pseudo regs, but reg_renumber
79 can be used to find which hard reg, if any, a pseudo reg is in.
81 The technique we always use is to free up a few hard regs that are
82 called ``reload regs'', and for each place where a pseudo reg
83 must be in a hard reg, copy it temporarily into one of the reload regs.
85 Reload regs are allocated locally for every instruction that needs
86 reloads. When there are pseudos which are allocated to a register that
87 has been chosen as a reload reg, such pseudos must be ``spilled''.
88 This means that they go to other hard regs, or to stack slots if no other
89 available hard regs can be found. Spilling can invalidate more
90 insns, requiring additional need for reloads, so we must keep checking
91 until the process stabilizes.
93 For machines with different classes of registers, we must keep track
94 of the register class needed for each reload, and make sure that
95 we allocate enough reload registers of each class.
97 The file reload.c contains the code that checks one insn for
98 validity and reports the reloads that it needs. This file
99 is in charge of scanning the entire rtl code, accumulating the
100 reload needs, spilling, assigning reload registers to use for
101 fixing up each insn, and generating the new insns to copy values
102 into the reload registers. */
104 struct target_reload default_target_reload;
105 #if SWITCHABLE_TARGET
106 struct target_reload *this_target_reload = &default_target_reload;
107 #endif
109 #define spill_indirect_levels \
110 (this_target_reload->x_spill_indirect_levels)
112 /* During reload_as_needed, element N contains a REG rtx for the hard reg
113 into which reg N has been reloaded (perhaps for a previous insn). */
114 static rtx *reg_last_reload_reg;
116 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
117 for an output reload that stores into reg N. */
118 static regset_head reg_has_output_reload;
120 /* Indicates which hard regs are reload-registers for an output reload
121 in the current insn. */
122 static HARD_REG_SET reg_is_output_reload;
124 /* Widest width in which each pseudo reg is referred to (via subreg). */
125 static unsigned int *reg_max_ref_width;
127 /* Vector to remember old contents of reg_renumber before spilling. */
128 static short *reg_old_renumber;
130 /* During reload_as_needed, element N contains the last pseudo regno reloaded
131 into hard register N. If that pseudo reg occupied more than one register,
132 reg_reloaded_contents points to that pseudo for each spill register in
133 use; all of these must remain set for an inheritance to occur. */
134 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
136 /* During reload_as_needed, element N contains the insn for which
137 hard register N was last used. Its contents are significant only
138 when reg_reloaded_valid is set for this register. */
139 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
141 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
142 static HARD_REG_SET reg_reloaded_valid;
143 /* Indicate if the register was dead at the end of the reload.
144 This is only valid if reg_reloaded_contents is set and valid. */
145 static HARD_REG_SET reg_reloaded_dead;
147 /* Indicate whether the register's current value is one that is not
148 safe to retain across a call, even for registers that are normally
149 call-saved. This is only meaningful for members of reg_reloaded_valid. */
150 static HARD_REG_SET reg_reloaded_call_part_clobbered;
152 /* Number of spill-regs so far; number of valid elements of spill_regs. */
153 static int n_spills;
155 /* In parallel with spill_regs, contains REG rtx's for those regs.
156 Holds the last rtx used for any given reg, or 0 if it has never
157 been used for spilling yet. This rtx is reused, provided it has
158 the proper mode. */
159 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
161 /* In parallel with spill_regs, contains nonzero for a spill reg
162 that was stored after the last time it was used.
163 The precise value is the insn generated to do the store. */
164 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
166 /* This is the register that was stored with spill_reg_store. This is a
167 copy of reload_out / reload_out_reg when the value was stored; if
168 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
169 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
171 /* This table is the inverse mapping of spill_regs:
172 indexed by hard reg number,
173 it contains the position of that reg in spill_regs,
174 or -1 for something that is not in spill_regs.
176 ?!? This is no longer accurate. */
177 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
179 /* This reg set indicates registers that can't be used as spill registers for
180 the currently processed insn. These are the hard registers which are live
181 during the insn, but not allocated to pseudos, as well as fixed
182 registers. */
183 static HARD_REG_SET bad_spill_regs;
185 /* These are the hard registers that can't be used as spill register for any
186 insn. This includes registers used for user variables and registers that
187 we can't eliminate. A register that appears in this set also can't be used
188 to retry register allocation. */
189 static HARD_REG_SET bad_spill_regs_global;
191 /* Describes order of use of registers for reloading
192 of spilled pseudo-registers. `n_spills' is the number of
193 elements that are actually valid; new ones are added at the end.
195 Both spill_regs and spill_reg_order are used on two occasions:
196 once during find_reload_regs, where they keep track of the spill registers
197 for a single insn, but also during reload_as_needed where they show all
198 the registers ever used by reload. For the latter case, the information
199 is calculated during finish_spills. */
200 static short spill_regs[FIRST_PSEUDO_REGISTER];
202 /* This vector of reg sets indicates, for each pseudo, which hard registers
203 may not be used for retrying global allocation because the register was
204 formerly spilled from one of them. If we allowed reallocating a pseudo to
205 a register that it was already allocated to, reload might not
206 terminate. */
207 static HARD_REG_SET *pseudo_previous_regs;
209 /* This vector of reg sets indicates, for each pseudo, which hard
210 registers may not be used for retrying global allocation because they
211 are used as spill registers during one of the insns in which the
212 pseudo is live. */
213 static HARD_REG_SET *pseudo_forbidden_regs;
215 /* All hard regs that have been used as spill registers for any insn are
216 marked in this set. */
217 static HARD_REG_SET used_spill_regs;
219 /* Index of last register assigned as a spill register. We allocate in
220 a round-robin fashion. */
221 static int last_spill_reg;
223 /* Record the stack slot for each spilled hard register. */
224 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
226 /* Width allocated so far for that stack slot. */
227 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
229 /* Record which pseudos needed to be spilled. */
230 static regset_head spilled_pseudos;
232 /* Record which pseudos changed their allocation in finish_spills. */
233 static regset_head changed_allocation_pseudos;
235 /* Used for communication between order_regs_for_reload and count_pseudo.
236 Used to avoid counting one pseudo twice. */
237 static regset_head pseudos_counted;
239 /* First uid used by insns created by reload in this function.
240 Used in find_equiv_reg. */
241 int reload_first_uid;
243 /* Flag set by local-alloc or global-alloc if anything is live in
244 a call-clobbered reg across calls. */
245 int caller_save_needed;
247 /* Set to 1 while reload_as_needed is operating.
248 Required by some machines to handle any generated moves differently. */
249 int reload_in_progress = 0;
251 /* This obstack is used for allocation of rtl during register elimination.
252 The allocated storage can be freed once find_reloads has processed the
253 insn. */
254 static struct obstack reload_obstack;
256 /* Points to the beginning of the reload_obstack. All insn_chain structures
257 are allocated first. */
258 static char *reload_startobj;
260 /* The point after all insn_chain structures. Used to quickly deallocate
261 memory allocated in copy_reloads during calculate_needs_all_insns. */
262 static char *reload_firstobj;
264 /* This points before all local rtl generated by register elimination.
265 Used to quickly free all memory after processing one insn. */
266 static char *reload_insn_firstobj;
268 /* List of insn_chain instructions, one for every insn that reload needs to
269 examine. */
270 struct insn_chain *reload_insn_chain;
272 /* TRUE if we potentially left dead insns in the insn stream and want to
273 run DCE immediately after reload, FALSE otherwise. */
274 static bool need_dce;
276 /* List of all insns needing reloads. */
277 static struct insn_chain *insns_need_reload;
279 /* This structure is used to record information about register eliminations.
280 Each array entry describes one possible way of eliminating a register
281 in favor of another. If there is more than one way of eliminating a
282 particular register, the most preferred should be specified first. */
284 struct elim_table
286 int from; /* Register number to be eliminated. */
287 int to; /* Register number used as replacement. */
288 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
289 int can_eliminate; /* Nonzero if this elimination can be done. */
290 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
291 target hook in previous scan over insns
292 made by reload. */
293 HOST_WIDE_INT offset; /* Current offset between the two regs. */
294 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
295 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
296 rtx from_rtx; /* REG rtx for the register to be eliminated.
297 We cannot simply compare the number since
298 we might then spuriously replace a hard
299 register corresponding to a pseudo
300 assigned to the reg to be eliminated. */
301 rtx to_rtx; /* REG rtx for the replacement. */
304 static struct elim_table *reg_eliminate = 0;
306 /* This is an intermediate structure to initialize the table. It has
307 exactly the members provided by ELIMINABLE_REGS. */
308 static const struct elim_table_1
310 const int from;
311 const int to;
312 } reg_eliminate_1[] =
314 /* If a set of eliminable registers was specified, define the table from it.
315 Otherwise, default to the normal case of the frame pointer being
316 replaced by the stack pointer. */
318 #ifdef ELIMINABLE_REGS
319 ELIMINABLE_REGS;
320 #else
321 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
322 #endif
324 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
326 /* Record the number of pending eliminations that have an offset not equal
327 to their initial offset. If nonzero, we use a new copy of each
328 replacement result in any insns encountered. */
329 int num_not_at_initial_offset;
331 /* Count the number of registers that we may be able to eliminate. */
332 static int num_eliminable;
333 /* And the number of registers that are equivalent to a constant that
334 can be eliminated to frame_pointer / arg_pointer + constant. */
335 static int num_eliminable_invariants;
337 /* For each label, we record the offset of each elimination. If we reach
338 a label by more than one path and an offset differs, we cannot do the
339 elimination. This information is indexed by the difference of the
340 number of the label and the first label number. We can't offset the
341 pointer itself as this can cause problems on machines with segmented
342 memory. The first table is an array of flags that records whether we
343 have yet encountered a label and the second table is an array of arrays,
344 one entry in the latter array for each elimination. */
346 static int first_label_num;
347 static char *offsets_known_at;
348 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
350 vec<reg_equivs_t, va_gc> *reg_equivs;
352 /* Stack of addresses where an rtx has been changed. We can undo the
353 changes by popping items off the stack and restoring the original
354 value at each location.
356 We use this simplistic undo capability rather than copy_rtx as copy_rtx
357 will not make a deep copy of a normally sharable rtx, such as
358 (const (plus (symbol_ref) (const_int))). If such an expression appears
359 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
360 rtx expression would be changed. See PR 42431. */
362 typedef rtx *rtx_p;
363 static vec<rtx_p> substitute_stack;
365 /* Number of labels in the current function. */
367 static int num_labels;
369 static void replace_pseudos_in (rtx *, machine_mode, rtx);
370 static void maybe_fix_stack_asms (void);
371 static void copy_reloads (struct insn_chain *);
372 static void calculate_needs_all_insns (int);
373 static int find_reg (struct insn_chain *, int);
374 static void find_reload_regs (struct insn_chain *);
375 static void select_reload_regs (void);
376 static void delete_caller_save_insns (void);
378 static void spill_failure (rtx_insn *, enum reg_class);
379 static void count_spilled_pseudo (int, int, int);
380 static void delete_dead_insn (rtx_insn *);
381 static void alter_reg (int, int, bool);
382 static void set_label_offsets (rtx, rtx_insn *, int);
383 static void check_eliminable_occurrences (rtx);
384 static void elimination_effects (rtx, machine_mode);
385 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
386 static int eliminate_regs_in_insn (rtx_insn *, int);
387 static void update_eliminable_offsets (void);
388 static void mark_not_eliminable (rtx, const_rtx, void *);
389 static void set_initial_elim_offsets (void);
390 static bool verify_initial_elim_offsets (void);
391 static void set_initial_label_offsets (void);
392 static void set_offsets_for_label (rtx_insn *);
393 static void init_eliminable_invariants (rtx_insn *, bool);
394 static void init_elim_table (void);
395 static void free_reg_equiv (void);
396 static void update_eliminables (HARD_REG_SET *);
397 static bool update_eliminables_and_spill (void);
398 static void elimination_costs_in_insn (rtx_insn *);
399 static void spill_hard_reg (unsigned int, int);
400 static int finish_spills (int);
401 static void scan_paradoxical_subregs (rtx);
402 static void count_pseudo (int);
403 static void order_regs_for_reload (struct insn_chain *);
404 static void reload_as_needed (int);
405 static void forget_old_reloads_1 (rtx, const_rtx, void *);
406 static void forget_marked_reloads (regset);
407 static int reload_reg_class_lower (const void *, const void *);
408 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
409 machine_mode);
410 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
411 machine_mode);
412 static int reload_reg_free_p (unsigned int, int, enum reload_type);
413 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
414 rtx, rtx, int, int);
415 static int free_for_value_p (int, machine_mode, int, enum reload_type,
416 rtx, rtx, int, int);
417 static int allocate_reload_reg (struct insn_chain *, int, int);
418 static int conflicts_with_override (rtx);
419 static void failed_reload (rtx_insn *, int);
420 static int set_reload_reg (int, int);
421 static void choose_reload_regs_init (struct insn_chain *, rtx *);
422 static void choose_reload_regs (struct insn_chain *);
423 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
424 rtx, int);
425 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
426 int);
427 static void do_input_reload (struct insn_chain *, struct reload *, int);
428 static void do_output_reload (struct insn_chain *, struct reload *, int);
429 static void emit_reload_insns (struct insn_chain *);
430 static void delete_output_reload (rtx_insn *, int, int, rtx);
431 static void delete_address_reloads (rtx_insn *, rtx_insn *);
432 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
433 static void inc_for_reload (rtx, rtx, rtx, int);
434 #ifdef AUTO_INC_DEC
435 static void add_auto_inc_notes (rtx_insn *, rtx);
436 #endif
437 static void substitute (rtx *, const_rtx, rtx);
438 static bool gen_reload_chain_without_interm_reg_p (int, int);
439 static int reloads_conflict (int, int);
440 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
441 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
443 /* Initialize the reload pass. This is called at the beginning of compilation
444 and may be called again if the target is reinitialized. */
446 void
447 init_reload (void)
449 int i;
451 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
452 Set spill_indirect_levels to the number of levels such addressing is
453 permitted, zero if it is not permitted at all. */
455 rtx tem
456 = gen_rtx_MEM (Pmode,
457 gen_rtx_PLUS (Pmode,
458 gen_rtx_REG (Pmode,
459 LAST_VIRTUAL_REGISTER + 1),
460 gen_int_mode (4, Pmode)));
461 spill_indirect_levels = 0;
463 while (memory_address_p (QImode, tem))
465 spill_indirect_levels++;
466 tem = gen_rtx_MEM (Pmode, tem);
469 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
471 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
472 indirect_symref_ok = memory_address_p (QImode, tem);
474 /* See if reg+reg is a valid (and offsettable) address. */
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 tem = gen_rtx_PLUS (Pmode,
479 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
480 gen_rtx_REG (Pmode, i));
482 /* This way, we make sure that reg+reg is an offsettable address. */
483 tem = plus_constant (Pmode, tem, 4);
485 if (memory_address_p (QImode, tem))
487 double_reg_address_ok = 1;
488 break;
492 /* Initialize obstack for our rtl allocation. */
493 if (reload_startobj == NULL)
495 gcc_obstack_init (&reload_obstack);
496 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
499 INIT_REG_SET (&spilled_pseudos);
500 INIT_REG_SET (&changed_allocation_pseudos);
501 INIT_REG_SET (&pseudos_counted);
504 /* List of insn chains that are currently unused. */
505 static struct insn_chain *unused_insn_chains = 0;
507 /* Allocate an empty insn_chain structure. */
508 struct insn_chain *
509 new_insn_chain (void)
511 struct insn_chain *c;
513 if (unused_insn_chains == 0)
515 c = XOBNEW (&reload_obstack, struct insn_chain);
516 INIT_REG_SET (&c->live_throughout);
517 INIT_REG_SET (&c->dead_or_set);
519 else
521 c = unused_insn_chains;
522 unused_insn_chains = c->next;
524 c->is_caller_save_insn = 0;
525 c->need_operand_change = 0;
526 c->need_reload = 0;
527 c->need_elim = 0;
528 return c;
531 /* Small utility function to set all regs in hard reg set TO which are
532 allocated to pseudos in regset FROM. */
534 void
535 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
537 unsigned int regno;
538 reg_set_iterator rsi;
540 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
542 int r = reg_renumber[regno];
544 if (r < 0)
546 /* reload_combine uses the information from DF_LIVE_IN,
547 which might still contain registers that have not
548 actually been allocated since they have an
549 equivalence. */
550 gcc_assert (ira_conflicts_p || reload_completed);
552 else
553 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
557 /* Replace all pseudos found in LOC with their corresponding
558 equivalences. */
560 static void
561 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
563 rtx x = *loc;
564 enum rtx_code code;
565 const char *fmt;
566 int i, j;
568 if (! x)
569 return;
571 code = GET_CODE (x);
572 if (code == REG)
574 unsigned int regno = REGNO (x);
576 if (regno < FIRST_PSEUDO_REGISTER)
577 return;
579 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
580 if (x != *loc)
582 *loc = x;
583 replace_pseudos_in (loc, mem_mode, usage);
584 return;
587 if (reg_equiv_constant (regno))
588 *loc = reg_equiv_constant (regno);
589 else if (reg_equiv_invariant (regno))
590 *loc = reg_equiv_invariant (regno);
591 else if (reg_equiv_mem (regno))
592 *loc = reg_equiv_mem (regno);
593 else if (reg_equiv_address (regno))
594 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
595 else
597 gcc_assert (!REG_P (regno_reg_rtx[regno])
598 || REGNO (regno_reg_rtx[regno]) != regno);
599 *loc = regno_reg_rtx[regno];
602 return;
604 else if (code == MEM)
606 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
607 return;
610 /* Process each of our operands recursively. */
611 fmt = GET_RTX_FORMAT (code);
612 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
613 if (*fmt == 'e')
614 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
615 else if (*fmt == 'E')
616 for (j = 0; j < XVECLEN (x, i); j++)
617 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
620 /* Determine if the current function has an exception receiver block
621 that reaches the exit block via non-exceptional edges */
623 static bool
624 has_nonexceptional_receiver (void)
626 edge e;
627 edge_iterator ei;
628 basic_block *tos, *worklist, bb;
630 /* If we're not optimizing, then just err on the safe side. */
631 if (!optimize)
632 return true;
634 /* First determine which blocks can reach exit via normal paths. */
635 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
637 FOR_EACH_BB_FN (bb, cfun)
638 bb->flags &= ~BB_REACHABLE;
640 /* Place the exit block on our worklist. */
641 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
642 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
644 /* Iterate: find everything reachable from what we've already seen. */
645 while (tos != worklist)
647 bb = *--tos;
649 FOR_EACH_EDGE (e, ei, bb->preds)
650 if (!(e->flags & EDGE_ABNORMAL))
652 basic_block src = e->src;
654 if (!(src->flags & BB_REACHABLE))
656 src->flags |= BB_REACHABLE;
657 *tos++ = src;
661 free (worklist);
663 /* Now see if there's a reachable block with an exceptional incoming
664 edge. */
665 FOR_EACH_BB_FN (bb, cfun)
666 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
667 return true;
669 /* No exceptional block reached exit unexceptionally. */
670 return false;
673 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
674 zero elements) to MAX_REG_NUM elements.
676 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
677 void
678 grow_reg_equivs (void)
680 int old_size = vec_safe_length (reg_equivs);
681 int max_regno = max_reg_num ();
682 int i;
683 reg_equivs_t ze;
685 memset (&ze, 0, sizeof (reg_equivs_t));
686 vec_safe_reserve (reg_equivs, max_regno);
687 for (i = old_size; i < max_regno; i++)
688 reg_equivs->quick_insert (i, ze);
692 /* Global variables used by reload and its subroutines. */
694 /* The current basic block while in calculate_elim_costs_all_insns. */
695 static basic_block elim_bb;
697 /* Set during calculate_needs if an insn needs register elimination. */
698 static int something_needs_elimination;
699 /* Set during calculate_needs if an insn needs an operand changed. */
700 static int something_needs_operands_changed;
701 /* Set by alter_regs if we spilled a register to the stack. */
702 static bool something_was_spilled;
704 /* Nonzero means we couldn't get enough spill regs. */
705 static int failure;
707 /* Temporary array of pseudo-register number. */
708 static int *temp_pseudo_reg_arr;
710 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
711 If that insn didn't set the register (i.e., it copied the register to
712 memory), just delete that insn instead of the equivalencing insn plus
713 anything now dead. If we call delete_dead_insn on that insn, we may
714 delete the insn that actually sets the register if the register dies
715 there and that is incorrect. */
716 static void
717 remove_init_insns ()
719 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
721 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
723 rtx list;
724 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
726 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
728 /* If we already deleted the insn or if it may trap, we can't
729 delete it. The latter case shouldn't happen, but can
730 if an insn has a variable address, gets a REG_EH_REGION
731 note added to it, and then gets converted into a load
732 from a constant address. */
733 if (NOTE_P (equiv_insn)
734 || can_throw_internal (equiv_insn))
736 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
737 delete_dead_insn (equiv_insn);
738 else
739 SET_INSN_DELETED (equiv_insn);
745 /* Return true if remove_init_insns will delete INSN. */
746 static bool
747 will_delete_init_insn_p (rtx_insn *insn)
749 rtx set = single_set (insn);
750 if (!set || !REG_P (SET_DEST (set)))
751 return false;
752 unsigned regno = REGNO (SET_DEST (set));
754 if (can_throw_internal (insn))
755 return false;
757 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
758 return false;
760 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
762 rtx equiv_insn = XEXP (list, 0);
763 if (equiv_insn == insn)
764 return true;
766 return false;
769 /* Main entry point for the reload pass.
771 FIRST is the first insn of the function being compiled.
773 GLOBAL nonzero means we were called from global_alloc
774 and should attempt to reallocate any pseudoregs that we
775 displace from hard regs we will use for reloads.
776 If GLOBAL is zero, we do not have enough information to do that,
777 so any pseudo reg that is spilled must go to the stack.
779 Return value is TRUE if reload likely left dead insns in the
780 stream and a DCE pass should be run to elimiante them. Else the
781 return value is FALSE. */
783 bool
784 reload (rtx_insn *first, int global)
786 int i, n;
787 rtx_insn *insn;
788 struct elim_table *ep;
789 basic_block bb;
790 bool inserted;
792 /* Make sure even insns with volatile mem refs are recognizable. */
793 init_recog ();
795 failure = 0;
797 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
799 /* Make sure that the last insn in the chain
800 is not something that needs reloading. */
801 emit_note (NOTE_INSN_DELETED);
803 /* Enable find_equiv_reg to distinguish insns made by reload. */
804 reload_first_uid = get_max_uid ();
806 #ifdef SECONDARY_MEMORY_NEEDED
807 /* Initialize the secondary memory table. */
808 clear_secondary_mem ();
809 #endif
811 /* We don't have a stack slot for any spill reg yet. */
812 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
813 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
815 /* Initialize the save area information for caller-save, in case some
816 are needed. */
817 init_save_areas ();
819 /* Compute which hard registers are now in use
820 as homes for pseudo registers.
821 This is done here rather than (eg) in global_alloc
822 because this point is reached even if not optimizing. */
823 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
824 mark_home_live (i);
826 /* A function that has a nonlocal label that can reach the exit
827 block via non-exceptional paths must save all call-saved
828 registers. */
829 if (cfun->has_nonlocal_label
830 && has_nonexceptional_receiver ())
831 crtl->saves_all_registers = 1;
833 if (crtl->saves_all_registers)
834 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
835 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
836 df_set_regs_ever_live (i, true);
838 /* Find all the pseudo registers that didn't get hard regs
839 but do have known equivalent constants or memory slots.
840 These include parameters (known equivalent to parameter slots)
841 and cse'd or loop-moved constant memory addresses.
843 Record constant equivalents in reg_equiv_constant
844 so they will be substituted by find_reloads.
845 Record memory equivalents in reg_mem_equiv so they can
846 be substituted eventually by altering the REG-rtx's. */
848 grow_reg_equivs ();
849 reg_old_renumber = XCNEWVEC (short, max_regno);
850 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
851 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
852 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
854 CLEAR_HARD_REG_SET (bad_spill_regs_global);
856 init_eliminable_invariants (first, true);
857 init_elim_table ();
859 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
860 stack slots to the pseudos that lack hard regs or equivalents.
861 Do not touch virtual registers. */
863 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
864 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
865 temp_pseudo_reg_arr[n++] = i;
867 if (ira_conflicts_p)
868 /* Ask IRA to order pseudo-registers for better stack slot
869 sharing. */
870 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
872 for (i = 0; i < n; i++)
873 alter_reg (temp_pseudo_reg_arr[i], -1, false);
875 /* If we have some registers we think can be eliminated, scan all insns to
876 see if there is an insn that sets one of these registers to something
877 other than itself plus a constant. If so, the register cannot be
878 eliminated. Doing this scan here eliminates an extra pass through the
879 main reload loop in the most common case where register elimination
880 cannot be done. */
881 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
882 if (INSN_P (insn))
883 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
885 maybe_fix_stack_asms ();
887 insns_need_reload = 0;
888 something_needs_elimination = 0;
890 /* Initialize to -1, which means take the first spill register. */
891 last_spill_reg = -1;
893 /* Spill any hard regs that we know we can't eliminate. */
894 CLEAR_HARD_REG_SET (used_spill_regs);
895 /* There can be multiple ways to eliminate a register;
896 they should be listed adjacently.
897 Elimination for any register fails only if all possible ways fail. */
898 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
900 int from = ep->from;
901 int can_eliminate = 0;
904 can_eliminate |= ep->can_eliminate;
905 ep++;
907 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
908 if (! can_eliminate)
909 spill_hard_reg (from, 1);
912 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
913 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
915 finish_spills (global);
917 /* From now on, we may need to generate moves differently. We may also
918 allow modifications of insns which cause them to not be recognized.
919 Any such modifications will be cleaned up during reload itself. */
920 reload_in_progress = 1;
922 /* This loop scans the entire function each go-round
923 and repeats until one repetition spills no additional hard regs. */
924 for (;;)
926 int something_changed;
927 int did_spill;
928 HOST_WIDE_INT starting_frame_size;
930 starting_frame_size = get_frame_size ();
931 something_was_spilled = false;
933 set_initial_elim_offsets ();
934 set_initial_label_offsets ();
936 /* For each pseudo register that has an equivalent location defined,
937 try to eliminate any eliminable registers (such as the frame pointer)
938 assuming initial offsets for the replacement register, which
939 is the normal case.
941 If the resulting location is directly addressable, substitute
942 the MEM we just got directly for the old REG.
944 If it is not addressable but is a constant or the sum of a hard reg
945 and constant, it is probably not addressable because the constant is
946 out of range, in that case record the address; we will generate
947 hairy code to compute the address in a register each time it is
948 needed. Similarly if it is a hard register, but one that is not
949 valid as an address register.
951 If the location is not addressable, but does not have one of the
952 above forms, assign a stack slot. We have to do this to avoid the
953 potential of producing lots of reloads if, e.g., a location involves
954 a pseudo that didn't get a hard register and has an equivalent memory
955 location that also involves a pseudo that didn't get a hard register.
957 Perhaps at some point we will improve reload_when_needed handling
958 so this problem goes away. But that's very hairy. */
960 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
961 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
963 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
964 NULL_RTX);
966 if (strict_memory_address_addr_space_p
967 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
968 MEM_ADDR_SPACE (x)))
969 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
970 else if (CONSTANT_P (XEXP (x, 0))
971 || (REG_P (XEXP (x, 0))
972 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
973 || (GET_CODE (XEXP (x, 0)) == PLUS
974 && REG_P (XEXP (XEXP (x, 0), 0))
975 && (REGNO (XEXP (XEXP (x, 0), 0))
976 < FIRST_PSEUDO_REGISTER)
977 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
978 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
979 else
981 /* Make a new stack slot. Then indicate that something
982 changed so we go back and recompute offsets for
983 eliminable registers because the allocation of memory
984 below might change some offset. reg_equiv_{mem,address}
985 will be set up for this pseudo on the next pass around
986 the loop. */
987 reg_equiv_memory_loc (i) = 0;
988 reg_equiv_init (i) = 0;
989 alter_reg (i, -1, true);
993 if (caller_save_needed)
994 setup_save_areas ();
996 if (starting_frame_size && crtl->stack_alignment_needed)
998 /* If we have a stack frame, we must align it now. The
999 stack size may be a part of the offset computation for
1000 register elimination. So if this changes the stack size,
1001 then repeat the elimination bookkeeping. We don't
1002 realign when there is no stack, as that will cause a
1003 stack frame when none is needed should
1004 STARTING_FRAME_OFFSET not be already aligned to
1005 STACK_BOUNDARY. */
1006 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1008 /* If we allocated another stack slot, redo elimination bookkeeping. */
1009 if (something_was_spilled || starting_frame_size != get_frame_size ())
1011 update_eliminables_and_spill ();
1012 continue;
1015 if (caller_save_needed)
1017 save_call_clobbered_regs ();
1018 /* That might have allocated new insn_chain structures. */
1019 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1022 calculate_needs_all_insns (global);
1024 if (! ira_conflicts_p)
1025 /* Don't do it for IRA. We need this info because we don't
1026 change live_throughout and dead_or_set for chains when IRA
1027 is used. */
1028 CLEAR_REG_SET (&spilled_pseudos);
1030 did_spill = 0;
1032 something_changed = 0;
1034 /* If we allocated any new memory locations, make another pass
1035 since it might have changed elimination offsets. */
1036 if (something_was_spilled || starting_frame_size != get_frame_size ())
1037 something_changed = 1;
1039 /* Even if the frame size remained the same, we might still have
1040 changed elimination offsets, e.g. if find_reloads called
1041 force_const_mem requiring the back end to allocate a constant
1042 pool base register that needs to be saved on the stack. */
1043 else if (!verify_initial_elim_offsets ())
1044 something_changed = 1;
1046 if (update_eliminables_and_spill ())
1048 did_spill = 1;
1049 something_changed = 1;
1052 select_reload_regs ();
1053 if (failure)
1054 goto failed;
1056 if (insns_need_reload != 0 || did_spill)
1057 something_changed |= finish_spills (global);
1059 if (! something_changed)
1060 break;
1062 if (caller_save_needed)
1063 delete_caller_save_insns ();
1065 obstack_free (&reload_obstack, reload_firstobj);
1068 /* If global-alloc was run, notify it of any register eliminations we have
1069 done. */
1070 if (global)
1071 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1072 if (ep->can_eliminate)
1073 mark_elimination (ep->from, ep->to);
1075 remove_init_insns ();
1077 /* Use the reload registers where necessary
1078 by generating move instructions to move the must-be-register
1079 values into or out of the reload registers. */
1081 if (insns_need_reload != 0 || something_needs_elimination
1082 || something_needs_operands_changed)
1084 HOST_WIDE_INT old_frame_size = get_frame_size ();
1086 reload_as_needed (global);
1088 gcc_assert (old_frame_size == get_frame_size ());
1090 gcc_assert (verify_initial_elim_offsets ());
1093 /* If we were able to eliminate the frame pointer, show that it is no
1094 longer live at the start of any basic block. If it ls live by
1095 virtue of being in a pseudo, that pseudo will be marked live
1096 and hence the frame pointer will be known to be live via that
1097 pseudo. */
1099 if (! frame_pointer_needed)
1100 FOR_EACH_BB_FN (bb, cfun)
1101 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1103 /* Come here (with failure set nonzero) if we can't get enough spill
1104 regs. */
1105 failed:
1107 CLEAR_REG_SET (&changed_allocation_pseudos);
1108 CLEAR_REG_SET (&spilled_pseudos);
1109 reload_in_progress = 0;
1111 /* Now eliminate all pseudo regs by modifying them into
1112 their equivalent memory references.
1113 The REG-rtx's for the pseudos are modified in place,
1114 so all insns that used to refer to them now refer to memory.
1116 For a reg that has a reg_equiv_address, all those insns
1117 were changed by reloading so that no insns refer to it any longer;
1118 but the DECL_RTL of a variable decl may refer to it,
1119 and if so this causes the debugging info to mention the variable. */
1121 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1123 rtx addr = 0;
1125 if (reg_equiv_mem (i))
1126 addr = XEXP (reg_equiv_mem (i), 0);
1128 if (reg_equiv_address (i))
1129 addr = reg_equiv_address (i);
1131 if (addr)
1133 if (reg_renumber[i] < 0)
1135 rtx reg = regno_reg_rtx[i];
1137 REG_USERVAR_P (reg) = 0;
1138 PUT_CODE (reg, MEM);
1139 XEXP (reg, 0) = addr;
1140 if (reg_equiv_memory_loc (i))
1141 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1142 else
1143 MEM_ATTRS (reg) = 0;
1144 MEM_NOTRAP_P (reg) = 1;
1146 else if (reg_equiv_mem (i))
1147 XEXP (reg_equiv_mem (i), 0) = addr;
1150 /* We don't want complex addressing modes in debug insns
1151 if simpler ones will do, so delegitimize equivalences
1152 in debug insns. */
1153 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1155 rtx reg = regno_reg_rtx[i];
1156 rtx equiv = 0;
1157 df_ref use, next;
1159 if (reg_equiv_constant (i))
1160 equiv = reg_equiv_constant (i);
1161 else if (reg_equiv_invariant (i))
1162 equiv = reg_equiv_invariant (i);
1163 else if (reg && MEM_P (reg))
1164 equiv = targetm.delegitimize_address (reg);
1165 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1166 equiv = reg;
1168 if (equiv == reg)
1169 continue;
1171 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1173 insn = DF_REF_INSN (use);
1175 /* Make sure the next ref is for a different instruction,
1176 so that we're not affected by the rescan. */
1177 next = DF_REF_NEXT_REG (use);
1178 while (next && DF_REF_INSN (next) == insn)
1179 next = DF_REF_NEXT_REG (next);
1181 if (DEBUG_INSN_P (insn))
1183 if (!equiv)
1185 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1186 df_insn_rescan_debug_internal (insn);
1188 else
1189 INSN_VAR_LOCATION_LOC (insn)
1190 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1191 reg, equiv);
1197 /* We must set reload_completed now since the cleanup_subreg_operands call
1198 below will re-recognize each insn and reload may have generated insns
1199 which are only valid during and after reload. */
1200 reload_completed = 1;
1202 /* Make a pass over all the insns and delete all USEs which we inserted
1203 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1204 notes. Delete all CLOBBER insns, except those that refer to the return
1205 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1206 from misarranging variable-array code, and simplify (subreg (reg))
1207 operands. Strip and regenerate REG_INC notes that may have been moved
1208 around. */
1210 for (insn = first; insn; insn = NEXT_INSN (insn))
1211 if (INSN_P (insn))
1213 rtx *pnote;
1215 if (CALL_P (insn))
1216 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1217 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1219 if ((GET_CODE (PATTERN (insn)) == USE
1220 /* We mark with QImode USEs introduced by reload itself. */
1221 && (GET_MODE (insn) == QImode
1222 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1223 || (GET_CODE (PATTERN (insn)) == CLOBBER
1224 && (!MEM_P (XEXP (PATTERN (insn), 0))
1225 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1226 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1227 && XEXP (XEXP (PATTERN (insn), 0), 0)
1228 != stack_pointer_rtx))
1229 && (!REG_P (XEXP (PATTERN (insn), 0))
1230 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1232 delete_insn (insn);
1233 continue;
1236 /* Some CLOBBERs may survive until here and still reference unassigned
1237 pseudos with const equivalent, which may in turn cause ICE in later
1238 passes if the reference remains in place. */
1239 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1240 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1241 VOIDmode, PATTERN (insn));
1243 /* Discard obvious no-ops, even without -O. This optimization
1244 is fast and doesn't interfere with debugging. */
1245 if (NONJUMP_INSN_P (insn)
1246 && GET_CODE (PATTERN (insn)) == SET
1247 && REG_P (SET_SRC (PATTERN (insn)))
1248 && REG_P (SET_DEST (PATTERN (insn)))
1249 && (REGNO (SET_SRC (PATTERN (insn)))
1250 == REGNO (SET_DEST (PATTERN (insn)))))
1252 delete_insn (insn);
1253 continue;
1256 pnote = &REG_NOTES (insn);
1257 while (*pnote != 0)
1259 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1260 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1261 || REG_NOTE_KIND (*pnote) == REG_INC)
1262 *pnote = XEXP (*pnote, 1);
1263 else
1264 pnote = &XEXP (*pnote, 1);
1267 #ifdef AUTO_INC_DEC
1268 add_auto_inc_notes (insn, PATTERN (insn));
1269 #endif
1271 /* Simplify (subreg (reg)) if it appears as an operand. */
1272 cleanup_subreg_operands (insn);
1274 /* Clean up invalid ASMs so that they don't confuse later passes.
1275 See PR 21299. */
1276 if (asm_noperands (PATTERN (insn)) >= 0)
1278 extract_insn (insn);
1279 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1281 error_for_asm (insn,
1282 "%<asm%> operand has impossible constraints");
1283 delete_insn (insn);
1284 continue;
1289 /* If we are doing generic stack checking, give a warning if this
1290 function's frame size is larger than we expect. */
1291 if (flag_stack_check == GENERIC_STACK_CHECK)
1293 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1294 static int verbose_warned = 0;
1296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1297 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1298 size += UNITS_PER_WORD;
1300 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1302 warning (0, "frame size too large for reliable stack checking");
1303 if (! verbose_warned)
1305 warning (0, "try reducing the number of local variables");
1306 verbose_warned = 1;
1311 free (temp_pseudo_reg_arr);
1313 /* Indicate that we no longer have known memory locations or constants. */
1314 free_reg_equiv ();
1316 free (reg_max_ref_width);
1317 free (reg_old_renumber);
1318 free (pseudo_previous_regs);
1319 free (pseudo_forbidden_regs);
1321 CLEAR_HARD_REG_SET (used_spill_regs);
1322 for (i = 0; i < n_spills; i++)
1323 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1325 /* Free all the insn_chain structures at once. */
1326 obstack_free (&reload_obstack, reload_startobj);
1327 unused_insn_chains = 0;
1329 inserted = fixup_abnormal_edges ();
1331 /* We've possibly turned single trapping insn into multiple ones. */
1332 if (cfun->can_throw_non_call_exceptions)
1334 sbitmap blocks;
1335 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1336 bitmap_ones (blocks);
1337 find_many_sub_basic_blocks (blocks);
1338 sbitmap_free (blocks);
1341 if (inserted)
1342 commit_edge_insertions ();
1344 /* Replacing pseudos with their memory equivalents might have
1345 created shared rtx. Subsequent passes would get confused
1346 by this, so unshare everything here. */
1347 unshare_all_rtl_again (first);
1349 #ifdef STACK_BOUNDARY
1350 /* init_emit has set the alignment of the hard frame pointer
1351 to STACK_BOUNDARY. It is very likely no longer valid if
1352 the hard frame pointer was used for register allocation. */
1353 if (!frame_pointer_needed)
1354 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1355 #endif
1357 substitute_stack.release ();
1359 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1361 reload_completed = !failure;
1363 return need_dce;
1366 /* Yet another special case. Unfortunately, reg-stack forces people to
1367 write incorrect clobbers in asm statements. These clobbers must not
1368 cause the register to appear in bad_spill_regs, otherwise we'll call
1369 fatal_insn later. We clear the corresponding regnos in the live
1370 register sets to avoid this.
1371 The whole thing is rather sick, I'm afraid. */
1373 static void
1374 maybe_fix_stack_asms (void)
1376 #ifdef STACK_REGS
1377 const char *constraints[MAX_RECOG_OPERANDS];
1378 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1379 struct insn_chain *chain;
1381 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1383 int i, noperands;
1384 HARD_REG_SET clobbered, allowed;
1385 rtx pat;
1387 if (! INSN_P (chain->insn)
1388 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1389 continue;
1390 pat = PATTERN (chain->insn);
1391 if (GET_CODE (pat) != PARALLEL)
1392 continue;
1394 CLEAR_HARD_REG_SET (clobbered);
1395 CLEAR_HARD_REG_SET (allowed);
1397 /* First, make a mask of all stack regs that are clobbered. */
1398 for (i = 0; i < XVECLEN (pat, 0); i++)
1400 rtx t = XVECEXP (pat, 0, i);
1401 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1402 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1405 /* Get the operand values and constraints out of the insn. */
1406 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1407 constraints, operand_mode, NULL);
1409 /* For every operand, see what registers are allowed. */
1410 for (i = 0; i < noperands; i++)
1412 const char *p = constraints[i];
1413 /* For every alternative, we compute the class of registers allowed
1414 for reloading in CLS, and merge its contents into the reg set
1415 ALLOWED. */
1416 int cls = (int) NO_REGS;
1418 for (;;)
1420 char c = *p;
1422 if (c == '\0' || c == ',' || c == '#')
1424 /* End of one alternative - mark the regs in the current
1425 class, and reset the class. */
1426 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1427 cls = NO_REGS;
1428 p++;
1429 if (c == '#')
1430 do {
1431 c = *p++;
1432 } while (c != '\0' && c != ',');
1433 if (c == '\0')
1434 break;
1435 continue;
1438 switch (c)
1440 case 'g':
1441 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1442 break;
1444 default:
1445 enum constraint_num cn = lookup_constraint (p);
1446 if (insn_extra_address_constraint (cn))
1447 cls = (int) reg_class_subunion[cls]
1448 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1449 ADDRESS, SCRATCH)];
1450 else
1451 cls = (int) reg_class_subunion[cls]
1452 [reg_class_for_constraint (cn)];
1453 break;
1455 p += CONSTRAINT_LEN (c, p);
1458 /* Those of the registers which are clobbered, but allowed by the
1459 constraints, must be usable as reload registers. So clear them
1460 out of the life information. */
1461 AND_HARD_REG_SET (allowed, clobbered);
1462 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1463 if (TEST_HARD_REG_BIT (allowed, i))
1465 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1466 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1470 #endif
1473 /* Copy the global variables n_reloads and rld into the corresponding elts
1474 of CHAIN. */
1475 static void
1476 copy_reloads (struct insn_chain *chain)
1478 chain->n_reloads = n_reloads;
1479 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1480 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1481 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1484 /* Walk the chain of insns, and determine for each whether it needs reloads
1485 and/or eliminations. Build the corresponding insns_need_reload list, and
1486 set something_needs_elimination as appropriate. */
1487 static void
1488 calculate_needs_all_insns (int global)
1490 struct insn_chain **pprev_reload = &insns_need_reload;
1491 struct insn_chain *chain, *next = 0;
1493 something_needs_elimination = 0;
1495 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1496 for (chain = reload_insn_chain; chain != 0; chain = next)
1498 rtx_insn *insn = chain->insn;
1500 next = chain->next;
1502 /* Clear out the shortcuts. */
1503 chain->n_reloads = 0;
1504 chain->need_elim = 0;
1505 chain->need_reload = 0;
1506 chain->need_operand_change = 0;
1508 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1509 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1510 what effects this has on the known offsets at labels. */
1512 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1513 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1514 set_label_offsets (insn, insn, 0);
1516 if (INSN_P (insn))
1518 rtx old_body = PATTERN (insn);
1519 int old_code = INSN_CODE (insn);
1520 rtx old_notes = REG_NOTES (insn);
1521 int did_elimination = 0;
1522 int operands_changed = 0;
1524 /* Skip insns that only set an equivalence. */
1525 if (will_delete_init_insn_p (insn))
1526 continue;
1528 /* If needed, eliminate any eliminable registers. */
1529 if (num_eliminable || num_eliminable_invariants)
1530 did_elimination = eliminate_regs_in_insn (insn, 0);
1532 /* Analyze the instruction. */
1533 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1534 global, spill_reg_order);
1536 /* If a no-op set needs more than one reload, this is likely
1537 to be something that needs input address reloads. We
1538 can't get rid of this cleanly later, and it is of no use
1539 anyway, so discard it now.
1540 We only do this when expensive_optimizations is enabled,
1541 since this complements reload inheritance / output
1542 reload deletion, and it can make debugging harder. */
1543 if (flag_expensive_optimizations && n_reloads > 1)
1545 rtx set = single_set (insn);
1546 if (set
1548 ((SET_SRC (set) == SET_DEST (set)
1549 && REG_P (SET_SRC (set))
1550 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1551 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1552 && reg_renumber[REGNO (SET_SRC (set))] < 0
1553 && reg_renumber[REGNO (SET_DEST (set))] < 0
1554 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1555 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1556 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1557 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1559 if (ira_conflicts_p)
1560 /* Inform IRA about the insn deletion. */
1561 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1562 REGNO (SET_SRC (set)));
1563 delete_insn (insn);
1564 /* Delete it from the reload chain. */
1565 if (chain->prev)
1566 chain->prev->next = next;
1567 else
1568 reload_insn_chain = next;
1569 if (next)
1570 next->prev = chain->prev;
1571 chain->next = unused_insn_chains;
1572 unused_insn_chains = chain;
1573 continue;
1576 if (num_eliminable)
1577 update_eliminable_offsets ();
1579 /* Remember for later shortcuts which insns had any reloads or
1580 register eliminations. */
1581 chain->need_elim = did_elimination;
1582 chain->need_reload = n_reloads > 0;
1583 chain->need_operand_change = operands_changed;
1585 /* Discard any register replacements done. */
1586 if (did_elimination)
1588 obstack_free (&reload_obstack, reload_insn_firstobj);
1589 PATTERN (insn) = old_body;
1590 INSN_CODE (insn) = old_code;
1591 REG_NOTES (insn) = old_notes;
1592 something_needs_elimination = 1;
1595 something_needs_operands_changed |= operands_changed;
1597 if (n_reloads != 0)
1599 copy_reloads (chain);
1600 *pprev_reload = chain;
1601 pprev_reload = &chain->next_need_reload;
1605 *pprev_reload = 0;
1608 /* This function is called from the register allocator to set up estimates
1609 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1610 an invariant. The structure is similar to calculate_needs_all_insns. */
1612 void
1613 calculate_elim_costs_all_insns (void)
1615 int *reg_equiv_init_cost;
1616 basic_block bb;
1617 int i;
1619 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1620 init_elim_table ();
1621 init_eliminable_invariants (get_insns (), false);
1623 set_initial_elim_offsets ();
1624 set_initial_label_offsets ();
1626 FOR_EACH_BB_FN (bb, cfun)
1628 rtx_insn *insn;
1629 elim_bb = bb;
1631 FOR_BB_INSNS (bb, insn)
1633 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1634 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1635 what effects this has on the known offsets at labels. */
1637 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1638 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1639 set_label_offsets (insn, insn, 0);
1641 if (INSN_P (insn))
1643 rtx set = single_set (insn);
1645 /* Skip insns that only set an equivalence. */
1646 if (set && REG_P (SET_DEST (set))
1647 && reg_renumber[REGNO (SET_DEST (set))] < 0
1648 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1649 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1651 unsigned regno = REGNO (SET_DEST (set));
1652 rtx_insn_list *init = reg_equiv_init (regno);
1653 if (init)
1655 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1656 false, true);
1657 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1658 int freq = REG_FREQ_FROM_BB (bb);
1660 reg_equiv_init_cost[regno] = cost * freq;
1661 continue;
1664 /* If needed, eliminate any eliminable registers. */
1665 if (num_eliminable || num_eliminable_invariants)
1666 elimination_costs_in_insn (insn);
1668 if (num_eliminable)
1669 update_eliminable_offsets ();
1673 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1675 if (reg_equiv_invariant (i))
1677 if (reg_equiv_init (i))
1679 int cost = reg_equiv_init_cost[i];
1680 if (dump_file)
1681 fprintf (dump_file,
1682 "Reg %d has equivalence, initial gains %d\n", i, cost);
1683 if (cost != 0)
1684 ira_adjust_equiv_reg_cost (i, cost);
1686 else
1688 if (dump_file)
1689 fprintf (dump_file,
1690 "Reg %d had equivalence, but can't be eliminated\n",
1692 ira_adjust_equiv_reg_cost (i, 0);
1697 free (reg_equiv_init_cost);
1698 free (offsets_known_at);
1699 free (offsets_at);
1700 offsets_at = NULL;
1701 offsets_known_at = NULL;
1704 /* Comparison function for qsort to decide which of two reloads
1705 should be handled first. *P1 and *P2 are the reload numbers. */
1707 static int
1708 reload_reg_class_lower (const void *r1p, const void *r2p)
1710 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1711 int t;
1713 /* Consider required reloads before optional ones. */
1714 t = rld[r1].optional - rld[r2].optional;
1715 if (t != 0)
1716 return t;
1718 /* Count all solitary classes before non-solitary ones. */
1719 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1720 - (reg_class_size[(int) rld[r1].rclass] == 1));
1721 if (t != 0)
1722 return t;
1724 /* Aside from solitaires, consider all multi-reg groups first. */
1725 t = rld[r2].nregs - rld[r1].nregs;
1726 if (t != 0)
1727 return t;
1729 /* Consider reloads in order of increasing reg-class number. */
1730 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1731 if (t != 0)
1732 return t;
1734 /* If reloads are equally urgent, sort by reload number,
1735 so that the results of qsort leave nothing to chance. */
1736 return r1 - r2;
1739 /* The cost of spilling each hard reg. */
1740 static int spill_cost[FIRST_PSEUDO_REGISTER];
1742 /* When spilling multiple hard registers, we use SPILL_COST for the first
1743 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1744 only the first hard reg for a multi-reg pseudo. */
1745 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1747 /* Map of hard regno to pseudo regno currently occupying the hard
1748 reg. */
1749 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1751 /* Update the spill cost arrays, considering that pseudo REG is live. */
1753 static void
1754 count_pseudo (int reg)
1756 int freq = REG_FREQ (reg);
1757 int r = reg_renumber[reg];
1758 int nregs;
1760 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1761 if (ira_conflicts_p && r < 0)
1762 return;
1764 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1765 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1766 return;
1768 SET_REGNO_REG_SET (&pseudos_counted, reg);
1770 gcc_assert (r >= 0);
1772 spill_add_cost[r] += freq;
1773 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1774 while (nregs-- > 0)
1776 hard_regno_to_pseudo_regno[r + nregs] = reg;
1777 spill_cost[r + nregs] += freq;
1781 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1782 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1784 static void
1785 order_regs_for_reload (struct insn_chain *chain)
1787 unsigned i;
1788 HARD_REG_SET used_by_pseudos;
1789 HARD_REG_SET used_by_pseudos2;
1790 reg_set_iterator rsi;
1792 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1794 memset (spill_cost, 0, sizeof spill_cost);
1795 memset (spill_add_cost, 0, sizeof spill_add_cost);
1796 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1797 hard_regno_to_pseudo_regno[i] = -1;
1799 /* Count number of uses of each hard reg by pseudo regs allocated to it
1800 and then order them by decreasing use. First exclude hard registers
1801 that are live in or across this insn. */
1803 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1804 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1805 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1806 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1808 /* Now find out which pseudos are allocated to it, and update
1809 hard_reg_n_uses. */
1810 CLEAR_REG_SET (&pseudos_counted);
1812 EXECUTE_IF_SET_IN_REG_SET
1813 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1815 count_pseudo (i);
1817 EXECUTE_IF_SET_IN_REG_SET
1818 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1820 count_pseudo (i);
1822 CLEAR_REG_SET (&pseudos_counted);
1825 /* Vector of reload-numbers showing the order in which the reloads should
1826 be processed. */
1827 static short reload_order[MAX_RELOADS];
1829 /* This is used to keep track of the spill regs used in one insn. */
1830 static HARD_REG_SET used_spill_regs_local;
1832 /* We decided to spill hard register SPILLED, which has a size of
1833 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1834 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1835 update SPILL_COST/SPILL_ADD_COST. */
1837 static void
1838 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1840 int freq = REG_FREQ (reg);
1841 int r = reg_renumber[reg];
1842 int nregs;
1844 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1845 if (ira_conflicts_p && r < 0)
1846 return;
1848 gcc_assert (r >= 0);
1850 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1852 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1853 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1854 return;
1856 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1858 spill_add_cost[r] -= freq;
1859 while (nregs-- > 0)
1861 hard_regno_to_pseudo_regno[r + nregs] = -1;
1862 spill_cost[r + nregs] -= freq;
1866 /* Find reload register to use for reload number ORDER. */
1868 static int
1869 find_reg (struct insn_chain *chain, int order)
1871 int rnum = reload_order[order];
1872 struct reload *rl = rld + rnum;
1873 int best_cost = INT_MAX;
1874 int best_reg = -1;
1875 unsigned int i, j, n;
1876 int k;
1877 HARD_REG_SET not_usable;
1878 HARD_REG_SET used_by_other_reload;
1879 reg_set_iterator rsi;
1880 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1881 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1883 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1884 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1885 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1887 CLEAR_HARD_REG_SET (used_by_other_reload);
1888 for (k = 0; k < order; k++)
1890 int other = reload_order[k];
1892 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1893 for (j = 0; j < rld[other].nregs; j++)
1894 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1899 #ifdef REG_ALLOC_ORDER
1900 unsigned int regno = reg_alloc_order[i];
1901 #else
1902 unsigned int regno = i;
1903 #endif
1905 if (! TEST_HARD_REG_BIT (not_usable, regno)
1906 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1907 && HARD_REGNO_MODE_OK (regno, rl->mode))
1909 int this_cost = spill_cost[regno];
1910 int ok = 1;
1911 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1913 for (j = 1; j < this_nregs; j++)
1915 this_cost += spill_add_cost[regno + j];
1916 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1917 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1918 ok = 0;
1920 if (! ok)
1921 continue;
1923 if (ira_conflicts_p)
1925 /* Ask IRA to find a better pseudo-register for
1926 spilling. */
1927 for (n = j = 0; j < this_nregs; j++)
1929 int r = hard_regno_to_pseudo_regno[regno + j];
1931 if (r < 0)
1932 continue;
1933 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1934 regno_pseudo_regs[n++] = r;
1936 regno_pseudo_regs[n++] = -1;
1937 if (best_reg < 0
1938 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1939 best_regno_pseudo_regs,
1940 rl->in, rl->out,
1941 chain->insn))
1943 best_reg = regno;
1944 for (j = 0;; j++)
1946 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1947 if (regno_pseudo_regs[j] < 0)
1948 break;
1951 continue;
1954 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1955 this_cost--;
1956 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1957 this_cost--;
1958 if (this_cost < best_cost
1959 /* Among registers with equal cost, prefer caller-saved ones, or
1960 use REG_ALLOC_ORDER if it is defined. */
1961 || (this_cost == best_cost
1962 #ifdef REG_ALLOC_ORDER
1963 && (inv_reg_alloc_order[regno]
1964 < inv_reg_alloc_order[best_reg])
1965 #else
1966 && call_used_regs[regno]
1967 && ! call_used_regs[best_reg]
1968 #endif
1971 best_reg = regno;
1972 best_cost = this_cost;
1976 if (best_reg == -1)
1977 return 0;
1979 if (dump_file)
1980 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1982 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1983 rl->regno = best_reg;
1985 EXECUTE_IF_SET_IN_REG_SET
1986 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1988 count_spilled_pseudo (best_reg, rl->nregs, j);
1991 EXECUTE_IF_SET_IN_REG_SET
1992 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1994 count_spilled_pseudo (best_reg, rl->nregs, j);
1997 for (i = 0; i < rl->nregs; i++)
1999 gcc_assert (spill_cost[best_reg + i] == 0);
2000 gcc_assert (spill_add_cost[best_reg + i] == 0);
2001 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
2002 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
2004 return 1;
2007 /* Find more reload regs to satisfy the remaining need of an insn, which
2008 is given by CHAIN.
2009 Do it by ascending class number, since otherwise a reg
2010 might be spilled for a big class and might fail to count
2011 for a smaller class even though it belongs to that class. */
2013 static void
2014 find_reload_regs (struct insn_chain *chain)
2016 int i;
2018 /* In order to be certain of getting the registers we need,
2019 we must sort the reloads into order of increasing register class.
2020 Then our grabbing of reload registers will parallel the process
2021 that provided the reload registers. */
2022 for (i = 0; i < chain->n_reloads; i++)
2024 /* Show whether this reload already has a hard reg. */
2025 if (chain->rld[i].reg_rtx)
2027 int regno = REGNO (chain->rld[i].reg_rtx);
2028 chain->rld[i].regno = regno;
2029 chain->rld[i].nregs
2030 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2032 else
2033 chain->rld[i].regno = -1;
2034 reload_order[i] = i;
2037 n_reloads = chain->n_reloads;
2038 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2040 CLEAR_HARD_REG_SET (used_spill_regs_local);
2042 if (dump_file)
2043 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2045 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2047 /* Compute the order of preference for hard registers to spill. */
2049 order_regs_for_reload (chain);
2051 for (i = 0; i < n_reloads; i++)
2053 int r = reload_order[i];
2055 /* Ignore reloads that got marked inoperative. */
2056 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2057 && ! rld[r].optional
2058 && rld[r].regno == -1)
2059 if (! find_reg (chain, i))
2061 if (dump_file)
2062 fprintf (dump_file, "reload failure for reload %d\n", r);
2063 spill_failure (chain->insn, rld[r].rclass);
2064 failure = 1;
2065 return;
2069 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2070 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2072 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2075 static void
2076 select_reload_regs (void)
2078 struct insn_chain *chain;
2080 /* Try to satisfy the needs for each insn. */
2081 for (chain = insns_need_reload; chain != 0;
2082 chain = chain->next_need_reload)
2083 find_reload_regs (chain);
2086 /* Delete all insns that were inserted by emit_caller_save_insns during
2087 this iteration. */
2088 static void
2089 delete_caller_save_insns (void)
2091 struct insn_chain *c = reload_insn_chain;
2093 while (c != 0)
2095 while (c != 0 && c->is_caller_save_insn)
2097 struct insn_chain *next = c->next;
2098 rtx_insn *insn = c->insn;
2100 if (c == reload_insn_chain)
2101 reload_insn_chain = next;
2102 delete_insn (insn);
2104 if (next)
2105 next->prev = c->prev;
2106 if (c->prev)
2107 c->prev->next = next;
2108 c->next = unused_insn_chains;
2109 unused_insn_chains = c;
2110 c = next;
2112 if (c != 0)
2113 c = c->next;
2117 /* Handle the failure to find a register to spill.
2118 INSN should be one of the insns which needed this particular spill reg. */
2120 static void
2121 spill_failure (rtx_insn *insn, enum reg_class rclass)
2123 if (asm_noperands (PATTERN (insn)) >= 0)
2124 error_for_asm (insn, "can%'t find a register in class %qs while "
2125 "reloading %<asm%>",
2126 reg_class_names[rclass]);
2127 else
2129 error ("unable to find a register to spill in class %qs",
2130 reg_class_names[rclass]);
2132 if (dump_file)
2134 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2135 debug_reload_to_stream (dump_file);
2137 fatal_insn ("this is the insn:", insn);
2141 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2142 data that is dead in INSN. */
2144 static void
2145 delete_dead_insn (rtx_insn *insn)
2147 rtx_insn *prev = prev_active_insn (insn);
2148 rtx prev_dest;
2150 /* If the previous insn sets a register that dies in our insn make
2151 a note that we want to run DCE immediately after reload.
2153 We used to delete the previous insn & recurse, but that's wrong for
2154 block local equivalences. Instead of trying to figure out the exact
2155 circumstances where we can delete the potentially dead insns, just
2156 let DCE do the job. */
2157 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2158 && GET_CODE (PATTERN (prev)) == SET
2159 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2160 && reg_mentioned_p (prev_dest, PATTERN (insn))
2161 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2162 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2163 need_dce = 1;
2165 SET_INSN_DELETED (insn);
2168 /* Modify the home of pseudo-reg I.
2169 The new home is present in reg_renumber[I].
2171 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2172 or it may be -1, meaning there is none or it is not relevant.
2173 This is used so that all pseudos spilled from a given hard reg
2174 can share one stack slot. */
2176 static void
2177 alter_reg (int i, int from_reg, bool dont_share_p)
2179 /* When outputting an inline function, this can happen
2180 for a reg that isn't actually used. */
2181 if (regno_reg_rtx[i] == 0)
2182 return;
2184 /* If the reg got changed to a MEM at rtl-generation time,
2185 ignore it. */
2186 if (!REG_P (regno_reg_rtx[i]))
2187 return;
2189 /* Modify the reg-rtx to contain the new hard reg
2190 number or else to contain its pseudo reg number. */
2191 SET_REGNO (regno_reg_rtx[i],
2192 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2194 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2195 allocate a stack slot for it. */
2197 if (reg_renumber[i] < 0
2198 && REG_N_REFS (i) > 0
2199 && reg_equiv_constant (i) == 0
2200 && (reg_equiv_invariant (i) == 0
2201 || reg_equiv_init (i) == 0)
2202 && reg_equiv_memory_loc (i) == 0)
2204 rtx x = NULL_RTX;
2205 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2206 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2207 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2208 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2209 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2210 int adjust = 0;
2212 something_was_spilled = true;
2214 if (ira_conflicts_p)
2216 /* Mark the spill for IRA. */
2217 SET_REGNO_REG_SET (&spilled_pseudos, i);
2218 if (!dont_share_p)
2219 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2222 if (x)
2225 /* Each pseudo reg has an inherent size which comes from its own mode,
2226 and a total size which provides room for paradoxical subregs
2227 which refer to the pseudo reg in wider modes.
2229 We can use a slot already allocated if it provides both
2230 enough inherent space and enough total space.
2231 Otherwise, we allocate a new slot, making sure that it has no less
2232 inherent space, and no less total space, then the previous slot. */
2233 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2235 rtx stack_slot;
2237 /* No known place to spill from => no slot to reuse. */
2238 x = assign_stack_local (mode, total_size,
2239 min_align > inherent_align
2240 || total_size > inherent_size ? -1 : 0);
2242 stack_slot = x;
2244 /* Cancel the big-endian correction done in assign_stack_local.
2245 Get the address of the beginning of the slot. This is so we
2246 can do a big-endian correction unconditionally below. */
2247 if (BYTES_BIG_ENDIAN)
2249 adjust = inherent_size - total_size;
2250 if (adjust)
2251 stack_slot
2252 = adjust_address_nv (x, mode_for_size (total_size
2253 * BITS_PER_UNIT,
2254 MODE_INT, 1),
2255 adjust);
2258 if (! dont_share_p && ira_conflicts_p)
2259 /* Inform IRA about allocation a new stack slot. */
2260 ira_mark_new_stack_slot (stack_slot, i, total_size);
2263 /* Reuse a stack slot if possible. */
2264 else if (spill_stack_slot[from_reg] != 0
2265 && spill_stack_slot_width[from_reg] >= total_size
2266 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2267 >= inherent_size)
2268 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2269 x = spill_stack_slot[from_reg];
2271 /* Allocate a bigger slot. */
2272 else
2274 /* Compute maximum size needed, both for inherent size
2275 and for total size. */
2276 rtx stack_slot;
2278 if (spill_stack_slot[from_reg])
2280 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2281 > inherent_size)
2282 mode = GET_MODE (spill_stack_slot[from_reg]);
2283 if (spill_stack_slot_width[from_reg] > total_size)
2284 total_size = spill_stack_slot_width[from_reg];
2285 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2286 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2289 /* Make a slot with that size. */
2290 x = assign_stack_local (mode, total_size,
2291 min_align > inherent_align
2292 || total_size > inherent_size ? -1 : 0);
2293 stack_slot = x;
2295 /* Cancel the big-endian correction done in assign_stack_local.
2296 Get the address of the beginning of the slot. This is so we
2297 can do a big-endian correction unconditionally below. */
2298 if (BYTES_BIG_ENDIAN)
2300 adjust = GET_MODE_SIZE (mode) - total_size;
2301 if (adjust)
2302 stack_slot
2303 = adjust_address_nv (x, mode_for_size (total_size
2304 * BITS_PER_UNIT,
2305 MODE_INT, 1),
2306 adjust);
2309 spill_stack_slot[from_reg] = stack_slot;
2310 spill_stack_slot_width[from_reg] = total_size;
2313 /* On a big endian machine, the "address" of the slot
2314 is the address of the low part that fits its inherent mode. */
2315 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2316 adjust += (total_size - inherent_size);
2318 /* If we have any adjustment to make, or if the stack slot is the
2319 wrong mode, make a new stack slot. */
2320 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2322 /* Set all of the memory attributes as appropriate for a spill. */
2323 set_mem_attrs_for_spill (x);
2325 /* Save the stack slot for later. */
2326 reg_equiv_memory_loc (i) = x;
2330 /* Mark the slots in regs_ever_live for the hard regs used by
2331 pseudo-reg number REGNO, accessed in MODE. */
2333 static void
2334 mark_home_live_1 (int regno, machine_mode mode)
2336 int i, lim;
2338 i = reg_renumber[regno];
2339 if (i < 0)
2340 return;
2341 lim = end_hard_regno (mode, i);
2342 while (i < lim)
2343 df_set_regs_ever_live (i++, true);
2346 /* Mark the slots in regs_ever_live for the hard regs
2347 used by pseudo-reg number REGNO. */
2349 void
2350 mark_home_live (int regno)
2352 if (reg_renumber[regno] >= 0)
2353 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2356 /* This function handles the tracking of elimination offsets around branches.
2358 X is a piece of RTL being scanned.
2360 INSN is the insn that it came from, if any.
2362 INITIAL_P is nonzero if we are to set the offset to be the initial
2363 offset and zero if we are setting the offset of the label to be the
2364 current offset. */
2366 static void
2367 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2369 enum rtx_code code = GET_CODE (x);
2370 rtx tem;
2371 unsigned int i;
2372 struct elim_table *p;
2374 switch (code)
2376 case LABEL_REF:
2377 if (LABEL_REF_NONLOCAL_P (x))
2378 return;
2380 x = LABEL_REF_LABEL (x);
2382 /* ... fall through ... */
2384 case CODE_LABEL:
2385 /* If we know nothing about this label, set the desired offsets. Note
2386 that this sets the offset at a label to be the offset before a label
2387 if we don't know anything about the label. This is not correct for
2388 the label after a BARRIER, but is the best guess we can make. If
2389 we guessed wrong, we will suppress an elimination that might have
2390 been possible had we been able to guess correctly. */
2392 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2394 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2395 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2396 = (initial_p ? reg_eliminate[i].initial_offset
2397 : reg_eliminate[i].offset);
2398 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2401 /* Otherwise, if this is the definition of a label and it is
2402 preceded by a BARRIER, set our offsets to the known offset of
2403 that label. */
2405 else if (x == insn
2406 && (tem = prev_nonnote_insn (insn)) != 0
2407 && BARRIER_P (tem))
2408 set_offsets_for_label (insn);
2409 else
2410 /* If neither of the above cases is true, compare each offset
2411 with those previously recorded and suppress any eliminations
2412 where the offsets disagree. */
2414 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2415 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2416 != (initial_p ? reg_eliminate[i].initial_offset
2417 : reg_eliminate[i].offset))
2418 reg_eliminate[i].can_eliminate = 0;
2420 return;
2422 case JUMP_TABLE_DATA:
2423 set_label_offsets (PATTERN (insn), insn, initial_p);
2424 return;
2426 case JUMP_INSN:
2427 set_label_offsets (PATTERN (insn), insn, initial_p);
2429 /* ... fall through ... */
2431 case INSN:
2432 case CALL_INSN:
2433 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2434 to indirectly and hence must have all eliminations at their
2435 initial offsets. */
2436 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2437 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2438 set_label_offsets (XEXP (tem, 0), insn, 1);
2439 return;
2441 case PARALLEL:
2442 case ADDR_VEC:
2443 case ADDR_DIFF_VEC:
2444 /* Each of the labels in the parallel or address vector must be
2445 at their initial offsets. We want the first field for PARALLEL
2446 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2448 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2449 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2450 insn, initial_p);
2451 return;
2453 case SET:
2454 /* We only care about setting PC. If the source is not RETURN,
2455 IF_THEN_ELSE, or a label, disable any eliminations not at
2456 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2457 isn't one of those possibilities. For branches to a label,
2458 call ourselves recursively.
2460 Note that this can disable elimination unnecessarily when we have
2461 a non-local goto since it will look like a non-constant jump to
2462 someplace in the current function. This isn't a significant
2463 problem since such jumps will normally be when all elimination
2464 pairs are back to their initial offsets. */
2466 if (SET_DEST (x) != pc_rtx)
2467 return;
2469 switch (GET_CODE (SET_SRC (x)))
2471 case PC:
2472 case RETURN:
2473 return;
2475 case LABEL_REF:
2476 set_label_offsets (SET_SRC (x), insn, initial_p);
2477 return;
2479 case IF_THEN_ELSE:
2480 tem = XEXP (SET_SRC (x), 1);
2481 if (GET_CODE (tem) == LABEL_REF)
2482 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2483 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2484 break;
2486 tem = XEXP (SET_SRC (x), 2);
2487 if (GET_CODE (tem) == LABEL_REF)
2488 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2489 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2490 break;
2491 return;
2493 default:
2494 break;
2497 /* If we reach here, all eliminations must be at their initial
2498 offset because we are doing a jump to a variable address. */
2499 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2500 if (p->offset != p->initial_offset)
2501 p->can_eliminate = 0;
2502 break;
2504 default:
2505 break;
2509 /* This function examines every reg that occurs in X and adjusts the
2510 costs for its elimination which are gathered by IRA. INSN is the
2511 insn in which X occurs. We do not recurse into MEM expressions. */
2513 static void
2514 note_reg_elim_costly (const_rtx x, rtx insn)
2516 subrtx_iterator::array_type array;
2517 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2519 const_rtx x = *iter;
2520 if (MEM_P (x))
2521 iter.skip_subrtxes ();
2522 else if (REG_P (x)
2523 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2524 && reg_equiv_init (REGNO (x))
2525 && reg_equiv_invariant (REGNO (x)))
2527 rtx t = reg_equiv_invariant (REGNO (x));
2528 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2529 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2530 int freq = REG_FREQ_FROM_BB (elim_bb);
2532 if (cost != 0)
2533 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2538 /* Scan X and replace any eliminable registers (such as fp) with a
2539 replacement (such as sp), plus an offset.
2541 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2542 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2543 MEM, we are allowed to replace a sum of a register and the constant zero
2544 with the register, which we cannot do outside a MEM. In addition, we need
2545 to record the fact that a register is referenced outside a MEM.
2547 If INSN is an insn, it is the insn containing X. If we replace a REG
2548 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2549 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2550 the REG is being modified.
2552 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2553 That's used when we eliminate in expressions stored in notes.
2554 This means, do not set ref_outside_mem even if the reference
2555 is outside of MEMs.
2557 If FOR_COSTS is true, we are being called before reload in order to
2558 estimate the costs of keeping registers with an equivalence unallocated.
2560 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2561 replacements done assuming all offsets are at their initial values. If
2562 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2563 encounter, return the actual location so that find_reloads will do
2564 the proper thing. */
2566 static rtx
2567 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2568 bool may_use_invariant, bool for_costs)
2570 enum rtx_code code = GET_CODE (x);
2571 struct elim_table *ep;
2572 int regno;
2573 rtx new_rtx;
2574 int i, j;
2575 const char *fmt;
2576 int copied = 0;
2578 if (! current_function_decl)
2579 return x;
2581 switch (code)
2583 CASE_CONST_ANY:
2584 case CONST:
2585 case SYMBOL_REF:
2586 case CODE_LABEL:
2587 case PC:
2588 case CC0:
2589 case ASM_INPUT:
2590 case ADDR_VEC:
2591 case ADDR_DIFF_VEC:
2592 case RETURN:
2593 return x;
2595 case REG:
2596 regno = REGNO (x);
2598 /* First handle the case where we encounter a bare register that
2599 is eliminable. Replace it with a PLUS. */
2600 if (regno < FIRST_PSEUDO_REGISTER)
2602 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2603 ep++)
2604 if (ep->from_rtx == x && ep->can_eliminate)
2605 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2608 else if (reg_renumber && reg_renumber[regno] < 0
2609 && reg_equivs
2610 && reg_equiv_invariant (regno))
2612 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2613 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2614 mem_mode, insn, true, for_costs);
2615 /* There exists at least one use of REGNO that cannot be
2616 eliminated. Prevent the defining insn from being deleted. */
2617 reg_equiv_init (regno) = NULL;
2618 if (!for_costs)
2619 alter_reg (regno, -1, true);
2621 return x;
2623 /* You might think handling MINUS in a manner similar to PLUS is a
2624 good idea. It is not. It has been tried multiple times and every
2625 time the change has had to have been reverted.
2627 Other parts of reload know a PLUS is special (gen_reload for example)
2628 and require special code to handle code a reloaded PLUS operand.
2630 Also consider backends where the flags register is clobbered by a
2631 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2632 lea instruction comes to mind). If we try to reload a MINUS, we
2633 may kill the flags register that was holding a useful value.
2635 So, please before trying to handle MINUS, consider reload as a
2636 whole instead of this little section as well as the backend issues. */
2637 case PLUS:
2638 /* If this is the sum of an eliminable register and a constant, rework
2639 the sum. */
2640 if (REG_P (XEXP (x, 0))
2641 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2642 && CONSTANT_P (XEXP (x, 1)))
2644 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2645 ep++)
2646 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2648 /* The only time we want to replace a PLUS with a REG (this
2649 occurs when the constant operand of the PLUS is the negative
2650 of the offset) is when we are inside a MEM. We won't want
2651 to do so at other times because that would change the
2652 structure of the insn in a way that reload can't handle.
2653 We special-case the commonest situation in
2654 eliminate_regs_in_insn, so just replace a PLUS with a
2655 PLUS here, unless inside a MEM. */
2656 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2657 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2658 return ep->to_rtx;
2659 else
2660 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2661 plus_constant (Pmode, XEXP (x, 1),
2662 ep->previous_offset));
2665 /* If the register is not eliminable, we are done since the other
2666 operand is a constant. */
2667 return x;
2670 /* If this is part of an address, we want to bring any constant to the
2671 outermost PLUS. We will do this by doing register replacement in
2672 our operands and seeing if a constant shows up in one of them.
2674 Note that there is no risk of modifying the structure of the insn,
2675 since we only get called for its operands, thus we are either
2676 modifying the address inside a MEM, or something like an address
2677 operand of a load-address insn. */
2680 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2681 for_costs);
2682 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2683 for_costs);
2685 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2687 /* If one side is a PLUS and the other side is a pseudo that
2688 didn't get a hard register but has a reg_equiv_constant,
2689 we must replace the constant here since it may no longer
2690 be in the position of any operand. */
2691 if (GET_CODE (new0) == PLUS && REG_P (new1)
2692 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2693 && reg_renumber[REGNO (new1)] < 0
2694 && reg_equivs
2695 && reg_equiv_constant (REGNO (new1)) != 0)
2696 new1 = reg_equiv_constant (REGNO (new1));
2697 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2698 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2699 && reg_renumber[REGNO (new0)] < 0
2700 && reg_equiv_constant (REGNO (new0)) != 0)
2701 new0 = reg_equiv_constant (REGNO (new0));
2703 new_rtx = form_sum (GET_MODE (x), new0, new1);
2705 /* As above, if we are not inside a MEM we do not want to
2706 turn a PLUS into something else. We might try to do so here
2707 for an addition of 0 if we aren't optimizing. */
2708 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2709 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2710 else
2711 return new_rtx;
2714 return x;
2716 case MULT:
2717 /* If this is the product of an eliminable register and a
2718 constant, apply the distribute law and move the constant out
2719 so that we have (plus (mult ..) ..). This is needed in order
2720 to keep load-address insns valid. This case is pathological.
2721 We ignore the possibility of overflow here. */
2722 if (REG_P (XEXP (x, 0))
2723 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2724 && CONST_INT_P (XEXP (x, 1)))
2725 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2726 ep++)
2727 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2729 if (! mem_mode
2730 /* Refs inside notes or in DEBUG_INSNs don't count for
2731 this purpose. */
2732 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2733 || GET_CODE (insn) == INSN_LIST
2734 || DEBUG_INSN_P (insn))))
2735 ep->ref_outside_mem = 1;
2737 return
2738 plus_constant (Pmode,
2739 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2740 ep->previous_offset * INTVAL (XEXP (x, 1)));
2743 /* ... fall through ... */
2745 case CALL:
2746 case COMPARE:
2747 /* See comments before PLUS about handling MINUS. */
2748 case MINUS:
2749 case DIV: case UDIV:
2750 case MOD: case UMOD:
2751 case AND: case IOR: case XOR:
2752 case ROTATERT: case ROTATE:
2753 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2754 case NE: case EQ:
2755 case GE: case GT: case GEU: case GTU:
2756 case LE: case LT: case LEU: case LTU:
2758 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2759 for_costs);
2760 rtx new1 = XEXP (x, 1)
2761 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2762 for_costs) : 0;
2764 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2765 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2767 return x;
2769 case EXPR_LIST:
2770 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2771 if (XEXP (x, 0))
2773 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2774 for_costs);
2775 if (new_rtx != XEXP (x, 0))
2777 /* If this is a REG_DEAD note, it is not valid anymore.
2778 Using the eliminated version could result in creating a
2779 REG_DEAD note for the stack or frame pointer. */
2780 if (REG_NOTE_KIND (x) == REG_DEAD)
2781 return (XEXP (x, 1)
2782 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2783 for_costs)
2784 : NULL_RTX);
2786 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2790 /* ... fall through ... */
2792 case INSN_LIST:
2793 case INT_LIST:
2794 /* Now do eliminations in the rest of the chain. If this was
2795 an EXPR_LIST, this might result in allocating more memory than is
2796 strictly needed, but it simplifies the code. */
2797 if (XEXP (x, 1))
2799 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2800 for_costs);
2801 if (new_rtx != XEXP (x, 1))
2802 return
2803 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2805 return x;
2807 case PRE_INC:
2808 case POST_INC:
2809 case PRE_DEC:
2810 case POST_DEC:
2811 /* We do not support elimination of a register that is modified.
2812 elimination_effects has already make sure that this does not
2813 happen. */
2814 return x;
2816 case PRE_MODIFY:
2817 case POST_MODIFY:
2818 /* We do not support elimination of a register that is modified.
2819 elimination_effects has already make sure that this does not
2820 happen. The only remaining case we need to consider here is
2821 that the increment value may be an eliminable register. */
2822 if (GET_CODE (XEXP (x, 1)) == PLUS
2823 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2825 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2826 insn, true, for_costs);
2828 if (new_rtx != XEXP (XEXP (x, 1), 1))
2829 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2830 gen_rtx_PLUS (GET_MODE (x),
2831 XEXP (x, 0), new_rtx));
2833 return x;
2835 case STRICT_LOW_PART:
2836 case NEG: case NOT:
2837 case SIGN_EXTEND: case ZERO_EXTEND:
2838 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2839 case FLOAT: case FIX:
2840 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2841 case ABS:
2842 case SQRT:
2843 case FFS:
2844 case CLZ:
2845 case CTZ:
2846 case POPCOUNT:
2847 case PARITY:
2848 case BSWAP:
2849 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2850 for_costs);
2851 if (new_rtx != XEXP (x, 0))
2852 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2853 return x;
2855 case SUBREG:
2856 /* Similar to above processing, but preserve SUBREG_BYTE.
2857 Convert (subreg (mem)) to (mem) if not paradoxical.
2858 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2859 pseudo didn't get a hard reg, we must replace this with the
2860 eliminated version of the memory location because push_reload
2861 may do the replacement in certain circumstances. */
2862 if (REG_P (SUBREG_REG (x))
2863 && !paradoxical_subreg_p (x)
2864 && reg_equivs
2865 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2867 new_rtx = SUBREG_REG (x);
2869 else
2870 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2872 if (new_rtx != SUBREG_REG (x))
2874 int x_size = GET_MODE_SIZE (GET_MODE (x));
2875 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2877 if (MEM_P (new_rtx)
2878 && ((x_size < new_size
2879 #ifdef WORD_REGISTER_OPERATIONS
2880 /* On these machines, combine can create rtl of the form
2881 (set (subreg:m1 (reg:m2 R) 0) ...)
2882 where m1 < m2, and expects something interesting to
2883 happen to the entire word. Moreover, it will use the
2884 (reg:m2 R) later, expecting all bits to be preserved.
2885 So if the number of words is the same, preserve the
2886 subreg so that push_reload can see it. */
2887 && ! ((x_size - 1) / UNITS_PER_WORD
2888 == (new_size -1 ) / UNITS_PER_WORD)
2889 #endif
2891 || x_size == new_size)
2893 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2894 else
2895 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2898 return x;
2900 case MEM:
2901 /* Our only special processing is to pass the mode of the MEM to our
2902 recursive call and copy the flags. While we are here, handle this
2903 case more efficiently. */
2905 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2906 for_costs);
2907 if (for_costs
2908 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2909 && !memory_address_p (GET_MODE (x), new_rtx))
2910 note_reg_elim_costly (XEXP (x, 0), insn);
2912 return replace_equiv_address_nv (x, new_rtx);
2914 case USE:
2915 /* Handle insn_list USE that a call to a pure function may generate. */
2916 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2917 for_costs);
2918 if (new_rtx != XEXP (x, 0))
2919 return gen_rtx_USE (GET_MODE (x), new_rtx);
2920 return x;
2922 case CLOBBER:
2923 case ASM_OPERANDS:
2924 gcc_assert (insn && DEBUG_INSN_P (insn));
2925 break;
2927 case SET:
2928 gcc_unreachable ();
2930 default:
2931 break;
2934 /* Process each of our operands recursively. If any have changed, make a
2935 copy of the rtx. */
2936 fmt = GET_RTX_FORMAT (code);
2937 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2939 if (*fmt == 'e')
2941 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2942 for_costs);
2943 if (new_rtx != XEXP (x, i) && ! copied)
2945 x = shallow_copy_rtx (x);
2946 copied = 1;
2948 XEXP (x, i) = new_rtx;
2950 else if (*fmt == 'E')
2952 int copied_vec = 0;
2953 for (j = 0; j < XVECLEN (x, i); j++)
2955 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2956 for_costs);
2957 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2959 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2960 XVEC (x, i)->elem);
2961 if (! copied)
2963 x = shallow_copy_rtx (x);
2964 copied = 1;
2966 XVEC (x, i) = new_v;
2967 copied_vec = 1;
2969 XVECEXP (x, i, j) = new_rtx;
2974 return x;
2978 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2980 if (reg_eliminate == NULL)
2982 gcc_assert (targetm.no_register_allocation);
2983 return x;
2985 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2988 /* Scan rtx X for modifications of elimination target registers. Update
2989 the table of eliminables to reflect the changed state. MEM_MODE is
2990 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2992 static void
2993 elimination_effects (rtx x, machine_mode mem_mode)
2995 enum rtx_code code = GET_CODE (x);
2996 struct elim_table *ep;
2997 int regno;
2998 int i, j;
2999 const char *fmt;
3001 switch (code)
3003 CASE_CONST_ANY:
3004 case CONST:
3005 case SYMBOL_REF:
3006 case CODE_LABEL:
3007 case PC:
3008 case CC0:
3009 case ASM_INPUT:
3010 case ADDR_VEC:
3011 case ADDR_DIFF_VEC:
3012 case RETURN:
3013 return;
3015 case REG:
3016 regno = REGNO (x);
3018 /* First handle the case where we encounter a bare register that
3019 is eliminable. Replace it with a PLUS. */
3020 if (regno < FIRST_PSEUDO_REGISTER)
3022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3023 ep++)
3024 if (ep->from_rtx == x && ep->can_eliminate)
3026 if (! mem_mode)
3027 ep->ref_outside_mem = 1;
3028 return;
3032 else if (reg_renumber[regno] < 0
3033 && reg_equivs
3034 && reg_equiv_constant (regno)
3035 && ! function_invariant_p (reg_equiv_constant (regno)))
3036 elimination_effects (reg_equiv_constant (regno), mem_mode);
3037 return;
3039 case PRE_INC:
3040 case POST_INC:
3041 case PRE_DEC:
3042 case POST_DEC:
3043 case POST_MODIFY:
3044 case PRE_MODIFY:
3045 /* If we modify the source of an elimination rule, disable it. */
3046 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3047 if (ep->from_rtx == XEXP (x, 0))
3048 ep->can_eliminate = 0;
3050 /* If we modify the target of an elimination rule by adding a constant,
3051 update its offset. If we modify the target in any other way, we'll
3052 have to disable the rule as well. */
3053 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3054 if (ep->to_rtx == XEXP (x, 0))
3056 int size = GET_MODE_SIZE (mem_mode);
3058 /* If more bytes than MEM_MODE are pushed, account for them. */
3059 #ifdef PUSH_ROUNDING
3060 if (ep->to_rtx == stack_pointer_rtx)
3061 size = PUSH_ROUNDING (size);
3062 #endif
3063 if (code == PRE_DEC || code == POST_DEC)
3064 ep->offset += size;
3065 else if (code == PRE_INC || code == POST_INC)
3066 ep->offset -= size;
3067 else if (code == PRE_MODIFY || code == POST_MODIFY)
3069 if (GET_CODE (XEXP (x, 1)) == PLUS
3070 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3071 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3072 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3073 else
3074 ep->can_eliminate = 0;
3078 /* These two aren't unary operators. */
3079 if (code == POST_MODIFY || code == PRE_MODIFY)
3080 break;
3082 /* Fall through to generic unary operation case. */
3083 case STRICT_LOW_PART:
3084 case NEG: case NOT:
3085 case SIGN_EXTEND: case ZERO_EXTEND:
3086 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3087 case FLOAT: case FIX:
3088 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3089 case ABS:
3090 case SQRT:
3091 case FFS:
3092 case CLZ:
3093 case CTZ:
3094 case POPCOUNT:
3095 case PARITY:
3096 case BSWAP:
3097 elimination_effects (XEXP (x, 0), mem_mode);
3098 return;
3100 case SUBREG:
3101 if (REG_P (SUBREG_REG (x))
3102 && (GET_MODE_SIZE (GET_MODE (x))
3103 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3104 && reg_equivs
3105 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3106 return;
3108 elimination_effects (SUBREG_REG (x), mem_mode);
3109 return;
3111 case USE:
3112 /* If using a register that is the source of an eliminate we still
3113 think can be performed, note it cannot be performed since we don't
3114 know how this register is used. */
3115 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3116 if (ep->from_rtx == XEXP (x, 0))
3117 ep->can_eliminate = 0;
3119 elimination_effects (XEXP (x, 0), mem_mode);
3120 return;
3122 case CLOBBER:
3123 /* If clobbering a register that is the replacement register for an
3124 elimination we still think can be performed, note that it cannot
3125 be performed. Otherwise, we need not be concerned about it. */
3126 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3127 if (ep->to_rtx == XEXP (x, 0))
3128 ep->can_eliminate = 0;
3130 elimination_effects (XEXP (x, 0), mem_mode);
3131 return;
3133 case SET:
3134 /* Check for setting a register that we know about. */
3135 if (REG_P (SET_DEST (x)))
3137 /* See if this is setting the replacement register for an
3138 elimination.
3140 If DEST is the hard frame pointer, we do nothing because we
3141 assume that all assignments to the frame pointer are for
3142 non-local gotos and are being done at a time when they are valid
3143 and do not disturb anything else. Some machines want to
3144 eliminate a fake argument pointer (or even a fake frame pointer)
3145 with either the real frame or the stack pointer. Assignments to
3146 the hard frame pointer must not prevent this elimination. */
3148 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3149 ep++)
3150 if (ep->to_rtx == SET_DEST (x)
3151 && SET_DEST (x) != hard_frame_pointer_rtx)
3153 /* If it is being incremented, adjust the offset. Otherwise,
3154 this elimination can't be done. */
3155 rtx src = SET_SRC (x);
3157 if (GET_CODE (src) == PLUS
3158 && XEXP (src, 0) == SET_DEST (x)
3159 && CONST_INT_P (XEXP (src, 1)))
3160 ep->offset -= INTVAL (XEXP (src, 1));
3161 else
3162 ep->can_eliminate = 0;
3166 elimination_effects (SET_DEST (x), VOIDmode);
3167 elimination_effects (SET_SRC (x), VOIDmode);
3168 return;
3170 case MEM:
3171 /* Our only special processing is to pass the mode of the MEM to our
3172 recursive call. */
3173 elimination_effects (XEXP (x, 0), GET_MODE (x));
3174 return;
3176 default:
3177 break;
3180 fmt = GET_RTX_FORMAT (code);
3181 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3183 if (*fmt == 'e')
3184 elimination_effects (XEXP (x, i), mem_mode);
3185 else if (*fmt == 'E')
3186 for (j = 0; j < XVECLEN (x, i); j++)
3187 elimination_effects (XVECEXP (x, i, j), mem_mode);
3191 /* Descend through rtx X and verify that no references to eliminable registers
3192 remain. If any do remain, mark the involved register as not
3193 eliminable. */
3195 static void
3196 check_eliminable_occurrences (rtx x)
3198 const char *fmt;
3199 int i;
3200 enum rtx_code code;
3202 if (x == 0)
3203 return;
3205 code = GET_CODE (x);
3207 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3209 struct elim_table *ep;
3211 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3212 if (ep->from_rtx == x)
3213 ep->can_eliminate = 0;
3214 return;
3217 fmt = GET_RTX_FORMAT (code);
3218 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3220 if (*fmt == 'e')
3221 check_eliminable_occurrences (XEXP (x, i));
3222 else if (*fmt == 'E')
3224 int j;
3225 for (j = 0; j < XVECLEN (x, i); j++)
3226 check_eliminable_occurrences (XVECEXP (x, i, j));
3231 /* Scan INSN and eliminate all eliminable registers in it.
3233 If REPLACE is nonzero, do the replacement destructively. Also
3234 delete the insn as dead it if it is setting an eliminable register.
3236 If REPLACE is zero, do all our allocations in reload_obstack.
3238 If no eliminations were done and this insn doesn't require any elimination
3239 processing (these are not identical conditions: it might be updating sp,
3240 but not referencing fp; this needs to be seen during reload_as_needed so
3241 that the offset between fp and sp can be taken into consideration), zero
3242 is returned. Otherwise, 1 is returned. */
3244 static int
3245 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3247 int icode = recog_memoized (insn);
3248 rtx old_body = PATTERN (insn);
3249 int insn_is_asm = asm_noperands (old_body) >= 0;
3250 rtx old_set = single_set (insn);
3251 rtx new_body;
3252 int val = 0;
3253 int i;
3254 rtx substed_operand[MAX_RECOG_OPERANDS];
3255 rtx orig_operand[MAX_RECOG_OPERANDS];
3256 struct elim_table *ep;
3257 rtx plus_src, plus_cst_src;
3259 if (! insn_is_asm && icode < 0)
3261 gcc_assert (DEBUG_INSN_P (insn)
3262 || GET_CODE (PATTERN (insn)) == USE
3263 || GET_CODE (PATTERN (insn)) == CLOBBER
3264 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3265 if (DEBUG_INSN_P (insn))
3266 INSN_VAR_LOCATION_LOC (insn)
3267 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3268 return 0;
3271 if (old_set != 0 && REG_P (SET_DEST (old_set))
3272 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3274 /* Check for setting an eliminable register. */
3275 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3276 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3278 /* If this is setting the frame pointer register to the
3279 hardware frame pointer register and this is an elimination
3280 that will be done (tested above), this insn is really
3281 adjusting the frame pointer downward to compensate for
3282 the adjustment done before a nonlocal goto. */
3283 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3284 && ep->from == FRAME_POINTER_REGNUM
3285 && ep->to == HARD_FRAME_POINTER_REGNUM)
3287 rtx base = SET_SRC (old_set);
3288 rtx_insn *base_insn = insn;
3289 HOST_WIDE_INT offset = 0;
3291 while (base != ep->to_rtx)
3293 rtx_insn *prev_insn;
3294 rtx prev_set;
3296 if (GET_CODE (base) == PLUS
3297 && CONST_INT_P (XEXP (base, 1)))
3299 offset += INTVAL (XEXP (base, 1));
3300 base = XEXP (base, 0);
3302 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3303 && (prev_set = single_set (prev_insn)) != 0
3304 && rtx_equal_p (SET_DEST (prev_set), base))
3306 base = SET_SRC (prev_set);
3307 base_insn = prev_insn;
3309 else
3310 break;
3313 if (base == ep->to_rtx)
3315 rtx src = plus_constant (Pmode, ep->to_rtx,
3316 offset - ep->offset);
3318 new_body = old_body;
3319 if (! replace)
3321 new_body = copy_insn (old_body);
3322 if (REG_NOTES (insn))
3323 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3325 PATTERN (insn) = new_body;
3326 old_set = single_set (insn);
3328 /* First see if this insn remains valid when we
3329 make the change. If not, keep the INSN_CODE
3330 the same and let reload fit it up. */
3331 validate_change (insn, &SET_SRC (old_set), src, 1);
3332 validate_change (insn, &SET_DEST (old_set),
3333 ep->to_rtx, 1);
3334 if (! apply_change_group ())
3336 SET_SRC (old_set) = src;
3337 SET_DEST (old_set) = ep->to_rtx;
3340 val = 1;
3341 goto done;
3345 /* In this case this insn isn't serving a useful purpose. We
3346 will delete it in reload_as_needed once we know that this
3347 elimination is, in fact, being done.
3349 If REPLACE isn't set, we can't delete this insn, but needn't
3350 process it since it won't be used unless something changes. */
3351 if (replace)
3353 delete_dead_insn (insn);
3354 return 1;
3356 val = 1;
3357 goto done;
3361 /* We allow one special case which happens to work on all machines we
3362 currently support: a single set with the source or a REG_EQUAL
3363 note being a PLUS of an eliminable register and a constant. */
3364 plus_src = plus_cst_src = 0;
3365 if (old_set && REG_P (SET_DEST (old_set)))
3367 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3368 plus_src = SET_SRC (old_set);
3369 /* First see if the source is of the form (plus (...) CST). */
3370 if (plus_src
3371 && CONST_INT_P (XEXP (plus_src, 1)))
3372 plus_cst_src = plus_src;
3373 else if (REG_P (SET_SRC (old_set))
3374 || plus_src)
3376 /* Otherwise, see if we have a REG_EQUAL note of the form
3377 (plus (...) CST). */
3378 rtx links;
3379 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3381 if ((REG_NOTE_KIND (links) == REG_EQUAL
3382 || REG_NOTE_KIND (links) == REG_EQUIV)
3383 && GET_CODE (XEXP (links, 0)) == PLUS
3384 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3386 plus_cst_src = XEXP (links, 0);
3387 break;
3392 /* Check that the first operand of the PLUS is a hard reg or
3393 the lowpart subreg of one. */
3394 if (plus_cst_src)
3396 rtx reg = XEXP (plus_cst_src, 0);
3397 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3398 reg = SUBREG_REG (reg);
3400 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3401 plus_cst_src = 0;
3404 if (plus_cst_src)
3406 rtx reg = XEXP (plus_cst_src, 0);
3407 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3409 if (GET_CODE (reg) == SUBREG)
3410 reg = SUBREG_REG (reg);
3412 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3413 if (ep->from_rtx == reg && ep->can_eliminate)
3415 rtx to_rtx = ep->to_rtx;
3416 offset += ep->offset;
3417 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3419 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3420 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3421 to_rtx);
3422 /* If we have a nonzero offset, and the source is already
3423 a simple REG, the following transformation would
3424 increase the cost of the insn by replacing a simple REG
3425 with (plus (reg sp) CST). So try only when we already
3426 had a PLUS before. */
3427 if (offset == 0 || plus_src)
3429 rtx new_src = plus_constant (GET_MODE (to_rtx),
3430 to_rtx, offset);
3432 new_body = old_body;
3433 if (! replace)
3435 new_body = copy_insn (old_body);
3436 if (REG_NOTES (insn))
3437 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3439 PATTERN (insn) = new_body;
3440 old_set = single_set (insn);
3442 /* First see if this insn remains valid when we make the
3443 change. If not, try to replace the whole pattern with
3444 a simple set (this may help if the original insn was a
3445 PARALLEL that was only recognized as single_set due to
3446 REG_UNUSED notes). If this isn't valid either, keep
3447 the INSN_CODE the same and let reload fix it up. */
3448 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3450 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3452 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3453 SET_SRC (old_set) = new_src;
3456 else
3457 break;
3459 val = 1;
3460 /* This can't have an effect on elimination offsets, so skip right
3461 to the end. */
3462 goto done;
3466 /* Determine the effects of this insn on elimination offsets. */
3467 elimination_effects (old_body, VOIDmode);
3469 /* Eliminate all eliminable registers occurring in operands that
3470 can be handled by reload. */
3471 extract_insn (insn);
3472 for (i = 0; i < recog_data.n_operands; i++)
3474 orig_operand[i] = recog_data.operand[i];
3475 substed_operand[i] = recog_data.operand[i];
3477 /* For an asm statement, every operand is eliminable. */
3478 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3480 bool is_set_src, in_plus;
3482 /* Check for setting a register that we know about. */
3483 if (recog_data.operand_type[i] != OP_IN
3484 && REG_P (orig_operand[i]))
3486 /* If we are assigning to a register that can be eliminated, it
3487 must be as part of a PARALLEL, since the code above handles
3488 single SETs. We must indicate that we can no longer
3489 eliminate this reg. */
3490 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3491 ep++)
3492 if (ep->from_rtx == orig_operand[i])
3493 ep->can_eliminate = 0;
3496 /* Companion to the above plus substitution, we can allow
3497 invariants as the source of a plain move. */
3498 is_set_src = false;
3499 if (old_set
3500 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3501 is_set_src = true;
3502 in_plus = false;
3503 if (plus_src
3504 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3505 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3506 in_plus = true;
3508 substed_operand[i]
3509 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3510 replace ? insn : NULL_RTX,
3511 is_set_src || in_plus, false);
3512 if (substed_operand[i] != orig_operand[i])
3513 val = 1;
3514 /* Terminate the search in check_eliminable_occurrences at
3515 this point. */
3516 *recog_data.operand_loc[i] = 0;
3518 /* If an output operand changed from a REG to a MEM and INSN is an
3519 insn, write a CLOBBER insn. */
3520 if (recog_data.operand_type[i] != OP_IN
3521 && REG_P (orig_operand[i])
3522 && MEM_P (substed_operand[i])
3523 && replace)
3524 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3528 for (i = 0; i < recog_data.n_dups; i++)
3529 *recog_data.dup_loc[i]
3530 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3532 /* If any eliminable remain, they aren't eliminable anymore. */
3533 check_eliminable_occurrences (old_body);
3535 /* Substitute the operands; the new values are in the substed_operand
3536 array. */
3537 for (i = 0; i < recog_data.n_operands; i++)
3538 *recog_data.operand_loc[i] = substed_operand[i];
3539 for (i = 0; i < recog_data.n_dups; i++)
3540 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3542 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3543 re-recognize the insn. We do this in case we had a simple addition
3544 but now can do this as a load-address. This saves an insn in this
3545 common case.
3546 If re-recognition fails, the old insn code number will still be used,
3547 and some register operands may have changed into PLUS expressions.
3548 These will be handled by find_reloads by loading them into a register
3549 again. */
3551 if (val)
3553 /* If we aren't replacing things permanently and we changed something,
3554 make another copy to ensure that all the RTL is new. Otherwise
3555 things can go wrong if find_reload swaps commutative operands
3556 and one is inside RTL that has been copied while the other is not. */
3557 new_body = old_body;
3558 if (! replace)
3560 new_body = copy_insn (old_body);
3561 if (REG_NOTES (insn))
3562 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3564 PATTERN (insn) = new_body;
3566 /* If we had a move insn but now we don't, rerecognize it. This will
3567 cause spurious re-recognition if the old move had a PARALLEL since
3568 the new one still will, but we can't call single_set without
3569 having put NEW_BODY into the insn and the re-recognition won't
3570 hurt in this rare case. */
3571 /* ??? Why this huge if statement - why don't we just rerecognize the
3572 thing always? */
3573 if (! insn_is_asm
3574 && old_set != 0
3575 && ((REG_P (SET_SRC (old_set))
3576 && (GET_CODE (new_body) != SET
3577 || !REG_P (SET_SRC (new_body))))
3578 /* If this was a load from or store to memory, compare
3579 the MEM in recog_data.operand to the one in the insn.
3580 If they are not equal, then rerecognize the insn. */
3581 || (old_set != 0
3582 && ((MEM_P (SET_SRC (old_set))
3583 && SET_SRC (old_set) != recog_data.operand[1])
3584 || (MEM_P (SET_DEST (old_set))
3585 && SET_DEST (old_set) != recog_data.operand[0])))
3586 /* If this was an add insn before, rerecognize. */
3587 || GET_CODE (SET_SRC (old_set)) == PLUS))
3589 int new_icode = recog (PATTERN (insn), insn, 0);
3590 if (new_icode >= 0)
3591 INSN_CODE (insn) = new_icode;
3595 /* Restore the old body. If there were any changes to it, we made a copy
3596 of it while the changes were still in place, so we'll correctly return
3597 a modified insn below. */
3598 if (! replace)
3600 /* Restore the old body. */
3601 for (i = 0; i < recog_data.n_operands; i++)
3602 /* Restoring a top-level match_parallel would clobber the new_body
3603 we installed in the insn. */
3604 if (recog_data.operand_loc[i] != &PATTERN (insn))
3605 *recog_data.operand_loc[i] = orig_operand[i];
3606 for (i = 0; i < recog_data.n_dups; i++)
3607 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3610 /* Update all elimination pairs to reflect the status after the current
3611 insn. The changes we make were determined by the earlier call to
3612 elimination_effects.
3614 We also detect cases where register elimination cannot be done,
3615 namely, if a register would be both changed and referenced outside a MEM
3616 in the resulting insn since such an insn is often undefined and, even if
3617 not, we cannot know what meaning will be given to it. Note that it is
3618 valid to have a register used in an address in an insn that changes it
3619 (presumably with a pre- or post-increment or decrement).
3621 If anything changes, return nonzero. */
3623 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3625 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3626 ep->can_eliminate = 0;
3628 ep->ref_outside_mem = 0;
3630 if (ep->previous_offset != ep->offset)
3631 val = 1;
3634 done:
3635 /* If we changed something, perform elimination in REG_NOTES. This is
3636 needed even when REPLACE is zero because a REG_DEAD note might refer
3637 to a register that we eliminate and could cause a different number
3638 of spill registers to be needed in the final reload pass than in
3639 the pre-passes. */
3640 if (val && REG_NOTES (insn) != 0)
3641 REG_NOTES (insn)
3642 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3643 false);
3645 return val;
3648 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3649 register allocator. INSN is the instruction we need to examine, we perform
3650 eliminations in its operands and record cases where eliminating a reg with
3651 an invariant equivalence would add extra cost. */
3653 static void
3654 elimination_costs_in_insn (rtx_insn *insn)
3656 int icode = recog_memoized (insn);
3657 rtx old_body = PATTERN (insn);
3658 int insn_is_asm = asm_noperands (old_body) >= 0;
3659 rtx old_set = single_set (insn);
3660 int i;
3661 rtx orig_operand[MAX_RECOG_OPERANDS];
3662 rtx orig_dup[MAX_RECOG_OPERANDS];
3663 struct elim_table *ep;
3664 rtx plus_src, plus_cst_src;
3665 bool sets_reg_p;
3667 if (! insn_is_asm && icode < 0)
3669 gcc_assert (DEBUG_INSN_P (insn)
3670 || GET_CODE (PATTERN (insn)) == USE
3671 || GET_CODE (PATTERN (insn)) == CLOBBER
3672 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3673 return;
3676 if (old_set != 0 && REG_P (SET_DEST (old_set))
3677 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3679 /* Check for setting an eliminable register. */
3680 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3681 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3682 return;
3685 /* We allow one special case which happens to work on all machines we
3686 currently support: a single set with the source or a REG_EQUAL
3687 note being a PLUS of an eliminable register and a constant. */
3688 plus_src = plus_cst_src = 0;
3689 sets_reg_p = false;
3690 if (old_set && REG_P (SET_DEST (old_set)))
3692 sets_reg_p = true;
3693 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3694 plus_src = SET_SRC (old_set);
3695 /* First see if the source is of the form (plus (...) CST). */
3696 if (plus_src
3697 && CONST_INT_P (XEXP (plus_src, 1)))
3698 plus_cst_src = plus_src;
3699 else if (REG_P (SET_SRC (old_set))
3700 || plus_src)
3702 /* Otherwise, see if we have a REG_EQUAL note of the form
3703 (plus (...) CST). */
3704 rtx links;
3705 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3707 if ((REG_NOTE_KIND (links) == REG_EQUAL
3708 || REG_NOTE_KIND (links) == REG_EQUIV)
3709 && GET_CODE (XEXP (links, 0)) == PLUS
3710 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3712 plus_cst_src = XEXP (links, 0);
3713 break;
3719 /* Determine the effects of this insn on elimination offsets. */
3720 elimination_effects (old_body, VOIDmode);
3722 /* Eliminate all eliminable registers occurring in operands that
3723 can be handled by reload. */
3724 extract_insn (insn);
3725 for (i = 0; i < recog_data.n_dups; i++)
3726 orig_dup[i] = *recog_data.dup_loc[i];
3728 for (i = 0; i < recog_data.n_operands; i++)
3730 orig_operand[i] = recog_data.operand[i];
3732 /* For an asm statement, every operand is eliminable. */
3733 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3735 bool is_set_src, in_plus;
3737 /* Check for setting a register that we know about. */
3738 if (recog_data.operand_type[i] != OP_IN
3739 && REG_P (orig_operand[i]))
3741 /* If we are assigning to a register that can be eliminated, it
3742 must be as part of a PARALLEL, since the code above handles
3743 single SETs. We must indicate that we can no longer
3744 eliminate this reg. */
3745 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3746 ep++)
3747 if (ep->from_rtx == orig_operand[i])
3748 ep->can_eliminate = 0;
3751 /* Companion to the above plus substitution, we can allow
3752 invariants as the source of a plain move. */
3753 is_set_src = false;
3754 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3755 is_set_src = true;
3756 if (is_set_src && !sets_reg_p)
3757 note_reg_elim_costly (SET_SRC (old_set), insn);
3758 in_plus = false;
3759 if (plus_src && sets_reg_p
3760 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3761 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3762 in_plus = true;
3764 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3765 NULL_RTX,
3766 is_set_src || in_plus, true);
3767 /* Terminate the search in check_eliminable_occurrences at
3768 this point. */
3769 *recog_data.operand_loc[i] = 0;
3773 for (i = 0; i < recog_data.n_dups; i++)
3774 *recog_data.dup_loc[i]
3775 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3777 /* If any eliminable remain, they aren't eliminable anymore. */
3778 check_eliminable_occurrences (old_body);
3780 /* Restore the old body. */
3781 for (i = 0; i < recog_data.n_operands; i++)
3782 *recog_data.operand_loc[i] = orig_operand[i];
3783 for (i = 0; i < recog_data.n_dups; i++)
3784 *recog_data.dup_loc[i] = orig_dup[i];
3786 /* Update all elimination pairs to reflect the status after the current
3787 insn. The changes we make were determined by the earlier call to
3788 elimination_effects. */
3790 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3792 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3793 ep->can_eliminate = 0;
3795 ep->ref_outside_mem = 0;
3798 return;
3801 /* Loop through all elimination pairs.
3802 Recalculate the number not at initial offset.
3804 Compute the maximum offset (minimum offset if the stack does not
3805 grow downward) for each elimination pair. */
3807 static void
3808 update_eliminable_offsets (void)
3810 struct elim_table *ep;
3812 num_not_at_initial_offset = 0;
3813 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3815 ep->previous_offset = ep->offset;
3816 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3817 num_not_at_initial_offset++;
3821 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3822 replacement we currently believe is valid, mark it as not eliminable if X
3823 modifies DEST in any way other than by adding a constant integer to it.
3825 If DEST is the frame pointer, we do nothing because we assume that
3826 all assignments to the hard frame pointer are nonlocal gotos and are being
3827 done at a time when they are valid and do not disturb anything else.
3828 Some machines want to eliminate a fake argument pointer with either the
3829 frame or stack pointer. Assignments to the hard frame pointer must not
3830 prevent this elimination.
3832 Called via note_stores from reload before starting its passes to scan
3833 the insns of the function. */
3835 static void
3836 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3838 unsigned int i;
3840 /* A SUBREG of a hard register here is just changing its mode. We should
3841 not see a SUBREG of an eliminable hard register, but check just in
3842 case. */
3843 if (GET_CODE (dest) == SUBREG)
3844 dest = SUBREG_REG (dest);
3846 if (dest == hard_frame_pointer_rtx)
3847 return;
3849 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3850 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3851 && (GET_CODE (x) != SET
3852 || GET_CODE (SET_SRC (x)) != PLUS
3853 || XEXP (SET_SRC (x), 0) != dest
3854 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3856 reg_eliminate[i].can_eliminate_previous
3857 = reg_eliminate[i].can_eliminate = 0;
3858 num_eliminable--;
3862 /* Verify that the initial elimination offsets did not change since the
3863 last call to set_initial_elim_offsets. This is used to catch cases
3864 where something illegal happened during reload_as_needed that could
3865 cause incorrect code to be generated if we did not check for it. */
3867 static bool
3868 verify_initial_elim_offsets (void)
3870 HOST_WIDE_INT t;
3872 if (!num_eliminable)
3873 return true;
3875 #ifdef ELIMINABLE_REGS
3877 struct elim_table *ep;
3879 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3881 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3882 if (t != ep->initial_offset)
3883 return false;
3886 #else
3887 INITIAL_FRAME_POINTER_OFFSET (t);
3888 if (t != reg_eliminate[0].initial_offset)
3889 return false;
3890 #endif
3892 return true;
3895 /* Reset all offsets on eliminable registers to their initial values. */
3897 static void
3898 set_initial_elim_offsets (void)
3900 struct elim_table *ep = reg_eliminate;
3902 #ifdef ELIMINABLE_REGS
3903 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3905 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3906 ep->previous_offset = ep->offset = ep->initial_offset;
3908 #else
3909 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3910 ep->previous_offset = ep->offset = ep->initial_offset;
3911 #endif
3913 num_not_at_initial_offset = 0;
3916 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3918 static void
3919 set_initial_eh_label_offset (rtx label)
3921 set_label_offsets (label, NULL, 1);
3924 /* Initialize the known label offsets.
3925 Set a known offset for each forced label to be at the initial offset
3926 of each elimination. We do this because we assume that all
3927 computed jumps occur from a location where each elimination is
3928 at its initial offset.
3929 For all other labels, show that we don't know the offsets. */
3931 static void
3932 set_initial_label_offsets (void)
3934 memset (offsets_known_at, 0, num_labels);
3936 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3937 if (x->insn ())
3938 set_label_offsets (x->insn (), NULL, 1);
3940 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3941 if (x->insn ())
3942 set_label_offsets (x->insn (), NULL, 1);
3944 for_each_eh_label (set_initial_eh_label_offset);
3947 /* Set all elimination offsets to the known values for the code label given
3948 by INSN. */
3950 static void
3951 set_offsets_for_label (rtx_insn *insn)
3953 unsigned int i;
3954 int label_nr = CODE_LABEL_NUMBER (insn);
3955 struct elim_table *ep;
3957 num_not_at_initial_offset = 0;
3958 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3960 ep->offset = ep->previous_offset
3961 = offsets_at[label_nr - first_label_num][i];
3962 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3963 num_not_at_initial_offset++;
3967 /* See if anything that happened changes which eliminations are valid.
3968 For example, on the SPARC, whether or not the frame pointer can
3969 be eliminated can depend on what registers have been used. We need
3970 not check some conditions again (such as flag_omit_frame_pointer)
3971 since they can't have changed. */
3973 static void
3974 update_eliminables (HARD_REG_SET *pset)
3976 int previous_frame_pointer_needed = frame_pointer_needed;
3977 struct elim_table *ep;
3979 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3980 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3981 && targetm.frame_pointer_required ())
3982 #ifdef ELIMINABLE_REGS
3983 || ! targetm.can_eliminate (ep->from, ep->to)
3984 #endif
3986 ep->can_eliminate = 0;
3988 /* Look for the case where we have discovered that we can't replace
3989 register A with register B and that means that we will now be
3990 trying to replace register A with register C. This means we can
3991 no longer replace register C with register B and we need to disable
3992 such an elimination, if it exists. This occurs often with A == ap,
3993 B == sp, and C == fp. */
3995 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3997 struct elim_table *op;
3998 int new_to = -1;
4000 if (! ep->can_eliminate && ep->can_eliminate_previous)
4002 /* Find the current elimination for ep->from, if there is a
4003 new one. */
4004 for (op = reg_eliminate;
4005 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4006 if (op->from == ep->from && op->can_eliminate)
4008 new_to = op->to;
4009 break;
4012 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
4013 disable it. */
4014 for (op = reg_eliminate;
4015 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4016 if (op->from == new_to && op->to == ep->to)
4017 op->can_eliminate = 0;
4021 /* See if any registers that we thought we could eliminate the previous
4022 time are no longer eliminable. If so, something has changed and we
4023 must spill the register. Also, recompute the number of eliminable
4024 registers and see if the frame pointer is needed; it is if there is
4025 no elimination of the frame pointer that we can perform. */
4027 frame_pointer_needed = 1;
4028 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4030 if (ep->can_eliminate
4031 && ep->from == FRAME_POINTER_REGNUM
4032 && ep->to != HARD_FRAME_POINTER_REGNUM
4033 && (! SUPPORTS_STACK_ALIGNMENT
4034 || ! crtl->stack_realign_needed))
4035 frame_pointer_needed = 0;
4037 if (! ep->can_eliminate && ep->can_eliminate_previous)
4039 ep->can_eliminate_previous = 0;
4040 SET_HARD_REG_BIT (*pset, ep->from);
4041 num_eliminable--;
4045 /* If we didn't need a frame pointer last time, but we do now, spill
4046 the hard frame pointer. */
4047 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4048 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4051 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4052 Return true iff a register was spilled. */
4054 static bool
4055 update_eliminables_and_spill (void)
4057 int i;
4058 bool did_spill = false;
4059 HARD_REG_SET to_spill;
4060 CLEAR_HARD_REG_SET (to_spill);
4061 update_eliminables (&to_spill);
4062 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4064 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4065 if (TEST_HARD_REG_BIT (to_spill, i))
4067 spill_hard_reg (i, 1);
4068 did_spill = true;
4070 /* Regardless of the state of spills, if we previously had
4071 a register that we thought we could eliminate, but now can
4072 not eliminate, we must run another pass.
4074 Consider pseudos which have an entry in reg_equiv_* which
4075 reference an eliminable register. We must make another pass
4076 to update reg_equiv_* so that we do not substitute in the
4077 old value from when we thought the elimination could be
4078 performed. */
4080 return did_spill;
4083 /* Return true if X is used as the target register of an elimination. */
4085 bool
4086 elimination_target_reg_p (rtx x)
4088 struct elim_table *ep;
4090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4091 if (ep->to_rtx == x && ep->can_eliminate)
4092 return true;
4094 return false;
4097 /* Initialize the table of registers to eliminate.
4098 Pre-condition: global flag frame_pointer_needed has been set before
4099 calling this function. */
4101 static void
4102 init_elim_table (void)
4104 struct elim_table *ep;
4105 #ifdef ELIMINABLE_REGS
4106 const struct elim_table_1 *ep1;
4107 #endif
4109 if (!reg_eliminate)
4110 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4112 num_eliminable = 0;
4114 #ifdef ELIMINABLE_REGS
4115 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4116 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4118 ep->from = ep1->from;
4119 ep->to = ep1->to;
4120 ep->can_eliminate = ep->can_eliminate_previous
4121 = (targetm.can_eliminate (ep->from, ep->to)
4122 && ! (ep->to == STACK_POINTER_REGNUM
4123 && frame_pointer_needed
4124 && (! SUPPORTS_STACK_ALIGNMENT
4125 || ! stack_realign_fp)));
4127 #else
4128 reg_eliminate[0].from = reg_eliminate_1[0].from;
4129 reg_eliminate[0].to = reg_eliminate_1[0].to;
4130 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4131 = ! frame_pointer_needed;
4132 #endif
4134 /* Count the number of eliminable registers and build the FROM and TO
4135 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4136 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4137 We depend on this. */
4138 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4140 num_eliminable += ep->can_eliminate;
4141 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4142 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4146 /* Find all the pseudo registers that didn't get hard regs
4147 but do have known equivalent constants or memory slots.
4148 These include parameters (known equivalent to parameter slots)
4149 and cse'd or loop-moved constant memory addresses.
4151 Record constant equivalents in reg_equiv_constant
4152 so they will be substituted by find_reloads.
4153 Record memory equivalents in reg_mem_equiv so they can
4154 be substituted eventually by altering the REG-rtx's. */
4156 static void
4157 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4159 int i;
4160 rtx_insn *insn;
4162 grow_reg_equivs ();
4163 if (do_subregs)
4164 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4165 else
4166 reg_max_ref_width = NULL;
4168 num_eliminable_invariants = 0;
4170 first_label_num = get_first_label_num ();
4171 num_labels = max_label_num () - first_label_num;
4173 /* Allocate the tables used to store offset information at labels. */
4174 offsets_known_at = XNEWVEC (char, num_labels);
4175 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4177 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4178 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4179 find largest such for each pseudo. FIRST is the head of the insn
4180 list. */
4182 for (insn = first; insn; insn = NEXT_INSN (insn))
4184 rtx set = single_set (insn);
4186 /* We may introduce USEs that we want to remove at the end, so
4187 we'll mark them with QImode. Make sure there are no
4188 previously-marked insns left by say regmove. */
4189 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4190 && GET_MODE (insn) != VOIDmode)
4191 PUT_MODE (insn, VOIDmode);
4193 if (do_subregs && NONDEBUG_INSN_P (insn))
4194 scan_paradoxical_subregs (PATTERN (insn));
4196 if (set != 0 && REG_P (SET_DEST (set)))
4198 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4199 rtx x;
4201 if (! note)
4202 continue;
4204 i = REGNO (SET_DEST (set));
4205 x = XEXP (note, 0);
4207 if (i <= LAST_VIRTUAL_REGISTER)
4208 continue;
4210 /* If flag_pic and we have constant, verify it's legitimate. */
4211 if (!CONSTANT_P (x)
4212 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4214 /* It can happen that a REG_EQUIV note contains a MEM
4215 that is not a legitimate memory operand. As later
4216 stages of reload assume that all addresses found
4217 in the reg_equiv_* arrays were originally legitimate,
4218 we ignore such REG_EQUIV notes. */
4219 if (memory_operand (x, VOIDmode))
4221 /* Always unshare the equivalence, so we can
4222 substitute into this insn without touching the
4223 equivalence. */
4224 reg_equiv_memory_loc (i) = copy_rtx (x);
4226 else if (function_invariant_p (x))
4228 machine_mode mode;
4230 mode = GET_MODE (SET_DEST (set));
4231 if (GET_CODE (x) == PLUS)
4233 /* This is PLUS of frame pointer and a constant,
4234 and might be shared. Unshare it. */
4235 reg_equiv_invariant (i) = copy_rtx (x);
4236 num_eliminable_invariants++;
4238 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4240 reg_equiv_invariant (i) = x;
4241 num_eliminable_invariants++;
4243 else if (targetm.legitimate_constant_p (mode, x))
4244 reg_equiv_constant (i) = x;
4245 else
4247 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4248 if (! reg_equiv_memory_loc (i))
4249 reg_equiv_init (i) = NULL;
4252 else
4254 reg_equiv_init (i) = NULL;
4255 continue;
4258 else
4259 reg_equiv_init (i) = NULL;
4263 if (dump_file)
4264 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4265 if (reg_equiv_init (i))
4267 fprintf (dump_file, "init_insns for %u: ", i);
4268 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4269 fprintf (dump_file, "\n");
4273 /* Indicate that we no longer have known memory locations or constants.
4274 Free all data involved in tracking these. */
4276 static void
4277 free_reg_equiv (void)
4279 int i;
4281 free (offsets_known_at);
4282 free (offsets_at);
4283 offsets_at = 0;
4284 offsets_known_at = 0;
4286 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4287 if (reg_equiv_alt_mem_list (i))
4288 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4289 vec_free (reg_equivs);
4292 /* Kick all pseudos out of hard register REGNO.
4294 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4295 because we found we can't eliminate some register. In the case, no pseudos
4296 are allowed to be in the register, even if they are only in a block that
4297 doesn't require spill registers, unlike the case when we are spilling this
4298 hard reg to produce another spill register.
4300 Return nonzero if any pseudos needed to be kicked out. */
4302 static void
4303 spill_hard_reg (unsigned int regno, int cant_eliminate)
4305 int i;
4307 if (cant_eliminate)
4309 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4310 df_set_regs_ever_live (regno, true);
4313 /* Spill every pseudo reg that was allocated to this reg
4314 or to something that overlaps this reg. */
4316 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4317 if (reg_renumber[i] >= 0
4318 && (unsigned int) reg_renumber[i] <= regno
4319 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4320 SET_REGNO_REG_SET (&spilled_pseudos, i);
4323 /* After find_reload_regs has been run for all insn that need reloads,
4324 and/or spill_hard_regs was called, this function is used to actually
4325 spill pseudo registers and try to reallocate them. It also sets up the
4326 spill_regs array for use by choose_reload_regs. */
4328 static int
4329 finish_spills (int global)
4331 struct insn_chain *chain;
4332 int something_changed = 0;
4333 unsigned i;
4334 reg_set_iterator rsi;
4336 /* Build the spill_regs array for the function. */
4337 /* If there are some registers still to eliminate and one of the spill regs
4338 wasn't ever used before, additional stack space may have to be
4339 allocated to store this register. Thus, we may have changed the offset
4340 between the stack and frame pointers, so mark that something has changed.
4342 One might think that we need only set VAL to 1 if this is a call-used
4343 register. However, the set of registers that must be saved by the
4344 prologue is not identical to the call-used set. For example, the
4345 register used by the call insn for the return PC is a call-used register,
4346 but must be saved by the prologue. */
4348 n_spills = 0;
4349 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4350 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4352 spill_reg_order[i] = n_spills;
4353 spill_regs[n_spills++] = i;
4354 if (num_eliminable && ! df_regs_ever_live_p (i))
4355 something_changed = 1;
4356 df_set_regs_ever_live (i, true);
4358 else
4359 spill_reg_order[i] = -1;
4361 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4362 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4364 /* Record the current hard register the pseudo is allocated to
4365 in pseudo_previous_regs so we avoid reallocating it to the
4366 same hard reg in a later pass. */
4367 gcc_assert (reg_renumber[i] >= 0);
4369 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4370 /* Mark it as no longer having a hard register home. */
4371 reg_renumber[i] = -1;
4372 if (ira_conflicts_p)
4373 /* Inform IRA about the change. */
4374 ira_mark_allocation_change (i);
4375 /* We will need to scan everything again. */
4376 something_changed = 1;
4379 /* Retry global register allocation if possible. */
4380 if (global && ira_conflicts_p)
4382 unsigned int n;
4384 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4385 /* For every insn that needs reloads, set the registers used as spill
4386 regs in pseudo_forbidden_regs for every pseudo live across the
4387 insn. */
4388 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4390 EXECUTE_IF_SET_IN_REG_SET
4391 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4393 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4394 chain->used_spill_regs);
4396 EXECUTE_IF_SET_IN_REG_SET
4397 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4399 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4400 chain->used_spill_regs);
4404 /* Retry allocating the pseudos spilled in IRA and the
4405 reload. For each reg, merge the various reg sets that
4406 indicate which hard regs can't be used, and call
4407 ira_reassign_pseudos. */
4408 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4409 if (reg_old_renumber[i] != reg_renumber[i])
4411 if (reg_renumber[i] < 0)
4412 temp_pseudo_reg_arr[n++] = i;
4413 else
4414 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4416 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4417 bad_spill_regs_global,
4418 pseudo_forbidden_regs, pseudo_previous_regs,
4419 &spilled_pseudos))
4420 something_changed = 1;
4422 /* Fix up the register information in the insn chain.
4423 This involves deleting those of the spilled pseudos which did not get
4424 a new hard register home from the live_{before,after} sets. */
4425 for (chain = reload_insn_chain; chain; chain = chain->next)
4427 HARD_REG_SET used_by_pseudos;
4428 HARD_REG_SET used_by_pseudos2;
4430 if (! ira_conflicts_p)
4432 /* Don't do it for IRA because IRA and the reload still can
4433 assign hard registers to the spilled pseudos on next
4434 reload iterations. */
4435 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4436 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4438 /* Mark any unallocated hard regs as available for spills. That
4439 makes inheritance work somewhat better. */
4440 if (chain->need_reload)
4442 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4443 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4444 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4446 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4447 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4448 /* Value of chain->used_spill_regs from previous iteration
4449 may be not included in the value calculated here because
4450 of possible removing caller-saves insns (see function
4451 delete_caller_save_insns. */
4452 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4453 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4457 CLEAR_REG_SET (&changed_allocation_pseudos);
4458 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4459 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4461 int regno = reg_renumber[i];
4462 if (reg_old_renumber[i] == regno)
4463 continue;
4465 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4467 alter_reg (i, reg_old_renumber[i], false);
4468 reg_old_renumber[i] = regno;
4469 if (dump_file)
4471 if (regno == -1)
4472 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4473 else
4474 fprintf (dump_file, " Register %d now in %d.\n\n",
4475 i, reg_renumber[i]);
4479 return something_changed;
4482 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4484 static void
4485 scan_paradoxical_subregs (rtx x)
4487 int i;
4488 const char *fmt;
4489 enum rtx_code code = GET_CODE (x);
4491 switch (code)
4493 case REG:
4494 case CONST:
4495 case SYMBOL_REF:
4496 case LABEL_REF:
4497 CASE_CONST_ANY:
4498 case CC0:
4499 case PC:
4500 case USE:
4501 case CLOBBER:
4502 return;
4504 case SUBREG:
4505 if (REG_P (SUBREG_REG (x))
4506 && (GET_MODE_SIZE (GET_MODE (x))
4507 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4509 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4510 = GET_MODE_SIZE (GET_MODE (x));
4511 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4513 return;
4515 default:
4516 break;
4519 fmt = GET_RTX_FORMAT (code);
4520 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4522 if (fmt[i] == 'e')
4523 scan_paradoxical_subregs (XEXP (x, i));
4524 else if (fmt[i] == 'E')
4526 int j;
4527 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4528 scan_paradoxical_subregs (XVECEXP (x, i, j));
4533 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4534 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4535 and apply the corresponding narrowing subreg to *OTHER_PTR.
4536 Return true if the operands were changed, false otherwise. */
4538 static bool
4539 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4541 rtx op, inner, other, tem;
4543 op = *op_ptr;
4544 if (!paradoxical_subreg_p (op))
4545 return false;
4546 inner = SUBREG_REG (op);
4548 other = *other_ptr;
4549 tem = gen_lowpart_common (GET_MODE (inner), other);
4550 if (!tem)
4551 return false;
4553 /* If the lowpart operation turned a hard register into a subreg,
4554 rather than simplifying it to another hard register, then the
4555 mode change cannot be properly represented. For example, OTHER
4556 might be valid in its current mode, but not in the new one. */
4557 if (GET_CODE (tem) == SUBREG
4558 && REG_P (other)
4559 && HARD_REGISTER_P (other))
4560 return false;
4562 *op_ptr = inner;
4563 *other_ptr = tem;
4564 return true;
4567 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4568 examine all of the reload insns between PREV and NEXT exclusive, and
4569 annotate all that may trap. */
4571 static void
4572 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4574 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4575 if (note == NULL)
4576 return;
4577 if (!insn_could_throw_p (insn))
4578 remove_note (insn, note);
4579 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4582 /* Reload pseudo-registers into hard regs around each insn as needed.
4583 Additional register load insns are output before the insn that needs it
4584 and perhaps store insns after insns that modify the reloaded pseudo reg.
4586 reg_last_reload_reg and reg_reloaded_contents keep track of
4587 which registers are already available in reload registers.
4588 We update these for the reloads that we perform,
4589 as the insns are scanned. */
4591 static void
4592 reload_as_needed (int live_known)
4594 struct insn_chain *chain;
4595 #if defined (AUTO_INC_DEC)
4596 int i;
4597 #endif
4598 rtx_note *marker;
4600 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4601 memset (spill_reg_store, 0, sizeof spill_reg_store);
4602 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4603 INIT_REG_SET (&reg_has_output_reload);
4604 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4605 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4607 set_initial_elim_offsets ();
4609 /* Generate a marker insn that we will move around. */
4610 marker = emit_note (NOTE_INSN_DELETED);
4611 unlink_insn_chain (marker, marker);
4613 for (chain = reload_insn_chain; chain; chain = chain->next)
4615 rtx_insn *prev = 0;
4616 rtx_insn *insn = chain->insn;
4617 rtx_insn *old_next = NEXT_INSN (insn);
4618 #ifdef AUTO_INC_DEC
4619 rtx_insn *old_prev = PREV_INSN (insn);
4620 #endif
4622 if (will_delete_init_insn_p (insn))
4623 continue;
4625 /* If we pass a label, copy the offsets from the label information
4626 into the current offsets of each elimination. */
4627 if (LABEL_P (insn))
4628 set_offsets_for_label (insn);
4630 else if (INSN_P (insn))
4632 regset_head regs_to_forget;
4633 INIT_REG_SET (&regs_to_forget);
4634 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4636 /* If this is a USE and CLOBBER of a MEM, ensure that any
4637 references to eliminable registers have been removed. */
4639 if ((GET_CODE (PATTERN (insn)) == USE
4640 || GET_CODE (PATTERN (insn)) == CLOBBER)
4641 && MEM_P (XEXP (PATTERN (insn), 0)))
4642 XEXP (XEXP (PATTERN (insn), 0), 0)
4643 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4644 GET_MODE (XEXP (PATTERN (insn), 0)),
4645 NULL_RTX);
4647 /* If we need to do register elimination processing, do so.
4648 This might delete the insn, in which case we are done. */
4649 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4651 eliminate_regs_in_insn (insn, 1);
4652 if (NOTE_P (insn))
4654 update_eliminable_offsets ();
4655 CLEAR_REG_SET (&regs_to_forget);
4656 continue;
4660 /* If need_elim is nonzero but need_reload is zero, one might think
4661 that we could simply set n_reloads to 0. However, find_reloads
4662 could have done some manipulation of the insn (such as swapping
4663 commutative operands), and these manipulations are lost during
4664 the first pass for every insn that needs register elimination.
4665 So the actions of find_reloads must be redone here. */
4667 if (! chain->need_elim && ! chain->need_reload
4668 && ! chain->need_operand_change)
4669 n_reloads = 0;
4670 /* First find the pseudo regs that must be reloaded for this insn.
4671 This info is returned in the tables reload_... (see reload.h).
4672 Also modify the body of INSN by substituting RELOAD
4673 rtx's for those pseudo regs. */
4674 else
4676 CLEAR_REG_SET (&reg_has_output_reload);
4677 CLEAR_HARD_REG_SET (reg_is_output_reload);
4679 find_reloads (insn, 1, spill_indirect_levels, live_known,
4680 spill_reg_order);
4683 if (n_reloads > 0)
4685 rtx_insn *next = NEXT_INSN (insn);
4687 /* ??? PREV can get deleted by reload inheritance.
4688 Work around this by emitting a marker note. */
4689 prev = PREV_INSN (insn);
4690 reorder_insns_nobb (marker, marker, prev);
4692 /* Now compute which reload regs to reload them into. Perhaps
4693 reusing reload regs from previous insns, or else output
4694 load insns to reload them. Maybe output store insns too.
4695 Record the choices of reload reg in reload_reg_rtx. */
4696 choose_reload_regs (chain);
4698 /* Generate the insns to reload operands into or out of
4699 their reload regs. */
4700 emit_reload_insns (chain);
4702 /* Substitute the chosen reload regs from reload_reg_rtx
4703 into the insn's body (or perhaps into the bodies of other
4704 load and store insn that we just made for reloading
4705 and that we moved the structure into). */
4706 subst_reloads (insn);
4708 prev = PREV_INSN (marker);
4709 unlink_insn_chain (marker, marker);
4711 /* Adjust the exception region notes for loads and stores. */
4712 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4713 fixup_eh_region_note (insn, prev, next);
4715 /* Adjust the location of REG_ARGS_SIZE. */
4716 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4717 if (p)
4719 remove_note (insn, p);
4720 fixup_args_size_notes (prev, PREV_INSN (next),
4721 INTVAL (XEXP (p, 0)));
4724 /* If this was an ASM, make sure that all the reload insns
4725 we have generated are valid. If not, give an error
4726 and delete them. */
4727 if (asm_noperands (PATTERN (insn)) >= 0)
4728 for (rtx_insn *p = NEXT_INSN (prev);
4729 p != next;
4730 p = NEXT_INSN (p))
4731 if (p != insn && INSN_P (p)
4732 && GET_CODE (PATTERN (p)) != USE
4733 && (recog_memoized (p) < 0
4734 || (extract_insn (p),
4735 !(constrain_operands (1,
4736 get_enabled_alternatives (p))))))
4738 error_for_asm (insn,
4739 "%<asm%> operand requires "
4740 "impossible reload");
4741 delete_insn (p);
4745 if (num_eliminable && chain->need_elim)
4746 update_eliminable_offsets ();
4748 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4749 is no longer validly lying around to save a future reload.
4750 Note that this does not detect pseudos that were reloaded
4751 for this insn in order to be stored in
4752 (obeying register constraints). That is correct; such reload
4753 registers ARE still valid. */
4754 forget_marked_reloads (&regs_to_forget);
4755 CLEAR_REG_SET (&regs_to_forget);
4757 /* There may have been CLOBBER insns placed after INSN. So scan
4758 between INSN and NEXT and use them to forget old reloads. */
4759 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4760 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4761 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4763 #ifdef AUTO_INC_DEC
4764 /* Likewise for regs altered by auto-increment in this insn.
4765 REG_INC notes have been changed by reloading:
4766 find_reloads_address_1 records substitutions for them,
4767 which have been performed by subst_reloads above. */
4768 for (i = n_reloads - 1; i >= 0; i--)
4770 rtx in_reg = rld[i].in_reg;
4771 if (in_reg)
4773 enum rtx_code code = GET_CODE (in_reg);
4774 /* PRE_INC / PRE_DEC will have the reload register ending up
4775 with the same value as the stack slot, but that doesn't
4776 hold true for POST_INC / POST_DEC. Either we have to
4777 convert the memory access to a true POST_INC / POST_DEC,
4778 or we can't use the reload register for inheritance. */
4779 if ((code == POST_INC || code == POST_DEC)
4780 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4781 REGNO (rld[i].reg_rtx))
4782 /* Make sure it is the inc/dec pseudo, and not
4783 some other (e.g. output operand) pseudo. */
4784 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4785 == REGNO (XEXP (in_reg, 0))))
4788 rtx reload_reg = rld[i].reg_rtx;
4789 machine_mode mode = GET_MODE (reload_reg);
4790 int n = 0;
4791 rtx_insn *p;
4793 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4795 /* We really want to ignore REG_INC notes here, so
4796 use PATTERN (p) as argument to reg_set_p . */
4797 if (reg_set_p (reload_reg, PATTERN (p)))
4798 break;
4799 n = count_occurrences (PATTERN (p), reload_reg, 0);
4800 if (! n)
4801 continue;
4802 if (n == 1)
4804 rtx replace_reg
4805 = gen_rtx_fmt_e (code, mode, reload_reg);
4807 validate_replace_rtx_group (reload_reg,
4808 replace_reg, p);
4809 n = verify_changes (0);
4811 /* We must also verify that the constraints
4812 are met after the replacement. Make sure
4813 extract_insn is only called for an insn
4814 where the replacements were found to be
4815 valid so far. */
4816 if (n)
4818 extract_insn (p);
4819 n = constrain_operands (1,
4820 get_enabled_alternatives (p));
4823 /* If the constraints were not met, then
4824 undo the replacement, else confirm it. */
4825 if (!n)
4826 cancel_changes (0);
4827 else
4828 confirm_change_group ();
4830 break;
4832 if (n == 1)
4834 add_reg_note (p, REG_INC, reload_reg);
4835 /* Mark this as having an output reload so that the
4836 REG_INC processing code below won't invalidate
4837 the reload for inheritance. */
4838 SET_HARD_REG_BIT (reg_is_output_reload,
4839 REGNO (reload_reg));
4840 SET_REGNO_REG_SET (&reg_has_output_reload,
4841 REGNO (XEXP (in_reg, 0)));
4843 else
4844 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4845 NULL);
4847 else if ((code == PRE_INC || code == PRE_DEC)
4848 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4849 REGNO (rld[i].reg_rtx))
4850 /* Make sure it is the inc/dec pseudo, and not
4851 some other (e.g. output operand) pseudo. */
4852 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4853 == REGNO (XEXP (in_reg, 0))))
4855 SET_HARD_REG_BIT (reg_is_output_reload,
4856 REGNO (rld[i].reg_rtx));
4857 SET_REGNO_REG_SET (&reg_has_output_reload,
4858 REGNO (XEXP (in_reg, 0)));
4860 else if (code == PRE_INC || code == PRE_DEC
4861 || code == POST_INC || code == POST_DEC)
4863 int in_regno = REGNO (XEXP (in_reg, 0));
4865 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4867 int in_hard_regno;
4868 bool forget_p = true;
4870 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4871 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4872 in_hard_regno))
4874 for (rtx_insn *x = (old_prev ?
4875 NEXT_INSN (old_prev) : insn);
4876 x != old_next;
4877 x = NEXT_INSN (x))
4878 if (x == reg_reloaded_insn[in_hard_regno])
4880 forget_p = false;
4881 break;
4884 /* If for some reasons, we didn't set up
4885 reg_last_reload_reg in this insn,
4886 invalidate inheritance from previous
4887 insns for the incremented/decremented
4888 register. Such registers will be not in
4889 reg_has_output_reload. Invalidate it
4890 also if the corresponding element in
4891 reg_reloaded_insn is also
4892 invalidated. */
4893 if (forget_p)
4894 forget_old_reloads_1 (XEXP (in_reg, 0),
4895 NULL_RTX, NULL);
4900 /* If a pseudo that got a hard register is auto-incremented,
4901 we must purge records of copying it into pseudos without
4902 hard registers. */
4903 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4904 if (REG_NOTE_KIND (x) == REG_INC)
4906 /* See if this pseudo reg was reloaded in this insn.
4907 If so, its last-reload info is still valid
4908 because it is based on this insn's reload. */
4909 for (i = 0; i < n_reloads; i++)
4910 if (rld[i].out == XEXP (x, 0))
4911 break;
4913 if (i == n_reloads)
4914 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4916 #endif
4918 /* A reload reg's contents are unknown after a label. */
4919 if (LABEL_P (insn))
4920 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4922 /* Don't assume a reload reg is still good after a call insn
4923 if it is a call-used reg, or if it contains a value that will
4924 be partially clobbered by the call. */
4925 else if (CALL_P (insn))
4927 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4928 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4930 /* If this is a call to a setjmp-type function, we must not
4931 reuse any reload reg contents across the call; that will
4932 just be clobbered by other uses of the register in later
4933 code, before the longjmp. */
4934 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4935 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4939 /* Clean up. */
4940 free (reg_last_reload_reg);
4941 CLEAR_REG_SET (&reg_has_output_reload);
4944 /* Discard all record of any value reloaded from X,
4945 or reloaded in X from someplace else;
4946 unless X is an output reload reg of the current insn.
4948 X may be a hard reg (the reload reg)
4949 or it may be a pseudo reg that was reloaded from.
4951 When DATA is non-NULL just mark the registers in regset
4952 to be forgotten later. */
4954 static void
4955 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4956 void *data)
4958 unsigned int regno;
4959 unsigned int nr;
4960 regset regs = (regset) data;
4962 /* note_stores does give us subregs of hard regs,
4963 subreg_regno_offset requires a hard reg. */
4964 while (GET_CODE (x) == SUBREG)
4966 /* We ignore the subreg offset when calculating the regno,
4967 because we are using the entire underlying hard register
4968 below. */
4969 x = SUBREG_REG (x);
4972 if (!REG_P (x))
4973 return;
4975 regno = REGNO (x);
4977 if (regno >= FIRST_PSEUDO_REGISTER)
4978 nr = 1;
4979 else
4981 unsigned int i;
4983 nr = hard_regno_nregs[regno][GET_MODE (x)];
4984 /* Storing into a spilled-reg invalidates its contents.
4985 This can happen if a block-local pseudo is allocated to that reg
4986 and it wasn't spilled because this block's total need is 0.
4987 Then some insn might have an optional reload and use this reg. */
4988 if (!regs)
4989 for (i = 0; i < nr; i++)
4990 /* But don't do this if the reg actually serves as an output
4991 reload reg in the current instruction. */
4992 if (n_reloads == 0
4993 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4995 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4996 spill_reg_store[regno + i] = 0;
5000 if (regs)
5001 while (nr-- > 0)
5002 SET_REGNO_REG_SET (regs, regno + nr);
5003 else
5005 /* Since value of X has changed,
5006 forget any value previously copied from it. */
5008 while (nr-- > 0)
5009 /* But don't forget a copy if this is the output reload
5010 that establishes the copy's validity. */
5011 if (n_reloads == 0
5012 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
5013 reg_last_reload_reg[regno + nr] = 0;
5017 /* Forget the reloads marked in regset by previous function. */
5018 static void
5019 forget_marked_reloads (regset regs)
5021 unsigned int reg;
5022 reg_set_iterator rsi;
5023 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5025 if (reg < FIRST_PSEUDO_REGISTER
5026 /* But don't do this if the reg actually serves as an output
5027 reload reg in the current instruction. */
5028 && (n_reloads == 0
5029 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5031 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5032 spill_reg_store[reg] = 0;
5034 if (n_reloads == 0
5035 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5036 reg_last_reload_reg[reg] = 0;
5040 /* The following HARD_REG_SETs indicate when each hard register is
5041 used for a reload of various parts of the current insn. */
5043 /* If reg is unavailable for all reloads. */
5044 static HARD_REG_SET reload_reg_unavailable;
5045 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5046 static HARD_REG_SET reload_reg_used;
5047 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5048 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5049 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5050 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5051 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5052 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5053 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5054 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5055 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5056 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5057 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5058 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5059 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5060 static HARD_REG_SET reload_reg_used_in_op_addr;
5061 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5062 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5063 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5064 static HARD_REG_SET reload_reg_used_in_insn;
5065 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5066 static HARD_REG_SET reload_reg_used_in_other_addr;
5068 /* If reg is in use as a reload reg for any sort of reload. */
5069 static HARD_REG_SET reload_reg_used_at_all;
5071 /* If reg is use as an inherited reload. We just mark the first register
5072 in the group. */
5073 static HARD_REG_SET reload_reg_used_for_inherit;
5075 /* Records which hard regs are used in any way, either as explicit use or
5076 by being allocated to a pseudo during any point of the current insn. */
5077 static HARD_REG_SET reg_used_in_insn;
5079 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5080 TYPE. MODE is used to indicate how many consecutive regs are
5081 actually used. */
5083 static void
5084 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5085 machine_mode mode)
5087 switch (type)
5089 case RELOAD_OTHER:
5090 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5091 break;
5093 case RELOAD_FOR_INPUT_ADDRESS:
5094 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5095 break;
5097 case RELOAD_FOR_INPADDR_ADDRESS:
5098 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5099 break;
5101 case RELOAD_FOR_OUTPUT_ADDRESS:
5102 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5103 break;
5105 case RELOAD_FOR_OUTADDR_ADDRESS:
5106 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5107 break;
5109 case RELOAD_FOR_OPERAND_ADDRESS:
5110 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5111 break;
5113 case RELOAD_FOR_OPADDR_ADDR:
5114 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5115 break;
5117 case RELOAD_FOR_OTHER_ADDRESS:
5118 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5119 break;
5121 case RELOAD_FOR_INPUT:
5122 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5123 break;
5125 case RELOAD_FOR_OUTPUT:
5126 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5127 break;
5129 case RELOAD_FOR_INSN:
5130 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5131 break;
5134 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5137 /* Similarly, but show REGNO is no longer in use for a reload. */
5139 static void
5140 clear_reload_reg_in_use (unsigned int regno, int opnum,
5141 enum reload_type type, machine_mode mode)
5143 unsigned int nregs = hard_regno_nregs[regno][mode];
5144 unsigned int start_regno, end_regno, r;
5145 int i;
5146 /* A complication is that for some reload types, inheritance might
5147 allow multiple reloads of the same types to share a reload register.
5148 We set check_opnum if we have to check only reloads with the same
5149 operand number, and check_any if we have to check all reloads. */
5150 int check_opnum = 0;
5151 int check_any = 0;
5152 HARD_REG_SET *used_in_set;
5154 switch (type)
5156 case RELOAD_OTHER:
5157 used_in_set = &reload_reg_used;
5158 break;
5160 case RELOAD_FOR_INPUT_ADDRESS:
5161 used_in_set = &reload_reg_used_in_input_addr[opnum];
5162 break;
5164 case RELOAD_FOR_INPADDR_ADDRESS:
5165 check_opnum = 1;
5166 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5167 break;
5169 case RELOAD_FOR_OUTPUT_ADDRESS:
5170 used_in_set = &reload_reg_used_in_output_addr[opnum];
5171 break;
5173 case RELOAD_FOR_OUTADDR_ADDRESS:
5174 check_opnum = 1;
5175 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5176 break;
5178 case RELOAD_FOR_OPERAND_ADDRESS:
5179 used_in_set = &reload_reg_used_in_op_addr;
5180 break;
5182 case RELOAD_FOR_OPADDR_ADDR:
5183 check_any = 1;
5184 used_in_set = &reload_reg_used_in_op_addr_reload;
5185 break;
5187 case RELOAD_FOR_OTHER_ADDRESS:
5188 used_in_set = &reload_reg_used_in_other_addr;
5189 check_any = 1;
5190 break;
5192 case RELOAD_FOR_INPUT:
5193 used_in_set = &reload_reg_used_in_input[opnum];
5194 break;
5196 case RELOAD_FOR_OUTPUT:
5197 used_in_set = &reload_reg_used_in_output[opnum];
5198 break;
5200 case RELOAD_FOR_INSN:
5201 used_in_set = &reload_reg_used_in_insn;
5202 break;
5203 default:
5204 gcc_unreachable ();
5206 /* We resolve conflicts with remaining reloads of the same type by
5207 excluding the intervals of reload registers by them from the
5208 interval of freed reload registers. Since we only keep track of
5209 one set of interval bounds, we might have to exclude somewhat
5210 more than what would be necessary if we used a HARD_REG_SET here.
5211 But this should only happen very infrequently, so there should
5212 be no reason to worry about it. */
5214 start_regno = regno;
5215 end_regno = regno + nregs;
5216 if (check_opnum || check_any)
5218 for (i = n_reloads - 1; i >= 0; i--)
5220 if (rld[i].when_needed == type
5221 && (check_any || rld[i].opnum == opnum)
5222 && rld[i].reg_rtx)
5224 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5225 unsigned int conflict_end
5226 = end_hard_regno (rld[i].mode, conflict_start);
5228 /* If there is an overlap with the first to-be-freed register,
5229 adjust the interval start. */
5230 if (conflict_start <= start_regno && conflict_end > start_regno)
5231 start_regno = conflict_end;
5232 /* Otherwise, if there is a conflict with one of the other
5233 to-be-freed registers, adjust the interval end. */
5234 if (conflict_start > start_regno && conflict_start < end_regno)
5235 end_regno = conflict_start;
5240 for (r = start_regno; r < end_regno; r++)
5241 CLEAR_HARD_REG_BIT (*used_in_set, r);
5244 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5245 specified by OPNUM and TYPE. */
5247 static int
5248 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5250 int i;
5252 /* In use for a RELOAD_OTHER means it's not available for anything. */
5253 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5254 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5255 return 0;
5257 switch (type)
5259 case RELOAD_OTHER:
5260 /* In use for anything means we can't use it for RELOAD_OTHER. */
5261 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5262 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5263 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5264 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5265 return 0;
5267 for (i = 0; i < reload_n_operands; i++)
5268 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5269 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5270 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5271 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5272 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5273 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5274 return 0;
5276 return 1;
5278 case RELOAD_FOR_INPUT:
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5280 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5281 return 0;
5283 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5284 return 0;
5286 /* If it is used for some other input, can't use it. */
5287 for (i = 0; i < reload_n_operands; i++)
5288 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5289 return 0;
5291 /* If it is used in a later operand's address, can't use it. */
5292 for (i = opnum + 1; i < reload_n_operands; i++)
5293 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5294 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5295 return 0;
5297 return 1;
5299 case RELOAD_FOR_INPUT_ADDRESS:
5300 /* Can't use a register if it is used for an input address for this
5301 operand or used as an input in an earlier one. */
5302 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5303 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5304 return 0;
5306 for (i = 0; i < opnum; i++)
5307 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5308 return 0;
5310 return 1;
5312 case RELOAD_FOR_INPADDR_ADDRESS:
5313 /* Can't use a register if it is used for an input address
5314 for this operand or used as an input in an earlier
5315 one. */
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5317 return 0;
5319 for (i = 0; i < opnum; i++)
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5321 return 0;
5323 return 1;
5325 case RELOAD_FOR_OUTPUT_ADDRESS:
5326 /* Can't use a register if it is used for an output address for this
5327 operand or used as an output in this or a later operand. Note
5328 that multiple output operands are emitted in reverse order, so
5329 the conflicting ones are those with lower indices. */
5330 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5331 return 0;
5333 for (i = 0; i <= opnum; i++)
5334 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5335 return 0;
5337 return 1;
5339 case RELOAD_FOR_OUTADDR_ADDRESS:
5340 /* Can't use a register if it is used for an output address
5341 for this operand or used as an output in this or a
5342 later operand. Note that multiple output operands are
5343 emitted in reverse order, so the conflicting ones are
5344 those with lower indices. */
5345 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5346 return 0;
5348 for (i = 0; i <= opnum; i++)
5349 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5350 return 0;
5352 return 1;
5354 case RELOAD_FOR_OPERAND_ADDRESS:
5355 for (i = 0; i < reload_n_operands; i++)
5356 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5357 return 0;
5359 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5360 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5362 case RELOAD_FOR_OPADDR_ADDR:
5363 for (i = 0; i < reload_n_operands; i++)
5364 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5365 return 0;
5367 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5369 case RELOAD_FOR_OUTPUT:
5370 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5371 outputs, or an operand address for this or an earlier output.
5372 Note that multiple output operands are emitted in reverse order,
5373 so the conflicting ones are those with higher indices. */
5374 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5375 return 0;
5377 for (i = 0; i < reload_n_operands; i++)
5378 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5379 return 0;
5381 for (i = opnum; i < reload_n_operands; i++)
5382 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5384 return 0;
5386 return 1;
5388 case RELOAD_FOR_INSN:
5389 for (i = 0; i < reload_n_operands; i++)
5390 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5391 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5392 return 0;
5394 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5395 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5397 case RELOAD_FOR_OTHER_ADDRESS:
5398 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5400 default:
5401 gcc_unreachable ();
5405 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5406 the number RELOADNUM, is still available in REGNO at the end of the insn.
5408 We can assume that the reload reg was already tested for availability
5409 at the time it is needed, and we should not check this again,
5410 in case the reg has already been marked in use. */
5412 static int
5413 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5415 int opnum = rld[reloadnum].opnum;
5416 enum reload_type type = rld[reloadnum].when_needed;
5417 int i;
5419 /* See if there is a reload with the same type for this operand, using
5420 the same register. This case is not handled by the code below. */
5421 for (i = reloadnum + 1; i < n_reloads; i++)
5423 rtx reg;
5424 int nregs;
5426 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5427 continue;
5428 reg = rld[i].reg_rtx;
5429 if (reg == NULL_RTX)
5430 continue;
5431 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5432 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5433 return 0;
5436 switch (type)
5438 case RELOAD_OTHER:
5439 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5440 its value must reach the end. */
5441 return 1;
5443 /* If this use is for part of the insn,
5444 its value reaches if no subsequent part uses the same register.
5445 Just like the above function, don't try to do this with lots
5446 of fallthroughs. */
5448 case RELOAD_FOR_OTHER_ADDRESS:
5449 /* Here we check for everything else, since these don't conflict
5450 with anything else and everything comes later. */
5452 for (i = 0; i < reload_n_operands; i++)
5453 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5454 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5455 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5456 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5457 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5458 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5459 return 0;
5461 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5462 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5463 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5464 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5466 case RELOAD_FOR_INPUT_ADDRESS:
5467 case RELOAD_FOR_INPADDR_ADDRESS:
5468 /* Similar, except that we check only for this and subsequent inputs
5469 and the address of only subsequent inputs and we do not need
5470 to check for RELOAD_OTHER objects since they are known not to
5471 conflict. */
5473 for (i = opnum; i < reload_n_operands; i++)
5474 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5475 return 0;
5477 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5478 could be killed if the register is also used by reload with type
5479 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5480 if (type == RELOAD_FOR_INPADDR_ADDRESS
5481 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5482 return 0;
5484 for (i = opnum + 1; i < reload_n_operands; i++)
5485 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5486 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5487 return 0;
5489 for (i = 0; i < reload_n_operands; i++)
5490 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5491 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5492 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5493 return 0;
5495 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5496 return 0;
5498 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5499 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5500 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5502 case RELOAD_FOR_INPUT:
5503 /* Similar to input address, except we start at the next operand for
5504 both input and input address and we do not check for
5505 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5506 would conflict. */
5508 for (i = opnum + 1; i < reload_n_operands; i++)
5509 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5510 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5511 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5512 return 0;
5514 /* ... fall through ... */
5516 case RELOAD_FOR_OPERAND_ADDRESS:
5517 /* Check outputs and their addresses. */
5519 for (i = 0; i < reload_n_operands; i++)
5520 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5521 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5522 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5523 return 0;
5525 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5527 case RELOAD_FOR_OPADDR_ADDR:
5528 for (i = 0; i < reload_n_operands; i++)
5529 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5530 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5531 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5532 return 0;
5534 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5535 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5536 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5538 case RELOAD_FOR_INSN:
5539 /* These conflict with other outputs with RELOAD_OTHER. So
5540 we need only check for output addresses. */
5542 opnum = reload_n_operands;
5544 /* ... fall through ... */
5546 case RELOAD_FOR_OUTPUT:
5547 case RELOAD_FOR_OUTPUT_ADDRESS:
5548 case RELOAD_FOR_OUTADDR_ADDRESS:
5549 /* We already know these can't conflict with a later output. So the
5550 only thing to check are later output addresses.
5551 Note that multiple output operands are emitted in reverse order,
5552 so the conflicting ones are those with lower indices. */
5553 for (i = 0; i < opnum; i++)
5554 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5555 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5556 return 0;
5558 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5559 could be killed if the register is also used by reload with type
5560 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5561 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5562 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5563 return 0;
5565 return 1;
5567 default:
5568 gcc_unreachable ();
5572 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5573 every register in REG. */
5575 static bool
5576 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5578 unsigned int i;
5580 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5581 if (!reload_reg_reaches_end_p (i, reloadnum))
5582 return false;
5583 return true;
5587 /* Returns whether R1 and R2 are uniquely chained: the value of one
5588 is used by the other, and that value is not used by any other
5589 reload for this insn. This is used to partially undo the decision
5590 made in find_reloads when in the case of multiple
5591 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5592 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5593 reloads. This code tries to avoid the conflict created by that
5594 change. It might be cleaner to explicitly keep track of which
5595 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5596 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5597 this after the fact. */
5598 static bool
5599 reloads_unique_chain_p (int r1, int r2)
5601 int i;
5603 /* We only check input reloads. */
5604 if (! rld[r1].in || ! rld[r2].in)
5605 return false;
5607 /* Avoid anything with output reloads. */
5608 if (rld[r1].out || rld[r2].out)
5609 return false;
5611 /* "chained" means one reload is a component of the other reload,
5612 not the same as the other reload. */
5613 if (rld[r1].opnum != rld[r2].opnum
5614 || rtx_equal_p (rld[r1].in, rld[r2].in)
5615 || rld[r1].optional || rld[r2].optional
5616 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5617 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5618 return false;
5620 /* The following loop assumes that r1 is the reload that feeds r2. */
5621 if (r1 > r2)
5623 int tmp = r2;
5624 r2 = r1;
5625 r1 = tmp;
5628 for (i = 0; i < n_reloads; i ++)
5629 /* Look for input reloads that aren't our two */
5630 if (i != r1 && i != r2 && rld[i].in)
5632 /* If our reload is mentioned at all, it isn't a simple chain. */
5633 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5634 return false;
5636 return true;
5639 /* The recursive function change all occurrences of WHAT in *WHERE
5640 to REPL. */
5641 static void
5642 substitute (rtx *where, const_rtx what, rtx repl)
5644 const char *fmt;
5645 int i;
5646 enum rtx_code code;
5648 if (*where == 0)
5649 return;
5651 if (*where == what || rtx_equal_p (*where, what))
5653 /* Record the location of the changed rtx. */
5654 substitute_stack.safe_push (where);
5655 *where = repl;
5656 return;
5659 code = GET_CODE (*where);
5660 fmt = GET_RTX_FORMAT (code);
5661 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5663 if (fmt[i] == 'E')
5665 int j;
5667 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5668 substitute (&XVECEXP (*where, i, j), what, repl);
5670 else if (fmt[i] == 'e')
5671 substitute (&XEXP (*where, i), what, repl);
5675 /* The function returns TRUE if chain of reload R1 and R2 (in any
5676 order) can be evaluated without usage of intermediate register for
5677 the reload containing another reload. It is important to see
5678 gen_reload to understand what the function is trying to do. As an
5679 example, let us have reload chain
5681 r2: const
5682 r1: <something> + const
5684 and reload R2 got reload reg HR. The function returns true if
5685 there is a correct insn HR = HR + <something>. Otherwise,
5686 gen_reload will use intermediate register (and this is the reload
5687 reg for R1) to reload <something>.
5689 We need this function to find a conflict for chain reloads. In our
5690 example, if HR = HR + <something> is incorrect insn, then we cannot
5691 use HR as a reload register for R2. If we do use it then we get a
5692 wrong code:
5694 HR = const
5695 HR = <something>
5696 HR = HR + HR
5699 static bool
5700 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5702 /* Assume other cases in gen_reload are not possible for
5703 chain reloads or do need an intermediate hard registers. */
5704 bool result = true;
5705 int regno, code;
5706 rtx out, in;
5707 rtx_insn *insn;
5708 rtx_insn *last = get_last_insn ();
5710 /* Make r2 a component of r1. */
5711 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5712 std::swap (r1, r2);
5714 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5715 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5716 gcc_assert (regno >= 0);
5717 out = gen_rtx_REG (rld[r1].mode, regno);
5718 in = rld[r1].in;
5719 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5721 /* If IN is a paradoxical SUBREG, remove it and try to put the
5722 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5723 strip_paradoxical_subreg (&in, &out);
5725 if (GET_CODE (in) == PLUS
5726 && (REG_P (XEXP (in, 0))
5727 || GET_CODE (XEXP (in, 0)) == SUBREG
5728 || MEM_P (XEXP (in, 0)))
5729 && (REG_P (XEXP (in, 1))
5730 || GET_CODE (XEXP (in, 1)) == SUBREG
5731 || CONSTANT_P (XEXP (in, 1))
5732 || MEM_P (XEXP (in, 1))))
5734 insn = emit_insn (gen_rtx_SET (out, in));
5735 code = recog_memoized (insn);
5736 result = false;
5738 if (code >= 0)
5740 extract_insn (insn);
5741 /* We want constrain operands to treat this insn strictly in
5742 its validity determination, i.e., the way it would after
5743 reload has completed. */
5744 result = constrain_operands (1, get_enabled_alternatives (insn));
5747 delete_insns_since (last);
5750 /* Restore the original value at each changed address within R1. */
5751 while (!substitute_stack.is_empty ())
5753 rtx *where = substitute_stack.pop ();
5754 *where = rld[r2].in;
5757 return result;
5760 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5761 Return 0 otherwise.
5763 This function uses the same algorithm as reload_reg_free_p above. */
5765 static int
5766 reloads_conflict (int r1, int r2)
5768 enum reload_type r1_type = rld[r1].when_needed;
5769 enum reload_type r2_type = rld[r2].when_needed;
5770 int r1_opnum = rld[r1].opnum;
5771 int r2_opnum = rld[r2].opnum;
5773 /* RELOAD_OTHER conflicts with everything. */
5774 if (r2_type == RELOAD_OTHER)
5775 return 1;
5777 /* Otherwise, check conflicts differently for each type. */
5779 switch (r1_type)
5781 case RELOAD_FOR_INPUT:
5782 return (r2_type == RELOAD_FOR_INSN
5783 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5784 || r2_type == RELOAD_FOR_OPADDR_ADDR
5785 || r2_type == RELOAD_FOR_INPUT
5786 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5787 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5788 && r2_opnum > r1_opnum));
5790 case RELOAD_FOR_INPUT_ADDRESS:
5791 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5792 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5794 case RELOAD_FOR_INPADDR_ADDRESS:
5795 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5796 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5798 case RELOAD_FOR_OUTPUT_ADDRESS:
5799 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5800 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5802 case RELOAD_FOR_OUTADDR_ADDRESS:
5803 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5804 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5806 case RELOAD_FOR_OPERAND_ADDRESS:
5807 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5808 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5809 && (!reloads_unique_chain_p (r1, r2)
5810 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5812 case RELOAD_FOR_OPADDR_ADDR:
5813 return (r2_type == RELOAD_FOR_INPUT
5814 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5816 case RELOAD_FOR_OUTPUT:
5817 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5818 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5819 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5820 && r2_opnum >= r1_opnum));
5822 case RELOAD_FOR_INSN:
5823 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5824 || r2_type == RELOAD_FOR_INSN
5825 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5827 case RELOAD_FOR_OTHER_ADDRESS:
5828 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5830 case RELOAD_OTHER:
5831 return 1;
5833 default:
5834 gcc_unreachable ();
5838 /* Indexed by reload number, 1 if incoming value
5839 inherited from previous insns. */
5840 static char reload_inherited[MAX_RELOADS];
5842 /* For an inherited reload, this is the insn the reload was inherited from,
5843 if we know it. Otherwise, this is 0. */
5844 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5846 /* If nonzero, this is a place to get the value of the reload,
5847 rather than using reload_in. */
5848 static rtx reload_override_in[MAX_RELOADS];
5850 /* For each reload, the hard register number of the register used,
5851 or -1 if we did not need a register for this reload. */
5852 static int reload_spill_index[MAX_RELOADS];
5854 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5855 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5857 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5858 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5860 /* Subroutine of free_for_value_p, used to check a single register.
5861 START_REGNO is the starting regno of the full reload register
5862 (possibly comprising multiple hard registers) that we are considering. */
5864 static int
5865 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5866 enum reload_type type, rtx value, rtx out,
5867 int reloadnum, int ignore_address_reloads)
5869 int time1;
5870 /* Set if we see an input reload that must not share its reload register
5871 with any new earlyclobber, but might otherwise share the reload
5872 register with an output or input-output reload. */
5873 int check_earlyclobber = 0;
5874 int i;
5875 int copy = 0;
5877 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5878 return 0;
5880 if (out == const0_rtx)
5882 copy = 1;
5883 out = NULL_RTX;
5886 /* We use some pseudo 'time' value to check if the lifetimes of the
5887 new register use would overlap with the one of a previous reload
5888 that is not read-only or uses a different value.
5889 The 'time' used doesn't have to be linear in any shape or form, just
5890 monotonic.
5891 Some reload types use different 'buckets' for each operand.
5892 So there are MAX_RECOG_OPERANDS different time values for each
5893 such reload type.
5894 We compute TIME1 as the time when the register for the prospective
5895 new reload ceases to be live, and TIME2 for each existing
5896 reload as the time when that the reload register of that reload
5897 becomes live.
5898 Where there is little to be gained by exact lifetime calculations,
5899 we just make conservative assumptions, i.e. a longer lifetime;
5900 this is done in the 'default:' cases. */
5901 switch (type)
5903 case RELOAD_FOR_OTHER_ADDRESS:
5904 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5905 time1 = copy ? 0 : 1;
5906 break;
5907 case RELOAD_OTHER:
5908 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5909 break;
5910 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5911 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5912 respectively, to the time values for these, we get distinct time
5913 values. To get distinct time values for each operand, we have to
5914 multiply opnum by at least three. We round that up to four because
5915 multiply by four is often cheaper. */
5916 case RELOAD_FOR_INPADDR_ADDRESS:
5917 time1 = opnum * 4 + 2;
5918 break;
5919 case RELOAD_FOR_INPUT_ADDRESS:
5920 time1 = opnum * 4 + 3;
5921 break;
5922 case RELOAD_FOR_INPUT:
5923 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5924 executes (inclusive). */
5925 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5926 break;
5927 case RELOAD_FOR_OPADDR_ADDR:
5928 /* opnum * 4 + 4
5929 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5930 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5931 break;
5932 case RELOAD_FOR_OPERAND_ADDRESS:
5933 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5934 is executed. */
5935 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5936 break;
5937 case RELOAD_FOR_OUTADDR_ADDRESS:
5938 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5939 break;
5940 case RELOAD_FOR_OUTPUT_ADDRESS:
5941 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5942 break;
5943 default:
5944 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5947 for (i = 0; i < n_reloads; i++)
5949 rtx reg = rld[i].reg_rtx;
5950 if (reg && REG_P (reg)
5951 && ((unsigned) regno - true_regnum (reg)
5952 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5953 && i != reloadnum)
5955 rtx other_input = rld[i].in;
5957 /* If the other reload loads the same input value, that
5958 will not cause a conflict only if it's loading it into
5959 the same register. */
5960 if (true_regnum (reg) != start_regno)
5961 other_input = NULL_RTX;
5962 if (! other_input || ! rtx_equal_p (other_input, value)
5963 || rld[i].out || out)
5965 int time2;
5966 switch (rld[i].when_needed)
5968 case RELOAD_FOR_OTHER_ADDRESS:
5969 time2 = 0;
5970 break;
5971 case RELOAD_FOR_INPADDR_ADDRESS:
5972 /* find_reloads makes sure that a
5973 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5974 by at most one - the first -
5975 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5976 address reload is inherited, the address address reload
5977 goes away, so we can ignore this conflict. */
5978 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5979 && ignore_address_reloads
5980 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5981 Then the address address is still needed to store
5982 back the new address. */
5983 && ! rld[reloadnum].out)
5984 continue;
5985 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5986 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5987 reloads go away. */
5988 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5989 && ignore_address_reloads
5990 /* Unless we are reloading an auto_inc expression. */
5991 && ! rld[reloadnum].out)
5992 continue;
5993 time2 = rld[i].opnum * 4 + 2;
5994 break;
5995 case RELOAD_FOR_INPUT_ADDRESS:
5996 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5997 && ignore_address_reloads
5998 && ! rld[reloadnum].out)
5999 continue;
6000 time2 = rld[i].opnum * 4 + 3;
6001 break;
6002 case RELOAD_FOR_INPUT:
6003 time2 = rld[i].opnum * 4 + 4;
6004 check_earlyclobber = 1;
6005 break;
6006 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
6007 == MAX_RECOG_OPERAND * 4 */
6008 case RELOAD_FOR_OPADDR_ADDR:
6009 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
6010 && ignore_address_reloads
6011 && ! rld[reloadnum].out)
6012 continue;
6013 time2 = MAX_RECOG_OPERANDS * 4 + 1;
6014 break;
6015 case RELOAD_FOR_OPERAND_ADDRESS:
6016 time2 = MAX_RECOG_OPERANDS * 4 + 2;
6017 check_earlyclobber = 1;
6018 break;
6019 case RELOAD_FOR_INSN:
6020 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6021 break;
6022 case RELOAD_FOR_OUTPUT:
6023 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6024 instruction is executed. */
6025 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6026 break;
6027 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6028 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6029 value. */
6030 case RELOAD_FOR_OUTADDR_ADDRESS:
6031 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6032 && ignore_address_reloads
6033 && ! rld[reloadnum].out)
6034 continue;
6035 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6036 break;
6037 case RELOAD_FOR_OUTPUT_ADDRESS:
6038 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6039 break;
6040 case RELOAD_OTHER:
6041 /* If there is no conflict in the input part, handle this
6042 like an output reload. */
6043 if (! rld[i].in || rtx_equal_p (other_input, value))
6045 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6046 /* Earlyclobbered outputs must conflict with inputs. */
6047 if (earlyclobber_operand_p (rld[i].out))
6048 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6050 break;
6052 time2 = 1;
6053 /* RELOAD_OTHER might be live beyond instruction execution,
6054 but this is not obvious when we set time2 = 1. So check
6055 here if there might be a problem with the new reload
6056 clobbering the register used by the RELOAD_OTHER. */
6057 if (out)
6058 return 0;
6059 break;
6060 default:
6061 return 0;
6063 if ((time1 >= time2
6064 && (! rld[i].in || rld[i].out
6065 || ! rtx_equal_p (other_input, value)))
6066 || (out && rld[reloadnum].out_reg
6067 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6068 return 0;
6073 /* Earlyclobbered outputs must conflict with inputs. */
6074 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6075 return 0;
6077 return 1;
6080 /* Return 1 if the value in reload reg REGNO, as used by a reload
6081 needed for the part of the insn specified by OPNUM and TYPE,
6082 may be used to load VALUE into it.
6084 MODE is the mode in which the register is used, this is needed to
6085 determine how many hard regs to test.
6087 Other read-only reloads with the same value do not conflict
6088 unless OUT is nonzero and these other reloads have to live while
6089 output reloads live.
6090 If OUT is CONST0_RTX, this is a special case: it means that the
6091 test should not be for using register REGNO as reload register, but
6092 for copying from register REGNO into the reload register.
6094 RELOADNUM is the number of the reload we want to load this value for;
6095 a reload does not conflict with itself.
6097 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6098 reloads that load an address for the very reload we are considering.
6100 The caller has to make sure that there is no conflict with the return
6101 register. */
6103 static int
6104 free_for_value_p (int regno, machine_mode mode, int opnum,
6105 enum reload_type type, rtx value, rtx out, int reloadnum,
6106 int ignore_address_reloads)
6108 int nregs = hard_regno_nregs[regno][mode];
6109 while (nregs-- > 0)
6110 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6111 value, out, reloadnum,
6112 ignore_address_reloads))
6113 return 0;
6114 return 1;
6117 /* Return nonzero if the rtx X is invariant over the current function. */
6118 /* ??? Actually, the places where we use this expect exactly what is
6119 tested here, and not everything that is function invariant. In
6120 particular, the frame pointer and arg pointer are special cased;
6121 pic_offset_table_rtx is not, and we must not spill these things to
6122 memory. */
6125 function_invariant_p (const_rtx x)
6127 if (CONSTANT_P (x))
6128 return 1;
6129 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6130 return 1;
6131 if (GET_CODE (x) == PLUS
6132 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6133 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6134 return 1;
6135 return 0;
6138 /* Determine whether the reload reg X overlaps any rtx'es used for
6139 overriding inheritance. Return nonzero if so. */
6141 static int
6142 conflicts_with_override (rtx x)
6144 int i;
6145 for (i = 0; i < n_reloads; i++)
6146 if (reload_override_in[i]
6147 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6148 return 1;
6149 return 0;
6152 /* Give an error message saying we failed to find a reload for INSN,
6153 and clear out reload R. */
6154 static void
6155 failed_reload (rtx_insn *insn, int r)
6157 if (asm_noperands (PATTERN (insn)) < 0)
6158 /* It's the compiler's fault. */
6159 fatal_insn ("could not find a spill register", insn);
6161 /* It's the user's fault; the operand's mode and constraint
6162 don't match. Disable this reload so we don't crash in final. */
6163 error_for_asm (insn,
6164 "%<asm%> operand constraint incompatible with operand size");
6165 rld[r].in = 0;
6166 rld[r].out = 0;
6167 rld[r].reg_rtx = 0;
6168 rld[r].optional = 1;
6169 rld[r].secondary_p = 1;
6172 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6173 for reload R. If it's valid, get an rtx for it. Return nonzero if
6174 successful. */
6175 static int
6176 set_reload_reg (int i, int r)
6178 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6179 parameter. */
6180 int regno ATTRIBUTE_UNUSED;
6181 rtx reg = spill_reg_rtx[i];
6183 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6184 spill_reg_rtx[i] = reg
6185 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6187 regno = true_regnum (reg);
6189 /* Detect when the reload reg can't hold the reload mode.
6190 This used to be one `if', but Sequent compiler can't handle that. */
6191 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6193 machine_mode test_mode = VOIDmode;
6194 if (rld[r].in)
6195 test_mode = GET_MODE (rld[r].in);
6196 /* If rld[r].in has VOIDmode, it means we will load it
6197 in whatever mode the reload reg has: to wit, rld[r].mode.
6198 We have already tested that for validity. */
6199 /* Aside from that, we need to test that the expressions
6200 to reload from or into have modes which are valid for this
6201 reload register. Otherwise the reload insns would be invalid. */
6202 if (! (rld[r].in != 0 && test_mode != VOIDmode
6203 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6204 if (! (rld[r].out != 0
6205 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6207 /* The reg is OK. */
6208 last_spill_reg = i;
6210 /* Mark as in use for this insn the reload regs we use
6211 for this. */
6212 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6213 rld[r].when_needed, rld[r].mode);
6215 rld[r].reg_rtx = reg;
6216 reload_spill_index[r] = spill_regs[i];
6217 return 1;
6220 return 0;
6223 /* Find a spill register to use as a reload register for reload R.
6224 LAST_RELOAD is nonzero if this is the last reload for the insn being
6225 processed.
6227 Set rld[R].reg_rtx to the register allocated.
6229 We return 1 if successful, or 0 if we couldn't find a spill reg and
6230 we didn't change anything. */
6232 static int
6233 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6234 int last_reload)
6236 int i, pass, count;
6238 /* If we put this reload ahead, thinking it is a group,
6239 then insist on finding a group. Otherwise we can grab a
6240 reg that some other reload needs.
6241 (That can happen when we have a 68000 DATA_OR_FP_REG
6242 which is a group of data regs or one fp reg.)
6243 We need not be so restrictive if there are no more reloads
6244 for this insn.
6246 ??? Really it would be nicer to have smarter handling
6247 for that kind of reg class, where a problem like this is normal.
6248 Perhaps those classes should be avoided for reloading
6249 by use of more alternatives. */
6251 int force_group = rld[r].nregs > 1 && ! last_reload;
6253 /* If we want a single register and haven't yet found one,
6254 take any reg in the right class and not in use.
6255 If we want a consecutive group, here is where we look for it.
6257 We use three passes so we can first look for reload regs to
6258 reuse, which are already in use for other reloads in this insn,
6259 and only then use additional registers which are not "bad", then
6260 finally any register.
6262 I think that maximizing reuse is needed to make sure we don't
6263 run out of reload regs. Suppose we have three reloads, and
6264 reloads A and B can share regs. These need two regs.
6265 Suppose A and B are given different regs.
6266 That leaves none for C. */
6267 for (pass = 0; pass < 3; pass++)
6269 /* I is the index in spill_regs.
6270 We advance it round-robin between insns to use all spill regs
6271 equally, so that inherited reloads have a chance
6272 of leapfrogging each other. */
6274 i = last_spill_reg;
6276 for (count = 0; count < n_spills; count++)
6278 int rclass = (int) rld[r].rclass;
6279 int regnum;
6281 i++;
6282 if (i >= n_spills)
6283 i -= n_spills;
6284 regnum = spill_regs[i];
6286 if ((reload_reg_free_p (regnum, rld[r].opnum,
6287 rld[r].when_needed)
6288 || (rld[r].in
6289 /* We check reload_reg_used to make sure we
6290 don't clobber the return register. */
6291 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6292 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6293 rld[r].when_needed, rld[r].in,
6294 rld[r].out, r, 1)))
6295 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6296 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6297 /* Look first for regs to share, then for unshared. But
6298 don't share regs used for inherited reloads; they are
6299 the ones we want to preserve. */
6300 && (pass
6301 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6302 regnum)
6303 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6304 regnum))))
6306 int nr = hard_regno_nregs[regnum][rld[r].mode];
6308 /* During the second pass we want to avoid reload registers
6309 which are "bad" for this reload. */
6310 if (pass == 1
6311 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6312 continue;
6314 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6315 (on 68000) got us two FP regs. If NR is 1,
6316 we would reject both of them. */
6317 if (force_group)
6318 nr = rld[r].nregs;
6319 /* If we need only one reg, we have already won. */
6320 if (nr == 1)
6322 /* But reject a single reg if we demand a group. */
6323 if (force_group)
6324 continue;
6325 break;
6327 /* Otherwise check that as many consecutive regs as we need
6328 are available here. */
6329 while (nr > 1)
6331 int regno = regnum + nr - 1;
6332 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6333 && spill_reg_order[regno] >= 0
6334 && reload_reg_free_p (regno, rld[r].opnum,
6335 rld[r].when_needed)))
6336 break;
6337 nr--;
6339 if (nr == 1)
6340 break;
6344 /* If we found something on the current pass, omit later passes. */
6345 if (count < n_spills)
6346 break;
6349 /* We should have found a spill register by now. */
6350 if (count >= n_spills)
6351 return 0;
6353 /* I is the index in SPILL_REG_RTX of the reload register we are to
6354 allocate. Get an rtx for it and find its register number. */
6356 return set_reload_reg (i, r);
6359 /* Initialize all the tables needed to allocate reload registers.
6360 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6361 is the array we use to restore the reg_rtx field for every reload. */
6363 static void
6364 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6366 int i;
6368 for (i = 0; i < n_reloads; i++)
6369 rld[i].reg_rtx = save_reload_reg_rtx[i];
6371 memset (reload_inherited, 0, MAX_RELOADS);
6372 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6373 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6375 CLEAR_HARD_REG_SET (reload_reg_used);
6376 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6377 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6378 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6379 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6380 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6382 CLEAR_HARD_REG_SET (reg_used_in_insn);
6384 HARD_REG_SET tmp;
6385 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6386 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6387 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6388 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6389 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6390 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6393 for (i = 0; i < reload_n_operands; i++)
6395 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6396 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6397 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6398 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6399 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6400 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6403 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6405 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6407 for (i = 0; i < n_reloads; i++)
6408 /* If we have already decided to use a certain register,
6409 don't use it in another way. */
6410 if (rld[i].reg_rtx)
6411 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6412 rld[i].when_needed, rld[i].mode);
6415 #ifdef SECONDARY_MEMORY_NEEDED
6416 /* If X is not a subreg, return it unmodified. If it is a subreg,
6417 look up whether we made a replacement for the SUBREG_REG. Return
6418 either the replacement or the SUBREG_REG. */
6420 static rtx
6421 replaced_subreg (rtx x)
6423 if (GET_CODE (x) == SUBREG)
6424 return find_replacement (&SUBREG_REG (x));
6425 return x;
6427 #endif
6429 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6430 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6431 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6432 otherwise it is NULL. */
6434 static int
6435 compute_reload_subreg_offset (machine_mode outermode,
6436 rtx subreg,
6437 machine_mode innermode)
6439 int outer_offset;
6440 machine_mode middlemode;
6442 if (!subreg)
6443 return subreg_lowpart_offset (outermode, innermode);
6445 outer_offset = SUBREG_BYTE (subreg);
6446 middlemode = GET_MODE (SUBREG_REG (subreg));
6448 /* If SUBREG is paradoxical then return the normal lowpart offset
6449 for OUTERMODE and INNERMODE. Our caller has already checked
6450 that OUTERMODE fits in INNERMODE. */
6451 if (outer_offset == 0
6452 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6453 return subreg_lowpart_offset (outermode, innermode);
6455 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6456 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6457 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6460 /* Assign hard reg targets for the pseudo-registers we must reload
6461 into hard regs for this insn.
6462 Also output the instructions to copy them in and out of the hard regs.
6464 For machines with register classes, we are responsible for
6465 finding a reload reg in the proper class. */
6467 static void
6468 choose_reload_regs (struct insn_chain *chain)
6470 rtx_insn *insn = chain->insn;
6471 int i, j;
6472 unsigned int max_group_size = 1;
6473 enum reg_class group_class = NO_REGS;
6474 int pass, win, inheritance;
6476 rtx save_reload_reg_rtx[MAX_RELOADS];
6478 /* In order to be certain of getting the registers we need,
6479 we must sort the reloads into order of increasing register class.
6480 Then our grabbing of reload registers will parallel the process
6481 that provided the reload registers.
6483 Also note whether any of the reloads wants a consecutive group of regs.
6484 If so, record the maximum size of the group desired and what
6485 register class contains all the groups needed by this insn. */
6487 for (j = 0; j < n_reloads; j++)
6489 reload_order[j] = j;
6490 if (rld[j].reg_rtx != NULL_RTX)
6492 gcc_assert (REG_P (rld[j].reg_rtx)
6493 && HARD_REGISTER_P (rld[j].reg_rtx));
6494 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6496 else
6497 reload_spill_index[j] = -1;
6499 if (rld[j].nregs > 1)
6501 max_group_size = MAX (rld[j].nregs, max_group_size);
6502 group_class
6503 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6506 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6509 if (n_reloads > 1)
6510 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6512 /* If -O, try first with inheritance, then turning it off.
6513 If not -O, don't do inheritance.
6514 Using inheritance when not optimizing leads to paradoxes
6515 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6516 because one side of the comparison might be inherited. */
6517 win = 0;
6518 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6520 choose_reload_regs_init (chain, save_reload_reg_rtx);
6522 /* Process the reloads in order of preference just found.
6523 Beyond this point, subregs can be found in reload_reg_rtx.
6525 This used to look for an existing reloaded home for all of the
6526 reloads, and only then perform any new reloads. But that could lose
6527 if the reloads were done out of reg-class order because a later
6528 reload with a looser constraint might have an old home in a register
6529 needed by an earlier reload with a tighter constraint.
6531 To solve this, we make two passes over the reloads, in the order
6532 described above. In the first pass we try to inherit a reload
6533 from a previous insn. If there is a later reload that needs a
6534 class that is a proper subset of the class being processed, we must
6535 also allocate a spill register during the first pass.
6537 Then make a second pass over the reloads to allocate any reloads
6538 that haven't been given registers yet. */
6540 for (j = 0; j < n_reloads; j++)
6542 int r = reload_order[j];
6543 rtx search_equiv = NULL_RTX;
6545 /* Ignore reloads that got marked inoperative. */
6546 if (rld[r].out == 0 && rld[r].in == 0
6547 && ! rld[r].secondary_p)
6548 continue;
6550 /* If find_reloads chose to use reload_in or reload_out as a reload
6551 register, we don't need to chose one. Otherwise, try even if it
6552 found one since we might save an insn if we find the value lying
6553 around.
6554 Try also when reload_in is a pseudo without a hard reg. */
6555 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6556 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6557 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6558 && !MEM_P (rld[r].in)
6559 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6560 continue;
6562 #if 0 /* No longer needed for correct operation.
6563 It might give better code, or might not; worth an experiment? */
6564 /* If this is an optional reload, we can't inherit from earlier insns
6565 until we are sure that any non-optional reloads have been allocated.
6566 The following code takes advantage of the fact that optional reloads
6567 are at the end of reload_order. */
6568 if (rld[r].optional != 0)
6569 for (i = 0; i < j; i++)
6570 if ((rld[reload_order[i]].out != 0
6571 || rld[reload_order[i]].in != 0
6572 || rld[reload_order[i]].secondary_p)
6573 && ! rld[reload_order[i]].optional
6574 && rld[reload_order[i]].reg_rtx == 0)
6575 allocate_reload_reg (chain, reload_order[i], 0);
6576 #endif
6578 /* First see if this pseudo is already available as reloaded
6579 for a previous insn. We cannot try to inherit for reloads
6580 that are smaller than the maximum number of registers needed
6581 for groups unless the register we would allocate cannot be used
6582 for the groups.
6584 We could check here to see if this is a secondary reload for
6585 an object that is already in a register of the desired class.
6586 This would avoid the need for the secondary reload register.
6587 But this is complex because we can't easily determine what
6588 objects might want to be loaded via this reload. So let a
6589 register be allocated here. In `emit_reload_insns' we suppress
6590 one of the loads in the case described above. */
6592 if (inheritance)
6594 int byte = 0;
6595 int regno = -1;
6596 machine_mode mode = VOIDmode;
6597 rtx subreg = NULL_RTX;
6599 if (rld[r].in == 0)
6601 else if (REG_P (rld[r].in))
6603 regno = REGNO (rld[r].in);
6604 mode = GET_MODE (rld[r].in);
6606 else if (REG_P (rld[r].in_reg))
6608 regno = REGNO (rld[r].in_reg);
6609 mode = GET_MODE (rld[r].in_reg);
6611 else if (GET_CODE (rld[r].in_reg) == SUBREG
6612 && REG_P (SUBREG_REG (rld[r].in_reg)))
6614 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6615 if (regno < FIRST_PSEUDO_REGISTER)
6616 regno = subreg_regno (rld[r].in_reg);
6617 else
6619 subreg = rld[r].in_reg;
6620 byte = SUBREG_BYTE (subreg);
6622 mode = GET_MODE (rld[r].in_reg);
6624 #ifdef AUTO_INC_DEC
6625 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6626 && REG_P (XEXP (rld[r].in_reg, 0)))
6628 regno = REGNO (XEXP (rld[r].in_reg, 0));
6629 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6630 rld[r].out = rld[r].in;
6632 #endif
6633 #if 0
6634 /* This won't work, since REGNO can be a pseudo reg number.
6635 Also, it takes much more hair to keep track of all the things
6636 that can invalidate an inherited reload of part of a pseudoreg. */
6637 else if (GET_CODE (rld[r].in) == SUBREG
6638 && REG_P (SUBREG_REG (rld[r].in)))
6639 regno = subreg_regno (rld[r].in);
6640 #endif
6642 if (regno >= 0
6643 && reg_last_reload_reg[regno] != 0
6644 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6645 >= GET_MODE_SIZE (mode) + byte)
6646 #ifdef CANNOT_CHANGE_MODE_CLASS
6647 /* Verify that the register it's in can be used in
6648 mode MODE. */
6649 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6650 GET_MODE (reg_last_reload_reg[regno]),
6651 mode)
6652 #endif
6655 enum reg_class rclass = rld[r].rclass, last_class;
6656 rtx last_reg = reg_last_reload_reg[regno];
6658 i = REGNO (last_reg);
6659 byte = compute_reload_subreg_offset (mode,
6660 subreg,
6661 GET_MODE (last_reg));
6662 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6663 last_class = REGNO_REG_CLASS (i);
6665 if (reg_reloaded_contents[i] == regno
6666 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6667 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6668 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6669 /* Even if we can't use this register as a reload
6670 register, we might use it for reload_override_in,
6671 if copying it to the desired class is cheap
6672 enough. */
6673 || ((register_move_cost (mode, last_class, rclass)
6674 < memory_move_cost (mode, rclass, true))
6675 && (secondary_reload_class (1, rclass, mode,
6676 last_reg)
6677 == NO_REGS)
6678 #ifdef SECONDARY_MEMORY_NEEDED
6679 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6680 mode)
6681 #endif
6684 && (rld[r].nregs == max_group_size
6685 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6687 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6688 rld[r].when_needed, rld[r].in,
6689 const0_rtx, r, 1))
6691 /* If a group is needed, verify that all the subsequent
6692 registers still have their values intact. */
6693 int nr = hard_regno_nregs[i][rld[r].mode];
6694 int k;
6696 for (k = 1; k < nr; k++)
6697 if (reg_reloaded_contents[i + k] != regno
6698 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6699 break;
6701 if (k == nr)
6703 int i1;
6704 int bad_for_class;
6706 last_reg = (GET_MODE (last_reg) == mode
6707 ? last_reg : gen_rtx_REG (mode, i));
6709 bad_for_class = 0;
6710 for (k = 0; k < nr; k++)
6711 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6712 i+k);
6714 /* We found a register that contains the
6715 value we need. If this register is the
6716 same as an `earlyclobber' operand of the
6717 current insn, just mark it as a place to
6718 reload from since we can't use it as the
6719 reload register itself. */
6721 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6722 if (reg_overlap_mentioned_for_reload_p
6723 (reg_last_reload_reg[regno],
6724 reload_earlyclobbers[i1]))
6725 break;
6727 if (i1 != n_earlyclobbers
6728 || ! (free_for_value_p (i, rld[r].mode,
6729 rld[r].opnum,
6730 rld[r].when_needed, rld[r].in,
6731 rld[r].out, r, 1))
6732 /* Don't use it if we'd clobber a pseudo reg. */
6733 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6734 && rld[r].out
6735 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6736 /* Don't clobber the frame pointer. */
6737 || (i == HARD_FRAME_POINTER_REGNUM
6738 && frame_pointer_needed
6739 && rld[r].out)
6740 /* Don't really use the inherited spill reg
6741 if we need it wider than we've got it. */
6742 || (GET_MODE_SIZE (rld[r].mode)
6743 > GET_MODE_SIZE (mode))
6744 || bad_for_class
6746 /* If find_reloads chose reload_out as reload
6747 register, stay with it - that leaves the
6748 inherited register for subsequent reloads. */
6749 || (rld[r].out && rld[r].reg_rtx
6750 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6752 if (! rld[r].optional)
6754 reload_override_in[r] = last_reg;
6755 reload_inheritance_insn[r]
6756 = reg_reloaded_insn[i];
6759 else
6761 int k;
6762 /* We can use this as a reload reg. */
6763 /* Mark the register as in use for this part of
6764 the insn. */
6765 mark_reload_reg_in_use (i,
6766 rld[r].opnum,
6767 rld[r].when_needed,
6768 rld[r].mode);
6769 rld[r].reg_rtx = last_reg;
6770 reload_inherited[r] = 1;
6771 reload_inheritance_insn[r]
6772 = reg_reloaded_insn[i];
6773 reload_spill_index[r] = i;
6774 for (k = 0; k < nr; k++)
6775 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6776 i + k);
6783 /* Here's another way to see if the value is already lying around. */
6784 if (inheritance
6785 && rld[r].in != 0
6786 && ! reload_inherited[r]
6787 && rld[r].out == 0
6788 && (CONSTANT_P (rld[r].in)
6789 || GET_CODE (rld[r].in) == PLUS
6790 || REG_P (rld[r].in)
6791 || MEM_P (rld[r].in))
6792 && (rld[r].nregs == max_group_size
6793 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6794 search_equiv = rld[r].in;
6796 if (search_equiv)
6798 rtx equiv
6799 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6800 -1, NULL, 0, rld[r].mode);
6801 int regno = 0;
6803 if (equiv != 0)
6805 if (REG_P (equiv))
6806 regno = REGNO (equiv);
6807 else
6809 /* This must be a SUBREG of a hard register.
6810 Make a new REG since this might be used in an
6811 address and not all machines support SUBREGs
6812 there. */
6813 gcc_assert (GET_CODE (equiv) == SUBREG);
6814 regno = subreg_regno (equiv);
6815 equiv = gen_rtx_REG (rld[r].mode, regno);
6816 /* If we choose EQUIV as the reload register, but the
6817 loop below decides to cancel the inheritance, we'll
6818 end up reloading EQUIV in rld[r].mode, not the mode
6819 it had originally. That isn't safe when EQUIV isn't
6820 available as a spill register since its value might
6821 still be live at this point. */
6822 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6823 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6824 equiv = 0;
6828 /* If we found a spill reg, reject it unless it is free
6829 and of the desired class. */
6830 if (equiv != 0)
6832 int regs_used = 0;
6833 int bad_for_class = 0;
6834 int max_regno = regno + rld[r].nregs;
6836 for (i = regno; i < max_regno; i++)
6838 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6840 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6844 if ((regs_used
6845 && ! free_for_value_p (regno, rld[r].mode,
6846 rld[r].opnum, rld[r].when_needed,
6847 rld[r].in, rld[r].out, r, 1))
6848 || bad_for_class)
6849 equiv = 0;
6852 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6853 equiv = 0;
6855 /* We found a register that contains the value we need.
6856 If this register is the same as an `earlyclobber' operand
6857 of the current insn, just mark it as a place to reload from
6858 since we can't use it as the reload register itself. */
6860 if (equiv != 0)
6861 for (i = 0; i < n_earlyclobbers; i++)
6862 if (reg_overlap_mentioned_for_reload_p (equiv,
6863 reload_earlyclobbers[i]))
6865 if (! rld[r].optional)
6866 reload_override_in[r] = equiv;
6867 equiv = 0;
6868 break;
6871 /* If the equiv register we have found is explicitly clobbered
6872 in the current insn, it depends on the reload type if we
6873 can use it, use it for reload_override_in, or not at all.
6874 In particular, we then can't use EQUIV for a
6875 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6877 if (equiv != 0)
6879 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6880 switch (rld[r].when_needed)
6882 case RELOAD_FOR_OTHER_ADDRESS:
6883 case RELOAD_FOR_INPADDR_ADDRESS:
6884 case RELOAD_FOR_INPUT_ADDRESS:
6885 case RELOAD_FOR_OPADDR_ADDR:
6886 break;
6887 case RELOAD_OTHER:
6888 case RELOAD_FOR_INPUT:
6889 case RELOAD_FOR_OPERAND_ADDRESS:
6890 if (! rld[r].optional)
6891 reload_override_in[r] = equiv;
6892 /* Fall through. */
6893 default:
6894 equiv = 0;
6895 break;
6897 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6898 switch (rld[r].when_needed)
6900 case RELOAD_FOR_OTHER_ADDRESS:
6901 case RELOAD_FOR_INPADDR_ADDRESS:
6902 case RELOAD_FOR_INPUT_ADDRESS:
6903 case RELOAD_FOR_OPADDR_ADDR:
6904 case RELOAD_FOR_OPERAND_ADDRESS:
6905 case RELOAD_FOR_INPUT:
6906 break;
6907 case RELOAD_OTHER:
6908 if (! rld[r].optional)
6909 reload_override_in[r] = equiv;
6910 /* Fall through. */
6911 default:
6912 equiv = 0;
6913 break;
6917 /* If we found an equivalent reg, say no code need be generated
6918 to load it, and use it as our reload reg. */
6919 if (equiv != 0
6920 && (regno != HARD_FRAME_POINTER_REGNUM
6921 || !frame_pointer_needed))
6923 int nr = hard_regno_nregs[regno][rld[r].mode];
6924 int k;
6925 rld[r].reg_rtx = equiv;
6926 reload_spill_index[r] = regno;
6927 reload_inherited[r] = 1;
6929 /* If reg_reloaded_valid is not set for this register,
6930 there might be a stale spill_reg_store lying around.
6931 We must clear it, since otherwise emit_reload_insns
6932 might delete the store. */
6933 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6934 spill_reg_store[regno] = NULL;
6935 /* If any of the hard registers in EQUIV are spill
6936 registers, mark them as in use for this insn. */
6937 for (k = 0; k < nr; k++)
6939 i = spill_reg_order[regno + k];
6940 if (i >= 0)
6942 mark_reload_reg_in_use (regno, rld[r].opnum,
6943 rld[r].when_needed,
6944 rld[r].mode);
6945 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6946 regno + k);
6952 /* If we found a register to use already, or if this is an optional
6953 reload, we are done. */
6954 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6955 continue;
6957 #if 0
6958 /* No longer needed for correct operation. Might or might
6959 not give better code on the average. Want to experiment? */
6961 /* See if there is a later reload that has a class different from our
6962 class that intersects our class or that requires less register
6963 than our reload. If so, we must allocate a register to this
6964 reload now, since that reload might inherit a previous reload
6965 and take the only available register in our class. Don't do this
6966 for optional reloads since they will force all previous reloads
6967 to be allocated. Also don't do this for reloads that have been
6968 turned off. */
6970 for (i = j + 1; i < n_reloads; i++)
6972 int s = reload_order[i];
6974 if ((rld[s].in == 0 && rld[s].out == 0
6975 && ! rld[s].secondary_p)
6976 || rld[s].optional)
6977 continue;
6979 if ((rld[s].rclass != rld[r].rclass
6980 && reg_classes_intersect_p (rld[r].rclass,
6981 rld[s].rclass))
6982 || rld[s].nregs < rld[r].nregs)
6983 break;
6986 if (i == n_reloads)
6987 continue;
6989 allocate_reload_reg (chain, r, j == n_reloads - 1);
6990 #endif
6993 /* Now allocate reload registers for anything non-optional that
6994 didn't get one yet. */
6995 for (j = 0; j < n_reloads; j++)
6997 int r = reload_order[j];
6999 /* Ignore reloads that got marked inoperative. */
7000 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
7001 continue;
7003 /* Skip reloads that already have a register allocated or are
7004 optional. */
7005 if (rld[r].reg_rtx != 0 || rld[r].optional)
7006 continue;
7008 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
7009 break;
7012 /* If that loop got all the way, we have won. */
7013 if (j == n_reloads)
7015 win = 1;
7016 break;
7019 /* Loop around and try without any inheritance. */
7022 if (! win)
7024 /* First undo everything done by the failed attempt
7025 to allocate with inheritance. */
7026 choose_reload_regs_init (chain, save_reload_reg_rtx);
7028 /* Some sanity tests to verify that the reloads found in the first
7029 pass are identical to the ones we have now. */
7030 gcc_assert (chain->n_reloads == n_reloads);
7032 for (i = 0; i < n_reloads; i++)
7034 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7035 continue;
7036 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7037 for (j = 0; j < n_spills; j++)
7038 if (spill_regs[j] == chain->rld[i].regno)
7039 if (! set_reload_reg (j, i))
7040 failed_reload (chain->insn, i);
7044 /* If we thought we could inherit a reload, because it seemed that
7045 nothing else wanted the same reload register earlier in the insn,
7046 verify that assumption, now that all reloads have been assigned.
7047 Likewise for reloads where reload_override_in has been set. */
7049 /* If doing expensive optimizations, do one preliminary pass that doesn't
7050 cancel any inheritance, but removes reloads that have been needed only
7051 for reloads that we know can be inherited. */
7052 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7054 for (j = 0; j < n_reloads; j++)
7056 int r = reload_order[j];
7057 rtx check_reg;
7058 #ifdef SECONDARY_MEMORY_NEEDED
7059 rtx tem;
7060 #endif
7061 if (reload_inherited[r] && rld[r].reg_rtx)
7062 check_reg = rld[r].reg_rtx;
7063 else if (reload_override_in[r]
7064 && (REG_P (reload_override_in[r])
7065 || GET_CODE (reload_override_in[r]) == SUBREG))
7066 check_reg = reload_override_in[r];
7067 else
7068 continue;
7069 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7070 rld[r].opnum, rld[r].when_needed, rld[r].in,
7071 (reload_inherited[r]
7072 ? rld[r].out : const0_rtx),
7073 r, 1))
7075 if (pass)
7076 continue;
7077 reload_inherited[r] = 0;
7078 reload_override_in[r] = 0;
7080 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7081 reload_override_in, then we do not need its related
7082 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7083 likewise for other reload types.
7084 We handle this by removing a reload when its only replacement
7085 is mentioned in reload_in of the reload we are going to inherit.
7086 A special case are auto_inc expressions; even if the input is
7087 inherited, we still need the address for the output. We can
7088 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7089 If we succeeded removing some reload and we are doing a preliminary
7090 pass just to remove such reloads, make another pass, since the
7091 removal of one reload might allow us to inherit another one. */
7092 else if (rld[r].in
7093 && rld[r].out != rld[r].in
7094 && remove_address_replacements (rld[r].in))
7096 if (pass)
7097 pass = 2;
7099 #ifdef SECONDARY_MEMORY_NEEDED
7100 /* If we needed a memory location for the reload, we also have to
7101 remove its related reloads. */
7102 else if (rld[r].in
7103 && rld[r].out != rld[r].in
7104 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7105 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7106 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7107 rld[r].rclass, rld[r].inmode)
7108 && remove_address_replacements
7109 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7110 rld[r].when_needed)))
7112 if (pass)
7113 pass = 2;
7115 #endif
7119 /* Now that reload_override_in is known valid,
7120 actually override reload_in. */
7121 for (j = 0; j < n_reloads; j++)
7122 if (reload_override_in[j])
7123 rld[j].in = reload_override_in[j];
7125 /* If this reload won't be done because it has been canceled or is
7126 optional and not inherited, clear reload_reg_rtx so other
7127 routines (such as subst_reloads) don't get confused. */
7128 for (j = 0; j < n_reloads; j++)
7129 if (rld[j].reg_rtx != 0
7130 && ((rld[j].optional && ! reload_inherited[j])
7131 || (rld[j].in == 0 && rld[j].out == 0
7132 && ! rld[j].secondary_p)))
7134 int regno = true_regnum (rld[j].reg_rtx);
7136 if (spill_reg_order[regno] >= 0)
7137 clear_reload_reg_in_use (regno, rld[j].opnum,
7138 rld[j].when_needed, rld[j].mode);
7139 rld[j].reg_rtx = 0;
7140 reload_spill_index[j] = -1;
7143 /* Record which pseudos and which spill regs have output reloads. */
7144 for (j = 0; j < n_reloads; j++)
7146 int r = reload_order[j];
7148 i = reload_spill_index[r];
7150 /* I is nonneg if this reload uses a register.
7151 If rld[r].reg_rtx is 0, this is an optional reload
7152 that we opted to ignore. */
7153 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7154 && rld[r].reg_rtx != 0)
7156 int nregno = REGNO (rld[r].out_reg);
7157 int nr = 1;
7159 if (nregno < FIRST_PSEUDO_REGISTER)
7160 nr = hard_regno_nregs[nregno][rld[r].mode];
7162 while (--nr >= 0)
7163 SET_REGNO_REG_SET (&reg_has_output_reload,
7164 nregno + nr);
7166 if (i >= 0)
7167 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7169 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7170 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7171 || rld[r].when_needed == RELOAD_FOR_INSN);
7176 /* Deallocate the reload register for reload R. This is called from
7177 remove_address_replacements. */
7179 void
7180 deallocate_reload_reg (int r)
7182 int regno;
7184 if (! rld[r].reg_rtx)
7185 return;
7186 regno = true_regnum (rld[r].reg_rtx);
7187 rld[r].reg_rtx = 0;
7188 if (spill_reg_order[regno] >= 0)
7189 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7190 rld[r].mode);
7191 reload_spill_index[r] = -1;
7194 /* These arrays are filled by emit_reload_insns and its subroutines. */
7195 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7196 static rtx_insn *other_input_address_reload_insns = 0;
7197 static rtx_insn *other_input_reload_insns = 0;
7198 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7199 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7200 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7201 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7202 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7203 static rtx_insn *operand_reload_insns = 0;
7204 static rtx_insn *other_operand_reload_insns = 0;
7205 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7207 /* Values to be put in spill_reg_store are put here first. Instructions
7208 must only be placed here if the associated reload register reaches
7209 the end of the instruction's reload sequence. */
7210 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7211 static HARD_REG_SET reg_reloaded_died;
7213 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7214 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7215 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7216 adjusted register, and return true. Otherwise, return false. */
7217 static bool
7218 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7219 enum reg_class new_class,
7220 machine_mode new_mode)
7223 rtx reg;
7225 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7227 unsigned regno = REGNO (reg);
7229 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7230 continue;
7231 if (GET_MODE (reg) != new_mode)
7233 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7234 continue;
7235 if (hard_regno_nregs[regno][new_mode]
7236 > hard_regno_nregs[regno][GET_MODE (reg)])
7237 continue;
7238 reg = reload_adjust_reg_for_mode (reg, new_mode);
7240 *reload_reg = reg;
7241 return true;
7243 return false;
7246 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7247 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7248 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7249 adjusted register, and return true. Otherwise, return false. */
7250 static bool
7251 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7252 enum insn_code icode)
7255 enum reg_class new_class = scratch_reload_class (icode);
7256 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7258 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7259 new_class, new_mode);
7262 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7263 has the number J. OLD contains the value to be used as input. */
7265 static void
7266 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7267 rtx old, int j)
7269 rtx_insn *insn = chain->insn;
7270 rtx reloadreg;
7271 rtx oldequiv_reg = 0;
7272 rtx oldequiv = 0;
7273 int special = 0;
7274 machine_mode mode;
7275 rtx_insn **where;
7277 /* delete_output_reload is only invoked properly if old contains
7278 the original pseudo register. Since this is replaced with a
7279 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7280 find the pseudo in RELOAD_IN_REG. This is also used to
7281 determine whether a secondary reload is needed. */
7282 if (reload_override_in[j]
7283 && (REG_P (rl->in_reg)
7284 || (GET_CODE (rl->in_reg) == SUBREG
7285 && REG_P (SUBREG_REG (rl->in_reg)))))
7287 oldequiv = old;
7288 old = rl->in_reg;
7290 if (oldequiv == 0)
7291 oldequiv = old;
7292 else if (REG_P (oldequiv))
7293 oldequiv_reg = oldequiv;
7294 else if (GET_CODE (oldequiv) == SUBREG)
7295 oldequiv_reg = SUBREG_REG (oldequiv);
7297 reloadreg = reload_reg_rtx_for_input[j];
7298 mode = GET_MODE (reloadreg);
7300 /* If we are reloading from a register that was recently stored in
7301 with an output-reload, see if we can prove there was
7302 actually no need to store the old value in it. */
7304 if (optimize && REG_P (oldequiv)
7305 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7306 && spill_reg_store[REGNO (oldequiv)]
7307 && REG_P (old)
7308 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7309 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7310 rl->out_reg)))
7311 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7313 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7314 OLDEQUIV. */
7316 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7317 oldequiv = SUBREG_REG (oldequiv);
7318 if (GET_MODE (oldequiv) != VOIDmode
7319 && mode != GET_MODE (oldequiv))
7320 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7322 /* Switch to the right place to emit the reload insns. */
7323 switch (rl->when_needed)
7325 case RELOAD_OTHER:
7326 where = &other_input_reload_insns;
7327 break;
7328 case RELOAD_FOR_INPUT:
7329 where = &input_reload_insns[rl->opnum];
7330 break;
7331 case RELOAD_FOR_INPUT_ADDRESS:
7332 where = &input_address_reload_insns[rl->opnum];
7333 break;
7334 case RELOAD_FOR_INPADDR_ADDRESS:
7335 where = &inpaddr_address_reload_insns[rl->opnum];
7336 break;
7337 case RELOAD_FOR_OUTPUT_ADDRESS:
7338 where = &output_address_reload_insns[rl->opnum];
7339 break;
7340 case RELOAD_FOR_OUTADDR_ADDRESS:
7341 where = &outaddr_address_reload_insns[rl->opnum];
7342 break;
7343 case RELOAD_FOR_OPERAND_ADDRESS:
7344 where = &operand_reload_insns;
7345 break;
7346 case RELOAD_FOR_OPADDR_ADDR:
7347 where = &other_operand_reload_insns;
7348 break;
7349 case RELOAD_FOR_OTHER_ADDRESS:
7350 where = &other_input_address_reload_insns;
7351 break;
7352 default:
7353 gcc_unreachable ();
7356 push_to_sequence (*where);
7358 /* Auto-increment addresses must be reloaded in a special way. */
7359 if (rl->out && ! rl->out_reg)
7361 /* We are not going to bother supporting the case where a
7362 incremented register can't be copied directly from
7363 OLDEQUIV since this seems highly unlikely. */
7364 gcc_assert (rl->secondary_in_reload < 0);
7366 if (reload_inherited[j])
7367 oldequiv = reloadreg;
7369 old = XEXP (rl->in_reg, 0);
7371 /* Prevent normal processing of this reload. */
7372 special = 1;
7373 /* Output a special code sequence for this case. */
7374 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7377 /* If we are reloading a pseudo-register that was set by the previous
7378 insn, see if we can get rid of that pseudo-register entirely
7379 by redirecting the previous insn into our reload register. */
7381 else if (optimize && REG_P (old)
7382 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7383 && dead_or_set_p (insn, old)
7384 /* This is unsafe if some other reload
7385 uses the same reg first. */
7386 && ! conflicts_with_override (reloadreg)
7387 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7388 rl->when_needed, old, rl->out, j, 0))
7390 rtx_insn *temp = PREV_INSN (insn);
7391 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7392 temp = PREV_INSN (temp);
7393 if (temp
7394 && NONJUMP_INSN_P (temp)
7395 && GET_CODE (PATTERN (temp)) == SET
7396 && SET_DEST (PATTERN (temp)) == old
7397 /* Make sure we can access insn_operand_constraint. */
7398 && asm_noperands (PATTERN (temp)) < 0
7399 /* This is unsafe if operand occurs more than once in current
7400 insn. Perhaps some occurrences aren't reloaded. */
7401 && count_occurrences (PATTERN (insn), old, 0) == 1)
7403 rtx old = SET_DEST (PATTERN (temp));
7404 /* Store into the reload register instead of the pseudo. */
7405 SET_DEST (PATTERN (temp)) = reloadreg;
7407 /* Verify that resulting insn is valid.
7409 Note that we have replaced the destination of TEMP with
7410 RELOADREG. If TEMP references RELOADREG within an
7411 autoincrement addressing mode, then the resulting insn
7412 is ill-formed and we must reject this optimization. */
7413 extract_insn (temp);
7414 if (constrain_operands (1, get_enabled_alternatives (temp))
7415 #ifdef AUTO_INC_DEC
7416 && ! find_reg_note (temp, REG_INC, reloadreg)
7417 #endif
7420 /* If the previous insn is an output reload, the source is
7421 a reload register, and its spill_reg_store entry will
7422 contain the previous destination. This is now
7423 invalid. */
7424 if (REG_P (SET_SRC (PATTERN (temp)))
7425 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7427 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7428 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7431 /* If these are the only uses of the pseudo reg,
7432 pretend for GDB it lives in the reload reg we used. */
7433 if (REG_N_DEATHS (REGNO (old)) == 1
7434 && REG_N_SETS (REGNO (old)) == 1)
7436 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7437 if (ira_conflicts_p)
7438 /* Inform IRA about the change. */
7439 ira_mark_allocation_change (REGNO (old));
7440 alter_reg (REGNO (old), -1, false);
7442 special = 1;
7444 /* Adjust any debug insns between temp and insn. */
7445 while ((temp = NEXT_INSN (temp)) != insn)
7446 if (DEBUG_INSN_P (temp))
7447 replace_rtx (PATTERN (temp), old, reloadreg);
7448 else
7449 gcc_assert (NOTE_P (temp));
7451 else
7453 SET_DEST (PATTERN (temp)) = old;
7458 /* We can't do that, so output an insn to load RELOADREG. */
7460 /* If we have a secondary reload, pick up the secondary register
7461 and icode, if any. If OLDEQUIV and OLD are different or
7462 if this is an in-out reload, recompute whether or not we
7463 still need a secondary register and what the icode should
7464 be. If we still need a secondary register and the class or
7465 icode is different, go back to reloading from OLD if using
7466 OLDEQUIV means that we got the wrong type of register. We
7467 cannot have different class or icode due to an in-out reload
7468 because we don't make such reloads when both the input and
7469 output need secondary reload registers. */
7471 if (! special && rl->secondary_in_reload >= 0)
7473 rtx second_reload_reg = 0;
7474 rtx third_reload_reg = 0;
7475 int secondary_reload = rl->secondary_in_reload;
7476 rtx real_oldequiv = oldequiv;
7477 rtx real_old = old;
7478 rtx tmp;
7479 enum insn_code icode;
7480 enum insn_code tertiary_icode = CODE_FOR_nothing;
7482 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7483 and similarly for OLD.
7484 See comments in get_secondary_reload in reload.c. */
7485 /* If it is a pseudo that cannot be replaced with its
7486 equivalent MEM, we must fall back to reload_in, which
7487 will have all the necessary substitutions registered.
7488 Likewise for a pseudo that can't be replaced with its
7489 equivalent constant.
7491 Take extra care for subregs of such pseudos. Note that
7492 we cannot use reg_equiv_mem in this case because it is
7493 not in the right mode. */
7495 tmp = oldequiv;
7496 if (GET_CODE (tmp) == SUBREG)
7497 tmp = SUBREG_REG (tmp);
7498 if (REG_P (tmp)
7499 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7500 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7501 || reg_equiv_constant (REGNO (tmp)) != 0))
7503 if (! reg_equiv_mem (REGNO (tmp))
7504 || num_not_at_initial_offset
7505 || GET_CODE (oldequiv) == SUBREG)
7506 real_oldequiv = rl->in;
7507 else
7508 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7511 tmp = old;
7512 if (GET_CODE (tmp) == SUBREG)
7513 tmp = SUBREG_REG (tmp);
7514 if (REG_P (tmp)
7515 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7516 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7517 || reg_equiv_constant (REGNO (tmp)) != 0))
7519 if (! reg_equiv_mem (REGNO (tmp))
7520 || num_not_at_initial_offset
7521 || GET_CODE (old) == SUBREG)
7522 real_old = rl->in;
7523 else
7524 real_old = reg_equiv_mem (REGNO (tmp));
7527 second_reload_reg = rld[secondary_reload].reg_rtx;
7528 if (rld[secondary_reload].secondary_in_reload >= 0)
7530 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7532 third_reload_reg = rld[tertiary_reload].reg_rtx;
7533 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7534 /* We'd have to add more code for quartary reloads. */
7535 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7537 icode = rl->secondary_in_icode;
7539 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7540 || (rl->in != 0 && rl->out != 0))
7542 secondary_reload_info sri, sri2;
7543 enum reg_class new_class, new_t_class;
7545 sri.icode = CODE_FOR_nothing;
7546 sri.prev_sri = NULL;
7547 new_class
7548 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7549 rl->rclass, mode,
7550 &sri);
7552 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7553 second_reload_reg = 0;
7554 else if (new_class == NO_REGS)
7556 if (reload_adjust_reg_for_icode (&second_reload_reg,
7557 third_reload_reg,
7558 (enum insn_code) sri.icode))
7560 icode = (enum insn_code) sri.icode;
7561 third_reload_reg = 0;
7563 else
7565 oldequiv = old;
7566 real_oldequiv = real_old;
7569 else if (sri.icode != CODE_FOR_nothing)
7570 /* We currently lack a way to express this in reloads. */
7571 gcc_unreachable ();
7572 else
7574 sri2.icode = CODE_FOR_nothing;
7575 sri2.prev_sri = &sri;
7576 new_t_class
7577 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7578 new_class, mode,
7579 &sri);
7580 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7582 if (reload_adjust_reg_for_temp (&second_reload_reg,
7583 third_reload_reg,
7584 new_class, mode))
7586 third_reload_reg = 0;
7587 tertiary_icode = (enum insn_code) sri2.icode;
7589 else
7591 oldequiv = old;
7592 real_oldequiv = real_old;
7595 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7597 rtx intermediate = second_reload_reg;
7599 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7600 new_class, mode)
7601 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7602 ((enum insn_code)
7603 sri2.icode)))
7605 second_reload_reg = intermediate;
7606 tertiary_icode = (enum insn_code) sri2.icode;
7608 else
7610 oldequiv = old;
7611 real_oldequiv = real_old;
7614 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7616 rtx intermediate = second_reload_reg;
7618 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7619 new_class, mode)
7620 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7621 new_t_class, mode))
7623 second_reload_reg = intermediate;
7624 tertiary_icode = (enum insn_code) sri2.icode;
7626 else
7628 oldequiv = old;
7629 real_oldequiv = real_old;
7632 else
7634 /* This could be handled more intelligently too. */
7635 oldequiv = old;
7636 real_oldequiv = real_old;
7641 /* If we still need a secondary reload register, check
7642 to see if it is being used as a scratch or intermediate
7643 register and generate code appropriately. If we need
7644 a scratch register, use REAL_OLDEQUIV since the form of
7645 the insn may depend on the actual address if it is
7646 a MEM. */
7648 if (second_reload_reg)
7650 if (icode != CODE_FOR_nothing)
7652 /* We'd have to add extra code to handle this case. */
7653 gcc_assert (!third_reload_reg);
7655 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7656 second_reload_reg));
7657 special = 1;
7659 else
7661 /* See if we need a scratch register to load the
7662 intermediate register (a tertiary reload). */
7663 if (tertiary_icode != CODE_FOR_nothing)
7665 emit_insn ((GEN_FCN (tertiary_icode)
7666 (second_reload_reg, real_oldequiv,
7667 third_reload_reg)));
7669 else if (third_reload_reg)
7671 gen_reload (third_reload_reg, real_oldequiv,
7672 rl->opnum,
7673 rl->when_needed);
7674 gen_reload (second_reload_reg, third_reload_reg,
7675 rl->opnum,
7676 rl->when_needed);
7678 else
7679 gen_reload (second_reload_reg, real_oldequiv,
7680 rl->opnum,
7681 rl->when_needed);
7683 oldequiv = second_reload_reg;
7688 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7690 rtx real_oldequiv = oldequiv;
7692 if ((REG_P (oldequiv)
7693 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7694 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7695 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7696 || (GET_CODE (oldequiv) == SUBREG
7697 && REG_P (SUBREG_REG (oldequiv))
7698 && (REGNO (SUBREG_REG (oldequiv))
7699 >= FIRST_PSEUDO_REGISTER)
7700 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7701 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7702 || (CONSTANT_P (oldequiv)
7703 && (targetm.preferred_reload_class (oldequiv,
7704 REGNO_REG_CLASS (REGNO (reloadreg)))
7705 == NO_REGS)))
7706 real_oldequiv = rl->in;
7707 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7708 rl->when_needed);
7711 if (cfun->can_throw_non_call_exceptions)
7712 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7714 /* End this sequence. */
7715 *where = get_insns ();
7716 end_sequence ();
7718 /* Update reload_override_in so that delete_address_reloads_1
7719 can see the actual register usage. */
7720 if (oldequiv_reg)
7721 reload_override_in[j] = oldequiv;
7724 /* Generate insns to for the output reload RL, which is for the insn described
7725 by CHAIN and has the number J. */
7726 static void
7727 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7728 int j)
7730 rtx reloadreg;
7731 rtx_insn *insn = chain->insn;
7732 int special = 0;
7733 rtx old = rl->out;
7734 machine_mode mode;
7735 rtx_insn *p;
7736 rtx rl_reg_rtx;
7738 if (rl->when_needed == RELOAD_OTHER)
7739 start_sequence ();
7740 else
7741 push_to_sequence (output_reload_insns[rl->opnum]);
7743 rl_reg_rtx = reload_reg_rtx_for_output[j];
7744 mode = GET_MODE (rl_reg_rtx);
7746 reloadreg = rl_reg_rtx;
7748 /* If we need two reload regs, set RELOADREG to the intermediate
7749 one, since it will be stored into OLD. We might need a secondary
7750 register only for an input reload, so check again here. */
7752 if (rl->secondary_out_reload >= 0)
7754 rtx real_old = old;
7755 int secondary_reload = rl->secondary_out_reload;
7756 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7758 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7759 && reg_equiv_mem (REGNO (old)) != 0)
7760 real_old = reg_equiv_mem (REGNO (old));
7762 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7764 rtx second_reloadreg = reloadreg;
7765 reloadreg = rld[secondary_reload].reg_rtx;
7767 /* See if RELOADREG is to be used as a scratch register
7768 or as an intermediate register. */
7769 if (rl->secondary_out_icode != CODE_FOR_nothing)
7771 /* We'd have to add extra code to handle this case. */
7772 gcc_assert (tertiary_reload < 0);
7774 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7775 (real_old, second_reloadreg, reloadreg)));
7776 special = 1;
7778 else
7780 /* See if we need both a scratch and intermediate reload
7781 register. */
7783 enum insn_code tertiary_icode
7784 = rld[secondary_reload].secondary_out_icode;
7786 /* We'd have to add more code for quartary reloads. */
7787 gcc_assert (tertiary_reload < 0
7788 || rld[tertiary_reload].secondary_out_reload < 0);
7790 if (GET_MODE (reloadreg) != mode)
7791 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7793 if (tertiary_icode != CODE_FOR_nothing)
7795 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7797 /* Copy primary reload reg to secondary reload reg.
7798 (Note that these have been swapped above, then
7799 secondary reload reg to OLD using our insn.) */
7801 /* If REAL_OLD is a paradoxical SUBREG, remove it
7802 and try to put the opposite SUBREG on
7803 RELOADREG. */
7804 strip_paradoxical_subreg (&real_old, &reloadreg);
7806 gen_reload (reloadreg, second_reloadreg,
7807 rl->opnum, rl->when_needed);
7808 emit_insn ((GEN_FCN (tertiary_icode)
7809 (real_old, reloadreg, third_reloadreg)));
7810 special = 1;
7813 else
7815 /* Copy between the reload regs here and then to
7816 OUT later. */
7818 gen_reload (reloadreg, second_reloadreg,
7819 rl->opnum, rl->when_needed);
7820 if (tertiary_reload >= 0)
7822 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7824 gen_reload (third_reloadreg, reloadreg,
7825 rl->opnum, rl->when_needed);
7826 reloadreg = third_reloadreg;
7833 /* Output the last reload insn. */
7834 if (! special)
7836 rtx set;
7838 /* Don't output the last reload if OLD is not the dest of
7839 INSN and is in the src and is clobbered by INSN. */
7840 if (! flag_expensive_optimizations
7841 || !REG_P (old)
7842 || !(set = single_set (insn))
7843 || rtx_equal_p (old, SET_DEST (set))
7844 || !reg_mentioned_p (old, SET_SRC (set))
7845 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7846 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7847 gen_reload (old, reloadreg, rl->opnum,
7848 rl->when_needed);
7851 /* Look at all insns we emitted, just to be safe. */
7852 for (p = get_insns (); p; p = NEXT_INSN (p))
7853 if (INSN_P (p))
7855 rtx pat = PATTERN (p);
7857 /* If this output reload doesn't come from a spill reg,
7858 clear any memory of reloaded copies of the pseudo reg.
7859 If this output reload comes from a spill reg,
7860 reg_has_output_reload will make this do nothing. */
7861 note_stores (pat, forget_old_reloads_1, NULL);
7863 if (reg_mentioned_p (rl_reg_rtx, pat))
7865 rtx set = single_set (insn);
7866 if (reload_spill_index[j] < 0
7867 && set
7868 && SET_SRC (set) == rl_reg_rtx)
7870 int src = REGNO (SET_SRC (set));
7872 reload_spill_index[j] = src;
7873 SET_HARD_REG_BIT (reg_is_output_reload, src);
7874 if (find_regno_note (insn, REG_DEAD, src))
7875 SET_HARD_REG_BIT (reg_reloaded_died, src);
7877 if (HARD_REGISTER_P (rl_reg_rtx))
7879 int s = rl->secondary_out_reload;
7880 set = single_set (p);
7881 /* If this reload copies only to the secondary reload
7882 register, the secondary reload does the actual
7883 store. */
7884 if (s >= 0 && set == NULL_RTX)
7885 /* We can't tell what function the secondary reload
7886 has and where the actual store to the pseudo is
7887 made; leave new_spill_reg_store alone. */
7889 else if (s >= 0
7890 && SET_SRC (set) == rl_reg_rtx
7891 && SET_DEST (set) == rld[s].reg_rtx)
7893 /* Usually the next instruction will be the
7894 secondary reload insn; if we can confirm
7895 that it is, setting new_spill_reg_store to
7896 that insn will allow an extra optimization. */
7897 rtx s_reg = rld[s].reg_rtx;
7898 rtx_insn *next = NEXT_INSN (p);
7899 rld[s].out = rl->out;
7900 rld[s].out_reg = rl->out_reg;
7901 set = single_set (next);
7902 if (set && SET_SRC (set) == s_reg
7903 && reload_reg_rtx_reaches_end_p (s_reg, s))
7905 SET_HARD_REG_BIT (reg_is_output_reload,
7906 REGNO (s_reg));
7907 new_spill_reg_store[REGNO (s_reg)] = next;
7910 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7911 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7916 if (rl->when_needed == RELOAD_OTHER)
7918 emit_insn (other_output_reload_insns[rl->opnum]);
7919 other_output_reload_insns[rl->opnum] = get_insns ();
7921 else
7922 output_reload_insns[rl->opnum] = get_insns ();
7924 if (cfun->can_throw_non_call_exceptions)
7925 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7927 end_sequence ();
7930 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7931 and has the number J. */
7932 static void
7933 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7935 rtx_insn *insn = chain->insn;
7936 rtx old = (rl->in && MEM_P (rl->in)
7937 ? rl->in_reg : rl->in);
7938 rtx reg_rtx = rl->reg_rtx;
7940 if (old && reg_rtx)
7942 machine_mode mode;
7944 /* Determine the mode to reload in.
7945 This is very tricky because we have three to choose from.
7946 There is the mode the insn operand wants (rl->inmode).
7947 There is the mode of the reload register RELOADREG.
7948 There is the intrinsic mode of the operand, which we could find
7949 by stripping some SUBREGs.
7950 It turns out that RELOADREG's mode is irrelevant:
7951 we can change that arbitrarily.
7953 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7954 then the reload reg may not support QImode moves, so use SImode.
7955 If foo is in memory due to spilling a pseudo reg, this is safe,
7956 because the QImode value is in the least significant part of a
7957 slot big enough for a SImode. If foo is some other sort of
7958 memory reference, then it is impossible to reload this case,
7959 so previous passes had better make sure this never happens.
7961 Then consider a one-word union which has SImode and one of its
7962 members is a float, being fetched as (SUBREG:SF union:SI).
7963 We must fetch that as SFmode because we could be loading into
7964 a float-only register. In this case OLD's mode is correct.
7966 Consider an immediate integer: it has VOIDmode. Here we need
7967 to get a mode from something else.
7969 In some cases, there is a fourth mode, the operand's
7970 containing mode. If the insn specifies a containing mode for
7971 this operand, it overrides all others.
7973 I am not sure whether the algorithm here is always right,
7974 but it does the right things in those cases. */
7976 mode = GET_MODE (old);
7977 if (mode == VOIDmode)
7978 mode = rl->inmode;
7980 /* We cannot use gen_lowpart_common since it can do the wrong thing
7981 when REG_RTX has a multi-word mode. Note that REG_RTX must
7982 always be a REG here. */
7983 if (GET_MODE (reg_rtx) != mode)
7984 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7986 reload_reg_rtx_for_input[j] = reg_rtx;
7988 if (old != 0
7989 /* AUTO_INC reloads need to be handled even if inherited. We got an
7990 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7991 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7992 && ! rtx_equal_p (reg_rtx, old)
7993 && reg_rtx != 0)
7994 emit_input_reload_insns (chain, rld + j, old, j);
7996 /* When inheriting a wider reload, we have a MEM in rl->in,
7997 e.g. inheriting a SImode output reload for
7998 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7999 if (optimize && reload_inherited[j] && rl->in
8000 && MEM_P (rl->in)
8001 && MEM_P (rl->in_reg)
8002 && reload_spill_index[j] >= 0
8003 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
8004 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
8006 /* If we are reloading a register that was recently stored in with an
8007 output-reload, see if we can prove there was
8008 actually no need to store the old value in it. */
8010 if (optimize
8011 && (reload_inherited[j] || reload_override_in[j])
8012 && reg_rtx
8013 && REG_P (reg_rtx)
8014 && spill_reg_store[REGNO (reg_rtx)] != 0
8015 #if 0
8016 /* There doesn't seem to be any reason to restrict this to pseudos
8017 and doing so loses in the case where we are copying from a
8018 register of the wrong class. */
8019 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8020 #endif
8021 /* The insn might have already some references to stackslots
8022 replaced by MEMs, while reload_out_reg still names the
8023 original pseudo. */
8024 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8025 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8026 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8029 /* Do output reloading for reload RL, which is for the insn described by
8030 CHAIN and has the number J.
8031 ??? At some point we need to support handling output reloads of
8032 JUMP_INSNs or insns that set cc0. */
8033 static void
8034 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8036 rtx note, old;
8037 rtx_insn *insn = chain->insn;
8038 /* If this is an output reload that stores something that is
8039 not loaded in this same reload, see if we can eliminate a previous
8040 store. */
8041 rtx pseudo = rl->out_reg;
8042 rtx reg_rtx = rl->reg_rtx;
8044 if (rl->out && reg_rtx)
8046 machine_mode mode;
8048 /* Determine the mode to reload in.
8049 See comments above (for input reloading). */
8050 mode = GET_MODE (rl->out);
8051 if (mode == VOIDmode)
8053 /* VOIDmode should never happen for an output. */
8054 if (asm_noperands (PATTERN (insn)) < 0)
8055 /* It's the compiler's fault. */
8056 fatal_insn ("VOIDmode on an output", insn);
8057 error_for_asm (insn, "output operand is constant in %<asm%>");
8058 /* Prevent crash--use something we know is valid. */
8059 mode = word_mode;
8060 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8062 if (GET_MODE (reg_rtx) != mode)
8063 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8065 reload_reg_rtx_for_output[j] = reg_rtx;
8067 if (pseudo
8068 && optimize
8069 && REG_P (pseudo)
8070 && ! rtx_equal_p (rl->in_reg, pseudo)
8071 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8072 && reg_last_reload_reg[REGNO (pseudo)])
8074 int pseudo_no = REGNO (pseudo);
8075 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8077 /* We don't need to test full validity of last_regno for
8078 inherit here; we only want to know if the store actually
8079 matches the pseudo. */
8080 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8081 && reg_reloaded_contents[last_regno] == pseudo_no
8082 && spill_reg_store[last_regno]
8083 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8084 delete_output_reload (insn, j, last_regno, reg_rtx);
8087 old = rl->out_reg;
8088 if (old == 0
8089 || reg_rtx == 0
8090 || rtx_equal_p (old, reg_rtx))
8091 return;
8093 /* An output operand that dies right away does need a reload,
8094 but need not be copied from it. Show the new location in the
8095 REG_UNUSED note. */
8096 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8097 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8099 XEXP (note, 0) = reg_rtx;
8100 return;
8102 /* Likewise for a SUBREG of an operand that dies. */
8103 else if (GET_CODE (old) == SUBREG
8104 && REG_P (SUBREG_REG (old))
8105 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8106 SUBREG_REG (old))))
8108 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8109 return;
8111 else if (GET_CODE (old) == SCRATCH)
8112 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8113 but we don't want to make an output reload. */
8114 return;
8116 /* If is a JUMP_INSN, we can't support output reloads yet. */
8117 gcc_assert (NONJUMP_INSN_P (insn));
8119 emit_output_reload_insns (chain, rld + j, j);
8122 /* A reload copies values of MODE from register SRC to register DEST.
8123 Return true if it can be treated for inheritance purposes like a
8124 group of reloads, each one reloading a single hard register. The
8125 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8126 occupy the same number of hard registers. */
8128 static bool
8129 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8130 int src ATTRIBUTE_UNUSED,
8131 machine_mode mode ATTRIBUTE_UNUSED)
8133 #ifdef CANNOT_CHANGE_MODE_CLASS
8134 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8135 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8136 #else
8137 return true;
8138 #endif
8141 /* Output insns to reload values in and out of the chosen reload regs. */
8143 static void
8144 emit_reload_insns (struct insn_chain *chain)
8146 rtx_insn *insn = chain->insn;
8148 int j;
8150 CLEAR_HARD_REG_SET (reg_reloaded_died);
8152 for (j = 0; j < reload_n_operands; j++)
8153 input_reload_insns[j] = input_address_reload_insns[j]
8154 = inpaddr_address_reload_insns[j]
8155 = output_reload_insns[j] = output_address_reload_insns[j]
8156 = outaddr_address_reload_insns[j]
8157 = other_output_reload_insns[j] = 0;
8158 other_input_address_reload_insns = 0;
8159 other_input_reload_insns = 0;
8160 operand_reload_insns = 0;
8161 other_operand_reload_insns = 0;
8163 /* Dump reloads into the dump file. */
8164 if (dump_file)
8166 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8167 debug_reload_to_stream (dump_file);
8170 for (j = 0; j < n_reloads; j++)
8171 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8173 unsigned int i;
8175 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8176 new_spill_reg_store[i] = 0;
8179 /* Now output the instructions to copy the data into and out of the
8180 reload registers. Do these in the order that the reloads were reported,
8181 since reloads of base and index registers precede reloads of operands
8182 and the operands may need the base and index registers reloaded. */
8184 for (j = 0; j < n_reloads; j++)
8186 do_input_reload (chain, rld + j, j);
8187 do_output_reload (chain, rld + j, j);
8190 /* Now write all the insns we made for reloads in the order expected by
8191 the allocation functions. Prior to the insn being reloaded, we write
8192 the following reloads:
8194 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8196 RELOAD_OTHER reloads.
8198 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8199 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8200 RELOAD_FOR_INPUT reload for the operand.
8202 RELOAD_FOR_OPADDR_ADDRS reloads.
8204 RELOAD_FOR_OPERAND_ADDRESS reloads.
8206 After the insn being reloaded, we write the following:
8208 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8209 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8210 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8211 reloads for the operand. The RELOAD_OTHER output reloads are
8212 output in descending order by reload number. */
8214 emit_insn_before (other_input_address_reload_insns, insn);
8215 emit_insn_before (other_input_reload_insns, insn);
8217 for (j = 0; j < reload_n_operands; j++)
8219 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8220 emit_insn_before (input_address_reload_insns[j], insn);
8221 emit_insn_before (input_reload_insns[j], insn);
8224 emit_insn_before (other_operand_reload_insns, insn);
8225 emit_insn_before (operand_reload_insns, insn);
8227 for (j = 0; j < reload_n_operands; j++)
8229 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8230 x = emit_insn_after (output_address_reload_insns[j], x);
8231 x = emit_insn_after (output_reload_insns[j], x);
8232 emit_insn_after (other_output_reload_insns[j], x);
8235 /* For all the spill regs newly reloaded in this instruction,
8236 record what they were reloaded from, so subsequent instructions
8237 can inherit the reloads.
8239 Update spill_reg_store for the reloads of this insn.
8240 Copy the elements that were updated in the loop above. */
8242 for (j = 0; j < n_reloads; j++)
8244 int r = reload_order[j];
8245 int i = reload_spill_index[r];
8247 /* If this is a non-inherited input reload from a pseudo, we must
8248 clear any memory of a previous store to the same pseudo. Only do
8249 something if there will not be an output reload for the pseudo
8250 being reloaded. */
8251 if (rld[r].in_reg != 0
8252 && ! (reload_inherited[r] || reload_override_in[r]))
8254 rtx reg = rld[r].in_reg;
8256 if (GET_CODE (reg) == SUBREG)
8257 reg = SUBREG_REG (reg);
8259 if (REG_P (reg)
8260 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8261 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8263 int nregno = REGNO (reg);
8265 if (reg_last_reload_reg[nregno])
8267 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8269 if (reg_reloaded_contents[last_regno] == nregno)
8270 spill_reg_store[last_regno] = 0;
8275 /* I is nonneg if this reload used a register.
8276 If rld[r].reg_rtx is 0, this is an optional reload
8277 that we opted to ignore. */
8279 if (i >= 0 && rld[r].reg_rtx != 0)
8281 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8282 int k;
8284 /* For a multi register reload, we need to check if all or part
8285 of the value lives to the end. */
8286 for (k = 0; k < nr; k++)
8287 if (reload_reg_reaches_end_p (i + k, r))
8288 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8290 /* Maybe the spill reg contains a copy of reload_out. */
8291 if (rld[r].out != 0
8292 && (REG_P (rld[r].out)
8293 || (rld[r].out_reg
8294 ? REG_P (rld[r].out_reg)
8295 /* The reload value is an auto-modification of
8296 some kind. For PRE_INC, POST_INC, PRE_DEC
8297 and POST_DEC, we record an equivalence
8298 between the reload register and the operand
8299 on the optimistic assumption that we can make
8300 the equivalence hold. reload_as_needed must
8301 then either make it hold or invalidate the
8302 equivalence.
8304 PRE_MODIFY and POST_MODIFY addresses are reloaded
8305 somewhat differently, and allowing them here leads
8306 to problems. */
8307 : (GET_CODE (rld[r].out) != POST_MODIFY
8308 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8310 rtx reg;
8312 reg = reload_reg_rtx_for_output[r];
8313 if (reload_reg_rtx_reaches_end_p (reg, r))
8315 machine_mode mode = GET_MODE (reg);
8316 int regno = REGNO (reg);
8317 int nregs = hard_regno_nregs[regno][mode];
8318 rtx out = (REG_P (rld[r].out)
8319 ? rld[r].out
8320 : rld[r].out_reg
8321 ? rld[r].out_reg
8322 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8323 int out_regno = REGNO (out);
8324 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8325 : hard_regno_nregs[out_regno][mode]);
8326 bool piecemeal;
8328 spill_reg_store[regno] = new_spill_reg_store[regno];
8329 spill_reg_stored_to[regno] = out;
8330 reg_last_reload_reg[out_regno] = reg;
8332 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8333 && nregs == out_nregs
8334 && inherit_piecemeal_p (out_regno, regno, mode));
8336 /* If OUT_REGNO is a hard register, it may occupy more than
8337 one register. If it does, say what is in the
8338 rest of the registers assuming that both registers
8339 agree on how many words the object takes. If not,
8340 invalidate the subsequent registers. */
8342 if (HARD_REGISTER_NUM_P (out_regno))
8343 for (k = 1; k < out_nregs; k++)
8344 reg_last_reload_reg[out_regno + k]
8345 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8347 /* Now do the inverse operation. */
8348 for (k = 0; k < nregs; k++)
8350 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8351 reg_reloaded_contents[regno + k]
8352 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8353 ? out_regno
8354 : out_regno + k);
8355 reg_reloaded_insn[regno + k] = insn;
8356 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8357 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8358 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8359 regno + k);
8360 else
8361 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8362 regno + k);
8366 /* Maybe the spill reg contains a copy of reload_in. Only do
8367 something if there will not be an output reload for
8368 the register being reloaded. */
8369 else if (rld[r].out_reg == 0
8370 && rld[r].in != 0
8371 && ((REG_P (rld[r].in)
8372 && !HARD_REGISTER_P (rld[r].in)
8373 && !REGNO_REG_SET_P (&reg_has_output_reload,
8374 REGNO (rld[r].in)))
8375 || (REG_P (rld[r].in_reg)
8376 && !REGNO_REG_SET_P (&reg_has_output_reload,
8377 REGNO (rld[r].in_reg))))
8378 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8380 rtx reg;
8382 reg = reload_reg_rtx_for_input[r];
8383 if (reload_reg_rtx_reaches_end_p (reg, r))
8385 machine_mode mode;
8386 int regno;
8387 int nregs;
8388 int in_regno;
8389 int in_nregs;
8390 rtx in;
8391 bool piecemeal;
8393 mode = GET_MODE (reg);
8394 regno = REGNO (reg);
8395 nregs = hard_regno_nregs[regno][mode];
8396 if (REG_P (rld[r].in)
8397 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8398 in = rld[r].in;
8399 else if (REG_P (rld[r].in_reg))
8400 in = rld[r].in_reg;
8401 else
8402 in = XEXP (rld[r].in_reg, 0);
8403 in_regno = REGNO (in);
8405 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8406 : hard_regno_nregs[in_regno][mode]);
8408 reg_last_reload_reg[in_regno] = reg;
8410 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8411 && nregs == in_nregs
8412 && inherit_piecemeal_p (regno, in_regno, mode));
8414 if (HARD_REGISTER_NUM_P (in_regno))
8415 for (k = 1; k < in_nregs; k++)
8416 reg_last_reload_reg[in_regno + k]
8417 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8419 /* Unless we inherited this reload, show we haven't
8420 recently done a store.
8421 Previous stores of inherited auto_inc expressions
8422 also have to be discarded. */
8423 if (! reload_inherited[r]
8424 || (rld[r].out && ! rld[r].out_reg))
8425 spill_reg_store[regno] = 0;
8427 for (k = 0; k < nregs; k++)
8429 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8430 reg_reloaded_contents[regno + k]
8431 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8432 ? in_regno
8433 : in_regno + k);
8434 reg_reloaded_insn[regno + k] = insn;
8435 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8436 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8437 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8438 regno + k);
8439 else
8440 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8441 regno + k);
8447 /* The following if-statement was #if 0'd in 1.34 (or before...).
8448 It's reenabled in 1.35 because supposedly nothing else
8449 deals with this problem. */
8451 /* If a register gets output-reloaded from a non-spill register,
8452 that invalidates any previous reloaded copy of it.
8453 But forget_old_reloads_1 won't get to see it, because
8454 it thinks only about the original insn. So invalidate it here.
8455 Also do the same thing for RELOAD_OTHER constraints where the
8456 output is discarded. */
8457 if (i < 0
8458 && ((rld[r].out != 0
8459 && (REG_P (rld[r].out)
8460 || (MEM_P (rld[r].out)
8461 && REG_P (rld[r].out_reg))))
8462 || (rld[r].out == 0 && rld[r].out_reg
8463 && REG_P (rld[r].out_reg))))
8465 rtx out = ((rld[r].out && REG_P (rld[r].out))
8466 ? rld[r].out : rld[r].out_reg);
8467 int out_regno = REGNO (out);
8468 machine_mode mode = GET_MODE (out);
8470 /* REG_RTX is now set or clobbered by the main instruction.
8471 As the comment above explains, forget_old_reloads_1 only
8472 sees the original instruction, and there is no guarantee
8473 that the original instruction also clobbered REG_RTX.
8474 For example, if find_reloads sees that the input side of
8475 a matched operand pair dies in this instruction, it may
8476 use the input register as the reload register.
8478 Calling forget_old_reloads_1 is a waste of effort if
8479 REG_RTX is also the output register.
8481 If we know that REG_RTX holds the value of a pseudo
8482 register, the code after the call will record that fact. */
8483 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8484 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8486 if (!HARD_REGISTER_NUM_P (out_regno))
8488 rtx src_reg;
8489 rtx_insn *store_insn = NULL;
8491 reg_last_reload_reg[out_regno] = 0;
8493 /* If we can find a hard register that is stored, record
8494 the storing insn so that we may delete this insn with
8495 delete_output_reload. */
8496 src_reg = reload_reg_rtx_for_output[r];
8498 if (src_reg)
8500 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8501 store_insn = new_spill_reg_store[REGNO (src_reg)];
8502 else
8503 src_reg = NULL_RTX;
8505 else
8507 /* If this is an optional reload, try to find the
8508 source reg from an input reload. */
8509 rtx set = single_set (insn);
8510 if (set && SET_DEST (set) == rld[r].out)
8512 int k;
8514 src_reg = SET_SRC (set);
8515 store_insn = insn;
8516 for (k = 0; k < n_reloads; k++)
8518 if (rld[k].in == src_reg)
8520 src_reg = reload_reg_rtx_for_input[k];
8521 break;
8526 if (src_reg && REG_P (src_reg)
8527 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8529 int src_regno, src_nregs, k;
8530 rtx note;
8532 gcc_assert (GET_MODE (src_reg) == mode);
8533 src_regno = REGNO (src_reg);
8534 src_nregs = hard_regno_nregs[src_regno][mode];
8535 /* The place where to find a death note varies with
8536 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8537 necessarily checked exactly in the code that moves
8538 notes, so just check both locations. */
8539 note = find_regno_note (insn, REG_DEAD, src_regno);
8540 if (! note && store_insn)
8541 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8542 for (k = 0; k < src_nregs; k++)
8544 spill_reg_store[src_regno + k] = store_insn;
8545 spill_reg_stored_to[src_regno + k] = out;
8546 reg_reloaded_contents[src_regno + k] = out_regno;
8547 reg_reloaded_insn[src_regno + k] = store_insn;
8548 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8549 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8550 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8551 mode))
8552 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8553 src_regno + k);
8554 else
8555 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8556 src_regno + k);
8557 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8558 if (note)
8559 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8560 else
8561 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8563 reg_last_reload_reg[out_regno] = src_reg;
8564 /* We have to set reg_has_output_reload here, or else
8565 forget_old_reloads_1 will clear reg_last_reload_reg
8566 right away. */
8567 SET_REGNO_REG_SET (&reg_has_output_reload,
8568 out_regno);
8571 else
8573 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8575 for (k = 0; k < out_nregs; k++)
8576 reg_last_reload_reg[out_regno + k] = 0;
8580 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8583 /* Go through the motions to emit INSN and test if it is strictly valid.
8584 Return the emitted insn if valid, else return NULL. */
8586 static rtx_insn *
8587 emit_insn_if_valid_for_reload (rtx pat)
8589 rtx_insn *last = get_last_insn ();
8590 int code;
8592 rtx_insn *insn = emit_insn (pat);
8593 code = recog_memoized (insn);
8595 if (code >= 0)
8597 extract_insn (insn);
8598 /* We want constrain operands to treat this insn strictly in its
8599 validity determination, i.e., the way it would after reload has
8600 completed. */
8601 if (constrain_operands (1, get_enabled_alternatives (insn)))
8602 return insn;
8605 delete_insns_since (last);
8606 return NULL;
8609 /* Emit code to perform a reload from IN (which may be a reload register) to
8610 OUT (which may also be a reload register). IN or OUT is from operand
8611 OPNUM with reload type TYPE.
8613 Returns first insn emitted. */
8615 static rtx_insn *
8616 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8618 rtx_insn *last = get_last_insn ();
8619 rtx_insn *tem;
8620 #ifdef SECONDARY_MEMORY_NEEDED
8621 rtx tem1, tem2;
8622 #endif
8624 /* If IN is a paradoxical SUBREG, remove it and try to put the
8625 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8626 if (!strip_paradoxical_subreg (&in, &out))
8627 strip_paradoxical_subreg (&out, &in);
8629 /* How to do this reload can get quite tricky. Normally, we are being
8630 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8631 register that didn't get a hard register. In that case we can just
8632 call emit_move_insn.
8634 We can also be asked to reload a PLUS that adds a register or a MEM to
8635 another register, constant or MEM. This can occur during frame pointer
8636 elimination and while reloading addresses. This case is handled by
8637 trying to emit a single insn to perform the add. If it is not valid,
8638 we use a two insn sequence.
8640 Or we can be asked to reload an unary operand that was a fragment of
8641 an addressing mode, into a register. If it isn't recognized as-is,
8642 we try making the unop operand and the reload-register the same:
8643 (set reg:X (unop:X expr:Y))
8644 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8646 Finally, we could be called to handle an 'o' constraint by putting
8647 an address into a register. In that case, we first try to do this
8648 with a named pattern of "reload_load_address". If no such pattern
8649 exists, we just emit a SET insn and hope for the best (it will normally
8650 be valid on machines that use 'o').
8652 This entire process is made complex because reload will never
8653 process the insns we generate here and so we must ensure that
8654 they will fit their constraints and also by the fact that parts of
8655 IN might be being reloaded separately and replaced with spill registers.
8656 Because of this, we are, in some sense, just guessing the right approach
8657 here. The one listed above seems to work.
8659 ??? At some point, this whole thing needs to be rethought. */
8661 if (GET_CODE (in) == PLUS
8662 && (REG_P (XEXP (in, 0))
8663 || GET_CODE (XEXP (in, 0)) == SUBREG
8664 || MEM_P (XEXP (in, 0)))
8665 && (REG_P (XEXP (in, 1))
8666 || GET_CODE (XEXP (in, 1)) == SUBREG
8667 || CONSTANT_P (XEXP (in, 1))
8668 || MEM_P (XEXP (in, 1))))
8670 /* We need to compute the sum of a register or a MEM and another
8671 register, constant, or MEM, and put it into the reload
8672 register. The best possible way of doing this is if the machine
8673 has a three-operand ADD insn that accepts the required operands.
8675 The simplest approach is to try to generate such an insn and see if it
8676 is recognized and matches its constraints. If so, it can be used.
8678 It might be better not to actually emit the insn unless it is valid,
8679 but we need to pass the insn as an operand to `recog' and
8680 `extract_insn' and it is simpler to emit and then delete the insn if
8681 not valid than to dummy things up. */
8683 rtx op0, op1, tem;
8684 rtx_insn *insn;
8685 enum insn_code code;
8687 op0 = find_replacement (&XEXP (in, 0));
8688 op1 = find_replacement (&XEXP (in, 1));
8690 /* Since constraint checking is strict, commutativity won't be
8691 checked, so we need to do that here to avoid spurious failure
8692 if the add instruction is two-address and the second operand
8693 of the add is the same as the reload reg, which is frequently
8694 the case. If the insn would be A = B + A, rearrange it so
8695 it will be A = A + B as constrain_operands expects. */
8697 if (REG_P (XEXP (in, 1))
8698 && REGNO (out) == REGNO (XEXP (in, 1)))
8699 tem = op0, op0 = op1, op1 = tem;
8701 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8702 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8704 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8705 if (insn)
8706 return insn;
8708 /* If that failed, we must use a conservative two-insn sequence.
8710 Use a move to copy one operand into the reload register. Prefer
8711 to reload a constant, MEM or pseudo since the move patterns can
8712 handle an arbitrary operand. If OP1 is not a constant, MEM or
8713 pseudo and OP1 is not a valid operand for an add instruction, then
8714 reload OP1.
8716 After reloading one of the operands into the reload register, add
8717 the reload register to the output register.
8719 If there is another way to do this for a specific machine, a
8720 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8721 we emit below. */
8723 code = optab_handler (add_optab, GET_MODE (out));
8725 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8726 || (REG_P (op1)
8727 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8728 || (code != CODE_FOR_nothing
8729 && !insn_operand_matches (code, 2, op1)))
8730 tem = op0, op0 = op1, op1 = tem;
8732 gen_reload (out, op0, opnum, type);
8734 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8735 This fixes a problem on the 32K where the stack pointer cannot
8736 be used as an operand of an add insn. */
8738 if (rtx_equal_p (op0, op1))
8739 op1 = out;
8741 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8742 if (insn)
8744 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8745 set_dst_reg_note (insn, REG_EQUIV, in, out);
8746 return insn;
8749 /* If that failed, copy the address register to the reload register.
8750 Then add the constant to the reload register. */
8752 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8753 gen_reload (out, op1, opnum, type);
8754 insn = emit_insn (gen_add2_insn (out, op0));
8755 set_dst_reg_note (insn, REG_EQUIV, in, out);
8758 #ifdef SECONDARY_MEMORY_NEEDED
8759 /* If we need a memory location to do the move, do it that way. */
8760 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8761 (REG_P (tem1) && REG_P (tem2)))
8762 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8763 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8764 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8765 REGNO_REG_CLASS (REGNO (tem2)),
8766 GET_MODE (out)))
8768 /* Get the memory to use and rewrite both registers to its mode. */
8769 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8771 if (GET_MODE (loc) != GET_MODE (out))
8772 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8774 if (GET_MODE (loc) != GET_MODE (in))
8775 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8777 gen_reload (loc, in, opnum, type);
8778 gen_reload (out, loc, opnum, type);
8780 #endif
8781 else if (REG_P (out) && UNARY_P (in))
8783 rtx insn;
8784 rtx op1;
8785 rtx out_moded;
8786 rtx_insn *set;
8788 op1 = find_replacement (&XEXP (in, 0));
8789 if (op1 != XEXP (in, 0))
8790 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8792 /* First, try a plain SET. */
8793 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8794 if (set)
8795 return set;
8797 /* If that failed, move the inner operand to the reload
8798 register, and try the same unop with the inner expression
8799 replaced with the reload register. */
8801 if (GET_MODE (op1) != GET_MODE (out))
8802 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8803 else
8804 out_moded = out;
8806 gen_reload (out_moded, op1, opnum, type);
8808 insn = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8809 out_moded));
8810 insn = emit_insn_if_valid_for_reload (insn);
8811 if (insn)
8813 set_unique_reg_note (insn, REG_EQUIV, in);
8814 return as_a <rtx_insn *> (insn);
8817 fatal_insn ("failure trying to reload:", set);
8819 /* If IN is a simple operand, use gen_move_insn. */
8820 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8822 tem = emit_insn (gen_move_insn (out, in));
8823 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8824 mark_jump_label (in, tem, 0);
8827 #ifdef HAVE_reload_load_address
8828 else if (HAVE_reload_load_address)
8829 emit_insn (gen_reload_load_address (out, in));
8830 #endif
8832 /* Otherwise, just write (set OUT IN) and hope for the best. */
8833 else
8834 emit_insn (gen_rtx_SET (out, in));
8836 /* Return the first insn emitted.
8837 We can not just return get_last_insn, because there may have
8838 been multiple instructions emitted. Also note that gen_move_insn may
8839 emit more than one insn itself, so we can not assume that there is one
8840 insn emitted per emit_insn_before call. */
8842 return last ? NEXT_INSN (last) : get_insns ();
8845 /* Delete a previously made output-reload whose result we now believe
8846 is not needed. First we double-check.
8848 INSN is the insn now being processed.
8849 LAST_RELOAD_REG is the hard register number for which we want to delete
8850 the last output reload.
8851 J is the reload-number that originally used REG. The caller has made
8852 certain that reload J doesn't use REG any longer for input.
8853 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8855 static void
8856 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8857 rtx new_reload_reg)
8859 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8860 rtx reg = spill_reg_stored_to[last_reload_reg];
8861 int k;
8862 int n_occurrences;
8863 int n_inherited = 0;
8864 rtx substed;
8865 unsigned regno;
8866 int nregs;
8868 /* It is possible that this reload has been only used to set another reload
8869 we eliminated earlier and thus deleted this instruction too. */
8870 if (output_reload_insn->deleted ())
8871 return;
8873 /* Get the raw pseudo-register referred to. */
8875 while (GET_CODE (reg) == SUBREG)
8876 reg = SUBREG_REG (reg);
8877 substed = reg_equiv_memory_loc (REGNO (reg));
8879 /* This is unsafe if the operand occurs more often in the current
8880 insn than it is inherited. */
8881 for (k = n_reloads - 1; k >= 0; k--)
8883 rtx reg2 = rld[k].in;
8884 if (! reg2)
8885 continue;
8886 if (MEM_P (reg2) || reload_override_in[k])
8887 reg2 = rld[k].in_reg;
8888 #ifdef AUTO_INC_DEC
8889 if (rld[k].out && ! rld[k].out_reg)
8890 reg2 = XEXP (rld[k].in_reg, 0);
8891 #endif
8892 while (GET_CODE (reg2) == SUBREG)
8893 reg2 = SUBREG_REG (reg2);
8894 if (rtx_equal_p (reg2, reg))
8896 if (reload_inherited[k] || reload_override_in[k] || k == j)
8897 n_inherited++;
8898 else
8899 return;
8902 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8903 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8904 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8905 reg, 0);
8906 if (substed)
8907 n_occurrences += count_occurrences (PATTERN (insn),
8908 eliminate_regs (substed, VOIDmode,
8909 NULL_RTX), 0);
8910 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8912 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8913 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8915 if (n_occurrences > n_inherited)
8916 return;
8918 regno = REGNO (reg);
8919 if (regno >= FIRST_PSEUDO_REGISTER)
8920 nregs = 1;
8921 else
8922 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8924 /* If the pseudo-reg we are reloading is no longer referenced
8925 anywhere between the store into it and here,
8926 and we're within the same basic block, then the value can only
8927 pass through the reload reg and end up here.
8928 Otherwise, give up--return. */
8929 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8930 i1 != insn; i1 = NEXT_INSN (i1))
8932 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8933 return;
8934 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8935 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8937 /* If this is USE in front of INSN, we only have to check that
8938 there are no more references than accounted for by inheritance. */
8939 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8941 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8942 i1 = NEXT_INSN (i1);
8944 if (n_occurrences <= n_inherited && i1 == insn)
8945 break;
8946 return;
8950 /* We will be deleting the insn. Remove the spill reg information. */
8951 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8953 spill_reg_store[last_reload_reg + k] = 0;
8954 spill_reg_stored_to[last_reload_reg + k] = 0;
8957 /* The caller has already checked that REG dies or is set in INSN.
8958 It has also checked that we are optimizing, and thus some
8959 inaccuracies in the debugging information are acceptable.
8960 So we could just delete output_reload_insn. But in some cases
8961 we can improve the debugging information without sacrificing
8962 optimization - maybe even improving the code: See if the pseudo
8963 reg has been completely replaced with reload regs. If so, delete
8964 the store insn and forget we had a stack slot for the pseudo. */
8965 if (rld[j].out != rld[j].in
8966 && REG_N_DEATHS (REGNO (reg)) == 1
8967 && REG_N_SETS (REGNO (reg)) == 1
8968 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8969 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8971 rtx_insn *i2;
8973 /* We know that it was used only between here and the beginning of
8974 the current basic block. (We also know that the last use before
8975 INSN was the output reload we are thinking of deleting, but never
8976 mind that.) Search that range; see if any ref remains. */
8977 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8979 rtx set = single_set (i2);
8981 /* Uses which just store in the pseudo don't count,
8982 since if they are the only uses, they are dead. */
8983 if (set != 0 && SET_DEST (set) == reg)
8984 continue;
8985 if (LABEL_P (i2) || JUMP_P (i2))
8986 break;
8987 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8988 && reg_mentioned_p (reg, PATTERN (i2)))
8990 /* Some other ref remains; just delete the output reload we
8991 know to be dead. */
8992 delete_address_reloads (output_reload_insn, insn);
8993 delete_insn (output_reload_insn);
8994 return;
8998 /* Delete the now-dead stores into this pseudo. Note that this
8999 loop also takes care of deleting output_reload_insn. */
9000 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
9002 rtx set = single_set (i2);
9004 if (set != 0 && SET_DEST (set) == reg)
9006 delete_address_reloads (i2, insn);
9007 delete_insn (i2);
9009 if (LABEL_P (i2) || JUMP_P (i2))
9010 break;
9013 /* For the debugging info, say the pseudo lives in this reload reg. */
9014 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
9015 if (ira_conflicts_p)
9016 /* Inform IRA about the change. */
9017 ira_mark_allocation_change (REGNO (reg));
9018 alter_reg (REGNO (reg), -1, false);
9020 else
9022 delete_address_reloads (output_reload_insn, insn);
9023 delete_insn (output_reload_insn);
9027 /* We are going to delete DEAD_INSN. Recursively delete loads of
9028 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9029 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9030 static void
9031 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9033 rtx set = single_set (dead_insn);
9034 rtx set2, dst;
9035 rtx_insn *prev, *next;
9036 if (set)
9038 rtx dst = SET_DEST (set);
9039 if (MEM_P (dst))
9040 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9042 /* If we deleted the store from a reloaded post_{in,de}c expression,
9043 we can delete the matching adds. */
9044 prev = PREV_INSN (dead_insn);
9045 next = NEXT_INSN (dead_insn);
9046 if (! prev || ! next)
9047 return;
9048 set = single_set (next);
9049 set2 = single_set (prev);
9050 if (! set || ! set2
9051 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9052 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9053 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9054 return;
9055 dst = SET_DEST (set);
9056 if (! rtx_equal_p (dst, SET_DEST (set2))
9057 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9058 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9059 || (INTVAL (XEXP (SET_SRC (set), 1))
9060 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9061 return;
9062 delete_related_insns (prev);
9063 delete_related_insns (next);
9066 /* Subfunction of delete_address_reloads: process registers found in X. */
9067 static void
9068 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9070 rtx_insn *prev, *i2;
9071 rtx set, dst;
9072 int i, j;
9073 enum rtx_code code = GET_CODE (x);
9075 if (code != REG)
9077 const char *fmt = GET_RTX_FORMAT (code);
9078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9080 if (fmt[i] == 'e')
9081 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9082 else if (fmt[i] == 'E')
9084 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9085 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9086 current_insn);
9089 return;
9092 if (spill_reg_order[REGNO (x)] < 0)
9093 return;
9095 /* Scan backwards for the insn that sets x. This might be a way back due
9096 to inheritance. */
9097 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9099 code = GET_CODE (prev);
9100 if (code == CODE_LABEL || code == JUMP_INSN)
9101 return;
9102 if (!INSN_P (prev))
9103 continue;
9104 if (reg_set_p (x, PATTERN (prev)))
9105 break;
9106 if (reg_referenced_p (x, PATTERN (prev)))
9107 return;
9109 if (! prev || INSN_UID (prev) < reload_first_uid)
9110 return;
9111 /* Check that PREV only sets the reload register. */
9112 set = single_set (prev);
9113 if (! set)
9114 return;
9115 dst = SET_DEST (set);
9116 if (!REG_P (dst)
9117 || ! rtx_equal_p (dst, x))
9118 return;
9119 if (! reg_set_p (dst, PATTERN (dead_insn)))
9121 /* Check if DST was used in a later insn -
9122 it might have been inherited. */
9123 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9125 if (LABEL_P (i2))
9126 break;
9127 if (! INSN_P (i2))
9128 continue;
9129 if (reg_referenced_p (dst, PATTERN (i2)))
9131 /* If there is a reference to the register in the current insn,
9132 it might be loaded in a non-inherited reload. If no other
9133 reload uses it, that means the register is set before
9134 referenced. */
9135 if (i2 == current_insn)
9137 for (j = n_reloads - 1; j >= 0; j--)
9138 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9139 || reload_override_in[j] == dst)
9140 return;
9141 for (j = n_reloads - 1; j >= 0; j--)
9142 if (rld[j].in && rld[j].reg_rtx == dst)
9143 break;
9144 if (j >= 0)
9145 break;
9147 return;
9149 if (JUMP_P (i2))
9150 break;
9151 /* If DST is still live at CURRENT_INSN, check if it is used for
9152 any reload. Note that even if CURRENT_INSN sets DST, we still
9153 have to check the reloads. */
9154 if (i2 == current_insn)
9156 for (j = n_reloads - 1; j >= 0; j--)
9157 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9158 || reload_override_in[j] == dst)
9159 return;
9160 /* ??? We can't finish the loop here, because dst might be
9161 allocated to a pseudo in this block if no reload in this
9162 block needs any of the classes containing DST - see
9163 spill_hard_reg. There is no easy way to tell this, so we
9164 have to scan till the end of the basic block. */
9166 if (reg_set_p (dst, PATTERN (i2)))
9167 break;
9170 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9171 reg_reloaded_contents[REGNO (dst)] = -1;
9172 delete_insn (prev);
9175 /* Output reload-insns to reload VALUE into RELOADREG.
9176 VALUE is an autoincrement or autodecrement RTX whose operand
9177 is a register or memory location;
9178 so reloading involves incrementing that location.
9179 IN is either identical to VALUE, or some cheaper place to reload from.
9181 INC_AMOUNT is the number to increment or decrement by (always positive).
9182 This cannot be deduced from VALUE. */
9184 static void
9185 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9187 /* REG or MEM to be copied and incremented. */
9188 rtx incloc = find_replacement (&XEXP (value, 0));
9189 /* Nonzero if increment after copying. */
9190 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9191 || GET_CODE (value) == POST_MODIFY);
9192 rtx_insn *last;
9193 rtx inc;
9194 rtx_insn *add_insn;
9195 int code;
9196 rtx real_in = in == value ? incloc : in;
9198 /* No hard register is equivalent to this register after
9199 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9200 we could inc/dec that register as well (maybe even using it for
9201 the source), but I'm not sure it's worth worrying about. */
9202 if (REG_P (incloc))
9203 reg_last_reload_reg[REGNO (incloc)] = 0;
9205 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9207 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9208 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9210 else
9212 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9213 inc_amount = -inc_amount;
9215 inc = GEN_INT (inc_amount);
9218 /* If this is post-increment, first copy the location to the reload reg. */
9219 if (post && real_in != reloadreg)
9220 emit_insn (gen_move_insn (reloadreg, real_in));
9222 if (in == value)
9224 /* See if we can directly increment INCLOC. Use a method similar to
9225 that in gen_reload. */
9227 last = get_last_insn ();
9228 add_insn = emit_insn (gen_rtx_SET (incloc,
9229 gen_rtx_PLUS (GET_MODE (incloc),
9230 incloc, inc)));
9232 code = recog_memoized (add_insn);
9233 if (code >= 0)
9235 extract_insn (add_insn);
9236 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9238 /* If this is a pre-increment and we have incremented the value
9239 where it lives, copy the incremented value to RELOADREG to
9240 be used as an address. */
9242 if (! post)
9243 emit_insn (gen_move_insn (reloadreg, incloc));
9244 return;
9247 delete_insns_since (last);
9250 /* If couldn't do the increment directly, must increment in RELOADREG.
9251 The way we do this depends on whether this is pre- or post-increment.
9252 For pre-increment, copy INCLOC to the reload register, increment it
9253 there, then save back. */
9255 if (! post)
9257 if (in != reloadreg)
9258 emit_insn (gen_move_insn (reloadreg, real_in));
9259 emit_insn (gen_add2_insn (reloadreg, inc));
9260 emit_insn (gen_move_insn (incloc, reloadreg));
9262 else
9264 /* Postincrement.
9265 Because this might be a jump insn or a compare, and because RELOADREG
9266 may not be available after the insn in an input reload, we must do
9267 the incrementation before the insn being reloaded for.
9269 We have already copied IN to RELOADREG. Increment the copy in
9270 RELOADREG, save that back, then decrement RELOADREG so it has
9271 the original value. */
9273 emit_insn (gen_add2_insn (reloadreg, inc));
9274 emit_insn (gen_move_insn (incloc, reloadreg));
9275 if (CONST_INT_P (inc))
9276 emit_insn (gen_add2_insn (reloadreg,
9277 gen_int_mode (-INTVAL (inc),
9278 GET_MODE (reloadreg))));
9279 else
9280 emit_insn (gen_sub2_insn (reloadreg, inc));
9284 #ifdef AUTO_INC_DEC
9285 static void
9286 add_auto_inc_notes (rtx_insn *insn, rtx x)
9288 enum rtx_code code = GET_CODE (x);
9289 const char *fmt;
9290 int i, j;
9292 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9294 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9295 return;
9298 /* Scan all the operand sub-expressions. */
9299 fmt = GET_RTX_FORMAT (code);
9300 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9302 if (fmt[i] == 'e')
9303 add_auto_inc_notes (insn, XEXP (x, i));
9304 else if (fmt[i] == 'E')
9305 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9306 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9309 #endif