gcc/
[official-gcc.git] / gcc / cse.c
blob0453accefdc2e8ba820c899d93f470b7779b7cf6
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "predict.h"
29 #include "vec.h"
30 #include "hashtab.h"
31 #include "hash-set.h"
32 #include "input.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "cfgrtl.h"
37 #include "cfganal.h"
38 #include "cfgcleanup.h"
39 #include "basic-block.h"
40 #include "flags.h"
41 #include "insn-config.h"
42 #include "recog.h"
43 #include "symtab.h"
44 #include "statistics.h"
45 #include "alias.h"
46 #include "inchash.h"
47 #include "tree.h"
48 #include "expmed.h"
49 #include "dojump.h"
50 #include "explow.h"
51 #include "calls.h"
52 #include "emit-rtl.h"
53 #include "varasm.h"
54 #include "stmt.h"
55 #include "expr.h"
56 #include "diagnostic-core.h"
57 #include "toplev.h"
58 #include "ggc.h"
59 #include "except.h"
60 #include "target.h"
61 #include "params.h"
62 #include "rtlhooks-def.h"
63 #include "tree-pass.h"
64 #include "df.h"
65 #include "dbgcnt.h"
66 #include "rtl-iter.h"
68 /* The basic idea of common subexpression elimination is to go
69 through the code, keeping a record of expressions that would
70 have the same value at the current scan point, and replacing
71 expressions encountered with the cheapest equivalent expression.
73 It is too complicated to keep track of the different possibilities
74 when control paths merge in this code; so, at each label, we forget all
75 that is known and start fresh. This can be described as processing each
76 extended basic block separately. We have a separate pass to perform
77 global CSE.
79 Note CSE can turn a conditional or computed jump into a nop or
80 an unconditional jump. When this occurs we arrange to run the jump
81 optimizer after CSE to delete the unreachable code.
83 We use two data structures to record the equivalent expressions:
84 a hash table for most expressions, and a vector of "quantity
85 numbers" to record equivalent (pseudo) registers.
87 The use of the special data structure for registers is desirable
88 because it is faster. It is possible because registers references
89 contain a fairly small number, the register number, taken from
90 a contiguously allocated series, and two register references are
91 identical if they have the same number. General expressions
92 do not have any such thing, so the only way to retrieve the
93 information recorded on an expression other than a register
94 is to keep it in a hash table.
96 Registers and "quantity numbers":
98 At the start of each basic block, all of the (hardware and pseudo)
99 registers used in the function are given distinct quantity
100 numbers to indicate their contents. During scan, when the code
101 copies one register into another, we copy the quantity number.
102 When a register is loaded in any other way, we allocate a new
103 quantity number to describe the value generated by this operation.
104 `REG_QTY (N)' records what quantity register N is currently thought
105 of as containing.
107 All real quantity numbers are greater than or equal to zero.
108 If register N has not been assigned a quantity, `REG_QTY (N)' will
109 equal -N - 1, which is always negative.
111 Quantity numbers below zero do not exist and none of the `qty_table'
112 entries should be referenced with a negative index.
114 We also maintain a bidirectional chain of registers for each
115 quantity number. The `qty_table` members `first_reg' and `last_reg',
116 and `reg_eqv_table' members `next' and `prev' hold these chains.
118 The first register in a chain is the one whose lifespan is least local.
119 Among equals, it is the one that was seen first.
120 We replace any equivalent register with that one.
122 If two registers have the same quantity number, it must be true that
123 REG expressions with qty_table `mode' must be in the hash table for both
124 registers and must be in the same class.
126 The converse is not true. Since hard registers may be referenced in
127 any mode, two REG expressions might be equivalent in the hash table
128 but not have the same quantity number if the quantity number of one
129 of the registers is not the same mode as those expressions.
131 Constants and quantity numbers
133 When a quantity has a known constant value, that value is stored
134 in the appropriate qty_table `const_rtx'. This is in addition to
135 putting the constant in the hash table as is usual for non-regs.
137 Whether a reg or a constant is preferred is determined by the configuration
138 macro CONST_COSTS and will often depend on the constant value. In any
139 event, expressions containing constants can be simplified, by fold_rtx.
141 When a quantity has a known nearly constant value (such as an address
142 of a stack slot), that value is stored in the appropriate qty_table
143 `const_rtx'.
145 Integer constants don't have a machine mode. However, cse
146 determines the intended machine mode from the destination
147 of the instruction that moves the constant. The machine mode
148 is recorded in the hash table along with the actual RTL
149 constant expression so that different modes are kept separate.
151 Other expressions:
153 To record known equivalences among expressions in general
154 we use a hash table called `table'. It has a fixed number of buckets
155 that contain chains of `struct table_elt' elements for expressions.
156 These chains connect the elements whose expressions have the same
157 hash codes.
159 Other chains through the same elements connect the elements which
160 currently have equivalent values.
162 Register references in an expression are canonicalized before hashing
163 the expression. This is done using `reg_qty' and qty_table `first_reg'.
164 The hash code of a register reference is computed using the quantity
165 number, not the register number.
167 When the value of an expression changes, it is necessary to remove from the
168 hash table not just that expression but all expressions whose values
169 could be different as a result.
171 1. If the value changing is in memory, except in special cases
172 ANYTHING referring to memory could be changed. That is because
173 nobody knows where a pointer does not point.
174 The function `invalidate_memory' removes what is necessary.
176 The special cases are when the address is constant or is
177 a constant plus a fixed register such as the frame pointer
178 or a static chain pointer. When such addresses are stored in,
179 we can tell exactly which other such addresses must be invalidated
180 due to overlap. `invalidate' does this.
181 All expressions that refer to non-constant
182 memory addresses are also invalidated. `invalidate_memory' does this.
184 2. If the value changing is a register, all expressions
185 containing references to that register, and only those,
186 must be removed.
188 Because searching the entire hash table for expressions that contain
189 a register is very slow, we try to figure out when it isn't necessary.
190 Precisely, this is necessary only when expressions have been
191 entered in the hash table using this register, and then the value has
192 changed, and then another expression wants to be added to refer to
193 the register's new value. This sequence of circumstances is rare
194 within any one basic block.
196 `REG_TICK' and `REG_IN_TABLE', accessors for members of
197 cse_reg_info, are used to detect this case. REG_TICK (i) is
198 incremented whenever a value is stored in register i.
199 REG_IN_TABLE (i) holds -1 if no references to register i have been
200 entered in the table; otherwise, it contains the value REG_TICK (i)
201 had when the references were entered. If we want to enter a
202 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
203 remove old references. Until we want to enter a new entry, the
204 mere fact that the two vectors don't match makes the entries be
205 ignored if anyone tries to match them.
207 Registers themselves are entered in the hash table as well as in
208 the equivalent-register chains. However, `REG_TICK' and
209 `REG_IN_TABLE' do not apply to expressions which are simple
210 register references. These expressions are removed from the table
211 immediately when they become invalid, and this can be done even if
212 we do not immediately search for all the expressions that refer to
213 the register.
215 A CLOBBER rtx in an instruction invalidates its operand for further
216 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
217 invalidates everything that resides in memory.
219 Related expressions:
221 Constant expressions that differ only by an additive integer
222 are called related. When a constant expression is put in
223 the table, the related expression with no constant term
224 is also entered. These are made to point at each other
225 so that it is possible to find out if there exists any
226 register equivalent to an expression related to a given expression. */
228 /* Length of qty_table vector. We know in advance we will not need
229 a quantity number this big. */
231 static int max_qty;
233 /* Next quantity number to be allocated.
234 This is 1 + the largest number needed so far. */
236 static int next_qty;
238 /* Per-qty information tracking.
240 `first_reg' and `last_reg' track the head and tail of the
241 chain of registers which currently contain this quantity.
243 `mode' contains the machine mode of this quantity.
245 `const_rtx' holds the rtx of the constant value of this
246 quantity, if known. A summations of the frame/arg pointer
247 and a constant can also be entered here. When this holds
248 a known value, `const_insn' is the insn which stored the
249 constant value.
251 `comparison_{code,const,qty}' are used to track when a
252 comparison between a quantity and some constant or register has
253 been passed. In such a case, we know the results of the comparison
254 in case we see it again. These members record a comparison that
255 is known to be true. `comparison_code' holds the rtx code of such
256 a comparison, else it is set to UNKNOWN and the other two
257 comparison members are undefined. `comparison_const' holds
258 the constant being compared against, or zero if the comparison
259 is not against a constant. `comparison_qty' holds the quantity
260 being compared against when the result is known. If the comparison
261 is not with a register, `comparison_qty' is -1. */
263 struct qty_table_elem
265 rtx const_rtx;
266 rtx_insn *const_insn;
267 rtx comparison_const;
268 int comparison_qty;
269 unsigned int first_reg, last_reg;
270 /* The sizes of these fields should match the sizes of the
271 code and mode fields of struct rtx_def (see rtl.h). */
272 ENUM_BITFIELD(rtx_code) comparison_code : 16;
273 ENUM_BITFIELD(machine_mode) mode : 8;
276 /* The table of all qtys, indexed by qty number. */
277 static struct qty_table_elem *qty_table;
279 /* For machines that have a CC0, we do not record its value in the hash
280 table since its use is guaranteed to be the insn immediately following
281 its definition and any other insn is presumed to invalidate it.
283 Instead, we store below the current and last value assigned to CC0.
284 If it should happen to be a constant, it is stored in preference
285 to the actual assigned value. In case it is a constant, we store
286 the mode in which the constant should be interpreted. */
288 static rtx this_insn_cc0, prev_insn_cc0;
289 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
291 /* Insn being scanned. */
293 static rtx_insn *this_insn;
294 static bool optimize_this_for_speed_p;
296 /* Index by register number, gives the number of the next (or
297 previous) register in the chain of registers sharing the same
298 value.
300 Or -1 if this register is at the end of the chain.
302 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
304 /* Per-register equivalence chain. */
305 struct reg_eqv_elem
307 int next, prev;
310 /* The table of all register equivalence chains. */
311 static struct reg_eqv_elem *reg_eqv_table;
313 struct cse_reg_info
315 /* The timestamp at which this register is initialized. */
316 unsigned int timestamp;
318 /* The quantity number of the register's current contents. */
319 int reg_qty;
321 /* The number of times the register has been altered in the current
322 basic block. */
323 int reg_tick;
325 /* The REG_TICK value at which rtx's containing this register are
326 valid in the hash table. If this does not equal the current
327 reg_tick value, such expressions existing in the hash table are
328 invalid. */
329 int reg_in_table;
331 /* The SUBREG that was set when REG_TICK was last incremented. Set
332 to -1 if the last store was to the whole register, not a subreg. */
333 unsigned int subreg_ticked;
336 /* A table of cse_reg_info indexed by register numbers. */
337 static struct cse_reg_info *cse_reg_info_table;
339 /* The size of the above table. */
340 static unsigned int cse_reg_info_table_size;
342 /* The index of the first entry that has not been initialized. */
343 static unsigned int cse_reg_info_table_first_uninitialized;
345 /* The timestamp at the beginning of the current run of
346 cse_extended_basic_block. We increment this variable at the beginning of
347 the current run of cse_extended_basic_block. The timestamp field of a
348 cse_reg_info entry matches the value of this variable if and only
349 if the entry has been initialized during the current run of
350 cse_extended_basic_block. */
351 static unsigned int cse_reg_info_timestamp;
353 /* A HARD_REG_SET containing all the hard registers for which there is
354 currently a REG expression in the hash table. Note the difference
355 from the above variables, which indicate if the REG is mentioned in some
356 expression in the table. */
358 static HARD_REG_SET hard_regs_in_table;
360 /* True if CSE has altered the CFG. */
361 static bool cse_cfg_altered;
363 /* True if CSE has altered conditional jump insns in such a way
364 that jump optimization should be redone. */
365 static bool cse_jumps_altered;
367 /* True if we put a LABEL_REF into the hash table for an INSN
368 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
369 to put in the note. */
370 static bool recorded_label_ref;
372 /* canon_hash stores 1 in do_not_record
373 if it notices a reference to CC0, PC, or some other volatile
374 subexpression. */
376 static int do_not_record;
378 /* canon_hash stores 1 in hash_arg_in_memory
379 if it notices a reference to memory within the expression being hashed. */
381 static int hash_arg_in_memory;
383 /* The hash table contains buckets which are chains of `struct table_elt's,
384 each recording one expression's information.
385 That expression is in the `exp' field.
387 The canon_exp field contains a canonical (from the point of view of
388 alias analysis) version of the `exp' field.
390 Those elements with the same hash code are chained in both directions
391 through the `next_same_hash' and `prev_same_hash' fields.
393 Each set of expressions with equivalent values
394 are on a two-way chain through the `next_same_value'
395 and `prev_same_value' fields, and all point with
396 the `first_same_value' field at the first element in
397 that chain. The chain is in order of increasing cost.
398 Each element's cost value is in its `cost' field.
400 The `in_memory' field is nonzero for elements that
401 involve any reference to memory. These elements are removed
402 whenever a write is done to an unidentified location in memory.
403 To be safe, we assume that a memory address is unidentified unless
404 the address is either a symbol constant or a constant plus
405 the frame pointer or argument pointer.
407 The `related_value' field is used to connect related expressions
408 (that differ by adding an integer).
409 The related expressions are chained in a circular fashion.
410 `related_value' is zero for expressions for which this
411 chain is not useful.
413 The `cost' field stores the cost of this element's expression.
414 The `regcost' field stores the value returned by approx_reg_cost for
415 this element's expression.
417 The `is_const' flag is set if the element is a constant (including
418 a fixed address).
420 The `flag' field is used as a temporary during some search routines.
422 The `mode' field is usually the same as GET_MODE (`exp'), but
423 if `exp' is a CONST_INT and has no machine mode then the `mode'
424 field is the mode it was being used as. Each constant is
425 recorded separately for each mode it is used with. */
427 struct table_elt
429 rtx exp;
430 rtx canon_exp;
431 struct table_elt *next_same_hash;
432 struct table_elt *prev_same_hash;
433 struct table_elt *next_same_value;
434 struct table_elt *prev_same_value;
435 struct table_elt *first_same_value;
436 struct table_elt *related_value;
437 int cost;
438 int regcost;
439 /* The size of this field should match the size
440 of the mode field of struct rtx_def (see rtl.h). */
441 ENUM_BITFIELD(machine_mode) mode : 8;
442 char in_memory;
443 char is_const;
444 char flag;
447 /* We don't want a lot of buckets, because we rarely have very many
448 things stored in the hash table, and a lot of buckets slows
449 down a lot of loops that happen frequently. */
450 #define HASH_SHIFT 5
451 #define HASH_SIZE (1 << HASH_SHIFT)
452 #define HASH_MASK (HASH_SIZE - 1)
454 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
455 register (hard registers may require `do_not_record' to be set). */
457 #define HASH(X, M) \
458 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
459 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
460 : canon_hash (X, M)) & HASH_MASK)
462 /* Like HASH, but without side-effects. */
463 #define SAFE_HASH(X, M) \
464 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
465 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
466 : safe_hash (X, M)) & HASH_MASK)
468 /* Determine whether register number N is considered a fixed register for the
469 purpose of approximating register costs.
470 It is desirable to replace other regs with fixed regs, to reduce need for
471 non-fixed hard regs.
472 A reg wins if it is either the frame pointer or designated as fixed. */
473 #define FIXED_REGNO_P(N) \
474 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
475 || fixed_regs[N] || global_regs[N])
477 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
478 hard registers and pointers into the frame are the cheapest with a cost
479 of 0. Next come pseudos with a cost of one and other hard registers with
480 a cost of 2. Aside from these special cases, call `rtx_cost'. */
482 #define CHEAP_REGNO(N) \
483 (REGNO_PTR_FRAME_P (N) \
484 || (HARD_REGISTER_NUM_P (N) \
485 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
487 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
488 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
490 /* Get the number of times this register has been updated in this
491 basic block. */
493 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
495 /* Get the point at which REG was recorded in the table. */
497 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
499 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
500 SUBREG). */
502 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
504 /* Get the quantity number for REG. */
506 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
508 /* Determine if the quantity number for register X represents a valid index
509 into the qty_table. */
511 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
513 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
515 #define CHEAPER(X, Y) \
516 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
518 static struct table_elt *table[HASH_SIZE];
520 /* Chain of `struct table_elt's made so far for this function
521 but currently removed from the table. */
523 static struct table_elt *free_element_chain;
525 /* Set to the cost of a constant pool reference if one was found for a
526 symbolic constant. If this was found, it means we should try to
527 convert constants into constant pool entries if they don't fit in
528 the insn. */
530 static int constant_pool_entries_cost;
531 static int constant_pool_entries_regcost;
533 /* Trace a patch through the CFG. */
535 struct branch_path
537 /* The basic block for this path entry. */
538 basic_block bb;
541 /* This data describes a block that will be processed by
542 cse_extended_basic_block. */
544 struct cse_basic_block_data
546 /* Total number of SETs in block. */
547 int nsets;
548 /* Size of current branch path, if any. */
549 int path_size;
550 /* Current path, indicating which basic_blocks will be processed. */
551 struct branch_path *path;
555 /* Pointers to the live in/live out bitmaps for the boundaries of the
556 current EBB. */
557 static bitmap cse_ebb_live_in, cse_ebb_live_out;
559 /* A simple bitmap to track which basic blocks have been visited
560 already as part of an already processed extended basic block. */
561 static sbitmap cse_visited_basic_blocks;
563 static bool fixed_base_plus_p (rtx x);
564 static int notreg_cost (rtx, enum rtx_code, int);
565 static int preferable (int, int, int, int);
566 static void new_basic_block (void);
567 static void make_new_qty (unsigned int, machine_mode);
568 static void make_regs_eqv (unsigned int, unsigned int);
569 static void delete_reg_equiv (unsigned int);
570 static int mention_regs (rtx);
571 static int insert_regs (rtx, struct table_elt *, int);
572 static void remove_from_table (struct table_elt *, unsigned);
573 static void remove_pseudo_from_table (rtx, unsigned);
574 static struct table_elt *lookup (rtx, unsigned, machine_mode);
575 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
576 static rtx lookup_as_function (rtx, enum rtx_code);
577 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
578 machine_mode, int, int);
579 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
580 machine_mode);
581 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
582 static void invalidate (rtx, machine_mode);
583 static void remove_invalid_refs (unsigned int);
584 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
585 machine_mode);
586 static void rehash_using_reg (rtx);
587 static void invalidate_memory (void);
588 static void invalidate_for_call (void);
589 static rtx use_related_value (rtx, struct table_elt *);
591 static inline unsigned canon_hash (rtx, machine_mode);
592 static inline unsigned safe_hash (rtx, machine_mode);
593 static inline unsigned hash_rtx_string (const char *);
595 static rtx canon_reg (rtx, rtx_insn *);
596 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
597 machine_mode *,
598 machine_mode *);
599 static rtx fold_rtx (rtx, rtx_insn *);
600 static rtx equiv_constant (rtx);
601 static void record_jump_equiv (rtx_insn *, bool);
602 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
603 int);
604 static void cse_insn (rtx_insn *);
605 static void cse_prescan_path (struct cse_basic_block_data *);
606 static void invalidate_from_clobbers (rtx_insn *);
607 static void invalidate_from_sets_and_clobbers (rtx_insn *);
608 static rtx cse_process_notes (rtx, rtx, bool *);
609 static void cse_extended_basic_block (struct cse_basic_block_data *);
610 extern void dump_class (struct table_elt*);
611 static void get_cse_reg_info_1 (unsigned int regno);
612 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
614 static void flush_hash_table (void);
615 static bool insn_live_p (rtx_insn *, int *);
616 static bool set_live_p (rtx, rtx_insn *, int *);
617 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
618 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
619 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
620 bool);
623 #undef RTL_HOOKS_GEN_LOWPART
624 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
626 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
628 /* Nonzero if X has the form (PLUS frame-pointer integer). */
630 static bool
631 fixed_base_plus_p (rtx x)
633 switch (GET_CODE (x))
635 case REG:
636 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
637 return true;
638 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
639 return true;
640 return false;
642 case PLUS:
643 if (!CONST_INT_P (XEXP (x, 1)))
644 return false;
645 return fixed_base_plus_p (XEXP (x, 0));
647 default:
648 return false;
652 /* Dump the expressions in the equivalence class indicated by CLASSP.
653 This function is used only for debugging. */
654 DEBUG_FUNCTION void
655 dump_class (struct table_elt *classp)
657 struct table_elt *elt;
659 fprintf (stderr, "Equivalence chain for ");
660 print_rtl (stderr, classp->exp);
661 fprintf (stderr, ": \n");
663 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
665 print_rtl (stderr, elt->exp);
666 fprintf (stderr, "\n");
670 /* Return an estimate of the cost of the registers used in an rtx.
671 This is mostly the number of different REG expressions in the rtx;
672 however for some exceptions like fixed registers we use a cost of
673 0. If any other hard register reference occurs, return MAX_COST. */
675 static int
676 approx_reg_cost (const_rtx x)
678 int cost = 0;
679 subrtx_iterator::array_type array;
680 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
682 const_rtx x = *iter;
683 if (REG_P (x))
685 unsigned int regno = REGNO (x);
686 if (!CHEAP_REGNO (regno))
688 if (regno < FIRST_PSEUDO_REGISTER)
690 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
691 return MAX_COST;
692 cost += 2;
694 else
695 cost += 1;
699 return cost;
702 /* Return a negative value if an rtx A, whose costs are given by COST_A
703 and REGCOST_A, is more desirable than an rtx B.
704 Return a positive value if A is less desirable, or 0 if the two are
705 equally good. */
706 static int
707 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
709 /* First, get rid of cases involving expressions that are entirely
710 unwanted. */
711 if (cost_a != cost_b)
713 if (cost_a == MAX_COST)
714 return 1;
715 if (cost_b == MAX_COST)
716 return -1;
719 /* Avoid extending lifetimes of hardregs. */
720 if (regcost_a != regcost_b)
722 if (regcost_a == MAX_COST)
723 return 1;
724 if (regcost_b == MAX_COST)
725 return -1;
728 /* Normal operation costs take precedence. */
729 if (cost_a != cost_b)
730 return cost_a - cost_b;
731 /* Only if these are identical consider effects on register pressure. */
732 if (regcost_a != regcost_b)
733 return regcost_a - regcost_b;
734 return 0;
737 /* Internal function, to compute cost when X is not a register; called
738 from COST macro to keep it simple. */
740 static int
741 notreg_cost (rtx x, enum rtx_code outer, int opno)
743 return ((GET_CODE (x) == SUBREG
744 && REG_P (SUBREG_REG (x))
745 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
746 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
747 && (GET_MODE_SIZE (GET_MODE (x))
748 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
749 && subreg_lowpart_p (x)
750 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
751 GET_MODE (SUBREG_REG (x))))
753 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
757 /* Initialize CSE_REG_INFO_TABLE. */
759 static void
760 init_cse_reg_info (unsigned int nregs)
762 /* Do we need to grow the table? */
763 if (nregs > cse_reg_info_table_size)
765 unsigned int new_size;
767 if (cse_reg_info_table_size < 2048)
769 /* Compute a new size that is a power of 2 and no smaller
770 than the large of NREGS and 64. */
771 new_size = (cse_reg_info_table_size
772 ? cse_reg_info_table_size : 64);
774 while (new_size < nregs)
775 new_size *= 2;
777 else
779 /* If we need a big table, allocate just enough to hold
780 NREGS registers. */
781 new_size = nregs;
784 /* Reallocate the table with NEW_SIZE entries. */
785 free (cse_reg_info_table);
786 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
787 cse_reg_info_table_size = new_size;
788 cse_reg_info_table_first_uninitialized = 0;
791 /* Do we have all of the first NREGS entries initialized? */
792 if (cse_reg_info_table_first_uninitialized < nregs)
794 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
795 unsigned int i;
797 /* Put the old timestamp on newly allocated entries so that they
798 will all be considered out of date. We do not touch those
799 entries beyond the first NREGS entries to be nice to the
800 virtual memory. */
801 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
802 cse_reg_info_table[i].timestamp = old_timestamp;
804 cse_reg_info_table_first_uninitialized = nregs;
808 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
810 static void
811 get_cse_reg_info_1 (unsigned int regno)
813 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
814 entry will be considered to have been initialized. */
815 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
817 /* Initialize the rest of the entry. */
818 cse_reg_info_table[regno].reg_tick = 1;
819 cse_reg_info_table[regno].reg_in_table = -1;
820 cse_reg_info_table[regno].subreg_ticked = -1;
821 cse_reg_info_table[regno].reg_qty = -regno - 1;
824 /* Find a cse_reg_info entry for REGNO. */
826 static inline struct cse_reg_info *
827 get_cse_reg_info (unsigned int regno)
829 struct cse_reg_info *p = &cse_reg_info_table[regno];
831 /* If this entry has not been initialized, go ahead and initialize
832 it. */
833 if (p->timestamp != cse_reg_info_timestamp)
834 get_cse_reg_info_1 (regno);
836 return p;
839 /* Clear the hash table and initialize each register with its own quantity,
840 for a new basic block. */
842 static void
843 new_basic_block (void)
845 int i;
847 next_qty = 0;
849 /* Invalidate cse_reg_info_table. */
850 cse_reg_info_timestamp++;
852 /* Clear out hash table state for this pass. */
853 CLEAR_HARD_REG_SET (hard_regs_in_table);
855 /* The per-quantity values used to be initialized here, but it is
856 much faster to initialize each as it is made in `make_new_qty'. */
858 for (i = 0; i < HASH_SIZE; i++)
860 struct table_elt *first;
862 first = table[i];
863 if (first != NULL)
865 struct table_elt *last = first;
867 table[i] = NULL;
869 while (last->next_same_hash != NULL)
870 last = last->next_same_hash;
872 /* Now relink this hash entire chain into
873 the free element list. */
875 last->next_same_hash = free_element_chain;
876 free_element_chain = first;
880 prev_insn_cc0 = 0;
883 /* Say that register REG contains a quantity in mode MODE not in any
884 register before and initialize that quantity. */
886 static void
887 make_new_qty (unsigned int reg, machine_mode mode)
889 int q;
890 struct qty_table_elem *ent;
891 struct reg_eqv_elem *eqv;
893 gcc_assert (next_qty < max_qty);
895 q = REG_QTY (reg) = next_qty++;
896 ent = &qty_table[q];
897 ent->first_reg = reg;
898 ent->last_reg = reg;
899 ent->mode = mode;
900 ent->const_rtx = ent->const_insn = NULL;
901 ent->comparison_code = UNKNOWN;
903 eqv = &reg_eqv_table[reg];
904 eqv->next = eqv->prev = -1;
907 /* Make reg NEW equivalent to reg OLD.
908 OLD is not changing; NEW is. */
910 static void
911 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
913 unsigned int lastr, firstr;
914 int q = REG_QTY (old_reg);
915 struct qty_table_elem *ent;
917 ent = &qty_table[q];
919 /* Nothing should become eqv until it has a "non-invalid" qty number. */
920 gcc_assert (REGNO_QTY_VALID_P (old_reg));
922 REG_QTY (new_reg) = q;
923 firstr = ent->first_reg;
924 lastr = ent->last_reg;
926 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
927 hard regs. Among pseudos, if NEW will live longer than any other reg
928 of the same qty, and that is beyond the current basic block,
929 make it the new canonical replacement for this qty. */
930 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
931 /* Certain fixed registers might be of the class NO_REGS. This means
932 that not only can they not be allocated by the compiler, but
933 they cannot be used in substitutions or canonicalizations
934 either. */
935 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
936 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
937 || (new_reg >= FIRST_PSEUDO_REGISTER
938 && (firstr < FIRST_PSEUDO_REGISTER
939 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
940 && !bitmap_bit_p (cse_ebb_live_out, firstr))
941 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
942 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
944 reg_eqv_table[firstr].prev = new_reg;
945 reg_eqv_table[new_reg].next = firstr;
946 reg_eqv_table[new_reg].prev = -1;
947 ent->first_reg = new_reg;
949 else
951 /* If NEW is a hard reg (known to be non-fixed), insert at end.
952 Otherwise, insert before any non-fixed hard regs that are at the
953 end. Registers of class NO_REGS cannot be used as an
954 equivalent for anything. */
955 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
956 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
957 && new_reg >= FIRST_PSEUDO_REGISTER)
958 lastr = reg_eqv_table[lastr].prev;
959 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
960 if (reg_eqv_table[lastr].next >= 0)
961 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
962 else
963 qty_table[q].last_reg = new_reg;
964 reg_eqv_table[lastr].next = new_reg;
965 reg_eqv_table[new_reg].prev = lastr;
969 /* Remove REG from its equivalence class. */
971 static void
972 delete_reg_equiv (unsigned int reg)
974 struct qty_table_elem *ent;
975 int q = REG_QTY (reg);
976 int p, n;
978 /* If invalid, do nothing. */
979 if (! REGNO_QTY_VALID_P (reg))
980 return;
982 ent = &qty_table[q];
984 p = reg_eqv_table[reg].prev;
985 n = reg_eqv_table[reg].next;
987 if (n != -1)
988 reg_eqv_table[n].prev = p;
989 else
990 ent->last_reg = p;
991 if (p != -1)
992 reg_eqv_table[p].next = n;
993 else
994 ent->first_reg = n;
996 REG_QTY (reg) = -reg - 1;
999 /* Remove any invalid expressions from the hash table
1000 that refer to any of the registers contained in expression X.
1002 Make sure that newly inserted references to those registers
1003 as subexpressions will be considered valid.
1005 mention_regs is not called when a register itself
1006 is being stored in the table.
1008 Return 1 if we have done something that may have changed the hash code
1009 of X. */
1011 static int
1012 mention_regs (rtx x)
1014 enum rtx_code code;
1015 int i, j;
1016 const char *fmt;
1017 int changed = 0;
1019 if (x == 0)
1020 return 0;
1022 code = GET_CODE (x);
1023 if (code == REG)
1025 unsigned int regno = REGNO (x);
1026 unsigned int endregno = END_REGNO (x);
1027 unsigned int i;
1029 for (i = regno; i < endregno; i++)
1031 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1032 remove_invalid_refs (i);
1034 REG_IN_TABLE (i) = REG_TICK (i);
1035 SUBREG_TICKED (i) = -1;
1038 return 0;
1041 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1042 pseudo if they don't use overlapping words. We handle only pseudos
1043 here for simplicity. */
1044 if (code == SUBREG && REG_P (SUBREG_REG (x))
1045 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1047 unsigned int i = REGNO (SUBREG_REG (x));
1049 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1051 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1052 the last store to this register really stored into this
1053 subreg, then remove the memory of this subreg.
1054 Otherwise, remove any memory of the entire register and
1055 all its subregs from the table. */
1056 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1057 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1058 remove_invalid_refs (i);
1059 else
1060 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1063 REG_IN_TABLE (i) = REG_TICK (i);
1064 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1065 return 0;
1068 /* If X is a comparison or a COMPARE and either operand is a register
1069 that does not have a quantity, give it one. This is so that a later
1070 call to record_jump_equiv won't cause X to be assigned a different
1071 hash code and not found in the table after that call.
1073 It is not necessary to do this here, since rehash_using_reg can
1074 fix up the table later, but doing this here eliminates the need to
1075 call that expensive function in the most common case where the only
1076 use of the register is in the comparison. */
1078 if (code == COMPARE || COMPARISON_P (x))
1080 if (REG_P (XEXP (x, 0))
1081 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1082 if (insert_regs (XEXP (x, 0), NULL, 0))
1084 rehash_using_reg (XEXP (x, 0));
1085 changed = 1;
1088 if (REG_P (XEXP (x, 1))
1089 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1090 if (insert_regs (XEXP (x, 1), NULL, 0))
1092 rehash_using_reg (XEXP (x, 1));
1093 changed = 1;
1097 fmt = GET_RTX_FORMAT (code);
1098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1099 if (fmt[i] == 'e')
1100 changed |= mention_regs (XEXP (x, i));
1101 else if (fmt[i] == 'E')
1102 for (j = 0; j < XVECLEN (x, i); j++)
1103 changed |= mention_regs (XVECEXP (x, i, j));
1105 return changed;
1108 /* Update the register quantities for inserting X into the hash table
1109 with a value equivalent to CLASSP.
1110 (If the class does not contain a REG, it is irrelevant.)
1111 If MODIFIED is nonzero, X is a destination; it is being modified.
1112 Note that delete_reg_equiv should be called on a register
1113 before insert_regs is done on that register with MODIFIED != 0.
1115 Nonzero value means that elements of reg_qty have changed
1116 so X's hash code may be different. */
1118 static int
1119 insert_regs (rtx x, struct table_elt *classp, int modified)
1121 if (REG_P (x))
1123 unsigned int regno = REGNO (x);
1124 int qty_valid;
1126 /* If REGNO is in the equivalence table already but is of the
1127 wrong mode for that equivalence, don't do anything here. */
1129 qty_valid = REGNO_QTY_VALID_P (regno);
1130 if (qty_valid)
1132 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1134 if (ent->mode != GET_MODE (x))
1135 return 0;
1138 if (modified || ! qty_valid)
1140 if (classp)
1141 for (classp = classp->first_same_value;
1142 classp != 0;
1143 classp = classp->next_same_value)
1144 if (REG_P (classp->exp)
1145 && GET_MODE (classp->exp) == GET_MODE (x))
1147 unsigned c_regno = REGNO (classp->exp);
1149 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1151 /* Suppose that 5 is hard reg and 100 and 101 are
1152 pseudos. Consider
1154 (set (reg:si 100) (reg:si 5))
1155 (set (reg:si 5) (reg:si 100))
1156 (set (reg:di 101) (reg:di 5))
1158 We would now set REG_QTY (101) = REG_QTY (5), but the
1159 entry for 5 is in SImode. When we use this later in
1160 copy propagation, we get the register in wrong mode. */
1161 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1162 continue;
1164 make_regs_eqv (regno, c_regno);
1165 return 1;
1168 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1169 than REG_IN_TABLE to find out if there was only a single preceding
1170 invalidation - for the SUBREG - or another one, which would be
1171 for the full register. However, if we find here that REG_TICK
1172 indicates that the register is invalid, it means that it has
1173 been invalidated in a separate operation. The SUBREG might be used
1174 now (then this is a recursive call), or we might use the full REG
1175 now and a SUBREG of it later. So bump up REG_TICK so that
1176 mention_regs will do the right thing. */
1177 if (! modified
1178 && REG_IN_TABLE (regno) >= 0
1179 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1180 REG_TICK (regno)++;
1181 make_new_qty (regno, GET_MODE (x));
1182 return 1;
1185 return 0;
1188 /* If X is a SUBREG, we will likely be inserting the inner register in the
1189 table. If that register doesn't have an assigned quantity number at
1190 this point but does later, the insertion that we will be doing now will
1191 not be accessible because its hash code will have changed. So assign
1192 a quantity number now. */
1194 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1195 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1197 insert_regs (SUBREG_REG (x), NULL, 0);
1198 mention_regs (x);
1199 return 1;
1201 else
1202 return mention_regs (x);
1206 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1207 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1208 CST is equal to an anchor. */
1210 static bool
1211 compute_const_anchors (rtx cst,
1212 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1213 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1215 HOST_WIDE_INT n = INTVAL (cst);
1217 *lower_base = n & ~(targetm.const_anchor - 1);
1218 if (*lower_base == n)
1219 return false;
1221 *upper_base =
1222 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1223 *upper_offs = n - *upper_base;
1224 *lower_offs = n - *lower_base;
1225 return true;
1228 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1230 static void
1231 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1232 machine_mode mode)
1234 struct table_elt *elt;
1235 unsigned hash;
1236 rtx anchor_exp;
1237 rtx exp;
1239 anchor_exp = GEN_INT (anchor);
1240 hash = HASH (anchor_exp, mode);
1241 elt = lookup (anchor_exp, hash, mode);
1242 if (!elt)
1243 elt = insert (anchor_exp, NULL, hash, mode);
1245 exp = plus_constant (mode, reg, offs);
1246 /* REG has just been inserted and the hash codes recomputed. */
1247 mention_regs (exp);
1248 hash = HASH (exp, mode);
1250 /* Use the cost of the register rather than the whole expression. When
1251 looking up constant anchors we will further offset the corresponding
1252 expression therefore it does not make sense to prefer REGs over
1253 reg-immediate additions. Prefer instead the oldest expression. Also
1254 don't prefer pseudos over hard regs so that we derive constants in
1255 argument registers from other argument registers rather than from the
1256 original pseudo that was used to synthesize the constant. */
1257 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1260 /* The constant CST is equivalent to the register REG. Create
1261 equivalences between the two anchors of CST and the corresponding
1262 register-offset expressions using REG. */
1264 static void
1265 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1267 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1269 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1270 &upper_base, &upper_offs))
1271 return;
1273 /* Ignore anchors of value 0. Constants accessible from zero are
1274 simple. */
1275 if (lower_base != 0)
1276 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1278 if (upper_base != 0)
1279 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1282 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1283 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1284 valid expression. Return the cheapest and oldest of such expressions. In
1285 *OLD, return how old the resulting expression is compared to the other
1286 equivalent expressions. */
1288 static rtx
1289 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1290 unsigned *old)
1292 struct table_elt *elt;
1293 unsigned idx;
1294 struct table_elt *match_elt;
1295 rtx match;
1297 /* Find the cheapest and *oldest* expression to maximize the chance of
1298 reusing the same pseudo. */
1300 match_elt = NULL;
1301 match = NULL_RTX;
1302 for (elt = anchor_elt->first_same_value, idx = 0;
1303 elt;
1304 elt = elt->next_same_value, idx++)
1306 if (match_elt && CHEAPER (match_elt, elt))
1307 return match;
1309 if (REG_P (elt->exp)
1310 || (GET_CODE (elt->exp) == PLUS
1311 && REG_P (XEXP (elt->exp, 0))
1312 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1314 rtx x;
1316 /* Ignore expressions that are no longer valid. */
1317 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1318 continue;
1320 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1321 if (REG_P (x)
1322 || (GET_CODE (x) == PLUS
1323 && IN_RANGE (INTVAL (XEXP (x, 1)),
1324 -targetm.const_anchor,
1325 targetm.const_anchor - 1)))
1327 match = x;
1328 match_elt = elt;
1329 *old = idx;
1334 return match;
1337 /* Try to express the constant SRC_CONST using a register+offset expression
1338 derived from a constant anchor. Return it if successful or NULL_RTX,
1339 otherwise. */
1341 static rtx
1342 try_const_anchors (rtx src_const, machine_mode mode)
1344 struct table_elt *lower_elt, *upper_elt;
1345 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1346 rtx lower_anchor_rtx, upper_anchor_rtx;
1347 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1348 unsigned lower_old, upper_old;
1350 /* CONST_INT is used for CC modes, but we should leave those alone. */
1351 if (GET_MODE_CLASS (mode) == MODE_CC)
1352 return NULL_RTX;
1354 gcc_assert (SCALAR_INT_MODE_P (mode));
1355 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1356 &upper_base, &upper_offs))
1357 return NULL_RTX;
1359 lower_anchor_rtx = GEN_INT (lower_base);
1360 upper_anchor_rtx = GEN_INT (upper_base);
1361 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1362 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1364 if (lower_elt)
1365 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1366 if (upper_elt)
1367 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1369 if (!lower_exp)
1370 return upper_exp;
1371 if (!upper_exp)
1372 return lower_exp;
1374 /* Return the older expression. */
1375 return (upper_old > lower_old ? upper_exp : lower_exp);
1378 /* Look in or update the hash table. */
1380 /* Remove table element ELT from use in the table.
1381 HASH is its hash code, made using the HASH macro.
1382 It's an argument because often that is known in advance
1383 and we save much time not recomputing it. */
1385 static void
1386 remove_from_table (struct table_elt *elt, unsigned int hash)
1388 if (elt == 0)
1389 return;
1391 /* Mark this element as removed. See cse_insn. */
1392 elt->first_same_value = 0;
1394 /* Remove the table element from its equivalence class. */
1397 struct table_elt *prev = elt->prev_same_value;
1398 struct table_elt *next = elt->next_same_value;
1400 if (next)
1401 next->prev_same_value = prev;
1403 if (prev)
1404 prev->next_same_value = next;
1405 else
1407 struct table_elt *newfirst = next;
1408 while (next)
1410 next->first_same_value = newfirst;
1411 next = next->next_same_value;
1416 /* Remove the table element from its hash bucket. */
1419 struct table_elt *prev = elt->prev_same_hash;
1420 struct table_elt *next = elt->next_same_hash;
1422 if (next)
1423 next->prev_same_hash = prev;
1425 if (prev)
1426 prev->next_same_hash = next;
1427 else if (table[hash] == elt)
1428 table[hash] = next;
1429 else
1431 /* This entry is not in the proper hash bucket. This can happen
1432 when two classes were merged by `merge_equiv_classes'. Search
1433 for the hash bucket that it heads. This happens only very
1434 rarely, so the cost is acceptable. */
1435 for (hash = 0; hash < HASH_SIZE; hash++)
1436 if (table[hash] == elt)
1437 table[hash] = next;
1441 /* Remove the table element from its related-value circular chain. */
1443 if (elt->related_value != 0 && elt->related_value != elt)
1445 struct table_elt *p = elt->related_value;
1447 while (p->related_value != elt)
1448 p = p->related_value;
1449 p->related_value = elt->related_value;
1450 if (p->related_value == p)
1451 p->related_value = 0;
1454 /* Now add it to the free element chain. */
1455 elt->next_same_hash = free_element_chain;
1456 free_element_chain = elt;
1459 /* Same as above, but X is a pseudo-register. */
1461 static void
1462 remove_pseudo_from_table (rtx x, unsigned int hash)
1464 struct table_elt *elt;
1466 /* Because a pseudo-register can be referenced in more than one
1467 mode, we might have to remove more than one table entry. */
1468 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1469 remove_from_table (elt, hash);
1472 /* Look up X in the hash table and return its table element,
1473 or 0 if X is not in the table.
1475 MODE is the machine-mode of X, or if X is an integer constant
1476 with VOIDmode then MODE is the mode with which X will be used.
1478 Here we are satisfied to find an expression whose tree structure
1479 looks like X. */
1481 static struct table_elt *
1482 lookup (rtx x, unsigned int hash, machine_mode mode)
1484 struct table_elt *p;
1486 for (p = table[hash]; p; p = p->next_same_hash)
1487 if (mode == p->mode && ((x == p->exp && REG_P (x))
1488 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1489 return p;
1491 return 0;
1494 /* Like `lookup' but don't care whether the table element uses invalid regs.
1495 Also ignore discrepancies in the machine mode of a register. */
1497 static struct table_elt *
1498 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1500 struct table_elt *p;
1502 if (REG_P (x))
1504 unsigned int regno = REGNO (x);
1506 /* Don't check the machine mode when comparing registers;
1507 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1508 for (p = table[hash]; p; p = p->next_same_hash)
1509 if (REG_P (p->exp)
1510 && REGNO (p->exp) == regno)
1511 return p;
1513 else
1515 for (p = table[hash]; p; p = p->next_same_hash)
1516 if (mode == p->mode
1517 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1518 return p;
1521 return 0;
1524 /* Look for an expression equivalent to X and with code CODE.
1525 If one is found, return that expression. */
1527 static rtx
1528 lookup_as_function (rtx x, enum rtx_code code)
1530 struct table_elt *p
1531 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1533 if (p == 0)
1534 return 0;
1536 for (p = p->first_same_value; p; p = p->next_same_value)
1537 if (GET_CODE (p->exp) == code
1538 /* Make sure this is a valid entry in the table. */
1539 && exp_equiv_p (p->exp, p->exp, 1, false))
1540 return p->exp;
1542 return 0;
1545 /* Insert X in the hash table, assuming HASH is its hash code and
1546 CLASSP is an element of the class it should go in (or 0 if a new
1547 class should be made). COST is the code of X and reg_cost is the
1548 cost of registers in X. It is inserted at the proper position to
1549 keep the class in the order cheapest first.
1551 MODE is the machine-mode of X, or if X is an integer constant
1552 with VOIDmode then MODE is the mode with which X will be used.
1554 For elements of equal cheapness, the most recent one
1555 goes in front, except that the first element in the list
1556 remains first unless a cheaper element is added. The order of
1557 pseudo-registers does not matter, as canon_reg will be called to
1558 find the cheapest when a register is retrieved from the table.
1560 The in_memory field in the hash table element is set to 0.
1561 The caller must set it nonzero if appropriate.
1563 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1564 and if insert_regs returns a nonzero value
1565 you must then recompute its hash code before calling here.
1567 If necessary, update table showing constant values of quantities. */
1569 static struct table_elt *
1570 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1571 machine_mode mode, int cost, int reg_cost)
1573 struct table_elt *elt;
1575 /* If X is a register and we haven't made a quantity for it,
1576 something is wrong. */
1577 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1579 /* If X is a hard register, show it is being put in the table. */
1580 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1581 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1583 /* Put an element for X into the right hash bucket. */
1585 elt = free_element_chain;
1586 if (elt)
1587 free_element_chain = elt->next_same_hash;
1588 else
1589 elt = XNEW (struct table_elt);
1591 elt->exp = x;
1592 elt->canon_exp = NULL_RTX;
1593 elt->cost = cost;
1594 elt->regcost = reg_cost;
1595 elt->next_same_value = 0;
1596 elt->prev_same_value = 0;
1597 elt->next_same_hash = table[hash];
1598 elt->prev_same_hash = 0;
1599 elt->related_value = 0;
1600 elt->in_memory = 0;
1601 elt->mode = mode;
1602 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1604 if (table[hash])
1605 table[hash]->prev_same_hash = elt;
1606 table[hash] = elt;
1608 /* Put it into the proper value-class. */
1609 if (classp)
1611 classp = classp->first_same_value;
1612 if (CHEAPER (elt, classp))
1613 /* Insert at the head of the class. */
1615 struct table_elt *p;
1616 elt->next_same_value = classp;
1617 classp->prev_same_value = elt;
1618 elt->first_same_value = elt;
1620 for (p = classp; p; p = p->next_same_value)
1621 p->first_same_value = elt;
1623 else
1625 /* Insert not at head of the class. */
1626 /* Put it after the last element cheaper than X. */
1627 struct table_elt *p, *next;
1629 for (p = classp;
1630 (next = p->next_same_value) && CHEAPER (next, elt);
1631 p = next)
1634 /* Put it after P and before NEXT. */
1635 elt->next_same_value = next;
1636 if (next)
1637 next->prev_same_value = elt;
1639 elt->prev_same_value = p;
1640 p->next_same_value = elt;
1641 elt->first_same_value = classp;
1644 else
1645 elt->first_same_value = elt;
1647 /* If this is a constant being set equivalent to a register or a register
1648 being set equivalent to a constant, note the constant equivalence.
1650 If this is a constant, it cannot be equivalent to a different constant,
1651 and a constant is the only thing that can be cheaper than a register. So
1652 we know the register is the head of the class (before the constant was
1653 inserted).
1655 If this is a register that is not already known equivalent to a
1656 constant, we must check the entire class.
1658 If this is a register that is already known equivalent to an insn,
1659 update the qtys `const_insn' to show that `this_insn' is the latest
1660 insn making that quantity equivalent to the constant. */
1662 if (elt->is_const && classp && REG_P (classp->exp)
1663 && !REG_P (x))
1665 int exp_q = REG_QTY (REGNO (classp->exp));
1666 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1668 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1669 exp_ent->const_insn = this_insn;
1672 else if (REG_P (x)
1673 && classp
1674 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1675 && ! elt->is_const)
1677 struct table_elt *p;
1679 for (p = classp; p != 0; p = p->next_same_value)
1681 if (p->is_const && !REG_P (p->exp))
1683 int x_q = REG_QTY (REGNO (x));
1684 struct qty_table_elem *x_ent = &qty_table[x_q];
1686 x_ent->const_rtx
1687 = gen_lowpart (GET_MODE (x), p->exp);
1688 x_ent->const_insn = this_insn;
1689 break;
1694 else if (REG_P (x)
1695 && qty_table[REG_QTY (REGNO (x))].const_rtx
1696 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1697 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1699 /* If this is a constant with symbolic value,
1700 and it has a term with an explicit integer value,
1701 link it up with related expressions. */
1702 if (GET_CODE (x) == CONST)
1704 rtx subexp = get_related_value (x);
1705 unsigned subhash;
1706 struct table_elt *subelt, *subelt_prev;
1708 if (subexp != 0)
1710 /* Get the integer-free subexpression in the hash table. */
1711 subhash = SAFE_HASH (subexp, mode);
1712 subelt = lookup (subexp, subhash, mode);
1713 if (subelt == 0)
1714 subelt = insert (subexp, NULL, subhash, mode);
1715 /* Initialize SUBELT's circular chain if it has none. */
1716 if (subelt->related_value == 0)
1717 subelt->related_value = subelt;
1718 /* Find the element in the circular chain that precedes SUBELT. */
1719 subelt_prev = subelt;
1720 while (subelt_prev->related_value != subelt)
1721 subelt_prev = subelt_prev->related_value;
1722 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1723 This way the element that follows SUBELT is the oldest one. */
1724 elt->related_value = subelt_prev->related_value;
1725 subelt_prev->related_value = elt;
1729 return elt;
1732 /* Wrap insert_with_costs by passing the default costs. */
1734 static struct table_elt *
1735 insert (rtx x, struct table_elt *classp, unsigned int hash,
1736 machine_mode mode)
1738 return
1739 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1743 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1744 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1745 the two classes equivalent.
1747 CLASS1 will be the surviving class; CLASS2 should not be used after this
1748 call.
1750 Any invalid entries in CLASS2 will not be copied. */
1752 static void
1753 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1755 struct table_elt *elt, *next, *new_elt;
1757 /* Ensure we start with the head of the classes. */
1758 class1 = class1->first_same_value;
1759 class2 = class2->first_same_value;
1761 /* If they were already equal, forget it. */
1762 if (class1 == class2)
1763 return;
1765 for (elt = class2; elt; elt = next)
1767 unsigned int hash;
1768 rtx exp = elt->exp;
1769 machine_mode mode = elt->mode;
1771 next = elt->next_same_value;
1773 /* Remove old entry, make a new one in CLASS1's class.
1774 Don't do this for invalid entries as we cannot find their
1775 hash code (it also isn't necessary). */
1776 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1778 bool need_rehash = false;
1780 hash_arg_in_memory = 0;
1781 hash = HASH (exp, mode);
1783 if (REG_P (exp))
1785 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1786 delete_reg_equiv (REGNO (exp));
1789 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1790 remove_pseudo_from_table (exp, hash);
1791 else
1792 remove_from_table (elt, hash);
1794 if (insert_regs (exp, class1, 0) || need_rehash)
1796 rehash_using_reg (exp);
1797 hash = HASH (exp, mode);
1799 new_elt = insert (exp, class1, hash, mode);
1800 new_elt->in_memory = hash_arg_in_memory;
1801 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1802 new_elt->cost = MAX_COST;
1807 /* Flush the entire hash table. */
1809 static void
1810 flush_hash_table (void)
1812 int i;
1813 struct table_elt *p;
1815 for (i = 0; i < HASH_SIZE; i++)
1816 for (p = table[i]; p; p = table[i])
1818 /* Note that invalidate can remove elements
1819 after P in the current hash chain. */
1820 if (REG_P (p->exp))
1821 invalidate (p->exp, VOIDmode);
1822 else
1823 remove_from_table (p, i);
1827 /* Check whether an anti dependence exists between X and EXP. MODE and
1828 ADDR are as for canon_anti_dependence. */
1830 static bool
1831 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1833 subrtx_iterator::array_type array;
1834 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1836 const_rtx x = *iter;
1837 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1838 return true;
1840 return false;
1843 /* Remove from the hash table, or mark as invalid, all expressions whose
1844 values could be altered by storing in X. X is a register, a subreg, or
1845 a memory reference with nonvarying address (because, when a memory
1846 reference with a varying address is stored in, all memory references are
1847 removed by invalidate_memory so specific invalidation is superfluous).
1848 FULL_MODE, if not VOIDmode, indicates that this much should be
1849 invalidated instead of just the amount indicated by the mode of X. This
1850 is only used for bitfield stores into memory.
1852 A nonvarying address may be just a register or just a symbol reference,
1853 or it may be either of those plus a numeric offset. */
1855 static void
1856 invalidate (rtx x, machine_mode full_mode)
1858 int i;
1859 struct table_elt *p;
1860 rtx addr;
1862 switch (GET_CODE (x))
1864 case REG:
1866 /* If X is a register, dependencies on its contents are recorded
1867 through the qty number mechanism. Just change the qty number of
1868 the register, mark it as invalid for expressions that refer to it,
1869 and remove it itself. */
1870 unsigned int regno = REGNO (x);
1871 unsigned int hash = HASH (x, GET_MODE (x));
1873 /* Remove REGNO from any quantity list it might be on and indicate
1874 that its value might have changed. If it is a pseudo, remove its
1875 entry from the hash table.
1877 For a hard register, we do the first two actions above for any
1878 additional hard registers corresponding to X. Then, if any of these
1879 registers are in the table, we must remove any REG entries that
1880 overlap these registers. */
1882 delete_reg_equiv (regno);
1883 REG_TICK (regno)++;
1884 SUBREG_TICKED (regno) = -1;
1886 if (regno >= FIRST_PSEUDO_REGISTER)
1887 remove_pseudo_from_table (x, hash);
1888 else
1890 HOST_WIDE_INT in_table
1891 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1892 unsigned int endregno = END_REGNO (x);
1893 unsigned int tregno, tendregno, rn;
1894 struct table_elt *p, *next;
1896 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1898 for (rn = regno + 1; rn < endregno; rn++)
1900 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1901 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1902 delete_reg_equiv (rn);
1903 REG_TICK (rn)++;
1904 SUBREG_TICKED (rn) = -1;
1907 if (in_table)
1908 for (hash = 0; hash < HASH_SIZE; hash++)
1909 for (p = table[hash]; p; p = next)
1911 next = p->next_same_hash;
1913 if (!REG_P (p->exp)
1914 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1915 continue;
1917 tregno = REGNO (p->exp);
1918 tendregno = END_REGNO (p->exp);
1919 if (tendregno > regno && tregno < endregno)
1920 remove_from_table (p, hash);
1924 return;
1926 case SUBREG:
1927 invalidate (SUBREG_REG (x), VOIDmode);
1928 return;
1930 case PARALLEL:
1931 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1932 invalidate (XVECEXP (x, 0, i), VOIDmode);
1933 return;
1935 case EXPR_LIST:
1936 /* This is part of a disjoint return value; extract the location in
1937 question ignoring the offset. */
1938 invalidate (XEXP (x, 0), VOIDmode);
1939 return;
1941 case MEM:
1942 addr = canon_rtx (get_addr (XEXP (x, 0)));
1943 /* Calculate the canonical version of X here so that
1944 true_dependence doesn't generate new RTL for X on each call. */
1945 x = canon_rtx (x);
1947 /* Remove all hash table elements that refer to overlapping pieces of
1948 memory. */
1949 if (full_mode == VOIDmode)
1950 full_mode = GET_MODE (x);
1952 for (i = 0; i < HASH_SIZE; i++)
1954 struct table_elt *next;
1956 for (p = table[i]; p; p = next)
1958 next = p->next_same_hash;
1959 if (p->in_memory)
1961 /* Just canonicalize the expression once;
1962 otherwise each time we call invalidate
1963 true_dependence will canonicalize the
1964 expression again. */
1965 if (!p->canon_exp)
1966 p->canon_exp = canon_rtx (p->exp);
1967 if (check_dependence (p->canon_exp, x, full_mode, addr))
1968 remove_from_table (p, i);
1972 return;
1974 default:
1975 gcc_unreachable ();
1979 /* Invalidate DEST. Used when DEST is not going to be added
1980 into the hash table for some reason, e.g. do_not_record
1981 flagged on it. */
1983 static void
1984 invalidate_dest (rtx dest)
1986 if (REG_P (dest)
1987 || GET_CODE (dest) == SUBREG
1988 || MEM_P (dest))
1989 invalidate (dest, VOIDmode);
1990 else if (GET_CODE (dest) == STRICT_LOW_PART
1991 || GET_CODE (dest) == ZERO_EXTRACT)
1992 invalidate (XEXP (dest, 0), GET_MODE (dest));
1995 /* Remove all expressions that refer to register REGNO,
1996 since they are already invalid, and we are about to
1997 mark that register valid again and don't want the old
1998 expressions to reappear as valid. */
2000 static void
2001 remove_invalid_refs (unsigned int regno)
2003 unsigned int i;
2004 struct table_elt *p, *next;
2006 for (i = 0; i < HASH_SIZE; i++)
2007 for (p = table[i]; p; p = next)
2009 next = p->next_same_hash;
2010 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
2011 remove_from_table (p, i);
2015 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2016 and mode MODE. */
2017 static void
2018 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2019 machine_mode mode)
2021 unsigned int i;
2022 struct table_elt *p, *next;
2023 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2025 for (i = 0; i < HASH_SIZE; i++)
2026 for (p = table[i]; p; p = next)
2028 rtx exp = p->exp;
2029 next = p->next_same_hash;
2031 if (!REG_P (exp)
2032 && (GET_CODE (exp) != SUBREG
2033 || !REG_P (SUBREG_REG (exp))
2034 || REGNO (SUBREG_REG (exp)) != regno
2035 || (((SUBREG_BYTE (exp)
2036 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2037 && SUBREG_BYTE (exp) <= end))
2038 && refers_to_regno_p (regno, p->exp))
2039 remove_from_table (p, i);
2043 /* Recompute the hash codes of any valid entries in the hash table that
2044 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2046 This is called when we make a jump equivalence. */
2048 static void
2049 rehash_using_reg (rtx x)
2051 unsigned int i;
2052 struct table_elt *p, *next;
2053 unsigned hash;
2055 if (GET_CODE (x) == SUBREG)
2056 x = SUBREG_REG (x);
2058 /* If X is not a register or if the register is known not to be in any
2059 valid entries in the table, we have no work to do. */
2061 if (!REG_P (x)
2062 || REG_IN_TABLE (REGNO (x)) < 0
2063 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2064 return;
2066 /* Scan all hash chains looking for valid entries that mention X.
2067 If we find one and it is in the wrong hash chain, move it. */
2069 for (i = 0; i < HASH_SIZE; i++)
2070 for (p = table[i]; p; p = next)
2072 next = p->next_same_hash;
2073 if (reg_mentioned_p (x, p->exp)
2074 && exp_equiv_p (p->exp, p->exp, 1, false)
2075 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2077 if (p->next_same_hash)
2078 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2080 if (p->prev_same_hash)
2081 p->prev_same_hash->next_same_hash = p->next_same_hash;
2082 else
2083 table[i] = p->next_same_hash;
2085 p->next_same_hash = table[hash];
2086 p->prev_same_hash = 0;
2087 if (table[hash])
2088 table[hash]->prev_same_hash = p;
2089 table[hash] = p;
2094 /* Remove from the hash table any expression that is a call-clobbered
2095 register. Also update their TICK values. */
2097 static void
2098 invalidate_for_call (void)
2100 unsigned int regno, endregno;
2101 unsigned int i;
2102 unsigned hash;
2103 struct table_elt *p, *next;
2104 int in_table = 0;
2105 hard_reg_set_iterator hrsi;
2107 /* Go through all the hard registers. For each that is clobbered in
2108 a CALL_INSN, remove the register from quantity chains and update
2109 reg_tick if defined. Also see if any of these registers is currently
2110 in the table. */
2111 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2113 delete_reg_equiv (regno);
2114 if (REG_TICK (regno) >= 0)
2116 REG_TICK (regno)++;
2117 SUBREG_TICKED (regno) = -1;
2119 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2122 /* In the case where we have no call-clobbered hard registers in the
2123 table, we are done. Otherwise, scan the table and remove any
2124 entry that overlaps a call-clobbered register. */
2126 if (in_table)
2127 for (hash = 0; hash < HASH_SIZE; hash++)
2128 for (p = table[hash]; p; p = next)
2130 next = p->next_same_hash;
2132 if (!REG_P (p->exp)
2133 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2134 continue;
2136 regno = REGNO (p->exp);
2137 endregno = END_REGNO (p->exp);
2139 for (i = regno; i < endregno; i++)
2140 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2142 remove_from_table (p, hash);
2143 break;
2148 /* Given an expression X of type CONST,
2149 and ELT which is its table entry (or 0 if it
2150 is not in the hash table),
2151 return an alternate expression for X as a register plus integer.
2152 If none can be found, return 0. */
2154 static rtx
2155 use_related_value (rtx x, struct table_elt *elt)
2157 struct table_elt *relt = 0;
2158 struct table_elt *p, *q;
2159 HOST_WIDE_INT offset;
2161 /* First, is there anything related known?
2162 If we have a table element, we can tell from that.
2163 Otherwise, must look it up. */
2165 if (elt != 0 && elt->related_value != 0)
2166 relt = elt;
2167 else if (elt == 0 && GET_CODE (x) == CONST)
2169 rtx subexp = get_related_value (x);
2170 if (subexp != 0)
2171 relt = lookup (subexp,
2172 SAFE_HASH (subexp, GET_MODE (subexp)),
2173 GET_MODE (subexp));
2176 if (relt == 0)
2177 return 0;
2179 /* Search all related table entries for one that has an
2180 equivalent register. */
2182 p = relt;
2183 while (1)
2185 /* This loop is strange in that it is executed in two different cases.
2186 The first is when X is already in the table. Then it is searching
2187 the RELATED_VALUE list of X's class (RELT). The second case is when
2188 X is not in the table. Then RELT points to a class for the related
2189 value.
2191 Ensure that, whatever case we are in, that we ignore classes that have
2192 the same value as X. */
2194 if (rtx_equal_p (x, p->exp))
2195 q = 0;
2196 else
2197 for (q = p->first_same_value; q; q = q->next_same_value)
2198 if (REG_P (q->exp))
2199 break;
2201 if (q)
2202 break;
2204 p = p->related_value;
2206 /* We went all the way around, so there is nothing to be found.
2207 Alternatively, perhaps RELT was in the table for some other reason
2208 and it has no related values recorded. */
2209 if (p == relt || p == 0)
2210 break;
2213 if (q == 0)
2214 return 0;
2216 offset = (get_integer_term (x) - get_integer_term (p->exp));
2217 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2218 return plus_constant (q->mode, q->exp, offset);
2222 /* Hash a string. Just add its bytes up. */
2223 static inline unsigned
2224 hash_rtx_string (const char *ps)
2226 unsigned hash = 0;
2227 const unsigned char *p = (const unsigned char *) ps;
2229 if (p)
2230 while (*p)
2231 hash += *p++;
2233 return hash;
2236 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2237 When the callback returns true, we continue with the new rtx. */
2239 unsigned
2240 hash_rtx_cb (const_rtx x, machine_mode mode,
2241 int *do_not_record_p, int *hash_arg_in_memory_p,
2242 bool have_reg_qty, hash_rtx_callback_function cb)
2244 int i, j;
2245 unsigned hash = 0;
2246 enum rtx_code code;
2247 const char *fmt;
2248 machine_mode newmode;
2249 rtx newx;
2251 /* Used to turn recursion into iteration. We can't rely on GCC's
2252 tail-recursion elimination since we need to keep accumulating values
2253 in HASH. */
2254 repeat:
2255 if (x == 0)
2256 return hash;
2258 /* Invoke the callback first. */
2259 if (cb != NULL
2260 && ((*cb) (x, mode, &newx, &newmode)))
2262 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2263 hash_arg_in_memory_p, have_reg_qty, cb);
2264 return hash;
2267 code = GET_CODE (x);
2268 switch (code)
2270 case REG:
2272 unsigned int regno = REGNO (x);
2274 if (do_not_record_p && !reload_completed)
2276 /* On some machines, we can't record any non-fixed hard register,
2277 because extending its life will cause reload problems. We
2278 consider ap, fp, sp, gp to be fixed for this purpose.
2280 We also consider CCmode registers to be fixed for this purpose;
2281 failure to do so leads to failure to simplify 0<100 type of
2282 conditionals.
2284 On all machines, we can't record any global registers.
2285 Nor should we record any register that is in a small
2286 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2287 bool record;
2289 if (regno >= FIRST_PSEUDO_REGISTER)
2290 record = true;
2291 else if (x == frame_pointer_rtx
2292 || x == hard_frame_pointer_rtx
2293 || x == arg_pointer_rtx
2294 || x == stack_pointer_rtx
2295 || x == pic_offset_table_rtx)
2296 record = true;
2297 else if (global_regs[regno])
2298 record = false;
2299 else if (fixed_regs[regno])
2300 record = true;
2301 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2302 record = true;
2303 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2304 record = false;
2305 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2306 record = false;
2307 else
2308 record = true;
2310 if (!record)
2312 *do_not_record_p = 1;
2313 return 0;
2317 hash += ((unsigned int) REG << 7);
2318 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2319 return hash;
2322 /* We handle SUBREG of a REG specially because the underlying
2323 reg changes its hash value with every value change; we don't
2324 want to have to forget unrelated subregs when one subreg changes. */
2325 case SUBREG:
2327 if (REG_P (SUBREG_REG (x)))
2329 hash += (((unsigned int) SUBREG << 7)
2330 + REGNO (SUBREG_REG (x))
2331 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2332 return hash;
2334 break;
2337 case CONST_INT:
2338 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2339 + (unsigned int) INTVAL (x));
2340 return hash;
2342 case CONST_WIDE_INT:
2343 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2344 hash += CONST_WIDE_INT_ELT (x, i);
2345 return hash;
2347 case CONST_DOUBLE:
2348 /* This is like the general case, except that it only counts
2349 the integers representing the constant. */
2350 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2351 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2352 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2353 + (unsigned int) CONST_DOUBLE_HIGH (x));
2354 else
2355 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2356 return hash;
2358 case CONST_FIXED:
2359 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2360 hash += fixed_hash (CONST_FIXED_VALUE (x));
2361 return hash;
2363 case CONST_VECTOR:
2365 int units;
2366 rtx elt;
2368 units = CONST_VECTOR_NUNITS (x);
2370 for (i = 0; i < units; ++i)
2372 elt = CONST_VECTOR_ELT (x, i);
2373 hash += hash_rtx_cb (elt, GET_MODE (elt),
2374 do_not_record_p, hash_arg_in_memory_p,
2375 have_reg_qty, cb);
2378 return hash;
2381 /* Assume there is only one rtx object for any given label. */
2382 case LABEL_REF:
2383 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2384 differences and differences between each stage's debugging dumps. */
2385 hash += (((unsigned int) LABEL_REF << 7)
2386 + CODE_LABEL_NUMBER (LABEL_REF_LABEL (x)));
2387 return hash;
2389 case SYMBOL_REF:
2391 /* Don't hash on the symbol's address to avoid bootstrap differences.
2392 Different hash values may cause expressions to be recorded in
2393 different orders and thus different registers to be used in the
2394 final assembler. This also avoids differences in the dump files
2395 between various stages. */
2396 unsigned int h = 0;
2397 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2399 while (*p)
2400 h += (h << 7) + *p++; /* ??? revisit */
2402 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2403 return hash;
2406 case MEM:
2407 /* We don't record if marked volatile or if BLKmode since we don't
2408 know the size of the move. */
2409 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2411 *do_not_record_p = 1;
2412 return 0;
2414 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2415 *hash_arg_in_memory_p = 1;
2417 /* Now that we have already found this special case,
2418 might as well speed it up as much as possible. */
2419 hash += (unsigned) MEM;
2420 x = XEXP (x, 0);
2421 goto repeat;
2423 case USE:
2424 /* A USE that mentions non-volatile memory needs special
2425 handling since the MEM may be BLKmode which normally
2426 prevents an entry from being made. Pure calls are
2427 marked by a USE which mentions BLKmode memory.
2428 See calls.c:emit_call_1. */
2429 if (MEM_P (XEXP (x, 0))
2430 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2432 hash += (unsigned) USE;
2433 x = XEXP (x, 0);
2435 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2436 *hash_arg_in_memory_p = 1;
2438 /* Now that we have already found this special case,
2439 might as well speed it up as much as possible. */
2440 hash += (unsigned) MEM;
2441 x = XEXP (x, 0);
2442 goto repeat;
2444 break;
2446 case PRE_DEC:
2447 case PRE_INC:
2448 case POST_DEC:
2449 case POST_INC:
2450 case PRE_MODIFY:
2451 case POST_MODIFY:
2452 case PC:
2453 case CC0:
2454 case CALL:
2455 case UNSPEC_VOLATILE:
2456 if (do_not_record_p) {
2457 *do_not_record_p = 1;
2458 return 0;
2460 else
2461 return hash;
2462 break;
2464 case ASM_OPERANDS:
2465 if (do_not_record_p && MEM_VOLATILE_P (x))
2467 *do_not_record_p = 1;
2468 return 0;
2470 else
2472 /* We don't want to take the filename and line into account. */
2473 hash += (unsigned) code + (unsigned) GET_MODE (x)
2474 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2475 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2476 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2478 if (ASM_OPERANDS_INPUT_LENGTH (x))
2480 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2482 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2483 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2484 do_not_record_p, hash_arg_in_memory_p,
2485 have_reg_qty, cb)
2486 + hash_rtx_string
2487 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2490 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2491 x = ASM_OPERANDS_INPUT (x, 0);
2492 mode = GET_MODE (x);
2493 goto repeat;
2496 return hash;
2498 break;
2500 default:
2501 break;
2504 i = GET_RTX_LENGTH (code) - 1;
2505 hash += (unsigned) code + (unsigned) GET_MODE (x);
2506 fmt = GET_RTX_FORMAT (code);
2507 for (; i >= 0; i--)
2509 switch (fmt[i])
2511 case 'e':
2512 /* If we are about to do the last recursive call
2513 needed at this level, change it into iteration.
2514 This function is called enough to be worth it. */
2515 if (i == 0)
2517 x = XEXP (x, i);
2518 goto repeat;
2521 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2522 hash_arg_in_memory_p,
2523 have_reg_qty, cb);
2524 break;
2526 case 'E':
2527 for (j = 0; j < XVECLEN (x, i); j++)
2528 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2529 hash_arg_in_memory_p,
2530 have_reg_qty, cb);
2531 break;
2533 case 's':
2534 hash += hash_rtx_string (XSTR (x, i));
2535 break;
2537 case 'i':
2538 hash += (unsigned int) XINT (x, i);
2539 break;
2541 case '0': case 't':
2542 /* Unused. */
2543 break;
2545 default:
2546 gcc_unreachable ();
2550 return hash;
2553 /* Hash an rtx. We are careful to make sure the value is never negative.
2554 Equivalent registers hash identically.
2555 MODE is used in hashing for CONST_INTs only;
2556 otherwise the mode of X is used.
2558 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2560 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2561 a MEM rtx which does not have the MEM_READONLY_P flag set.
2563 Note that cse_insn knows that the hash code of a MEM expression
2564 is just (int) MEM plus the hash code of the address. */
2566 unsigned
2567 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2568 int *hash_arg_in_memory_p, bool have_reg_qty)
2570 return hash_rtx_cb (x, mode, do_not_record_p,
2571 hash_arg_in_memory_p, have_reg_qty, NULL);
2574 /* Hash an rtx X for cse via hash_rtx.
2575 Stores 1 in do_not_record if any subexpression is volatile.
2576 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2577 does not have the MEM_READONLY_P flag set. */
2579 static inline unsigned
2580 canon_hash (rtx x, machine_mode mode)
2582 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2585 /* Like canon_hash but with no side effects, i.e. do_not_record
2586 and hash_arg_in_memory are not changed. */
2588 static inline unsigned
2589 safe_hash (rtx x, machine_mode mode)
2591 int dummy_do_not_record;
2592 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2595 /* Return 1 iff X and Y would canonicalize into the same thing,
2596 without actually constructing the canonicalization of either one.
2597 If VALIDATE is nonzero,
2598 we assume X is an expression being processed from the rtl
2599 and Y was found in the hash table. We check register refs
2600 in Y for being marked as valid.
2602 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2605 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2607 int i, j;
2608 enum rtx_code code;
2609 const char *fmt;
2611 /* Note: it is incorrect to assume an expression is equivalent to itself
2612 if VALIDATE is nonzero. */
2613 if (x == y && !validate)
2614 return 1;
2616 if (x == 0 || y == 0)
2617 return x == y;
2619 code = GET_CODE (x);
2620 if (code != GET_CODE (y))
2621 return 0;
2623 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2624 if (GET_MODE (x) != GET_MODE (y))
2625 return 0;
2627 /* MEMs referring to different address space are not equivalent. */
2628 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2629 return 0;
2631 switch (code)
2633 case PC:
2634 case CC0:
2635 CASE_CONST_UNIQUE:
2636 return x == y;
2638 case LABEL_REF:
2639 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2641 case SYMBOL_REF:
2642 return XSTR (x, 0) == XSTR (y, 0);
2644 case REG:
2645 if (for_gcse)
2646 return REGNO (x) == REGNO (y);
2647 else
2649 unsigned int regno = REGNO (y);
2650 unsigned int i;
2651 unsigned int endregno = END_REGNO (y);
2653 /* If the quantities are not the same, the expressions are not
2654 equivalent. If there are and we are not to validate, they
2655 are equivalent. Otherwise, ensure all regs are up-to-date. */
2657 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2658 return 0;
2660 if (! validate)
2661 return 1;
2663 for (i = regno; i < endregno; i++)
2664 if (REG_IN_TABLE (i) != REG_TICK (i))
2665 return 0;
2667 return 1;
2670 case MEM:
2671 if (for_gcse)
2673 /* A volatile mem should not be considered equivalent to any
2674 other. */
2675 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2676 return 0;
2678 /* Can't merge two expressions in different alias sets, since we
2679 can decide that the expression is transparent in a block when
2680 it isn't, due to it being set with the different alias set.
2682 Also, can't merge two expressions with different MEM_ATTRS.
2683 They could e.g. be two different entities allocated into the
2684 same space on the stack (see e.g. PR25130). In that case, the
2685 MEM addresses can be the same, even though the two MEMs are
2686 absolutely not equivalent.
2688 But because really all MEM attributes should be the same for
2689 equivalent MEMs, we just use the invariant that MEMs that have
2690 the same attributes share the same mem_attrs data structure. */
2691 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2692 return 0;
2694 /* If we are handling exceptions, we cannot consider two expressions
2695 with different trapping status as equivalent, because simple_mem
2696 might accept one and reject the other. */
2697 if (cfun->can_throw_non_call_exceptions
2698 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2699 return 0;
2701 break;
2703 /* For commutative operations, check both orders. */
2704 case PLUS:
2705 case MULT:
2706 case AND:
2707 case IOR:
2708 case XOR:
2709 case NE:
2710 case EQ:
2711 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2712 validate, for_gcse)
2713 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2714 validate, for_gcse))
2715 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2716 validate, for_gcse)
2717 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2718 validate, for_gcse)));
2720 case ASM_OPERANDS:
2721 /* We don't use the generic code below because we want to
2722 disregard filename and line numbers. */
2724 /* A volatile asm isn't equivalent to any other. */
2725 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2726 return 0;
2728 if (GET_MODE (x) != GET_MODE (y)
2729 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2730 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2731 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2732 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2733 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2734 return 0;
2736 if (ASM_OPERANDS_INPUT_LENGTH (x))
2738 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2739 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2740 ASM_OPERANDS_INPUT (y, i),
2741 validate, for_gcse)
2742 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2743 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2744 return 0;
2747 return 1;
2749 default:
2750 break;
2753 /* Compare the elements. If any pair of corresponding elements
2754 fail to match, return 0 for the whole thing. */
2756 fmt = GET_RTX_FORMAT (code);
2757 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2759 switch (fmt[i])
2761 case 'e':
2762 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2763 validate, for_gcse))
2764 return 0;
2765 break;
2767 case 'E':
2768 if (XVECLEN (x, i) != XVECLEN (y, i))
2769 return 0;
2770 for (j = 0; j < XVECLEN (x, i); j++)
2771 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2772 validate, for_gcse))
2773 return 0;
2774 break;
2776 case 's':
2777 if (strcmp (XSTR (x, i), XSTR (y, i)))
2778 return 0;
2779 break;
2781 case 'i':
2782 if (XINT (x, i) != XINT (y, i))
2783 return 0;
2784 break;
2786 case 'w':
2787 if (XWINT (x, i) != XWINT (y, i))
2788 return 0;
2789 break;
2791 case '0':
2792 case 't':
2793 break;
2795 default:
2796 gcc_unreachable ();
2800 return 1;
2803 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2804 the result if necessary. INSN is as for canon_reg. */
2806 static void
2807 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2809 if (*xloc)
2811 rtx new_rtx = canon_reg (*xloc, insn);
2813 /* If replacing pseudo with hard reg or vice versa, ensure the
2814 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2815 gcc_assert (insn && new_rtx);
2816 validate_change (insn, xloc, new_rtx, 1);
2820 /* Canonicalize an expression:
2821 replace each register reference inside it
2822 with the "oldest" equivalent register.
2824 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2825 after we make our substitution. The calls are made with IN_GROUP nonzero
2826 so apply_change_group must be called upon the outermost return from this
2827 function (unless INSN is zero). The result of apply_change_group can
2828 generally be discarded since the changes we are making are optional. */
2830 static rtx
2831 canon_reg (rtx x, rtx_insn *insn)
2833 int i;
2834 enum rtx_code code;
2835 const char *fmt;
2837 if (x == 0)
2838 return x;
2840 code = GET_CODE (x);
2841 switch (code)
2843 case PC:
2844 case CC0:
2845 case CONST:
2846 CASE_CONST_ANY:
2847 case SYMBOL_REF:
2848 case LABEL_REF:
2849 case ADDR_VEC:
2850 case ADDR_DIFF_VEC:
2851 return x;
2853 case REG:
2855 int first;
2856 int q;
2857 struct qty_table_elem *ent;
2859 /* Never replace a hard reg, because hard regs can appear
2860 in more than one machine mode, and we must preserve the mode
2861 of each occurrence. Also, some hard regs appear in
2862 MEMs that are shared and mustn't be altered. Don't try to
2863 replace any reg that maps to a reg of class NO_REGS. */
2864 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2865 || ! REGNO_QTY_VALID_P (REGNO (x)))
2866 return x;
2868 q = REG_QTY (REGNO (x));
2869 ent = &qty_table[q];
2870 first = ent->first_reg;
2871 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2872 : REGNO_REG_CLASS (first) == NO_REGS ? x
2873 : gen_rtx_REG (ent->mode, first));
2876 default:
2877 break;
2880 fmt = GET_RTX_FORMAT (code);
2881 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2883 int j;
2885 if (fmt[i] == 'e')
2886 validate_canon_reg (&XEXP (x, i), insn);
2887 else if (fmt[i] == 'E')
2888 for (j = 0; j < XVECLEN (x, i); j++)
2889 validate_canon_reg (&XVECEXP (x, i, j), insn);
2892 return x;
2895 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2896 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2897 what values are being compared.
2899 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2900 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2901 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2902 compared to produce cc0.
2904 The return value is the comparison operator and is either the code of
2905 A or the code corresponding to the inverse of the comparison. */
2907 static enum rtx_code
2908 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2909 machine_mode *pmode1, machine_mode *pmode2)
2911 rtx arg1, arg2;
2912 hash_set<rtx> *visited = NULL;
2913 /* Set nonzero when we find something of interest. */
2914 rtx x = NULL;
2916 arg1 = *parg1, arg2 = *parg2;
2918 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2920 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2922 int reverse_code = 0;
2923 struct table_elt *p = 0;
2925 /* Remember state from previous iteration. */
2926 if (x)
2928 if (!visited)
2929 visited = new hash_set<rtx>;
2930 visited->add (x);
2931 x = 0;
2934 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2935 On machines with CC0, this is the only case that can occur, since
2936 fold_rtx will return the COMPARE or item being compared with zero
2937 when given CC0. */
2939 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2940 x = arg1;
2942 /* If ARG1 is a comparison operator and CODE is testing for
2943 STORE_FLAG_VALUE, get the inner arguments. */
2945 else if (COMPARISON_P (arg1))
2947 #ifdef FLOAT_STORE_FLAG_VALUE
2948 REAL_VALUE_TYPE fsfv;
2949 #endif
2951 if (code == NE
2952 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2953 && code == LT && STORE_FLAG_VALUE == -1)
2954 #ifdef FLOAT_STORE_FLAG_VALUE
2955 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2956 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2957 REAL_VALUE_NEGATIVE (fsfv)))
2958 #endif
2960 x = arg1;
2961 else if (code == EQ
2962 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2963 && code == GE && STORE_FLAG_VALUE == -1)
2964 #ifdef FLOAT_STORE_FLAG_VALUE
2965 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2966 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2967 REAL_VALUE_NEGATIVE (fsfv)))
2968 #endif
2970 x = arg1, reverse_code = 1;
2973 /* ??? We could also check for
2975 (ne (and (eq (...) (const_int 1))) (const_int 0))
2977 and related forms, but let's wait until we see them occurring. */
2979 if (x == 0)
2980 /* Look up ARG1 in the hash table and see if it has an equivalence
2981 that lets us see what is being compared. */
2982 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2983 if (p)
2985 p = p->first_same_value;
2987 /* If what we compare is already known to be constant, that is as
2988 good as it gets.
2989 We need to break the loop in this case, because otherwise we
2990 can have an infinite loop when looking at a reg that is known
2991 to be a constant which is the same as a comparison of a reg
2992 against zero which appears later in the insn stream, which in
2993 turn is constant and the same as the comparison of the first reg
2994 against zero... */
2995 if (p->is_const)
2996 break;
2999 for (; p; p = p->next_same_value)
3001 machine_mode inner_mode = GET_MODE (p->exp);
3002 #ifdef FLOAT_STORE_FLAG_VALUE
3003 REAL_VALUE_TYPE fsfv;
3004 #endif
3006 /* If the entry isn't valid, skip it. */
3007 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3008 continue;
3010 /* If it's a comparison we've used before, skip it. */
3011 if (visited && visited->contains (p->exp))
3012 continue;
3014 if (GET_CODE (p->exp) == COMPARE
3015 /* Another possibility is that this machine has a compare insn
3016 that includes the comparison code. In that case, ARG1 would
3017 be equivalent to a comparison operation that would set ARG1 to
3018 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3019 ORIG_CODE is the actual comparison being done; if it is an EQ,
3020 we must reverse ORIG_CODE. On machine with a negative value
3021 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3022 || ((code == NE
3023 || (code == LT
3024 && val_signbit_known_set_p (inner_mode,
3025 STORE_FLAG_VALUE))
3026 #ifdef FLOAT_STORE_FLAG_VALUE
3027 || (code == LT
3028 && SCALAR_FLOAT_MODE_P (inner_mode)
3029 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3030 REAL_VALUE_NEGATIVE (fsfv)))
3031 #endif
3033 && COMPARISON_P (p->exp)))
3035 x = p->exp;
3036 break;
3038 else if ((code == EQ
3039 || (code == GE
3040 && val_signbit_known_set_p (inner_mode,
3041 STORE_FLAG_VALUE))
3042 #ifdef FLOAT_STORE_FLAG_VALUE
3043 || (code == GE
3044 && SCALAR_FLOAT_MODE_P (inner_mode)
3045 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3046 REAL_VALUE_NEGATIVE (fsfv)))
3047 #endif
3049 && COMPARISON_P (p->exp))
3051 reverse_code = 1;
3052 x = p->exp;
3053 break;
3056 /* If this non-trapping address, e.g. fp + constant, the
3057 equivalent is a better operand since it may let us predict
3058 the value of the comparison. */
3059 else if (!rtx_addr_can_trap_p (p->exp))
3061 arg1 = p->exp;
3062 continue;
3066 /* If we didn't find a useful equivalence for ARG1, we are done.
3067 Otherwise, set up for the next iteration. */
3068 if (x == 0)
3069 break;
3071 /* If we need to reverse the comparison, make sure that that is
3072 possible -- we can't necessarily infer the value of GE from LT
3073 with floating-point operands. */
3074 if (reverse_code)
3076 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3077 if (reversed == UNKNOWN)
3078 break;
3079 else
3080 code = reversed;
3082 else if (COMPARISON_P (x))
3083 code = GET_CODE (x);
3084 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3087 /* Return our results. Return the modes from before fold_rtx
3088 because fold_rtx might produce const_int, and then it's too late. */
3089 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3090 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3092 if (visited)
3093 delete visited;
3094 return code;
3097 /* If X is a nontrivial arithmetic operation on an argument for which
3098 a constant value can be determined, return the result of operating
3099 on that value, as a constant. Otherwise, return X, possibly with
3100 one or more operands changed to a forward-propagated constant.
3102 If X is a register whose contents are known, we do NOT return
3103 those contents here; equiv_constant is called to perform that task.
3104 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3106 INSN is the insn that we may be modifying. If it is 0, make a copy
3107 of X before modifying it. */
3109 static rtx
3110 fold_rtx (rtx x, rtx_insn *insn)
3112 enum rtx_code code;
3113 machine_mode mode;
3114 const char *fmt;
3115 int i;
3116 rtx new_rtx = 0;
3117 int changed = 0;
3119 /* Operands of X. */
3120 /* Workaround -Wmaybe-uninitialized false positive during
3121 profiledbootstrap by initializing them. */
3122 rtx folded_arg0 = NULL_RTX;
3123 rtx folded_arg1 = NULL_RTX;
3125 /* Constant equivalents of first three operands of X;
3126 0 when no such equivalent is known. */
3127 rtx const_arg0;
3128 rtx const_arg1;
3129 rtx const_arg2;
3131 /* The mode of the first operand of X. We need this for sign and zero
3132 extends. */
3133 machine_mode mode_arg0;
3135 if (x == 0)
3136 return x;
3138 /* Try to perform some initial simplifications on X. */
3139 code = GET_CODE (x);
3140 switch (code)
3142 case MEM:
3143 case SUBREG:
3144 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3145 than it would in other contexts. Basically its mode does not
3146 signify the size of the object read. That information is carried
3147 by size operand. If we happen to have a MEM of the appropriate
3148 mode in our tables with a constant value we could simplify the
3149 extraction incorrectly if we allowed substitution of that value
3150 for the MEM. */
3151 case ZERO_EXTRACT:
3152 case SIGN_EXTRACT:
3153 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3154 return new_rtx;
3155 return x;
3157 case CONST:
3158 CASE_CONST_ANY:
3159 case SYMBOL_REF:
3160 case LABEL_REF:
3161 case REG:
3162 case PC:
3163 /* No use simplifying an EXPR_LIST
3164 since they are used only for lists of args
3165 in a function call's REG_EQUAL note. */
3166 case EXPR_LIST:
3167 return x;
3169 case CC0:
3170 return prev_insn_cc0;
3172 case ASM_OPERANDS:
3173 if (insn)
3175 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3176 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3177 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3179 return x;
3181 case CALL:
3182 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3183 return x;
3184 break;
3186 /* Anything else goes through the loop below. */
3187 default:
3188 break;
3191 mode = GET_MODE (x);
3192 const_arg0 = 0;
3193 const_arg1 = 0;
3194 const_arg2 = 0;
3195 mode_arg0 = VOIDmode;
3197 /* Try folding our operands.
3198 Then see which ones have constant values known. */
3200 fmt = GET_RTX_FORMAT (code);
3201 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3202 if (fmt[i] == 'e')
3204 rtx folded_arg = XEXP (x, i), const_arg;
3205 machine_mode mode_arg = GET_MODE (folded_arg);
3207 switch (GET_CODE (folded_arg))
3209 case MEM:
3210 case REG:
3211 case SUBREG:
3212 const_arg = equiv_constant (folded_arg);
3213 break;
3215 case CONST:
3216 CASE_CONST_ANY:
3217 case SYMBOL_REF:
3218 case LABEL_REF:
3219 const_arg = folded_arg;
3220 break;
3222 case CC0:
3223 /* The cc0-user and cc0-setter may be in different blocks if
3224 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3225 will have been cleared as we exited the block with the
3226 setter.
3228 While we could potentially track cc0 in this case, it just
3229 doesn't seem to be worth it given that cc0 targets are not
3230 terribly common or important these days and trapping math
3231 is rarely used. The combination of those two conditions
3232 necessary to trip this situation is exceedingly rare in the
3233 real world. */
3234 if (!prev_insn_cc0)
3236 const_arg = NULL_RTX;
3238 else
3240 folded_arg = prev_insn_cc0;
3241 mode_arg = prev_insn_cc0_mode;
3242 const_arg = equiv_constant (folded_arg);
3244 break;
3246 default:
3247 folded_arg = fold_rtx (folded_arg, insn);
3248 const_arg = equiv_constant (folded_arg);
3249 break;
3252 /* For the first three operands, see if the operand
3253 is constant or equivalent to a constant. */
3254 switch (i)
3256 case 0:
3257 folded_arg0 = folded_arg;
3258 const_arg0 = const_arg;
3259 mode_arg0 = mode_arg;
3260 break;
3261 case 1:
3262 folded_arg1 = folded_arg;
3263 const_arg1 = const_arg;
3264 break;
3265 case 2:
3266 const_arg2 = const_arg;
3267 break;
3270 /* Pick the least expensive of the argument and an equivalent constant
3271 argument. */
3272 if (const_arg != 0
3273 && const_arg != folded_arg
3274 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3276 /* It's not safe to substitute the operand of a conversion
3277 operator with a constant, as the conversion's identity
3278 depends upon the mode of its operand. This optimization
3279 is handled by the call to simplify_unary_operation. */
3280 && (GET_RTX_CLASS (code) != RTX_UNARY
3281 || GET_MODE (const_arg) == mode_arg0
3282 || (code != ZERO_EXTEND
3283 && code != SIGN_EXTEND
3284 && code != TRUNCATE
3285 && code != FLOAT_TRUNCATE
3286 && code != FLOAT_EXTEND
3287 && code != FLOAT
3288 && code != FIX
3289 && code != UNSIGNED_FLOAT
3290 && code != UNSIGNED_FIX)))
3291 folded_arg = const_arg;
3293 if (folded_arg == XEXP (x, i))
3294 continue;
3296 if (insn == NULL_RTX && !changed)
3297 x = copy_rtx (x);
3298 changed = 1;
3299 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3302 if (changed)
3304 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3305 consistent with the order in X. */
3306 if (canonicalize_change_group (insn, x))
3308 rtx tem;
3309 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3310 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3313 apply_change_group ();
3316 /* If X is an arithmetic operation, see if we can simplify it. */
3318 switch (GET_RTX_CLASS (code))
3320 case RTX_UNARY:
3322 /* We can't simplify extension ops unless we know the
3323 original mode. */
3324 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3325 && mode_arg0 == VOIDmode)
3326 break;
3328 new_rtx = simplify_unary_operation (code, mode,
3329 const_arg0 ? const_arg0 : folded_arg0,
3330 mode_arg0);
3332 break;
3334 case RTX_COMPARE:
3335 case RTX_COMM_COMPARE:
3336 /* See what items are actually being compared and set FOLDED_ARG[01]
3337 to those values and CODE to the actual comparison code. If any are
3338 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3339 do anything if both operands are already known to be constant. */
3341 /* ??? Vector mode comparisons are not supported yet. */
3342 if (VECTOR_MODE_P (mode))
3343 break;
3345 if (const_arg0 == 0 || const_arg1 == 0)
3347 struct table_elt *p0, *p1;
3348 rtx true_rtx, false_rtx;
3349 machine_mode mode_arg1;
3351 if (SCALAR_FLOAT_MODE_P (mode))
3353 #ifdef FLOAT_STORE_FLAG_VALUE
3354 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3355 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3356 #else
3357 true_rtx = NULL_RTX;
3358 #endif
3359 false_rtx = CONST0_RTX (mode);
3361 else
3363 true_rtx = const_true_rtx;
3364 false_rtx = const0_rtx;
3367 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3368 &mode_arg0, &mode_arg1);
3370 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3371 what kinds of things are being compared, so we can't do
3372 anything with this comparison. */
3374 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3375 break;
3377 const_arg0 = equiv_constant (folded_arg0);
3378 const_arg1 = equiv_constant (folded_arg1);
3380 /* If we do not now have two constants being compared, see
3381 if we can nevertheless deduce some things about the
3382 comparison. */
3383 if (const_arg0 == 0 || const_arg1 == 0)
3385 if (const_arg1 != NULL)
3387 rtx cheapest_simplification;
3388 int cheapest_cost;
3389 rtx simp_result;
3390 struct table_elt *p;
3392 /* See if we can find an equivalent of folded_arg0
3393 that gets us a cheaper expression, possibly a
3394 constant through simplifications. */
3395 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3396 mode_arg0);
3398 if (p != NULL)
3400 cheapest_simplification = x;
3401 cheapest_cost = COST (x);
3403 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3405 int cost;
3407 /* If the entry isn't valid, skip it. */
3408 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3409 continue;
3411 /* Try to simplify using this equivalence. */
3412 simp_result
3413 = simplify_relational_operation (code, mode,
3414 mode_arg0,
3415 p->exp,
3416 const_arg1);
3418 if (simp_result == NULL)
3419 continue;
3421 cost = COST (simp_result);
3422 if (cost < cheapest_cost)
3424 cheapest_cost = cost;
3425 cheapest_simplification = simp_result;
3429 /* If we have a cheaper expression now, use that
3430 and try folding it further, from the top. */
3431 if (cheapest_simplification != x)
3432 return fold_rtx (copy_rtx (cheapest_simplification),
3433 insn);
3437 /* See if the two operands are the same. */
3439 if ((REG_P (folded_arg0)
3440 && REG_P (folded_arg1)
3441 && (REG_QTY (REGNO (folded_arg0))
3442 == REG_QTY (REGNO (folded_arg1))))
3443 || ((p0 = lookup (folded_arg0,
3444 SAFE_HASH (folded_arg0, mode_arg0),
3445 mode_arg0))
3446 && (p1 = lookup (folded_arg1,
3447 SAFE_HASH (folded_arg1, mode_arg0),
3448 mode_arg0))
3449 && p0->first_same_value == p1->first_same_value))
3450 folded_arg1 = folded_arg0;
3452 /* If FOLDED_ARG0 is a register, see if the comparison we are
3453 doing now is either the same as we did before or the reverse
3454 (we only check the reverse if not floating-point). */
3455 else if (REG_P (folded_arg0))
3457 int qty = REG_QTY (REGNO (folded_arg0));
3459 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3461 struct qty_table_elem *ent = &qty_table[qty];
3463 if ((comparison_dominates_p (ent->comparison_code, code)
3464 || (! FLOAT_MODE_P (mode_arg0)
3465 && comparison_dominates_p (ent->comparison_code,
3466 reverse_condition (code))))
3467 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3468 || (const_arg1
3469 && rtx_equal_p (ent->comparison_const,
3470 const_arg1))
3471 || (REG_P (folded_arg1)
3472 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3474 if (comparison_dominates_p (ent->comparison_code, code))
3476 if (true_rtx)
3477 return true_rtx;
3478 else
3479 break;
3481 else
3482 return false_rtx;
3489 /* If we are comparing against zero, see if the first operand is
3490 equivalent to an IOR with a constant. If so, we may be able to
3491 determine the result of this comparison. */
3492 if (const_arg1 == const0_rtx && !const_arg0)
3494 rtx y = lookup_as_function (folded_arg0, IOR);
3495 rtx inner_const;
3497 if (y != 0
3498 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3499 && CONST_INT_P (inner_const)
3500 && INTVAL (inner_const) != 0)
3501 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3505 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3506 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3507 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3508 op0, op1);
3510 break;
3512 case RTX_BIN_ARITH:
3513 case RTX_COMM_ARITH:
3514 switch (code)
3516 case PLUS:
3517 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3518 with that LABEL_REF as its second operand. If so, the result is
3519 the first operand of that MINUS. This handles switches with an
3520 ADDR_DIFF_VEC table. */
3521 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3523 rtx y
3524 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3525 : lookup_as_function (folded_arg0, MINUS);
3527 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3528 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg1))
3529 return XEXP (y, 0);
3531 /* Now try for a CONST of a MINUS like the above. */
3532 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3533 : lookup_as_function (folded_arg0, CONST))) != 0
3534 && GET_CODE (XEXP (y, 0)) == MINUS
3535 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3536 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg1))
3537 return XEXP (XEXP (y, 0), 0);
3540 /* Likewise if the operands are in the other order. */
3541 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3543 rtx y
3544 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3545 : lookup_as_function (folded_arg1, MINUS);
3547 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3548 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg0))
3549 return XEXP (y, 0);
3551 /* Now try for a CONST of a MINUS like the above. */
3552 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3553 : lookup_as_function (folded_arg1, CONST))) != 0
3554 && GET_CODE (XEXP (y, 0)) == MINUS
3555 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3556 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg0))
3557 return XEXP (XEXP (y, 0), 0);
3560 /* If second operand is a register equivalent to a negative
3561 CONST_INT, see if we can find a register equivalent to the
3562 positive constant. Make a MINUS if so. Don't do this for
3563 a non-negative constant since we might then alternate between
3564 choosing positive and negative constants. Having the positive
3565 constant previously-used is the more common case. Be sure
3566 the resulting constant is non-negative; if const_arg1 were
3567 the smallest negative number this would overflow: depending
3568 on the mode, this would either just be the same value (and
3569 hence not save anything) or be incorrect. */
3570 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3571 && INTVAL (const_arg1) < 0
3572 /* This used to test
3574 -INTVAL (const_arg1) >= 0
3576 But The Sun V5.0 compilers mis-compiled that test. So
3577 instead we test for the problematic value in a more direct
3578 manner and hope the Sun compilers get it correct. */
3579 && INTVAL (const_arg1) !=
3580 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3581 && REG_P (folded_arg1))
3583 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3584 struct table_elt *p
3585 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3587 if (p)
3588 for (p = p->first_same_value; p; p = p->next_same_value)
3589 if (REG_P (p->exp))
3590 return simplify_gen_binary (MINUS, mode, folded_arg0,
3591 canon_reg (p->exp, NULL));
3593 goto from_plus;
3595 case MINUS:
3596 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3597 If so, produce (PLUS Z C2-C). */
3598 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3600 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3601 if (y && CONST_INT_P (XEXP (y, 1)))
3602 return fold_rtx (plus_constant (mode, copy_rtx (y),
3603 -INTVAL (const_arg1)),
3604 NULL);
3607 /* Fall through. */
3609 from_plus:
3610 case SMIN: case SMAX: case UMIN: case UMAX:
3611 case IOR: case AND: case XOR:
3612 case MULT:
3613 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3614 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3615 is known to be of similar form, we may be able to replace the
3616 operation with a combined operation. This may eliminate the
3617 intermediate operation if every use is simplified in this way.
3618 Note that the similar optimization done by combine.c only works
3619 if the intermediate operation's result has only one reference. */
3621 if (REG_P (folded_arg0)
3622 && const_arg1 && CONST_INT_P (const_arg1))
3624 int is_shift
3625 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3626 rtx y, inner_const, new_const;
3627 rtx canon_const_arg1 = const_arg1;
3628 enum rtx_code associate_code;
3630 if (is_shift
3631 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3632 || INTVAL (const_arg1) < 0))
3634 if (SHIFT_COUNT_TRUNCATED)
3635 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3636 & (GET_MODE_BITSIZE (mode)
3637 - 1));
3638 else
3639 break;
3642 y = lookup_as_function (folded_arg0, code);
3643 if (y == 0)
3644 break;
3646 /* If we have compiled a statement like
3647 "if (x == (x & mask1))", and now are looking at
3648 "x & mask2", we will have a case where the first operand
3649 of Y is the same as our first operand. Unless we detect
3650 this case, an infinite loop will result. */
3651 if (XEXP (y, 0) == folded_arg0)
3652 break;
3654 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3655 if (!inner_const || !CONST_INT_P (inner_const))
3656 break;
3658 /* Don't associate these operations if they are a PLUS with the
3659 same constant and it is a power of two. These might be doable
3660 with a pre- or post-increment. Similarly for two subtracts of
3661 identical powers of two with post decrement. */
3663 if (code == PLUS && const_arg1 == inner_const
3664 && ((HAVE_PRE_INCREMENT
3665 && exact_log2 (INTVAL (const_arg1)) >= 0)
3666 || (HAVE_POST_INCREMENT
3667 && exact_log2 (INTVAL (const_arg1)) >= 0)
3668 || (HAVE_PRE_DECREMENT
3669 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3670 || (HAVE_POST_DECREMENT
3671 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3672 break;
3674 /* ??? Vector mode shifts by scalar
3675 shift operand are not supported yet. */
3676 if (is_shift && VECTOR_MODE_P (mode))
3677 break;
3679 if (is_shift
3680 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3681 || INTVAL (inner_const) < 0))
3683 if (SHIFT_COUNT_TRUNCATED)
3684 inner_const = GEN_INT (INTVAL (inner_const)
3685 & (GET_MODE_BITSIZE (mode) - 1));
3686 else
3687 break;
3690 /* Compute the code used to compose the constants. For example,
3691 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3693 associate_code = (is_shift || code == MINUS ? PLUS : code);
3695 new_const = simplify_binary_operation (associate_code, mode,
3696 canon_const_arg1,
3697 inner_const);
3699 if (new_const == 0)
3700 break;
3702 /* If we are associating shift operations, don't let this
3703 produce a shift of the size of the object or larger.
3704 This could occur when we follow a sign-extend by a right
3705 shift on a machine that does a sign-extend as a pair
3706 of shifts. */
3708 if (is_shift
3709 && CONST_INT_P (new_const)
3710 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3712 /* As an exception, we can turn an ASHIFTRT of this
3713 form into a shift of the number of bits - 1. */
3714 if (code == ASHIFTRT)
3715 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3716 else if (!side_effects_p (XEXP (y, 0)))
3717 return CONST0_RTX (mode);
3718 else
3719 break;
3722 y = copy_rtx (XEXP (y, 0));
3724 /* If Y contains our first operand (the most common way this
3725 can happen is if Y is a MEM), we would do into an infinite
3726 loop if we tried to fold it. So don't in that case. */
3728 if (! reg_mentioned_p (folded_arg0, y))
3729 y = fold_rtx (y, insn);
3731 return simplify_gen_binary (code, mode, y, new_const);
3733 break;
3735 case DIV: case UDIV:
3736 /* ??? The associative optimization performed immediately above is
3737 also possible for DIV and UDIV using associate_code of MULT.
3738 However, we would need extra code to verify that the
3739 multiplication does not overflow, that is, there is no overflow
3740 in the calculation of new_const. */
3741 break;
3743 default:
3744 break;
3747 new_rtx = simplify_binary_operation (code, mode,
3748 const_arg0 ? const_arg0 : folded_arg0,
3749 const_arg1 ? const_arg1 : folded_arg1);
3750 break;
3752 case RTX_OBJ:
3753 /* (lo_sum (high X) X) is simply X. */
3754 if (code == LO_SUM && const_arg0 != 0
3755 && GET_CODE (const_arg0) == HIGH
3756 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3757 return const_arg1;
3758 break;
3760 case RTX_TERNARY:
3761 case RTX_BITFIELD_OPS:
3762 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3763 const_arg0 ? const_arg0 : folded_arg0,
3764 const_arg1 ? const_arg1 : folded_arg1,
3765 const_arg2 ? const_arg2 : XEXP (x, 2));
3766 break;
3768 default:
3769 break;
3772 return new_rtx ? new_rtx : x;
3775 /* Return a constant value currently equivalent to X.
3776 Return 0 if we don't know one. */
3778 static rtx
3779 equiv_constant (rtx x)
3781 if (REG_P (x)
3782 && REGNO_QTY_VALID_P (REGNO (x)))
3784 int x_q = REG_QTY (REGNO (x));
3785 struct qty_table_elem *x_ent = &qty_table[x_q];
3787 if (x_ent->const_rtx)
3788 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3791 if (x == 0 || CONSTANT_P (x))
3792 return x;
3794 if (GET_CODE (x) == SUBREG)
3796 machine_mode mode = GET_MODE (x);
3797 machine_mode imode = GET_MODE (SUBREG_REG (x));
3798 rtx new_rtx;
3800 /* See if we previously assigned a constant value to this SUBREG. */
3801 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3802 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3803 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3804 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3805 return new_rtx;
3807 /* If we didn't and if doing so makes sense, see if we previously
3808 assigned a constant value to the enclosing word mode SUBREG. */
3809 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3810 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3812 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3813 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3815 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3816 new_rtx = lookup_as_function (y, CONST_INT);
3817 if (new_rtx)
3818 return gen_lowpart (mode, new_rtx);
3822 /* Otherwise see if we already have a constant for the inner REG,
3823 and if that is enough to calculate an equivalent constant for
3824 the subreg. Note that the upper bits of paradoxical subregs
3825 are undefined, so they cannot be said to equal anything. */
3826 if (REG_P (SUBREG_REG (x))
3827 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3828 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3829 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3831 return 0;
3834 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3835 the hash table in case its value was seen before. */
3837 if (MEM_P (x))
3839 struct table_elt *elt;
3841 x = avoid_constant_pool_reference (x);
3842 if (CONSTANT_P (x))
3843 return x;
3845 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3846 if (elt == 0)
3847 return 0;
3849 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3850 if (elt->is_const && CONSTANT_P (elt->exp))
3851 return elt->exp;
3854 return 0;
3857 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3858 "taken" branch.
3860 In certain cases, this can cause us to add an equivalence. For example,
3861 if we are following the taken case of
3862 if (i == 2)
3863 we can add the fact that `i' and '2' are now equivalent.
3865 In any case, we can record that this comparison was passed. If the same
3866 comparison is seen later, we will know its value. */
3868 static void
3869 record_jump_equiv (rtx_insn *insn, bool taken)
3871 int cond_known_true;
3872 rtx op0, op1;
3873 rtx set;
3874 machine_mode mode, mode0, mode1;
3875 int reversed_nonequality = 0;
3876 enum rtx_code code;
3878 /* Ensure this is the right kind of insn. */
3879 gcc_assert (any_condjump_p (insn));
3881 set = pc_set (insn);
3883 /* See if this jump condition is known true or false. */
3884 if (taken)
3885 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3886 else
3887 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3889 /* Get the type of comparison being done and the operands being compared.
3890 If we had to reverse a non-equality condition, record that fact so we
3891 know that it isn't valid for floating-point. */
3892 code = GET_CODE (XEXP (SET_SRC (set), 0));
3893 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3894 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3896 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3897 if (! cond_known_true)
3899 code = reversed_comparison_code_parts (code, op0, op1, insn);
3901 /* Don't remember if we can't find the inverse. */
3902 if (code == UNKNOWN)
3903 return;
3906 /* The mode is the mode of the non-constant. */
3907 mode = mode0;
3908 if (mode1 != VOIDmode)
3909 mode = mode1;
3911 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3914 /* Yet another form of subreg creation. In this case, we want something in
3915 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3917 static rtx
3918 record_jump_cond_subreg (machine_mode mode, rtx op)
3920 machine_mode op_mode = GET_MODE (op);
3921 if (op_mode == mode || op_mode == VOIDmode)
3922 return op;
3923 return lowpart_subreg (mode, op, op_mode);
3926 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3927 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3928 Make any useful entries we can with that information. Called from
3929 above function and called recursively. */
3931 static void
3932 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3933 rtx op1, int reversed_nonequality)
3935 unsigned op0_hash, op1_hash;
3936 int op0_in_memory, op1_in_memory;
3937 struct table_elt *op0_elt, *op1_elt;
3939 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3940 we know that they are also equal in the smaller mode (this is also
3941 true for all smaller modes whether or not there is a SUBREG, but
3942 is not worth testing for with no SUBREG). */
3944 /* Note that GET_MODE (op0) may not equal MODE. */
3945 if (code == EQ && paradoxical_subreg_p (op0))
3947 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3948 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3949 if (tem)
3950 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3951 reversed_nonequality);
3954 if (code == EQ && paradoxical_subreg_p (op1))
3956 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3957 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3958 if (tem)
3959 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3960 reversed_nonequality);
3963 /* Similarly, if this is an NE comparison, and either is a SUBREG
3964 making a smaller mode, we know the whole thing is also NE. */
3966 /* Note that GET_MODE (op0) may not equal MODE;
3967 if we test MODE instead, we can get an infinite recursion
3968 alternating between two modes each wider than MODE. */
3970 if (code == NE && GET_CODE (op0) == SUBREG
3971 && subreg_lowpart_p (op0)
3972 && (GET_MODE_SIZE (GET_MODE (op0))
3973 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3975 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3976 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3977 if (tem)
3978 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3979 reversed_nonequality);
3982 if (code == NE && GET_CODE (op1) == SUBREG
3983 && subreg_lowpart_p (op1)
3984 && (GET_MODE_SIZE (GET_MODE (op1))
3985 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3987 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3988 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3989 if (tem)
3990 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3991 reversed_nonequality);
3994 /* Hash both operands. */
3996 do_not_record = 0;
3997 hash_arg_in_memory = 0;
3998 op0_hash = HASH (op0, mode);
3999 op0_in_memory = hash_arg_in_memory;
4001 if (do_not_record)
4002 return;
4004 do_not_record = 0;
4005 hash_arg_in_memory = 0;
4006 op1_hash = HASH (op1, mode);
4007 op1_in_memory = hash_arg_in_memory;
4009 if (do_not_record)
4010 return;
4012 /* Look up both operands. */
4013 op0_elt = lookup (op0, op0_hash, mode);
4014 op1_elt = lookup (op1, op1_hash, mode);
4016 /* If both operands are already equivalent or if they are not in the
4017 table but are identical, do nothing. */
4018 if ((op0_elt != 0 && op1_elt != 0
4019 && op0_elt->first_same_value == op1_elt->first_same_value)
4020 || op0 == op1 || rtx_equal_p (op0, op1))
4021 return;
4023 /* If we aren't setting two things equal all we can do is save this
4024 comparison. Similarly if this is floating-point. In the latter
4025 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4026 If we record the equality, we might inadvertently delete code
4027 whose intent was to change -0 to +0. */
4029 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4031 struct qty_table_elem *ent;
4032 int qty;
4034 /* If we reversed a floating-point comparison, if OP0 is not a
4035 register, or if OP1 is neither a register or constant, we can't
4036 do anything. */
4038 if (!REG_P (op1))
4039 op1 = equiv_constant (op1);
4041 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4042 || !REG_P (op0) || op1 == 0)
4043 return;
4045 /* Put OP0 in the hash table if it isn't already. This gives it a
4046 new quantity number. */
4047 if (op0_elt == 0)
4049 if (insert_regs (op0, NULL, 0))
4051 rehash_using_reg (op0);
4052 op0_hash = HASH (op0, mode);
4054 /* If OP0 is contained in OP1, this changes its hash code
4055 as well. Faster to rehash than to check, except
4056 for the simple case of a constant. */
4057 if (! CONSTANT_P (op1))
4058 op1_hash = HASH (op1,mode);
4061 op0_elt = insert (op0, NULL, op0_hash, mode);
4062 op0_elt->in_memory = op0_in_memory;
4065 qty = REG_QTY (REGNO (op0));
4066 ent = &qty_table[qty];
4068 ent->comparison_code = code;
4069 if (REG_P (op1))
4071 /* Look it up again--in case op0 and op1 are the same. */
4072 op1_elt = lookup (op1, op1_hash, mode);
4074 /* Put OP1 in the hash table so it gets a new quantity number. */
4075 if (op1_elt == 0)
4077 if (insert_regs (op1, NULL, 0))
4079 rehash_using_reg (op1);
4080 op1_hash = HASH (op1, mode);
4083 op1_elt = insert (op1, NULL, op1_hash, mode);
4084 op1_elt->in_memory = op1_in_memory;
4087 ent->comparison_const = NULL_RTX;
4088 ent->comparison_qty = REG_QTY (REGNO (op1));
4090 else
4092 ent->comparison_const = op1;
4093 ent->comparison_qty = -1;
4096 return;
4099 /* If either side is still missing an equivalence, make it now,
4100 then merge the equivalences. */
4102 if (op0_elt == 0)
4104 if (insert_regs (op0, NULL, 0))
4106 rehash_using_reg (op0);
4107 op0_hash = HASH (op0, mode);
4110 op0_elt = insert (op0, NULL, op0_hash, mode);
4111 op0_elt->in_memory = op0_in_memory;
4114 if (op1_elt == 0)
4116 if (insert_regs (op1, NULL, 0))
4118 rehash_using_reg (op1);
4119 op1_hash = HASH (op1, mode);
4122 op1_elt = insert (op1, NULL, op1_hash, mode);
4123 op1_elt->in_memory = op1_in_memory;
4126 merge_equiv_classes (op0_elt, op1_elt);
4129 /* CSE processing for one instruction.
4131 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4132 but the few that "leak through" are cleaned up by cse_insn, and complex
4133 addressing modes are often formed here.
4135 The main function is cse_insn, and between here and that function
4136 a couple of helper functions is defined to keep the size of cse_insn
4137 within reasonable proportions.
4139 Data is shared between the main and helper functions via STRUCT SET,
4140 that contains all data related for every set in the instruction that
4141 is being processed.
4143 Note that cse_main processes all sets in the instruction. Most
4144 passes in GCC only process simple SET insns or single_set insns, but
4145 CSE processes insns with multiple sets as well. */
4147 /* Data on one SET contained in the instruction. */
4149 struct set
4151 /* The SET rtx itself. */
4152 rtx rtl;
4153 /* The SET_SRC of the rtx (the original value, if it is changing). */
4154 rtx src;
4155 /* The hash-table element for the SET_SRC of the SET. */
4156 struct table_elt *src_elt;
4157 /* Hash value for the SET_SRC. */
4158 unsigned src_hash;
4159 /* Hash value for the SET_DEST. */
4160 unsigned dest_hash;
4161 /* The SET_DEST, with SUBREG, etc., stripped. */
4162 rtx inner_dest;
4163 /* Nonzero if the SET_SRC is in memory. */
4164 char src_in_memory;
4165 /* Nonzero if the SET_SRC contains something
4166 whose value cannot be predicted and understood. */
4167 char src_volatile;
4168 /* Original machine mode, in case it becomes a CONST_INT.
4169 The size of this field should match the size of the mode
4170 field of struct rtx_def (see rtl.h). */
4171 ENUM_BITFIELD(machine_mode) mode : 8;
4172 /* A constant equivalent for SET_SRC, if any. */
4173 rtx src_const;
4174 /* Hash value of constant equivalent for SET_SRC. */
4175 unsigned src_const_hash;
4176 /* Table entry for constant equivalent for SET_SRC, if any. */
4177 struct table_elt *src_const_elt;
4178 /* Table entry for the destination address. */
4179 struct table_elt *dest_addr_elt;
4182 /* Special handling for (set REG0 REG1) where REG0 is the
4183 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4184 be used in the sequel, so (if easily done) change this insn to
4185 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4186 that computed their value. Then REG1 will become a dead store
4187 and won't cloud the situation for later optimizations.
4189 Do not make this change if REG1 is a hard register, because it will
4190 then be used in the sequel and we may be changing a two-operand insn
4191 into a three-operand insn.
4193 This is the last transformation that cse_insn will try to do. */
4195 static void
4196 try_back_substitute_reg (rtx set, rtx_insn *insn)
4198 rtx dest = SET_DEST (set);
4199 rtx src = SET_SRC (set);
4201 if (REG_P (dest)
4202 && REG_P (src) && ! HARD_REGISTER_P (src)
4203 && REGNO_QTY_VALID_P (REGNO (src)))
4205 int src_q = REG_QTY (REGNO (src));
4206 struct qty_table_elem *src_ent = &qty_table[src_q];
4208 if (src_ent->first_reg == REGNO (dest))
4210 /* Scan for the previous nonnote insn, but stop at a basic
4211 block boundary. */
4212 rtx_insn *prev = insn;
4213 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4216 prev = PREV_INSN (prev);
4218 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4220 /* Do not swap the registers around if the previous instruction
4221 attaches a REG_EQUIV note to REG1.
4223 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4224 from the pseudo that originally shadowed an incoming argument
4225 to another register. Some uses of REG_EQUIV might rely on it
4226 being attached to REG1 rather than REG2.
4228 This section previously turned the REG_EQUIV into a REG_EQUAL
4229 note. We cannot do that because REG_EQUIV may provide an
4230 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4231 if (NONJUMP_INSN_P (prev)
4232 && GET_CODE (PATTERN (prev)) == SET
4233 && SET_DEST (PATTERN (prev)) == src
4234 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4236 rtx note;
4238 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4239 validate_change (insn, &SET_DEST (set), src, 1);
4240 validate_change (insn, &SET_SRC (set), dest, 1);
4241 apply_change_group ();
4243 /* If INSN has a REG_EQUAL note, and this note mentions
4244 REG0, then we must delete it, because the value in
4245 REG0 has changed. If the note's value is REG1, we must
4246 also delete it because that is now this insn's dest. */
4247 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4248 if (note != 0
4249 && (reg_mentioned_p (dest, XEXP (note, 0))
4250 || rtx_equal_p (src, XEXP (note, 0))))
4251 remove_note (insn, note);
4257 /* Record all the SETs in this instruction into SETS_PTR,
4258 and return the number of recorded sets. */
4259 static int
4260 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4262 struct set *sets = *psets;
4263 int n_sets = 0;
4264 rtx x = PATTERN (insn);
4266 if (GET_CODE (x) == SET)
4268 /* Ignore SETs that are unconditional jumps.
4269 They never need cse processing, so this does not hurt.
4270 The reason is not efficiency but rather
4271 so that we can test at the end for instructions
4272 that have been simplified to unconditional jumps
4273 and not be misled by unchanged instructions
4274 that were unconditional jumps to begin with. */
4275 if (SET_DEST (x) == pc_rtx
4276 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4278 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4279 The hard function value register is used only once, to copy to
4280 someplace else, so it isn't worth cse'ing. */
4281 else if (GET_CODE (SET_SRC (x)) == CALL)
4283 else
4284 sets[n_sets++].rtl = x;
4286 else if (GET_CODE (x) == PARALLEL)
4288 int i, lim = XVECLEN (x, 0);
4290 /* Go over the expressions of the PARALLEL in forward order, to
4291 put them in the same order in the SETS array. */
4292 for (i = 0; i < lim; i++)
4294 rtx y = XVECEXP (x, 0, i);
4295 if (GET_CODE (y) == SET)
4297 /* As above, we ignore unconditional jumps and call-insns and
4298 ignore the result of apply_change_group. */
4299 if (SET_DEST (y) == pc_rtx
4300 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4302 else if (GET_CODE (SET_SRC (y)) == CALL)
4304 else
4305 sets[n_sets++].rtl = y;
4310 return n_sets;
4313 /* Where possible, substitute every register reference in the N_SETS
4314 number of SETS in INSN with the the canonical register.
4316 Register canonicalization propagatest the earliest register (i.e.
4317 one that is set before INSN) with the same value. This is a very
4318 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4319 to RTL. For instance, a CONST for an address is usually expanded
4320 multiple times to loads into different registers, thus creating many
4321 subexpressions of the form:
4323 (set (reg1) (some_const))
4324 (set (mem (... reg1 ...) (thing)))
4325 (set (reg2) (some_const))
4326 (set (mem (... reg2 ...) (thing)))
4328 After canonicalizing, the code takes the following form:
4330 (set (reg1) (some_const))
4331 (set (mem (... reg1 ...) (thing)))
4332 (set (reg2) (some_const))
4333 (set (mem (... reg1 ...) (thing)))
4335 The set to reg2 is now trivially dead, and the memory reference (or
4336 address, or whatever) may be a candidate for further CSEing.
4338 In this function, the result of apply_change_group can be ignored;
4339 see canon_reg. */
4341 static void
4342 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4344 struct set *sets = *psets;
4345 rtx tem;
4346 rtx x = PATTERN (insn);
4347 int i;
4349 if (CALL_P (insn))
4351 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4352 if (GET_CODE (XEXP (tem, 0)) != SET)
4353 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4356 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4358 canon_reg (SET_SRC (x), insn);
4359 apply_change_group ();
4360 fold_rtx (SET_SRC (x), insn);
4362 else if (GET_CODE (x) == CLOBBER)
4364 /* If we clobber memory, canon the address.
4365 This does nothing when a register is clobbered
4366 because we have already invalidated the reg. */
4367 if (MEM_P (XEXP (x, 0)))
4368 canon_reg (XEXP (x, 0), insn);
4370 else if (GET_CODE (x) == USE
4371 && ! (REG_P (XEXP (x, 0))
4372 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4373 /* Canonicalize a USE of a pseudo register or memory location. */
4374 canon_reg (x, insn);
4375 else if (GET_CODE (x) == ASM_OPERANDS)
4377 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4379 rtx input = ASM_OPERANDS_INPUT (x, i);
4380 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4382 input = canon_reg (input, insn);
4383 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4387 else if (GET_CODE (x) == CALL)
4389 canon_reg (x, insn);
4390 apply_change_group ();
4391 fold_rtx (x, insn);
4393 else if (DEBUG_INSN_P (insn))
4394 canon_reg (PATTERN (insn), insn);
4395 else if (GET_CODE (x) == PARALLEL)
4397 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4399 rtx y = XVECEXP (x, 0, i);
4400 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4402 canon_reg (SET_SRC (y), insn);
4403 apply_change_group ();
4404 fold_rtx (SET_SRC (y), insn);
4406 else if (GET_CODE (y) == CLOBBER)
4408 if (MEM_P (XEXP (y, 0)))
4409 canon_reg (XEXP (y, 0), insn);
4411 else if (GET_CODE (y) == USE
4412 && ! (REG_P (XEXP (y, 0))
4413 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4414 canon_reg (y, insn);
4415 else if (GET_CODE (y) == CALL)
4417 canon_reg (y, insn);
4418 apply_change_group ();
4419 fold_rtx (y, insn);
4424 if (n_sets == 1 && REG_NOTES (insn) != 0
4425 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4427 /* We potentially will process this insn many times. Therefore,
4428 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4429 unique set in INSN.
4431 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4432 because cse_insn handles those specially. */
4433 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4434 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4435 remove_note (insn, tem);
4436 else
4438 canon_reg (XEXP (tem, 0), insn);
4439 apply_change_group ();
4440 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4441 df_notes_rescan (insn);
4445 /* Canonicalize sources and addresses of destinations.
4446 We do this in a separate pass to avoid problems when a MATCH_DUP is
4447 present in the insn pattern. In that case, we want to ensure that
4448 we don't break the duplicate nature of the pattern. So we will replace
4449 both operands at the same time. Otherwise, we would fail to find an
4450 equivalent substitution in the loop calling validate_change below.
4452 We used to suppress canonicalization of DEST if it appears in SRC,
4453 but we don't do this any more. */
4455 for (i = 0; i < n_sets; i++)
4457 rtx dest = SET_DEST (sets[i].rtl);
4458 rtx src = SET_SRC (sets[i].rtl);
4459 rtx new_rtx = canon_reg (src, insn);
4461 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4463 if (GET_CODE (dest) == ZERO_EXTRACT)
4465 validate_change (insn, &XEXP (dest, 1),
4466 canon_reg (XEXP (dest, 1), insn), 1);
4467 validate_change (insn, &XEXP (dest, 2),
4468 canon_reg (XEXP (dest, 2), insn), 1);
4471 while (GET_CODE (dest) == SUBREG
4472 || GET_CODE (dest) == ZERO_EXTRACT
4473 || GET_CODE (dest) == STRICT_LOW_PART)
4474 dest = XEXP (dest, 0);
4476 if (MEM_P (dest))
4477 canon_reg (dest, insn);
4480 /* Now that we have done all the replacements, we can apply the change
4481 group and see if they all work. Note that this will cause some
4482 canonicalizations that would have worked individually not to be applied
4483 because some other canonicalization didn't work, but this should not
4484 occur often.
4486 The result of apply_change_group can be ignored; see canon_reg. */
4488 apply_change_group ();
4491 /* Main function of CSE.
4492 First simplify sources and addresses of all assignments
4493 in the instruction, using previously-computed equivalents values.
4494 Then install the new sources and destinations in the table
4495 of available values. */
4497 static void
4498 cse_insn (rtx_insn *insn)
4500 rtx x = PATTERN (insn);
4501 int i;
4502 rtx tem;
4503 int n_sets = 0;
4505 rtx src_eqv = 0;
4506 struct table_elt *src_eqv_elt = 0;
4507 int src_eqv_volatile = 0;
4508 int src_eqv_in_memory = 0;
4509 unsigned src_eqv_hash = 0;
4511 struct set *sets = (struct set *) 0;
4513 if (GET_CODE (x) == SET)
4514 sets = XALLOCA (struct set);
4515 else if (GET_CODE (x) == PARALLEL)
4516 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4518 this_insn = insn;
4519 /* Records what this insn does to set CC0. */
4520 this_insn_cc0 = 0;
4521 this_insn_cc0_mode = VOIDmode;
4523 /* Find all regs explicitly clobbered in this insn,
4524 to ensure they are not replaced with any other regs
4525 elsewhere in this insn. */
4526 invalidate_from_sets_and_clobbers (insn);
4528 /* Record all the SETs in this instruction. */
4529 n_sets = find_sets_in_insn (insn, &sets);
4531 /* Substitute the canonical register where possible. */
4532 canonicalize_insn (insn, &sets, n_sets);
4534 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4535 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4536 is necessary because SRC_EQV is handled specially for this case, and if
4537 it isn't set, then there will be no equivalence for the destination. */
4538 if (n_sets == 1 && REG_NOTES (insn) != 0
4539 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4540 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4541 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4542 src_eqv = copy_rtx (XEXP (tem, 0));
4544 /* Set sets[i].src_elt to the class each source belongs to.
4545 Detect assignments from or to volatile things
4546 and set set[i] to zero so they will be ignored
4547 in the rest of this function.
4549 Nothing in this loop changes the hash table or the register chains. */
4551 for (i = 0; i < n_sets; i++)
4553 bool repeat = false;
4554 rtx src, dest;
4555 rtx src_folded;
4556 struct table_elt *elt = 0, *p;
4557 machine_mode mode;
4558 rtx src_eqv_here;
4559 rtx src_const = 0;
4560 rtx src_related = 0;
4561 bool src_related_is_const_anchor = false;
4562 struct table_elt *src_const_elt = 0;
4563 int src_cost = MAX_COST;
4564 int src_eqv_cost = MAX_COST;
4565 int src_folded_cost = MAX_COST;
4566 int src_related_cost = MAX_COST;
4567 int src_elt_cost = MAX_COST;
4568 int src_regcost = MAX_COST;
4569 int src_eqv_regcost = MAX_COST;
4570 int src_folded_regcost = MAX_COST;
4571 int src_related_regcost = MAX_COST;
4572 int src_elt_regcost = MAX_COST;
4573 /* Set nonzero if we need to call force_const_mem on with the
4574 contents of src_folded before using it. */
4575 int src_folded_force_flag = 0;
4577 dest = SET_DEST (sets[i].rtl);
4578 src = SET_SRC (sets[i].rtl);
4580 /* If SRC is a constant that has no machine mode,
4581 hash it with the destination's machine mode.
4582 This way we can keep different modes separate. */
4584 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4585 sets[i].mode = mode;
4587 if (src_eqv)
4589 machine_mode eqvmode = mode;
4590 if (GET_CODE (dest) == STRICT_LOW_PART)
4591 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4592 do_not_record = 0;
4593 hash_arg_in_memory = 0;
4594 src_eqv_hash = HASH (src_eqv, eqvmode);
4596 /* Find the equivalence class for the equivalent expression. */
4598 if (!do_not_record)
4599 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4601 src_eqv_volatile = do_not_record;
4602 src_eqv_in_memory = hash_arg_in_memory;
4605 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4606 value of the INNER register, not the destination. So it is not
4607 a valid substitution for the source. But save it for later. */
4608 if (GET_CODE (dest) == STRICT_LOW_PART)
4609 src_eqv_here = 0;
4610 else
4611 src_eqv_here = src_eqv;
4613 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4614 simplified result, which may not necessarily be valid. */
4615 src_folded = fold_rtx (src, insn);
4617 #if 0
4618 /* ??? This caused bad code to be generated for the m68k port with -O2.
4619 Suppose src is (CONST_INT -1), and that after truncation src_folded
4620 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4621 At the end we will add src and src_const to the same equivalence
4622 class. We now have 3 and -1 on the same equivalence class. This
4623 causes later instructions to be mis-optimized. */
4624 /* If storing a constant in a bitfield, pre-truncate the constant
4625 so we will be able to record it later. */
4626 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4628 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4630 if (CONST_INT_P (src)
4631 && CONST_INT_P (width)
4632 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4633 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4634 src_folded
4635 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4636 << INTVAL (width)) - 1));
4638 #endif
4640 /* Compute SRC's hash code, and also notice if it
4641 should not be recorded at all. In that case,
4642 prevent any further processing of this assignment. */
4643 do_not_record = 0;
4644 hash_arg_in_memory = 0;
4646 sets[i].src = src;
4647 sets[i].src_hash = HASH (src, mode);
4648 sets[i].src_volatile = do_not_record;
4649 sets[i].src_in_memory = hash_arg_in_memory;
4651 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4652 a pseudo, do not record SRC. Using SRC as a replacement for
4653 anything else will be incorrect in that situation. Note that
4654 this usually occurs only for stack slots, in which case all the
4655 RTL would be referring to SRC, so we don't lose any optimization
4656 opportunities by not having SRC in the hash table. */
4658 if (MEM_P (src)
4659 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4660 && REG_P (dest)
4661 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4662 sets[i].src_volatile = 1;
4664 else if (GET_CODE (src) == ASM_OPERANDS
4665 && GET_CODE (x) == PARALLEL)
4667 /* Do not record result of a non-volatile inline asm with
4668 more than one result. */
4669 if (n_sets > 1)
4670 sets[i].src_volatile = 1;
4672 int j, lim = XVECLEN (x, 0);
4673 for (j = 0; j < lim; j++)
4675 rtx y = XVECEXP (x, 0, j);
4676 /* And do not record result of a non-volatile inline asm
4677 with "memory" clobber. */
4678 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4680 sets[i].src_volatile = 1;
4681 break;
4686 #if 0
4687 /* It is no longer clear why we used to do this, but it doesn't
4688 appear to still be needed. So let's try without it since this
4689 code hurts cse'ing widened ops. */
4690 /* If source is a paradoxical subreg (such as QI treated as an SI),
4691 treat it as volatile. It may do the work of an SI in one context
4692 where the extra bits are not being used, but cannot replace an SI
4693 in general. */
4694 if (paradoxical_subreg_p (src))
4695 sets[i].src_volatile = 1;
4696 #endif
4698 /* Locate all possible equivalent forms for SRC. Try to replace
4699 SRC in the insn with each cheaper equivalent.
4701 We have the following types of equivalents: SRC itself, a folded
4702 version, a value given in a REG_EQUAL note, or a value related
4703 to a constant.
4705 Each of these equivalents may be part of an additional class
4706 of equivalents (if more than one is in the table, they must be in
4707 the same class; we check for this).
4709 If the source is volatile, we don't do any table lookups.
4711 We note any constant equivalent for possible later use in a
4712 REG_NOTE. */
4714 if (!sets[i].src_volatile)
4715 elt = lookup (src, sets[i].src_hash, mode);
4717 sets[i].src_elt = elt;
4719 if (elt && src_eqv_here && src_eqv_elt)
4721 if (elt->first_same_value != src_eqv_elt->first_same_value)
4723 /* The REG_EQUAL is indicating that two formerly distinct
4724 classes are now equivalent. So merge them. */
4725 merge_equiv_classes (elt, src_eqv_elt);
4726 src_eqv_hash = HASH (src_eqv, elt->mode);
4727 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4730 src_eqv_here = 0;
4733 else if (src_eqv_elt)
4734 elt = src_eqv_elt;
4736 /* Try to find a constant somewhere and record it in `src_const'.
4737 Record its table element, if any, in `src_const_elt'. Look in
4738 any known equivalences first. (If the constant is not in the
4739 table, also set `sets[i].src_const_hash'). */
4740 if (elt)
4741 for (p = elt->first_same_value; p; p = p->next_same_value)
4742 if (p->is_const)
4744 src_const = p->exp;
4745 src_const_elt = elt;
4746 break;
4749 if (src_const == 0
4750 && (CONSTANT_P (src_folded)
4751 /* Consider (minus (label_ref L1) (label_ref L2)) as
4752 "constant" here so we will record it. This allows us
4753 to fold switch statements when an ADDR_DIFF_VEC is used. */
4754 || (GET_CODE (src_folded) == MINUS
4755 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4756 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4757 src_const = src_folded, src_const_elt = elt;
4758 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4759 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4761 /* If we don't know if the constant is in the table, get its
4762 hash code and look it up. */
4763 if (src_const && src_const_elt == 0)
4765 sets[i].src_const_hash = HASH (src_const, mode);
4766 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4769 sets[i].src_const = src_const;
4770 sets[i].src_const_elt = src_const_elt;
4772 /* If the constant and our source are both in the table, mark them as
4773 equivalent. Otherwise, if a constant is in the table but the source
4774 isn't, set ELT to it. */
4775 if (src_const_elt && elt
4776 && src_const_elt->first_same_value != elt->first_same_value)
4777 merge_equiv_classes (elt, src_const_elt);
4778 else if (src_const_elt && elt == 0)
4779 elt = src_const_elt;
4781 /* See if there is a register linearly related to a constant
4782 equivalent of SRC. */
4783 if (src_const
4784 && (GET_CODE (src_const) == CONST
4785 || (src_const_elt && src_const_elt->related_value != 0)))
4787 src_related = use_related_value (src_const, src_const_elt);
4788 if (src_related)
4790 struct table_elt *src_related_elt
4791 = lookup (src_related, HASH (src_related, mode), mode);
4792 if (src_related_elt && elt)
4794 if (elt->first_same_value
4795 != src_related_elt->first_same_value)
4796 /* This can occur when we previously saw a CONST
4797 involving a SYMBOL_REF and then see the SYMBOL_REF
4798 twice. Merge the involved classes. */
4799 merge_equiv_classes (elt, src_related_elt);
4801 src_related = 0;
4802 src_related_elt = 0;
4804 else if (src_related_elt && elt == 0)
4805 elt = src_related_elt;
4809 /* See if we have a CONST_INT that is already in a register in a
4810 wider mode. */
4812 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4813 && GET_MODE_CLASS (mode) == MODE_INT
4814 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4816 machine_mode wider_mode;
4818 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4819 wider_mode != VOIDmode
4820 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4821 && src_related == 0;
4822 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4824 struct table_elt *const_elt
4825 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4827 if (const_elt == 0)
4828 continue;
4830 for (const_elt = const_elt->first_same_value;
4831 const_elt; const_elt = const_elt->next_same_value)
4832 if (REG_P (const_elt->exp))
4834 src_related = gen_lowpart (mode, const_elt->exp);
4835 break;
4840 /* Another possibility is that we have an AND with a constant in
4841 a mode narrower than a word. If so, it might have been generated
4842 as part of an "if" which would narrow the AND. If we already
4843 have done the AND in a wider mode, we can use a SUBREG of that
4844 value. */
4846 if (flag_expensive_optimizations && ! src_related
4847 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4848 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4850 machine_mode tmode;
4851 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4853 for (tmode = GET_MODE_WIDER_MODE (mode);
4854 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4855 tmode = GET_MODE_WIDER_MODE (tmode))
4857 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4858 struct table_elt *larger_elt;
4860 if (inner)
4862 PUT_MODE (new_and, tmode);
4863 XEXP (new_and, 0) = inner;
4864 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4865 if (larger_elt == 0)
4866 continue;
4868 for (larger_elt = larger_elt->first_same_value;
4869 larger_elt; larger_elt = larger_elt->next_same_value)
4870 if (REG_P (larger_elt->exp))
4872 src_related
4873 = gen_lowpart (mode, larger_elt->exp);
4874 break;
4877 if (src_related)
4878 break;
4883 #ifdef LOAD_EXTEND_OP
4884 /* See if a MEM has already been loaded with a widening operation;
4885 if it has, we can use a subreg of that. Many CISC machines
4886 also have such operations, but this is only likely to be
4887 beneficial on these machines. */
4889 if (flag_expensive_optimizations && src_related == 0
4890 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4891 && GET_MODE_CLASS (mode) == MODE_INT
4892 && MEM_P (src) && ! do_not_record
4893 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4895 struct rtx_def memory_extend_buf;
4896 rtx memory_extend_rtx = &memory_extend_buf;
4897 machine_mode tmode;
4899 /* Set what we are trying to extend and the operation it might
4900 have been extended with. */
4901 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4902 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4903 XEXP (memory_extend_rtx, 0) = src;
4905 for (tmode = GET_MODE_WIDER_MODE (mode);
4906 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4907 tmode = GET_MODE_WIDER_MODE (tmode))
4909 struct table_elt *larger_elt;
4911 PUT_MODE (memory_extend_rtx, tmode);
4912 larger_elt = lookup (memory_extend_rtx,
4913 HASH (memory_extend_rtx, tmode), tmode);
4914 if (larger_elt == 0)
4915 continue;
4917 for (larger_elt = larger_elt->first_same_value;
4918 larger_elt; larger_elt = larger_elt->next_same_value)
4919 if (REG_P (larger_elt->exp))
4921 src_related = gen_lowpart (mode, larger_elt->exp);
4922 break;
4925 if (src_related)
4926 break;
4929 #endif /* LOAD_EXTEND_OP */
4931 /* Try to express the constant using a register+offset expression
4932 derived from a constant anchor. */
4934 if (targetm.const_anchor
4935 && !src_related
4936 && src_const
4937 && GET_CODE (src_const) == CONST_INT)
4939 src_related = try_const_anchors (src_const, mode);
4940 src_related_is_const_anchor = src_related != NULL_RTX;
4944 if (src == src_folded)
4945 src_folded = 0;
4947 /* At this point, ELT, if nonzero, points to a class of expressions
4948 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4949 and SRC_RELATED, if nonzero, each contain additional equivalent
4950 expressions. Prune these latter expressions by deleting expressions
4951 already in the equivalence class.
4953 Check for an equivalent identical to the destination. If found,
4954 this is the preferred equivalent since it will likely lead to
4955 elimination of the insn. Indicate this by placing it in
4956 `src_related'. */
4958 if (elt)
4959 elt = elt->first_same_value;
4960 for (p = elt; p; p = p->next_same_value)
4962 enum rtx_code code = GET_CODE (p->exp);
4964 /* If the expression is not valid, ignore it. Then we do not
4965 have to check for validity below. In most cases, we can use
4966 `rtx_equal_p', since canonicalization has already been done. */
4967 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4968 continue;
4970 /* Also skip paradoxical subregs, unless that's what we're
4971 looking for. */
4972 if (paradoxical_subreg_p (p->exp)
4973 && ! (src != 0
4974 && GET_CODE (src) == SUBREG
4975 && GET_MODE (src) == GET_MODE (p->exp)
4976 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4977 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4978 continue;
4980 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4981 src = 0;
4982 else if (src_folded && GET_CODE (src_folded) == code
4983 && rtx_equal_p (src_folded, p->exp))
4984 src_folded = 0;
4985 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4986 && rtx_equal_p (src_eqv_here, p->exp))
4987 src_eqv_here = 0;
4988 else if (src_related && GET_CODE (src_related) == code
4989 && rtx_equal_p (src_related, p->exp))
4990 src_related = 0;
4992 /* This is the same as the destination of the insns, we want
4993 to prefer it. Copy it to src_related. The code below will
4994 then give it a negative cost. */
4995 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4996 src_related = dest;
4999 /* Find the cheapest valid equivalent, trying all the available
5000 possibilities. Prefer items not in the hash table to ones
5001 that are when they are equal cost. Note that we can never
5002 worsen an insn as the current contents will also succeed.
5003 If we find an equivalent identical to the destination, use it as best,
5004 since this insn will probably be eliminated in that case. */
5005 if (src)
5007 if (rtx_equal_p (src, dest))
5008 src_cost = src_regcost = -1;
5009 else
5011 src_cost = COST (src);
5012 src_regcost = approx_reg_cost (src);
5016 if (src_eqv_here)
5018 if (rtx_equal_p (src_eqv_here, dest))
5019 src_eqv_cost = src_eqv_regcost = -1;
5020 else
5022 src_eqv_cost = COST (src_eqv_here);
5023 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5027 if (src_folded)
5029 if (rtx_equal_p (src_folded, dest))
5030 src_folded_cost = src_folded_regcost = -1;
5031 else
5033 src_folded_cost = COST (src_folded);
5034 src_folded_regcost = approx_reg_cost (src_folded);
5038 if (src_related)
5040 if (rtx_equal_p (src_related, dest))
5041 src_related_cost = src_related_regcost = -1;
5042 else
5044 src_related_cost = COST (src_related);
5045 src_related_regcost = approx_reg_cost (src_related);
5047 /* If a const-anchor is used to synthesize a constant that
5048 normally requires multiple instructions then slightly prefer
5049 it over the original sequence. These instructions are likely
5050 to become redundant now. We can't compare against the cost
5051 of src_eqv_here because, on MIPS for example, multi-insn
5052 constants have zero cost; they are assumed to be hoisted from
5053 loops. */
5054 if (src_related_is_const_anchor
5055 && src_related_cost == src_cost
5056 && src_eqv_here)
5057 src_related_cost--;
5061 /* If this was an indirect jump insn, a known label will really be
5062 cheaper even though it looks more expensive. */
5063 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5064 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5066 /* Terminate loop when replacement made. This must terminate since
5067 the current contents will be tested and will always be valid. */
5068 while (1)
5070 rtx trial;
5072 /* Skip invalid entries. */
5073 while (elt && !REG_P (elt->exp)
5074 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5075 elt = elt->next_same_value;
5077 /* A paradoxical subreg would be bad here: it'll be the right
5078 size, but later may be adjusted so that the upper bits aren't
5079 what we want. So reject it. */
5080 if (elt != 0
5081 && paradoxical_subreg_p (elt->exp)
5082 /* It is okay, though, if the rtx we're trying to match
5083 will ignore any of the bits we can't predict. */
5084 && ! (src != 0
5085 && GET_CODE (src) == SUBREG
5086 && GET_MODE (src) == GET_MODE (elt->exp)
5087 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5088 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5090 elt = elt->next_same_value;
5091 continue;
5094 if (elt)
5096 src_elt_cost = elt->cost;
5097 src_elt_regcost = elt->regcost;
5100 /* Find cheapest and skip it for the next time. For items
5101 of equal cost, use this order:
5102 src_folded, src, src_eqv, src_related and hash table entry. */
5103 if (src_folded
5104 && preferable (src_folded_cost, src_folded_regcost,
5105 src_cost, src_regcost) <= 0
5106 && preferable (src_folded_cost, src_folded_regcost,
5107 src_eqv_cost, src_eqv_regcost) <= 0
5108 && preferable (src_folded_cost, src_folded_regcost,
5109 src_related_cost, src_related_regcost) <= 0
5110 && preferable (src_folded_cost, src_folded_regcost,
5111 src_elt_cost, src_elt_regcost) <= 0)
5113 trial = src_folded, src_folded_cost = MAX_COST;
5114 if (src_folded_force_flag)
5116 rtx forced = force_const_mem (mode, trial);
5117 if (forced)
5118 trial = forced;
5121 else if (src
5122 && preferable (src_cost, src_regcost,
5123 src_eqv_cost, src_eqv_regcost) <= 0
5124 && preferable (src_cost, src_regcost,
5125 src_related_cost, src_related_regcost) <= 0
5126 && preferable (src_cost, src_regcost,
5127 src_elt_cost, src_elt_regcost) <= 0)
5128 trial = src, src_cost = MAX_COST;
5129 else if (src_eqv_here
5130 && preferable (src_eqv_cost, src_eqv_regcost,
5131 src_related_cost, src_related_regcost) <= 0
5132 && preferable (src_eqv_cost, src_eqv_regcost,
5133 src_elt_cost, src_elt_regcost) <= 0)
5134 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5135 else if (src_related
5136 && preferable (src_related_cost, src_related_regcost,
5137 src_elt_cost, src_elt_regcost) <= 0)
5138 trial = src_related, src_related_cost = MAX_COST;
5139 else
5141 trial = elt->exp;
5142 elt = elt->next_same_value;
5143 src_elt_cost = MAX_COST;
5146 /* Avoid creation of overlapping memory moves. */
5147 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5149 rtx src, dest;
5151 /* BLKmode moves are not handled by cse anyway. */
5152 if (GET_MODE (trial) == BLKmode)
5153 break;
5155 src = canon_rtx (trial);
5156 dest = canon_rtx (SET_DEST (sets[i].rtl));
5158 if (!MEM_P (src) || !MEM_P (dest)
5159 || !nonoverlapping_memrefs_p (src, dest, false))
5160 break;
5163 /* Try to optimize
5164 (set (reg:M N) (const_int A))
5165 (set (reg:M2 O) (const_int B))
5166 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5167 (reg:M2 O)). */
5168 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5169 && CONST_INT_P (trial)
5170 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5171 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5172 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5173 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5174 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5175 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5176 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5177 <= HOST_BITS_PER_WIDE_INT))
5179 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5180 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5181 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5182 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5183 struct table_elt *dest_elt
5184 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5185 rtx dest_cst = NULL;
5187 if (dest_elt)
5188 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5189 if (p->is_const && CONST_INT_P (p->exp))
5191 dest_cst = p->exp;
5192 break;
5194 if (dest_cst)
5196 HOST_WIDE_INT val = INTVAL (dest_cst);
5197 HOST_WIDE_INT mask;
5198 unsigned int shift;
5199 if (BITS_BIG_ENDIAN)
5200 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5201 - INTVAL (pos) - INTVAL (width);
5202 else
5203 shift = INTVAL (pos);
5204 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5205 mask = ~(HOST_WIDE_INT) 0;
5206 else
5207 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5208 val &= ~(mask << shift);
5209 val |= (INTVAL (trial) & mask) << shift;
5210 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5211 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5212 dest_reg, 1);
5213 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5214 GEN_INT (val), 1);
5215 if (apply_change_group ())
5217 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5218 if (note)
5220 remove_note (insn, note);
5221 df_notes_rescan (insn);
5223 src_eqv = NULL_RTX;
5224 src_eqv_elt = NULL;
5225 src_eqv_volatile = 0;
5226 src_eqv_in_memory = 0;
5227 src_eqv_hash = 0;
5228 repeat = true;
5229 break;
5234 /* We don't normally have an insn matching (set (pc) (pc)), so
5235 check for this separately here. We will delete such an
5236 insn below.
5238 For other cases such as a table jump or conditional jump
5239 where we know the ultimate target, go ahead and replace the
5240 operand. While that may not make a valid insn, we will
5241 reemit the jump below (and also insert any necessary
5242 barriers). */
5243 if (n_sets == 1 && dest == pc_rtx
5244 && (trial == pc_rtx
5245 || (GET_CODE (trial) == LABEL_REF
5246 && ! condjump_p (insn))))
5248 /* Don't substitute non-local labels, this confuses CFG. */
5249 if (GET_CODE (trial) == LABEL_REF
5250 && LABEL_REF_NONLOCAL_P (trial))
5251 continue;
5253 SET_SRC (sets[i].rtl) = trial;
5254 cse_jumps_altered = true;
5255 break;
5258 /* Reject certain invalid forms of CONST that we create. */
5259 else if (CONSTANT_P (trial)
5260 && GET_CODE (trial) == CONST
5261 /* Reject cases that will cause decode_rtx_const to
5262 die. On the alpha when simplifying a switch, we
5263 get (const (truncate (minus (label_ref)
5264 (label_ref)))). */
5265 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5266 /* Likewise on IA-64, except without the
5267 truncate. */
5268 || (GET_CODE (XEXP (trial, 0)) == MINUS
5269 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5270 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5271 /* Do nothing for this case. */
5274 /* Look for a substitution that makes a valid insn. */
5275 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5276 trial, 0))
5278 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5280 /* The result of apply_change_group can be ignored; see
5281 canon_reg. */
5283 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5284 apply_change_group ();
5286 break;
5289 /* If we previously found constant pool entries for
5290 constants and this is a constant, try making a
5291 pool entry. Put it in src_folded unless we already have done
5292 this since that is where it likely came from. */
5294 else if (constant_pool_entries_cost
5295 && CONSTANT_P (trial)
5296 && (src_folded == 0
5297 || (!MEM_P (src_folded)
5298 && ! src_folded_force_flag))
5299 && GET_MODE_CLASS (mode) != MODE_CC
5300 && mode != VOIDmode)
5302 src_folded_force_flag = 1;
5303 src_folded = trial;
5304 src_folded_cost = constant_pool_entries_cost;
5305 src_folded_regcost = constant_pool_entries_regcost;
5309 /* If we changed the insn too much, handle this set from scratch. */
5310 if (repeat)
5312 i--;
5313 continue;
5316 src = SET_SRC (sets[i].rtl);
5318 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5319 However, there is an important exception: If both are registers
5320 that are not the head of their equivalence class, replace SET_SRC
5321 with the head of the class. If we do not do this, we will have
5322 both registers live over a portion of the basic block. This way,
5323 their lifetimes will likely abut instead of overlapping. */
5324 if (REG_P (dest)
5325 && REGNO_QTY_VALID_P (REGNO (dest)))
5327 int dest_q = REG_QTY (REGNO (dest));
5328 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5330 if (dest_ent->mode == GET_MODE (dest)
5331 && dest_ent->first_reg != REGNO (dest)
5332 && REG_P (src) && REGNO (src) == REGNO (dest)
5333 /* Don't do this if the original insn had a hard reg as
5334 SET_SRC or SET_DEST. */
5335 && (!REG_P (sets[i].src)
5336 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5337 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5338 /* We can't call canon_reg here because it won't do anything if
5339 SRC is a hard register. */
5341 int src_q = REG_QTY (REGNO (src));
5342 struct qty_table_elem *src_ent = &qty_table[src_q];
5343 int first = src_ent->first_reg;
5344 rtx new_src
5345 = (first >= FIRST_PSEUDO_REGISTER
5346 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5348 /* We must use validate-change even for this, because this
5349 might be a special no-op instruction, suitable only to
5350 tag notes onto. */
5351 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5353 src = new_src;
5354 /* If we had a constant that is cheaper than what we are now
5355 setting SRC to, use that constant. We ignored it when we
5356 thought we could make this into a no-op. */
5357 if (src_const && COST (src_const) < COST (src)
5358 && validate_change (insn, &SET_SRC (sets[i].rtl),
5359 src_const, 0))
5360 src = src_const;
5365 /* If we made a change, recompute SRC values. */
5366 if (src != sets[i].src)
5368 do_not_record = 0;
5369 hash_arg_in_memory = 0;
5370 sets[i].src = src;
5371 sets[i].src_hash = HASH (src, mode);
5372 sets[i].src_volatile = do_not_record;
5373 sets[i].src_in_memory = hash_arg_in_memory;
5374 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5377 /* If this is a single SET, we are setting a register, and we have an
5378 equivalent constant, we want to add a REG_EQUAL note if the constant
5379 is different from the source. We don't want to do it for a constant
5380 pseudo since verifying that this pseudo hasn't been eliminated is a
5381 pain; moreover such a note won't help anything.
5383 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5384 which can be created for a reference to a compile time computable
5385 entry in a jump table. */
5386 if (n_sets == 1
5387 && REG_P (dest)
5388 && src_const
5389 && !REG_P (src_const)
5390 && !(GET_CODE (src_const) == SUBREG
5391 && REG_P (SUBREG_REG (src_const)))
5392 && !(GET_CODE (src_const) == CONST
5393 && GET_CODE (XEXP (src_const, 0)) == MINUS
5394 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5395 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5396 && !rtx_equal_p (src, src_const))
5398 /* Make sure that the rtx is not shared. */
5399 src_const = copy_rtx (src_const);
5401 /* Record the actual constant value in a REG_EQUAL note,
5402 making a new one if one does not already exist. */
5403 set_unique_reg_note (insn, REG_EQUAL, src_const);
5404 df_notes_rescan (insn);
5407 /* Now deal with the destination. */
5408 do_not_record = 0;
5410 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5411 while (GET_CODE (dest) == SUBREG
5412 || GET_CODE (dest) == ZERO_EXTRACT
5413 || GET_CODE (dest) == STRICT_LOW_PART)
5414 dest = XEXP (dest, 0);
5416 sets[i].inner_dest = dest;
5418 if (MEM_P (dest))
5420 #ifdef PUSH_ROUNDING
5421 /* Stack pushes invalidate the stack pointer. */
5422 rtx addr = XEXP (dest, 0);
5423 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5424 && XEXP (addr, 0) == stack_pointer_rtx)
5425 invalidate (stack_pointer_rtx, VOIDmode);
5426 #endif
5427 dest = fold_rtx (dest, insn);
5430 /* Compute the hash code of the destination now,
5431 before the effects of this instruction are recorded,
5432 since the register values used in the address computation
5433 are those before this instruction. */
5434 sets[i].dest_hash = HASH (dest, mode);
5436 /* Don't enter a bit-field in the hash table
5437 because the value in it after the store
5438 may not equal what was stored, due to truncation. */
5440 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5442 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5444 if (src_const != 0 && CONST_INT_P (src_const)
5445 && CONST_INT_P (width)
5446 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5447 && ! (INTVAL (src_const)
5448 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5449 /* Exception: if the value is constant,
5450 and it won't be truncated, record it. */
5452 else
5454 /* This is chosen so that the destination will be invalidated
5455 but no new value will be recorded.
5456 We must invalidate because sometimes constant
5457 values can be recorded for bitfields. */
5458 sets[i].src_elt = 0;
5459 sets[i].src_volatile = 1;
5460 src_eqv = 0;
5461 src_eqv_elt = 0;
5465 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5466 the insn. */
5467 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5469 /* One less use of the label this insn used to jump to. */
5470 delete_insn_and_edges (insn);
5471 cse_jumps_altered = true;
5472 /* No more processing for this set. */
5473 sets[i].rtl = 0;
5476 /* If this SET is now setting PC to a label, we know it used to
5477 be a conditional or computed branch. */
5478 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5479 && !LABEL_REF_NONLOCAL_P (src))
5481 /* We reemit the jump in as many cases as possible just in
5482 case the form of an unconditional jump is significantly
5483 different than a computed jump or conditional jump.
5485 If this insn has multiple sets, then reemitting the
5486 jump is nontrivial. So instead we just force rerecognition
5487 and hope for the best. */
5488 if (n_sets == 1)
5490 rtx_jump_insn *new_rtx;
5491 rtx note;
5493 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5494 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5495 LABEL_NUSES (XEXP (src, 0))++;
5497 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5498 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5499 if (note)
5501 XEXP (note, 1) = NULL_RTX;
5502 REG_NOTES (new_rtx) = note;
5505 delete_insn_and_edges (insn);
5506 insn = new_rtx;
5508 else
5509 INSN_CODE (insn) = -1;
5511 /* Do not bother deleting any unreachable code, let jump do it. */
5512 cse_jumps_altered = true;
5513 sets[i].rtl = 0;
5516 /* If destination is volatile, invalidate it and then do no further
5517 processing for this assignment. */
5519 else if (do_not_record)
5521 invalidate_dest (dest);
5522 sets[i].rtl = 0;
5525 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5527 do_not_record = 0;
5528 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5529 if (do_not_record)
5531 invalidate_dest (SET_DEST (sets[i].rtl));
5532 sets[i].rtl = 0;
5536 /* If setting CC0, record what it was set to, or a constant, if it
5537 is equivalent to a constant. If it is being set to a floating-point
5538 value, make a COMPARE with the appropriate constant of 0. If we
5539 don't do this, later code can interpret this as a test against
5540 const0_rtx, which can cause problems if we try to put it into an
5541 insn as a floating-point operand. */
5542 if (dest == cc0_rtx)
5544 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5545 this_insn_cc0_mode = mode;
5546 if (FLOAT_MODE_P (mode))
5547 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5548 CONST0_RTX (mode));
5552 /* Now enter all non-volatile source expressions in the hash table
5553 if they are not already present.
5554 Record their equivalence classes in src_elt.
5555 This way we can insert the corresponding destinations into
5556 the same classes even if the actual sources are no longer in them
5557 (having been invalidated). */
5559 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5560 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5562 struct table_elt *elt;
5563 struct table_elt *classp = sets[0].src_elt;
5564 rtx dest = SET_DEST (sets[0].rtl);
5565 machine_mode eqvmode = GET_MODE (dest);
5567 if (GET_CODE (dest) == STRICT_LOW_PART)
5569 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5570 classp = 0;
5572 if (insert_regs (src_eqv, classp, 0))
5574 rehash_using_reg (src_eqv);
5575 src_eqv_hash = HASH (src_eqv, eqvmode);
5577 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5578 elt->in_memory = src_eqv_in_memory;
5579 src_eqv_elt = elt;
5581 /* Check to see if src_eqv_elt is the same as a set source which
5582 does not yet have an elt, and if so set the elt of the set source
5583 to src_eqv_elt. */
5584 for (i = 0; i < n_sets; i++)
5585 if (sets[i].rtl && sets[i].src_elt == 0
5586 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5587 sets[i].src_elt = src_eqv_elt;
5590 for (i = 0; i < n_sets; i++)
5591 if (sets[i].rtl && ! sets[i].src_volatile
5592 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5594 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5596 /* REG_EQUAL in setting a STRICT_LOW_PART
5597 gives an equivalent for the entire destination register,
5598 not just for the subreg being stored in now.
5599 This is a more interesting equivalence, so we arrange later
5600 to treat the entire reg as the destination. */
5601 sets[i].src_elt = src_eqv_elt;
5602 sets[i].src_hash = src_eqv_hash;
5604 else
5606 /* Insert source and constant equivalent into hash table, if not
5607 already present. */
5608 struct table_elt *classp = src_eqv_elt;
5609 rtx src = sets[i].src;
5610 rtx dest = SET_DEST (sets[i].rtl);
5611 machine_mode mode
5612 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5614 /* It's possible that we have a source value known to be
5615 constant but don't have a REG_EQUAL note on the insn.
5616 Lack of a note will mean src_eqv_elt will be NULL. This
5617 can happen where we've generated a SUBREG to access a
5618 CONST_INT that is already in a register in a wider mode.
5619 Ensure that the source expression is put in the proper
5620 constant class. */
5621 if (!classp)
5622 classp = sets[i].src_const_elt;
5624 if (sets[i].src_elt == 0)
5626 struct table_elt *elt;
5628 /* Note that these insert_regs calls cannot remove
5629 any of the src_elt's, because they would have failed to
5630 match if not still valid. */
5631 if (insert_regs (src, classp, 0))
5633 rehash_using_reg (src);
5634 sets[i].src_hash = HASH (src, mode);
5636 elt = insert (src, classp, sets[i].src_hash, mode);
5637 elt->in_memory = sets[i].src_in_memory;
5638 /* If inline asm has any clobbers, ensure we only reuse
5639 existing inline asms and never try to put the ASM_OPERANDS
5640 into an insn that isn't inline asm. */
5641 if (GET_CODE (src) == ASM_OPERANDS
5642 && GET_CODE (x) == PARALLEL)
5643 elt->cost = MAX_COST;
5644 sets[i].src_elt = classp = elt;
5646 if (sets[i].src_const && sets[i].src_const_elt == 0
5647 && src != sets[i].src_const
5648 && ! rtx_equal_p (sets[i].src_const, src))
5649 sets[i].src_elt = insert (sets[i].src_const, classp,
5650 sets[i].src_const_hash, mode);
5653 else if (sets[i].src_elt == 0)
5654 /* If we did not insert the source into the hash table (e.g., it was
5655 volatile), note the equivalence class for the REG_EQUAL value, if any,
5656 so that the destination goes into that class. */
5657 sets[i].src_elt = src_eqv_elt;
5659 /* Record destination addresses in the hash table. This allows us to
5660 check if they are invalidated by other sets. */
5661 for (i = 0; i < n_sets; i++)
5663 if (sets[i].rtl)
5665 rtx x = sets[i].inner_dest;
5666 struct table_elt *elt;
5667 machine_mode mode;
5668 unsigned hash;
5670 if (MEM_P (x))
5672 x = XEXP (x, 0);
5673 mode = GET_MODE (x);
5674 hash = HASH (x, mode);
5675 elt = lookup (x, hash, mode);
5676 if (!elt)
5678 if (insert_regs (x, NULL, 0))
5680 rtx dest = SET_DEST (sets[i].rtl);
5682 rehash_using_reg (x);
5683 hash = HASH (x, mode);
5684 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5686 elt = insert (x, NULL, hash, mode);
5689 sets[i].dest_addr_elt = elt;
5691 else
5692 sets[i].dest_addr_elt = NULL;
5696 invalidate_from_clobbers (insn);
5698 /* Some registers are invalidated by subroutine calls. Memory is
5699 invalidated by non-constant calls. */
5701 if (CALL_P (insn))
5703 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5704 invalidate_memory ();
5705 invalidate_for_call ();
5708 /* Now invalidate everything set by this instruction.
5709 If a SUBREG or other funny destination is being set,
5710 sets[i].rtl is still nonzero, so here we invalidate the reg
5711 a part of which is being set. */
5713 for (i = 0; i < n_sets; i++)
5714 if (sets[i].rtl)
5716 /* We can't use the inner dest, because the mode associated with
5717 a ZERO_EXTRACT is significant. */
5718 rtx dest = SET_DEST (sets[i].rtl);
5720 /* Needed for registers to remove the register from its
5721 previous quantity's chain.
5722 Needed for memory if this is a nonvarying address, unless
5723 we have just done an invalidate_memory that covers even those. */
5724 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5725 invalidate (dest, VOIDmode);
5726 else if (MEM_P (dest))
5727 invalidate (dest, VOIDmode);
5728 else if (GET_CODE (dest) == STRICT_LOW_PART
5729 || GET_CODE (dest) == ZERO_EXTRACT)
5730 invalidate (XEXP (dest, 0), GET_MODE (dest));
5733 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5734 the regs restored by the longjmp come from a later time
5735 than the setjmp. */
5736 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5738 flush_hash_table ();
5739 goto done;
5742 /* Make sure registers mentioned in destinations
5743 are safe for use in an expression to be inserted.
5744 This removes from the hash table
5745 any invalid entry that refers to one of these registers.
5747 We don't care about the return value from mention_regs because
5748 we are going to hash the SET_DEST values unconditionally. */
5750 for (i = 0; i < n_sets; i++)
5752 if (sets[i].rtl)
5754 rtx x = SET_DEST (sets[i].rtl);
5756 if (!REG_P (x))
5757 mention_regs (x);
5758 else
5760 /* We used to rely on all references to a register becoming
5761 inaccessible when a register changes to a new quantity,
5762 since that changes the hash code. However, that is not
5763 safe, since after HASH_SIZE new quantities we get a
5764 hash 'collision' of a register with its own invalid
5765 entries. And since SUBREGs have been changed not to
5766 change their hash code with the hash code of the register,
5767 it wouldn't work any longer at all. So we have to check
5768 for any invalid references lying around now.
5769 This code is similar to the REG case in mention_regs,
5770 but it knows that reg_tick has been incremented, and
5771 it leaves reg_in_table as -1 . */
5772 unsigned int regno = REGNO (x);
5773 unsigned int endregno = END_REGNO (x);
5774 unsigned int i;
5776 for (i = regno; i < endregno; i++)
5778 if (REG_IN_TABLE (i) >= 0)
5780 remove_invalid_refs (i);
5781 REG_IN_TABLE (i) = -1;
5788 /* We may have just removed some of the src_elt's from the hash table.
5789 So replace each one with the current head of the same class.
5790 Also check if destination addresses have been removed. */
5792 for (i = 0; i < n_sets; i++)
5793 if (sets[i].rtl)
5795 if (sets[i].dest_addr_elt
5796 && sets[i].dest_addr_elt->first_same_value == 0)
5798 /* The elt was removed, which means this destination is not
5799 valid after this instruction. */
5800 sets[i].rtl = NULL_RTX;
5802 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5803 /* If elt was removed, find current head of same class,
5804 or 0 if nothing remains of that class. */
5806 struct table_elt *elt = sets[i].src_elt;
5808 while (elt && elt->prev_same_value)
5809 elt = elt->prev_same_value;
5811 while (elt && elt->first_same_value == 0)
5812 elt = elt->next_same_value;
5813 sets[i].src_elt = elt ? elt->first_same_value : 0;
5817 /* Now insert the destinations into their equivalence classes. */
5819 for (i = 0; i < n_sets; i++)
5820 if (sets[i].rtl)
5822 rtx dest = SET_DEST (sets[i].rtl);
5823 struct table_elt *elt;
5825 /* Don't record value if we are not supposed to risk allocating
5826 floating-point values in registers that might be wider than
5827 memory. */
5828 if ((flag_float_store
5829 && MEM_P (dest)
5830 && FLOAT_MODE_P (GET_MODE (dest)))
5831 /* Don't record BLKmode values, because we don't know the
5832 size of it, and can't be sure that other BLKmode values
5833 have the same or smaller size. */
5834 || GET_MODE (dest) == BLKmode
5835 /* If we didn't put a REG_EQUAL value or a source into the hash
5836 table, there is no point is recording DEST. */
5837 || sets[i].src_elt == 0
5838 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5839 or SIGN_EXTEND, don't record DEST since it can cause
5840 some tracking to be wrong.
5842 ??? Think about this more later. */
5843 || (paradoxical_subreg_p (dest)
5844 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5845 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5846 continue;
5848 /* STRICT_LOW_PART isn't part of the value BEING set,
5849 and neither is the SUBREG inside it.
5850 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5851 if (GET_CODE (dest) == STRICT_LOW_PART)
5852 dest = SUBREG_REG (XEXP (dest, 0));
5854 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5855 /* Registers must also be inserted into chains for quantities. */
5856 if (insert_regs (dest, sets[i].src_elt, 1))
5858 /* If `insert_regs' changes something, the hash code must be
5859 recalculated. */
5860 rehash_using_reg (dest);
5861 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5864 elt = insert (dest, sets[i].src_elt,
5865 sets[i].dest_hash, GET_MODE (dest));
5867 /* If this is a constant, insert the constant anchors with the
5868 equivalent register-offset expressions using register DEST. */
5869 if (targetm.const_anchor
5870 && REG_P (dest)
5871 && SCALAR_INT_MODE_P (GET_MODE (dest))
5872 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5873 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5875 elt->in_memory = (MEM_P (sets[i].inner_dest)
5876 && !MEM_READONLY_P (sets[i].inner_dest));
5878 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5879 narrower than M2, and both M1 and M2 are the same number of words,
5880 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5881 make that equivalence as well.
5883 However, BAR may have equivalences for which gen_lowpart
5884 will produce a simpler value than gen_lowpart applied to
5885 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5886 BAR's equivalences. If we don't get a simplified form, make
5887 the SUBREG. It will not be used in an equivalence, but will
5888 cause two similar assignments to be detected.
5890 Note the loop below will find SUBREG_REG (DEST) since we have
5891 already entered SRC and DEST of the SET in the table. */
5893 if (GET_CODE (dest) == SUBREG
5894 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5895 / UNITS_PER_WORD)
5896 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5897 && (GET_MODE_SIZE (GET_MODE (dest))
5898 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5899 && sets[i].src_elt != 0)
5901 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5902 struct table_elt *elt, *classp = 0;
5904 for (elt = sets[i].src_elt->first_same_value; elt;
5905 elt = elt->next_same_value)
5907 rtx new_src = 0;
5908 unsigned src_hash;
5909 struct table_elt *src_elt;
5910 int byte = 0;
5912 /* Ignore invalid entries. */
5913 if (!REG_P (elt->exp)
5914 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5915 continue;
5917 /* We may have already been playing subreg games. If the
5918 mode is already correct for the destination, use it. */
5919 if (GET_MODE (elt->exp) == new_mode)
5920 new_src = elt->exp;
5921 else
5923 /* Calculate big endian correction for the SUBREG_BYTE.
5924 We have already checked that M1 (GET_MODE (dest))
5925 is not narrower than M2 (new_mode). */
5926 if (BYTES_BIG_ENDIAN)
5927 byte = (GET_MODE_SIZE (GET_MODE (dest))
5928 - GET_MODE_SIZE (new_mode));
5930 new_src = simplify_gen_subreg (new_mode, elt->exp,
5931 GET_MODE (dest), byte);
5934 /* The call to simplify_gen_subreg fails if the value
5935 is VOIDmode, yet we can't do any simplification, e.g.
5936 for EXPR_LISTs denoting function call results.
5937 It is invalid to construct a SUBREG with a VOIDmode
5938 SUBREG_REG, hence a zero new_src means we can't do
5939 this substitution. */
5940 if (! new_src)
5941 continue;
5943 src_hash = HASH (new_src, new_mode);
5944 src_elt = lookup (new_src, src_hash, new_mode);
5946 /* Put the new source in the hash table is if isn't
5947 already. */
5948 if (src_elt == 0)
5950 if (insert_regs (new_src, classp, 0))
5952 rehash_using_reg (new_src);
5953 src_hash = HASH (new_src, new_mode);
5955 src_elt = insert (new_src, classp, src_hash, new_mode);
5956 src_elt->in_memory = elt->in_memory;
5957 if (GET_CODE (new_src) == ASM_OPERANDS
5958 && elt->cost == MAX_COST)
5959 src_elt->cost = MAX_COST;
5961 else if (classp && classp != src_elt->first_same_value)
5962 /* Show that two things that we've seen before are
5963 actually the same. */
5964 merge_equiv_classes (src_elt, classp);
5966 classp = src_elt->first_same_value;
5967 /* Ignore invalid entries. */
5968 while (classp
5969 && !REG_P (classp->exp)
5970 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5971 classp = classp->next_same_value;
5976 /* Special handling for (set REG0 REG1) where REG0 is the
5977 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5978 be used in the sequel, so (if easily done) change this insn to
5979 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5980 that computed their value. Then REG1 will become a dead store
5981 and won't cloud the situation for later optimizations.
5983 Do not make this change if REG1 is a hard register, because it will
5984 then be used in the sequel and we may be changing a two-operand insn
5985 into a three-operand insn.
5987 Also do not do this if we are operating on a copy of INSN. */
5989 if (n_sets == 1 && sets[0].rtl)
5990 try_back_substitute_reg (sets[0].rtl, insn);
5992 done:;
5995 /* Remove from the hash table all expressions that reference memory. */
5997 static void
5998 invalidate_memory (void)
6000 int i;
6001 struct table_elt *p, *next;
6003 for (i = 0; i < HASH_SIZE; i++)
6004 for (p = table[i]; p; p = next)
6006 next = p->next_same_hash;
6007 if (p->in_memory)
6008 remove_from_table (p, i);
6012 /* Perform invalidation on the basis of everything about INSN,
6013 except for invalidating the actual places that are SET in it.
6014 This includes the places CLOBBERed, and anything that might
6015 alias with something that is SET or CLOBBERed. */
6017 static void
6018 invalidate_from_clobbers (rtx_insn *insn)
6020 rtx x = PATTERN (insn);
6022 if (GET_CODE (x) == CLOBBER)
6024 rtx ref = XEXP (x, 0);
6025 if (ref)
6027 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6028 || MEM_P (ref))
6029 invalidate (ref, VOIDmode);
6030 else if (GET_CODE (ref) == STRICT_LOW_PART
6031 || GET_CODE (ref) == ZERO_EXTRACT)
6032 invalidate (XEXP (ref, 0), GET_MODE (ref));
6035 else if (GET_CODE (x) == PARALLEL)
6037 int i;
6038 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6040 rtx y = XVECEXP (x, 0, i);
6041 if (GET_CODE (y) == CLOBBER)
6043 rtx ref = XEXP (y, 0);
6044 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6045 || MEM_P (ref))
6046 invalidate (ref, VOIDmode);
6047 else if (GET_CODE (ref) == STRICT_LOW_PART
6048 || GET_CODE (ref) == ZERO_EXTRACT)
6049 invalidate (XEXP (ref, 0), GET_MODE (ref));
6055 /* Perform invalidation on the basis of everything about INSN.
6056 This includes the places CLOBBERed, and anything that might
6057 alias with something that is SET or CLOBBERed. */
6059 static void
6060 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6062 rtx tem;
6063 rtx x = PATTERN (insn);
6065 if (CALL_P (insn))
6067 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6068 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6069 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6072 /* Ensure we invalidate the destination register of a CALL insn.
6073 This is necessary for machines where this register is a fixed_reg,
6074 because no other code would invalidate it. */
6075 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6076 invalidate (SET_DEST (x), VOIDmode);
6078 else if (GET_CODE (x) == PARALLEL)
6080 int i;
6082 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6084 rtx y = XVECEXP (x, 0, i);
6085 if (GET_CODE (y) == CLOBBER)
6087 rtx clobbered = XEXP (y, 0);
6089 if (REG_P (clobbered)
6090 || GET_CODE (clobbered) == SUBREG)
6091 invalidate (clobbered, VOIDmode);
6092 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6093 || GET_CODE (clobbered) == ZERO_EXTRACT)
6094 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6096 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6097 invalidate (SET_DEST (y), VOIDmode);
6102 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6103 and replace any registers in them with either an equivalent constant
6104 or the canonical form of the register. If we are inside an address,
6105 only do this if the address remains valid.
6107 OBJECT is 0 except when within a MEM in which case it is the MEM.
6109 Return the replacement for X. */
6111 static rtx
6112 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6114 enum rtx_code code = GET_CODE (x);
6115 const char *fmt = GET_RTX_FORMAT (code);
6116 int i;
6118 switch (code)
6120 case CONST:
6121 case SYMBOL_REF:
6122 case LABEL_REF:
6123 CASE_CONST_ANY:
6124 case PC:
6125 case CC0:
6126 case LO_SUM:
6127 return x;
6129 case MEM:
6130 validate_change (x, &XEXP (x, 0),
6131 cse_process_notes (XEXP (x, 0), x, changed), 0);
6132 return x;
6134 case EXPR_LIST:
6135 if (REG_NOTE_KIND (x) == REG_EQUAL)
6136 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6137 /* Fall through. */
6139 case INSN_LIST:
6140 case INT_LIST:
6141 if (XEXP (x, 1))
6142 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6143 return x;
6145 case SIGN_EXTEND:
6146 case ZERO_EXTEND:
6147 case SUBREG:
6149 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6150 /* We don't substitute VOIDmode constants into these rtx,
6151 since they would impede folding. */
6152 if (GET_MODE (new_rtx) != VOIDmode)
6153 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6154 return x;
6157 case UNSIGNED_FLOAT:
6159 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6160 /* We don't substitute negative VOIDmode constants into these rtx,
6161 since they would impede folding. */
6162 if (GET_MODE (new_rtx) != VOIDmode
6163 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6164 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6165 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6166 return x;
6169 case REG:
6170 i = REG_QTY (REGNO (x));
6172 /* Return a constant or a constant register. */
6173 if (REGNO_QTY_VALID_P (REGNO (x)))
6175 struct qty_table_elem *ent = &qty_table[i];
6177 if (ent->const_rtx != NULL_RTX
6178 && (CONSTANT_P (ent->const_rtx)
6179 || REG_P (ent->const_rtx)))
6181 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6182 if (new_rtx)
6183 return copy_rtx (new_rtx);
6187 /* Otherwise, canonicalize this register. */
6188 return canon_reg (x, NULL);
6190 default:
6191 break;
6194 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6195 if (fmt[i] == 'e')
6196 validate_change (object, &XEXP (x, i),
6197 cse_process_notes (XEXP (x, i), object, changed), 0);
6199 return x;
6202 static rtx
6203 cse_process_notes (rtx x, rtx object, bool *changed)
6205 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6206 if (new_rtx != x)
6207 *changed = true;
6208 return new_rtx;
6212 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6214 DATA is a pointer to a struct cse_basic_block_data, that is used to
6215 describe the path.
6216 It is filled with a queue of basic blocks, starting with FIRST_BB
6217 and following a trace through the CFG.
6219 If all paths starting at FIRST_BB have been followed, or no new path
6220 starting at FIRST_BB can be constructed, this function returns FALSE.
6221 Otherwise, DATA->path is filled and the function returns TRUE indicating
6222 that a path to follow was found.
6224 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6225 block in the path will be FIRST_BB. */
6227 static bool
6228 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6229 int follow_jumps)
6231 basic_block bb;
6232 edge e;
6233 int path_size;
6235 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6237 /* See if there is a previous path. */
6238 path_size = data->path_size;
6240 /* There is a previous path. Make sure it started with FIRST_BB. */
6241 if (path_size)
6242 gcc_assert (data->path[0].bb == first_bb);
6244 /* There was only one basic block in the last path. Clear the path and
6245 return, so that paths starting at another basic block can be tried. */
6246 if (path_size == 1)
6248 path_size = 0;
6249 goto done;
6252 /* If the path was empty from the beginning, construct a new path. */
6253 if (path_size == 0)
6254 data->path[path_size++].bb = first_bb;
6255 else
6257 /* Otherwise, path_size must be equal to or greater than 2, because
6258 a previous path exists that is at least two basic blocks long.
6260 Update the previous branch path, if any. If the last branch was
6261 previously along the branch edge, take the fallthrough edge now. */
6262 while (path_size >= 2)
6264 basic_block last_bb_in_path, previous_bb_in_path;
6265 edge e;
6267 --path_size;
6268 last_bb_in_path = data->path[path_size].bb;
6269 previous_bb_in_path = data->path[path_size - 1].bb;
6271 /* If we previously followed a path along the branch edge, try
6272 the fallthru edge now. */
6273 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6274 && any_condjump_p (BB_END (previous_bb_in_path))
6275 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6276 && e == BRANCH_EDGE (previous_bb_in_path))
6278 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6279 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6280 && single_pred_p (bb)
6281 /* We used to assert here that we would only see blocks
6282 that we have not visited yet. But we may end up
6283 visiting basic blocks twice if the CFG has changed
6284 in this run of cse_main, because when the CFG changes
6285 the topological sort of the CFG also changes. A basic
6286 blocks that previously had more than two predecessors
6287 may now have a single predecessor, and become part of
6288 a path that starts at another basic block.
6290 We still want to visit each basic block only once, so
6291 halt the path here if we have already visited BB. */
6292 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6294 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6295 data->path[path_size++].bb = bb;
6296 break;
6300 data->path[path_size].bb = NULL;
6303 /* If only one block remains in the path, bail. */
6304 if (path_size == 1)
6306 path_size = 0;
6307 goto done;
6311 /* Extend the path if possible. */
6312 if (follow_jumps)
6314 bb = data->path[path_size - 1].bb;
6315 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6317 if (single_succ_p (bb))
6318 e = single_succ_edge (bb);
6319 else if (EDGE_COUNT (bb->succs) == 2
6320 && any_condjump_p (BB_END (bb)))
6322 /* First try to follow the branch. If that doesn't lead
6323 to a useful path, follow the fallthru edge. */
6324 e = BRANCH_EDGE (bb);
6325 if (!single_pred_p (e->dest))
6326 e = FALLTHRU_EDGE (bb);
6328 else
6329 e = NULL;
6331 if (e
6332 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6333 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6334 && single_pred_p (e->dest)
6335 /* Avoid visiting basic blocks twice. The large comment
6336 above explains why this can happen. */
6337 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6339 basic_block bb2 = e->dest;
6340 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6341 data->path[path_size++].bb = bb2;
6342 bb = bb2;
6344 else
6345 bb = NULL;
6349 done:
6350 data->path_size = path_size;
6351 return path_size != 0;
6354 /* Dump the path in DATA to file F. NSETS is the number of sets
6355 in the path. */
6357 static void
6358 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6360 int path_entry;
6362 fprintf (f, ";; Following path with %d sets: ", nsets);
6363 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6364 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6365 fputc ('\n', dump_file);
6366 fflush (f);
6370 /* Return true if BB has exception handling successor edges. */
6372 static bool
6373 have_eh_succ_edges (basic_block bb)
6375 edge e;
6376 edge_iterator ei;
6378 FOR_EACH_EDGE (e, ei, bb->succs)
6379 if (e->flags & EDGE_EH)
6380 return true;
6382 return false;
6386 /* Scan to the end of the path described by DATA. Return an estimate of
6387 the total number of SETs of all insns in the path. */
6389 static void
6390 cse_prescan_path (struct cse_basic_block_data *data)
6392 int nsets = 0;
6393 int path_size = data->path_size;
6394 int path_entry;
6396 /* Scan to end of each basic block in the path. */
6397 for (path_entry = 0; path_entry < path_size; path_entry++)
6399 basic_block bb;
6400 rtx_insn *insn;
6402 bb = data->path[path_entry].bb;
6404 FOR_BB_INSNS (bb, insn)
6406 if (!INSN_P (insn))
6407 continue;
6409 /* A PARALLEL can have lots of SETs in it,
6410 especially if it is really an ASM_OPERANDS. */
6411 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6412 nsets += XVECLEN (PATTERN (insn), 0);
6413 else
6414 nsets += 1;
6418 data->nsets = nsets;
6421 /* Return true if the pattern of INSN uses a LABEL_REF for which
6422 there isn't a REG_LABEL_OPERAND note. */
6424 static bool
6425 check_for_label_ref (rtx_insn *insn)
6427 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6428 note for it, we must rerun jump since it needs to place the note. If
6429 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6430 don't do this since no REG_LABEL_OPERAND will be added. */
6431 subrtx_iterator::array_type array;
6432 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6434 const_rtx x = *iter;
6435 if (GET_CODE (x) == LABEL_REF
6436 && !LABEL_REF_NONLOCAL_P (x)
6437 && (!JUMP_P (insn)
6438 || !label_is_jump_target_p (LABEL_REF_LABEL (x), insn))
6439 && LABEL_P (LABEL_REF_LABEL (x))
6440 && INSN_UID (LABEL_REF_LABEL (x)) != 0
6441 && !find_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x)))
6442 return true;
6444 return false;
6447 /* Process a single extended basic block described by EBB_DATA. */
6449 static void
6450 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6452 int path_size = ebb_data->path_size;
6453 int path_entry;
6454 int num_insns = 0;
6456 /* Allocate the space needed by qty_table. */
6457 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6459 new_basic_block ();
6460 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6461 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6462 for (path_entry = 0; path_entry < path_size; path_entry++)
6464 basic_block bb;
6465 rtx_insn *insn;
6467 bb = ebb_data->path[path_entry].bb;
6469 /* Invalidate recorded information for eh regs if there is an EH
6470 edge pointing to that bb. */
6471 if (bb_has_eh_pred (bb))
6473 df_ref def;
6475 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6476 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6477 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6480 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6481 FOR_BB_INSNS (bb, insn)
6483 /* If we have processed 1,000 insns, flush the hash table to
6484 avoid extreme quadratic behavior. We must not include NOTEs
6485 in the count since there may be more of them when generating
6486 debugging information. If we clear the table at different
6487 times, code generated with -g -O might be different than code
6488 generated with -O but not -g.
6490 FIXME: This is a real kludge and needs to be done some other
6491 way. */
6492 if (NONDEBUG_INSN_P (insn)
6493 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6495 flush_hash_table ();
6496 num_insns = 0;
6499 if (INSN_P (insn))
6501 /* Process notes first so we have all notes in canonical forms
6502 when looking for duplicate operations. */
6503 if (REG_NOTES (insn))
6505 bool changed = false;
6506 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6507 NULL_RTX, &changed);
6508 if (changed)
6509 df_notes_rescan (insn);
6512 cse_insn (insn);
6514 /* If we haven't already found an insn where we added a LABEL_REF,
6515 check this one. */
6516 if (INSN_P (insn) && !recorded_label_ref
6517 && check_for_label_ref (insn))
6518 recorded_label_ref = true;
6520 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6522 /* If the previous insn sets CC0 and this insn no
6523 longer references CC0, delete the previous insn.
6524 Here we use fact that nothing expects CC0 to be
6525 valid over an insn, which is true until the final
6526 pass. */
6527 rtx_insn *prev_insn;
6528 rtx tem;
6530 prev_insn = prev_nonnote_nondebug_insn (insn);
6531 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6532 && (tem = single_set (prev_insn)) != NULL_RTX
6533 && SET_DEST (tem) == cc0_rtx
6534 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6535 delete_insn (prev_insn);
6537 /* If this insn is not the last insn in the basic
6538 block, it will be PREV_INSN(insn) in the next
6539 iteration. If we recorded any CC0-related
6540 information for this insn, remember it. */
6541 if (insn != BB_END (bb))
6543 prev_insn_cc0 = this_insn_cc0;
6544 prev_insn_cc0_mode = this_insn_cc0_mode;
6550 /* With non-call exceptions, we are not always able to update
6551 the CFG properly inside cse_insn. So clean up possibly
6552 redundant EH edges here. */
6553 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6554 cse_cfg_altered |= purge_dead_edges (bb);
6556 /* If we changed a conditional jump, we may have terminated
6557 the path we are following. Check that by verifying that
6558 the edge we would take still exists. If the edge does
6559 not exist anymore, purge the remainder of the path.
6560 Note that this will cause us to return to the caller. */
6561 if (path_entry < path_size - 1)
6563 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6564 if (!find_edge (bb, next_bb))
6568 path_size--;
6570 /* If we truncate the path, we must also reset the
6571 visited bit on the remaining blocks in the path,
6572 or we will never visit them at all. */
6573 bitmap_clear_bit (cse_visited_basic_blocks,
6574 ebb_data->path[path_size].bb->index);
6575 ebb_data->path[path_size].bb = NULL;
6577 while (path_size - 1 != path_entry);
6578 ebb_data->path_size = path_size;
6582 /* If this is a conditional jump insn, record any known
6583 equivalences due to the condition being tested. */
6584 insn = BB_END (bb);
6585 if (path_entry < path_size - 1
6586 && JUMP_P (insn)
6587 && single_set (insn)
6588 && any_condjump_p (insn))
6590 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6591 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6592 record_jump_equiv (insn, taken);
6595 /* Clear the CC0-tracking related insns, they can't provide
6596 useful information across basic block boundaries. */
6597 prev_insn_cc0 = 0;
6600 gcc_assert (next_qty <= max_qty);
6602 free (qty_table);
6606 /* Perform cse on the instructions of a function.
6607 F is the first instruction.
6608 NREGS is one plus the highest pseudo-reg number used in the instruction.
6610 Return 2 if jump optimizations should be redone due to simplifications
6611 in conditional jump instructions.
6612 Return 1 if the CFG should be cleaned up because it has been modified.
6613 Return 0 otherwise. */
6615 static int
6616 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6618 struct cse_basic_block_data ebb_data;
6619 basic_block bb;
6620 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6621 int i, n_blocks;
6623 df_set_flags (DF_LR_RUN_DCE);
6624 df_note_add_problem ();
6625 df_analyze ();
6626 df_set_flags (DF_DEFER_INSN_RESCAN);
6628 reg_scan (get_insns (), max_reg_num ());
6629 init_cse_reg_info (nregs);
6631 ebb_data.path = XNEWVEC (struct branch_path,
6632 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6634 cse_cfg_altered = false;
6635 cse_jumps_altered = false;
6636 recorded_label_ref = false;
6637 constant_pool_entries_cost = 0;
6638 constant_pool_entries_regcost = 0;
6639 ebb_data.path_size = 0;
6640 ebb_data.nsets = 0;
6641 rtl_hooks = cse_rtl_hooks;
6643 init_recog ();
6644 init_alias_analysis ();
6646 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6648 /* Set up the table of already visited basic blocks. */
6649 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6650 bitmap_clear (cse_visited_basic_blocks);
6652 /* Loop over basic blocks in reverse completion order (RPO),
6653 excluding the ENTRY and EXIT blocks. */
6654 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6655 i = 0;
6656 while (i < n_blocks)
6658 /* Find the first block in the RPO queue that we have not yet
6659 processed before. */
6662 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6664 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6665 && i < n_blocks);
6667 /* Find all paths starting with BB, and process them. */
6668 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6670 /* Pre-scan the path. */
6671 cse_prescan_path (&ebb_data);
6673 /* If this basic block has no sets, skip it. */
6674 if (ebb_data.nsets == 0)
6675 continue;
6677 /* Get a reasonable estimate for the maximum number of qty's
6678 needed for this path. For this, we take the number of sets
6679 and multiply that by MAX_RECOG_OPERANDS. */
6680 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6682 /* Dump the path we're about to process. */
6683 if (dump_file)
6684 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6686 cse_extended_basic_block (&ebb_data);
6690 /* Clean up. */
6691 end_alias_analysis ();
6692 free (reg_eqv_table);
6693 free (ebb_data.path);
6694 sbitmap_free (cse_visited_basic_blocks);
6695 free (rc_order);
6696 rtl_hooks = general_rtl_hooks;
6698 if (cse_jumps_altered || recorded_label_ref)
6699 return 2;
6700 else if (cse_cfg_altered)
6701 return 1;
6702 else
6703 return 0;
6706 /* Count the number of times registers are used (not set) in X.
6707 COUNTS is an array in which we accumulate the count, INCR is how much
6708 we count each register usage.
6710 Don't count a usage of DEST, which is the SET_DEST of a SET which
6711 contains X in its SET_SRC. This is because such a SET does not
6712 modify the liveness of DEST.
6713 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6714 We must then count uses of a SET_DEST regardless, because the insn can't be
6715 deleted here. */
6717 static void
6718 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6720 enum rtx_code code;
6721 rtx note;
6722 const char *fmt;
6723 int i, j;
6725 if (x == 0)
6726 return;
6728 switch (code = GET_CODE (x))
6730 case REG:
6731 if (x != dest)
6732 counts[REGNO (x)] += incr;
6733 return;
6735 case PC:
6736 case CC0:
6737 case CONST:
6738 CASE_CONST_ANY:
6739 case SYMBOL_REF:
6740 case LABEL_REF:
6741 return;
6743 case CLOBBER:
6744 /* If we are clobbering a MEM, mark any registers inside the address
6745 as being used. */
6746 if (MEM_P (XEXP (x, 0)))
6747 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6748 return;
6750 case SET:
6751 /* Unless we are setting a REG, count everything in SET_DEST. */
6752 if (!REG_P (SET_DEST (x)))
6753 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6754 count_reg_usage (SET_SRC (x), counts,
6755 dest ? dest : SET_DEST (x),
6756 incr);
6757 return;
6759 case DEBUG_INSN:
6760 return;
6762 case CALL_INSN:
6763 case INSN:
6764 case JUMP_INSN:
6765 /* We expect dest to be NULL_RTX here. If the insn may throw,
6766 or if it cannot be deleted due to side-effects, mark this fact
6767 by setting DEST to pc_rtx. */
6768 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6769 || side_effects_p (PATTERN (x)))
6770 dest = pc_rtx;
6771 if (code == CALL_INSN)
6772 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6773 count_reg_usage (PATTERN (x), counts, dest, incr);
6775 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6776 use them. */
6778 note = find_reg_equal_equiv_note (x);
6779 if (note)
6781 rtx eqv = XEXP (note, 0);
6783 if (GET_CODE (eqv) == EXPR_LIST)
6784 /* This REG_EQUAL note describes the result of a function call.
6785 Process all the arguments. */
6788 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6789 eqv = XEXP (eqv, 1);
6791 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6792 else
6793 count_reg_usage (eqv, counts, dest, incr);
6795 return;
6797 case EXPR_LIST:
6798 if (REG_NOTE_KIND (x) == REG_EQUAL
6799 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6800 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6801 involving registers in the address. */
6802 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6803 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6805 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6806 return;
6808 case ASM_OPERANDS:
6809 /* Iterate over just the inputs, not the constraints as well. */
6810 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6811 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6812 return;
6814 case INSN_LIST:
6815 case INT_LIST:
6816 gcc_unreachable ();
6818 default:
6819 break;
6822 fmt = GET_RTX_FORMAT (code);
6823 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6825 if (fmt[i] == 'e')
6826 count_reg_usage (XEXP (x, i), counts, dest, incr);
6827 else if (fmt[i] == 'E')
6828 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6829 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6833 /* Return true if X is a dead register. */
6835 static inline int
6836 is_dead_reg (const_rtx x, int *counts)
6838 return (REG_P (x)
6839 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6840 && counts[REGNO (x)] == 0);
6843 /* Return true if set is live. */
6844 static bool
6845 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6846 int *counts)
6848 rtx_insn *tem;
6850 if (set_noop_p (set))
6853 else if (GET_CODE (SET_DEST (set)) == CC0
6854 && !side_effects_p (SET_SRC (set))
6855 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6856 || !INSN_P (tem)
6857 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6858 return false;
6859 else if (!is_dead_reg (SET_DEST (set), counts)
6860 || side_effects_p (SET_SRC (set)))
6861 return true;
6862 return false;
6865 /* Return true if insn is live. */
6867 static bool
6868 insn_live_p (rtx_insn *insn, int *counts)
6870 int i;
6871 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6872 return true;
6873 else if (GET_CODE (PATTERN (insn)) == SET)
6874 return set_live_p (PATTERN (insn), insn, counts);
6875 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6877 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6879 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6881 if (GET_CODE (elt) == SET)
6883 if (set_live_p (elt, insn, counts))
6884 return true;
6886 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6887 return true;
6889 return false;
6891 else if (DEBUG_INSN_P (insn))
6893 rtx_insn *next;
6895 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6896 if (NOTE_P (next))
6897 continue;
6898 else if (!DEBUG_INSN_P (next))
6899 return true;
6900 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6901 return false;
6903 return true;
6905 else
6906 return true;
6909 /* Count the number of stores into pseudo. Callback for note_stores. */
6911 static void
6912 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6914 int *counts = (int *) data;
6915 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6916 counts[REGNO (x)]++;
6919 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6920 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6921 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6922 Set *SEEN_REPL to true if we see a dead register that does have
6923 a replacement. */
6925 static bool
6926 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6927 bool *seen_repl)
6929 subrtx_iterator::array_type array;
6930 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6932 const_rtx x = *iter;
6933 if (is_dead_reg (x, counts))
6935 if (replacements && replacements[REGNO (x)] != NULL_RTX)
6936 *seen_repl = true;
6937 else
6938 return true;
6941 return false;
6944 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6945 Callback for simplify_replace_fn_rtx. */
6947 static rtx
6948 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6950 rtx *replacements = (rtx *) data;
6952 if (REG_P (x)
6953 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6954 && replacements[REGNO (x)] != NULL_RTX)
6956 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6957 return replacements[REGNO (x)];
6958 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6959 GET_MODE (replacements[REGNO (x)]));
6961 return NULL_RTX;
6964 /* Scan all the insns and delete any that are dead; i.e., they store a register
6965 that is never used or they copy a register to itself.
6967 This is used to remove insns made obviously dead by cse, loop or other
6968 optimizations. It improves the heuristics in loop since it won't try to
6969 move dead invariants out of loops or make givs for dead quantities. The
6970 remaining passes of the compilation are also sped up. */
6973 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6975 int *counts;
6976 rtx_insn *insn, *prev;
6977 rtx *replacements = NULL;
6978 int ndead = 0;
6980 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6981 /* First count the number of times each register is used. */
6982 if (MAY_HAVE_DEBUG_INSNS)
6984 counts = XCNEWVEC (int, nreg * 3);
6985 for (insn = insns; insn; insn = NEXT_INSN (insn))
6986 if (DEBUG_INSN_P (insn))
6987 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6988 NULL_RTX, 1);
6989 else if (INSN_P (insn))
6991 count_reg_usage (insn, counts, NULL_RTX, 1);
6992 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6994 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6995 First one counts how many times each pseudo is used outside
6996 of debug insns, second counts how many times each pseudo is
6997 used in debug insns and third counts how many times a pseudo
6998 is stored. */
7000 else
7002 counts = XCNEWVEC (int, nreg);
7003 for (insn = insns; insn; insn = NEXT_INSN (insn))
7004 if (INSN_P (insn))
7005 count_reg_usage (insn, counts, NULL_RTX, 1);
7006 /* If no debug insns can be present, COUNTS is just an array
7007 which counts how many times each pseudo is used. */
7009 /* Pseudo PIC register should be considered as used due to possible
7010 new usages generated. */
7011 if (!reload_completed
7012 && pic_offset_table_rtx
7013 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7014 counts[REGNO (pic_offset_table_rtx)]++;
7015 /* Go from the last insn to the first and delete insns that only set unused
7016 registers or copy a register to itself. As we delete an insn, remove
7017 usage counts for registers it uses.
7019 The first jump optimization pass may leave a real insn as the last
7020 insn in the function. We must not skip that insn or we may end
7021 up deleting code that is not really dead.
7023 If some otherwise unused register is only used in DEBUG_INSNs,
7024 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7025 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7026 has been created for the unused register, replace it with
7027 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7028 for (insn = get_last_insn (); insn; insn = prev)
7030 int live_insn = 0;
7032 prev = PREV_INSN (insn);
7033 if (!INSN_P (insn))
7034 continue;
7036 live_insn = insn_live_p (insn, counts);
7038 /* If this is a dead insn, delete it and show registers in it aren't
7039 being used. */
7041 if (! live_insn && dbg_cnt (delete_trivial_dead))
7043 if (DEBUG_INSN_P (insn))
7044 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7045 NULL_RTX, -1);
7046 else
7048 rtx set;
7049 if (MAY_HAVE_DEBUG_INSNS
7050 && (set = single_set (insn)) != NULL_RTX
7051 && is_dead_reg (SET_DEST (set), counts)
7052 /* Used at least once in some DEBUG_INSN. */
7053 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7054 /* And set exactly once. */
7055 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7056 && !side_effects_p (SET_SRC (set))
7057 && asm_noperands (PATTERN (insn)) < 0)
7059 rtx dval, bind_var_loc;
7060 rtx_insn *bind;
7062 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7063 dval = make_debug_expr_from_rtl (SET_DEST (set));
7065 /* Emit a debug bind insn before the insn in which
7066 reg dies. */
7067 bind_var_loc =
7068 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7069 DEBUG_EXPR_TREE_DECL (dval),
7070 SET_SRC (set),
7071 VAR_INIT_STATUS_INITIALIZED);
7072 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7074 bind = emit_debug_insn_before (bind_var_loc, insn);
7075 df_insn_rescan (bind);
7077 if (replacements == NULL)
7078 replacements = XCNEWVEC (rtx, nreg);
7079 replacements[REGNO (SET_DEST (set))] = dval;
7082 count_reg_usage (insn, counts, NULL_RTX, -1);
7083 ndead++;
7085 delete_insn_and_edges (insn);
7089 if (MAY_HAVE_DEBUG_INSNS)
7091 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7092 if (DEBUG_INSN_P (insn))
7094 /* If this debug insn references a dead register that wasn't replaced
7095 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7096 bool seen_repl = false;
7097 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7098 counts, replacements, &seen_repl))
7100 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7101 df_insn_rescan (insn);
7103 else if (seen_repl)
7105 INSN_VAR_LOCATION_LOC (insn)
7106 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7107 NULL_RTX, replace_dead_reg,
7108 replacements);
7109 df_insn_rescan (insn);
7112 free (replacements);
7115 if (dump_file && ndead)
7116 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7117 ndead);
7118 /* Clean up. */
7119 free (counts);
7120 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7121 return ndead;
7124 /* If LOC contains references to NEWREG in a different mode, change them
7125 to use NEWREG instead. */
7127 static void
7128 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7129 rtx *loc, rtx_insn *insn, rtx newreg)
7131 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7133 rtx *loc = *iter;
7134 rtx x = *loc;
7135 if (x
7136 && REG_P (x)
7137 && REGNO (x) == REGNO (newreg)
7138 && GET_MODE (x) != GET_MODE (newreg))
7140 validate_change (insn, loc, newreg, 1);
7141 iter.skip_subrtxes ();
7146 /* Change the mode of any reference to the register REGNO (NEWREG) to
7147 GET_MODE (NEWREG) in INSN. */
7149 static void
7150 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7152 int success;
7154 if (!INSN_P (insn))
7155 return;
7157 subrtx_ptr_iterator::array_type array;
7158 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7159 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7161 /* If the following assertion was triggered, there is most probably
7162 something wrong with the cc_modes_compatible back end function.
7163 CC modes only can be considered compatible if the insn - with the mode
7164 replaced by any of the compatible modes - can still be recognized. */
7165 success = apply_change_group ();
7166 gcc_assert (success);
7169 /* Change the mode of any reference to the register REGNO (NEWREG) to
7170 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7171 any instruction which modifies NEWREG. */
7173 static void
7174 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7176 rtx_insn *insn;
7178 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7180 if (! INSN_P (insn))
7181 continue;
7183 if (reg_set_p (newreg, insn))
7184 return;
7186 cse_change_cc_mode_insn (insn, newreg);
7190 /* BB is a basic block which finishes with CC_REG as a condition code
7191 register which is set to CC_SRC. Look through the successors of BB
7192 to find blocks which have a single predecessor (i.e., this one),
7193 and look through those blocks for an assignment to CC_REG which is
7194 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7195 permitted to change the mode of CC_SRC to a compatible mode. This
7196 returns VOIDmode if no equivalent assignments were found.
7197 Otherwise it returns the mode which CC_SRC should wind up with.
7198 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7199 but is passed unmodified down to recursive calls in order to prevent
7200 endless recursion.
7202 The main complexity in this function is handling the mode issues.
7203 We may have more than one duplicate which we can eliminate, and we
7204 try to find a mode which will work for multiple duplicates. */
7206 static machine_mode
7207 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7208 bool can_change_mode)
7210 bool found_equiv;
7211 machine_mode mode;
7212 unsigned int insn_count;
7213 edge e;
7214 rtx_insn *insns[2];
7215 machine_mode modes[2];
7216 rtx_insn *last_insns[2];
7217 unsigned int i;
7218 rtx newreg;
7219 edge_iterator ei;
7221 /* We expect to have two successors. Look at both before picking
7222 the final mode for the comparison. If we have more successors
7223 (i.e., some sort of table jump, although that seems unlikely),
7224 then we require all beyond the first two to use the same
7225 mode. */
7227 found_equiv = false;
7228 mode = GET_MODE (cc_src);
7229 insn_count = 0;
7230 FOR_EACH_EDGE (e, ei, bb->succs)
7232 rtx_insn *insn;
7233 rtx_insn *end;
7235 if (e->flags & EDGE_COMPLEX)
7236 continue;
7238 if (EDGE_COUNT (e->dest->preds) != 1
7239 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7240 /* Avoid endless recursion on unreachable blocks. */
7241 || e->dest == orig_bb)
7242 continue;
7244 end = NEXT_INSN (BB_END (e->dest));
7245 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7247 rtx set;
7249 if (! INSN_P (insn))
7250 continue;
7252 /* If CC_SRC is modified, we have to stop looking for
7253 something which uses it. */
7254 if (modified_in_p (cc_src, insn))
7255 break;
7257 /* Check whether INSN sets CC_REG to CC_SRC. */
7258 set = single_set (insn);
7259 if (set
7260 && REG_P (SET_DEST (set))
7261 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7263 bool found;
7264 machine_mode set_mode;
7265 machine_mode comp_mode;
7267 found = false;
7268 set_mode = GET_MODE (SET_SRC (set));
7269 comp_mode = set_mode;
7270 if (rtx_equal_p (cc_src, SET_SRC (set)))
7271 found = true;
7272 else if (GET_CODE (cc_src) == COMPARE
7273 && GET_CODE (SET_SRC (set)) == COMPARE
7274 && mode != set_mode
7275 && rtx_equal_p (XEXP (cc_src, 0),
7276 XEXP (SET_SRC (set), 0))
7277 && rtx_equal_p (XEXP (cc_src, 1),
7278 XEXP (SET_SRC (set), 1)))
7281 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7282 if (comp_mode != VOIDmode
7283 && (can_change_mode || comp_mode == mode))
7284 found = true;
7287 if (found)
7289 found_equiv = true;
7290 if (insn_count < ARRAY_SIZE (insns))
7292 insns[insn_count] = insn;
7293 modes[insn_count] = set_mode;
7294 last_insns[insn_count] = end;
7295 ++insn_count;
7297 if (mode != comp_mode)
7299 gcc_assert (can_change_mode);
7300 mode = comp_mode;
7302 /* The modified insn will be re-recognized later. */
7303 PUT_MODE (cc_src, mode);
7306 else
7308 if (set_mode != mode)
7310 /* We found a matching expression in the
7311 wrong mode, but we don't have room to
7312 store it in the array. Punt. This case
7313 should be rare. */
7314 break;
7316 /* INSN sets CC_REG to a value equal to CC_SRC
7317 with the right mode. We can simply delete
7318 it. */
7319 delete_insn (insn);
7322 /* We found an instruction to delete. Keep looking,
7323 in the hopes of finding a three-way jump. */
7324 continue;
7327 /* We found an instruction which sets the condition
7328 code, so don't look any farther. */
7329 break;
7332 /* If INSN sets CC_REG in some other way, don't look any
7333 farther. */
7334 if (reg_set_p (cc_reg, insn))
7335 break;
7338 /* If we fell off the bottom of the block, we can keep looking
7339 through successors. We pass CAN_CHANGE_MODE as false because
7340 we aren't prepared to handle compatibility between the
7341 further blocks and this block. */
7342 if (insn == end)
7344 machine_mode submode;
7346 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7347 if (submode != VOIDmode)
7349 gcc_assert (submode == mode);
7350 found_equiv = true;
7351 can_change_mode = false;
7356 if (! found_equiv)
7357 return VOIDmode;
7359 /* Now INSN_COUNT is the number of instructions we found which set
7360 CC_REG to a value equivalent to CC_SRC. The instructions are in
7361 INSNS. The modes used by those instructions are in MODES. */
7363 newreg = NULL_RTX;
7364 for (i = 0; i < insn_count; ++i)
7366 if (modes[i] != mode)
7368 /* We need to change the mode of CC_REG in INSNS[i] and
7369 subsequent instructions. */
7370 if (! newreg)
7372 if (GET_MODE (cc_reg) == mode)
7373 newreg = cc_reg;
7374 else
7375 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7377 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7378 newreg);
7381 delete_insn_and_edges (insns[i]);
7384 return mode;
7387 /* If we have a fixed condition code register (or two), walk through
7388 the instructions and try to eliminate duplicate assignments. */
7390 static void
7391 cse_condition_code_reg (void)
7393 unsigned int cc_regno_1;
7394 unsigned int cc_regno_2;
7395 rtx cc_reg_1;
7396 rtx cc_reg_2;
7397 basic_block bb;
7399 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7400 return;
7402 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7403 if (cc_regno_2 != INVALID_REGNUM)
7404 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7405 else
7406 cc_reg_2 = NULL_RTX;
7408 FOR_EACH_BB_FN (bb, cfun)
7410 rtx_insn *last_insn;
7411 rtx cc_reg;
7412 rtx_insn *insn;
7413 rtx_insn *cc_src_insn;
7414 rtx cc_src;
7415 machine_mode mode;
7416 machine_mode orig_mode;
7418 /* Look for blocks which end with a conditional jump based on a
7419 condition code register. Then look for the instruction which
7420 sets the condition code register. Then look through the
7421 successor blocks for instructions which set the condition
7422 code register to the same value. There are other possible
7423 uses of the condition code register, but these are by far the
7424 most common and the ones which we are most likely to be able
7425 to optimize. */
7427 last_insn = BB_END (bb);
7428 if (!JUMP_P (last_insn))
7429 continue;
7431 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7432 cc_reg = cc_reg_1;
7433 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7434 cc_reg = cc_reg_2;
7435 else
7436 continue;
7438 cc_src_insn = NULL;
7439 cc_src = NULL_RTX;
7440 for (insn = PREV_INSN (last_insn);
7441 insn && insn != PREV_INSN (BB_HEAD (bb));
7442 insn = PREV_INSN (insn))
7444 rtx set;
7446 if (! INSN_P (insn))
7447 continue;
7448 set = single_set (insn);
7449 if (set
7450 && REG_P (SET_DEST (set))
7451 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7453 cc_src_insn = insn;
7454 cc_src = SET_SRC (set);
7455 break;
7457 else if (reg_set_p (cc_reg, insn))
7458 break;
7461 if (! cc_src_insn)
7462 continue;
7464 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7465 continue;
7467 /* Now CC_REG is a condition code register used for a
7468 conditional jump at the end of the block, and CC_SRC, in
7469 CC_SRC_INSN, is the value to which that condition code
7470 register is set, and CC_SRC is still meaningful at the end of
7471 the basic block. */
7473 orig_mode = GET_MODE (cc_src);
7474 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7475 if (mode != VOIDmode)
7477 gcc_assert (mode == GET_MODE (cc_src));
7478 if (mode != orig_mode)
7480 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7482 cse_change_cc_mode_insn (cc_src_insn, newreg);
7484 /* Do the same in the following insns that use the
7485 current value of CC_REG within BB. */
7486 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7487 NEXT_INSN (last_insn),
7488 newreg);
7495 /* Perform common subexpression elimination. Nonzero value from
7496 `cse_main' means that jumps were simplified and some code may now
7497 be unreachable, so do jump optimization again. */
7498 static unsigned int
7499 rest_of_handle_cse (void)
7501 int tem;
7503 if (dump_file)
7504 dump_flow_info (dump_file, dump_flags);
7506 tem = cse_main (get_insns (), max_reg_num ());
7508 /* If we are not running more CSE passes, then we are no longer
7509 expecting CSE to be run. But always rerun it in a cheap mode. */
7510 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7512 if (tem == 2)
7514 timevar_push (TV_JUMP);
7515 rebuild_jump_labels (get_insns ());
7516 cleanup_cfg (CLEANUP_CFG_CHANGED);
7517 timevar_pop (TV_JUMP);
7519 else if (tem == 1 || optimize > 1)
7520 cleanup_cfg (0);
7522 return 0;
7525 namespace {
7527 const pass_data pass_data_cse =
7529 RTL_PASS, /* type */
7530 "cse1", /* name */
7531 OPTGROUP_NONE, /* optinfo_flags */
7532 TV_CSE, /* tv_id */
7533 0, /* properties_required */
7534 0, /* properties_provided */
7535 0, /* properties_destroyed */
7536 0, /* todo_flags_start */
7537 TODO_df_finish, /* todo_flags_finish */
7540 class pass_cse : public rtl_opt_pass
7542 public:
7543 pass_cse (gcc::context *ctxt)
7544 : rtl_opt_pass (pass_data_cse, ctxt)
7547 /* opt_pass methods: */
7548 virtual bool gate (function *) { return optimize > 0; }
7549 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7551 }; // class pass_cse
7553 } // anon namespace
7555 rtl_opt_pass *
7556 make_pass_cse (gcc::context *ctxt)
7558 return new pass_cse (ctxt);
7562 /* Run second CSE pass after loop optimizations. */
7563 static unsigned int
7564 rest_of_handle_cse2 (void)
7566 int tem;
7568 if (dump_file)
7569 dump_flow_info (dump_file, dump_flags);
7571 tem = cse_main (get_insns (), max_reg_num ());
7573 /* Run a pass to eliminate duplicated assignments to condition code
7574 registers. We have to run this after bypass_jumps, because it
7575 makes it harder for that pass to determine whether a jump can be
7576 bypassed safely. */
7577 cse_condition_code_reg ();
7579 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7581 if (tem == 2)
7583 timevar_push (TV_JUMP);
7584 rebuild_jump_labels (get_insns ());
7585 cleanup_cfg (CLEANUP_CFG_CHANGED);
7586 timevar_pop (TV_JUMP);
7588 else if (tem == 1)
7589 cleanup_cfg (0);
7591 cse_not_expected = 1;
7592 return 0;
7596 namespace {
7598 const pass_data pass_data_cse2 =
7600 RTL_PASS, /* type */
7601 "cse2", /* name */
7602 OPTGROUP_NONE, /* optinfo_flags */
7603 TV_CSE2, /* tv_id */
7604 0, /* properties_required */
7605 0, /* properties_provided */
7606 0, /* properties_destroyed */
7607 0, /* todo_flags_start */
7608 TODO_df_finish, /* todo_flags_finish */
7611 class pass_cse2 : public rtl_opt_pass
7613 public:
7614 pass_cse2 (gcc::context *ctxt)
7615 : rtl_opt_pass (pass_data_cse2, ctxt)
7618 /* opt_pass methods: */
7619 virtual bool gate (function *)
7621 return optimize > 0 && flag_rerun_cse_after_loop;
7624 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7626 }; // class pass_cse2
7628 } // anon namespace
7630 rtl_opt_pass *
7631 make_pass_cse2 (gcc::context *ctxt)
7633 return new pass_cse2 (ctxt);
7636 /* Run second CSE pass after loop optimizations. */
7637 static unsigned int
7638 rest_of_handle_cse_after_global_opts (void)
7640 int save_cfj;
7641 int tem;
7643 /* We only want to do local CSE, so don't follow jumps. */
7644 save_cfj = flag_cse_follow_jumps;
7645 flag_cse_follow_jumps = 0;
7647 rebuild_jump_labels (get_insns ());
7648 tem = cse_main (get_insns (), max_reg_num ());
7649 purge_all_dead_edges ();
7650 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7652 cse_not_expected = !flag_rerun_cse_after_loop;
7654 /* If cse altered any jumps, rerun jump opts to clean things up. */
7655 if (tem == 2)
7657 timevar_push (TV_JUMP);
7658 rebuild_jump_labels (get_insns ());
7659 cleanup_cfg (CLEANUP_CFG_CHANGED);
7660 timevar_pop (TV_JUMP);
7662 else if (tem == 1)
7663 cleanup_cfg (0);
7665 flag_cse_follow_jumps = save_cfj;
7666 return 0;
7669 namespace {
7671 const pass_data pass_data_cse_after_global_opts =
7673 RTL_PASS, /* type */
7674 "cse_local", /* name */
7675 OPTGROUP_NONE, /* optinfo_flags */
7676 TV_CSE, /* tv_id */
7677 0, /* properties_required */
7678 0, /* properties_provided */
7679 0, /* properties_destroyed */
7680 0, /* todo_flags_start */
7681 TODO_df_finish, /* todo_flags_finish */
7684 class pass_cse_after_global_opts : public rtl_opt_pass
7686 public:
7687 pass_cse_after_global_opts (gcc::context *ctxt)
7688 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7691 /* opt_pass methods: */
7692 virtual bool gate (function *)
7694 return optimize > 0 && flag_rerun_cse_after_global_opts;
7697 virtual unsigned int execute (function *)
7699 return rest_of_handle_cse_after_global_opts ();
7702 }; // class pass_cse_after_global_opts
7704 } // anon namespace
7706 rtl_opt_pass *
7707 make_pass_cse_after_global_opts (gcc::context *ctxt)
7709 return new pass_cse_after_global_opts (ctxt);