2017-11-19 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / fortran / resolve.c
blob9a814017c36237da2e099750d30ef31aa6a4b1b5
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
33 /* Types used in equivalence statements. */
35 enum seq_type
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
43 typedef struct code_stack
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
53 code_stack;
55 static code_stack *cs_base = NULL;
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
73 static int omp_workshare_flag;
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
82 /* The id of the last entry seen. */
83 static int current_entry_id;
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
92 bool
93 gfc_is_formal_arg (void)
95 return formal_arg_flag;
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
102 for (ns = ns->parent; ns; ns = ns->parent)
104 if (sym->ns == ns)
105 return true;
108 return false;
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
120 if (where)
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
130 return false;
133 return true;
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
147 if (ifc->generic)
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
181 return true;
185 static void resolve_symbol (gfc_symbol *sym);
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
193 gfc_symbol *ifc = sym->ts.interface;
195 if (!ifc)
196 return true;
198 if (ifc == sym)
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
214 if (ifc->result)
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
224 else
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
254 return true;
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
288 formal_arg_flag = true;
290 for (f = proc->formal; f; f = f->next)
292 gfc_array_spec *as;
294 sym = f->sym;
296 if (sym == NULL)
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
313 if (strcmp (proc->name, sym->name) == 0)
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
324 if (sym->attr.subroutine || sym->attr.external)
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
329 else
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
380 if (gfc_pure (proc))
382 if (sym->attr.flavor == FL_PROCEDURE)
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
392 else if (!sym->attr.pointer)
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
432 if (proc->attr.implicit_pure)
434 if (sym->attr.flavor == FL_PROCEDURE)
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
439 else if (!sym->attr.pointer)
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
451 if (gfc_elemental (proc))
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
491 if (sym->attr.flavor == FL_PROCEDURE)
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
513 if (sym->as != NULL)
515 gfc_error ("Argument %qs of statement function at %L must "
516 "be scalar", sym->name, &sym->declared_at);
517 continue;
520 if (sym->ts.type == BT_CHARACTER)
522 gfc_charlen *cl = sym->ts.u.cl;
523 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
525 gfc_error ("Character-valued argument %qs of statement "
526 "function at %L must have constant length",
527 sym->name, &sym->declared_at);
528 continue;
533 formal_arg_flag = false;
537 /* Work function called when searching for symbols that have argument lists
538 associated with them. */
540 static void
541 find_arglists (gfc_symbol *sym)
543 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
544 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
545 return;
547 resolve_formal_arglist (sym);
551 /* Given a namespace, resolve all formal argument lists within the namespace.
554 static void
555 resolve_formal_arglists (gfc_namespace *ns)
557 if (ns == NULL)
558 return;
560 gfc_traverse_ns (ns, find_arglists);
564 static void
565 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
567 bool t;
569 if (sym && sym->attr.flavor == FL_PROCEDURE
570 && sym->ns->parent
571 && sym->ns->parent->proc_name
572 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
573 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
574 gfc_error ("Contained procedure %qs at %L has the same name as its "
575 "encompassing procedure", sym->name, &sym->declared_at);
577 /* If this namespace is not a function or an entry master function,
578 ignore it. */
579 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
580 || sym->attr.entry_master)
581 return;
583 /* Try to find out of what the return type is. */
584 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
586 t = gfc_set_default_type (sym->result, 0, ns);
588 if (!t && !sym->result->attr.untyped)
590 if (sym->result == sym)
591 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
592 sym->name, &sym->declared_at);
593 else if (!sym->result->attr.proc_pointer)
594 gfc_error ("Result %qs of contained function %qs at %L has "
595 "no IMPLICIT type", sym->result->name, sym->name,
596 &sym->result->declared_at);
597 sym->result->attr.untyped = 1;
601 /* Fortran 95 Draft Standard, page 51, Section 5.1.1.5, on the Character
602 type, lists the only ways a character length value of * can be used:
603 dummy arguments of procedures, named constants, and function results
604 in external functions. Internal function results and results of module
605 procedures are not on this list, ergo, not permitted. */
607 if (sym->result->ts.type == BT_CHARACTER)
609 gfc_charlen *cl = sym->result->ts.u.cl;
610 if ((!cl || !cl->length) && !sym->result->ts.deferred)
612 /* See if this is a module-procedure and adapt error message
613 accordingly. */
614 bool module_proc;
615 gcc_assert (ns->parent && ns->parent->proc_name);
616 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
618 gfc_error (module_proc
619 ? G_("Character-valued module procedure %qs at %L"
620 " must not be assumed length")
621 : G_("Character-valued internal function %qs at %L"
622 " must not be assumed length"),
623 sym->name, &sym->declared_at);
629 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
630 introduce duplicates. */
632 static void
633 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
635 gfc_formal_arglist *f, *new_arglist;
636 gfc_symbol *new_sym;
638 for (; new_args != NULL; new_args = new_args->next)
640 new_sym = new_args->sym;
641 /* See if this arg is already in the formal argument list. */
642 for (f = proc->formal; f; f = f->next)
644 if (new_sym == f->sym)
645 break;
648 if (f)
649 continue;
651 /* Add a new argument. Argument order is not important. */
652 new_arglist = gfc_get_formal_arglist ();
653 new_arglist->sym = new_sym;
654 new_arglist->next = proc->formal;
655 proc->formal = new_arglist;
660 /* Flag the arguments that are not present in all entries. */
662 static void
663 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
665 gfc_formal_arglist *f, *head;
666 head = new_args;
668 for (f = proc->formal; f; f = f->next)
670 if (f->sym == NULL)
671 continue;
673 for (new_args = head; new_args; new_args = new_args->next)
675 if (new_args->sym == f->sym)
676 break;
679 if (new_args)
680 continue;
682 f->sym->attr.not_always_present = 1;
687 /* Resolve alternate entry points. If a symbol has multiple entry points we
688 create a new master symbol for the main routine, and turn the existing
689 symbol into an entry point. */
691 static void
692 resolve_entries (gfc_namespace *ns)
694 gfc_namespace *old_ns;
695 gfc_code *c;
696 gfc_symbol *proc;
697 gfc_entry_list *el;
698 char name[GFC_MAX_SYMBOL_LEN + 1];
699 static int master_count = 0;
701 if (ns->proc_name == NULL)
702 return;
704 /* No need to do anything if this procedure doesn't have alternate entry
705 points. */
706 if (!ns->entries)
707 return;
709 /* We may already have resolved alternate entry points. */
710 if (ns->proc_name->attr.entry_master)
711 return;
713 /* If this isn't a procedure something has gone horribly wrong. */
714 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
716 /* Remember the current namespace. */
717 old_ns = gfc_current_ns;
719 gfc_current_ns = ns;
721 /* Add the main entry point to the list of entry points. */
722 el = gfc_get_entry_list ();
723 el->sym = ns->proc_name;
724 el->id = 0;
725 el->next = ns->entries;
726 ns->entries = el;
727 ns->proc_name->attr.entry = 1;
729 /* If it is a module function, it needs to be in the right namespace
730 so that gfc_get_fake_result_decl can gather up the results. The
731 need for this arose in get_proc_name, where these beasts were
732 left in their own namespace, to keep prior references linked to
733 the entry declaration.*/
734 if (ns->proc_name->attr.function
735 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
736 el->sym->ns = ns;
738 /* Do the same for entries where the master is not a module
739 procedure. These are retained in the module namespace because
740 of the module procedure declaration. */
741 for (el = el->next; el; el = el->next)
742 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
743 && el->sym->attr.mod_proc)
744 el->sym->ns = ns;
745 el = ns->entries;
747 /* Add an entry statement for it. */
748 c = gfc_get_code (EXEC_ENTRY);
749 c->ext.entry = el;
750 c->next = ns->code;
751 ns->code = c;
753 /* Create a new symbol for the master function. */
754 /* Give the internal function a unique name (within this file).
755 Also include the function name so the user has some hope of figuring
756 out what is going on. */
757 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
758 master_count++, ns->proc_name->name);
759 gfc_get_ha_symbol (name, &proc);
760 gcc_assert (proc != NULL);
762 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
763 if (ns->proc_name->attr.subroutine)
764 gfc_add_subroutine (&proc->attr, proc->name, NULL);
765 else
767 gfc_symbol *sym;
768 gfc_typespec *ts, *fts;
769 gfc_array_spec *as, *fas;
770 gfc_add_function (&proc->attr, proc->name, NULL);
771 proc->result = proc;
772 fas = ns->entries->sym->as;
773 fas = fas ? fas : ns->entries->sym->result->as;
774 fts = &ns->entries->sym->result->ts;
775 if (fts->type == BT_UNKNOWN)
776 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
777 for (el = ns->entries->next; el; el = el->next)
779 ts = &el->sym->result->ts;
780 as = el->sym->as;
781 as = as ? as : el->sym->result->as;
782 if (ts->type == BT_UNKNOWN)
783 ts = gfc_get_default_type (el->sym->result->name, NULL);
785 if (! gfc_compare_types (ts, fts)
786 || (el->sym->result->attr.dimension
787 != ns->entries->sym->result->attr.dimension)
788 || (el->sym->result->attr.pointer
789 != ns->entries->sym->result->attr.pointer))
790 break;
791 else if (as && fas && ns->entries->sym->result != el->sym->result
792 && gfc_compare_array_spec (as, fas) == 0)
793 gfc_error ("Function %s at %L has entries with mismatched "
794 "array specifications", ns->entries->sym->name,
795 &ns->entries->sym->declared_at);
796 /* The characteristics need to match and thus both need to have
797 the same string length, i.e. both len=*, or both len=4.
798 Having both len=<variable> is also possible, but difficult to
799 check at compile time. */
800 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
801 && (((ts->u.cl->length && !fts->u.cl->length)
802 ||(!ts->u.cl->length && fts->u.cl->length))
803 || (ts->u.cl->length
804 && ts->u.cl->length->expr_type
805 != fts->u.cl->length->expr_type)
806 || (ts->u.cl->length
807 && ts->u.cl->length->expr_type == EXPR_CONSTANT
808 && mpz_cmp (ts->u.cl->length->value.integer,
809 fts->u.cl->length->value.integer) != 0)))
810 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
811 "entries returning variables of different "
812 "string lengths", ns->entries->sym->name,
813 &ns->entries->sym->declared_at);
816 if (el == NULL)
818 sym = ns->entries->sym->result;
819 /* All result types the same. */
820 proc->ts = *fts;
821 if (sym->attr.dimension)
822 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
823 if (sym->attr.pointer)
824 gfc_add_pointer (&proc->attr, NULL);
826 else
828 /* Otherwise the result will be passed through a union by
829 reference. */
830 proc->attr.mixed_entry_master = 1;
831 for (el = ns->entries; el; el = el->next)
833 sym = el->sym->result;
834 if (sym->attr.dimension)
836 if (el == ns->entries)
837 gfc_error ("FUNCTION result %s can't be an array in "
838 "FUNCTION %s at %L", sym->name,
839 ns->entries->sym->name, &sym->declared_at);
840 else
841 gfc_error ("ENTRY result %s can't be an array in "
842 "FUNCTION %s at %L", sym->name,
843 ns->entries->sym->name, &sym->declared_at);
845 else if (sym->attr.pointer)
847 if (el == ns->entries)
848 gfc_error ("FUNCTION result %s can't be a POINTER in "
849 "FUNCTION %s at %L", sym->name,
850 ns->entries->sym->name, &sym->declared_at);
851 else
852 gfc_error ("ENTRY result %s can't be a POINTER in "
853 "FUNCTION %s at %L", sym->name,
854 ns->entries->sym->name, &sym->declared_at);
856 else
858 ts = &sym->ts;
859 if (ts->type == BT_UNKNOWN)
860 ts = gfc_get_default_type (sym->name, NULL);
861 switch (ts->type)
863 case BT_INTEGER:
864 if (ts->kind == gfc_default_integer_kind)
865 sym = NULL;
866 break;
867 case BT_REAL:
868 if (ts->kind == gfc_default_real_kind
869 || ts->kind == gfc_default_double_kind)
870 sym = NULL;
871 break;
872 case BT_COMPLEX:
873 if (ts->kind == gfc_default_complex_kind)
874 sym = NULL;
875 break;
876 case BT_LOGICAL:
877 if (ts->kind == gfc_default_logical_kind)
878 sym = NULL;
879 break;
880 case BT_UNKNOWN:
881 /* We will issue error elsewhere. */
882 sym = NULL;
883 break;
884 default:
885 break;
887 if (sym)
889 if (el == ns->entries)
890 gfc_error ("FUNCTION result %s can't be of type %s "
891 "in FUNCTION %s at %L", sym->name,
892 gfc_typename (ts), ns->entries->sym->name,
893 &sym->declared_at);
894 else
895 gfc_error ("ENTRY result %s can't be of type %s "
896 "in FUNCTION %s at %L", sym->name,
897 gfc_typename (ts), ns->entries->sym->name,
898 &sym->declared_at);
904 proc->attr.access = ACCESS_PRIVATE;
905 proc->attr.entry_master = 1;
907 /* Merge all the entry point arguments. */
908 for (el = ns->entries; el; el = el->next)
909 merge_argument_lists (proc, el->sym->formal);
911 /* Check the master formal arguments for any that are not
912 present in all entry points. */
913 for (el = ns->entries; el; el = el->next)
914 check_argument_lists (proc, el->sym->formal);
916 /* Use the master function for the function body. */
917 ns->proc_name = proc;
919 /* Finalize the new symbols. */
920 gfc_commit_symbols ();
922 /* Restore the original namespace. */
923 gfc_current_ns = old_ns;
927 /* Resolve common variables. */
928 static void
929 resolve_common_vars (gfc_common_head *common_block, bool named_common)
931 gfc_symbol *csym = common_block->head;
933 for (; csym; csym = csym->common_next)
935 /* gfc_add_in_common may have been called before, but the reported errors
936 have been ignored to continue parsing.
937 We do the checks again here. */
938 if (!csym->attr.use_assoc)
939 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
941 if (csym->value || csym->attr.data)
943 if (!csym->ns->is_block_data)
944 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
945 "but only in BLOCK DATA initialization is "
946 "allowed", csym->name, &csym->declared_at);
947 else if (!named_common)
948 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
949 "in a blank COMMON but initialization is only "
950 "allowed in named common blocks", csym->name,
951 &csym->declared_at);
954 if (UNLIMITED_POLY (csym))
955 gfc_error_now ("%qs in cannot appear in COMMON at %L "
956 "[F2008:C5100]", csym->name, &csym->declared_at);
958 if (csym->ts.type != BT_DERIVED)
959 continue;
961 if (!(csym->ts.u.derived->attr.sequence
962 || csym->ts.u.derived->attr.is_bind_c))
963 gfc_error_now ("Derived type variable %qs in COMMON at %L "
964 "has neither the SEQUENCE nor the BIND(C) "
965 "attribute", csym->name, &csym->declared_at);
966 if (csym->ts.u.derived->attr.alloc_comp)
967 gfc_error_now ("Derived type variable %qs in COMMON at %L "
968 "has an ultimate component that is "
969 "allocatable", csym->name, &csym->declared_at);
970 if (gfc_has_default_initializer (csym->ts.u.derived))
971 gfc_error_now ("Derived type variable %qs in COMMON at %L "
972 "may not have default initializer", csym->name,
973 &csym->declared_at);
975 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
976 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
980 /* Resolve common blocks. */
981 static void
982 resolve_common_blocks (gfc_symtree *common_root)
984 gfc_symbol *sym;
985 gfc_gsymbol * gsym;
987 if (common_root == NULL)
988 return;
990 if (common_root->left)
991 resolve_common_blocks (common_root->left);
992 if (common_root->right)
993 resolve_common_blocks (common_root->right);
995 resolve_common_vars (common_root->n.common, true);
997 /* The common name is a global name - in Fortran 2003 also if it has a
998 C binding name, since Fortran 2008 only the C binding name is a global
999 identifier. */
1000 if (!common_root->n.common->binding_label
1001 || gfc_notification_std (GFC_STD_F2008))
1003 gsym = gfc_find_gsymbol (gfc_gsym_root,
1004 common_root->n.common->name);
1006 if (gsym && gfc_notification_std (GFC_STD_F2008)
1007 && gsym->type == GSYM_COMMON
1008 && ((common_root->n.common->binding_label
1009 && (!gsym->binding_label
1010 || strcmp (common_root->n.common->binding_label,
1011 gsym->binding_label) != 0))
1012 || (!common_root->n.common->binding_label
1013 && gsym->binding_label)))
1015 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1016 "identifier and must thus have the same binding name "
1017 "as the same-named COMMON block at %L: %s vs %s",
1018 common_root->n.common->name, &common_root->n.common->where,
1019 &gsym->where,
1020 common_root->n.common->binding_label
1021 ? common_root->n.common->binding_label : "(blank)",
1022 gsym->binding_label ? gsym->binding_label : "(blank)");
1023 return;
1026 if (gsym && gsym->type != GSYM_COMMON
1027 && !common_root->n.common->binding_label)
1029 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1030 "as entity at %L",
1031 common_root->n.common->name, &common_root->n.common->where,
1032 &gsym->where);
1033 return;
1035 if (gsym && gsym->type != GSYM_COMMON)
1037 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1038 "%L sharing the identifier with global non-COMMON-block "
1039 "entity at %L", common_root->n.common->name,
1040 &common_root->n.common->where, &gsym->where);
1041 return;
1043 if (!gsym)
1045 gsym = gfc_get_gsymbol (common_root->n.common->name);
1046 gsym->type = GSYM_COMMON;
1047 gsym->where = common_root->n.common->where;
1048 gsym->defined = 1;
1050 gsym->used = 1;
1053 if (common_root->n.common->binding_label)
1055 gsym = gfc_find_gsymbol (gfc_gsym_root,
1056 common_root->n.common->binding_label);
1057 if (gsym && gsym->type != GSYM_COMMON)
1059 gfc_error ("COMMON block at %L with binding label %s uses the same "
1060 "global identifier as entity at %L",
1061 &common_root->n.common->where,
1062 common_root->n.common->binding_label, &gsym->where);
1063 return;
1065 if (!gsym)
1067 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1068 gsym->type = GSYM_COMMON;
1069 gsym->where = common_root->n.common->where;
1070 gsym->defined = 1;
1072 gsym->used = 1;
1075 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1076 if (sym == NULL)
1077 return;
1079 if (sym->attr.flavor == FL_PARAMETER)
1080 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1081 sym->name, &common_root->n.common->where, &sym->declared_at);
1083 if (sym->attr.external)
1084 gfc_error ("COMMON block %qs at %L can not have the EXTERNAL attribute",
1085 sym->name, &common_root->n.common->where);
1087 if (sym->attr.intrinsic)
1088 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1089 sym->name, &common_root->n.common->where);
1090 else if (sym->attr.result
1091 || gfc_is_function_return_value (sym, gfc_current_ns))
1092 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1093 "that is also a function result", sym->name,
1094 &common_root->n.common->where);
1095 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1096 && sym->attr.proc != PROC_ST_FUNCTION)
1097 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1098 "that is also a global procedure", sym->name,
1099 &common_root->n.common->where);
1103 /* Resolve contained function types. Because contained functions can call one
1104 another, they have to be worked out before any of the contained procedures
1105 can be resolved.
1107 The good news is that if a function doesn't already have a type, the only
1108 way it can get one is through an IMPLICIT type or a RESULT variable, because
1109 by definition contained functions are contained namespace they're contained
1110 in, not in a sibling or parent namespace. */
1112 static void
1113 resolve_contained_functions (gfc_namespace *ns)
1115 gfc_namespace *child;
1116 gfc_entry_list *el;
1118 resolve_formal_arglists (ns);
1120 for (child = ns->contained; child; child = child->sibling)
1122 /* Resolve alternate entry points first. */
1123 resolve_entries (child);
1125 /* Then check function return types. */
1126 resolve_contained_fntype (child->proc_name, child);
1127 for (el = child->entries; el; el = el->next)
1128 resolve_contained_fntype (el->sym, child);
1134 /* A Parameterized Derived Type constructor must contain values for
1135 the PDT KIND parameters or they must have a default initializer.
1136 Go through the constructor picking out the KIND expressions,
1137 storing them in 'param_list' and then call gfc_get_pdt_instance
1138 to obtain the PDT instance. */
1140 static gfc_actual_arglist *param_list, *param_tail, *param;
1142 static bool
1143 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1145 param = gfc_get_actual_arglist ();
1146 if (!param_list)
1147 param_list = param_tail = param;
1148 else
1150 param_tail->next = param;
1151 param_tail = param_tail->next;
1154 param_tail->name = c->name;
1155 if (expr)
1156 param_tail->expr = gfc_copy_expr (expr);
1157 else if (c->initializer)
1158 param_tail->expr = gfc_copy_expr (c->initializer);
1159 else
1161 param_tail->spec_type = SPEC_ASSUMED;
1162 if (c->attr.pdt_kind)
1164 gfc_error ("The KIND parameter %qs in the PDT constructor "
1165 "at %C has no value", param->name);
1166 return false;
1170 return true;
1173 static bool
1174 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1175 gfc_symbol *derived)
1177 gfc_constructor *cons;
1178 gfc_component *comp;
1179 bool t = true;
1181 if (expr && expr->expr_type == EXPR_STRUCTURE)
1182 cons = gfc_constructor_first (expr->value.constructor);
1183 else if (constr)
1184 cons = *constr;
1185 gcc_assert (cons);
1187 comp = derived->components;
1189 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1191 if (cons->expr
1192 && cons->expr->expr_type == EXPR_STRUCTURE
1193 && comp->ts.type == BT_DERIVED)
1195 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1196 if (!t)
1197 return t;
1199 else if (comp->ts.type == BT_DERIVED)
1201 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1202 if (!t)
1203 return t;
1205 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1206 && derived->attr.pdt_template)
1208 t = get_pdt_spec_expr (comp, cons->expr);
1209 if (!t)
1210 return t;
1213 return t;
1217 static bool resolve_fl_derived0 (gfc_symbol *sym);
1218 static bool resolve_fl_struct (gfc_symbol *sym);
1221 /* Resolve all of the elements of a structure constructor and make sure that
1222 the types are correct. The 'init' flag indicates that the given
1223 constructor is an initializer. */
1225 static bool
1226 resolve_structure_cons (gfc_expr *expr, int init)
1228 gfc_constructor *cons;
1229 gfc_component *comp;
1230 bool t;
1231 symbol_attribute a;
1233 t = true;
1235 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1237 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1238 resolve_fl_derived0 (expr->ts.u.derived);
1239 else
1240 resolve_fl_struct (expr->ts.u.derived);
1242 /* If this is a Parameterized Derived Type template, find the
1243 instance corresponding to the PDT kind parameters. */
1244 if (expr->ts.u.derived->attr.pdt_template)
1246 param_list = NULL;
1247 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1248 if (!t)
1249 return t;
1250 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1252 expr->param_list = gfc_copy_actual_arglist (param_list);
1254 if (param_list)
1255 gfc_free_actual_arglist (param_list);
1257 if (!expr->ts.u.derived->attr.pdt_type)
1258 return false;
1262 cons = gfc_constructor_first (expr->value.constructor);
1264 /* A constructor may have references if it is the result of substituting a
1265 parameter variable. In this case we just pull out the component we
1266 want. */
1267 if (expr->ref)
1268 comp = expr->ref->u.c.sym->components;
1269 else
1270 comp = expr->ts.u.derived->components;
1272 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1274 int rank;
1276 if (!cons->expr)
1277 continue;
1279 /* Unions use an EXPR_NULL contrived expression to tell the translation
1280 phase to generate an initializer of the appropriate length.
1281 Ignore it here. */
1282 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1283 continue;
1285 if (!gfc_resolve_expr (cons->expr))
1287 t = false;
1288 continue;
1291 rank = comp->as ? comp->as->rank : 0;
1292 if (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->as)
1293 rank = CLASS_DATA (comp)->as->rank;
1295 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1296 && (comp->attr.allocatable || cons->expr->rank))
1298 gfc_error ("The rank of the element in the structure "
1299 "constructor at %L does not match that of the "
1300 "component (%d/%d)", &cons->expr->where,
1301 cons->expr->rank, rank);
1302 t = false;
1305 /* If we don't have the right type, try to convert it. */
1307 if (!comp->attr.proc_pointer &&
1308 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1310 if (strcmp (comp->name, "_extends") == 0)
1312 /* Can afford to be brutal with the _extends initializer.
1313 The derived type can get lost because it is PRIVATE
1314 but it is not usage constrained by the standard. */
1315 cons->expr->ts = comp->ts;
1317 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1319 gfc_error ("The element in the structure constructor at %L, "
1320 "for pointer component %qs, is %s but should be %s",
1321 &cons->expr->where, comp->name,
1322 gfc_basic_typename (cons->expr->ts.type),
1323 gfc_basic_typename (comp->ts.type));
1324 t = false;
1326 else
1328 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1329 if (t)
1330 t = t2;
1334 /* For strings, the length of the constructor should be the same as
1335 the one of the structure, ensure this if the lengths are known at
1336 compile time and when we are dealing with PARAMETER or structure
1337 constructors. */
1338 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1339 && comp->ts.u.cl->length
1340 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1341 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1342 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1343 && cons->expr->rank != 0
1344 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1345 comp->ts.u.cl->length->value.integer) != 0)
1347 if (cons->expr->expr_type == EXPR_VARIABLE
1348 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1350 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1351 to make use of the gfc_resolve_character_array_constructor
1352 machinery. The expression is later simplified away to
1353 an array of string literals. */
1354 gfc_expr *para = cons->expr;
1355 cons->expr = gfc_get_expr ();
1356 cons->expr->ts = para->ts;
1357 cons->expr->where = para->where;
1358 cons->expr->expr_type = EXPR_ARRAY;
1359 cons->expr->rank = para->rank;
1360 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1361 gfc_constructor_append_expr (&cons->expr->value.constructor,
1362 para, &cons->expr->where);
1365 if (cons->expr->expr_type == EXPR_ARRAY)
1367 /* Rely on the cleanup of the namespace to deal correctly with
1368 the old charlen. (There was a block here that attempted to
1369 remove the charlen but broke the chain in so doing.) */
1370 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1371 cons->expr->ts.u.cl->length_from_typespec = true;
1372 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1373 gfc_resolve_character_array_constructor (cons->expr);
1377 if (cons->expr->expr_type == EXPR_NULL
1378 && !(comp->attr.pointer || comp->attr.allocatable
1379 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1380 || (comp->ts.type == BT_CLASS
1381 && (CLASS_DATA (comp)->attr.class_pointer
1382 || CLASS_DATA (comp)->attr.allocatable))))
1384 t = false;
1385 gfc_error ("The NULL in the structure constructor at %L is "
1386 "being applied to component %qs, which is neither "
1387 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1388 comp->name);
1391 if (comp->attr.proc_pointer && comp->ts.interface)
1393 /* Check procedure pointer interface. */
1394 gfc_symbol *s2 = NULL;
1395 gfc_component *c2;
1396 const char *name;
1397 char err[200];
1399 c2 = gfc_get_proc_ptr_comp (cons->expr);
1400 if (c2)
1402 s2 = c2->ts.interface;
1403 name = c2->name;
1405 else if (cons->expr->expr_type == EXPR_FUNCTION)
1407 s2 = cons->expr->symtree->n.sym->result;
1408 name = cons->expr->symtree->n.sym->result->name;
1410 else if (cons->expr->expr_type != EXPR_NULL)
1412 s2 = cons->expr->symtree->n.sym;
1413 name = cons->expr->symtree->n.sym->name;
1416 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1417 err, sizeof (err), NULL, NULL))
1419 gfc_error_opt (OPT_Wargument_mismatch,
1420 "Interface mismatch for procedure-pointer "
1421 "component %qs in structure constructor at %L:"
1422 " %s", comp->name, &cons->expr->where, err);
1423 return false;
1427 if (!comp->attr.pointer || comp->attr.proc_pointer
1428 || cons->expr->expr_type == EXPR_NULL)
1429 continue;
1431 a = gfc_expr_attr (cons->expr);
1433 if (!a.pointer && !a.target)
1435 t = false;
1436 gfc_error ("The element in the structure constructor at %L, "
1437 "for pointer component %qs should be a POINTER or "
1438 "a TARGET", &cons->expr->where, comp->name);
1441 if (init)
1443 /* F08:C461. Additional checks for pointer initialization. */
1444 if (a.allocatable)
1446 t = false;
1447 gfc_error ("Pointer initialization target at %L "
1448 "must not be ALLOCATABLE", &cons->expr->where);
1450 if (!a.save)
1452 t = false;
1453 gfc_error ("Pointer initialization target at %L "
1454 "must have the SAVE attribute", &cons->expr->where);
1458 /* F2003, C1272 (3). */
1459 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1460 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1461 || gfc_is_coindexed (cons->expr));
1462 if (impure && gfc_pure (NULL))
1464 t = false;
1465 gfc_error ("Invalid expression in the structure constructor for "
1466 "pointer component %qs at %L in PURE procedure",
1467 comp->name, &cons->expr->where);
1470 if (impure)
1471 gfc_unset_implicit_pure (NULL);
1474 return t;
1478 /****************** Expression name resolution ******************/
1480 /* Returns 0 if a symbol was not declared with a type or
1481 attribute declaration statement, nonzero otherwise. */
1483 static int
1484 was_declared (gfc_symbol *sym)
1486 symbol_attribute a;
1488 a = sym->attr;
1490 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1491 return 1;
1493 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1494 || a.optional || a.pointer || a.save || a.target || a.volatile_
1495 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1496 || a.asynchronous || a.codimension)
1497 return 1;
1499 return 0;
1503 /* Determine if a symbol is generic or not. */
1505 static int
1506 generic_sym (gfc_symbol *sym)
1508 gfc_symbol *s;
1510 if (sym->attr.generic ||
1511 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1512 return 1;
1514 if (was_declared (sym) || sym->ns->parent == NULL)
1515 return 0;
1517 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1519 if (s != NULL)
1521 if (s == sym)
1522 return 0;
1523 else
1524 return generic_sym (s);
1527 return 0;
1531 /* Determine if a symbol is specific or not. */
1533 static int
1534 specific_sym (gfc_symbol *sym)
1536 gfc_symbol *s;
1538 if (sym->attr.if_source == IFSRC_IFBODY
1539 || sym->attr.proc == PROC_MODULE
1540 || sym->attr.proc == PROC_INTERNAL
1541 || sym->attr.proc == PROC_ST_FUNCTION
1542 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1543 || sym->attr.external)
1544 return 1;
1546 if (was_declared (sym) || sym->ns->parent == NULL)
1547 return 0;
1549 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1551 return (s == NULL) ? 0 : specific_sym (s);
1555 /* Figure out if the procedure is specific, generic or unknown. */
1557 enum proc_type
1558 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1560 static proc_type
1561 procedure_kind (gfc_symbol *sym)
1563 if (generic_sym (sym))
1564 return PTYPE_GENERIC;
1566 if (specific_sym (sym))
1567 return PTYPE_SPECIFIC;
1569 return PTYPE_UNKNOWN;
1572 /* Check references to assumed size arrays. The flag need_full_assumed_size
1573 is nonzero when matching actual arguments. */
1575 static int need_full_assumed_size = 0;
1577 static bool
1578 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1580 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1581 return false;
1583 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1584 What should it be? */
1585 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1586 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1587 && (e->ref->u.ar.type == AR_FULL))
1589 gfc_error ("The upper bound in the last dimension must "
1590 "appear in the reference to the assumed size "
1591 "array %qs at %L", sym->name, &e->where);
1592 return true;
1594 return false;
1598 /* Look for bad assumed size array references in argument expressions
1599 of elemental and array valued intrinsic procedures. Since this is
1600 called from procedure resolution functions, it only recurses at
1601 operators. */
1603 static bool
1604 resolve_assumed_size_actual (gfc_expr *e)
1606 if (e == NULL)
1607 return false;
1609 switch (e->expr_type)
1611 case EXPR_VARIABLE:
1612 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1613 return true;
1614 break;
1616 case EXPR_OP:
1617 if (resolve_assumed_size_actual (e->value.op.op1)
1618 || resolve_assumed_size_actual (e->value.op.op2))
1619 return true;
1620 break;
1622 default:
1623 break;
1625 return false;
1629 /* Check a generic procedure, passed as an actual argument, to see if
1630 there is a matching specific name. If none, it is an error, and if
1631 more than one, the reference is ambiguous. */
1632 static int
1633 count_specific_procs (gfc_expr *e)
1635 int n;
1636 gfc_interface *p;
1637 gfc_symbol *sym;
1639 n = 0;
1640 sym = e->symtree->n.sym;
1642 for (p = sym->generic; p; p = p->next)
1643 if (strcmp (sym->name, p->sym->name) == 0)
1645 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1646 sym->name);
1647 n++;
1650 if (n > 1)
1651 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1652 &e->where);
1654 if (n == 0)
1655 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1656 "argument at %L", sym->name, &e->where);
1658 return n;
1662 /* See if a call to sym could possibly be a not allowed RECURSION because of
1663 a missing RECURSIVE declaration. This means that either sym is the current
1664 context itself, or sym is the parent of a contained procedure calling its
1665 non-RECURSIVE containing procedure.
1666 This also works if sym is an ENTRY. */
1668 static bool
1669 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1671 gfc_symbol* proc_sym;
1672 gfc_symbol* context_proc;
1673 gfc_namespace* real_context;
1675 if (sym->attr.flavor == FL_PROGRAM
1676 || gfc_fl_struct (sym->attr.flavor))
1677 return false;
1679 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1681 /* If we've got an ENTRY, find real procedure. */
1682 if (sym->attr.entry && sym->ns->entries)
1683 proc_sym = sym->ns->entries->sym;
1684 else
1685 proc_sym = sym;
1687 /* If sym is RECURSIVE, all is well of course. */
1688 if (proc_sym->attr.recursive || flag_recursive)
1689 return false;
1691 /* Find the context procedure's "real" symbol if it has entries.
1692 We look for a procedure symbol, so recurse on the parents if we don't
1693 find one (like in case of a BLOCK construct). */
1694 for (real_context = context; ; real_context = real_context->parent)
1696 /* We should find something, eventually! */
1697 gcc_assert (real_context);
1699 context_proc = (real_context->entries ? real_context->entries->sym
1700 : real_context->proc_name);
1702 /* In some special cases, there may not be a proc_name, like for this
1703 invalid code:
1704 real(bad_kind()) function foo () ...
1705 when checking the call to bad_kind ().
1706 In these cases, we simply return here and assume that the
1707 call is ok. */
1708 if (!context_proc)
1709 return false;
1711 if (context_proc->attr.flavor != FL_LABEL)
1712 break;
1715 /* A call from sym's body to itself is recursion, of course. */
1716 if (context_proc == proc_sym)
1717 return true;
1719 /* The same is true if context is a contained procedure and sym the
1720 containing one. */
1721 if (context_proc->attr.contained)
1723 gfc_symbol* parent_proc;
1725 gcc_assert (context->parent);
1726 parent_proc = (context->parent->entries ? context->parent->entries->sym
1727 : context->parent->proc_name);
1729 if (parent_proc == proc_sym)
1730 return true;
1733 return false;
1737 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1738 its typespec and formal argument list. */
1740 bool
1741 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1743 gfc_intrinsic_sym* isym = NULL;
1744 const char* symstd;
1746 if (sym->formal)
1747 return true;
1749 /* Already resolved. */
1750 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1751 return true;
1753 /* We already know this one is an intrinsic, so we don't call
1754 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1755 gfc_find_subroutine directly to check whether it is a function or
1756 subroutine. */
1758 if (sym->intmod_sym_id && sym->attr.subroutine)
1760 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1761 isym = gfc_intrinsic_subroutine_by_id (id);
1763 else if (sym->intmod_sym_id)
1765 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1766 isym = gfc_intrinsic_function_by_id (id);
1768 else if (!sym->attr.subroutine)
1769 isym = gfc_find_function (sym->name);
1771 if (isym && !sym->attr.subroutine)
1773 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1774 && !sym->attr.implicit_type)
1775 gfc_warning (OPT_Wsurprising,
1776 "Type specified for intrinsic function %qs at %L is"
1777 " ignored", sym->name, &sym->declared_at);
1779 if (!sym->attr.function &&
1780 !gfc_add_function(&sym->attr, sym->name, loc))
1781 return false;
1783 sym->ts = isym->ts;
1785 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1787 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1789 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1790 " specifier", sym->name, &sym->declared_at);
1791 return false;
1794 if (!sym->attr.subroutine &&
1795 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1796 return false;
1798 else
1800 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1801 &sym->declared_at);
1802 return false;
1805 gfc_copy_formal_args_intr (sym, isym, NULL);
1807 sym->attr.pure = isym->pure;
1808 sym->attr.elemental = isym->elemental;
1810 /* Check it is actually available in the standard settings. */
1811 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1813 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1814 "available in the current standard settings but %s. Use "
1815 "an appropriate %<-std=*%> option or enable "
1816 "%<-fall-intrinsics%> in order to use it.",
1817 sym->name, &sym->declared_at, symstd);
1818 return false;
1821 return true;
1825 /* Resolve a procedure expression, like passing it to a called procedure or as
1826 RHS for a procedure pointer assignment. */
1828 static bool
1829 resolve_procedure_expression (gfc_expr* expr)
1831 gfc_symbol* sym;
1833 if (expr->expr_type != EXPR_VARIABLE)
1834 return true;
1835 gcc_assert (expr->symtree);
1837 sym = expr->symtree->n.sym;
1839 if (sym->attr.intrinsic)
1840 gfc_resolve_intrinsic (sym, &expr->where);
1842 if (sym->attr.flavor != FL_PROCEDURE
1843 || (sym->attr.function && sym->result == sym))
1844 return true;
1846 /* A non-RECURSIVE procedure that is used as procedure expression within its
1847 own body is in danger of being called recursively. */
1848 if (is_illegal_recursion (sym, gfc_current_ns))
1849 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1850 " itself recursively. Declare it RECURSIVE or use"
1851 " %<-frecursive%>", sym->name, &expr->where);
1853 return true;
1857 /* Resolve an actual argument list. Most of the time, this is just
1858 resolving the expressions in the list.
1859 The exception is that we sometimes have to decide whether arguments
1860 that look like procedure arguments are really simple variable
1861 references. */
1863 static bool
1864 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1865 bool no_formal_args)
1867 gfc_symbol *sym;
1868 gfc_symtree *parent_st;
1869 gfc_expr *e;
1870 gfc_component *comp;
1871 int save_need_full_assumed_size;
1872 bool return_value = false;
1873 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1875 actual_arg = true;
1876 first_actual_arg = true;
1878 for (; arg; arg = arg->next)
1880 e = arg->expr;
1881 if (e == NULL)
1883 /* Check the label is a valid branching target. */
1884 if (arg->label)
1886 if (arg->label->defined == ST_LABEL_UNKNOWN)
1888 gfc_error ("Label %d referenced at %L is never defined",
1889 arg->label->value, &arg->label->where);
1890 goto cleanup;
1893 first_actual_arg = false;
1894 continue;
1897 if (e->expr_type == EXPR_VARIABLE
1898 && e->symtree->n.sym->attr.generic
1899 && no_formal_args
1900 && count_specific_procs (e) != 1)
1901 goto cleanup;
1903 if (e->ts.type != BT_PROCEDURE)
1905 save_need_full_assumed_size = need_full_assumed_size;
1906 if (e->expr_type != EXPR_VARIABLE)
1907 need_full_assumed_size = 0;
1908 if (!gfc_resolve_expr (e))
1909 goto cleanup;
1910 need_full_assumed_size = save_need_full_assumed_size;
1911 goto argument_list;
1914 /* See if the expression node should really be a variable reference. */
1916 sym = e->symtree->n.sym;
1918 if (sym->attr.flavor == FL_PROCEDURE
1919 || sym->attr.intrinsic
1920 || sym->attr.external)
1922 int actual_ok;
1924 /* If a procedure is not already determined to be something else
1925 check if it is intrinsic. */
1926 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1927 sym->attr.intrinsic = 1;
1929 if (sym->attr.proc == PROC_ST_FUNCTION)
1931 gfc_error ("Statement function %qs at %L is not allowed as an "
1932 "actual argument", sym->name, &e->where);
1935 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1936 sym->attr.subroutine);
1937 if (sym->attr.intrinsic && actual_ok == 0)
1939 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1940 "actual argument", sym->name, &e->where);
1943 if (sym->attr.contained && !sym->attr.use_assoc
1944 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1946 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1947 " used as actual argument at %L",
1948 sym->name, &e->where))
1949 goto cleanup;
1952 if (sym->attr.elemental && !sym->attr.intrinsic)
1954 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1955 "allowed as an actual argument at %L", sym->name,
1956 &e->where);
1959 /* Check if a generic interface has a specific procedure
1960 with the same name before emitting an error. */
1961 if (sym->attr.generic && count_specific_procs (e) != 1)
1962 goto cleanup;
1964 /* Just in case a specific was found for the expression. */
1965 sym = e->symtree->n.sym;
1967 /* If the symbol is the function that names the current (or
1968 parent) scope, then we really have a variable reference. */
1970 if (gfc_is_function_return_value (sym, sym->ns))
1971 goto got_variable;
1973 /* If all else fails, see if we have a specific intrinsic. */
1974 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1976 gfc_intrinsic_sym *isym;
1978 isym = gfc_find_function (sym->name);
1979 if (isym == NULL || !isym->specific)
1981 gfc_error ("Unable to find a specific INTRINSIC procedure "
1982 "for the reference %qs at %L", sym->name,
1983 &e->where);
1984 goto cleanup;
1986 sym->ts = isym->ts;
1987 sym->attr.intrinsic = 1;
1988 sym->attr.function = 1;
1991 if (!gfc_resolve_expr (e))
1992 goto cleanup;
1993 goto argument_list;
1996 /* See if the name is a module procedure in a parent unit. */
1998 if (was_declared (sym) || sym->ns->parent == NULL)
1999 goto got_variable;
2001 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2003 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2004 goto cleanup;
2007 if (parent_st == NULL)
2008 goto got_variable;
2010 sym = parent_st->n.sym;
2011 e->symtree = parent_st; /* Point to the right thing. */
2013 if (sym->attr.flavor == FL_PROCEDURE
2014 || sym->attr.intrinsic
2015 || sym->attr.external)
2017 if (!gfc_resolve_expr (e))
2018 goto cleanup;
2019 goto argument_list;
2022 got_variable:
2023 e->expr_type = EXPR_VARIABLE;
2024 e->ts = sym->ts;
2025 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2026 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2027 && CLASS_DATA (sym)->as))
2029 e->rank = sym->ts.type == BT_CLASS
2030 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2031 e->ref = gfc_get_ref ();
2032 e->ref->type = REF_ARRAY;
2033 e->ref->u.ar.type = AR_FULL;
2034 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2035 ? CLASS_DATA (sym)->as : sym->as;
2038 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2039 primary.c (match_actual_arg). If above code determines that it
2040 is a variable instead, it needs to be resolved as it was not
2041 done at the beginning of this function. */
2042 save_need_full_assumed_size = need_full_assumed_size;
2043 if (e->expr_type != EXPR_VARIABLE)
2044 need_full_assumed_size = 0;
2045 if (!gfc_resolve_expr (e))
2046 goto cleanup;
2047 need_full_assumed_size = save_need_full_assumed_size;
2049 argument_list:
2050 /* Check argument list functions %VAL, %LOC and %REF. There is
2051 nothing to do for %REF. */
2052 if (arg->name && arg->name[0] == '%')
2054 if (strncmp ("%VAL", arg->name, 4) == 0)
2056 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2058 gfc_error ("By-value argument at %L is not of numeric "
2059 "type", &e->where);
2060 goto cleanup;
2063 if (e->rank)
2065 gfc_error ("By-value argument at %L cannot be an array or "
2066 "an array section", &e->where);
2067 goto cleanup;
2070 /* Intrinsics are still PROC_UNKNOWN here. However,
2071 since same file external procedures are not resolvable
2072 in gfortran, it is a good deal easier to leave them to
2073 intrinsic.c. */
2074 if (ptype != PROC_UNKNOWN
2075 && ptype != PROC_DUMMY
2076 && ptype != PROC_EXTERNAL
2077 && ptype != PROC_MODULE)
2079 gfc_error ("By-value argument at %L is not allowed "
2080 "in this context", &e->where);
2081 goto cleanup;
2085 /* Statement functions have already been excluded above. */
2086 else if (strncmp ("%LOC", arg->name, 4) == 0
2087 && e->ts.type == BT_PROCEDURE)
2089 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2091 gfc_error ("Passing internal procedure at %L by location "
2092 "not allowed", &e->where);
2093 goto cleanup;
2098 comp = gfc_get_proc_ptr_comp(e);
2099 if (e->expr_type == EXPR_VARIABLE
2100 && comp && comp->attr.elemental)
2102 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2103 "allowed as an actual argument at %L", comp->name,
2104 &e->where);
2107 /* Fortran 2008, C1237. */
2108 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2109 && gfc_has_ultimate_pointer (e))
2111 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2112 "component", &e->where);
2113 goto cleanup;
2116 first_actual_arg = false;
2119 return_value = true;
2121 cleanup:
2122 actual_arg = actual_arg_sav;
2123 first_actual_arg = first_actual_arg_sav;
2125 return return_value;
2129 /* Do the checks of the actual argument list that are specific to elemental
2130 procedures. If called with c == NULL, we have a function, otherwise if
2131 expr == NULL, we have a subroutine. */
2133 static bool
2134 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2136 gfc_actual_arglist *arg0;
2137 gfc_actual_arglist *arg;
2138 gfc_symbol *esym = NULL;
2139 gfc_intrinsic_sym *isym = NULL;
2140 gfc_expr *e = NULL;
2141 gfc_intrinsic_arg *iformal = NULL;
2142 gfc_formal_arglist *eformal = NULL;
2143 bool formal_optional = false;
2144 bool set_by_optional = false;
2145 int i;
2146 int rank = 0;
2148 /* Is this an elemental procedure? */
2149 if (expr && expr->value.function.actual != NULL)
2151 if (expr->value.function.esym != NULL
2152 && expr->value.function.esym->attr.elemental)
2154 arg0 = expr->value.function.actual;
2155 esym = expr->value.function.esym;
2157 else if (expr->value.function.isym != NULL
2158 && expr->value.function.isym->elemental)
2160 arg0 = expr->value.function.actual;
2161 isym = expr->value.function.isym;
2163 else
2164 return true;
2166 else if (c && c->ext.actual != NULL)
2168 arg0 = c->ext.actual;
2170 if (c->resolved_sym)
2171 esym = c->resolved_sym;
2172 else
2173 esym = c->symtree->n.sym;
2174 gcc_assert (esym);
2176 if (!esym->attr.elemental)
2177 return true;
2179 else
2180 return true;
2182 /* The rank of an elemental is the rank of its array argument(s). */
2183 for (arg = arg0; arg; arg = arg->next)
2185 if (arg->expr != NULL && arg->expr->rank != 0)
2187 rank = arg->expr->rank;
2188 if (arg->expr->expr_type == EXPR_VARIABLE
2189 && arg->expr->symtree->n.sym->attr.optional)
2190 set_by_optional = true;
2192 /* Function specific; set the result rank and shape. */
2193 if (expr)
2195 expr->rank = rank;
2196 if (!expr->shape && arg->expr->shape)
2198 expr->shape = gfc_get_shape (rank);
2199 for (i = 0; i < rank; i++)
2200 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2203 break;
2207 /* If it is an array, it shall not be supplied as an actual argument
2208 to an elemental procedure unless an array of the same rank is supplied
2209 as an actual argument corresponding to a nonoptional dummy argument of
2210 that elemental procedure(12.4.1.5). */
2211 formal_optional = false;
2212 if (isym)
2213 iformal = isym->formal;
2214 else
2215 eformal = esym->formal;
2217 for (arg = arg0; arg; arg = arg->next)
2219 if (eformal)
2221 if (eformal->sym && eformal->sym->attr.optional)
2222 formal_optional = true;
2223 eformal = eformal->next;
2225 else if (isym && iformal)
2227 if (iformal->optional)
2228 formal_optional = true;
2229 iformal = iformal->next;
2231 else if (isym)
2232 formal_optional = true;
2234 if (pedantic && arg->expr != NULL
2235 && arg->expr->expr_type == EXPR_VARIABLE
2236 && arg->expr->symtree->n.sym->attr.optional
2237 && formal_optional
2238 && arg->expr->rank
2239 && (set_by_optional || arg->expr->rank != rank)
2240 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2242 gfc_warning (OPT_Wpedantic,
2243 "%qs at %L is an array and OPTIONAL; IF IT IS "
2244 "MISSING, it cannot be the actual argument of an "
2245 "ELEMENTAL procedure unless there is a non-optional "
2246 "argument with the same rank (12.4.1.5)",
2247 arg->expr->symtree->n.sym->name, &arg->expr->where);
2251 for (arg = arg0; arg; arg = arg->next)
2253 if (arg->expr == NULL || arg->expr->rank == 0)
2254 continue;
2256 /* Being elemental, the last upper bound of an assumed size array
2257 argument must be present. */
2258 if (resolve_assumed_size_actual (arg->expr))
2259 return false;
2261 /* Elemental procedure's array actual arguments must conform. */
2262 if (e != NULL)
2264 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2265 return false;
2267 else
2268 e = arg->expr;
2271 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2272 is an array, the intent inout/out variable needs to be also an array. */
2273 if (rank > 0 && esym && expr == NULL)
2274 for (eformal = esym->formal, arg = arg0; arg && eformal;
2275 arg = arg->next, eformal = eformal->next)
2276 if ((eformal->sym->attr.intent == INTENT_OUT
2277 || eformal->sym->attr.intent == INTENT_INOUT)
2278 && arg->expr && arg->expr->rank == 0)
2280 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2281 "ELEMENTAL subroutine %qs is a scalar, but another "
2282 "actual argument is an array", &arg->expr->where,
2283 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2284 : "INOUT", eformal->sym->name, esym->name);
2285 return false;
2287 return true;
2291 /* This function does the checking of references to global procedures
2292 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2293 77 and 95 standards. It checks for a gsymbol for the name, making
2294 one if it does not already exist. If it already exists, then the
2295 reference being resolved must correspond to the type of gsymbol.
2296 Otherwise, the new symbol is equipped with the attributes of the
2297 reference. The corresponding code that is called in creating
2298 global entities is parse.c.
2300 In addition, for all but -std=legacy, the gsymbols are used to
2301 check the interfaces of external procedures from the same file.
2302 The namespace of the gsymbol is resolved and then, once this is
2303 done the interface is checked. */
2306 static bool
2307 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2309 if (!gsym_ns->proc_name->attr.recursive)
2310 return true;
2312 if (sym->ns == gsym_ns)
2313 return false;
2315 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2316 return false;
2318 return true;
2321 static bool
2322 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2324 if (gsym_ns->entries)
2326 gfc_entry_list *entry = gsym_ns->entries;
2328 for (; entry; entry = entry->next)
2330 if (strcmp (sym->name, entry->sym->name) == 0)
2332 if (strcmp (gsym_ns->proc_name->name,
2333 sym->ns->proc_name->name) == 0)
2334 return false;
2336 if (sym->ns->parent
2337 && strcmp (gsym_ns->proc_name->name,
2338 sym->ns->parent->proc_name->name) == 0)
2339 return false;
2343 return true;
2347 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2349 bool
2350 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2352 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2354 for ( ; arg; arg = arg->next)
2356 if (!arg->sym)
2357 continue;
2359 if (arg->sym->attr.allocatable) /* (2a) */
2361 strncpy (errmsg, _("allocatable argument"), err_len);
2362 return true;
2364 else if (arg->sym->attr.asynchronous)
2366 strncpy (errmsg, _("asynchronous argument"), err_len);
2367 return true;
2369 else if (arg->sym->attr.optional)
2371 strncpy (errmsg, _("optional argument"), err_len);
2372 return true;
2374 else if (arg->sym->attr.pointer)
2376 strncpy (errmsg, _("pointer argument"), err_len);
2377 return true;
2379 else if (arg->sym->attr.target)
2381 strncpy (errmsg, _("target argument"), err_len);
2382 return true;
2384 else if (arg->sym->attr.value)
2386 strncpy (errmsg, _("value argument"), err_len);
2387 return true;
2389 else if (arg->sym->attr.volatile_)
2391 strncpy (errmsg, _("volatile argument"), err_len);
2392 return true;
2394 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2396 strncpy (errmsg, _("assumed-shape argument"), err_len);
2397 return true;
2399 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2401 strncpy (errmsg, _("assumed-rank argument"), err_len);
2402 return true;
2404 else if (arg->sym->attr.codimension) /* (2c) */
2406 strncpy (errmsg, _("coarray argument"), err_len);
2407 return true;
2409 else if (false) /* (2d) TODO: parametrized derived type */
2411 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2412 return true;
2414 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2416 strncpy (errmsg, _("polymorphic argument"), err_len);
2417 return true;
2419 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2421 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2422 return true;
2424 else if (arg->sym->ts.type == BT_ASSUMED)
2426 /* As assumed-type is unlimited polymorphic (cf. above).
2427 See also TS 29113, Note 6.1. */
2428 strncpy (errmsg, _("assumed-type argument"), err_len);
2429 return true;
2433 if (sym->attr.function)
2435 gfc_symbol *res = sym->result ? sym->result : sym;
2437 if (res->attr.dimension) /* (3a) */
2439 strncpy (errmsg, _("array result"), err_len);
2440 return true;
2442 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2444 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2445 return true;
2447 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2448 && res->ts.u.cl->length
2449 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2451 strncpy (errmsg, _("result with non-constant character length"), err_len);
2452 return true;
2456 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2458 strncpy (errmsg, _("elemental procedure"), err_len);
2459 return true;
2461 else if (sym->attr.is_bind_c) /* (5) */
2463 strncpy (errmsg, _("bind(c) procedure"), err_len);
2464 return true;
2467 return false;
2471 static void
2472 resolve_global_procedure (gfc_symbol *sym, locus *where,
2473 gfc_actual_arglist **actual, int sub)
2475 gfc_gsymbol * gsym;
2476 gfc_namespace *ns;
2477 enum gfc_symbol_type type;
2478 char reason[200];
2480 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2482 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2484 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2485 gfc_global_used (gsym, where);
2487 if ((sym->attr.if_source == IFSRC_UNKNOWN
2488 || sym->attr.if_source == IFSRC_IFBODY)
2489 && gsym->type != GSYM_UNKNOWN
2490 && !gsym->binding_label
2491 && gsym->ns
2492 && gsym->ns->resolved != -1
2493 && gsym->ns->proc_name
2494 && not_in_recursive (sym, gsym->ns)
2495 && not_entry_self_reference (sym, gsym->ns))
2497 gfc_symbol *def_sym;
2499 /* Resolve the gsymbol namespace if needed. */
2500 if (!gsym->ns->resolved)
2502 gfc_dt_list *old_dt_list;
2504 /* Stash away derived types so that the backend_decls do not
2505 get mixed up. */
2506 old_dt_list = gfc_derived_types;
2507 gfc_derived_types = NULL;
2509 gfc_resolve (gsym->ns);
2511 /* Store the new derived types with the global namespace. */
2512 if (gfc_derived_types)
2513 gsym->ns->derived_types = gfc_derived_types;
2515 /* Restore the derived types of this namespace. */
2516 gfc_derived_types = old_dt_list;
2519 /* Make sure that translation for the gsymbol occurs before
2520 the procedure currently being resolved. */
2521 ns = gfc_global_ns_list;
2522 for (; ns && ns != gsym->ns; ns = ns->sibling)
2524 if (ns->sibling == gsym->ns)
2526 ns->sibling = gsym->ns->sibling;
2527 gsym->ns->sibling = gfc_global_ns_list;
2528 gfc_global_ns_list = gsym->ns;
2529 break;
2533 def_sym = gsym->ns->proc_name;
2535 /* This can happen if a binding name has been specified. */
2536 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2537 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2539 if (def_sym->attr.entry_master)
2541 gfc_entry_list *entry;
2542 for (entry = gsym->ns->entries; entry; entry = entry->next)
2543 if (strcmp (entry->sym->name, sym->name) == 0)
2545 def_sym = entry->sym;
2546 break;
2550 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2552 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2553 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2554 gfc_typename (&def_sym->ts));
2555 goto done;
2558 if (sym->attr.if_source == IFSRC_UNKNOWN
2559 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2561 gfc_error ("Explicit interface required for %qs at %L: %s",
2562 sym->name, &sym->declared_at, reason);
2563 goto done;
2566 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2567 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2568 gfc_errors_to_warnings (true);
2570 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2571 reason, sizeof(reason), NULL, NULL))
2573 gfc_error_opt (OPT_Wargument_mismatch,
2574 "Interface mismatch in global procedure %qs at %L:"
2575 " %s", sym->name, &sym->declared_at, reason);
2576 goto done;
2579 if (!pedantic
2580 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2581 && !(gfc_option.warn_std & GFC_STD_GNU)))
2582 gfc_errors_to_warnings (true);
2584 if (sym->attr.if_source != IFSRC_IFBODY)
2585 gfc_procedure_use (def_sym, actual, where);
2588 done:
2589 gfc_errors_to_warnings (false);
2591 if (gsym->type == GSYM_UNKNOWN)
2593 gsym->type = type;
2594 gsym->where = *where;
2597 gsym->used = 1;
2601 /************* Function resolution *************/
2603 /* Resolve a function call known to be generic.
2604 Section 14.1.2.4.1. */
2606 static match
2607 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2609 gfc_symbol *s;
2611 if (sym->attr.generic)
2613 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2614 if (s != NULL)
2616 expr->value.function.name = s->name;
2617 expr->value.function.esym = s;
2619 if (s->ts.type != BT_UNKNOWN)
2620 expr->ts = s->ts;
2621 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2622 expr->ts = s->result->ts;
2624 if (s->as != NULL)
2625 expr->rank = s->as->rank;
2626 else if (s->result != NULL && s->result->as != NULL)
2627 expr->rank = s->result->as->rank;
2629 gfc_set_sym_referenced (expr->value.function.esym);
2631 return MATCH_YES;
2634 /* TODO: Need to search for elemental references in generic
2635 interface. */
2638 if (sym->attr.intrinsic)
2639 return gfc_intrinsic_func_interface (expr, 0);
2641 return MATCH_NO;
2645 static bool
2646 resolve_generic_f (gfc_expr *expr)
2648 gfc_symbol *sym;
2649 match m;
2650 gfc_interface *intr = NULL;
2652 sym = expr->symtree->n.sym;
2654 for (;;)
2656 m = resolve_generic_f0 (expr, sym);
2657 if (m == MATCH_YES)
2658 return true;
2659 else if (m == MATCH_ERROR)
2660 return false;
2662 generic:
2663 if (!intr)
2664 for (intr = sym->generic; intr; intr = intr->next)
2665 if (gfc_fl_struct (intr->sym->attr.flavor))
2666 break;
2668 if (sym->ns->parent == NULL)
2669 break;
2670 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2672 if (sym == NULL)
2673 break;
2674 if (!generic_sym (sym))
2675 goto generic;
2678 /* Last ditch attempt. See if the reference is to an intrinsic
2679 that possesses a matching interface. 14.1.2.4 */
2680 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2682 if (gfc_init_expr_flag)
2683 gfc_error ("Function %qs in initialization expression at %L "
2684 "must be an intrinsic function",
2685 expr->symtree->n.sym->name, &expr->where);
2686 else
2687 gfc_error ("There is no specific function for the generic %qs "
2688 "at %L", expr->symtree->n.sym->name, &expr->where);
2689 return false;
2692 if (intr)
2694 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2695 NULL, false))
2696 return false;
2697 if (!gfc_use_derived (expr->ts.u.derived))
2698 return false;
2699 return resolve_structure_cons (expr, 0);
2702 m = gfc_intrinsic_func_interface (expr, 0);
2703 if (m == MATCH_YES)
2704 return true;
2706 if (m == MATCH_NO)
2707 gfc_error ("Generic function %qs at %L is not consistent with a "
2708 "specific intrinsic interface", expr->symtree->n.sym->name,
2709 &expr->where);
2711 return false;
2715 /* Resolve a function call known to be specific. */
2717 static match
2718 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2720 match m;
2722 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2724 if (sym->attr.dummy)
2726 sym->attr.proc = PROC_DUMMY;
2727 goto found;
2730 sym->attr.proc = PROC_EXTERNAL;
2731 goto found;
2734 if (sym->attr.proc == PROC_MODULE
2735 || sym->attr.proc == PROC_ST_FUNCTION
2736 || sym->attr.proc == PROC_INTERNAL)
2737 goto found;
2739 if (sym->attr.intrinsic)
2741 m = gfc_intrinsic_func_interface (expr, 1);
2742 if (m == MATCH_YES)
2743 return MATCH_YES;
2744 if (m == MATCH_NO)
2745 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2746 "with an intrinsic", sym->name, &expr->where);
2748 return MATCH_ERROR;
2751 return MATCH_NO;
2753 found:
2754 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2756 if (sym->result)
2757 expr->ts = sym->result->ts;
2758 else
2759 expr->ts = sym->ts;
2760 expr->value.function.name = sym->name;
2761 expr->value.function.esym = sym;
2762 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2763 error(s). */
2764 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2765 return MATCH_ERROR;
2766 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2767 expr->rank = CLASS_DATA (sym)->as->rank;
2768 else if (sym->as != NULL)
2769 expr->rank = sym->as->rank;
2771 return MATCH_YES;
2775 static bool
2776 resolve_specific_f (gfc_expr *expr)
2778 gfc_symbol *sym;
2779 match m;
2781 sym = expr->symtree->n.sym;
2783 for (;;)
2785 m = resolve_specific_f0 (sym, expr);
2786 if (m == MATCH_YES)
2787 return true;
2788 if (m == MATCH_ERROR)
2789 return false;
2791 if (sym->ns->parent == NULL)
2792 break;
2794 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2796 if (sym == NULL)
2797 break;
2800 gfc_error ("Unable to resolve the specific function %qs at %L",
2801 expr->symtree->n.sym->name, &expr->where);
2803 return true;
2806 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2807 candidates in CANDIDATES_LEN. */
2809 static void
2810 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2811 char **&candidates,
2812 size_t &candidates_len)
2814 gfc_symtree *p;
2816 if (sym == NULL)
2817 return;
2818 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2819 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2820 vec_push (candidates, candidates_len, sym->name);
2822 p = sym->left;
2823 if (p)
2824 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2826 p = sym->right;
2827 if (p)
2828 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2832 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2834 const char*
2835 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2837 char **candidates = NULL;
2838 size_t candidates_len = 0;
2839 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2840 return gfc_closest_fuzzy_match (fn, candidates);
2844 /* Resolve a procedure call not known to be generic nor specific. */
2846 static bool
2847 resolve_unknown_f (gfc_expr *expr)
2849 gfc_symbol *sym;
2850 gfc_typespec *ts;
2852 sym = expr->symtree->n.sym;
2854 if (sym->attr.dummy)
2856 sym->attr.proc = PROC_DUMMY;
2857 expr->value.function.name = sym->name;
2858 goto set_type;
2861 /* See if we have an intrinsic function reference. */
2863 if (gfc_is_intrinsic (sym, 0, expr->where))
2865 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2866 return true;
2867 return false;
2870 /* The reference is to an external name. */
2872 sym->attr.proc = PROC_EXTERNAL;
2873 expr->value.function.name = sym->name;
2874 expr->value.function.esym = expr->symtree->n.sym;
2876 if (sym->as != NULL)
2877 expr->rank = sym->as->rank;
2879 /* Type of the expression is either the type of the symbol or the
2880 default type of the symbol. */
2882 set_type:
2883 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2885 if (sym->ts.type != BT_UNKNOWN)
2886 expr->ts = sym->ts;
2887 else
2889 ts = gfc_get_default_type (sym->name, sym->ns);
2891 if (ts->type == BT_UNKNOWN)
2893 const char *guessed
2894 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2895 if (guessed)
2896 gfc_error ("Function %qs at %L has no IMPLICIT type"
2897 "; did you mean %qs?",
2898 sym->name, &expr->where, guessed);
2899 else
2900 gfc_error ("Function %qs at %L has no IMPLICIT type",
2901 sym->name, &expr->where);
2902 return false;
2904 else
2905 expr->ts = *ts;
2908 return true;
2912 /* Return true, if the symbol is an external procedure. */
2913 static bool
2914 is_external_proc (gfc_symbol *sym)
2916 if (!sym->attr.dummy && !sym->attr.contained
2917 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2918 && sym->attr.proc != PROC_ST_FUNCTION
2919 && !sym->attr.proc_pointer
2920 && !sym->attr.use_assoc
2921 && sym->name)
2922 return true;
2924 return false;
2928 /* Figure out if a function reference is pure or not. Also set the name
2929 of the function for a potential error message. Return nonzero if the
2930 function is PURE, zero if not. */
2931 static int
2932 pure_stmt_function (gfc_expr *, gfc_symbol *);
2934 static int
2935 pure_function (gfc_expr *e, const char **name)
2937 int pure;
2938 gfc_component *comp;
2940 *name = NULL;
2942 if (e->symtree != NULL
2943 && e->symtree->n.sym != NULL
2944 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2945 return pure_stmt_function (e, e->symtree->n.sym);
2947 comp = gfc_get_proc_ptr_comp (e);
2948 if (comp)
2950 pure = gfc_pure (comp->ts.interface);
2951 *name = comp->name;
2953 else if (e->value.function.esym)
2955 pure = gfc_pure (e->value.function.esym);
2956 *name = e->value.function.esym->name;
2958 else if (e->value.function.isym)
2960 pure = e->value.function.isym->pure
2961 || e->value.function.isym->elemental;
2962 *name = e->value.function.isym->name;
2964 else
2966 /* Implicit functions are not pure. */
2967 pure = 0;
2968 *name = e->value.function.name;
2971 return pure;
2975 static bool
2976 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
2977 int *f ATTRIBUTE_UNUSED)
2979 const char *name;
2981 /* Don't bother recursing into other statement functions
2982 since they will be checked individually for purity. */
2983 if (e->expr_type != EXPR_FUNCTION
2984 || !e->symtree
2985 || e->symtree->n.sym == sym
2986 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2987 return false;
2989 return pure_function (e, &name) ? false : true;
2993 static int
2994 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
2996 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3000 /* Check if an impure function is allowed in the current context. */
3002 static bool check_pure_function (gfc_expr *e)
3004 const char *name = NULL;
3005 if (!pure_function (e, &name) && name)
3007 if (forall_flag)
3009 gfc_error ("Reference to impure function %qs at %L inside a "
3010 "FORALL %s", name, &e->where,
3011 forall_flag == 2 ? "mask" : "block");
3012 return false;
3014 else if (gfc_do_concurrent_flag)
3016 gfc_error ("Reference to impure function %qs at %L inside a "
3017 "DO CONCURRENT %s", name, &e->where,
3018 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3019 return false;
3021 else if (gfc_pure (NULL))
3023 gfc_error ("Reference to impure function %qs at %L "
3024 "within a PURE procedure", name, &e->where);
3025 return false;
3027 gfc_unset_implicit_pure (NULL);
3029 return true;
3033 /* Update current procedure's array_outer_dependency flag, considering
3034 a call to procedure SYM. */
3036 static void
3037 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3039 /* Check to see if this is a sibling function that has not yet
3040 been resolved. */
3041 gfc_namespace *sibling = gfc_current_ns->sibling;
3042 for (; sibling; sibling = sibling->sibling)
3044 if (sibling->proc_name == sym)
3046 gfc_resolve (sibling);
3047 break;
3051 /* If SYM has references to outer arrays, so has the procedure calling
3052 SYM. If SYM is a procedure pointer, we can assume the worst. */
3053 if (sym->attr.array_outer_dependency
3054 || sym->attr.proc_pointer)
3055 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3059 /* Resolve a function call, which means resolving the arguments, then figuring
3060 out which entity the name refers to. */
3062 static bool
3063 resolve_function (gfc_expr *expr)
3065 gfc_actual_arglist *arg;
3066 gfc_symbol *sym;
3067 bool t;
3068 int temp;
3069 procedure_type p = PROC_INTRINSIC;
3070 bool no_formal_args;
3072 sym = NULL;
3073 if (expr->symtree)
3074 sym = expr->symtree->n.sym;
3076 /* If this is a procedure pointer component, it has already been resolved. */
3077 if (gfc_is_proc_ptr_comp (expr))
3078 return true;
3080 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3081 another caf_get. */
3082 if (sym && sym->attr.intrinsic
3083 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3084 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3085 return true;
3087 if (sym && sym->attr.intrinsic
3088 && !gfc_resolve_intrinsic (sym, &expr->where))
3089 return false;
3091 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3093 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3094 return false;
3097 /* If this ia a deferred TBP with an abstract interface (which may
3098 of course be referenced), expr->value.function.esym will be set. */
3099 if (sym && sym->attr.abstract && !expr->value.function.esym)
3101 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3102 sym->name, &expr->where);
3103 return false;
3106 /* Switch off assumed size checking and do this again for certain kinds
3107 of procedure, once the procedure itself is resolved. */
3108 need_full_assumed_size++;
3110 if (expr->symtree && expr->symtree->n.sym)
3111 p = expr->symtree->n.sym->attr.proc;
3113 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3114 inquiry_argument = true;
3115 no_formal_args = sym && is_external_proc (sym)
3116 && gfc_sym_get_dummy_args (sym) == NULL;
3118 if (!resolve_actual_arglist (expr->value.function.actual,
3119 p, no_formal_args))
3121 inquiry_argument = false;
3122 return false;
3125 inquiry_argument = false;
3127 /* Resume assumed_size checking. */
3128 need_full_assumed_size--;
3130 /* If the procedure is external, check for usage. */
3131 if (sym && is_external_proc (sym))
3132 resolve_global_procedure (sym, &expr->where,
3133 &expr->value.function.actual, 0);
3135 if (sym && sym->ts.type == BT_CHARACTER
3136 && sym->ts.u.cl
3137 && sym->ts.u.cl->length == NULL
3138 && !sym->attr.dummy
3139 && !sym->ts.deferred
3140 && expr->value.function.esym == NULL
3141 && !sym->attr.contained)
3143 /* Internal procedures are taken care of in resolve_contained_fntype. */
3144 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3145 "be used at %L since it is not a dummy argument",
3146 sym->name, &expr->where);
3147 return false;
3150 /* See if function is already resolved. */
3152 if (expr->value.function.name != NULL
3153 || expr->value.function.isym != NULL)
3155 if (expr->ts.type == BT_UNKNOWN)
3156 expr->ts = sym->ts;
3157 t = true;
3159 else
3161 /* Apply the rules of section 14.1.2. */
3163 switch (procedure_kind (sym))
3165 case PTYPE_GENERIC:
3166 t = resolve_generic_f (expr);
3167 break;
3169 case PTYPE_SPECIFIC:
3170 t = resolve_specific_f (expr);
3171 break;
3173 case PTYPE_UNKNOWN:
3174 t = resolve_unknown_f (expr);
3175 break;
3177 default:
3178 gfc_internal_error ("resolve_function(): bad function type");
3182 /* If the expression is still a function (it might have simplified),
3183 then we check to see if we are calling an elemental function. */
3185 if (expr->expr_type != EXPR_FUNCTION)
3186 return t;
3188 temp = need_full_assumed_size;
3189 need_full_assumed_size = 0;
3191 if (!resolve_elemental_actual (expr, NULL))
3192 return false;
3194 if (omp_workshare_flag
3195 && expr->value.function.esym
3196 && ! gfc_elemental (expr->value.function.esym))
3198 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3199 "in WORKSHARE construct", expr->value.function.esym->name,
3200 &expr->where);
3201 t = false;
3204 #define GENERIC_ID expr->value.function.isym->id
3205 else if (expr->value.function.actual != NULL
3206 && expr->value.function.isym != NULL
3207 && GENERIC_ID != GFC_ISYM_LBOUND
3208 && GENERIC_ID != GFC_ISYM_LCOBOUND
3209 && GENERIC_ID != GFC_ISYM_UCOBOUND
3210 && GENERIC_ID != GFC_ISYM_LEN
3211 && GENERIC_ID != GFC_ISYM_LOC
3212 && GENERIC_ID != GFC_ISYM_C_LOC
3213 && GENERIC_ID != GFC_ISYM_PRESENT)
3215 /* Array intrinsics must also have the last upper bound of an
3216 assumed size array argument. UBOUND and SIZE have to be
3217 excluded from the check if the second argument is anything
3218 than a constant. */
3220 for (arg = expr->value.function.actual; arg; arg = arg->next)
3222 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3223 && arg == expr->value.function.actual
3224 && arg->next != NULL && arg->next->expr)
3226 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3227 break;
3229 if (arg->next->name && strncmp (arg->next->name, "kind", 4) == 0)
3230 break;
3232 if ((int)mpz_get_si (arg->next->expr->value.integer)
3233 < arg->expr->rank)
3234 break;
3237 if (arg->expr != NULL
3238 && arg->expr->rank > 0
3239 && resolve_assumed_size_actual (arg->expr))
3240 return false;
3243 #undef GENERIC_ID
3245 need_full_assumed_size = temp;
3247 if (!check_pure_function(expr))
3248 t = false;
3250 /* Functions without the RECURSIVE attribution are not allowed to
3251 * call themselves. */
3252 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3254 gfc_symbol *esym;
3255 esym = expr->value.function.esym;
3257 if (is_illegal_recursion (esym, gfc_current_ns))
3259 if (esym->attr.entry && esym->ns->entries)
3260 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3261 " function %qs is not RECURSIVE",
3262 esym->name, &expr->where, esym->ns->entries->sym->name);
3263 else
3264 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3265 " is not RECURSIVE", esym->name, &expr->where);
3267 t = false;
3271 /* Character lengths of use associated functions may contains references to
3272 symbols not referenced from the current program unit otherwise. Make sure
3273 those symbols are marked as referenced. */
3275 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3276 && expr->value.function.esym->attr.use_assoc)
3278 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3281 /* Make sure that the expression has a typespec that works. */
3282 if (expr->ts.type == BT_UNKNOWN)
3284 if (expr->symtree->n.sym->result
3285 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3286 && !expr->symtree->n.sym->result->attr.proc_pointer)
3287 expr->ts = expr->symtree->n.sym->result->ts;
3290 if (!expr->ref && !expr->value.function.isym)
3292 if (expr->value.function.esym)
3293 update_current_proc_array_outer_dependency (expr->value.function.esym);
3294 else
3295 update_current_proc_array_outer_dependency (sym);
3297 else if (expr->ref)
3298 /* typebound procedure: Assume the worst. */
3299 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3301 return t;
3305 /************* Subroutine resolution *************/
3307 static bool
3308 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3310 if (gfc_pure (sym))
3311 return true;
3313 if (forall_flag)
3315 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3316 name, loc);
3317 return false;
3319 else if (gfc_do_concurrent_flag)
3321 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3322 "PURE", name, loc);
3323 return false;
3325 else if (gfc_pure (NULL))
3327 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3328 return false;
3331 gfc_unset_implicit_pure (NULL);
3332 return true;
3336 static match
3337 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3339 gfc_symbol *s;
3341 if (sym->attr.generic)
3343 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3344 if (s != NULL)
3346 c->resolved_sym = s;
3347 if (!pure_subroutine (s, s->name, &c->loc))
3348 return MATCH_ERROR;
3349 return MATCH_YES;
3352 /* TODO: Need to search for elemental references in generic interface. */
3355 if (sym->attr.intrinsic)
3356 return gfc_intrinsic_sub_interface (c, 0);
3358 return MATCH_NO;
3362 static bool
3363 resolve_generic_s (gfc_code *c)
3365 gfc_symbol *sym;
3366 match m;
3368 sym = c->symtree->n.sym;
3370 for (;;)
3372 m = resolve_generic_s0 (c, sym);
3373 if (m == MATCH_YES)
3374 return true;
3375 else if (m == MATCH_ERROR)
3376 return false;
3378 generic:
3379 if (sym->ns->parent == NULL)
3380 break;
3381 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3383 if (sym == NULL)
3384 break;
3385 if (!generic_sym (sym))
3386 goto generic;
3389 /* Last ditch attempt. See if the reference is to an intrinsic
3390 that possesses a matching interface. 14.1.2.4 */
3391 sym = c->symtree->n.sym;
3393 if (!gfc_is_intrinsic (sym, 1, c->loc))
3395 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3396 sym->name, &c->loc);
3397 return false;
3400 m = gfc_intrinsic_sub_interface (c, 0);
3401 if (m == MATCH_YES)
3402 return true;
3403 if (m == MATCH_NO)
3404 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3405 "intrinsic subroutine interface", sym->name, &c->loc);
3407 return false;
3411 /* Resolve a subroutine call known to be specific. */
3413 static match
3414 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3416 match m;
3418 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3420 if (sym->attr.dummy)
3422 sym->attr.proc = PROC_DUMMY;
3423 goto found;
3426 sym->attr.proc = PROC_EXTERNAL;
3427 goto found;
3430 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3431 goto found;
3433 if (sym->attr.intrinsic)
3435 m = gfc_intrinsic_sub_interface (c, 1);
3436 if (m == MATCH_YES)
3437 return MATCH_YES;
3438 if (m == MATCH_NO)
3439 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3440 "with an intrinsic", sym->name, &c->loc);
3442 return MATCH_ERROR;
3445 return MATCH_NO;
3447 found:
3448 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3450 c->resolved_sym = sym;
3451 if (!pure_subroutine (sym, sym->name, &c->loc))
3452 return MATCH_ERROR;
3454 return MATCH_YES;
3458 static bool
3459 resolve_specific_s (gfc_code *c)
3461 gfc_symbol *sym;
3462 match m;
3464 sym = c->symtree->n.sym;
3466 for (;;)
3468 m = resolve_specific_s0 (c, sym);
3469 if (m == MATCH_YES)
3470 return true;
3471 if (m == MATCH_ERROR)
3472 return false;
3474 if (sym->ns->parent == NULL)
3475 break;
3477 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3479 if (sym == NULL)
3480 break;
3483 sym = c->symtree->n.sym;
3484 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3485 sym->name, &c->loc);
3487 return false;
3491 /* Resolve a subroutine call not known to be generic nor specific. */
3493 static bool
3494 resolve_unknown_s (gfc_code *c)
3496 gfc_symbol *sym;
3498 sym = c->symtree->n.sym;
3500 if (sym->attr.dummy)
3502 sym->attr.proc = PROC_DUMMY;
3503 goto found;
3506 /* See if we have an intrinsic function reference. */
3508 if (gfc_is_intrinsic (sym, 1, c->loc))
3510 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3511 return true;
3512 return false;
3515 /* The reference is to an external name. */
3517 found:
3518 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3520 c->resolved_sym = sym;
3522 return pure_subroutine (sym, sym->name, &c->loc);
3526 /* Resolve a subroutine call. Although it was tempting to use the same code
3527 for functions, subroutines and functions are stored differently and this
3528 makes things awkward. */
3530 static bool
3531 resolve_call (gfc_code *c)
3533 bool t;
3534 procedure_type ptype = PROC_INTRINSIC;
3535 gfc_symbol *csym, *sym;
3536 bool no_formal_args;
3538 csym = c->symtree ? c->symtree->n.sym : NULL;
3540 if (csym && csym->ts.type != BT_UNKNOWN)
3542 gfc_error ("%qs at %L has a type, which is not consistent with "
3543 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3544 return false;
3547 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3549 gfc_symtree *st;
3550 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3551 sym = st ? st->n.sym : NULL;
3552 if (sym && csym != sym
3553 && sym->ns == gfc_current_ns
3554 && sym->attr.flavor == FL_PROCEDURE
3555 && sym->attr.contained)
3557 sym->refs++;
3558 if (csym->attr.generic)
3559 c->symtree->n.sym = sym;
3560 else
3561 c->symtree = st;
3562 csym = c->symtree->n.sym;
3566 /* If this ia a deferred TBP, c->expr1 will be set. */
3567 if (!c->expr1 && csym)
3569 if (csym->attr.abstract)
3571 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3572 csym->name, &c->loc);
3573 return false;
3576 /* Subroutines without the RECURSIVE attribution are not allowed to
3577 call themselves. */
3578 if (is_illegal_recursion (csym, gfc_current_ns))
3580 if (csym->attr.entry && csym->ns->entries)
3581 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3582 "as subroutine %qs is not RECURSIVE",
3583 csym->name, &c->loc, csym->ns->entries->sym->name);
3584 else
3585 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3586 "as it is not RECURSIVE", csym->name, &c->loc);
3588 t = false;
3592 /* Switch off assumed size checking and do this again for certain kinds
3593 of procedure, once the procedure itself is resolved. */
3594 need_full_assumed_size++;
3596 if (csym)
3597 ptype = csym->attr.proc;
3599 no_formal_args = csym && is_external_proc (csym)
3600 && gfc_sym_get_dummy_args (csym) == NULL;
3601 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3602 return false;
3604 /* Resume assumed_size checking. */
3605 need_full_assumed_size--;
3607 /* If external, check for usage. */
3608 if (csym && is_external_proc (csym))
3609 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3611 t = true;
3612 if (c->resolved_sym == NULL)
3614 c->resolved_isym = NULL;
3615 switch (procedure_kind (csym))
3617 case PTYPE_GENERIC:
3618 t = resolve_generic_s (c);
3619 break;
3621 case PTYPE_SPECIFIC:
3622 t = resolve_specific_s (c);
3623 break;
3625 case PTYPE_UNKNOWN:
3626 t = resolve_unknown_s (c);
3627 break;
3629 default:
3630 gfc_internal_error ("resolve_subroutine(): bad function type");
3634 /* Some checks of elemental subroutine actual arguments. */
3635 if (!resolve_elemental_actual (NULL, c))
3636 return false;
3638 if (!c->expr1)
3639 update_current_proc_array_outer_dependency (csym);
3640 else
3641 /* Typebound procedure: Assume the worst. */
3642 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3644 return t;
3648 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3649 op1->shape and op2->shape are non-NULL return true if their shapes
3650 match. If both op1->shape and op2->shape are non-NULL return false
3651 if their shapes do not match. If either op1->shape or op2->shape is
3652 NULL, return true. */
3654 static bool
3655 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3657 bool t;
3658 int i;
3660 t = true;
3662 if (op1->shape != NULL && op2->shape != NULL)
3664 for (i = 0; i < op1->rank; i++)
3666 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3668 gfc_error ("Shapes for operands at %L and %L are not conformable",
3669 &op1->where, &op2->where);
3670 t = false;
3671 break;
3676 return t;
3679 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3680 For example A .AND. B becomes IAND(A, B). */
3681 static gfc_expr *
3682 logical_to_bitwise (gfc_expr *e)
3684 gfc_expr *tmp, *op1, *op2;
3685 gfc_isym_id isym;
3686 gfc_actual_arglist *args = NULL;
3688 gcc_assert (e->expr_type == EXPR_OP);
3690 isym = GFC_ISYM_NONE;
3691 op1 = e->value.op.op1;
3692 op2 = e->value.op.op2;
3694 switch (e->value.op.op)
3696 case INTRINSIC_NOT:
3697 isym = GFC_ISYM_NOT;
3698 break;
3699 case INTRINSIC_AND:
3700 isym = GFC_ISYM_IAND;
3701 break;
3702 case INTRINSIC_OR:
3703 isym = GFC_ISYM_IOR;
3704 break;
3705 case INTRINSIC_NEQV:
3706 isym = GFC_ISYM_IEOR;
3707 break;
3708 case INTRINSIC_EQV:
3709 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3710 Change the old expression to NEQV, which will get replaced by IEOR,
3711 and wrap it in NOT. */
3712 tmp = gfc_copy_expr (e);
3713 tmp->value.op.op = INTRINSIC_NEQV;
3714 tmp = logical_to_bitwise (tmp);
3715 isym = GFC_ISYM_NOT;
3716 op1 = tmp;
3717 op2 = NULL;
3718 break;
3719 default:
3720 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3723 /* Inherit the original operation's operands as arguments. */
3724 args = gfc_get_actual_arglist ();
3725 args->expr = op1;
3726 if (op2)
3728 args->next = gfc_get_actual_arglist ();
3729 args->next->expr = op2;
3732 /* Convert the expression to a function call. */
3733 e->expr_type = EXPR_FUNCTION;
3734 e->value.function.actual = args;
3735 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3736 e->value.function.name = e->value.function.isym->name;
3737 e->value.function.esym = NULL;
3739 /* Make up a pre-resolved function call symtree if we need to. */
3740 if (!e->symtree || !e->symtree->n.sym)
3742 gfc_symbol *sym;
3743 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3744 sym = e->symtree->n.sym;
3745 sym->result = sym;
3746 sym->attr.flavor = FL_PROCEDURE;
3747 sym->attr.function = 1;
3748 sym->attr.elemental = 1;
3749 sym->attr.pure = 1;
3750 sym->attr.referenced = 1;
3751 gfc_intrinsic_symbol (sym);
3752 gfc_commit_symbol (sym);
3755 args->name = e->value.function.isym->formal->name;
3756 if (e->value.function.isym->formal->next)
3757 args->next->name = e->value.function.isym->formal->next->name;
3759 return e;
3762 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3763 candidates in CANDIDATES_LEN. */
3764 static void
3765 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3766 char **&candidates,
3767 size_t &candidates_len)
3769 gfc_symtree *p;
3771 if (uop == NULL)
3772 return;
3774 /* Not sure how to properly filter here. Use all for a start.
3775 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3776 these as i suppose they don't make terribly sense. */
3778 if (uop->n.uop->op != NULL)
3779 vec_push (candidates, candidates_len, uop->name);
3781 p = uop->left;
3782 if (p)
3783 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3785 p = uop->right;
3786 if (p)
3787 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3790 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3792 static const char*
3793 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3795 char **candidates = NULL;
3796 size_t candidates_len = 0;
3797 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3798 return gfc_closest_fuzzy_match (op, candidates);
3802 /* Resolve an operator expression node. This can involve replacing the
3803 operation with a user defined function call. */
3805 static bool
3806 resolve_operator (gfc_expr *e)
3808 gfc_expr *op1, *op2;
3809 char msg[200];
3810 bool dual_locus_error;
3811 bool t;
3813 /* Resolve all subnodes-- give them types. */
3815 switch (e->value.op.op)
3817 default:
3818 if (!gfc_resolve_expr (e->value.op.op2))
3819 return false;
3821 /* Fall through. */
3823 case INTRINSIC_NOT:
3824 case INTRINSIC_UPLUS:
3825 case INTRINSIC_UMINUS:
3826 case INTRINSIC_PARENTHESES:
3827 if (!gfc_resolve_expr (e->value.op.op1))
3828 return false;
3829 break;
3832 /* Typecheck the new node. */
3834 op1 = e->value.op.op1;
3835 op2 = e->value.op.op2;
3836 dual_locus_error = false;
3838 if ((op1 && op1->expr_type == EXPR_NULL)
3839 || (op2 && op2->expr_type == EXPR_NULL))
3841 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3842 goto bad_op;
3845 switch (e->value.op.op)
3847 case INTRINSIC_UPLUS:
3848 case INTRINSIC_UMINUS:
3849 if (op1->ts.type == BT_INTEGER
3850 || op1->ts.type == BT_REAL
3851 || op1->ts.type == BT_COMPLEX)
3853 e->ts = op1->ts;
3854 break;
3857 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3858 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3859 goto bad_op;
3861 case INTRINSIC_PLUS:
3862 case INTRINSIC_MINUS:
3863 case INTRINSIC_TIMES:
3864 case INTRINSIC_DIVIDE:
3865 case INTRINSIC_POWER:
3866 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3868 gfc_type_convert_binary (e, 1);
3869 break;
3872 sprintf (msg,
3873 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3874 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3875 gfc_typename (&op2->ts));
3876 goto bad_op;
3878 case INTRINSIC_CONCAT:
3879 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3880 && op1->ts.kind == op2->ts.kind)
3882 e->ts.type = BT_CHARACTER;
3883 e->ts.kind = op1->ts.kind;
3884 break;
3887 sprintf (msg,
3888 _("Operands of string concatenation operator at %%L are %s/%s"),
3889 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3890 goto bad_op;
3892 case INTRINSIC_AND:
3893 case INTRINSIC_OR:
3894 case INTRINSIC_EQV:
3895 case INTRINSIC_NEQV:
3896 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3898 e->ts.type = BT_LOGICAL;
3899 e->ts.kind = gfc_kind_max (op1, op2);
3900 if (op1->ts.kind < e->ts.kind)
3901 gfc_convert_type (op1, &e->ts, 2);
3902 else if (op2->ts.kind < e->ts.kind)
3903 gfc_convert_type (op2, &e->ts, 2);
3904 break;
3907 /* Logical ops on integers become bitwise ops with -fdec. */
3908 else if (flag_dec
3909 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3911 e->ts.type = BT_INTEGER;
3912 e->ts.kind = gfc_kind_max (op1, op2);
3913 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
3914 gfc_convert_type (op1, &e->ts, 1);
3915 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
3916 gfc_convert_type (op2, &e->ts, 1);
3917 e = logical_to_bitwise (e);
3918 return resolve_function (e);
3921 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
3922 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3923 gfc_typename (&op2->ts));
3925 goto bad_op;
3927 case INTRINSIC_NOT:
3928 /* Logical ops on integers become bitwise ops with -fdec. */
3929 if (flag_dec && op1->ts.type == BT_INTEGER)
3931 e->ts.type = BT_INTEGER;
3932 e->ts.kind = op1->ts.kind;
3933 e = logical_to_bitwise (e);
3934 return resolve_function (e);
3937 if (op1->ts.type == BT_LOGICAL)
3939 e->ts.type = BT_LOGICAL;
3940 e->ts.kind = op1->ts.kind;
3941 break;
3944 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
3945 gfc_typename (&op1->ts));
3946 goto bad_op;
3948 case INTRINSIC_GT:
3949 case INTRINSIC_GT_OS:
3950 case INTRINSIC_GE:
3951 case INTRINSIC_GE_OS:
3952 case INTRINSIC_LT:
3953 case INTRINSIC_LT_OS:
3954 case INTRINSIC_LE:
3955 case INTRINSIC_LE_OS:
3956 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
3958 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
3959 goto bad_op;
3962 /* Fall through. */
3964 case INTRINSIC_EQ:
3965 case INTRINSIC_EQ_OS:
3966 case INTRINSIC_NE:
3967 case INTRINSIC_NE_OS:
3968 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3969 && op1->ts.kind == op2->ts.kind)
3971 e->ts.type = BT_LOGICAL;
3972 e->ts.kind = gfc_default_logical_kind;
3973 break;
3976 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3978 gfc_type_convert_binary (e, 1);
3980 e->ts.type = BT_LOGICAL;
3981 e->ts.kind = gfc_default_logical_kind;
3983 if (warn_compare_reals)
3985 gfc_intrinsic_op op = e->value.op.op;
3987 /* Type conversion has made sure that the types of op1 and op2
3988 agree, so it is only necessary to check the first one. */
3989 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
3990 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
3991 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
3993 const char *msg;
3995 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
3996 msg = "Equality comparison for %s at %L";
3997 else
3998 msg = "Inequality comparison for %s at %L";
4000 gfc_warning (OPT_Wcompare_reals, msg,
4001 gfc_typename (&op1->ts), &op1->where);
4005 break;
4008 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4009 sprintf (msg,
4010 _("Logicals at %%L must be compared with %s instead of %s"),
4011 (e->value.op.op == INTRINSIC_EQ
4012 || e->value.op.op == INTRINSIC_EQ_OS)
4013 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4014 else
4015 sprintf (msg,
4016 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4017 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4018 gfc_typename (&op2->ts));
4020 goto bad_op;
4022 case INTRINSIC_USER:
4023 if (e->value.op.uop->op == NULL)
4025 const char *name = e->value.op.uop->name;
4026 const char *guessed;
4027 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4028 if (guessed)
4029 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4030 name, guessed);
4031 else
4032 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4034 else if (op2 == NULL)
4035 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4036 e->value.op.uop->name, gfc_typename (&op1->ts));
4037 else
4039 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4040 e->value.op.uop->name, gfc_typename (&op1->ts),
4041 gfc_typename (&op2->ts));
4042 e->value.op.uop->op->sym->attr.referenced = 1;
4045 goto bad_op;
4047 case INTRINSIC_PARENTHESES:
4048 e->ts = op1->ts;
4049 if (e->ts.type == BT_CHARACTER)
4050 e->ts.u.cl = op1->ts.u.cl;
4051 break;
4053 default:
4054 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4057 /* Deal with arrayness of an operand through an operator. */
4059 t = true;
4061 switch (e->value.op.op)
4063 case INTRINSIC_PLUS:
4064 case INTRINSIC_MINUS:
4065 case INTRINSIC_TIMES:
4066 case INTRINSIC_DIVIDE:
4067 case INTRINSIC_POWER:
4068 case INTRINSIC_CONCAT:
4069 case INTRINSIC_AND:
4070 case INTRINSIC_OR:
4071 case INTRINSIC_EQV:
4072 case INTRINSIC_NEQV:
4073 case INTRINSIC_EQ:
4074 case INTRINSIC_EQ_OS:
4075 case INTRINSIC_NE:
4076 case INTRINSIC_NE_OS:
4077 case INTRINSIC_GT:
4078 case INTRINSIC_GT_OS:
4079 case INTRINSIC_GE:
4080 case INTRINSIC_GE_OS:
4081 case INTRINSIC_LT:
4082 case INTRINSIC_LT_OS:
4083 case INTRINSIC_LE:
4084 case INTRINSIC_LE_OS:
4086 if (op1->rank == 0 && op2->rank == 0)
4087 e->rank = 0;
4089 if (op1->rank == 0 && op2->rank != 0)
4091 e->rank = op2->rank;
4093 if (e->shape == NULL)
4094 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4097 if (op1->rank != 0 && op2->rank == 0)
4099 e->rank = op1->rank;
4101 if (e->shape == NULL)
4102 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4105 if (op1->rank != 0 && op2->rank != 0)
4107 if (op1->rank == op2->rank)
4109 e->rank = op1->rank;
4110 if (e->shape == NULL)
4112 t = compare_shapes (op1, op2);
4113 if (!t)
4114 e->shape = NULL;
4115 else
4116 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4119 else
4121 /* Allow higher level expressions to work. */
4122 e->rank = 0;
4124 /* Try user-defined operators, and otherwise throw an error. */
4125 dual_locus_error = true;
4126 sprintf (msg,
4127 _("Inconsistent ranks for operator at %%L and %%L"));
4128 goto bad_op;
4132 break;
4134 case INTRINSIC_PARENTHESES:
4135 case INTRINSIC_NOT:
4136 case INTRINSIC_UPLUS:
4137 case INTRINSIC_UMINUS:
4138 /* Simply copy arrayness attribute */
4139 e->rank = op1->rank;
4141 if (e->shape == NULL)
4142 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4144 break;
4146 default:
4147 break;
4150 /* Attempt to simplify the expression. */
4151 if (t)
4153 t = gfc_simplify_expr (e, 0);
4154 /* Some calls do not succeed in simplification and return false
4155 even though there is no error; e.g. variable references to
4156 PARAMETER arrays. */
4157 if (!gfc_is_constant_expr (e))
4158 t = true;
4160 return t;
4162 bad_op:
4165 match m = gfc_extend_expr (e);
4166 if (m == MATCH_YES)
4167 return true;
4168 if (m == MATCH_ERROR)
4169 return false;
4172 if (dual_locus_error)
4173 gfc_error (msg, &op1->where, &op2->where);
4174 else
4175 gfc_error (msg, &e->where);
4177 return false;
4181 /************** Array resolution subroutines **************/
4183 enum compare_result
4184 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4186 /* Compare two integer expressions. */
4188 static compare_result
4189 compare_bound (gfc_expr *a, gfc_expr *b)
4191 int i;
4193 if (a == NULL || a->expr_type != EXPR_CONSTANT
4194 || b == NULL || b->expr_type != EXPR_CONSTANT)
4195 return CMP_UNKNOWN;
4197 /* If either of the types isn't INTEGER, we must have
4198 raised an error earlier. */
4200 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4201 return CMP_UNKNOWN;
4203 i = mpz_cmp (a->value.integer, b->value.integer);
4205 if (i < 0)
4206 return CMP_LT;
4207 if (i > 0)
4208 return CMP_GT;
4209 return CMP_EQ;
4213 /* Compare an integer expression with an integer. */
4215 static compare_result
4216 compare_bound_int (gfc_expr *a, int b)
4218 int i;
4220 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4221 return CMP_UNKNOWN;
4223 if (a->ts.type != BT_INTEGER)
4224 gfc_internal_error ("compare_bound_int(): Bad expression");
4226 i = mpz_cmp_si (a->value.integer, b);
4228 if (i < 0)
4229 return CMP_LT;
4230 if (i > 0)
4231 return CMP_GT;
4232 return CMP_EQ;
4236 /* Compare an integer expression with a mpz_t. */
4238 static compare_result
4239 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4241 int i;
4243 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4244 return CMP_UNKNOWN;
4246 if (a->ts.type != BT_INTEGER)
4247 gfc_internal_error ("compare_bound_int(): Bad expression");
4249 i = mpz_cmp (a->value.integer, b);
4251 if (i < 0)
4252 return CMP_LT;
4253 if (i > 0)
4254 return CMP_GT;
4255 return CMP_EQ;
4259 /* Compute the last value of a sequence given by a triplet.
4260 Return 0 if it wasn't able to compute the last value, or if the
4261 sequence if empty, and 1 otherwise. */
4263 static int
4264 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4265 gfc_expr *stride, mpz_t last)
4267 mpz_t rem;
4269 if (start == NULL || start->expr_type != EXPR_CONSTANT
4270 || end == NULL || end->expr_type != EXPR_CONSTANT
4271 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4272 return 0;
4274 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4275 || (stride != NULL && stride->ts.type != BT_INTEGER))
4276 return 0;
4278 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4280 if (compare_bound (start, end) == CMP_GT)
4281 return 0;
4282 mpz_set (last, end->value.integer);
4283 return 1;
4286 if (compare_bound_int (stride, 0) == CMP_GT)
4288 /* Stride is positive */
4289 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4290 return 0;
4292 else
4294 /* Stride is negative */
4295 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4296 return 0;
4299 mpz_init (rem);
4300 mpz_sub (rem, end->value.integer, start->value.integer);
4301 mpz_tdiv_r (rem, rem, stride->value.integer);
4302 mpz_sub (last, end->value.integer, rem);
4303 mpz_clear (rem);
4305 return 1;
4309 /* Compare a single dimension of an array reference to the array
4310 specification. */
4312 static bool
4313 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4315 mpz_t last_value;
4317 if (ar->dimen_type[i] == DIMEN_STAR)
4319 gcc_assert (ar->stride[i] == NULL);
4320 /* This implies [*] as [*:] and [*:3] are not possible. */
4321 if (ar->start[i] == NULL)
4323 gcc_assert (ar->end[i] == NULL);
4324 return true;
4328 /* Given start, end and stride values, calculate the minimum and
4329 maximum referenced indexes. */
4331 switch (ar->dimen_type[i])
4333 case DIMEN_VECTOR:
4334 case DIMEN_THIS_IMAGE:
4335 break;
4337 case DIMEN_STAR:
4338 case DIMEN_ELEMENT:
4339 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4341 if (i < as->rank)
4342 gfc_warning (0, "Array reference at %L is out of bounds "
4343 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4344 mpz_get_si (ar->start[i]->value.integer),
4345 mpz_get_si (as->lower[i]->value.integer), i+1);
4346 else
4347 gfc_warning (0, "Array reference at %L is out of bounds "
4348 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4349 mpz_get_si (ar->start[i]->value.integer),
4350 mpz_get_si (as->lower[i]->value.integer),
4351 i + 1 - as->rank);
4352 return true;
4354 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4356 if (i < as->rank)
4357 gfc_warning (0, "Array reference at %L is out of bounds "
4358 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4359 mpz_get_si (ar->start[i]->value.integer),
4360 mpz_get_si (as->upper[i]->value.integer), i+1);
4361 else
4362 gfc_warning (0, "Array reference at %L is out of bounds "
4363 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4364 mpz_get_si (ar->start[i]->value.integer),
4365 mpz_get_si (as->upper[i]->value.integer),
4366 i + 1 - as->rank);
4367 return true;
4370 break;
4372 case DIMEN_RANGE:
4374 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4375 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4377 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4379 /* Check for zero stride, which is not allowed. */
4380 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4382 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4383 return false;
4386 /* if start == len || (stride > 0 && start < len)
4387 || (stride < 0 && start > len),
4388 then the array section contains at least one element. In this
4389 case, there is an out-of-bounds access if
4390 (start < lower || start > upper). */
4391 if (compare_bound (AR_START, AR_END) == CMP_EQ
4392 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4393 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4394 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4395 && comp_start_end == CMP_GT))
4397 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4399 gfc_warning (0, "Lower array reference at %L is out of bounds "
4400 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4401 mpz_get_si (AR_START->value.integer),
4402 mpz_get_si (as->lower[i]->value.integer), i+1);
4403 return true;
4405 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4407 gfc_warning (0, "Lower array reference at %L is out of bounds "
4408 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4409 mpz_get_si (AR_START->value.integer),
4410 mpz_get_si (as->upper[i]->value.integer), i+1);
4411 return true;
4415 /* If we can compute the highest index of the array section,
4416 then it also has to be between lower and upper. */
4417 mpz_init (last_value);
4418 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4419 last_value))
4421 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4423 gfc_warning (0, "Upper array reference at %L is out of bounds "
4424 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4425 mpz_get_si (last_value),
4426 mpz_get_si (as->lower[i]->value.integer), i+1);
4427 mpz_clear (last_value);
4428 return true;
4430 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4432 gfc_warning (0, "Upper array reference at %L is out of bounds "
4433 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4434 mpz_get_si (last_value),
4435 mpz_get_si (as->upper[i]->value.integer), i+1);
4436 mpz_clear (last_value);
4437 return true;
4440 mpz_clear (last_value);
4442 #undef AR_START
4443 #undef AR_END
4445 break;
4447 default:
4448 gfc_internal_error ("check_dimension(): Bad array reference");
4451 return true;
4455 /* Compare an array reference with an array specification. */
4457 static bool
4458 compare_spec_to_ref (gfc_array_ref *ar)
4460 gfc_array_spec *as;
4461 int i;
4463 as = ar->as;
4464 i = as->rank - 1;
4465 /* TODO: Full array sections are only allowed as actual parameters. */
4466 if (as->type == AS_ASSUMED_SIZE
4467 && (/*ar->type == AR_FULL
4468 ||*/ (ar->type == AR_SECTION
4469 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4471 gfc_error ("Rightmost upper bound of assumed size array section "
4472 "not specified at %L", &ar->where);
4473 return false;
4476 if (ar->type == AR_FULL)
4477 return true;
4479 if (as->rank != ar->dimen)
4481 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4482 &ar->where, ar->dimen, as->rank);
4483 return false;
4486 /* ar->codimen == 0 is a local array. */
4487 if (as->corank != ar->codimen && ar->codimen != 0)
4489 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4490 &ar->where, ar->codimen, as->corank);
4491 return false;
4494 for (i = 0; i < as->rank; i++)
4495 if (!check_dimension (i, ar, as))
4496 return false;
4498 /* Local access has no coarray spec. */
4499 if (ar->codimen != 0)
4500 for (i = as->rank; i < as->rank + as->corank; i++)
4502 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4503 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4505 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4506 i + 1 - as->rank, &ar->where);
4507 return false;
4509 if (!check_dimension (i, ar, as))
4510 return false;
4513 return true;
4517 /* Resolve one part of an array index. */
4519 static bool
4520 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4521 int force_index_integer_kind)
4523 gfc_typespec ts;
4525 if (index == NULL)
4526 return true;
4528 if (!gfc_resolve_expr (index))
4529 return false;
4531 if (check_scalar && index->rank != 0)
4533 gfc_error ("Array index at %L must be scalar", &index->where);
4534 return false;
4537 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4539 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4540 &index->where, gfc_basic_typename (index->ts.type));
4541 return false;
4544 if (index->ts.type == BT_REAL)
4545 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4546 &index->where))
4547 return false;
4549 if ((index->ts.kind != gfc_index_integer_kind
4550 && force_index_integer_kind)
4551 || index->ts.type != BT_INTEGER)
4553 gfc_clear_ts (&ts);
4554 ts.type = BT_INTEGER;
4555 ts.kind = gfc_index_integer_kind;
4557 gfc_convert_type_warn (index, &ts, 2, 0);
4560 return true;
4563 /* Resolve one part of an array index. */
4565 bool
4566 gfc_resolve_index (gfc_expr *index, int check_scalar)
4568 return gfc_resolve_index_1 (index, check_scalar, 1);
4571 /* Resolve a dim argument to an intrinsic function. */
4573 bool
4574 gfc_resolve_dim_arg (gfc_expr *dim)
4576 if (dim == NULL)
4577 return true;
4579 if (!gfc_resolve_expr (dim))
4580 return false;
4582 if (dim->rank != 0)
4584 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4585 return false;
4589 if (dim->ts.type != BT_INTEGER)
4591 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4592 return false;
4595 if (dim->ts.kind != gfc_index_integer_kind)
4597 gfc_typespec ts;
4599 gfc_clear_ts (&ts);
4600 ts.type = BT_INTEGER;
4601 ts.kind = gfc_index_integer_kind;
4603 gfc_convert_type_warn (dim, &ts, 2, 0);
4606 return true;
4609 /* Given an expression that contains array references, update those array
4610 references to point to the right array specifications. While this is
4611 filled in during matching, this information is difficult to save and load
4612 in a module, so we take care of it here.
4614 The idea here is that the original array reference comes from the
4615 base symbol. We traverse the list of reference structures, setting
4616 the stored reference to references. Component references can
4617 provide an additional array specification. */
4619 static void
4620 find_array_spec (gfc_expr *e)
4622 gfc_array_spec *as;
4623 gfc_component *c;
4624 gfc_ref *ref;
4626 if (e->symtree->n.sym->ts.type == BT_CLASS)
4627 as = CLASS_DATA (e->symtree->n.sym)->as;
4628 else
4629 as = e->symtree->n.sym->as;
4631 for (ref = e->ref; ref; ref = ref->next)
4632 switch (ref->type)
4634 case REF_ARRAY:
4635 if (as == NULL)
4636 gfc_internal_error ("find_array_spec(): Missing spec");
4638 ref->u.ar.as = as;
4639 as = NULL;
4640 break;
4642 case REF_COMPONENT:
4643 c = ref->u.c.component;
4644 if (c->attr.dimension)
4646 if (as != NULL)
4647 gfc_internal_error ("find_array_spec(): unused as(1)");
4648 as = c->as;
4651 break;
4653 case REF_SUBSTRING:
4654 break;
4657 if (as != NULL)
4658 gfc_internal_error ("find_array_spec(): unused as(2)");
4662 /* Resolve an array reference. */
4664 static bool
4665 resolve_array_ref (gfc_array_ref *ar)
4667 int i, check_scalar;
4668 gfc_expr *e;
4670 for (i = 0; i < ar->dimen + ar->codimen; i++)
4672 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4674 /* Do not force gfc_index_integer_kind for the start. We can
4675 do fine with any integer kind. This avoids temporary arrays
4676 created for indexing with a vector. */
4677 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4678 return false;
4679 if (!gfc_resolve_index (ar->end[i], check_scalar))
4680 return false;
4681 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4682 return false;
4684 e = ar->start[i];
4686 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4687 switch (e->rank)
4689 case 0:
4690 ar->dimen_type[i] = DIMEN_ELEMENT;
4691 break;
4693 case 1:
4694 ar->dimen_type[i] = DIMEN_VECTOR;
4695 if (e->expr_type == EXPR_VARIABLE
4696 && e->symtree->n.sym->ts.type == BT_DERIVED)
4697 ar->start[i] = gfc_get_parentheses (e);
4698 break;
4700 default:
4701 gfc_error ("Array index at %L is an array of rank %d",
4702 &ar->c_where[i], e->rank);
4703 return false;
4706 /* Fill in the upper bound, which may be lower than the
4707 specified one for something like a(2:10:5), which is
4708 identical to a(2:7:5). Only relevant for strides not equal
4709 to one. Don't try a division by zero. */
4710 if (ar->dimen_type[i] == DIMEN_RANGE
4711 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4712 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4713 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4715 mpz_t size, end;
4717 if (gfc_ref_dimen_size (ar, i, &size, &end))
4719 if (ar->end[i] == NULL)
4721 ar->end[i] =
4722 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4723 &ar->where);
4724 mpz_set (ar->end[i]->value.integer, end);
4726 else if (ar->end[i]->ts.type == BT_INTEGER
4727 && ar->end[i]->expr_type == EXPR_CONSTANT)
4729 mpz_set (ar->end[i]->value.integer, end);
4731 else
4732 gcc_unreachable ();
4734 mpz_clear (size);
4735 mpz_clear (end);
4740 if (ar->type == AR_FULL)
4742 if (ar->as->rank == 0)
4743 ar->type = AR_ELEMENT;
4745 /* Make sure array is the same as array(:,:), this way
4746 we don't need to special case all the time. */
4747 ar->dimen = ar->as->rank;
4748 for (i = 0; i < ar->dimen; i++)
4750 ar->dimen_type[i] = DIMEN_RANGE;
4752 gcc_assert (ar->start[i] == NULL);
4753 gcc_assert (ar->end[i] == NULL);
4754 gcc_assert (ar->stride[i] == NULL);
4758 /* If the reference type is unknown, figure out what kind it is. */
4760 if (ar->type == AR_UNKNOWN)
4762 ar->type = AR_ELEMENT;
4763 for (i = 0; i < ar->dimen; i++)
4764 if (ar->dimen_type[i] == DIMEN_RANGE
4765 || ar->dimen_type[i] == DIMEN_VECTOR)
4767 ar->type = AR_SECTION;
4768 break;
4772 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4773 return false;
4775 if (ar->as->corank && ar->codimen == 0)
4777 int n;
4778 ar->codimen = ar->as->corank;
4779 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4780 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4783 return true;
4787 static bool
4788 resolve_substring (gfc_ref *ref)
4790 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4792 if (ref->u.ss.start != NULL)
4794 if (!gfc_resolve_expr (ref->u.ss.start))
4795 return false;
4797 if (ref->u.ss.start->ts.type != BT_INTEGER)
4799 gfc_error ("Substring start index at %L must be of type INTEGER",
4800 &ref->u.ss.start->where);
4801 return false;
4804 if (ref->u.ss.start->rank != 0)
4806 gfc_error ("Substring start index at %L must be scalar",
4807 &ref->u.ss.start->where);
4808 return false;
4811 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4812 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4813 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4815 gfc_error ("Substring start index at %L is less than one",
4816 &ref->u.ss.start->where);
4817 return false;
4821 if (ref->u.ss.end != NULL)
4823 if (!gfc_resolve_expr (ref->u.ss.end))
4824 return false;
4826 if (ref->u.ss.end->ts.type != BT_INTEGER)
4828 gfc_error ("Substring end index at %L must be of type INTEGER",
4829 &ref->u.ss.end->where);
4830 return false;
4833 if (ref->u.ss.end->rank != 0)
4835 gfc_error ("Substring end index at %L must be scalar",
4836 &ref->u.ss.end->where);
4837 return false;
4840 if (ref->u.ss.length != NULL
4841 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4842 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4843 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4845 gfc_error ("Substring end index at %L exceeds the string length",
4846 &ref->u.ss.start->where);
4847 return false;
4850 if (compare_bound_mpz_t (ref->u.ss.end,
4851 gfc_integer_kinds[k].huge) == CMP_GT
4852 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4853 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4855 gfc_error ("Substring end index at %L is too large",
4856 &ref->u.ss.end->where);
4857 return false;
4861 return true;
4865 /* This function supplies missing substring charlens. */
4867 void
4868 gfc_resolve_substring_charlen (gfc_expr *e)
4870 gfc_ref *char_ref;
4871 gfc_expr *start, *end;
4872 gfc_typespec *ts = NULL;
4874 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4876 if (char_ref->type == REF_SUBSTRING)
4877 break;
4878 if (char_ref->type == REF_COMPONENT)
4879 ts = &char_ref->u.c.component->ts;
4882 if (!char_ref)
4883 return;
4885 gcc_assert (char_ref->next == NULL);
4887 if (e->ts.u.cl)
4889 if (e->ts.u.cl->length)
4890 gfc_free_expr (e->ts.u.cl->length);
4891 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4892 return;
4895 e->ts.type = BT_CHARACTER;
4896 e->ts.kind = gfc_default_character_kind;
4898 if (!e->ts.u.cl)
4899 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4901 if (char_ref->u.ss.start)
4902 start = gfc_copy_expr (char_ref->u.ss.start);
4903 else
4904 start = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
4906 if (char_ref->u.ss.end)
4907 end = gfc_copy_expr (char_ref->u.ss.end);
4908 else if (e->expr_type == EXPR_VARIABLE)
4910 if (!ts)
4911 ts = &e->symtree->n.sym->ts;
4912 end = gfc_copy_expr (ts->u.cl->length);
4914 else
4915 end = NULL;
4917 if (!start || !end)
4919 gfc_free_expr (start);
4920 gfc_free_expr (end);
4921 return;
4924 /* Length = (end - start + 1). */
4925 e->ts.u.cl->length = gfc_subtract (end, start);
4926 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
4927 gfc_get_int_expr (gfc_default_integer_kind,
4928 NULL, 1));
4930 /* F2008, 6.4.1: Both the starting point and the ending point shall
4931 be within the range 1, 2, ..., n unless the starting point exceeds
4932 the ending point, in which case the substring has length zero. */
4934 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
4935 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
4937 e->ts.u.cl->length->ts.type = BT_INTEGER;
4938 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
4940 /* Make sure that the length is simplified. */
4941 gfc_simplify_expr (e->ts.u.cl->length, 1);
4942 gfc_resolve_expr (e->ts.u.cl->length);
4946 /* Resolve subtype references. */
4948 static bool
4949 resolve_ref (gfc_expr *expr)
4951 int current_part_dimension, n_components, seen_part_dimension;
4952 gfc_ref *ref;
4954 for (ref = expr->ref; ref; ref = ref->next)
4955 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
4957 find_array_spec (expr);
4958 break;
4961 for (ref = expr->ref; ref; ref = ref->next)
4962 switch (ref->type)
4964 case REF_ARRAY:
4965 if (!resolve_array_ref (&ref->u.ar))
4966 return false;
4967 break;
4969 case REF_COMPONENT:
4970 break;
4972 case REF_SUBSTRING:
4973 if (!resolve_substring (ref))
4974 return false;
4975 break;
4978 /* Check constraints on part references. */
4980 current_part_dimension = 0;
4981 seen_part_dimension = 0;
4982 n_components = 0;
4984 for (ref = expr->ref; ref; ref = ref->next)
4986 switch (ref->type)
4988 case REF_ARRAY:
4989 switch (ref->u.ar.type)
4991 case AR_FULL:
4992 /* Coarray scalar. */
4993 if (ref->u.ar.as->rank == 0)
4995 current_part_dimension = 0;
4996 break;
4998 /* Fall through. */
4999 case AR_SECTION:
5000 current_part_dimension = 1;
5001 break;
5003 case AR_ELEMENT:
5004 current_part_dimension = 0;
5005 break;
5007 case AR_UNKNOWN:
5008 gfc_internal_error ("resolve_ref(): Bad array reference");
5011 break;
5013 case REF_COMPONENT:
5014 if (current_part_dimension || seen_part_dimension)
5016 /* F03:C614. */
5017 if (ref->u.c.component->attr.pointer
5018 || ref->u.c.component->attr.proc_pointer
5019 || (ref->u.c.component->ts.type == BT_CLASS
5020 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5022 gfc_error ("Component to the right of a part reference "
5023 "with nonzero rank must not have the POINTER "
5024 "attribute at %L", &expr->where);
5025 return false;
5027 else if (ref->u.c.component->attr.allocatable
5028 || (ref->u.c.component->ts.type == BT_CLASS
5029 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5032 gfc_error ("Component to the right of a part reference "
5033 "with nonzero rank must not have the ALLOCATABLE "
5034 "attribute at %L", &expr->where);
5035 return false;
5039 n_components++;
5040 break;
5042 case REF_SUBSTRING:
5043 break;
5046 if (((ref->type == REF_COMPONENT && n_components > 1)
5047 || ref->next == NULL)
5048 && current_part_dimension
5049 && seen_part_dimension)
5051 gfc_error ("Two or more part references with nonzero rank must "
5052 "not be specified at %L", &expr->where);
5053 return false;
5056 if (ref->type == REF_COMPONENT)
5058 if (current_part_dimension)
5059 seen_part_dimension = 1;
5061 /* reset to make sure */
5062 current_part_dimension = 0;
5066 return true;
5070 /* Given an expression, determine its shape. This is easier than it sounds.
5071 Leaves the shape array NULL if it is not possible to determine the shape. */
5073 static void
5074 expression_shape (gfc_expr *e)
5076 mpz_t array[GFC_MAX_DIMENSIONS];
5077 int i;
5079 if (e->rank <= 0 || e->shape != NULL)
5080 return;
5082 for (i = 0; i < e->rank; i++)
5083 if (!gfc_array_dimen_size (e, i, &array[i]))
5084 goto fail;
5086 e->shape = gfc_get_shape (e->rank);
5088 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5090 return;
5092 fail:
5093 for (i--; i >= 0; i--)
5094 mpz_clear (array[i]);
5098 /* Given a variable expression node, compute the rank of the expression by
5099 examining the base symbol and any reference structures it may have. */
5101 void
5102 expression_rank (gfc_expr *e)
5104 gfc_ref *ref;
5105 int i, rank;
5107 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5108 could lead to serious confusion... */
5109 gcc_assert (e->expr_type != EXPR_COMPCALL);
5111 if (e->ref == NULL)
5113 if (e->expr_type == EXPR_ARRAY)
5114 goto done;
5115 /* Constructors can have a rank different from one via RESHAPE(). */
5117 if (e->symtree == NULL)
5119 e->rank = 0;
5120 goto done;
5123 e->rank = (e->symtree->n.sym->as == NULL)
5124 ? 0 : e->symtree->n.sym->as->rank;
5125 goto done;
5128 rank = 0;
5130 for (ref = e->ref; ref; ref = ref->next)
5132 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5133 && ref->u.c.component->attr.function && !ref->next)
5134 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5136 if (ref->type != REF_ARRAY)
5137 continue;
5139 if (ref->u.ar.type == AR_FULL)
5141 rank = ref->u.ar.as->rank;
5142 break;
5145 if (ref->u.ar.type == AR_SECTION)
5147 /* Figure out the rank of the section. */
5148 if (rank != 0)
5149 gfc_internal_error ("expression_rank(): Two array specs");
5151 for (i = 0; i < ref->u.ar.dimen; i++)
5152 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5153 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5154 rank++;
5156 break;
5160 e->rank = rank;
5162 done:
5163 expression_shape (e);
5167 static void
5168 add_caf_get_intrinsic (gfc_expr *e)
5170 gfc_expr *wrapper, *tmp_expr;
5171 gfc_ref *ref;
5172 int n;
5174 for (ref = e->ref; ref; ref = ref->next)
5175 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5176 break;
5177 if (ref == NULL)
5178 return;
5180 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5181 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5182 return;
5184 tmp_expr = XCNEW (gfc_expr);
5185 *tmp_expr = *e;
5186 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5187 "caf_get", tmp_expr->where, 1, tmp_expr);
5188 wrapper->ts = e->ts;
5189 wrapper->rank = e->rank;
5190 if (e->rank)
5191 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5192 *e = *wrapper;
5193 free (wrapper);
5197 static void
5198 remove_caf_get_intrinsic (gfc_expr *e)
5200 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5201 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5202 gfc_expr *e2 = e->value.function.actual->expr;
5203 e->value.function.actual->expr = NULL;
5204 gfc_free_actual_arglist (e->value.function.actual);
5205 gfc_free_shape (&e->shape, e->rank);
5206 *e = *e2;
5207 free (e2);
5211 /* Resolve a variable expression. */
5213 static bool
5214 resolve_variable (gfc_expr *e)
5216 gfc_symbol *sym;
5217 bool t;
5219 t = true;
5221 if (e->symtree == NULL)
5222 return false;
5223 sym = e->symtree->n.sym;
5225 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5226 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5227 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5229 if (!actual_arg || inquiry_argument)
5231 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5232 "be used as actual argument", sym->name, &e->where);
5233 return false;
5236 /* TS 29113, 407b. */
5237 else if (e->ts.type == BT_ASSUMED)
5239 if (!actual_arg)
5241 gfc_error ("Assumed-type variable %s at %L may only be used "
5242 "as actual argument", sym->name, &e->where);
5243 return false;
5245 else if (inquiry_argument && !first_actual_arg)
5247 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5248 for all inquiry functions in resolve_function; the reason is
5249 that the function-name resolution happens too late in that
5250 function. */
5251 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5252 "an inquiry function shall be the first argument",
5253 sym->name, &e->where);
5254 return false;
5257 /* TS 29113, C535b. */
5258 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5259 && CLASS_DATA (sym)->as
5260 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5261 || (sym->ts.type != BT_CLASS && sym->as
5262 && sym->as->type == AS_ASSUMED_RANK))
5264 if (!actual_arg)
5266 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5267 "actual argument", sym->name, &e->where);
5268 return false;
5270 else if (inquiry_argument && !first_actual_arg)
5272 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5273 for all inquiry functions in resolve_function; the reason is
5274 that the function-name resolution happens too late in that
5275 function. */
5276 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5277 "to an inquiry function shall be the first argument",
5278 sym->name, &e->where);
5279 return false;
5283 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5284 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5285 && e->ref->next == NULL))
5287 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5288 "a subobject reference", sym->name, &e->ref->u.ar.where);
5289 return false;
5291 /* TS 29113, 407b. */
5292 else if (e->ts.type == BT_ASSUMED && e->ref
5293 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5294 && e->ref->next == NULL))
5296 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5297 "reference", sym->name, &e->ref->u.ar.where);
5298 return false;
5301 /* TS 29113, C535b. */
5302 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5303 && CLASS_DATA (sym)->as
5304 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5305 || (sym->ts.type != BT_CLASS && sym->as
5306 && sym->as->type == AS_ASSUMED_RANK))
5307 && e->ref
5308 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5309 && e->ref->next == NULL))
5311 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5312 "reference", sym->name, &e->ref->u.ar.where);
5313 return false;
5316 /* For variables that are used in an associate (target => object) where
5317 the object's basetype is array valued while the target is scalar,
5318 the ts' type of the component refs is still array valued, which
5319 can't be translated that way. */
5320 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5321 && sym->assoc->target->ts.type == BT_CLASS
5322 && CLASS_DATA (sym->assoc->target)->as)
5324 gfc_ref *ref = e->ref;
5325 while (ref)
5327 switch (ref->type)
5329 case REF_COMPONENT:
5330 ref->u.c.sym = sym->ts.u.derived;
5331 /* Stop the loop. */
5332 ref = NULL;
5333 break;
5334 default:
5335 ref = ref->next;
5336 break;
5341 /* If this is an associate-name, it may be parsed with an array reference
5342 in error even though the target is scalar. Fail directly in this case.
5343 TODO Understand why class scalar expressions must be excluded. */
5344 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5346 if (sym->ts.type == BT_CLASS)
5347 gfc_fix_class_refs (e);
5348 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5349 return false;
5352 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5353 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5355 /* On the other hand, the parser may not have known this is an array;
5356 in this case, we have to add a FULL reference. */
5357 if (sym->assoc && sym->attr.dimension && !e->ref)
5359 e->ref = gfc_get_ref ();
5360 e->ref->type = REF_ARRAY;
5361 e->ref->u.ar.type = AR_FULL;
5362 e->ref->u.ar.dimen = 0;
5365 /* Like above, but for class types, where the checking whether an array
5366 ref is present is more complicated. Furthermore make sure not to add
5367 the full array ref to _vptr or _len refs. */
5368 if (sym->assoc && sym->ts.type == BT_CLASS
5369 && CLASS_DATA (sym)->attr.dimension
5370 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5372 gfc_ref *ref, *newref;
5374 newref = gfc_get_ref ();
5375 newref->type = REF_ARRAY;
5376 newref->u.ar.type = AR_FULL;
5377 newref->u.ar.dimen = 0;
5378 /* Because this is an associate var and the first ref either is a ref to
5379 the _data component or not, no traversal of the ref chain is
5380 needed. The array ref needs to be inserted after the _data ref,
5381 or when that is not present, which may happend for polymorphic
5382 types, then at the first position. */
5383 ref = e->ref;
5384 if (!ref)
5385 e->ref = newref;
5386 else if (ref->type == REF_COMPONENT
5387 && strcmp ("_data", ref->u.c.component->name) == 0)
5389 if (!ref->next || ref->next->type != REF_ARRAY)
5391 newref->next = ref->next;
5392 ref->next = newref;
5394 else
5395 /* Array ref present already. */
5396 gfc_free_ref_list (newref);
5398 else if (ref->type == REF_ARRAY)
5399 /* Array ref present already. */
5400 gfc_free_ref_list (newref);
5401 else
5403 newref->next = ref;
5404 e->ref = newref;
5408 if (e->ref && !resolve_ref (e))
5409 return false;
5411 if (sym->attr.flavor == FL_PROCEDURE
5412 && (!sym->attr.function
5413 || (sym->attr.function && sym->result
5414 && sym->result->attr.proc_pointer
5415 && !sym->result->attr.function)))
5417 e->ts.type = BT_PROCEDURE;
5418 goto resolve_procedure;
5421 if (sym->ts.type != BT_UNKNOWN)
5422 gfc_variable_attr (e, &e->ts);
5423 else if (sym->attr.flavor == FL_PROCEDURE
5424 && sym->attr.function && sym->result
5425 && sym->result->ts.type != BT_UNKNOWN
5426 && sym->result->attr.proc_pointer)
5427 e->ts = sym->result->ts;
5428 else
5430 /* Must be a simple variable reference. */
5431 if (!gfc_set_default_type (sym, 1, sym->ns))
5432 return false;
5433 e->ts = sym->ts;
5436 if (check_assumed_size_reference (sym, e))
5437 return false;
5439 /* Deal with forward references to entries during gfc_resolve_code, to
5440 satisfy, at least partially, 12.5.2.5. */
5441 if (gfc_current_ns->entries
5442 && current_entry_id == sym->entry_id
5443 && cs_base
5444 && cs_base->current
5445 && cs_base->current->op != EXEC_ENTRY)
5447 gfc_entry_list *entry;
5448 gfc_formal_arglist *formal;
5449 int n;
5450 bool seen, saved_specification_expr;
5452 /* If the symbol is a dummy... */
5453 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5455 entry = gfc_current_ns->entries;
5456 seen = false;
5458 /* ...test if the symbol is a parameter of previous entries. */
5459 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5460 for (formal = entry->sym->formal; formal; formal = formal->next)
5462 if (formal->sym && sym->name == formal->sym->name)
5464 seen = true;
5465 break;
5469 /* If it has not been seen as a dummy, this is an error. */
5470 if (!seen)
5472 if (specification_expr)
5473 gfc_error ("Variable %qs, used in a specification expression"
5474 ", is referenced at %L before the ENTRY statement "
5475 "in which it is a parameter",
5476 sym->name, &cs_base->current->loc);
5477 else
5478 gfc_error ("Variable %qs is used at %L before the ENTRY "
5479 "statement in which it is a parameter",
5480 sym->name, &cs_base->current->loc);
5481 t = false;
5485 /* Now do the same check on the specification expressions. */
5486 saved_specification_expr = specification_expr;
5487 specification_expr = true;
5488 if (sym->ts.type == BT_CHARACTER
5489 && !gfc_resolve_expr (sym->ts.u.cl->length))
5490 t = false;
5492 if (sym->as)
5493 for (n = 0; n < sym->as->rank; n++)
5495 if (!gfc_resolve_expr (sym->as->lower[n]))
5496 t = false;
5497 if (!gfc_resolve_expr (sym->as->upper[n]))
5498 t = false;
5500 specification_expr = saved_specification_expr;
5502 if (t)
5503 /* Update the symbol's entry level. */
5504 sym->entry_id = current_entry_id + 1;
5507 /* If a symbol has been host_associated mark it. This is used latter,
5508 to identify if aliasing is possible via host association. */
5509 if (sym->attr.flavor == FL_VARIABLE
5510 && gfc_current_ns->parent
5511 && (gfc_current_ns->parent == sym->ns
5512 || (gfc_current_ns->parent->parent
5513 && gfc_current_ns->parent->parent == sym->ns)))
5514 sym->attr.host_assoc = 1;
5516 if (gfc_current_ns->proc_name
5517 && sym->attr.dimension
5518 && (sym->ns != gfc_current_ns
5519 || sym->attr.use_assoc
5520 || sym->attr.in_common))
5521 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5523 resolve_procedure:
5524 if (t && !resolve_procedure_expression (e))
5525 t = false;
5527 /* F2008, C617 and C1229. */
5528 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5529 && gfc_is_coindexed (e))
5531 gfc_ref *ref, *ref2 = NULL;
5533 for (ref = e->ref; ref; ref = ref->next)
5535 if (ref->type == REF_COMPONENT)
5536 ref2 = ref;
5537 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5538 break;
5541 for ( ; ref; ref = ref->next)
5542 if (ref->type == REF_COMPONENT)
5543 break;
5545 /* Expression itself is not coindexed object. */
5546 if (ref && e->ts.type == BT_CLASS)
5548 gfc_error ("Polymorphic subobject of coindexed object at %L",
5549 &e->where);
5550 t = false;
5553 /* Expression itself is coindexed object. */
5554 if (ref == NULL)
5556 gfc_component *c;
5557 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5558 for ( ; c; c = c->next)
5559 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5561 gfc_error ("Coindexed object with polymorphic allocatable "
5562 "subcomponent at %L", &e->where);
5563 t = false;
5564 break;
5569 if (t)
5570 expression_rank (e);
5572 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5573 add_caf_get_intrinsic (e);
5575 return t;
5579 /* Checks to see that the correct symbol has been host associated.
5580 The only situation where this arises is that in which a twice
5581 contained function is parsed after the host association is made.
5582 Therefore, on detecting this, change the symbol in the expression
5583 and convert the array reference into an actual arglist if the old
5584 symbol is a variable. */
5585 static bool
5586 check_host_association (gfc_expr *e)
5588 gfc_symbol *sym, *old_sym;
5589 gfc_symtree *st;
5590 int n;
5591 gfc_ref *ref;
5592 gfc_actual_arglist *arg, *tail = NULL;
5593 bool retval = e->expr_type == EXPR_FUNCTION;
5595 /* If the expression is the result of substitution in
5596 interface.c(gfc_extend_expr) because there is no way in
5597 which the host association can be wrong. */
5598 if (e->symtree == NULL
5599 || e->symtree->n.sym == NULL
5600 || e->user_operator)
5601 return retval;
5603 old_sym = e->symtree->n.sym;
5605 if (gfc_current_ns->parent
5606 && old_sym->ns != gfc_current_ns)
5608 /* Use the 'USE' name so that renamed module symbols are
5609 correctly handled. */
5610 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5612 if (sym && old_sym != sym
5613 && sym->ts.type == old_sym->ts.type
5614 && sym->attr.flavor == FL_PROCEDURE
5615 && sym->attr.contained)
5617 /* Clear the shape, since it might not be valid. */
5618 gfc_free_shape (&e->shape, e->rank);
5620 /* Give the expression the right symtree! */
5621 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5622 gcc_assert (st != NULL);
5624 if (old_sym->attr.flavor == FL_PROCEDURE
5625 || e->expr_type == EXPR_FUNCTION)
5627 /* Original was function so point to the new symbol, since
5628 the actual argument list is already attached to the
5629 expression. */
5630 e->value.function.esym = NULL;
5631 e->symtree = st;
5633 else
5635 /* Original was variable so convert array references into
5636 an actual arglist. This does not need any checking now
5637 since resolve_function will take care of it. */
5638 e->value.function.actual = NULL;
5639 e->expr_type = EXPR_FUNCTION;
5640 e->symtree = st;
5642 /* Ambiguity will not arise if the array reference is not
5643 the last reference. */
5644 for (ref = e->ref; ref; ref = ref->next)
5645 if (ref->type == REF_ARRAY && ref->next == NULL)
5646 break;
5648 gcc_assert (ref->type == REF_ARRAY);
5650 /* Grab the start expressions from the array ref and
5651 copy them into actual arguments. */
5652 for (n = 0; n < ref->u.ar.dimen; n++)
5654 arg = gfc_get_actual_arglist ();
5655 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5656 if (e->value.function.actual == NULL)
5657 tail = e->value.function.actual = arg;
5658 else
5660 tail->next = arg;
5661 tail = arg;
5665 /* Dump the reference list and set the rank. */
5666 gfc_free_ref_list (e->ref);
5667 e->ref = NULL;
5668 e->rank = sym->as ? sym->as->rank : 0;
5671 gfc_resolve_expr (e);
5672 sym->refs++;
5675 /* This might have changed! */
5676 return e->expr_type == EXPR_FUNCTION;
5680 static void
5681 gfc_resolve_character_operator (gfc_expr *e)
5683 gfc_expr *op1 = e->value.op.op1;
5684 gfc_expr *op2 = e->value.op.op2;
5685 gfc_expr *e1 = NULL;
5686 gfc_expr *e2 = NULL;
5688 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5690 if (op1->ts.u.cl && op1->ts.u.cl->length)
5691 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5692 else if (op1->expr_type == EXPR_CONSTANT)
5693 e1 = gfc_get_int_expr (gfc_default_integer_kind, NULL,
5694 op1->value.character.length);
5696 if (op2->ts.u.cl && op2->ts.u.cl->length)
5697 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5698 else if (op2->expr_type == EXPR_CONSTANT)
5699 e2 = gfc_get_int_expr (gfc_default_integer_kind, NULL,
5700 op2->value.character.length);
5702 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5704 if (!e1 || !e2)
5706 gfc_free_expr (e1);
5707 gfc_free_expr (e2);
5709 return;
5712 e->ts.u.cl->length = gfc_add (e1, e2);
5713 e->ts.u.cl->length->ts.type = BT_INTEGER;
5714 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5715 gfc_simplify_expr (e->ts.u.cl->length, 0);
5716 gfc_resolve_expr (e->ts.u.cl->length);
5718 return;
5722 /* Ensure that an character expression has a charlen and, if possible, a
5723 length expression. */
5725 static void
5726 fixup_charlen (gfc_expr *e)
5728 /* The cases fall through so that changes in expression type and the need
5729 for multiple fixes are picked up. In all circumstances, a charlen should
5730 be available for the middle end to hang a backend_decl on. */
5731 switch (e->expr_type)
5733 case EXPR_OP:
5734 gfc_resolve_character_operator (e);
5735 /* FALLTHRU */
5737 case EXPR_ARRAY:
5738 if (e->expr_type == EXPR_ARRAY)
5739 gfc_resolve_character_array_constructor (e);
5740 /* FALLTHRU */
5742 case EXPR_SUBSTRING:
5743 if (!e->ts.u.cl && e->ref)
5744 gfc_resolve_substring_charlen (e);
5745 /* FALLTHRU */
5747 default:
5748 if (!e->ts.u.cl)
5749 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5751 break;
5756 /* Update an actual argument to include the passed-object for type-bound
5757 procedures at the right position. */
5759 static gfc_actual_arglist*
5760 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5761 const char *name)
5763 gcc_assert (argpos > 0);
5765 if (argpos == 1)
5767 gfc_actual_arglist* result;
5769 result = gfc_get_actual_arglist ();
5770 result->expr = po;
5771 result->next = lst;
5772 if (name)
5773 result->name = name;
5775 return result;
5778 if (lst)
5779 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5780 else
5781 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5782 return lst;
5786 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5788 static gfc_expr*
5789 extract_compcall_passed_object (gfc_expr* e)
5791 gfc_expr* po;
5793 gcc_assert (e->expr_type == EXPR_COMPCALL);
5795 if (e->value.compcall.base_object)
5796 po = gfc_copy_expr (e->value.compcall.base_object);
5797 else
5799 po = gfc_get_expr ();
5800 po->expr_type = EXPR_VARIABLE;
5801 po->symtree = e->symtree;
5802 po->ref = gfc_copy_ref (e->ref);
5803 po->where = e->where;
5806 if (!gfc_resolve_expr (po))
5807 return NULL;
5809 return po;
5813 /* Update the arglist of an EXPR_COMPCALL expression to include the
5814 passed-object. */
5816 static bool
5817 update_compcall_arglist (gfc_expr* e)
5819 gfc_expr* po;
5820 gfc_typebound_proc* tbp;
5822 tbp = e->value.compcall.tbp;
5824 if (tbp->error)
5825 return false;
5827 po = extract_compcall_passed_object (e);
5828 if (!po)
5829 return false;
5831 if (tbp->nopass || e->value.compcall.ignore_pass)
5833 gfc_free_expr (po);
5834 return true;
5837 if (tbp->pass_arg_num <= 0)
5838 return false;
5840 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5841 tbp->pass_arg_num,
5842 tbp->pass_arg);
5844 return true;
5848 /* Extract the passed object from a PPC call (a copy of it). */
5850 static gfc_expr*
5851 extract_ppc_passed_object (gfc_expr *e)
5853 gfc_expr *po;
5854 gfc_ref **ref;
5856 po = gfc_get_expr ();
5857 po->expr_type = EXPR_VARIABLE;
5858 po->symtree = e->symtree;
5859 po->ref = gfc_copy_ref (e->ref);
5860 po->where = e->where;
5862 /* Remove PPC reference. */
5863 ref = &po->ref;
5864 while ((*ref)->next)
5865 ref = &(*ref)->next;
5866 gfc_free_ref_list (*ref);
5867 *ref = NULL;
5869 if (!gfc_resolve_expr (po))
5870 return NULL;
5872 return po;
5876 /* Update the actual arglist of a procedure pointer component to include the
5877 passed-object. */
5879 static bool
5880 update_ppc_arglist (gfc_expr* e)
5882 gfc_expr* po;
5883 gfc_component *ppc;
5884 gfc_typebound_proc* tb;
5886 ppc = gfc_get_proc_ptr_comp (e);
5887 if (!ppc)
5888 return false;
5890 tb = ppc->tb;
5892 if (tb->error)
5893 return false;
5894 else if (tb->nopass)
5895 return true;
5897 po = extract_ppc_passed_object (e);
5898 if (!po)
5899 return false;
5901 /* F08:R739. */
5902 if (po->rank != 0)
5904 gfc_error ("Passed-object at %L must be scalar", &e->where);
5905 return false;
5908 /* F08:C611. */
5909 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
5911 gfc_error ("Base object for procedure-pointer component call at %L is of"
5912 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
5913 return false;
5916 gcc_assert (tb->pass_arg_num > 0);
5917 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5918 tb->pass_arg_num,
5919 tb->pass_arg);
5921 return true;
5925 /* Check that the object a TBP is called on is valid, i.e. it must not be
5926 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
5928 static bool
5929 check_typebound_baseobject (gfc_expr* e)
5931 gfc_expr* base;
5932 bool return_value = false;
5934 base = extract_compcall_passed_object (e);
5935 if (!base)
5936 return false;
5938 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
5940 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
5941 return false;
5943 /* F08:C611. */
5944 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
5946 gfc_error ("Base object for type-bound procedure call at %L is of"
5947 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
5948 goto cleanup;
5951 /* F08:C1230. If the procedure called is NOPASS,
5952 the base object must be scalar. */
5953 if (e->value.compcall.tbp->nopass && base->rank != 0)
5955 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
5956 " be scalar", &e->where);
5957 goto cleanup;
5960 return_value = true;
5962 cleanup:
5963 gfc_free_expr (base);
5964 return return_value;
5968 /* Resolve a call to a type-bound procedure, either function or subroutine,
5969 statically from the data in an EXPR_COMPCALL expression. The adapted
5970 arglist and the target-procedure symtree are returned. */
5972 static bool
5973 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
5974 gfc_actual_arglist** actual)
5976 gcc_assert (e->expr_type == EXPR_COMPCALL);
5977 gcc_assert (!e->value.compcall.tbp->is_generic);
5979 /* Update the actual arglist for PASS. */
5980 if (!update_compcall_arglist (e))
5981 return false;
5983 *actual = e->value.compcall.actual;
5984 *target = e->value.compcall.tbp->u.specific;
5986 gfc_free_ref_list (e->ref);
5987 e->ref = NULL;
5988 e->value.compcall.actual = NULL;
5990 /* If we find a deferred typebound procedure, check for derived types
5991 that an overriding typebound procedure has not been missed. */
5992 if (e->value.compcall.name
5993 && !e->value.compcall.tbp->non_overridable
5994 && e->value.compcall.base_object
5995 && e->value.compcall.base_object->ts.type == BT_DERIVED)
5997 gfc_symtree *st;
5998 gfc_symbol *derived;
6000 /* Use the derived type of the base_object. */
6001 derived = e->value.compcall.base_object->ts.u.derived;
6002 st = NULL;
6004 /* If necessary, go through the inheritance chain. */
6005 while (!st && derived)
6007 /* Look for the typebound procedure 'name'. */
6008 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6009 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6010 e->value.compcall.name);
6011 if (!st)
6012 derived = gfc_get_derived_super_type (derived);
6015 /* Now find the specific name in the derived type namespace. */
6016 if (st && st->n.tb && st->n.tb->u.specific)
6017 gfc_find_sym_tree (st->n.tb->u.specific->name,
6018 derived->ns, 1, &st);
6019 if (st)
6020 *target = st;
6022 return true;
6026 /* Get the ultimate declared type from an expression. In addition,
6027 return the last class/derived type reference and the copy of the
6028 reference list. If check_types is set true, derived types are
6029 identified as well as class references. */
6030 static gfc_symbol*
6031 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6032 gfc_expr *e, bool check_types)
6034 gfc_symbol *declared;
6035 gfc_ref *ref;
6037 declared = NULL;
6038 if (class_ref)
6039 *class_ref = NULL;
6040 if (new_ref)
6041 *new_ref = gfc_copy_ref (e->ref);
6043 for (ref = e->ref; ref; ref = ref->next)
6045 if (ref->type != REF_COMPONENT)
6046 continue;
6048 if ((ref->u.c.component->ts.type == BT_CLASS
6049 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6050 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6052 declared = ref->u.c.component->ts.u.derived;
6053 if (class_ref)
6054 *class_ref = ref;
6058 if (declared == NULL)
6059 declared = e->symtree->n.sym->ts.u.derived;
6061 return declared;
6065 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6066 which of the specific bindings (if any) matches the arglist and transform
6067 the expression into a call of that binding. */
6069 static bool
6070 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6072 gfc_typebound_proc* genproc;
6073 const char* genname;
6074 gfc_symtree *st;
6075 gfc_symbol *derived;
6077 gcc_assert (e->expr_type == EXPR_COMPCALL);
6078 genname = e->value.compcall.name;
6079 genproc = e->value.compcall.tbp;
6081 if (!genproc->is_generic)
6082 return true;
6084 /* Try the bindings on this type and in the inheritance hierarchy. */
6085 for (; genproc; genproc = genproc->overridden)
6087 gfc_tbp_generic* g;
6089 gcc_assert (genproc->is_generic);
6090 for (g = genproc->u.generic; g; g = g->next)
6092 gfc_symbol* target;
6093 gfc_actual_arglist* args;
6094 bool matches;
6096 gcc_assert (g->specific);
6098 if (g->specific->error)
6099 continue;
6101 target = g->specific->u.specific->n.sym;
6103 /* Get the right arglist by handling PASS/NOPASS. */
6104 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6105 if (!g->specific->nopass)
6107 gfc_expr* po;
6108 po = extract_compcall_passed_object (e);
6109 if (!po)
6111 gfc_free_actual_arglist (args);
6112 return false;
6115 gcc_assert (g->specific->pass_arg_num > 0);
6116 gcc_assert (!g->specific->error);
6117 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6118 g->specific->pass_arg);
6120 resolve_actual_arglist (args, target->attr.proc,
6121 is_external_proc (target)
6122 && gfc_sym_get_dummy_args (target) == NULL);
6124 /* Check if this arglist matches the formal. */
6125 matches = gfc_arglist_matches_symbol (&args, target);
6127 /* Clean up and break out of the loop if we've found it. */
6128 gfc_free_actual_arglist (args);
6129 if (matches)
6131 e->value.compcall.tbp = g->specific;
6132 genname = g->specific_st->name;
6133 /* Pass along the name for CLASS methods, where the vtab
6134 procedure pointer component has to be referenced. */
6135 if (name)
6136 *name = genname;
6137 goto success;
6142 /* Nothing matching found! */
6143 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6144 " %qs at %L", genname, &e->where);
6145 return false;
6147 success:
6148 /* Make sure that we have the right specific instance for the name. */
6149 derived = get_declared_from_expr (NULL, NULL, e, true);
6151 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6152 if (st)
6153 e->value.compcall.tbp = st->n.tb;
6155 return true;
6159 /* Resolve a call to a type-bound subroutine. */
6161 static bool
6162 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6164 gfc_actual_arglist* newactual;
6165 gfc_symtree* target;
6167 /* Check that's really a SUBROUTINE. */
6168 if (!c->expr1->value.compcall.tbp->subroutine)
6170 gfc_error ("%qs at %L should be a SUBROUTINE",
6171 c->expr1->value.compcall.name, &c->loc);
6172 return false;
6175 if (!check_typebound_baseobject (c->expr1))
6176 return false;
6178 /* Pass along the name for CLASS methods, where the vtab
6179 procedure pointer component has to be referenced. */
6180 if (name)
6181 *name = c->expr1->value.compcall.name;
6183 if (!resolve_typebound_generic_call (c->expr1, name))
6184 return false;
6186 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6187 if (overridable)
6188 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6190 /* Transform into an ordinary EXEC_CALL for now. */
6192 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6193 return false;
6195 c->ext.actual = newactual;
6196 c->symtree = target;
6197 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6199 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6201 gfc_free_expr (c->expr1);
6202 c->expr1 = gfc_get_expr ();
6203 c->expr1->expr_type = EXPR_FUNCTION;
6204 c->expr1->symtree = target;
6205 c->expr1->where = c->loc;
6207 return resolve_call (c);
6211 /* Resolve a component-call expression. */
6212 static bool
6213 resolve_compcall (gfc_expr* e, const char **name)
6215 gfc_actual_arglist* newactual;
6216 gfc_symtree* target;
6218 /* Check that's really a FUNCTION. */
6219 if (!e->value.compcall.tbp->function)
6221 gfc_error ("%qs at %L should be a FUNCTION",
6222 e->value.compcall.name, &e->where);
6223 return false;
6226 /* These must not be assign-calls! */
6227 gcc_assert (!e->value.compcall.assign);
6229 if (!check_typebound_baseobject (e))
6230 return false;
6232 /* Pass along the name for CLASS methods, where the vtab
6233 procedure pointer component has to be referenced. */
6234 if (name)
6235 *name = e->value.compcall.name;
6237 if (!resolve_typebound_generic_call (e, name))
6238 return false;
6239 gcc_assert (!e->value.compcall.tbp->is_generic);
6241 /* Take the rank from the function's symbol. */
6242 if (e->value.compcall.tbp->u.specific->n.sym->as)
6243 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6245 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6246 arglist to the TBP's binding target. */
6248 if (!resolve_typebound_static (e, &target, &newactual))
6249 return false;
6251 e->value.function.actual = newactual;
6252 e->value.function.name = NULL;
6253 e->value.function.esym = target->n.sym;
6254 e->value.function.isym = NULL;
6255 e->symtree = target;
6256 e->ts = target->n.sym->ts;
6257 e->expr_type = EXPR_FUNCTION;
6259 /* Resolution is not necessary if this is a class subroutine; this
6260 function only has to identify the specific proc. Resolution of
6261 the call will be done next in resolve_typebound_call. */
6262 return gfc_resolve_expr (e);
6266 static bool resolve_fl_derived (gfc_symbol *sym);
6269 /* Resolve a typebound function, or 'method'. First separate all
6270 the non-CLASS references by calling resolve_compcall directly. */
6272 static bool
6273 resolve_typebound_function (gfc_expr* e)
6275 gfc_symbol *declared;
6276 gfc_component *c;
6277 gfc_ref *new_ref;
6278 gfc_ref *class_ref;
6279 gfc_symtree *st;
6280 const char *name;
6281 gfc_typespec ts;
6282 gfc_expr *expr;
6283 bool overridable;
6285 st = e->symtree;
6287 /* Deal with typebound operators for CLASS objects. */
6288 expr = e->value.compcall.base_object;
6289 overridable = !e->value.compcall.tbp->non_overridable;
6290 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6292 /* If the base_object is not a variable, the corresponding actual
6293 argument expression must be stored in e->base_expression so
6294 that the corresponding tree temporary can be used as the base
6295 object in gfc_conv_procedure_call. */
6296 if (expr->expr_type != EXPR_VARIABLE)
6298 gfc_actual_arglist *args;
6300 for (args= e->value.function.actual; args; args = args->next)
6302 if (expr == args->expr)
6303 expr = args->expr;
6307 /* Since the typebound operators are generic, we have to ensure
6308 that any delays in resolution are corrected and that the vtab
6309 is present. */
6310 ts = expr->ts;
6311 declared = ts.u.derived;
6312 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6313 if (c->ts.u.derived == NULL)
6314 c->ts.u.derived = gfc_find_derived_vtab (declared);
6316 if (!resolve_compcall (e, &name))
6317 return false;
6319 /* Use the generic name if it is there. */
6320 name = name ? name : e->value.function.esym->name;
6321 e->symtree = expr->symtree;
6322 e->ref = gfc_copy_ref (expr->ref);
6323 get_declared_from_expr (&class_ref, NULL, e, false);
6325 /* Trim away the extraneous references that emerge from nested
6326 use of interface.c (extend_expr). */
6327 if (class_ref && class_ref->next)
6329 gfc_free_ref_list (class_ref->next);
6330 class_ref->next = NULL;
6332 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6334 gfc_free_ref_list (e->ref);
6335 e->ref = NULL;
6338 gfc_add_vptr_component (e);
6339 gfc_add_component_ref (e, name);
6340 e->value.function.esym = NULL;
6341 if (expr->expr_type != EXPR_VARIABLE)
6342 e->base_expr = expr;
6343 return true;
6346 if (st == NULL)
6347 return resolve_compcall (e, NULL);
6349 if (!resolve_ref (e))
6350 return false;
6352 /* Get the CLASS declared type. */
6353 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6355 if (!resolve_fl_derived (declared))
6356 return false;
6358 /* Weed out cases of the ultimate component being a derived type. */
6359 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6360 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6362 gfc_free_ref_list (new_ref);
6363 return resolve_compcall (e, NULL);
6366 c = gfc_find_component (declared, "_data", true, true, NULL);
6367 declared = c->ts.u.derived;
6369 /* Treat the call as if it is a typebound procedure, in order to roll
6370 out the correct name for the specific function. */
6371 if (!resolve_compcall (e, &name))
6373 gfc_free_ref_list (new_ref);
6374 return false;
6376 ts = e->ts;
6378 if (overridable)
6380 /* Convert the expression to a procedure pointer component call. */
6381 e->value.function.esym = NULL;
6382 e->symtree = st;
6384 if (new_ref)
6385 e->ref = new_ref;
6387 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6388 gfc_add_vptr_component (e);
6389 gfc_add_component_ref (e, name);
6391 /* Recover the typespec for the expression. This is really only
6392 necessary for generic procedures, where the additional call
6393 to gfc_add_component_ref seems to throw the collection of the
6394 correct typespec. */
6395 e->ts = ts;
6397 else if (new_ref)
6398 gfc_free_ref_list (new_ref);
6400 return true;
6403 /* Resolve a typebound subroutine, or 'method'. First separate all
6404 the non-CLASS references by calling resolve_typebound_call
6405 directly. */
6407 static bool
6408 resolve_typebound_subroutine (gfc_code *code)
6410 gfc_symbol *declared;
6411 gfc_component *c;
6412 gfc_ref *new_ref;
6413 gfc_ref *class_ref;
6414 gfc_symtree *st;
6415 const char *name;
6416 gfc_typespec ts;
6417 gfc_expr *expr;
6418 bool overridable;
6420 st = code->expr1->symtree;
6422 /* Deal with typebound operators for CLASS objects. */
6423 expr = code->expr1->value.compcall.base_object;
6424 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6425 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6427 /* If the base_object is not a variable, the corresponding actual
6428 argument expression must be stored in e->base_expression so
6429 that the corresponding tree temporary can be used as the base
6430 object in gfc_conv_procedure_call. */
6431 if (expr->expr_type != EXPR_VARIABLE)
6433 gfc_actual_arglist *args;
6435 args= code->expr1->value.function.actual;
6436 for (; args; args = args->next)
6437 if (expr == args->expr)
6438 expr = args->expr;
6441 /* Since the typebound operators are generic, we have to ensure
6442 that any delays in resolution are corrected and that the vtab
6443 is present. */
6444 declared = expr->ts.u.derived;
6445 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6446 if (c->ts.u.derived == NULL)
6447 c->ts.u.derived = gfc_find_derived_vtab (declared);
6449 if (!resolve_typebound_call (code, &name, NULL))
6450 return false;
6452 /* Use the generic name if it is there. */
6453 name = name ? name : code->expr1->value.function.esym->name;
6454 code->expr1->symtree = expr->symtree;
6455 code->expr1->ref = gfc_copy_ref (expr->ref);
6457 /* Trim away the extraneous references that emerge from nested
6458 use of interface.c (extend_expr). */
6459 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6460 if (class_ref && class_ref->next)
6462 gfc_free_ref_list (class_ref->next);
6463 class_ref->next = NULL;
6465 else if (code->expr1->ref && !class_ref)
6467 gfc_free_ref_list (code->expr1->ref);
6468 code->expr1->ref = NULL;
6471 /* Now use the procedure in the vtable. */
6472 gfc_add_vptr_component (code->expr1);
6473 gfc_add_component_ref (code->expr1, name);
6474 code->expr1->value.function.esym = NULL;
6475 if (expr->expr_type != EXPR_VARIABLE)
6476 code->expr1->base_expr = expr;
6477 return true;
6480 if (st == NULL)
6481 return resolve_typebound_call (code, NULL, NULL);
6483 if (!resolve_ref (code->expr1))
6484 return false;
6486 /* Get the CLASS declared type. */
6487 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6489 /* Weed out cases of the ultimate component being a derived type. */
6490 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6491 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6493 gfc_free_ref_list (new_ref);
6494 return resolve_typebound_call (code, NULL, NULL);
6497 if (!resolve_typebound_call (code, &name, &overridable))
6499 gfc_free_ref_list (new_ref);
6500 return false;
6502 ts = code->expr1->ts;
6504 if (overridable)
6506 /* Convert the expression to a procedure pointer component call. */
6507 code->expr1->value.function.esym = NULL;
6508 code->expr1->symtree = st;
6510 if (new_ref)
6511 code->expr1->ref = new_ref;
6513 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6514 gfc_add_vptr_component (code->expr1);
6515 gfc_add_component_ref (code->expr1, name);
6517 /* Recover the typespec for the expression. This is really only
6518 necessary for generic procedures, where the additional call
6519 to gfc_add_component_ref seems to throw the collection of the
6520 correct typespec. */
6521 code->expr1->ts = ts;
6523 else if (new_ref)
6524 gfc_free_ref_list (new_ref);
6526 return true;
6530 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6532 static bool
6533 resolve_ppc_call (gfc_code* c)
6535 gfc_component *comp;
6537 comp = gfc_get_proc_ptr_comp (c->expr1);
6538 gcc_assert (comp != NULL);
6540 c->resolved_sym = c->expr1->symtree->n.sym;
6541 c->expr1->expr_type = EXPR_VARIABLE;
6543 if (!comp->attr.subroutine)
6544 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6546 if (!resolve_ref (c->expr1))
6547 return false;
6549 if (!update_ppc_arglist (c->expr1))
6550 return false;
6552 c->ext.actual = c->expr1->value.compcall.actual;
6554 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6555 !(comp->ts.interface
6556 && comp->ts.interface->formal)))
6557 return false;
6559 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6560 return false;
6562 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6564 return true;
6568 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6570 static bool
6571 resolve_expr_ppc (gfc_expr* e)
6573 gfc_component *comp;
6575 comp = gfc_get_proc_ptr_comp (e);
6576 gcc_assert (comp != NULL);
6578 /* Convert to EXPR_FUNCTION. */
6579 e->expr_type = EXPR_FUNCTION;
6580 e->value.function.isym = NULL;
6581 e->value.function.actual = e->value.compcall.actual;
6582 e->ts = comp->ts;
6583 if (comp->as != NULL)
6584 e->rank = comp->as->rank;
6586 if (!comp->attr.function)
6587 gfc_add_function (&comp->attr, comp->name, &e->where);
6589 if (!resolve_ref (e))
6590 return false;
6592 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6593 !(comp->ts.interface
6594 && comp->ts.interface->formal)))
6595 return false;
6597 if (!update_ppc_arglist (e))
6598 return false;
6600 if (!check_pure_function(e))
6601 return false;
6603 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6605 return true;
6609 static bool
6610 gfc_is_expandable_expr (gfc_expr *e)
6612 gfc_constructor *con;
6614 if (e->expr_type == EXPR_ARRAY)
6616 /* Traverse the constructor looking for variables that are flavor
6617 parameter. Parameters must be expanded since they are fully used at
6618 compile time. */
6619 con = gfc_constructor_first (e->value.constructor);
6620 for (; con; con = gfc_constructor_next (con))
6622 if (con->expr->expr_type == EXPR_VARIABLE
6623 && con->expr->symtree
6624 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6625 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6626 return true;
6627 if (con->expr->expr_type == EXPR_ARRAY
6628 && gfc_is_expandable_expr (con->expr))
6629 return true;
6633 return false;
6637 /* Sometimes variables in specification expressions of the result
6638 of module procedures in submodules wind up not being the 'real'
6639 dummy. Find this, if possible, in the namespace of the first
6640 formal argument. */
6642 static void
6643 fixup_unique_dummy (gfc_expr *e)
6645 gfc_symtree *st = NULL;
6646 gfc_symbol *s = NULL;
6648 if (e->symtree->n.sym->ns->proc_name
6649 && e->symtree->n.sym->ns->proc_name->formal)
6650 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6652 if (s != NULL)
6653 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6655 if (st != NULL
6656 && st->n.sym != NULL
6657 && st->n.sym->attr.dummy)
6658 e->symtree = st;
6661 /* Resolve an expression. That is, make sure that types of operands agree
6662 with their operators, intrinsic operators are converted to function calls
6663 for overloaded types and unresolved function references are resolved. */
6665 bool
6666 gfc_resolve_expr (gfc_expr *e)
6668 bool t;
6669 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6671 if (e == NULL)
6672 return true;
6674 /* inquiry_argument only applies to variables. */
6675 inquiry_save = inquiry_argument;
6676 actual_arg_save = actual_arg;
6677 first_actual_arg_save = first_actual_arg;
6679 if (e->expr_type != EXPR_VARIABLE)
6681 inquiry_argument = false;
6682 actual_arg = false;
6683 first_actual_arg = false;
6685 else if (e->symtree != NULL
6686 && *e->symtree->name == '@'
6687 && e->symtree->n.sym->attr.dummy)
6689 /* Deal with submodule specification expressions that are not
6690 found to be referenced in module.c(read_cleanup). */
6691 fixup_unique_dummy (e);
6694 switch (e->expr_type)
6696 case EXPR_OP:
6697 t = resolve_operator (e);
6698 break;
6700 case EXPR_FUNCTION:
6701 case EXPR_VARIABLE:
6703 if (check_host_association (e))
6704 t = resolve_function (e);
6705 else
6706 t = resolve_variable (e);
6708 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6709 && e->ref->type != REF_SUBSTRING)
6710 gfc_resolve_substring_charlen (e);
6712 break;
6714 case EXPR_COMPCALL:
6715 t = resolve_typebound_function (e);
6716 break;
6718 case EXPR_SUBSTRING:
6719 t = resolve_ref (e);
6720 break;
6722 case EXPR_CONSTANT:
6723 case EXPR_NULL:
6724 t = true;
6725 break;
6727 case EXPR_PPC:
6728 t = resolve_expr_ppc (e);
6729 break;
6731 case EXPR_ARRAY:
6732 t = false;
6733 if (!resolve_ref (e))
6734 break;
6736 t = gfc_resolve_array_constructor (e);
6737 /* Also try to expand a constructor. */
6738 if (t)
6740 expression_rank (e);
6741 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6742 gfc_expand_constructor (e, false);
6745 /* This provides the opportunity for the length of constructors with
6746 character valued function elements to propagate the string length
6747 to the expression. */
6748 if (t && e->ts.type == BT_CHARACTER)
6750 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6751 here rather then add a duplicate test for it above. */
6752 gfc_expand_constructor (e, false);
6753 t = gfc_resolve_character_array_constructor (e);
6756 break;
6758 case EXPR_STRUCTURE:
6759 t = resolve_ref (e);
6760 if (!t)
6761 break;
6763 t = resolve_structure_cons (e, 0);
6764 if (!t)
6765 break;
6767 t = gfc_simplify_expr (e, 0);
6768 break;
6770 default:
6771 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6774 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6775 fixup_charlen (e);
6777 inquiry_argument = inquiry_save;
6778 actual_arg = actual_arg_save;
6779 first_actual_arg = first_actual_arg_save;
6781 return t;
6785 /* Resolve an expression from an iterator. They must be scalar and have
6786 INTEGER or (optionally) REAL type. */
6788 static bool
6789 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6790 const char *name_msgid)
6792 if (!gfc_resolve_expr (expr))
6793 return false;
6795 if (expr->rank != 0)
6797 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6798 return false;
6801 if (expr->ts.type != BT_INTEGER)
6803 if (expr->ts.type == BT_REAL)
6805 if (real_ok)
6806 return gfc_notify_std (GFC_STD_F95_DEL,
6807 "%s at %L must be integer",
6808 _(name_msgid), &expr->where);
6809 else
6811 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6812 &expr->where);
6813 return false;
6816 else
6818 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6819 return false;
6822 return true;
6826 /* Resolve the expressions in an iterator structure. If REAL_OK is
6827 false allow only INTEGER type iterators, otherwise allow REAL types.
6828 Set own_scope to true for ac-implied-do and data-implied-do as those
6829 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6831 bool
6832 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6834 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6835 return false;
6837 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
6838 _("iterator variable")))
6839 return false;
6841 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
6842 "Start expression in DO loop"))
6843 return false;
6845 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
6846 "End expression in DO loop"))
6847 return false;
6849 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
6850 "Step expression in DO loop"))
6851 return false;
6853 if (iter->step->expr_type == EXPR_CONSTANT)
6855 if ((iter->step->ts.type == BT_INTEGER
6856 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
6857 || (iter->step->ts.type == BT_REAL
6858 && mpfr_sgn (iter->step->value.real) == 0))
6860 gfc_error ("Step expression in DO loop at %L cannot be zero",
6861 &iter->step->where);
6862 return false;
6866 /* Convert start, end, and step to the same type as var. */
6867 if (iter->start->ts.kind != iter->var->ts.kind
6868 || iter->start->ts.type != iter->var->ts.type)
6869 gfc_convert_type (iter->start, &iter->var->ts, 1);
6871 if (iter->end->ts.kind != iter->var->ts.kind
6872 || iter->end->ts.type != iter->var->ts.type)
6873 gfc_convert_type (iter->end, &iter->var->ts, 1);
6875 if (iter->step->ts.kind != iter->var->ts.kind
6876 || iter->step->ts.type != iter->var->ts.type)
6877 gfc_convert_type (iter->step, &iter->var->ts, 1);
6879 if (iter->start->expr_type == EXPR_CONSTANT
6880 && iter->end->expr_type == EXPR_CONSTANT
6881 && iter->step->expr_type == EXPR_CONSTANT)
6883 int sgn, cmp;
6884 if (iter->start->ts.type == BT_INTEGER)
6886 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
6887 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
6889 else
6891 sgn = mpfr_sgn (iter->step->value.real);
6892 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
6894 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
6895 gfc_warning (OPT_Wzerotrip,
6896 "DO loop at %L will be executed zero times",
6897 &iter->step->where);
6900 if (iter->end->expr_type == EXPR_CONSTANT
6901 && iter->end->ts.type == BT_INTEGER
6902 && iter->step->expr_type == EXPR_CONSTANT
6903 && iter->step->ts.type == BT_INTEGER
6904 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
6905 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
6907 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
6908 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
6910 if (is_step_positive
6911 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
6912 gfc_warning (OPT_Wundefined_do_loop,
6913 "DO loop at %L is undefined as it overflows",
6914 &iter->step->where);
6915 else if (!is_step_positive
6916 && mpz_cmp (iter->end->value.integer,
6917 gfc_integer_kinds[k].min_int) == 0)
6918 gfc_warning (OPT_Wundefined_do_loop,
6919 "DO loop at %L is undefined as it underflows",
6920 &iter->step->where);
6923 return true;
6927 /* Traversal function for find_forall_index. f == 2 signals that
6928 that variable itself is not to be checked - only the references. */
6930 static bool
6931 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
6933 if (expr->expr_type != EXPR_VARIABLE)
6934 return false;
6936 /* A scalar assignment */
6937 if (!expr->ref || *f == 1)
6939 if (expr->symtree->n.sym == sym)
6940 return true;
6941 else
6942 return false;
6945 if (*f == 2)
6946 *f = 1;
6947 return false;
6951 /* Check whether the FORALL index appears in the expression or not.
6952 Returns true if SYM is found in EXPR. */
6954 bool
6955 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
6957 if (gfc_traverse_expr (expr, sym, forall_index, f))
6958 return true;
6959 else
6960 return false;
6964 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
6965 to be a scalar INTEGER variable. The subscripts and stride are scalar
6966 INTEGERs, and if stride is a constant it must be nonzero.
6967 Furthermore "A subscript or stride in a forall-triplet-spec shall
6968 not contain a reference to any index-name in the
6969 forall-triplet-spec-list in which it appears." (7.5.4.1) */
6971 static void
6972 resolve_forall_iterators (gfc_forall_iterator *it)
6974 gfc_forall_iterator *iter, *iter2;
6976 for (iter = it; iter; iter = iter->next)
6978 if (gfc_resolve_expr (iter->var)
6979 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
6980 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
6981 &iter->var->where);
6983 if (gfc_resolve_expr (iter->start)
6984 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
6985 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
6986 &iter->start->where);
6987 if (iter->var->ts.kind != iter->start->ts.kind)
6988 gfc_convert_type (iter->start, &iter->var->ts, 1);
6990 if (gfc_resolve_expr (iter->end)
6991 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
6992 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
6993 &iter->end->where);
6994 if (iter->var->ts.kind != iter->end->ts.kind)
6995 gfc_convert_type (iter->end, &iter->var->ts, 1);
6997 if (gfc_resolve_expr (iter->stride))
6999 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7000 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7001 &iter->stride->where, "INTEGER");
7003 if (iter->stride->expr_type == EXPR_CONSTANT
7004 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7005 gfc_error ("FORALL stride expression at %L cannot be zero",
7006 &iter->stride->where);
7008 if (iter->var->ts.kind != iter->stride->ts.kind)
7009 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7012 for (iter = it; iter; iter = iter->next)
7013 for (iter2 = iter; iter2; iter2 = iter2->next)
7015 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7016 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7017 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7018 gfc_error ("FORALL index %qs may not appear in triplet "
7019 "specification at %L", iter->var->symtree->name,
7020 &iter2->start->where);
7025 /* Given a pointer to a symbol that is a derived type, see if it's
7026 inaccessible, i.e. if it's defined in another module and the components are
7027 PRIVATE. The search is recursive if necessary. Returns zero if no
7028 inaccessible components are found, nonzero otherwise. */
7030 static int
7031 derived_inaccessible (gfc_symbol *sym)
7033 gfc_component *c;
7035 if (sym->attr.use_assoc && sym->attr.private_comp)
7036 return 1;
7038 for (c = sym->components; c; c = c->next)
7040 /* Prevent an infinite loop through this function. */
7041 if (c->ts.type == BT_DERIVED && c->attr.pointer
7042 && sym == c->ts.u.derived)
7043 continue;
7045 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7046 return 1;
7049 return 0;
7053 /* Resolve the argument of a deallocate expression. The expression must be
7054 a pointer or a full array. */
7056 static bool
7057 resolve_deallocate_expr (gfc_expr *e)
7059 symbol_attribute attr;
7060 int allocatable, pointer;
7061 gfc_ref *ref;
7062 gfc_symbol *sym;
7063 gfc_component *c;
7064 bool unlimited;
7066 if (!gfc_resolve_expr (e))
7067 return false;
7069 if (e->expr_type != EXPR_VARIABLE)
7070 goto bad;
7072 sym = e->symtree->n.sym;
7073 unlimited = UNLIMITED_POLY(sym);
7075 if (sym->ts.type == BT_CLASS)
7077 allocatable = CLASS_DATA (sym)->attr.allocatable;
7078 pointer = CLASS_DATA (sym)->attr.class_pointer;
7080 else
7082 allocatable = sym->attr.allocatable;
7083 pointer = sym->attr.pointer;
7085 for (ref = e->ref; ref; ref = ref->next)
7087 switch (ref->type)
7089 case REF_ARRAY:
7090 if (ref->u.ar.type != AR_FULL
7091 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7092 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7093 allocatable = 0;
7094 break;
7096 case REF_COMPONENT:
7097 c = ref->u.c.component;
7098 if (c->ts.type == BT_CLASS)
7100 allocatable = CLASS_DATA (c)->attr.allocatable;
7101 pointer = CLASS_DATA (c)->attr.class_pointer;
7103 else
7105 allocatable = c->attr.allocatable;
7106 pointer = c->attr.pointer;
7108 break;
7110 case REF_SUBSTRING:
7111 allocatable = 0;
7112 break;
7116 attr = gfc_expr_attr (e);
7118 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7120 bad:
7121 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7122 &e->where);
7123 return false;
7126 /* F2008, C644. */
7127 if (gfc_is_coindexed (e))
7129 gfc_error ("Coindexed allocatable object at %L", &e->where);
7130 return false;
7133 if (pointer
7134 && !gfc_check_vardef_context (e, true, true, false,
7135 _("DEALLOCATE object")))
7136 return false;
7137 if (!gfc_check_vardef_context (e, false, true, false,
7138 _("DEALLOCATE object")))
7139 return false;
7141 return true;
7145 /* Returns true if the expression e contains a reference to the symbol sym. */
7146 static bool
7147 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7149 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7150 return true;
7152 return false;
7155 bool
7156 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7158 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7162 /* Given the expression node e for an allocatable/pointer of derived type to be
7163 allocated, get the expression node to be initialized afterwards (needed for
7164 derived types with default initializers, and derived types with allocatable
7165 components that need nullification.) */
7167 gfc_expr *
7168 gfc_expr_to_initialize (gfc_expr *e)
7170 gfc_expr *result;
7171 gfc_ref *ref;
7172 int i;
7174 result = gfc_copy_expr (e);
7176 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7177 for (ref = result->ref; ref; ref = ref->next)
7178 if (ref->type == REF_ARRAY && ref->next == NULL)
7180 ref->u.ar.type = AR_FULL;
7182 for (i = 0; i < ref->u.ar.dimen; i++)
7183 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7185 break;
7188 gfc_free_shape (&result->shape, result->rank);
7190 /* Recalculate rank, shape, etc. */
7191 gfc_resolve_expr (result);
7192 return result;
7196 /* If the last ref of an expression is an array ref, return a copy of the
7197 expression with that one removed. Otherwise, a copy of the original
7198 expression. This is used for allocate-expressions and pointer assignment
7199 LHS, where there may be an array specification that needs to be stripped
7200 off when using gfc_check_vardef_context. */
7202 static gfc_expr*
7203 remove_last_array_ref (gfc_expr* e)
7205 gfc_expr* e2;
7206 gfc_ref** r;
7208 e2 = gfc_copy_expr (e);
7209 for (r = &e2->ref; *r; r = &(*r)->next)
7210 if ((*r)->type == REF_ARRAY && !(*r)->next)
7212 gfc_free_ref_list (*r);
7213 *r = NULL;
7214 break;
7217 return e2;
7221 /* Used in resolve_allocate_expr to check that a allocation-object and
7222 a source-expr are conformable. This does not catch all possible
7223 cases; in particular a runtime checking is needed. */
7225 static bool
7226 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7228 gfc_ref *tail;
7229 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7231 /* First compare rank. */
7232 if ((tail && e1->rank != tail->u.ar.as->rank)
7233 || (!tail && e1->rank != e2->rank))
7235 gfc_error ("Source-expr at %L must be scalar or have the "
7236 "same rank as the allocate-object at %L",
7237 &e1->where, &e2->where);
7238 return false;
7241 if (e1->shape)
7243 int i;
7244 mpz_t s;
7246 mpz_init (s);
7248 for (i = 0; i < e1->rank; i++)
7250 if (tail->u.ar.start[i] == NULL)
7251 break;
7253 if (tail->u.ar.end[i])
7255 mpz_set (s, tail->u.ar.end[i]->value.integer);
7256 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7257 mpz_add_ui (s, s, 1);
7259 else
7261 mpz_set (s, tail->u.ar.start[i]->value.integer);
7264 if (mpz_cmp (e1->shape[i], s) != 0)
7266 gfc_error ("Source-expr at %L and allocate-object at %L must "
7267 "have the same shape", &e1->where, &e2->where);
7268 mpz_clear (s);
7269 return false;
7273 mpz_clear (s);
7276 return true;
7280 /* Resolve the expression in an ALLOCATE statement, doing the additional
7281 checks to see whether the expression is OK or not. The expression must
7282 have a trailing array reference that gives the size of the array. */
7284 static bool
7285 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7287 int i, pointer, allocatable, dimension, is_abstract;
7288 int codimension;
7289 bool coindexed;
7290 bool unlimited;
7291 symbol_attribute attr;
7292 gfc_ref *ref, *ref2;
7293 gfc_expr *e2;
7294 gfc_array_ref *ar;
7295 gfc_symbol *sym = NULL;
7296 gfc_alloc *a;
7297 gfc_component *c;
7298 bool t;
7300 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7301 checking of coarrays. */
7302 for (ref = e->ref; ref; ref = ref->next)
7303 if (ref->next == NULL)
7304 break;
7306 if (ref && ref->type == REF_ARRAY)
7307 ref->u.ar.in_allocate = true;
7309 if (!gfc_resolve_expr (e))
7310 goto failure;
7312 /* Make sure the expression is allocatable or a pointer. If it is
7313 pointer, the next-to-last reference must be a pointer. */
7315 ref2 = NULL;
7316 if (e->symtree)
7317 sym = e->symtree->n.sym;
7319 /* Check whether ultimate component is abstract and CLASS. */
7320 is_abstract = 0;
7322 /* Is the allocate-object unlimited polymorphic? */
7323 unlimited = UNLIMITED_POLY(e);
7325 if (e->expr_type != EXPR_VARIABLE)
7327 allocatable = 0;
7328 attr = gfc_expr_attr (e);
7329 pointer = attr.pointer;
7330 dimension = attr.dimension;
7331 codimension = attr.codimension;
7333 else
7335 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7337 allocatable = CLASS_DATA (sym)->attr.allocatable;
7338 pointer = CLASS_DATA (sym)->attr.class_pointer;
7339 dimension = CLASS_DATA (sym)->attr.dimension;
7340 codimension = CLASS_DATA (sym)->attr.codimension;
7341 is_abstract = CLASS_DATA (sym)->attr.abstract;
7343 else
7345 allocatable = sym->attr.allocatable;
7346 pointer = sym->attr.pointer;
7347 dimension = sym->attr.dimension;
7348 codimension = sym->attr.codimension;
7351 coindexed = false;
7353 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7355 switch (ref->type)
7357 case REF_ARRAY:
7358 if (ref->u.ar.codimen > 0)
7360 int n;
7361 for (n = ref->u.ar.dimen;
7362 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7363 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7365 coindexed = true;
7366 break;
7370 if (ref->next != NULL)
7371 pointer = 0;
7372 break;
7374 case REF_COMPONENT:
7375 /* F2008, C644. */
7376 if (coindexed)
7378 gfc_error ("Coindexed allocatable object at %L",
7379 &e->where);
7380 goto failure;
7383 c = ref->u.c.component;
7384 if (c->ts.type == BT_CLASS)
7386 allocatable = CLASS_DATA (c)->attr.allocatable;
7387 pointer = CLASS_DATA (c)->attr.class_pointer;
7388 dimension = CLASS_DATA (c)->attr.dimension;
7389 codimension = CLASS_DATA (c)->attr.codimension;
7390 is_abstract = CLASS_DATA (c)->attr.abstract;
7392 else
7394 allocatable = c->attr.allocatable;
7395 pointer = c->attr.pointer;
7396 dimension = c->attr.dimension;
7397 codimension = c->attr.codimension;
7398 is_abstract = c->attr.abstract;
7400 break;
7402 case REF_SUBSTRING:
7403 allocatable = 0;
7404 pointer = 0;
7405 break;
7410 /* Check for F08:C628. */
7411 if (allocatable == 0 && pointer == 0 && !unlimited)
7413 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7414 &e->where);
7415 goto failure;
7418 /* Some checks for the SOURCE tag. */
7419 if (code->expr3)
7421 /* Check F03:C631. */
7422 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7424 gfc_error ("Type of entity at %L is type incompatible with "
7425 "source-expr at %L", &e->where, &code->expr3->where);
7426 goto failure;
7429 /* Check F03:C632 and restriction following Note 6.18. */
7430 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7431 goto failure;
7433 /* Check F03:C633. */
7434 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7436 gfc_error ("The allocate-object at %L and the source-expr at %L "
7437 "shall have the same kind type parameter",
7438 &e->where, &code->expr3->where);
7439 goto failure;
7442 /* Check F2008, C642. */
7443 if (code->expr3->ts.type == BT_DERIVED
7444 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7445 || (code->expr3->ts.u.derived->from_intmod
7446 == INTMOD_ISO_FORTRAN_ENV
7447 && code->expr3->ts.u.derived->intmod_sym_id
7448 == ISOFORTRAN_LOCK_TYPE)))
7450 gfc_error ("The source-expr at %L shall neither be of type "
7451 "LOCK_TYPE nor have a LOCK_TYPE component if "
7452 "allocate-object at %L is a coarray",
7453 &code->expr3->where, &e->where);
7454 goto failure;
7457 /* Check TS18508, C702/C703. */
7458 if (code->expr3->ts.type == BT_DERIVED
7459 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7460 || (code->expr3->ts.u.derived->from_intmod
7461 == INTMOD_ISO_FORTRAN_ENV
7462 && code->expr3->ts.u.derived->intmod_sym_id
7463 == ISOFORTRAN_EVENT_TYPE)))
7465 gfc_error ("The source-expr at %L shall neither be of type "
7466 "EVENT_TYPE nor have a EVENT_TYPE component if "
7467 "allocate-object at %L is a coarray",
7468 &code->expr3->where, &e->where);
7469 goto failure;
7473 /* Check F08:C629. */
7474 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7475 && !code->expr3)
7477 gcc_assert (e->ts.type == BT_CLASS);
7478 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7479 "type-spec or source-expr", sym->name, &e->where);
7480 goto failure;
7483 /* Check F08:C632. */
7484 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7485 && !UNLIMITED_POLY (e))
7487 int cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7488 code->ext.alloc.ts.u.cl->length);
7489 if (cmp == 1 || cmp == -1 || cmp == -3)
7491 gfc_error ("Allocating %s at %L with type-spec requires the same "
7492 "character-length parameter as in the declaration",
7493 sym->name, &e->where);
7494 goto failure;
7498 /* In the variable definition context checks, gfc_expr_attr is used
7499 on the expression. This is fooled by the array specification
7500 present in e, thus we have to eliminate that one temporarily. */
7501 e2 = remove_last_array_ref (e);
7502 t = true;
7503 if (t && pointer)
7504 t = gfc_check_vardef_context (e2, true, true, false,
7505 _("ALLOCATE object"));
7506 if (t)
7507 t = gfc_check_vardef_context (e2, false, true, false,
7508 _("ALLOCATE object"));
7509 gfc_free_expr (e2);
7510 if (!t)
7511 goto failure;
7513 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7514 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7516 /* For class arrays, the initialization with SOURCE is done
7517 using _copy and trans_call. It is convenient to exploit that
7518 when the allocated type is different from the declared type but
7519 no SOURCE exists by setting expr3. */
7520 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7522 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7523 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7524 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7526 /* We have to zero initialize the integer variable. */
7527 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7530 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7532 /* Make sure the vtab symbol is present when
7533 the module variables are generated. */
7534 gfc_typespec ts = e->ts;
7535 if (code->expr3)
7536 ts = code->expr3->ts;
7537 else if (code->ext.alloc.ts.type == BT_DERIVED)
7538 ts = code->ext.alloc.ts;
7540 /* Finding the vtab also publishes the type's symbol. Therefore this
7541 statement is necessary. */
7542 gfc_find_derived_vtab (ts.u.derived);
7544 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7546 /* Again, make sure the vtab symbol is present when
7547 the module variables are generated. */
7548 gfc_typespec *ts = NULL;
7549 if (code->expr3)
7550 ts = &code->expr3->ts;
7551 else
7552 ts = &code->ext.alloc.ts;
7554 gcc_assert (ts);
7556 /* Finding the vtab also publishes the type's symbol. Therefore this
7557 statement is necessary. */
7558 gfc_find_vtab (ts);
7561 if (dimension == 0 && codimension == 0)
7562 goto success;
7564 /* Make sure the last reference node is an array specification. */
7566 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7567 || (dimension && ref2->u.ar.dimen == 0))
7569 /* F08:C633. */
7570 if (code->expr3)
7572 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7573 "in ALLOCATE statement at %L", &e->where))
7574 goto failure;
7575 if (code->expr3->rank != 0)
7576 *array_alloc_wo_spec = true;
7577 else
7579 gfc_error ("Array specification or array-valued SOURCE= "
7580 "expression required in ALLOCATE statement at %L",
7581 &e->where);
7582 goto failure;
7585 else
7587 gfc_error ("Array specification required in ALLOCATE statement "
7588 "at %L", &e->where);
7589 goto failure;
7593 /* Make sure that the array section reference makes sense in the
7594 context of an ALLOCATE specification. */
7596 ar = &ref2->u.ar;
7598 if (codimension)
7599 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7600 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7602 gfc_error ("Coarray specification required in ALLOCATE statement "
7603 "at %L", &e->where);
7604 goto failure;
7607 for (i = 0; i < ar->dimen; i++)
7609 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7610 goto check_symbols;
7612 switch (ar->dimen_type[i])
7614 case DIMEN_ELEMENT:
7615 break;
7617 case DIMEN_RANGE:
7618 if (ar->start[i] != NULL
7619 && ar->end[i] != NULL
7620 && ar->stride[i] == NULL)
7621 break;
7623 /* Fall through. */
7625 case DIMEN_UNKNOWN:
7626 case DIMEN_VECTOR:
7627 case DIMEN_STAR:
7628 case DIMEN_THIS_IMAGE:
7629 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7630 &e->where);
7631 goto failure;
7634 check_symbols:
7635 for (a = code->ext.alloc.list; a; a = a->next)
7637 sym = a->expr->symtree->n.sym;
7639 /* TODO - check derived type components. */
7640 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7641 continue;
7643 if ((ar->start[i] != NULL
7644 && gfc_find_sym_in_expr (sym, ar->start[i]))
7645 || (ar->end[i] != NULL
7646 && gfc_find_sym_in_expr (sym, ar->end[i])))
7648 gfc_error ("%qs must not appear in the array specification at "
7649 "%L in the same ALLOCATE statement where it is "
7650 "itself allocated", sym->name, &ar->where);
7651 goto failure;
7656 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7658 if (ar->dimen_type[i] == DIMEN_ELEMENT
7659 || ar->dimen_type[i] == DIMEN_RANGE)
7661 if (i == (ar->dimen + ar->codimen - 1))
7663 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7664 "statement at %L", &e->where);
7665 goto failure;
7667 continue;
7670 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7671 && ar->stride[i] == NULL)
7672 break;
7674 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7675 &e->where);
7676 goto failure;
7679 success:
7680 return true;
7682 failure:
7683 return false;
7687 static void
7688 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7690 gfc_expr *stat, *errmsg, *pe, *qe;
7691 gfc_alloc *a, *p, *q;
7693 stat = code->expr1;
7694 errmsg = code->expr2;
7696 /* Check the stat variable. */
7697 if (stat)
7699 gfc_check_vardef_context (stat, false, false, false,
7700 _("STAT variable"));
7702 if ((stat->ts.type != BT_INTEGER
7703 && !(stat->ref && (stat->ref->type == REF_ARRAY
7704 || stat->ref->type == REF_COMPONENT)))
7705 || stat->rank > 0)
7706 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7707 "variable", &stat->where);
7709 for (p = code->ext.alloc.list; p; p = p->next)
7710 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7712 gfc_ref *ref1, *ref2;
7713 bool found = true;
7715 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7716 ref1 = ref1->next, ref2 = ref2->next)
7718 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7719 continue;
7720 if (ref1->u.c.component->name != ref2->u.c.component->name)
7722 found = false;
7723 break;
7727 if (found)
7729 gfc_error ("Stat-variable at %L shall not be %sd within "
7730 "the same %s statement", &stat->where, fcn, fcn);
7731 break;
7736 /* Check the errmsg variable. */
7737 if (errmsg)
7739 if (!stat)
7740 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7741 &errmsg->where);
7743 gfc_check_vardef_context (errmsg, false, false, false,
7744 _("ERRMSG variable"));
7746 if ((errmsg->ts.type != BT_CHARACTER
7747 && !(errmsg->ref
7748 && (errmsg->ref->type == REF_ARRAY
7749 || errmsg->ref->type == REF_COMPONENT)))
7750 || errmsg->rank > 0 )
7751 gfc_error ("Errmsg-variable at %L must be a scalar CHARACTER "
7752 "variable", &errmsg->where);
7754 for (p = code->ext.alloc.list; p; p = p->next)
7755 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7757 gfc_ref *ref1, *ref2;
7758 bool found = true;
7760 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7761 ref1 = ref1->next, ref2 = ref2->next)
7763 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7764 continue;
7765 if (ref1->u.c.component->name != ref2->u.c.component->name)
7767 found = false;
7768 break;
7772 if (found)
7774 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7775 "the same %s statement", &errmsg->where, fcn, fcn);
7776 break;
7781 /* Check that an allocate-object appears only once in the statement. */
7783 for (p = code->ext.alloc.list; p; p = p->next)
7785 pe = p->expr;
7786 for (q = p->next; q; q = q->next)
7788 qe = q->expr;
7789 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7791 /* This is a potential collision. */
7792 gfc_ref *pr = pe->ref;
7793 gfc_ref *qr = qe->ref;
7795 /* Follow the references until
7796 a) They start to differ, in which case there is no error;
7797 you can deallocate a%b and a%c in a single statement
7798 b) Both of them stop, which is an error
7799 c) One of them stops, which is also an error. */
7800 while (1)
7802 if (pr == NULL && qr == NULL)
7804 gfc_error ("Allocate-object at %L also appears at %L",
7805 &pe->where, &qe->where);
7806 break;
7808 else if (pr != NULL && qr == NULL)
7810 gfc_error ("Allocate-object at %L is subobject of"
7811 " object at %L", &pe->where, &qe->where);
7812 break;
7814 else if (pr == NULL && qr != NULL)
7816 gfc_error ("Allocate-object at %L is subobject of"
7817 " object at %L", &qe->where, &pe->where);
7818 break;
7820 /* Here, pr != NULL && qr != NULL */
7821 gcc_assert(pr->type == qr->type);
7822 if (pr->type == REF_ARRAY)
7824 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7825 which are legal. */
7826 gcc_assert (qr->type == REF_ARRAY);
7828 if (pr->next && qr->next)
7830 int i;
7831 gfc_array_ref *par = &(pr->u.ar);
7832 gfc_array_ref *qar = &(qr->u.ar);
7834 for (i=0; i<par->dimen; i++)
7836 if ((par->start[i] != NULL
7837 || qar->start[i] != NULL)
7838 && gfc_dep_compare_expr (par->start[i],
7839 qar->start[i]) != 0)
7840 goto break_label;
7844 else
7846 if (pr->u.c.component->name != qr->u.c.component->name)
7847 break;
7850 pr = pr->next;
7851 qr = qr->next;
7853 break_label:
7859 if (strcmp (fcn, "ALLOCATE") == 0)
7861 bool arr_alloc_wo_spec = false;
7863 /* Resolving the expr3 in the loop over all objects to allocate would
7864 execute loop invariant code for each loop item. Therefore do it just
7865 once here. */
7866 if (code->expr3 && code->expr3->mold
7867 && code->expr3->ts.type == BT_DERIVED)
7869 /* Default initialization via MOLD (non-polymorphic). */
7870 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
7871 if (rhs != NULL)
7873 gfc_resolve_expr (rhs);
7874 gfc_free_expr (code->expr3);
7875 code->expr3 = rhs;
7878 for (a = code->ext.alloc.list; a; a = a->next)
7879 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
7881 if (arr_alloc_wo_spec && code->expr3)
7883 /* Mark the allocate to have to take the array specification
7884 from the expr3. */
7885 code->ext.alloc.arr_spec_from_expr3 = 1;
7888 else
7890 for (a = code->ext.alloc.list; a; a = a->next)
7891 resolve_deallocate_expr (a->expr);
7896 /************ SELECT CASE resolution subroutines ************/
7898 /* Callback function for our mergesort variant. Determines interval
7899 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
7900 op1 > op2. Assumes we're not dealing with the default case.
7901 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
7902 There are nine situations to check. */
7904 static int
7905 compare_cases (const gfc_case *op1, const gfc_case *op2)
7907 int retval;
7909 if (op1->low == NULL) /* op1 = (:L) */
7911 /* op2 = (:N), so overlap. */
7912 retval = 0;
7913 /* op2 = (M:) or (M:N), L < M */
7914 if (op2->low != NULL
7915 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7916 retval = -1;
7918 else if (op1->high == NULL) /* op1 = (K:) */
7920 /* op2 = (M:), so overlap. */
7921 retval = 0;
7922 /* op2 = (:N) or (M:N), K > N */
7923 if (op2->high != NULL
7924 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7925 retval = 1;
7927 else /* op1 = (K:L) */
7929 if (op2->low == NULL) /* op2 = (:N), K > N */
7930 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7931 ? 1 : 0;
7932 else if (op2->high == NULL) /* op2 = (M:), L < M */
7933 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7934 ? -1 : 0;
7935 else /* op2 = (M:N) */
7937 retval = 0;
7938 /* L < M */
7939 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7940 retval = -1;
7941 /* K > N */
7942 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7943 retval = 1;
7947 return retval;
7951 /* Merge-sort a double linked case list, detecting overlap in the
7952 process. LIST is the head of the double linked case list before it
7953 is sorted. Returns the head of the sorted list if we don't see any
7954 overlap, or NULL otherwise. */
7956 static gfc_case *
7957 check_case_overlap (gfc_case *list)
7959 gfc_case *p, *q, *e, *tail;
7960 int insize, nmerges, psize, qsize, cmp, overlap_seen;
7962 /* If the passed list was empty, return immediately. */
7963 if (!list)
7964 return NULL;
7966 overlap_seen = 0;
7967 insize = 1;
7969 /* Loop unconditionally. The only exit from this loop is a return
7970 statement, when we've finished sorting the case list. */
7971 for (;;)
7973 p = list;
7974 list = NULL;
7975 tail = NULL;
7977 /* Count the number of merges we do in this pass. */
7978 nmerges = 0;
7980 /* Loop while there exists a merge to be done. */
7981 while (p)
7983 int i;
7985 /* Count this merge. */
7986 nmerges++;
7988 /* Cut the list in two pieces by stepping INSIZE places
7989 forward in the list, starting from P. */
7990 psize = 0;
7991 q = p;
7992 for (i = 0; i < insize; i++)
7994 psize++;
7995 q = q->right;
7996 if (!q)
7997 break;
7999 qsize = insize;
8001 /* Now we have two lists. Merge them! */
8002 while (psize > 0 || (qsize > 0 && q != NULL))
8004 /* See from which the next case to merge comes from. */
8005 if (psize == 0)
8007 /* P is empty so the next case must come from Q. */
8008 e = q;
8009 q = q->right;
8010 qsize--;
8012 else if (qsize == 0 || q == NULL)
8014 /* Q is empty. */
8015 e = p;
8016 p = p->right;
8017 psize--;
8019 else
8021 cmp = compare_cases (p, q);
8022 if (cmp < 0)
8024 /* The whole case range for P is less than the
8025 one for Q. */
8026 e = p;
8027 p = p->right;
8028 psize--;
8030 else if (cmp > 0)
8032 /* The whole case range for Q is greater than
8033 the case range for P. */
8034 e = q;
8035 q = q->right;
8036 qsize--;
8038 else
8040 /* The cases overlap, or they are the same
8041 element in the list. Either way, we must
8042 issue an error and get the next case from P. */
8043 /* FIXME: Sort P and Q by line number. */
8044 gfc_error ("CASE label at %L overlaps with CASE "
8045 "label at %L", &p->where, &q->where);
8046 overlap_seen = 1;
8047 e = p;
8048 p = p->right;
8049 psize--;
8053 /* Add the next element to the merged list. */
8054 if (tail)
8055 tail->right = e;
8056 else
8057 list = e;
8058 e->left = tail;
8059 tail = e;
8062 /* P has now stepped INSIZE places along, and so has Q. So
8063 they're the same. */
8064 p = q;
8066 tail->right = NULL;
8068 /* If we have done only one merge or none at all, we've
8069 finished sorting the cases. */
8070 if (nmerges <= 1)
8072 if (!overlap_seen)
8073 return list;
8074 else
8075 return NULL;
8078 /* Otherwise repeat, merging lists twice the size. */
8079 insize *= 2;
8084 /* Check to see if an expression is suitable for use in a CASE statement.
8085 Makes sure that all case expressions are scalar constants of the same
8086 type. Return false if anything is wrong. */
8088 static bool
8089 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8091 if (e == NULL) return true;
8093 if (e->ts.type != case_expr->ts.type)
8095 gfc_error ("Expression in CASE statement at %L must be of type %s",
8096 &e->where, gfc_basic_typename (case_expr->ts.type));
8097 return false;
8100 /* C805 (R808) For a given case-construct, each case-value shall be of
8101 the same type as case-expr. For character type, length differences
8102 are allowed, but the kind type parameters shall be the same. */
8104 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8106 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8107 &e->where, case_expr->ts.kind);
8108 return false;
8111 /* Convert the case value kind to that of case expression kind,
8112 if needed */
8114 if (e->ts.kind != case_expr->ts.kind)
8115 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8117 if (e->rank != 0)
8119 gfc_error ("Expression in CASE statement at %L must be scalar",
8120 &e->where);
8121 return false;
8124 return true;
8128 /* Given a completely parsed select statement, we:
8130 - Validate all expressions and code within the SELECT.
8131 - Make sure that the selection expression is not of the wrong type.
8132 - Make sure that no case ranges overlap.
8133 - Eliminate unreachable cases and unreachable code resulting from
8134 removing case labels.
8136 The standard does allow unreachable cases, e.g. CASE (5:3). But
8137 they are a hassle for code generation, and to prevent that, we just
8138 cut them out here. This is not necessary for overlapping cases
8139 because they are illegal and we never even try to generate code.
8141 We have the additional caveat that a SELECT construct could have
8142 been a computed GOTO in the source code. Fortunately we can fairly
8143 easily work around that here: The case_expr for a "real" SELECT CASE
8144 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8145 we have to do is make sure that the case_expr is a scalar integer
8146 expression. */
8148 static void
8149 resolve_select (gfc_code *code, bool select_type)
8151 gfc_code *body;
8152 gfc_expr *case_expr;
8153 gfc_case *cp, *default_case, *tail, *head;
8154 int seen_unreachable;
8155 int seen_logical;
8156 int ncases;
8157 bt type;
8158 bool t;
8160 if (code->expr1 == NULL)
8162 /* This was actually a computed GOTO statement. */
8163 case_expr = code->expr2;
8164 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8165 gfc_error ("Selection expression in computed GOTO statement "
8166 "at %L must be a scalar integer expression",
8167 &case_expr->where);
8169 /* Further checking is not necessary because this SELECT was built
8170 by the compiler, so it should always be OK. Just move the
8171 case_expr from expr2 to expr so that we can handle computed
8172 GOTOs as normal SELECTs from here on. */
8173 code->expr1 = code->expr2;
8174 code->expr2 = NULL;
8175 return;
8178 case_expr = code->expr1;
8179 type = case_expr->ts.type;
8181 /* F08:C830. */
8182 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8184 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8185 &case_expr->where, gfc_typename (&case_expr->ts));
8187 /* Punt. Going on here just produce more garbage error messages. */
8188 return;
8191 /* F08:R842. */
8192 if (!select_type && case_expr->rank != 0)
8194 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8195 "expression", &case_expr->where);
8197 /* Punt. */
8198 return;
8201 /* Raise a warning if an INTEGER case value exceeds the range of
8202 the case-expr. Later, all expressions will be promoted to the
8203 largest kind of all case-labels. */
8205 if (type == BT_INTEGER)
8206 for (body = code->block; body; body = body->block)
8207 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8209 if (cp->low
8210 && gfc_check_integer_range (cp->low->value.integer,
8211 case_expr->ts.kind) != ARITH_OK)
8212 gfc_warning (0, "Expression in CASE statement at %L is "
8213 "not in the range of %s", &cp->low->where,
8214 gfc_typename (&case_expr->ts));
8216 if (cp->high
8217 && cp->low != cp->high
8218 && gfc_check_integer_range (cp->high->value.integer,
8219 case_expr->ts.kind) != ARITH_OK)
8220 gfc_warning (0, "Expression in CASE statement at %L is "
8221 "not in the range of %s", &cp->high->where,
8222 gfc_typename (&case_expr->ts));
8225 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8226 of the SELECT CASE expression and its CASE values. Walk the lists
8227 of case values, and if we find a mismatch, promote case_expr to
8228 the appropriate kind. */
8230 if (type == BT_LOGICAL || type == BT_INTEGER)
8232 for (body = code->block; body; body = body->block)
8234 /* Walk the case label list. */
8235 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8237 /* Intercept the DEFAULT case. It does not have a kind. */
8238 if (cp->low == NULL && cp->high == NULL)
8239 continue;
8241 /* Unreachable case ranges are discarded, so ignore. */
8242 if (cp->low != NULL && cp->high != NULL
8243 && cp->low != cp->high
8244 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8245 continue;
8247 if (cp->low != NULL
8248 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8249 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8251 if (cp->high != NULL
8252 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8253 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8258 /* Assume there is no DEFAULT case. */
8259 default_case = NULL;
8260 head = tail = NULL;
8261 ncases = 0;
8262 seen_logical = 0;
8264 for (body = code->block; body; body = body->block)
8266 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8267 t = true;
8268 seen_unreachable = 0;
8270 /* Walk the case label list, making sure that all case labels
8271 are legal. */
8272 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8274 /* Count the number of cases in the whole construct. */
8275 ncases++;
8277 /* Intercept the DEFAULT case. */
8278 if (cp->low == NULL && cp->high == NULL)
8280 if (default_case != NULL)
8282 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8283 "by a second DEFAULT CASE at %L",
8284 &default_case->where, &cp->where);
8285 t = false;
8286 break;
8288 else
8290 default_case = cp;
8291 continue;
8295 /* Deal with single value cases and case ranges. Errors are
8296 issued from the validation function. */
8297 if (!validate_case_label_expr (cp->low, case_expr)
8298 || !validate_case_label_expr (cp->high, case_expr))
8300 t = false;
8301 break;
8304 if (type == BT_LOGICAL
8305 && ((cp->low == NULL || cp->high == NULL)
8306 || cp->low != cp->high))
8308 gfc_error ("Logical range in CASE statement at %L is not "
8309 "allowed", &cp->low->where);
8310 t = false;
8311 break;
8314 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8316 int value;
8317 value = cp->low->value.logical == 0 ? 2 : 1;
8318 if (value & seen_logical)
8320 gfc_error ("Constant logical value in CASE statement "
8321 "is repeated at %L",
8322 &cp->low->where);
8323 t = false;
8324 break;
8326 seen_logical |= value;
8329 if (cp->low != NULL && cp->high != NULL
8330 && cp->low != cp->high
8331 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8333 if (warn_surprising)
8334 gfc_warning (OPT_Wsurprising,
8335 "Range specification at %L can never be matched",
8336 &cp->where);
8338 cp->unreachable = 1;
8339 seen_unreachable = 1;
8341 else
8343 /* If the case range can be matched, it can also overlap with
8344 other cases. To make sure it does not, we put it in a
8345 double linked list here. We sort that with a merge sort
8346 later on to detect any overlapping cases. */
8347 if (!head)
8349 head = tail = cp;
8350 head->right = head->left = NULL;
8352 else
8354 tail->right = cp;
8355 tail->right->left = tail;
8356 tail = tail->right;
8357 tail->right = NULL;
8362 /* It there was a failure in the previous case label, give up
8363 for this case label list. Continue with the next block. */
8364 if (!t)
8365 continue;
8367 /* See if any case labels that are unreachable have been seen.
8368 If so, we eliminate them. This is a bit of a kludge because
8369 the case lists for a single case statement (label) is a
8370 single forward linked lists. */
8371 if (seen_unreachable)
8373 /* Advance until the first case in the list is reachable. */
8374 while (body->ext.block.case_list != NULL
8375 && body->ext.block.case_list->unreachable)
8377 gfc_case *n = body->ext.block.case_list;
8378 body->ext.block.case_list = body->ext.block.case_list->next;
8379 n->next = NULL;
8380 gfc_free_case_list (n);
8383 /* Strip all other unreachable cases. */
8384 if (body->ext.block.case_list)
8386 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8388 if (cp->next->unreachable)
8390 gfc_case *n = cp->next;
8391 cp->next = cp->next->next;
8392 n->next = NULL;
8393 gfc_free_case_list (n);
8400 /* See if there were overlapping cases. If the check returns NULL,
8401 there was overlap. In that case we don't do anything. If head
8402 is non-NULL, we prepend the DEFAULT case. The sorted list can
8403 then used during code generation for SELECT CASE constructs with
8404 a case expression of a CHARACTER type. */
8405 if (head)
8407 head = check_case_overlap (head);
8409 /* Prepend the default_case if it is there. */
8410 if (head != NULL && default_case)
8412 default_case->left = NULL;
8413 default_case->right = head;
8414 head->left = default_case;
8418 /* Eliminate dead blocks that may be the result if we've seen
8419 unreachable case labels for a block. */
8420 for (body = code; body && body->block; body = body->block)
8422 if (body->block->ext.block.case_list == NULL)
8424 /* Cut the unreachable block from the code chain. */
8425 gfc_code *c = body->block;
8426 body->block = c->block;
8428 /* Kill the dead block, but not the blocks below it. */
8429 c->block = NULL;
8430 gfc_free_statements (c);
8434 /* More than two cases is legal but insane for logical selects.
8435 Issue a warning for it. */
8436 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8437 gfc_warning (OPT_Wsurprising,
8438 "Logical SELECT CASE block at %L has more that two cases",
8439 &code->loc);
8443 /* Check if a derived type is extensible. */
8445 bool
8446 gfc_type_is_extensible (gfc_symbol *sym)
8448 return !(sym->attr.is_bind_c || sym->attr.sequence
8449 || (sym->attr.is_class
8450 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8454 static void
8455 resolve_types (gfc_namespace *ns);
8457 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8458 correct as well as possibly the array-spec. */
8460 static void
8461 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8463 gfc_expr* target;
8465 gcc_assert (sym->assoc);
8466 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8468 /* If this is for SELECT TYPE, the target may not yet be set. In that
8469 case, return. Resolution will be called later manually again when
8470 this is done. */
8471 target = sym->assoc->target;
8472 if (!target)
8473 return;
8474 gcc_assert (!sym->assoc->dangling);
8476 if (resolve_target && !gfc_resolve_expr (target))
8477 return;
8479 /* For variable targets, we get some attributes from the target. */
8480 if (target->expr_type == EXPR_VARIABLE)
8482 gfc_symbol* tsym;
8484 gcc_assert (target->symtree);
8485 tsym = target->symtree->n.sym;
8487 sym->attr.asynchronous = tsym->attr.asynchronous;
8488 sym->attr.volatile_ = tsym->attr.volatile_;
8490 sym->attr.target = tsym->attr.target
8491 || gfc_expr_attr (target).pointer;
8492 if (is_subref_array (target))
8493 sym->attr.subref_array_pointer = 1;
8496 if (target->expr_type == EXPR_NULL)
8498 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8499 return;
8501 else if (target->ts.type == BT_UNKNOWN)
8503 gfc_error ("Selector at %L has no type", &target->where);
8504 return;
8507 /* Get type if this was not already set. Note that it can be
8508 some other type than the target in case this is a SELECT TYPE
8509 selector! So we must not update when the type is already there. */
8510 if (sym->ts.type == BT_UNKNOWN)
8511 sym->ts = target->ts;
8513 gcc_assert (sym->ts.type != BT_UNKNOWN);
8515 /* See if this is a valid association-to-variable. */
8516 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8517 && !gfc_has_vector_subscript (target));
8519 /* Finally resolve if this is an array or not. */
8520 if (sym->attr.dimension && target->rank == 0)
8522 /* primary.c makes the assumption that a reference to an associate
8523 name followed by a left parenthesis is an array reference. */
8524 if (sym->ts.type != BT_CHARACTER)
8525 gfc_error ("Associate-name %qs at %L is used as array",
8526 sym->name, &sym->declared_at);
8527 sym->attr.dimension = 0;
8528 return;
8532 /* We cannot deal with class selectors that need temporaries. */
8533 if (target->ts.type == BT_CLASS
8534 && gfc_ref_needs_temporary_p (target->ref))
8536 gfc_error ("CLASS selector at %L needs a temporary which is not "
8537 "yet implemented", &target->where);
8538 return;
8541 if (target->ts.type == BT_CLASS)
8542 gfc_fix_class_refs (target);
8544 if (target->rank != 0)
8546 gfc_array_spec *as;
8547 /* The rank may be incorrectly guessed at parsing, therefore make sure
8548 it is corrected now. */
8549 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8551 if (!sym->as)
8552 sym->as = gfc_get_array_spec ();
8553 as = sym->as;
8554 as->rank = target->rank;
8555 as->type = AS_DEFERRED;
8556 as->corank = gfc_get_corank (target);
8557 sym->attr.dimension = 1;
8558 if (as->corank != 0)
8559 sym->attr.codimension = 1;
8562 else
8564 /* target's rank is 0, but the type of the sym is still array valued,
8565 which has to be corrected. */
8566 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
8568 gfc_array_spec *as;
8569 symbol_attribute attr;
8570 /* The associated variable's type is still the array type
8571 correct this now. */
8572 gfc_typespec *ts = &target->ts;
8573 gfc_ref *ref;
8574 gfc_component *c;
8575 for (ref = target->ref; ref != NULL; ref = ref->next)
8577 switch (ref->type)
8579 case REF_COMPONENT:
8580 ts = &ref->u.c.component->ts;
8581 break;
8582 case REF_ARRAY:
8583 if (ts->type == BT_CLASS)
8584 ts = &ts->u.derived->components->ts;
8585 break;
8586 default:
8587 break;
8590 /* Create a scalar instance of the current class type. Because the
8591 rank of a class array goes into its name, the type has to be
8592 rebuild. The alternative of (re-)setting just the attributes
8593 and as in the current type, destroys the type also in other
8594 places. */
8595 as = NULL;
8596 sym->ts = *ts;
8597 sym->ts.type = BT_CLASS;
8598 attr = CLASS_DATA (sym)->attr;
8599 attr.class_ok = 0;
8600 attr.associate_var = 1;
8601 attr.dimension = attr.codimension = 0;
8602 attr.class_pointer = 1;
8603 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8604 gcc_unreachable ();
8605 /* Make sure the _vptr is set. */
8606 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8607 if (c->ts.u.derived == NULL)
8608 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8609 CLASS_DATA (sym)->attr.pointer = 1;
8610 CLASS_DATA (sym)->attr.class_pointer = 1;
8611 gfc_set_sym_referenced (sym->ts.u.derived);
8612 gfc_commit_symbol (sym->ts.u.derived);
8613 /* _vptr now has the _vtab in it, change it to the _vtype. */
8614 if (c->ts.u.derived->attr.vtab)
8615 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8616 c->ts.u.derived->ns->types_resolved = 0;
8617 resolve_types (c->ts.u.derived->ns);
8621 /* Mark this as an associate variable. */
8622 sym->attr.associate_var = 1;
8624 /* Fix up the type-spec for CHARACTER types. */
8625 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8627 if (!sym->ts.u.cl)
8628 sym->ts.u.cl = target->ts.u.cl;
8630 if (!sym->ts.u.cl->length && !sym->ts.deferred)
8631 sym->ts.u.cl->length
8632 = gfc_get_int_expr (gfc_default_integer_kind,
8633 NULL, target->value.character.length);
8636 /* If the target is a good class object, so is the associate variable. */
8637 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8638 sym->attr.class_ok = 1;
8642 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8643 array reference, where necessary. The symbols are artificial and so
8644 the dimension attribute and arrayspec can also be set. In addition,
8645 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8646 This is corrected here as well.*/
8648 static void
8649 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8650 int rank, gfc_ref *ref)
8652 gfc_ref *nref = (*expr1)->ref;
8653 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8654 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8655 (*expr1)->rank = rank;
8656 if (sym1->ts.type == BT_CLASS)
8658 if ((*expr1)->ts.type != BT_CLASS)
8659 (*expr1)->ts = sym1->ts;
8661 CLASS_DATA (sym1)->attr.dimension = 1;
8662 if (CLASS_DATA (sym1)->as == NULL && sym2)
8663 CLASS_DATA (sym1)->as
8664 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8666 else
8668 sym1->attr.dimension = 1;
8669 if (sym1->as == NULL && sym2)
8670 sym1->as = gfc_copy_array_spec (sym2->as);
8673 for (; nref; nref = nref->next)
8674 if (nref->next == NULL)
8675 break;
8677 if (ref && nref && nref->type != REF_ARRAY)
8678 nref->next = gfc_copy_ref (ref);
8679 else if (ref && !nref)
8680 (*expr1)->ref = gfc_copy_ref (ref);
8684 static gfc_expr *
8685 build_loc_call (gfc_expr *sym_expr)
8687 gfc_expr *loc_call;
8688 loc_call = gfc_get_expr ();
8689 loc_call->expr_type = EXPR_FUNCTION;
8690 gfc_get_sym_tree ("loc", gfc_current_ns, &loc_call->symtree, false);
8691 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8692 loc_call->symtree->n.sym->attr.intrinsic = 1;
8693 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8694 gfc_commit_symbol (loc_call->symtree->n.sym);
8695 loc_call->ts.type = BT_INTEGER;
8696 loc_call->ts.kind = gfc_index_integer_kind;
8697 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8698 loc_call->value.function.actual = gfc_get_actual_arglist ();
8699 loc_call->value.function.actual->expr = sym_expr;
8700 loc_call->where = sym_expr->where;
8701 return loc_call;
8704 /* Resolve a SELECT TYPE statement. */
8706 static void
8707 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8709 gfc_symbol *selector_type;
8710 gfc_code *body, *new_st, *if_st, *tail;
8711 gfc_code *class_is = NULL, *default_case = NULL;
8712 gfc_case *c;
8713 gfc_symtree *st;
8714 char name[GFC_MAX_SYMBOL_LEN];
8715 gfc_namespace *ns;
8716 int error = 0;
8717 int charlen = 0;
8718 int rank = 0;
8719 gfc_ref* ref = NULL;
8720 gfc_expr *selector_expr = NULL;
8722 ns = code->ext.block.ns;
8723 gfc_resolve (ns);
8725 /* Check for F03:C813. */
8726 if (code->expr1->ts.type != BT_CLASS
8727 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8729 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8730 "at %L", &code->loc);
8731 return;
8734 if (!code->expr1->symtree->n.sym->attr.class_ok)
8735 return;
8737 if (code->expr2)
8739 if (code->expr1->symtree->n.sym->attr.untyped)
8740 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8741 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8743 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
8744 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
8746 /* F2008: C803 The selector expression must not be coindexed. */
8747 if (gfc_is_coindexed (code->expr2))
8749 gfc_error ("Selector at %L must not be coindexed",
8750 &code->expr2->where);
8751 return;
8755 else
8757 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8759 if (gfc_is_coindexed (code->expr1))
8761 gfc_error ("Selector at %L must not be coindexed",
8762 &code->expr1->where);
8763 return;
8767 /* Loop over TYPE IS / CLASS IS cases. */
8768 for (body = code->block; body; body = body->block)
8770 c = body->ext.block.case_list;
8772 if (!error)
8774 /* Check for repeated cases. */
8775 for (tail = code->block; tail; tail = tail->block)
8777 gfc_case *d = tail->ext.block.case_list;
8778 if (tail == body)
8779 break;
8781 if (c->ts.type == d->ts.type
8782 && ((c->ts.type == BT_DERIVED
8783 && c->ts.u.derived && d->ts.u.derived
8784 && !strcmp (c->ts.u.derived->name,
8785 d->ts.u.derived->name))
8786 || c->ts.type == BT_UNKNOWN
8787 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8788 && c->ts.kind == d->ts.kind)))
8790 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
8791 &c->where, &d->where);
8792 return;
8797 /* Check F03:C815. */
8798 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8799 && !selector_type->attr.unlimited_polymorphic
8800 && !gfc_type_is_extensible (c->ts.u.derived))
8802 gfc_error ("Derived type %qs at %L must be extensible",
8803 c->ts.u.derived->name, &c->where);
8804 error++;
8805 continue;
8808 /* Check F03:C816. */
8809 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
8810 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
8811 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
8813 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8814 gfc_error ("Derived type %qs at %L must be an extension of %qs",
8815 c->ts.u.derived->name, &c->where, selector_type->name);
8816 else
8817 gfc_error ("Unexpected intrinsic type %qs at %L",
8818 gfc_basic_typename (c->ts.type), &c->where);
8819 error++;
8820 continue;
8823 /* Check F03:C814. */
8824 if (c->ts.type == BT_CHARACTER
8825 && (c->ts.u.cl->length != NULL || c->ts.deferred))
8827 gfc_error ("The type-spec at %L shall specify that each length "
8828 "type parameter is assumed", &c->where);
8829 error++;
8830 continue;
8833 /* Intercept the DEFAULT case. */
8834 if (c->ts.type == BT_UNKNOWN)
8836 /* Check F03:C818. */
8837 if (default_case)
8839 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8840 "by a second DEFAULT CASE at %L",
8841 &default_case->ext.block.case_list->where, &c->where);
8842 error++;
8843 continue;
8846 default_case = body;
8850 if (error > 0)
8851 return;
8853 /* Transform SELECT TYPE statement to BLOCK and associate selector to
8854 target if present. If there are any EXIT statements referring to the
8855 SELECT TYPE construct, this is no problem because the gfc_code
8856 reference stays the same and EXIT is equally possible from the BLOCK
8857 it is changed to. */
8858 code->op = EXEC_BLOCK;
8859 if (code->expr2)
8861 gfc_association_list* assoc;
8863 assoc = gfc_get_association_list ();
8864 assoc->st = code->expr1->symtree;
8865 assoc->target = gfc_copy_expr (code->expr2);
8866 assoc->target->where = code->expr2->where;
8867 /* assoc->variable will be set by resolve_assoc_var. */
8869 code->ext.block.assoc = assoc;
8870 code->expr1->symtree->n.sym->assoc = assoc;
8872 resolve_assoc_var (code->expr1->symtree->n.sym, false);
8874 else
8875 code->ext.block.assoc = NULL;
8877 /* Ensure that the selector rank and arrayspec are available to
8878 correct expressions in which they might be missing. */
8879 if (code->expr2 && code->expr2->rank)
8881 rank = code->expr2->rank;
8882 for (ref = code->expr2->ref; ref; ref = ref->next)
8883 if (ref->next == NULL)
8884 break;
8885 if (ref && ref->type == REF_ARRAY)
8886 ref = gfc_copy_ref (ref);
8888 /* Fixup expr1 if necessary. */
8889 if (rank)
8890 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
8892 else if (code->expr1->rank)
8894 rank = code->expr1->rank;
8895 for (ref = code->expr1->ref; ref; ref = ref->next)
8896 if (ref->next == NULL)
8897 break;
8898 if (ref && ref->type == REF_ARRAY)
8899 ref = gfc_copy_ref (ref);
8902 /* Add EXEC_SELECT to switch on type. */
8903 new_st = gfc_get_code (code->op);
8904 new_st->expr1 = code->expr1;
8905 new_st->expr2 = code->expr2;
8906 new_st->block = code->block;
8907 code->expr1 = code->expr2 = NULL;
8908 code->block = NULL;
8909 if (!ns->code)
8910 ns->code = new_st;
8911 else
8912 ns->code->next = new_st;
8913 code = new_st;
8914 code->op = EXEC_SELECT_TYPE;
8916 /* Use the intrinsic LOC function to generate an integer expression
8917 for the vtable of the selector. Note that the rank of the selector
8918 expression has to be set to zero. */
8919 gfc_add_vptr_component (code->expr1);
8920 code->expr1->rank = 0;
8921 code->expr1 = build_loc_call (code->expr1);
8922 selector_expr = code->expr1->value.function.actual->expr;
8924 /* Loop over TYPE IS / CLASS IS cases. */
8925 for (body = code->block; body; body = body->block)
8927 gfc_symbol *vtab;
8928 gfc_expr *e;
8929 c = body->ext.block.case_list;
8931 /* Generate an index integer expression for address of the
8932 TYPE/CLASS vtable and store it in c->low. The hash expression
8933 is stored in c->high and is used to resolve intrinsic cases. */
8934 if (c->ts.type != BT_UNKNOWN)
8936 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8938 vtab = gfc_find_derived_vtab (c->ts.u.derived);
8939 gcc_assert (vtab);
8940 c->high = gfc_get_int_expr (gfc_default_integer_kind, NULL,
8941 c->ts.u.derived->hash_value);
8943 else
8945 vtab = gfc_find_vtab (&c->ts);
8946 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
8947 e = CLASS_DATA (vtab)->initializer;
8948 c->high = gfc_copy_expr (e);
8951 e = gfc_lval_expr_from_sym (vtab);
8952 c->low = build_loc_call (e);
8954 else
8955 continue;
8957 /* Associate temporary to selector. This should only be done
8958 when this case is actually true, so build a new ASSOCIATE
8959 that does precisely this here (instead of using the
8960 'global' one). */
8962 if (c->ts.type == BT_CLASS)
8963 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
8964 else if (c->ts.type == BT_DERIVED)
8965 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
8966 else if (c->ts.type == BT_CHARACTER)
8968 if (c->ts.u.cl && c->ts.u.cl->length
8969 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
8970 charlen = mpz_get_si (c->ts.u.cl->length->value.integer);
8971 sprintf (name, "__tmp_%s_%d_%d", gfc_basic_typename (c->ts.type),
8972 charlen, c->ts.kind);
8974 else
8975 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
8976 c->ts.kind);
8978 st = gfc_find_symtree (ns->sym_root, name);
8979 gcc_assert (st->n.sym->assoc);
8980 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
8981 st->n.sym->assoc->target->where = selector_expr->where;
8982 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
8984 gfc_add_data_component (st->n.sym->assoc->target);
8985 /* Fixup the target expression if necessary. */
8986 if (rank)
8987 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
8990 new_st = gfc_get_code (EXEC_BLOCK);
8991 new_st->ext.block.ns = gfc_build_block_ns (ns);
8992 new_st->ext.block.ns->code = body->next;
8993 body->next = new_st;
8995 /* Chain in the new list only if it is marked as dangling. Otherwise
8996 there is a CASE label overlap and this is already used. Just ignore,
8997 the error is diagnosed elsewhere. */
8998 if (st->n.sym->assoc->dangling)
9000 new_st->ext.block.assoc = st->n.sym->assoc;
9001 st->n.sym->assoc->dangling = 0;
9004 resolve_assoc_var (st->n.sym, false);
9007 /* Take out CLASS IS cases for separate treatment. */
9008 body = code;
9009 while (body && body->block)
9011 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9013 /* Add to class_is list. */
9014 if (class_is == NULL)
9016 class_is = body->block;
9017 tail = class_is;
9019 else
9021 for (tail = class_is; tail->block; tail = tail->block) ;
9022 tail->block = body->block;
9023 tail = tail->block;
9025 /* Remove from EXEC_SELECT list. */
9026 body->block = body->block->block;
9027 tail->block = NULL;
9029 else
9030 body = body->block;
9033 if (class_is)
9035 gfc_symbol *vtab;
9037 if (!default_case)
9039 /* Add a default case to hold the CLASS IS cases. */
9040 for (tail = code; tail->block; tail = tail->block) ;
9041 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9042 tail = tail->block;
9043 tail->ext.block.case_list = gfc_get_case ();
9044 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9045 tail->next = NULL;
9046 default_case = tail;
9049 /* More than one CLASS IS block? */
9050 if (class_is->block)
9052 gfc_code **c1,*c2;
9053 bool swapped;
9054 /* Sort CLASS IS blocks by extension level. */
9057 swapped = false;
9058 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9060 c2 = (*c1)->block;
9061 /* F03:C817 (check for doubles). */
9062 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9063 == c2->ext.block.case_list->ts.u.derived->hash_value)
9065 gfc_error ("Double CLASS IS block in SELECT TYPE "
9066 "statement at %L",
9067 &c2->ext.block.case_list->where);
9068 return;
9070 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9071 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9073 /* Swap. */
9074 (*c1)->block = c2->block;
9075 c2->block = *c1;
9076 *c1 = c2;
9077 swapped = true;
9081 while (swapped);
9084 /* Generate IF chain. */
9085 if_st = gfc_get_code (EXEC_IF);
9086 new_st = if_st;
9087 for (body = class_is; body; body = body->block)
9089 new_st->block = gfc_get_code (EXEC_IF);
9090 new_st = new_st->block;
9091 /* Set up IF condition: Call _gfortran_is_extension_of. */
9092 new_st->expr1 = gfc_get_expr ();
9093 new_st->expr1->expr_type = EXPR_FUNCTION;
9094 new_st->expr1->ts.type = BT_LOGICAL;
9095 new_st->expr1->ts.kind = 4;
9096 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9097 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9098 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9099 /* Set up arguments. */
9100 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9101 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9102 new_st->expr1->value.function.actual->expr->where = code->loc;
9103 new_st->expr1->where = code->loc;
9104 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9105 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9106 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9107 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9108 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9109 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9110 new_st->next = body->next;
9112 if (default_case->next)
9114 new_st->block = gfc_get_code (EXEC_IF);
9115 new_st = new_st->block;
9116 new_st->next = default_case->next;
9119 /* Replace CLASS DEFAULT code by the IF chain. */
9120 default_case->next = if_st;
9123 /* Resolve the internal code. This can not be done earlier because
9124 it requires that the sym->assoc of selectors is set already. */
9125 gfc_current_ns = ns;
9126 gfc_resolve_blocks (code->block, gfc_current_ns);
9127 gfc_current_ns = old_ns;
9129 if (ref)
9130 free (ref);
9134 /* Resolve a transfer statement. This is making sure that:
9135 -- a derived type being transferred has only non-pointer components
9136 -- a derived type being transferred doesn't have private components, unless
9137 it's being transferred from the module where the type was defined
9138 -- we're not trying to transfer a whole assumed size array. */
9140 static void
9141 resolve_transfer (gfc_code *code)
9143 gfc_typespec *ts;
9144 gfc_symbol *sym, *derived;
9145 gfc_ref *ref;
9146 gfc_expr *exp;
9147 bool write = false;
9148 bool formatted = false;
9149 gfc_dt *dt = code->ext.dt;
9150 gfc_symbol *dtio_sub = NULL;
9152 exp = code->expr1;
9154 while (exp != NULL && exp->expr_type == EXPR_OP
9155 && exp->value.op.op == INTRINSIC_PARENTHESES)
9156 exp = exp->value.op.op1;
9158 if (exp && exp->expr_type == EXPR_NULL
9159 && code->ext.dt)
9161 gfc_error ("Invalid context for NULL () intrinsic at %L",
9162 &exp->where);
9163 return;
9166 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9167 && exp->expr_type != EXPR_FUNCTION
9168 && exp->expr_type != EXPR_STRUCTURE))
9169 return;
9171 /* If we are reading, the variable will be changed. Note that
9172 code->ext.dt may be NULL if the TRANSFER is related to
9173 an INQUIRE statement -- but in this case, we are not reading, either. */
9174 if (dt && dt->dt_io_kind->value.iokind == M_READ
9175 && !gfc_check_vardef_context (exp, false, false, false,
9176 _("item in READ")))
9177 return;
9179 ts = exp->expr_type == EXPR_STRUCTURE ? &exp->ts : &exp->symtree->n.sym->ts;
9181 /* Go to actual component transferred. */
9182 for (ref = exp->ref; ref; ref = ref->next)
9183 if (ref->type == REF_COMPONENT)
9184 ts = &ref->u.c.component->ts;
9186 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9187 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9189 if (ts->type == BT_DERIVED || ts->type == BT_CLASS)
9190 derived = ts->u.derived;
9191 else
9192 derived = ts->u.derived->components->ts.u.derived;
9194 if (dt->format_expr)
9196 char *fmt;
9197 fmt = gfc_widechar_to_char (dt->format_expr->value.character.string,
9198 -1);
9199 if (strtok (fmt, "DT") != NULL)
9200 formatted = true;
9202 else if (dt->format_label == &format_asterisk)
9204 /* List directed io must call the formatted DTIO procedure. */
9205 formatted = true;
9208 write = dt->dt_io_kind->value.iokind == M_WRITE
9209 || dt->dt_io_kind->value.iokind == M_PRINT;
9210 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9212 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9214 dt->udtio = exp;
9215 sym = exp->symtree->n.sym->ns->proc_name;
9216 /* Check to see if this is a nested DTIO call, with the
9217 dummy as the io-list object. */
9218 if (sym && sym == dtio_sub && sym->formal
9219 && sym->formal->sym == exp->symtree->n.sym
9220 && exp->ref == NULL)
9222 if (!sym->attr.recursive)
9224 gfc_error ("DTIO %s procedure at %L must be recursive",
9225 sym->name, &sym->declared_at);
9226 return;
9232 if (ts->type == BT_CLASS && dtio_sub == NULL)
9234 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9235 "it is processed by a defined input/output procedure",
9236 &code->loc);
9237 return;
9240 if (ts->type == BT_DERIVED)
9242 /* Check that transferred derived type doesn't contain POINTER
9243 components unless it is processed by a defined input/output
9244 procedure". */
9245 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9247 gfc_error ("Data transfer element at %L cannot have POINTER "
9248 "components unless it is processed by a defined "
9249 "input/output procedure", &code->loc);
9250 return;
9253 /* F08:C935. */
9254 if (ts->u.derived->attr.proc_pointer_comp)
9256 gfc_error ("Data transfer element at %L cannot have "
9257 "procedure pointer components", &code->loc);
9258 return;
9261 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9263 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9264 "components unless it is processed by a defined "
9265 "input/output procedure", &code->loc);
9266 return;
9269 /* C_PTR and C_FUNPTR have private components which means they can not
9270 be printed. However, if -std=gnu and not -pedantic, allow
9271 the component to be printed to help debugging. */
9272 if (ts->u.derived->ts.f90_type == BT_VOID)
9274 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9275 "cannot have PRIVATE components", &code->loc))
9276 return;
9278 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9280 gfc_error ("Data transfer element at %L cannot have "
9281 "PRIVATE components unless it is processed by "
9282 "a defined input/output procedure", &code->loc);
9283 return;
9287 if (exp->expr_type == EXPR_STRUCTURE)
9288 return;
9290 sym = exp->symtree->n.sym;
9292 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9293 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9295 gfc_error ("Data transfer element at %L cannot be a full reference to "
9296 "an assumed-size array", &code->loc);
9297 return;
9300 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9301 exp->symtree->n.sym->attr.asynchronous = 1;
9305 /*********** Toplevel code resolution subroutines ***********/
9307 /* Find the set of labels that are reachable from this block. We also
9308 record the last statement in each block. */
9310 static void
9311 find_reachable_labels (gfc_code *block)
9313 gfc_code *c;
9315 if (!block)
9316 return;
9318 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9320 /* Collect labels in this block. We don't keep those corresponding
9321 to END {IF|SELECT}, these are checked in resolve_branch by going
9322 up through the code_stack. */
9323 for (c = block; c; c = c->next)
9325 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9326 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9329 /* Merge with labels from parent block. */
9330 if (cs_base->prev)
9332 gcc_assert (cs_base->prev->reachable_labels);
9333 bitmap_ior_into (cs_base->reachable_labels,
9334 cs_base->prev->reachable_labels);
9339 static void
9340 resolve_lock_unlock_event (gfc_code *code)
9342 if (code->expr1->expr_type == EXPR_FUNCTION
9343 && code->expr1->value.function.isym
9344 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9345 remove_caf_get_intrinsic (code->expr1);
9347 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9348 && (code->expr1->ts.type != BT_DERIVED
9349 || code->expr1->expr_type != EXPR_VARIABLE
9350 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9351 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9352 || code->expr1->rank != 0
9353 || (!gfc_is_coarray (code->expr1) &&
9354 !gfc_is_coindexed (code->expr1))))
9355 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9356 &code->expr1->where);
9357 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9358 && (code->expr1->ts.type != BT_DERIVED
9359 || code->expr1->expr_type != EXPR_VARIABLE
9360 || code->expr1->ts.u.derived->from_intmod
9361 != INTMOD_ISO_FORTRAN_ENV
9362 || code->expr1->ts.u.derived->intmod_sym_id
9363 != ISOFORTRAN_EVENT_TYPE
9364 || code->expr1->rank != 0))
9365 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9366 &code->expr1->where);
9367 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9368 && !gfc_is_coindexed (code->expr1))
9369 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9370 &code->expr1->where);
9371 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9372 gfc_error ("Event variable argument at %L must be a coarray but not "
9373 "coindexed", &code->expr1->where);
9375 /* Check STAT. */
9376 if (code->expr2
9377 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9378 || code->expr2->expr_type != EXPR_VARIABLE))
9379 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9380 &code->expr2->where);
9382 if (code->expr2
9383 && !gfc_check_vardef_context (code->expr2, false, false, false,
9384 _("STAT variable")))
9385 return;
9387 /* Check ERRMSG. */
9388 if (code->expr3
9389 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9390 || code->expr3->expr_type != EXPR_VARIABLE))
9391 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9392 &code->expr3->where);
9394 if (code->expr3
9395 && !gfc_check_vardef_context (code->expr3, false, false, false,
9396 _("ERRMSG variable")))
9397 return;
9399 /* Check for LOCK the ACQUIRED_LOCK. */
9400 if (code->op != EXEC_EVENT_WAIT && code->expr4
9401 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9402 || code->expr4->expr_type != EXPR_VARIABLE))
9403 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9404 "variable", &code->expr4->where);
9406 if (code->op != EXEC_EVENT_WAIT && code->expr4
9407 && !gfc_check_vardef_context (code->expr4, false, false, false,
9408 _("ACQUIRED_LOCK variable")))
9409 return;
9411 /* Check for EVENT WAIT the UNTIL_COUNT. */
9412 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9414 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9415 || code->expr4->rank != 0)
9416 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9417 "expression", &code->expr4->where);
9422 static void
9423 resolve_critical (gfc_code *code)
9425 gfc_symtree *symtree;
9426 gfc_symbol *lock_type;
9427 char name[GFC_MAX_SYMBOL_LEN];
9428 static int serial = 0;
9430 if (flag_coarray != GFC_FCOARRAY_LIB)
9431 return;
9433 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9434 GFC_PREFIX ("lock_type"));
9435 if (symtree)
9436 lock_type = symtree->n.sym;
9437 else
9439 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9440 false) != 0)
9441 gcc_unreachable ();
9442 lock_type = symtree->n.sym;
9443 lock_type->attr.flavor = FL_DERIVED;
9444 lock_type->attr.zero_comp = 1;
9445 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9446 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9449 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9450 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9451 gcc_unreachable ();
9453 code->resolved_sym = symtree->n.sym;
9454 symtree->n.sym->attr.flavor = FL_VARIABLE;
9455 symtree->n.sym->attr.referenced = 1;
9456 symtree->n.sym->attr.artificial = 1;
9457 symtree->n.sym->attr.codimension = 1;
9458 symtree->n.sym->ts.type = BT_DERIVED;
9459 symtree->n.sym->ts.u.derived = lock_type;
9460 symtree->n.sym->as = gfc_get_array_spec ();
9461 symtree->n.sym->as->corank = 1;
9462 symtree->n.sym->as->type = AS_EXPLICIT;
9463 symtree->n.sym->as->cotype = AS_EXPLICIT;
9464 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9465 NULL, 1);
9466 gfc_commit_symbols();
9470 static void
9471 resolve_sync (gfc_code *code)
9473 /* Check imageset. The * case matches expr1 == NULL. */
9474 if (code->expr1)
9476 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9477 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9478 "INTEGER expression", &code->expr1->where);
9479 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9480 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9481 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9482 &code->expr1->where);
9483 else if (code->expr1->expr_type == EXPR_ARRAY
9484 && gfc_simplify_expr (code->expr1, 0))
9486 gfc_constructor *cons;
9487 cons = gfc_constructor_first (code->expr1->value.constructor);
9488 for (; cons; cons = gfc_constructor_next (cons))
9489 if (cons->expr->expr_type == EXPR_CONSTANT
9490 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9491 gfc_error ("Imageset argument at %L must between 1 and "
9492 "num_images()", &cons->expr->where);
9496 /* Check STAT. */
9497 if (code->expr2
9498 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9499 || code->expr2->expr_type != EXPR_VARIABLE))
9500 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9501 &code->expr2->where);
9503 /* Check ERRMSG. */
9504 if (code->expr3
9505 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9506 || code->expr3->expr_type != EXPR_VARIABLE))
9507 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9508 &code->expr3->where);
9512 /* Given a branch to a label, see if the branch is conforming.
9513 The code node describes where the branch is located. */
9515 static void
9516 resolve_branch (gfc_st_label *label, gfc_code *code)
9518 code_stack *stack;
9520 if (label == NULL)
9521 return;
9523 /* Step one: is this a valid branching target? */
9525 if (label->defined == ST_LABEL_UNKNOWN)
9527 gfc_error ("Label %d referenced at %L is never defined", label->value,
9528 &code->loc);
9529 return;
9532 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9534 gfc_error ("Statement at %L is not a valid branch target statement "
9535 "for the branch statement at %L", &label->where, &code->loc);
9536 return;
9539 /* Step two: make sure this branch is not a branch to itself ;-) */
9541 if (code->here == label)
9543 gfc_warning (0,
9544 "Branch at %L may result in an infinite loop", &code->loc);
9545 return;
9548 /* Step three: See if the label is in the same block as the
9549 branching statement. The hard work has been done by setting up
9550 the bitmap reachable_labels. */
9552 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9554 /* Check now whether there is a CRITICAL construct; if so, check
9555 whether the label is still visible outside of the CRITICAL block,
9556 which is invalid. */
9557 for (stack = cs_base; stack; stack = stack->prev)
9559 if (stack->current->op == EXEC_CRITICAL
9560 && bitmap_bit_p (stack->reachable_labels, label->value))
9561 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9562 "label at %L", &code->loc, &label->where);
9563 else if (stack->current->op == EXEC_DO_CONCURRENT
9564 && bitmap_bit_p (stack->reachable_labels, label->value))
9565 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9566 "for label at %L", &code->loc, &label->where);
9569 return;
9572 /* Step four: If we haven't found the label in the bitmap, it may
9573 still be the label of the END of the enclosing block, in which
9574 case we find it by going up the code_stack. */
9576 for (stack = cs_base; stack; stack = stack->prev)
9578 if (stack->current->next && stack->current->next->here == label)
9579 break;
9580 if (stack->current->op == EXEC_CRITICAL)
9582 /* Note: A label at END CRITICAL does not leave the CRITICAL
9583 construct as END CRITICAL is still part of it. */
9584 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9585 " at %L", &code->loc, &label->where);
9586 return;
9588 else if (stack->current->op == EXEC_DO_CONCURRENT)
9590 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9591 "label at %L", &code->loc, &label->where);
9592 return;
9596 if (stack)
9598 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9599 return;
9602 /* The label is not in an enclosing block, so illegal. This was
9603 allowed in Fortran 66, so we allow it as extension. No
9604 further checks are necessary in this case. */
9605 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9606 "as the GOTO statement at %L", &label->where,
9607 &code->loc);
9608 return;
9612 /* Check whether EXPR1 has the same shape as EXPR2. */
9614 static bool
9615 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9617 mpz_t shape[GFC_MAX_DIMENSIONS];
9618 mpz_t shape2[GFC_MAX_DIMENSIONS];
9619 bool result = false;
9620 int i;
9622 /* Compare the rank. */
9623 if (expr1->rank != expr2->rank)
9624 return result;
9626 /* Compare the size of each dimension. */
9627 for (i=0; i<expr1->rank; i++)
9629 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9630 goto ignore;
9632 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9633 goto ignore;
9635 if (mpz_cmp (shape[i], shape2[i]))
9636 goto over;
9639 /* When either of the two expression is an assumed size array, we
9640 ignore the comparison of dimension sizes. */
9641 ignore:
9642 result = true;
9644 over:
9645 gfc_clear_shape (shape, i);
9646 gfc_clear_shape (shape2, i);
9647 return result;
9651 /* Check whether a WHERE assignment target or a WHERE mask expression
9652 has the same shape as the outmost WHERE mask expression. */
9654 static void
9655 resolve_where (gfc_code *code, gfc_expr *mask)
9657 gfc_code *cblock;
9658 gfc_code *cnext;
9659 gfc_expr *e = NULL;
9661 cblock = code->block;
9663 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9664 In case of nested WHERE, only the outmost one is stored. */
9665 if (mask == NULL) /* outmost WHERE */
9666 e = cblock->expr1;
9667 else /* inner WHERE */
9668 e = mask;
9670 while (cblock)
9672 if (cblock->expr1)
9674 /* Check if the mask-expr has a consistent shape with the
9675 outmost WHERE mask-expr. */
9676 if (!resolve_where_shape (cblock->expr1, e))
9677 gfc_error ("WHERE mask at %L has inconsistent shape",
9678 &cblock->expr1->where);
9681 /* the assignment statement of a WHERE statement, or the first
9682 statement in where-body-construct of a WHERE construct */
9683 cnext = cblock->next;
9684 while (cnext)
9686 switch (cnext->op)
9688 /* WHERE assignment statement */
9689 case EXEC_ASSIGN:
9691 /* Check shape consistent for WHERE assignment target. */
9692 if (e && !resolve_where_shape (cnext->expr1, e))
9693 gfc_error ("WHERE assignment target at %L has "
9694 "inconsistent shape", &cnext->expr1->where);
9695 break;
9698 case EXEC_ASSIGN_CALL:
9699 resolve_call (cnext);
9700 if (!cnext->resolved_sym->attr.elemental)
9701 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9702 &cnext->ext.actual->expr->where);
9703 break;
9705 /* WHERE or WHERE construct is part of a where-body-construct */
9706 case EXEC_WHERE:
9707 resolve_where (cnext, e);
9708 break;
9710 default:
9711 gfc_error ("Unsupported statement inside WHERE at %L",
9712 &cnext->loc);
9714 /* the next statement within the same where-body-construct */
9715 cnext = cnext->next;
9717 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9718 cblock = cblock->block;
9723 /* Resolve assignment in FORALL construct.
9724 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9725 FORALL index variables. */
9727 static void
9728 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9730 int n;
9732 for (n = 0; n < nvar; n++)
9734 gfc_symbol *forall_index;
9736 forall_index = var_expr[n]->symtree->n.sym;
9738 /* Check whether the assignment target is one of the FORALL index
9739 variable. */
9740 if ((code->expr1->expr_type == EXPR_VARIABLE)
9741 && (code->expr1->symtree->n.sym == forall_index))
9742 gfc_error ("Assignment to a FORALL index variable at %L",
9743 &code->expr1->where);
9744 else
9746 /* If one of the FORALL index variables doesn't appear in the
9747 assignment variable, then there could be a many-to-one
9748 assignment. Emit a warning rather than an error because the
9749 mask could be resolving this problem. */
9750 if (!find_forall_index (code->expr1, forall_index, 0))
9751 gfc_warning (0, "The FORALL with index %qs is not used on the "
9752 "left side of the assignment at %L and so might "
9753 "cause multiple assignment to this object",
9754 var_expr[n]->symtree->name, &code->expr1->where);
9760 /* Resolve WHERE statement in FORALL construct. */
9762 static void
9763 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9764 gfc_expr **var_expr)
9766 gfc_code *cblock;
9767 gfc_code *cnext;
9769 cblock = code->block;
9770 while (cblock)
9772 /* the assignment statement of a WHERE statement, or the first
9773 statement in where-body-construct of a WHERE construct */
9774 cnext = cblock->next;
9775 while (cnext)
9777 switch (cnext->op)
9779 /* WHERE assignment statement */
9780 case EXEC_ASSIGN:
9781 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
9782 break;
9784 /* WHERE operator assignment statement */
9785 case EXEC_ASSIGN_CALL:
9786 resolve_call (cnext);
9787 if (!cnext->resolved_sym->attr.elemental)
9788 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9789 &cnext->ext.actual->expr->where);
9790 break;
9792 /* WHERE or WHERE construct is part of a where-body-construct */
9793 case EXEC_WHERE:
9794 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
9795 break;
9797 default:
9798 gfc_error ("Unsupported statement inside WHERE at %L",
9799 &cnext->loc);
9801 /* the next statement within the same where-body-construct */
9802 cnext = cnext->next;
9804 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9805 cblock = cblock->block;
9810 /* Traverse the FORALL body to check whether the following errors exist:
9811 1. For assignment, check if a many-to-one assignment happens.
9812 2. For WHERE statement, check the WHERE body to see if there is any
9813 many-to-one assignment. */
9815 static void
9816 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
9818 gfc_code *c;
9820 c = code->block->next;
9821 while (c)
9823 switch (c->op)
9825 case EXEC_ASSIGN:
9826 case EXEC_POINTER_ASSIGN:
9827 gfc_resolve_assign_in_forall (c, nvar, var_expr);
9828 break;
9830 case EXEC_ASSIGN_CALL:
9831 resolve_call (c);
9832 break;
9834 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
9835 there is no need to handle it here. */
9836 case EXEC_FORALL:
9837 break;
9838 case EXEC_WHERE:
9839 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
9840 break;
9841 default:
9842 break;
9844 /* The next statement in the FORALL body. */
9845 c = c->next;
9850 /* Counts the number of iterators needed inside a forall construct, including
9851 nested forall constructs. This is used to allocate the needed memory
9852 in gfc_resolve_forall. */
9854 static int
9855 gfc_count_forall_iterators (gfc_code *code)
9857 int max_iters, sub_iters, current_iters;
9858 gfc_forall_iterator *fa;
9860 gcc_assert(code->op == EXEC_FORALL);
9861 max_iters = 0;
9862 current_iters = 0;
9864 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9865 current_iters ++;
9867 code = code->block->next;
9869 while (code)
9871 if (code->op == EXEC_FORALL)
9873 sub_iters = gfc_count_forall_iterators (code);
9874 if (sub_iters > max_iters)
9875 max_iters = sub_iters;
9877 code = code->next;
9880 return current_iters + max_iters;
9884 /* Given a FORALL construct, first resolve the FORALL iterator, then call
9885 gfc_resolve_forall_body to resolve the FORALL body. */
9887 static void
9888 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
9890 static gfc_expr **var_expr;
9891 static int total_var = 0;
9892 static int nvar = 0;
9893 int i, old_nvar, tmp;
9894 gfc_forall_iterator *fa;
9896 old_nvar = nvar;
9898 /* Start to resolve a FORALL construct */
9899 if (forall_save == 0)
9901 /* Count the total number of FORALL indices in the nested FORALL
9902 construct in order to allocate the VAR_EXPR with proper size. */
9903 total_var = gfc_count_forall_iterators (code);
9905 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
9906 var_expr = XCNEWVEC (gfc_expr *, total_var);
9909 /* The information about FORALL iterator, including FORALL indices start, end
9910 and stride. An outer FORALL indice cannot appear in start, end or stride. */
9911 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9913 /* Fortran 20008: C738 (R753). */
9914 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
9916 gfc_error ("FORALL index-name at %L must be a scalar variable "
9917 "of type integer", &fa->var->where);
9918 continue;
9921 /* Check if any outer FORALL index name is the same as the current
9922 one. */
9923 for (i = 0; i < nvar; i++)
9925 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
9926 gfc_error ("An outer FORALL construct already has an index "
9927 "with this name %L", &fa->var->where);
9930 /* Record the current FORALL index. */
9931 var_expr[nvar] = gfc_copy_expr (fa->var);
9933 nvar++;
9935 /* No memory leak. */
9936 gcc_assert (nvar <= total_var);
9939 /* Resolve the FORALL body. */
9940 gfc_resolve_forall_body (code, nvar, var_expr);
9942 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
9943 gfc_resolve_blocks (code->block, ns);
9945 tmp = nvar;
9946 nvar = old_nvar;
9947 /* Free only the VAR_EXPRs allocated in this frame. */
9948 for (i = nvar; i < tmp; i++)
9949 gfc_free_expr (var_expr[i]);
9951 if (nvar == 0)
9953 /* We are in the outermost FORALL construct. */
9954 gcc_assert (forall_save == 0);
9956 /* VAR_EXPR is not needed any more. */
9957 free (var_expr);
9958 total_var = 0;
9963 /* Resolve a BLOCK construct statement. */
9965 static void
9966 resolve_block_construct (gfc_code* code)
9968 /* Resolve the BLOCK's namespace. */
9969 gfc_resolve (code->ext.block.ns);
9971 /* For an ASSOCIATE block, the associations (and their targets) are already
9972 resolved during resolve_symbol. */
9976 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
9977 DO code nodes. */
9979 void
9980 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
9982 bool t;
9984 for (; b; b = b->block)
9986 t = gfc_resolve_expr (b->expr1);
9987 if (!gfc_resolve_expr (b->expr2))
9988 t = false;
9990 switch (b->op)
9992 case EXEC_IF:
9993 if (t && b->expr1 != NULL
9994 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
9995 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
9996 &b->expr1->where);
9997 break;
9999 case EXEC_WHERE:
10000 if (t
10001 && b->expr1 != NULL
10002 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10003 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10004 &b->expr1->where);
10005 break;
10007 case EXEC_GOTO:
10008 resolve_branch (b->label1, b);
10009 break;
10011 case EXEC_BLOCK:
10012 resolve_block_construct (b);
10013 break;
10015 case EXEC_SELECT:
10016 case EXEC_SELECT_TYPE:
10017 case EXEC_FORALL:
10018 case EXEC_DO:
10019 case EXEC_DO_WHILE:
10020 case EXEC_DO_CONCURRENT:
10021 case EXEC_CRITICAL:
10022 case EXEC_READ:
10023 case EXEC_WRITE:
10024 case EXEC_IOLENGTH:
10025 case EXEC_WAIT:
10026 break;
10028 case EXEC_OMP_ATOMIC:
10029 case EXEC_OACC_ATOMIC:
10031 gfc_omp_atomic_op aop
10032 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10034 /* Verify this before calling gfc_resolve_code, which might
10035 change it. */
10036 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10037 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10038 && b->next->next == NULL)
10039 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10040 && b->next->next != NULL
10041 && b->next->next->op == EXEC_ASSIGN
10042 && b->next->next->next == NULL));
10044 break;
10046 case EXEC_OACC_PARALLEL_LOOP:
10047 case EXEC_OACC_PARALLEL:
10048 case EXEC_OACC_KERNELS_LOOP:
10049 case EXEC_OACC_KERNELS:
10050 case EXEC_OACC_DATA:
10051 case EXEC_OACC_HOST_DATA:
10052 case EXEC_OACC_LOOP:
10053 case EXEC_OACC_UPDATE:
10054 case EXEC_OACC_WAIT:
10055 case EXEC_OACC_CACHE:
10056 case EXEC_OACC_ENTER_DATA:
10057 case EXEC_OACC_EXIT_DATA:
10058 case EXEC_OACC_ROUTINE:
10059 case EXEC_OMP_CRITICAL:
10060 case EXEC_OMP_DISTRIBUTE:
10061 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10062 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10063 case EXEC_OMP_DISTRIBUTE_SIMD:
10064 case EXEC_OMP_DO:
10065 case EXEC_OMP_DO_SIMD:
10066 case EXEC_OMP_MASTER:
10067 case EXEC_OMP_ORDERED:
10068 case EXEC_OMP_PARALLEL:
10069 case EXEC_OMP_PARALLEL_DO:
10070 case EXEC_OMP_PARALLEL_DO_SIMD:
10071 case EXEC_OMP_PARALLEL_SECTIONS:
10072 case EXEC_OMP_PARALLEL_WORKSHARE:
10073 case EXEC_OMP_SECTIONS:
10074 case EXEC_OMP_SIMD:
10075 case EXEC_OMP_SINGLE:
10076 case EXEC_OMP_TARGET:
10077 case EXEC_OMP_TARGET_DATA:
10078 case EXEC_OMP_TARGET_ENTER_DATA:
10079 case EXEC_OMP_TARGET_EXIT_DATA:
10080 case EXEC_OMP_TARGET_PARALLEL:
10081 case EXEC_OMP_TARGET_PARALLEL_DO:
10082 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10083 case EXEC_OMP_TARGET_SIMD:
10084 case EXEC_OMP_TARGET_TEAMS:
10085 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10086 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10087 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10088 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10089 case EXEC_OMP_TARGET_UPDATE:
10090 case EXEC_OMP_TASK:
10091 case EXEC_OMP_TASKGROUP:
10092 case EXEC_OMP_TASKLOOP:
10093 case EXEC_OMP_TASKLOOP_SIMD:
10094 case EXEC_OMP_TASKWAIT:
10095 case EXEC_OMP_TASKYIELD:
10096 case EXEC_OMP_TEAMS:
10097 case EXEC_OMP_TEAMS_DISTRIBUTE:
10098 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10099 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10100 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10101 case EXEC_OMP_WORKSHARE:
10102 break;
10104 default:
10105 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10108 gfc_resolve_code (b->next, ns);
10113 /* Does everything to resolve an ordinary assignment. Returns true
10114 if this is an interface assignment. */
10115 static bool
10116 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10118 bool rval = false;
10119 gfc_expr *lhs;
10120 gfc_expr *rhs;
10121 int llen = 0;
10122 int rlen = 0;
10123 int n;
10124 gfc_ref *ref;
10125 symbol_attribute attr;
10127 if (gfc_extend_assign (code, ns))
10129 gfc_expr** rhsptr;
10131 if (code->op == EXEC_ASSIGN_CALL)
10133 lhs = code->ext.actual->expr;
10134 rhsptr = &code->ext.actual->next->expr;
10136 else
10138 gfc_actual_arglist* args;
10139 gfc_typebound_proc* tbp;
10141 gcc_assert (code->op == EXEC_COMPCALL);
10143 args = code->expr1->value.compcall.actual;
10144 lhs = args->expr;
10145 rhsptr = &args->next->expr;
10147 tbp = code->expr1->value.compcall.tbp;
10148 gcc_assert (!tbp->is_generic);
10151 /* Make a temporary rhs when there is a default initializer
10152 and rhs is the same symbol as the lhs. */
10153 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10154 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10155 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10156 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10157 *rhsptr = gfc_get_parentheses (*rhsptr);
10159 return true;
10162 lhs = code->expr1;
10163 rhs = code->expr2;
10165 if (rhs->is_boz
10166 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10167 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10168 &code->loc))
10169 return false;
10171 /* Handle the case of a BOZ literal on the RHS. */
10172 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10174 int rc;
10175 if (warn_surprising)
10176 gfc_warning (OPT_Wsurprising,
10177 "BOZ literal at %L is bitwise transferred "
10178 "non-integer symbol %qs", &code->loc,
10179 lhs->symtree->n.sym->name);
10181 if (!gfc_convert_boz (rhs, &lhs->ts))
10182 return false;
10183 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10185 if (rc == ARITH_UNDERFLOW)
10186 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10187 ". This check can be disabled with the option "
10188 "%<-fno-range-check%>", &rhs->where);
10189 else if (rc == ARITH_OVERFLOW)
10190 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10191 ". This check can be disabled with the option "
10192 "%<-fno-range-check%>", &rhs->where);
10193 else if (rc == ARITH_NAN)
10194 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10195 ". This check can be disabled with the option "
10196 "%<-fno-range-check%>", &rhs->where);
10197 return false;
10201 if (lhs->ts.type == BT_CHARACTER
10202 && warn_character_truncation)
10204 if (lhs->ts.u.cl != NULL
10205 && lhs->ts.u.cl->length != NULL
10206 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10207 llen = mpz_get_si (lhs->ts.u.cl->length->value.integer);
10209 if (rhs->expr_type == EXPR_CONSTANT)
10210 rlen = rhs->value.character.length;
10212 else if (rhs->ts.u.cl != NULL
10213 && rhs->ts.u.cl->length != NULL
10214 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10215 rlen = mpz_get_si (rhs->ts.u.cl->length->value.integer);
10217 if (rlen && llen && rlen > llen)
10218 gfc_warning_now (OPT_Wcharacter_truncation,
10219 "CHARACTER expression will be truncated "
10220 "in assignment (%d/%d) at %L",
10221 llen, rlen, &code->loc);
10224 /* Ensure that a vector index expression for the lvalue is evaluated
10225 to a temporary if the lvalue symbol is referenced in it. */
10226 if (lhs->rank)
10228 for (ref = lhs->ref; ref; ref= ref->next)
10229 if (ref->type == REF_ARRAY)
10231 for (n = 0; n < ref->u.ar.dimen; n++)
10232 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10233 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10234 ref->u.ar.start[n]))
10235 ref->u.ar.start[n]
10236 = gfc_get_parentheses (ref->u.ar.start[n]);
10240 if (gfc_pure (NULL))
10242 if (lhs->ts.type == BT_DERIVED
10243 && lhs->expr_type == EXPR_VARIABLE
10244 && lhs->ts.u.derived->attr.pointer_comp
10245 && rhs->expr_type == EXPR_VARIABLE
10246 && (gfc_impure_variable (rhs->symtree->n.sym)
10247 || gfc_is_coindexed (rhs)))
10249 /* F2008, C1283. */
10250 if (gfc_is_coindexed (rhs))
10251 gfc_error ("Coindexed expression at %L is assigned to "
10252 "a derived type variable with a POINTER "
10253 "component in a PURE procedure",
10254 &rhs->where);
10255 else
10256 gfc_error ("The impure variable at %L is assigned to "
10257 "a derived type variable with a POINTER "
10258 "component in a PURE procedure (12.6)",
10259 &rhs->where);
10260 return rval;
10263 /* Fortran 2008, C1283. */
10264 if (gfc_is_coindexed (lhs))
10266 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10267 "procedure", &rhs->where);
10268 return rval;
10272 if (gfc_implicit_pure (NULL))
10274 if (lhs->expr_type == EXPR_VARIABLE
10275 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10276 && lhs->symtree->n.sym->ns != gfc_current_ns)
10277 gfc_unset_implicit_pure (NULL);
10279 if (lhs->ts.type == BT_DERIVED
10280 && lhs->expr_type == EXPR_VARIABLE
10281 && lhs->ts.u.derived->attr.pointer_comp
10282 && rhs->expr_type == EXPR_VARIABLE
10283 && (gfc_impure_variable (rhs->symtree->n.sym)
10284 || gfc_is_coindexed (rhs)))
10285 gfc_unset_implicit_pure (NULL);
10287 /* Fortran 2008, C1283. */
10288 if (gfc_is_coindexed (lhs))
10289 gfc_unset_implicit_pure (NULL);
10292 /* F2008, 7.2.1.2. */
10293 attr = gfc_expr_attr (lhs);
10294 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10296 if (attr.codimension)
10298 gfc_error ("Assignment to polymorphic coarray at %L is not "
10299 "permitted", &lhs->where);
10300 return false;
10302 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10303 "polymorphic variable at %L", &lhs->where))
10304 return false;
10305 if (!flag_realloc_lhs)
10307 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10308 "requires %<-frealloc-lhs%>", &lhs->where);
10309 return false;
10312 else if (lhs->ts.type == BT_CLASS)
10314 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10315 "assignment at %L - check that there is a matching specific "
10316 "subroutine for '=' operator", &lhs->where);
10317 return false;
10320 bool lhs_coindexed = gfc_is_coindexed (lhs);
10322 /* F2008, Section 7.2.1.2. */
10323 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10325 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10326 "component in assignment at %L", &lhs->where);
10327 return false;
10330 /* Assign the 'data' of a class object to a derived type. */
10331 if (lhs->ts.type == BT_DERIVED
10332 && rhs->ts.type == BT_CLASS
10333 && rhs->expr_type != EXPR_ARRAY)
10334 gfc_add_data_component (rhs);
10336 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10337 && (lhs_coindexed
10338 || (code->expr2->expr_type == EXPR_FUNCTION
10339 && code->expr2->value.function.isym
10340 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10341 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10342 && !gfc_expr_attr (rhs).allocatable
10343 && !gfc_has_vector_subscript (rhs)));
10345 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10347 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10348 Additionally, insert this code when the RHS is a CAF as we then use the
10349 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10350 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10351 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10352 path. */
10353 if (caf_convert_to_send)
10355 if (code->expr2->expr_type == EXPR_FUNCTION
10356 && code->expr2->value.function.isym
10357 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10358 remove_caf_get_intrinsic (code->expr2);
10359 code->op = EXEC_CALL;
10360 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10361 code->resolved_sym = code->symtree->n.sym;
10362 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10363 code->resolved_sym->attr.intrinsic = 1;
10364 code->resolved_sym->attr.subroutine = 1;
10365 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10366 gfc_commit_symbol (code->resolved_sym);
10367 code->ext.actual = gfc_get_actual_arglist ();
10368 code->ext.actual->expr = lhs;
10369 code->ext.actual->next = gfc_get_actual_arglist ();
10370 code->ext.actual->next->expr = rhs;
10371 code->expr1 = NULL;
10372 code->expr2 = NULL;
10375 return false;
10379 /* Add a component reference onto an expression. */
10381 static void
10382 add_comp_ref (gfc_expr *e, gfc_component *c)
10384 gfc_ref **ref;
10385 ref = &(e->ref);
10386 while (*ref)
10387 ref = &((*ref)->next);
10388 *ref = gfc_get_ref ();
10389 (*ref)->type = REF_COMPONENT;
10390 (*ref)->u.c.sym = e->ts.u.derived;
10391 (*ref)->u.c.component = c;
10392 e->ts = c->ts;
10394 /* Add a full array ref, as necessary. */
10395 if (c->as)
10397 gfc_add_full_array_ref (e, c->as);
10398 e->rank = c->as->rank;
10403 /* Build an assignment. Keep the argument 'op' for future use, so that
10404 pointer assignments can be made. */
10406 static gfc_code *
10407 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10408 gfc_component *comp1, gfc_component *comp2, locus loc)
10410 gfc_code *this_code;
10412 this_code = gfc_get_code (op);
10413 this_code->next = NULL;
10414 this_code->expr1 = gfc_copy_expr (expr1);
10415 this_code->expr2 = gfc_copy_expr (expr2);
10416 this_code->loc = loc;
10417 if (comp1 && comp2)
10419 add_comp_ref (this_code->expr1, comp1);
10420 add_comp_ref (this_code->expr2, comp2);
10423 return this_code;
10427 /* Makes a temporary variable expression based on the characteristics of
10428 a given variable expression. */
10430 static gfc_expr*
10431 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10433 static int serial = 0;
10434 char name[GFC_MAX_SYMBOL_LEN];
10435 gfc_symtree *tmp;
10436 gfc_array_spec *as;
10437 gfc_array_ref *aref;
10438 gfc_ref *ref;
10440 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10441 gfc_get_sym_tree (name, ns, &tmp, false);
10442 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10444 as = NULL;
10445 ref = NULL;
10446 aref = NULL;
10448 /* Obtain the arrayspec for the temporary. */
10449 if (e->rank && e->expr_type != EXPR_ARRAY
10450 && e->expr_type != EXPR_FUNCTION
10451 && e->expr_type != EXPR_OP)
10453 aref = gfc_find_array_ref (e);
10454 if (e->expr_type == EXPR_VARIABLE
10455 && e->symtree->n.sym->as == aref->as)
10456 as = aref->as;
10457 else
10459 for (ref = e->ref; ref; ref = ref->next)
10460 if (ref->type == REF_COMPONENT
10461 && ref->u.c.component->as == aref->as)
10463 as = aref->as;
10464 break;
10469 /* Add the attributes and the arrayspec to the temporary. */
10470 tmp->n.sym->attr = gfc_expr_attr (e);
10471 tmp->n.sym->attr.function = 0;
10472 tmp->n.sym->attr.result = 0;
10473 tmp->n.sym->attr.flavor = FL_VARIABLE;
10475 if (as)
10477 tmp->n.sym->as = gfc_copy_array_spec (as);
10478 if (!ref)
10479 ref = e->ref;
10480 if (as->type == AS_DEFERRED)
10481 tmp->n.sym->attr.allocatable = 1;
10483 else if (e->rank && (e->expr_type == EXPR_ARRAY
10484 || e->expr_type == EXPR_FUNCTION
10485 || e->expr_type == EXPR_OP))
10487 tmp->n.sym->as = gfc_get_array_spec ();
10488 tmp->n.sym->as->type = AS_DEFERRED;
10489 tmp->n.sym->as->rank = e->rank;
10490 tmp->n.sym->attr.allocatable = 1;
10491 tmp->n.sym->attr.dimension = 1;
10493 else
10494 tmp->n.sym->attr.dimension = 0;
10496 gfc_set_sym_referenced (tmp->n.sym);
10497 gfc_commit_symbol (tmp->n.sym);
10498 e = gfc_lval_expr_from_sym (tmp->n.sym);
10500 /* Should the lhs be a section, use its array ref for the
10501 temporary expression. */
10502 if (aref && aref->type != AR_FULL)
10504 gfc_free_ref_list (e->ref);
10505 e->ref = gfc_copy_ref (ref);
10507 return e;
10511 /* Add one line of code to the code chain, making sure that 'head' and
10512 'tail' are appropriately updated. */
10514 static void
10515 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10517 gcc_assert (this_code);
10518 if (*head == NULL)
10519 *head = *tail = *this_code;
10520 else
10521 *tail = gfc_append_code (*tail, *this_code);
10522 *this_code = NULL;
10526 /* Counts the potential number of part array references that would
10527 result from resolution of typebound defined assignments. */
10529 static int
10530 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10532 gfc_component *c;
10533 int c_depth = 0, t_depth;
10535 for (c= derived->components; c; c = c->next)
10537 if ((!gfc_bt_struct (c->ts.type)
10538 || c->attr.pointer
10539 || c->attr.allocatable
10540 || c->attr.proc_pointer_comp
10541 || c->attr.class_pointer
10542 || c->attr.proc_pointer)
10543 && !c->attr.defined_assign_comp)
10544 continue;
10546 if (c->as && c_depth == 0)
10547 c_depth = 1;
10549 if (c->ts.u.derived->attr.defined_assign_comp)
10550 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10551 c->as ? 1 : 0);
10552 else
10553 t_depth = 0;
10555 c_depth = t_depth > c_depth ? t_depth : c_depth;
10557 return depth + c_depth;
10561 /* Implement 7.2.1.3 of the F08 standard:
10562 "An intrinsic assignment where the variable is of derived type is
10563 performed as if each component of the variable were assigned from the
10564 corresponding component of expr using pointer assignment (7.2.2) for
10565 each pointer component, defined assignment for each nonpointer
10566 nonallocatable component of a type that has a type-bound defined
10567 assignment consistent with the component, intrinsic assignment for
10568 each other nonpointer nonallocatable component, ..."
10570 The pointer assignments are taken care of by the intrinsic
10571 assignment of the structure itself. This function recursively adds
10572 defined assignments where required. The recursion is accomplished
10573 by calling gfc_resolve_code.
10575 When the lhs in a defined assignment has intent INOUT, we need a
10576 temporary for the lhs. In pseudo-code:
10578 ! Only call function lhs once.
10579 if (lhs is not a constant or an variable)
10580 temp_x = expr2
10581 expr2 => temp_x
10582 ! Do the intrinsic assignment
10583 expr1 = expr2
10584 ! Now do the defined assignments
10585 do over components with typebound defined assignment [%cmp]
10586 #if one component's assignment procedure is INOUT
10587 t1 = expr1
10588 #if expr2 non-variable
10589 temp_x = expr2
10590 expr2 => temp_x
10591 # endif
10592 expr1 = expr2
10593 # for each cmp
10594 t1%cmp {defined=} expr2%cmp
10595 expr1%cmp = t1%cmp
10596 #else
10597 expr1 = expr2
10599 # for each cmp
10600 expr1%cmp {defined=} expr2%cmp
10601 #endif
10604 /* The temporary assignments have to be put on top of the additional
10605 code to avoid the result being changed by the intrinsic assignment.
10607 static int component_assignment_level = 0;
10608 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10610 static void
10611 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10613 gfc_component *comp1, *comp2;
10614 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10615 gfc_expr *t1;
10616 int error_count, depth;
10618 gfc_get_errors (NULL, &error_count);
10620 /* Filter out continuing processing after an error. */
10621 if (error_count
10622 || (*code)->expr1->ts.type != BT_DERIVED
10623 || (*code)->expr2->ts.type != BT_DERIVED)
10624 return;
10626 /* TODO: Handle more than one part array reference in assignments. */
10627 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10628 (*code)->expr1->rank ? 1 : 0);
10629 if (depth > 1)
10631 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10632 "done because multiple part array references would "
10633 "occur in intermediate expressions.", &(*code)->loc);
10634 return;
10637 component_assignment_level++;
10639 /* Create a temporary so that functions get called only once. */
10640 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10641 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10643 gfc_expr *tmp_expr;
10645 /* Assign the rhs to the temporary. */
10646 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10647 this_code = build_assignment (EXEC_ASSIGN,
10648 tmp_expr, (*code)->expr2,
10649 NULL, NULL, (*code)->loc);
10650 /* Add the code and substitute the rhs expression. */
10651 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10652 gfc_free_expr ((*code)->expr2);
10653 (*code)->expr2 = tmp_expr;
10656 /* Do the intrinsic assignment. This is not needed if the lhs is one
10657 of the temporaries generated here, since the intrinsic assignment
10658 to the final result already does this. */
10659 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10661 this_code = build_assignment (EXEC_ASSIGN,
10662 (*code)->expr1, (*code)->expr2,
10663 NULL, NULL, (*code)->loc);
10664 add_code_to_chain (&this_code, &head, &tail);
10667 comp1 = (*code)->expr1->ts.u.derived->components;
10668 comp2 = (*code)->expr2->ts.u.derived->components;
10670 t1 = NULL;
10671 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10673 bool inout = false;
10675 /* The intrinsic assignment does the right thing for pointers
10676 of all kinds and allocatable components. */
10677 if (!gfc_bt_struct (comp1->ts.type)
10678 || comp1->attr.pointer
10679 || comp1->attr.allocatable
10680 || comp1->attr.proc_pointer_comp
10681 || comp1->attr.class_pointer
10682 || comp1->attr.proc_pointer)
10683 continue;
10685 /* Make an assigment for this component. */
10686 this_code = build_assignment (EXEC_ASSIGN,
10687 (*code)->expr1, (*code)->expr2,
10688 comp1, comp2, (*code)->loc);
10690 /* Convert the assignment if there is a defined assignment for
10691 this type. Otherwise, using the call from gfc_resolve_code,
10692 recurse into its components. */
10693 gfc_resolve_code (this_code, ns);
10695 if (this_code->op == EXEC_ASSIGN_CALL)
10697 gfc_formal_arglist *dummy_args;
10698 gfc_symbol *rsym;
10699 /* Check that there is a typebound defined assignment. If not,
10700 then this must be a module defined assignment. We cannot
10701 use the defined_assign_comp attribute here because it must
10702 be this derived type that has the defined assignment and not
10703 a parent type. */
10704 if (!(comp1->ts.u.derived->f2k_derived
10705 && comp1->ts.u.derived->f2k_derived
10706 ->tb_op[INTRINSIC_ASSIGN]))
10708 gfc_free_statements (this_code);
10709 this_code = NULL;
10710 continue;
10713 /* If the first argument of the subroutine has intent INOUT
10714 a temporary must be generated and used instead. */
10715 rsym = this_code->resolved_sym;
10716 dummy_args = gfc_sym_get_dummy_args (rsym);
10717 if (dummy_args
10718 && dummy_args->sym->attr.intent == INTENT_INOUT)
10720 gfc_code *temp_code;
10721 inout = true;
10723 /* Build the temporary required for the assignment and put
10724 it at the head of the generated code. */
10725 if (!t1)
10727 t1 = get_temp_from_expr ((*code)->expr1, ns);
10728 temp_code = build_assignment (EXEC_ASSIGN,
10729 t1, (*code)->expr1,
10730 NULL, NULL, (*code)->loc);
10732 /* For allocatable LHS, check whether it is allocated. Note
10733 that allocatable components with defined assignment are
10734 not yet support. See PR 57696. */
10735 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10737 gfc_code *block;
10738 gfc_expr *e =
10739 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10740 block = gfc_get_code (EXEC_IF);
10741 block->block = gfc_get_code (EXEC_IF);
10742 block->block->expr1
10743 = gfc_build_intrinsic_call (ns,
10744 GFC_ISYM_ALLOCATED, "allocated",
10745 (*code)->loc, 1, e);
10746 block->block->next = temp_code;
10747 temp_code = block;
10749 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10752 /* Replace the first actual arg with the component of the
10753 temporary. */
10754 gfc_free_expr (this_code->ext.actual->expr);
10755 this_code->ext.actual->expr = gfc_copy_expr (t1);
10756 add_comp_ref (this_code->ext.actual->expr, comp1);
10758 /* If the LHS variable is allocatable and wasn't allocated and
10759 the temporary is allocatable, pointer assign the address of
10760 the freshly allocated LHS to the temporary. */
10761 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10762 && gfc_expr_attr ((*code)->expr1).allocatable)
10764 gfc_code *block;
10765 gfc_expr *cond;
10767 cond = gfc_get_expr ();
10768 cond->ts.type = BT_LOGICAL;
10769 cond->ts.kind = gfc_default_logical_kind;
10770 cond->expr_type = EXPR_OP;
10771 cond->where = (*code)->loc;
10772 cond->value.op.op = INTRINSIC_NOT;
10773 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
10774 GFC_ISYM_ALLOCATED, "allocated",
10775 (*code)->loc, 1, gfc_copy_expr (t1));
10776 block = gfc_get_code (EXEC_IF);
10777 block->block = gfc_get_code (EXEC_IF);
10778 block->block->expr1 = cond;
10779 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10780 t1, (*code)->expr1,
10781 NULL, NULL, (*code)->loc);
10782 add_code_to_chain (&block, &head, &tail);
10786 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
10788 /* Don't add intrinsic assignments since they are already
10789 effected by the intrinsic assignment of the structure. */
10790 gfc_free_statements (this_code);
10791 this_code = NULL;
10792 continue;
10795 add_code_to_chain (&this_code, &head, &tail);
10797 if (t1 && inout)
10799 /* Transfer the value to the final result. */
10800 this_code = build_assignment (EXEC_ASSIGN,
10801 (*code)->expr1, t1,
10802 comp1, comp2, (*code)->loc);
10803 add_code_to_chain (&this_code, &head, &tail);
10807 /* Put the temporary assignments at the top of the generated code. */
10808 if (tmp_head && component_assignment_level == 1)
10810 gfc_append_code (tmp_head, head);
10811 head = tmp_head;
10812 tmp_head = tmp_tail = NULL;
10815 // If we did a pointer assignment - thus, we need to ensure that the LHS is
10816 // not accidentally deallocated. Hence, nullify t1.
10817 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
10818 && gfc_expr_attr ((*code)->expr1).allocatable)
10820 gfc_code *block;
10821 gfc_expr *cond;
10822 gfc_expr *e;
10824 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10825 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
10826 (*code)->loc, 2, gfc_copy_expr (t1), e);
10827 block = gfc_get_code (EXEC_IF);
10828 block->block = gfc_get_code (EXEC_IF);
10829 block->block->expr1 = cond;
10830 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10831 t1, gfc_get_null_expr (&(*code)->loc),
10832 NULL, NULL, (*code)->loc);
10833 gfc_append_code (tail, block);
10834 tail = block;
10837 /* Now attach the remaining code chain to the input code. Step on
10838 to the end of the new code since resolution is complete. */
10839 gcc_assert ((*code)->op == EXEC_ASSIGN);
10840 tail->next = (*code)->next;
10841 /* Overwrite 'code' because this would place the intrinsic assignment
10842 before the temporary for the lhs is created. */
10843 gfc_free_expr ((*code)->expr1);
10844 gfc_free_expr ((*code)->expr2);
10845 **code = *head;
10846 if (head != tail)
10847 free (head);
10848 *code = tail;
10850 component_assignment_level--;
10854 /* F2008: Pointer function assignments are of the form:
10855 ptr_fcn (args) = expr
10856 This function breaks these assignments into two statements:
10857 temporary_pointer => ptr_fcn(args)
10858 temporary_pointer = expr */
10860 static bool
10861 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
10863 gfc_expr *tmp_ptr_expr;
10864 gfc_code *this_code;
10865 gfc_component *comp;
10866 gfc_symbol *s;
10868 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
10869 return false;
10871 /* Even if standard does not support this feature, continue to build
10872 the two statements to avoid upsetting frontend_passes.c. */
10873 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
10874 "%L", &(*code)->loc);
10876 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
10878 if (comp)
10879 s = comp->ts.interface;
10880 else
10881 s = (*code)->expr1->symtree->n.sym;
10883 if (s == NULL || !s->result->attr.pointer)
10885 gfc_error ("The function result on the lhs of the assignment at "
10886 "%L must have the pointer attribute.",
10887 &(*code)->expr1->where);
10888 (*code)->op = EXEC_NOP;
10889 return false;
10892 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
10894 /* get_temp_from_expression is set up for ordinary assignments. To that
10895 end, where array bounds are not known, arrays are made allocatable.
10896 Change the temporary to a pointer here. */
10897 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
10898 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
10899 tmp_ptr_expr->where = (*code)->loc;
10901 this_code = build_assignment (EXEC_ASSIGN,
10902 tmp_ptr_expr, (*code)->expr2,
10903 NULL, NULL, (*code)->loc);
10904 this_code->next = (*code)->next;
10905 (*code)->next = this_code;
10906 (*code)->op = EXEC_POINTER_ASSIGN;
10907 (*code)->expr2 = (*code)->expr1;
10908 (*code)->expr1 = tmp_ptr_expr;
10910 return true;
10914 /* Deferred character length assignments from an operator expression
10915 require a temporary because the character length of the lhs can
10916 change in the course of the assignment. */
10918 static bool
10919 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
10921 gfc_expr *tmp_expr;
10922 gfc_code *this_code;
10924 if (!((*code)->expr1->ts.type == BT_CHARACTER
10925 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
10926 && (*code)->expr2->expr_type == EXPR_OP))
10927 return false;
10929 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
10930 return false;
10932 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10933 tmp_expr->where = (*code)->loc;
10935 /* A new charlen is required to ensure that the variable string
10936 length is different to that of the original lhs. */
10937 tmp_expr->ts.u.cl = gfc_get_charlen();
10938 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
10939 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
10940 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
10942 tmp_expr->symtree->n.sym->ts.deferred = 1;
10944 this_code = build_assignment (EXEC_ASSIGN,
10945 (*code)->expr1,
10946 gfc_copy_expr (tmp_expr),
10947 NULL, NULL, (*code)->loc);
10949 (*code)->expr1 = tmp_expr;
10951 this_code->next = (*code)->next;
10952 (*code)->next = this_code;
10954 return true;
10958 /* Given a block of code, recursively resolve everything pointed to by this
10959 code block. */
10961 void
10962 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
10964 int omp_workshare_save;
10965 int forall_save, do_concurrent_save;
10966 code_stack frame;
10967 bool t;
10969 frame.prev = cs_base;
10970 frame.head = code;
10971 cs_base = &frame;
10973 find_reachable_labels (code);
10975 for (; code; code = code->next)
10977 frame.current = code;
10978 forall_save = forall_flag;
10979 do_concurrent_save = gfc_do_concurrent_flag;
10981 if (code->op == EXEC_FORALL)
10983 forall_flag = 1;
10984 gfc_resolve_forall (code, ns, forall_save);
10985 forall_flag = 2;
10987 else if (code->block)
10989 omp_workshare_save = -1;
10990 switch (code->op)
10992 case EXEC_OACC_PARALLEL_LOOP:
10993 case EXEC_OACC_PARALLEL:
10994 case EXEC_OACC_KERNELS_LOOP:
10995 case EXEC_OACC_KERNELS:
10996 case EXEC_OACC_DATA:
10997 case EXEC_OACC_HOST_DATA:
10998 case EXEC_OACC_LOOP:
10999 gfc_resolve_oacc_blocks (code, ns);
11000 break;
11001 case EXEC_OMP_PARALLEL_WORKSHARE:
11002 omp_workshare_save = omp_workshare_flag;
11003 omp_workshare_flag = 1;
11004 gfc_resolve_omp_parallel_blocks (code, ns);
11005 break;
11006 case EXEC_OMP_PARALLEL:
11007 case EXEC_OMP_PARALLEL_DO:
11008 case EXEC_OMP_PARALLEL_DO_SIMD:
11009 case EXEC_OMP_PARALLEL_SECTIONS:
11010 case EXEC_OMP_TARGET_PARALLEL:
11011 case EXEC_OMP_TARGET_PARALLEL_DO:
11012 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11013 case EXEC_OMP_TARGET_TEAMS:
11014 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11015 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11016 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11017 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11018 case EXEC_OMP_TASK:
11019 case EXEC_OMP_TASKLOOP:
11020 case EXEC_OMP_TASKLOOP_SIMD:
11021 case EXEC_OMP_TEAMS:
11022 case EXEC_OMP_TEAMS_DISTRIBUTE:
11023 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11024 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11025 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11026 omp_workshare_save = omp_workshare_flag;
11027 omp_workshare_flag = 0;
11028 gfc_resolve_omp_parallel_blocks (code, ns);
11029 break;
11030 case EXEC_OMP_DISTRIBUTE:
11031 case EXEC_OMP_DISTRIBUTE_SIMD:
11032 case EXEC_OMP_DO:
11033 case EXEC_OMP_DO_SIMD:
11034 case EXEC_OMP_SIMD:
11035 case EXEC_OMP_TARGET_SIMD:
11036 gfc_resolve_omp_do_blocks (code, ns);
11037 break;
11038 case EXEC_SELECT_TYPE:
11039 /* Blocks are handled in resolve_select_type because we have
11040 to transform the SELECT TYPE into ASSOCIATE first. */
11041 break;
11042 case EXEC_DO_CONCURRENT:
11043 gfc_do_concurrent_flag = 1;
11044 gfc_resolve_blocks (code->block, ns);
11045 gfc_do_concurrent_flag = 2;
11046 break;
11047 case EXEC_OMP_WORKSHARE:
11048 omp_workshare_save = omp_workshare_flag;
11049 omp_workshare_flag = 1;
11050 /* FALL THROUGH */
11051 default:
11052 gfc_resolve_blocks (code->block, ns);
11053 break;
11056 if (omp_workshare_save != -1)
11057 omp_workshare_flag = omp_workshare_save;
11059 start:
11060 t = true;
11061 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11062 t = gfc_resolve_expr (code->expr1);
11063 forall_flag = forall_save;
11064 gfc_do_concurrent_flag = do_concurrent_save;
11066 if (!gfc_resolve_expr (code->expr2))
11067 t = false;
11069 if (code->op == EXEC_ALLOCATE
11070 && !gfc_resolve_expr (code->expr3))
11071 t = false;
11073 switch (code->op)
11075 case EXEC_NOP:
11076 case EXEC_END_BLOCK:
11077 case EXEC_END_NESTED_BLOCK:
11078 case EXEC_CYCLE:
11079 case EXEC_PAUSE:
11080 case EXEC_STOP:
11081 case EXEC_ERROR_STOP:
11082 case EXEC_EXIT:
11083 case EXEC_CONTINUE:
11084 case EXEC_DT_END:
11085 case EXEC_ASSIGN_CALL:
11086 break;
11088 case EXEC_CRITICAL:
11089 resolve_critical (code);
11090 break;
11092 case EXEC_SYNC_ALL:
11093 case EXEC_SYNC_IMAGES:
11094 case EXEC_SYNC_MEMORY:
11095 resolve_sync (code);
11096 break;
11098 case EXEC_LOCK:
11099 case EXEC_UNLOCK:
11100 case EXEC_EVENT_POST:
11101 case EXEC_EVENT_WAIT:
11102 resolve_lock_unlock_event (code);
11103 break;
11105 case EXEC_FAIL_IMAGE:
11106 break;
11108 case EXEC_ENTRY:
11109 /* Keep track of which entry we are up to. */
11110 current_entry_id = code->ext.entry->id;
11111 break;
11113 case EXEC_WHERE:
11114 resolve_where (code, NULL);
11115 break;
11117 case EXEC_GOTO:
11118 if (code->expr1 != NULL)
11120 if (code->expr1->ts.type != BT_INTEGER)
11121 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11122 "INTEGER variable", &code->expr1->where);
11123 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11124 gfc_error ("Variable %qs has not been assigned a target "
11125 "label at %L", code->expr1->symtree->n.sym->name,
11126 &code->expr1->where);
11128 else
11129 resolve_branch (code->label1, code);
11130 break;
11132 case EXEC_RETURN:
11133 if (code->expr1 != NULL
11134 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11135 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11136 "INTEGER return specifier", &code->expr1->where);
11137 break;
11139 case EXEC_INIT_ASSIGN:
11140 case EXEC_END_PROCEDURE:
11141 break;
11143 case EXEC_ASSIGN:
11144 if (!t)
11145 break;
11147 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11148 the LHS. */
11149 if (code->expr1->expr_type == EXPR_FUNCTION
11150 && code->expr1->value.function.isym
11151 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11152 remove_caf_get_intrinsic (code->expr1);
11154 /* If this is a pointer function in an lvalue variable context,
11155 the new code will have to be resolved afresh. This is also the
11156 case with an error, where the code is transformed into NOP to
11157 prevent ICEs downstream. */
11158 if (resolve_ptr_fcn_assign (&code, ns)
11159 || code->op == EXEC_NOP)
11160 goto start;
11162 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11163 _("assignment")))
11164 break;
11166 if (resolve_ordinary_assign (code, ns))
11168 if (code->op == EXEC_COMPCALL)
11169 goto compcall;
11170 else
11171 goto call;
11174 /* Check for dependencies in deferred character length array
11175 assignments and generate a temporary, if necessary. */
11176 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11177 break;
11179 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11180 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11181 && code->expr1->ts.u.derived
11182 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11183 generate_component_assignments (&code, ns);
11185 break;
11187 case EXEC_LABEL_ASSIGN:
11188 if (code->label1->defined == ST_LABEL_UNKNOWN)
11189 gfc_error ("Label %d referenced at %L is never defined",
11190 code->label1->value, &code->label1->where);
11191 if (t
11192 && (code->expr1->expr_type != EXPR_VARIABLE
11193 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11194 || code->expr1->symtree->n.sym->ts.kind
11195 != gfc_default_integer_kind
11196 || code->expr1->symtree->n.sym->as != NULL))
11197 gfc_error ("ASSIGN statement at %L requires a scalar "
11198 "default INTEGER variable", &code->expr1->where);
11199 break;
11201 case EXEC_POINTER_ASSIGN:
11203 gfc_expr* e;
11205 if (!t)
11206 break;
11208 /* This is both a variable definition and pointer assignment
11209 context, so check both of them. For rank remapping, a final
11210 array ref may be present on the LHS and fool gfc_expr_attr
11211 used in gfc_check_vardef_context. Remove it. */
11212 e = remove_last_array_ref (code->expr1);
11213 t = gfc_check_vardef_context (e, true, false, false,
11214 _("pointer assignment"));
11215 if (t)
11216 t = gfc_check_vardef_context (e, false, false, false,
11217 _("pointer assignment"));
11218 gfc_free_expr (e);
11219 if (!t)
11220 break;
11222 gfc_check_pointer_assign (code->expr1, code->expr2);
11224 /* Assigning a class object always is a regular assign. */
11225 if (code->expr2->ts.type == BT_CLASS
11226 && code->expr1->ts.type == BT_CLASS
11227 && !CLASS_DATA (code->expr2)->attr.dimension
11228 && !(gfc_expr_attr (code->expr1).proc_pointer
11229 && code->expr2->expr_type == EXPR_VARIABLE
11230 && code->expr2->symtree->n.sym->attr.flavor
11231 == FL_PROCEDURE))
11232 code->op = EXEC_ASSIGN;
11233 break;
11236 case EXEC_ARITHMETIC_IF:
11238 gfc_expr *e = code->expr1;
11240 gfc_resolve_expr (e);
11241 if (e->expr_type == EXPR_NULL)
11242 gfc_error ("Invalid NULL at %L", &e->where);
11244 if (t && (e->rank > 0
11245 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11246 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11247 "REAL or INTEGER expression", &e->where);
11249 resolve_branch (code->label1, code);
11250 resolve_branch (code->label2, code);
11251 resolve_branch (code->label3, code);
11253 break;
11255 case EXEC_IF:
11256 if (t && code->expr1 != NULL
11257 && (code->expr1->ts.type != BT_LOGICAL
11258 || code->expr1->rank != 0))
11259 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11260 &code->expr1->where);
11261 break;
11263 case EXEC_CALL:
11264 call:
11265 resolve_call (code);
11266 break;
11268 case EXEC_COMPCALL:
11269 compcall:
11270 resolve_typebound_subroutine (code);
11271 break;
11273 case EXEC_CALL_PPC:
11274 resolve_ppc_call (code);
11275 break;
11277 case EXEC_SELECT:
11278 /* Select is complicated. Also, a SELECT construct could be
11279 a transformed computed GOTO. */
11280 resolve_select (code, false);
11281 break;
11283 case EXEC_SELECT_TYPE:
11284 resolve_select_type (code, ns);
11285 break;
11287 case EXEC_BLOCK:
11288 resolve_block_construct (code);
11289 break;
11291 case EXEC_DO:
11292 if (code->ext.iterator != NULL)
11294 gfc_iterator *iter = code->ext.iterator;
11295 if (gfc_resolve_iterator (iter, true, false))
11296 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11297 true);
11299 break;
11301 case EXEC_DO_WHILE:
11302 if (code->expr1 == NULL)
11303 gfc_internal_error ("gfc_resolve_code(): No expression on "
11304 "DO WHILE");
11305 if (t
11306 && (code->expr1->rank != 0
11307 || code->expr1->ts.type != BT_LOGICAL))
11308 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11309 "a scalar LOGICAL expression", &code->expr1->where);
11310 break;
11312 case EXEC_ALLOCATE:
11313 if (t)
11314 resolve_allocate_deallocate (code, "ALLOCATE");
11316 break;
11318 case EXEC_DEALLOCATE:
11319 if (t)
11320 resolve_allocate_deallocate (code, "DEALLOCATE");
11322 break;
11324 case EXEC_OPEN:
11325 if (!gfc_resolve_open (code->ext.open))
11326 break;
11328 resolve_branch (code->ext.open->err, code);
11329 break;
11331 case EXEC_CLOSE:
11332 if (!gfc_resolve_close (code->ext.close))
11333 break;
11335 resolve_branch (code->ext.close->err, code);
11336 break;
11338 case EXEC_BACKSPACE:
11339 case EXEC_ENDFILE:
11340 case EXEC_REWIND:
11341 case EXEC_FLUSH:
11342 if (!gfc_resolve_filepos (code->ext.filepos))
11343 break;
11345 resolve_branch (code->ext.filepos->err, code);
11346 break;
11348 case EXEC_INQUIRE:
11349 if (!gfc_resolve_inquire (code->ext.inquire))
11350 break;
11352 resolve_branch (code->ext.inquire->err, code);
11353 break;
11355 case EXEC_IOLENGTH:
11356 gcc_assert (code->ext.inquire != NULL);
11357 if (!gfc_resolve_inquire (code->ext.inquire))
11358 break;
11360 resolve_branch (code->ext.inquire->err, code);
11361 break;
11363 case EXEC_WAIT:
11364 if (!gfc_resolve_wait (code->ext.wait))
11365 break;
11367 resolve_branch (code->ext.wait->err, code);
11368 resolve_branch (code->ext.wait->end, code);
11369 resolve_branch (code->ext.wait->eor, code);
11370 break;
11372 case EXEC_READ:
11373 case EXEC_WRITE:
11374 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11375 break;
11377 resolve_branch (code->ext.dt->err, code);
11378 resolve_branch (code->ext.dt->end, code);
11379 resolve_branch (code->ext.dt->eor, code);
11380 break;
11382 case EXEC_TRANSFER:
11383 resolve_transfer (code);
11384 break;
11386 case EXEC_DO_CONCURRENT:
11387 case EXEC_FORALL:
11388 resolve_forall_iterators (code->ext.forall_iterator);
11390 if (code->expr1 != NULL
11391 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11392 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11393 "expression", &code->expr1->where);
11394 break;
11396 case EXEC_OACC_PARALLEL_LOOP:
11397 case EXEC_OACC_PARALLEL:
11398 case EXEC_OACC_KERNELS_LOOP:
11399 case EXEC_OACC_KERNELS:
11400 case EXEC_OACC_DATA:
11401 case EXEC_OACC_HOST_DATA:
11402 case EXEC_OACC_LOOP:
11403 case EXEC_OACC_UPDATE:
11404 case EXEC_OACC_WAIT:
11405 case EXEC_OACC_CACHE:
11406 case EXEC_OACC_ENTER_DATA:
11407 case EXEC_OACC_EXIT_DATA:
11408 case EXEC_OACC_ATOMIC:
11409 case EXEC_OACC_DECLARE:
11410 gfc_resolve_oacc_directive (code, ns);
11411 break;
11413 case EXEC_OMP_ATOMIC:
11414 case EXEC_OMP_BARRIER:
11415 case EXEC_OMP_CANCEL:
11416 case EXEC_OMP_CANCELLATION_POINT:
11417 case EXEC_OMP_CRITICAL:
11418 case EXEC_OMP_FLUSH:
11419 case EXEC_OMP_DISTRIBUTE:
11420 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11421 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11422 case EXEC_OMP_DISTRIBUTE_SIMD:
11423 case EXEC_OMP_DO:
11424 case EXEC_OMP_DO_SIMD:
11425 case EXEC_OMP_MASTER:
11426 case EXEC_OMP_ORDERED:
11427 case EXEC_OMP_SECTIONS:
11428 case EXEC_OMP_SIMD:
11429 case EXEC_OMP_SINGLE:
11430 case EXEC_OMP_TARGET:
11431 case EXEC_OMP_TARGET_DATA:
11432 case EXEC_OMP_TARGET_ENTER_DATA:
11433 case EXEC_OMP_TARGET_EXIT_DATA:
11434 case EXEC_OMP_TARGET_PARALLEL:
11435 case EXEC_OMP_TARGET_PARALLEL_DO:
11436 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11437 case EXEC_OMP_TARGET_SIMD:
11438 case EXEC_OMP_TARGET_TEAMS:
11439 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11440 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11441 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11442 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11443 case EXEC_OMP_TARGET_UPDATE:
11444 case EXEC_OMP_TASK:
11445 case EXEC_OMP_TASKGROUP:
11446 case EXEC_OMP_TASKLOOP:
11447 case EXEC_OMP_TASKLOOP_SIMD:
11448 case EXEC_OMP_TASKWAIT:
11449 case EXEC_OMP_TASKYIELD:
11450 case EXEC_OMP_TEAMS:
11451 case EXEC_OMP_TEAMS_DISTRIBUTE:
11452 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11453 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11454 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11455 case EXEC_OMP_WORKSHARE:
11456 gfc_resolve_omp_directive (code, ns);
11457 break;
11459 case EXEC_OMP_PARALLEL:
11460 case EXEC_OMP_PARALLEL_DO:
11461 case EXEC_OMP_PARALLEL_DO_SIMD:
11462 case EXEC_OMP_PARALLEL_SECTIONS:
11463 case EXEC_OMP_PARALLEL_WORKSHARE:
11464 omp_workshare_save = omp_workshare_flag;
11465 omp_workshare_flag = 0;
11466 gfc_resolve_omp_directive (code, ns);
11467 omp_workshare_flag = omp_workshare_save;
11468 break;
11470 default:
11471 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11475 cs_base = frame.prev;
11479 /* Resolve initial values and make sure they are compatible with
11480 the variable. */
11482 static void
11483 resolve_values (gfc_symbol *sym)
11485 bool t;
11487 if (sym->value == NULL)
11488 return;
11490 if (sym->value->expr_type == EXPR_STRUCTURE)
11491 t= resolve_structure_cons (sym->value, 1);
11492 else
11493 t = gfc_resolve_expr (sym->value);
11495 if (!t)
11496 return;
11498 gfc_check_assign_symbol (sym, NULL, sym->value);
11502 /* Verify any BIND(C) derived types in the namespace so we can report errors
11503 for them once, rather than for each variable declared of that type. */
11505 static void
11506 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11508 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11509 && derived_sym->attr.is_bind_c == 1)
11510 verify_bind_c_derived_type (derived_sym);
11512 return;
11516 /* Check the interfaces of DTIO procedures associated with derived
11517 type 'sym'. These procedures can either have typebound bindings or
11518 can appear in DTIO generic interfaces. */
11520 static void
11521 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11523 if (!sym || sym->attr.flavor != FL_DERIVED)
11524 return;
11526 gfc_check_dtio_interfaces (sym);
11528 return;
11531 /* Verify that any binding labels used in a given namespace do not collide
11532 with the names or binding labels of any global symbols. Multiple INTERFACE
11533 for the same procedure are permitted. */
11535 static void
11536 gfc_verify_binding_labels (gfc_symbol *sym)
11538 gfc_gsymbol *gsym;
11539 const char *module;
11541 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11542 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11543 return;
11545 gsym = gfc_find_gsymbol (gfc_gsym_root, sym->binding_label);
11547 if (sym->module)
11548 module = sym->module;
11549 else if (sym->ns && sym->ns->proc_name
11550 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11551 module = sym->ns->proc_name->name;
11552 else if (sym->ns && sym->ns->parent
11553 && sym->ns && sym->ns->parent->proc_name
11554 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11555 module = sym->ns->parent->proc_name->name;
11556 else
11557 module = NULL;
11559 if (!gsym
11560 || (!gsym->defined
11561 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11563 if (!gsym)
11564 gsym = gfc_get_gsymbol (sym->binding_label);
11565 gsym->where = sym->declared_at;
11566 gsym->sym_name = sym->name;
11567 gsym->binding_label = sym->binding_label;
11568 gsym->ns = sym->ns;
11569 gsym->mod_name = module;
11570 if (sym->attr.function)
11571 gsym->type = GSYM_FUNCTION;
11572 else if (sym->attr.subroutine)
11573 gsym->type = GSYM_SUBROUTINE;
11574 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11575 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11576 return;
11579 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11581 gfc_error ("Variable %s with binding label %s at %L uses the same global "
11582 "identifier as entity at %L", sym->name,
11583 sym->binding_label, &sym->declared_at, &gsym->where);
11584 /* Clear the binding label to prevent checking multiple times. */
11585 sym->binding_label = NULL;
11588 else if (sym->attr.flavor == FL_VARIABLE && module
11589 && (strcmp (module, gsym->mod_name) != 0
11590 || strcmp (sym->name, gsym->sym_name) != 0))
11592 /* This can only happen if the variable is defined in a module - if it
11593 isn't the same module, reject it. */
11594 gfc_error ("Variable %s from module %s with binding label %s at %L uses "
11595 "the same global identifier as entity at %L from module %s",
11596 sym->name, module, sym->binding_label,
11597 &sym->declared_at, &gsym->where, gsym->mod_name);
11598 sym->binding_label = NULL;
11600 else if ((sym->attr.function || sym->attr.subroutine)
11601 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11602 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11603 && sym != gsym->ns->proc_name
11604 && (module != gsym->mod_name
11605 || strcmp (gsym->sym_name, sym->name) != 0
11606 || (module && strcmp (module, gsym->mod_name) != 0)))
11608 /* Print an error if the procedure is defined multiple times; we have to
11609 exclude references to the same procedure via module association or
11610 multiple checks for the same procedure. */
11611 gfc_error ("Procedure %s with binding label %s at %L uses the same "
11612 "global identifier as entity at %L", sym->name,
11613 sym->binding_label, &sym->declared_at, &gsym->where);
11614 sym->binding_label = NULL;
11619 /* Resolve an index expression. */
11621 static bool
11622 resolve_index_expr (gfc_expr *e)
11624 if (!gfc_resolve_expr (e))
11625 return false;
11627 if (!gfc_simplify_expr (e, 0))
11628 return false;
11630 if (!gfc_specification_expr (e))
11631 return false;
11633 return true;
11637 /* Resolve a charlen structure. */
11639 static bool
11640 resolve_charlen (gfc_charlen *cl)
11642 int i, k;
11643 bool saved_specification_expr;
11645 if (cl->resolved)
11646 return true;
11648 cl->resolved = 1;
11649 saved_specification_expr = specification_expr;
11650 specification_expr = true;
11652 if (cl->length_from_typespec)
11654 if (!gfc_resolve_expr (cl->length))
11656 specification_expr = saved_specification_expr;
11657 return false;
11660 if (!gfc_simplify_expr (cl->length, 0))
11662 specification_expr = saved_specification_expr;
11663 return false;
11666 else
11669 if (!resolve_index_expr (cl->length))
11671 specification_expr = saved_specification_expr;
11672 return false;
11676 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11677 a negative value, the length of character entities declared is zero. */
11678 if (cl->length && !gfc_extract_int (cl->length, &i) && i < 0)
11679 gfc_replace_expr (cl->length,
11680 gfc_get_int_expr (gfc_default_integer_kind, NULL, 0));
11682 /* Check that the character length is not too large. */
11683 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11684 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11685 && cl->length->ts.type == BT_INTEGER
11686 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11688 gfc_error ("String length at %L is too large", &cl->length->where);
11689 specification_expr = saved_specification_expr;
11690 return false;
11693 specification_expr = saved_specification_expr;
11694 return true;
11698 /* Test for non-constant shape arrays. */
11700 static bool
11701 is_non_constant_shape_array (gfc_symbol *sym)
11703 gfc_expr *e;
11704 int i;
11705 bool not_constant;
11707 not_constant = false;
11708 if (sym->as != NULL)
11710 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11711 has not been simplified; parameter array references. Do the
11712 simplification now. */
11713 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11715 e = sym->as->lower[i];
11716 if (e && (!resolve_index_expr(e)
11717 || !gfc_is_constant_expr (e)))
11718 not_constant = true;
11719 e = sym->as->upper[i];
11720 if (e && (!resolve_index_expr(e)
11721 || !gfc_is_constant_expr (e)))
11722 not_constant = true;
11725 return not_constant;
11728 /* Given a symbol and an initialization expression, add code to initialize
11729 the symbol to the function entry. */
11730 static void
11731 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11733 gfc_expr *lval;
11734 gfc_code *init_st;
11735 gfc_namespace *ns = sym->ns;
11737 /* Search for the function namespace if this is a contained
11738 function without an explicit result. */
11739 if (sym->attr.function && sym == sym->result
11740 && sym->name != sym->ns->proc_name->name)
11742 ns = ns->contained;
11743 for (;ns; ns = ns->sibling)
11744 if (strcmp (ns->proc_name->name, sym->name) == 0)
11745 break;
11748 if (ns == NULL)
11750 gfc_free_expr (init);
11751 return;
11754 /* Build an l-value expression for the result. */
11755 lval = gfc_lval_expr_from_sym (sym);
11757 /* Add the code at scope entry. */
11758 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
11759 init_st->next = ns->code;
11760 ns->code = init_st;
11762 /* Assign the default initializer to the l-value. */
11763 init_st->loc = sym->declared_at;
11764 init_st->expr1 = lval;
11765 init_st->expr2 = init;
11769 /* Whether or not we can generate a default initializer for a symbol. */
11771 static bool
11772 can_generate_init (gfc_symbol *sym)
11774 symbol_attribute *a;
11775 if (!sym)
11776 return false;
11777 a = &sym->attr;
11779 /* These symbols should never have a default initialization. */
11780 return !(
11781 a->allocatable
11782 || a->external
11783 || a->pointer
11784 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
11785 && (CLASS_DATA (sym)->attr.class_pointer
11786 || CLASS_DATA (sym)->attr.proc_pointer))
11787 || a->in_equivalence
11788 || a->in_common
11789 || a->data
11790 || sym->module
11791 || a->cray_pointee
11792 || a->cray_pointer
11793 || sym->assoc
11794 || (!a->referenced && !a->result)
11795 || (a->dummy && a->intent != INTENT_OUT)
11796 || (a->function && sym != sym->result)
11801 /* Assign the default initializer to a derived type variable or result. */
11803 static void
11804 apply_default_init (gfc_symbol *sym)
11806 gfc_expr *init = NULL;
11808 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11809 return;
11811 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
11812 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
11814 if (init == NULL && sym->ts.type != BT_CLASS)
11815 return;
11817 build_init_assign (sym, init);
11818 sym->attr.referenced = 1;
11822 /* Build an initializer for a local. Returns null if the symbol should not have
11823 a default initialization. */
11825 static gfc_expr *
11826 build_default_init_expr (gfc_symbol *sym)
11828 /* These symbols should never have a default initialization. */
11829 if (sym->attr.allocatable
11830 || sym->attr.external
11831 || sym->attr.dummy
11832 || sym->attr.pointer
11833 || sym->attr.in_equivalence
11834 || sym->attr.in_common
11835 || sym->attr.data
11836 || sym->module
11837 || sym->attr.cray_pointee
11838 || sym->attr.cray_pointer
11839 || sym->assoc)
11840 return NULL;
11842 /* Get the appropriate init expression. */
11843 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
11846 /* Add an initialization expression to a local variable. */
11847 static void
11848 apply_default_init_local (gfc_symbol *sym)
11850 gfc_expr *init = NULL;
11852 /* The symbol should be a variable or a function return value. */
11853 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11854 || (sym->attr.function && sym->result != sym))
11855 return;
11857 /* Try to build the initializer expression. If we can't initialize
11858 this symbol, then init will be NULL. */
11859 init = build_default_init_expr (sym);
11860 if (init == NULL)
11861 return;
11863 /* For saved variables, we don't want to add an initializer at function
11864 entry, so we just add a static initializer. Note that automatic variables
11865 are stack allocated even with -fno-automatic; we have also to exclude
11866 result variable, which are also nonstatic. */
11867 if (!sym->attr.automatic
11868 && (sym->attr.save || sym->ns->save_all
11869 || (flag_max_stack_var_size == 0 && !sym->attr.result
11870 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
11871 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
11873 /* Don't clobber an existing initializer! */
11874 gcc_assert (sym->value == NULL);
11875 sym->value = init;
11876 return;
11879 build_init_assign (sym, init);
11883 /* Resolution of common features of flavors variable and procedure. */
11885 static bool
11886 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
11888 gfc_array_spec *as;
11890 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
11891 as = CLASS_DATA (sym)->as;
11892 else
11893 as = sym->as;
11895 /* Constraints on deferred shape variable. */
11896 if (as == NULL || as->type != AS_DEFERRED)
11898 bool pointer, allocatable, dimension;
11900 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
11902 pointer = CLASS_DATA (sym)->attr.class_pointer;
11903 allocatable = CLASS_DATA (sym)->attr.allocatable;
11904 dimension = CLASS_DATA (sym)->attr.dimension;
11906 else
11908 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
11909 allocatable = sym->attr.allocatable;
11910 dimension = sym->attr.dimension;
11913 if (allocatable)
11915 if (dimension && as->type != AS_ASSUMED_RANK)
11917 gfc_error ("Allocatable array %qs at %L must have a deferred "
11918 "shape or assumed rank", sym->name, &sym->declared_at);
11919 return false;
11921 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
11922 "%qs at %L may not be ALLOCATABLE",
11923 sym->name, &sym->declared_at))
11924 return false;
11927 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
11929 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
11930 "assumed rank", sym->name, &sym->declared_at);
11931 return false;
11934 else
11936 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
11937 && sym->ts.type != BT_CLASS && !sym->assoc)
11939 gfc_error ("Array %qs at %L cannot have a deferred shape",
11940 sym->name, &sym->declared_at);
11941 return false;
11945 /* Constraints on polymorphic variables. */
11946 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
11948 /* F03:C502. */
11949 if (sym->attr.class_ok
11950 && !sym->attr.select_type_temporary
11951 && !UNLIMITED_POLY (sym)
11952 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
11954 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
11955 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
11956 &sym->declared_at);
11957 return false;
11960 /* F03:C509. */
11961 /* Assume that use associated symbols were checked in the module ns.
11962 Class-variables that are associate-names are also something special
11963 and excepted from the test. */
11964 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
11966 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
11967 "or pointer", sym->name, &sym->declared_at);
11968 return false;
11972 return true;
11976 /* Additional checks for symbols with flavor variable and derived
11977 type. To be called from resolve_fl_variable. */
11979 static bool
11980 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
11982 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
11984 /* Check to see if a derived type is blocked from being host
11985 associated by the presence of another class I symbol in the same
11986 namespace. 14.6.1.3 of the standard and the discussion on
11987 comp.lang.fortran. */
11988 if (sym->ns != sym->ts.u.derived->ns
11989 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
11991 gfc_symbol *s;
11992 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
11993 if (s && s->attr.generic)
11994 s = gfc_find_dt_in_generic (s);
11995 if (s && !gfc_fl_struct (s->attr.flavor))
11997 gfc_error ("The type %qs cannot be host associated at %L "
11998 "because it is blocked by an incompatible object "
11999 "of the same name declared at %L",
12000 sym->ts.u.derived->name, &sym->declared_at,
12001 &s->declared_at);
12002 return false;
12006 /* 4th constraint in section 11.3: "If an object of a type for which
12007 component-initialization is specified (R429) appears in the
12008 specification-part of a module and does not have the ALLOCATABLE
12009 or POINTER attribute, the object shall have the SAVE attribute."
12011 The check for initializers is performed with
12012 gfc_has_default_initializer because gfc_default_initializer generates
12013 a hidden default for allocatable components. */
12014 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12015 && sym->ns->proc_name->attr.flavor == FL_MODULE
12016 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12017 && !sym->attr.pointer && !sym->attr.allocatable
12018 && gfc_has_default_initializer (sym->ts.u.derived)
12019 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12020 "%qs at %L, needed due to the default "
12021 "initialization", sym->name, &sym->declared_at))
12022 return false;
12024 /* Assign default initializer. */
12025 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12026 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12027 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12029 return true;
12033 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12034 except in the declaration of an entity or component that has the POINTER
12035 or ALLOCATABLE attribute. */
12037 static bool
12038 deferred_requirements (gfc_symbol *sym)
12040 if (sym->ts.deferred
12041 && !(sym->attr.pointer
12042 || sym->attr.allocatable
12043 || sym->attr.associate_var
12044 || sym->attr.omp_udr_artificial_var))
12046 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12047 "requires either the POINTER or ALLOCATABLE attribute",
12048 sym->name, &sym->declared_at);
12049 return false;
12051 return true;
12055 /* Resolve symbols with flavor variable. */
12057 static bool
12058 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12060 int no_init_flag, automatic_flag;
12061 gfc_expr *e;
12062 const char *auto_save_msg;
12063 bool saved_specification_expr;
12065 auto_save_msg = "Automatic object %qs at %L cannot have the "
12066 "SAVE attribute";
12068 if (!resolve_fl_var_and_proc (sym, mp_flag))
12069 return false;
12071 /* Set this flag to check that variables are parameters of all entries.
12072 This check is effected by the call to gfc_resolve_expr through
12073 is_non_constant_shape_array. */
12074 saved_specification_expr = specification_expr;
12075 specification_expr = true;
12077 if (sym->ns->proc_name
12078 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12079 || sym->ns->proc_name->attr.is_main_program)
12080 && !sym->attr.use_assoc
12081 && !sym->attr.allocatable
12082 && !sym->attr.pointer
12083 && is_non_constant_shape_array (sym))
12085 /* F08:C541. The shape of an array defined in a main program or module
12086 * needs to be constant. */
12087 gfc_error ("The module or main program array %qs at %L must "
12088 "have constant shape", sym->name, &sym->declared_at);
12089 specification_expr = saved_specification_expr;
12090 return false;
12093 /* Constraints on deferred type parameter. */
12094 if (!deferred_requirements (sym))
12095 return false;
12097 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12099 /* Make sure that character string variables with assumed length are
12100 dummy arguments. */
12101 e = sym->ts.u.cl->length;
12102 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12103 && !sym->ts.deferred && !sym->attr.select_type_temporary
12104 && !sym->attr.omp_udr_artificial_var)
12106 gfc_error ("Entity with assumed character length at %L must be a "
12107 "dummy argument or a PARAMETER", &sym->declared_at);
12108 specification_expr = saved_specification_expr;
12109 return false;
12112 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12114 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12115 specification_expr = saved_specification_expr;
12116 return false;
12119 if (!gfc_is_constant_expr (e)
12120 && !(e->expr_type == EXPR_VARIABLE
12121 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12123 if (!sym->attr.use_assoc && sym->ns->proc_name
12124 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12125 || sym->ns->proc_name->attr.is_main_program))
12127 gfc_error ("%qs at %L must have constant character length "
12128 "in this context", sym->name, &sym->declared_at);
12129 specification_expr = saved_specification_expr;
12130 return false;
12132 if (sym->attr.in_common)
12134 gfc_error ("COMMON variable %qs at %L must have constant "
12135 "character length", sym->name, &sym->declared_at);
12136 specification_expr = saved_specification_expr;
12137 return false;
12142 if (sym->value == NULL && sym->attr.referenced)
12143 apply_default_init_local (sym); /* Try to apply a default initialization. */
12145 /* Determine if the symbol may not have an initializer. */
12146 no_init_flag = automatic_flag = 0;
12147 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12148 || sym->attr.intrinsic || sym->attr.result)
12149 no_init_flag = 1;
12150 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12151 && is_non_constant_shape_array (sym))
12153 no_init_flag = automatic_flag = 1;
12155 /* Also, they must not have the SAVE attribute.
12156 SAVE_IMPLICIT is checked below. */
12157 if (sym->as && sym->attr.codimension)
12159 int corank = sym->as->corank;
12160 sym->as->corank = 0;
12161 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12162 sym->as->corank = corank;
12164 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12166 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12167 specification_expr = saved_specification_expr;
12168 return false;
12172 /* Ensure that any initializer is simplified. */
12173 if (sym->value)
12174 gfc_simplify_expr (sym->value, 1);
12176 /* Reject illegal initializers. */
12177 if (!sym->mark && sym->value)
12179 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12180 && CLASS_DATA (sym)->attr.allocatable))
12181 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12182 sym->name, &sym->declared_at);
12183 else if (sym->attr.external)
12184 gfc_error ("External %qs at %L cannot have an initializer",
12185 sym->name, &sym->declared_at);
12186 else if (sym->attr.dummy
12187 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12188 gfc_error ("Dummy %qs at %L cannot have an initializer",
12189 sym->name, &sym->declared_at);
12190 else if (sym->attr.intrinsic)
12191 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12192 sym->name, &sym->declared_at);
12193 else if (sym->attr.result)
12194 gfc_error ("Function result %qs at %L cannot have an initializer",
12195 sym->name, &sym->declared_at);
12196 else if (automatic_flag)
12197 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12198 sym->name, &sym->declared_at);
12199 else
12200 goto no_init_error;
12201 specification_expr = saved_specification_expr;
12202 return false;
12205 no_init_error:
12206 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12208 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12209 specification_expr = saved_specification_expr;
12210 return res;
12213 specification_expr = saved_specification_expr;
12214 return true;
12218 /* Compare the dummy characteristics of a module procedure interface
12219 declaration with the corresponding declaration in a submodule. */
12220 static gfc_formal_arglist *new_formal;
12221 static char errmsg[200];
12223 static void
12224 compare_fsyms (gfc_symbol *sym)
12226 gfc_symbol *fsym;
12228 if (sym == NULL || new_formal == NULL)
12229 return;
12231 fsym = new_formal->sym;
12233 if (sym == fsym)
12234 return;
12236 if (strcmp (sym->name, fsym->name) == 0)
12238 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12239 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12244 /* Resolve a procedure. */
12246 static bool
12247 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12249 gfc_formal_arglist *arg;
12251 if (sym->attr.function
12252 && !resolve_fl_var_and_proc (sym, mp_flag))
12253 return false;
12255 if (sym->ts.type == BT_CHARACTER)
12257 gfc_charlen *cl = sym->ts.u.cl;
12259 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12260 && !resolve_charlen (cl))
12261 return false;
12263 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12264 && sym->attr.proc == PROC_ST_FUNCTION)
12266 gfc_error ("Character-valued statement function %qs at %L must "
12267 "have constant length", sym->name, &sym->declared_at);
12268 return false;
12272 /* Ensure that derived type for are not of a private type. Internal
12273 module procedures are excluded by 2.2.3.3 - i.e., they are not
12274 externally accessible and can access all the objects accessible in
12275 the host. */
12276 if (!(sym->ns->parent
12277 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12278 && gfc_check_symbol_access (sym))
12280 gfc_interface *iface;
12282 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12284 if (arg->sym
12285 && arg->sym->ts.type == BT_DERIVED
12286 && !arg->sym->ts.u.derived->attr.use_assoc
12287 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12288 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12289 "and cannot be a dummy argument"
12290 " of %qs, which is PUBLIC at %L",
12291 arg->sym->name, sym->name,
12292 &sym->declared_at))
12294 /* Stop this message from recurring. */
12295 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12296 return false;
12300 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12301 PRIVATE to the containing module. */
12302 for (iface = sym->generic; iface; iface = iface->next)
12304 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12306 if (arg->sym
12307 && arg->sym->ts.type == BT_DERIVED
12308 && !arg->sym->ts.u.derived->attr.use_assoc
12309 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12310 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12311 "PUBLIC interface %qs at %L "
12312 "takes dummy arguments of %qs which "
12313 "is PRIVATE", iface->sym->name,
12314 sym->name, &iface->sym->declared_at,
12315 gfc_typename(&arg->sym->ts)))
12317 /* Stop this message from recurring. */
12318 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12319 return false;
12325 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12326 && !sym->attr.proc_pointer)
12328 gfc_error ("Function %qs at %L cannot have an initializer",
12329 sym->name, &sym->declared_at);
12330 return false;
12333 /* An external symbol may not have an initializer because it is taken to be
12334 a procedure. Exception: Procedure Pointers. */
12335 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12337 gfc_error ("External object %qs at %L may not have an initializer",
12338 sym->name, &sym->declared_at);
12339 return false;
12342 /* An elemental function is required to return a scalar 12.7.1 */
12343 if (sym->attr.elemental && sym->attr.function && sym->as)
12345 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12346 "result", sym->name, &sym->declared_at);
12347 /* Reset so that the error only occurs once. */
12348 sym->attr.elemental = 0;
12349 return false;
12352 if (sym->attr.proc == PROC_ST_FUNCTION
12353 && (sym->attr.allocatable || sym->attr.pointer))
12355 gfc_error ("Statement function %qs at %L may not have pointer or "
12356 "allocatable attribute", sym->name, &sym->declared_at);
12357 return false;
12360 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12361 char-len-param shall not be array-valued, pointer-valued, recursive
12362 or pure. ....snip... A character value of * may only be used in the
12363 following ways: (i) Dummy arg of procedure - dummy associates with
12364 actual length; (ii) To declare a named constant; or (iii) External
12365 function - but length must be declared in calling scoping unit. */
12366 if (sym->attr.function
12367 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12368 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12370 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12371 || (sym->attr.recursive) || (sym->attr.pure))
12373 if (sym->as && sym->as->rank)
12374 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12375 "array-valued", sym->name, &sym->declared_at);
12377 if (sym->attr.pointer)
12378 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12379 "pointer-valued", sym->name, &sym->declared_at);
12381 if (sym->attr.pure)
12382 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12383 "pure", sym->name, &sym->declared_at);
12385 if (sym->attr.recursive)
12386 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12387 "recursive", sym->name, &sym->declared_at);
12389 return false;
12392 /* Appendix B.2 of the standard. Contained functions give an
12393 error anyway. Deferred character length is an F2003 feature.
12394 Don't warn on intrinsic conversion functions, which start
12395 with two underscores. */
12396 if (!sym->attr.contained && !sym->ts.deferred
12397 && (sym->name[0] != '_' || sym->name[1] != '_'))
12398 gfc_notify_std (GFC_STD_F95_OBS,
12399 "CHARACTER(*) function %qs at %L",
12400 sym->name, &sym->declared_at);
12403 /* F2008, C1218. */
12404 if (sym->attr.elemental)
12406 if (sym->attr.proc_pointer)
12408 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12409 sym->name, &sym->declared_at);
12410 return false;
12412 if (sym->attr.dummy)
12414 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12415 sym->name, &sym->declared_at);
12416 return false;
12420 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12422 gfc_formal_arglist *curr_arg;
12423 int has_non_interop_arg = 0;
12425 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12426 sym->common_block))
12428 /* Clear these to prevent looking at them again if there was an
12429 error. */
12430 sym->attr.is_bind_c = 0;
12431 sym->attr.is_c_interop = 0;
12432 sym->ts.is_c_interop = 0;
12434 else
12436 /* So far, no errors have been found. */
12437 sym->attr.is_c_interop = 1;
12438 sym->ts.is_c_interop = 1;
12441 curr_arg = gfc_sym_get_dummy_args (sym);
12442 while (curr_arg != NULL)
12444 /* Skip implicitly typed dummy args here. */
12445 if (curr_arg->sym->attr.implicit_type == 0)
12446 if (!gfc_verify_c_interop_param (curr_arg->sym))
12447 /* If something is found to fail, record the fact so we
12448 can mark the symbol for the procedure as not being
12449 BIND(C) to try and prevent multiple errors being
12450 reported. */
12451 has_non_interop_arg = 1;
12453 curr_arg = curr_arg->next;
12456 /* See if any of the arguments were not interoperable and if so, clear
12457 the procedure symbol to prevent duplicate error messages. */
12458 if (has_non_interop_arg != 0)
12460 sym->attr.is_c_interop = 0;
12461 sym->ts.is_c_interop = 0;
12462 sym->attr.is_bind_c = 0;
12466 if (!sym->attr.proc_pointer)
12468 if (sym->attr.save == SAVE_EXPLICIT)
12470 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12471 "in %qs at %L", sym->name, &sym->declared_at);
12472 return false;
12474 if (sym->attr.intent)
12476 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12477 "in %qs at %L", sym->name, &sym->declared_at);
12478 return false;
12480 if (sym->attr.subroutine && sym->attr.result)
12482 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12483 "in %qs at %L", sym->name, &sym->declared_at);
12484 return false;
12486 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12487 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12488 || sym->attr.contained))
12490 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12491 "in %qs at %L", sym->name, &sym->declared_at);
12492 return false;
12494 if (strcmp ("ppr@", sym->name) == 0)
12496 gfc_error ("Procedure pointer result %qs at %L "
12497 "is missing the pointer attribute",
12498 sym->ns->proc_name->name, &sym->declared_at);
12499 return false;
12503 /* Assume that a procedure whose body is not known has references
12504 to external arrays. */
12505 if (sym->attr.if_source != IFSRC_DECL)
12506 sym->attr.array_outer_dependency = 1;
12508 /* Compare the characteristics of a module procedure with the
12509 interface declaration. Ideally this would be done with
12510 gfc_compare_interfaces but, at present, the formal interface
12511 cannot be copied to the ts.interface. */
12512 if (sym->attr.module_procedure
12513 && sym->attr.if_source == IFSRC_DECL)
12515 gfc_symbol *iface;
12516 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12517 char *module_name;
12518 char *submodule_name;
12519 strcpy (name, sym->ns->proc_name->name);
12520 module_name = strtok (name, ".");
12521 submodule_name = strtok (NULL, ".");
12523 iface = sym->tlink;
12524 sym->tlink = NULL;
12526 /* Make sure that the result uses the correct charlen for deferred
12527 length results. */
12528 if (iface && sym->result
12529 && iface->ts.type == BT_CHARACTER
12530 && iface->ts.deferred)
12531 sym->result->ts.u.cl = iface->ts.u.cl;
12533 if (iface == NULL)
12534 goto check_formal;
12536 /* Check the procedure characteristics. */
12537 if (sym->attr.elemental != iface->attr.elemental)
12539 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12540 "PROCEDURE at %L and its interface in %s",
12541 &sym->declared_at, module_name);
12542 return false;
12545 if (sym->attr.pure != iface->attr.pure)
12547 gfc_error ("Mismatch in PURE attribute between MODULE "
12548 "PROCEDURE at %L and its interface in %s",
12549 &sym->declared_at, module_name);
12550 return false;
12553 if (sym->attr.recursive != iface->attr.recursive)
12555 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12556 "PROCEDURE at %L and its interface in %s",
12557 &sym->declared_at, module_name);
12558 return false;
12561 /* Check the result characteristics. */
12562 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12564 gfc_error ("%s between the MODULE PROCEDURE declaration "
12565 "in MODULE %qs and the declaration at %L in "
12566 "(SUB)MODULE %qs",
12567 errmsg, module_name, &sym->declared_at,
12568 submodule_name ? submodule_name : module_name);
12569 return false;
12572 check_formal:
12573 /* Check the characteristics of the formal arguments. */
12574 if (sym->formal && sym->formal_ns)
12576 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12578 new_formal = arg;
12579 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12583 return true;
12587 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12588 been defined and we now know their defined arguments, check that they fulfill
12589 the requirements of the standard for procedures used as finalizers. */
12591 static bool
12592 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12594 gfc_finalizer* list;
12595 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12596 bool result = true;
12597 bool seen_scalar = false;
12598 gfc_symbol *vtab;
12599 gfc_component *c;
12600 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12602 if (parent)
12603 gfc_resolve_finalizers (parent, finalizable);
12605 /* Ensure that derived-type components have a their finalizers resolved. */
12606 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12607 for (c = derived->components; c; c = c->next)
12608 if (c->ts.type == BT_DERIVED
12609 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12611 bool has_final2 = false;
12612 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12613 return false; /* Error. */
12614 has_final = has_final || has_final2;
12616 /* Return early if not finalizable. */
12617 if (!has_final)
12619 if (finalizable)
12620 *finalizable = false;
12621 return true;
12624 /* Walk over the list of finalizer-procedures, check them, and if any one
12625 does not fit in with the standard's definition, print an error and remove
12626 it from the list. */
12627 prev_link = &derived->f2k_derived->finalizers;
12628 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12630 gfc_formal_arglist *dummy_args;
12631 gfc_symbol* arg;
12632 gfc_finalizer* i;
12633 int my_rank;
12635 /* Skip this finalizer if we already resolved it. */
12636 if (list->proc_tree)
12638 if (list->proc_tree->n.sym->formal->sym->as == NULL
12639 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12640 seen_scalar = true;
12641 prev_link = &(list->next);
12642 continue;
12645 /* Check this exists and is a SUBROUTINE. */
12646 if (!list->proc_sym->attr.subroutine)
12648 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12649 list->proc_sym->name, &list->where);
12650 goto error;
12653 /* We should have exactly one argument. */
12654 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12655 if (!dummy_args || dummy_args->next)
12657 gfc_error ("FINAL procedure at %L must have exactly one argument",
12658 &list->where);
12659 goto error;
12661 arg = dummy_args->sym;
12663 /* This argument must be of our type. */
12664 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12666 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12667 &arg->declared_at, derived->name);
12668 goto error;
12671 /* It must neither be a pointer nor allocatable nor optional. */
12672 if (arg->attr.pointer)
12674 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12675 &arg->declared_at);
12676 goto error;
12678 if (arg->attr.allocatable)
12680 gfc_error ("Argument of FINAL procedure at %L must not be"
12681 " ALLOCATABLE", &arg->declared_at);
12682 goto error;
12684 if (arg->attr.optional)
12686 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12687 &arg->declared_at);
12688 goto error;
12691 /* It must not be INTENT(OUT). */
12692 if (arg->attr.intent == INTENT_OUT)
12694 gfc_error ("Argument of FINAL procedure at %L must not be"
12695 " INTENT(OUT)", &arg->declared_at);
12696 goto error;
12699 /* Warn if the procedure is non-scalar and not assumed shape. */
12700 if (warn_surprising && arg->as && arg->as->rank != 0
12701 && arg->as->type != AS_ASSUMED_SHAPE)
12702 gfc_warning (OPT_Wsurprising,
12703 "Non-scalar FINAL procedure at %L should have assumed"
12704 " shape argument", &arg->declared_at);
12706 /* Check that it does not match in kind and rank with a FINAL procedure
12707 defined earlier. To really loop over the *earlier* declarations,
12708 we need to walk the tail of the list as new ones were pushed at the
12709 front. */
12710 /* TODO: Handle kind parameters once they are implemented. */
12711 my_rank = (arg->as ? arg->as->rank : 0);
12712 for (i = list->next; i; i = i->next)
12714 gfc_formal_arglist *dummy_args;
12716 /* Argument list might be empty; that is an error signalled earlier,
12717 but we nevertheless continued resolving. */
12718 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12719 if (dummy_args)
12721 gfc_symbol* i_arg = dummy_args->sym;
12722 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12723 if (i_rank == my_rank)
12725 gfc_error ("FINAL procedure %qs declared at %L has the same"
12726 " rank (%d) as %qs",
12727 list->proc_sym->name, &list->where, my_rank,
12728 i->proc_sym->name);
12729 goto error;
12734 /* Is this the/a scalar finalizer procedure? */
12735 if (my_rank == 0)
12736 seen_scalar = true;
12738 /* Find the symtree for this procedure. */
12739 gcc_assert (!list->proc_tree);
12740 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
12742 prev_link = &list->next;
12743 continue;
12745 /* Remove wrong nodes immediately from the list so we don't risk any
12746 troubles in the future when they might fail later expectations. */
12747 error:
12748 i = list;
12749 *prev_link = list->next;
12750 gfc_free_finalizer (i);
12751 result = false;
12754 if (result == false)
12755 return false;
12757 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
12758 were nodes in the list, must have been for arrays. It is surely a good
12759 idea to have a scalar version there if there's something to finalize. */
12760 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
12761 gfc_warning (OPT_Wsurprising,
12762 "Only array FINAL procedures declared for derived type %qs"
12763 " defined at %L, suggest also scalar one",
12764 derived->name, &derived->declared_at);
12766 vtab = gfc_find_derived_vtab (derived);
12767 c = vtab->ts.u.derived->components->next->next->next->next->next;
12768 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
12770 if (finalizable)
12771 *finalizable = true;
12773 return true;
12777 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
12779 static bool
12780 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
12781 const char* generic_name, locus where)
12783 gfc_symbol *sym1, *sym2;
12784 const char *pass1, *pass2;
12785 gfc_formal_arglist *dummy_args;
12787 gcc_assert (t1->specific && t2->specific);
12788 gcc_assert (!t1->specific->is_generic);
12789 gcc_assert (!t2->specific->is_generic);
12790 gcc_assert (t1->is_operator == t2->is_operator);
12792 sym1 = t1->specific->u.specific->n.sym;
12793 sym2 = t2->specific->u.specific->n.sym;
12795 if (sym1 == sym2)
12796 return true;
12798 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
12799 if (sym1->attr.subroutine != sym2->attr.subroutine
12800 || sym1->attr.function != sym2->attr.function)
12802 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
12803 " GENERIC %qs at %L",
12804 sym1->name, sym2->name, generic_name, &where);
12805 return false;
12808 /* Determine PASS arguments. */
12809 if (t1->specific->nopass)
12810 pass1 = NULL;
12811 else if (t1->specific->pass_arg)
12812 pass1 = t1->specific->pass_arg;
12813 else
12815 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
12816 if (dummy_args)
12817 pass1 = dummy_args->sym->name;
12818 else
12819 pass1 = NULL;
12821 if (t2->specific->nopass)
12822 pass2 = NULL;
12823 else if (t2->specific->pass_arg)
12824 pass2 = t2->specific->pass_arg;
12825 else
12827 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
12828 if (dummy_args)
12829 pass2 = dummy_args->sym->name;
12830 else
12831 pass2 = NULL;
12834 /* Compare the interfaces. */
12835 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
12836 NULL, 0, pass1, pass2))
12838 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
12839 sym1->name, sym2->name, generic_name, &where);
12840 return false;
12843 return true;
12847 /* Worker function for resolving a generic procedure binding; this is used to
12848 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
12850 The difference between those cases is finding possible inherited bindings
12851 that are overridden, as one has to look for them in tb_sym_root,
12852 tb_uop_root or tb_op, respectively. Thus the caller must already find
12853 the super-type and set p->overridden correctly. */
12855 static bool
12856 resolve_tb_generic_targets (gfc_symbol* super_type,
12857 gfc_typebound_proc* p, const char* name)
12859 gfc_tbp_generic* target;
12860 gfc_symtree* first_target;
12861 gfc_symtree* inherited;
12863 gcc_assert (p && p->is_generic);
12865 /* Try to find the specific bindings for the symtrees in our target-list. */
12866 gcc_assert (p->u.generic);
12867 for (target = p->u.generic; target; target = target->next)
12868 if (!target->specific)
12870 gfc_typebound_proc* overridden_tbp;
12871 gfc_tbp_generic* g;
12872 const char* target_name;
12874 target_name = target->specific_st->name;
12876 /* Defined for this type directly. */
12877 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
12879 target->specific = target->specific_st->n.tb;
12880 goto specific_found;
12883 /* Look for an inherited specific binding. */
12884 if (super_type)
12886 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
12887 true, NULL);
12889 if (inherited)
12891 gcc_assert (inherited->n.tb);
12892 target->specific = inherited->n.tb;
12893 goto specific_found;
12897 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
12898 " at %L", target_name, name, &p->where);
12899 return false;
12901 /* Once we've found the specific binding, check it is not ambiguous with
12902 other specifics already found or inherited for the same GENERIC. */
12903 specific_found:
12904 gcc_assert (target->specific);
12906 /* This must really be a specific binding! */
12907 if (target->specific->is_generic)
12909 gfc_error ("GENERIC %qs at %L must target a specific binding,"
12910 " %qs is GENERIC, too", name, &p->where, target_name);
12911 return false;
12914 /* Check those already resolved on this type directly. */
12915 for (g = p->u.generic; g; g = g->next)
12916 if (g != target && g->specific
12917 && !check_generic_tbp_ambiguity (target, g, name, p->where))
12918 return false;
12920 /* Check for ambiguity with inherited specific targets. */
12921 for (overridden_tbp = p->overridden; overridden_tbp;
12922 overridden_tbp = overridden_tbp->overridden)
12923 if (overridden_tbp->is_generic)
12925 for (g = overridden_tbp->u.generic; g; g = g->next)
12927 gcc_assert (g->specific);
12928 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
12929 return false;
12934 /* If we attempt to "overwrite" a specific binding, this is an error. */
12935 if (p->overridden && !p->overridden->is_generic)
12937 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
12938 " the same name", name, &p->where);
12939 return false;
12942 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
12943 all must have the same attributes here. */
12944 first_target = p->u.generic->specific->u.specific;
12945 gcc_assert (first_target);
12946 p->subroutine = first_target->n.sym->attr.subroutine;
12947 p->function = first_target->n.sym->attr.function;
12949 return true;
12953 /* Resolve a GENERIC procedure binding for a derived type. */
12955 static bool
12956 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
12958 gfc_symbol* super_type;
12960 /* Find the overridden binding if any. */
12961 st->n.tb->overridden = NULL;
12962 super_type = gfc_get_derived_super_type (derived);
12963 if (super_type)
12965 gfc_symtree* overridden;
12966 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
12967 true, NULL);
12969 if (overridden && overridden->n.tb)
12970 st->n.tb->overridden = overridden->n.tb;
12973 /* Resolve using worker function. */
12974 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
12978 /* Retrieve the target-procedure of an operator binding and do some checks in
12979 common for intrinsic and user-defined type-bound operators. */
12981 static gfc_symbol*
12982 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
12984 gfc_symbol* target_proc;
12986 gcc_assert (target->specific && !target->specific->is_generic);
12987 target_proc = target->specific->u.specific->n.sym;
12988 gcc_assert (target_proc);
12990 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
12991 if (target->specific->nopass)
12993 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
12994 return NULL;
12997 return target_proc;
13001 /* Resolve a type-bound intrinsic operator. */
13003 static bool
13004 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13005 gfc_typebound_proc* p)
13007 gfc_symbol* super_type;
13008 gfc_tbp_generic* target;
13010 /* If there's already an error here, do nothing (but don't fail again). */
13011 if (p->error)
13012 return true;
13014 /* Operators should always be GENERIC bindings. */
13015 gcc_assert (p->is_generic);
13017 /* Look for an overridden binding. */
13018 super_type = gfc_get_derived_super_type (derived);
13019 if (super_type && super_type->f2k_derived)
13020 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13021 op, true, NULL);
13022 else
13023 p->overridden = NULL;
13025 /* Resolve general GENERIC properties using worker function. */
13026 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13027 goto error;
13029 /* Check the targets to be procedures of correct interface. */
13030 for (target = p->u.generic; target; target = target->next)
13032 gfc_symbol* target_proc;
13034 target_proc = get_checked_tb_operator_target (target, p->where);
13035 if (!target_proc)
13036 goto error;
13038 if (!gfc_check_operator_interface (target_proc, op, p->where))
13039 goto error;
13041 /* Add target to non-typebound operator list. */
13042 if (!target->specific->deferred && !derived->attr.use_assoc
13043 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13045 gfc_interface *head, *intr;
13047 /* Preempt 'gfc_check_new_interface' for submodules, where the
13048 mechanism for handling module procedures winds up resolving
13049 operator interfaces twice and would otherwise cause an error. */
13050 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13051 if (intr->sym == target_proc
13052 && target_proc->attr.used_in_submodule)
13053 return true;
13055 if (!gfc_check_new_interface (derived->ns->op[op],
13056 target_proc, p->where))
13057 return false;
13058 head = derived->ns->op[op];
13059 intr = gfc_get_interface ();
13060 intr->sym = target_proc;
13061 intr->where = p->where;
13062 intr->next = head;
13063 derived->ns->op[op] = intr;
13067 return true;
13069 error:
13070 p->error = 1;
13071 return false;
13075 /* Resolve a type-bound user operator (tree-walker callback). */
13077 static gfc_symbol* resolve_bindings_derived;
13078 static bool resolve_bindings_result;
13080 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13082 static void
13083 resolve_typebound_user_op (gfc_symtree* stree)
13085 gfc_symbol* super_type;
13086 gfc_tbp_generic* target;
13088 gcc_assert (stree && stree->n.tb);
13090 if (stree->n.tb->error)
13091 return;
13093 /* Operators should always be GENERIC bindings. */
13094 gcc_assert (stree->n.tb->is_generic);
13096 /* Find overridden procedure, if any. */
13097 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13098 if (super_type && super_type->f2k_derived)
13100 gfc_symtree* overridden;
13101 overridden = gfc_find_typebound_user_op (super_type, NULL,
13102 stree->name, true, NULL);
13104 if (overridden && overridden->n.tb)
13105 stree->n.tb->overridden = overridden->n.tb;
13107 else
13108 stree->n.tb->overridden = NULL;
13110 /* Resolve basically using worker function. */
13111 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13112 goto error;
13114 /* Check the targets to be functions of correct interface. */
13115 for (target = stree->n.tb->u.generic; target; target = target->next)
13117 gfc_symbol* target_proc;
13119 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13120 if (!target_proc)
13121 goto error;
13123 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13124 goto error;
13127 return;
13129 error:
13130 resolve_bindings_result = false;
13131 stree->n.tb->error = 1;
13135 /* Resolve the type-bound procedures for a derived type. */
13137 static void
13138 resolve_typebound_procedure (gfc_symtree* stree)
13140 gfc_symbol* proc;
13141 locus where;
13142 gfc_symbol* me_arg;
13143 gfc_symbol* super_type;
13144 gfc_component* comp;
13146 gcc_assert (stree);
13148 /* Undefined specific symbol from GENERIC target definition. */
13149 if (!stree->n.tb)
13150 return;
13152 if (stree->n.tb->error)
13153 return;
13155 /* If this is a GENERIC binding, use that routine. */
13156 if (stree->n.tb->is_generic)
13158 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13159 goto error;
13160 return;
13163 /* Get the target-procedure to check it. */
13164 gcc_assert (!stree->n.tb->is_generic);
13165 gcc_assert (stree->n.tb->u.specific);
13166 proc = stree->n.tb->u.specific->n.sym;
13167 where = stree->n.tb->where;
13169 /* Default access should already be resolved from the parser. */
13170 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13172 if (stree->n.tb->deferred)
13174 if (!check_proc_interface (proc, &where))
13175 goto error;
13177 else
13179 /* Check for F08:C465. */
13180 if ((!proc->attr.subroutine && !proc->attr.function)
13181 || (proc->attr.proc != PROC_MODULE
13182 && proc->attr.if_source != IFSRC_IFBODY)
13183 || proc->attr.abstract)
13185 gfc_error ("%qs must be a module procedure or an external procedure with"
13186 " an explicit interface at %L", proc->name, &where);
13187 goto error;
13191 stree->n.tb->subroutine = proc->attr.subroutine;
13192 stree->n.tb->function = proc->attr.function;
13194 /* Find the super-type of the current derived type. We could do this once and
13195 store in a global if speed is needed, but as long as not I believe this is
13196 more readable and clearer. */
13197 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13199 /* If PASS, resolve and check arguments if not already resolved / loaded
13200 from a .mod file. */
13201 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13203 gfc_formal_arglist *dummy_args;
13205 dummy_args = gfc_sym_get_dummy_args (proc);
13206 if (stree->n.tb->pass_arg)
13208 gfc_formal_arglist *i;
13210 /* If an explicit passing argument name is given, walk the arg-list
13211 and look for it. */
13213 me_arg = NULL;
13214 stree->n.tb->pass_arg_num = 1;
13215 for (i = dummy_args; i; i = i->next)
13217 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13219 me_arg = i->sym;
13220 break;
13222 ++stree->n.tb->pass_arg_num;
13225 if (!me_arg)
13227 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13228 " argument %qs",
13229 proc->name, stree->n.tb->pass_arg, &where,
13230 stree->n.tb->pass_arg);
13231 goto error;
13234 else
13236 /* Otherwise, take the first one; there should in fact be at least
13237 one. */
13238 stree->n.tb->pass_arg_num = 1;
13239 if (!dummy_args)
13241 gfc_error ("Procedure %qs with PASS at %L must have at"
13242 " least one argument", proc->name, &where);
13243 goto error;
13245 me_arg = dummy_args->sym;
13248 /* Now check that the argument-type matches and the passed-object
13249 dummy argument is generally fine. */
13251 gcc_assert (me_arg);
13253 if (me_arg->ts.type != BT_CLASS)
13255 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13256 " at %L", proc->name, &where);
13257 goto error;
13260 if (CLASS_DATA (me_arg)->ts.u.derived
13261 != resolve_bindings_derived)
13263 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13264 " the derived-type %qs", me_arg->name, proc->name,
13265 me_arg->name, &where, resolve_bindings_derived->name);
13266 goto error;
13269 gcc_assert (me_arg->ts.type == BT_CLASS);
13270 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13272 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13273 " scalar", proc->name, &where);
13274 goto error;
13276 if (CLASS_DATA (me_arg)->attr.allocatable)
13278 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13279 " be ALLOCATABLE", proc->name, &where);
13280 goto error;
13282 if (CLASS_DATA (me_arg)->attr.class_pointer)
13284 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13285 " be POINTER", proc->name, &where);
13286 goto error;
13290 /* If we are extending some type, check that we don't override a procedure
13291 flagged NON_OVERRIDABLE. */
13292 stree->n.tb->overridden = NULL;
13293 if (super_type)
13295 gfc_symtree* overridden;
13296 overridden = gfc_find_typebound_proc (super_type, NULL,
13297 stree->name, true, NULL);
13299 if (overridden)
13301 if (overridden->n.tb)
13302 stree->n.tb->overridden = overridden->n.tb;
13304 if (!gfc_check_typebound_override (stree, overridden))
13305 goto error;
13309 /* See if there's a name collision with a component directly in this type. */
13310 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13311 if (!strcmp (comp->name, stree->name))
13313 gfc_error ("Procedure %qs at %L has the same name as a component of"
13314 " %qs",
13315 stree->name, &where, resolve_bindings_derived->name);
13316 goto error;
13319 /* Try to find a name collision with an inherited component. */
13320 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13321 NULL))
13323 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13324 " component of %qs",
13325 stree->name, &where, resolve_bindings_derived->name);
13326 goto error;
13329 stree->n.tb->error = 0;
13330 return;
13332 error:
13333 resolve_bindings_result = false;
13334 stree->n.tb->error = 1;
13338 static bool
13339 resolve_typebound_procedures (gfc_symbol* derived)
13341 int op;
13342 gfc_symbol* super_type;
13344 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13345 return true;
13347 super_type = gfc_get_derived_super_type (derived);
13348 if (super_type)
13349 resolve_symbol (super_type);
13351 resolve_bindings_derived = derived;
13352 resolve_bindings_result = true;
13354 if (derived->f2k_derived->tb_sym_root)
13355 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13356 &resolve_typebound_procedure);
13358 if (derived->f2k_derived->tb_uop_root)
13359 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13360 &resolve_typebound_user_op);
13362 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13364 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13365 if (p && !resolve_typebound_intrinsic_op (derived,
13366 (gfc_intrinsic_op)op, p))
13367 resolve_bindings_result = false;
13370 return resolve_bindings_result;
13374 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13375 to give all identical derived types the same backend_decl. */
13376 static void
13377 add_dt_to_dt_list (gfc_symbol *derived)
13379 gfc_dt_list *dt_list;
13381 for (dt_list = gfc_derived_types; dt_list; dt_list = dt_list->next)
13382 if (derived == dt_list->derived)
13383 return;
13385 dt_list = gfc_get_dt_list ();
13386 dt_list->next = gfc_derived_types;
13387 dt_list->derived = derived;
13388 gfc_derived_types = dt_list;
13392 /* Ensure that a derived-type is really not abstract, meaning that every
13393 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13395 static bool
13396 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13398 if (!st)
13399 return true;
13401 if (!ensure_not_abstract_walker (sub, st->left))
13402 return false;
13403 if (!ensure_not_abstract_walker (sub, st->right))
13404 return false;
13406 if (st->n.tb && st->n.tb->deferred)
13408 gfc_symtree* overriding;
13409 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13410 if (!overriding)
13411 return false;
13412 gcc_assert (overriding->n.tb);
13413 if (overriding->n.tb->deferred)
13415 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13416 " %qs is DEFERRED and not overridden",
13417 sub->name, &sub->declared_at, st->name);
13418 return false;
13422 return true;
13425 static bool
13426 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13428 /* The algorithm used here is to recursively travel up the ancestry of sub
13429 and for each ancestor-type, check all bindings. If any of them is
13430 DEFERRED, look it up starting from sub and see if the found (overriding)
13431 binding is not DEFERRED.
13432 This is not the most efficient way to do this, but it should be ok and is
13433 clearer than something sophisticated. */
13435 gcc_assert (ancestor && !sub->attr.abstract);
13437 if (!ancestor->attr.abstract)
13438 return true;
13440 /* Walk bindings of this ancestor. */
13441 if (ancestor->f2k_derived)
13443 bool t;
13444 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13445 if (!t)
13446 return false;
13449 /* Find next ancestor type and recurse on it. */
13450 ancestor = gfc_get_derived_super_type (ancestor);
13451 if (ancestor)
13452 return ensure_not_abstract (sub, ancestor);
13454 return true;
13458 /* This check for typebound defined assignments is done recursively
13459 since the order in which derived types are resolved is not always in
13460 order of the declarations. */
13462 static void
13463 check_defined_assignments (gfc_symbol *derived)
13465 gfc_component *c;
13467 for (c = derived->components; c; c = c->next)
13469 if (!gfc_bt_struct (c->ts.type)
13470 || c->attr.pointer
13471 || c->attr.allocatable
13472 || c->attr.proc_pointer_comp
13473 || c->attr.class_pointer
13474 || c->attr.proc_pointer)
13475 continue;
13477 if (c->ts.u.derived->attr.defined_assign_comp
13478 || (c->ts.u.derived->f2k_derived
13479 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13481 derived->attr.defined_assign_comp = 1;
13482 return;
13485 check_defined_assignments (c->ts.u.derived);
13486 if (c->ts.u.derived->attr.defined_assign_comp)
13488 derived->attr.defined_assign_comp = 1;
13489 return;
13495 /* Resolve a single component of a derived type or structure. */
13497 static bool
13498 resolve_component (gfc_component *c, gfc_symbol *sym)
13500 gfc_symbol *super_type;
13502 if (c->attr.artificial)
13503 return true;
13505 if (sym->attr.vtype && sym->attr.use_assoc)
13506 return true;
13508 /* F2008, C442. */
13509 if ((!sym->attr.is_class || c != sym->components)
13510 && c->attr.codimension
13511 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13513 gfc_error ("Coarray component %qs at %L must be allocatable with "
13514 "deferred shape", c->name, &c->loc);
13515 return false;
13518 /* F2008, C443. */
13519 if (c->attr.codimension && c->ts.type == BT_DERIVED
13520 && c->ts.u.derived->ts.is_iso_c)
13522 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13523 "shall not be a coarray", c->name, &c->loc);
13524 return false;
13527 /* F2008, C444. */
13528 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13529 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13530 || c->attr.allocatable))
13532 gfc_error ("Component %qs at %L with coarray component "
13533 "shall be a nonpointer, nonallocatable scalar",
13534 c->name, &c->loc);
13535 return false;
13538 /* F2008, C448. */
13539 if (c->attr.contiguous && (!c->attr.dimension || !c->attr.pointer))
13541 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13542 "is not an array pointer", c->name, &c->loc);
13543 return false;
13546 if (c->attr.proc_pointer && c->ts.interface)
13548 gfc_symbol *ifc = c->ts.interface;
13550 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13552 c->tb->error = 1;
13553 return false;
13556 if (ifc->attr.if_source || ifc->attr.intrinsic)
13558 /* Resolve interface and copy attributes. */
13559 if (ifc->formal && !ifc->formal_ns)
13560 resolve_symbol (ifc);
13561 if (ifc->attr.intrinsic)
13562 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13564 if (ifc->result)
13566 c->ts = ifc->result->ts;
13567 c->attr.allocatable = ifc->result->attr.allocatable;
13568 c->attr.pointer = ifc->result->attr.pointer;
13569 c->attr.dimension = ifc->result->attr.dimension;
13570 c->as = gfc_copy_array_spec (ifc->result->as);
13571 c->attr.class_ok = ifc->result->attr.class_ok;
13573 else
13575 c->ts = ifc->ts;
13576 c->attr.allocatable = ifc->attr.allocatable;
13577 c->attr.pointer = ifc->attr.pointer;
13578 c->attr.dimension = ifc->attr.dimension;
13579 c->as = gfc_copy_array_spec (ifc->as);
13580 c->attr.class_ok = ifc->attr.class_ok;
13582 c->ts.interface = ifc;
13583 c->attr.function = ifc->attr.function;
13584 c->attr.subroutine = ifc->attr.subroutine;
13586 c->attr.pure = ifc->attr.pure;
13587 c->attr.elemental = ifc->attr.elemental;
13588 c->attr.recursive = ifc->attr.recursive;
13589 c->attr.always_explicit = ifc->attr.always_explicit;
13590 c->attr.ext_attr |= ifc->attr.ext_attr;
13591 /* Copy char length. */
13592 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13594 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13595 if (cl->length && !cl->resolved
13596 && !gfc_resolve_expr (cl->length))
13598 c->tb->error = 1;
13599 return false;
13601 c->ts.u.cl = cl;
13605 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13607 /* Since PPCs are not implicitly typed, a PPC without an explicit
13608 interface must be a subroutine. */
13609 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13612 /* Procedure pointer components: Check PASS arg. */
13613 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13614 && !sym->attr.vtype)
13616 gfc_symbol* me_arg;
13618 if (c->tb->pass_arg)
13620 gfc_formal_arglist* i;
13622 /* If an explicit passing argument name is given, walk the arg-list
13623 and look for it. */
13625 me_arg = NULL;
13626 c->tb->pass_arg_num = 1;
13627 for (i = c->ts.interface->formal; i; i = i->next)
13629 if (!strcmp (i->sym->name, c->tb->pass_arg))
13631 me_arg = i->sym;
13632 break;
13634 c->tb->pass_arg_num++;
13637 if (!me_arg)
13639 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13640 "at %L has no argument %qs", c->name,
13641 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13642 c->tb->error = 1;
13643 return false;
13646 else
13648 /* Otherwise, take the first one; there should in fact be at least
13649 one. */
13650 c->tb->pass_arg_num = 1;
13651 if (!c->ts.interface->formal)
13653 gfc_error ("Procedure pointer component %qs with PASS at %L "
13654 "must have at least one argument",
13655 c->name, &c->loc);
13656 c->tb->error = 1;
13657 return false;
13659 me_arg = c->ts.interface->formal->sym;
13662 /* Now check that the argument-type matches. */
13663 gcc_assert (me_arg);
13664 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13665 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13666 || (me_arg->ts.type == BT_CLASS
13667 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13669 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13670 " the derived type %qs", me_arg->name, c->name,
13671 me_arg->name, &c->loc, sym->name);
13672 c->tb->error = 1;
13673 return false;
13676 /* Check for C453. */
13677 if (me_arg->attr.dimension)
13679 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13680 "must be scalar", me_arg->name, c->name, me_arg->name,
13681 &c->loc);
13682 c->tb->error = 1;
13683 return false;
13686 if (me_arg->attr.pointer)
13688 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13689 "may not have the POINTER attribute", me_arg->name,
13690 c->name, me_arg->name, &c->loc);
13691 c->tb->error = 1;
13692 return false;
13695 if (me_arg->attr.allocatable)
13697 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13698 "may not be ALLOCATABLE", me_arg->name, c->name,
13699 me_arg->name, &c->loc);
13700 c->tb->error = 1;
13701 return false;
13704 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
13706 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13707 " at %L", c->name, &c->loc);
13708 return false;
13713 /* Check type-spec if this is not the parent-type component. */
13714 if (((sym->attr.is_class
13715 && (!sym->components->ts.u.derived->attr.extension
13716 || c != sym->components->ts.u.derived->components))
13717 || (!sym->attr.is_class
13718 && (!sym->attr.extension || c != sym->components)))
13719 && !sym->attr.vtype
13720 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
13721 return false;
13723 super_type = gfc_get_derived_super_type (sym);
13725 /* If this type is an extension, set the accessibility of the parent
13726 component. */
13727 if (super_type
13728 && ((sym->attr.is_class
13729 && c == sym->components->ts.u.derived->components)
13730 || (!sym->attr.is_class && c == sym->components))
13731 && strcmp (super_type->name, c->name) == 0)
13732 c->attr.access = super_type->attr.access;
13734 /* If this type is an extension, see if this component has the same name
13735 as an inherited type-bound procedure. */
13736 if (super_type && !sym->attr.is_class
13737 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
13739 gfc_error ("Component %qs of %qs at %L has the same name as an"
13740 " inherited type-bound procedure",
13741 c->name, sym->name, &c->loc);
13742 return false;
13745 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
13746 && !c->ts.deferred)
13748 if (c->ts.u.cl->length == NULL
13749 || (!resolve_charlen(c->ts.u.cl))
13750 || !gfc_is_constant_expr (c->ts.u.cl->length))
13752 gfc_error ("Character length of component %qs needs to "
13753 "be a constant specification expression at %L",
13754 c->name,
13755 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
13756 return false;
13760 if (c->ts.type == BT_CHARACTER && c->ts.deferred
13761 && !c->attr.pointer && !c->attr.allocatable)
13763 gfc_error ("Character component %qs of %qs at %L with deferred "
13764 "length must be a POINTER or ALLOCATABLE",
13765 c->name, sym->name, &c->loc);
13766 return false;
13769 /* Add the hidden deferred length field. */
13770 if (c->ts.type == BT_CHARACTER
13771 && (c->ts.deferred || c->attr.pdt_string)
13772 && !c->attr.function
13773 && !sym->attr.is_class)
13775 char name[GFC_MAX_SYMBOL_LEN+9];
13776 gfc_component *strlen;
13777 sprintf (name, "_%s_length", c->name);
13778 strlen = gfc_find_component (sym, name, true, true, NULL);
13779 if (strlen == NULL)
13781 if (!gfc_add_component (sym, name, &strlen))
13782 return false;
13783 strlen->ts.type = BT_INTEGER;
13784 strlen->ts.kind = gfc_charlen_int_kind;
13785 strlen->attr.access = ACCESS_PRIVATE;
13786 strlen->attr.artificial = 1;
13790 if (c->ts.type == BT_DERIVED
13791 && sym->component_access != ACCESS_PRIVATE
13792 && gfc_check_symbol_access (sym)
13793 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
13794 && !c->ts.u.derived->attr.use_assoc
13795 && !gfc_check_symbol_access (c->ts.u.derived)
13796 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
13797 "PRIVATE type and cannot be a component of "
13798 "%qs, which is PUBLIC at %L", c->name,
13799 sym->name, &sym->declared_at))
13800 return false;
13802 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
13804 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
13805 "type %s", c->name, &c->loc, sym->name);
13806 return false;
13809 if (sym->attr.sequence)
13811 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
13813 gfc_error ("Component %s of SEQUENCE type declared at %L does "
13814 "not have the SEQUENCE attribute",
13815 c->ts.u.derived->name, &sym->declared_at);
13816 return false;
13820 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
13821 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
13822 else if (c->ts.type == BT_CLASS && c->attr.class_ok
13823 && CLASS_DATA (c)->ts.u.derived->attr.generic)
13824 CLASS_DATA (c)->ts.u.derived
13825 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
13827 if (!sym->attr.is_class && c->ts.type == BT_DERIVED && !sym->attr.vtype
13828 && c->attr.pointer && c->ts.u.derived->components == NULL
13829 && !c->ts.u.derived->attr.zero_comp)
13831 gfc_error ("The pointer component %qs of %qs at %L is a type "
13832 "that has not been declared", c->name, sym->name,
13833 &c->loc);
13834 return false;
13837 if (c->ts.type == BT_CLASS && c->attr.class_ok
13838 && CLASS_DATA (c)->attr.class_pointer
13839 && CLASS_DATA (c)->ts.u.derived->components == NULL
13840 && !CLASS_DATA (c)->ts.u.derived->attr.zero_comp
13841 && !UNLIMITED_POLY (c))
13843 gfc_error ("The pointer component %qs of %qs at %L is a type "
13844 "that has not been declared", c->name, sym->name,
13845 &c->loc);
13846 return false;
13849 /* If an allocatable component derived type is of the same type as
13850 the enclosing derived type, we need a vtable generating so that
13851 the __deallocate procedure is created. */
13852 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
13853 && c->ts.u.derived == sym && c->attr.allocatable == 1)
13854 gfc_find_vtab (&c->ts);
13856 /* Ensure that all the derived type components are put on the
13857 derived type list; even in formal namespaces, where derived type
13858 pointer components might not have been declared. */
13859 if (c->ts.type == BT_DERIVED
13860 && c->ts.u.derived
13861 && c->ts.u.derived->components
13862 && c->attr.pointer
13863 && sym != c->ts.u.derived)
13864 add_dt_to_dt_list (c->ts.u.derived);
13866 if (!gfc_resolve_array_spec (c->as,
13867 !(c->attr.pointer || c->attr.proc_pointer
13868 || c->attr.allocatable)))
13869 return false;
13871 if (c->initializer && !sym->attr.vtype
13872 && !c->attr.pdt_kind && !c->attr.pdt_len
13873 && !gfc_check_assign_symbol (sym, c, c->initializer))
13874 return false;
13876 return true;
13880 /* Be nice about the locus for a structure expression - show the locus of the
13881 first non-null sub-expression if we can. */
13883 static locus *
13884 cons_where (gfc_expr *struct_expr)
13886 gfc_constructor *cons;
13888 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
13890 cons = gfc_constructor_first (struct_expr->value.constructor);
13891 for (; cons; cons = gfc_constructor_next (cons))
13893 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
13894 return &cons->expr->where;
13897 return &struct_expr->where;
13900 /* Resolve the components of a structure type. Much less work than derived
13901 types. */
13903 static bool
13904 resolve_fl_struct (gfc_symbol *sym)
13906 gfc_component *c;
13907 gfc_expr *init = NULL;
13908 bool success;
13910 /* Make sure UNIONs do not have overlapping initializers. */
13911 if (sym->attr.flavor == FL_UNION)
13913 for (c = sym->components; c; c = c->next)
13915 if (init && c->initializer)
13917 gfc_error ("Conflicting initializers in union at %L and %L",
13918 cons_where (init), cons_where (c->initializer));
13919 gfc_free_expr (c->initializer);
13920 c->initializer = NULL;
13922 if (init == NULL)
13923 init = c->initializer;
13927 success = true;
13928 for (c = sym->components; c; c = c->next)
13929 if (!resolve_component (c, sym))
13930 success = false;
13932 if (!success)
13933 return false;
13935 if (sym->components)
13936 add_dt_to_dt_list (sym);
13938 return true;
13942 /* Resolve the components of a derived type. This does not have to wait until
13943 resolution stage, but can be done as soon as the dt declaration has been
13944 parsed. */
13946 static bool
13947 resolve_fl_derived0 (gfc_symbol *sym)
13949 gfc_symbol* super_type;
13950 gfc_component *c;
13951 gfc_formal_arglist *f;
13952 bool success;
13954 if (sym->attr.unlimited_polymorphic)
13955 return true;
13957 super_type = gfc_get_derived_super_type (sym);
13959 /* F2008, C432. */
13960 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
13962 gfc_error ("As extending type %qs at %L has a coarray component, "
13963 "parent type %qs shall also have one", sym->name,
13964 &sym->declared_at, super_type->name);
13965 return false;
13968 /* Ensure the extended type gets resolved before we do. */
13969 if (super_type && !resolve_fl_derived0 (super_type))
13970 return false;
13972 /* An ABSTRACT type must be extensible. */
13973 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
13975 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
13976 sym->name, &sym->declared_at);
13977 return false;
13980 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
13981 : sym->components;
13983 success = true;
13984 for ( ; c != NULL; c = c->next)
13985 if (!resolve_component (c, sym))
13986 success = false;
13988 if (!success)
13989 return false;
13991 check_defined_assignments (sym);
13993 if (!sym->attr.defined_assign_comp && super_type)
13994 sym->attr.defined_assign_comp
13995 = super_type->attr.defined_assign_comp;
13997 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
13998 all DEFERRED bindings are overridden. */
13999 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14000 && !sym->attr.is_class
14001 && !ensure_not_abstract (sym, super_type))
14002 return false;
14004 /* Check that there is a component for every PDT parameter. */
14005 if (sym->attr.pdt_template)
14007 for (f = sym->formal; f; f = f->next)
14009 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14010 if (c == NULL)
14012 gfc_error ("Parameterized type %qs does not have a component "
14013 "corresponding to parameter %qs at %L", sym->name,
14014 f->sym->name, &sym->declared_at);
14015 break;
14020 /* Add derived type to the derived type list. */
14021 add_dt_to_dt_list (sym);
14023 return true;
14027 /* The following procedure does the full resolution of a derived type,
14028 including resolution of all type-bound procedures (if present). In contrast
14029 to 'resolve_fl_derived0' this can only be done after the module has been
14030 parsed completely. */
14032 static bool
14033 resolve_fl_derived (gfc_symbol *sym)
14035 gfc_symbol *gen_dt = NULL;
14037 if (sym->attr.unlimited_polymorphic)
14038 return true;
14040 if (!sym->attr.is_class)
14041 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14042 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14043 && (!gen_dt->generic->sym->attr.use_assoc
14044 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14045 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14046 "%qs at %L being the same name as derived "
14047 "type at %L", sym->name,
14048 gen_dt->generic->sym == sym
14049 ? gen_dt->generic->next->sym->name
14050 : gen_dt->generic->sym->name,
14051 gen_dt->generic->sym == sym
14052 ? &gen_dt->generic->next->sym->declared_at
14053 : &gen_dt->generic->sym->declared_at,
14054 &sym->declared_at))
14055 return false;
14057 /* Resolve the finalizer procedures. */
14058 if (!gfc_resolve_finalizers (sym, NULL))
14059 return false;
14061 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14063 /* Fix up incomplete CLASS symbols. */
14064 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14065 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14067 /* Nothing more to do for unlimited polymorphic entities. */
14068 if (data->ts.u.derived->attr.unlimited_polymorphic)
14069 return true;
14070 else if (vptr->ts.u.derived == NULL)
14072 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14073 gcc_assert (vtab);
14074 vptr->ts.u.derived = vtab->ts.u.derived;
14075 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14076 return false;
14080 if (!resolve_fl_derived0 (sym))
14081 return false;
14083 /* Resolve the type-bound procedures. */
14084 if (!resolve_typebound_procedures (sym))
14085 return false;
14087 /* Generate module vtables subject to their accessibility and their not
14088 being vtables or pdt templates. If this is not done class declarations
14089 in external procedures wind up with their own version and so SELECT TYPE
14090 fails because the vptrs do not have the same address. */
14091 if (gfc_option.allow_std & GFC_STD_F2003
14092 && sym->ns->proc_name
14093 && sym->ns->proc_name->attr.flavor == FL_MODULE
14094 && sym->attr.access != ACCESS_PRIVATE
14095 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14097 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14098 gfc_set_sym_referenced (vtab);
14101 return true;
14105 static bool
14106 resolve_fl_namelist (gfc_symbol *sym)
14108 gfc_namelist *nl;
14109 gfc_symbol *nlsym;
14111 for (nl = sym->namelist; nl; nl = nl->next)
14113 /* Check again, the check in match only works if NAMELIST comes
14114 after the decl. */
14115 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14117 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14118 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14119 return false;
14122 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14123 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14124 "with assumed shape in namelist %qs at %L",
14125 nl->sym->name, sym->name, &sym->declared_at))
14126 return false;
14128 if (is_non_constant_shape_array (nl->sym)
14129 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14130 "with nonconstant shape in namelist %qs at %L",
14131 nl->sym->name, sym->name, &sym->declared_at))
14132 return false;
14134 if (nl->sym->ts.type == BT_CHARACTER
14135 && (nl->sym->ts.u.cl->length == NULL
14136 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14137 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14138 "nonconstant character length in "
14139 "namelist %qs at %L", nl->sym->name,
14140 sym->name, &sym->declared_at))
14141 return false;
14145 /* Reject PRIVATE objects in a PUBLIC namelist. */
14146 if (gfc_check_symbol_access (sym))
14148 for (nl = sym->namelist; nl; nl = nl->next)
14150 if (!nl->sym->attr.use_assoc
14151 && !is_sym_host_assoc (nl->sym, sym->ns)
14152 && !gfc_check_symbol_access (nl->sym))
14154 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14155 "cannot be member of PUBLIC namelist %qs at %L",
14156 nl->sym->name, sym->name, &sym->declared_at);
14157 return false;
14160 if (nl->sym->ts.type == BT_DERIVED
14161 && (nl->sym->ts.u.derived->attr.alloc_comp
14162 || nl->sym->ts.u.derived->attr.pointer_comp))
14164 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14165 "namelist %qs at %L with ALLOCATABLE "
14166 "or POINTER components", nl->sym->name,
14167 sym->name, &sym->declared_at))
14168 return false;
14169 return true;
14172 /* Types with private components that came here by USE-association. */
14173 if (nl->sym->ts.type == BT_DERIVED
14174 && derived_inaccessible (nl->sym->ts.u.derived))
14176 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14177 "components and cannot be member of namelist %qs at %L",
14178 nl->sym->name, sym->name, &sym->declared_at);
14179 return false;
14182 /* Types with private components that are defined in the same module. */
14183 if (nl->sym->ts.type == BT_DERIVED
14184 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14185 && nl->sym->ts.u.derived->attr.private_comp)
14187 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14188 "cannot be a member of PUBLIC namelist %qs at %L",
14189 nl->sym->name, sym->name, &sym->declared_at);
14190 return false;
14196 /* 14.1.2 A module or internal procedure represent local entities
14197 of the same type as a namelist member and so are not allowed. */
14198 for (nl = sym->namelist; nl; nl = nl->next)
14200 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14201 continue;
14203 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14204 if ((nl->sym == sym->ns->proc_name)
14206 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14207 continue;
14209 nlsym = NULL;
14210 if (nl->sym->name)
14211 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14212 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14214 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14215 "attribute in %qs at %L", nlsym->name,
14216 &sym->declared_at);
14217 return false;
14221 if (async_io_dt)
14223 for (nl = sym->namelist; nl; nl = nl->next)
14224 nl->sym->attr.asynchronous = 1;
14226 return true;
14230 static bool
14231 resolve_fl_parameter (gfc_symbol *sym)
14233 /* A parameter array's shape needs to be constant. */
14234 if (sym->as != NULL
14235 && (sym->as->type == AS_DEFERRED
14236 || is_non_constant_shape_array (sym)))
14238 gfc_error ("Parameter array %qs at %L cannot be automatic "
14239 "or of deferred shape", sym->name, &sym->declared_at);
14240 return false;
14243 /* Constraints on deferred type parameter. */
14244 if (!deferred_requirements (sym))
14245 return false;
14247 /* Make sure a parameter that has been implicitly typed still
14248 matches the implicit type, since PARAMETER statements can precede
14249 IMPLICIT statements. */
14250 if (sym->attr.implicit_type
14251 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14252 sym->ns)))
14254 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14255 "later IMPLICIT type", sym->name, &sym->declared_at);
14256 return false;
14259 /* Make sure the types of derived parameters are consistent. This
14260 type checking is deferred until resolution because the type may
14261 refer to a derived type from the host. */
14262 if (sym->ts.type == BT_DERIVED
14263 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14265 gfc_error ("Incompatible derived type in PARAMETER at %L",
14266 &sym->value->where);
14267 return false;
14270 /* F03:C509,C514. */
14271 if (sym->ts.type == BT_CLASS)
14273 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14274 sym->name, &sym->declared_at);
14275 return false;
14278 return true;
14282 /* Called by resolve_symbol to chack PDTs. */
14284 static void
14285 resolve_pdt (gfc_symbol* sym)
14287 gfc_symbol *derived = NULL;
14288 gfc_actual_arglist *param;
14289 gfc_component *c;
14290 bool const_len_exprs = true;
14291 bool assumed_len_exprs = false;
14293 if (sym->ts.type == BT_DERIVED)
14294 derived = sym->ts.u.derived;
14295 else if (sym->ts.type == BT_CLASS)
14296 derived = CLASS_DATA (sym)->ts.u.derived;
14297 else
14298 gcc_unreachable ();
14300 gcc_assert (derived->attr.pdt_type);
14302 for (param = sym->param_list; param; param = param->next)
14304 c = gfc_find_component (derived, param->name, false, true, NULL);
14305 gcc_assert (c);
14306 if (c->attr.pdt_kind)
14307 continue;
14309 if (param->expr && !gfc_is_constant_expr (param->expr)
14310 && c->attr.pdt_len)
14311 const_len_exprs = false;
14312 else if (param->spec_type == SPEC_ASSUMED)
14313 assumed_len_exprs = true;
14316 if (!const_len_exprs
14317 && (sym->ns->proc_name->attr.is_main_program
14318 || sym->ns->proc_name->attr.flavor == FL_MODULE
14319 || sym->attr.save != SAVE_NONE))
14320 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14321 "SAVE attribute or be a variable declared in the "
14322 "main program, a module or a submodule(F08/C513)",
14323 sym->name, &sym->declared_at);
14325 if (assumed_len_exprs && !(sym->attr.dummy
14326 || sym->attr.select_type_temporary || sym->attr.associate_var))
14327 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14328 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14329 sym->name, &sym->declared_at);
14333 /* Do anything necessary to resolve a symbol. Right now, we just
14334 assume that an otherwise unknown symbol is a variable. This sort
14335 of thing commonly happens for symbols in module. */
14337 static void
14338 resolve_symbol (gfc_symbol *sym)
14340 int check_constant, mp_flag;
14341 gfc_symtree *symtree;
14342 gfc_symtree *this_symtree;
14343 gfc_namespace *ns;
14344 gfc_component *c;
14345 symbol_attribute class_attr;
14346 gfc_array_spec *as;
14347 bool saved_specification_expr;
14349 if (sym->resolved)
14350 return;
14351 sym->resolved = 1;
14353 /* No symbol will ever have union type; only components can be unions.
14354 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14355 (just like derived type declaration symbols have flavor FL_DERIVED). */
14356 gcc_assert (sym->ts.type != BT_UNION);
14358 /* Coarrayed polymorphic objects with allocatable or pointer components are
14359 yet unsupported for -fcoarray=lib. */
14360 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14361 && sym->ts.u.derived && CLASS_DATA (sym)
14362 && CLASS_DATA (sym)->attr.codimension
14363 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14364 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14366 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14367 "type coarrays at %L are unsupported", &sym->declared_at);
14368 return;
14371 if (sym->attr.artificial)
14372 return;
14374 if (sym->attr.unlimited_polymorphic)
14375 return;
14377 if (sym->attr.flavor == FL_UNKNOWN
14378 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14379 && !sym->attr.generic && !sym->attr.external
14380 && sym->attr.if_source == IFSRC_UNKNOWN
14381 && sym->ts.type == BT_UNKNOWN))
14384 /* If we find that a flavorless symbol is an interface in one of the
14385 parent namespaces, find its symtree in this namespace, free the
14386 symbol and set the symtree to point to the interface symbol. */
14387 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14389 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14390 if (symtree && (symtree->n.sym->generic ||
14391 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14392 && sym->ns->construct_entities)))
14394 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14395 sym->name);
14396 if (this_symtree->n.sym == sym)
14398 symtree->n.sym->refs++;
14399 gfc_release_symbol (sym);
14400 this_symtree->n.sym = symtree->n.sym;
14401 return;
14406 /* Otherwise give it a flavor according to such attributes as
14407 it has. */
14408 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14409 && sym->attr.intrinsic == 0)
14410 sym->attr.flavor = FL_VARIABLE;
14411 else if (sym->attr.flavor == FL_UNKNOWN)
14413 sym->attr.flavor = FL_PROCEDURE;
14414 if (sym->attr.dimension)
14415 sym->attr.function = 1;
14419 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14420 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14422 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14423 && !resolve_procedure_interface (sym))
14424 return;
14426 if (sym->attr.is_protected && !sym->attr.proc_pointer
14427 && (sym->attr.procedure || sym->attr.external))
14429 if (sym->attr.external)
14430 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14431 "at %L", &sym->declared_at);
14432 else
14433 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14434 "at %L", &sym->declared_at);
14436 return;
14439 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14440 return;
14442 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14443 && !resolve_fl_struct (sym))
14444 return;
14446 /* Symbols that are module procedures with results (functions) have
14447 the types and array specification copied for type checking in
14448 procedures that call them, as well as for saving to a module
14449 file. These symbols can't stand the scrutiny that their results
14450 can. */
14451 mp_flag = (sym->result != NULL && sym->result != sym);
14453 /* Make sure that the intrinsic is consistent with its internal
14454 representation. This needs to be done before assigning a default
14455 type to avoid spurious warnings. */
14456 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14457 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14458 return;
14460 /* Resolve associate names. */
14461 if (sym->assoc)
14462 resolve_assoc_var (sym, true);
14464 /* Assign default type to symbols that need one and don't have one. */
14465 if (sym->ts.type == BT_UNKNOWN)
14467 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14469 gfc_set_default_type (sym, 1, NULL);
14472 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14473 && !sym->attr.function && !sym->attr.subroutine
14474 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14475 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14477 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14479 /* The specific case of an external procedure should emit an error
14480 in the case that there is no implicit type. */
14481 if (!mp_flag)
14483 if (!sym->attr.mixed_entry_master)
14484 gfc_set_default_type (sym, sym->attr.external, NULL);
14486 else
14488 /* Result may be in another namespace. */
14489 resolve_symbol (sym->result);
14491 if (!sym->result->attr.proc_pointer)
14493 sym->ts = sym->result->ts;
14494 sym->as = gfc_copy_array_spec (sym->result->as);
14495 sym->attr.dimension = sym->result->attr.dimension;
14496 sym->attr.pointer = sym->result->attr.pointer;
14497 sym->attr.allocatable = sym->result->attr.allocatable;
14498 sym->attr.contiguous = sym->result->attr.contiguous;
14503 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14505 bool saved_specification_expr = specification_expr;
14506 specification_expr = true;
14507 gfc_resolve_array_spec (sym->result->as, false);
14508 specification_expr = saved_specification_expr;
14511 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14513 as = CLASS_DATA (sym)->as;
14514 class_attr = CLASS_DATA (sym)->attr;
14515 class_attr.pointer = class_attr.class_pointer;
14517 else
14519 class_attr = sym->attr;
14520 as = sym->as;
14523 /* F2008, C530. */
14524 if (sym->attr.contiguous
14525 && (!class_attr.dimension
14526 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14527 && !class_attr.pointer)))
14529 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14530 "array pointer or an assumed-shape or assumed-rank array",
14531 sym->name, &sym->declared_at);
14532 return;
14535 /* Assumed size arrays and assumed shape arrays must be dummy
14536 arguments. Array-spec's of implied-shape should have been resolved to
14537 AS_EXPLICIT already. */
14539 if (as)
14541 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14542 specification expression. */
14543 if (as->type == AS_IMPLIED_SHAPE)
14545 int i;
14546 for (i=0; i<as->rank; i++)
14548 if (as->lower[i] != NULL && as->upper[i] == NULL)
14550 gfc_error ("Bad specification for assumed size array at %L",
14551 &as->lower[i]->where);
14552 return;
14555 gcc_unreachable();
14558 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14559 || as->type == AS_ASSUMED_SHAPE)
14560 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14562 if (as->type == AS_ASSUMED_SIZE)
14563 gfc_error ("Assumed size array at %L must be a dummy argument",
14564 &sym->declared_at);
14565 else
14566 gfc_error ("Assumed shape array at %L must be a dummy argument",
14567 &sym->declared_at);
14568 return;
14570 /* TS 29113, C535a. */
14571 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14572 && !sym->attr.select_type_temporary)
14574 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14575 &sym->declared_at);
14576 return;
14578 if (as->type == AS_ASSUMED_RANK
14579 && (sym->attr.codimension || sym->attr.value))
14581 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14582 "CODIMENSION attribute", &sym->declared_at);
14583 return;
14587 /* Make sure symbols with known intent or optional are really dummy
14588 variable. Because of ENTRY statement, this has to be deferred
14589 until resolution time. */
14591 if (!sym->attr.dummy
14592 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14594 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14595 return;
14598 if (sym->attr.value && !sym->attr.dummy)
14600 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14601 "it is not a dummy argument", sym->name, &sym->declared_at);
14602 return;
14605 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14607 gfc_charlen *cl = sym->ts.u.cl;
14608 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14610 gfc_error ("Character dummy variable %qs at %L with VALUE "
14611 "attribute must have constant length",
14612 sym->name, &sym->declared_at);
14613 return;
14616 if (sym->ts.is_c_interop
14617 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14619 gfc_error ("C interoperable character dummy variable %qs at %L "
14620 "with VALUE attribute must have length one",
14621 sym->name, &sym->declared_at);
14622 return;
14626 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14627 && sym->ts.u.derived->attr.generic)
14629 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14630 if (!sym->ts.u.derived)
14632 gfc_error ("The derived type %qs at %L is of type %qs, "
14633 "which has not been defined", sym->name,
14634 &sym->declared_at, sym->ts.u.derived->name);
14635 sym->ts.type = BT_UNKNOWN;
14636 return;
14640 /* Use the same constraints as TYPE(*), except for the type check
14641 and that only scalars and assumed-size arrays are permitted. */
14642 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14644 if (!sym->attr.dummy)
14646 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14647 "a dummy argument", sym->name, &sym->declared_at);
14648 return;
14651 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14652 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14653 && sym->ts.type != BT_COMPLEX)
14655 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14656 "of type TYPE(*) or of an numeric intrinsic type",
14657 sym->name, &sym->declared_at);
14658 return;
14661 if (sym->attr.allocatable || sym->attr.codimension
14662 || sym->attr.pointer || sym->attr.value)
14664 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14665 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
14666 "attribute", sym->name, &sym->declared_at);
14667 return;
14670 if (sym->attr.intent == INTENT_OUT)
14672 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14673 "have the INTENT(OUT) attribute",
14674 sym->name, &sym->declared_at);
14675 return;
14677 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
14679 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
14680 "either be a scalar or an assumed-size array",
14681 sym->name, &sym->declared_at);
14682 return;
14685 /* Set the type to TYPE(*) and add a dimension(*) to ensure
14686 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
14687 packing. */
14688 sym->ts.type = BT_ASSUMED;
14689 sym->as = gfc_get_array_spec ();
14690 sym->as->type = AS_ASSUMED_SIZE;
14691 sym->as->rank = 1;
14692 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
14694 else if (sym->ts.type == BT_ASSUMED)
14696 /* TS 29113, C407a. */
14697 if (!sym->attr.dummy)
14699 gfc_error ("Assumed type of variable %s at %L is only permitted "
14700 "for dummy variables", sym->name, &sym->declared_at);
14701 return;
14703 if (sym->attr.allocatable || sym->attr.codimension
14704 || sym->attr.pointer || sym->attr.value)
14706 gfc_error ("Assumed-type variable %s at %L may not have the "
14707 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
14708 sym->name, &sym->declared_at);
14709 return;
14711 if (sym->attr.intent == INTENT_OUT)
14713 gfc_error ("Assumed-type variable %s at %L may not have the "
14714 "INTENT(OUT) attribute",
14715 sym->name, &sym->declared_at);
14716 return;
14718 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
14720 gfc_error ("Assumed-type variable %s at %L shall not be an "
14721 "explicit-shape array", sym->name, &sym->declared_at);
14722 return;
14726 /* If the symbol is marked as bind(c), that it is declared at module level
14727 scope and verify its type and kind. Do not do the latter for symbols
14728 that are implicitly typed because that is handled in
14729 gfc_set_default_type. Handle dummy arguments and procedure definitions
14730 separately. Also, anything that is use associated is not handled here
14731 but instead is handled in the module it is declared in. Finally, derived
14732 type definitions are allowed to be BIND(C) since that only implies that
14733 they're interoperable, and they are checked fully for interoperability
14734 when a variable is declared of that type. */
14735 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
14736 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
14737 && sym->attr.flavor != FL_DERIVED)
14739 bool t = true;
14741 /* First, make sure the variable is declared at the
14742 module-level scope (J3/04-007, Section 15.3). */
14743 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
14744 sym->attr.in_common == 0)
14746 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
14747 "is neither a COMMON block nor declared at the "
14748 "module level scope", sym->name, &(sym->declared_at));
14749 t = false;
14751 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
14753 t = verify_com_block_vars_c_interop (sym->common_head);
14755 else if (sym->attr.implicit_type == 0)
14757 /* If type() declaration, we need to verify that the components
14758 of the given type are all C interoperable, etc. */
14759 if (sym->ts.type == BT_DERIVED &&
14760 sym->ts.u.derived->attr.is_c_interop != 1)
14762 /* Make sure the user marked the derived type as BIND(C). If
14763 not, call the verify routine. This could print an error
14764 for the derived type more than once if multiple variables
14765 of that type are declared. */
14766 if (sym->ts.u.derived->attr.is_bind_c != 1)
14767 verify_bind_c_derived_type (sym->ts.u.derived);
14768 t = false;
14771 /* Verify the variable itself as C interoperable if it
14772 is BIND(C). It is not possible for this to succeed if
14773 the verify_bind_c_derived_type failed, so don't have to handle
14774 any error returned by verify_bind_c_derived_type. */
14775 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
14776 sym->common_block);
14779 if (!t)
14781 /* clear the is_bind_c flag to prevent reporting errors more than
14782 once if something failed. */
14783 sym->attr.is_bind_c = 0;
14784 return;
14788 /* If a derived type symbol has reached this point, without its
14789 type being declared, we have an error. Notice that most
14790 conditions that produce undefined derived types have already
14791 been dealt with. However, the likes of:
14792 implicit type(t) (t) ..... call foo (t) will get us here if
14793 the type is not declared in the scope of the implicit
14794 statement. Change the type to BT_UNKNOWN, both because it is so
14795 and to prevent an ICE. */
14796 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14797 && sym->ts.u.derived->components == NULL
14798 && !sym->ts.u.derived->attr.zero_comp)
14800 gfc_error ("The derived type %qs at %L is of type %qs, "
14801 "which has not been defined", sym->name,
14802 &sym->declared_at, sym->ts.u.derived->name);
14803 sym->ts.type = BT_UNKNOWN;
14804 return;
14807 /* Make sure that the derived type has been resolved and that the
14808 derived type is visible in the symbol's namespace, if it is a
14809 module function and is not PRIVATE. */
14810 if (sym->ts.type == BT_DERIVED
14811 && sym->ts.u.derived->attr.use_assoc
14812 && sym->ns->proc_name
14813 && sym->ns->proc_name->attr.flavor == FL_MODULE
14814 && !resolve_fl_derived (sym->ts.u.derived))
14815 return;
14817 /* Unless the derived-type declaration is use associated, Fortran 95
14818 does not allow public entries of private derived types.
14819 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
14820 161 in 95-006r3. */
14821 if (sym->ts.type == BT_DERIVED
14822 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
14823 && !sym->ts.u.derived->attr.use_assoc
14824 && gfc_check_symbol_access (sym)
14825 && !gfc_check_symbol_access (sym->ts.u.derived)
14826 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
14827 "derived type %qs",
14828 (sym->attr.flavor == FL_PARAMETER)
14829 ? "parameter" : "variable",
14830 sym->name, &sym->declared_at,
14831 sym->ts.u.derived->name))
14832 return;
14834 /* F2008, C1302. */
14835 if (sym->ts.type == BT_DERIVED
14836 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
14837 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
14838 || sym->ts.u.derived->attr.lock_comp)
14839 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
14841 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
14842 "type LOCK_TYPE must be a coarray", sym->name,
14843 &sym->declared_at);
14844 return;
14847 /* TS18508, C702/C703. */
14848 if (sym->ts.type == BT_DERIVED
14849 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
14850 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
14851 || sym->ts.u.derived->attr.event_comp)
14852 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
14854 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
14855 "type EVENT_TYPE must be a coarray", sym->name,
14856 &sym->declared_at);
14857 return;
14860 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
14861 default initialization is defined (5.1.2.4.4). */
14862 if (sym->ts.type == BT_DERIVED
14863 && sym->attr.dummy
14864 && sym->attr.intent == INTENT_OUT
14865 && sym->as
14866 && sym->as->type == AS_ASSUMED_SIZE)
14868 for (c = sym->ts.u.derived->components; c; c = c->next)
14870 if (c->initializer)
14872 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
14873 "ASSUMED SIZE and so cannot have a default initializer",
14874 sym->name, &sym->declared_at);
14875 return;
14880 /* F2008, C542. */
14881 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
14882 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
14884 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
14885 "INTENT(OUT)", sym->name, &sym->declared_at);
14886 return;
14889 /* TS18508. */
14890 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
14891 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
14893 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
14894 "INTENT(OUT)", sym->name, &sym->declared_at);
14895 return;
14898 /* F2008, C525. */
14899 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
14900 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
14901 && CLASS_DATA (sym)->attr.coarray_comp))
14902 || class_attr.codimension)
14903 && (sym->attr.result || sym->result == sym))
14905 gfc_error ("Function result %qs at %L shall not be a coarray or have "
14906 "a coarray component", sym->name, &sym->declared_at);
14907 return;
14910 /* F2008, C524. */
14911 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
14912 && sym->ts.u.derived->ts.is_iso_c)
14914 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
14915 "shall not be a coarray", sym->name, &sym->declared_at);
14916 return;
14919 /* F2008, C525. */
14920 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
14921 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
14922 && CLASS_DATA (sym)->attr.coarray_comp))
14923 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
14924 || class_attr.allocatable))
14926 gfc_error ("Variable %qs at %L with coarray component shall be a "
14927 "nonpointer, nonallocatable scalar, which is not a coarray",
14928 sym->name, &sym->declared_at);
14929 return;
14932 /* F2008, C526. The function-result case was handled above. */
14933 if (class_attr.codimension
14934 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
14935 || sym->attr.select_type_temporary
14936 || sym->attr.associate_var
14937 || (sym->ns->save_all && !sym->attr.automatic)
14938 || sym->ns->proc_name->attr.flavor == FL_MODULE
14939 || sym->ns->proc_name->attr.is_main_program
14940 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
14942 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
14943 "nor a dummy argument", sym->name, &sym->declared_at);
14944 return;
14946 /* F2008, C528. */
14947 else if (class_attr.codimension && !sym->attr.select_type_temporary
14948 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
14950 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
14951 "deferred shape", sym->name, &sym->declared_at);
14952 return;
14954 else if (class_attr.codimension && class_attr.allocatable && as
14955 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
14957 gfc_error ("Allocatable coarray variable %qs at %L must have "
14958 "deferred shape", sym->name, &sym->declared_at);
14959 return;
14962 /* F2008, C541. */
14963 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
14964 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
14965 && CLASS_DATA (sym)->attr.coarray_comp))
14966 || (class_attr.codimension && class_attr.allocatable))
14967 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
14969 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
14970 "allocatable coarray or have coarray components",
14971 sym->name, &sym->declared_at);
14972 return;
14975 if (class_attr.codimension && sym->attr.dummy
14976 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
14978 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
14979 "procedure %qs", sym->name, &sym->declared_at,
14980 sym->ns->proc_name->name);
14981 return;
14984 if (sym->ts.type == BT_LOGICAL
14985 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
14986 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
14987 && sym->ns->proc_name->attr.is_bind_c)))
14989 int i;
14990 for (i = 0; gfc_logical_kinds[i].kind; i++)
14991 if (gfc_logical_kinds[i].kind == sym->ts.kind)
14992 break;
14993 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
14994 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
14995 "%L with non-C_Bool kind in BIND(C) procedure "
14996 "%qs", sym->name, &sym->declared_at,
14997 sym->ns->proc_name->name))
14998 return;
14999 else if (!gfc_logical_kinds[i].c_bool
15000 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15001 "%qs at %L with non-C_Bool kind in "
15002 "BIND(C) procedure %qs", sym->name,
15003 &sym->declared_at,
15004 sym->attr.function ? sym->name
15005 : sym->ns->proc_name->name))
15006 return;
15009 switch (sym->attr.flavor)
15011 case FL_VARIABLE:
15012 if (!resolve_fl_variable (sym, mp_flag))
15013 return;
15014 break;
15016 case FL_PROCEDURE:
15017 if (sym->formal && !sym->formal_ns)
15019 /* Check that none of the arguments are a namelist. */
15020 gfc_formal_arglist *formal = sym->formal;
15022 for (; formal; formal = formal->next)
15023 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15025 gfc_error ("Namelist %qs can not be an argument to "
15026 "subroutine or function at %L",
15027 formal->sym->name, &sym->declared_at);
15028 return;
15032 if (!resolve_fl_procedure (sym, mp_flag))
15033 return;
15034 break;
15036 case FL_NAMELIST:
15037 if (!resolve_fl_namelist (sym))
15038 return;
15039 break;
15041 case FL_PARAMETER:
15042 if (!resolve_fl_parameter (sym))
15043 return;
15044 break;
15046 default:
15047 break;
15050 /* Resolve array specifier. Check as well some constraints
15051 on COMMON blocks. */
15053 check_constant = sym->attr.in_common && !sym->attr.pointer;
15055 /* Set the formal_arg_flag so that check_conflict will not throw
15056 an error for host associated variables in the specification
15057 expression for an array_valued function. */
15058 if (sym->attr.function && sym->as)
15059 formal_arg_flag = true;
15061 saved_specification_expr = specification_expr;
15062 specification_expr = true;
15063 gfc_resolve_array_spec (sym->as, check_constant);
15064 specification_expr = saved_specification_expr;
15066 formal_arg_flag = false;
15068 /* Resolve formal namespaces. */
15069 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15070 && !sym->attr.contained && !sym->attr.intrinsic)
15071 gfc_resolve (sym->formal_ns);
15073 /* Make sure the formal namespace is present. */
15074 if (sym->formal && !sym->formal_ns)
15076 gfc_formal_arglist *formal = sym->formal;
15077 while (formal && !formal->sym)
15078 formal = formal->next;
15080 if (formal)
15082 sym->formal_ns = formal->sym->ns;
15083 if (sym->ns != formal->sym->ns)
15084 sym->formal_ns->refs++;
15088 /* Check threadprivate restrictions. */
15089 if (sym->attr.threadprivate && !sym->attr.save
15090 && !(sym->ns->save_all && !sym->attr.automatic)
15091 && (!sym->attr.in_common
15092 && sym->module == NULL
15093 && (sym->ns->proc_name == NULL
15094 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15095 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15097 /* Check omp declare target restrictions. */
15098 if (sym->attr.omp_declare_target
15099 && sym->attr.flavor == FL_VARIABLE
15100 && !sym->attr.save
15101 && !(sym->ns->save_all && !sym->attr.automatic)
15102 && (!sym->attr.in_common
15103 && sym->module == NULL
15104 && (sym->ns->proc_name == NULL
15105 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15106 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15107 sym->name, &sym->declared_at);
15109 /* If we have come this far we can apply default-initializers, as
15110 described in 14.7.5, to those variables that have not already
15111 been assigned one. */
15112 if (sym->ts.type == BT_DERIVED
15113 && !sym->value
15114 && !sym->attr.allocatable
15115 && !sym->attr.alloc_comp)
15117 symbol_attribute *a = &sym->attr;
15119 if ((!a->save && !a->dummy && !a->pointer
15120 && !a->in_common && !a->use_assoc
15121 && a->referenced
15122 && !((a->function || a->result)
15123 && (!a->dimension
15124 || sym->ts.u.derived->attr.alloc_comp
15125 || sym->ts.u.derived->attr.pointer_comp))
15126 && !(a->function && sym != sym->result))
15127 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15128 apply_default_init (sym);
15129 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15130 && (sym->ts.u.derived->attr.alloc_comp
15131 || sym->ts.u.derived->attr.pointer_comp))
15132 /* Mark the result symbol to be referenced, when it has allocatable
15133 components. */
15134 sym->result->attr.referenced = 1;
15137 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15138 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15139 && !CLASS_DATA (sym)->attr.class_pointer
15140 && !CLASS_DATA (sym)->attr.allocatable)
15141 apply_default_init (sym);
15143 /* If this symbol has a type-spec, check it. */
15144 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15145 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15146 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15147 return;
15149 if (sym->param_list)
15150 resolve_pdt (sym);
15154 /************* Resolve DATA statements *************/
15156 static struct
15158 gfc_data_value *vnode;
15159 mpz_t left;
15161 values;
15164 /* Advance the values structure to point to the next value in the data list. */
15166 static bool
15167 next_data_value (void)
15169 while (mpz_cmp_ui (values.left, 0) == 0)
15172 if (values.vnode->next == NULL)
15173 return false;
15175 values.vnode = values.vnode->next;
15176 mpz_set (values.left, values.vnode->repeat);
15179 return true;
15183 static bool
15184 check_data_variable (gfc_data_variable *var, locus *where)
15186 gfc_expr *e;
15187 mpz_t size;
15188 mpz_t offset;
15189 bool t;
15190 ar_type mark = AR_UNKNOWN;
15191 int i;
15192 mpz_t section_index[GFC_MAX_DIMENSIONS];
15193 gfc_ref *ref;
15194 gfc_array_ref *ar;
15195 gfc_symbol *sym;
15196 int has_pointer;
15198 if (!gfc_resolve_expr (var->expr))
15199 return false;
15201 ar = NULL;
15202 mpz_init_set_si (offset, 0);
15203 e = var->expr;
15205 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15206 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15207 e = e->value.function.actual->expr;
15209 if (e->expr_type != EXPR_VARIABLE)
15210 gfc_internal_error ("check_data_variable(): Bad expression");
15212 sym = e->symtree->n.sym;
15214 if (sym->ns->is_block_data && !sym->attr.in_common)
15216 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15217 sym->name, &sym->declared_at);
15220 if (e->ref == NULL && sym->as)
15222 gfc_error ("DATA array %qs at %L must be specified in a previous"
15223 " declaration", sym->name, where);
15224 return false;
15227 has_pointer = sym->attr.pointer;
15229 if (gfc_is_coindexed (e))
15231 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15232 where);
15233 return false;
15236 for (ref = e->ref; ref; ref = ref->next)
15238 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15239 has_pointer = 1;
15241 if (has_pointer
15242 && ref->type == REF_ARRAY
15243 && ref->u.ar.type != AR_FULL)
15245 gfc_error ("DATA element %qs at %L is a pointer and so must "
15246 "be a full array", sym->name, where);
15247 return false;
15251 if (e->rank == 0 || has_pointer)
15253 mpz_init_set_ui (size, 1);
15254 ref = NULL;
15256 else
15258 ref = e->ref;
15260 /* Find the array section reference. */
15261 for (ref = e->ref; ref; ref = ref->next)
15263 if (ref->type != REF_ARRAY)
15264 continue;
15265 if (ref->u.ar.type == AR_ELEMENT)
15266 continue;
15267 break;
15269 gcc_assert (ref);
15271 /* Set marks according to the reference pattern. */
15272 switch (ref->u.ar.type)
15274 case AR_FULL:
15275 mark = AR_FULL;
15276 break;
15278 case AR_SECTION:
15279 ar = &ref->u.ar;
15280 /* Get the start position of array section. */
15281 gfc_get_section_index (ar, section_index, &offset);
15282 mark = AR_SECTION;
15283 break;
15285 default:
15286 gcc_unreachable ();
15289 if (!gfc_array_size (e, &size))
15291 gfc_error ("Nonconstant array section at %L in DATA statement",
15292 where);
15293 mpz_clear (offset);
15294 return false;
15298 t = true;
15300 while (mpz_cmp_ui (size, 0) > 0)
15302 if (!next_data_value ())
15304 gfc_error ("DATA statement at %L has more variables than values",
15305 where);
15306 t = false;
15307 break;
15310 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15311 if (!t)
15312 break;
15314 /* If we have more than one element left in the repeat count,
15315 and we have more than one element left in the target variable,
15316 then create a range assignment. */
15317 /* FIXME: Only done for full arrays for now, since array sections
15318 seem tricky. */
15319 if (mark == AR_FULL && ref && ref->next == NULL
15320 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15322 mpz_t range;
15324 if (mpz_cmp (size, values.left) >= 0)
15326 mpz_init_set (range, values.left);
15327 mpz_sub (size, size, values.left);
15328 mpz_set_ui (values.left, 0);
15330 else
15332 mpz_init_set (range, size);
15333 mpz_sub (values.left, values.left, size);
15334 mpz_set_ui (size, 0);
15337 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15338 offset, &range);
15340 mpz_add (offset, offset, range);
15341 mpz_clear (range);
15343 if (!t)
15344 break;
15347 /* Assign initial value to symbol. */
15348 else
15350 mpz_sub_ui (values.left, values.left, 1);
15351 mpz_sub_ui (size, size, 1);
15353 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15354 offset, NULL);
15355 if (!t)
15356 break;
15358 if (mark == AR_FULL)
15359 mpz_add_ui (offset, offset, 1);
15361 /* Modify the array section indexes and recalculate the offset
15362 for next element. */
15363 else if (mark == AR_SECTION)
15364 gfc_advance_section (section_index, ar, &offset);
15368 if (mark == AR_SECTION)
15370 for (i = 0; i < ar->dimen; i++)
15371 mpz_clear (section_index[i]);
15374 mpz_clear (size);
15375 mpz_clear (offset);
15377 return t;
15381 static bool traverse_data_var (gfc_data_variable *, locus *);
15383 /* Iterate over a list of elements in a DATA statement. */
15385 static bool
15386 traverse_data_list (gfc_data_variable *var, locus *where)
15388 mpz_t trip;
15389 iterator_stack frame;
15390 gfc_expr *e, *start, *end, *step;
15391 bool retval = true;
15393 mpz_init (frame.value);
15394 mpz_init (trip);
15396 start = gfc_copy_expr (var->iter.start);
15397 end = gfc_copy_expr (var->iter.end);
15398 step = gfc_copy_expr (var->iter.step);
15400 if (!gfc_simplify_expr (start, 1)
15401 || start->expr_type != EXPR_CONSTANT)
15403 gfc_error ("start of implied-do loop at %L could not be "
15404 "simplified to a constant value", &start->where);
15405 retval = false;
15406 goto cleanup;
15408 if (!gfc_simplify_expr (end, 1)
15409 || end->expr_type != EXPR_CONSTANT)
15411 gfc_error ("end of implied-do loop at %L could not be "
15412 "simplified to a constant value", &start->where);
15413 retval = false;
15414 goto cleanup;
15416 if (!gfc_simplify_expr (step, 1)
15417 || step->expr_type != EXPR_CONSTANT)
15419 gfc_error ("step of implied-do loop at %L could not be "
15420 "simplified to a constant value", &start->where);
15421 retval = false;
15422 goto cleanup;
15425 mpz_set (trip, end->value.integer);
15426 mpz_sub (trip, trip, start->value.integer);
15427 mpz_add (trip, trip, step->value.integer);
15429 mpz_div (trip, trip, step->value.integer);
15431 mpz_set (frame.value, start->value.integer);
15433 frame.prev = iter_stack;
15434 frame.variable = var->iter.var->symtree;
15435 iter_stack = &frame;
15437 while (mpz_cmp_ui (trip, 0) > 0)
15439 if (!traverse_data_var (var->list, where))
15441 retval = false;
15442 goto cleanup;
15445 e = gfc_copy_expr (var->expr);
15446 if (!gfc_simplify_expr (e, 1))
15448 gfc_free_expr (e);
15449 retval = false;
15450 goto cleanup;
15453 mpz_add (frame.value, frame.value, step->value.integer);
15455 mpz_sub_ui (trip, trip, 1);
15458 cleanup:
15459 mpz_clear (frame.value);
15460 mpz_clear (trip);
15462 gfc_free_expr (start);
15463 gfc_free_expr (end);
15464 gfc_free_expr (step);
15466 iter_stack = frame.prev;
15467 return retval;
15471 /* Type resolve variables in the variable list of a DATA statement. */
15473 static bool
15474 traverse_data_var (gfc_data_variable *var, locus *where)
15476 bool t;
15478 for (; var; var = var->next)
15480 if (var->expr == NULL)
15481 t = traverse_data_list (var, where);
15482 else
15483 t = check_data_variable (var, where);
15485 if (!t)
15486 return false;
15489 return true;
15493 /* Resolve the expressions and iterators associated with a data statement.
15494 This is separate from the assignment checking because data lists should
15495 only be resolved once. */
15497 static bool
15498 resolve_data_variables (gfc_data_variable *d)
15500 for (; d; d = d->next)
15502 if (d->list == NULL)
15504 if (!gfc_resolve_expr (d->expr))
15505 return false;
15507 else
15509 if (!gfc_resolve_iterator (&d->iter, false, true))
15510 return false;
15512 if (!resolve_data_variables (d->list))
15513 return false;
15517 return true;
15521 /* Resolve a single DATA statement. We implement this by storing a pointer to
15522 the value list into static variables, and then recursively traversing the
15523 variables list, expanding iterators and such. */
15525 static void
15526 resolve_data (gfc_data *d)
15529 if (!resolve_data_variables (d->var))
15530 return;
15532 values.vnode = d->value;
15533 if (d->value == NULL)
15534 mpz_set_ui (values.left, 0);
15535 else
15536 mpz_set (values.left, d->value->repeat);
15538 if (!traverse_data_var (d->var, &d->where))
15539 return;
15541 /* At this point, we better not have any values left. */
15543 if (next_data_value ())
15544 gfc_error ("DATA statement at %L has more values than variables",
15545 &d->where);
15549 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15550 accessed by host or use association, is a dummy argument to a pure function,
15551 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15552 is storage associated with any such variable, shall not be used in the
15553 following contexts: (clients of this function). */
15555 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15556 procedure. Returns zero if assignment is OK, nonzero if there is a
15557 problem. */
15559 gfc_impure_variable (gfc_symbol *sym)
15561 gfc_symbol *proc;
15562 gfc_namespace *ns;
15564 if (sym->attr.use_assoc || sym->attr.in_common)
15565 return 1;
15567 /* Check if the symbol's ns is inside the pure procedure. */
15568 for (ns = gfc_current_ns; ns; ns = ns->parent)
15570 if (ns == sym->ns)
15571 break;
15572 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15573 return 1;
15576 proc = sym->ns->proc_name;
15577 if (sym->attr.dummy
15578 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15579 || proc->attr.function))
15580 return 1;
15582 /* TODO: Sort out what can be storage associated, if anything, and include
15583 it here. In principle equivalences should be scanned but it does not
15584 seem to be possible to storage associate an impure variable this way. */
15585 return 0;
15589 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15590 current namespace is inside a pure procedure. */
15593 gfc_pure (gfc_symbol *sym)
15595 symbol_attribute attr;
15596 gfc_namespace *ns;
15598 if (sym == NULL)
15600 /* Check if the current namespace or one of its parents
15601 belongs to a pure procedure. */
15602 for (ns = gfc_current_ns; ns; ns = ns->parent)
15604 sym = ns->proc_name;
15605 if (sym == NULL)
15606 return 0;
15607 attr = sym->attr;
15608 if (attr.flavor == FL_PROCEDURE && attr.pure)
15609 return 1;
15611 return 0;
15614 attr = sym->attr;
15616 return attr.flavor == FL_PROCEDURE && attr.pure;
15620 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15621 checks if the current namespace is implicitly pure. Note that this
15622 function returns false for a PURE procedure. */
15625 gfc_implicit_pure (gfc_symbol *sym)
15627 gfc_namespace *ns;
15629 if (sym == NULL)
15631 /* Check if the current procedure is implicit_pure. Walk up
15632 the procedure list until we find a procedure. */
15633 for (ns = gfc_current_ns; ns; ns = ns->parent)
15635 sym = ns->proc_name;
15636 if (sym == NULL)
15637 return 0;
15639 if (sym->attr.flavor == FL_PROCEDURE)
15640 break;
15644 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15645 && !sym->attr.pure;
15649 void
15650 gfc_unset_implicit_pure (gfc_symbol *sym)
15652 gfc_namespace *ns;
15654 if (sym == NULL)
15656 /* Check if the current procedure is implicit_pure. Walk up
15657 the procedure list until we find a procedure. */
15658 for (ns = gfc_current_ns; ns; ns = ns->parent)
15660 sym = ns->proc_name;
15661 if (sym == NULL)
15662 return;
15664 if (sym->attr.flavor == FL_PROCEDURE)
15665 break;
15669 if (sym->attr.flavor == FL_PROCEDURE)
15670 sym->attr.implicit_pure = 0;
15671 else
15672 sym->attr.pure = 0;
15676 /* Test whether the current procedure is elemental or not. */
15679 gfc_elemental (gfc_symbol *sym)
15681 symbol_attribute attr;
15683 if (sym == NULL)
15684 sym = gfc_current_ns->proc_name;
15685 if (sym == NULL)
15686 return 0;
15687 attr = sym->attr;
15689 return attr.flavor == FL_PROCEDURE && attr.elemental;
15693 /* Warn about unused labels. */
15695 static void
15696 warn_unused_fortran_label (gfc_st_label *label)
15698 if (label == NULL)
15699 return;
15701 warn_unused_fortran_label (label->left);
15703 if (label->defined == ST_LABEL_UNKNOWN)
15704 return;
15706 switch (label->referenced)
15708 case ST_LABEL_UNKNOWN:
15709 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
15710 label->value, &label->where);
15711 break;
15713 case ST_LABEL_BAD_TARGET:
15714 gfc_warning (OPT_Wunused_label,
15715 "Label %d at %L defined but cannot be used",
15716 label->value, &label->where);
15717 break;
15719 default:
15720 break;
15723 warn_unused_fortran_label (label->right);
15727 /* Returns the sequence type of a symbol or sequence. */
15729 static seq_type
15730 sequence_type (gfc_typespec ts)
15732 seq_type result;
15733 gfc_component *c;
15735 switch (ts.type)
15737 case BT_DERIVED:
15739 if (ts.u.derived->components == NULL)
15740 return SEQ_NONDEFAULT;
15742 result = sequence_type (ts.u.derived->components->ts);
15743 for (c = ts.u.derived->components->next; c; c = c->next)
15744 if (sequence_type (c->ts) != result)
15745 return SEQ_MIXED;
15747 return result;
15749 case BT_CHARACTER:
15750 if (ts.kind != gfc_default_character_kind)
15751 return SEQ_NONDEFAULT;
15753 return SEQ_CHARACTER;
15755 case BT_INTEGER:
15756 if (ts.kind != gfc_default_integer_kind)
15757 return SEQ_NONDEFAULT;
15759 return SEQ_NUMERIC;
15761 case BT_REAL:
15762 if (!(ts.kind == gfc_default_real_kind
15763 || ts.kind == gfc_default_double_kind))
15764 return SEQ_NONDEFAULT;
15766 return SEQ_NUMERIC;
15768 case BT_COMPLEX:
15769 if (ts.kind != gfc_default_complex_kind)
15770 return SEQ_NONDEFAULT;
15772 return SEQ_NUMERIC;
15774 case BT_LOGICAL:
15775 if (ts.kind != gfc_default_logical_kind)
15776 return SEQ_NONDEFAULT;
15778 return SEQ_NUMERIC;
15780 default:
15781 return SEQ_NONDEFAULT;
15786 /* Resolve derived type EQUIVALENCE object. */
15788 static bool
15789 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
15791 gfc_component *c = derived->components;
15793 if (!derived)
15794 return true;
15796 /* Shall not be an object of nonsequence derived type. */
15797 if (!derived->attr.sequence)
15799 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
15800 "attribute to be an EQUIVALENCE object", sym->name,
15801 &e->where);
15802 return false;
15805 /* Shall not have allocatable components. */
15806 if (derived->attr.alloc_comp)
15808 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
15809 "components to be an EQUIVALENCE object",sym->name,
15810 &e->where);
15811 return false;
15814 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
15816 gfc_error ("Derived type variable %qs at %L with default "
15817 "initialization cannot be in EQUIVALENCE with a variable "
15818 "in COMMON", sym->name, &e->where);
15819 return false;
15822 for (; c ; c = c->next)
15824 if (gfc_bt_struct (c->ts.type)
15825 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
15826 return false;
15828 /* Shall not be an object of sequence derived type containing a pointer
15829 in the structure. */
15830 if (c->attr.pointer)
15832 gfc_error ("Derived type variable %qs at %L with pointer "
15833 "component(s) cannot be an EQUIVALENCE object",
15834 sym->name, &e->where);
15835 return false;
15838 return true;
15842 /* Resolve equivalence object.
15843 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
15844 an allocatable array, an object of nonsequence derived type, an object of
15845 sequence derived type containing a pointer at any level of component
15846 selection, an automatic object, a function name, an entry name, a result
15847 name, a named constant, a structure component, or a subobject of any of
15848 the preceding objects. A substring shall not have length zero. A
15849 derived type shall not have components with default initialization nor
15850 shall two objects of an equivalence group be initialized.
15851 Either all or none of the objects shall have an protected attribute.
15852 The simple constraints are done in symbol.c(check_conflict) and the rest
15853 are implemented here. */
15855 static void
15856 resolve_equivalence (gfc_equiv *eq)
15858 gfc_symbol *sym;
15859 gfc_symbol *first_sym;
15860 gfc_expr *e;
15861 gfc_ref *r;
15862 locus *last_where = NULL;
15863 seq_type eq_type, last_eq_type;
15864 gfc_typespec *last_ts;
15865 int object, cnt_protected;
15866 const char *msg;
15868 last_ts = &eq->expr->symtree->n.sym->ts;
15870 first_sym = eq->expr->symtree->n.sym;
15872 cnt_protected = 0;
15874 for (object = 1; eq; eq = eq->eq, object++)
15876 e = eq->expr;
15878 e->ts = e->symtree->n.sym->ts;
15879 /* match_varspec might not know yet if it is seeing
15880 array reference or substring reference, as it doesn't
15881 know the types. */
15882 if (e->ref && e->ref->type == REF_ARRAY)
15884 gfc_ref *ref = e->ref;
15885 sym = e->symtree->n.sym;
15887 if (sym->attr.dimension)
15889 ref->u.ar.as = sym->as;
15890 ref = ref->next;
15893 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
15894 if (e->ts.type == BT_CHARACTER
15895 && ref
15896 && ref->type == REF_ARRAY
15897 && ref->u.ar.dimen == 1
15898 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
15899 && ref->u.ar.stride[0] == NULL)
15901 gfc_expr *start = ref->u.ar.start[0];
15902 gfc_expr *end = ref->u.ar.end[0];
15903 void *mem = NULL;
15905 /* Optimize away the (:) reference. */
15906 if (start == NULL && end == NULL)
15908 if (e->ref == ref)
15909 e->ref = ref->next;
15910 else
15911 e->ref->next = ref->next;
15912 mem = ref;
15914 else
15916 ref->type = REF_SUBSTRING;
15917 if (start == NULL)
15918 start = gfc_get_int_expr (gfc_default_integer_kind,
15919 NULL, 1);
15920 ref->u.ss.start = start;
15921 if (end == NULL && e->ts.u.cl)
15922 end = gfc_copy_expr (e->ts.u.cl->length);
15923 ref->u.ss.end = end;
15924 ref->u.ss.length = e->ts.u.cl;
15925 e->ts.u.cl = NULL;
15927 ref = ref->next;
15928 free (mem);
15931 /* Any further ref is an error. */
15932 if (ref)
15934 gcc_assert (ref->type == REF_ARRAY);
15935 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
15936 &ref->u.ar.where);
15937 continue;
15941 if (!gfc_resolve_expr (e))
15942 continue;
15944 sym = e->symtree->n.sym;
15946 if (sym->attr.is_protected)
15947 cnt_protected++;
15948 if (cnt_protected > 0 && cnt_protected != object)
15950 gfc_error ("Either all or none of the objects in the "
15951 "EQUIVALENCE set at %L shall have the "
15952 "PROTECTED attribute",
15953 &e->where);
15954 break;
15957 /* Shall not equivalence common block variables in a PURE procedure. */
15958 if (sym->ns->proc_name
15959 && sym->ns->proc_name->attr.pure
15960 && sym->attr.in_common)
15962 /* Need to check for symbols that may have entered the pure
15963 procedure via a USE statement. */
15964 bool saw_sym = false;
15965 if (sym->ns->use_stmts)
15967 gfc_use_rename *r;
15968 for (r = sym->ns->use_stmts->rename; r; r = r->next)
15969 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
15971 else
15972 saw_sym = true;
15974 if (saw_sym)
15975 gfc_error ("COMMON block member %qs at %L cannot be an "
15976 "EQUIVALENCE object in the pure procedure %qs",
15977 sym->name, &e->where, sym->ns->proc_name->name);
15978 break;
15981 /* Shall not be a named constant. */
15982 if (e->expr_type == EXPR_CONSTANT)
15984 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
15985 "object", sym->name, &e->where);
15986 continue;
15989 if (e->ts.type == BT_DERIVED
15990 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
15991 continue;
15993 /* Check that the types correspond correctly:
15994 Note 5.28:
15995 A numeric sequence structure may be equivalenced to another sequence
15996 structure, an object of default integer type, default real type, double
15997 precision real type, default logical type such that components of the
15998 structure ultimately only become associated to objects of the same
15999 kind. A character sequence structure may be equivalenced to an object
16000 of default character kind or another character sequence structure.
16001 Other objects may be equivalenced only to objects of the same type and
16002 kind parameters. */
16004 /* Identical types are unconditionally OK. */
16005 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16006 goto identical_types;
16008 last_eq_type = sequence_type (*last_ts);
16009 eq_type = sequence_type (sym->ts);
16011 /* Since the pair of objects is not of the same type, mixed or
16012 non-default sequences can be rejected. */
16014 msg = "Sequence %s with mixed components in EQUIVALENCE "
16015 "statement at %L with different type objects";
16016 if ((object ==2
16017 && last_eq_type == SEQ_MIXED
16018 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16019 || (eq_type == SEQ_MIXED
16020 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16021 continue;
16023 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16024 "statement at %L with objects of different type";
16025 if ((object ==2
16026 && last_eq_type == SEQ_NONDEFAULT
16027 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16028 || (eq_type == SEQ_NONDEFAULT
16029 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16030 continue;
16032 msg ="Non-CHARACTER object %qs in default CHARACTER "
16033 "EQUIVALENCE statement at %L";
16034 if (last_eq_type == SEQ_CHARACTER
16035 && eq_type != SEQ_CHARACTER
16036 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16037 continue;
16039 msg ="Non-NUMERIC object %qs in default NUMERIC "
16040 "EQUIVALENCE statement at %L";
16041 if (last_eq_type == SEQ_NUMERIC
16042 && eq_type != SEQ_NUMERIC
16043 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16044 continue;
16046 identical_types:
16047 last_ts =&sym->ts;
16048 last_where = &e->where;
16050 if (!e->ref)
16051 continue;
16053 /* Shall not be an automatic array. */
16054 if (e->ref->type == REF_ARRAY
16055 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16057 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16058 "an EQUIVALENCE object", sym->name, &e->where);
16059 continue;
16062 r = e->ref;
16063 while (r)
16065 /* Shall not be a structure component. */
16066 if (r->type == REF_COMPONENT)
16068 gfc_error ("Structure component %qs at %L cannot be an "
16069 "EQUIVALENCE object",
16070 r->u.c.component->name, &e->where);
16071 break;
16074 /* A substring shall not have length zero. */
16075 if (r->type == REF_SUBSTRING)
16077 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16079 gfc_error ("Substring at %L has length zero",
16080 &r->u.ss.start->where);
16081 break;
16084 r = r->next;
16090 /* Function called by resolve_fntype to flag other symbol used in the
16091 length type parameter specification of function resuls. */
16093 static bool
16094 flag_fn_result_spec (gfc_expr *expr,
16095 gfc_symbol *sym ATTRIBUTE_UNUSED,
16096 int *f ATTRIBUTE_UNUSED)
16098 gfc_namespace *ns;
16099 gfc_symbol *s;
16101 if (expr->expr_type == EXPR_VARIABLE)
16103 s = expr->symtree->n.sym;
16104 for (ns = s->ns; ns; ns = ns->parent)
16105 if (!ns->parent)
16106 break;
16108 if (!s->fn_result_spec
16109 && s->attr.flavor == FL_PARAMETER)
16111 /* Function contained in a module.... */
16112 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16114 gfc_symtree *st;
16115 s->fn_result_spec = 1;
16116 /* Make sure that this symbol is translated as a module
16117 variable. */
16118 st = gfc_get_unique_symtree (ns);
16119 st->n.sym = s;
16120 s->refs++;
16122 /* ... which is use associated and called. */
16123 else if (s->attr.use_assoc || s->attr.used_in_submodule
16125 /* External function matched with an interface. */
16126 (s->ns->proc_name
16127 && ((s->ns == ns
16128 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16129 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16130 && s->ns->proc_name->attr.function))
16131 s->fn_result_spec = 1;
16134 return false;
16138 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16140 static void
16141 resolve_fntype (gfc_namespace *ns)
16143 gfc_entry_list *el;
16144 gfc_symbol *sym;
16146 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16147 return;
16149 /* If there are any entries, ns->proc_name is the entry master
16150 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16151 if (ns->entries)
16152 sym = ns->entries->sym;
16153 else
16154 sym = ns->proc_name;
16155 if (sym->result == sym
16156 && sym->ts.type == BT_UNKNOWN
16157 && !gfc_set_default_type (sym, 0, NULL)
16158 && !sym->attr.untyped)
16160 gfc_error ("Function %qs at %L has no IMPLICIT type",
16161 sym->name, &sym->declared_at);
16162 sym->attr.untyped = 1;
16165 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16166 && !sym->attr.contained
16167 && !gfc_check_symbol_access (sym->ts.u.derived)
16168 && gfc_check_symbol_access (sym))
16170 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16171 "%L of PRIVATE type %qs", sym->name,
16172 &sym->declared_at, sym->ts.u.derived->name);
16175 if (ns->entries)
16176 for (el = ns->entries->next; el; el = el->next)
16178 if (el->sym->result == el->sym
16179 && el->sym->ts.type == BT_UNKNOWN
16180 && !gfc_set_default_type (el->sym, 0, NULL)
16181 && !el->sym->attr.untyped)
16183 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16184 el->sym->name, &el->sym->declared_at);
16185 el->sym->attr.untyped = 1;
16189 if (sym->ts.type == BT_CHARACTER)
16190 gfc_traverse_expr (sym->ts.u.cl->length, NULL, flag_fn_result_spec, 0);
16194 /* 12.3.2.1.1 Defined operators. */
16196 static bool
16197 check_uop_procedure (gfc_symbol *sym, locus where)
16199 gfc_formal_arglist *formal;
16201 if (!sym->attr.function)
16203 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16204 sym->name, &where);
16205 return false;
16208 if (sym->ts.type == BT_CHARACTER
16209 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16210 && !(sym->result && ((sym->result->ts.u.cl
16211 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16213 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16214 "character length", sym->name, &where);
16215 return false;
16218 formal = gfc_sym_get_dummy_args (sym);
16219 if (!formal || !formal->sym)
16221 gfc_error ("User operator procedure %qs at %L must have at least "
16222 "one argument", sym->name, &where);
16223 return false;
16226 if (formal->sym->attr.intent != INTENT_IN)
16228 gfc_error ("First argument of operator interface at %L must be "
16229 "INTENT(IN)", &where);
16230 return false;
16233 if (formal->sym->attr.optional)
16235 gfc_error ("First argument of operator interface at %L cannot be "
16236 "optional", &where);
16237 return false;
16240 formal = formal->next;
16241 if (!formal || !formal->sym)
16242 return true;
16244 if (formal->sym->attr.intent != INTENT_IN)
16246 gfc_error ("Second argument of operator interface at %L must be "
16247 "INTENT(IN)", &where);
16248 return false;
16251 if (formal->sym->attr.optional)
16253 gfc_error ("Second argument of operator interface at %L cannot be "
16254 "optional", &where);
16255 return false;
16258 if (formal->next)
16260 gfc_error ("Operator interface at %L must have, at most, two "
16261 "arguments", &where);
16262 return false;
16265 return true;
16268 static void
16269 gfc_resolve_uops (gfc_symtree *symtree)
16271 gfc_interface *itr;
16273 if (symtree == NULL)
16274 return;
16276 gfc_resolve_uops (symtree->left);
16277 gfc_resolve_uops (symtree->right);
16279 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16280 check_uop_procedure (itr->sym, itr->sym->declared_at);
16284 /* Examine all of the expressions associated with a program unit,
16285 assign types to all intermediate expressions, make sure that all
16286 assignments are to compatible types and figure out which names
16287 refer to which functions or subroutines. It doesn't check code
16288 block, which is handled by gfc_resolve_code. */
16290 static void
16291 resolve_types (gfc_namespace *ns)
16293 gfc_namespace *n;
16294 gfc_charlen *cl;
16295 gfc_data *d;
16296 gfc_equiv *eq;
16297 gfc_namespace* old_ns = gfc_current_ns;
16299 if (ns->types_resolved)
16300 return;
16302 /* Check that all IMPLICIT types are ok. */
16303 if (!ns->seen_implicit_none)
16305 unsigned letter;
16306 for (letter = 0; letter != GFC_LETTERS; ++letter)
16307 if (ns->set_flag[letter]
16308 && !resolve_typespec_used (&ns->default_type[letter],
16309 &ns->implicit_loc[letter], NULL))
16310 return;
16313 gfc_current_ns = ns;
16315 resolve_entries (ns);
16317 resolve_common_vars (&ns->blank_common, false);
16318 resolve_common_blocks (ns->common_root);
16320 resolve_contained_functions (ns);
16322 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16323 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16324 resolve_formal_arglist (ns->proc_name);
16326 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16328 for (cl = ns->cl_list; cl; cl = cl->next)
16329 resolve_charlen (cl);
16331 gfc_traverse_ns (ns, resolve_symbol);
16333 resolve_fntype (ns);
16335 for (n = ns->contained; n; n = n->sibling)
16337 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16338 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16339 "also be PURE", n->proc_name->name,
16340 &n->proc_name->declared_at);
16342 resolve_types (n);
16345 forall_flag = 0;
16346 gfc_do_concurrent_flag = 0;
16347 gfc_check_interfaces (ns);
16349 gfc_traverse_ns (ns, resolve_values);
16351 if (ns->save_all)
16352 gfc_save_all (ns);
16354 iter_stack = NULL;
16355 for (d = ns->data; d; d = d->next)
16356 resolve_data (d);
16358 iter_stack = NULL;
16359 gfc_traverse_ns (ns, gfc_formalize_init_value);
16361 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16363 for (eq = ns->equiv; eq; eq = eq->next)
16364 resolve_equivalence (eq);
16366 /* Warn about unused labels. */
16367 if (warn_unused_label)
16368 warn_unused_fortran_label (ns->st_labels);
16370 gfc_resolve_uops (ns->uop_root);
16372 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16374 gfc_resolve_omp_declare_simd (ns);
16376 gfc_resolve_omp_udrs (ns->omp_udr_root);
16378 ns->types_resolved = 1;
16380 gfc_current_ns = old_ns;
16384 /* Call gfc_resolve_code recursively. */
16386 static void
16387 resolve_codes (gfc_namespace *ns)
16389 gfc_namespace *n;
16390 bitmap_obstack old_obstack;
16392 if (ns->resolved == 1)
16393 return;
16395 for (n = ns->contained; n; n = n->sibling)
16396 resolve_codes (n);
16398 gfc_current_ns = ns;
16400 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16401 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16402 cs_base = NULL;
16404 /* Set to an out of range value. */
16405 current_entry_id = -1;
16407 old_obstack = labels_obstack;
16408 bitmap_obstack_initialize (&labels_obstack);
16410 gfc_resolve_oacc_declare (ns);
16411 gfc_resolve_omp_local_vars (ns);
16412 gfc_resolve_code (ns->code, ns);
16414 bitmap_obstack_release (&labels_obstack);
16415 labels_obstack = old_obstack;
16419 /* This function is called after a complete program unit has been compiled.
16420 Its purpose is to examine all of the expressions associated with a program
16421 unit, assign types to all intermediate expressions, make sure that all
16422 assignments are to compatible types and figure out which names refer to
16423 which functions or subroutines. */
16425 void
16426 gfc_resolve (gfc_namespace *ns)
16428 gfc_namespace *old_ns;
16429 code_stack *old_cs_base;
16430 struct gfc_omp_saved_state old_omp_state;
16432 if (ns->resolved)
16433 return;
16435 ns->resolved = -1;
16436 old_ns = gfc_current_ns;
16437 old_cs_base = cs_base;
16439 /* As gfc_resolve can be called during resolution of an OpenMP construct
16440 body, we should clear any state associated to it, so that say NS's
16441 DO loops are not interpreted as OpenMP loops. */
16442 if (!ns->construct_entities)
16443 gfc_omp_save_and_clear_state (&old_omp_state);
16445 resolve_types (ns);
16446 component_assignment_level = 0;
16447 resolve_codes (ns);
16449 gfc_current_ns = old_ns;
16450 cs_base = old_cs_base;
16451 ns->resolved = 1;
16453 gfc_run_passes (ns);
16455 if (!ns->construct_entities)
16456 gfc_omp_restore_state (&old_omp_state);