Revert wrong checkin
[official-gcc.git] / gcc / reload.c
blob045e5594195ab525a52001a78dca1762b26f9ca4
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl-error.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "df.h"
104 #include "reload.h"
105 #include "regs.h"
106 #include "addresses.h"
107 #include "hard-reg-set.h"
108 #include "flags.h"
109 #include "output.h"
110 #include "function.h"
111 #include "params.h"
112 #include "target.h"
113 #include "ira.h"
115 /* True if X is a constant that can be forced into the constant pool.
116 MODE is the mode of the operand, or VOIDmode if not known. */
117 #define CONST_POOL_OK_P(MODE, X) \
118 ((MODE) != VOIDmode \
119 && CONSTANT_P (X) \
120 && GET_CODE (X) != HIGH \
121 && !targetm.cannot_force_const_mem (MODE, X))
123 /* True if C is a non-empty register class that has too few registers
124 to be safely used as a reload target class. */
126 static inline bool
127 small_register_class_p (reg_class_t rclass)
129 return (reg_class_size [(int) rclass] == 1
130 || (reg_class_size [(int) rclass] >= 1
131 && targetm.class_likely_spilled_p (rclass)));
135 /* All reloads of the current insn are recorded here. See reload.h for
136 comments. */
137 int n_reloads;
138 struct reload rld[MAX_RELOADS];
140 /* All the "earlyclobber" operands of the current insn
141 are recorded here. */
142 int n_earlyclobbers;
143 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
145 int reload_n_operands;
147 /* Replacing reloads.
149 If `replace_reloads' is nonzero, then as each reload is recorded
150 an entry is made for it in the table `replacements'.
151 Then later `subst_reloads' can look through that table and
152 perform all the replacements needed. */
154 /* Nonzero means record the places to replace. */
155 static int replace_reloads;
157 /* Each replacement is recorded with a structure like this. */
158 struct replacement
160 rtx *where; /* Location to store in */
161 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
162 a SUBREG; 0 otherwise. */
163 int what; /* which reload this is for */
164 enum machine_mode mode; /* mode it must have */
167 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
169 /* Number of replacements currently recorded. */
170 static int n_replacements;
172 /* Used to track what is modified by an operand. */
173 struct decomposition
175 int reg_flag; /* Nonzero if referencing a register. */
176 int safe; /* Nonzero if this can't conflict with anything. */
177 rtx base; /* Base address for MEM. */
178 HOST_WIDE_INT start; /* Starting offset or register number. */
179 HOST_WIDE_INT end; /* Ending offset or register number. */
182 #ifdef SECONDARY_MEMORY_NEEDED
184 /* Save MEMs needed to copy from one class of registers to another. One MEM
185 is used per mode, but normally only one or two modes are ever used.
187 We keep two versions, before and after register elimination. The one
188 after register elimination is record separately for each operand. This
189 is done in case the address is not valid to be sure that we separately
190 reload each. */
192 static rtx secondary_memlocs[NUM_MACHINE_MODES];
193 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
194 static int secondary_memlocs_elim_used = 0;
195 #endif
197 /* The instruction we are doing reloads for;
198 so we can test whether a register dies in it. */
199 static rtx this_insn;
201 /* Nonzero if this instruction is a user-specified asm with operands. */
202 static int this_insn_is_asm;
204 /* If hard_regs_live_known is nonzero,
205 we can tell which hard regs are currently live,
206 at least enough to succeed in choosing dummy reloads. */
207 static int hard_regs_live_known;
209 /* Indexed by hard reg number,
210 element is nonnegative if hard reg has been spilled.
211 This vector is passed to `find_reloads' as an argument
212 and is not changed here. */
213 static short *static_reload_reg_p;
215 /* Set to 1 in subst_reg_equivs if it changes anything. */
216 static int subst_reg_equivs_changed;
218 /* On return from push_reload, holds the reload-number for the OUT
219 operand, which can be different for that from the input operand. */
220 static int output_reloadnum;
222 /* Compare two RTX's. */
223 #define MATCHES(x, y) \
224 (x == y || (x != 0 && (REG_P (x) \
225 ? REG_P (y) && REGNO (x) == REGNO (y) \
226 : rtx_equal_p (x, y) && ! side_effects_p (x))))
228 /* Indicates if two reloads purposes are for similar enough things that we
229 can merge their reloads. */
230 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
231 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
232 || ((when1) == (when2) && (op1) == (op2)) \
233 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
234 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
236 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
237 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
239 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
240 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
241 ((when1) != (when2) \
242 || ! ((op1) == (op2) \
243 || (when1) == RELOAD_FOR_INPUT \
244 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
245 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
247 /* If we are going to reload an address, compute the reload type to
248 use. */
249 #define ADDR_TYPE(type) \
250 ((type) == RELOAD_FOR_INPUT_ADDRESS \
251 ? RELOAD_FOR_INPADDR_ADDRESS \
252 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
253 ? RELOAD_FOR_OUTADDR_ADDRESS \
254 : (type)))
256 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
257 enum machine_mode, enum reload_type,
258 enum insn_code *, secondary_reload_info *);
259 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
260 int, unsigned int);
261 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
262 static void push_replacement (rtx *, int, enum machine_mode);
263 static void dup_replacements (rtx *, rtx *);
264 static void combine_reloads (void);
265 static int find_reusable_reload (rtx *, rtx, enum reg_class,
266 enum reload_type, int, int);
267 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
268 enum machine_mode, reg_class_t, int, int);
269 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
270 static struct decomposition decompose (rtx);
271 static int immune_p (rtx, rtx, struct decomposition);
272 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
273 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
274 int *);
275 static rtx make_memloc (rtx, int);
276 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
277 addr_space_t, rtx *);
278 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
279 int, enum reload_type, int, rtx);
280 static rtx subst_reg_equivs (rtx, rtx);
281 static rtx subst_indexed_address (rtx);
282 static void update_auto_inc_notes (rtx, int, int);
283 static int find_reloads_address_1 (enum machine_mode, rtx, int,
284 enum rtx_code, enum rtx_code, rtx *,
285 int, enum reload_type,int, rtx);
286 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
287 enum machine_mode, int,
288 enum reload_type, int);
289 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
290 int, rtx, int *);
291 static void copy_replacements_1 (rtx *, rtx *, int);
292 static int find_inc_amount (rtx, rtx);
293 static int refers_to_mem_for_reload_p (rtx);
294 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
295 rtx, rtx *);
297 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
298 list yet. */
300 static void
301 push_reg_equiv_alt_mem (int regno, rtx mem)
303 rtx it;
305 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
306 if (rtx_equal_p (XEXP (it, 0), mem))
307 return;
309 reg_equiv_alt_mem_list (regno)
310 = alloc_EXPR_LIST (REG_EQUIV, mem,
311 reg_equiv_alt_mem_list (regno));
314 /* Determine if any secondary reloads are needed for loading (if IN_P is
315 nonzero) or storing (if IN_P is zero) X to or from a reload register of
316 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
317 are needed, push them.
319 Return the reload number of the secondary reload we made, or -1 if
320 we didn't need one. *PICODE is set to the insn_code to use if we do
321 need a secondary reload. */
323 static int
324 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
325 enum reg_class reload_class,
326 enum machine_mode reload_mode, enum reload_type type,
327 enum insn_code *picode, secondary_reload_info *prev_sri)
329 enum reg_class rclass = NO_REGS;
330 enum reg_class scratch_class;
331 enum machine_mode mode = reload_mode;
332 enum insn_code icode = CODE_FOR_nothing;
333 enum insn_code t_icode = CODE_FOR_nothing;
334 enum reload_type secondary_type;
335 int s_reload, t_reload = -1;
336 const char *scratch_constraint;
337 char letter;
338 secondary_reload_info sri;
340 if (type == RELOAD_FOR_INPUT_ADDRESS
341 || type == RELOAD_FOR_OUTPUT_ADDRESS
342 || type == RELOAD_FOR_INPADDR_ADDRESS
343 || type == RELOAD_FOR_OUTADDR_ADDRESS)
344 secondary_type = type;
345 else
346 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
348 *picode = CODE_FOR_nothing;
350 /* If X is a paradoxical SUBREG, use the inner value to determine both the
351 mode and object being reloaded. */
352 if (GET_CODE (x) == SUBREG
353 && (GET_MODE_SIZE (GET_MODE (x))
354 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
356 x = SUBREG_REG (x);
357 reload_mode = GET_MODE (x);
360 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
361 is still a pseudo-register by now, it *must* have an equivalent MEM
362 but we don't want to assume that), use that equivalent when seeing if
363 a secondary reload is needed since whether or not a reload is needed
364 might be sensitive to the form of the MEM. */
366 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
367 && reg_equiv_mem (REGNO (x)))
368 x = reg_equiv_mem (REGNO (x));
370 sri.icode = CODE_FOR_nothing;
371 sri.prev_sri = prev_sri;
372 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
373 reload_mode, &sri);
374 icode = (enum insn_code) sri.icode;
376 /* If we don't need any secondary registers, done. */
377 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
378 return -1;
380 if (rclass != NO_REGS)
381 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
382 reload_mode, type, &t_icode, &sri);
384 /* If we will be using an insn, the secondary reload is for a
385 scratch register. */
387 if (icode != CODE_FOR_nothing)
389 /* If IN_P is nonzero, the reload register will be the output in
390 operand 0. If IN_P is zero, the reload register will be the input
391 in operand 1. Outputs should have an initial "=", which we must
392 skip. */
394 /* ??? It would be useful to be able to handle only two, or more than
395 three, operands, but for now we can only handle the case of having
396 exactly three: output, input and one temp/scratch. */
397 gcc_assert (insn_data[(int) icode].n_operands == 3);
399 /* ??? We currently have no way to represent a reload that needs
400 an icode to reload from an intermediate tertiary reload register.
401 We should probably have a new field in struct reload to tag a
402 chain of scratch operand reloads onto. */
403 gcc_assert (rclass == NO_REGS);
405 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
406 gcc_assert (*scratch_constraint == '=');
407 scratch_constraint++;
408 if (*scratch_constraint == '&')
409 scratch_constraint++;
410 letter = *scratch_constraint;
411 scratch_class = (letter == 'r' ? GENERAL_REGS
412 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
413 scratch_constraint));
415 rclass = scratch_class;
416 mode = insn_data[(int) icode].operand[2].mode;
419 /* This case isn't valid, so fail. Reload is allowed to use the same
420 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
421 in the case of a secondary register, we actually need two different
422 registers for correct code. We fail here to prevent the possibility of
423 silently generating incorrect code later.
425 The convention is that secondary input reloads are valid only if the
426 secondary_class is different from class. If you have such a case, you
427 can not use secondary reloads, you must work around the problem some
428 other way.
430 Allow this when a reload_in/out pattern is being used. I.e. assume
431 that the generated code handles this case. */
433 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
434 || t_icode != CODE_FOR_nothing);
436 /* See if we can reuse an existing secondary reload. */
437 for (s_reload = 0; s_reload < n_reloads; s_reload++)
438 if (rld[s_reload].secondary_p
439 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
440 || reg_class_subset_p (rld[s_reload].rclass, rclass))
441 && ((in_p && rld[s_reload].inmode == mode)
442 || (! in_p && rld[s_reload].outmode == mode))
443 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
444 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
445 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
446 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
447 && (small_register_class_p (rclass)
448 || targetm.small_register_classes_for_mode_p (VOIDmode))
449 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
450 opnum, rld[s_reload].opnum))
452 if (in_p)
453 rld[s_reload].inmode = mode;
454 if (! in_p)
455 rld[s_reload].outmode = mode;
457 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
458 rld[s_reload].rclass = rclass;
460 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
461 rld[s_reload].optional &= optional;
462 rld[s_reload].secondary_p = 1;
463 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
464 opnum, rld[s_reload].opnum))
465 rld[s_reload].when_needed = RELOAD_OTHER;
467 break;
470 if (s_reload == n_reloads)
472 #ifdef SECONDARY_MEMORY_NEEDED
473 /* If we need a memory location to copy between the two reload regs,
474 set it up now. Note that we do the input case before making
475 the reload and the output case after. This is due to the
476 way reloads are output. */
478 if (in_p && icode == CODE_FOR_nothing
479 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
481 get_secondary_mem (x, reload_mode, opnum, type);
483 /* We may have just added new reloads. Make sure we add
484 the new reload at the end. */
485 s_reload = n_reloads;
487 #endif
489 /* We need to make a new secondary reload for this register class. */
490 rld[s_reload].in = rld[s_reload].out = 0;
491 rld[s_reload].rclass = rclass;
493 rld[s_reload].inmode = in_p ? mode : VOIDmode;
494 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
495 rld[s_reload].reg_rtx = 0;
496 rld[s_reload].optional = optional;
497 rld[s_reload].inc = 0;
498 /* Maybe we could combine these, but it seems too tricky. */
499 rld[s_reload].nocombine = 1;
500 rld[s_reload].in_reg = 0;
501 rld[s_reload].out_reg = 0;
502 rld[s_reload].opnum = opnum;
503 rld[s_reload].when_needed = secondary_type;
504 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
505 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
506 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
507 rld[s_reload].secondary_out_icode
508 = ! in_p ? t_icode : CODE_FOR_nothing;
509 rld[s_reload].secondary_p = 1;
511 n_reloads++;
513 #ifdef SECONDARY_MEMORY_NEEDED
514 if (! in_p && icode == CODE_FOR_nothing
515 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
516 get_secondary_mem (x, mode, opnum, type);
517 #endif
520 *picode = icode;
521 return s_reload;
524 /* If a secondary reload is needed, return its class. If both an intermediate
525 register and a scratch register is needed, we return the class of the
526 intermediate register. */
527 reg_class_t
528 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
529 rtx x)
531 enum insn_code icode;
532 secondary_reload_info sri;
534 sri.icode = CODE_FOR_nothing;
535 sri.prev_sri = NULL;
536 rclass
537 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
538 icode = (enum insn_code) sri.icode;
540 /* If there are no secondary reloads at all, we return NO_REGS.
541 If an intermediate register is needed, we return its class. */
542 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
543 return rclass;
545 /* No intermediate register is needed, but we have a special reload
546 pattern, which we assume for now needs a scratch register. */
547 return scratch_reload_class (icode);
550 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
551 three operands, verify that operand 2 is an output operand, and return
552 its register class.
553 ??? We'd like to be able to handle any pattern with at least 2 operands,
554 for zero or more scratch registers, but that needs more infrastructure. */
555 enum reg_class
556 scratch_reload_class (enum insn_code icode)
558 const char *scratch_constraint;
559 char scratch_letter;
560 enum reg_class rclass;
562 gcc_assert (insn_data[(int) icode].n_operands == 3);
563 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
564 gcc_assert (*scratch_constraint == '=');
565 scratch_constraint++;
566 if (*scratch_constraint == '&')
567 scratch_constraint++;
568 scratch_letter = *scratch_constraint;
569 if (scratch_letter == 'r')
570 return GENERAL_REGS;
571 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
572 scratch_constraint);
573 gcc_assert (rclass != NO_REGS);
574 return rclass;
577 #ifdef SECONDARY_MEMORY_NEEDED
579 /* Return a memory location that will be used to copy X in mode MODE.
580 If we haven't already made a location for this mode in this insn,
581 call find_reloads_address on the location being returned. */
584 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
585 int opnum, enum reload_type type)
587 rtx loc;
588 int mem_valid;
590 /* By default, if MODE is narrower than a word, widen it to a word.
591 This is required because most machines that require these memory
592 locations do not support short load and stores from all registers
593 (e.g., FP registers). */
595 #ifdef SECONDARY_MEMORY_NEEDED_MODE
596 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
597 #else
598 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
599 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
600 #endif
602 /* If we already have made a MEM for this operand in MODE, return it. */
603 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
604 return secondary_memlocs_elim[(int) mode][opnum];
606 /* If this is the first time we've tried to get a MEM for this mode,
607 allocate a new one. `something_changed' in reload will get set
608 by noticing that the frame size has changed. */
610 if (secondary_memlocs[(int) mode] == 0)
612 #ifdef SECONDARY_MEMORY_NEEDED_RTX
613 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
614 #else
615 secondary_memlocs[(int) mode]
616 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
617 #endif
620 /* Get a version of the address doing any eliminations needed. If that
621 didn't give us a new MEM, make a new one if it isn't valid. */
623 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
624 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
625 MEM_ADDR_SPACE (loc));
627 if (! mem_valid && loc == secondary_memlocs[(int) mode])
628 loc = copy_rtx (loc);
630 /* The only time the call below will do anything is if the stack
631 offset is too large. In that case IND_LEVELS doesn't matter, so we
632 can just pass a zero. Adjust the type to be the address of the
633 corresponding object. If the address was valid, save the eliminated
634 address. If it wasn't valid, we need to make a reload each time, so
635 don't save it. */
637 if (! mem_valid)
639 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
640 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
641 : RELOAD_OTHER);
643 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
644 opnum, type, 0, 0);
647 secondary_memlocs_elim[(int) mode][opnum] = loc;
648 if (secondary_memlocs_elim_used <= (int)mode)
649 secondary_memlocs_elim_used = (int)mode + 1;
650 return loc;
653 /* Clear any secondary memory locations we've made. */
655 void
656 clear_secondary_mem (void)
658 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
660 #endif /* SECONDARY_MEMORY_NEEDED */
663 /* Find the largest class which has at least one register valid in
664 mode INNER, and which for every such register, that register number
665 plus N is also valid in OUTER (if in range) and is cheap to move
666 into REGNO. Such a class must exist. */
668 static enum reg_class
669 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
670 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
671 unsigned int dest_regno ATTRIBUTE_UNUSED)
673 int best_cost = -1;
674 int rclass;
675 int regno;
676 enum reg_class best_class = NO_REGS;
677 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
678 unsigned int best_size = 0;
679 int cost;
681 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
683 int bad = 0;
684 int good = 0;
685 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
686 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
688 if (HARD_REGNO_MODE_OK (regno, inner))
690 good = 1;
691 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
692 || ! HARD_REGNO_MODE_OK (regno + n, outer))
693 bad = 1;
697 if (bad || !good)
698 continue;
699 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
701 if ((reg_class_size[rclass] > best_size
702 && (best_cost < 0 || best_cost >= cost))
703 || best_cost > cost)
705 best_class = (enum reg_class) rclass;
706 best_size = reg_class_size[rclass];
707 best_cost = register_move_cost (outer, (enum reg_class) rclass,
708 dest_class);
712 gcc_assert (best_size != 0);
714 return best_class;
717 /* Return the number of a previously made reload that can be combined with
718 a new one, or n_reloads if none of the existing reloads can be used.
719 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
720 push_reload, they determine the kind of the new reload that we try to
721 combine. P_IN points to the corresponding value of IN, which can be
722 modified by this function.
723 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
725 static int
726 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
727 enum reload_type type, int opnum, int dont_share)
729 rtx in = *p_in;
730 int i;
731 /* We can't merge two reloads if the output of either one is
732 earlyclobbered. */
734 if (earlyclobber_operand_p (out))
735 return n_reloads;
737 /* We can use an existing reload if the class is right
738 and at least one of IN and OUT is a match
739 and the other is at worst neutral.
740 (A zero compared against anything is neutral.)
742 For targets with small register classes, don't use existing reloads
743 unless they are for the same thing since that can cause us to need
744 more reload registers than we otherwise would. */
746 for (i = 0; i < n_reloads; i++)
747 if ((reg_class_subset_p (rclass, rld[i].rclass)
748 || reg_class_subset_p (rld[i].rclass, rclass))
749 /* If the existing reload has a register, it must fit our class. */
750 && (rld[i].reg_rtx == 0
751 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
752 true_regnum (rld[i].reg_rtx)))
753 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
754 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
755 || (out != 0 && MATCHES (rld[i].out, out)
756 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
757 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
758 && (small_register_class_p (rclass)
759 || targetm.small_register_classes_for_mode_p (VOIDmode))
760 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
761 return i;
763 /* Reloading a plain reg for input can match a reload to postincrement
764 that reg, since the postincrement's value is the right value.
765 Likewise, it can match a preincrement reload, since we regard
766 the preincrementation as happening before any ref in this insn
767 to that register. */
768 for (i = 0; i < n_reloads; i++)
769 if ((reg_class_subset_p (rclass, rld[i].rclass)
770 || reg_class_subset_p (rld[i].rclass, rclass))
771 /* If the existing reload has a register, it must fit our
772 class. */
773 && (rld[i].reg_rtx == 0
774 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
775 true_regnum (rld[i].reg_rtx)))
776 && out == 0 && rld[i].out == 0 && rld[i].in != 0
777 && ((REG_P (in)
778 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
779 && MATCHES (XEXP (rld[i].in, 0), in))
780 || (REG_P (rld[i].in)
781 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
782 && MATCHES (XEXP (in, 0), rld[i].in)))
783 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
784 && (small_register_class_p (rclass)
785 || targetm.small_register_classes_for_mode_p (VOIDmode))
786 && MERGABLE_RELOADS (type, rld[i].when_needed,
787 opnum, rld[i].opnum))
789 /* Make sure reload_in ultimately has the increment,
790 not the plain register. */
791 if (REG_P (in))
792 *p_in = rld[i].in;
793 return i;
795 return n_reloads;
798 /* Return nonzero if X is a SUBREG which will require reloading of its
799 SUBREG_REG expression. */
801 static int
802 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
804 rtx inner;
806 /* Only SUBREGs are problematical. */
807 if (GET_CODE (x) != SUBREG)
808 return 0;
810 inner = SUBREG_REG (x);
812 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
813 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
814 return 1;
816 /* If INNER is not a hard register, then INNER will not need to
817 be reloaded. */
818 if (!REG_P (inner)
819 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
820 return 0;
822 /* If INNER is not ok for MODE, then INNER will need reloading. */
823 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
824 return 1;
826 /* If the outer part is a word or smaller, INNER larger than a
827 word and the number of regs for INNER is not the same as the
828 number of words in INNER, then INNER will need reloading. */
829 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
830 && output
831 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
832 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
833 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
836 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
837 requiring an extra reload register. The caller has already found that
838 IN contains some reference to REGNO, so check that we can produce the
839 new value in a single step. E.g. if we have
840 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
841 instruction that adds one to a register, this should succeed.
842 However, if we have something like
843 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
844 needs to be loaded into a register first, we need a separate reload
845 register.
846 Such PLUS reloads are generated by find_reload_address_part.
847 The out-of-range PLUS expressions are usually introduced in the instruction
848 patterns by register elimination and substituting pseudos without a home
849 by their function-invariant equivalences. */
850 static int
851 can_reload_into (rtx in, int regno, enum machine_mode mode)
853 rtx dst, test_insn;
854 int r = 0;
855 struct recog_data save_recog_data;
857 /* For matching constraints, we often get notional input reloads where
858 we want to use the original register as the reload register. I.e.
859 technically this is a non-optional input-output reload, but IN is
860 already a valid register, and has been chosen as the reload register.
861 Speed this up, since it trivially works. */
862 if (REG_P (in))
863 return 1;
865 /* To test MEMs properly, we'd have to take into account all the reloads
866 that are already scheduled, which can become quite complicated.
867 And since we've already handled address reloads for this MEM, it
868 should always succeed anyway. */
869 if (MEM_P (in))
870 return 1;
872 /* If we can make a simple SET insn that does the job, everything should
873 be fine. */
874 dst = gen_rtx_REG (mode, regno);
875 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
876 save_recog_data = recog_data;
877 if (recog_memoized (test_insn) >= 0)
879 extract_insn (test_insn);
880 r = constrain_operands (1);
882 recog_data = save_recog_data;
883 return r;
886 /* Record one reload that needs to be performed.
887 IN is an rtx saying where the data are to be found before this instruction.
888 OUT says where they must be stored after the instruction.
889 (IN is zero for data not read, and OUT is zero for data not written.)
890 INLOC and OUTLOC point to the places in the instructions where
891 IN and OUT were found.
892 If IN and OUT are both nonzero, it means the same register must be used
893 to reload both IN and OUT.
895 RCLASS is a register class required for the reloaded data.
896 INMODE is the machine mode that the instruction requires
897 for the reg that replaces IN and OUTMODE is likewise for OUT.
899 If IN is zero, then OUT's location and mode should be passed as
900 INLOC and INMODE.
902 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
904 OPTIONAL nonzero means this reload does not need to be performed:
905 it can be discarded if that is more convenient.
907 OPNUM and TYPE say what the purpose of this reload is.
909 The return value is the reload-number for this reload.
911 If both IN and OUT are nonzero, in some rare cases we might
912 want to make two separate reloads. (Actually we never do this now.)
913 Therefore, the reload-number for OUT is stored in
914 output_reloadnum when we return; the return value applies to IN.
915 Usually (presently always), when IN and OUT are nonzero,
916 the two reload-numbers are equal, but the caller should be careful to
917 distinguish them. */
920 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
921 enum reg_class rclass, enum machine_mode inmode,
922 enum machine_mode outmode, int strict_low, int optional,
923 int opnum, enum reload_type type)
925 int i;
926 int dont_share = 0;
927 int dont_remove_subreg = 0;
928 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
929 int secondary_in_reload = -1, secondary_out_reload = -1;
930 enum insn_code secondary_in_icode = CODE_FOR_nothing;
931 enum insn_code secondary_out_icode = CODE_FOR_nothing;
933 /* INMODE and/or OUTMODE could be VOIDmode if no mode
934 has been specified for the operand. In that case,
935 use the operand's mode as the mode to reload. */
936 if (inmode == VOIDmode && in != 0)
937 inmode = GET_MODE (in);
938 if (outmode == VOIDmode && out != 0)
939 outmode = GET_MODE (out);
941 /* If find_reloads and friends until now missed to replace a pseudo
942 with a constant of reg_equiv_constant something went wrong
943 beforehand.
944 Note that it can't simply be done here if we missed it earlier
945 since the constant might need to be pushed into the literal pool
946 and the resulting memref would probably need further
947 reloading. */
948 if (in != 0 && REG_P (in))
950 int regno = REGNO (in);
952 gcc_assert (regno < FIRST_PSEUDO_REGISTER
953 || reg_renumber[regno] >= 0
954 || reg_equiv_constant (regno) == NULL_RTX);
957 /* reg_equiv_constant only contains constants which are obviously
958 not appropriate as destination. So if we would need to replace
959 the destination pseudo with a constant we are in real
960 trouble. */
961 if (out != 0 && REG_P (out))
963 int regno = REGNO (out);
965 gcc_assert (regno < FIRST_PSEUDO_REGISTER
966 || reg_renumber[regno] >= 0
967 || reg_equiv_constant (regno) == NULL_RTX);
970 /* If we have a read-write operand with an address side-effect,
971 change either IN or OUT so the side-effect happens only once. */
972 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
973 switch (GET_CODE (XEXP (in, 0)))
975 case POST_INC: case POST_DEC: case POST_MODIFY:
976 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
977 break;
979 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
980 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
981 break;
983 default:
984 break;
987 /* If we are reloading a (SUBREG constant ...), really reload just the
988 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
989 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
990 a pseudo and hence will become a MEM) with M1 wider than M2 and the
991 register is a pseudo, also reload the inside expression.
992 For machines that extend byte loads, do this for any SUBREG of a pseudo
993 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
994 M2 is an integral mode that gets extended when loaded.
995 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
996 either M1 is not valid for R or M2 is wider than a word but we only
997 need one word to store an M2-sized quantity in R.
998 (However, if OUT is nonzero, we need to reload the reg *and*
999 the subreg, so do nothing here, and let following statement handle it.)
1001 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1002 we can't handle it here because CONST_INT does not indicate a mode.
1004 Similarly, we must reload the inside expression if we have a
1005 STRICT_LOW_PART (presumably, in == out in this case).
1007 Also reload the inner expression if it does not require a secondary
1008 reload but the SUBREG does.
1010 Finally, reload the inner expression if it is a register that is in
1011 the class whose registers cannot be referenced in a different size
1012 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1013 cannot reload just the inside since we might end up with the wrong
1014 register class. But if it is inside a STRICT_LOW_PART, we have
1015 no choice, so we hope we do get the right register class there. */
1017 if (in != 0 && GET_CODE (in) == SUBREG
1018 && (subreg_lowpart_p (in) || strict_low)
1019 #ifdef CANNOT_CHANGE_MODE_CLASS
1020 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1021 #endif
1022 && (CONSTANT_P (SUBREG_REG (in))
1023 || GET_CODE (SUBREG_REG (in)) == PLUS
1024 || strict_low
1025 || (((REG_P (SUBREG_REG (in))
1026 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1027 || MEM_P (SUBREG_REG (in)))
1028 && ((GET_MODE_SIZE (inmode)
1029 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1030 #ifdef LOAD_EXTEND_OP
1031 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1032 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1033 <= UNITS_PER_WORD)
1034 && (GET_MODE_SIZE (inmode)
1035 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1036 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1037 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1038 #endif
1039 #ifdef WORD_REGISTER_OPERATIONS
1040 || ((GET_MODE_SIZE (inmode)
1041 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1042 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1043 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1044 / UNITS_PER_WORD)))
1045 #endif
1047 || (REG_P (SUBREG_REG (in))
1048 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1049 /* The case where out is nonzero
1050 is handled differently in the following statement. */
1051 && (out == 0 || subreg_lowpart_p (in))
1052 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1053 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1054 > UNITS_PER_WORD)
1055 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1056 / UNITS_PER_WORD)
1057 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1058 [GET_MODE (SUBREG_REG (in))]))
1059 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1060 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1061 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1062 SUBREG_REG (in))
1063 == NO_REGS))
1064 #ifdef CANNOT_CHANGE_MODE_CLASS
1065 || (REG_P (SUBREG_REG (in))
1066 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1067 && REG_CANNOT_CHANGE_MODE_P
1068 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1069 #endif
1072 in_subreg_loc = inloc;
1073 inloc = &SUBREG_REG (in);
1074 in = *inloc;
1075 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1076 if (MEM_P (in))
1077 /* This is supposed to happen only for paradoxical subregs made by
1078 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1079 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1080 #endif
1081 inmode = GET_MODE (in);
1084 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1085 either M1 is not valid for R or M2 is wider than a word but we only
1086 need one word to store an M2-sized quantity in R.
1088 However, we must reload the inner reg *as well as* the subreg in
1089 that case. */
1091 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1092 code above. This can happen if SUBREG_BYTE != 0. */
1094 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1096 enum reg_class in_class = rclass;
1098 if (REG_P (SUBREG_REG (in)))
1099 in_class
1100 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1101 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1102 GET_MODE (SUBREG_REG (in)),
1103 SUBREG_BYTE (in),
1104 GET_MODE (in)),
1105 REGNO (SUBREG_REG (in)));
1107 /* This relies on the fact that emit_reload_insns outputs the
1108 instructions for input reloads of type RELOAD_OTHER in the same
1109 order as the reloads. Thus if the outer reload is also of type
1110 RELOAD_OTHER, we are guaranteed that this inner reload will be
1111 output before the outer reload. */
1112 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1113 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1114 dont_remove_subreg = 1;
1117 /* Similarly for paradoxical and problematical SUBREGs on the output.
1118 Note that there is no reason we need worry about the previous value
1119 of SUBREG_REG (out); even if wider than out,
1120 storing in a subreg is entitled to clobber it all
1121 (except in the case of STRICT_LOW_PART,
1122 and in that case the constraint should label it input-output.) */
1123 if (out != 0 && GET_CODE (out) == SUBREG
1124 && (subreg_lowpart_p (out) || strict_low)
1125 #ifdef CANNOT_CHANGE_MODE_CLASS
1126 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1127 #endif
1128 && (CONSTANT_P (SUBREG_REG (out))
1129 || strict_low
1130 || (((REG_P (SUBREG_REG (out))
1131 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1132 || MEM_P (SUBREG_REG (out)))
1133 && ((GET_MODE_SIZE (outmode)
1134 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1135 #ifdef WORD_REGISTER_OPERATIONS
1136 || ((GET_MODE_SIZE (outmode)
1137 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1138 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1139 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1140 / UNITS_PER_WORD)))
1141 #endif
1143 || (REG_P (SUBREG_REG (out))
1144 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1145 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1146 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1147 > UNITS_PER_WORD)
1148 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1149 / UNITS_PER_WORD)
1150 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1151 [GET_MODE (SUBREG_REG (out))]))
1152 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1153 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1154 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1155 SUBREG_REG (out))
1156 == NO_REGS))
1157 #ifdef CANNOT_CHANGE_MODE_CLASS
1158 || (REG_P (SUBREG_REG (out))
1159 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1160 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1161 GET_MODE (SUBREG_REG (out)),
1162 outmode))
1163 #endif
1166 out_subreg_loc = outloc;
1167 outloc = &SUBREG_REG (out);
1168 out = *outloc;
1169 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1170 gcc_assert (!MEM_P (out)
1171 || GET_MODE_SIZE (GET_MODE (out))
1172 <= GET_MODE_SIZE (outmode));
1173 #endif
1174 outmode = GET_MODE (out);
1177 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1178 either M1 is not valid for R or M2 is wider than a word but we only
1179 need one word to store an M2-sized quantity in R.
1181 However, we must reload the inner reg *as well as* the subreg in
1182 that case. In this case, the inner reg is an in-out reload. */
1184 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1186 /* This relies on the fact that emit_reload_insns outputs the
1187 instructions for output reloads of type RELOAD_OTHER in reverse
1188 order of the reloads. Thus if the outer reload is also of type
1189 RELOAD_OTHER, we are guaranteed that this inner reload will be
1190 output after the outer reload. */
1191 dont_remove_subreg = 1;
1192 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1193 &SUBREG_REG (out),
1194 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1195 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1196 GET_MODE (SUBREG_REG (out)),
1197 SUBREG_BYTE (out),
1198 GET_MODE (out)),
1199 REGNO (SUBREG_REG (out))),
1200 VOIDmode, VOIDmode, 0, 0,
1201 opnum, RELOAD_OTHER);
1204 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1205 if (in != 0 && out != 0 && MEM_P (out)
1206 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1207 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1208 dont_share = 1;
1210 /* If IN is a SUBREG of a hard register, make a new REG. This
1211 simplifies some of the cases below. */
1213 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1214 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1215 && ! dont_remove_subreg)
1216 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1218 /* Similarly for OUT. */
1219 if (out != 0 && GET_CODE (out) == SUBREG
1220 && REG_P (SUBREG_REG (out))
1221 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1222 && ! dont_remove_subreg)
1223 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1225 /* Narrow down the class of register wanted if that is
1226 desirable on this machine for efficiency. */
1228 reg_class_t preferred_class = rclass;
1230 if (in != 0)
1231 preferred_class = targetm.preferred_reload_class (in, rclass);
1233 /* Output reloads may need analogous treatment, different in detail. */
1234 if (out != 0)
1235 preferred_class
1236 = targetm.preferred_output_reload_class (out, preferred_class);
1238 /* Discard what the target said if we cannot do it. */
1239 if (preferred_class != NO_REGS
1240 || (optional && type == RELOAD_FOR_OUTPUT))
1241 rclass = (enum reg_class) preferred_class;
1244 /* Make sure we use a class that can handle the actual pseudo
1245 inside any subreg. For example, on the 386, QImode regs
1246 can appear within SImode subregs. Although GENERAL_REGS
1247 can handle SImode, QImode needs a smaller class. */
1248 #ifdef LIMIT_RELOAD_CLASS
1249 if (in_subreg_loc)
1250 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1251 else if (in != 0 && GET_CODE (in) == SUBREG)
1252 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1254 if (out_subreg_loc)
1255 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1256 if (out != 0 && GET_CODE (out) == SUBREG)
1257 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1258 #endif
1260 /* Verify that this class is at least possible for the mode that
1261 is specified. */
1262 if (this_insn_is_asm)
1264 enum machine_mode mode;
1265 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1266 mode = inmode;
1267 else
1268 mode = outmode;
1269 if (mode == VOIDmode)
1271 error_for_asm (this_insn, "cannot reload integer constant "
1272 "operand in %<asm%>");
1273 mode = word_mode;
1274 if (in != 0)
1275 inmode = word_mode;
1276 if (out != 0)
1277 outmode = word_mode;
1279 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1280 if (HARD_REGNO_MODE_OK (i, mode)
1281 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1282 break;
1283 if (i == FIRST_PSEUDO_REGISTER)
1285 error_for_asm (this_insn, "impossible register constraint "
1286 "in %<asm%>");
1287 /* Avoid further trouble with this insn. */
1288 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1289 /* We used to continue here setting class to ALL_REGS, but it triggers
1290 sanity check on i386 for:
1291 void foo(long double d)
1293 asm("" :: "a" (d));
1295 Returning zero here ought to be safe as we take care in
1296 find_reloads to not process the reloads when instruction was
1297 replaced by USE. */
1299 return 0;
1303 /* Optional output reloads are always OK even if we have no register class,
1304 since the function of these reloads is only to have spill_reg_store etc.
1305 set, so that the storing insn can be deleted later. */
1306 gcc_assert (rclass != NO_REGS
1307 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1309 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1311 if (i == n_reloads)
1313 /* See if we need a secondary reload register to move between CLASS
1314 and IN or CLASS and OUT. Get the icode and push any required reloads
1315 needed for each of them if so. */
1317 if (in != 0)
1318 secondary_in_reload
1319 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1320 &secondary_in_icode, NULL);
1321 if (out != 0 && GET_CODE (out) != SCRATCH)
1322 secondary_out_reload
1323 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1324 type, &secondary_out_icode, NULL);
1326 /* We found no existing reload suitable for re-use.
1327 So add an additional reload. */
1329 #ifdef SECONDARY_MEMORY_NEEDED
1330 /* If a memory location is needed for the copy, make one. */
1331 if (in != 0
1332 && (REG_P (in)
1333 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1334 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1335 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1336 rclass, inmode))
1337 get_secondary_mem (in, inmode, opnum, type);
1338 #endif
1340 i = n_reloads;
1341 rld[i].in = in;
1342 rld[i].out = out;
1343 rld[i].rclass = rclass;
1344 rld[i].inmode = inmode;
1345 rld[i].outmode = outmode;
1346 rld[i].reg_rtx = 0;
1347 rld[i].optional = optional;
1348 rld[i].inc = 0;
1349 rld[i].nocombine = 0;
1350 rld[i].in_reg = inloc ? *inloc : 0;
1351 rld[i].out_reg = outloc ? *outloc : 0;
1352 rld[i].opnum = opnum;
1353 rld[i].when_needed = type;
1354 rld[i].secondary_in_reload = secondary_in_reload;
1355 rld[i].secondary_out_reload = secondary_out_reload;
1356 rld[i].secondary_in_icode = secondary_in_icode;
1357 rld[i].secondary_out_icode = secondary_out_icode;
1358 rld[i].secondary_p = 0;
1360 n_reloads++;
1362 #ifdef SECONDARY_MEMORY_NEEDED
1363 if (out != 0
1364 && (REG_P (out)
1365 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1366 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1367 && SECONDARY_MEMORY_NEEDED (rclass,
1368 REGNO_REG_CLASS (reg_or_subregno (out)),
1369 outmode))
1370 get_secondary_mem (out, outmode, opnum, type);
1371 #endif
1373 else
1375 /* We are reusing an existing reload,
1376 but we may have additional information for it.
1377 For example, we may now have both IN and OUT
1378 while the old one may have just one of them. */
1380 /* The modes can be different. If they are, we want to reload in
1381 the larger mode, so that the value is valid for both modes. */
1382 if (inmode != VOIDmode
1383 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1384 rld[i].inmode = inmode;
1385 if (outmode != VOIDmode
1386 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1387 rld[i].outmode = outmode;
1388 if (in != 0)
1390 rtx in_reg = inloc ? *inloc : 0;
1391 /* If we merge reloads for two distinct rtl expressions that
1392 are identical in content, there might be duplicate address
1393 reloads. Remove the extra set now, so that if we later find
1394 that we can inherit this reload, we can get rid of the
1395 address reloads altogether.
1397 Do not do this if both reloads are optional since the result
1398 would be an optional reload which could potentially leave
1399 unresolved address replacements.
1401 It is not sufficient to call transfer_replacements since
1402 choose_reload_regs will remove the replacements for address
1403 reloads of inherited reloads which results in the same
1404 problem. */
1405 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1406 && ! (rld[i].optional && optional))
1408 /* We must keep the address reload with the lower operand
1409 number alive. */
1410 if (opnum > rld[i].opnum)
1412 remove_address_replacements (in);
1413 in = rld[i].in;
1414 in_reg = rld[i].in_reg;
1416 else
1417 remove_address_replacements (rld[i].in);
1419 /* When emitting reloads we don't necessarily look at the in-
1420 and outmode, but also directly at the operands (in and out).
1421 So we can't simply overwrite them with whatever we have found
1422 for this (to-be-merged) reload, we have to "merge" that too.
1423 Reusing another reload already verified that we deal with the
1424 same operands, just possibly in different modes. So we
1425 overwrite the operands only when the new mode is larger.
1426 See also PR33613. */
1427 if (!rld[i].in
1428 || GET_MODE_SIZE (GET_MODE (in))
1429 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1430 rld[i].in = in;
1431 if (!rld[i].in_reg
1432 || (in_reg
1433 && GET_MODE_SIZE (GET_MODE (in_reg))
1434 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1435 rld[i].in_reg = in_reg;
1437 if (out != 0)
1439 if (!rld[i].out
1440 || (out
1441 && GET_MODE_SIZE (GET_MODE (out))
1442 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1443 rld[i].out = out;
1444 if (outloc
1445 && (!rld[i].out_reg
1446 || GET_MODE_SIZE (GET_MODE (*outloc))
1447 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1448 rld[i].out_reg = *outloc;
1450 if (reg_class_subset_p (rclass, rld[i].rclass))
1451 rld[i].rclass = rclass;
1452 rld[i].optional &= optional;
1453 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1454 opnum, rld[i].opnum))
1455 rld[i].when_needed = RELOAD_OTHER;
1456 rld[i].opnum = MIN (rld[i].opnum, opnum);
1459 /* If the ostensible rtx being reloaded differs from the rtx found
1460 in the location to substitute, this reload is not safe to combine
1461 because we cannot reliably tell whether it appears in the insn. */
1463 if (in != 0 && in != *inloc)
1464 rld[i].nocombine = 1;
1466 #if 0
1467 /* This was replaced by changes in find_reloads_address_1 and the new
1468 function inc_for_reload, which go with a new meaning of reload_inc. */
1470 /* If this is an IN/OUT reload in an insn that sets the CC,
1471 it must be for an autoincrement. It doesn't work to store
1472 the incremented value after the insn because that would clobber the CC.
1473 So we must do the increment of the value reloaded from,
1474 increment it, store it back, then decrement again. */
1475 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1477 out = 0;
1478 rld[i].out = 0;
1479 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1480 /* If we did not find a nonzero amount-to-increment-by,
1481 that contradicts the belief that IN is being incremented
1482 in an address in this insn. */
1483 gcc_assert (rld[i].inc != 0);
1485 #endif
1487 /* If we will replace IN and OUT with the reload-reg,
1488 record where they are located so that substitution need
1489 not do a tree walk. */
1491 if (replace_reloads)
1493 if (inloc != 0)
1495 struct replacement *r = &replacements[n_replacements++];
1496 r->what = i;
1497 r->subreg_loc = in_subreg_loc;
1498 r->where = inloc;
1499 r->mode = inmode;
1501 if (outloc != 0 && outloc != inloc)
1503 struct replacement *r = &replacements[n_replacements++];
1504 r->what = i;
1505 r->where = outloc;
1506 r->subreg_loc = out_subreg_loc;
1507 r->mode = outmode;
1511 /* If this reload is just being introduced and it has both
1512 an incoming quantity and an outgoing quantity that are
1513 supposed to be made to match, see if either one of the two
1514 can serve as the place to reload into.
1516 If one of them is acceptable, set rld[i].reg_rtx
1517 to that one. */
1519 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1521 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1522 inmode, outmode,
1523 rld[i].rclass, i,
1524 earlyclobber_operand_p (out));
1526 /* If the outgoing register already contains the same value
1527 as the incoming one, we can dispense with loading it.
1528 The easiest way to tell the caller that is to give a phony
1529 value for the incoming operand (same as outgoing one). */
1530 if (rld[i].reg_rtx == out
1531 && (REG_P (in) || CONSTANT_P (in))
1532 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1533 static_reload_reg_p, i, inmode))
1534 rld[i].in = out;
1537 /* If this is an input reload and the operand contains a register that
1538 dies in this insn and is used nowhere else, see if it is the right class
1539 to be used for this reload. Use it if so. (This occurs most commonly
1540 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1541 this if it is also an output reload that mentions the register unless
1542 the output is a SUBREG that clobbers an entire register.
1544 Note that the operand might be one of the spill regs, if it is a
1545 pseudo reg and we are in a block where spilling has not taken place.
1546 But if there is no spilling in this block, that is OK.
1547 An explicitly used hard reg cannot be a spill reg. */
1549 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1551 rtx note;
1552 int regno;
1553 enum machine_mode rel_mode = inmode;
1555 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1556 rel_mode = outmode;
1558 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1559 if (REG_NOTE_KIND (note) == REG_DEAD
1560 && REG_P (XEXP (note, 0))
1561 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1562 && reg_mentioned_p (XEXP (note, 0), in)
1563 /* Check that a former pseudo is valid; see find_dummy_reload. */
1564 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1565 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1566 ORIGINAL_REGNO (XEXP (note, 0)))
1567 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1568 && ! refers_to_regno_for_reload_p (regno,
1569 end_hard_regno (rel_mode,
1570 regno),
1571 PATTERN (this_insn), inloc)
1572 /* If this is also an output reload, IN cannot be used as
1573 the reload register if it is set in this insn unless IN
1574 is also OUT. */
1575 && (out == 0 || in == out
1576 || ! hard_reg_set_here_p (regno,
1577 end_hard_regno (rel_mode, regno),
1578 PATTERN (this_insn)))
1579 /* ??? Why is this code so different from the previous?
1580 Is there any simple coherent way to describe the two together?
1581 What's going on here. */
1582 && (in != out
1583 || (GET_CODE (in) == SUBREG
1584 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1585 / UNITS_PER_WORD)
1586 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1587 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1588 /* Make sure the operand fits in the reg that dies. */
1589 && (GET_MODE_SIZE (rel_mode)
1590 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1591 && HARD_REGNO_MODE_OK (regno, inmode)
1592 && HARD_REGNO_MODE_OK (regno, outmode))
1594 unsigned int offs;
1595 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1596 hard_regno_nregs[regno][outmode]);
1598 for (offs = 0; offs < nregs; offs++)
1599 if (fixed_regs[regno + offs]
1600 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1601 regno + offs))
1602 break;
1604 if (offs == nregs
1605 && (! (refers_to_regno_for_reload_p
1606 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1607 || can_reload_into (in, regno, inmode)))
1609 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1610 break;
1615 if (out)
1616 output_reloadnum = i;
1618 return i;
1621 /* Record an additional place we must replace a value
1622 for which we have already recorded a reload.
1623 RELOADNUM is the value returned by push_reload
1624 when the reload was recorded.
1625 This is used in insn patterns that use match_dup. */
1627 static void
1628 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1630 if (replace_reloads)
1632 struct replacement *r = &replacements[n_replacements++];
1633 r->what = reloadnum;
1634 r->where = loc;
1635 r->subreg_loc = 0;
1636 r->mode = mode;
1640 /* Duplicate any replacement we have recorded to apply at
1641 location ORIG_LOC to also be performed at DUP_LOC.
1642 This is used in insn patterns that use match_dup. */
1644 static void
1645 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1647 int i, n = n_replacements;
1649 for (i = 0; i < n; i++)
1651 struct replacement *r = &replacements[i];
1652 if (r->where == orig_loc)
1653 push_replacement (dup_loc, r->what, r->mode);
1657 /* Transfer all replacements that used to be in reload FROM to be in
1658 reload TO. */
1660 void
1661 transfer_replacements (int to, int from)
1663 int i;
1665 for (i = 0; i < n_replacements; i++)
1666 if (replacements[i].what == from)
1667 replacements[i].what = to;
1670 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1671 or a subpart of it. If we have any replacements registered for IN_RTX,
1672 cancel the reloads that were supposed to load them.
1673 Return nonzero if we canceled any reloads. */
1675 remove_address_replacements (rtx in_rtx)
1677 int i, j;
1678 char reload_flags[MAX_RELOADS];
1679 int something_changed = 0;
1681 memset (reload_flags, 0, sizeof reload_flags);
1682 for (i = 0, j = 0; i < n_replacements; i++)
1684 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1685 reload_flags[replacements[i].what] |= 1;
1686 else
1688 replacements[j++] = replacements[i];
1689 reload_flags[replacements[i].what] |= 2;
1692 /* Note that the following store must be done before the recursive calls. */
1693 n_replacements = j;
1695 for (i = n_reloads - 1; i >= 0; i--)
1697 if (reload_flags[i] == 1)
1699 deallocate_reload_reg (i);
1700 remove_address_replacements (rld[i].in);
1701 rld[i].in = 0;
1702 something_changed = 1;
1705 return something_changed;
1708 /* If there is only one output reload, and it is not for an earlyclobber
1709 operand, try to combine it with a (logically unrelated) input reload
1710 to reduce the number of reload registers needed.
1712 This is safe if the input reload does not appear in
1713 the value being output-reloaded, because this implies
1714 it is not needed any more once the original insn completes.
1716 If that doesn't work, see we can use any of the registers that
1717 die in this insn as a reload register. We can if it is of the right
1718 class and does not appear in the value being output-reloaded. */
1720 static void
1721 combine_reloads (void)
1723 int i, regno;
1724 int output_reload = -1;
1725 int secondary_out = -1;
1726 rtx note;
1728 /* Find the output reload; return unless there is exactly one
1729 and that one is mandatory. */
1731 for (i = 0; i < n_reloads; i++)
1732 if (rld[i].out != 0)
1734 if (output_reload >= 0)
1735 return;
1736 output_reload = i;
1739 if (output_reload < 0 || rld[output_reload].optional)
1740 return;
1742 /* An input-output reload isn't combinable. */
1744 if (rld[output_reload].in != 0)
1745 return;
1747 /* If this reload is for an earlyclobber operand, we can't do anything. */
1748 if (earlyclobber_operand_p (rld[output_reload].out))
1749 return;
1751 /* If there is a reload for part of the address of this operand, we would
1752 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1753 its life to the point where doing this combine would not lower the
1754 number of spill registers needed. */
1755 for (i = 0; i < n_reloads; i++)
1756 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1757 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1758 && rld[i].opnum == rld[output_reload].opnum)
1759 return;
1761 /* Check each input reload; can we combine it? */
1763 for (i = 0; i < n_reloads; i++)
1764 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1765 /* Life span of this reload must not extend past main insn. */
1766 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1767 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1768 && rld[i].when_needed != RELOAD_OTHER
1769 && (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1770 == CLASS_MAX_NREGS (rld[output_reload].rclass,
1771 rld[output_reload].outmode))
1772 && rld[i].inc == 0
1773 && rld[i].reg_rtx == 0
1774 #ifdef SECONDARY_MEMORY_NEEDED
1775 /* Don't combine two reloads with different secondary
1776 memory locations. */
1777 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1778 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1779 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1780 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1781 #endif
1782 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1783 ? (rld[i].rclass == rld[output_reload].rclass)
1784 : (reg_class_subset_p (rld[i].rclass,
1785 rld[output_reload].rclass)
1786 || reg_class_subset_p (rld[output_reload].rclass,
1787 rld[i].rclass)))
1788 && (MATCHES (rld[i].in, rld[output_reload].out)
1789 /* Args reversed because the first arg seems to be
1790 the one that we imagine being modified
1791 while the second is the one that might be affected. */
1792 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1793 rld[i].in)
1794 /* However, if the input is a register that appears inside
1795 the output, then we also can't share.
1796 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1797 If the same reload reg is used for both reg 69 and the
1798 result to be stored in memory, then that result
1799 will clobber the address of the memory ref. */
1800 && ! (REG_P (rld[i].in)
1801 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1802 rld[output_reload].out))))
1803 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1804 rld[i].when_needed != RELOAD_FOR_INPUT)
1805 && (reg_class_size[(int) rld[i].rclass]
1806 || targetm.small_register_classes_for_mode_p (VOIDmode))
1807 /* We will allow making things slightly worse by combining an
1808 input and an output, but no worse than that. */
1809 && (rld[i].when_needed == RELOAD_FOR_INPUT
1810 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1812 int j;
1814 /* We have found a reload to combine with! */
1815 rld[i].out = rld[output_reload].out;
1816 rld[i].out_reg = rld[output_reload].out_reg;
1817 rld[i].outmode = rld[output_reload].outmode;
1818 /* Mark the old output reload as inoperative. */
1819 rld[output_reload].out = 0;
1820 /* The combined reload is needed for the entire insn. */
1821 rld[i].when_needed = RELOAD_OTHER;
1822 /* If the output reload had a secondary reload, copy it. */
1823 if (rld[output_reload].secondary_out_reload != -1)
1825 rld[i].secondary_out_reload
1826 = rld[output_reload].secondary_out_reload;
1827 rld[i].secondary_out_icode
1828 = rld[output_reload].secondary_out_icode;
1831 #ifdef SECONDARY_MEMORY_NEEDED
1832 /* Copy any secondary MEM. */
1833 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1834 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1835 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1836 #endif
1837 /* If required, minimize the register class. */
1838 if (reg_class_subset_p (rld[output_reload].rclass,
1839 rld[i].rclass))
1840 rld[i].rclass = rld[output_reload].rclass;
1842 /* Transfer all replacements from the old reload to the combined. */
1843 for (j = 0; j < n_replacements; j++)
1844 if (replacements[j].what == output_reload)
1845 replacements[j].what = i;
1847 return;
1850 /* If this insn has only one operand that is modified or written (assumed
1851 to be the first), it must be the one corresponding to this reload. It
1852 is safe to use anything that dies in this insn for that output provided
1853 that it does not occur in the output (we already know it isn't an
1854 earlyclobber. If this is an asm insn, give up. */
1856 if (INSN_CODE (this_insn) == -1)
1857 return;
1859 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1860 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1861 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1862 return;
1864 /* See if some hard register that dies in this insn and is not used in
1865 the output is the right class. Only works if the register we pick
1866 up can fully hold our output reload. */
1867 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1868 if (REG_NOTE_KIND (note) == REG_DEAD
1869 && REG_P (XEXP (note, 0))
1870 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1871 rld[output_reload].out)
1872 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1873 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1874 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1875 regno)
1876 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1877 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1878 /* Ensure that a secondary or tertiary reload for this output
1879 won't want this register. */
1880 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1881 || (!(TEST_HARD_REG_BIT
1882 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1883 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1884 || !(TEST_HARD_REG_BIT
1885 (reg_class_contents[(int) rld[secondary_out].rclass],
1886 regno)))))
1887 && !fixed_regs[regno]
1888 /* Check that a former pseudo is valid; see find_dummy_reload. */
1889 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1890 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1891 ORIGINAL_REGNO (XEXP (note, 0)))
1892 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1894 rld[output_reload].reg_rtx
1895 = gen_rtx_REG (rld[output_reload].outmode, regno);
1896 return;
1900 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1901 See if one of IN and OUT is a register that may be used;
1902 this is desirable since a spill-register won't be needed.
1903 If so, return the register rtx that proves acceptable.
1905 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1906 RCLASS is the register class required for the reload.
1908 If FOR_REAL is >= 0, it is the number of the reload,
1909 and in some cases when it can be discovered that OUT doesn't need
1910 to be computed, clear out rld[FOR_REAL].out.
1912 If FOR_REAL is -1, this should not be done, because this call
1913 is just to see if a register can be found, not to find and install it.
1915 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1916 puts an additional constraint on being able to use IN for OUT since
1917 IN must not appear elsewhere in the insn (it is assumed that IN itself
1918 is safe from the earlyclobber). */
1920 static rtx
1921 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1922 enum machine_mode inmode, enum machine_mode outmode,
1923 reg_class_t rclass, int for_real, int earlyclobber)
1925 rtx in = real_in;
1926 rtx out = real_out;
1927 int in_offset = 0;
1928 int out_offset = 0;
1929 rtx value = 0;
1931 /* If operands exceed a word, we can't use either of them
1932 unless they have the same size. */
1933 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1934 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1935 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1936 return 0;
1938 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1939 respectively refers to a hard register. */
1941 /* Find the inside of any subregs. */
1942 while (GET_CODE (out) == SUBREG)
1944 if (REG_P (SUBREG_REG (out))
1945 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1946 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1947 GET_MODE (SUBREG_REG (out)),
1948 SUBREG_BYTE (out),
1949 GET_MODE (out));
1950 out = SUBREG_REG (out);
1952 while (GET_CODE (in) == SUBREG)
1954 if (REG_P (SUBREG_REG (in))
1955 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1956 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1957 GET_MODE (SUBREG_REG (in)),
1958 SUBREG_BYTE (in),
1959 GET_MODE (in));
1960 in = SUBREG_REG (in);
1963 /* Narrow down the reg class, the same way push_reload will;
1964 otherwise we might find a dummy now, but push_reload won't. */
1966 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1967 if (preferred_class != NO_REGS)
1968 rclass = (enum reg_class) preferred_class;
1971 /* See if OUT will do. */
1972 if (REG_P (out)
1973 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1975 unsigned int regno = REGNO (out) + out_offset;
1976 unsigned int nwords = hard_regno_nregs[regno][outmode];
1977 rtx saved_rtx;
1979 /* When we consider whether the insn uses OUT,
1980 ignore references within IN. They don't prevent us
1981 from copying IN into OUT, because those refs would
1982 move into the insn that reloads IN.
1984 However, we only ignore IN in its role as this reload.
1985 If the insn uses IN elsewhere and it contains OUT,
1986 that counts. We can't be sure it's the "same" operand
1987 so it might not go through this reload. */
1988 saved_rtx = *inloc;
1989 *inloc = const0_rtx;
1991 if (regno < FIRST_PSEUDO_REGISTER
1992 && HARD_REGNO_MODE_OK (regno, outmode)
1993 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1994 PATTERN (this_insn), outloc))
1996 unsigned int i;
1998 for (i = 0; i < nwords; i++)
1999 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2000 regno + i))
2001 break;
2003 if (i == nwords)
2005 if (REG_P (real_out))
2006 value = real_out;
2007 else
2008 value = gen_rtx_REG (outmode, regno);
2012 *inloc = saved_rtx;
2015 /* Consider using IN if OUT was not acceptable
2016 or if OUT dies in this insn (like the quotient in a divmod insn).
2017 We can't use IN unless it is dies in this insn,
2018 which means we must know accurately which hard regs are live.
2019 Also, the result can't go in IN if IN is used within OUT,
2020 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2021 if (hard_regs_live_known
2022 && REG_P (in)
2023 && REGNO (in) < FIRST_PSEUDO_REGISTER
2024 && (value == 0
2025 || find_reg_note (this_insn, REG_UNUSED, real_out))
2026 && find_reg_note (this_insn, REG_DEAD, real_in)
2027 && !fixed_regs[REGNO (in)]
2028 && HARD_REGNO_MODE_OK (REGNO (in),
2029 /* The only case where out and real_out might
2030 have different modes is where real_out
2031 is a subreg, and in that case, out
2032 has a real mode. */
2033 (GET_MODE (out) != VOIDmode
2034 ? GET_MODE (out) : outmode))
2035 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2036 /* However only do this if we can be sure that this input
2037 operand doesn't correspond with an uninitialized pseudo.
2038 global can assign some hardreg to it that is the same as
2039 the one assigned to a different, also live pseudo (as it
2040 can ignore the conflict). We must never introduce writes
2041 to such hardregs, as they would clobber the other live
2042 pseudo. See PR 20973. */
2043 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2044 ORIGINAL_REGNO (in))
2045 /* Similarly, only do this if we can be sure that the death
2046 note is still valid. global can assign some hardreg to
2047 the pseudo referenced in the note and simultaneously a
2048 subword of this hardreg to a different, also live pseudo,
2049 because only another subword of the hardreg is actually
2050 used in the insn. This cannot happen if the pseudo has
2051 been assigned exactly one hardreg. See PR 33732. */
2052 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2054 unsigned int regno = REGNO (in) + in_offset;
2055 unsigned int nwords = hard_regno_nregs[regno][inmode];
2057 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2058 && ! hard_reg_set_here_p (regno, regno + nwords,
2059 PATTERN (this_insn))
2060 && (! earlyclobber
2061 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2062 PATTERN (this_insn), inloc)))
2064 unsigned int i;
2066 for (i = 0; i < nwords; i++)
2067 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2068 regno + i))
2069 break;
2071 if (i == nwords)
2073 /* If we were going to use OUT as the reload reg
2074 and changed our mind, it means OUT is a dummy that
2075 dies here. So don't bother copying value to it. */
2076 if (for_real >= 0 && value == real_out)
2077 rld[for_real].out = 0;
2078 if (REG_P (real_in))
2079 value = real_in;
2080 else
2081 value = gen_rtx_REG (inmode, regno);
2086 return value;
2089 /* This page contains subroutines used mainly for determining
2090 whether the IN or an OUT of a reload can serve as the
2091 reload register. */
2093 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2096 earlyclobber_operand_p (rtx x)
2098 int i;
2100 for (i = 0; i < n_earlyclobbers; i++)
2101 if (reload_earlyclobbers[i] == x)
2102 return 1;
2104 return 0;
2107 /* Return 1 if expression X alters a hard reg in the range
2108 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2109 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2110 X should be the body of an instruction. */
2112 static int
2113 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2115 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2117 rtx op0 = SET_DEST (x);
2119 while (GET_CODE (op0) == SUBREG)
2120 op0 = SUBREG_REG (op0);
2121 if (REG_P (op0))
2123 unsigned int r = REGNO (op0);
2125 /* See if this reg overlaps range under consideration. */
2126 if (r < end_regno
2127 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2128 return 1;
2131 else if (GET_CODE (x) == PARALLEL)
2133 int i = XVECLEN (x, 0) - 1;
2135 for (; i >= 0; i--)
2136 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2137 return 1;
2140 return 0;
2143 /* Return 1 if ADDR is a valid memory address for mode MODE
2144 in address space AS, and check that each pseudo reg has the
2145 proper kind of hard reg. */
2148 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2149 rtx addr, addr_space_t as)
2151 #ifdef GO_IF_LEGITIMATE_ADDRESS
2152 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2153 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2154 return 0;
2156 win:
2157 return 1;
2158 #else
2159 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2160 #endif
2163 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2164 if they are the same hard reg, and has special hacks for
2165 autoincrement and autodecrement.
2166 This is specifically intended for find_reloads to use
2167 in determining whether two operands match.
2168 X is the operand whose number is the lower of the two.
2170 The value is 2 if Y contains a pre-increment that matches
2171 a non-incrementing address in X. */
2173 /* ??? To be completely correct, we should arrange to pass
2174 for X the output operand and for Y the input operand.
2175 For now, we assume that the output operand has the lower number
2176 because that is natural in (SET output (... input ...)). */
2179 operands_match_p (rtx x, rtx y)
2181 int i;
2182 RTX_CODE code = GET_CODE (x);
2183 const char *fmt;
2184 int success_2;
2186 if (x == y)
2187 return 1;
2188 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2189 && (REG_P (y) || (GET_CODE (y) == SUBREG
2190 && REG_P (SUBREG_REG (y)))))
2192 int j;
2194 if (code == SUBREG)
2196 i = REGNO (SUBREG_REG (x));
2197 if (i >= FIRST_PSEUDO_REGISTER)
2198 goto slow;
2199 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2200 GET_MODE (SUBREG_REG (x)),
2201 SUBREG_BYTE (x),
2202 GET_MODE (x));
2204 else
2205 i = REGNO (x);
2207 if (GET_CODE (y) == SUBREG)
2209 j = REGNO (SUBREG_REG (y));
2210 if (j >= FIRST_PSEUDO_REGISTER)
2211 goto slow;
2212 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2213 GET_MODE (SUBREG_REG (y)),
2214 SUBREG_BYTE (y),
2215 GET_MODE (y));
2217 else
2218 j = REGNO (y);
2220 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2221 multiple hard register group of scalar integer registers, so that
2222 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2223 register. */
2224 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2225 && SCALAR_INT_MODE_P (GET_MODE (x))
2226 && i < FIRST_PSEUDO_REGISTER)
2227 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2228 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2229 && SCALAR_INT_MODE_P (GET_MODE (y))
2230 && j < FIRST_PSEUDO_REGISTER)
2231 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2233 return i == j;
2235 /* If two operands must match, because they are really a single
2236 operand of an assembler insn, then two postincrements are invalid
2237 because the assembler insn would increment only once.
2238 On the other hand, a postincrement matches ordinary indexing
2239 if the postincrement is the output operand. */
2240 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2241 return operands_match_p (XEXP (x, 0), y);
2242 /* Two preincrements are invalid
2243 because the assembler insn would increment only once.
2244 On the other hand, a preincrement matches ordinary indexing
2245 if the preincrement is the input operand.
2246 In this case, return 2, since some callers need to do special
2247 things when this happens. */
2248 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2249 || GET_CODE (y) == PRE_MODIFY)
2250 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2252 slow:
2254 /* Now we have disposed of all the cases in which different rtx codes
2255 can match. */
2256 if (code != GET_CODE (y))
2257 return 0;
2259 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2260 if (GET_MODE (x) != GET_MODE (y))
2261 return 0;
2263 /* MEMs refering to different address space are not equivalent. */
2264 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2265 return 0;
2267 switch (code)
2269 case CONST_INT:
2270 case CONST_DOUBLE:
2271 case CONST_FIXED:
2272 return 0;
2274 case LABEL_REF:
2275 return XEXP (x, 0) == XEXP (y, 0);
2276 case SYMBOL_REF:
2277 return XSTR (x, 0) == XSTR (y, 0);
2279 default:
2280 break;
2283 /* Compare the elements. If any pair of corresponding elements
2284 fail to match, return 0 for the whole things. */
2286 success_2 = 0;
2287 fmt = GET_RTX_FORMAT (code);
2288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2290 int val, j;
2291 switch (fmt[i])
2293 case 'w':
2294 if (XWINT (x, i) != XWINT (y, i))
2295 return 0;
2296 break;
2298 case 'i':
2299 if (XINT (x, i) != XINT (y, i))
2300 return 0;
2301 break;
2303 case 'e':
2304 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2305 if (val == 0)
2306 return 0;
2307 /* If any subexpression returns 2,
2308 we should return 2 if we are successful. */
2309 if (val == 2)
2310 success_2 = 1;
2311 break;
2313 case '0':
2314 break;
2316 case 'E':
2317 if (XVECLEN (x, i) != XVECLEN (y, i))
2318 return 0;
2319 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2321 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2322 if (val == 0)
2323 return 0;
2324 if (val == 2)
2325 success_2 = 1;
2327 break;
2329 /* It is believed that rtx's at this level will never
2330 contain anything but integers and other rtx's,
2331 except for within LABEL_REFs and SYMBOL_REFs. */
2332 default:
2333 gcc_unreachable ();
2336 return 1 + success_2;
2339 /* Describe the range of registers or memory referenced by X.
2340 If X is a register, set REG_FLAG and put the first register
2341 number into START and the last plus one into END.
2342 If X is a memory reference, put a base address into BASE
2343 and a range of integer offsets into START and END.
2344 If X is pushing on the stack, we can assume it causes no trouble,
2345 so we set the SAFE field. */
2347 static struct decomposition
2348 decompose (rtx x)
2350 struct decomposition val;
2351 int all_const = 0;
2353 memset (&val, 0, sizeof (val));
2355 switch (GET_CODE (x))
2357 case MEM:
2359 rtx base = NULL_RTX, offset = 0;
2360 rtx addr = XEXP (x, 0);
2362 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2363 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2365 val.base = XEXP (addr, 0);
2366 val.start = -GET_MODE_SIZE (GET_MODE (x));
2367 val.end = GET_MODE_SIZE (GET_MODE (x));
2368 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2369 return val;
2372 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2374 if (GET_CODE (XEXP (addr, 1)) == PLUS
2375 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2376 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2378 val.base = XEXP (addr, 0);
2379 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2380 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2381 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2382 return val;
2386 if (GET_CODE (addr) == CONST)
2388 addr = XEXP (addr, 0);
2389 all_const = 1;
2391 if (GET_CODE (addr) == PLUS)
2393 if (CONSTANT_P (XEXP (addr, 0)))
2395 base = XEXP (addr, 1);
2396 offset = XEXP (addr, 0);
2398 else if (CONSTANT_P (XEXP (addr, 1)))
2400 base = XEXP (addr, 0);
2401 offset = XEXP (addr, 1);
2405 if (offset == 0)
2407 base = addr;
2408 offset = const0_rtx;
2410 if (GET_CODE (offset) == CONST)
2411 offset = XEXP (offset, 0);
2412 if (GET_CODE (offset) == PLUS)
2414 if (CONST_INT_P (XEXP (offset, 0)))
2416 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2417 offset = XEXP (offset, 0);
2419 else if (CONST_INT_P (XEXP (offset, 1)))
2421 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2422 offset = XEXP (offset, 1);
2424 else
2426 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2427 offset = const0_rtx;
2430 else if (!CONST_INT_P (offset))
2432 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2433 offset = const0_rtx;
2436 if (all_const && GET_CODE (base) == PLUS)
2437 base = gen_rtx_CONST (GET_MODE (base), base);
2439 gcc_assert (CONST_INT_P (offset));
2441 val.start = INTVAL (offset);
2442 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2443 val.base = base;
2445 break;
2447 case REG:
2448 val.reg_flag = 1;
2449 val.start = true_regnum (x);
2450 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2452 /* A pseudo with no hard reg. */
2453 val.start = REGNO (x);
2454 val.end = val.start + 1;
2456 else
2457 /* A hard reg. */
2458 val.end = end_hard_regno (GET_MODE (x), val.start);
2459 break;
2461 case SUBREG:
2462 if (!REG_P (SUBREG_REG (x)))
2463 /* This could be more precise, but it's good enough. */
2464 return decompose (SUBREG_REG (x));
2465 val.reg_flag = 1;
2466 val.start = true_regnum (x);
2467 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2468 return decompose (SUBREG_REG (x));
2469 else
2470 /* A hard reg. */
2471 val.end = val.start + subreg_nregs (x);
2472 break;
2474 case SCRATCH:
2475 /* This hasn't been assigned yet, so it can't conflict yet. */
2476 val.safe = 1;
2477 break;
2479 default:
2480 gcc_assert (CONSTANT_P (x));
2481 val.safe = 1;
2482 break;
2484 return val;
2487 /* Return 1 if altering Y will not modify the value of X.
2488 Y is also described by YDATA, which should be decompose (Y). */
2490 static int
2491 immune_p (rtx x, rtx y, struct decomposition ydata)
2493 struct decomposition xdata;
2495 if (ydata.reg_flag)
2496 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2497 if (ydata.safe)
2498 return 1;
2500 gcc_assert (MEM_P (y));
2501 /* If Y is memory and X is not, Y can't affect X. */
2502 if (!MEM_P (x))
2503 return 1;
2505 xdata = decompose (x);
2507 if (! rtx_equal_p (xdata.base, ydata.base))
2509 /* If bases are distinct symbolic constants, there is no overlap. */
2510 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2511 return 1;
2512 /* Constants and stack slots never overlap. */
2513 if (CONSTANT_P (xdata.base)
2514 && (ydata.base == frame_pointer_rtx
2515 || ydata.base == hard_frame_pointer_rtx
2516 || ydata.base == stack_pointer_rtx))
2517 return 1;
2518 if (CONSTANT_P (ydata.base)
2519 && (xdata.base == frame_pointer_rtx
2520 || xdata.base == hard_frame_pointer_rtx
2521 || xdata.base == stack_pointer_rtx))
2522 return 1;
2523 /* If either base is variable, we don't know anything. */
2524 return 0;
2527 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2530 /* Similar, but calls decompose. */
2533 safe_from_earlyclobber (rtx op, rtx clobber)
2535 struct decomposition early_data;
2537 early_data = decompose (clobber);
2538 return immune_p (op, clobber, early_data);
2541 /* Main entry point of this file: search the body of INSN
2542 for values that need reloading and record them with push_reload.
2543 REPLACE nonzero means record also where the values occur
2544 so that subst_reloads can be used.
2546 IND_LEVELS says how many levels of indirection are supported by this
2547 machine; a value of zero means that a memory reference is not a valid
2548 memory address.
2550 LIVE_KNOWN says we have valid information about which hard
2551 regs are live at each point in the program; this is true when
2552 we are called from global_alloc but false when stupid register
2553 allocation has been done.
2555 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2556 which is nonnegative if the reg has been commandeered for reloading into.
2557 It is copied into STATIC_RELOAD_REG_P and referenced from there
2558 by various subroutines.
2560 Return TRUE if some operands need to be changed, because of swapping
2561 commutative operands, reg_equiv_address substitution, or whatever. */
2564 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2565 short *reload_reg_p)
2567 int insn_code_number;
2568 int i, j;
2569 int noperands;
2570 /* These start out as the constraints for the insn
2571 and they are chewed up as we consider alternatives. */
2572 const char *constraints[MAX_RECOG_OPERANDS];
2573 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2574 a register. */
2575 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2576 char pref_or_nothing[MAX_RECOG_OPERANDS];
2577 /* Nonzero for a MEM operand whose entire address needs a reload.
2578 May be -1 to indicate the entire address may or may not need a reload. */
2579 int address_reloaded[MAX_RECOG_OPERANDS];
2580 /* Nonzero for an address operand that needs to be completely reloaded.
2581 May be -1 to indicate the entire operand may or may not need a reload. */
2582 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2583 /* Value of enum reload_type to use for operand. */
2584 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2585 /* Value of enum reload_type to use within address of operand. */
2586 enum reload_type address_type[MAX_RECOG_OPERANDS];
2587 /* Save the usage of each operand. */
2588 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2589 int no_input_reloads = 0, no_output_reloads = 0;
2590 int n_alternatives;
2591 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2592 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2593 char this_alternative_win[MAX_RECOG_OPERANDS];
2594 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2595 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2596 int this_alternative_matches[MAX_RECOG_OPERANDS];
2597 int swapped;
2598 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2599 int this_alternative_number;
2600 int goal_alternative_number = 0;
2601 int operand_reloadnum[MAX_RECOG_OPERANDS];
2602 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2603 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2604 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2605 char goal_alternative_win[MAX_RECOG_OPERANDS];
2606 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2607 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2608 int goal_alternative_swapped;
2609 int best;
2610 int commutative;
2611 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2612 rtx substed_operand[MAX_RECOG_OPERANDS];
2613 rtx body = PATTERN (insn);
2614 rtx set = single_set (insn);
2615 int goal_earlyclobber = 0, this_earlyclobber;
2616 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2617 int retval = 0;
2619 this_insn = insn;
2620 n_reloads = 0;
2621 n_replacements = 0;
2622 n_earlyclobbers = 0;
2623 replace_reloads = replace;
2624 hard_regs_live_known = live_known;
2625 static_reload_reg_p = reload_reg_p;
2627 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2628 neither are insns that SET cc0. Insns that use CC0 are not allowed
2629 to have any input reloads. */
2630 if (JUMP_P (insn) || CALL_P (insn))
2631 no_output_reloads = 1;
2633 #ifdef HAVE_cc0
2634 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2635 no_input_reloads = 1;
2636 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2637 no_output_reloads = 1;
2638 #endif
2640 #ifdef SECONDARY_MEMORY_NEEDED
2641 /* The eliminated forms of any secondary memory locations are per-insn, so
2642 clear them out here. */
2644 if (secondary_memlocs_elim_used)
2646 memset (secondary_memlocs_elim, 0,
2647 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2648 secondary_memlocs_elim_used = 0;
2650 #endif
2652 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2653 is cheap to move between them. If it is not, there may not be an insn
2654 to do the copy, so we may need a reload. */
2655 if (GET_CODE (body) == SET
2656 && REG_P (SET_DEST (body))
2657 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2658 && REG_P (SET_SRC (body))
2659 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2660 && register_move_cost (GET_MODE (SET_SRC (body)),
2661 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2662 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2663 return 0;
2665 extract_insn (insn);
2667 noperands = reload_n_operands = recog_data.n_operands;
2668 n_alternatives = recog_data.n_alternatives;
2670 /* Just return "no reloads" if insn has no operands with constraints. */
2671 if (noperands == 0 || n_alternatives == 0)
2672 return 0;
2674 insn_code_number = INSN_CODE (insn);
2675 this_insn_is_asm = insn_code_number < 0;
2677 memcpy (operand_mode, recog_data.operand_mode,
2678 noperands * sizeof (enum machine_mode));
2679 memcpy (constraints, recog_data.constraints,
2680 noperands * sizeof (const char *));
2682 commutative = -1;
2684 /* If we will need to know, later, whether some pair of operands
2685 are the same, we must compare them now and save the result.
2686 Reloading the base and index registers will clobber them
2687 and afterward they will fail to match. */
2689 for (i = 0; i < noperands; i++)
2691 const char *p;
2692 int c;
2693 char *end;
2695 substed_operand[i] = recog_data.operand[i];
2696 p = constraints[i];
2698 modified[i] = RELOAD_READ;
2700 /* Scan this operand's constraint to see if it is an output operand,
2701 an in-out operand, is commutative, or should match another. */
2703 while ((c = *p))
2705 p += CONSTRAINT_LEN (c, p);
2706 switch (c)
2708 case '=':
2709 modified[i] = RELOAD_WRITE;
2710 break;
2711 case '+':
2712 modified[i] = RELOAD_READ_WRITE;
2713 break;
2714 case '%':
2716 /* The last operand should not be marked commutative. */
2717 gcc_assert (i != noperands - 1);
2719 /* We currently only support one commutative pair of
2720 operands. Some existing asm code currently uses more
2721 than one pair. Previously, that would usually work,
2722 but sometimes it would crash the compiler. We
2723 continue supporting that case as well as we can by
2724 silently ignoring all but the first pair. In the
2725 future we may handle it correctly. */
2726 if (commutative < 0)
2727 commutative = i;
2728 else
2729 gcc_assert (this_insn_is_asm);
2731 break;
2732 /* Use of ISDIGIT is tempting here, but it may get expensive because
2733 of locale support we don't want. */
2734 case '0': case '1': case '2': case '3': case '4':
2735 case '5': case '6': case '7': case '8': case '9':
2737 c = strtoul (p - 1, &end, 10);
2738 p = end;
2740 operands_match[c][i]
2741 = operands_match_p (recog_data.operand[c],
2742 recog_data.operand[i]);
2744 /* An operand may not match itself. */
2745 gcc_assert (c != i);
2747 /* If C can be commuted with C+1, and C might need to match I,
2748 then C+1 might also need to match I. */
2749 if (commutative >= 0)
2751 if (c == commutative || c == commutative + 1)
2753 int other = c + (c == commutative ? 1 : -1);
2754 operands_match[other][i]
2755 = operands_match_p (recog_data.operand[other],
2756 recog_data.operand[i]);
2758 if (i == commutative || i == commutative + 1)
2760 int other = i + (i == commutative ? 1 : -1);
2761 operands_match[c][other]
2762 = operands_match_p (recog_data.operand[c],
2763 recog_data.operand[other]);
2765 /* Note that C is supposed to be less than I.
2766 No need to consider altering both C and I because in
2767 that case we would alter one into the other. */
2774 /* Examine each operand that is a memory reference or memory address
2775 and reload parts of the addresses into index registers.
2776 Also here any references to pseudo regs that didn't get hard regs
2777 but are equivalent to constants get replaced in the insn itself
2778 with those constants. Nobody will ever see them again.
2780 Finally, set up the preferred classes of each operand. */
2782 for (i = 0; i < noperands; i++)
2784 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2786 address_reloaded[i] = 0;
2787 address_operand_reloaded[i] = 0;
2788 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2789 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2790 : RELOAD_OTHER);
2791 address_type[i]
2792 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2793 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2794 : RELOAD_OTHER);
2796 if (*constraints[i] == 0)
2797 /* Ignore things like match_operator operands. */
2799 else if (constraints[i][0] == 'p'
2800 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2802 address_operand_reloaded[i]
2803 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2804 recog_data.operand[i],
2805 recog_data.operand_loc[i],
2806 i, operand_type[i], ind_levels, insn);
2808 /* If we now have a simple operand where we used to have a
2809 PLUS or MULT, re-recognize and try again. */
2810 if ((OBJECT_P (*recog_data.operand_loc[i])
2811 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2812 && (GET_CODE (recog_data.operand[i]) == MULT
2813 || GET_CODE (recog_data.operand[i]) == PLUS))
2815 INSN_CODE (insn) = -1;
2816 retval = find_reloads (insn, replace, ind_levels, live_known,
2817 reload_reg_p);
2818 return retval;
2821 recog_data.operand[i] = *recog_data.operand_loc[i];
2822 substed_operand[i] = recog_data.operand[i];
2824 /* Address operands are reloaded in their existing mode,
2825 no matter what is specified in the machine description. */
2826 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2828 else if (code == MEM)
2830 address_reloaded[i]
2831 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2832 recog_data.operand_loc[i],
2833 XEXP (recog_data.operand[i], 0),
2834 &XEXP (recog_data.operand[i], 0),
2835 i, address_type[i], ind_levels, insn);
2836 recog_data.operand[i] = *recog_data.operand_loc[i];
2837 substed_operand[i] = recog_data.operand[i];
2839 else if (code == SUBREG)
2841 rtx reg = SUBREG_REG (recog_data.operand[i]);
2842 rtx op
2843 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2844 ind_levels,
2845 set != 0
2846 && &SET_DEST (set) == recog_data.operand_loc[i],
2847 insn,
2848 &address_reloaded[i]);
2850 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2851 that didn't get a hard register, emit a USE with a REG_EQUAL
2852 note in front so that we might inherit a previous, possibly
2853 wider reload. */
2855 if (replace
2856 && MEM_P (op)
2857 && REG_P (reg)
2858 && (GET_MODE_SIZE (GET_MODE (reg))
2859 >= GET_MODE_SIZE (GET_MODE (op)))
2860 && reg_equiv_constant (REGNO (reg)) == 0)
2861 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2862 insn),
2863 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2865 substed_operand[i] = recog_data.operand[i] = op;
2867 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2868 /* We can get a PLUS as an "operand" as a result of register
2869 elimination. See eliminate_regs and gen_reload. We handle
2870 a unary operator by reloading the operand. */
2871 substed_operand[i] = recog_data.operand[i]
2872 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2873 ind_levels, 0, insn,
2874 &address_reloaded[i]);
2875 else if (code == REG)
2877 /* This is equivalent to calling find_reloads_toplev.
2878 The code is duplicated for speed.
2879 When we find a pseudo always equivalent to a constant,
2880 we replace it by the constant. We must be sure, however,
2881 that we don't try to replace it in the insn in which it
2882 is being set. */
2883 int regno = REGNO (recog_data.operand[i]);
2884 if (reg_equiv_constant (regno) != 0
2885 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2887 /* Record the existing mode so that the check if constants are
2888 allowed will work when operand_mode isn't specified. */
2890 if (operand_mode[i] == VOIDmode)
2891 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2893 substed_operand[i] = recog_data.operand[i]
2894 = reg_equiv_constant (regno);
2896 if (reg_equiv_memory_loc (regno) != 0
2897 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2898 /* We need not give a valid is_set_dest argument since the case
2899 of a constant equivalence was checked above. */
2900 substed_operand[i] = recog_data.operand[i]
2901 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2902 ind_levels, 0, insn,
2903 &address_reloaded[i]);
2905 /* If the operand is still a register (we didn't replace it with an
2906 equivalent), get the preferred class to reload it into. */
2907 code = GET_CODE (recog_data.operand[i]);
2908 preferred_class[i]
2909 = ((code == REG && REGNO (recog_data.operand[i])
2910 >= FIRST_PSEUDO_REGISTER)
2911 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2912 : NO_REGS);
2913 pref_or_nothing[i]
2914 = (code == REG
2915 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2916 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2919 /* If this is simply a copy from operand 1 to operand 0, merge the
2920 preferred classes for the operands. */
2921 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2922 && recog_data.operand[1] == SET_SRC (set))
2924 preferred_class[0] = preferred_class[1]
2925 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2926 pref_or_nothing[0] |= pref_or_nothing[1];
2927 pref_or_nothing[1] |= pref_or_nothing[0];
2930 /* Now see what we need for pseudo-regs that didn't get hard regs
2931 or got the wrong kind of hard reg. For this, we must consider
2932 all the operands together against the register constraints. */
2934 best = MAX_RECOG_OPERANDS * 2 + 600;
2936 swapped = 0;
2937 goal_alternative_swapped = 0;
2938 try_swapped:
2940 /* The constraints are made of several alternatives.
2941 Each operand's constraint looks like foo,bar,... with commas
2942 separating the alternatives. The first alternatives for all
2943 operands go together, the second alternatives go together, etc.
2945 First loop over alternatives. */
2947 for (this_alternative_number = 0;
2948 this_alternative_number < n_alternatives;
2949 this_alternative_number++)
2951 /* Loop over operands for one constraint alternative. */
2952 /* LOSERS counts those that don't fit this alternative
2953 and would require loading. */
2954 int losers = 0;
2955 /* BAD is set to 1 if it some operand can't fit this alternative
2956 even after reloading. */
2957 int bad = 0;
2958 /* REJECT is a count of how undesirable this alternative says it is
2959 if any reloading is required. If the alternative matches exactly
2960 then REJECT is ignored, but otherwise it gets this much
2961 counted against it in addition to the reloading needed. Each
2962 ? counts three times here since we want the disparaging caused by
2963 a bad register class to only count 1/3 as much. */
2964 int reject = 0;
2966 if (!recog_data.alternative_enabled_p[this_alternative_number])
2968 int i;
2970 for (i = 0; i < recog_data.n_operands; i++)
2971 constraints[i] = skip_alternative (constraints[i]);
2973 continue;
2976 this_earlyclobber = 0;
2978 for (i = 0; i < noperands; i++)
2980 const char *p = constraints[i];
2981 char *end;
2982 int len;
2983 int win = 0;
2984 int did_match = 0;
2985 /* 0 => this operand can be reloaded somehow for this alternative. */
2986 int badop = 1;
2987 /* 0 => this operand can be reloaded if the alternative allows regs. */
2988 int winreg = 0;
2989 int c;
2990 int m;
2991 rtx operand = recog_data.operand[i];
2992 int offset = 0;
2993 /* Nonzero means this is a MEM that must be reloaded into a reg
2994 regardless of what the constraint says. */
2995 int force_reload = 0;
2996 int offmemok = 0;
2997 /* Nonzero if a constant forced into memory would be OK for this
2998 operand. */
2999 int constmemok = 0;
3000 int earlyclobber = 0;
3002 /* If the predicate accepts a unary operator, it means that
3003 we need to reload the operand, but do not do this for
3004 match_operator and friends. */
3005 if (UNARY_P (operand) && *p != 0)
3006 operand = XEXP (operand, 0);
3008 /* If the operand is a SUBREG, extract
3009 the REG or MEM (or maybe even a constant) within.
3010 (Constants can occur as a result of reg_equiv_constant.) */
3012 while (GET_CODE (operand) == SUBREG)
3014 /* Offset only matters when operand is a REG and
3015 it is a hard reg. This is because it is passed
3016 to reg_fits_class_p if it is a REG and all pseudos
3017 return 0 from that function. */
3018 if (REG_P (SUBREG_REG (operand))
3019 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3021 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3022 GET_MODE (SUBREG_REG (operand)),
3023 SUBREG_BYTE (operand),
3024 GET_MODE (operand)) < 0)
3025 force_reload = 1;
3026 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3027 GET_MODE (SUBREG_REG (operand)),
3028 SUBREG_BYTE (operand),
3029 GET_MODE (operand));
3031 operand = SUBREG_REG (operand);
3032 /* Force reload if this is a constant or PLUS or if there may
3033 be a problem accessing OPERAND in the outer mode. */
3034 if (CONSTANT_P (operand)
3035 || GET_CODE (operand) == PLUS
3036 /* We must force a reload of paradoxical SUBREGs
3037 of a MEM because the alignment of the inner value
3038 may not be enough to do the outer reference. On
3039 big-endian machines, it may also reference outside
3040 the object.
3042 On machines that extend byte operations and we have a
3043 SUBREG where both the inner and outer modes are no wider
3044 than a word and the inner mode is narrower, is integral,
3045 and gets extended when loaded from memory, combine.c has
3046 made assumptions about the behavior of the machine in such
3047 register access. If the data is, in fact, in memory we
3048 must always load using the size assumed to be in the
3049 register and let the insn do the different-sized
3050 accesses.
3052 This is doubly true if WORD_REGISTER_OPERATIONS. In
3053 this case eliminate_regs has left non-paradoxical
3054 subregs for push_reload to see. Make sure it does
3055 by forcing the reload.
3057 ??? When is it right at this stage to have a subreg
3058 of a mem that is _not_ to be handled specially? IMO
3059 those should have been reduced to just a mem. */
3060 || ((MEM_P (operand)
3061 || (REG_P (operand)
3062 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3063 #ifndef WORD_REGISTER_OPERATIONS
3064 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3065 < BIGGEST_ALIGNMENT)
3066 && (GET_MODE_SIZE (operand_mode[i])
3067 > GET_MODE_SIZE (GET_MODE (operand))))
3068 || BYTES_BIG_ENDIAN
3069 #ifdef LOAD_EXTEND_OP
3070 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3071 && (GET_MODE_SIZE (GET_MODE (operand))
3072 <= UNITS_PER_WORD)
3073 && (GET_MODE_SIZE (operand_mode[i])
3074 > GET_MODE_SIZE (GET_MODE (operand)))
3075 && INTEGRAL_MODE_P (GET_MODE (operand))
3076 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3077 #endif
3079 #endif
3082 force_reload = 1;
3085 this_alternative[i] = NO_REGS;
3086 this_alternative_win[i] = 0;
3087 this_alternative_match_win[i] = 0;
3088 this_alternative_offmemok[i] = 0;
3089 this_alternative_earlyclobber[i] = 0;
3090 this_alternative_matches[i] = -1;
3092 /* An empty constraint or empty alternative
3093 allows anything which matched the pattern. */
3094 if (*p == 0 || *p == ',')
3095 win = 1, badop = 0;
3097 /* Scan this alternative's specs for this operand;
3098 set WIN if the operand fits any letter in this alternative.
3099 Otherwise, clear BADOP if this operand could
3100 fit some letter after reloads,
3101 or set WINREG if this operand could fit after reloads
3102 provided the constraint allows some registers. */
3105 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3107 case '\0':
3108 len = 0;
3109 break;
3110 case ',':
3111 c = '\0';
3112 break;
3114 case '=': case '+': case '*':
3115 break;
3117 case '%':
3118 /* We only support one commutative marker, the first
3119 one. We already set commutative above. */
3120 break;
3122 case '?':
3123 reject += 6;
3124 break;
3126 case '!':
3127 reject = 600;
3128 break;
3130 case '#':
3131 /* Ignore rest of this alternative as far as
3132 reloading is concerned. */
3134 p++;
3135 while (*p && *p != ',');
3136 len = 0;
3137 break;
3139 case '0': case '1': case '2': case '3': case '4':
3140 case '5': case '6': case '7': case '8': case '9':
3141 m = strtoul (p, &end, 10);
3142 p = end;
3143 len = 0;
3145 this_alternative_matches[i] = m;
3146 /* We are supposed to match a previous operand.
3147 If we do, we win if that one did.
3148 If we do not, count both of the operands as losers.
3149 (This is too conservative, since most of the time
3150 only a single reload insn will be needed to make
3151 the two operands win. As a result, this alternative
3152 may be rejected when it is actually desirable.) */
3153 if ((swapped && (m != commutative || i != commutative + 1))
3154 /* If we are matching as if two operands were swapped,
3155 also pretend that operands_match had been computed
3156 with swapped.
3157 But if I is the second of those and C is the first,
3158 don't exchange them, because operands_match is valid
3159 only on one side of its diagonal. */
3160 ? (operands_match
3161 [(m == commutative || m == commutative + 1)
3162 ? 2 * commutative + 1 - m : m]
3163 [(i == commutative || i == commutative + 1)
3164 ? 2 * commutative + 1 - i : i])
3165 : operands_match[m][i])
3167 /* If we are matching a non-offsettable address where an
3168 offsettable address was expected, then we must reject
3169 this combination, because we can't reload it. */
3170 if (this_alternative_offmemok[m]
3171 && MEM_P (recog_data.operand[m])
3172 && this_alternative[m] == NO_REGS
3173 && ! this_alternative_win[m])
3174 bad = 1;
3176 did_match = this_alternative_win[m];
3178 else
3180 /* Operands don't match. */
3181 rtx value;
3182 int loc1, loc2;
3183 /* Retroactively mark the operand we had to match
3184 as a loser, if it wasn't already. */
3185 if (this_alternative_win[m])
3186 losers++;
3187 this_alternative_win[m] = 0;
3188 if (this_alternative[m] == NO_REGS)
3189 bad = 1;
3190 /* But count the pair only once in the total badness of
3191 this alternative, if the pair can be a dummy reload.
3192 The pointers in operand_loc are not swapped; swap
3193 them by hand if necessary. */
3194 if (swapped && i == commutative)
3195 loc1 = commutative + 1;
3196 else if (swapped && i == commutative + 1)
3197 loc1 = commutative;
3198 else
3199 loc1 = i;
3200 if (swapped && m == commutative)
3201 loc2 = commutative + 1;
3202 else if (swapped && m == commutative + 1)
3203 loc2 = commutative;
3204 else
3205 loc2 = m;
3206 value
3207 = find_dummy_reload (recog_data.operand[i],
3208 recog_data.operand[m],
3209 recog_data.operand_loc[loc1],
3210 recog_data.operand_loc[loc2],
3211 operand_mode[i], operand_mode[m],
3212 this_alternative[m], -1,
3213 this_alternative_earlyclobber[m]);
3215 if (value != 0)
3216 losers--;
3218 /* This can be fixed with reloads if the operand
3219 we are supposed to match can be fixed with reloads. */
3220 badop = 0;
3221 this_alternative[i] = this_alternative[m];
3223 /* If we have to reload this operand and some previous
3224 operand also had to match the same thing as this
3225 operand, we don't know how to do that. So reject this
3226 alternative. */
3227 if (! did_match || force_reload)
3228 for (j = 0; j < i; j++)
3229 if (this_alternative_matches[j]
3230 == this_alternative_matches[i])
3231 badop = 1;
3232 break;
3234 case 'p':
3235 /* All necessary reloads for an address_operand
3236 were handled in find_reloads_address. */
3237 this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
3238 SCRATCH);
3239 win = 1;
3240 badop = 0;
3241 break;
3243 case TARGET_MEM_CONSTRAINT:
3244 if (force_reload)
3245 break;
3246 if (MEM_P (operand)
3247 || (REG_P (operand)
3248 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3249 && reg_renumber[REGNO (operand)] < 0))
3250 win = 1;
3251 if (CONST_POOL_OK_P (operand_mode[i], operand))
3252 badop = 0;
3253 constmemok = 1;
3254 break;
3256 case '<':
3257 if (MEM_P (operand)
3258 && ! address_reloaded[i]
3259 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3260 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3261 win = 1;
3262 break;
3264 case '>':
3265 if (MEM_P (operand)
3266 && ! address_reloaded[i]
3267 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3268 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3269 win = 1;
3270 break;
3272 /* Memory operand whose address is not offsettable. */
3273 case 'V':
3274 if (force_reload)
3275 break;
3276 if (MEM_P (operand)
3277 && ! (ind_levels ? offsettable_memref_p (operand)
3278 : offsettable_nonstrict_memref_p (operand))
3279 /* Certain mem addresses will become offsettable
3280 after they themselves are reloaded. This is important;
3281 we don't want our own handling of unoffsettables
3282 to override the handling of reg_equiv_address. */
3283 && !(REG_P (XEXP (operand, 0))
3284 && (ind_levels == 0
3285 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3286 win = 1;
3287 break;
3289 /* Memory operand whose address is offsettable. */
3290 case 'o':
3291 if (force_reload)
3292 break;
3293 if ((MEM_P (operand)
3294 /* If IND_LEVELS, find_reloads_address won't reload a
3295 pseudo that didn't get a hard reg, so we have to
3296 reject that case. */
3297 && ((ind_levels ? offsettable_memref_p (operand)
3298 : offsettable_nonstrict_memref_p (operand))
3299 /* A reloaded address is offsettable because it is now
3300 just a simple register indirect. */
3301 || address_reloaded[i] == 1))
3302 || (REG_P (operand)
3303 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3304 && reg_renumber[REGNO (operand)] < 0
3305 /* If reg_equiv_address is nonzero, we will be
3306 loading it into a register; hence it will be
3307 offsettable, but we cannot say that reg_equiv_mem
3308 is offsettable without checking. */
3309 && ((reg_equiv_mem (REGNO (operand)) != 0
3310 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3311 || (reg_equiv_address (REGNO (operand)) != 0))))
3312 win = 1;
3313 if (CONST_POOL_OK_P (operand_mode[i], operand)
3314 || MEM_P (operand))
3315 badop = 0;
3316 constmemok = 1;
3317 offmemok = 1;
3318 break;
3320 case '&':
3321 /* Output operand that is stored before the need for the
3322 input operands (and their index registers) is over. */
3323 earlyclobber = 1, this_earlyclobber = 1;
3324 break;
3326 case 'E':
3327 case 'F':
3328 if (GET_CODE (operand) == CONST_DOUBLE
3329 || (GET_CODE (operand) == CONST_VECTOR
3330 && (GET_MODE_CLASS (GET_MODE (operand))
3331 == MODE_VECTOR_FLOAT)))
3332 win = 1;
3333 break;
3335 case 'G':
3336 case 'H':
3337 if (GET_CODE (operand) == CONST_DOUBLE
3338 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3339 win = 1;
3340 break;
3342 case 's':
3343 if (CONST_INT_P (operand)
3344 || (GET_CODE (operand) == CONST_DOUBLE
3345 && GET_MODE (operand) == VOIDmode))
3346 break;
3347 case 'i':
3348 if (CONSTANT_P (operand)
3349 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3350 win = 1;
3351 break;
3353 case 'n':
3354 if (CONST_INT_P (operand)
3355 || (GET_CODE (operand) == CONST_DOUBLE
3356 && GET_MODE (operand) == VOIDmode))
3357 win = 1;
3358 break;
3360 case 'I':
3361 case 'J':
3362 case 'K':
3363 case 'L':
3364 case 'M':
3365 case 'N':
3366 case 'O':
3367 case 'P':
3368 if (CONST_INT_P (operand)
3369 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3370 win = 1;
3371 break;
3373 case 'X':
3374 force_reload = 0;
3375 win = 1;
3376 break;
3378 case 'g':
3379 if (! force_reload
3380 /* A PLUS is never a valid operand, but reload can make
3381 it from a register when eliminating registers. */
3382 && GET_CODE (operand) != PLUS
3383 /* A SCRATCH is not a valid operand. */
3384 && GET_CODE (operand) != SCRATCH
3385 && (! CONSTANT_P (operand)
3386 || ! flag_pic
3387 || LEGITIMATE_PIC_OPERAND_P (operand))
3388 && (GENERAL_REGS == ALL_REGS
3389 || !REG_P (operand)
3390 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3391 && reg_renumber[REGNO (operand)] < 0)))
3392 win = 1;
3393 /* Drop through into 'r' case. */
3395 case 'r':
3396 this_alternative[i]
3397 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3398 goto reg;
3400 default:
3401 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3403 #ifdef EXTRA_CONSTRAINT_STR
3404 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3406 if (force_reload)
3407 break;
3408 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3409 win = 1;
3410 /* If the address was already reloaded,
3411 we win as well. */
3412 else if (MEM_P (operand)
3413 && address_reloaded[i] == 1)
3414 win = 1;
3415 /* Likewise if the address will be reloaded because
3416 reg_equiv_address is nonzero. For reg_equiv_mem
3417 we have to check. */
3418 else if (REG_P (operand)
3419 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3420 && reg_renumber[REGNO (operand)] < 0
3421 && ((reg_equiv_mem (REGNO (operand)) != 0
3422 && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3423 || (reg_equiv_address (REGNO (operand)) != 0)))
3424 win = 1;
3426 /* If we didn't already win, we can reload
3427 constants via force_const_mem, and other
3428 MEMs by reloading the address like for 'o'. */
3429 if (CONST_POOL_OK_P (operand_mode[i], operand)
3430 || MEM_P (operand))
3431 badop = 0;
3432 constmemok = 1;
3433 offmemok = 1;
3434 break;
3436 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3438 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3439 win = 1;
3441 /* If we didn't already win, we can reload
3442 the address into a base register. */
3443 this_alternative[i] = base_reg_class (VOIDmode,
3444 ADDRESS,
3445 SCRATCH);
3446 badop = 0;
3447 break;
3450 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3451 win = 1;
3452 #endif
3453 break;
3456 this_alternative[i]
3457 = (reg_class_subunion
3458 [this_alternative[i]]
3459 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3460 reg:
3461 if (GET_MODE (operand) == BLKmode)
3462 break;
3463 winreg = 1;
3464 if (REG_P (operand)
3465 && reg_fits_class_p (operand, this_alternative[i],
3466 offset, GET_MODE (recog_data.operand[i])))
3467 win = 1;
3468 break;
3470 while ((p += len), c);
3472 constraints[i] = p;
3474 /* If this operand could be handled with a reg,
3475 and some reg is allowed, then this operand can be handled. */
3476 if (winreg && this_alternative[i] != NO_REGS
3477 && (win || !class_only_fixed_regs[this_alternative[i]]))
3478 badop = 0;
3480 /* Record which operands fit this alternative. */
3481 this_alternative_earlyclobber[i] = earlyclobber;
3482 if (win && ! force_reload)
3483 this_alternative_win[i] = 1;
3484 else if (did_match && ! force_reload)
3485 this_alternative_match_win[i] = 1;
3486 else
3488 int const_to_mem = 0;
3490 this_alternative_offmemok[i] = offmemok;
3491 losers++;
3492 if (badop)
3493 bad = 1;
3494 /* Alternative loses if it has no regs for a reg operand. */
3495 if (REG_P (operand)
3496 && this_alternative[i] == NO_REGS
3497 && this_alternative_matches[i] < 0)
3498 bad = 1;
3500 /* If this is a constant that is reloaded into the desired
3501 class by copying it to memory first, count that as another
3502 reload. This is consistent with other code and is
3503 required to avoid choosing another alternative when
3504 the constant is moved into memory by this function on
3505 an early reload pass. Note that the test here is
3506 precisely the same as in the code below that calls
3507 force_const_mem. */
3508 if (CONST_POOL_OK_P (operand_mode[i], operand)
3509 && ((targetm.preferred_reload_class (operand,
3510 this_alternative[i])
3511 == NO_REGS)
3512 || no_input_reloads))
3514 const_to_mem = 1;
3515 if (this_alternative[i] != NO_REGS)
3516 losers++;
3519 /* Alternative loses if it requires a type of reload not
3520 permitted for this insn. We can always reload SCRATCH
3521 and objects with a REG_UNUSED note. */
3522 if (GET_CODE (operand) != SCRATCH
3523 && modified[i] != RELOAD_READ && no_output_reloads
3524 && ! find_reg_note (insn, REG_UNUSED, operand))
3525 bad = 1;
3526 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3527 && ! const_to_mem)
3528 bad = 1;
3530 /* If we can't reload this value at all, reject this
3531 alternative. Note that we could also lose due to
3532 LIMIT_RELOAD_CLASS, but we don't check that
3533 here. */
3535 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3537 if (targetm.preferred_reload_class (operand, this_alternative[i])
3538 == NO_REGS)
3539 reject = 600;
3541 if (operand_type[i] == RELOAD_FOR_OUTPUT
3542 && (targetm.preferred_output_reload_class (operand,
3543 this_alternative[i])
3544 == NO_REGS))
3545 reject = 600;
3548 /* We prefer to reload pseudos over reloading other things,
3549 since such reloads may be able to be eliminated later.
3550 If we are reloading a SCRATCH, we won't be generating any
3551 insns, just using a register, so it is also preferred.
3552 So bump REJECT in other cases. Don't do this in the
3553 case where we are forcing a constant into memory and
3554 it will then win since we don't want to have a different
3555 alternative match then. */
3556 if (! (REG_P (operand)
3557 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3558 && GET_CODE (operand) != SCRATCH
3559 && ! (const_to_mem && constmemok))
3560 reject += 2;
3562 /* Input reloads can be inherited more often than output
3563 reloads can be removed, so penalize output reloads. */
3564 if (operand_type[i] != RELOAD_FOR_INPUT
3565 && GET_CODE (operand) != SCRATCH)
3566 reject++;
3569 /* If this operand is a pseudo register that didn't get a hard
3570 reg and this alternative accepts some register, see if the
3571 class that we want is a subset of the preferred class for this
3572 register. If not, but it intersects that class, use the
3573 preferred class instead. If it does not intersect the preferred
3574 class, show that usage of this alternative should be discouraged;
3575 it will be discouraged more still if the register is `preferred
3576 or nothing'. We do this because it increases the chance of
3577 reusing our spill register in a later insn and avoiding a pair
3578 of memory stores and loads.
3580 Don't bother with this if this alternative will accept this
3581 operand.
3583 Don't do this for a multiword operand, since it is only a
3584 small win and has the risk of requiring more spill registers,
3585 which could cause a large loss.
3587 Don't do this if the preferred class has only one register
3588 because we might otherwise exhaust the class. */
3590 if (! win && ! did_match
3591 && this_alternative[i] != NO_REGS
3592 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3593 && reg_class_size [(int) preferred_class[i]] > 0
3594 && ! small_register_class_p (preferred_class[i]))
3596 if (! reg_class_subset_p (this_alternative[i],
3597 preferred_class[i]))
3599 /* Since we don't have a way of forming the intersection,
3600 we just do something special if the preferred class
3601 is a subset of the class we have; that's the most
3602 common case anyway. */
3603 if (reg_class_subset_p (preferred_class[i],
3604 this_alternative[i]))
3605 this_alternative[i] = preferred_class[i];
3606 else
3607 reject += (2 + 2 * pref_or_nothing[i]);
3612 /* Now see if any output operands that are marked "earlyclobber"
3613 in this alternative conflict with any input operands
3614 or any memory addresses. */
3616 for (i = 0; i < noperands; i++)
3617 if (this_alternative_earlyclobber[i]
3618 && (this_alternative_win[i] || this_alternative_match_win[i]))
3620 struct decomposition early_data;
3622 early_data = decompose (recog_data.operand[i]);
3624 gcc_assert (modified[i] != RELOAD_READ);
3626 if (this_alternative[i] == NO_REGS)
3628 this_alternative_earlyclobber[i] = 0;
3629 gcc_assert (this_insn_is_asm);
3630 error_for_asm (this_insn,
3631 "%<&%> constraint used with no register class");
3634 for (j = 0; j < noperands; j++)
3635 /* Is this an input operand or a memory ref? */
3636 if ((MEM_P (recog_data.operand[j])
3637 || modified[j] != RELOAD_WRITE)
3638 && j != i
3639 /* Ignore things like match_operator operands. */
3640 && !recog_data.is_operator[j]
3641 /* Don't count an input operand that is constrained to match
3642 the early clobber operand. */
3643 && ! (this_alternative_matches[j] == i
3644 && rtx_equal_p (recog_data.operand[i],
3645 recog_data.operand[j]))
3646 /* Is it altered by storing the earlyclobber operand? */
3647 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3648 early_data))
3650 /* If the output is in a non-empty few-regs class,
3651 it's costly to reload it, so reload the input instead. */
3652 if (small_register_class_p (this_alternative[i])
3653 && (REG_P (recog_data.operand[j])
3654 || GET_CODE (recog_data.operand[j]) == SUBREG))
3656 losers++;
3657 this_alternative_win[j] = 0;
3658 this_alternative_match_win[j] = 0;
3660 else
3661 break;
3663 /* If an earlyclobber operand conflicts with something,
3664 it must be reloaded, so request this and count the cost. */
3665 if (j != noperands)
3667 losers++;
3668 this_alternative_win[i] = 0;
3669 this_alternative_match_win[j] = 0;
3670 for (j = 0; j < noperands; j++)
3671 if (this_alternative_matches[j] == i
3672 && this_alternative_match_win[j])
3674 this_alternative_win[j] = 0;
3675 this_alternative_match_win[j] = 0;
3676 losers++;
3681 /* If one alternative accepts all the operands, no reload required,
3682 choose that alternative; don't consider the remaining ones. */
3683 if (losers == 0)
3685 /* Unswap these so that they are never swapped at `finish'. */
3686 if (commutative >= 0)
3688 recog_data.operand[commutative] = substed_operand[commutative];
3689 recog_data.operand[commutative + 1]
3690 = substed_operand[commutative + 1];
3692 for (i = 0; i < noperands; i++)
3694 goal_alternative_win[i] = this_alternative_win[i];
3695 goal_alternative_match_win[i] = this_alternative_match_win[i];
3696 goal_alternative[i] = this_alternative[i];
3697 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3698 goal_alternative_matches[i] = this_alternative_matches[i];
3699 goal_alternative_earlyclobber[i]
3700 = this_alternative_earlyclobber[i];
3702 goal_alternative_number = this_alternative_number;
3703 goal_alternative_swapped = swapped;
3704 goal_earlyclobber = this_earlyclobber;
3705 goto finish;
3708 /* REJECT, set by the ! and ? constraint characters and when a register
3709 would be reloaded into a non-preferred class, discourages the use of
3710 this alternative for a reload goal. REJECT is incremented by six
3711 for each ? and two for each non-preferred class. */
3712 losers = losers * 6 + reject;
3714 /* If this alternative can be made to work by reloading,
3715 and it needs less reloading than the others checked so far,
3716 record it as the chosen goal for reloading. */
3717 if (! bad)
3719 if (best > losers)
3721 for (i = 0; i < noperands; i++)
3723 goal_alternative[i] = this_alternative[i];
3724 goal_alternative_win[i] = this_alternative_win[i];
3725 goal_alternative_match_win[i]
3726 = this_alternative_match_win[i];
3727 goal_alternative_offmemok[i]
3728 = this_alternative_offmemok[i];
3729 goal_alternative_matches[i] = this_alternative_matches[i];
3730 goal_alternative_earlyclobber[i]
3731 = this_alternative_earlyclobber[i];
3733 goal_alternative_swapped = swapped;
3734 best = losers;
3735 goal_alternative_number = this_alternative_number;
3736 goal_earlyclobber = this_earlyclobber;
3741 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3742 then we need to try each alternative twice,
3743 the second time matching those two operands
3744 as if we had exchanged them.
3745 To do this, really exchange them in operands.
3747 If we have just tried the alternatives the second time,
3748 return operands to normal and drop through. */
3750 if (commutative >= 0)
3752 swapped = !swapped;
3753 if (swapped)
3755 enum reg_class tclass;
3756 int t;
3758 recog_data.operand[commutative] = substed_operand[commutative + 1];
3759 recog_data.operand[commutative + 1] = substed_operand[commutative];
3760 /* Swap the duplicates too. */
3761 for (i = 0; i < recog_data.n_dups; i++)
3762 if (recog_data.dup_num[i] == commutative
3763 || recog_data.dup_num[i] == commutative + 1)
3764 *recog_data.dup_loc[i]
3765 = recog_data.operand[(int) recog_data.dup_num[i]];
3767 tclass = preferred_class[commutative];
3768 preferred_class[commutative] = preferred_class[commutative + 1];
3769 preferred_class[commutative + 1] = tclass;
3771 t = pref_or_nothing[commutative];
3772 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3773 pref_or_nothing[commutative + 1] = t;
3775 t = address_reloaded[commutative];
3776 address_reloaded[commutative] = address_reloaded[commutative + 1];
3777 address_reloaded[commutative + 1] = t;
3779 memcpy (constraints, recog_data.constraints,
3780 noperands * sizeof (const char *));
3781 goto try_swapped;
3783 else
3785 recog_data.operand[commutative] = substed_operand[commutative];
3786 recog_data.operand[commutative + 1]
3787 = substed_operand[commutative + 1];
3788 /* Unswap the duplicates too. */
3789 for (i = 0; i < recog_data.n_dups; i++)
3790 if (recog_data.dup_num[i] == commutative
3791 || recog_data.dup_num[i] == commutative + 1)
3792 *recog_data.dup_loc[i]
3793 = recog_data.operand[(int) recog_data.dup_num[i]];
3797 /* The operands don't meet the constraints.
3798 goal_alternative describes the alternative
3799 that we could reach by reloading the fewest operands.
3800 Reload so as to fit it. */
3802 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3804 /* No alternative works with reloads?? */
3805 if (insn_code_number >= 0)
3806 fatal_insn ("unable to generate reloads for:", insn);
3807 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3808 /* Avoid further trouble with this insn. */
3809 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3810 n_reloads = 0;
3811 return 0;
3814 /* Jump to `finish' from above if all operands are valid already.
3815 In that case, goal_alternative_win is all 1. */
3816 finish:
3818 /* Right now, for any pair of operands I and J that are required to match,
3819 with I < J,
3820 goal_alternative_matches[J] is I.
3821 Set up goal_alternative_matched as the inverse function:
3822 goal_alternative_matched[I] = J. */
3824 for (i = 0; i < noperands; i++)
3825 goal_alternative_matched[i] = -1;
3827 for (i = 0; i < noperands; i++)
3828 if (! goal_alternative_win[i]
3829 && goal_alternative_matches[i] >= 0)
3830 goal_alternative_matched[goal_alternative_matches[i]] = i;
3832 for (i = 0; i < noperands; i++)
3833 goal_alternative_win[i] |= goal_alternative_match_win[i];
3835 /* If the best alternative is with operands 1 and 2 swapped,
3836 consider them swapped before reporting the reloads. Update the
3837 operand numbers of any reloads already pushed. */
3839 if (goal_alternative_swapped)
3841 rtx tem;
3843 tem = substed_operand[commutative];
3844 substed_operand[commutative] = substed_operand[commutative + 1];
3845 substed_operand[commutative + 1] = tem;
3846 tem = recog_data.operand[commutative];
3847 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3848 recog_data.operand[commutative + 1] = tem;
3849 tem = *recog_data.operand_loc[commutative];
3850 *recog_data.operand_loc[commutative]
3851 = *recog_data.operand_loc[commutative + 1];
3852 *recog_data.operand_loc[commutative + 1] = tem;
3854 for (i = 0; i < n_reloads; i++)
3856 if (rld[i].opnum == commutative)
3857 rld[i].opnum = commutative + 1;
3858 else if (rld[i].opnum == commutative + 1)
3859 rld[i].opnum = commutative;
3863 for (i = 0; i < noperands; i++)
3865 operand_reloadnum[i] = -1;
3867 /* If this is an earlyclobber operand, we need to widen the scope.
3868 The reload must remain valid from the start of the insn being
3869 reloaded until after the operand is stored into its destination.
3870 We approximate this with RELOAD_OTHER even though we know that we
3871 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3873 One special case that is worth checking is when we have an
3874 output that is earlyclobber but isn't used past the insn (typically
3875 a SCRATCH). In this case, we only need have the reload live
3876 through the insn itself, but not for any of our input or output
3877 reloads.
3878 But we must not accidentally narrow the scope of an existing
3879 RELOAD_OTHER reload - leave these alone.
3881 In any case, anything needed to address this operand can remain
3882 however they were previously categorized. */
3884 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3885 operand_type[i]
3886 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3887 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3890 /* Any constants that aren't allowed and can't be reloaded
3891 into registers are here changed into memory references. */
3892 for (i = 0; i < noperands; i++)
3893 if (! goal_alternative_win[i])
3895 rtx op = recog_data.operand[i];
3896 rtx subreg = NULL_RTX;
3897 rtx plus = NULL_RTX;
3898 enum machine_mode mode = operand_mode[i];
3900 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3901 push_reload so we have to let them pass here. */
3902 if (GET_CODE (op) == SUBREG)
3904 subreg = op;
3905 op = SUBREG_REG (op);
3906 mode = GET_MODE (op);
3909 if (GET_CODE (op) == PLUS)
3911 plus = op;
3912 op = XEXP (op, 1);
3915 if (CONST_POOL_OK_P (mode, op)
3916 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3917 == NO_REGS)
3918 || no_input_reloads))
3920 int this_address_reloaded;
3921 rtx tem = force_const_mem (mode, op);
3923 /* If we stripped a SUBREG or a PLUS above add it back. */
3924 if (plus != NULL_RTX)
3925 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3927 if (subreg != NULL_RTX)
3928 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3930 this_address_reloaded = 0;
3931 substed_operand[i] = recog_data.operand[i]
3932 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3933 0, insn, &this_address_reloaded);
3935 /* If the alternative accepts constant pool refs directly
3936 there will be no reload needed at all. */
3937 if (plus == NULL_RTX
3938 && subreg == NULL_RTX
3939 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3940 ? substed_operand[i]
3941 : NULL,
3942 recog_data.constraints[i],
3943 goal_alternative_number))
3944 goal_alternative_win[i] = 1;
3948 /* Record the values of the earlyclobber operands for the caller. */
3949 if (goal_earlyclobber)
3950 for (i = 0; i < noperands; i++)
3951 if (goal_alternative_earlyclobber[i])
3952 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3954 /* Now record reloads for all the operands that need them. */
3955 for (i = 0; i < noperands; i++)
3956 if (! goal_alternative_win[i])
3958 /* Operands that match previous ones have already been handled. */
3959 if (goal_alternative_matches[i] >= 0)
3961 /* Handle an operand with a nonoffsettable address
3962 appearing where an offsettable address will do
3963 by reloading the address into a base register.
3965 ??? We can also do this when the operand is a register and
3966 reg_equiv_mem is not offsettable, but this is a bit tricky,
3967 so we don't bother with it. It may not be worth doing. */
3968 else if (goal_alternative_matched[i] == -1
3969 && goal_alternative_offmemok[i]
3970 && MEM_P (recog_data.operand[i]))
3972 /* If the address to be reloaded is a VOIDmode constant,
3973 use the default address mode as mode of the reload register,
3974 as would have been done by find_reloads_address. */
3975 enum machine_mode address_mode;
3976 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3977 if (address_mode == VOIDmode)
3979 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3980 address_mode = targetm.addr_space.address_mode (as);
3983 operand_reloadnum[i]
3984 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3985 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3986 base_reg_class (VOIDmode, MEM, SCRATCH),
3987 address_mode,
3988 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3989 rld[operand_reloadnum[i]].inc
3990 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3992 /* If this operand is an output, we will have made any
3993 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3994 now we are treating part of the operand as an input, so
3995 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3997 if (modified[i] == RELOAD_WRITE)
3999 for (j = 0; j < n_reloads; j++)
4001 if (rld[j].opnum == i)
4003 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4004 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4005 else if (rld[j].when_needed
4006 == RELOAD_FOR_OUTADDR_ADDRESS)
4007 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4012 else if (goal_alternative_matched[i] == -1)
4014 operand_reloadnum[i]
4015 = push_reload ((modified[i] != RELOAD_WRITE
4016 ? recog_data.operand[i] : 0),
4017 (modified[i] != RELOAD_READ
4018 ? recog_data.operand[i] : 0),
4019 (modified[i] != RELOAD_WRITE
4020 ? recog_data.operand_loc[i] : 0),
4021 (modified[i] != RELOAD_READ
4022 ? recog_data.operand_loc[i] : 0),
4023 (enum reg_class) goal_alternative[i],
4024 (modified[i] == RELOAD_WRITE
4025 ? VOIDmode : operand_mode[i]),
4026 (modified[i] == RELOAD_READ
4027 ? VOIDmode : operand_mode[i]),
4028 (insn_code_number < 0 ? 0
4029 : insn_data[insn_code_number].operand[i].strict_low),
4030 0, i, operand_type[i]);
4032 /* In a matching pair of operands, one must be input only
4033 and the other must be output only.
4034 Pass the input operand as IN and the other as OUT. */
4035 else if (modified[i] == RELOAD_READ
4036 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4038 operand_reloadnum[i]
4039 = push_reload (recog_data.operand[i],
4040 recog_data.operand[goal_alternative_matched[i]],
4041 recog_data.operand_loc[i],
4042 recog_data.operand_loc[goal_alternative_matched[i]],
4043 (enum reg_class) goal_alternative[i],
4044 operand_mode[i],
4045 operand_mode[goal_alternative_matched[i]],
4046 0, 0, i, RELOAD_OTHER);
4047 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4049 else if (modified[i] == RELOAD_WRITE
4050 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4052 operand_reloadnum[goal_alternative_matched[i]]
4053 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4054 recog_data.operand[i],
4055 recog_data.operand_loc[goal_alternative_matched[i]],
4056 recog_data.operand_loc[i],
4057 (enum reg_class) goal_alternative[i],
4058 operand_mode[goal_alternative_matched[i]],
4059 operand_mode[i],
4060 0, 0, i, RELOAD_OTHER);
4061 operand_reloadnum[i] = output_reloadnum;
4063 else
4065 gcc_assert (insn_code_number < 0);
4066 error_for_asm (insn, "inconsistent operand constraints "
4067 "in an %<asm%>");
4068 /* Avoid further trouble with this insn. */
4069 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4070 n_reloads = 0;
4071 return 0;
4074 else if (goal_alternative_matched[i] < 0
4075 && goal_alternative_matches[i] < 0
4076 && address_operand_reloaded[i] != 1
4077 && optimize)
4079 /* For each non-matching operand that's a MEM or a pseudo-register
4080 that didn't get a hard register, make an optional reload.
4081 This may get done even if the insn needs no reloads otherwise. */
4083 rtx operand = recog_data.operand[i];
4085 while (GET_CODE (operand) == SUBREG)
4086 operand = SUBREG_REG (operand);
4087 if ((MEM_P (operand)
4088 || (REG_P (operand)
4089 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4090 /* If this is only for an output, the optional reload would not
4091 actually cause us to use a register now, just note that
4092 something is stored here. */
4093 && (goal_alternative[i] != NO_REGS
4094 || modified[i] == RELOAD_WRITE)
4095 && ! no_input_reloads
4096 /* An optional output reload might allow to delete INSN later.
4097 We mustn't make in-out reloads on insns that are not permitted
4098 output reloads.
4099 If this is an asm, we can't delete it; we must not even call
4100 push_reload for an optional output reload in this case,
4101 because we can't be sure that the constraint allows a register,
4102 and push_reload verifies the constraints for asms. */
4103 && (modified[i] == RELOAD_READ
4104 || (! no_output_reloads && ! this_insn_is_asm)))
4105 operand_reloadnum[i]
4106 = push_reload ((modified[i] != RELOAD_WRITE
4107 ? recog_data.operand[i] : 0),
4108 (modified[i] != RELOAD_READ
4109 ? recog_data.operand[i] : 0),
4110 (modified[i] != RELOAD_WRITE
4111 ? recog_data.operand_loc[i] : 0),
4112 (modified[i] != RELOAD_READ
4113 ? recog_data.operand_loc[i] : 0),
4114 (enum reg_class) goal_alternative[i],
4115 (modified[i] == RELOAD_WRITE
4116 ? VOIDmode : operand_mode[i]),
4117 (modified[i] == RELOAD_READ
4118 ? VOIDmode : operand_mode[i]),
4119 (insn_code_number < 0 ? 0
4120 : insn_data[insn_code_number].operand[i].strict_low),
4121 1, i, operand_type[i]);
4122 /* If a memory reference remains (either as a MEM or a pseudo that
4123 did not get a hard register), yet we can't make an optional
4124 reload, check if this is actually a pseudo register reference;
4125 we then need to emit a USE and/or a CLOBBER so that reload
4126 inheritance will do the right thing. */
4127 else if (replace
4128 && (MEM_P (operand)
4129 || (REG_P (operand)
4130 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4131 && reg_renumber [REGNO (operand)] < 0)))
4133 operand = *recog_data.operand_loc[i];
4135 while (GET_CODE (operand) == SUBREG)
4136 operand = SUBREG_REG (operand);
4137 if (REG_P (operand))
4139 if (modified[i] != RELOAD_WRITE)
4140 /* We mark the USE with QImode so that we recognize
4141 it as one that can be safely deleted at the end
4142 of reload. */
4143 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4144 insn), QImode);
4145 if (modified[i] != RELOAD_READ)
4146 emit_insn_after (gen_clobber (operand), insn);
4150 else if (goal_alternative_matches[i] >= 0
4151 && goal_alternative_win[goal_alternative_matches[i]]
4152 && modified[i] == RELOAD_READ
4153 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4154 && ! no_input_reloads && ! no_output_reloads
4155 && optimize)
4157 /* Similarly, make an optional reload for a pair of matching
4158 objects that are in MEM or a pseudo that didn't get a hard reg. */
4160 rtx operand = recog_data.operand[i];
4162 while (GET_CODE (operand) == SUBREG)
4163 operand = SUBREG_REG (operand);
4164 if ((MEM_P (operand)
4165 || (REG_P (operand)
4166 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4167 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4168 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4169 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4170 recog_data.operand[i],
4171 recog_data.operand_loc[goal_alternative_matches[i]],
4172 recog_data.operand_loc[i],
4173 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4174 operand_mode[goal_alternative_matches[i]],
4175 operand_mode[i],
4176 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4179 /* Perform whatever substitutions on the operands we are supposed
4180 to make due to commutativity or replacement of registers
4181 with equivalent constants or memory slots. */
4183 for (i = 0; i < noperands; i++)
4185 /* We only do this on the last pass through reload, because it is
4186 possible for some data (like reg_equiv_address) to be changed during
4187 later passes. Moreover, we lose the opportunity to get a useful
4188 reload_{in,out}_reg when we do these replacements. */
4190 if (replace)
4192 rtx substitution = substed_operand[i];
4194 *recog_data.operand_loc[i] = substitution;
4196 /* If we're replacing an operand with a LABEL_REF, we need to
4197 make sure that there's a REG_LABEL_OPERAND note attached to
4198 this instruction. */
4199 if (GET_CODE (substitution) == LABEL_REF
4200 && !find_reg_note (insn, REG_LABEL_OPERAND,
4201 XEXP (substitution, 0))
4202 /* For a JUMP_P, if it was a branch target it must have
4203 already been recorded as such. */
4204 && (!JUMP_P (insn)
4205 || !label_is_jump_target_p (XEXP (substitution, 0),
4206 insn)))
4207 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4209 else
4210 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4213 /* If this insn pattern contains any MATCH_DUP's, make sure that
4214 they will be substituted if the operands they match are substituted.
4215 Also do now any substitutions we already did on the operands.
4217 Don't do this if we aren't making replacements because we might be
4218 propagating things allocated by frame pointer elimination into places
4219 it doesn't expect. */
4221 if (insn_code_number >= 0 && replace)
4222 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4224 int opno = recog_data.dup_num[i];
4225 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4226 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4229 #if 0
4230 /* This loses because reloading of prior insns can invalidate the equivalence
4231 (or at least find_equiv_reg isn't smart enough to find it any more),
4232 causing this insn to need more reload regs than it needed before.
4233 It may be too late to make the reload regs available.
4234 Now this optimization is done safely in choose_reload_regs. */
4236 /* For each reload of a reg into some other class of reg,
4237 search for an existing equivalent reg (same value now) in the right class.
4238 We can use it as long as we don't need to change its contents. */
4239 for (i = 0; i < n_reloads; i++)
4240 if (rld[i].reg_rtx == 0
4241 && rld[i].in != 0
4242 && REG_P (rld[i].in)
4243 && rld[i].out == 0)
4245 rld[i].reg_rtx
4246 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4247 static_reload_reg_p, 0, rld[i].inmode);
4248 /* Prevent generation of insn to load the value
4249 because the one we found already has the value. */
4250 if (rld[i].reg_rtx)
4251 rld[i].in = rld[i].reg_rtx;
4253 #endif
4255 /* If we detected error and replaced asm instruction by USE, forget about the
4256 reloads. */
4257 if (GET_CODE (PATTERN (insn)) == USE
4258 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4259 n_reloads = 0;
4261 /* Perhaps an output reload can be combined with another
4262 to reduce needs by one. */
4263 if (!goal_earlyclobber)
4264 combine_reloads ();
4266 /* If we have a pair of reloads for parts of an address, they are reloading
4267 the same object, the operands themselves were not reloaded, and they
4268 are for two operands that are supposed to match, merge the reloads and
4269 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4271 for (i = 0; i < n_reloads; i++)
4273 int k;
4275 for (j = i + 1; j < n_reloads; j++)
4276 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4277 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4278 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4279 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4280 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4281 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4282 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4283 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4284 && rtx_equal_p (rld[i].in, rld[j].in)
4285 && (operand_reloadnum[rld[i].opnum] < 0
4286 || rld[operand_reloadnum[rld[i].opnum]].optional)
4287 && (operand_reloadnum[rld[j].opnum] < 0
4288 || rld[operand_reloadnum[rld[j].opnum]].optional)
4289 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4290 || (goal_alternative_matches[rld[j].opnum]
4291 == rld[i].opnum)))
4293 for (k = 0; k < n_replacements; k++)
4294 if (replacements[k].what == j)
4295 replacements[k].what = i;
4297 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4298 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4299 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4300 else
4301 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4302 rld[j].in = 0;
4306 /* Scan all the reloads and update their type.
4307 If a reload is for the address of an operand and we didn't reload
4308 that operand, change the type. Similarly, change the operand number
4309 of a reload when two operands match. If a reload is optional, treat it
4310 as though the operand isn't reloaded.
4312 ??? This latter case is somewhat odd because if we do the optional
4313 reload, it means the object is hanging around. Thus we need only
4314 do the address reload if the optional reload was NOT done.
4316 Change secondary reloads to be the address type of their operand, not
4317 the normal type.
4319 If an operand's reload is now RELOAD_OTHER, change any
4320 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4321 RELOAD_FOR_OTHER_ADDRESS. */
4323 for (i = 0; i < n_reloads; i++)
4325 if (rld[i].secondary_p
4326 && rld[i].when_needed == operand_type[rld[i].opnum])
4327 rld[i].when_needed = address_type[rld[i].opnum];
4329 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4330 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4331 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4332 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4333 && (operand_reloadnum[rld[i].opnum] < 0
4334 || rld[operand_reloadnum[rld[i].opnum]].optional))
4336 /* If we have a secondary reload to go along with this reload,
4337 change its type to RELOAD_FOR_OPADDR_ADDR. */
4339 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4340 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4341 && rld[i].secondary_in_reload != -1)
4343 int secondary_in_reload = rld[i].secondary_in_reload;
4345 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4347 /* If there's a tertiary reload we have to change it also. */
4348 if (secondary_in_reload > 0
4349 && rld[secondary_in_reload].secondary_in_reload != -1)
4350 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4351 = RELOAD_FOR_OPADDR_ADDR;
4354 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4355 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4356 && rld[i].secondary_out_reload != -1)
4358 int secondary_out_reload = rld[i].secondary_out_reload;
4360 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4362 /* If there's a tertiary reload we have to change it also. */
4363 if (secondary_out_reload
4364 && rld[secondary_out_reload].secondary_out_reload != -1)
4365 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4366 = RELOAD_FOR_OPADDR_ADDR;
4369 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4370 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4371 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4372 else
4373 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4376 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4377 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4378 && operand_reloadnum[rld[i].opnum] >= 0
4379 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4380 == RELOAD_OTHER))
4381 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4383 if (goal_alternative_matches[rld[i].opnum] >= 0)
4384 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4387 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4388 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4389 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4391 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4392 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4393 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4394 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4395 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4396 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4397 This is complicated by the fact that a single operand can have more
4398 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4399 choose_reload_regs without affecting code quality, and cases that
4400 actually fail are extremely rare, so it turns out to be better to fix
4401 the problem here by not generating cases that choose_reload_regs will
4402 fail for. */
4403 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4404 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4405 a single operand.
4406 We can reduce the register pressure by exploiting that a
4407 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4408 does not conflict with any of them, if it is only used for the first of
4409 the RELOAD_FOR_X_ADDRESS reloads. */
4411 int first_op_addr_num = -2;
4412 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4413 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4414 int need_change = 0;
4415 /* We use last_op_addr_reload and the contents of the above arrays
4416 first as flags - -2 means no instance encountered, -1 means exactly
4417 one instance encountered.
4418 If more than one instance has been encountered, we store the reload
4419 number of the first reload of the kind in question; reload numbers
4420 are known to be non-negative. */
4421 for (i = 0; i < noperands; i++)
4422 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4423 for (i = n_reloads - 1; i >= 0; i--)
4425 switch (rld[i].when_needed)
4427 case RELOAD_FOR_OPERAND_ADDRESS:
4428 if (++first_op_addr_num >= 0)
4430 first_op_addr_num = i;
4431 need_change = 1;
4433 break;
4434 case RELOAD_FOR_INPUT_ADDRESS:
4435 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4437 first_inpaddr_num[rld[i].opnum] = i;
4438 need_change = 1;
4440 break;
4441 case RELOAD_FOR_OUTPUT_ADDRESS:
4442 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4444 first_outpaddr_num[rld[i].opnum] = i;
4445 need_change = 1;
4447 break;
4448 default:
4449 break;
4453 if (need_change)
4455 for (i = 0; i < n_reloads; i++)
4457 int first_num;
4458 enum reload_type type;
4460 switch (rld[i].when_needed)
4462 case RELOAD_FOR_OPADDR_ADDR:
4463 first_num = first_op_addr_num;
4464 type = RELOAD_FOR_OPERAND_ADDRESS;
4465 break;
4466 case RELOAD_FOR_INPADDR_ADDRESS:
4467 first_num = first_inpaddr_num[rld[i].opnum];
4468 type = RELOAD_FOR_INPUT_ADDRESS;
4469 break;
4470 case RELOAD_FOR_OUTADDR_ADDRESS:
4471 first_num = first_outpaddr_num[rld[i].opnum];
4472 type = RELOAD_FOR_OUTPUT_ADDRESS;
4473 break;
4474 default:
4475 continue;
4477 if (first_num < 0)
4478 continue;
4479 else if (i > first_num)
4480 rld[i].when_needed = type;
4481 else
4483 /* Check if the only TYPE reload that uses reload I is
4484 reload FIRST_NUM. */
4485 for (j = n_reloads - 1; j > first_num; j--)
4487 if (rld[j].when_needed == type
4488 && (rld[i].secondary_p
4489 ? rld[j].secondary_in_reload == i
4490 : reg_mentioned_p (rld[i].in, rld[j].in)))
4492 rld[i].when_needed = type;
4493 break;
4501 /* See if we have any reloads that are now allowed to be merged
4502 because we've changed when the reload is needed to
4503 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4504 check for the most common cases. */
4506 for (i = 0; i < n_reloads; i++)
4507 if (rld[i].in != 0 && rld[i].out == 0
4508 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4509 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4510 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4511 for (j = 0; j < n_reloads; j++)
4512 if (i != j && rld[j].in != 0 && rld[j].out == 0
4513 && rld[j].when_needed == rld[i].when_needed
4514 && MATCHES (rld[i].in, rld[j].in)
4515 && rld[i].rclass == rld[j].rclass
4516 && !rld[i].nocombine && !rld[j].nocombine
4517 && rld[i].reg_rtx == rld[j].reg_rtx)
4519 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4520 transfer_replacements (i, j);
4521 rld[j].in = 0;
4524 #ifdef HAVE_cc0
4525 /* If we made any reloads for addresses, see if they violate a
4526 "no input reloads" requirement for this insn. But loads that we
4527 do after the insn (such as for output addresses) are fine. */
4528 if (no_input_reloads)
4529 for (i = 0; i < n_reloads; i++)
4530 gcc_assert (rld[i].in == 0
4531 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4532 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4533 #endif
4535 /* Compute reload_mode and reload_nregs. */
4536 for (i = 0; i < n_reloads; i++)
4538 rld[i].mode
4539 = (rld[i].inmode == VOIDmode
4540 || (GET_MODE_SIZE (rld[i].outmode)
4541 > GET_MODE_SIZE (rld[i].inmode)))
4542 ? rld[i].outmode : rld[i].inmode;
4544 rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
4547 /* Special case a simple move with an input reload and a
4548 destination of a hard reg, if the hard reg is ok, use it. */
4549 for (i = 0; i < n_reloads; i++)
4550 if (rld[i].when_needed == RELOAD_FOR_INPUT
4551 && GET_CODE (PATTERN (insn)) == SET
4552 && REG_P (SET_DEST (PATTERN (insn)))
4553 && (SET_SRC (PATTERN (insn)) == rld[i].in
4554 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4555 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4557 rtx dest = SET_DEST (PATTERN (insn));
4558 unsigned int regno = REGNO (dest);
4560 if (regno < FIRST_PSEUDO_REGISTER
4561 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4562 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4564 int nr = hard_regno_nregs[regno][rld[i].mode];
4565 int ok = 1, nri;
4567 for (nri = 1; nri < nr; nri ++)
4568 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4569 ok = 0;
4571 if (ok)
4572 rld[i].reg_rtx = dest;
4576 return retval;
4579 /* Return true if alternative number ALTNUM in constraint-string
4580 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4581 MEM gives the reference if it didn't need any reloads, otherwise it
4582 is null. */
4584 static bool
4585 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4586 const char *constraint, int altnum)
4588 int c;
4590 /* Skip alternatives before the one requested. */
4591 while (altnum > 0)
4593 while (*constraint++ != ',');
4594 altnum--;
4596 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4597 If one of them is present, this alternative accepts the result of
4598 passing a constant-pool reference through find_reloads_toplev.
4600 The same is true of extra memory constraints if the address
4601 was reloaded into a register. However, the target may elect
4602 to disallow the original constant address, forcing it to be
4603 reloaded into a register instead. */
4604 for (; (c = *constraint) && c != ',' && c != '#';
4605 constraint += CONSTRAINT_LEN (c, constraint))
4607 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4608 return true;
4609 #ifdef EXTRA_CONSTRAINT_STR
4610 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4611 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4612 return true;
4613 #endif
4615 return false;
4618 /* Scan X for memory references and scan the addresses for reloading.
4619 Also checks for references to "constant" regs that we want to eliminate
4620 and replaces them with the values they stand for.
4621 We may alter X destructively if it contains a reference to such.
4622 If X is just a constant reg, we return the equivalent value
4623 instead of X.
4625 IND_LEVELS says how many levels of indirect addressing this machine
4626 supports.
4628 OPNUM and TYPE identify the purpose of the reload.
4630 IS_SET_DEST is true if X is the destination of a SET, which is not
4631 appropriate to be replaced by a constant.
4633 INSN, if nonzero, is the insn in which we do the reload. It is used
4634 to determine if we may generate output reloads, and where to put USEs
4635 for pseudos that we have to replace with stack slots.
4637 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4638 result of find_reloads_address. */
4640 static rtx
4641 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4642 int ind_levels, int is_set_dest, rtx insn,
4643 int *address_reloaded)
4645 RTX_CODE code = GET_CODE (x);
4647 const char *fmt = GET_RTX_FORMAT (code);
4648 int i;
4649 int copied;
4651 if (code == REG)
4653 /* This code is duplicated for speed in find_reloads. */
4654 int regno = REGNO (x);
4655 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4656 x = reg_equiv_constant (regno);
4657 #if 0
4658 /* This creates (subreg (mem...)) which would cause an unnecessary
4659 reload of the mem. */
4660 else if (reg_equiv_mem (regno) != 0)
4661 x = reg_equiv_mem (regno);
4662 #endif
4663 else if (reg_equiv_memory_loc (regno)
4664 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4666 rtx mem = make_memloc (x, regno);
4667 if (reg_equiv_address (regno)
4668 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4670 /* If this is not a toplevel operand, find_reloads doesn't see
4671 this substitution. We have to emit a USE of the pseudo so
4672 that delete_output_reload can see it. */
4673 if (replace_reloads && recog_data.operand[opnum] != x)
4674 /* We mark the USE with QImode so that we recognize it
4675 as one that can be safely deleted at the end of
4676 reload. */
4677 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4678 QImode);
4679 x = mem;
4680 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4681 opnum, type, ind_levels, insn);
4682 if (!rtx_equal_p (x, mem))
4683 push_reg_equiv_alt_mem (regno, x);
4684 if (address_reloaded)
4685 *address_reloaded = i;
4688 return x;
4690 if (code == MEM)
4692 rtx tem = x;
4694 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4695 opnum, type, ind_levels, insn);
4696 if (address_reloaded)
4697 *address_reloaded = i;
4699 return tem;
4702 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4704 /* Check for SUBREG containing a REG that's equivalent to a
4705 constant. If the constant has a known value, truncate it
4706 right now. Similarly if we are extracting a single-word of a
4707 multi-word constant. If the constant is symbolic, allow it
4708 to be substituted normally. push_reload will strip the
4709 subreg later. The constant must not be VOIDmode, because we
4710 will lose the mode of the register (this should never happen
4711 because one of the cases above should handle it). */
4713 int regno = REGNO (SUBREG_REG (x));
4714 rtx tem;
4716 if (regno >= FIRST_PSEUDO_REGISTER
4717 && reg_renumber[regno] < 0
4718 && reg_equiv_constant (regno) != 0)
4720 tem =
4721 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4722 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4723 gcc_assert (tem);
4724 if (CONSTANT_P (tem)
4725 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4727 tem = force_const_mem (GET_MODE (x), tem);
4728 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4729 &XEXP (tem, 0), opnum, type,
4730 ind_levels, insn);
4731 if (address_reloaded)
4732 *address_reloaded = i;
4734 return tem;
4737 /* If the subreg contains a reg that will be converted to a mem,
4738 convert the subreg to a narrower memref now.
4739 Otherwise, we would get (subreg (mem ...) ...),
4740 which would force reload of the mem.
4742 We also need to do this if there is an equivalent MEM that is
4743 not offsettable. In that case, alter_subreg would produce an
4744 invalid address on big-endian machines.
4746 For machines that extend byte loads, we must not reload using
4747 a wider mode if we have a paradoxical SUBREG. find_reloads will
4748 force a reload in that case. So we should not do anything here. */
4750 if (regno >= FIRST_PSEUDO_REGISTER
4751 #ifdef LOAD_EXTEND_OP
4752 && (GET_MODE_SIZE (GET_MODE (x))
4753 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4754 #endif
4755 && (reg_equiv_address (regno) != 0
4756 || (reg_equiv_mem (regno) != 0
4757 && (! strict_memory_address_addr_space_p
4758 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
4759 MEM_ADDR_SPACE (reg_equiv_mem (regno)))
4760 || ! offsettable_memref_p (reg_equiv_mem (regno))
4761 || num_not_at_initial_offset))))
4762 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4763 insn, address_reloaded);
4766 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4768 if (fmt[i] == 'e')
4770 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4771 ind_levels, is_set_dest, insn,
4772 address_reloaded);
4773 /* If we have replaced a reg with it's equivalent memory loc -
4774 that can still be handled here e.g. if it's in a paradoxical
4775 subreg - we must make the change in a copy, rather than using
4776 a destructive change. This way, find_reloads can still elect
4777 not to do the change. */
4778 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4780 x = shallow_copy_rtx (x);
4781 copied = 1;
4783 XEXP (x, i) = new_part;
4786 return x;
4789 /* Return a mem ref for the memory equivalent of reg REGNO.
4790 This mem ref is not shared with anything. */
4792 static rtx
4793 make_memloc (rtx ad, int regno)
4795 /* We must rerun eliminate_regs, in case the elimination
4796 offsets have changed. */
4797 rtx tem
4798 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4801 /* If TEM might contain a pseudo, we must copy it to avoid
4802 modifying it when we do the substitution for the reload. */
4803 if (rtx_varies_p (tem, 0))
4804 tem = copy_rtx (tem);
4806 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4807 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4809 /* Copy the result if it's still the same as the equivalence, to avoid
4810 modifying it when we do the substitution for the reload. */
4811 if (tem == reg_equiv_memory_loc (regno))
4812 tem = copy_rtx (tem);
4813 return tem;
4816 /* Returns true if AD could be turned into a valid memory reference
4817 to mode MODE in address space AS by reloading the part pointed to
4818 by PART into a register. */
4820 static int
4821 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4822 addr_space_t as, rtx *part)
4824 int retv;
4825 rtx tem = *part;
4826 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4828 *part = reg;
4829 retv = memory_address_addr_space_p (mode, ad, as);
4830 *part = tem;
4832 return retv;
4835 /* Record all reloads needed for handling memory address AD
4836 which appears in *LOC in a memory reference to mode MODE
4837 which itself is found in location *MEMREFLOC.
4838 Note that we take shortcuts assuming that no multi-reg machine mode
4839 occurs as part of an address.
4841 OPNUM and TYPE specify the purpose of this reload.
4843 IND_LEVELS says how many levels of indirect addressing this machine
4844 supports.
4846 INSN, if nonzero, is the insn in which we do the reload. It is used
4847 to determine if we may generate output reloads, and where to put USEs
4848 for pseudos that we have to replace with stack slots.
4850 Value is one if this address is reloaded or replaced as a whole; it is
4851 zero if the top level of this address was not reloaded or replaced, and
4852 it is -1 if it may or may not have been reloaded or replaced.
4854 Note that there is no verification that the address will be valid after
4855 this routine does its work. Instead, we rely on the fact that the address
4856 was valid when reload started. So we need only undo things that reload
4857 could have broken. These are wrong register types, pseudos not allocated
4858 to a hard register, and frame pointer elimination. */
4860 static int
4861 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4862 rtx *loc, int opnum, enum reload_type type,
4863 int ind_levels, rtx insn)
4865 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4866 : ADDR_SPACE_GENERIC;
4867 int regno;
4868 int removed_and = 0;
4869 int op_index;
4870 rtx tem;
4872 /* If the address is a register, see if it is a legitimate address and
4873 reload if not. We first handle the cases where we need not reload
4874 or where we must reload in a non-standard way. */
4876 if (REG_P (ad))
4878 regno = REGNO (ad);
4880 if (reg_equiv_constant (regno) != 0)
4882 find_reloads_address_part (reg_equiv_constant (regno), loc,
4883 base_reg_class (mode, MEM, SCRATCH),
4884 GET_MODE (ad), opnum, type, ind_levels);
4885 return 1;
4888 tem = reg_equiv_memory_loc (regno);
4889 if (tem != 0)
4891 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4893 tem = make_memloc (ad, regno);
4894 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4895 XEXP (tem, 0),
4896 MEM_ADDR_SPACE (tem)))
4898 rtx orig = tem;
4900 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4901 &XEXP (tem, 0), opnum,
4902 ADDR_TYPE (type), ind_levels, insn);
4903 if (!rtx_equal_p (tem, orig))
4904 push_reg_equiv_alt_mem (regno, tem);
4906 /* We can avoid a reload if the register's equivalent memory
4907 expression is valid as an indirect memory address.
4908 But not all addresses are valid in a mem used as an indirect
4909 address: only reg or reg+constant. */
4911 if (ind_levels > 0
4912 && strict_memory_address_addr_space_p (mode, tem, as)
4913 && (REG_P (XEXP (tem, 0))
4914 || (GET_CODE (XEXP (tem, 0)) == PLUS
4915 && REG_P (XEXP (XEXP (tem, 0), 0))
4916 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4918 /* TEM is not the same as what we'll be replacing the
4919 pseudo with after reload, put a USE in front of INSN
4920 in the final reload pass. */
4921 if (replace_reloads
4922 && num_not_at_initial_offset
4923 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4925 *loc = tem;
4926 /* We mark the USE with QImode so that we
4927 recognize it as one that can be safely
4928 deleted at the end of reload. */
4929 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4930 insn), QImode);
4932 /* This doesn't really count as replacing the address
4933 as a whole, since it is still a memory access. */
4935 return 0;
4937 ad = tem;
4941 /* The only remaining case where we can avoid a reload is if this is a
4942 hard register that is valid as a base register and which is not the
4943 subject of a CLOBBER in this insn. */
4945 else if (regno < FIRST_PSEUDO_REGISTER
4946 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4947 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4948 return 0;
4950 /* If we do not have one of the cases above, we must do the reload. */
4951 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4952 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4953 return 1;
4956 if (strict_memory_address_addr_space_p (mode, ad, as))
4958 /* The address appears valid, so reloads are not needed.
4959 But the address may contain an eliminable register.
4960 This can happen because a machine with indirect addressing
4961 may consider a pseudo register by itself a valid address even when
4962 it has failed to get a hard reg.
4963 So do a tree-walk to find and eliminate all such regs. */
4965 /* But first quickly dispose of a common case. */
4966 if (GET_CODE (ad) == PLUS
4967 && CONST_INT_P (XEXP (ad, 1))
4968 && REG_P (XEXP (ad, 0))
4969 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4970 return 0;
4972 subst_reg_equivs_changed = 0;
4973 *loc = subst_reg_equivs (ad, insn);
4975 if (! subst_reg_equivs_changed)
4976 return 0;
4978 /* Check result for validity after substitution. */
4979 if (strict_memory_address_addr_space_p (mode, ad, as))
4980 return 0;
4983 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4986 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
4988 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4989 ind_levels, win);
4991 break;
4992 win:
4993 *memrefloc = copy_rtx (*memrefloc);
4994 XEXP (*memrefloc, 0) = ad;
4995 move_replacements (&ad, &XEXP (*memrefloc, 0));
4996 return -1;
4998 while (0);
4999 #endif
5001 /* The address is not valid. We have to figure out why. First see if
5002 we have an outer AND and remove it if so. Then analyze what's inside. */
5004 if (GET_CODE (ad) == AND)
5006 removed_and = 1;
5007 loc = &XEXP (ad, 0);
5008 ad = *loc;
5011 /* One possibility for why the address is invalid is that it is itself
5012 a MEM. This can happen when the frame pointer is being eliminated, a
5013 pseudo is not allocated to a hard register, and the offset between the
5014 frame and stack pointers is not its initial value. In that case the
5015 pseudo will have been replaced by a MEM referring to the
5016 stack pointer. */
5017 if (MEM_P (ad))
5019 /* First ensure that the address in this MEM is valid. Then, unless
5020 indirect addresses are valid, reload the MEM into a register. */
5021 tem = ad;
5022 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5023 opnum, ADDR_TYPE (type),
5024 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5026 /* If tem was changed, then we must create a new memory reference to
5027 hold it and store it back into memrefloc. */
5028 if (tem != ad && memrefloc)
5030 *memrefloc = copy_rtx (*memrefloc);
5031 copy_replacements (tem, XEXP (*memrefloc, 0));
5032 loc = &XEXP (*memrefloc, 0);
5033 if (removed_and)
5034 loc = &XEXP (*loc, 0);
5037 /* Check similar cases as for indirect addresses as above except
5038 that we can allow pseudos and a MEM since they should have been
5039 taken care of above. */
5041 if (ind_levels == 0
5042 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5043 || MEM_P (XEXP (tem, 0))
5044 || ! (REG_P (XEXP (tem, 0))
5045 || (GET_CODE (XEXP (tem, 0)) == PLUS
5046 && REG_P (XEXP (XEXP (tem, 0), 0))
5047 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5049 /* Must use TEM here, not AD, since it is the one that will
5050 have any subexpressions reloaded, if needed. */
5051 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5052 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
5053 VOIDmode, 0,
5054 0, opnum, type);
5055 return ! removed_and;
5057 else
5058 return 0;
5061 /* If we have address of a stack slot but it's not valid because the
5062 displacement is too large, compute the sum in a register.
5063 Handle all base registers here, not just fp/ap/sp, because on some
5064 targets (namely SH) we can also get too large displacements from
5065 big-endian corrections. */
5066 else if (GET_CODE (ad) == PLUS
5067 && REG_P (XEXP (ad, 0))
5068 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5069 && CONST_INT_P (XEXP (ad, 1))
5070 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5071 CONST_INT)
5072 /* Similarly, if we were to reload the base register and the
5073 mem+offset address is still invalid, then we want to reload
5074 the whole address, not just the base register. */
5075 || ! maybe_memory_address_addr_space_p
5076 (mode, ad, as, &(XEXP (ad, 0)))))
5079 /* Unshare the MEM rtx so we can safely alter it. */
5080 if (memrefloc)
5082 *memrefloc = copy_rtx (*memrefloc);
5083 loc = &XEXP (*memrefloc, 0);
5084 if (removed_and)
5085 loc = &XEXP (*loc, 0);
5088 if (double_reg_address_ok
5089 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode,
5090 PLUS, CONST_INT))
5092 /* Unshare the sum as well. */
5093 *loc = ad = copy_rtx (ad);
5095 /* Reload the displacement into an index reg.
5096 We assume the frame pointer or arg pointer is a base reg. */
5097 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5098 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5099 type, ind_levels);
5100 return 0;
5102 else
5104 /* If the sum of two regs is not necessarily valid,
5105 reload the sum into a base reg.
5106 That will at least work. */
5107 find_reloads_address_part (ad, loc,
5108 base_reg_class (mode, MEM, SCRATCH),
5109 GET_MODE (ad), opnum, type, ind_levels);
5111 return ! removed_and;
5114 /* If we have an indexed stack slot, there are three possible reasons why
5115 it might be invalid: The index might need to be reloaded, the address
5116 might have been made by frame pointer elimination and hence have a
5117 constant out of range, or both reasons might apply.
5119 We can easily check for an index needing reload, but even if that is the
5120 case, we might also have an invalid constant. To avoid making the
5121 conservative assumption and requiring two reloads, we see if this address
5122 is valid when not interpreted strictly. If it is, the only problem is
5123 that the index needs a reload and find_reloads_address_1 will take care
5124 of it.
5126 Handle all base registers here, not just fp/ap/sp, because on some
5127 targets (namely SPARC) we can also get invalid addresses from preventive
5128 subreg big-endian corrections made by find_reloads_toplev. We
5129 can also get expressions involving LO_SUM (rather than PLUS) from
5130 find_reloads_subreg_address.
5132 If we decide to do something, it must be that `double_reg_address_ok'
5133 is true. We generate a reload of the base register + constant and
5134 rework the sum so that the reload register will be added to the index.
5135 This is safe because we know the address isn't shared.
5137 We check for the base register as both the first and second operand of
5138 the innermost PLUS and/or LO_SUM. */
5140 for (op_index = 0; op_index < 2; ++op_index)
5142 rtx operand, addend;
5143 enum rtx_code inner_code;
5145 if (GET_CODE (ad) != PLUS)
5146 continue;
5148 inner_code = GET_CODE (XEXP (ad, 0));
5149 if (!(GET_CODE (ad) == PLUS
5150 && CONST_INT_P (XEXP (ad, 1))
5151 && (inner_code == PLUS || inner_code == LO_SUM)))
5152 continue;
5154 operand = XEXP (XEXP (ad, 0), op_index);
5155 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5156 continue;
5158 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5160 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5161 GET_CODE (addend))
5162 || operand == frame_pointer_rtx
5163 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5164 || operand == hard_frame_pointer_rtx
5165 #endif
5166 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5167 || operand == arg_pointer_rtx
5168 #endif
5169 || operand == stack_pointer_rtx)
5170 && ! maybe_memory_address_addr_space_p
5171 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5173 rtx offset_reg;
5174 enum reg_class cls;
5176 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5178 /* Form the adjusted address. */
5179 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5180 ad = gen_rtx_PLUS (GET_MODE (ad),
5181 op_index == 0 ? offset_reg : addend,
5182 op_index == 0 ? addend : offset_reg);
5183 else
5184 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5185 op_index == 0 ? offset_reg : addend,
5186 op_index == 0 ? addend : offset_reg);
5187 *loc = ad;
5189 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5190 find_reloads_address_part (XEXP (ad, op_index),
5191 &XEXP (ad, op_index), cls,
5192 GET_MODE (ad), opnum, type, ind_levels);
5193 find_reloads_address_1 (mode,
5194 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5195 GET_CODE (XEXP (ad, op_index)),
5196 &XEXP (ad, 1 - op_index), opnum,
5197 type, 0, insn);
5199 return 0;
5203 /* See if address becomes valid when an eliminable register
5204 in a sum is replaced. */
5206 tem = ad;
5207 if (GET_CODE (ad) == PLUS)
5208 tem = subst_indexed_address (ad);
5209 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5211 /* Ok, we win that way. Replace any additional eliminable
5212 registers. */
5214 subst_reg_equivs_changed = 0;
5215 tem = subst_reg_equivs (tem, insn);
5217 /* Make sure that didn't make the address invalid again. */
5219 if (! subst_reg_equivs_changed
5220 || strict_memory_address_addr_space_p (mode, tem, as))
5222 *loc = tem;
5223 return 0;
5227 /* If constants aren't valid addresses, reload the constant address
5228 into a register. */
5229 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5231 enum machine_mode address_mode = GET_MODE (ad);
5232 if (address_mode == VOIDmode)
5233 address_mode = targetm.addr_space.address_mode (as);
5235 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5236 Unshare it so we can safely alter it. */
5237 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5238 && CONSTANT_POOL_ADDRESS_P (ad))
5240 *memrefloc = copy_rtx (*memrefloc);
5241 loc = &XEXP (*memrefloc, 0);
5242 if (removed_and)
5243 loc = &XEXP (*loc, 0);
5246 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5247 address_mode, opnum, type, ind_levels);
5248 return ! removed_and;
5251 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5252 ind_levels, insn);
5255 /* Find all pseudo regs appearing in AD
5256 that are eliminable in favor of equivalent values
5257 and do not have hard regs; replace them by their equivalents.
5258 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5259 front of it for pseudos that we have to replace with stack slots. */
5261 static rtx
5262 subst_reg_equivs (rtx ad, rtx insn)
5264 RTX_CODE code = GET_CODE (ad);
5265 int i;
5266 const char *fmt;
5268 switch (code)
5270 case HIGH:
5271 case CONST_INT:
5272 case CONST:
5273 case CONST_DOUBLE:
5274 case CONST_FIXED:
5275 case CONST_VECTOR:
5276 case SYMBOL_REF:
5277 case LABEL_REF:
5278 case PC:
5279 case CC0:
5280 return ad;
5282 case REG:
5284 int regno = REGNO (ad);
5286 if (reg_equiv_constant (regno) != 0)
5288 subst_reg_equivs_changed = 1;
5289 return reg_equiv_constant (regno);
5291 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5293 rtx mem = make_memloc (ad, regno);
5294 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5296 subst_reg_equivs_changed = 1;
5297 /* We mark the USE with QImode so that we recognize it
5298 as one that can be safely deleted at the end of
5299 reload. */
5300 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5301 QImode);
5302 return mem;
5306 return ad;
5308 case PLUS:
5309 /* Quickly dispose of a common case. */
5310 if (XEXP (ad, 0) == frame_pointer_rtx
5311 && CONST_INT_P (XEXP (ad, 1)))
5312 return ad;
5313 break;
5315 default:
5316 break;
5319 fmt = GET_RTX_FORMAT (code);
5320 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5321 if (fmt[i] == 'e')
5322 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5323 return ad;
5326 /* Compute the sum of X and Y, making canonicalizations assumed in an
5327 address, namely: sum constant integers, surround the sum of two
5328 constants with a CONST, put the constant as the second operand, and
5329 group the constant on the outermost sum.
5331 This routine assumes both inputs are already in canonical form. */
5334 form_sum (enum machine_mode mode, rtx x, rtx y)
5336 rtx tem;
5338 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5339 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5341 if (CONST_INT_P (x))
5342 return plus_constant (y, INTVAL (x));
5343 else if (CONST_INT_P (y))
5344 return plus_constant (x, INTVAL (y));
5345 else if (CONSTANT_P (x))
5346 tem = x, x = y, y = tem;
5348 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5349 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5351 /* Note that if the operands of Y are specified in the opposite
5352 order in the recursive calls below, infinite recursion will occur. */
5353 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5354 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5356 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5357 constant will have been placed second. */
5358 if (CONSTANT_P (x) && CONSTANT_P (y))
5360 if (GET_CODE (x) == CONST)
5361 x = XEXP (x, 0);
5362 if (GET_CODE (y) == CONST)
5363 y = XEXP (y, 0);
5365 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5368 return gen_rtx_PLUS (mode, x, y);
5371 /* If ADDR is a sum containing a pseudo register that should be
5372 replaced with a constant (from reg_equiv_constant),
5373 return the result of doing so, and also apply the associative
5374 law so that the result is more likely to be a valid address.
5375 (But it is not guaranteed to be one.)
5377 Note that at most one register is replaced, even if more are
5378 replaceable. Also, we try to put the result into a canonical form
5379 so it is more likely to be a valid address.
5381 In all other cases, return ADDR. */
5383 static rtx
5384 subst_indexed_address (rtx addr)
5386 rtx op0 = 0, op1 = 0, op2 = 0;
5387 rtx tem;
5388 int regno;
5390 if (GET_CODE (addr) == PLUS)
5392 /* Try to find a register to replace. */
5393 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5394 if (REG_P (op0)
5395 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5396 && reg_renumber[regno] < 0
5397 && reg_equiv_constant (regno) != 0)
5398 op0 = reg_equiv_constant (regno);
5399 else if (REG_P (op1)
5400 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5401 && reg_renumber[regno] < 0
5402 && reg_equiv_constant (regno) != 0)
5403 op1 = reg_equiv_constant (regno);
5404 else if (GET_CODE (op0) == PLUS
5405 && (tem = subst_indexed_address (op0)) != op0)
5406 op0 = tem;
5407 else if (GET_CODE (op1) == PLUS
5408 && (tem = subst_indexed_address (op1)) != op1)
5409 op1 = tem;
5410 else
5411 return addr;
5413 /* Pick out up to three things to add. */
5414 if (GET_CODE (op1) == PLUS)
5415 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5416 else if (GET_CODE (op0) == PLUS)
5417 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5419 /* Compute the sum. */
5420 if (op2 != 0)
5421 op1 = form_sum (GET_MODE (addr), op1, op2);
5422 if (op1 != 0)
5423 op0 = form_sum (GET_MODE (addr), op0, op1);
5425 return op0;
5427 return addr;
5430 /* Update the REG_INC notes for an insn. It updates all REG_INC
5431 notes for the instruction which refer to REGNO the to refer
5432 to the reload number.
5434 INSN is the insn for which any REG_INC notes need updating.
5436 REGNO is the register number which has been reloaded.
5438 RELOADNUM is the reload number. */
5440 static void
5441 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5442 int reloadnum ATTRIBUTE_UNUSED)
5444 #ifdef AUTO_INC_DEC
5445 rtx link;
5447 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5448 if (REG_NOTE_KIND (link) == REG_INC
5449 && (int) REGNO (XEXP (link, 0)) == regno)
5450 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5451 #endif
5454 /* Record the pseudo registers we must reload into hard registers in a
5455 subexpression of a would-be memory address, X referring to a value
5456 in mode MODE. (This function is not called if the address we find
5457 is strictly valid.)
5459 CONTEXT = 1 means we are considering regs as index regs,
5460 = 0 means we are considering them as base regs.
5461 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5462 or an autoinc code.
5463 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5464 is the code of the index part of the address. Otherwise, pass SCRATCH
5465 for this argument.
5466 OPNUM and TYPE specify the purpose of any reloads made.
5468 IND_LEVELS says how many levels of indirect addressing are
5469 supported at this point in the address.
5471 INSN, if nonzero, is the insn in which we do the reload. It is used
5472 to determine if we may generate output reloads.
5474 We return nonzero if X, as a whole, is reloaded or replaced. */
5476 /* Note that we take shortcuts assuming that no multi-reg machine mode
5477 occurs as part of an address.
5478 Also, this is not fully machine-customizable; it works for machines
5479 such as VAXen and 68000's and 32000's, but other possible machines
5480 could have addressing modes that this does not handle right.
5481 If you add push_reload calls here, you need to make sure gen_reload
5482 handles those cases gracefully. */
5484 static int
5485 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5486 enum rtx_code outer_code, enum rtx_code index_code,
5487 rtx *loc, int opnum, enum reload_type type,
5488 int ind_levels, rtx insn)
5490 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5491 ((CONTEXT) == 0 \
5492 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5493 : REGNO_OK_FOR_INDEX_P (REGNO))
5495 enum reg_class context_reg_class;
5496 RTX_CODE code = GET_CODE (x);
5498 if (context == 1)
5499 context_reg_class = INDEX_REG_CLASS;
5500 else
5501 context_reg_class = base_reg_class (mode, outer_code, index_code);
5503 switch (code)
5505 case PLUS:
5507 rtx orig_op0 = XEXP (x, 0);
5508 rtx orig_op1 = XEXP (x, 1);
5509 RTX_CODE code0 = GET_CODE (orig_op0);
5510 RTX_CODE code1 = GET_CODE (orig_op1);
5511 rtx op0 = orig_op0;
5512 rtx op1 = orig_op1;
5514 if (GET_CODE (op0) == SUBREG)
5516 op0 = SUBREG_REG (op0);
5517 code0 = GET_CODE (op0);
5518 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5519 op0 = gen_rtx_REG (word_mode,
5520 (REGNO (op0) +
5521 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5522 GET_MODE (SUBREG_REG (orig_op0)),
5523 SUBREG_BYTE (orig_op0),
5524 GET_MODE (orig_op0))));
5527 if (GET_CODE (op1) == SUBREG)
5529 op1 = SUBREG_REG (op1);
5530 code1 = GET_CODE (op1);
5531 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5532 /* ??? Why is this given op1's mode and above for
5533 ??? op0 SUBREGs we use word_mode? */
5534 op1 = gen_rtx_REG (GET_MODE (op1),
5535 (REGNO (op1) +
5536 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5537 GET_MODE (SUBREG_REG (orig_op1)),
5538 SUBREG_BYTE (orig_op1),
5539 GET_MODE (orig_op1))));
5541 /* Plus in the index register may be created only as a result of
5542 register rematerialization for expression like &localvar*4. Reload it.
5543 It may be possible to combine the displacement on the outer level,
5544 but it is probably not worthwhile to do so. */
5545 if (context == 1)
5547 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5548 opnum, ADDR_TYPE (type), ind_levels, insn);
5549 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5550 context_reg_class,
5551 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5552 return 1;
5555 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5556 || code0 == ZERO_EXTEND || code1 == MEM)
5558 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5559 &XEXP (x, 0), opnum, type, ind_levels,
5560 insn);
5561 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5562 &XEXP (x, 1), opnum, type, ind_levels,
5563 insn);
5566 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5567 || code1 == ZERO_EXTEND || code0 == MEM)
5569 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5570 &XEXP (x, 0), opnum, type, ind_levels,
5571 insn);
5572 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5573 &XEXP (x, 1), opnum, type, ind_levels,
5574 insn);
5577 else if (code0 == CONST_INT || code0 == CONST
5578 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5579 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5580 &XEXP (x, 1), opnum, type, ind_levels,
5581 insn);
5583 else if (code1 == CONST_INT || code1 == CONST
5584 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5585 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5586 &XEXP (x, 0), opnum, type, ind_levels,
5587 insn);
5589 else if (code0 == REG && code1 == REG)
5591 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5592 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5593 return 0;
5594 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5595 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5596 return 0;
5597 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5598 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5599 &XEXP (x, 1), opnum, type, ind_levels,
5600 insn);
5601 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5602 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5603 &XEXP (x, 0), opnum, type, ind_levels,
5604 insn);
5605 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5606 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5607 &XEXP (x, 0), opnum, type, ind_levels,
5608 insn);
5609 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5610 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5611 &XEXP (x, 1), opnum, type, ind_levels,
5612 insn);
5613 else
5615 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5616 &XEXP (x, 0), opnum, type, ind_levels,
5617 insn);
5618 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5619 &XEXP (x, 1), opnum, type, ind_levels,
5620 insn);
5624 else if (code0 == REG)
5626 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5627 &XEXP (x, 0), opnum, type, ind_levels,
5628 insn);
5629 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5630 &XEXP (x, 1), opnum, type, ind_levels,
5631 insn);
5634 else if (code1 == REG)
5636 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5637 &XEXP (x, 1), opnum, type, ind_levels,
5638 insn);
5639 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5640 &XEXP (x, 0), opnum, type, ind_levels,
5641 insn);
5645 return 0;
5647 case POST_MODIFY:
5648 case PRE_MODIFY:
5650 rtx op0 = XEXP (x, 0);
5651 rtx op1 = XEXP (x, 1);
5652 enum rtx_code index_code;
5653 int regno;
5654 int reloadnum;
5656 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5657 return 0;
5659 /* Currently, we only support {PRE,POST}_MODIFY constructs
5660 where a base register is {inc,dec}remented by the contents
5661 of another register or by a constant value. Thus, these
5662 operands must match. */
5663 gcc_assert (op0 == XEXP (op1, 0));
5665 /* Require index register (or constant). Let's just handle the
5666 register case in the meantime... If the target allows
5667 auto-modify by a constant then we could try replacing a pseudo
5668 register with its equivalent constant where applicable.
5670 We also handle the case where the register was eliminated
5671 resulting in a PLUS subexpression.
5673 If we later decide to reload the whole PRE_MODIFY or
5674 POST_MODIFY, inc_for_reload might clobber the reload register
5675 before reading the index. The index register might therefore
5676 need to live longer than a TYPE reload normally would, so be
5677 conservative and class it as RELOAD_OTHER. */
5678 if ((REG_P (XEXP (op1, 1))
5679 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5680 || GET_CODE (XEXP (op1, 1)) == PLUS)
5681 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5682 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5683 ind_levels, insn);
5685 gcc_assert (REG_P (XEXP (op1, 0)));
5687 regno = REGNO (XEXP (op1, 0));
5688 index_code = GET_CODE (XEXP (op1, 1));
5690 /* A register that is incremented cannot be constant! */
5691 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5692 || reg_equiv_constant (regno) == 0);
5694 /* Handle a register that is equivalent to a memory location
5695 which cannot be addressed directly. */
5696 if (reg_equiv_memory_loc (regno) != 0
5697 && (reg_equiv_address (regno) != 0
5698 || num_not_at_initial_offset))
5700 rtx tem = make_memloc (XEXP (x, 0), regno);
5702 if (reg_equiv_address (regno)
5703 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5705 rtx orig = tem;
5707 /* First reload the memory location's address.
5708 We can't use ADDR_TYPE (type) here, because we need to
5709 write back the value after reading it, hence we actually
5710 need two registers. */
5711 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5712 &XEXP (tem, 0), opnum,
5713 RELOAD_OTHER,
5714 ind_levels, insn);
5716 if (!rtx_equal_p (tem, orig))
5717 push_reg_equiv_alt_mem (regno, tem);
5719 /* Then reload the memory location into a base
5720 register. */
5721 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5722 &XEXP (op1, 0),
5723 base_reg_class (mode, code,
5724 index_code),
5725 GET_MODE (x), GET_MODE (x), 0,
5726 0, opnum, RELOAD_OTHER);
5728 update_auto_inc_notes (this_insn, regno, reloadnum);
5729 return 0;
5733 if (reg_renumber[regno] >= 0)
5734 regno = reg_renumber[regno];
5736 /* We require a base register here... */
5737 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5739 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5740 &XEXP (op1, 0), &XEXP (x, 0),
5741 base_reg_class (mode, code, index_code),
5742 GET_MODE (x), GET_MODE (x), 0, 0,
5743 opnum, RELOAD_OTHER);
5745 update_auto_inc_notes (this_insn, regno, reloadnum);
5746 return 0;
5749 return 0;
5751 case POST_INC:
5752 case POST_DEC:
5753 case PRE_INC:
5754 case PRE_DEC:
5755 if (REG_P (XEXP (x, 0)))
5757 int regno = REGNO (XEXP (x, 0));
5758 int value = 0;
5759 rtx x_orig = x;
5761 /* A register that is incremented cannot be constant! */
5762 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5763 || reg_equiv_constant (regno) == 0);
5765 /* Handle a register that is equivalent to a memory location
5766 which cannot be addressed directly. */
5767 if (reg_equiv_memory_loc (regno) != 0
5768 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5770 rtx tem = make_memloc (XEXP (x, 0), regno);
5771 if (reg_equiv_address (regno)
5772 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5774 rtx orig = tem;
5776 /* First reload the memory location's address.
5777 We can't use ADDR_TYPE (type) here, because we need to
5778 write back the value after reading it, hence we actually
5779 need two registers. */
5780 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5781 &XEXP (tem, 0), opnum, type,
5782 ind_levels, insn);
5783 if (!rtx_equal_p (tem, orig))
5784 push_reg_equiv_alt_mem (regno, tem);
5785 /* Put this inside a new increment-expression. */
5786 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5787 /* Proceed to reload that, as if it contained a register. */
5791 /* If we have a hard register that is ok in this incdec context,
5792 don't make a reload. If the register isn't nice enough for
5793 autoincdec, we can reload it. But, if an autoincrement of a
5794 register that we here verified as playing nice, still outside
5795 isn't "valid", it must be that no autoincrement is "valid".
5796 If that is true and something made an autoincrement anyway,
5797 this must be a special context where one is allowed.
5798 (For example, a "push" instruction.)
5799 We can't improve this address, so leave it alone. */
5801 /* Otherwise, reload the autoincrement into a suitable hard reg
5802 and record how much to increment by. */
5804 if (reg_renumber[regno] >= 0)
5805 regno = reg_renumber[regno];
5806 if (regno >= FIRST_PSEUDO_REGISTER
5807 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5808 index_code))
5810 int reloadnum;
5812 /* If we can output the register afterwards, do so, this
5813 saves the extra update.
5814 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5815 CALL_INSN - and it does not set CC0.
5816 But don't do this if we cannot directly address the
5817 memory location, since this will make it harder to
5818 reuse address reloads, and increases register pressure.
5819 Also don't do this if we can probably update x directly. */
5820 rtx equiv = (MEM_P (XEXP (x, 0))
5821 ? XEXP (x, 0)
5822 : reg_equiv_mem (regno));
5823 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5824 if (insn && NONJUMP_INSN_P (insn) && equiv
5825 && memory_operand (equiv, GET_MODE (equiv))
5826 #ifdef HAVE_cc0
5827 && ! sets_cc0_p (PATTERN (insn))
5828 #endif
5829 && ! (icode != CODE_FOR_nothing
5830 && insn_operand_matches (icode, 0, equiv)
5831 && insn_operand_matches (icode, 1, equiv)))
5833 /* We use the original pseudo for loc, so that
5834 emit_reload_insns() knows which pseudo this
5835 reload refers to and updates the pseudo rtx, not
5836 its equivalent memory location, as well as the
5837 corresponding entry in reg_last_reload_reg. */
5838 loc = &XEXP (x_orig, 0);
5839 x = XEXP (x, 0);
5840 reloadnum
5841 = push_reload (x, x, loc, loc,
5842 context_reg_class,
5843 GET_MODE (x), GET_MODE (x), 0, 0,
5844 opnum, RELOAD_OTHER);
5846 else
5848 reloadnum
5849 = push_reload (x, x, loc, (rtx*) 0,
5850 context_reg_class,
5851 GET_MODE (x), GET_MODE (x), 0, 0,
5852 opnum, type);
5853 rld[reloadnum].inc
5854 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5856 value = 1;
5859 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5860 reloadnum);
5862 return value;
5864 return 0;
5866 case TRUNCATE:
5867 case SIGN_EXTEND:
5868 case ZERO_EXTEND:
5869 /* Look for parts to reload in the inner expression and reload them
5870 too, in addition to this operation. Reloading all inner parts in
5871 addition to this one shouldn't be necessary, but at this point,
5872 we don't know if we can possibly omit any part that *can* be
5873 reloaded. Targets that are better off reloading just either part
5874 (or perhaps even a different part of an outer expression), should
5875 define LEGITIMIZE_RELOAD_ADDRESS. */
5876 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5877 context, code, SCRATCH, &XEXP (x, 0), opnum,
5878 type, ind_levels, insn);
5879 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5880 context_reg_class,
5881 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5882 return 1;
5884 case MEM:
5885 /* This is probably the result of a substitution, by eliminate_regs, of
5886 an equivalent address for a pseudo that was not allocated to a hard
5887 register. Verify that the specified address is valid and reload it
5888 into a register.
5890 Since we know we are going to reload this item, don't decrement for
5891 the indirection level.
5893 Note that this is actually conservative: it would be slightly more
5894 efficient to use the value of SPILL_INDIRECT_LEVELS from
5895 reload1.c here. */
5897 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5898 opnum, ADDR_TYPE (type), ind_levels, insn);
5899 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5900 context_reg_class,
5901 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5902 return 1;
5904 case REG:
5906 int regno = REGNO (x);
5908 if (reg_equiv_constant (regno) != 0)
5910 find_reloads_address_part (reg_equiv_constant (regno), loc,
5911 context_reg_class,
5912 GET_MODE (x), opnum, type, ind_levels);
5913 return 1;
5916 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5917 that feeds this insn. */
5918 if (reg_equiv_mem (regno) != 0)
5920 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5921 context_reg_class,
5922 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5923 return 1;
5925 #endif
5927 if (reg_equiv_memory_loc (regno)
5928 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5930 rtx tem = make_memloc (x, regno);
5931 if (reg_equiv_address (regno) != 0
5932 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5934 x = tem;
5935 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5936 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5937 ind_levels, insn);
5938 if (!rtx_equal_p (x, tem))
5939 push_reg_equiv_alt_mem (regno, x);
5943 if (reg_renumber[regno] >= 0)
5944 regno = reg_renumber[regno];
5946 if (regno >= FIRST_PSEUDO_REGISTER
5947 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5948 index_code))
5950 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5951 context_reg_class,
5952 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5953 return 1;
5956 /* If a register appearing in an address is the subject of a CLOBBER
5957 in this insn, reload it into some other register to be safe.
5958 The CLOBBER is supposed to make the register unavailable
5959 from before this insn to after it. */
5960 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5962 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5963 context_reg_class,
5964 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5965 return 1;
5968 return 0;
5970 case SUBREG:
5971 if (REG_P (SUBREG_REG (x)))
5973 /* If this is a SUBREG of a hard register and the resulting register
5974 is of the wrong class, reload the whole SUBREG. This avoids
5975 needless copies if SUBREG_REG is multi-word. */
5976 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5978 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5980 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5981 index_code))
5983 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5984 context_reg_class,
5985 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5986 return 1;
5989 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5990 is larger than the class size, then reload the whole SUBREG. */
5991 else
5993 enum reg_class rclass = context_reg_class;
5994 if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
5995 > reg_class_size[rclass])
5997 x = find_reloads_subreg_address (x, 0, opnum,
5998 ADDR_TYPE (type),
5999 ind_levels, insn, NULL);
6000 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6001 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6002 return 1;
6006 break;
6008 default:
6009 break;
6013 const char *fmt = GET_RTX_FORMAT (code);
6014 int i;
6016 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6018 if (fmt[i] == 'e')
6019 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6020 we get here. */
6021 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
6022 &XEXP (x, i), opnum, type, ind_levels, insn);
6026 #undef REG_OK_FOR_CONTEXT
6027 return 0;
6030 /* X, which is found at *LOC, is a part of an address that needs to be
6031 reloaded into a register of class RCLASS. If X is a constant, or if
6032 X is a PLUS that contains a constant, check that the constant is a
6033 legitimate operand and that we are supposed to be able to load
6034 it into the register.
6036 If not, force the constant into memory and reload the MEM instead.
6038 MODE is the mode to use, in case X is an integer constant.
6040 OPNUM and TYPE describe the purpose of any reloads made.
6042 IND_LEVELS says how many levels of indirect addressing this machine
6043 supports. */
6045 static void
6046 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6047 enum machine_mode mode, int opnum,
6048 enum reload_type type, int ind_levels)
6050 if (CONSTANT_P (x)
6051 && (!targetm.legitimate_constant_p (mode, x)
6052 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6054 x = force_const_mem (mode, x);
6055 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6056 opnum, type, ind_levels, 0);
6059 else if (GET_CODE (x) == PLUS
6060 && CONSTANT_P (XEXP (x, 1))
6061 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6062 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6063 == NO_REGS))
6065 rtx tem;
6067 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6068 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6069 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6070 opnum, type, ind_levels, 0);
6073 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6074 mode, VOIDmode, 0, 0, opnum, type);
6077 /* X, a subreg of a pseudo, is a part of an address that needs to be
6078 reloaded.
6080 If the pseudo is equivalent to a memory location that cannot be directly
6081 addressed, make the necessary address reloads.
6083 If address reloads have been necessary, or if the address is changed
6084 by register elimination, return the rtx of the memory location;
6085 otherwise, return X.
6087 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6088 memory location.
6090 OPNUM and TYPE identify the purpose of the reload.
6092 IND_LEVELS says how many levels of indirect addressing are
6093 supported at this point in the address.
6095 INSN, if nonzero, is the insn in which we do the reload. It is used
6096 to determine where to put USEs for pseudos that we have to replace with
6097 stack slots. */
6099 static rtx
6100 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6101 enum reload_type type, int ind_levels, rtx insn,
6102 int *address_reloaded)
6104 int regno = REGNO (SUBREG_REG (x));
6105 int reloaded = 0;
6107 if (reg_equiv_memory_loc (regno))
6109 /* If the address is not directly addressable, or if the address is not
6110 offsettable, then it must be replaced. */
6111 if (! force_replace
6112 && (reg_equiv_address (regno)
6113 || ! offsettable_memref_p (reg_equiv_mem (regno))))
6114 force_replace = 1;
6116 if (force_replace || num_not_at_initial_offset)
6118 rtx tem = make_memloc (SUBREG_REG (x), regno);
6120 /* If the address changes because of register elimination, then
6121 it must be replaced. */
6122 if (force_replace
6123 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6125 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6126 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6127 int offset;
6128 rtx orig = tem;
6130 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6131 hold the correct (negative) byte offset. */
6132 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6133 offset = inner_size - outer_size;
6134 else
6135 offset = SUBREG_BYTE (x);
6137 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6138 PUT_MODE (tem, GET_MODE (x));
6139 if (MEM_OFFSET (tem))
6140 set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
6141 if (MEM_SIZE (tem)
6142 && INTVAL (MEM_SIZE (tem)) != (HOST_WIDE_INT) outer_size)
6143 set_mem_size (tem, GEN_INT (outer_size));
6145 /* If this was a paradoxical subreg that we replaced, the
6146 resulting memory must be sufficiently aligned to allow
6147 us to widen the mode of the memory. */
6148 if (outer_size > inner_size)
6150 rtx base;
6152 base = XEXP (tem, 0);
6153 if (GET_CODE (base) == PLUS)
6155 if (CONST_INT_P (XEXP (base, 1))
6156 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6157 return x;
6158 base = XEXP (base, 0);
6160 if (!REG_P (base)
6161 || (REGNO_POINTER_ALIGN (REGNO (base))
6162 < outer_size * BITS_PER_UNIT))
6163 return x;
6166 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6167 XEXP (tem, 0), &XEXP (tem, 0),
6168 opnum, type, ind_levels, insn);
6169 /* ??? Do we need to handle nonzero offsets somehow? */
6170 if (!offset && !rtx_equal_p (tem, orig))
6171 push_reg_equiv_alt_mem (regno, tem);
6173 /* For some processors an address may be valid in the
6174 original mode but not in a smaller mode. For
6175 example, ARM accepts a scaled index register in
6176 SImode but not in HImode. Note that this is only
6177 a problem if the address in reg_equiv_mem is already
6178 invalid in the new mode; other cases would be fixed
6179 by find_reloads_address as usual.
6181 ??? We attempt to handle such cases here by doing an
6182 additional reload of the full address after the
6183 usual processing by find_reloads_address. Note that
6184 this may not work in the general case, but it seems
6185 to cover the cases where this situation currently
6186 occurs. A more general fix might be to reload the
6187 *value* instead of the address, but this would not
6188 be expected by the callers of this routine as-is.
6190 If find_reloads_address already completed replaced
6191 the address, there is nothing further to do. */
6192 if (reloaded == 0
6193 && reg_equiv_mem (regno) != 0
6194 && !strict_memory_address_addr_space_p
6195 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6196 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6198 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6199 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6200 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6201 opnum, type);
6202 reloaded = 1;
6204 /* If this is not a toplevel operand, find_reloads doesn't see
6205 this substitution. We have to emit a USE of the pseudo so
6206 that delete_output_reload can see it. */
6207 if (replace_reloads && recog_data.operand[opnum] != x)
6208 /* We mark the USE with QImode so that we recognize it
6209 as one that can be safely deleted at the end of
6210 reload. */
6211 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6212 SUBREG_REG (x)),
6213 insn), QImode);
6214 x = tem;
6218 if (reloaded && address_reloaded)
6219 *address_reloaded = 1;
6221 return x;
6224 /* Substitute into the current INSN the registers into which we have reloaded
6225 the things that need reloading. The array `replacements'
6226 contains the locations of all pointers that must be changed
6227 and says what to replace them with.
6229 Return the rtx that X translates into; usually X, but modified. */
6231 void
6232 subst_reloads (rtx insn)
6234 int i;
6236 for (i = 0; i < n_replacements; i++)
6238 struct replacement *r = &replacements[i];
6239 rtx reloadreg = rld[r->what].reg_rtx;
6240 if (reloadreg)
6242 #ifdef DEBUG_RELOAD
6243 /* This checking takes a very long time on some platforms
6244 causing the gcc.c-torture/compile/limits-fnargs.c test
6245 to time out during testing. See PR 31850.
6247 Internal consistency test. Check that we don't modify
6248 anything in the equivalence arrays. Whenever something from
6249 those arrays needs to be reloaded, it must be unshared before
6250 being substituted into; the equivalence must not be modified.
6251 Otherwise, if the equivalence is used after that, it will
6252 have been modified, and the thing substituted (probably a
6253 register) is likely overwritten and not a usable equivalence. */
6254 int check_regno;
6256 for (check_regno = 0; check_regno < max_regno; check_regno++)
6258 #define CHECK_MODF(ARRAY) \
6259 gcc_assert (!VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY \
6260 || !loc_mentioned_in_p (r->where, \
6261 VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY))
6263 CHECK_MODF (equiv_constant);
6264 CHECK_MODF (equiv_memory_loc);
6265 CHECK_MODF (equiv_address);
6266 CHECK_MODF (equiv_mem);
6267 #undef CHECK_MODF
6269 #endif /* DEBUG_RELOAD */
6271 /* If we're replacing a LABEL_REF with a register, there must
6272 already be an indication (to e.g. flow) which label this
6273 register refers to. */
6274 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6275 || !JUMP_P (insn)
6276 || find_reg_note (insn,
6277 REG_LABEL_OPERAND,
6278 XEXP (*r->where, 0))
6279 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6281 /* Encapsulate RELOADREG so its machine mode matches what
6282 used to be there. Note that gen_lowpart_common will
6283 do the wrong thing if RELOADREG is multi-word. RELOADREG
6284 will always be a REG here. */
6285 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6286 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6288 /* If we are putting this into a SUBREG and RELOADREG is a
6289 SUBREG, we would be making nested SUBREGs, so we have to fix
6290 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6292 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6294 if (GET_MODE (*r->subreg_loc)
6295 == GET_MODE (SUBREG_REG (reloadreg)))
6296 *r->subreg_loc = SUBREG_REG (reloadreg);
6297 else
6299 int final_offset =
6300 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6302 /* When working with SUBREGs the rule is that the byte
6303 offset must be a multiple of the SUBREG's mode. */
6304 final_offset = (final_offset /
6305 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6306 final_offset = (final_offset *
6307 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6309 *r->where = SUBREG_REG (reloadreg);
6310 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6313 else
6314 *r->where = reloadreg;
6316 /* If reload got no reg and isn't optional, something's wrong. */
6317 else
6318 gcc_assert (rld[r->what].optional);
6322 /* Make a copy of any replacements being done into X and move those
6323 copies to locations in Y, a copy of X. */
6325 void
6326 copy_replacements (rtx x, rtx y)
6328 /* We can't support X being a SUBREG because we might then need to know its
6329 location if something inside it was replaced. */
6330 gcc_assert (GET_CODE (x) != SUBREG);
6332 copy_replacements_1 (&x, &y, n_replacements);
6335 static void
6336 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6338 int i, j;
6339 rtx x, y;
6340 struct replacement *r;
6341 enum rtx_code code;
6342 const char *fmt;
6344 for (j = 0; j < orig_replacements; j++)
6346 if (replacements[j].subreg_loc == px)
6348 r = &replacements[n_replacements++];
6349 r->where = replacements[j].where;
6350 r->subreg_loc = py;
6351 r->what = replacements[j].what;
6352 r->mode = replacements[j].mode;
6354 else if (replacements[j].where == px)
6356 r = &replacements[n_replacements++];
6357 r->where = py;
6358 r->subreg_loc = 0;
6359 r->what = replacements[j].what;
6360 r->mode = replacements[j].mode;
6364 x = *px;
6365 y = *py;
6366 code = GET_CODE (x);
6367 fmt = GET_RTX_FORMAT (code);
6369 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6371 if (fmt[i] == 'e')
6372 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6373 else if (fmt[i] == 'E')
6374 for (j = XVECLEN (x, i); --j >= 0; )
6375 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6376 orig_replacements);
6380 /* Change any replacements being done to *X to be done to *Y. */
6382 void
6383 move_replacements (rtx *x, rtx *y)
6385 int i;
6387 for (i = 0; i < n_replacements; i++)
6388 if (replacements[i].subreg_loc == x)
6389 replacements[i].subreg_loc = y;
6390 else if (replacements[i].where == x)
6392 replacements[i].where = y;
6393 replacements[i].subreg_loc = 0;
6397 /* If LOC was scheduled to be replaced by something, return the replacement.
6398 Otherwise, return *LOC. */
6401 find_replacement (rtx *loc)
6403 struct replacement *r;
6405 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6407 rtx reloadreg = rld[r->what].reg_rtx;
6409 if (reloadreg && r->where == loc)
6411 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6412 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6414 return reloadreg;
6416 else if (reloadreg && r->subreg_loc == loc)
6418 /* RELOADREG must be either a REG or a SUBREG.
6420 ??? Is it actually still ever a SUBREG? If so, why? */
6422 if (REG_P (reloadreg))
6423 return gen_rtx_REG (GET_MODE (*loc),
6424 (REGNO (reloadreg) +
6425 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6426 GET_MODE (SUBREG_REG (*loc)),
6427 SUBREG_BYTE (*loc),
6428 GET_MODE (*loc))));
6429 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6430 return reloadreg;
6431 else
6433 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6435 /* When working with SUBREGs the rule is that the byte
6436 offset must be a multiple of the SUBREG's mode. */
6437 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6438 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6439 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6440 final_offset);
6445 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6446 what's inside and make a new rtl if so. */
6447 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6448 || GET_CODE (*loc) == MULT)
6450 rtx x = find_replacement (&XEXP (*loc, 0));
6451 rtx y = find_replacement (&XEXP (*loc, 1));
6453 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6454 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6457 return *loc;
6460 /* Return nonzero if register in range [REGNO, ENDREGNO)
6461 appears either explicitly or implicitly in X
6462 other than being stored into (except for earlyclobber operands).
6464 References contained within the substructure at LOC do not count.
6465 LOC may be zero, meaning don't ignore anything.
6467 This is similar to refers_to_regno_p in rtlanal.c except that we
6468 look at equivalences for pseudos that didn't get hard registers. */
6470 static int
6471 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6472 rtx x, rtx *loc)
6474 int i;
6475 unsigned int r;
6476 RTX_CODE code;
6477 const char *fmt;
6479 if (x == 0)
6480 return 0;
6482 repeat:
6483 code = GET_CODE (x);
6485 switch (code)
6487 case REG:
6488 r = REGNO (x);
6490 /* If this is a pseudo, a hard register must not have been allocated.
6491 X must therefore either be a constant or be in memory. */
6492 if (r >= FIRST_PSEUDO_REGISTER)
6494 if (reg_equiv_memory_loc (r))
6495 return refers_to_regno_for_reload_p (regno, endregno,
6496 reg_equiv_memory_loc (r),
6497 (rtx*) 0);
6499 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6500 return 0;
6503 return (endregno > r
6504 && regno < r + (r < FIRST_PSEUDO_REGISTER
6505 ? hard_regno_nregs[r][GET_MODE (x)]
6506 : 1));
6508 case SUBREG:
6509 /* If this is a SUBREG of a hard reg, we can see exactly which
6510 registers are being modified. Otherwise, handle normally. */
6511 if (REG_P (SUBREG_REG (x))
6512 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6514 unsigned int inner_regno = subreg_regno (x);
6515 unsigned int inner_endregno
6516 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6517 ? subreg_nregs (x) : 1);
6519 return endregno > inner_regno && regno < inner_endregno;
6521 break;
6523 case CLOBBER:
6524 case SET:
6525 if (&SET_DEST (x) != loc
6526 /* Note setting a SUBREG counts as referring to the REG it is in for
6527 a pseudo but not for hard registers since we can
6528 treat each word individually. */
6529 && ((GET_CODE (SET_DEST (x)) == SUBREG
6530 && loc != &SUBREG_REG (SET_DEST (x))
6531 && REG_P (SUBREG_REG (SET_DEST (x)))
6532 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6533 && refers_to_regno_for_reload_p (regno, endregno,
6534 SUBREG_REG (SET_DEST (x)),
6535 loc))
6536 /* If the output is an earlyclobber operand, this is
6537 a conflict. */
6538 || ((!REG_P (SET_DEST (x))
6539 || earlyclobber_operand_p (SET_DEST (x)))
6540 && refers_to_regno_for_reload_p (regno, endregno,
6541 SET_DEST (x), loc))))
6542 return 1;
6544 if (code == CLOBBER || loc == &SET_SRC (x))
6545 return 0;
6546 x = SET_SRC (x);
6547 goto repeat;
6549 default:
6550 break;
6553 /* X does not match, so try its subexpressions. */
6555 fmt = GET_RTX_FORMAT (code);
6556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6558 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6560 if (i == 0)
6562 x = XEXP (x, 0);
6563 goto repeat;
6565 else
6566 if (refers_to_regno_for_reload_p (regno, endregno,
6567 XEXP (x, i), loc))
6568 return 1;
6570 else if (fmt[i] == 'E')
6572 int j;
6573 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6574 if (loc != &XVECEXP (x, i, j)
6575 && refers_to_regno_for_reload_p (regno, endregno,
6576 XVECEXP (x, i, j), loc))
6577 return 1;
6580 return 0;
6583 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6584 we check if any register number in X conflicts with the relevant register
6585 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6586 contains a MEM (we don't bother checking for memory addresses that can't
6587 conflict because we expect this to be a rare case.
6589 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6590 that we look at equivalences for pseudos that didn't get hard registers. */
6593 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6595 int regno, endregno;
6597 /* Overly conservative. */
6598 if (GET_CODE (x) == STRICT_LOW_PART
6599 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6600 x = XEXP (x, 0);
6602 /* If either argument is a constant, then modifying X can not affect IN. */
6603 if (CONSTANT_P (x) || CONSTANT_P (in))
6604 return 0;
6605 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6606 return refers_to_mem_for_reload_p (in);
6607 else if (GET_CODE (x) == SUBREG)
6609 regno = REGNO (SUBREG_REG (x));
6610 if (regno < FIRST_PSEUDO_REGISTER)
6611 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6612 GET_MODE (SUBREG_REG (x)),
6613 SUBREG_BYTE (x),
6614 GET_MODE (x));
6615 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6616 ? subreg_nregs (x) : 1);
6618 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6620 else if (REG_P (x))
6622 regno = REGNO (x);
6624 /* If this is a pseudo, it must not have been assigned a hard register.
6625 Therefore, it must either be in memory or be a constant. */
6627 if (regno >= FIRST_PSEUDO_REGISTER)
6629 if (reg_equiv_memory_loc (regno))
6630 return refers_to_mem_for_reload_p (in);
6631 gcc_assert (reg_equiv_constant (regno));
6632 return 0;
6635 endregno = END_HARD_REGNO (x);
6637 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6639 else if (MEM_P (x))
6640 return refers_to_mem_for_reload_p (in);
6641 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6642 || GET_CODE (x) == CC0)
6643 return reg_mentioned_p (x, in);
6644 else
6646 gcc_assert (GET_CODE (x) == PLUS);
6648 /* We actually want to know if X is mentioned somewhere inside IN.
6649 We must not say that (plus (sp) (const_int 124)) is in
6650 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6651 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6652 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6653 while (MEM_P (in))
6654 in = XEXP (in, 0);
6655 if (REG_P (in))
6656 return 0;
6657 else if (GET_CODE (in) == PLUS)
6658 return (rtx_equal_p (x, in)
6659 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6660 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6661 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6662 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6665 gcc_unreachable ();
6668 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6669 registers. */
6671 static int
6672 refers_to_mem_for_reload_p (rtx x)
6674 const char *fmt;
6675 int i;
6677 if (MEM_P (x))
6678 return 1;
6680 if (REG_P (x))
6681 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6682 && reg_equiv_memory_loc (REGNO (x)));
6684 fmt = GET_RTX_FORMAT (GET_CODE (x));
6685 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6686 if (fmt[i] == 'e'
6687 && (MEM_P (XEXP (x, i))
6688 || refers_to_mem_for_reload_p (XEXP (x, i))))
6689 return 1;
6691 return 0;
6694 /* Check the insns before INSN to see if there is a suitable register
6695 containing the same value as GOAL.
6696 If OTHER is -1, look for a register in class RCLASS.
6697 Otherwise, just see if register number OTHER shares GOAL's value.
6699 Return an rtx for the register found, or zero if none is found.
6701 If RELOAD_REG_P is (short *)1,
6702 we reject any hard reg that appears in reload_reg_rtx
6703 because such a hard reg is also needed coming into this insn.
6705 If RELOAD_REG_P is any other nonzero value,
6706 it is a vector indexed by hard reg number
6707 and we reject any hard reg whose element in the vector is nonnegative
6708 as well as any that appears in reload_reg_rtx.
6710 If GOAL is zero, then GOALREG is a register number; we look
6711 for an equivalent for that register.
6713 MODE is the machine mode of the value we want an equivalence for.
6714 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6716 This function is used by jump.c as well as in the reload pass.
6718 If GOAL is the sum of the stack pointer and a constant, we treat it
6719 as if it were a constant except that sp is required to be unchanging. */
6722 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6723 short *reload_reg_p, int goalreg, enum machine_mode mode)
6725 rtx p = insn;
6726 rtx goaltry, valtry, value, where;
6727 rtx pat;
6728 int regno = -1;
6729 int valueno;
6730 int goal_mem = 0;
6731 int goal_const = 0;
6732 int goal_mem_addr_varies = 0;
6733 int need_stable_sp = 0;
6734 int nregs;
6735 int valuenregs;
6736 int num = 0;
6738 if (goal == 0)
6739 regno = goalreg;
6740 else if (REG_P (goal))
6741 regno = REGNO (goal);
6742 else if (MEM_P (goal))
6744 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6745 if (MEM_VOLATILE_P (goal))
6746 return 0;
6747 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6748 return 0;
6749 /* An address with side effects must be reexecuted. */
6750 switch (code)
6752 case POST_INC:
6753 case PRE_INC:
6754 case POST_DEC:
6755 case PRE_DEC:
6756 case POST_MODIFY:
6757 case PRE_MODIFY:
6758 return 0;
6759 default:
6760 break;
6762 goal_mem = 1;
6764 else if (CONSTANT_P (goal))
6765 goal_const = 1;
6766 else if (GET_CODE (goal) == PLUS
6767 && XEXP (goal, 0) == stack_pointer_rtx
6768 && CONSTANT_P (XEXP (goal, 1)))
6769 goal_const = need_stable_sp = 1;
6770 else if (GET_CODE (goal) == PLUS
6771 && XEXP (goal, 0) == frame_pointer_rtx
6772 && CONSTANT_P (XEXP (goal, 1)))
6773 goal_const = 1;
6774 else
6775 return 0;
6777 num = 0;
6778 /* Scan insns back from INSN, looking for one that copies
6779 a value into or out of GOAL.
6780 Stop and give up if we reach a label. */
6782 while (1)
6784 p = PREV_INSN (p);
6785 if (p && DEBUG_INSN_P (p))
6786 continue;
6787 num++;
6788 if (p == 0 || LABEL_P (p)
6789 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6790 return 0;
6792 if (NONJUMP_INSN_P (p)
6793 /* If we don't want spill regs ... */
6794 && (! (reload_reg_p != 0
6795 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6796 /* ... then ignore insns introduced by reload; they aren't
6797 useful and can cause results in reload_as_needed to be
6798 different from what they were when calculating the need for
6799 spills. If we notice an input-reload insn here, we will
6800 reject it below, but it might hide a usable equivalent.
6801 That makes bad code. It may even fail: perhaps no reg was
6802 spilled for this insn because it was assumed we would find
6803 that equivalent. */
6804 || INSN_UID (p) < reload_first_uid))
6806 rtx tem;
6807 pat = single_set (p);
6809 /* First check for something that sets some reg equal to GOAL. */
6810 if (pat != 0
6811 && ((regno >= 0
6812 && true_regnum (SET_SRC (pat)) == regno
6813 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6815 (regno >= 0
6816 && true_regnum (SET_DEST (pat)) == regno
6817 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6819 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6820 /* When looking for stack pointer + const,
6821 make sure we don't use a stack adjust. */
6822 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6823 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6824 || (goal_mem
6825 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6826 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6827 || (goal_mem
6828 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6829 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6830 /* If we are looking for a constant,
6831 and something equivalent to that constant was copied
6832 into a reg, we can use that reg. */
6833 || (goal_const && REG_NOTES (p) != 0
6834 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6835 && ((rtx_equal_p (XEXP (tem, 0), goal)
6836 && (valueno
6837 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6838 || (REG_P (SET_DEST (pat))
6839 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6840 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6841 && CONST_INT_P (goal)
6842 && 0 != (goaltry
6843 = operand_subword (XEXP (tem, 0), 0, 0,
6844 VOIDmode))
6845 && rtx_equal_p (goal, goaltry)
6846 && (valtry
6847 = operand_subword (SET_DEST (pat), 0, 0,
6848 VOIDmode))
6849 && (valueno = true_regnum (valtry)) >= 0)))
6850 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6851 NULL_RTX))
6852 && REG_P (SET_DEST (pat))
6853 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6854 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6855 && CONST_INT_P (goal)
6856 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6857 VOIDmode))
6858 && rtx_equal_p (goal, goaltry)
6859 && (valtry
6860 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6861 && (valueno = true_regnum (valtry)) >= 0)))
6863 if (other >= 0)
6865 if (valueno != other)
6866 continue;
6868 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6869 continue;
6870 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6871 mode, valueno))
6872 continue;
6873 value = valtry;
6874 where = p;
6875 break;
6880 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6881 (or copying VALUE into GOAL, if GOAL is also a register).
6882 Now verify that VALUE is really valid. */
6884 /* VALUENO is the register number of VALUE; a hard register. */
6886 /* Don't try to re-use something that is killed in this insn. We want
6887 to be able to trust REG_UNUSED notes. */
6888 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6889 return 0;
6891 /* If we propose to get the value from the stack pointer or if GOAL is
6892 a MEM based on the stack pointer, we need a stable SP. */
6893 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6894 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6895 goal)))
6896 need_stable_sp = 1;
6898 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6899 if (GET_MODE (value) != mode)
6900 return 0;
6902 /* Reject VALUE if it was loaded from GOAL
6903 and is also a register that appears in the address of GOAL. */
6905 if (goal_mem && value == SET_DEST (single_set (where))
6906 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6907 goal, (rtx*) 0))
6908 return 0;
6910 /* Reject registers that overlap GOAL. */
6912 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6913 nregs = hard_regno_nregs[regno][mode];
6914 else
6915 nregs = 1;
6916 valuenregs = hard_regno_nregs[valueno][mode];
6918 if (!goal_mem && !goal_const
6919 && regno + nregs > valueno && regno < valueno + valuenregs)
6920 return 0;
6922 /* Reject VALUE if it is one of the regs reserved for reloads.
6923 Reload1 knows how to reuse them anyway, and it would get
6924 confused if we allocated one without its knowledge.
6925 (Now that insns introduced by reload are ignored above,
6926 this case shouldn't happen, but I'm not positive.) */
6928 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6930 int i;
6931 for (i = 0; i < valuenregs; ++i)
6932 if (reload_reg_p[valueno + i] >= 0)
6933 return 0;
6936 /* Reject VALUE if it is a register being used for an input reload
6937 even if it is not one of those reserved. */
6939 if (reload_reg_p != 0)
6941 int i;
6942 for (i = 0; i < n_reloads; i++)
6943 if (rld[i].reg_rtx != 0 && rld[i].in)
6945 int regno1 = REGNO (rld[i].reg_rtx);
6946 int nregs1 = hard_regno_nregs[regno1]
6947 [GET_MODE (rld[i].reg_rtx)];
6948 if (regno1 < valueno + valuenregs
6949 && regno1 + nregs1 > valueno)
6950 return 0;
6954 if (goal_mem)
6955 /* We must treat frame pointer as varying here,
6956 since it can vary--in a nonlocal goto as generated by expand_goto. */
6957 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6959 /* Now verify that the values of GOAL and VALUE remain unaltered
6960 until INSN is reached. */
6962 p = insn;
6963 while (1)
6965 p = PREV_INSN (p);
6966 if (p == where)
6967 return value;
6969 /* Don't trust the conversion past a function call
6970 if either of the two is in a call-clobbered register, or memory. */
6971 if (CALL_P (p))
6973 int i;
6975 if (goal_mem || need_stable_sp)
6976 return 0;
6978 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6979 for (i = 0; i < nregs; ++i)
6980 if (call_used_regs[regno + i]
6981 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6982 return 0;
6984 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6985 for (i = 0; i < valuenregs; ++i)
6986 if (call_used_regs[valueno + i]
6987 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6988 return 0;
6991 if (INSN_P (p))
6993 pat = PATTERN (p);
6995 /* Watch out for unspec_volatile, and volatile asms. */
6996 if (volatile_insn_p (pat))
6997 return 0;
6999 /* If this insn P stores in either GOAL or VALUE, return 0.
7000 If GOAL is a memory ref and this insn writes memory, return 0.
7001 If GOAL is a memory ref and its address is not constant,
7002 and this insn P changes a register used in GOAL, return 0. */
7004 if (GET_CODE (pat) == COND_EXEC)
7005 pat = COND_EXEC_CODE (pat);
7006 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7008 rtx dest = SET_DEST (pat);
7009 while (GET_CODE (dest) == SUBREG
7010 || GET_CODE (dest) == ZERO_EXTRACT
7011 || GET_CODE (dest) == STRICT_LOW_PART)
7012 dest = XEXP (dest, 0);
7013 if (REG_P (dest))
7015 int xregno = REGNO (dest);
7016 int xnregs;
7017 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7018 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7019 else
7020 xnregs = 1;
7021 if (xregno < regno + nregs && xregno + xnregs > regno)
7022 return 0;
7023 if (xregno < valueno + valuenregs
7024 && xregno + xnregs > valueno)
7025 return 0;
7026 if (goal_mem_addr_varies
7027 && reg_overlap_mentioned_for_reload_p (dest, goal))
7028 return 0;
7029 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7030 return 0;
7032 else if (goal_mem && MEM_P (dest)
7033 && ! push_operand (dest, GET_MODE (dest)))
7034 return 0;
7035 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7036 && reg_equiv_memory_loc (regno) != 0)
7037 return 0;
7038 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7039 return 0;
7041 else if (GET_CODE (pat) == PARALLEL)
7043 int i;
7044 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7046 rtx v1 = XVECEXP (pat, 0, i);
7047 if (GET_CODE (v1) == COND_EXEC)
7048 v1 = COND_EXEC_CODE (v1);
7049 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7051 rtx dest = SET_DEST (v1);
7052 while (GET_CODE (dest) == SUBREG
7053 || GET_CODE (dest) == ZERO_EXTRACT
7054 || GET_CODE (dest) == STRICT_LOW_PART)
7055 dest = XEXP (dest, 0);
7056 if (REG_P (dest))
7058 int xregno = REGNO (dest);
7059 int xnregs;
7060 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7061 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7062 else
7063 xnregs = 1;
7064 if (xregno < regno + nregs
7065 && xregno + xnregs > regno)
7066 return 0;
7067 if (xregno < valueno + valuenregs
7068 && xregno + xnregs > valueno)
7069 return 0;
7070 if (goal_mem_addr_varies
7071 && reg_overlap_mentioned_for_reload_p (dest,
7072 goal))
7073 return 0;
7074 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7075 return 0;
7077 else if (goal_mem && MEM_P (dest)
7078 && ! push_operand (dest, GET_MODE (dest)))
7079 return 0;
7080 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7081 && reg_equiv_memory_loc (regno) != 0)
7082 return 0;
7083 else if (need_stable_sp
7084 && push_operand (dest, GET_MODE (dest)))
7085 return 0;
7090 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7092 rtx link;
7094 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7095 link = XEXP (link, 1))
7097 pat = XEXP (link, 0);
7098 if (GET_CODE (pat) == CLOBBER)
7100 rtx dest = SET_DEST (pat);
7102 if (REG_P (dest))
7104 int xregno = REGNO (dest);
7105 int xnregs
7106 = hard_regno_nregs[xregno][GET_MODE (dest)];
7108 if (xregno < regno + nregs
7109 && xregno + xnregs > regno)
7110 return 0;
7111 else if (xregno < valueno + valuenregs
7112 && xregno + xnregs > valueno)
7113 return 0;
7114 else if (goal_mem_addr_varies
7115 && reg_overlap_mentioned_for_reload_p (dest,
7116 goal))
7117 return 0;
7120 else if (goal_mem && MEM_P (dest)
7121 && ! push_operand (dest, GET_MODE (dest)))
7122 return 0;
7123 else if (need_stable_sp
7124 && push_operand (dest, GET_MODE (dest)))
7125 return 0;
7130 #ifdef AUTO_INC_DEC
7131 /* If this insn auto-increments or auto-decrements
7132 either regno or valueno, return 0 now.
7133 If GOAL is a memory ref and its address is not constant,
7134 and this insn P increments a register used in GOAL, return 0. */
7136 rtx link;
7138 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7139 if (REG_NOTE_KIND (link) == REG_INC
7140 && REG_P (XEXP (link, 0)))
7142 int incno = REGNO (XEXP (link, 0));
7143 if (incno < regno + nregs && incno >= regno)
7144 return 0;
7145 if (incno < valueno + valuenregs && incno >= valueno)
7146 return 0;
7147 if (goal_mem_addr_varies
7148 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7149 goal))
7150 return 0;
7153 #endif
7158 /* Find a place where INCED appears in an increment or decrement operator
7159 within X, and return the amount INCED is incremented or decremented by.
7160 The value is always positive. */
7162 static int
7163 find_inc_amount (rtx x, rtx inced)
7165 enum rtx_code code = GET_CODE (x);
7166 const char *fmt;
7167 int i;
7169 if (code == MEM)
7171 rtx addr = XEXP (x, 0);
7172 if ((GET_CODE (addr) == PRE_DEC
7173 || GET_CODE (addr) == POST_DEC
7174 || GET_CODE (addr) == PRE_INC
7175 || GET_CODE (addr) == POST_INC)
7176 && XEXP (addr, 0) == inced)
7177 return GET_MODE_SIZE (GET_MODE (x));
7178 else if ((GET_CODE (addr) == PRE_MODIFY
7179 || GET_CODE (addr) == POST_MODIFY)
7180 && GET_CODE (XEXP (addr, 1)) == PLUS
7181 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7182 && XEXP (addr, 0) == inced
7183 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7185 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7186 return i < 0 ? -i : i;
7190 fmt = GET_RTX_FORMAT (code);
7191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7193 if (fmt[i] == 'e')
7195 int tem = find_inc_amount (XEXP (x, i), inced);
7196 if (tem != 0)
7197 return tem;
7199 if (fmt[i] == 'E')
7201 int j;
7202 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7204 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7205 if (tem != 0)
7206 return tem;
7211 return 0;
7214 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7215 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7217 #ifdef AUTO_INC_DEC
7218 static int
7219 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7220 rtx insn)
7222 rtx link;
7224 gcc_assert (insn);
7226 if (! INSN_P (insn))
7227 return 0;
7229 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7230 if (REG_NOTE_KIND (link) == REG_INC)
7232 unsigned int test = (int) REGNO (XEXP (link, 0));
7233 if (test >= regno && test < endregno)
7234 return 1;
7236 return 0;
7238 #else
7240 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7242 #endif
7244 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7245 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7246 REG_INC. REGNO must refer to a hard register. */
7249 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7250 int sets)
7252 unsigned int nregs, endregno;
7254 /* regno must be a hard register. */
7255 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7257 nregs = hard_regno_nregs[regno][mode];
7258 endregno = regno + nregs;
7260 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7261 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7262 && REG_P (XEXP (PATTERN (insn), 0)))
7264 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7266 return test >= regno && test < endregno;
7269 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7270 return 1;
7272 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7274 int i = XVECLEN (PATTERN (insn), 0) - 1;
7276 for (; i >= 0; i--)
7278 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7279 if ((GET_CODE (elt) == CLOBBER
7280 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7281 && REG_P (XEXP (elt, 0)))
7283 unsigned int test = REGNO (XEXP (elt, 0));
7285 if (test >= regno && test < endregno)
7286 return 1;
7288 if (sets == 2
7289 && reg_inc_found_and_valid_p (regno, endregno, elt))
7290 return 1;
7294 return 0;
7297 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7299 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7301 int regno;
7303 if (GET_MODE (reloadreg) == mode)
7304 return reloadreg;
7306 regno = REGNO (reloadreg);
7308 if (WORDS_BIG_ENDIAN)
7309 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7310 - (int) hard_regno_nregs[regno][mode];
7312 return gen_rtx_REG (mode, regno);
7315 static const char *const reload_when_needed_name[] =
7317 "RELOAD_FOR_INPUT",
7318 "RELOAD_FOR_OUTPUT",
7319 "RELOAD_FOR_INSN",
7320 "RELOAD_FOR_INPUT_ADDRESS",
7321 "RELOAD_FOR_INPADDR_ADDRESS",
7322 "RELOAD_FOR_OUTPUT_ADDRESS",
7323 "RELOAD_FOR_OUTADDR_ADDRESS",
7324 "RELOAD_FOR_OPERAND_ADDRESS",
7325 "RELOAD_FOR_OPADDR_ADDR",
7326 "RELOAD_OTHER",
7327 "RELOAD_FOR_OTHER_ADDRESS"
7330 /* These functions are used to print the variables set by 'find_reloads' */
7332 DEBUG_FUNCTION void
7333 debug_reload_to_stream (FILE *f)
7335 int r;
7336 const char *prefix;
7338 if (! f)
7339 f = stderr;
7340 for (r = 0; r < n_reloads; r++)
7342 fprintf (f, "Reload %d: ", r);
7344 if (rld[r].in != 0)
7346 fprintf (f, "reload_in (%s) = ",
7347 GET_MODE_NAME (rld[r].inmode));
7348 print_inline_rtx (f, rld[r].in, 24);
7349 fprintf (f, "\n\t");
7352 if (rld[r].out != 0)
7354 fprintf (f, "reload_out (%s) = ",
7355 GET_MODE_NAME (rld[r].outmode));
7356 print_inline_rtx (f, rld[r].out, 24);
7357 fprintf (f, "\n\t");
7360 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7362 fprintf (f, "%s (opnum = %d)",
7363 reload_when_needed_name[(int) rld[r].when_needed],
7364 rld[r].opnum);
7366 if (rld[r].optional)
7367 fprintf (f, ", optional");
7369 if (rld[r].nongroup)
7370 fprintf (f, ", nongroup");
7372 if (rld[r].inc != 0)
7373 fprintf (f, ", inc by %d", rld[r].inc);
7375 if (rld[r].nocombine)
7376 fprintf (f, ", can't combine");
7378 if (rld[r].secondary_p)
7379 fprintf (f, ", secondary_reload_p");
7381 if (rld[r].in_reg != 0)
7383 fprintf (f, "\n\treload_in_reg: ");
7384 print_inline_rtx (f, rld[r].in_reg, 24);
7387 if (rld[r].out_reg != 0)
7389 fprintf (f, "\n\treload_out_reg: ");
7390 print_inline_rtx (f, rld[r].out_reg, 24);
7393 if (rld[r].reg_rtx != 0)
7395 fprintf (f, "\n\treload_reg_rtx: ");
7396 print_inline_rtx (f, rld[r].reg_rtx, 24);
7399 prefix = "\n\t";
7400 if (rld[r].secondary_in_reload != -1)
7402 fprintf (f, "%ssecondary_in_reload = %d",
7403 prefix, rld[r].secondary_in_reload);
7404 prefix = ", ";
7407 if (rld[r].secondary_out_reload != -1)
7408 fprintf (f, "%ssecondary_out_reload = %d\n",
7409 prefix, rld[r].secondary_out_reload);
7411 prefix = "\n\t";
7412 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7414 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7415 insn_data[rld[r].secondary_in_icode].name);
7416 prefix = ", ";
7419 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7420 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7421 insn_data[rld[r].secondary_out_icode].name);
7423 fprintf (f, "\n");
7427 DEBUG_FUNCTION void
7428 debug_reload (void)
7430 debug_reload_to_stream (stderr);