1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
3 Copyright (C) 2006-2017 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
27 #include "coretypes.h"
29 #include "insn-codes.h"
34 #include "tree-pass.h"
36 #include "optabs-tree.h"
38 #include "gimple-pretty-print.h"
40 #include "fold-const.h"
42 #include "stor-layout.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
49 #include "alloc-pool.h"
51 #include "tree-into-ssa.h"
53 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
54 type in the GIMPLE type system that is language-independent? */
55 #include "langhooks.h"
58 /* Maximum number of case bit tests.
59 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
60 targetm.case_values_threshold(), or be its own param. */
61 #define MAX_CASE_BIT_TESTS 3
63 /* Split the basic block at the statement pointed to by GSIP, and insert
64 a branch to the target basic block of E_TRUE conditional on tree
67 It is assumed that there is already an edge from the to-be-split
68 basic block to E_TRUE->dest block. This edge is removed, and the
69 profile information on the edge is re-used for the new conditional
72 The CFG is updated. The dominator tree will not be valid after
73 this transformation, but the immediate dominators are updated if
74 UPDATE_DOMINATORS is true.
76 Returns the newly created basic block. */
79 hoist_edge_and_branch_if_true (gimple_stmt_iterator
*gsip
,
80 tree cond
, edge e_true
,
81 bool update_dominators
)
86 basic_block new_bb
, split_bb
= gsi_bb (*gsip
);
87 bool dominated_e_true
= false;
89 gcc_assert (e_true
->src
== split_bb
);
92 && get_immediate_dominator (CDI_DOMINATORS
, e_true
->dest
) == split_bb
)
93 dominated_e_true
= true;
95 tmp
= force_gimple_operand_gsi (gsip
, cond
, /*simple=*/true, NULL
,
96 /*before=*/true, GSI_SAME_STMT
);
97 cond_stmt
= gimple_build_cond_from_tree (tmp
, NULL_TREE
, NULL_TREE
);
98 gsi_insert_before (gsip
, cond_stmt
, GSI_SAME_STMT
);
100 e_false
= split_block (split_bb
, cond_stmt
);
101 new_bb
= e_false
->dest
;
102 redirect_edge_pred (e_true
, split_bb
);
104 e_true
->flags
&= ~EDGE_FALLTHRU
;
105 e_true
->flags
|= EDGE_TRUE_VALUE
;
107 e_false
->flags
&= ~EDGE_FALLTHRU
;
108 e_false
->flags
|= EDGE_FALSE_VALUE
;
109 e_false
->probability
= e_true
->probability
.invert ();
110 e_false
->count
= split_bb
->count
- e_true
->count
;
111 new_bb
->count
= e_false
->count
;
113 if (update_dominators
)
115 if (dominated_e_true
)
116 set_immediate_dominator (CDI_DOMINATORS
, e_true
->dest
, split_bb
);
117 set_immediate_dominator (CDI_DOMINATORS
, e_false
->dest
, split_bb
);
124 /* Return true if a switch should be expanded as a bit test.
125 RANGE is the difference between highest and lowest case.
126 UNIQ is number of unique case node targets, not counting the default case.
127 COUNT is the number of comparisons needed, not counting the default case. */
130 expand_switch_using_bit_tests_p (tree range
,
132 unsigned int count
, bool speed_p
)
134 return (((uniq
== 1 && count
>= 3)
135 || (uniq
== 2 && count
>= 5)
136 || (uniq
== 3 && count
>= 6))
137 && lshift_cheap_p (speed_p
)
138 && compare_tree_int (range
, GET_MODE_BITSIZE (word_mode
)) < 0
139 && compare_tree_int (range
, 0) > 0);
142 /* Implement switch statements with bit tests
144 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
145 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
146 where CST and MINVAL are integer constants. This is better than a series
147 of compare-and-banch insns in some cases, e.g. we can implement:
149 if ((x==4) || (x==6) || (x==9) || (x==11))
151 as a single bit test:
153 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
155 This transformation is only applied if the number of case targets is small,
156 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
157 performed in "word_mode".
159 The following example shows the code the transformation generates:
165 case '0': case '1': case '2': case '3': case '4':
166 case '5': case '6': case '7': case '8': case '9':
167 case 'A': case 'B': case 'C': case 'D': case 'E':
179 if (tmp1 > (70 - 48)) goto L2;
181 tmp3 = 0b11111100000001111111111;
182 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
189 TODO: There are still some improvements to this transformation that could
192 * A narrower mode than word_mode could be used if that is cheaper, e.g.
193 for x86_64 where a narrower-mode shift may result in smaller code.
195 * The compounded constant could be shifted rather than the one. The
196 test would be either on the sign bit or on the least significant bit,
197 depending on the direction of the shift. On some machines, the test
198 for the branch would be free if the bit to test is already set by the
201 This transformation was contributed by Roger Sayle, see this e-mail:
202 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
205 /* A case_bit_test represents a set of case nodes that may be
206 selected from using a bit-wise comparison. HI and LO hold
207 the integer to be tested against, TARGET_EDGE contains the
208 edge to the basic block to jump to upon success and BITS
209 counts the number of case nodes handled by this test,
210 typically the number of bits set in HI:LO. The LABEL field
211 is used to quickly identify all cases in this set without
212 looking at label_to_block for every case label. */
222 /* Comparison function for qsort to order bit tests by decreasing
223 probability of execution. Our best guess comes from a measured
224 profile. If the profile counts are equal, break even on the
225 number of case nodes, i.e. the node with the most cases gets
228 TODO: Actually this currently runs before a profile is available.
229 Therefore the case-as-bit-tests transformation should be done
230 later in the pass pipeline, or something along the lines of
231 "Efficient and effective branch reordering using profile data"
232 (Yang et. al., 2002) should be implemented (although, how good
233 is a paper is called "Efficient and effective ..." when the
234 latter is implied by the former, but oh well...). */
237 case_bit_test_cmp (const void *p1
, const void *p2
)
239 const struct case_bit_test
*const d1
= (const struct case_bit_test
*) p1
;
240 const struct case_bit_test
*const d2
= (const struct case_bit_test
*) p2
;
242 if (d2
->target_edge
->count
< d1
->target_edge
->count
)
244 if (d2
->target_edge
->count
> d1
->target_edge
->count
)
246 if (d2
->bits
!= d1
->bits
)
247 return d2
->bits
- d1
->bits
;
249 /* Stabilize the sort. */
250 return LABEL_DECL_UID (d2
->label
) - LABEL_DECL_UID (d1
->label
);
253 /* Expand a switch statement by a short sequence of bit-wise
254 comparisons. "switch(x)" is effectively converted into
255 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
258 INDEX_EXPR is the value being switched on.
260 MINVAL is the lowest case value of in the case nodes,
261 and RANGE is highest value minus MINVAL. MINVAL and RANGE
262 are not guaranteed to be of the same type as INDEX_EXPR
263 (the gimplifier doesn't change the type of case label values,
264 and MINVAL and RANGE are derived from those values).
265 MAXVAL is MINVAL + RANGE.
267 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
271 emit_case_bit_tests (gswitch
*swtch
, tree index_expr
,
272 tree minval
, tree range
, tree maxval
)
274 struct case_bit_test test
[MAX_CASE_BIT_TESTS
] = { {} };
275 unsigned int i
, j
, k
;
278 basic_block switch_bb
= gimple_bb (swtch
);
279 basic_block default_bb
, new_default_bb
, new_bb
;
281 bool update_dom
= dom_info_available_p (CDI_DOMINATORS
);
283 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
285 tree index_type
= TREE_TYPE (index_expr
);
286 tree unsigned_index_type
= unsigned_type_for (index_type
);
287 unsigned int branch_num
= gimple_switch_num_labels (swtch
);
289 gimple_stmt_iterator gsi
;
293 tree word_type_node
= lang_hooks
.types
.type_for_mode (word_mode
, 1);
294 tree word_mode_zero
= fold_convert (word_type_node
, integer_zero_node
);
295 tree word_mode_one
= fold_convert (word_type_node
, integer_one_node
);
296 int prec
= TYPE_PRECISION (word_type_node
);
297 wide_int wone
= wi::one (prec
);
299 /* Get the edge for the default case. */
300 tmp
= gimple_switch_default_label (swtch
);
301 default_bb
= label_to_block (CASE_LABEL (tmp
));
302 default_edge
= find_edge (switch_bb
, default_bb
);
304 /* Go through all case labels, and collect the case labels, profile
305 counts, and other information we need to build the branch tests. */
307 for (i
= 1; i
< branch_num
; i
++)
310 tree cs
= gimple_switch_label (swtch
, i
);
311 tree label
= CASE_LABEL (cs
);
312 edge e
= find_edge (switch_bb
, label_to_block (label
));
313 for (k
= 0; k
< count
; k
++)
314 if (e
== test
[k
].target_edge
)
319 gcc_checking_assert (count
< MAX_CASE_BIT_TESTS
);
320 test
[k
].mask
= wi::zero (prec
);
321 test
[k
].target_edge
= e
;
322 test
[k
].label
= label
;
329 lo
= tree_to_uhwi (int_const_binop (MINUS_EXPR
,
330 CASE_LOW (cs
), minval
));
331 if (CASE_HIGH (cs
) == NULL_TREE
)
334 hi
= tree_to_uhwi (int_const_binop (MINUS_EXPR
,
335 CASE_HIGH (cs
), minval
));
337 for (j
= lo
; j
<= hi
; j
++)
338 test
[k
].mask
|= wi::lshift (wone
, j
);
341 qsort (test
, count
, sizeof (*test
), case_bit_test_cmp
);
343 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
344 the minval subtractions, but it might make the mask constants more
345 expensive. So, compare the costs. */
346 if (compare_tree_int (minval
, 0) > 0
347 && compare_tree_int (maxval
, GET_MODE_BITSIZE (word_mode
)) < 0)
350 HOST_WIDE_INT m
= tree_to_uhwi (minval
);
351 rtx reg
= gen_raw_REG (word_mode
, 10000);
352 bool speed_p
= optimize_bb_for_speed_p (gimple_bb (swtch
));
353 cost_diff
= set_rtx_cost (gen_rtx_PLUS (word_mode
, reg
,
354 GEN_INT (-m
)), speed_p
);
355 for (i
= 0; i
< count
; i
++)
357 rtx r
= immed_wide_int_const (test
[i
].mask
, word_mode
);
358 cost_diff
+= set_src_cost (gen_rtx_AND (word_mode
, reg
, r
),
360 r
= immed_wide_int_const (wi::lshift (test
[i
].mask
, m
), word_mode
);
361 cost_diff
-= set_src_cost (gen_rtx_AND (word_mode
, reg
, r
),
366 for (i
= 0; i
< count
; i
++)
367 test
[i
].mask
= wi::lshift (test
[i
].mask
, m
);
368 minval
= build_zero_cst (TREE_TYPE (minval
));
373 /* We generate two jumps to the default case label.
374 Split the default edge, so that we don't have to do any PHI node
376 new_default_bb
= split_edge (default_edge
);
380 bbs_to_fix_dom
.create (10);
381 bbs_to_fix_dom
.quick_push (switch_bb
);
382 bbs_to_fix_dom
.quick_push (default_bb
);
383 bbs_to_fix_dom
.quick_push (new_default_bb
);
386 /* Now build the test-and-branch code. */
388 gsi
= gsi_last_bb (switch_bb
);
390 /* idx = (unsigned)x - minval. */
391 idx
= fold_convert (unsigned_index_type
, index_expr
);
392 idx
= fold_build2 (MINUS_EXPR
, unsigned_index_type
, idx
,
393 fold_convert (unsigned_index_type
, minval
));
394 idx
= force_gimple_operand_gsi (&gsi
, idx
,
395 /*simple=*/true, NULL_TREE
,
396 /*before=*/true, GSI_SAME_STMT
);
398 /* if (idx > range) goto default */
399 range
= force_gimple_operand_gsi (&gsi
,
400 fold_convert (unsigned_index_type
, range
),
401 /*simple=*/true, NULL_TREE
,
402 /*before=*/true, GSI_SAME_STMT
);
403 tmp
= fold_build2 (GT_EXPR
, boolean_type_node
, idx
, range
);
404 new_bb
= hoist_edge_and_branch_if_true (&gsi
, tmp
, default_edge
, update_dom
);
406 bbs_to_fix_dom
.quick_push (new_bb
);
407 gcc_assert (gimple_bb (swtch
) == new_bb
);
408 gsi
= gsi_last_bb (new_bb
);
410 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
411 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
414 vec
<basic_block
> dom_bbs
;
417 dom_bbs
= get_dominated_by (CDI_DOMINATORS
, new_bb
);
418 FOR_EACH_VEC_ELT (dom_bbs
, i
, dom_son
)
420 edge e
= find_edge (new_bb
, dom_son
);
421 if (e
&& single_pred_p (e
->dest
))
423 set_immediate_dominator (CDI_DOMINATORS
, dom_son
, switch_bb
);
424 bbs_to_fix_dom
.safe_push (dom_son
);
429 /* csui = (1 << (word_mode) idx) */
430 csui
= make_ssa_name (word_type_node
);
431 tmp
= fold_build2 (LSHIFT_EXPR
, word_type_node
, word_mode_one
,
432 fold_convert (word_type_node
, idx
));
433 tmp
= force_gimple_operand_gsi (&gsi
, tmp
,
434 /*simple=*/false, NULL_TREE
,
435 /*before=*/true, GSI_SAME_STMT
);
436 shift_stmt
= gimple_build_assign (csui
, tmp
);
437 gsi_insert_before (&gsi
, shift_stmt
, GSI_SAME_STMT
);
438 update_stmt (shift_stmt
);
440 /* for each unique set of cases:
441 if (const & csui) goto target */
442 for (k
= 0; k
< count
; k
++)
444 tmp
= wide_int_to_tree (word_type_node
, test
[k
].mask
);
445 tmp
= fold_build2 (BIT_AND_EXPR
, word_type_node
, csui
, tmp
);
446 tmp
= force_gimple_operand_gsi (&gsi
, tmp
,
447 /*simple=*/true, NULL_TREE
,
448 /*before=*/true, GSI_SAME_STMT
);
449 tmp
= fold_build2 (NE_EXPR
, boolean_type_node
, tmp
, word_mode_zero
);
450 new_bb
= hoist_edge_and_branch_if_true (&gsi
, tmp
, test
[k
].target_edge
,
453 bbs_to_fix_dom
.safe_push (new_bb
);
454 gcc_assert (gimple_bb (swtch
) == new_bb
);
455 gsi
= gsi_last_bb (new_bb
);
458 /* We should have removed all edges now. */
459 gcc_assert (EDGE_COUNT (gsi_bb (gsi
)->succs
) == 0);
461 /* If nothing matched, go to the default label. */
462 make_edge (gsi_bb (gsi
), new_default_bb
, EDGE_FALLTHRU
);
464 /* The GIMPLE_SWITCH is now redundant. */
465 gsi_remove (&gsi
, true);
469 /* Fix up the dominator tree. */
470 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
471 bbs_to_fix_dom
.release ();
476 Switch initialization conversion
478 The following pass changes simple initializations of scalars in a switch
479 statement into initializations from a static array. Obviously, the values
480 must be constant and known at compile time and a default branch must be
481 provided. For example, the following code:
505 a_5 = PHI <a_1, a_2, a_3, a_4>
506 b_5 = PHI <b_1, b_2, b_3, b_4>
511 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
512 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
515 if (((unsigned) argc) - 1 < 11)
517 a_6 = CSWTCH02[argc - 1];
518 b_6 = CSWTCH01[argc - 1];
528 There are further constraints. Specifically, the range of values across all
529 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
530 eight) times the number of the actual switch branches.
532 This transformation was contributed by Martin Jambor, see this e-mail:
533 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
535 /* The main structure of the pass. */
536 struct switch_conv_info
538 /* The expression used to decide the switch branch. */
541 /* The following integer constants store the minimum and maximum value
542 covered by the case labels. */
546 /* The difference between the above two numbers. Stored here because it
547 is used in all the conversion heuristics, as well as for some of the
548 transformation, and it is expensive to re-compute it all the time. */
551 /* Basic block that contains the actual GIMPLE_SWITCH. */
552 basic_block switch_bb
;
554 /* Basic block that is the target of the default case. */
555 basic_block default_bb
;
557 /* The single successor block of all branches out of the GIMPLE_SWITCH,
558 if such a block exists. Otherwise NULL. */
559 basic_block final_bb
;
561 /* The probability of the default edge in the replaced switch. */
562 profile_probability default_prob
;
564 /* The count of the default edge in the replaced switch. */
565 profile_count default_count
;
567 /* Combined count of all other (non-default) edges in the replaced switch. */
568 profile_count other_count
;
570 /* Number of phi nodes in the final bb (that we'll be replacing). */
573 /* Array of default values, in the same order as phi nodes. */
574 tree
*default_values
;
576 /* Constructors of new static arrays. */
577 vec
<constructor_elt
, va_gc
> **constructors
;
579 /* Array of ssa names that are initialized with a value from a new static
581 tree
*target_inbound_names
;
583 /* Array of ssa names that are initialized with the default value if the
584 switch expression is out of range. */
585 tree
*target_outbound_names
;
590 /* The first load statement that loads a temporary from a new static array.
592 gimple
*arr_ref_first
;
594 /* The last load statement that loads a temporary from a new static array. */
595 gimple
*arr_ref_last
;
597 /* String reason why the case wasn't a good candidate that is written to the
598 dump file, if there is one. */
601 /* True if default case is not used for any value between range_min and
602 range_max inclusive. */
603 bool contiguous_range
;
605 /* True if default case does not have the required shape for other case
607 bool default_case_nonstandard
;
609 /* Parameters for expand_switch_using_bit_tests. Should be computed
610 the same way as in expand_case. */
615 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
618 collect_switch_conv_info (gswitch
*swtch
, struct switch_conv_info
*info
)
620 unsigned int branch_num
= gimple_switch_num_labels (swtch
);
621 tree min_case
, max_case
;
622 unsigned int count
, i
;
623 edge e
, e_default
, e_first
;
627 memset (info
, 0, sizeof (*info
));
629 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
630 is a default label which is the first in the vector.
631 Collect the bits we can deduce from the CFG. */
632 info
->index_expr
= gimple_switch_index (swtch
);
633 info
->switch_bb
= gimple_bb (swtch
);
635 = label_to_block (CASE_LABEL (gimple_switch_default_label (swtch
)));
636 e_default
= find_edge (info
->switch_bb
, info
->default_bb
);
637 info
->default_prob
= e_default
->probability
;
638 info
->default_count
= e_default
->count
;
639 FOR_EACH_EDGE (e
, ei
, info
->switch_bb
->succs
)
641 info
->other_count
+= e
->count
;
643 /* Get upper and lower bounds of case values, and the covered range. */
644 min_case
= gimple_switch_label (swtch
, 1);
645 max_case
= gimple_switch_label (swtch
, branch_num
- 1);
647 info
->range_min
= CASE_LOW (min_case
);
648 if (CASE_HIGH (max_case
) != NULL_TREE
)
649 info
->range_max
= CASE_HIGH (max_case
);
651 info
->range_max
= CASE_LOW (max_case
);
653 info
->contiguous_range
= true;
654 tree last
= CASE_HIGH (min_case
) ? CASE_HIGH (min_case
) : info
->range_min
;
655 for (i
= 2; i
< branch_num
; i
++)
657 tree elt
= gimple_switch_label (swtch
, i
);
659 if (w
+ 1 != CASE_LOW (elt
))
661 info
->contiguous_range
= false;
664 last
= CASE_HIGH (elt
) ? CASE_HIGH (elt
) : CASE_LOW (elt
);
667 if (info
->contiguous_range
)
669 first
= label_to_block (CASE_LABEL (gimple_switch_label (swtch
, 1)));
670 e_first
= find_edge (info
->switch_bb
, first
);
674 first
= info
->default_bb
;
678 /* See if there is one common successor block for all branch
679 targets. If it exists, record it in FINAL_BB.
680 Start with the destination of the first non-default case
681 if the range is contiguous and default case otherwise as
682 guess or its destination in case it is a forwarder block. */
683 if (! single_pred_p (e_first
->dest
))
684 info
->final_bb
= e_first
->dest
;
685 else if (single_succ_p (e_first
->dest
)
686 && ! single_pred_p (single_succ (e_first
->dest
)))
687 info
->final_bb
= single_succ (e_first
->dest
);
688 /* Require that all switch destinations are either that common
689 FINAL_BB or a forwarder to it, except for the default
690 case if contiguous range. */
692 FOR_EACH_EDGE (e
, ei
, info
->switch_bb
->succs
)
694 if (e
->dest
== info
->final_bb
)
697 if (single_pred_p (e
->dest
)
698 && single_succ_p (e
->dest
)
699 && single_succ (e
->dest
) == info
->final_bb
)
702 if (e
== e_default
&& info
->contiguous_range
)
704 info
->default_case_nonstandard
= true;
708 info
->final_bb
= NULL
;
713 = int_const_binop (MINUS_EXPR
, info
->range_max
, info
->range_min
);
715 /* Get a count of the number of case labels. Single-valued case labels
716 simply count as one, but a case range counts double, since it may
717 require two compares if it gets lowered as a branching tree. */
719 for (i
= 1; i
< branch_num
; i
++)
721 tree elt
= gimple_switch_label (swtch
, i
);
724 && ! tree_int_cst_equal (CASE_LOW (elt
), CASE_HIGH (elt
)))
729 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
730 block. Assume a CFG cleanup would have already removed degenerate
731 switch statements, this allows us to just use EDGE_COUNT. */
732 info
->uniq
= EDGE_COUNT (gimple_bb (swtch
)->succs
) - 1;
735 /* Checks whether the range given by individual case statements of the SWTCH
736 switch statement isn't too big and whether the number of branches actually
737 satisfies the size of the new array. */
740 check_range (struct switch_conv_info
*info
)
742 gcc_assert (info
->range_size
);
743 if (!tree_fits_uhwi_p (info
->range_size
))
745 info
->reason
= "index range way too large or otherwise unusable";
749 if (tree_to_uhwi (info
->range_size
)
750 > ((unsigned) info
->count
* SWITCH_CONVERSION_BRANCH_RATIO
))
752 info
->reason
= "the maximum range-branch ratio exceeded";
759 /* Checks whether all but the FINAL_BB basic blocks are empty. */
762 check_all_empty_except_final (struct switch_conv_info
*info
)
764 edge e
, e_default
= find_edge (info
->switch_bb
, info
->default_bb
);
767 FOR_EACH_EDGE (e
, ei
, info
->switch_bb
->succs
)
769 if (e
->dest
== info
->final_bb
)
772 if (!empty_block_p (e
->dest
))
774 if (info
->contiguous_range
&& e
== e_default
)
776 info
->default_case_nonstandard
= true;
780 info
->reason
= "bad case - a non-final BB not empty";
788 /* This function checks whether all required values in phi nodes in final_bb
789 are constants. Required values are those that correspond to a basic block
790 which is a part of the examined switch statement. It returns true if the
791 phi nodes are OK, otherwise false. */
794 check_final_bb (gswitch
*swtch
, struct switch_conv_info
*info
)
799 for (gsi
= gsi_start_phis (info
->final_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
801 gphi
*phi
= gsi
.phi ();
804 if (virtual_operand_p (gimple_phi_result (phi
)))
809 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
811 basic_block bb
= gimple_phi_arg_edge (phi
, i
)->src
;
813 if (bb
== info
->switch_bb
814 || (single_pred_p (bb
)
815 && single_pred (bb
) == info
->switch_bb
816 && (!info
->default_case_nonstandard
817 || empty_block_p (bb
))))
820 const char *reason
= NULL
;
822 val
= gimple_phi_arg_def (phi
, i
);
823 if (!is_gimple_ip_invariant (val
))
824 reason
= "non-invariant value from a case";
827 reloc
= initializer_constant_valid_p (val
, TREE_TYPE (val
));
828 if ((flag_pic
&& reloc
!= null_pointer_node
)
829 || (!flag_pic
&& reloc
== NULL_TREE
))
833 = "value from a case would need runtime relocations";
836 = "value from a case is not a valid initializer";
841 /* For contiguous range, we can allow non-constant
842 or one that needs relocation, as long as it is
843 only reachable from the default case. */
844 if (bb
== info
->switch_bb
)
846 if (!info
->contiguous_range
|| bb
!= info
->default_bb
)
848 info
->reason
= reason
;
852 unsigned int branch_num
= gimple_switch_num_labels (swtch
);
853 for (unsigned int i
= 1; i
< branch_num
; i
++)
855 tree lab
= CASE_LABEL (gimple_switch_label (swtch
, i
));
856 if (label_to_block (lab
) == bb
)
858 info
->reason
= reason
;
862 info
->default_case_nonstandard
= true;
871 /* The following function allocates default_values, target_{in,out}_names and
872 constructors arrays. The last one is also populated with pointers to
873 vectors that will become constructors of new arrays. */
876 create_temp_arrays (struct switch_conv_info
*info
)
880 info
->default_values
= XCNEWVEC (tree
, info
->phi_count
* 3);
881 /* ??? Macros do not support multi argument templates in their
882 argument list. We create a typedef to work around that problem. */
883 typedef vec
<constructor_elt
, va_gc
> *vec_constructor_elt_gc
;
884 info
->constructors
= XCNEWVEC (vec_constructor_elt_gc
, info
->phi_count
);
885 info
->target_inbound_names
= info
->default_values
+ info
->phi_count
;
886 info
->target_outbound_names
= info
->target_inbound_names
+ info
->phi_count
;
887 for (i
= 0; i
< info
->phi_count
; i
++)
888 vec_alloc (info
->constructors
[i
], tree_to_uhwi (info
->range_size
) + 1);
891 /* Free the arrays created by create_temp_arrays(). The vectors that are
892 created by that function are not freed here, however, because they have
893 already become constructors and must be preserved. */
896 free_temp_arrays (struct switch_conv_info
*info
)
898 XDELETEVEC (info
->constructors
);
899 XDELETEVEC (info
->default_values
);
902 /* Populate the array of default values in the order of phi nodes.
903 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
904 if the range is non-contiguous or the default case has standard
905 structure, otherwise it is the first non-default case instead. */
908 gather_default_values (tree default_case
, struct switch_conv_info
*info
)
911 basic_block bb
= label_to_block (CASE_LABEL (default_case
));
915 gcc_assert (CASE_LOW (default_case
) == NULL_TREE
916 || info
->default_case_nonstandard
);
918 if (bb
== info
->final_bb
)
919 e
= find_edge (info
->switch_bb
, bb
);
921 e
= single_succ_edge (bb
);
923 for (gsi
= gsi_start_phis (info
->final_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
925 gphi
*phi
= gsi
.phi ();
926 if (virtual_operand_p (gimple_phi_result (phi
)))
928 tree val
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
930 info
->default_values
[i
++] = val
;
934 /* The following function populates the vectors in the constructors array with
935 future contents of the static arrays. The vectors are populated in the
936 order of phi nodes. SWTCH is the switch statement being converted. */
939 build_constructors (gswitch
*swtch
, struct switch_conv_info
*info
)
941 unsigned i
, branch_num
= gimple_switch_num_labels (swtch
);
942 tree pos
= info
->range_min
;
943 tree pos_one
= build_int_cst (TREE_TYPE (pos
), 1);
945 for (i
= 1; i
< branch_num
; i
++)
947 tree cs
= gimple_switch_label (swtch
, i
);
948 basic_block bb
= label_to_block (CASE_LABEL (cs
));
954 if (bb
== info
->final_bb
)
955 e
= find_edge (info
->switch_bb
, bb
);
957 e
= single_succ_edge (bb
);
960 while (tree_int_cst_lt (pos
, CASE_LOW (cs
)))
963 gcc_assert (!info
->contiguous_range
);
964 for (k
= 0; k
< info
->phi_count
; k
++)
968 elt
.index
= int_const_binop (MINUS_EXPR
, pos
, info
->range_min
);
970 = unshare_expr_without_location (info
->default_values
[k
]);
971 info
->constructors
[k
]->quick_push (elt
);
974 pos
= int_const_binop (PLUS_EXPR
, pos
, pos_one
);
976 gcc_assert (tree_int_cst_equal (pos
, CASE_LOW (cs
)));
980 high
= CASE_HIGH (cs
);
982 high
= CASE_LOW (cs
);
983 for (gsi
= gsi_start_phis (info
->final_bb
);
984 !gsi_end_p (gsi
); gsi_next (&gsi
))
986 gphi
*phi
= gsi
.phi ();
987 if (virtual_operand_p (gimple_phi_result (phi
)))
989 tree val
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
990 tree low
= CASE_LOW (cs
);
997 elt
.index
= int_const_binop (MINUS_EXPR
, pos
, info
->range_min
);
998 elt
.value
= unshare_expr_without_location (val
);
999 info
->constructors
[j
]->quick_push (elt
);
1001 pos
= int_const_binop (PLUS_EXPR
, pos
, pos_one
);
1002 } while (!tree_int_cst_lt (high
, pos
)
1003 && tree_int_cst_lt (low
, pos
));
1009 /* If all values in the constructor vector are the same, return the value.
1010 Otherwise return NULL_TREE. Not supposed to be called for empty
1014 constructor_contains_same_values_p (vec
<constructor_elt
, va_gc
> *vec
)
1017 tree prev
= NULL_TREE
;
1018 constructor_elt
*elt
;
1020 FOR_EACH_VEC_SAFE_ELT (vec
, i
, elt
)
1024 else if (!operand_equal_p (elt
->value
, prev
, OEP_ONLY_CONST
))
1030 /* Return type which should be used for array elements, either TYPE's
1031 main variant or, for integral types, some smaller integral type
1032 that can still hold all the constants. */
1035 array_value_type (gswitch
*swtch
, tree type
, int num
,
1036 struct switch_conv_info
*info
)
1038 unsigned int i
, len
= vec_safe_length (info
->constructors
[num
]);
1039 constructor_elt
*elt
;
1043 /* Types with alignments greater than their size can reach here, e.g. out of
1044 SRA. We couldn't use these as an array component type so get back to the
1045 main variant first, which, for our purposes, is fine for other types as
1048 type
= TYPE_MAIN_VARIANT (type
);
1050 if (!INTEGRAL_TYPE_P (type
))
1053 scalar_int_mode type_mode
= SCALAR_INT_TYPE_MODE (type
);
1054 scalar_int_mode mode
= get_narrowest_mode (type_mode
);
1055 if (GET_MODE_SIZE (type_mode
) <= GET_MODE_SIZE (mode
))
1058 if (len
< (optimize_bb_for_size_p (gimple_bb (swtch
)) ? 2 : 32))
1061 FOR_EACH_VEC_SAFE_ELT (info
->constructors
[num
], i
, elt
)
1065 if (TREE_CODE (elt
->value
) != INTEGER_CST
)
1071 unsigned int prec
= GET_MODE_BITSIZE (mode
);
1072 if (prec
> HOST_BITS_PER_WIDE_INT
)
1075 if (sign
>= 0 && cst
== wi::zext (cst
, prec
))
1077 if (sign
== 0 && cst
== wi::sext (cst
, prec
))
1082 if (sign
<= 0 && cst
== wi::sext (cst
, prec
))
1091 if (!GET_MODE_WIDER_MODE (mode
).exists (&mode
)
1092 || GET_MODE_SIZE (mode
) >= GET_MODE_SIZE (type_mode
))
1098 sign
= TYPE_UNSIGNED (type
) ? 1 : -1;
1099 smaller_type
= lang_hooks
.types
.type_for_mode (mode
, sign
>= 0);
1100 if (GET_MODE_SIZE (type_mode
)
1101 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type
)))
1104 return smaller_type
;
1107 /* Create an appropriate array type and declaration and assemble a static array
1108 variable. Also create a load statement that initializes the variable in
1109 question with a value from the static array. SWTCH is the switch statement
1110 being converted, NUM is the index to arrays of constructors, default values
1111 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1112 of the index of the new array, PHI is the phi node of the final BB that
1113 corresponds to the value that will be loaded from the created array. TIDX
1114 is an ssa name of a temporary variable holding the index for loads from the
1118 build_one_array (gswitch
*swtch
, int num
, tree arr_index_type
,
1119 gphi
*phi
, tree tidx
, struct switch_conv_info
*info
)
1123 gimple_stmt_iterator gsi
= gsi_for_stmt (swtch
);
1124 location_t loc
= gimple_location (swtch
);
1126 gcc_assert (info
->default_values
[num
]);
1128 name
= copy_ssa_name (PHI_RESULT (phi
));
1129 info
->target_inbound_names
[num
] = name
;
1131 cst
= constructor_contains_same_values_p (info
->constructors
[num
]);
1133 load
= gimple_build_assign (name
, cst
);
1136 tree array_type
, ctor
, decl
, value_type
, fetch
, default_type
;
1138 default_type
= TREE_TYPE (info
->default_values
[num
]);
1139 value_type
= array_value_type (swtch
, default_type
, num
, info
);
1140 array_type
= build_array_type (value_type
, arr_index_type
);
1141 if (default_type
!= value_type
)
1144 constructor_elt
*elt
;
1146 FOR_EACH_VEC_SAFE_ELT (info
->constructors
[num
], i
, elt
)
1147 elt
->value
= fold_convert (value_type
, elt
->value
);
1149 ctor
= build_constructor (array_type
, info
->constructors
[num
]);
1150 TREE_CONSTANT (ctor
) = true;
1151 TREE_STATIC (ctor
) = true;
1153 decl
= build_decl (loc
, VAR_DECL
, NULL_TREE
, array_type
);
1154 TREE_STATIC (decl
) = 1;
1155 DECL_INITIAL (decl
) = ctor
;
1157 DECL_NAME (decl
) = create_tmp_var_name ("CSWTCH");
1158 DECL_ARTIFICIAL (decl
) = 1;
1159 DECL_IGNORED_P (decl
) = 1;
1160 TREE_CONSTANT (decl
) = 1;
1161 TREE_READONLY (decl
) = 1;
1162 DECL_IGNORED_P (decl
) = 1;
1163 varpool_node::finalize_decl (decl
);
1165 fetch
= build4 (ARRAY_REF
, value_type
, decl
, tidx
, NULL_TREE
,
1167 if (default_type
!= value_type
)
1169 fetch
= fold_convert (default_type
, fetch
);
1170 fetch
= force_gimple_operand_gsi (&gsi
, fetch
, true, NULL_TREE
,
1171 true, GSI_SAME_STMT
);
1173 load
= gimple_build_assign (name
, fetch
);
1176 gsi_insert_before (&gsi
, load
, GSI_SAME_STMT
);
1178 info
->arr_ref_last
= load
;
1181 /* Builds and initializes static arrays initialized with values gathered from
1182 the SWTCH switch statement. Also creates statements that load values from
1186 build_arrays (gswitch
*swtch
, struct switch_conv_info
*info
)
1188 tree arr_index_type
;
1189 tree tidx
, sub
, utype
;
1191 gimple_stmt_iterator gsi
;
1194 location_t loc
= gimple_location (swtch
);
1196 gsi
= gsi_for_stmt (swtch
);
1198 /* Make sure we do not generate arithmetics in a subrange. */
1199 utype
= TREE_TYPE (info
->index_expr
);
1200 if (TREE_TYPE (utype
))
1201 utype
= lang_hooks
.types
.type_for_mode (TYPE_MODE (TREE_TYPE (utype
)), 1);
1203 utype
= lang_hooks
.types
.type_for_mode (TYPE_MODE (utype
), 1);
1205 arr_index_type
= build_index_type (info
->range_size
);
1206 tidx
= make_ssa_name (utype
);
1207 sub
= fold_build2_loc (loc
, MINUS_EXPR
, utype
,
1208 fold_convert_loc (loc
, utype
, info
->index_expr
),
1209 fold_convert_loc (loc
, utype
, info
->range_min
));
1210 sub
= force_gimple_operand_gsi (&gsi
, sub
,
1211 false, NULL
, true, GSI_SAME_STMT
);
1212 stmt
= gimple_build_assign (tidx
, sub
);
1214 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1216 info
->arr_ref_first
= stmt
;
1218 for (gpi
= gsi_start_phis (info
->final_bb
), i
= 0;
1219 !gsi_end_p (gpi
); gsi_next (&gpi
))
1221 gphi
*phi
= gpi
.phi ();
1222 if (!virtual_operand_p (gimple_phi_result (phi
)))
1223 build_one_array (swtch
, i
++, arr_index_type
, phi
, tidx
, info
);
1228 FOR_EACH_EDGE (e
, ei
, info
->switch_bb
->succs
)
1230 if (e
->dest
== info
->final_bb
)
1232 if (!info
->default_case_nonstandard
1233 || e
->dest
!= info
->default_bb
)
1235 e
= single_succ_edge (e
->dest
);
1239 gcc_assert (e
&& e
->dest
== info
->final_bb
);
1240 info
->target_vop
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1245 /* Generates and appropriately inserts loads of default values at the position
1246 given by BSI. Returns the last inserted statement. */
1249 gen_def_assigns (gimple_stmt_iterator
*gsi
, struct switch_conv_info
*info
)
1252 gassign
*assign
= NULL
;
1254 for (i
= 0; i
< info
->phi_count
; i
++)
1256 tree name
= copy_ssa_name (info
->target_inbound_names
[i
]);
1257 info
->target_outbound_names
[i
] = name
;
1258 assign
= gimple_build_assign (name
, info
->default_values
[i
]);
1259 gsi_insert_before (gsi
, assign
, GSI_SAME_STMT
);
1260 update_stmt (assign
);
1265 /* Deletes the unused bbs and edges that now contain the switch statement and
1266 its empty branch bbs. BBD is the now dead BB containing the original switch
1267 statement, FINAL is the last BB of the converted switch statement (in terms
1271 prune_bbs (basic_block bbd
, basic_block final
, basic_block default_bb
)
1276 for (ei
= ei_start (bbd
->succs
); (e
= ei_safe_edge (ei
)); )
1281 if (bb
!= final
&& bb
!= default_bb
)
1282 delete_basic_block (bb
);
1284 delete_basic_block (bbd
);
1287 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1288 from the basic block loading values from an array and E2F from the basic
1289 block loading default values. BBF is the last switch basic block (see the
1290 bbf description in the comment below). */
1293 fix_phi_nodes (edge e1f
, edge e2f
, basic_block bbf
,
1294 struct switch_conv_info
*info
)
1299 for (gsi
= gsi_start_phis (bbf
), i
= 0;
1300 !gsi_end_p (gsi
); gsi_next (&gsi
))
1302 gphi
*phi
= gsi
.phi ();
1303 tree inbound
, outbound
;
1304 if (virtual_operand_p (gimple_phi_result (phi
)))
1305 inbound
= outbound
= info
->target_vop
;
1308 inbound
= info
->target_inbound_names
[i
];
1309 outbound
= info
->target_outbound_names
[i
++];
1311 add_phi_arg (phi
, inbound
, e1f
, UNKNOWN_LOCATION
);
1312 if (!info
->default_case_nonstandard
)
1313 add_phi_arg (phi
, outbound
, e2f
, UNKNOWN_LOCATION
);
1317 /* Creates a check whether the switch expression value actually falls into the
1318 range given by all the cases. If it does not, the temporaries are loaded
1319 with default values instead. SWTCH is the switch statement being converted.
1321 bb0 is the bb with the switch statement, however, we'll end it with a
1324 bb1 is the bb to be used when the range check went ok. It is derived from
1327 bb2 is the bb taken when the expression evaluated outside of the range
1328 covered by the created arrays. It is populated by loads of default
1331 bbF is a fall through for both bb1 and bb2 and contains exactly what
1332 originally followed the switch statement.
1334 bbD contains the switch statement (in the end). It is unreachable but we
1335 still need to strip off its edges.
1339 gen_inbound_check (gswitch
*swtch
, struct switch_conv_info
*info
)
1341 tree label_decl1
= create_artificial_label (UNKNOWN_LOCATION
);
1342 tree label_decl2
= create_artificial_label (UNKNOWN_LOCATION
);
1343 tree label_decl3
= create_artificial_label (UNKNOWN_LOCATION
);
1344 glabel
*label1
, *label2
, *label3
;
1350 gassign
*last_assign
= NULL
;
1351 gimple_stmt_iterator gsi
;
1352 basic_block bb0
, bb1
, bb2
, bbf
, bbd
;
1353 edge e01
= NULL
, e02
, e21
, e1d
, e1f
, e2f
;
1354 location_t loc
= gimple_location (swtch
);
1356 gcc_assert (info
->default_values
);
1358 bb0
= gimple_bb (swtch
);
1360 tidx
= gimple_assign_lhs (info
->arr_ref_first
);
1361 utype
= TREE_TYPE (tidx
);
1363 /* (end of) block 0 */
1364 gsi
= gsi_for_stmt (info
->arr_ref_first
);
1367 bound
= fold_convert_loc (loc
, utype
, info
->range_size
);
1368 cond_stmt
= gimple_build_cond (LE_EXPR
, tidx
, bound
, NULL_TREE
, NULL_TREE
);
1369 gsi_insert_before (&gsi
, cond_stmt
, GSI_SAME_STMT
);
1370 update_stmt (cond_stmt
);
1373 if (!info
->default_case_nonstandard
)
1375 label2
= gimple_build_label (label_decl2
);
1376 gsi_insert_before (&gsi
, label2
, GSI_SAME_STMT
);
1377 last_assign
= gen_def_assigns (&gsi
, info
);
1381 label1
= gimple_build_label (label_decl1
);
1382 gsi_insert_before (&gsi
, label1
, GSI_SAME_STMT
);
1385 gsi
= gsi_start_bb (info
->final_bb
);
1386 label3
= gimple_build_label (label_decl3
);
1387 gsi_insert_before (&gsi
, label3
, GSI_SAME_STMT
);
1390 e02
= split_block (bb0
, cond_stmt
);
1393 if (info
->default_case_nonstandard
)
1396 bb2
= info
->default_bb
;
1398 e01
->flags
= EDGE_TRUE_VALUE
;
1399 e02
= make_edge (bb0
, bb2
, EDGE_FALSE_VALUE
);
1400 edge e_default
= find_edge (bb1
, bb2
);
1401 for (gphi_iterator gsi
= gsi_start_phis (bb2
);
1402 !gsi_end_p (gsi
); gsi_next (&gsi
))
1404 gphi
*phi
= gsi
.phi ();
1405 tree arg
= PHI_ARG_DEF_FROM_EDGE (phi
, e_default
);
1406 add_phi_arg (phi
, arg
, e02
,
1407 gimple_phi_arg_location_from_edge (phi
, e_default
));
1409 /* Partially fix the dominator tree, if it is available. */
1410 if (dom_info_available_p (CDI_DOMINATORS
))
1411 redirect_immediate_dominators (CDI_DOMINATORS
, bb1
, bb0
);
1415 e21
= split_block (bb2
, last_assign
);
1420 e1d
= split_block (bb1
, info
->arr_ref_last
);
1424 /* flags and profiles of the edge for in-range values */
1425 if (!info
->default_case_nonstandard
)
1426 e01
= make_edge (bb0
, bb1
, EDGE_TRUE_VALUE
);
1427 e01
->probability
= info
->default_prob
.invert ();
1428 e01
->count
= info
->other_count
;
1430 /* flags and profiles of the edge taking care of out-of-range values */
1431 e02
->flags
&= ~EDGE_FALLTHRU
;
1432 e02
->flags
|= EDGE_FALSE_VALUE
;
1433 e02
->probability
= info
->default_prob
;
1434 e02
->count
= info
->default_count
;
1436 bbf
= info
->final_bb
;
1438 e1f
= make_edge (bb1
, bbf
, EDGE_FALLTHRU
);
1439 e1f
->probability
= profile_probability::always ();
1440 e1f
->count
= info
->other_count
;
1442 if (info
->default_case_nonstandard
)
1446 e2f
= make_edge (bb2
, bbf
, EDGE_FALLTHRU
);
1447 e2f
->probability
= profile_probability::always ();
1448 e2f
->count
= info
->default_count
;
1451 /* frequencies of the new BBs */
1452 bb1
->frequency
= EDGE_FREQUENCY (e01
);
1453 bb2
->frequency
= EDGE_FREQUENCY (e02
);
1454 if (!info
->default_case_nonstandard
)
1455 bbf
->frequency
= EDGE_FREQUENCY (e1f
) + EDGE_FREQUENCY (e2f
);
1457 /* Tidy blocks that have become unreachable. */
1458 prune_bbs (bbd
, info
->final_bb
,
1459 info
->default_case_nonstandard
? info
->default_bb
: NULL
);
1461 /* Fixup the PHI nodes in bbF. */
1462 fix_phi_nodes (e1f
, e2f
, bbf
, info
);
1464 /* Fix the dominator tree, if it is available. */
1465 if (dom_info_available_p (CDI_DOMINATORS
))
1467 vec
<basic_block
> bbs_to_fix_dom
;
1469 set_immediate_dominator (CDI_DOMINATORS
, bb1
, bb0
);
1470 if (!info
->default_case_nonstandard
)
1471 set_immediate_dominator (CDI_DOMINATORS
, bb2
, bb0
);
1472 if (! get_immediate_dominator (CDI_DOMINATORS
, bbf
))
1473 /* If bbD was the immediate dominator ... */
1474 set_immediate_dominator (CDI_DOMINATORS
, bbf
, bb0
);
1476 bbs_to_fix_dom
.create (3 + (bb2
!= bbf
));
1477 bbs_to_fix_dom
.quick_push (bb0
);
1478 bbs_to_fix_dom
.quick_push (bb1
);
1480 bbs_to_fix_dom
.quick_push (bb2
);
1481 bbs_to_fix_dom
.quick_push (bbf
);
1483 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
1484 bbs_to_fix_dom
.release ();
1488 /* The following function is invoked on every switch statement (the current one
1489 is given in SWTCH) and runs the individual phases of switch conversion on it
1490 one after another until one fails or the conversion is completed.
1491 Returns NULL on success, or a pointer to a string with the reason why the
1492 conversion failed. */
1495 process_switch (gswitch
*swtch
)
1497 struct switch_conv_info info
;
1499 /* Group case labels so that we get the right results from the heuristics
1500 that decide on the code generation approach for this switch. */
1501 group_case_labels_stmt (swtch
);
1503 /* If this switch is now a degenerate case with only a default label,
1504 there is nothing left for us to do. */
1505 if (gimple_switch_num_labels (swtch
) < 2)
1506 return "switch is a degenerate case";
1508 collect_switch_conv_info (swtch
, &info
);
1510 /* No error markers should reach here (they should be filtered out
1511 during gimplification). */
1512 gcc_checking_assert (TREE_TYPE (info
.index_expr
) != error_mark_node
);
1514 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1515 gcc_checking_assert (! TREE_CONSTANT (info
.index_expr
));
1517 if (info
.uniq
<= MAX_CASE_BIT_TESTS
)
1519 if (expand_switch_using_bit_tests_p (info
.range_size
,
1520 info
.uniq
, info
.count
,
1521 optimize_bb_for_speed_p
1522 (gimple_bb (swtch
))))
1525 fputs (" expanding as bit test is preferable\n", dump_file
);
1526 emit_case_bit_tests (swtch
, info
.index_expr
, info
.range_min
,
1527 info
.range_size
, info
.range_max
);
1528 loops_state_set (LOOPS_NEED_FIXUP
);
1533 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1534 return " expanding as jumps is preferable";
1537 /* If there is no common successor, we cannot do the transformation. */
1538 if (! info
.final_bb
)
1539 return "no common successor to all case label target blocks found";
1541 /* Check the case label values are within reasonable range: */
1542 if (!check_range (&info
))
1544 gcc_assert (info
.reason
);
1548 /* For all the cases, see whether they are empty, the assignments they
1549 represent constant and so on... */
1550 if (! check_all_empty_except_final (&info
))
1552 gcc_assert (info
.reason
);
1555 if (!check_final_bb (swtch
, &info
))
1557 gcc_assert (info
.reason
);
1561 /* At this point all checks have passed and we can proceed with the
1564 create_temp_arrays (&info
);
1565 gather_default_values (info
.default_case_nonstandard
1566 ? gimple_switch_label (swtch
, 1)
1567 : gimple_switch_default_label (swtch
), &info
);
1568 build_constructors (swtch
, &info
);
1570 build_arrays (swtch
, &info
); /* Build the static arrays and assignments. */
1571 gen_inbound_check (swtch
, &info
); /* Build the bounds check. */
1574 free_temp_arrays (&info
);
1578 /* The main function of the pass scans statements for switches and invokes
1579 process_switch on them. */
1583 const pass_data pass_data_convert_switch
=
1585 GIMPLE_PASS
, /* type */
1586 "switchconv", /* name */
1587 OPTGROUP_NONE
, /* optinfo_flags */
1588 TV_TREE_SWITCH_CONVERSION
, /* tv_id */
1589 ( PROP_cfg
| PROP_ssa
), /* properties_required */
1590 0, /* properties_provided */
1591 0, /* properties_destroyed */
1592 0, /* todo_flags_start */
1593 TODO_update_ssa
, /* todo_flags_finish */
1596 class pass_convert_switch
: public gimple_opt_pass
1599 pass_convert_switch (gcc::context
*ctxt
)
1600 : gimple_opt_pass (pass_data_convert_switch
, ctxt
)
1603 /* opt_pass methods: */
1604 virtual bool gate (function
*) { return flag_tree_switch_conversion
!= 0; }
1605 virtual unsigned int execute (function
*);
1607 }; // class pass_convert_switch
1610 pass_convert_switch::execute (function
*fun
)
1614 FOR_EACH_BB_FN (bb
, fun
)
1616 const char *failure_reason
;
1617 gimple
*stmt
= last_stmt (bb
);
1618 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1622 expanded_location loc
= expand_location (gimple_location (stmt
));
1624 fprintf (dump_file
, "beginning to process the following "
1625 "SWITCH statement (%s:%d) : ------- \n",
1626 loc
.file
, loc
.line
);
1627 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1628 putc ('\n', dump_file
);
1631 failure_reason
= process_switch (as_a
<gswitch
*> (stmt
));
1632 if (! failure_reason
)
1636 fputs ("Switch converted\n", dump_file
);
1637 fputs ("--------------------------------\n", dump_file
);
1640 /* Make no effort to update the post-dominator tree. It is actually not
1641 that hard for the transformations we have performed, but it is not
1642 supported by iterate_fix_dominators. */
1643 free_dominance_info (CDI_POST_DOMINATORS
);
1649 fputs ("Bailing out - ", dump_file
);
1650 fputs (failure_reason
, dump_file
);
1651 fputs ("\n--------------------------------\n", dump_file
);
1663 make_pass_convert_switch (gcc::context
*ctxt
)
1665 return new pass_convert_switch (ctxt
);
1670 case_node
*left
; /* Left son in binary tree. */
1671 case_node
*right
; /* Right son in binary tree;
1673 case_node
*parent
; /* Parent of node in binary tree. */
1674 tree low
; /* Lowest index value for this label. */
1675 tree high
; /* Highest index value for this label. */
1676 basic_block case_bb
; /* Label to jump to when node matches. */
1677 tree case_label
; /* Label to jump to when node matches. */
1678 profile_probability prob
; /* Probability of taking this case. */
1679 profile_probability subtree_prob
; /* Probability of reaching subtree
1680 rooted at this node. */
1683 typedef case_node
*case_node_ptr
;
1685 static basic_block
emit_case_nodes (basic_block
, tree
, case_node_ptr
,
1686 basic_block
, tree
, profile_probability
,
1687 tree
, hash_map
<tree
, tree
> *);
1688 static bool node_has_low_bound (case_node_ptr
, tree
);
1689 static bool node_has_high_bound (case_node_ptr
, tree
);
1690 static bool node_is_bounded (case_node_ptr
, tree
);
1692 /* Return the smallest number of different values for which it is best to use a
1693 jump-table instead of a tree of conditional branches. */
1696 case_values_threshold (void)
1698 unsigned int threshold
= PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD
);
1701 threshold
= targetm
.case_values_threshold ();
1706 /* Reset the aux field of all outgoing edges of basic block BB. */
1709 reset_out_edges_aux (basic_block bb
)
1713 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1714 e
->aux
= (void *) 0;
1717 /* Compute the number of case labels that correspond to each outgoing edge of
1718 STMT. Record this information in the aux field of the edge. */
1721 compute_cases_per_edge (gswitch
*stmt
)
1723 basic_block bb
= gimple_bb (stmt
);
1724 reset_out_edges_aux (bb
);
1725 int ncases
= gimple_switch_num_labels (stmt
);
1726 for (int i
= ncases
- 1; i
>= 1; --i
)
1728 tree elt
= gimple_switch_label (stmt
, i
);
1729 tree lab
= CASE_LABEL (elt
);
1730 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1731 edge case_edge
= find_edge (bb
, case_bb
);
1732 case_edge
->aux
= (void *) ((intptr_t) (case_edge
->aux
) + 1);
1736 /* Do the insertion of a case label into case_list. The labels are
1737 fed to us in descending order from the sorted vector of case labels used
1738 in the tree part of the middle end. So the list we construct is
1739 sorted in ascending order.
1741 LABEL is the case label to be inserted. LOW and HIGH are the bounds
1742 against which the index is compared to jump to LABEL and PROB is the
1743 estimated probability LABEL is reached from the switch statement. */
1746 add_case_node (case_node
*head
, tree low
, tree high
, basic_block case_bb
,
1747 tree case_label
, profile_probability prob
,
1748 object_allocator
<case_node
> &case_node_pool
)
1752 gcc_checking_assert (low
);
1753 gcc_checking_assert (high
&& (TREE_TYPE (low
) == TREE_TYPE (high
)));
1755 /* Add this label to the chain. */
1756 r
= case_node_pool
.allocate ();
1759 r
->case_bb
= case_bb
;
1760 r
->case_label
= case_label
;
1761 r
->parent
= r
->left
= NULL
;
1763 r
->subtree_prob
= prob
;
1768 /* Dump ROOT, a list or tree of case nodes, to file. */
1771 dump_case_nodes (FILE *f
, case_node
*root
, int indent_step
, int indent_level
)
1777 dump_case_nodes (f
, root
->left
, indent_step
, indent_level
);
1780 fprintf (f
, "%*s", indent_step
* indent_level
, "");
1781 print_dec (root
->low
, f
, TYPE_SIGN (TREE_TYPE (root
->low
)));
1782 if (!tree_int_cst_equal (root
->low
, root
->high
))
1784 fprintf (f
, " ... ");
1785 print_dec (root
->high
, f
, TYPE_SIGN (TREE_TYPE (root
->high
)));
1789 dump_case_nodes (f
, root
->right
, indent_step
, indent_level
);
1792 /* Take an ordered list of case nodes
1793 and transform them into a near optimal binary tree,
1794 on the assumption that any target code selection value is as
1795 likely as any other.
1797 The transformation is performed by splitting the ordered
1798 list into two equal sections plus a pivot. The parts are
1799 then attached to the pivot as left and right branches. Each
1800 branch is then transformed recursively. */
1803 balance_case_nodes (case_node_ptr
*head
, case_node_ptr parent
)
1815 /* Count the number of entries on branch. Also count the ranges. */
1819 if (!tree_int_cst_equal (np
->low
, np
->high
))
1828 /* Split this list if it is long enough for that to help. */
1832 /* If there are just three nodes, split at the middle one. */
1834 npp
= &(*npp
)->right
;
1837 /* Find the place in the list that bisects the list's total cost,
1838 where ranges count as 2.
1839 Here I gets half the total cost. */
1840 i
= (i
+ ranges
+ 1) / 2;
1843 /* Skip nodes while their cost does not reach that amount. */
1844 if (!tree_int_cst_equal ((*npp
)->low
, (*npp
)->high
))
1849 npp
= &(*npp
)->right
;
1854 np
->parent
= parent
;
1857 /* Optimize each of the two split parts. */
1858 balance_case_nodes (&np
->left
, np
);
1859 balance_case_nodes (&np
->right
, np
);
1860 np
->subtree_prob
= np
->prob
;
1861 np
->subtree_prob
+= np
->left
->subtree_prob
;
1862 np
->subtree_prob
+= np
->right
->subtree_prob
;
1866 /* Else leave this branch as one level,
1867 but fill in `parent' fields. */
1869 np
->parent
= parent
;
1870 np
->subtree_prob
= np
->prob
;
1871 for (; np
->right
; np
= np
->right
)
1873 np
->right
->parent
= np
;
1874 (*head
)->subtree_prob
+= np
->right
->subtree_prob
;
1880 /* Return true if a switch should be expanded as a decision tree.
1881 RANGE is the difference between highest and lowest case.
1882 UNIQ is number of unique case node targets, not counting the default case.
1883 COUNT is the number of comparisons needed, not counting the default case. */
1886 expand_switch_as_decision_tree_p (tree range
,
1887 unsigned int uniq ATTRIBUTE_UNUSED
,
1892 /* If neither casesi or tablejump is available, or flag_jump_tables
1893 over-ruled us, we really have no choice. */
1894 if (!targetm
.have_casesi () && !targetm
.have_tablejump ())
1896 if (!flag_jump_tables
)
1898 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
1903 /* If the switch is relatively small such that the cost of one
1904 indirect jump on the target are higher than the cost of a
1905 decision tree, go with the decision tree.
1907 If range of values is much bigger than number of values,
1908 or if it is too large to represent in a HOST_WIDE_INT,
1909 make a sequence of conditional branches instead of a dispatch.
1911 The definition of "much bigger" depends on whether we are
1912 optimizing for size or for speed. If the former, the maximum
1913 ratio range/count = 3, because this was found to be the optimal
1914 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
1915 10 is much older, and was probably selected after an extensive
1916 benchmarking investigation on numerous platforms. Or maybe it
1917 just made sense to someone at some point in the history of GCC,
1919 max_ratio
= optimize_insn_for_size_p () ? 3 : 10;
1920 if (count
< case_values_threshold () || !tree_fits_uhwi_p (range
)
1921 || compare_tree_int (range
, max_ratio
* count
) > 0)
1928 fix_phi_operands_for_edge (edge e
, hash_map
<tree
, tree
> *phi_mapping
)
1930 basic_block bb
= e
->dest
;
1932 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1934 gphi
*phi
= gsi
.phi ();
1936 tree
*definition
= phi_mapping
->get (gimple_phi_result (phi
));
1938 add_phi_arg (phi
, *definition
, e
, UNKNOWN_LOCATION
);
1943 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
1946 emit_jump (basic_block bb
, basic_block case_bb
,
1947 hash_map
<tree
, tree
> *phi_mapping
)
1949 edge e
= single_succ_edge (bb
);
1950 redirect_edge_succ (e
, case_bb
);
1951 fix_phi_operands_for_edge (e
, phi_mapping
);
1954 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1955 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1956 DEFAULT_PROB is the estimated probability that it jumps to
1959 We generate a binary decision tree to select the appropriate target
1963 emit_case_decision_tree (gswitch
*s
, tree index_expr
, tree index_type
,
1964 case_node_ptr case_list
, basic_block default_bb
,
1965 tree default_label
, profile_probability default_prob
,
1966 hash_map
<tree
, tree
> *phi_mapping
)
1968 balance_case_nodes (&case_list
, NULL
);
1971 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1972 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1974 int indent_step
= ceil_log2 (TYPE_PRECISION (index_type
)) + 2;
1975 fprintf (dump_file
, ";; Expanding GIMPLE switch as decision tree:\n");
1976 dump_case_nodes (dump_file
, case_list
, indent_step
, 0);
1979 basic_block bb
= gimple_bb (s
);
1980 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
1982 if (gsi_end_p (gsi
))
1983 e
= split_block_after_labels (bb
);
1987 e
= split_block (bb
, gsi_stmt (gsi
));
1989 bb
= split_edge (e
);
1991 bb
= emit_case_nodes (bb
, index_expr
, case_list
, default_bb
, default_label
,
1992 default_prob
, index_type
, phi_mapping
);
1995 emit_jump (bb
, default_bb
, phi_mapping
);
1997 /* Remove all edges and do just an edge that will reach default_bb. */
1998 gsi
= gsi_last_bb (gimple_bb (s
));
1999 gsi_remove (&gsi
, true);
2003 record_phi_operand_mapping (const vec
<basic_block
> bbs
, basic_block switch_bb
,
2004 hash_map
<tree
, tree
> *map
)
2006 /* Record all PHI nodes that have to be fixed after conversion. */
2007 for (unsigned i
= 0; i
< bbs
.length (); i
++)
2009 basic_block bb
= bbs
[i
];
2012 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2014 gphi
*phi
= gsi
.phi ();
2016 for (unsigned i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2018 basic_block phi_src_bb
= gimple_phi_arg_edge (phi
, i
)->src
;
2019 if (phi_src_bb
== switch_bb
)
2021 tree def
= gimple_phi_arg_def (phi
, i
);
2022 tree result
= gimple_phi_result (phi
);
2023 map
->put (result
, def
);
2031 /* Attempt to expand gimple switch STMT to a decision tree. */
2034 try_switch_expansion (gswitch
*stmt
)
2036 tree minval
= NULL_TREE
, maxval
= NULL_TREE
, range
= NULL_TREE
;
2037 basic_block default_bb
;
2038 unsigned int count
, uniq
;
2040 int ncases
= gimple_switch_num_labels (stmt
);
2041 tree index_expr
= gimple_switch_index (stmt
);
2042 tree index_type
= TREE_TYPE (index_expr
);
2044 basic_block bb
= gimple_bb (stmt
);
2046 hash_map
<tree
, tree
> phi_mapping
;
2047 auto_vec
<basic_block
> case_bbs
;
2049 /* A list of case labels; it is first built as a list and it may then
2050 be rearranged into a nearly balanced binary tree. */
2051 case_node
*case_list
= 0;
2053 /* A pool for case nodes. */
2054 object_allocator
<case_node
> case_node_pool ("struct case_node pool");
2056 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
2057 expressions being INTEGER_CST. */
2058 gcc_assert (TREE_CODE (index_expr
) != INTEGER_CST
);
2060 /* Optimization of switch statements with only one label has already
2061 occurred, so we should never see them at this point. */
2062 gcc_assert (ncases
> 1);
2064 /* Find the default case target label. */
2065 tree default_label
= CASE_LABEL (gimple_switch_default_label (stmt
));
2066 default_bb
= label_to_block_fn (cfun
, default_label
);
2067 edge default_edge
= find_edge (bb
, default_bb
);
2068 profile_probability default_prob
= default_edge
->probability
;
2069 case_bbs
.safe_push (default_bb
);
2071 /* Get upper and lower bounds of case values. */
2072 elt
= gimple_switch_label (stmt
, 1);
2073 minval
= fold_convert (index_type
, CASE_LOW (elt
));
2074 elt
= gimple_switch_label (stmt
, ncases
- 1);
2075 if (CASE_HIGH (elt
))
2076 maxval
= fold_convert (index_type
, CASE_HIGH (elt
));
2078 maxval
= fold_convert (index_type
, CASE_LOW (elt
));
2080 /* Compute span of values. */
2081 range
= fold_build2 (MINUS_EXPR
, index_type
, maxval
, minval
);
2083 /* Listify the labels queue and gather some numbers to decide
2084 how to expand this switch. */
2087 hash_set
<tree
> seen_labels
;
2088 compute_cases_per_edge (stmt
);
2090 for (i
= ncases
- 1; i
>= 1; --i
)
2092 elt
= gimple_switch_label (stmt
, i
);
2093 tree low
= CASE_LOW (elt
);
2095 tree high
= CASE_HIGH (elt
);
2096 gcc_assert (!high
|| tree_int_cst_lt (low
, high
));
2097 tree lab
= CASE_LABEL (elt
);
2099 /* Count the elements.
2100 A range counts double, since it requires two compares. */
2105 /* If we have not seen this label yet, then increase the
2106 number of unique case node targets seen. */
2107 if (!seen_labels
.add (lab
))
2110 /* The bounds on the case range, LOW and HIGH, have to be converted
2111 to case's index type TYPE. Note that the original type of the
2112 case index in the source code is usually "lost" during
2113 gimplification due to type promotion, but the case labels retain the
2114 original type. Make sure to drop overflow flags. */
2115 low
= fold_convert (index_type
, low
);
2116 if (TREE_OVERFLOW (low
))
2117 low
= wide_int_to_tree (index_type
, low
);
2119 /* The canonical from of a case label in GIMPLE is that a simple case
2120 has an empty CASE_HIGH. For the casesi and tablejump expanders,
2121 the back ends want simple cases to have high == low. */
2124 high
= fold_convert (index_type
, high
);
2125 if (TREE_OVERFLOW (high
))
2126 high
= wide_int_to_tree (index_type
, high
);
2128 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
2129 edge case_edge
= find_edge (bb
, case_bb
);
2130 case_list
= add_case_node (
2131 case_list
, low
, high
, case_bb
, lab
,
2132 case_edge
->probability
.apply_scale (1, (intptr_t) (case_edge
->aux
)),
2135 case_bbs
.safe_push (case_bb
);
2137 reset_out_edges_aux (bb
);
2138 record_phi_operand_mapping (case_bbs
, bb
, &phi_mapping
);
2140 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
2141 destination, such as one with a default case only.
2142 It also removes cases that are out of range for the switch
2143 type, so we should never get a zero here. */
2144 gcc_assert (count
> 0);
2146 /* Decide how to expand this switch.
2147 The two options at this point are a dispatch table (casesi or
2148 tablejump) or a decision tree. */
2150 if (expand_switch_as_decision_tree_p (range
, uniq
, count
))
2152 emit_case_decision_tree (stmt
, index_expr
, index_type
, case_list
,
2153 default_bb
, default_label
, default_prob
,
2161 /* The main function of the pass scans statements for switches and invokes
2162 process_switch on them. */
2166 const pass_data pass_data_lower_switch
=
2168 GIMPLE_PASS
, /* type */
2169 "switchlower", /* name */
2170 OPTGROUP_NONE
, /* optinfo_flags */
2171 TV_TREE_SWITCH_LOWERING
, /* tv_id */
2172 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2173 0, /* properties_provided */
2174 0, /* properties_destroyed */
2175 0, /* todo_flags_start */
2176 TODO_update_ssa
| TODO_cleanup_cfg
, /* todo_flags_finish */
2179 class pass_lower_switch
: public gimple_opt_pass
2182 pass_lower_switch (gcc::context
*ctxt
)
2183 : gimple_opt_pass (pass_data_lower_switch
, ctxt
)
2186 /* opt_pass methods: */
2187 virtual bool gate (function
*) { return true; }
2188 virtual unsigned int execute (function
*);
2190 }; // class pass_lower_switch
2193 pass_lower_switch::execute (function
*fun
)
2196 bool expanded
= false;
2198 FOR_EACH_BB_FN (bb
, fun
)
2200 gimple
*stmt
= last_stmt (bb
);
2201 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
2205 expanded_location loc
= expand_location (gimple_location (stmt
));
2207 fprintf (dump_file
, "beginning to process the following "
2208 "SWITCH statement (%s:%d) : ------- \n",
2209 loc
.file
, loc
.line
);
2210 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2211 putc ('\n', dump_file
);
2214 expanded
|= try_switch_expansion (as_a
<gswitch
*> (stmt
));
2220 free_dominance_info (CDI_DOMINATORS
);
2221 free_dominance_info (CDI_POST_DOMINATORS
);
2222 mark_virtual_operands_for_renaming (cfun
);
2231 make_pass_lower_switch (gcc::context
*ctxt
)
2233 return new pass_lower_switch (ctxt
);
2236 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE.
2237 PROB is the probability of jumping to LABEL. */
2239 do_jump_if_equal (basic_block bb
, tree op0
, tree op1
, basic_block label_bb
,
2240 profile_probability prob
, hash_map
<tree
, tree
> *phi_mapping
)
2242 gcond
*cond
= gimple_build_cond (EQ_EXPR
, op0
, op1
, NULL_TREE
, NULL_TREE
);
2243 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2244 gsi_insert_before (&gsi
, cond
, GSI_SAME_STMT
);
2246 gcc_assert (single_succ_p (bb
));
2248 /* Make a new basic block where false branch will take place. */
2249 edge false_edge
= split_block (bb
, cond
);
2250 false_edge
->flags
= EDGE_FALSE_VALUE
;
2251 false_edge
->probability
= prob
.invert ();
2253 edge true_edge
= make_edge (bb
, label_bb
, EDGE_TRUE_VALUE
);
2254 fix_phi_operands_for_edge (true_edge
, phi_mapping
);
2255 true_edge
->probability
= prob
;
2257 return false_edge
->dest
;
2260 /* Generate code to compare X with Y so that the condition codes are
2261 set and to jump to LABEL if the condition is true. If X is a
2262 constant and Y is not a constant, then the comparison is swapped to
2263 ensure that the comparison RTL has the canonical form.
2265 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
2266 need to be widened. UNSIGNEDP is also used to select the proper
2267 branch condition code.
2269 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
2271 MODE is the mode of the inputs (in case they are const_int).
2273 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
2274 It will be potentially converted into an unsigned variant based on
2275 UNSIGNEDP to select a proper jump instruction.
2277 PROB is the probability of jumping to LABEL. */
2280 emit_cmp_and_jump_insns (basic_block bb
, tree op0
, tree op1
,
2281 tree_code comparison
, basic_block label_bb
,
2282 profile_probability prob
,
2283 hash_map
<tree
, tree
> *phi_mapping
)
2285 gcond
*cond
= gimple_build_cond (comparison
, op0
, op1
, NULL_TREE
, NULL_TREE
);
2286 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2287 gsi_insert_after (&gsi
, cond
, GSI_NEW_STMT
);
2289 gcc_assert (single_succ_p (bb
));
2291 /* Make a new basic block where false branch will take place. */
2292 edge false_edge
= split_block (bb
, cond
);
2293 false_edge
->flags
= EDGE_FALSE_VALUE
;
2294 false_edge
->probability
= prob
.invert ();
2296 edge true_edge
= make_edge (bb
, label_bb
, EDGE_TRUE_VALUE
);
2297 fix_phi_operands_for_edge (true_edge
, phi_mapping
);
2298 true_edge
->probability
= prob
;
2300 return false_edge
->dest
;
2303 /* Computes the conditional probability of jumping to a target if the branch
2304 instruction is executed.
2305 TARGET_PROB is the estimated probability of jumping to a target relative
2306 to some basic block BB.
2307 BASE_PROB is the probability of reaching the branch instruction relative
2308 to the same basic block BB. */
2310 static inline profile_probability
2311 conditional_probability (profile_probability target_prob
,
2312 profile_probability base_prob
)
2314 return target_prob
/ base_prob
;
2317 /* Emit step-by-step code to select a case for the value of INDEX.
2318 The thus generated decision tree follows the form of the
2319 case-node binary tree NODE, whose nodes represent test conditions.
2320 INDEX_TYPE is the type of the index of the switch.
2322 Care is taken to prune redundant tests from the decision tree
2323 by detecting any boundary conditions already checked by
2324 emitted rtx. (See node_has_high_bound, node_has_low_bound
2325 and node_is_bounded, above.)
2327 Where the test conditions can be shown to be redundant we emit
2328 an unconditional jump to the target code. As a further
2329 optimization, the subordinates of a tree node are examined to
2330 check for bounded nodes. In this case conditional and/or
2331 unconditional jumps as a result of the boundary check for the
2332 current node are arranged to target the subordinates associated
2333 code for out of bound conditions on the current node.
2335 We can assume that when control reaches the code generated here,
2336 the index value has already been compared with the parents
2337 of this node, and determined to be on the same side of each parent
2338 as this node is. Thus, if this node tests for the value 51,
2339 and a parent tested for 52, we don't need to consider
2340 the possibility of a value greater than 51. If another parent
2341 tests for the value 50, then this node need not test anything. */
2344 emit_case_nodes (basic_block bb
, tree index
, case_node_ptr node
,
2345 basic_block default_bb
, tree default_label
,
2346 profile_probability default_prob
, tree index_type
,
2347 hash_map
<tree
, tree
> *phi_mapping
)
2349 /* If INDEX has an unsigned type, we must make unsigned branches. */
2350 profile_probability probability
;
2351 profile_probability prob
= node
->prob
, subtree_prob
= node
->subtree_prob
;
2353 /* See if our parents have already tested everything for us.
2354 If they have, emit an unconditional jump for this node. */
2355 if (node_is_bounded (node
, index_type
))
2357 emit_jump (bb
, node
->case_bb
, phi_mapping
);
2361 else if (tree_int_cst_equal (node
->low
, node
->high
))
2363 probability
= conditional_probability (prob
, subtree_prob
+ default_prob
);
2364 /* Node is single valued. First see if the index expression matches
2365 this node and then check our children, if any. */
2366 bb
= do_jump_if_equal (bb
, index
, node
->low
, node
->case_bb
, probability
,
2368 /* Since this case is taken at this point, reduce its weight from
2370 subtree_prob
-= prob
;
2371 if (node
->right
!= 0 && node
->left
!= 0)
2373 /* This node has children on both sides.
2374 Dispatch to one side or the other
2375 by comparing the index value with this node's value.
2376 If one subtree is bounded, check that one first,
2377 so we can avoid real branches in the tree. */
2379 if (node_is_bounded (node
->right
, index_type
))
2382 = conditional_probability (node
->right
->prob
,
2383 subtree_prob
+ default_prob
);
2384 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, GT_EXPR
,
2385 node
->right
->case_bb
, probability
,
2387 bb
= emit_case_nodes (bb
, index
, node
->left
, default_bb
,
2388 default_label
, default_prob
, index_type
,
2392 else if (node_is_bounded (node
->left
, index_type
))
2395 = conditional_probability (node
->left
->prob
,
2396 subtree_prob
+ default_prob
);
2397 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, LT_EXPR
,
2398 node
->left
->case_bb
, probability
,
2400 bb
= emit_case_nodes (bb
, index
, node
->right
, default_bb
,
2401 default_label
, default_prob
, index_type
,
2405 /* If both children are single-valued cases with no
2406 children, finish up all the work. This way, we can save
2407 one ordered comparison. */
2408 else if (tree_int_cst_equal (node
->right
->low
, node
->right
->high
)
2409 && node
->right
->left
== 0 && node
->right
->right
== 0
2410 && tree_int_cst_equal (node
->left
->low
, node
->left
->high
)
2411 && node
->left
->left
== 0 && node
->left
->right
== 0)
2413 /* Neither node is bounded. First distinguish the two sides;
2414 then emit the code for one side at a time. */
2416 /* See if the value matches what the right hand side
2419 = conditional_probability (node
->right
->prob
,
2420 subtree_prob
+ default_prob
);
2421 bb
= do_jump_if_equal (bb
, index
, node
->right
->low
,
2422 node
->right
->case_bb
, probability
,
2425 /* See if the value matches what the left hand side
2428 = conditional_probability (node
->left
->prob
,
2429 subtree_prob
+ default_prob
);
2430 bb
= do_jump_if_equal (bb
, index
, node
->left
->low
,
2431 node
->left
->case_bb
, probability
,
2437 /* Neither node is bounded. First distinguish the two sides;
2438 then emit the code for one side at a time. */
2440 basic_block test_bb
= split_edge (single_succ_edge (bb
));
2441 redirect_edge_succ (single_pred_edge (test_bb
),
2442 single_succ_edge (bb
)->dest
);
2444 /* The default label could be reached either through the right
2445 subtree or the left subtree. Divide the probability
2448 = conditional_probability (node
->right
->subtree_prob
2449 + default_prob
.apply_scale (1, 2),
2450 subtree_prob
+ default_prob
);
2451 /* See if the value is on the right. */
2452 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, GT_EXPR
,
2453 test_bb
, probability
, phi_mapping
);
2454 default_prob
= default_prob
.apply_scale (1, 2);
2456 /* Value must be on the left.
2457 Handle the left-hand subtree. */
2458 bb
= emit_case_nodes (bb
, index
, node
->left
, default_bb
,
2459 default_label
, default_prob
, index_type
,
2461 /* If left-hand subtree does nothing,
2464 if (bb
&& default_bb
)
2465 emit_jump (bb
, default_bb
, phi_mapping
);
2467 /* Code branches here for the right-hand subtree. */
2468 bb
= emit_case_nodes (test_bb
, index
, node
->right
, default_bb
,
2469 default_label
, default_prob
, index_type
,
2473 else if (node
->right
!= 0 && node
->left
== 0)
2475 /* Here we have a right child but no left so we issue a conditional
2476 branch to default and process the right child.
2478 Omit the conditional branch to default if the right child
2479 does not have any children and is single valued; it would
2480 cost too much space to save so little time. */
2482 if (node
->right
->right
|| node
->right
->left
2483 || !tree_int_cst_equal (node
->right
->low
, node
->right
->high
))
2485 if (!node_has_low_bound (node
, index_type
))
2488 = conditional_probability (default_prob
.apply_scale (1, 2),
2489 subtree_prob
+ default_prob
);
2490 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, LT_EXPR
,
2491 default_bb
, probability
,
2493 default_prob
= default_prob
.apply_scale (1, 2);
2496 bb
= emit_case_nodes (bb
, index
, node
->right
, default_bb
,
2497 default_label
, default_prob
, index_type
,
2503 = conditional_probability (node
->right
->subtree_prob
,
2504 subtree_prob
+ default_prob
);
2505 /* We cannot process node->right normally
2506 since we haven't ruled out the numbers less than
2507 this node's value. So handle node->right explicitly. */
2508 bb
= do_jump_if_equal (bb
, index
, node
->right
->low
,
2509 node
->right
->case_bb
, probability
,
2514 else if (node
->right
== 0 && node
->left
!= 0)
2516 /* Just one subtree, on the left. */
2517 if (node
->left
->left
|| node
->left
->right
2518 || !tree_int_cst_equal (node
->left
->low
, node
->left
->high
))
2520 if (!node_has_high_bound (node
, index_type
))
2523 = conditional_probability (default_prob
.apply_scale (1, 2),
2524 subtree_prob
+ default_prob
);
2525 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, GT_EXPR
,
2526 default_bb
, probability
,
2528 default_prob
= default_prob
.apply_scale (1, 2);
2531 bb
= emit_case_nodes (bb
, index
, node
->left
, default_bb
,
2532 default_label
, default_prob
, index_type
,
2538 = conditional_probability (node
->left
->subtree_prob
,
2539 subtree_prob
+ default_prob
);
2540 /* We cannot process node->left normally
2541 since we haven't ruled out the numbers less than
2542 this node's value. So handle node->left explicitly. */
2543 do_jump_if_equal (bb
, index
, node
->left
->low
, node
->left
->case_bb
,
2544 probability
, phi_mapping
);
2550 /* Node is a range. These cases are very similar to those for a single
2551 value, except that we do not start by testing whether this node
2552 is the one to branch to. */
2554 if (node
->right
!= 0 && node
->left
!= 0)
2556 /* Node has subtrees on both sides.
2557 If the right-hand subtree is bounded,
2558 test for it first, since we can go straight there.
2559 Otherwise, we need to make a branch in the control structure,
2560 then handle the two subtrees. */
2561 basic_block test_bb
= NULL
;
2563 if (node_is_bounded (node
->right
, index_type
))
2565 /* Right hand node is fully bounded so we can eliminate any
2566 testing and branch directly to the target code. */
2568 = conditional_probability (node
->right
->subtree_prob
,
2569 subtree_prob
+ default_prob
);
2570 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, GT_EXPR
,
2571 node
->right
->case_bb
, probability
,
2576 /* Right hand node requires testing.
2577 Branch to a label where we will handle it later. */
2579 test_bb
= split_edge (single_succ_edge (bb
));
2580 redirect_edge_succ (single_pred_edge (test_bb
),
2581 single_succ_edge (bb
)->dest
);
2584 = conditional_probability (node
->right
->subtree_prob
2585 + default_prob
.apply_scale (1, 2),
2586 subtree_prob
+ default_prob
);
2587 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, GT_EXPR
,
2588 test_bb
, probability
, phi_mapping
);
2589 default_prob
= default_prob
.apply_scale (1, 2);
2592 /* Value belongs to this node or to the left-hand subtree. */
2595 = conditional_probability (prob
, subtree_prob
+ default_prob
);
2596 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->low
, GE_EXPR
,
2597 node
->case_bb
, probability
,
2600 /* Handle the left-hand subtree. */
2601 bb
= emit_case_nodes (bb
, index
, node
->left
, default_bb
,
2602 default_label
, default_prob
, index_type
,
2605 /* If right node had to be handled later, do that now. */
2608 /* If the left-hand subtree fell through,
2609 don't let it fall into the right-hand subtree. */
2610 if (bb
&& default_bb
)
2611 emit_jump (bb
, default_bb
, phi_mapping
);
2613 bb
= emit_case_nodes (test_bb
, index
, node
->right
, default_bb
,
2614 default_label
, default_prob
, index_type
,
2619 else if (node
->right
!= 0 && node
->left
== 0)
2621 /* Deal with values to the left of this node,
2622 if they are possible. */
2623 if (!node_has_low_bound (node
, index_type
))
2626 = conditional_probability (default_prob
.apply_scale (1, 2),
2627 subtree_prob
+ default_prob
);
2628 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->low
, LT_EXPR
,
2629 default_bb
, probability
,
2631 default_prob
= default_prob
.apply_scale (1, 2);
2634 /* Value belongs to this node or to the right-hand subtree. */
2637 = conditional_probability (prob
, subtree_prob
+ default_prob
);
2638 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, LE_EXPR
,
2639 node
->case_bb
, probability
,
2642 bb
= emit_case_nodes (bb
, index
, node
->right
, default_bb
,
2643 default_label
, default_prob
, index_type
,
2647 else if (node
->right
== 0 && node
->left
!= 0)
2649 /* Deal with values to the right of this node,
2650 if they are possible. */
2651 if (!node_has_high_bound (node
, index_type
))
2654 = conditional_probability (default_prob
.apply_scale (1, 2),
2655 subtree_prob
+ default_prob
);
2656 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, GT_EXPR
,
2657 default_bb
, probability
,
2659 default_prob
= default_prob
.apply_scale (1, 2);
2662 /* Value belongs to this node or to the left-hand subtree. */
2665 = conditional_probability (prob
, subtree_prob
+ default_prob
);
2666 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->low
, GE_EXPR
,
2667 node
->case_bb
, probability
,
2670 bb
= emit_case_nodes (bb
, index
, node
->left
, default_bb
,
2671 default_label
, default_prob
, index_type
,
2677 /* Node has no children so we check low and high bounds to remove
2678 redundant tests. Only one of the bounds can exist,
2679 since otherwise this node is bounded--a case tested already. */
2680 bool high_bound
= node_has_high_bound (node
, index_type
);
2681 bool low_bound
= node_has_low_bound (node
, index_type
);
2683 if (!high_bound
&& low_bound
)
2686 = conditional_probability (default_prob
,
2687 subtree_prob
+ default_prob
);
2688 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->high
, GT_EXPR
,
2689 default_bb
, probability
,
2693 else if (!low_bound
&& high_bound
)
2696 = conditional_probability (default_prob
,
2697 subtree_prob
+ default_prob
);
2698 bb
= emit_cmp_and_jump_insns (bb
, index
, node
->low
, LT_EXPR
,
2699 default_bb
, probability
,
2702 else if (!low_bound
&& !high_bound
)
2704 tree type
= TREE_TYPE (index
);
2705 tree utype
= unsigned_type_for (type
);
2707 tree lhs
= make_ssa_name (type
);
2709 = gimple_build_assign (lhs
, MINUS_EXPR
, index
, node
->low
);
2711 tree converted
= make_ssa_name (utype
);
2712 gassign
*a
= gimple_build_assign (converted
, NOP_EXPR
, lhs
);
2714 tree rhs
= fold_build2 (MINUS_EXPR
, utype
,
2715 fold_convert (type
, node
->high
),
2716 fold_convert (type
, node
->low
));
2717 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2718 gsi_insert_before (&gsi
, sub1
, GSI_SAME_STMT
);
2719 gsi_insert_before (&gsi
, a
, GSI_SAME_STMT
);
2722 = conditional_probability (default_prob
,
2723 subtree_prob
+ default_prob
);
2724 bb
= emit_cmp_and_jump_insns (bb
, converted
, rhs
, GT_EXPR
,
2725 default_bb
, probability
,
2729 emit_jump (bb
, node
->case_bb
, phi_mapping
);
2737 /* Search the parent sections of the case node tree
2738 to see if a test for the lower bound of NODE would be redundant.
2739 INDEX_TYPE is the type of the index expression.
2741 The instructions to generate the case decision tree are
2742 output in the same order as nodes are processed so it is
2743 known that if a parent node checks the range of the current
2744 node minus one that the current node is bounded at its lower
2745 span. Thus the test would be redundant. */
2748 node_has_low_bound (case_node_ptr node
, tree index_type
)
2751 case_node_ptr pnode
;
2753 /* If the lower bound of this node is the lowest value in the index type,
2754 we need not test it. */
2756 if (tree_int_cst_equal (node
->low
, TYPE_MIN_VALUE (index_type
)))
2759 /* If this node has a left branch, the value at the left must be less
2760 than that at this node, so it cannot be bounded at the bottom and
2761 we need not bother testing any further. */
2766 low_minus_one
= fold_build2 (MINUS_EXPR
, TREE_TYPE (node
->low
), node
->low
,
2767 build_int_cst (TREE_TYPE (node
->low
), 1));
2769 /* If the subtraction above overflowed, we can't verify anything.
2770 Otherwise, look for a parent that tests our value - 1. */
2772 if (!tree_int_cst_lt (low_minus_one
, node
->low
))
2775 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
2776 if (tree_int_cst_equal (low_minus_one
, pnode
->high
))
2782 /* Search the parent sections of the case node tree
2783 to see if a test for the upper bound of NODE would be redundant.
2784 INDEX_TYPE is the type of the index expression.
2786 The instructions to generate the case decision tree are
2787 output in the same order as nodes are processed so it is
2788 known that if a parent node checks the range of the current
2789 node plus one that the current node is bounded at its upper
2790 span. Thus the test would be redundant. */
2793 node_has_high_bound (case_node_ptr node
, tree index_type
)
2796 case_node_ptr pnode
;
2798 /* If there is no upper bound, obviously no test is needed. */
2800 if (TYPE_MAX_VALUE (index_type
) == NULL
)
2803 /* If the upper bound of this node is the highest value in the type
2804 of the index expression, we need not test against it. */
2806 if (tree_int_cst_equal (node
->high
, TYPE_MAX_VALUE (index_type
)))
2809 /* If this node has a right branch, the value at the right must be greater
2810 than that at this node, so it cannot be bounded at the top and
2811 we need not bother testing any further. */
2816 high_plus_one
= fold_build2 (PLUS_EXPR
, TREE_TYPE (node
->high
), node
->high
,
2817 build_int_cst (TREE_TYPE (node
->high
), 1));
2819 /* If the addition above overflowed, we can't verify anything.
2820 Otherwise, look for a parent that tests our value + 1. */
2822 if (!tree_int_cst_lt (node
->high
, high_plus_one
))
2825 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
2826 if (tree_int_cst_equal (high_plus_one
, pnode
->low
))
2832 /* Search the parent sections of the
2833 case node tree to see if both tests for the upper and lower
2834 bounds of NODE would be redundant. */
2837 node_is_bounded (case_node_ptr node
, tree index_type
)
2839 return (node_has_low_bound (node
, index_type
)
2840 && node_has_high_bound (node
, index_type
));