Warn pointer to signed integer cast for ilp32
[official-gcc.git] / gcc / rtlanal.c
blob0f791e2e4df1a736f4ece55c94ebdd78b4a01fcf
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
87 int
88 rtx_unstable_p (const_rtx x)
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
94 switch (code)
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
99 case CONST:
100 CASE_CONST_ANY:
101 case SYMBOL_REF:
102 case LABEL_REF:
103 return 0;
105 case REG:
106 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
107 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
108 /* The arg pointer varies if it is not a fixed register. */
109 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
110 return 0;
111 /* ??? When call-clobbered, the value is stable modulo the restore
112 that must happen after a call. This currently screws up local-alloc
113 into believing that the restore is not needed. */
114 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
115 return 0;
116 return 1;
118 case ASM_OPERANDS:
119 if (MEM_VOLATILE_P (x))
120 return 1;
122 /* Fall through. */
124 default:
125 break;
128 fmt = GET_RTX_FORMAT (code);
129 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
130 if (fmt[i] == 'e')
132 if (rtx_unstable_p (XEXP (x, i)))
133 return 1;
135 else if (fmt[i] == 'E')
137 int j;
138 for (j = 0; j < XVECLEN (x, i); j++)
139 if (rtx_unstable_p (XVECEXP (x, i, j)))
140 return 1;
143 return 0;
146 /* Return 1 if X has a value that can vary even between two
147 executions of the program. 0 means X can be compared reliably
148 against certain constants or near-constants.
149 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
150 zero, we are slightly more conservative.
151 The frame pointer and the arg pointer are considered constant. */
153 bool
154 rtx_varies_p (const_rtx x, bool for_alias)
156 RTX_CODE code;
157 int i;
158 const char *fmt;
160 if (!x)
161 return 0;
163 code = GET_CODE (x);
164 switch (code)
166 case MEM:
167 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
169 case CONST:
170 CASE_CONST_ANY:
171 case SYMBOL_REF:
172 case LABEL_REF:
173 return 0;
175 case REG:
176 /* Note that we have to test for the actual rtx used for the frame
177 and arg pointers and not just the register number in case we have
178 eliminated the frame and/or arg pointer and are using it
179 for pseudos. */
180 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
181 /* The arg pointer varies if it is not a fixed register. */
182 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
183 return 0;
184 if (x == pic_offset_table_rtx
185 /* ??? When call-clobbered, the value is stable modulo the restore
186 that must happen after a call. This currently screws up
187 local-alloc into believing that the restore is not needed, so we
188 must return 0 only if we are called from alias analysis. */
189 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
190 return 0;
191 return 1;
193 case LO_SUM:
194 /* The operand 0 of a LO_SUM is considered constant
195 (in fact it is related specifically to operand 1)
196 during alias analysis. */
197 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
198 || rtx_varies_p (XEXP (x, 1), for_alias);
200 case ASM_OPERANDS:
201 if (MEM_VOLATILE_P (x))
202 return 1;
204 /* Fall through. */
206 default:
207 break;
210 fmt = GET_RTX_FORMAT (code);
211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
212 if (fmt[i] == 'e')
214 if (rtx_varies_p (XEXP (x, i), for_alias))
215 return 1;
217 else if (fmt[i] == 'E')
219 int j;
220 for (j = 0; j < XVECLEN (x, i); j++)
221 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
222 return 1;
225 return 0;
228 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
229 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
230 whether nonzero is returned for unaligned memory accesses on strict
231 alignment machines. */
233 static int
234 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
235 enum machine_mode mode, bool unaligned_mems)
237 enum rtx_code code = GET_CODE (x);
239 if (STRICT_ALIGNMENT
240 && unaligned_mems
241 && GET_MODE_SIZE (mode) != 0)
243 HOST_WIDE_INT actual_offset = offset;
244 #ifdef SPARC_STACK_BOUNDARY_HACK
245 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
246 the real alignment of %sp. However, when it does this, the
247 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
248 if (SPARC_STACK_BOUNDARY_HACK
249 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
250 actual_offset -= STACK_POINTER_OFFSET;
251 #endif
253 if (actual_offset % GET_MODE_SIZE (mode) != 0)
254 return 1;
257 switch (code)
259 case SYMBOL_REF:
260 if (SYMBOL_REF_WEAK (x))
261 return 1;
262 if (!CONSTANT_POOL_ADDRESS_P (x))
264 tree decl;
265 HOST_WIDE_INT decl_size;
267 if (offset < 0)
268 return 1;
269 if (size == 0)
270 size = GET_MODE_SIZE (mode);
271 if (size == 0)
272 return offset != 0;
274 /* If the size of the access or of the symbol is unknown,
275 assume the worst. */
276 decl = SYMBOL_REF_DECL (x);
278 /* Else check that the access is in bounds. TODO: restructure
279 expr_size/tree_expr_size/int_expr_size and just use the latter. */
280 if (!decl)
281 decl_size = -1;
282 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
283 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
284 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
285 : -1);
286 else if (TREE_CODE (decl) == STRING_CST)
287 decl_size = TREE_STRING_LENGTH (decl);
288 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
289 decl_size = int_size_in_bytes (TREE_TYPE (decl));
290 else
291 decl_size = -1;
293 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
296 return 0;
298 case LABEL_REF:
299 return 0;
301 case REG:
302 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
303 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
304 || x == stack_pointer_rtx
305 /* The arg pointer varies if it is not a fixed register. */
306 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
307 return 0;
308 /* All of the virtual frame registers are stack references. */
309 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
310 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
311 return 0;
312 return 1;
314 case CONST:
315 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
316 mode, unaligned_mems);
318 case PLUS:
319 /* An address is assumed not to trap if:
320 - it is the pic register plus a constant. */
321 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
322 return 0;
324 /* - or it is an address that can't trap plus a constant integer,
325 with the proper remainder modulo the mode size if we are
326 considering unaligned memory references. */
327 if (CONST_INT_P (XEXP (x, 1))
328 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
329 size, mode, unaligned_mems))
330 return 0;
332 return 1;
334 case LO_SUM:
335 case PRE_MODIFY:
336 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
337 mode, unaligned_mems);
339 case PRE_DEC:
340 case PRE_INC:
341 case POST_DEC:
342 case POST_INC:
343 case POST_MODIFY:
344 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
345 mode, unaligned_mems);
347 default:
348 break;
351 /* If it isn't one of the case above, it can cause a trap. */
352 return 1;
355 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
358 rtx_addr_can_trap_p (const_rtx x)
360 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
363 /* Return true if X is an address that is known to not be zero. */
365 bool
366 nonzero_address_p (const_rtx x)
368 const enum rtx_code code = GET_CODE (x);
370 switch (code)
372 case SYMBOL_REF:
373 return !SYMBOL_REF_WEAK (x);
375 case LABEL_REF:
376 return true;
378 case REG:
379 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
380 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
381 || x == stack_pointer_rtx
382 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
383 return true;
384 /* All of the virtual frame registers are stack references. */
385 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
386 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
387 return true;
388 return false;
390 case CONST:
391 return nonzero_address_p (XEXP (x, 0));
393 case PLUS:
394 if (CONST_INT_P (XEXP (x, 1)))
395 return nonzero_address_p (XEXP (x, 0));
396 /* Handle PIC references. */
397 else if (XEXP (x, 0) == pic_offset_table_rtx
398 && CONSTANT_P (XEXP (x, 1)))
399 return true;
400 return false;
402 case PRE_MODIFY:
403 /* Similar to the above; allow positive offsets. Further, since
404 auto-inc is only allowed in memories, the register must be a
405 pointer. */
406 if (CONST_INT_P (XEXP (x, 1))
407 && INTVAL (XEXP (x, 1)) > 0)
408 return true;
409 return nonzero_address_p (XEXP (x, 0));
411 case PRE_INC:
412 /* Similarly. Further, the offset is always positive. */
413 return true;
415 case PRE_DEC:
416 case POST_DEC:
417 case POST_INC:
418 case POST_MODIFY:
419 return nonzero_address_p (XEXP (x, 0));
421 case LO_SUM:
422 return nonzero_address_p (XEXP (x, 1));
424 default:
425 break;
428 /* If it isn't one of the case above, might be zero. */
429 return false;
432 /* Return 1 if X refers to a memory location whose address
433 cannot be compared reliably with constant addresses,
434 or if X refers to a BLKmode memory object.
435 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
436 zero, we are slightly more conservative. */
438 bool
439 rtx_addr_varies_p (const_rtx x, bool for_alias)
441 enum rtx_code code;
442 int i;
443 const char *fmt;
445 if (x == 0)
446 return 0;
448 code = GET_CODE (x);
449 if (code == MEM)
450 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
452 fmt = GET_RTX_FORMAT (code);
453 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
454 if (fmt[i] == 'e')
456 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
457 return 1;
459 else if (fmt[i] == 'E')
461 int j;
462 for (j = 0; j < XVECLEN (x, i); j++)
463 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
464 return 1;
466 return 0;
469 /* Return the value of the integer term in X, if one is apparent;
470 otherwise return 0.
471 Only obvious integer terms are detected.
472 This is used in cse.c with the `related_value' field. */
474 HOST_WIDE_INT
475 get_integer_term (const_rtx x)
477 if (GET_CODE (x) == CONST)
478 x = XEXP (x, 0);
480 if (GET_CODE (x) == MINUS
481 && CONST_INT_P (XEXP (x, 1)))
482 return - INTVAL (XEXP (x, 1));
483 if (GET_CODE (x) == PLUS
484 && CONST_INT_P (XEXP (x, 1)))
485 return INTVAL (XEXP (x, 1));
486 return 0;
489 /* If X is a constant, return the value sans apparent integer term;
490 otherwise return 0.
491 Only obvious integer terms are detected. */
494 get_related_value (const_rtx x)
496 if (GET_CODE (x) != CONST)
497 return 0;
498 x = XEXP (x, 0);
499 if (GET_CODE (x) == PLUS
500 && CONST_INT_P (XEXP (x, 1)))
501 return XEXP (x, 0);
502 else if (GET_CODE (x) == MINUS
503 && CONST_INT_P (XEXP (x, 1)))
504 return XEXP (x, 0);
505 return 0;
508 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
509 to somewhere in the same object or object_block as SYMBOL. */
511 bool
512 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
514 tree decl;
516 if (GET_CODE (symbol) != SYMBOL_REF)
517 return false;
519 if (offset == 0)
520 return true;
522 if (offset > 0)
524 if (CONSTANT_POOL_ADDRESS_P (symbol)
525 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
526 return true;
528 decl = SYMBOL_REF_DECL (symbol);
529 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
530 return true;
533 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
534 && SYMBOL_REF_BLOCK (symbol)
535 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
536 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
537 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
538 return true;
540 return false;
543 /* Split X into a base and a constant offset, storing them in *BASE_OUT
544 and *OFFSET_OUT respectively. */
546 void
547 split_const (rtx x, rtx *base_out, rtx *offset_out)
549 if (GET_CODE (x) == CONST)
551 x = XEXP (x, 0);
552 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
554 *base_out = XEXP (x, 0);
555 *offset_out = XEXP (x, 1);
556 return;
559 *base_out = x;
560 *offset_out = const0_rtx;
563 /* Return the number of places FIND appears within X. If COUNT_DEST is
564 zero, we do not count occurrences inside the destination of a SET. */
567 count_occurrences (const_rtx x, const_rtx find, int count_dest)
569 int i, j;
570 enum rtx_code code;
571 const char *format_ptr;
572 int count;
574 if (x == find)
575 return 1;
577 code = GET_CODE (x);
579 switch (code)
581 case REG:
582 CASE_CONST_ANY:
583 case SYMBOL_REF:
584 case CODE_LABEL:
585 case PC:
586 case CC0:
587 return 0;
589 case EXPR_LIST:
590 count = count_occurrences (XEXP (x, 0), find, count_dest);
591 if (XEXP (x, 1))
592 count += count_occurrences (XEXP (x, 1), find, count_dest);
593 return count;
595 case MEM:
596 if (MEM_P (find) && rtx_equal_p (x, find))
597 return 1;
598 break;
600 case SET:
601 if (SET_DEST (x) == find && ! count_dest)
602 return count_occurrences (SET_SRC (x), find, count_dest);
603 break;
605 default:
606 break;
609 format_ptr = GET_RTX_FORMAT (code);
610 count = 0;
612 for (i = 0; i < GET_RTX_LENGTH (code); i++)
614 switch (*format_ptr++)
616 case 'e':
617 count += count_occurrences (XEXP (x, i), find, count_dest);
618 break;
620 case 'E':
621 for (j = 0; j < XVECLEN (x, i); j++)
622 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
623 break;
626 return count;
630 /* Return TRUE if OP is a register or subreg of a register that
631 holds an unsigned quantity. Otherwise, return FALSE. */
633 bool
634 unsigned_reg_p (rtx op)
636 if (REG_P (op)
637 && REG_EXPR (op)
638 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
639 return true;
641 if (GET_CODE (op) == SUBREG
642 && SUBREG_PROMOTED_UNSIGNED_P (op))
643 return true;
645 return false;
649 /* Nonzero if register REG appears somewhere within IN.
650 Also works if REG is not a register; in this case it checks
651 for a subexpression of IN that is Lisp "equal" to REG. */
654 reg_mentioned_p (const_rtx reg, const_rtx in)
656 const char *fmt;
657 int i;
658 enum rtx_code code;
660 if (in == 0)
661 return 0;
663 if (reg == in)
664 return 1;
666 if (GET_CODE (in) == LABEL_REF)
667 return reg == XEXP (in, 0);
669 code = GET_CODE (in);
671 switch (code)
673 /* Compare registers by number. */
674 case REG:
675 return REG_P (reg) && REGNO (in) == REGNO (reg);
677 /* These codes have no constituent expressions
678 and are unique. */
679 case SCRATCH:
680 case CC0:
681 case PC:
682 return 0;
684 CASE_CONST_ANY:
685 /* These are kept unique for a given value. */
686 return 0;
688 default:
689 break;
692 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
693 return 1;
695 fmt = GET_RTX_FORMAT (code);
697 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
699 if (fmt[i] == 'E')
701 int j;
702 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
703 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
704 return 1;
706 else if (fmt[i] == 'e'
707 && reg_mentioned_p (reg, XEXP (in, i)))
708 return 1;
710 return 0;
713 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
714 no CODE_LABEL insn. */
717 no_labels_between_p (const_rtx beg, const_rtx end)
719 rtx p;
720 if (beg == end)
721 return 0;
722 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
723 if (LABEL_P (p))
724 return 0;
725 return 1;
728 /* Nonzero if register REG is used in an insn between
729 FROM_INSN and TO_INSN (exclusive of those two). */
732 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
734 rtx insn;
736 if (from_insn == to_insn)
737 return 0;
739 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
740 if (NONDEBUG_INSN_P (insn)
741 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
742 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
743 return 1;
744 return 0;
747 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
748 is entirely replaced by a new value and the only use is as a SET_DEST,
749 we do not consider it a reference. */
752 reg_referenced_p (const_rtx x, const_rtx body)
754 int i;
756 switch (GET_CODE (body))
758 case SET:
759 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
760 return 1;
762 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
763 of a REG that occupies all of the REG, the insn references X if
764 it is mentioned in the destination. */
765 if (GET_CODE (SET_DEST (body)) != CC0
766 && GET_CODE (SET_DEST (body)) != PC
767 && !REG_P (SET_DEST (body))
768 && ! (GET_CODE (SET_DEST (body)) == SUBREG
769 && REG_P (SUBREG_REG (SET_DEST (body)))
770 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
771 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
772 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
773 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
774 && reg_overlap_mentioned_p (x, SET_DEST (body)))
775 return 1;
776 return 0;
778 case ASM_OPERANDS:
779 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
780 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
781 return 1;
782 return 0;
784 case CALL:
785 case USE:
786 case IF_THEN_ELSE:
787 return reg_overlap_mentioned_p (x, body);
789 case TRAP_IF:
790 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
792 case PREFETCH:
793 return reg_overlap_mentioned_p (x, XEXP (body, 0));
795 case UNSPEC:
796 case UNSPEC_VOLATILE:
797 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
798 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
799 return 1;
800 return 0;
802 case PARALLEL:
803 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
804 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
805 return 1;
806 return 0;
808 case CLOBBER:
809 if (MEM_P (XEXP (body, 0)))
810 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
811 return 1;
812 return 0;
814 case COND_EXEC:
815 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
816 return 1;
817 return reg_referenced_p (x, COND_EXEC_CODE (body));
819 default:
820 return 0;
824 /* Nonzero if register REG is set or clobbered in an insn between
825 FROM_INSN and TO_INSN (exclusive of those two). */
828 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
830 const_rtx insn;
832 if (from_insn == to_insn)
833 return 0;
835 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
836 if (INSN_P (insn) && reg_set_p (reg, insn))
837 return 1;
838 return 0;
841 /* Internals of reg_set_between_p. */
843 reg_set_p (const_rtx reg, const_rtx insn)
845 /* We can be passed an insn or part of one. If we are passed an insn,
846 check if a side-effect of the insn clobbers REG. */
847 if (INSN_P (insn)
848 && (FIND_REG_INC_NOTE (insn, reg)
849 || (CALL_P (insn)
850 && ((REG_P (reg)
851 && REGNO (reg) < FIRST_PSEUDO_REGISTER
852 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
853 GET_MODE (reg), REGNO (reg)))
854 || MEM_P (reg)
855 || find_reg_fusage (insn, CLOBBER, reg)))))
856 return 1;
858 return set_of (reg, insn) != NULL_RTX;
861 /* Similar to reg_set_between_p, but check all registers in X. Return 0
862 only if none of them are modified between START and END. Return 1 if
863 X contains a MEM; this routine does use memory aliasing. */
866 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
868 const enum rtx_code code = GET_CODE (x);
869 const char *fmt;
870 int i, j;
871 rtx insn;
873 if (start == end)
874 return 0;
876 switch (code)
878 CASE_CONST_ANY:
879 case CONST:
880 case SYMBOL_REF:
881 case LABEL_REF:
882 return 0;
884 case PC:
885 case CC0:
886 return 1;
888 case MEM:
889 if (modified_between_p (XEXP (x, 0), start, end))
890 return 1;
891 if (MEM_READONLY_P (x))
892 return 0;
893 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
894 if (memory_modified_in_insn_p (x, insn))
895 return 1;
896 return 0;
897 break;
899 case REG:
900 return reg_set_between_p (x, start, end);
902 default:
903 break;
906 fmt = GET_RTX_FORMAT (code);
907 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
909 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
910 return 1;
912 else if (fmt[i] == 'E')
913 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
914 if (modified_between_p (XVECEXP (x, i, j), start, end))
915 return 1;
918 return 0;
921 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
922 of them are modified in INSN. Return 1 if X contains a MEM; this routine
923 does use memory aliasing. */
926 modified_in_p (const_rtx x, const_rtx insn)
928 const enum rtx_code code = GET_CODE (x);
929 const char *fmt;
930 int i, j;
932 switch (code)
934 CASE_CONST_ANY:
935 case CONST:
936 case SYMBOL_REF:
937 case LABEL_REF:
938 return 0;
940 case PC:
941 case CC0:
942 return 1;
944 case MEM:
945 if (modified_in_p (XEXP (x, 0), insn))
946 return 1;
947 if (MEM_READONLY_P (x))
948 return 0;
949 if (memory_modified_in_insn_p (x, insn))
950 return 1;
951 return 0;
952 break;
954 case REG:
955 return reg_set_p (x, insn);
957 default:
958 break;
961 fmt = GET_RTX_FORMAT (code);
962 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
964 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
965 return 1;
967 else if (fmt[i] == 'E')
968 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
969 if (modified_in_p (XVECEXP (x, i, j), insn))
970 return 1;
973 return 0;
976 /* Helper function for set_of. */
977 struct set_of_data
979 const_rtx found;
980 const_rtx pat;
983 static void
984 set_of_1 (rtx x, const_rtx pat, void *data1)
986 struct set_of_data *const data = (struct set_of_data *) (data1);
987 if (rtx_equal_p (x, data->pat)
988 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
989 data->found = pat;
992 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
993 (either directly or via STRICT_LOW_PART and similar modifiers). */
994 const_rtx
995 set_of (const_rtx pat, const_rtx insn)
997 struct set_of_data data;
998 data.found = NULL_RTX;
999 data.pat = pat;
1000 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1001 return data.found;
1004 /* This function, called through note_stores, collects sets and
1005 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1006 by DATA. */
1007 void
1008 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1010 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1011 if (REG_P (x) && HARD_REGISTER_P (x))
1012 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1015 /* Examine INSN, and compute the set of hard registers written by it.
1016 Store it in *PSET. Should only be called after reload. */
1017 void
1018 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1020 rtx link;
1022 CLEAR_HARD_REG_SET (*pset);
1023 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1024 if (CALL_P (insn))
1025 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1026 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1027 if (REG_NOTE_KIND (link) == REG_INC)
1028 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1031 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1032 static int
1033 record_hard_reg_uses_1 (rtx *px, void *data)
1035 rtx x = *px;
1036 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1038 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1040 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1041 while (nregs-- > 0)
1042 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1044 return 0;
1047 /* Like record_hard_reg_sets, but called through note_uses. */
1048 void
1049 record_hard_reg_uses (rtx *px, void *data)
1051 for_each_rtx (px, record_hard_reg_uses_1, data);
1054 /* Given an INSN, return a SET expression if this insn has only a single SET.
1055 It may also have CLOBBERs, USEs, or SET whose output
1056 will not be used, which we ignore. */
1059 single_set_2 (const_rtx insn, const_rtx pat)
1061 rtx set = NULL;
1062 int set_verified = 1;
1063 int i;
1065 if (GET_CODE (pat) == PARALLEL)
1067 for (i = 0; i < XVECLEN (pat, 0); i++)
1069 rtx sub = XVECEXP (pat, 0, i);
1070 switch (GET_CODE (sub))
1072 case USE:
1073 case CLOBBER:
1074 break;
1076 case SET:
1077 /* We can consider insns having multiple sets, where all
1078 but one are dead as single set insns. In common case
1079 only single set is present in the pattern so we want
1080 to avoid checking for REG_UNUSED notes unless necessary.
1082 When we reach set first time, we just expect this is
1083 the single set we are looking for and only when more
1084 sets are found in the insn, we check them. */
1085 if (!set_verified)
1087 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1088 && !side_effects_p (set))
1089 set = NULL;
1090 else
1091 set_verified = 1;
1093 if (!set)
1094 set = sub, set_verified = 0;
1095 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1096 || side_effects_p (sub))
1097 return NULL_RTX;
1098 break;
1100 default:
1101 return NULL_RTX;
1105 return set;
1108 /* Given an INSN, return nonzero if it has more than one SET, else return
1109 zero. */
1112 multiple_sets (const_rtx insn)
1114 int found;
1115 int i;
1117 /* INSN must be an insn. */
1118 if (! INSN_P (insn))
1119 return 0;
1121 /* Only a PARALLEL can have multiple SETs. */
1122 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1124 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1125 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1127 /* If we have already found a SET, then return now. */
1128 if (found)
1129 return 1;
1130 else
1131 found = 1;
1135 /* Either zero or one SET. */
1136 return 0;
1139 /* Return nonzero if the destination of SET equals the source
1140 and there are no side effects. */
1143 set_noop_p (const_rtx set)
1145 rtx src = SET_SRC (set);
1146 rtx dst = SET_DEST (set);
1148 if (dst == pc_rtx && src == pc_rtx)
1149 return 1;
1151 if (MEM_P (dst) && MEM_P (src))
1152 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1154 if (GET_CODE (dst) == ZERO_EXTRACT)
1155 return rtx_equal_p (XEXP (dst, 0), src)
1156 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1157 && !side_effects_p (src);
1159 if (GET_CODE (dst) == STRICT_LOW_PART)
1160 dst = XEXP (dst, 0);
1162 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1164 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1165 return 0;
1166 src = SUBREG_REG (src);
1167 dst = SUBREG_REG (dst);
1170 return (REG_P (src) && REG_P (dst)
1171 && REGNO (src) == REGNO (dst));
1174 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1175 value to itself. */
1178 noop_move_p (const_rtx insn)
1180 rtx pat = PATTERN (insn);
1182 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1183 return 1;
1185 /* Insns carrying these notes are useful later on. */
1186 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1187 return 0;
1189 if (GET_CODE (pat) == SET && set_noop_p (pat))
1190 return 1;
1192 if (GET_CODE (pat) == PARALLEL)
1194 int i;
1195 /* If nothing but SETs of registers to themselves,
1196 this insn can also be deleted. */
1197 for (i = 0; i < XVECLEN (pat, 0); i++)
1199 rtx tem = XVECEXP (pat, 0, i);
1201 if (GET_CODE (tem) == USE
1202 || GET_CODE (tem) == CLOBBER)
1203 continue;
1205 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1206 return 0;
1209 return 1;
1211 return 0;
1215 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1216 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1217 If the object was modified, if we hit a partial assignment to X, or hit a
1218 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1219 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1220 be the src. */
1223 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1225 rtx p;
1227 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1228 p = PREV_INSN (p))
1229 if (INSN_P (p))
1231 rtx set = single_set (p);
1232 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1234 if (set && rtx_equal_p (x, SET_DEST (set)))
1236 rtx src = SET_SRC (set);
1238 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1239 src = XEXP (note, 0);
1241 if ((valid_to == NULL_RTX
1242 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1243 /* Reject hard registers because we don't usually want
1244 to use them; we'd rather use a pseudo. */
1245 && (! (REG_P (src)
1246 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1248 *pinsn = p;
1249 return src;
1253 /* If set in non-simple way, we don't have a value. */
1254 if (reg_set_p (x, p))
1255 break;
1258 return x;
1261 /* Return nonzero if register in range [REGNO, ENDREGNO)
1262 appears either explicitly or implicitly in X
1263 other than being stored into.
1265 References contained within the substructure at LOC do not count.
1266 LOC may be zero, meaning don't ignore anything. */
1269 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1270 rtx *loc)
1272 int i;
1273 unsigned int x_regno;
1274 RTX_CODE code;
1275 const char *fmt;
1277 repeat:
1278 /* The contents of a REG_NONNEG note is always zero, so we must come here
1279 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1280 if (x == 0)
1281 return 0;
1283 code = GET_CODE (x);
1285 switch (code)
1287 case REG:
1288 x_regno = REGNO (x);
1290 /* If we modifying the stack, frame, or argument pointer, it will
1291 clobber a virtual register. In fact, we could be more precise,
1292 but it isn't worth it. */
1293 if ((x_regno == STACK_POINTER_REGNUM
1294 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1295 || x_regno == ARG_POINTER_REGNUM
1296 #endif
1297 || x_regno == FRAME_POINTER_REGNUM)
1298 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1299 return 1;
1301 return endregno > x_regno && regno < END_REGNO (x);
1303 case SUBREG:
1304 /* If this is a SUBREG of a hard reg, we can see exactly which
1305 registers are being modified. Otherwise, handle normally. */
1306 if (REG_P (SUBREG_REG (x))
1307 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1309 unsigned int inner_regno = subreg_regno (x);
1310 unsigned int inner_endregno
1311 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1312 ? subreg_nregs (x) : 1);
1314 return endregno > inner_regno && regno < inner_endregno;
1316 break;
1318 case CLOBBER:
1319 case SET:
1320 if (&SET_DEST (x) != loc
1321 /* Note setting a SUBREG counts as referring to the REG it is in for
1322 a pseudo but not for hard registers since we can
1323 treat each word individually. */
1324 && ((GET_CODE (SET_DEST (x)) == SUBREG
1325 && loc != &SUBREG_REG (SET_DEST (x))
1326 && REG_P (SUBREG_REG (SET_DEST (x)))
1327 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1328 && refers_to_regno_p (regno, endregno,
1329 SUBREG_REG (SET_DEST (x)), loc))
1330 || (!REG_P (SET_DEST (x))
1331 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1332 return 1;
1334 if (code == CLOBBER || loc == &SET_SRC (x))
1335 return 0;
1336 x = SET_SRC (x);
1337 goto repeat;
1339 default:
1340 break;
1343 /* X does not match, so try its subexpressions. */
1345 fmt = GET_RTX_FORMAT (code);
1346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1348 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1350 if (i == 0)
1352 x = XEXP (x, 0);
1353 goto repeat;
1355 else
1356 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1357 return 1;
1359 else if (fmt[i] == 'E')
1361 int j;
1362 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1363 if (loc != &XVECEXP (x, i, j)
1364 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1365 return 1;
1368 return 0;
1371 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1372 we check if any register number in X conflicts with the relevant register
1373 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1374 contains a MEM (we don't bother checking for memory addresses that can't
1375 conflict because we expect this to be a rare case. */
1378 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1380 unsigned int regno, endregno;
1382 /* If either argument is a constant, then modifying X can not
1383 affect IN. Here we look at IN, we can profitably combine
1384 CONSTANT_P (x) with the switch statement below. */
1385 if (CONSTANT_P (in))
1386 return 0;
1388 recurse:
1389 switch (GET_CODE (x))
1391 case STRICT_LOW_PART:
1392 case ZERO_EXTRACT:
1393 case SIGN_EXTRACT:
1394 /* Overly conservative. */
1395 x = XEXP (x, 0);
1396 goto recurse;
1398 case SUBREG:
1399 regno = REGNO (SUBREG_REG (x));
1400 if (regno < FIRST_PSEUDO_REGISTER)
1401 regno = subreg_regno (x);
1402 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1403 ? subreg_nregs (x) : 1);
1404 goto do_reg;
1406 case REG:
1407 regno = REGNO (x);
1408 endregno = END_REGNO (x);
1409 do_reg:
1410 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1412 case MEM:
1414 const char *fmt;
1415 int i;
1417 if (MEM_P (in))
1418 return 1;
1420 fmt = GET_RTX_FORMAT (GET_CODE (in));
1421 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1422 if (fmt[i] == 'e')
1424 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1425 return 1;
1427 else if (fmt[i] == 'E')
1429 int j;
1430 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1431 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1432 return 1;
1435 return 0;
1438 case SCRATCH:
1439 case PC:
1440 case CC0:
1441 return reg_mentioned_p (x, in);
1443 case PARALLEL:
1445 int i;
1447 /* If any register in here refers to it we return true. */
1448 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1449 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1450 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1451 return 1;
1452 return 0;
1455 default:
1456 gcc_assert (CONSTANT_P (x));
1457 return 0;
1461 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1462 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1463 ignored by note_stores, but passed to FUN.
1465 FUN receives three arguments:
1466 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1467 2. the SET or CLOBBER rtx that does the store,
1468 3. the pointer DATA provided to note_stores.
1470 If the item being stored in or clobbered is a SUBREG of a hard register,
1471 the SUBREG will be passed. */
1473 void
1474 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1476 int i;
1478 if (GET_CODE (x) == COND_EXEC)
1479 x = COND_EXEC_CODE (x);
1481 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1483 rtx dest = SET_DEST (x);
1485 while ((GET_CODE (dest) == SUBREG
1486 && (!REG_P (SUBREG_REG (dest))
1487 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1488 || GET_CODE (dest) == ZERO_EXTRACT
1489 || GET_CODE (dest) == STRICT_LOW_PART)
1490 dest = XEXP (dest, 0);
1492 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1493 each of whose first operand is a register. */
1494 if (GET_CODE (dest) == PARALLEL)
1496 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1497 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1498 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1500 else
1501 (*fun) (dest, x, data);
1504 else if (GET_CODE (x) == PARALLEL)
1505 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1506 note_stores (XVECEXP (x, 0, i), fun, data);
1509 /* Like notes_stores, but call FUN for each expression that is being
1510 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1511 FUN for each expression, not any interior subexpressions. FUN receives a
1512 pointer to the expression and the DATA passed to this function.
1514 Note that this is not quite the same test as that done in reg_referenced_p
1515 since that considers something as being referenced if it is being
1516 partially set, while we do not. */
1518 void
1519 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1521 rtx body = *pbody;
1522 int i;
1524 switch (GET_CODE (body))
1526 case COND_EXEC:
1527 (*fun) (&COND_EXEC_TEST (body), data);
1528 note_uses (&COND_EXEC_CODE (body), fun, data);
1529 return;
1531 case PARALLEL:
1532 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1533 note_uses (&XVECEXP (body, 0, i), fun, data);
1534 return;
1536 case SEQUENCE:
1537 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1538 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1539 return;
1541 case USE:
1542 (*fun) (&XEXP (body, 0), data);
1543 return;
1545 case ASM_OPERANDS:
1546 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1547 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1548 return;
1550 case TRAP_IF:
1551 (*fun) (&TRAP_CONDITION (body), data);
1552 return;
1554 case PREFETCH:
1555 (*fun) (&XEXP (body, 0), data);
1556 return;
1558 case UNSPEC:
1559 case UNSPEC_VOLATILE:
1560 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1561 (*fun) (&XVECEXP (body, 0, i), data);
1562 return;
1564 case CLOBBER:
1565 if (MEM_P (XEXP (body, 0)))
1566 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1567 return;
1569 case SET:
1571 rtx dest = SET_DEST (body);
1573 /* For sets we replace everything in source plus registers in memory
1574 expression in store and operands of a ZERO_EXTRACT. */
1575 (*fun) (&SET_SRC (body), data);
1577 if (GET_CODE (dest) == ZERO_EXTRACT)
1579 (*fun) (&XEXP (dest, 1), data);
1580 (*fun) (&XEXP (dest, 2), data);
1583 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1584 dest = XEXP (dest, 0);
1586 if (MEM_P (dest))
1587 (*fun) (&XEXP (dest, 0), data);
1589 return;
1591 default:
1592 /* All the other possibilities never store. */
1593 (*fun) (pbody, data);
1594 return;
1598 /* Return nonzero if X's old contents don't survive after INSN.
1599 This will be true if X is (cc0) or if X is a register and
1600 X dies in INSN or because INSN entirely sets X.
1602 "Entirely set" means set directly and not through a SUBREG, or
1603 ZERO_EXTRACT, so no trace of the old contents remains.
1604 Likewise, REG_INC does not count.
1606 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1607 but for this use that makes no difference, since regs don't overlap
1608 during their lifetimes. Therefore, this function may be used
1609 at any time after deaths have been computed.
1611 If REG is a hard reg that occupies multiple machine registers, this
1612 function will only return 1 if each of those registers will be replaced
1613 by INSN. */
1616 dead_or_set_p (const_rtx insn, const_rtx x)
1618 unsigned int regno, end_regno;
1619 unsigned int i;
1621 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1622 if (GET_CODE (x) == CC0)
1623 return 1;
1625 gcc_assert (REG_P (x));
1627 regno = REGNO (x);
1628 end_regno = END_REGNO (x);
1629 for (i = regno; i < end_regno; i++)
1630 if (! dead_or_set_regno_p (insn, i))
1631 return 0;
1633 return 1;
1636 /* Return TRUE iff DEST is a register or subreg of a register and
1637 doesn't change the number of words of the inner register, and any
1638 part of the register is TEST_REGNO. */
1640 static bool
1641 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1643 unsigned int regno, endregno;
1645 if (GET_CODE (dest) == SUBREG
1646 && (((GET_MODE_SIZE (GET_MODE (dest))
1647 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1648 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1649 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1650 dest = SUBREG_REG (dest);
1652 if (!REG_P (dest))
1653 return false;
1655 regno = REGNO (dest);
1656 endregno = END_REGNO (dest);
1657 return (test_regno >= regno && test_regno < endregno);
1660 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1661 any member matches the covers_regno_no_parallel_p criteria. */
1663 static bool
1664 covers_regno_p (const_rtx dest, unsigned int test_regno)
1666 if (GET_CODE (dest) == PARALLEL)
1668 /* Some targets place small structures in registers for return
1669 values of functions, and those registers are wrapped in
1670 PARALLELs that we may see as the destination of a SET. */
1671 int i;
1673 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1675 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1676 if (inner != NULL_RTX
1677 && covers_regno_no_parallel_p (inner, test_regno))
1678 return true;
1681 return false;
1683 else
1684 return covers_regno_no_parallel_p (dest, test_regno);
1687 /* Utility function for dead_or_set_p to check an individual register. */
1690 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1692 const_rtx pattern;
1694 /* See if there is a death note for something that includes TEST_REGNO. */
1695 if (find_regno_note (insn, REG_DEAD, test_regno))
1696 return 1;
1698 if (CALL_P (insn)
1699 && find_regno_fusage (insn, CLOBBER, test_regno))
1700 return 1;
1702 pattern = PATTERN (insn);
1704 if (GET_CODE (pattern) == COND_EXEC)
1705 pattern = COND_EXEC_CODE (pattern);
1707 if (GET_CODE (pattern) == SET)
1708 return covers_regno_p (SET_DEST (pattern), test_regno);
1709 else if (GET_CODE (pattern) == PARALLEL)
1711 int i;
1713 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1715 rtx body = XVECEXP (pattern, 0, i);
1717 if (GET_CODE (body) == COND_EXEC)
1718 body = COND_EXEC_CODE (body);
1720 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1721 && covers_regno_p (SET_DEST (body), test_regno))
1722 return 1;
1726 return 0;
1729 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1730 If DATUM is nonzero, look for one whose datum is DATUM. */
1733 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1735 rtx link;
1737 gcc_checking_assert (insn);
1739 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1740 if (! INSN_P (insn))
1741 return 0;
1742 if (datum == 0)
1744 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1745 if (REG_NOTE_KIND (link) == kind)
1746 return link;
1747 return 0;
1750 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1751 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1752 return link;
1753 return 0;
1756 /* Return the reg-note of kind KIND in insn INSN which applies to register
1757 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1758 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1759 it might be the case that the note overlaps REGNO. */
1762 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1764 rtx link;
1766 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1767 if (! INSN_P (insn))
1768 return 0;
1770 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1771 if (REG_NOTE_KIND (link) == kind
1772 /* Verify that it is a register, so that scratch and MEM won't cause a
1773 problem here. */
1774 && REG_P (XEXP (link, 0))
1775 && REGNO (XEXP (link, 0)) <= regno
1776 && END_REGNO (XEXP (link, 0)) > regno)
1777 return link;
1778 return 0;
1781 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1782 has such a note. */
1785 find_reg_equal_equiv_note (const_rtx insn)
1787 rtx link;
1789 if (!INSN_P (insn))
1790 return 0;
1792 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1793 if (REG_NOTE_KIND (link) == REG_EQUAL
1794 || REG_NOTE_KIND (link) == REG_EQUIV)
1796 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1797 insns that have multiple sets. Checking single_set to
1798 make sure of this is not the proper check, as explained
1799 in the comment in set_unique_reg_note.
1801 This should be changed into an assert. */
1802 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1803 return 0;
1804 return link;
1806 return NULL;
1809 /* Check whether INSN is a single_set whose source is known to be
1810 equivalent to a constant. Return that constant if so, otherwise
1811 return null. */
1814 find_constant_src (const_rtx insn)
1816 rtx note, set, x;
1818 set = single_set (insn);
1819 if (set)
1821 x = avoid_constant_pool_reference (SET_SRC (set));
1822 if (CONSTANT_P (x))
1823 return x;
1826 note = find_reg_equal_equiv_note (insn);
1827 if (note && CONSTANT_P (XEXP (note, 0)))
1828 return XEXP (note, 0);
1830 return NULL_RTX;
1833 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1834 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1837 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1839 /* If it's not a CALL_INSN, it can't possibly have a
1840 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1841 if (!CALL_P (insn))
1842 return 0;
1844 gcc_assert (datum);
1846 if (!REG_P (datum))
1848 rtx link;
1850 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1851 link;
1852 link = XEXP (link, 1))
1853 if (GET_CODE (XEXP (link, 0)) == code
1854 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1855 return 1;
1857 else
1859 unsigned int regno = REGNO (datum);
1861 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1862 to pseudo registers, so don't bother checking. */
1864 if (regno < FIRST_PSEUDO_REGISTER)
1866 unsigned int end_regno = END_HARD_REGNO (datum);
1867 unsigned int i;
1869 for (i = regno; i < end_regno; i++)
1870 if (find_regno_fusage (insn, code, i))
1871 return 1;
1875 return 0;
1878 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1879 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1882 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1884 rtx link;
1886 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1887 to pseudo registers, so don't bother checking. */
1889 if (regno >= FIRST_PSEUDO_REGISTER
1890 || !CALL_P (insn) )
1891 return 0;
1893 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1895 rtx op, reg;
1897 if (GET_CODE (op = XEXP (link, 0)) == code
1898 && REG_P (reg = XEXP (op, 0))
1899 && REGNO (reg) <= regno
1900 && END_HARD_REGNO (reg) > regno)
1901 return 1;
1904 return 0;
1908 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1909 stored as the pointer to the next register note. */
1912 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1914 rtx note;
1916 switch (kind)
1918 case REG_CC_SETTER:
1919 case REG_CC_USER:
1920 case REG_LABEL_TARGET:
1921 case REG_LABEL_OPERAND:
1922 case REG_TM:
1923 /* These types of register notes use an INSN_LIST rather than an
1924 EXPR_LIST, so that copying is done right and dumps look
1925 better. */
1926 note = alloc_INSN_LIST (datum, list);
1927 PUT_REG_NOTE_KIND (note, kind);
1928 break;
1930 default:
1931 note = alloc_EXPR_LIST (kind, datum, list);
1932 break;
1935 return note;
1938 /* Add register note with kind KIND and datum DATUM to INSN. */
1940 void
1941 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1943 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1946 /* Remove register note NOTE from the REG_NOTES of INSN. */
1948 void
1949 remove_note (rtx insn, const_rtx note)
1951 rtx link;
1953 if (note == NULL_RTX)
1954 return;
1956 if (REG_NOTES (insn) == note)
1957 REG_NOTES (insn) = XEXP (note, 1);
1958 else
1959 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1960 if (XEXP (link, 1) == note)
1962 XEXP (link, 1) = XEXP (note, 1);
1963 break;
1966 switch (REG_NOTE_KIND (note))
1968 case REG_EQUAL:
1969 case REG_EQUIV:
1970 df_notes_rescan (insn);
1971 break;
1972 default:
1973 break;
1977 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1979 void
1980 remove_reg_equal_equiv_notes (rtx insn)
1982 rtx *loc;
1984 loc = &REG_NOTES (insn);
1985 while (*loc)
1987 enum reg_note kind = REG_NOTE_KIND (*loc);
1988 if (kind == REG_EQUAL || kind == REG_EQUIV)
1989 *loc = XEXP (*loc, 1);
1990 else
1991 loc = &XEXP (*loc, 1);
1995 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1997 void
1998 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2000 df_ref eq_use;
2002 if (!df)
2003 return;
2005 /* This loop is a little tricky. We cannot just go down the chain because
2006 it is being modified by some actions in the loop. So we just iterate
2007 over the head. We plan to drain the list anyway. */
2008 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2010 rtx insn = DF_REF_INSN (eq_use);
2011 rtx note = find_reg_equal_equiv_note (insn);
2013 /* This assert is generally triggered when someone deletes a REG_EQUAL
2014 or REG_EQUIV note by hacking the list manually rather than calling
2015 remove_note. */
2016 gcc_assert (note);
2018 remove_note (insn, note);
2022 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2023 return 1 if it is found. A simple equality test is used to determine if
2024 NODE matches. */
2027 in_expr_list_p (const_rtx listp, const_rtx node)
2029 const_rtx x;
2031 for (x = listp; x; x = XEXP (x, 1))
2032 if (node == XEXP (x, 0))
2033 return 1;
2035 return 0;
2038 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2039 remove that entry from the list if it is found.
2041 A simple equality test is used to determine if NODE matches. */
2043 void
2044 remove_node_from_expr_list (const_rtx node, rtx *listp)
2046 rtx temp = *listp;
2047 rtx prev = NULL_RTX;
2049 while (temp)
2051 if (node == XEXP (temp, 0))
2053 /* Splice the node out of the list. */
2054 if (prev)
2055 XEXP (prev, 1) = XEXP (temp, 1);
2056 else
2057 *listp = XEXP (temp, 1);
2059 return;
2062 prev = temp;
2063 temp = XEXP (temp, 1);
2067 /* Nonzero if X contains any volatile instructions. These are instructions
2068 which may cause unpredictable machine state instructions, and thus no
2069 instructions should be moved or combined across them. This includes
2070 only volatile asms and UNSPEC_VOLATILE instructions. */
2073 volatile_insn_p (const_rtx x)
2075 const RTX_CODE code = GET_CODE (x);
2076 switch (code)
2078 case LABEL_REF:
2079 case SYMBOL_REF:
2080 case CONST:
2081 CASE_CONST_ANY:
2082 case CC0:
2083 case PC:
2084 case REG:
2085 case SCRATCH:
2086 case CLOBBER:
2087 case ADDR_VEC:
2088 case ADDR_DIFF_VEC:
2089 case CALL:
2090 case MEM:
2091 return 0;
2093 case UNSPEC_VOLATILE:
2094 /* case TRAP_IF: This isn't clear yet. */
2095 return 1;
2097 case ASM_INPUT:
2098 case ASM_OPERANDS:
2099 if (MEM_VOLATILE_P (x))
2100 return 1;
2102 default:
2103 break;
2106 /* Recursively scan the operands of this expression. */
2109 const char *const fmt = GET_RTX_FORMAT (code);
2110 int i;
2112 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2114 if (fmt[i] == 'e')
2116 if (volatile_insn_p (XEXP (x, i)))
2117 return 1;
2119 else if (fmt[i] == 'E')
2121 int j;
2122 for (j = 0; j < XVECLEN (x, i); j++)
2123 if (volatile_insn_p (XVECEXP (x, i, j)))
2124 return 1;
2128 return 0;
2131 /* Nonzero if X contains any volatile memory references
2132 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2135 volatile_refs_p (const_rtx x)
2137 const RTX_CODE code = GET_CODE (x);
2138 switch (code)
2140 case LABEL_REF:
2141 case SYMBOL_REF:
2142 case CONST:
2143 CASE_CONST_ANY:
2144 case CC0:
2145 case PC:
2146 case REG:
2147 case SCRATCH:
2148 case CLOBBER:
2149 case ADDR_VEC:
2150 case ADDR_DIFF_VEC:
2151 return 0;
2153 case UNSPEC_VOLATILE:
2154 return 1;
2156 case MEM:
2157 case ASM_INPUT:
2158 case ASM_OPERANDS:
2159 if (MEM_VOLATILE_P (x))
2160 return 1;
2162 default:
2163 break;
2166 /* Recursively scan the operands of this expression. */
2169 const char *const fmt = GET_RTX_FORMAT (code);
2170 int i;
2172 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2174 if (fmt[i] == 'e')
2176 if (volatile_refs_p (XEXP (x, i)))
2177 return 1;
2179 else if (fmt[i] == 'E')
2181 int j;
2182 for (j = 0; j < XVECLEN (x, i); j++)
2183 if (volatile_refs_p (XVECEXP (x, i, j)))
2184 return 1;
2188 return 0;
2191 /* Similar to above, except that it also rejects register pre- and post-
2192 incrementing. */
2195 side_effects_p (const_rtx x)
2197 const RTX_CODE code = GET_CODE (x);
2198 switch (code)
2200 case LABEL_REF:
2201 case SYMBOL_REF:
2202 case CONST:
2203 CASE_CONST_ANY:
2204 case CC0:
2205 case PC:
2206 case REG:
2207 case SCRATCH:
2208 case ADDR_VEC:
2209 case ADDR_DIFF_VEC:
2210 case VAR_LOCATION:
2211 return 0;
2213 case CLOBBER:
2214 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2215 when some combination can't be done. If we see one, don't think
2216 that we can simplify the expression. */
2217 return (GET_MODE (x) != VOIDmode);
2219 case PRE_INC:
2220 case PRE_DEC:
2221 case POST_INC:
2222 case POST_DEC:
2223 case PRE_MODIFY:
2224 case POST_MODIFY:
2225 case CALL:
2226 case UNSPEC_VOLATILE:
2227 /* case TRAP_IF: This isn't clear yet. */
2228 return 1;
2230 case MEM:
2231 case ASM_INPUT:
2232 case ASM_OPERANDS:
2233 if (MEM_VOLATILE_P (x))
2234 return 1;
2236 default:
2237 break;
2240 /* Recursively scan the operands of this expression. */
2243 const char *fmt = GET_RTX_FORMAT (code);
2244 int i;
2246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2248 if (fmt[i] == 'e')
2250 if (side_effects_p (XEXP (x, i)))
2251 return 1;
2253 else if (fmt[i] == 'E')
2255 int j;
2256 for (j = 0; j < XVECLEN (x, i); j++)
2257 if (side_effects_p (XVECEXP (x, i, j)))
2258 return 1;
2262 return 0;
2265 /* Return nonzero if evaluating rtx X might cause a trap.
2266 FLAGS controls how to consider MEMs. A nonzero means the context
2267 of the access may have changed from the original, such that the
2268 address may have become invalid. */
2271 may_trap_p_1 (const_rtx x, unsigned flags)
2273 int i;
2274 enum rtx_code code;
2275 const char *fmt;
2277 /* We make no distinction currently, but this function is part of
2278 the internal target-hooks ABI so we keep the parameter as
2279 "unsigned flags". */
2280 bool code_changed = flags != 0;
2282 if (x == 0)
2283 return 0;
2284 code = GET_CODE (x);
2285 switch (code)
2287 /* Handle these cases quickly. */
2288 CASE_CONST_ANY:
2289 case SYMBOL_REF:
2290 case LABEL_REF:
2291 case CONST:
2292 case PC:
2293 case CC0:
2294 case REG:
2295 case SCRATCH:
2296 return 0;
2298 case UNSPEC:
2299 case UNSPEC_VOLATILE:
2300 return targetm.unspec_may_trap_p (x, flags);
2302 case ASM_INPUT:
2303 case TRAP_IF:
2304 return 1;
2306 case ASM_OPERANDS:
2307 return MEM_VOLATILE_P (x);
2309 /* Memory ref can trap unless it's a static var or a stack slot. */
2310 case MEM:
2311 /* Recognize specific pattern of stack checking probes. */
2312 if (flag_stack_check
2313 && MEM_VOLATILE_P (x)
2314 && XEXP (x, 0) == stack_pointer_rtx)
2315 return 1;
2316 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2317 reference; moving it out of context such as when moving code
2318 when optimizing, might cause its address to become invalid. */
2319 code_changed
2320 || !MEM_NOTRAP_P (x))
2322 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2323 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2324 GET_MODE (x), code_changed);
2327 return 0;
2329 /* Division by a non-constant might trap. */
2330 case DIV:
2331 case MOD:
2332 case UDIV:
2333 case UMOD:
2334 if (HONOR_SNANS (GET_MODE (x)))
2335 return 1;
2336 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2337 return flag_trapping_math;
2338 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2339 return 1;
2340 break;
2342 case EXPR_LIST:
2343 /* An EXPR_LIST is used to represent a function call. This
2344 certainly may trap. */
2345 return 1;
2347 case GE:
2348 case GT:
2349 case LE:
2350 case LT:
2351 case LTGT:
2352 case COMPARE:
2353 /* Some floating point comparisons may trap. */
2354 if (!flag_trapping_math)
2355 break;
2356 /* ??? There is no machine independent way to check for tests that trap
2357 when COMPARE is used, though many targets do make this distinction.
2358 For instance, sparc uses CCFPE for compares which generate exceptions
2359 and CCFP for compares which do not generate exceptions. */
2360 if (HONOR_NANS (GET_MODE (x)))
2361 return 1;
2362 /* But often the compare has some CC mode, so check operand
2363 modes as well. */
2364 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2365 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2366 return 1;
2367 break;
2369 case EQ:
2370 case NE:
2371 if (HONOR_SNANS (GET_MODE (x)))
2372 return 1;
2373 /* Often comparison is CC mode, so check operand modes. */
2374 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2375 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2376 return 1;
2377 break;
2379 case FIX:
2380 /* Conversion of floating point might trap. */
2381 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2382 return 1;
2383 break;
2385 case NEG:
2386 case ABS:
2387 case SUBREG:
2388 /* These operations don't trap even with floating point. */
2389 break;
2391 default:
2392 /* Any floating arithmetic may trap. */
2393 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2394 && flag_trapping_math)
2395 return 1;
2398 fmt = GET_RTX_FORMAT (code);
2399 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2401 if (fmt[i] == 'e')
2403 if (may_trap_p_1 (XEXP (x, i), flags))
2404 return 1;
2406 else if (fmt[i] == 'E')
2408 int j;
2409 for (j = 0; j < XVECLEN (x, i); j++)
2410 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2411 return 1;
2414 return 0;
2417 /* Return nonzero if evaluating rtx X might cause a trap. */
2420 may_trap_p (const_rtx x)
2422 return may_trap_p_1 (x, 0);
2425 /* Same as above, but additionally return nonzero if evaluating rtx X might
2426 cause a fault. We define a fault for the purpose of this function as a
2427 erroneous execution condition that cannot be encountered during the normal
2428 execution of a valid program; the typical example is an unaligned memory
2429 access on a strict alignment machine. The compiler guarantees that it
2430 doesn't generate code that will fault from a valid program, but this
2431 guarantee doesn't mean anything for individual instructions. Consider
2432 the following example:
2434 struct S { int d; union { char *cp; int *ip; }; };
2436 int foo(struct S *s)
2438 if (s->d == 1)
2439 return *s->ip;
2440 else
2441 return *s->cp;
2444 on a strict alignment machine. In a valid program, foo will never be
2445 invoked on a structure for which d is equal to 1 and the underlying
2446 unique field of the union not aligned on a 4-byte boundary, but the
2447 expression *s->ip might cause a fault if considered individually.
2449 At the RTL level, potentially problematic expressions will almost always
2450 verify may_trap_p; for example, the above dereference can be emitted as
2451 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2452 However, suppose that foo is inlined in a caller that causes s->cp to
2453 point to a local character variable and guarantees that s->d is not set
2454 to 1; foo may have been effectively translated into pseudo-RTL as:
2456 if ((reg:SI) == 1)
2457 (set (reg:SI) (mem:SI (%fp - 7)))
2458 else
2459 (set (reg:QI) (mem:QI (%fp - 7)))
2461 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2462 memory reference to a stack slot, but it will certainly cause a fault
2463 on a strict alignment machine. */
2466 may_trap_or_fault_p (const_rtx x)
2468 return may_trap_p_1 (x, 1);
2471 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2472 i.e., an inequality. */
2475 inequality_comparisons_p (const_rtx x)
2477 const char *fmt;
2478 int len, i;
2479 const enum rtx_code code = GET_CODE (x);
2481 switch (code)
2483 case REG:
2484 case SCRATCH:
2485 case PC:
2486 case CC0:
2487 CASE_CONST_ANY:
2488 case CONST:
2489 case LABEL_REF:
2490 case SYMBOL_REF:
2491 return 0;
2493 case LT:
2494 case LTU:
2495 case GT:
2496 case GTU:
2497 case LE:
2498 case LEU:
2499 case GE:
2500 case GEU:
2501 return 1;
2503 default:
2504 break;
2507 len = GET_RTX_LENGTH (code);
2508 fmt = GET_RTX_FORMAT (code);
2510 for (i = 0; i < len; i++)
2512 if (fmt[i] == 'e')
2514 if (inequality_comparisons_p (XEXP (x, i)))
2515 return 1;
2517 else if (fmt[i] == 'E')
2519 int j;
2520 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2521 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2522 return 1;
2526 return 0;
2529 /* Replace any occurrence of FROM in X with TO. The function does
2530 not enter into CONST_DOUBLE for the replace.
2532 Note that copying is not done so X must not be shared unless all copies
2533 are to be modified. */
2536 replace_rtx (rtx x, rtx from, rtx to)
2538 int i, j;
2539 const char *fmt;
2541 if (x == from)
2542 return to;
2544 /* Allow this function to make replacements in EXPR_LISTs. */
2545 if (x == 0)
2546 return 0;
2548 if (GET_CODE (x) == SUBREG)
2550 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2552 if (CONST_INT_P (new_rtx))
2554 x = simplify_subreg (GET_MODE (x), new_rtx,
2555 GET_MODE (SUBREG_REG (x)),
2556 SUBREG_BYTE (x));
2557 gcc_assert (x);
2559 else
2560 SUBREG_REG (x) = new_rtx;
2562 return x;
2564 else if (GET_CODE (x) == ZERO_EXTEND)
2566 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2568 if (CONST_INT_P (new_rtx))
2570 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2571 new_rtx, GET_MODE (XEXP (x, 0)));
2572 gcc_assert (x);
2574 else
2575 XEXP (x, 0) = new_rtx;
2577 return x;
2580 fmt = GET_RTX_FORMAT (GET_CODE (x));
2581 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2583 if (fmt[i] == 'e')
2584 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2585 else if (fmt[i] == 'E')
2586 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2587 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2590 return x;
2593 /* Replace occurrences of the old label in *X with the new one.
2594 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2597 replace_label (rtx *x, void *data)
2599 rtx l = *x;
2600 rtx old_label = ((replace_label_data *) data)->r1;
2601 rtx new_label = ((replace_label_data *) data)->r2;
2602 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2604 if (l == NULL_RTX)
2605 return 0;
2607 if (GET_CODE (l) == SYMBOL_REF
2608 && CONSTANT_POOL_ADDRESS_P (l))
2610 rtx c = get_pool_constant (l);
2611 if (rtx_referenced_p (old_label, c))
2613 rtx new_c, new_l;
2614 replace_label_data *d = (replace_label_data *) data;
2616 /* Create a copy of constant C; replace the label inside
2617 but do not update LABEL_NUSES because uses in constant pool
2618 are not counted. */
2619 new_c = copy_rtx (c);
2620 d->update_label_nuses = false;
2621 for_each_rtx (&new_c, replace_label, data);
2622 d->update_label_nuses = update_label_nuses;
2624 /* Add the new constant NEW_C to constant pool and replace
2625 the old reference to constant by new reference. */
2626 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2627 *x = replace_rtx (l, l, new_l);
2629 return 0;
2632 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2633 field. This is not handled by for_each_rtx because it doesn't
2634 handle unprinted ('0') fields. */
2635 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2636 JUMP_LABEL (l) = new_label;
2638 if ((GET_CODE (l) == LABEL_REF
2639 || GET_CODE (l) == INSN_LIST)
2640 && XEXP (l, 0) == old_label)
2642 XEXP (l, 0) = new_label;
2643 if (update_label_nuses)
2645 ++LABEL_NUSES (new_label);
2646 --LABEL_NUSES (old_label);
2648 return 0;
2651 return 0;
2654 /* When *BODY is equal to X or X is directly referenced by *BODY
2655 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2656 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2658 static int
2659 rtx_referenced_p_1 (rtx *body, void *x)
2661 rtx y = (rtx) x;
2663 if (*body == NULL_RTX)
2664 return y == NULL_RTX;
2666 /* Return true if a label_ref *BODY refers to label Y. */
2667 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2668 return XEXP (*body, 0) == y;
2670 /* If *BODY is a reference to pool constant traverse the constant. */
2671 if (GET_CODE (*body) == SYMBOL_REF
2672 && CONSTANT_POOL_ADDRESS_P (*body))
2673 return rtx_referenced_p (y, get_pool_constant (*body));
2675 /* By default, compare the RTL expressions. */
2676 return rtx_equal_p (*body, y);
2679 /* Return true if X is referenced in BODY. */
2682 rtx_referenced_p (rtx x, rtx body)
2684 return for_each_rtx (&body, rtx_referenced_p_1, x);
2687 /* If INSN is a tablejump return true and store the label (before jump table) to
2688 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2690 bool
2691 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2693 rtx label, table;
2695 if (!JUMP_P (insn))
2696 return false;
2698 label = JUMP_LABEL (insn);
2699 if (label != NULL_RTX && !ANY_RETURN_P (label)
2700 && (table = next_active_insn (label)) != NULL_RTX
2701 && JUMP_TABLE_DATA_P (table))
2703 if (labelp)
2704 *labelp = label;
2705 if (tablep)
2706 *tablep = table;
2707 return true;
2709 return false;
2712 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2713 constant that is not in the constant pool and not in the condition
2714 of an IF_THEN_ELSE. */
2716 static int
2717 computed_jump_p_1 (const_rtx x)
2719 const enum rtx_code code = GET_CODE (x);
2720 int i, j;
2721 const char *fmt;
2723 switch (code)
2725 case LABEL_REF:
2726 case PC:
2727 return 0;
2729 case CONST:
2730 CASE_CONST_ANY:
2731 case SYMBOL_REF:
2732 case REG:
2733 return 1;
2735 case MEM:
2736 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2737 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2739 case IF_THEN_ELSE:
2740 return (computed_jump_p_1 (XEXP (x, 1))
2741 || computed_jump_p_1 (XEXP (x, 2)));
2743 default:
2744 break;
2747 fmt = GET_RTX_FORMAT (code);
2748 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2750 if (fmt[i] == 'e'
2751 && computed_jump_p_1 (XEXP (x, i)))
2752 return 1;
2754 else if (fmt[i] == 'E')
2755 for (j = 0; j < XVECLEN (x, i); j++)
2756 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2757 return 1;
2760 return 0;
2763 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2765 Tablejumps and casesi insns are not considered indirect jumps;
2766 we can recognize them by a (use (label_ref)). */
2769 computed_jump_p (const_rtx insn)
2771 int i;
2772 if (JUMP_P (insn))
2774 rtx pat = PATTERN (insn);
2776 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2777 if (JUMP_LABEL (insn) != NULL)
2778 return 0;
2780 if (GET_CODE (pat) == PARALLEL)
2782 int len = XVECLEN (pat, 0);
2783 int has_use_labelref = 0;
2785 for (i = len - 1; i >= 0; i--)
2786 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2787 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2788 == LABEL_REF))
2789 has_use_labelref = 1;
2791 if (! has_use_labelref)
2792 for (i = len - 1; i >= 0; i--)
2793 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2794 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2795 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2796 return 1;
2798 else if (GET_CODE (pat) == SET
2799 && SET_DEST (pat) == pc_rtx
2800 && computed_jump_p_1 (SET_SRC (pat)))
2801 return 1;
2803 return 0;
2806 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2807 calls. Processes the subexpressions of EXP and passes them to F. */
2808 static int
2809 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2811 int result, i, j;
2812 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2813 rtx *x;
2815 for (; format[n] != '\0'; n++)
2817 switch (format[n])
2819 case 'e':
2820 /* Call F on X. */
2821 x = &XEXP (exp, n);
2822 result = (*f) (x, data);
2823 if (result == -1)
2824 /* Do not traverse sub-expressions. */
2825 continue;
2826 else if (result != 0)
2827 /* Stop the traversal. */
2828 return result;
2830 if (*x == NULL_RTX)
2831 /* There are no sub-expressions. */
2832 continue;
2834 i = non_rtx_starting_operands[GET_CODE (*x)];
2835 if (i >= 0)
2837 result = for_each_rtx_1 (*x, i, f, data);
2838 if (result != 0)
2839 return result;
2841 break;
2843 case 'V':
2844 case 'E':
2845 if (XVEC (exp, n) == 0)
2846 continue;
2847 for (j = 0; j < XVECLEN (exp, n); ++j)
2849 /* Call F on X. */
2850 x = &XVECEXP (exp, n, j);
2851 result = (*f) (x, data);
2852 if (result == -1)
2853 /* Do not traverse sub-expressions. */
2854 continue;
2855 else if (result != 0)
2856 /* Stop the traversal. */
2857 return result;
2859 if (*x == NULL_RTX)
2860 /* There are no sub-expressions. */
2861 continue;
2863 i = non_rtx_starting_operands[GET_CODE (*x)];
2864 if (i >= 0)
2866 result = for_each_rtx_1 (*x, i, f, data);
2867 if (result != 0)
2868 return result;
2871 break;
2873 default:
2874 /* Nothing to do. */
2875 break;
2879 return 0;
2882 /* Traverse X via depth-first search, calling F for each
2883 sub-expression (including X itself). F is also passed the DATA.
2884 If F returns -1, do not traverse sub-expressions, but continue
2885 traversing the rest of the tree. If F ever returns any other
2886 nonzero value, stop the traversal, and return the value returned
2887 by F. Otherwise, return 0. This function does not traverse inside
2888 tree structure that contains RTX_EXPRs, or into sub-expressions
2889 whose format code is `0' since it is not known whether or not those
2890 codes are actually RTL.
2892 This routine is very general, and could (should?) be used to
2893 implement many of the other routines in this file. */
2896 for_each_rtx (rtx *x, rtx_function f, void *data)
2898 int result;
2899 int i;
2901 /* Call F on X. */
2902 result = (*f) (x, data);
2903 if (result == -1)
2904 /* Do not traverse sub-expressions. */
2905 return 0;
2906 else if (result != 0)
2907 /* Stop the traversal. */
2908 return result;
2910 if (*x == NULL_RTX)
2911 /* There are no sub-expressions. */
2912 return 0;
2914 i = non_rtx_starting_operands[GET_CODE (*x)];
2915 if (i < 0)
2916 return 0;
2918 return for_each_rtx_1 (*x, i, f, data);
2923 /* Data structure that holds the internal state communicated between
2924 for_each_inc_dec, for_each_inc_dec_find_mem and
2925 for_each_inc_dec_find_inc_dec. */
2927 struct for_each_inc_dec_ops {
2928 /* The function to be called for each autoinc operation found. */
2929 for_each_inc_dec_fn fn;
2930 /* The opaque argument to be passed to it. */
2931 void *arg;
2932 /* The MEM we're visiting, if any. */
2933 rtx mem;
2936 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2938 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2939 operands of the equivalent add insn and pass the result to the
2940 operator specified by *D. */
2942 static int
2943 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2945 rtx x = *r;
2946 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2948 switch (GET_CODE (x))
2950 case PRE_INC:
2951 case POST_INC:
2953 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2954 rtx r1 = XEXP (x, 0);
2955 rtx c = gen_int_mode (size, GET_MODE (r1));
2956 return data->fn (data->mem, x, r1, r1, c, data->arg);
2959 case PRE_DEC:
2960 case POST_DEC:
2962 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2963 rtx r1 = XEXP (x, 0);
2964 rtx c = gen_int_mode (-size, GET_MODE (r1));
2965 return data->fn (data->mem, x, r1, r1, c, data->arg);
2968 case PRE_MODIFY:
2969 case POST_MODIFY:
2971 rtx r1 = XEXP (x, 0);
2972 rtx add = XEXP (x, 1);
2973 return data->fn (data->mem, x, r1, add, NULL, data->arg);
2976 case MEM:
2978 rtx save = data->mem;
2979 int ret = for_each_inc_dec_find_mem (r, d);
2980 data->mem = save;
2981 return ret;
2984 default:
2985 return 0;
2989 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
2990 address, extract the operands of the equivalent add insn and pass
2991 the result to the operator specified by *D. */
2993 static int
2994 for_each_inc_dec_find_mem (rtx *r, void *d)
2996 rtx x = *r;
2997 if (x != NULL_RTX && MEM_P (x))
2999 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3000 int result;
3002 data->mem = x;
3004 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3005 data);
3006 if (result)
3007 return result;
3009 return -1;
3011 return 0;
3014 /* Traverse *X looking for MEMs, and for autoinc operations within
3015 them. For each such autoinc operation found, call FN, passing it
3016 the innermost enclosing MEM, the operation itself, the RTX modified
3017 by the operation, two RTXs (the second may be NULL) that, once
3018 added, represent the value to be held by the modified RTX
3019 afterwards, and ARG. FN is to return -1 to skip looking for other
3020 autoinc operations within the visited operation, 0 to continue the
3021 traversal, or any other value to have it returned to the caller of
3022 for_each_inc_dec. */
3025 for_each_inc_dec (rtx *x,
3026 for_each_inc_dec_fn fn,
3027 void *arg)
3029 struct for_each_inc_dec_ops data;
3031 data.fn = fn;
3032 data.arg = arg;
3033 data.mem = NULL;
3035 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3039 /* Searches X for any reference to REGNO, returning the rtx of the
3040 reference found if any. Otherwise, returns NULL_RTX. */
3043 regno_use_in (unsigned int regno, rtx x)
3045 const char *fmt;
3046 int i, j;
3047 rtx tem;
3049 if (REG_P (x) && REGNO (x) == regno)
3050 return x;
3052 fmt = GET_RTX_FORMAT (GET_CODE (x));
3053 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3055 if (fmt[i] == 'e')
3057 if ((tem = regno_use_in (regno, XEXP (x, i))))
3058 return tem;
3060 else if (fmt[i] == 'E')
3061 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3062 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3063 return tem;
3066 return NULL_RTX;
3069 /* Return a value indicating whether OP, an operand of a commutative
3070 operation, is preferred as the first or second operand. The higher
3071 the value, the stronger the preference for being the first operand.
3072 We use negative values to indicate a preference for the first operand
3073 and positive values for the second operand. */
3076 commutative_operand_precedence (rtx op)
3078 enum rtx_code code = GET_CODE (op);
3080 /* Constants always come the second operand. Prefer "nice" constants. */
3081 if (code == CONST_INT)
3082 return -8;
3083 if (code == CONST_DOUBLE)
3084 return -7;
3085 if (code == CONST_FIXED)
3086 return -7;
3087 op = avoid_constant_pool_reference (op);
3088 code = GET_CODE (op);
3090 switch (GET_RTX_CLASS (code))
3092 case RTX_CONST_OBJ:
3093 if (code == CONST_INT)
3094 return -6;
3095 if (code == CONST_DOUBLE)
3096 return -5;
3097 if (code == CONST_FIXED)
3098 return -5;
3099 return -4;
3101 case RTX_EXTRA:
3102 /* SUBREGs of objects should come second. */
3103 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3104 return -3;
3105 return 0;
3107 case RTX_OBJ:
3108 /* Complex expressions should be the first, so decrease priority
3109 of objects. Prefer pointer objects over non pointer objects. */
3110 if ((REG_P (op) && REG_POINTER (op))
3111 || (MEM_P (op) && MEM_POINTER (op)))
3112 return -1;
3113 return -2;
3115 case RTX_COMM_ARITH:
3116 /* Prefer operands that are themselves commutative to be first.
3117 This helps to make things linear. In particular,
3118 (and (and (reg) (reg)) (not (reg))) is canonical. */
3119 return 4;
3121 case RTX_BIN_ARITH:
3122 /* If only one operand is a binary expression, it will be the first
3123 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3124 is canonical, although it will usually be further simplified. */
3125 return 2;
3127 case RTX_UNARY:
3128 /* Then prefer NEG and NOT. */
3129 if (code == NEG || code == NOT)
3130 return 1;
3132 default:
3133 return 0;
3137 /* Return 1 iff it is necessary to swap operands of commutative operation
3138 in order to canonicalize expression. */
3140 bool
3141 swap_commutative_operands_p (rtx x, rtx y)
3143 return (commutative_operand_precedence (x)
3144 < commutative_operand_precedence (y));
3147 /* Return 1 if X is an autoincrement side effect and the register is
3148 not the stack pointer. */
3150 auto_inc_p (const_rtx x)
3152 switch (GET_CODE (x))
3154 case PRE_INC:
3155 case POST_INC:
3156 case PRE_DEC:
3157 case POST_DEC:
3158 case PRE_MODIFY:
3159 case POST_MODIFY:
3160 /* There are no REG_INC notes for SP. */
3161 if (XEXP (x, 0) != stack_pointer_rtx)
3162 return 1;
3163 default:
3164 break;
3166 return 0;
3169 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3171 loc_mentioned_in_p (rtx *loc, const_rtx in)
3173 enum rtx_code code;
3174 const char *fmt;
3175 int i, j;
3177 if (!in)
3178 return 0;
3180 code = GET_CODE (in);
3181 fmt = GET_RTX_FORMAT (code);
3182 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3184 if (fmt[i] == 'e')
3186 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3187 return 1;
3189 else if (fmt[i] == 'E')
3190 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3191 if (loc == &XVECEXP (in, i, j)
3192 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3193 return 1;
3195 return 0;
3198 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3199 and SUBREG_BYTE, return the bit offset where the subreg begins
3200 (counting from the least significant bit of the operand). */
3202 unsigned int
3203 subreg_lsb_1 (enum machine_mode outer_mode,
3204 enum machine_mode inner_mode,
3205 unsigned int subreg_byte)
3207 unsigned int bitpos;
3208 unsigned int byte;
3209 unsigned int word;
3211 /* A paradoxical subreg begins at bit position 0. */
3212 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3213 return 0;
3215 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3216 /* If the subreg crosses a word boundary ensure that
3217 it also begins and ends on a word boundary. */
3218 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3219 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3220 && (subreg_byte % UNITS_PER_WORD
3221 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3223 if (WORDS_BIG_ENDIAN)
3224 word = (GET_MODE_SIZE (inner_mode)
3225 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3226 else
3227 word = subreg_byte / UNITS_PER_WORD;
3228 bitpos = word * BITS_PER_WORD;
3230 if (BYTES_BIG_ENDIAN)
3231 byte = (GET_MODE_SIZE (inner_mode)
3232 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3233 else
3234 byte = subreg_byte % UNITS_PER_WORD;
3235 bitpos += byte * BITS_PER_UNIT;
3237 return bitpos;
3240 /* Given a subreg X, return the bit offset where the subreg begins
3241 (counting from the least significant bit of the reg). */
3243 unsigned int
3244 subreg_lsb (const_rtx x)
3246 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3247 SUBREG_BYTE (x));
3250 /* Fill in information about a subreg of a hard register.
3251 xregno - A regno of an inner hard subreg_reg (or what will become one).
3252 xmode - The mode of xregno.
3253 offset - The byte offset.
3254 ymode - The mode of a top level SUBREG (or what may become one).
3255 info - Pointer to structure to fill in. */
3256 void
3257 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3258 unsigned int offset, enum machine_mode ymode,
3259 struct subreg_info *info)
3261 int nregs_xmode, nregs_ymode;
3262 int mode_multiple, nregs_multiple;
3263 int offset_adj, y_offset, y_offset_adj;
3264 int regsize_xmode, regsize_ymode;
3265 bool rknown;
3267 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3269 rknown = false;
3271 /* If there are holes in a non-scalar mode in registers, we expect
3272 that it is made up of its units concatenated together. */
3273 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3275 enum machine_mode xmode_unit;
3277 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3278 if (GET_MODE_INNER (xmode) == VOIDmode)
3279 xmode_unit = xmode;
3280 else
3281 xmode_unit = GET_MODE_INNER (xmode);
3282 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3283 gcc_assert (nregs_xmode
3284 == (GET_MODE_NUNITS (xmode)
3285 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3286 gcc_assert (hard_regno_nregs[xregno][xmode]
3287 == (hard_regno_nregs[xregno][xmode_unit]
3288 * GET_MODE_NUNITS (xmode)));
3290 /* You can only ask for a SUBREG of a value with holes in the middle
3291 if you don't cross the holes. (Such a SUBREG should be done by
3292 picking a different register class, or doing it in memory if
3293 necessary.) An example of a value with holes is XCmode on 32-bit
3294 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3295 3 for each part, but in memory it's two 128-bit parts.
3296 Padding is assumed to be at the end (not necessarily the 'high part')
3297 of each unit. */
3298 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3299 < GET_MODE_NUNITS (xmode))
3300 && (offset / GET_MODE_SIZE (xmode_unit)
3301 != ((offset + GET_MODE_SIZE (ymode) - 1)
3302 / GET_MODE_SIZE (xmode_unit))))
3304 info->representable_p = false;
3305 rknown = true;
3308 else
3309 nregs_xmode = hard_regno_nregs[xregno][xmode];
3311 nregs_ymode = hard_regno_nregs[xregno][ymode];
3313 /* Paradoxical subregs are otherwise valid. */
3314 if (!rknown
3315 && offset == 0
3316 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3318 info->representable_p = true;
3319 /* If this is a big endian paradoxical subreg, which uses more
3320 actual hard registers than the original register, we must
3321 return a negative offset so that we find the proper highpart
3322 of the register. */
3323 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3324 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3325 info->offset = nregs_xmode - nregs_ymode;
3326 else
3327 info->offset = 0;
3328 info->nregs = nregs_ymode;
3329 return;
3332 /* If registers store different numbers of bits in the different
3333 modes, we cannot generally form this subreg. */
3334 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3335 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3336 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3337 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3339 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3340 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3341 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3343 info->representable_p = false;
3344 info->nregs
3345 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3346 info->offset = offset / regsize_xmode;
3347 return;
3349 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3351 info->representable_p = false;
3352 info->nregs
3353 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3354 info->offset = offset / regsize_xmode;
3355 return;
3359 /* Lowpart subregs are otherwise valid. */
3360 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3362 info->representable_p = true;
3363 rknown = true;
3365 if (offset == 0 || nregs_xmode == nregs_ymode)
3367 info->offset = 0;
3368 info->nregs = nregs_ymode;
3369 return;
3373 /* This should always pass, otherwise we don't know how to verify
3374 the constraint. These conditions may be relaxed but
3375 subreg_regno_offset would need to be redesigned. */
3376 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3377 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3379 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3380 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3382 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3383 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3384 HOST_WIDE_INT off_low = offset & (ysize - 1);
3385 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3386 offset = (xsize - ysize - off_high) | off_low;
3388 /* The XMODE value can be seen as a vector of NREGS_XMODE
3389 values. The subreg must represent a lowpart of given field.
3390 Compute what field it is. */
3391 offset_adj = offset;
3392 offset_adj -= subreg_lowpart_offset (ymode,
3393 mode_for_size (GET_MODE_BITSIZE (xmode)
3394 / nregs_xmode,
3395 MODE_INT, 0));
3397 /* Size of ymode must not be greater than the size of xmode. */
3398 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3399 gcc_assert (mode_multiple != 0);
3401 y_offset = offset / GET_MODE_SIZE (ymode);
3402 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3403 nregs_multiple = nregs_xmode / nregs_ymode;
3405 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3406 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3408 if (!rknown)
3410 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3411 rknown = true;
3413 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3414 info->nregs = nregs_ymode;
3417 /* This function returns the regno offset of a subreg expression.
3418 xregno - A regno of an inner hard subreg_reg (or what will become one).
3419 xmode - The mode of xregno.
3420 offset - The byte offset.
3421 ymode - The mode of a top level SUBREG (or what may become one).
3422 RETURN - The regno offset which would be used. */
3423 unsigned int
3424 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3425 unsigned int offset, enum machine_mode ymode)
3427 struct subreg_info info;
3428 subreg_get_info (xregno, xmode, offset, ymode, &info);
3429 return info.offset;
3432 /* This function returns true when the offset is representable via
3433 subreg_offset in the given regno.
3434 xregno - A regno of an inner hard subreg_reg (or what will become one).
3435 xmode - The mode of xregno.
3436 offset - The byte offset.
3437 ymode - The mode of a top level SUBREG (or what may become one).
3438 RETURN - Whether the offset is representable. */
3439 bool
3440 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3441 unsigned int offset, enum machine_mode ymode)
3443 struct subreg_info info;
3444 subreg_get_info (xregno, xmode, offset, ymode, &info);
3445 return info.representable_p;
3448 /* Return the number of a YMODE register to which
3450 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3452 can be simplified. Return -1 if the subreg can't be simplified.
3454 XREGNO is a hard register number. */
3457 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3458 unsigned int offset, enum machine_mode ymode)
3460 struct subreg_info info;
3461 unsigned int yregno;
3463 #ifdef CANNOT_CHANGE_MODE_CLASS
3464 /* Give the backend a chance to disallow the mode change. */
3465 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3466 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3467 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3468 return -1;
3469 #endif
3471 /* We shouldn't simplify stack-related registers. */
3472 if ((!reload_completed || frame_pointer_needed)
3473 && xregno == FRAME_POINTER_REGNUM)
3474 return -1;
3476 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3477 && xregno == ARG_POINTER_REGNUM)
3478 return -1;
3480 if (xregno == STACK_POINTER_REGNUM)
3481 return -1;
3483 /* Try to get the register offset. */
3484 subreg_get_info (xregno, xmode, offset, ymode, &info);
3485 if (!info.representable_p)
3486 return -1;
3488 /* Make sure that the offsetted register value is in range. */
3489 yregno = xregno + info.offset;
3490 if (!HARD_REGISTER_NUM_P (yregno))
3491 return -1;
3493 /* See whether (reg:YMODE YREGNO) is valid.
3495 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3496 This is a kludge to work around how complex FP arguments are passed
3497 on IA-64 and should be fixed. See PR target/49226. */
3498 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3499 && HARD_REGNO_MODE_OK (xregno, xmode))
3500 return -1;
3502 return (int) yregno;
3505 /* Return the final regno that a subreg expression refers to. */
3506 unsigned int
3507 subreg_regno (const_rtx x)
3509 unsigned int ret;
3510 rtx subreg = SUBREG_REG (x);
3511 int regno = REGNO (subreg);
3513 ret = regno + subreg_regno_offset (regno,
3514 GET_MODE (subreg),
3515 SUBREG_BYTE (x),
3516 GET_MODE (x));
3517 return ret;
3521 /* Return the number of registers that a subreg expression refers
3522 to. */
3523 unsigned int
3524 subreg_nregs (const_rtx x)
3526 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3529 /* Return the number of registers that a subreg REG with REGNO
3530 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3531 changed so that the regno can be passed in. */
3533 unsigned int
3534 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3536 struct subreg_info info;
3537 rtx subreg = SUBREG_REG (x);
3539 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3540 &info);
3541 return info.nregs;
3545 struct parms_set_data
3547 int nregs;
3548 HARD_REG_SET regs;
3551 /* Helper function for noticing stores to parameter registers. */
3552 static void
3553 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3555 struct parms_set_data *const d = (struct parms_set_data *) data;
3556 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3557 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3559 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3560 d->nregs--;
3564 /* Look backward for first parameter to be loaded.
3565 Note that loads of all parameters will not necessarily be
3566 found if CSE has eliminated some of them (e.g., an argument
3567 to the outer function is passed down as a parameter).
3568 Do not skip BOUNDARY. */
3570 find_first_parameter_load (rtx call_insn, rtx boundary)
3572 struct parms_set_data parm;
3573 rtx p, before, first_set;
3575 /* Since different machines initialize their parameter registers
3576 in different orders, assume nothing. Collect the set of all
3577 parameter registers. */
3578 CLEAR_HARD_REG_SET (parm.regs);
3579 parm.nregs = 0;
3580 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3581 if (GET_CODE (XEXP (p, 0)) == USE
3582 && REG_P (XEXP (XEXP (p, 0), 0)))
3584 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3586 /* We only care about registers which can hold function
3587 arguments. */
3588 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3589 continue;
3591 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3592 parm.nregs++;
3594 before = call_insn;
3595 first_set = call_insn;
3597 /* Search backward for the first set of a register in this set. */
3598 while (parm.nregs && before != boundary)
3600 before = PREV_INSN (before);
3602 /* It is possible that some loads got CSEed from one call to
3603 another. Stop in that case. */
3604 if (CALL_P (before))
3605 break;
3607 /* Our caller needs either ensure that we will find all sets
3608 (in case code has not been optimized yet), or take care
3609 for possible labels in a way by setting boundary to preceding
3610 CODE_LABEL. */
3611 if (LABEL_P (before))
3613 gcc_assert (before == boundary);
3614 break;
3617 if (INSN_P (before))
3619 int nregs_old = parm.nregs;
3620 note_stores (PATTERN (before), parms_set, &parm);
3621 /* If we found something that did not set a parameter reg,
3622 we're done. Do not keep going, as that might result
3623 in hoisting an insn before the setting of a pseudo
3624 that is used by the hoisted insn. */
3625 if (nregs_old != parm.nregs)
3626 first_set = before;
3627 else
3628 break;
3631 return first_set;
3634 /* Return true if we should avoid inserting code between INSN and preceding
3635 call instruction. */
3637 bool
3638 keep_with_call_p (const_rtx insn)
3640 rtx set;
3642 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3644 if (REG_P (SET_DEST (set))
3645 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3646 && fixed_regs[REGNO (SET_DEST (set))]
3647 && general_operand (SET_SRC (set), VOIDmode))
3648 return true;
3649 if (REG_P (SET_SRC (set))
3650 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3651 && REG_P (SET_DEST (set))
3652 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3653 return true;
3654 /* There may be a stack pop just after the call and before the store
3655 of the return register. Search for the actual store when deciding
3656 if we can break or not. */
3657 if (SET_DEST (set) == stack_pointer_rtx)
3659 /* This CONST_CAST is okay because next_nonnote_insn just
3660 returns its argument and we assign it to a const_rtx
3661 variable. */
3662 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3663 if (i2 && keep_with_call_p (i2))
3664 return true;
3667 return false;
3670 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3671 to non-complex jumps. That is, direct unconditional, conditional,
3672 and tablejumps, but not computed jumps or returns. It also does
3673 not apply to the fallthru case of a conditional jump. */
3675 bool
3676 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3678 rtx tmp = JUMP_LABEL (jump_insn);
3680 if (label == tmp)
3681 return true;
3683 if (tablejump_p (jump_insn, NULL, &tmp))
3685 rtvec vec = XVEC (PATTERN (tmp),
3686 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3687 int i, veclen = GET_NUM_ELEM (vec);
3689 for (i = 0; i < veclen; ++i)
3690 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3691 return true;
3694 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3695 return true;
3697 return false;
3701 /* Return an estimate of the cost of computing rtx X.
3702 One use is in cse, to decide which expression to keep in the hash table.
3703 Another is in rtl generation, to pick the cheapest way to multiply.
3704 Other uses like the latter are expected in the future.
3706 X appears as operand OPNO in an expression with code OUTER_CODE.
3707 SPEED specifies whether costs optimized for speed or size should
3708 be returned. */
3711 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3713 int i, j;
3714 enum rtx_code code;
3715 const char *fmt;
3716 int total;
3717 int factor;
3719 if (x == 0)
3720 return 0;
3722 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3723 many insns, taking N times as long. */
3724 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3725 if (factor == 0)
3726 factor = 1;
3728 /* Compute the default costs of certain things.
3729 Note that targetm.rtx_costs can override the defaults. */
3731 code = GET_CODE (x);
3732 switch (code)
3734 case MULT:
3735 /* Multiplication has time-complexity O(N*N), where N is the
3736 number of units (translated from digits) when using
3737 schoolbook long multiplication. */
3738 total = factor * factor * COSTS_N_INSNS (5);
3739 break;
3740 case DIV:
3741 case UDIV:
3742 case MOD:
3743 case UMOD:
3744 /* Similarly, complexity for schoolbook long division. */
3745 total = factor * factor * COSTS_N_INSNS (7);
3746 break;
3747 case USE:
3748 /* Used in combine.c as a marker. */
3749 total = 0;
3750 break;
3751 case SET:
3752 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3753 the mode for the factor. */
3754 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3755 if (factor == 0)
3756 factor = 1;
3757 /* Pass through. */
3758 default:
3759 total = factor * COSTS_N_INSNS (1);
3762 switch (code)
3764 case REG:
3765 return 0;
3767 case SUBREG:
3768 total = 0;
3769 /* If we can't tie these modes, make this expensive. The larger
3770 the mode, the more expensive it is. */
3771 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3772 return COSTS_N_INSNS (2 + factor);
3773 break;
3775 default:
3776 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3777 return total;
3778 break;
3781 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3782 which is already in total. */
3784 fmt = GET_RTX_FORMAT (code);
3785 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3786 if (fmt[i] == 'e')
3787 total += rtx_cost (XEXP (x, i), code, i, speed);
3788 else if (fmt[i] == 'E')
3789 for (j = 0; j < XVECLEN (x, i); j++)
3790 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3792 return total;
3795 /* Fill in the structure C with information about both speed and size rtx
3796 costs for X, which is operand OPNO in an expression with code OUTER. */
3798 void
3799 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3800 struct full_rtx_costs *c)
3802 c->speed = rtx_cost (x, outer, opno, true);
3803 c->size = rtx_cost (x, outer, opno, false);
3807 /* Return cost of address expression X.
3808 Expect that X is properly formed address reference.
3810 SPEED parameter specify whether costs optimized for speed or size should
3811 be returned. */
3814 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3816 /* We may be asked for cost of various unusual addresses, such as operands
3817 of push instruction. It is not worthwhile to complicate writing
3818 of the target hook by such cases. */
3820 if (!memory_address_addr_space_p (mode, x, as))
3821 return 1000;
3823 return targetm.address_cost (x, speed);
3826 /* If the target doesn't override, compute the cost as with arithmetic. */
3829 default_address_cost (rtx x, bool speed)
3831 return rtx_cost (x, MEM, 0, speed);
3835 unsigned HOST_WIDE_INT
3836 nonzero_bits (const_rtx x, enum machine_mode mode)
3838 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3841 unsigned int
3842 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3844 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3847 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3848 It avoids exponential behavior in nonzero_bits1 when X has
3849 identical subexpressions on the first or the second level. */
3851 static unsigned HOST_WIDE_INT
3852 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3853 enum machine_mode known_mode,
3854 unsigned HOST_WIDE_INT known_ret)
3856 if (x == known_x && mode == known_mode)
3857 return known_ret;
3859 /* Try to find identical subexpressions. If found call
3860 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3861 precomputed value for the subexpression as KNOWN_RET. */
3863 if (ARITHMETIC_P (x))
3865 rtx x0 = XEXP (x, 0);
3866 rtx x1 = XEXP (x, 1);
3868 /* Check the first level. */
3869 if (x0 == x1)
3870 return nonzero_bits1 (x, mode, x0, mode,
3871 cached_nonzero_bits (x0, mode, known_x,
3872 known_mode, known_ret));
3874 /* Check the second level. */
3875 if (ARITHMETIC_P (x0)
3876 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3877 return nonzero_bits1 (x, mode, x1, mode,
3878 cached_nonzero_bits (x1, mode, known_x,
3879 known_mode, known_ret));
3881 if (ARITHMETIC_P (x1)
3882 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3883 return nonzero_bits1 (x, mode, x0, mode,
3884 cached_nonzero_bits (x0, mode, known_x,
3885 known_mode, known_ret));
3888 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3891 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3892 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3893 is less useful. We can't allow both, because that results in exponential
3894 run time recursion. There is a nullstone testcase that triggered
3895 this. This macro avoids accidental uses of num_sign_bit_copies. */
3896 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3898 /* Given an expression, X, compute which bits in X can be nonzero.
3899 We don't care about bits outside of those defined in MODE.
3901 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3902 an arithmetic operation, we can do better. */
3904 static unsigned HOST_WIDE_INT
3905 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3906 enum machine_mode known_mode,
3907 unsigned HOST_WIDE_INT known_ret)
3909 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3910 unsigned HOST_WIDE_INT inner_nz;
3911 enum rtx_code code;
3912 enum machine_mode inner_mode;
3913 unsigned int mode_width = GET_MODE_PRECISION (mode);
3915 /* For floating-point and vector values, assume all bits are needed. */
3916 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3917 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3918 return nonzero;
3920 /* If X is wider than MODE, use its mode instead. */
3921 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3923 mode = GET_MODE (x);
3924 nonzero = GET_MODE_MASK (mode);
3925 mode_width = GET_MODE_PRECISION (mode);
3928 if (mode_width > HOST_BITS_PER_WIDE_INT)
3929 /* Our only callers in this case look for single bit values. So
3930 just return the mode mask. Those tests will then be false. */
3931 return nonzero;
3933 #ifndef WORD_REGISTER_OPERATIONS
3934 /* If MODE is wider than X, but both are a single word for both the host
3935 and target machines, we can compute this from which bits of the
3936 object might be nonzero in its own mode, taking into account the fact
3937 that on many CISC machines, accessing an object in a wider mode
3938 causes the high-order bits to become undefined. So they are
3939 not known to be zero. */
3941 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3942 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3943 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3944 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3946 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3947 known_x, known_mode, known_ret);
3948 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3949 return nonzero;
3951 #endif
3953 code = GET_CODE (x);
3954 switch (code)
3956 case REG:
3957 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3958 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3959 all the bits above ptr_mode are known to be zero. */
3960 /* As we do not know which address space the pointer is referring to,
3961 we can do this only if the target does not support different pointer
3962 or address modes depending on the address space. */
3963 if (target_default_pointer_address_modes_p ()
3964 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3965 && REG_POINTER (x))
3966 nonzero &= GET_MODE_MASK (ptr_mode);
3967 #endif
3969 /* Include declared information about alignment of pointers. */
3970 /* ??? We don't properly preserve REG_POINTER changes across
3971 pointer-to-integer casts, so we can't trust it except for
3972 things that we know must be pointers. See execute/960116-1.c. */
3973 if ((x == stack_pointer_rtx
3974 || x == frame_pointer_rtx
3975 || x == arg_pointer_rtx)
3976 && REGNO_POINTER_ALIGN (REGNO (x)))
3978 unsigned HOST_WIDE_INT alignment
3979 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3981 #ifdef PUSH_ROUNDING
3982 /* If PUSH_ROUNDING is defined, it is possible for the
3983 stack to be momentarily aligned only to that amount,
3984 so we pick the least alignment. */
3985 if (x == stack_pointer_rtx && PUSH_ARGS)
3986 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3987 alignment);
3988 #endif
3990 nonzero &= ~(alignment - 1);
3994 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3995 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3996 known_mode, known_ret,
3997 &nonzero_for_hook);
3999 if (new_rtx)
4000 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4001 known_mode, known_ret);
4003 return nonzero_for_hook;
4006 case CONST_INT:
4007 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4008 /* If X is negative in MODE, sign-extend the value. */
4009 if (INTVAL (x) > 0
4010 && mode_width < BITS_PER_WORD
4011 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4012 != 0)
4013 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4014 #endif
4016 return UINTVAL (x);
4018 case MEM:
4019 #ifdef LOAD_EXTEND_OP
4020 /* In many, if not most, RISC machines, reading a byte from memory
4021 zeros the rest of the register. Noticing that fact saves a lot
4022 of extra zero-extends. */
4023 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4024 nonzero &= GET_MODE_MASK (GET_MODE (x));
4025 #endif
4026 break;
4028 case EQ: case NE:
4029 case UNEQ: case LTGT:
4030 case GT: case GTU: case UNGT:
4031 case LT: case LTU: case UNLT:
4032 case GE: case GEU: case UNGE:
4033 case LE: case LEU: case UNLE:
4034 case UNORDERED: case ORDERED:
4035 /* If this produces an integer result, we know which bits are set.
4036 Code here used to clear bits outside the mode of X, but that is
4037 now done above. */
4038 /* Mind that MODE is the mode the caller wants to look at this
4039 operation in, and not the actual operation mode. We can wind
4040 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4041 that describes the results of a vector compare. */
4042 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4043 && mode_width <= HOST_BITS_PER_WIDE_INT)
4044 nonzero = STORE_FLAG_VALUE;
4045 break;
4047 case NEG:
4048 #if 0
4049 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4050 and num_sign_bit_copies. */
4051 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4052 == GET_MODE_PRECISION (GET_MODE (x)))
4053 nonzero = 1;
4054 #endif
4056 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4057 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4058 break;
4060 case ABS:
4061 #if 0
4062 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4063 and num_sign_bit_copies. */
4064 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4065 == GET_MODE_PRECISION (GET_MODE (x)))
4066 nonzero = 1;
4067 #endif
4068 break;
4070 case TRUNCATE:
4071 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4072 known_x, known_mode, known_ret)
4073 & GET_MODE_MASK (mode));
4074 break;
4076 case ZERO_EXTEND:
4077 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4078 known_x, known_mode, known_ret);
4079 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4080 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4081 break;
4083 case SIGN_EXTEND:
4084 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4085 Otherwise, show all the bits in the outer mode but not the inner
4086 may be nonzero. */
4087 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4088 known_x, known_mode, known_ret);
4089 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4091 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4092 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4093 inner_nz |= (GET_MODE_MASK (mode)
4094 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4097 nonzero &= inner_nz;
4098 break;
4100 case AND:
4101 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4102 known_x, known_mode, known_ret)
4103 & cached_nonzero_bits (XEXP (x, 1), mode,
4104 known_x, known_mode, known_ret);
4105 break;
4107 case XOR: case IOR:
4108 case UMIN: case UMAX: case SMIN: case SMAX:
4110 unsigned HOST_WIDE_INT nonzero0
4111 = cached_nonzero_bits (XEXP (x, 0), mode,
4112 known_x, known_mode, known_ret);
4114 /* Don't call nonzero_bits for the second time if it cannot change
4115 anything. */
4116 if ((nonzero & nonzero0) != nonzero)
4117 nonzero &= nonzero0
4118 | cached_nonzero_bits (XEXP (x, 1), mode,
4119 known_x, known_mode, known_ret);
4121 break;
4123 case PLUS: case MINUS:
4124 case MULT:
4125 case DIV: case UDIV:
4126 case MOD: case UMOD:
4127 /* We can apply the rules of arithmetic to compute the number of
4128 high- and low-order zero bits of these operations. We start by
4129 computing the width (position of the highest-order nonzero bit)
4130 and the number of low-order zero bits for each value. */
4132 unsigned HOST_WIDE_INT nz0
4133 = cached_nonzero_bits (XEXP (x, 0), mode,
4134 known_x, known_mode, known_ret);
4135 unsigned HOST_WIDE_INT nz1
4136 = cached_nonzero_bits (XEXP (x, 1), mode,
4137 known_x, known_mode, known_ret);
4138 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4139 int width0 = floor_log2 (nz0) + 1;
4140 int width1 = floor_log2 (nz1) + 1;
4141 int low0 = floor_log2 (nz0 & -nz0);
4142 int low1 = floor_log2 (nz1 & -nz1);
4143 unsigned HOST_WIDE_INT op0_maybe_minusp
4144 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4145 unsigned HOST_WIDE_INT op1_maybe_minusp
4146 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4147 unsigned int result_width = mode_width;
4148 int result_low = 0;
4150 switch (code)
4152 case PLUS:
4153 result_width = MAX (width0, width1) + 1;
4154 result_low = MIN (low0, low1);
4155 break;
4156 case MINUS:
4157 result_low = MIN (low0, low1);
4158 break;
4159 case MULT:
4160 result_width = width0 + width1;
4161 result_low = low0 + low1;
4162 break;
4163 case DIV:
4164 if (width1 == 0)
4165 break;
4166 if (!op0_maybe_minusp && !op1_maybe_minusp)
4167 result_width = width0;
4168 break;
4169 case UDIV:
4170 if (width1 == 0)
4171 break;
4172 result_width = width0;
4173 break;
4174 case MOD:
4175 if (width1 == 0)
4176 break;
4177 if (!op0_maybe_minusp && !op1_maybe_minusp)
4178 result_width = MIN (width0, width1);
4179 result_low = MIN (low0, low1);
4180 break;
4181 case UMOD:
4182 if (width1 == 0)
4183 break;
4184 result_width = MIN (width0, width1);
4185 result_low = MIN (low0, low1);
4186 break;
4187 default:
4188 gcc_unreachable ();
4191 if (result_width < mode_width)
4192 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4194 if (result_low > 0)
4195 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4197 break;
4199 case ZERO_EXTRACT:
4200 if (CONST_INT_P (XEXP (x, 1))
4201 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4202 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4203 break;
4205 case SUBREG:
4206 /* If this is a SUBREG formed for a promoted variable that has
4207 been zero-extended, we know that at least the high-order bits
4208 are zero, though others might be too. */
4210 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4211 nonzero = GET_MODE_MASK (GET_MODE (x))
4212 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4213 known_x, known_mode, known_ret);
4215 inner_mode = GET_MODE (SUBREG_REG (x));
4216 /* If the inner mode is a single word for both the host and target
4217 machines, we can compute this from which bits of the inner
4218 object might be nonzero. */
4219 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4220 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4222 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4223 known_x, known_mode, known_ret);
4225 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4226 /* If this is a typical RISC machine, we only have to worry
4227 about the way loads are extended. */
4228 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4229 ? val_signbit_known_set_p (inner_mode, nonzero)
4230 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4231 || !MEM_P (SUBREG_REG (x)))
4232 #endif
4234 /* On many CISC machines, accessing an object in a wider mode
4235 causes the high-order bits to become undefined. So they are
4236 not known to be zero. */
4237 if (GET_MODE_PRECISION (GET_MODE (x))
4238 > GET_MODE_PRECISION (inner_mode))
4239 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4240 & ~GET_MODE_MASK (inner_mode));
4243 break;
4245 case ASHIFTRT:
4246 case LSHIFTRT:
4247 case ASHIFT:
4248 case ROTATE:
4249 /* The nonzero bits are in two classes: any bits within MODE
4250 that aren't in GET_MODE (x) are always significant. The rest of the
4251 nonzero bits are those that are significant in the operand of
4252 the shift when shifted the appropriate number of bits. This
4253 shows that high-order bits are cleared by the right shift and
4254 low-order bits by left shifts. */
4255 if (CONST_INT_P (XEXP (x, 1))
4256 && INTVAL (XEXP (x, 1)) >= 0
4257 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4258 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4260 enum machine_mode inner_mode = GET_MODE (x);
4261 unsigned int width = GET_MODE_PRECISION (inner_mode);
4262 int count = INTVAL (XEXP (x, 1));
4263 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4264 unsigned HOST_WIDE_INT op_nonzero
4265 = cached_nonzero_bits (XEXP (x, 0), mode,
4266 known_x, known_mode, known_ret);
4267 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4268 unsigned HOST_WIDE_INT outer = 0;
4270 if (mode_width > width)
4271 outer = (op_nonzero & nonzero & ~mode_mask);
4273 if (code == LSHIFTRT)
4274 inner >>= count;
4275 else if (code == ASHIFTRT)
4277 inner >>= count;
4279 /* If the sign bit may have been nonzero before the shift, we
4280 need to mark all the places it could have been copied to
4281 by the shift as possibly nonzero. */
4282 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4283 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4284 << (width - count);
4286 else if (code == ASHIFT)
4287 inner <<= count;
4288 else
4289 inner = ((inner << (count % width)
4290 | (inner >> (width - (count % width)))) & mode_mask);
4292 nonzero &= (outer | inner);
4294 break;
4296 case FFS:
4297 case POPCOUNT:
4298 /* This is at most the number of bits in the mode. */
4299 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4300 break;
4302 case CLZ:
4303 /* If CLZ has a known value at zero, then the nonzero bits are
4304 that value, plus the number of bits in the mode minus one. */
4305 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4306 nonzero
4307 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4308 else
4309 nonzero = -1;
4310 break;
4312 case CTZ:
4313 /* If CTZ has a known value at zero, then the nonzero bits are
4314 that value, plus the number of bits in the mode minus one. */
4315 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4316 nonzero
4317 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4318 else
4319 nonzero = -1;
4320 break;
4322 case CLRSB:
4323 /* This is at most the number of bits in the mode minus 1. */
4324 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4325 break;
4327 case PARITY:
4328 nonzero = 1;
4329 break;
4331 case IF_THEN_ELSE:
4333 unsigned HOST_WIDE_INT nonzero_true
4334 = cached_nonzero_bits (XEXP (x, 1), mode,
4335 known_x, known_mode, known_ret);
4337 /* Don't call nonzero_bits for the second time if it cannot change
4338 anything. */
4339 if ((nonzero & nonzero_true) != nonzero)
4340 nonzero &= nonzero_true
4341 | cached_nonzero_bits (XEXP (x, 2), mode,
4342 known_x, known_mode, known_ret);
4344 break;
4346 default:
4347 break;
4350 return nonzero;
4353 /* See the macro definition above. */
4354 #undef cached_num_sign_bit_copies
4357 /* The function cached_num_sign_bit_copies is a wrapper around
4358 num_sign_bit_copies1. It avoids exponential behavior in
4359 num_sign_bit_copies1 when X has identical subexpressions on the
4360 first or the second level. */
4362 static unsigned int
4363 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4364 enum machine_mode known_mode,
4365 unsigned int known_ret)
4367 if (x == known_x && mode == known_mode)
4368 return known_ret;
4370 /* Try to find identical subexpressions. If found call
4371 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4372 the precomputed value for the subexpression as KNOWN_RET. */
4374 if (ARITHMETIC_P (x))
4376 rtx x0 = XEXP (x, 0);
4377 rtx x1 = XEXP (x, 1);
4379 /* Check the first level. */
4380 if (x0 == x1)
4381 return
4382 num_sign_bit_copies1 (x, mode, x0, mode,
4383 cached_num_sign_bit_copies (x0, mode, known_x,
4384 known_mode,
4385 known_ret));
4387 /* Check the second level. */
4388 if (ARITHMETIC_P (x0)
4389 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4390 return
4391 num_sign_bit_copies1 (x, mode, x1, mode,
4392 cached_num_sign_bit_copies (x1, mode, known_x,
4393 known_mode,
4394 known_ret));
4396 if (ARITHMETIC_P (x1)
4397 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4398 return
4399 num_sign_bit_copies1 (x, mode, x0, mode,
4400 cached_num_sign_bit_copies (x0, mode, known_x,
4401 known_mode,
4402 known_ret));
4405 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4408 /* Return the number of bits at the high-order end of X that are known to
4409 be equal to the sign bit. X will be used in mode MODE; if MODE is
4410 VOIDmode, X will be used in its own mode. The returned value will always
4411 be between 1 and the number of bits in MODE. */
4413 static unsigned int
4414 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4415 enum machine_mode known_mode,
4416 unsigned int known_ret)
4418 enum rtx_code code = GET_CODE (x);
4419 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4420 int num0, num1, result;
4421 unsigned HOST_WIDE_INT nonzero;
4423 /* If we weren't given a mode, use the mode of X. If the mode is still
4424 VOIDmode, we don't know anything. Likewise if one of the modes is
4425 floating-point. */
4427 if (mode == VOIDmode)
4428 mode = GET_MODE (x);
4430 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4431 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4432 return 1;
4434 /* For a smaller object, just ignore the high bits. */
4435 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4437 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4438 known_x, known_mode, known_ret);
4439 return MAX (1,
4440 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4443 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4445 #ifndef WORD_REGISTER_OPERATIONS
4446 /* If this machine does not do all register operations on the entire
4447 register and MODE is wider than the mode of X, we can say nothing
4448 at all about the high-order bits. */
4449 return 1;
4450 #else
4451 /* Likewise on machines that do, if the mode of the object is smaller
4452 than a word and loads of that size don't sign extend, we can say
4453 nothing about the high order bits. */
4454 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4455 #ifdef LOAD_EXTEND_OP
4456 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4457 #endif
4459 return 1;
4460 #endif
4463 switch (code)
4465 case REG:
4467 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4468 /* If pointers extend signed and this is a pointer in Pmode, say that
4469 all the bits above ptr_mode are known to be sign bit copies. */
4470 /* As we do not know which address space the pointer is referring to,
4471 we can do this only if the target does not support different pointer
4472 or address modes depending on the address space. */
4473 if (target_default_pointer_address_modes_p ()
4474 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4475 && mode == Pmode && REG_POINTER (x))
4476 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4477 #endif
4480 unsigned int copies_for_hook = 1, copies = 1;
4481 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4482 known_mode, known_ret,
4483 &copies_for_hook);
4485 if (new_rtx)
4486 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4487 known_mode, known_ret);
4489 if (copies > 1 || copies_for_hook > 1)
4490 return MAX (copies, copies_for_hook);
4492 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4494 break;
4496 case MEM:
4497 #ifdef LOAD_EXTEND_OP
4498 /* Some RISC machines sign-extend all loads of smaller than a word. */
4499 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4500 return MAX (1, ((int) bitwidth
4501 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4502 #endif
4503 break;
4505 case CONST_INT:
4506 /* If the constant is negative, take its 1's complement and remask.
4507 Then see how many zero bits we have. */
4508 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4509 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4510 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4511 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4513 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4515 case SUBREG:
4516 /* If this is a SUBREG for a promoted object that is sign-extended
4517 and we are looking at it in a wider mode, we know that at least the
4518 high-order bits are known to be sign bit copies. */
4520 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4522 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4523 known_x, known_mode, known_ret);
4524 return MAX ((int) bitwidth
4525 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4526 num0);
4529 /* For a smaller object, just ignore the high bits. */
4530 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4532 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4533 known_x, known_mode, known_ret);
4534 return MAX (1, (num0
4535 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4536 - bitwidth)));
4539 #ifdef WORD_REGISTER_OPERATIONS
4540 #ifdef LOAD_EXTEND_OP
4541 /* For paradoxical SUBREGs on machines where all register operations
4542 affect the entire register, just look inside. Note that we are
4543 passing MODE to the recursive call, so the number of sign bit copies
4544 will remain relative to that mode, not the inner mode. */
4546 /* This works only if loads sign extend. Otherwise, if we get a
4547 reload for the inner part, it may be loaded from the stack, and
4548 then we lose all sign bit copies that existed before the store
4549 to the stack. */
4551 if (paradoxical_subreg_p (x)
4552 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4553 && MEM_P (SUBREG_REG (x)))
4554 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4555 known_x, known_mode, known_ret);
4556 #endif
4557 #endif
4558 break;
4560 case SIGN_EXTRACT:
4561 if (CONST_INT_P (XEXP (x, 1)))
4562 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4563 break;
4565 case SIGN_EXTEND:
4566 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4567 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4568 known_x, known_mode, known_ret));
4570 case TRUNCATE:
4571 /* For a smaller object, just ignore the high bits. */
4572 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4573 known_x, known_mode, known_ret);
4574 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4575 - bitwidth)));
4577 case NOT:
4578 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4579 known_x, known_mode, known_ret);
4581 case ROTATE: case ROTATERT:
4582 /* If we are rotating left by a number of bits less than the number
4583 of sign bit copies, we can just subtract that amount from the
4584 number. */
4585 if (CONST_INT_P (XEXP (x, 1))
4586 && INTVAL (XEXP (x, 1)) >= 0
4587 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4589 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4590 known_x, known_mode, known_ret);
4591 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4592 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4594 break;
4596 case NEG:
4597 /* In general, this subtracts one sign bit copy. But if the value
4598 is known to be positive, the number of sign bit copies is the
4599 same as that of the input. Finally, if the input has just one bit
4600 that might be nonzero, all the bits are copies of the sign bit. */
4601 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4602 known_x, known_mode, known_ret);
4603 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4604 return num0 > 1 ? num0 - 1 : 1;
4606 nonzero = nonzero_bits (XEXP (x, 0), mode);
4607 if (nonzero == 1)
4608 return bitwidth;
4610 if (num0 > 1
4611 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4612 num0--;
4614 return num0;
4616 case IOR: case AND: case XOR:
4617 case SMIN: case SMAX: case UMIN: case UMAX:
4618 /* Logical operations will preserve the number of sign-bit copies.
4619 MIN and MAX operations always return one of the operands. */
4620 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4621 known_x, known_mode, known_ret);
4622 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4623 known_x, known_mode, known_ret);
4625 /* If num1 is clearing some of the top bits then regardless of
4626 the other term, we are guaranteed to have at least that many
4627 high-order zero bits. */
4628 if (code == AND
4629 && num1 > 1
4630 && bitwidth <= HOST_BITS_PER_WIDE_INT
4631 && CONST_INT_P (XEXP (x, 1))
4632 && (UINTVAL (XEXP (x, 1))
4633 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4634 return num1;
4636 /* Similarly for IOR when setting high-order bits. */
4637 if (code == IOR
4638 && num1 > 1
4639 && bitwidth <= HOST_BITS_PER_WIDE_INT
4640 && CONST_INT_P (XEXP (x, 1))
4641 && (UINTVAL (XEXP (x, 1))
4642 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4643 return num1;
4645 return MIN (num0, num1);
4647 case PLUS: case MINUS:
4648 /* For addition and subtraction, we can have a 1-bit carry. However,
4649 if we are subtracting 1 from a positive number, there will not
4650 be such a carry. Furthermore, if the positive number is known to
4651 be 0 or 1, we know the result is either -1 or 0. */
4653 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4654 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4656 nonzero = nonzero_bits (XEXP (x, 0), mode);
4657 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4658 return (nonzero == 1 || nonzero == 0 ? bitwidth
4659 : bitwidth - floor_log2 (nonzero) - 1);
4662 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4663 known_x, known_mode, known_ret);
4664 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4665 known_x, known_mode, known_ret);
4666 result = MAX (1, MIN (num0, num1) - 1);
4668 return result;
4670 case MULT:
4671 /* The number of bits of the product is the sum of the number of
4672 bits of both terms. However, unless one of the terms if known
4673 to be positive, we must allow for an additional bit since negating
4674 a negative number can remove one sign bit copy. */
4676 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4677 known_x, known_mode, known_ret);
4678 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4679 known_x, known_mode, known_ret);
4681 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4682 if (result > 0
4683 && (bitwidth > HOST_BITS_PER_WIDE_INT
4684 || (((nonzero_bits (XEXP (x, 0), mode)
4685 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4686 && ((nonzero_bits (XEXP (x, 1), mode)
4687 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4688 != 0))))
4689 result--;
4691 return MAX (1, result);
4693 case UDIV:
4694 /* The result must be <= the first operand. If the first operand
4695 has the high bit set, we know nothing about the number of sign
4696 bit copies. */
4697 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4698 return 1;
4699 else if ((nonzero_bits (XEXP (x, 0), mode)
4700 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4701 return 1;
4702 else
4703 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4704 known_x, known_mode, known_ret);
4706 case UMOD:
4707 /* The result must be <= the second operand. If the second operand
4708 has (or just might have) the high bit set, we know nothing about
4709 the number of sign bit copies. */
4710 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4711 return 1;
4712 else if ((nonzero_bits (XEXP (x, 1), mode)
4713 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4714 return 1;
4715 else
4716 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4717 known_x, known_mode, known_ret);
4719 case DIV:
4720 /* Similar to unsigned division, except that we have to worry about
4721 the case where the divisor is negative, in which case we have
4722 to add 1. */
4723 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4724 known_x, known_mode, known_ret);
4725 if (result > 1
4726 && (bitwidth > HOST_BITS_PER_WIDE_INT
4727 || (nonzero_bits (XEXP (x, 1), mode)
4728 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4729 result--;
4731 return result;
4733 case MOD:
4734 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4735 known_x, known_mode, known_ret);
4736 if (result > 1
4737 && (bitwidth > HOST_BITS_PER_WIDE_INT
4738 || (nonzero_bits (XEXP (x, 1), mode)
4739 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4740 result--;
4742 return result;
4744 case ASHIFTRT:
4745 /* Shifts by a constant add to the number of bits equal to the
4746 sign bit. */
4747 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4748 known_x, known_mode, known_ret);
4749 if (CONST_INT_P (XEXP (x, 1))
4750 && INTVAL (XEXP (x, 1)) > 0
4751 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4752 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4754 return num0;
4756 case ASHIFT:
4757 /* Left shifts destroy copies. */
4758 if (!CONST_INT_P (XEXP (x, 1))
4759 || INTVAL (XEXP (x, 1)) < 0
4760 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4761 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4762 return 1;
4764 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4765 known_x, known_mode, known_ret);
4766 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4768 case IF_THEN_ELSE:
4769 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4770 known_x, known_mode, known_ret);
4771 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4772 known_x, known_mode, known_ret);
4773 return MIN (num0, num1);
4775 case EQ: case NE: case GE: case GT: case LE: case LT:
4776 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4777 case GEU: case GTU: case LEU: case LTU:
4778 case UNORDERED: case ORDERED:
4779 /* If the constant is negative, take its 1's complement and remask.
4780 Then see how many zero bits we have. */
4781 nonzero = STORE_FLAG_VALUE;
4782 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4783 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4784 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4786 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4788 default:
4789 break;
4792 /* If we haven't been able to figure it out by one of the above rules,
4793 see if some of the high-order bits are known to be zero. If so,
4794 count those bits and return one less than that amount. If we can't
4795 safely compute the mask for this mode, always return BITWIDTH. */
4797 bitwidth = GET_MODE_PRECISION (mode);
4798 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4799 return 1;
4801 nonzero = nonzero_bits (x, mode);
4802 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4803 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4806 /* Calculate the rtx_cost of a single instruction. A return value of
4807 zero indicates an instruction pattern without a known cost. */
4810 insn_rtx_cost (rtx pat, bool speed)
4812 int i, cost;
4813 rtx set;
4815 /* Extract the single set rtx from the instruction pattern.
4816 We can't use single_set since we only have the pattern. */
4817 if (GET_CODE (pat) == SET)
4818 set = pat;
4819 else if (GET_CODE (pat) == PARALLEL)
4821 set = NULL_RTX;
4822 for (i = 0; i < XVECLEN (pat, 0); i++)
4824 rtx x = XVECEXP (pat, 0, i);
4825 if (GET_CODE (x) == SET)
4827 if (set)
4828 return 0;
4829 set = x;
4832 if (!set)
4833 return 0;
4835 else
4836 return 0;
4838 cost = set_src_cost (SET_SRC (set), speed);
4839 return cost > 0 ? cost : COSTS_N_INSNS (1);
4842 /* Given an insn INSN and condition COND, return the condition in a
4843 canonical form to simplify testing by callers. Specifically:
4845 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4846 (2) Both operands will be machine operands; (cc0) will have been replaced.
4847 (3) If an operand is a constant, it will be the second operand.
4848 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4849 for GE, GEU, and LEU.
4851 If the condition cannot be understood, or is an inequality floating-point
4852 comparison which needs to be reversed, 0 will be returned.
4854 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4856 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4857 insn used in locating the condition was found. If a replacement test
4858 of the condition is desired, it should be placed in front of that
4859 insn and we will be sure that the inputs are still valid.
4861 If WANT_REG is nonzero, we wish the condition to be relative to that
4862 register, if possible. Therefore, do not canonicalize the condition
4863 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4864 to be a compare to a CC mode register.
4866 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4867 and at INSN. */
4870 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4871 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4873 enum rtx_code code;
4874 rtx prev = insn;
4875 const_rtx set;
4876 rtx tem;
4877 rtx op0, op1;
4878 int reverse_code = 0;
4879 enum machine_mode mode;
4880 basic_block bb = BLOCK_FOR_INSN (insn);
4882 code = GET_CODE (cond);
4883 mode = GET_MODE (cond);
4884 op0 = XEXP (cond, 0);
4885 op1 = XEXP (cond, 1);
4887 if (reverse)
4888 code = reversed_comparison_code (cond, insn);
4889 if (code == UNKNOWN)
4890 return 0;
4892 if (earliest)
4893 *earliest = insn;
4895 /* If we are comparing a register with zero, see if the register is set
4896 in the previous insn to a COMPARE or a comparison operation. Perform
4897 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4898 in cse.c */
4900 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4901 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4902 && op1 == CONST0_RTX (GET_MODE (op0))
4903 && op0 != want_reg)
4905 /* Set nonzero when we find something of interest. */
4906 rtx x = 0;
4908 #ifdef HAVE_cc0
4909 /* If comparison with cc0, import actual comparison from compare
4910 insn. */
4911 if (op0 == cc0_rtx)
4913 if ((prev = prev_nonnote_insn (prev)) == 0
4914 || !NONJUMP_INSN_P (prev)
4915 || (set = single_set (prev)) == 0
4916 || SET_DEST (set) != cc0_rtx)
4917 return 0;
4919 op0 = SET_SRC (set);
4920 op1 = CONST0_RTX (GET_MODE (op0));
4921 if (earliest)
4922 *earliest = prev;
4924 #endif
4926 /* If this is a COMPARE, pick up the two things being compared. */
4927 if (GET_CODE (op0) == COMPARE)
4929 op1 = XEXP (op0, 1);
4930 op0 = XEXP (op0, 0);
4931 continue;
4933 else if (!REG_P (op0))
4934 break;
4936 /* Go back to the previous insn. Stop if it is not an INSN. We also
4937 stop if it isn't a single set or if it has a REG_INC note because
4938 we don't want to bother dealing with it. */
4940 prev = prev_nonnote_nondebug_insn (prev);
4942 if (prev == 0
4943 || !NONJUMP_INSN_P (prev)
4944 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4945 /* In cfglayout mode, there do not have to be labels at the
4946 beginning of a block, or jumps at the end, so the previous
4947 conditions would not stop us when we reach bb boundary. */
4948 || BLOCK_FOR_INSN (prev) != bb)
4949 break;
4951 set = set_of (op0, prev);
4953 if (set
4954 && (GET_CODE (set) != SET
4955 || !rtx_equal_p (SET_DEST (set), op0)))
4956 break;
4958 /* If this is setting OP0, get what it sets it to if it looks
4959 relevant. */
4960 if (set)
4962 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4963 #ifdef FLOAT_STORE_FLAG_VALUE
4964 REAL_VALUE_TYPE fsfv;
4965 #endif
4967 /* ??? We may not combine comparisons done in a CCmode with
4968 comparisons not done in a CCmode. This is to aid targets
4969 like Alpha that have an IEEE compliant EQ instruction, and
4970 a non-IEEE compliant BEQ instruction. The use of CCmode is
4971 actually artificial, simply to prevent the combination, but
4972 should not affect other platforms.
4974 However, we must allow VOIDmode comparisons to match either
4975 CCmode or non-CCmode comparison, because some ports have
4976 modeless comparisons inside branch patterns.
4978 ??? This mode check should perhaps look more like the mode check
4979 in simplify_comparison in combine. */
4981 if ((GET_CODE (SET_SRC (set)) == COMPARE
4982 || (((code == NE
4983 || (code == LT
4984 && val_signbit_known_set_p (inner_mode,
4985 STORE_FLAG_VALUE))
4986 #ifdef FLOAT_STORE_FLAG_VALUE
4987 || (code == LT
4988 && SCALAR_FLOAT_MODE_P (inner_mode)
4989 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4990 REAL_VALUE_NEGATIVE (fsfv)))
4991 #endif
4993 && COMPARISON_P (SET_SRC (set))))
4994 && (((GET_MODE_CLASS (mode) == MODE_CC)
4995 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4996 || mode == VOIDmode || inner_mode == VOIDmode))
4997 x = SET_SRC (set);
4998 else if (((code == EQ
4999 || (code == GE
5000 && val_signbit_known_set_p (inner_mode,
5001 STORE_FLAG_VALUE))
5002 #ifdef FLOAT_STORE_FLAG_VALUE
5003 || (code == GE
5004 && SCALAR_FLOAT_MODE_P (inner_mode)
5005 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5006 REAL_VALUE_NEGATIVE (fsfv)))
5007 #endif
5009 && COMPARISON_P (SET_SRC (set))
5010 && (((GET_MODE_CLASS (mode) == MODE_CC)
5011 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5012 || mode == VOIDmode || inner_mode == VOIDmode))
5015 reverse_code = 1;
5016 x = SET_SRC (set);
5018 else
5019 break;
5022 else if (reg_set_p (op0, prev))
5023 /* If this sets OP0, but not directly, we have to give up. */
5024 break;
5026 if (x)
5028 /* If the caller is expecting the condition to be valid at INSN,
5029 make sure X doesn't change before INSN. */
5030 if (valid_at_insn_p)
5031 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5032 break;
5033 if (COMPARISON_P (x))
5034 code = GET_CODE (x);
5035 if (reverse_code)
5037 code = reversed_comparison_code (x, prev);
5038 if (code == UNKNOWN)
5039 return 0;
5040 reverse_code = 0;
5043 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5044 if (earliest)
5045 *earliest = prev;
5049 /* If constant is first, put it last. */
5050 if (CONSTANT_P (op0))
5051 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5053 /* If OP0 is the result of a comparison, we weren't able to find what
5054 was really being compared, so fail. */
5055 if (!allow_cc_mode
5056 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5057 return 0;
5059 /* Canonicalize any ordered comparison with integers involving equality
5060 if we can do computations in the relevant mode and we do not
5061 overflow. */
5063 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5064 && CONST_INT_P (op1)
5065 && GET_MODE (op0) != VOIDmode
5066 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5068 HOST_WIDE_INT const_val = INTVAL (op1);
5069 unsigned HOST_WIDE_INT uconst_val = const_val;
5070 unsigned HOST_WIDE_INT max_val
5071 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5073 switch (code)
5075 case LE:
5076 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5077 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5078 break;
5080 /* When cross-compiling, const_val might be sign-extended from
5081 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5082 case GE:
5083 if ((const_val & max_val)
5084 != ((unsigned HOST_WIDE_INT) 1
5085 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5086 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5087 break;
5089 case LEU:
5090 if (uconst_val < max_val)
5091 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5092 break;
5094 case GEU:
5095 if (uconst_val != 0)
5096 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5097 break;
5099 default:
5100 break;
5104 /* Never return CC0; return zero instead. */
5105 if (CC0_P (op0))
5106 return 0;
5108 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5111 /* Given a jump insn JUMP, return the condition that will cause it to branch
5112 to its JUMP_LABEL. If the condition cannot be understood, or is an
5113 inequality floating-point comparison which needs to be reversed, 0 will
5114 be returned.
5116 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5117 insn used in locating the condition was found. If a replacement test
5118 of the condition is desired, it should be placed in front of that
5119 insn and we will be sure that the inputs are still valid. If EARLIEST
5120 is null, the returned condition will be valid at INSN.
5122 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5123 compare CC mode register.
5125 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5128 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5130 rtx cond;
5131 int reverse;
5132 rtx set;
5134 /* If this is not a standard conditional jump, we can't parse it. */
5135 if (!JUMP_P (jump)
5136 || ! any_condjump_p (jump))
5137 return 0;
5138 set = pc_set (jump);
5140 cond = XEXP (SET_SRC (set), 0);
5142 /* If this branches to JUMP_LABEL when the condition is false, reverse
5143 the condition. */
5144 reverse
5145 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5146 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5148 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5149 allow_cc_mode, valid_at_insn_p);
5152 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5153 TARGET_MODE_REP_EXTENDED.
5155 Note that we assume that the property of
5156 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5157 narrower than mode B. I.e., if A is a mode narrower than B then in
5158 order to be able to operate on it in mode B, mode A needs to
5159 satisfy the requirements set by the representation of mode B. */
5161 static void
5162 init_num_sign_bit_copies_in_rep (void)
5164 enum machine_mode mode, in_mode;
5166 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5167 in_mode = GET_MODE_WIDER_MODE (mode))
5168 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5169 mode = GET_MODE_WIDER_MODE (mode))
5171 enum machine_mode i;
5173 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5174 extends to the next widest mode. */
5175 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5176 || GET_MODE_WIDER_MODE (mode) == in_mode);
5178 /* We are in in_mode. Count how many bits outside of mode
5179 have to be copies of the sign-bit. */
5180 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5182 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5184 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5185 /* We can only check sign-bit copies starting from the
5186 top-bit. In order to be able to check the bits we
5187 have already seen we pretend that subsequent bits
5188 have to be sign-bit copies too. */
5189 || num_sign_bit_copies_in_rep [in_mode][mode])
5190 num_sign_bit_copies_in_rep [in_mode][mode]
5191 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5196 /* Suppose that truncation from the machine mode of X to MODE is not a
5197 no-op. See if there is anything special about X so that we can
5198 assume it already contains a truncated value of MODE. */
5200 bool
5201 truncated_to_mode (enum machine_mode mode, const_rtx x)
5203 /* This register has already been used in MODE without explicit
5204 truncation. */
5205 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5206 return true;
5208 /* See if we already satisfy the requirements of MODE. If yes we
5209 can just switch to MODE. */
5210 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5211 && (num_sign_bit_copies (x, GET_MODE (x))
5212 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5213 return true;
5215 return false;
5218 /* Initialize non_rtx_starting_operands, which is used to speed up
5219 for_each_rtx. */
5220 void
5221 init_rtlanal (void)
5223 int i;
5224 for (i = 0; i < NUM_RTX_CODE; i++)
5226 const char *format = GET_RTX_FORMAT (i);
5227 const char *first = strpbrk (format, "eEV");
5228 non_rtx_starting_operands[i] = first ? first - format : -1;
5231 init_num_sign_bit_copies_in_rep ();
5234 /* Check whether this is a constant pool constant. */
5235 bool
5236 constant_pool_constant_p (rtx x)
5238 x = avoid_constant_pool_reference (x);
5239 return CONST_DOUBLE_P (x);
5242 /* If M is a bitmask that selects a field of low-order bits within an item but
5243 not the entire word, return the length of the field. Return -1 otherwise.
5244 M is used in machine mode MODE. */
5247 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5249 if (mode != VOIDmode)
5251 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5252 return -1;
5253 m &= GET_MODE_MASK (mode);
5256 return exact_log2 (m + 1);
5259 /* Return the mode of MEM's address. */
5261 enum machine_mode
5262 get_address_mode (rtx mem)
5264 enum machine_mode mode;
5266 gcc_assert (MEM_P (mem));
5267 mode = GET_MODE (XEXP (mem, 0));
5268 if (mode != VOIDmode)
5269 return mode;
5270 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5273 /* Split up a CONST_DOUBLE or integer constant rtx
5274 into two rtx's for single words,
5275 storing in *FIRST the word that comes first in memory in the target
5276 and in *SECOND the other. */
5278 void
5279 split_double (rtx value, rtx *first, rtx *second)
5281 if (CONST_INT_P (value))
5283 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5285 /* In this case the CONST_INT holds both target words.
5286 Extract the bits from it into two word-sized pieces.
5287 Sign extend each half to HOST_WIDE_INT. */
5288 unsigned HOST_WIDE_INT low, high;
5289 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5290 unsigned bits_per_word = BITS_PER_WORD;
5292 /* Set sign_bit to the most significant bit of a word. */
5293 sign_bit = 1;
5294 sign_bit <<= bits_per_word - 1;
5296 /* Set mask so that all bits of the word are set. We could
5297 have used 1 << BITS_PER_WORD instead of basing the
5298 calculation on sign_bit. However, on machines where
5299 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5300 compiler warning, even though the code would never be
5301 executed. */
5302 mask = sign_bit << 1;
5303 mask--;
5305 /* Set sign_extend as any remaining bits. */
5306 sign_extend = ~mask;
5308 /* Pick the lower word and sign-extend it. */
5309 low = INTVAL (value);
5310 low &= mask;
5311 if (low & sign_bit)
5312 low |= sign_extend;
5314 /* Pick the higher word, shifted to the least significant
5315 bits, and sign-extend it. */
5316 high = INTVAL (value);
5317 high >>= bits_per_word - 1;
5318 high >>= 1;
5319 high &= mask;
5320 if (high & sign_bit)
5321 high |= sign_extend;
5323 /* Store the words in the target machine order. */
5324 if (WORDS_BIG_ENDIAN)
5326 *first = GEN_INT (high);
5327 *second = GEN_INT (low);
5329 else
5331 *first = GEN_INT (low);
5332 *second = GEN_INT (high);
5335 else
5337 /* The rule for using CONST_INT for a wider mode
5338 is that we regard the value as signed.
5339 So sign-extend it. */
5340 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5341 if (WORDS_BIG_ENDIAN)
5343 *first = high;
5344 *second = value;
5346 else
5348 *first = value;
5349 *second = high;
5353 else if (!CONST_DOUBLE_P (value))
5355 if (WORDS_BIG_ENDIAN)
5357 *first = const0_rtx;
5358 *second = value;
5360 else
5362 *first = value;
5363 *second = const0_rtx;
5366 else if (GET_MODE (value) == VOIDmode
5367 /* This is the old way we did CONST_DOUBLE integers. */
5368 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5370 /* In an integer, the words are defined as most and least significant.
5371 So order them by the target's convention. */
5372 if (WORDS_BIG_ENDIAN)
5374 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5375 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5377 else
5379 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5380 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5383 else
5385 REAL_VALUE_TYPE r;
5386 long l[2];
5387 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5389 /* Note, this converts the REAL_VALUE_TYPE to the target's
5390 format, splits up the floating point double and outputs
5391 exactly 32 bits of it into each of l[0] and l[1] --
5392 not necessarily BITS_PER_WORD bits. */
5393 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5395 /* If 32 bits is an entire word for the target, but not for the host,
5396 then sign-extend on the host so that the number will look the same
5397 way on the host that it would on the target. See for instance
5398 simplify_unary_operation. The #if is needed to avoid compiler
5399 warnings. */
5401 #if HOST_BITS_PER_LONG > 32
5402 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5404 if (l[0] & ((long) 1 << 31))
5405 l[0] |= ((long) (-1) << 32);
5406 if (l[1] & ((long) 1 << 31))
5407 l[1] |= ((long) (-1) << 32);
5409 #endif
5411 *first = GEN_INT (l[0]);
5412 *second = GEN_INT (l[1]);