Warn pointer to signed integer cast for ilp32
[official-gcc.git] / gcc / reload1.c
blob77c7ba0911ae63ab97236f3343f56ebd6f47ce1e
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "ggc.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "df.h"
42 #include "reload.h"
43 #include "recog.h"
44 #include "except.h"
45 #include "tree.h"
46 #include "ira.h"
47 #include "target.h"
48 #include "emit-rtl.h"
49 #include "dumpfile.h"
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
85 struct target_reload default_target_reload;
86 #if SWITCHABLE_TARGET
87 struct target_reload *this_target_reload = &default_target_reload;
88 #endif
90 #define spill_indirect_levels \
91 (this_target_reload->x_spill_indirect_levels)
93 /* During reload_as_needed, element N contains a REG rtx for the hard reg
94 into which reg N has been reloaded (perhaps for a previous insn). */
95 static rtx *reg_last_reload_reg;
97 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
98 for an output reload that stores into reg N. */
99 static regset_head reg_has_output_reload;
101 /* Indicates which hard regs are reload-registers for an output reload
102 in the current insn. */
103 static HARD_REG_SET reg_is_output_reload;
105 /* Widest width in which each pseudo reg is referred to (via subreg). */
106 static unsigned int *reg_max_ref_width;
108 /* Vector to remember old contents of reg_renumber before spilling. */
109 static short *reg_old_renumber;
111 /* During reload_as_needed, element N contains the last pseudo regno reloaded
112 into hard register N. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
117 /* During reload_as_needed, element N contains the insn for which
118 hard register N was last used. Its contents are significant only
119 when reg_reloaded_valid is set for this register. */
120 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
122 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
123 static HARD_REG_SET reg_reloaded_valid;
124 /* Indicate if the register was dead at the end of the reload.
125 This is only valid if reg_reloaded_contents is set and valid. */
126 static HARD_REG_SET reg_reloaded_dead;
128 /* Indicate whether the register's current value is one that is not
129 safe to retain across a call, even for registers that are normally
130 call-saved. This is only meaningful for members of reg_reloaded_valid. */
131 static HARD_REG_SET reg_reloaded_call_part_clobbered;
133 /* Number of spill-regs so far; number of valid elements of spill_regs. */
134 static int n_spills;
136 /* In parallel with spill_regs, contains REG rtx's for those regs.
137 Holds the last rtx used for any given reg, or 0 if it has never
138 been used for spilling yet. This rtx is reused, provided it has
139 the proper mode. */
140 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
142 /* In parallel with spill_regs, contains nonzero for a spill reg
143 that was stored after the last time it was used.
144 The precise value is the insn generated to do the store. */
145 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
147 /* This is the register that was stored with spill_reg_store. This is a
148 copy of reload_out / reload_out_reg when the value was stored; if
149 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
150 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
152 /* This table is the inverse mapping of spill_regs:
153 indexed by hard reg number,
154 it contains the position of that reg in spill_regs,
155 or -1 for something that is not in spill_regs.
157 ?!? This is no longer accurate. */
158 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
160 /* This reg set indicates registers that can't be used as spill registers for
161 the currently processed insn. These are the hard registers which are live
162 during the insn, but not allocated to pseudos, as well as fixed
163 registers. */
164 static HARD_REG_SET bad_spill_regs;
166 /* These are the hard registers that can't be used as spill register for any
167 insn. This includes registers used for user variables and registers that
168 we can't eliminate. A register that appears in this set also can't be used
169 to retry register allocation. */
170 static HARD_REG_SET bad_spill_regs_global;
172 /* Describes order of use of registers for reloading
173 of spilled pseudo-registers. `n_spills' is the number of
174 elements that are actually valid; new ones are added at the end.
176 Both spill_regs and spill_reg_order are used on two occasions:
177 once during find_reload_regs, where they keep track of the spill registers
178 for a single insn, but also during reload_as_needed where they show all
179 the registers ever used by reload. For the latter case, the information
180 is calculated during finish_spills. */
181 static short spill_regs[FIRST_PSEUDO_REGISTER];
183 /* This vector of reg sets indicates, for each pseudo, which hard registers
184 may not be used for retrying global allocation because the register was
185 formerly spilled from one of them. If we allowed reallocating a pseudo to
186 a register that it was already allocated to, reload might not
187 terminate. */
188 static HARD_REG_SET *pseudo_previous_regs;
190 /* This vector of reg sets indicates, for each pseudo, which hard
191 registers may not be used for retrying global allocation because they
192 are used as spill registers during one of the insns in which the
193 pseudo is live. */
194 static HARD_REG_SET *pseudo_forbidden_regs;
196 /* All hard regs that have been used as spill registers for any insn are
197 marked in this set. */
198 static HARD_REG_SET used_spill_regs;
200 /* Index of last register assigned as a spill register. We allocate in
201 a round-robin fashion. */
202 static int last_spill_reg;
204 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
207 /* Width allocated so far for that stack slot. */
208 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
210 /* Record which pseudos needed to be spilled. */
211 static regset_head spilled_pseudos;
213 /* Record which pseudos changed their allocation in finish_spills. */
214 static regset_head changed_allocation_pseudos;
216 /* Used for communication between order_regs_for_reload and count_pseudo.
217 Used to avoid counting one pseudo twice. */
218 static regset_head pseudos_counted;
220 /* First uid used by insns created by reload in this function.
221 Used in find_equiv_reg. */
222 int reload_first_uid;
224 /* Flag set by local-alloc or global-alloc if anything is live in
225 a call-clobbered reg across calls. */
226 int caller_save_needed;
228 /* Set to 1 while reload_as_needed is operating.
229 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress = 0;
232 /* This obstack is used for allocation of rtl during register elimination.
233 The allocated storage can be freed once find_reloads has processed the
234 insn. */
235 static struct obstack reload_obstack;
237 /* Points to the beginning of the reload_obstack. All insn_chain structures
238 are allocated first. */
239 static char *reload_startobj;
241 /* The point after all insn_chain structures. Used to quickly deallocate
242 memory allocated in copy_reloads during calculate_needs_all_insns. */
243 static char *reload_firstobj;
245 /* This points before all local rtl generated by register elimination.
246 Used to quickly free all memory after processing one insn. */
247 static char *reload_insn_firstobj;
249 /* List of insn_chain instructions, one for every insn that reload needs to
250 examine. */
251 struct insn_chain *reload_insn_chain;
253 /* TRUE if we potentially left dead insns in the insn stream and want to
254 run DCE immediately after reload, FALSE otherwise. */
255 static bool need_dce;
257 /* List of all insns needing reloads. */
258 static struct insn_chain *insns_need_reload;
260 /* This structure is used to record information about register eliminations.
261 Each array entry describes one possible way of eliminating a register
262 in favor of another. If there is more than one way of eliminating a
263 particular register, the most preferred should be specified first. */
265 struct elim_table
267 int from; /* Register number to be eliminated. */
268 int to; /* Register number used as replacement. */
269 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
270 int can_eliminate; /* Nonzero if this elimination can be done. */
271 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
272 target hook in previous scan over insns
273 made by reload. */
274 HOST_WIDE_INT offset; /* Current offset between the two regs. */
275 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
276 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
277 rtx from_rtx; /* REG rtx for the register to be eliminated.
278 We cannot simply compare the number since
279 we might then spuriously replace a hard
280 register corresponding to a pseudo
281 assigned to the reg to be eliminated. */
282 rtx to_rtx; /* REG rtx for the replacement. */
285 static struct elim_table *reg_eliminate = 0;
287 /* This is an intermediate structure to initialize the table. It has
288 exactly the members provided by ELIMINABLE_REGS. */
289 static const struct elim_table_1
291 const int from;
292 const int to;
293 } reg_eliminate_1[] =
295 /* If a set of eliminable registers was specified, define the table from it.
296 Otherwise, default to the normal case of the frame pointer being
297 replaced by the stack pointer. */
299 #ifdef ELIMINABLE_REGS
300 ELIMINABLE_REGS;
301 #else
302 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
303 #endif
305 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
307 /* Record the number of pending eliminations that have an offset not equal
308 to their initial offset. If nonzero, we use a new copy of each
309 replacement result in any insns encountered. */
310 int num_not_at_initial_offset;
312 /* Count the number of registers that we may be able to eliminate. */
313 static int num_eliminable;
314 /* And the number of registers that are equivalent to a constant that
315 can be eliminated to frame_pointer / arg_pointer + constant. */
316 static int num_eliminable_invariants;
318 /* For each label, we record the offset of each elimination. If we reach
319 a label by more than one path and an offset differs, we cannot do the
320 elimination. This information is indexed by the difference of the
321 number of the label and the first label number. We can't offset the
322 pointer itself as this can cause problems on machines with segmented
323 memory. The first table is an array of flags that records whether we
324 have yet encountered a label and the second table is an array of arrays,
325 one entry in the latter array for each elimination. */
327 static int first_label_num;
328 static char *offsets_known_at;
329 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
331 VEC(reg_equivs_t,gc) *reg_equivs;
333 /* Stack of addresses where an rtx has been changed. We can undo the
334 changes by popping items off the stack and restoring the original
335 value at each location.
337 We use this simplistic undo capability rather than copy_rtx as copy_rtx
338 will not make a deep copy of a normally sharable rtx, such as
339 (const (plus (symbol_ref) (const_int))). If such an expression appears
340 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
341 rtx expression would be changed. See PR 42431. */
343 typedef rtx *rtx_p;
344 DEF_VEC_P(rtx_p);
345 DEF_VEC_ALLOC_P(rtx_p,heap);
346 static VEC(rtx_p,heap) *substitute_stack;
348 /* Number of labels in the current function. */
350 static int num_labels;
352 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
353 static void maybe_fix_stack_asms (void);
354 static void copy_reloads (struct insn_chain *);
355 static void calculate_needs_all_insns (int);
356 static int find_reg (struct insn_chain *, int);
357 static void find_reload_regs (struct insn_chain *);
358 static void select_reload_regs (void);
359 static void delete_caller_save_insns (void);
361 static void spill_failure (rtx, enum reg_class);
362 static void count_spilled_pseudo (int, int, int);
363 static void delete_dead_insn (rtx);
364 static void alter_reg (int, int, bool);
365 static void set_label_offsets (rtx, rtx, int);
366 static void check_eliminable_occurrences (rtx);
367 static void elimination_effects (rtx, enum machine_mode);
368 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
369 static int eliminate_regs_in_insn (rtx, int);
370 static void update_eliminable_offsets (void);
371 static void mark_not_eliminable (rtx, const_rtx, void *);
372 static void set_initial_elim_offsets (void);
373 static bool verify_initial_elim_offsets (void);
374 static void set_initial_label_offsets (void);
375 static void set_offsets_for_label (rtx);
376 static void init_eliminable_invariants (rtx, bool);
377 static void init_elim_table (void);
378 static void free_reg_equiv (void);
379 static void update_eliminables (HARD_REG_SET *);
380 static void elimination_costs_in_insn (rtx);
381 static void spill_hard_reg (unsigned int, int);
382 static int finish_spills (int);
383 static void scan_paradoxical_subregs (rtx);
384 static void count_pseudo (int);
385 static void order_regs_for_reload (struct insn_chain *);
386 static void reload_as_needed (int);
387 static void forget_old_reloads_1 (rtx, const_rtx, void *);
388 static void forget_marked_reloads (regset);
389 static int reload_reg_class_lower (const void *, const void *);
390 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
393 enum machine_mode);
394 static int reload_reg_free_p (unsigned int, int, enum reload_type);
395 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
398 rtx, rtx, int, int);
399 static int allocate_reload_reg (struct insn_chain *, int, int);
400 static int conflicts_with_override (rtx);
401 static void failed_reload (rtx, int);
402 static int set_reload_reg (int, int);
403 static void choose_reload_regs_init (struct insn_chain *, rtx *);
404 static void choose_reload_regs (struct insn_chain *);
405 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
406 rtx, int);
407 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
408 int);
409 static void do_input_reload (struct insn_chain *, struct reload *, int);
410 static void do_output_reload (struct insn_chain *, struct reload *, int);
411 static void emit_reload_insns (struct insn_chain *);
412 static void delete_output_reload (rtx, int, int, rtx);
413 static void delete_address_reloads (rtx, rtx);
414 static void delete_address_reloads_1 (rtx, rtx, rtx);
415 static void inc_for_reload (rtx, rtx, rtx, int);
416 #ifdef AUTO_INC_DEC
417 static void add_auto_inc_notes (rtx, rtx);
418 #endif
419 static void substitute (rtx *, const_rtx, rtx);
420 static bool gen_reload_chain_without_interm_reg_p (int, int);
421 static int reloads_conflict (int, int);
422 static rtx gen_reload (rtx, rtx, int, enum reload_type);
423 static rtx emit_insn_if_valid_for_reload (rtx);
425 /* Initialize the reload pass. This is called at the beginning of compilation
426 and may be called again if the target is reinitialized. */
428 void
429 init_reload (void)
431 int i;
433 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
434 Set spill_indirect_levels to the number of levels such addressing is
435 permitted, zero if it is not permitted at all. */
437 rtx tem
438 = gen_rtx_MEM (Pmode,
439 gen_rtx_PLUS (Pmode,
440 gen_rtx_REG (Pmode,
441 LAST_VIRTUAL_REGISTER + 1),
442 GEN_INT (4)));
443 spill_indirect_levels = 0;
445 while (memory_address_p (QImode, tem))
447 spill_indirect_levels++;
448 tem = gen_rtx_MEM (Pmode, tem);
451 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
453 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
454 indirect_symref_ok = memory_address_p (QImode, tem);
456 /* See if reg+reg is a valid (and offsettable) address. */
458 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
460 tem = gen_rtx_PLUS (Pmode,
461 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
462 gen_rtx_REG (Pmode, i));
464 /* This way, we make sure that reg+reg is an offsettable address. */
465 tem = plus_constant (Pmode, tem, 4);
467 if (memory_address_p (QImode, tem))
469 double_reg_address_ok = 1;
470 break;
474 /* Initialize obstack for our rtl allocation. */
475 gcc_obstack_init (&reload_obstack);
476 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
478 INIT_REG_SET (&spilled_pseudos);
479 INIT_REG_SET (&changed_allocation_pseudos);
480 INIT_REG_SET (&pseudos_counted);
483 /* List of insn chains that are currently unused. */
484 static struct insn_chain *unused_insn_chains = 0;
486 /* Allocate an empty insn_chain structure. */
487 struct insn_chain *
488 new_insn_chain (void)
490 struct insn_chain *c;
492 if (unused_insn_chains == 0)
494 c = XOBNEW (&reload_obstack, struct insn_chain);
495 INIT_REG_SET (&c->live_throughout);
496 INIT_REG_SET (&c->dead_or_set);
498 else
500 c = unused_insn_chains;
501 unused_insn_chains = c->next;
503 c->is_caller_save_insn = 0;
504 c->need_operand_change = 0;
505 c->need_reload = 0;
506 c->need_elim = 0;
507 return c;
510 /* Small utility function to set all regs in hard reg set TO which are
511 allocated to pseudos in regset FROM. */
513 void
514 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
516 unsigned int regno;
517 reg_set_iterator rsi;
519 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
521 int r = reg_renumber[regno];
523 if (r < 0)
525 /* reload_combine uses the information from DF_LIVE_IN,
526 which might still contain registers that have not
527 actually been allocated since they have an
528 equivalence. */
529 gcc_assert (ira_conflicts_p || reload_completed);
531 else
532 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
536 /* Replace all pseudos found in LOC with their corresponding
537 equivalences. */
539 static void
540 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
542 rtx x = *loc;
543 enum rtx_code code;
544 const char *fmt;
545 int i, j;
547 if (! x)
548 return;
550 code = GET_CODE (x);
551 if (code == REG)
553 unsigned int regno = REGNO (x);
555 if (regno < FIRST_PSEUDO_REGISTER)
556 return;
558 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
559 if (x != *loc)
561 *loc = x;
562 replace_pseudos_in (loc, mem_mode, usage);
563 return;
566 if (reg_equiv_constant (regno))
567 *loc = reg_equiv_constant (regno);
568 else if (reg_equiv_invariant (regno))
569 *loc = reg_equiv_invariant (regno);
570 else if (reg_equiv_mem (regno))
571 *loc = reg_equiv_mem (regno);
572 else if (reg_equiv_address (regno))
573 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
574 else
576 gcc_assert (!REG_P (regno_reg_rtx[regno])
577 || REGNO (regno_reg_rtx[regno]) != regno);
578 *loc = regno_reg_rtx[regno];
581 return;
583 else if (code == MEM)
585 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
586 return;
589 /* Process each of our operands recursively. */
590 fmt = GET_RTX_FORMAT (code);
591 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
592 if (*fmt == 'e')
593 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
594 else if (*fmt == 'E')
595 for (j = 0; j < XVECLEN (x, i); j++)
596 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
599 /* Determine if the current function has an exception receiver block
600 that reaches the exit block via non-exceptional edges */
602 static bool
603 has_nonexceptional_receiver (void)
605 edge e;
606 edge_iterator ei;
607 basic_block *tos, *worklist, bb;
609 /* If we're not optimizing, then just err on the safe side. */
610 if (!optimize)
611 return true;
613 /* First determine which blocks can reach exit via normal paths. */
614 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
616 FOR_EACH_BB (bb)
617 bb->flags &= ~BB_REACHABLE;
619 /* Place the exit block on our worklist. */
620 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
621 *tos++ = EXIT_BLOCK_PTR;
623 /* Iterate: find everything reachable from what we've already seen. */
624 while (tos != worklist)
626 bb = *--tos;
628 FOR_EACH_EDGE (e, ei, bb->preds)
629 if (!(e->flags & EDGE_ABNORMAL))
631 basic_block src = e->src;
633 if (!(src->flags & BB_REACHABLE))
635 src->flags |= BB_REACHABLE;
636 *tos++ = src;
640 free (worklist);
642 /* Now see if there's a reachable block with an exceptional incoming
643 edge. */
644 FOR_EACH_BB (bb)
645 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
646 return true;
648 /* No exceptional block reached exit unexceptionally. */
649 return false;
652 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
653 zero elements) to MAX_REG_NUM elements.
655 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
656 void
657 grow_reg_equivs (void)
659 int old_size = VEC_length (reg_equivs_t, reg_equivs);
660 int max_regno = max_reg_num ();
661 int i;
663 VEC_reserve (reg_equivs_t, gc, reg_equivs, max_regno);
664 for (i = old_size; i < max_regno; i++)
666 VEC_quick_insert (reg_equivs_t, reg_equivs, i, 0);
667 memset (&VEC_index (reg_equivs_t, reg_equivs, i), 0,
668 sizeof (reg_equivs_t));
674 /* Global variables used by reload and its subroutines. */
676 /* The current basic block while in calculate_elim_costs_all_insns. */
677 static basic_block elim_bb;
679 /* Set during calculate_needs if an insn needs register elimination. */
680 static int something_needs_elimination;
681 /* Set during calculate_needs if an insn needs an operand changed. */
682 static int something_needs_operands_changed;
683 /* Set by alter_regs if we spilled a register to the stack. */
684 static bool something_was_spilled;
686 /* Nonzero means we couldn't get enough spill regs. */
687 static int failure;
689 /* Temporary array of pseudo-register number. */
690 static int *temp_pseudo_reg_arr;
692 /* Main entry point for the reload pass.
694 FIRST is the first insn of the function being compiled.
696 GLOBAL nonzero means we were called from global_alloc
697 and should attempt to reallocate any pseudoregs that we
698 displace from hard regs we will use for reloads.
699 If GLOBAL is zero, we do not have enough information to do that,
700 so any pseudo reg that is spilled must go to the stack.
702 Return value is TRUE if reload likely left dead insns in the
703 stream and a DCE pass should be run to elimiante them. Else the
704 return value is FALSE. */
706 bool
707 reload (rtx first, int global)
709 int i, n;
710 rtx insn;
711 struct elim_table *ep;
712 basic_block bb;
713 bool inserted;
715 /* Make sure even insns with volatile mem refs are recognizable. */
716 init_recog ();
718 failure = 0;
720 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
722 /* Make sure that the last insn in the chain
723 is not something that needs reloading. */
724 emit_note (NOTE_INSN_DELETED);
726 /* Enable find_equiv_reg to distinguish insns made by reload. */
727 reload_first_uid = get_max_uid ();
729 #ifdef SECONDARY_MEMORY_NEEDED
730 /* Initialize the secondary memory table. */
731 clear_secondary_mem ();
732 #endif
734 /* We don't have a stack slot for any spill reg yet. */
735 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
736 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
738 /* Initialize the save area information for caller-save, in case some
739 are needed. */
740 init_save_areas ();
742 /* Compute which hard registers are now in use
743 as homes for pseudo registers.
744 This is done here rather than (eg) in global_alloc
745 because this point is reached even if not optimizing. */
746 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
747 mark_home_live (i);
749 /* A function that has a nonlocal label that can reach the exit
750 block via non-exceptional paths must save all call-saved
751 registers. */
752 if (cfun->has_nonlocal_label
753 && has_nonexceptional_receiver ())
754 crtl->saves_all_registers = 1;
756 if (crtl->saves_all_registers)
757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
758 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
759 df_set_regs_ever_live (i, true);
761 /* Find all the pseudo registers that didn't get hard regs
762 but do have known equivalent constants or memory slots.
763 These include parameters (known equivalent to parameter slots)
764 and cse'd or loop-moved constant memory addresses.
766 Record constant equivalents in reg_equiv_constant
767 so they will be substituted by find_reloads.
768 Record memory equivalents in reg_mem_equiv so they can
769 be substituted eventually by altering the REG-rtx's. */
771 grow_reg_equivs ();
772 reg_old_renumber = XCNEWVEC (short, max_regno);
773 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
774 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
775 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
777 CLEAR_HARD_REG_SET (bad_spill_regs_global);
779 init_eliminable_invariants (first, true);
780 init_elim_table ();
782 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
783 stack slots to the pseudos that lack hard regs or equivalents.
784 Do not touch virtual registers. */
786 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
787 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
788 temp_pseudo_reg_arr[n++] = i;
790 if (ira_conflicts_p)
791 /* Ask IRA to order pseudo-registers for better stack slot
792 sharing. */
793 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
795 for (i = 0; i < n; i++)
796 alter_reg (temp_pseudo_reg_arr[i], -1, false);
798 /* If we have some registers we think can be eliminated, scan all insns to
799 see if there is an insn that sets one of these registers to something
800 other than itself plus a constant. If so, the register cannot be
801 eliminated. Doing this scan here eliminates an extra pass through the
802 main reload loop in the most common case where register elimination
803 cannot be done. */
804 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
805 if (INSN_P (insn))
806 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
808 maybe_fix_stack_asms ();
810 insns_need_reload = 0;
811 something_needs_elimination = 0;
813 /* Initialize to -1, which means take the first spill register. */
814 last_spill_reg = -1;
816 /* Spill any hard regs that we know we can't eliminate. */
817 CLEAR_HARD_REG_SET (used_spill_regs);
818 /* There can be multiple ways to eliminate a register;
819 they should be listed adjacently.
820 Elimination for any register fails only if all possible ways fail. */
821 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
823 int from = ep->from;
824 int can_eliminate = 0;
827 can_eliminate |= ep->can_eliminate;
828 ep++;
830 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
831 if (! can_eliminate)
832 spill_hard_reg (from, 1);
835 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
836 if (frame_pointer_needed)
837 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
838 #endif
839 finish_spills (global);
841 /* From now on, we may need to generate moves differently. We may also
842 allow modifications of insns which cause them to not be recognized.
843 Any such modifications will be cleaned up during reload itself. */
844 reload_in_progress = 1;
846 /* This loop scans the entire function each go-round
847 and repeats until one repetition spills no additional hard regs. */
848 for (;;)
850 int something_changed;
851 int did_spill;
852 HOST_WIDE_INT starting_frame_size;
854 starting_frame_size = get_frame_size ();
855 something_was_spilled = false;
857 set_initial_elim_offsets ();
858 set_initial_label_offsets ();
860 /* For each pseudo register that has an equivalent location defined,
861 try to eliminate any eliminable registers (such as the frame pointer)
862 assuming initial offsets for the replacement register, which
863 is the normal case.
865 If the resulting location is directly addressable, substitute
866 the MEM we just got directly for the old REG.
868 If it is not addressable but is a constant or the sum of a hard reg
869 and constant, it is probably not addressable because the constant is
870 out of range, in that case record the address; we will generate
871 hairy code to compute the address in a register each time it is
872 needed. Similarly if it is a hard register, but one that is not
873 valid as an address register.
875 If the location is not addressable, but does not have one of the
876 above forms, assign a stack slot. We have to do this to avoid the
877 potential of producing lots of reloads if, e.g., a location involves
878 a pseudo that didn't get a hard register and has an equivalent memory
879 location that also involves a pseudo that didn't get a hard register.
881 Perhaps at some point we will improve reload_when_needed handling
882 so this problem goes away. But that's very hairy. */
884 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
885 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
887 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
888 NULL_RTX);
890 if (strict_memory_address_addr_space_p
891 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
892 MEM_ADDR_SPACE (x)))
893 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
894 else if (CONSTANT_P (XEXP (x, 0))
895 || (REG_P (XEXP (x, 0))
896 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
897 || (GET_CODE (XEXP (x, 0)) == PLUS
898 && REG_P (XEXP (XEXP (x, 0), 0))
899 && (REGNO (XEXP (XEXP (x, 0), 0))
900 < FIRST_PSEUDO_REGISTER)
901 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
902 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
903 else
905 /* Make a new stack slot. Then indicate that something
906 changed so we go back and recompute offsets for
907 eliminable registers because the allocation of memory
908 below might change some offset. reg_equiv_{mem,address}
909 will be set up for this pseudo on the next pass around
910 the loop. */
911 reg_equiv_memory_loc (i) = 0;
912 reg_equiv_init (i) = 0;
913 alter_reg (i, -1, true);
917 if (caller_save_needed)
918 setup_save_areas ();
920 /* If we allocated another stack slot, redo elimination bookkeeping. */
921 if (something_was_spilled || starting_frame_size != get_frame_size ())
922 continue;
923 if (starting_frame_size && crtl->stack_alignment_needed)
925 /* If we have a stack frame, we must align it now. The
926 stack size may be a part of the offset computation for
927 register elimination. So if this changes the stack size,
928 then repeat the elimination bookkeeping. We don't
929 realign when there is no stack, as that will cause a
930 stack frame when none is needed should
931 STARTING_FRAME_OFFSET not be already aligned to
932 STACK_BOUNDARY. */
933 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
934 if (starting_frame_size != get_frame_size ())
935 continue;
938 if (caller_save_needed)
940 save_call_clobbered_regs ();
941 /* That might have allocated new insn_chain structures. */
942 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
945 calculate_needs_all_insns (global);
947 if (! ira_conflicts_p)
948 /* Don't do it for IRA. We need this info because we don't
949 change live_throughout and dead_or_set for chains when IRA
950 is used. */
951 CLEAR_REG_SET (&spilled_pseudos);
953 did_spill = 0;
955 something_changed = 0;
957 /* If we allocated any new memory locations, make another pass
958 since it might have changed elimination offsets. */
959 if (something_was_spilled || starting_frame_size != get_frame_size ())
960 something_changed = 1;
962 /* Even if the frame size remained the same, we might still have
963 changed elimination offsets, e.g. if find_reloads called
964 force_const_mem requiring the back end to allocate a constant
965 pool base register that needs to be saved on the stack. */
966 else if (!verify_initial_elim_offsets ())
967 something_changed = 1;
970 HARD_REG_SET to_spill;
971 CLEAR_HARD_REG_SET (to_spill);
972 update_eliminables (&to_spill);
973 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
975 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
976 if (TEST_HARD_REG_BIT (to_spill, i))
978 spill_hard_reg (i, 1);
979 did_spill = 1;
981 /* Regardless of the state of spills, if we previously had
982 a register that we thought we could eliminate, but now can
983 not eliminate, we must run another pass.
985 Consider pseudos which have an entry in reg_equiv_* which
986 reference an eliminable register. We must make another pass
987 to update reg_equiv_* so that we do not substitute in the
988 old value from when we thought the elimination could be
989 performed. */
990 something_changed = 1;
994 select_reload_regs ();
995 if (failure)
996 goto failed;
998 if (insns_need_reload != 0 || did_spill)
999 something_changed |= finish_spills (global);
1001 if (! something_changed)
1002 break;
1004 if (caller_save_needed)
1005 delete_caller_save_insns ();
1007 obstack_free (&reload_obstack, reload_firstobj);
1010 /* If global-alloc was run, notify it of any register eliminations we have
1011 done. */
1012 if (global)
1013 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1014 if (ep->can_eliminate)
1015 mark_elimination (ep->from, ep->to);
1017 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1018 If that insn didn't set the register (i.e., it copied the register to
1019 memory), just delete that insn instead of the equivalencing insn plus
1020 anything now dead. If we call delete_dead_insn on that insn, we may
1021 delete the insn that actually sets the register if the register dies
1022 there and that is incorrect. */
1024 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1026 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1028 rtx list;
1029 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1031 rtx equiv_insn = XEXP (list, 0);
1033 /* If we already deleted the insn or if it may trap, we can't
1034 delete it. The latter case shouldn't happen, but can
1035 if an insn has a variable address, gets a REG_EH_REGION
1036 note added to it, and then gets converted into a load
1037 from a constant address. */
1038 if (NOTE_P (equiv_insn)
1039 || can_throw_internal (equiv_insn))
1041 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1042 delete_dead_insn (equiv_insn);
1043 else
1044 SET_INSN_DELETED (equiv_insn);
1049 /* Use the reload registers where necessary
1050 by generating move instructions to move the must-be-register
1051 values into or out of the reload registers. */
1053 if (insns_need_reload != 0 || something_needs_elimination
1054 || something_needs_operands_changed)
1056 HOST_WIDE_INT old_frame_size = get_frame_size ();
1058 reload_as_needed (global);
1060 gcc_assert (old_frame_size == get_frame_size ());
1062 gcc_assert (verify_initial_elim_offsets ());
1065 /* If we were able to eliminate the frame pointer, show that it is no
1066 longer live at the start of any basic block. If it ls live by
1067 virtue of being in a pseudo, that pseudo will be marked live
1068 and hence the frame pointer will be known to be live via that
1069 pseudo. */
1071 if (! frame_pointer_needed)
1072 FOR_EACH_BB (bb)
1073 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1075 /* Come here (with failure set nonzero) if we can't get enough spill
1076 regs. */
1077 failed:
1079 CLEAR_REG_SET (&changed_allocation_pseudos);
1080 CLEAR_REG_SET (&spilled_pseudos);
1081 reload_in_progress = 0;
1083 /* Now eliminate all pseudo regs by modifying them into
1084 their equivalent memory references.
1085 The REG-rtx's for the pseudos are modified in place,
1086 so all insns that used to refer to them now refer to memory.
1088 For a reg that has a reg_equiv_address, all those insns
1089 were changed by reloading so that no insns refer to it any longer;
1090 but the DECL_RTL of a variable decl may refer to it,
1091 and if so this causes the debugging info to mention the variable. */
1093 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1095 rtx addr = 0;
1097 if (reg_equiv_mem (i))
1098 addr = XEXP (reg_equiv_mem (i), 0);
1100 if (reg_equiv_address (i))
1101 addr = reg_equiv_address (i);
1103 if (addr)
1105 if (reg_renumber[i] < 0)
1107 rtx reg = regno_reg_rtx[i];
1109 REG_USERVAR_P (reg) = 0;
1110 PUT_CODE (reg, MEM);
1111 XEXP (reg, 0) = addr;
1112 if (reg_equiv_memory_loc (i))
1113 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1114 else
1115 MEM_ATTRS (reg) = 0;
1116 MEM_NOTRAP_P (reg) = 1;
1118 else if (reg_equiv_mem (i))
1119 XEXP (reg_equiv_mem (i), 0) = addr;
1122 /* We don't want complex addressing modes in debug insns
1123 if simpler ones will do, so delegitimize equivalences
1124 in debug insns. */
1125 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1127 rtx reg = regno_reg_rtx[i];
1128 rtx equiv = 0;
1129 df_ref use, next;
1131 if (reg_equiv_constant (i))
1132 equiv = reg_equiv_constant (i);
1133 else if (reg_equiv_invariant (i))
1134 equiv = reg_equiv_invariant (i);
1135 else if (reg && MEM_P (reg))
1136 equiv = targetm.delegitimize_address (reg);
1137 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1138 equiv = reg;
1140 if (equiv == reg)
1141 continue;
1143 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1145 insn = DF_REF_INSN (use);
1147 /* Make sure the next ref is for a different instruction,
1148 so that we're not affected by the rescan. */
1149 next = DF_REF_NEXT_REG (use);
1150 while (next && DF_REF_INSN (next) == insn)
1151 next = DF_REF_NEXT_REG (next);
1153 if (DEBUG_INSN_P (insn))
1155 if (!equiv)
1157 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1158 df_insn_rescan_debug_internal (insn);
1160 else
1161 INSN_VAR_LOCATION_LOC (insn)
1162 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1163 reg, equiv);
1169 /* We must set reload_completed now since the cleanup_subreg_operands call
1170 below will re-recognize each insn and reload may have generated insns
1171 which are only valid during and after reload. */
1172 reload_completed = 1;
1174 /* Make a pass over all the insns and delete all USEs which we inserted
1175 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1176 notes. Delete all CLOBBER insns, except those that refer to the return
1177 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1178 from misarranging variable-array code, and simplify (subreg (reg))
1179 operands. Strip and regenerate REG_INC notes that may have been moved
1180 around. */
1182 for (insn = first; insn; insn = NEXT_INSN (insn))
1183 if (INSN_P (insn))
1185 rtx *pnote;
1187 if (CALL_P (insn))
1188 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1189 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1191 if ((GET_CODE (PATTERN (insn)) == USE
1192 /* We mark with QImode USEs introduced by reload itself. */
1193 && (GET_MODE (insn) == QImode
1194 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1195 || (GET_CODE (PATTERN (insn)) == CLOBBER
1196 && (!MEM_P (XEXP (PATTERN (insn), 0))
1197 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1198 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1199 && XEXP (XEXP (PATTERN (insn), 0), 0)
1200 != stack_pointer_rtx))
1201 && (!REG_P (XEXP (PATTERN (insn), 0))
1202 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1204 delete_insn (insn);
1205 continue;
1208 /* Some CLOBBERs may survive until here and still reference unassigned
1209 pseudos with const equivalent, which may in turn cause ICE in later
1210 passes if the reference remains in place. */
1211 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1212 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1213 VOIDmode, PATTERN (insn));
1215 /* Discard obvious no-ops, even without -O. This optimization
1216 is fast and doesn't interfere with debugging. */
1217 if (NONJUMP_INSN_P (insn)
1218 && GET_CODE (PATTERN (insn)) == SET
1219 && REG_P (SET_SRC (PATTERN (insn)))
1220 && REG_P (SET_DEST (PATTERN (insn)))
1221 && (REGNO (SET_SRC (PATTERN (insn)))
1222 == REGNO (SET_DEST (PATTERN (insn)))))
1224 delete_insn (insn);
1225 continue;
1228 pnote = &REG_NOTES (insn);
1229 while (*pnote != 0)
1231 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1232 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1233 || REG_NOTE_KIND (*pnote) == REG_INC)
1234 *pnote = XEXP (*pnote, 1);
1235 else
1236 pnote = &XEXP (*pnote, 1);
1239 #ifdef AUTO_INC_DEC
1240 add_auto_inc_notes (insn, PATTERN (insn));
1241 #endif
1243 /* Simplify (subreg (reg)) if it appears as an operand. */
1244 cleanup_subreg_operands (insn);
1246 /* Clean up invalid ASMs so that they don't confuse later passes.
1247 See PR 21299. */
1248 if (asm_noperands (PATTERN (insn)) >= 0)
1250 extract_insn (insn);
1251 if (!constrain_operands (1))
1253 error_for_asm (insn,
1254 "%<asm%> operand has impossible constraints");
1255 delete_insn (insn);
1256 continue;
1261 /* If we are doing generic stack checking, give a warning if this
1262 function's frame size is larger than we expect. */
1263 if (flag_stack_check == GENERIC_STACK_CHECK)
1265 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1266 static int verbose_warned = 0;
1268 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1269 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1270 size += UNITS_PER_WORD;
1272 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1274 warning (0, "frame size too large for reliable stack checking");
1275 if (! verbose_warned)
1277 warning (0, "try reducing the number of local variables");
1278 verbose_warned = 1;
1283 free (temp_pseudo_reg_arr);
1285 /* Indicate that we no longer have known memory locations or constants. */
1286 free_reg_equiv ();
1288 free (reg_max_ref_width);
1289 free (reg_old_renumber);
1290 free (pseudo_previous_regs);
1291 free (pseudo_forbidden_regs);
1293 CLEAR_HARD_REG_SET (used_spill_regs);
1294 for (i = 0; i < n_spills; i++)
1295 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1297 /* Free all the insn_chain structures at once. */
1298 obstack_free (&reload_obstack, reload_startobj);
1299 unused_insn_chains = 0;
1301 inserted = fixup_abnormal_edges ();
1303 /* We've possibly turned single trapping insn into multiple ones. */
1304 if (cfun->can_throw_non_call_exceptions)
1306 sbitmap blocks;
1307 blocks = sbitmap_alloc (last_basic_block);
1308 sbitmap_ones (blocks);
1309 find_many_sub_basic_blocks (blocks);
1310 sbitmap_free (blocks);
1313 if (inserted)
1314 commit_edge_insertions ();
1316 /* Replacing pseudos with their memory equivalents might have
1317 created shared rtx. Subsequent passes would get confused
1318 by this, so unshare everything here. */
1319 unshare_all_rtl_again (first);
1321 #ifdef STACK_BOUNDARY
1322 /* init_emit has set the alignment of the hard frame pointer
1323 to STACK_BOUNDARY. It is very likely no longer valid if
1324 the hard frame pointer was used for register allocation. */
1325 if (!frame_pointer_needed)
1326 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1327 #endif
1329 VEC_free (rtx_p, heap, substitute_stack);
1331 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1333 reload_completed = !failure;
1335 return need_dce;
1338 /* Yet another special case. Unfortunately, reg-stack forces people to
1339 write incorrect clobbers in asm statements. These clobbers must not
1340 cause the register to appear in bad_spill_regs, otherwise we'll call
1341 fatal_insn later. We clear the corresponding regnos in the live
1342 register sets to avoid this.
1343 The whole thing is rather sick, I'm afraid. */
1345 static void
1346 maybe_fix_stack_asms (void)
1348 #ifdef STACK_REGS
1349 const char *constraints[MAX_RECOG_OPERANDS];
1350 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1351 struct insn_chain *chain;
1353 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1355 int i, noperands;
1356 HARD_REG_SET clobbered, allowed;
1357 rtx pat;
1359 if (! INSN_P (chain->insn)
1360 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1361 continue;
1362 pat = PATTERN (chain->insn);
1363 if (GET_CODE (pat) != PARALLEL)
1364 continue;
1366 CLEAR_HARD_REG_SET (clobbered);
1367 CLEAR_HARD_REG_SET (allowed);
1369 /* First, make a mask of all stack regs that are clobbered. */
1370 for (i = 0; i < XVECLEN (pat, 0); i++)
1372 rtx t = XVECEXP (pat, 0, i);
1373 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1374 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1377 /* Get the operand values and constraints out of the insn. */
1378 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1379 constraints, operand_mode, NULL);
1381 /* For every operand, see what registers are allowed. */
1382 for (i = 0; i < noperands; i++)
1384 const char *p = constraints[i];
1385 /* For every alternative, we compute the class of registers allowed
1386 for reloading in CLS, and merge its contents into the reg set
1387 ALLOWED. */
1388 int cls = (int) NO_REGS;
1390 for (;;)
1392 char c = *p;
1394 if (c == '\0' || c == ',' || c == '#')
1396 /* End of one alternative - mark the regs in the current
1397 class, and reset the class. */
1398 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1399 cls = NO_REGS;
1400 p++;
1401 if (c == '#')
1402 do {
1403 c = *p++;
1404 } while (c != '\0' && c != ',');
1405 if (c == '\0')
1406 break;
1407 continue;
1410 switch (c)
1412 case '=': case '+': case '*': case '%': case '?': case '!':
1413 case '0': case '1': case '2': case '3': case '4': case '<':
1414 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1415 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1416 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1417 case TARGET_MEM_CONSTRAINT:
1418 break;
1420 case 'p':
1421 cls = (int) reg_class_subunion[cls]
1422 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1423 ADDRESS, SCRATCH)];
1424 break;
1426 case 'g':
1427 case 'r':
1428 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1429 break;
1431 default:
1432 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1433 cls = (int) reg_class_subunion[cls]
1434 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1435 ADDRESS, SCRATCH)];
1436 else
1437 cls = (int) reg_class_subunion[cls]
1438 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1440 p += CONSTRAINT_LEN (c, p);
1443 /* Those of the registers which are clobbered, but allowed by the
1444 constraints, must be usable as reload registers. So clear them
1445 out of the life information. */
1446 AND_HARD_REG_SET (allowed, clobbered);
1447 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1448 if (TEST_HARD_REG_BIT (allowed, i))
1450 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1451 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1455 #endif
1458 /* Copy the global variables n_reloads and rld into the corresponding elts
1459 of CHAIN. */
1460 static void
1461 copy_reloads (struct insn_chain *chain)
1463 chain->n_reloads = n_reloads;
1464 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1465 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1466 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1469 /* Walk the chain of insns, and determine for each whether it needs reloads
1470 and/or eliminations. Build the corresponding insns_need_reload list, and
1471 set something_needs_elimination as appropriate. */
1472 static void
1473 calculate_needs_all_insns (int global)
1475 struct insn_chain **pprev_reload = &insns_need_reload;
1476 struct insn_chain *chain, *next = 0;
1478 something_needs_elimination = 0;
1480 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1481 for (chain = reload_insn_chain; chain != 0; chain = next)
1483 rtx insn = chain->insn;
1485 next = chain->next;
1487 /* Clear out the shortcuts. */
1488 chain->n_reloads = 0;
1489 chain->need_elim = 0;
1490 chain->need_reload = 0;
1491 chain->need_operand_change = 0;
1493 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1494 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1495 what effects this has on the known offsets at labels. */
1497 if (LABEL_P (insn) || JUMP_P (insn)
1498 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1499 set_label_offsets (insn, insn, 0);
1501 if (INSN_P (insn))
1503 rtx old_body = PATTERN (insn);
1504 int old_code = INSN_CODE (insn);
1505 rtx old_notes = REG_NOTES (insn);
1506 int did_elimination = 0;
1507 int operands_changed = 0;
1508 rtx set = single_set (insn);
1510 /* Skip insns that only set an equivalence. */
1511 if (set && REG_P (SET_DEST (set))
1512 && reg_renumber[REGNO (SET_DEST (set))] < 0
1513 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1514 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1515 && reg_equiv_init (REGNO (SET_DEST (set))))
1516 continue;
1518 /* If needed, eliminate any eliminable registers. */
1519 if (num_eliminable || num_eliminable_invariants)
1520 did_elimination = eliminate_regs_in_insn (insn, 0);
1522 /* Analyze the instruction. */
1523 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1524 global, spill_reg_order);
1526 /* If a no-op set needs more than one reload, this is likely
1527 to be something that needs input address reloads. We
1528 can't get rid of this cleanly later, and it is of no use
1529 anyway, so discard it now.
1530 We only do this when expensive_optimizations is enabled,
1531 since this complements reload inheritance / output
1532 reload deletion, and it can make debugging harder. */
1533 if (flag_expensive_optimizations && n_reloads > 1)
1535 rtx set = single_set (insn);
1536 if (set
1538 ((SET_SRC (set) == SET_DEST (set)
1539 && REG_P (SET_SRC (set))
1540 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1541 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1542 && reg_renumber[REGNO (SET_SRC (set))] < 0
1543 && reg_renumber[REGNO (SET_DEST (set))] < 0
1544 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1545 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1546 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1547 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1549 if (ira_conflicts_p)
1550 /* Inform IRA about the insn deletion. */
1551 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1552 REGNO (SET_SRC (set)));
1553 delete_insn (insn);
1554 /* Delete it from the reload chain. */
1555 if (chain->prev)
1556 chain->prev->next = next;
1557 else
1558 reload_insn_chain = next;
1559 if (next)
1560 next->prev = chain->prev;
1561 chain->next = unused_insn_chains;
1562 unused_insn_chains = chain;
1563 continue;
1566 if (num_eliminable)
1567 update_eliminable_offsets ();
1569 /* Remember for later shortcuts which insns had any reloads or
1570 register eliminations. */
1571 chain->need_elim = did_elimination;
1572 chain->need_reload = n_reloads > 0;
1573 chain->need_operand_change = operands_changed;
1575 /* Discard any register replacements done. */
1576 if (did_elimination)
1578 obstack_free (&reload_obstack, reload_insn_firstobj);
1579 PATTERN (insn) = old_body;
1580 INSN_CODE (insn) = old_code;
1581 REG_NOTES (insn) = old_notes;
1582 something_needs_elimination = 1;
1585 something_needs_operands_changed |= operands_changed;
1587 if (n_reloads != 0)
1589 copy_reloads (chain);
1590 *pprev_reload = chain;
1591 pprev_reload = &chain->next_need_reload;
1595 *pprev_reload = 0;
1598 /* This function is called from the register allocator to set up estimates
1599 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1600 an invariant. The structure is similar to calculate_needs_all_insns. */
1602 void
1603 calculate_elim_costs_all_insns (void)
1605 int *reg_equiv_init_cost;
1606 basic_block bb;
1607 int i;
1609 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1610 init_elim_table ();
1611 init_eliminable_invariants (get_insns (), false);
1613 set_initial_elim_offsets ();
1614 set_initial_label_offsets ();
1616 FOR_EACH_BB (bb)
1618 rtx insn;
1619 elim_bb = bb;
1621 FOR_BB_INSNS (bb, insn)
1623 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1624 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1625 what effects this has on the known offsets at labels. */
1627 if (LABEL_P (insn) || JUMP_P (insn)
1628 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1629 set_label_offsets (insn, insn, 0);
1631 if (INSN_P (insn))
1633 rtx set = single_set (insn);
1635 /* Skip insns that only set an equivalence. */
1636 if (set && REG_P (SET_DEST (set))
1637 && reg_renumber[REGNO (SET_DEST (set))] < 0
1638 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1639 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1641 unsigned regno = REGNO (SET_DEST (set));
1642 rtx init = reg_equiv_init (regno);
1643 if (init)
1645 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1646 false, true);
1647 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1648 int freq = REG_FREQ_FROM_BB (bb);
1650 reg_equiv_init_cost[regno] = cost * freq;
1651 continue;
1654 /* If needed, eliminate any eliminable registers. */
1655 if (num_eliminable || num_eliminable_invariants)
1656 elimination_costs_in_insn (insn);
1658 if (num_eliminable)
1659 update_eliminable_offsets ();
1663 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1665 if (reg_equiv_invariant (i))
1667 if (reg_equiv_init (i))
1669 int cost = reg_equiv_init_cost[i];
1670 if (dump_file)
1671 fprintf (dump_file,
1672 "Reg %d has equivalence, initial gains %d\n", i, cost);
1673 if (cost != 0)
1674 ira_adjust_equiv_reg_cost (i, cost);
1676 else
1678 if (dump_file)
1679 fprintf (dump_file,
1680 "Reg %d had equivalence, but can't be eliminated\n",
1682 ira_adjust_equiv_reg_cost (i, 0);
1687 free (reg_equiv_init_cost);
1688 free (offsets_known_at);
1689 free (offsets_at);
1690 offsets_at = NULL;
1691 offsets_known_at = NULL;
1694 /* Comparison function for qsort to decide which of two reloads
1695 should be handled first. *P1 and *P2 are the reload numbers. */
1697 static int
1698 reload_reg_class_lower (const void *r1p, const void *r2p)
1700 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1701 int t;
1703 /* Consider required reloads before optional ones. */
1704 t = rld[r1].optional - rld[r2].optional;
1705 if (t != 0)
1706 return t;
1708 /* Count all solitary classes before non-solitary ones. */
1709 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1710 - (reg_class_size[(int) rld[r1].rclass] == 1));
1711 if (t != 0)
1712 return t;
1714 /* Aside from solitaires, consider all multi-reg groups first. */
1715 t = rld[r2].nregs - rld[r1].nregs;
1716 if (t != 0)
1717 return t;
1719 /* Consider reloads in order of increasing reg-class number. */
1720 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1721 if (t != 0)
1722 return t;
1724 /* If reloads are equally urgent, sort by reload number,
1725 so that the results of qsort leave nothing to chance. */
1726 return r1 - r2;
1729 /* The cost of spilling each hard reg. */
1730 static int spill_cost[FIRST_PSEUDO_REGISTER];
1732 /* When spilling multiple hard registers, we use SPILL_COST for the first
1733 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1734 only the first hard reg for a multi-reg pseudo. */
1735 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1737 /* Map of hard regno to pseudo regno currently occupying the hard
1738 reg. */
1739 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1741 /* Update the spill cost arrays, considering that pseudo REG is live. */
1743 static void
1744 count_pseudo (int reg)
1746 int freq = REG_FREQ (reg);
1747 int r = reg_renumber[reg];
1748 int nregs;
1750 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1751 if (ira_conflicts_p && r < 0)
1752 return;
1754 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1755 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1756 return;
1758 SET_REGNO_REG_SET (&pseudos_counted, reg);
1760 gcc_assert (r >= 0);
1762 spill_add_cost[r] += freq;
1763 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1764 while (nregs-- > 0)
1766 hard_regno_to_pseudo_regno[r + nregs] = reg;
1767 spill_cost[r + nregs] += freq;
1771 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1772 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1774 static void
1775 order_regs_for_reload (struct insn_chain *chain)
1777 unsigned i;
1778 HARD_REG_SET used_by_pseudos;
1779 HARD_REG_SET used_by_pseudos2;
1780 reg_set_iterator rsi;
1782 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1784 memset (spill_cost, 0, sizeof spill_cost);
1785 memset (spill_add_cost, 0, sizeof spill_add_cost);
1786 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1787 hard_regno_to_pseudo_regno[i] = -1;
1789 /* Count number of uses of each hard reg by pseudo regs allocated to it
1790 and then order them by decreasing use. First exclude hard registers
1791 that are live in or across this insn. */
1793 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1794 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1795 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1796 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1798 /* Now find out which pseudos are allocated to it, and update
1799 hard_reg_n_uses. */
1800 CLEAR_REG_SET (&pseudos_counted);
1802 EXECUTE_IF_SET_IN_REG_SET
1803 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1805 count_pseudo (i);
1807 EXECUTE_IF_SET_IN_REG_SET
1808 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1810 count_pseudo (i);
1812 CLEAR_REG_SET (&pseudos_counted);
1815 /* Vector of reload-numbers showing the order in which the reloads should
1816 be processed. */
1817 static short reload_order[MAX_RELOADS];
1819 /* This is used to keep track of the spill regs used in one insn. */
1820 static HARD_REG_SET used_spill_regs_local;
1822 /* We decided to spill hard register SPILLED, which has a size of
1823 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1824 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1825 update SPILL_COST/SPILL_ADD_COST. */
1827 static void
1828 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1830 int freq = REG_FREQ (reg);
1831 int r = reg_renumber[reg];
1832 int nregs;
1834 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1835 if (ira_conflicts_p && r < 0)
1836 return;
1838 gcc_assert (r >= 0);
1840 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1842 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1843 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1844 return;
1846 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1848 spill_add_cost[r] -= freq;
1849 while (nregs-- > 0)
1851 hard_regno_to_pseudo_regno[r + nregs] = -1;
1852 spill_cost[r + nregs] -= freq;
1856 /* Find reload register to use for reload number ORDER. */
1858 static int
1859 find_reg (struct insn_chain *chain, int order)
1861 int rnum = reload_order[order];
1862 struct reload *rl = rld + rnum;
1863 int best_cost = INT_MAX;
1864 int best_reg = -1;
1865 unsigned int i, j, n;
1866 int k;
1867 HARD_REG_SET not_usable;
1868 HARD_REG_SET used_by_other_reload;
1869 reg_set_iterator rsi;
1870 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1871 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1873 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1874 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1875 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1877 CLEAR_HARD_REG_SET (used_by_other_reload);
1878 for (k = 0; k < order; k++)
1880 int other = reload_order[k];
1882 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1883 for (j = 0; j < rld[other].nregs; j++)
1884 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1887 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1889 #ifdef REG_ALLOC_ORDER
1890 unsigned int regno = reg_alloc_order[i];
1891 #else
1892 unsigned int regno = i;
1893 #endif
1895 if (! TEST_HARD_REG_BIT (not_usable, regno)
1896 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1897 && HARD_REGNO_MODE_OK (regno, rl->mode))
1899 int this_cost = spill_cost[regno];
1900 int ok = 1;
1901 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1903 for (j = 1; j < this_nregs; j++)
1905 this_cost += spill_add_cost[regno + j];
1906 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1907 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1908 ok = 0;
1910 if (! ok)
1911 continue;
1913 if (ira_conflicts_p)
1915 /* Ask IRA to find a better pseudo-register for
1916 spilling. */
1917 for (n = j = 0; j < this_nregs; j++)
1919 int r = hard_regno_to_pseudo_regno[regno + j];
1921 if (r < 0)
1922 continue;
1923 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1924 regno_pseudo_regs[n++] = r;
1926 regno_pseudo_regs[n++] = -1;
1927 if (best_reg < 0
1928 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1929 best_regno_pseudo_regs,
1930 rl->in, rl->out,
1931 chain->insn))
1933 best_reg = regno;
1934 for (j = 0;; j++)
1936 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1937 if (regno_pseudo_regs[j] < 0)
1938 break;
1941 continue;
1944 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1945 this_cost--;
1946 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1947 this_cost--;
1948 if (this_cost < best_cost
1949 /* Among registers with equal cost, prefer caller-saved ones, or
1950 use REG_ALLOC_ORDER if it is defined. */
1951 || (this_cost == best_cost
1952 #ifdef REG_ALLOC_ORDER
1953 && (inv_reg_alloc_order[regno]
1954 < inv_reg_alloc_order[best_reg])
1955 #else
1956 && call_used_regs[regno]
1957 && ! call_used_regs[best_reg]
1958 #endif
1961 best_reg = regno;
1962 best_cost = this_cost;
1966 if (best_reg == -1)
1967 return 0;
1969 if (dump_file)
1970 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1972 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1973 rl->regno = best_reg;
1975 EXECUTE_IF_SET_IN_REG_SET
1976 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1978 count_spilled_pseudo (best_reg, rl->nregs, j);
1981 EXECUTE_IF_SET_IN_REG_SET
1982 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1984 count_spilled_pseudo (best_reg, rl->nregs, j);
1987 for (i = 0; i < rl->nregs; i++)
1989 gcc_assert (spill_cost[best_reg + i] == 0);
1990 gcc_assert (spill_add_cost[best_reg + i] == 0);
1991 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1992 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1994 return 1;
1997 /* Find more reload regs to satisfy the remaining need of an insn, which
1998 is given by CHAIN.
1999 Do it by ascending class number, since otherwise a reg
2000 might be spilled for a big class and might fail to count
2001 for a smaller class even though it belongs to that class. */
2003 static void
2004 find_reload_regs (struct insn_chain *chain)
2006 int i;
2008 /* In order to be certain of getting the registers we need,
2009 we must sort the reloads into order of increasing register class.
2010 Then our grabbing of reload registers will parallel the process
2011 that provided the reload registers. */
2012 for (i = 0; i < chain->n_reloads; i++)
2014 /* Show whether this reload already has a hard reg. */
2015 if (chain->rld[i].reg_rtx)
2017 int regno = REGNO (chain->rld[i].reg_rtx);
2018 chain->rld[i].regno = regno;
2019 chain->rld[i].nregs
2020 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2022 else
2023 chain->rld[i].regno = -1;
2024 reload_order[i] = i;
2027 n_reloads = chain->n_reloads;
2028 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2030 CLEAR_HARD_REG_SET (used_spill_regs_local);
2032 if (dump_file)
2033 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2035 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2037 /* Compute the order of preference for hard registers to spill. */
2039 order_regs_for_reload (chain);
2041 for (i = 0; i < n_reloads; i++)
2043 int r = reload_order[i];
2045 /* Ignore reloads that got marked inoperative. */
2046 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2047 && ! rld[r].optional
2048 && rld[r].regno == -1)
2049 if (! find_reg (chain, i))
2051 if (dump_file)
2052 fprintf (dump_file, "reload failure for reload %d\n", r);
2053 spill_failure (chain->insn, rld[r].rclass);
2054 failure = 1;
2055 return;
2059 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2060 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2062 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2065 static void
2066 select_reload_regs (void)
2068 struct insn_chain *chain;
2070 /* Try to satisfy the needs for each insn. */
2071 for (chain = insns_need_reload; chain != 0;
2072 chain = chain->next_need_reload)
2073 find_reload_regs (chain);
2076 /* Delete all insns that were inserted by emit_caller_save_insns during
2077 this iteration. */
2078 static void
2079 delete_caller_save_insns (void)
2081 struct insn_chain *c = reload_insn_chain;
2083 while (c != 0)
2085 while (c != 0 && c->is_caller_save_insn)
2087 struct insn_chain *next = c->next;
2088 rtx insn = c->insn;
2090 if (c == reload_insn_chain)
2091 reload_insn_chain = next;
2092 delete_insn (insn);
2094 if (next)
2095 next->prev = c->prev;
2096 if (c->prev)
2097 c->prev->next = next;
2098 c->next = unused_insn_chains;
2099 unused_insn_chains = c;
2100 c = next;
2102 if (c != 0)
2103 c = c->next;
2107 /* Handle the failure to find a register to spill.
2108 INSN should be one of the insns which needed this particular spill reg. */
2110 static void
2111 spill_failure (rtx insn, enum reg_class rclass)
2113 if (asm_noperands (PATTERN (insn)) >= 0)
2114 error_for_asm (insn, "can%'t find a register in class %qs while "
2115 "reloading %<asm%>",
2116 reg_class_names[rclass]);
2117 else
2119 error ("unable to find a register to spill in class %qs",
2120 reg_class_names[rclass]);
2122 if (dump_file)
2124 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2125 debug_reload_to_stream (dump_file);
2127 fatal_insn ("this is the insn:", insn);
2131 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2132 data that is dead in INSN. */
2134 static void
2135 delete_dead_insn (rtx insn)
2137 rtx prev = prev_active_insn (insn);
2138 rtx prev_dest;
2140 /* If the previous insn sets a register that dies in our insn make
2141 a note that we want to run DCE immediately after reload.
2143 We used to delete the previous insn & recurse, but that's wrong for
2144 block local equivalences. Instead of trying to figure out the exact
2145 circumstances where we can delete the potentially dead insns, just
2146 let DCE do the job. */
2147 if (prev && GET_CODE (PATTERN (prev)) == SET
2148 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2149 && reg_mentioned_p (prev_dest, PATTERN (insn))
2150 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2151 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2152 need_dce = 1;
2154 SET_INSN_DELETED (insn);
2157 /* Modify the home of pseudo-reg I.
2158 The new home is present in reg_renumber[I].
2160 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2161 or it may be -1, meaning there is none or it is not relevant.
2162 This is used so that all pseudos spilled from a given hard reg
2163 can share one stack slot. */
2165 static void
2166 alter_reg (int i, int from_reg, bool dont_share_p)
2168 /* When outputting an inline function, this can happen
2169 for a reg that isn't actually used. */
2170 if (regno_reg_rtx[i] == 0)
2171 return;
2173 /* If the reg got changed to a MEM at rtl-generation time,
2174 ignore it. */
2175 if (!REG_P (regno_reg_rtx[i]))
2176 return;
2178 /* Modify the reg-rtx to contain the new hard reg
2179 number or else to contain its pseudo reg number. */
2180 SET_REGNO (regno_reg_rtx[i],
2181 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2183 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2184 allocate a stack slot for it. */
2186 if (reg_renumber[i] < 0
2187 && REG_N_REFS (i) > 0
2188 && reg_equiv_constant (i) == 0
2189 && (reg_equiv_invariant (i) == 0
2190 || reg_equiv_init (i) == 0)
2191 && reg_equiv_memory_loc (i) == 0)
2193 rtx x = NULL_RTX;
2194 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2195 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2196 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2197 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2198 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2199 int adjust = 0;
2201 something_was_spilled = true;
2203 if (ira_conflicts_p)
2205 /* Mark the spill for IRA. */
2206 SET_REGNO_REG_SET (&spilled_pseudos, i);
2207 if (!dont_share_p)
2208 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2211 if (x)
2214 /* Each pseudo reg has an inherent size which comes from its own mode,
2215 and a total size which provides room for paradoxical subregs
2216 which refer to the pseudo reg in wider modes.
2218 We can use a slot already allocated if it provides both
2219 enough inherent space and enough total space.
2220 Otherwise, we allocate a new slot, making sure that it has no less
2221 inherent space, and no less total space, then the previous slot. */
2222 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2224 rtx stack_slot;
2226 /* No known place to spill from => no slot to reuse. */
2227 x = assign_stack_local (mode, total_size,
2228 min_align > inherent_align
2229 || total_size > inherent_size ? -1 : 0);
2231 stack_slot = x;
2233 /* Cancel the big-endian correction done in assign_stack_local.
2234 Get the address of the beginning of the slot. This is so we
2235 can do a big-endian correction unconditionally below. */
2236 if (BYTES_BIG_ENDIAN)
2238 adjust = inherent_size - total_size;
2239 if (adjust)
2240 stack_slot
2241 = adjust_address_nv (x, mode_for_size (total_size
2242 * BITS_PER_UNIT,
2243 MODE_INT, 1),
2244 adjust);
2247 if (! dont_share_p && ira_conflicts_p)
2248 /* Inform IRA about allocation a new stack slot. */
2249 ira_mark_new_stack_slot (stack_slot, i, total_size);
2252 /* Reuse a stack slot if possible. */
2253 else if (spill_stack_slot[from_reg] != 0
2254 && spill_stack_slot_width[from_reg] >= total_size
2255 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2256 >= inherent_size)
2257 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2258 x = spill_stack_slot[from_reg];
2260 /* Allocate a bigger slot. */
2261 else
2263 /* Compute maximum size needed, both for inherent size
2264 and for total size. */
2265 rtx stack_slot;
2267 if (spill_stack_slot[from_reg])
2269 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2270 > inherent_size)
2271 mode = GET_MODE (spill_stack_slot[from_reg]);
2272 if (spill_stack_slot_width[from_reg] > total_size)
2273 total_size = spill_stack_slot_width[from_reg];
2274 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2275 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2278 /* Make a slot with that size. */
2279 x = assign_stack_local (mode, total_size,
2280 min_align > inherent_align
2281 || total_size > inherent_size ? -1 : 0);
2282 stack_slot = x;
2284 /* Cancel the big-endian correction done in assign_stack_local.
2285 Get the address of the beginning of the slot. This is so we
2286 can do a big-endian correction unconditionally below. */
2287 if (BYTES_BIG_ENDIAN)
2289 adjust = GET_MODE_SIZE (mode) - total_size;
2290 if (adjust)
2291 stack_slot
2292 = adjust_address_nv (x, mode_for_size (total_size
2293 * BITS_PER_UNIT,
2294 MODE_INT, 1),
2295 adjust);
2298 spill_stack_slot[from_reg] = stack_slot;
2299 spill_stack_slot_width[from_reg] = total_size;
2302 /* On a big endian machine, the "address" of the slot
2303 is the address of the low part that fits its inherent mode. */
2304 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2305 adjust += (total_size - inherent_size);
2307 /* If we have any adjustment to make, or if the stack slot is the
2308 wrong mode, make a new stack slot. */
2309 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2311 /* Set all of the memory attributes as appropriate for a spill. */
2312 set_mem_attrs_for_spill (x);
2314 /* Save the stack slot for later. */
2315 reg_equiv_memory_loc (i) = x;
2319 /* Mark the slots in regs_ever_live for the hard regs used by
2320 pseudo-reg number REGNO, accessed in MODE. */
2322 static void
2323 mark_home_live_1 (int regno, enum machine_mode mode)
2325 int i, lim;
2327 i = reg_renumber[regno];
2328 if (i < 0)
2329 return;
2330 lim = end_hard_regno (mode, i);
2331 while (i < lim)
2332 df_set_regs_ever_live(i++, true);
2335 /* Mark the slots in regs_ever_live for the hard regs
2336 used by pseudo-reg number REGNO. */
2338 void
2339 mark_home_live (int regno)
2341 if (reg_renumber[regno] >= 0)
2342 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2345 /* This function handles the tracking of elimination offsets around branches.
2347 X is a piece of RTL being scanned.
2349 INSN is the insn that it came from, if any.
2351 INITIAL_P is nonzero if we are to set the offset to be the initial
2352 offset and zero if we are setting the offset of the label to be the
2353 current offset. */
2355 static void
2356 set_label_offsets (rtx x, rtx insn, int initial_p)
2358 enum rtx_code code = GET_CODE (x);
2359 rtx tem;
2360 unsigned int i;
2361 struct elim_table *p;
2363 switch (code)
2365 case LABEL_REF:
2366 if (LABEL_REF_NONLOCAL_P (x))
2367 return;
2369 x = XEXP (x, 0);
2371 /* ... fall through ... */
2373 case CODE_LABEL:
2374 /* If we know nothing about this label, set the desired offsets. Note
2375 that this sets the offset at a label to be the offset before a label
2376 if we don't know anything about the label. This is not correct for
2377 the label after a BARRIER, but is the best guess we can make. If
2378 we guessed wrong, we will suppress an elimination that might have
2379 been possible had we been able to guess correctly. */
2381 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2383 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2384 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2385 = (initial_p ? reg_eliminate[i].initial_offset
2386 : reg_eliminate[i].offset);
2387 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2390 /* Otherwise, if this is the definition of a label and it is
2391 preceded by a BARRIER, set our offsets to the known offset of
2392 that label. */
2394 else if (x == insn
2395 && (tem = prev_nonnote_insn (insn)) != 0
2396 && BARRIER_P (tem))
2397 set_offsets_for_label (insn);
2398 else
2399 /* If neither of the above cases is true, compare each offset
2400 with those previously recorded and suppress any eliminations
2401 where the offsets disagree. */
2403 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2404 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2405 != (initial_p ? reg_eliminate[i].initial_offset
2406 : reg_eliminate[i].offset))
2407 reg_eliminate[i].can_eliminate = 0;
2409 return;
2411 case JUMP_INSN:
2412 set_label_offsets (PATTERN (insn), insn, initial_p);
2414 /* ... fall through ... */
2416 case INSN:
2417 case CALL_INSN:
2418 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2419 to indirectly and hence must have all eliminations at their
2420 initial offsets. */
2421 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2422 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2423 set_label_offsets (XEXP (tem, 0), insn, 1);
2424 return;
2426 case PARALLEL:
2427 case ADDR_VEC:
2428 case ADDR_DIFF_VEC:
2429 /* Each of the labels in the parallel or address vector must be
2430 at their initial offsets. We want the first field for PARALLEL
2431 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2433 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2434 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2435 insn, initial_p);
2436 return;
2438 case SET:
2439 /* We only care about setting PC. If the source is not RETURN,
2440 IF_THEN_ELSE, or a label, disable any eliminations not at
2441 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2442 isn't one of those possibilities. For branches to a label,
2443 call ourselves recursively.
2445 Note that this can disable elimination unnecessarily when we have
2446 a non-local goto since it will look like a non-constant jump to
2447 someplace in the current function. This isn't a significant
2448 problem since such jumps will normally be when all elimination
2449 pairs are back to their initial offsets. */
2451 if (SET_DEST (x) != pc_rtx)
2452 return;
2454 switch (GET_CODE (SET_SRC (x)))
2456 case PC:
2457 case RETURN:
2458 return;
2460 case LABEL_REF:
2461 set_label_offsets (SET_SRC (x), insn, initial_p);
2462 return;
2464 case IF_THEN_ELSE:
2465 tem = XEXP (SET_SRC (x), 1);
2466 if (GET_CODE (tem) == LABEL_REF)
2467 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2468 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2469 break;
2471 tem = XEXP (SET_SRC (x), 2);
2472 if (GET_CODE (tem) == LABEL_REF)
2473 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2474 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2475 break;
2476 return;
2478 default:
2479 break;
2482 /* If we reach here, all eliminations must be at their initial
2483 offset because we are doing a jump to a variable address. */
2484 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2485 if (p->offset != p->initial_offset)
2486 p->can_eliminate = 0;
2487 break;
2489 default:
2490 break;
2494 /* Called through for_each_rtx, this function examines every reg that occurs
2495 in PX and adjusts the costs for its elimination which are gathered by IRA.
2496 DATA is the insn in which PX occurs. We do not recurse into MEM
2497 expressions. */
2499 static int
2500 note_reg_elim_costly (rtx *px, void *data)
2502 rtx insn = (rtx)data;
2503 rtx x = *px;
2505 if (MEM_P (x))
2506 return -1;
2508 if (REG_P (x)
2509 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2510 && reg_equiv_init (REGNO (x))
2511 && reg_equiv_invariant (REGNO (x)))
2513 rtx t = reg_equiv_invariant (REGNO (x));
2514 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2515 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2516 int freq = REG_FREQ_FROM_BB (elim_bb);
2518 if (cost != 0)
2519 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2521 return 0;
2524 /* Scan X and replace any eliminable registers (such as fp) with a
2525 replacement (such as sp), plus an offset.
2527 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2528 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2529 MEM, we are allowed to replace a sum of a register and the constant zero
2530 with the register, which we cannot do outside a MEM. In addition, we need
2531 to record the fact that a register is referenced outside a MEM.
2533 If INSN is an insn, it is the insn containing X. If we replace a REG
2534 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2535 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2536 the REG is being modified.
2538 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2539 That's used when we eliminate in expressions stored in notes.
2540 This means, do not set ref_outside_mem even if the reference
2541 is outside of MEMs.
2543 If FOR_COSTS is true, we are being called before reload in order to
2544 estimate the costs of keeping registers with an equivalence unallocated.
2546 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2547 replacements done assuming all offsets are at their initial values. If
2548 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2549 encounter, return the actual location so that find_reloads will do
2550 the proper thing. */
2552 static rtx
2553 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2554 bool may_use_invariant, bool for_costs)
2556 enum rtx_code code = GET_CODE (x);
2557 struct elim_table *ep;
2558 int regno;
2559 rtx new_rtx;
2560 int i, j;
2561 const char *fmt;
2562 int copied = 0;
2564 if (! current_function_decl)
2565 return x;
2567 switch (code)
2569 CASE_CONST_ANY:
2570 case CONST:
2571 case SYMBOL_REF:
2572 case CODE_LABEL:
2573 case PC:
2574 case CC0:
2575 case ASM_INPUT:
2576 case ADDR_VEC:
2577 case ADDR_DIFF_VEC:
2578 case RETURN:
2579 return x;
2581 case REG:
2582 regno = REGNO (x);
2584 /* First handle the case where we encounter a bare register that
2585 is eliminable. Replace it with a PLUS. */
2586 if (regno < FIRST_PSEUDO_REGISTER)
2588 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2589 ep++)
2590 if (ep->from_rtx == x && ep->can_eliminate)
2591 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2594 else if (reg_renumber && reg_renumber[regno] < 0
2595 && reg_equivs
2596 && reg_equiv_invariant (regno))
2598 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2599 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2600 mem_mode, insn, true, for_costs);
2601 /* There exists at least one use of REGNO that cannot be
2602 eliminated. Prevent the defining insn from being deleted. */
2603 reg_equiv_init (regno) = NULL_RTX;
2604 if (!for_costs)
2605 alter_reg (regno, -1, true);
2607 return x;
2609 /* You might think handling MINUS in a manner similar to PLUS is a
2610 good idea. It is not. It has been tried multiple times and every
2611 time the change has had to have been reverted.
2613 Other parts of reload know a PLUS is special (gen_reload for example)
2614 and require special code to handle code a reloaded PLUS operand.
2616 Also consider backends where the flags register is clobbered by a
2617 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2618 lea instruction comes to mind). If we try to reload a MINUS, we
2619 may kill the flags register that was holding a useful value.
2621 So, please before trying to handle MINUS, consider reload as a
2622 whole instead of this little section as well as the backend issues. */
2623 case PLUS:
2624 /* If this is the sum of an eliminable register and a constant, rework
2625 the sum. */
2626 if (REG_P (XEXP (x, 0))
2627 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2628 && CONSTANT_P (XEXP (x, 1)))
2630 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2631 ep++)
2632 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2634 /* The only time we want to replace a PLUS with a REG (this
2635 occurs when the constant operand of the PLUS is the negative
2636 of the offset) is when we are inside a MEM. We won't want
2637 to do so at other times because that would change the
2638 structure of the insn in a way that reload can't handle.
2639 We special-case the commonest situation in
2640 eliminate_regs_in_insn, so just replace a PLUS with a
2641 PLUS here, unless inside a MEM. */
2642 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2643 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2644 return ep->to_rtx;
2645 else
2646 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2647 plus_constant (Pmode, XEXP (x, 1),
2648 ep->previous_offset));
2651 /* If the register is not eliminable, we are done since the other
2652 operand is a constant. */
2653 return x;
2656 /* If this is part of an address, we want to bring any constant to the
2657 outermost PLUS. We will do this by doing register replacement in
2658 our operands and seeing if a constant shows up in one of them.
2660 Note that there is no risk of modifying the structure of the insn,
2661 since we only get called for its operands, thus we are either
2662 modifying the address inside a MEM, or something like an address
2663 operand of a load-address insn. */
2666 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2667 for_costs);
2668 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2669 for_costs);
2671 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2673 /* If one side is a PLUS and the other side is a pseudo that
2674 didn't get a hard register but has a reg_equiv_constant,
2675 we must replace the constant here since it may no longer
2676 be in the position of any operand. */
2677 if (GET_CODE (new0) == PLUS && REG_P (new1)
2678 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2679 && reg_renumber[REGNO (new1)] < 0
2680 && reg_equivs
2681 && reg_equiv_constant (REGNO (new1)) != 0)
2682 new1 = reg_equiv_constant (REGNO (new1));
2683 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2684 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2685 && reg_renumber[REGNO (new0)] < 0
2686 && reg_equiv_constant (REGNO (new0)) != 0)
2687 new0 = reg_equiv_constant (REGNO (new0));
2689 new_rtx = form_sum (GET_MODE (x), new0, new1);
2691 /* As above, if we are not inside a MEM we do not want to
2692 turn a PLUS into something else. We might try to do so here
2693 for an addition of 0 if we aren't optimizing. */
2694 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2695 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2696 else
2697 return new_rtx;
2700 return x;
2702 case MULT:
2703 /* If this is the product of an eliminable register and a
2704 constant, apply the distribute law and move the constant out
2705 so that we have (plus (mult ..) ..). This is needed in order
2706 to keep load-address insns valid. This case is pathological.
2707 We ignore the possibility of overflow here. */
2708 if (REG_P (XEXP (x, 0))
2709 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2710 && CONST_INT_P (XEXP (x, 1)))
2711 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2712 ep++)
2713 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2715 if (! mem_mode
2716 /* Refs inside notes or in DEBUG_INSNs don't count for
2717 this purpose. */
2718 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2719 || GET_CODE (insn) == INSN_LIST
2720 || DEBUG_INSN_P (insn))))
2721 ep->ref_outside_mem = 1;
2723 return
2724 plus_constant (Pmode,
2725 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2726 ep->previous_offset * INTVAL (XEXP (x, 1)));
2729 /* ... fall through ... */
2731 case CALL:
2732 case COMPARE:
2733 /* See comments before PLUS about handling MINUS. */
2734 case MINUS:
2735 case DIV: case UDIV:
2736 case MOD: case UMOD:
2737 case AND: case IOR: case XOR:
2738 case ROTATERT: case ROTATE:
2739 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2740 case NE: case EQ:
2741 case GE: case GT: case GEU: case GTU:
2742 case LE: case LT: case LEU: case LTU:
2744 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2745 for_costs);
2746 rtx new1 = XEXP (x, 1)
2747 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2748 for_costs) : 0;
2750 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2751 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2753 return x;
2755 case EXPR_LIST:
2756 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2757 if (XEXP (x, 0))
2759 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2760 for_costs);
2761 if (new_rtx != XEXP (x, 0))
2763 /* If this is a REG_DEAD note, it is not valid anymore.
2764 Using the eliminated version could result in creating a
2765 REG_DEAD note for the stack or frame pointer. */
2766 if (REG_NOTE_KIND (x) == REG_DEAD)
2767 return (XEXP (x, 1)
2768 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2769 for_costs)
2770 : NULL_RTX);
2772 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2776 /* ... fall through ... */
2778 case INSN_LIST:
2779 /* Now do eliminations in the rest of the chain. If this was
2780 an EXPR_LIST, this might result in allocating more memory than is
2781 strictly needed, but it simplifies the code. */
2782 if (XEXP (x, 1))
2784 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2785 for_costs);
2786 if (new_rtx != XEXP (x, 1))
2787 return
2788 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2790 return x;
2792 case PRE_INC:
2793 case POST_INC:
2794 case PRE_DEC:
2795 case POST_DEC:
2796 /* We do not support elimination of a register that is modified.
2797 elimination_effects has already make sure that this does not
2798 happen. */
2799 return x;
2801 case PRE_MODIFY:
2802 case POST_MODIFY:
2803 /* We do not support elimination of a register that is modified.
2804 elimination_effects has already make sure that this does not
2805 happen. The only remaining case we need to consider here is
2806 that the increment value may be an eliminable register. */
2807 if (GET_CODE (XEXP (x, 1)) == PLUS
2808 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2810 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2811 insn, true, for_costs);
2813 if (new_rtx != XEXP (XEXP (x, 1), 1))
2814 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2815 gen_rtx_PLUS (GET_MODE (x),
2816 XEXP (x, 0), new_rtx));
2818 return x;
2820 case STRICT_LOW_PART:
2821 case NEG: case NOT:
2822 case SIGN_EXTEND: case ZERO_EXTEND:
2823 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2824 case FLOAT: case FIX:
2825 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2826 case ABS:
2827 case SQRT:
2828 case FFS:
2829 case CLZ:
2830 case CTZ:
2831 case POPCOUNT:
2832 case PARITY:
2833 case BSWAP:
2834 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2835 for_costs);
2836 if (new_rtx != XEXP (x, 0))
2837 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2838 return x;
2840 case SUBREG:
2841 /* Similar to above processing, but preserve SUBREG_BYTE.
2842 Convert (subreg (mem)) to (mem) if not paradoxical.
2843 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2844 pseudo didn't get a hard reg, we must replace this with the
2845 eliminated version of the memory location because push_reload
2846 may do the replacement in certain circumstances. */
2847 if (REG_P (SUBREG_REG (x))
2848 && !paradoxical_subreg_p (x)
2849 && reg_equivs
2850 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2852 new_rtx = SUBREG_REG (x);
2854 else
2855 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2857 if (new_rtx != SUBREG_REG (x))
2859 int x_size = GET_MODE_SIZE (GET_MODE (x));
2860 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2862 if (MEM_P (new_rtx)
2863 && ((x_size < new_size
2864 #ifdef WORD_REGISTER_OPERATIONS
2865 /* On these machines, combine can create rtl of the form
2866 (set (subreg:m1 (reg:m2 R) 0) ...)
2867 where m1 < m2, and expects something interesting to
2868 happen to the entire word. Moreover, it will use the
2869 (reg:m2 R) later, expecting all bits to be preserved.
2870 So if the number of words is the same, preserve the
2871 subreg so that push_reload can see it. */
2872 && ! ((x_size - 1) / UNITS_PER_WORD
2873 == (new_size -1 ) / UNITS_PER_WORD)
2874 #endif
2876 || x_size == new_size)
2878 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2879 else
2880 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2883 return x;
2885 case MEM:
2886 /* Our only special processing is to pass the mode of the MEM to our
2887 recursive call and copy the flags. While we are here, handle this
2888 case more efficiently. */
2890 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2891 for_costs);
2892 if (for_costs
2893 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2894 && !memory_address_p (GET_MODE (x), new_rtx))
2895 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2897 return replace_equiv_address_nv (x, new_rtx);
2899 case USE:
2900 /* Handle insn_list USE that a call to a pure function may generate. */
2901 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2902 for_costs);
2903 if (new_rtx != XEXP (x, 0))
2904 return gen_rtx_USE (GET_MODE (x), new_rtx);
2905 return x;
2907 case CLOBBER:
2908 case ASM_OPERANDS:
2909 gcc_assert (insn && DEBUG_INSN_P (insn));
2910 break;
2912 case SET:
2913 gcc_unreachable ();
2915 default:
2916 break;
2919 /* Process each of our operands recursively. If any have changed, make a
2920 copy of the rtx. */
2921 fmt = GET_RTX_FORMAT (code);
2922 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2924 if (*fmt == 'e')
2926 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2927 for_costs);
2928 if (new_rtx != XEXP (x, i) && ! copied)
2930 x = shallow_copy_rtx (x);
2931 copied = 1;
2933 XEXP (x, i) = new_rtx;
2935 else if (*fmt == 'E')
2937 int copied_vec = 0;
2938 for (j = 0; j < XVECLEN (x, i); j++)
2940 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2941 for_costs);
2942 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2944 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2945 XVEC (x, i)->elem);
2946 if (! copied)
2948 x = shallow_copy_rtx (x);
2949 copied = 1;
2951 XVEC (x, i) = new_v;
2952 copied_vec = 1;
2954 XVECEXP (x, i, j) = new_rtx;
2959 return x;
2963 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2965 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2968 /* Scan rtx X for modifications of elimination target registers. Update
2969 the table of eliminables to reflect the changed state. MEM_MODE is
2970 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2972 static void
2973 elimination_effects (rtx x, enum machine_mode mem_mode)
2975 enum rtx_code code = GET_CODE (x);
2976 struct elim_table *ep;
2977 int regno;
2978 int i, j;
2979 const char *fmt;
2981 switch (code)
2983 CASE_CONST_ANY:
2984 case CONST:
2985 case SYMBOL_REF:
2986 case CODE_LABEL:
2987 case PC:
2988 case CC0:
2989 case ASM_INPUT:
2990 case ADDR_VEC:
2991 case ADDR_DIFF_VEC:
2992 case RETURN:
2993 return;
2995 case REG:
2996 regno = REGNO (x);
2998 /* First handle the case where we encounter a bare register that
2999 is eliminable. Replace it with a PLUS. */
3000 if (regno < FIRST_PSEUDO_REGISTER)
3002 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3003 ep++)
3004 if (ep->from_rtx == x && ep->can_eliminate)
3006 if (! mem_mode)
3007 ep->ref_outside_mem = 1;
3008 return;
3012 else if (reg_renumber[regno] < 0
3013 && reg_equivs != 0
3014 && reg_equiv_constant (regno)
3015 && ! function_invariant_p (reg_equiv_constant (regno)))
3016 elimination_effects (reg_equiv_constant (regno), mem_mode);
3017 return;
3019 case PRE_INC:
3020 case POST_INC:
3021 case PRE_DEC:
3022 case POST_DEC:
3023 case POST_MODIFY:
3024 case PRE_MODIFY:
3025 /* If we modify the source of an elimination rule, disable it. */
3026 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3027 if (ep->from_rtx == XEXP (x, 0))
3028 ep->can_eliminate = 0;
3030 /* If we modify the target of an elimination rule by adding a constant,
3031 update its offset. If we modify the target in any other way, we'll
3032 have to disable the rule as well. */
3033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3034 if (ep->to_rtx == XEXP (x, 0))
3036 int size = GET_MODE_SIZE (mem_mode);
3038 /* If more bytes than MEM_MODE are pushed, account for them. */
3039 #ifdef PUSH_ROUNDING
3040 if (ep->to_rtx == stack_pointer_rtx)
3041 size = PUSH_ROUNDING (size);
3042 #endif
3043 if (code == PRE_DEC || code == POST_DEC)
3044 ep->offset += size;
3045 else if (code == PRE_INC || code == POST_INC)
3046 ep->offset -= size;
3047 else if (code == PRE_MODIFY || code == POST_MODIFY)
3049 if (GET_CODE (XEXP (x, 1)) == PLUS
3050 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3051 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3052 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3053 else
3054 ep->can_eliminate = 0;
3058 /* These two aren't unary operators. */
3059 if (code == POST_MODIFY || code == PRE_MODIFY)
3060 break;
3062 /* Fall through to generic unary operation case. */
3063 case STRICT_LOW_PART:
3064 case NEG: case NOT:
3065 case SIGN_EXTEND: case ZERO_EXTEND:
3066 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3067 case FLOAT: case FIX:
3068 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3069 case ABS:
3070 case SQRT:
3071 case FFS:
3072 case CLZ:
3073 case CTZ:
3074 case POPCOUNT:
3075 case PARITY:
3076 case BSWAP:
3077 elimination_effects (XEXP (x, 0), mem_mode);
3078 return;
3080 case SUBREG:
3081 if (REG_P (SUBREG_REG (x))
3082 && (GET_MODE_SIZE (GET_MODE (x))
3083 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3084 && reg_equivs != 0
3085 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3086 return;
3088 elimination_effects (SUBREG_REG (x), mem_mode);
3089 return;
3091 case USE:
3092 /* If using a register that is the source of an eliminate we still
3093 think can be performed, note it cannot be performed since we don't
3094 know how this register is used. */
3095 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3096 if (ep->from_rtx == XEXP (x, 0))
3097 ep->can_eliminate = 0;
3099 elimination_effects (XEXP (x, 0), mem_mode);
3100 return;
3102 case CLOBBER:
3103 /* If clobbering a register that is the replacement register for an
3104 elimination we still think can be performed, note that it cannot
3105 be performed. Otherwise, we need not be concerned about it. */
3106 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3107 if (ep->to_rtx == XEXP (x, 0))
3108 ep->can_eliminate = 0;
3110 elimination_effects (XEXP (x, 0), mem_mode);
3111 return;
3113 case SET:
3114 /* Check for setting a register that we know about. */
3115 if (REG_P (SET_DEST (x)))
3117 /* See if this is setting the replacement register for an
3118 elimination.
3120 If DEST is the hard frame pointer, we do nothing because we
3121 assume that all assignments to the frame pointer are for
3122 non-local gotos and are being done at a time when they are valid
3123 and do not disturb anything else. Some machines want to
3124 eliminate a fake argument pointer (or even a fake frame pointer)
3125 with either the real frame or the stack pointer. Assignments to
3126 the hard frame pointer must not prevent this elimination. */
3128 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3129 ep++)
3130 if (ep->to_rtx == SET_DEST (x)
3131 && SET_DEST (x) != hard_frame_pointer_rtx)
3133 /* If it is being incremented, adjust the offset. Otherwise,
3134 this elimination can't be done. */
3135 rtx src = SET_SRC (x);
3137 if (GET_CODE (src) == PLUS
3138 && XEXP (src, 0) == SET_DEST (x)
3139 && CONST_INT_P (XEXP (src, 1)))
3140 ep->offset -= INTVAL (XEXP (src, 1));
3141 else
3142 ep->can_eliminate = 0;
3146 elimination_effects (SET_DEST (x), VOIDmode);
3147 elimination_effects (SET_SRC (x), VOIDmode);
3148 return;
3150 case MEM:
3151 /* Our only special processing is to pass the mode of the MEM to our
3152 recursive call. */
3153 elimination_effects (XEXP (x, 0), GET_MODE (x));
3154 return;
3156 default:
3157 break;
3160 fmt = GET_RTX_FORMAT (code);
3161 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3163 if (*fmt == 'e')
3164 elimination_effects (XEXP (x, i), mem_mode);
3165 else if (*fmt == 'E')
3166 for (j = 0; j < XVECLEN (x, i); j++)
3167 elimination_effects (XVECEXP (x, i, j), mem_mode);
3171 /* Descend through rtx X and verify that no references to eliminable registers
3172 remain. If any do remain, mark the involved register as not
3173 eliminable. */
3175 static void
3176 check_eliminable_occurrences (rtx x)
3178 const char *fmt;
3179 int i;
3180 enum rtx_code code;
3182 if (x == 0)
3183 return;
3185 code = GET_CODE (x);
3187 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3189 struct elim_table *ep;
3191 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3192 if (ep->from_rtx == x)
3193 ep->can_eliminate = 0;
3194 return;
3197 fmt = GET_RTX_FORMAT (code);
3198 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3200 if (*fmt == 'e')
3201 check_eliminable_occurrences (XEXP (x, i));
3202 else if (*fmt == 'E')
3204 int j;
3205 for (j = 0; j < XVECLEN (x, i); j++)
3206 check_eliminable_occurrences (XVECEXP (x, i, j));
3211 /* Scan INSN and eliminate all eliminable registers in it.
3213 If REPLACE is nonzero, do the replacement destructively. Also
3214 delete the insn as dead it if it is setting an eliminable register.
3216 If REPLACE is zero, do all our allocations in reload_obstack.
3218 If no eliminations were done and this insn doesn't require any elimination
3219 processing (these are not identical conditions: it might be updating sp,
3220 but not referencing fp; this needs to be seen during reload_as_needed so
3221 that the offset between fp and sp can be taken into consideration), zero
3222 is returned. Otherwise, 1 is returned. */
3224 static int
3225 eliminate_regs_in_insn (rtx insn, int replace)
3227 int icode = recog_memoized (insn);
3228 rtx old_body = PATTERN (insn);
3229 int insn_is_asm = asm_noperands (old_body) >= 0;
3230 rtx old_set = single_set (insn);
3231 rtx new_body;
3232 int val = 0;
3233 int i;
3234 rtx substed_operand[MAX_RECOG_OPERANDS];
3235 rtx orig_operand[MAX_RECOG_OPERANDS];
3236 struct elim_table *ep;
3237 rtx plus_src, plus_cst_src;
3239 if (! insn_is_asm && icode < 0)
3241 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3242 || GET_CODE (PATTERN (insn)) == CLOBBER
3243 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3244 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3245 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3246 || DEBUG_INSN_P (insn));
3247 if (DEBUG_INSN_P (insn))
3248 INSN_VAR_LOCATION_LOC (insn)
3249 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3250 return 0;
3253 if (old_set != 0 && REG_P (SET_DEST (old_set))
3254 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3256 /* Check for setting an eliminable register. */
3257 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3258 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3260 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3261 /* If this is setting the frame pointer register to the
3262 hardware frame pointer register and this is an elimination
3263 that will be done (tested above), this insn is really
3264 adjusting the frame pointer downward to compensate for
3265 the adjustment done before a nonlocal goto. */
3266 if (ep->from == FRAME_POINTER_REGNUM
3267 && ep->to == HARD_FRAME_POINTER_REGNUM)
3269 rtx base = SET_SRC (old_set);
3270 rtx base_insn = insn;
3271 HOST_WIDE_INT offset = 0;
3273 while (base != ep->to_rtx)
3275 rtx prev_insn, prev_set;
3277 if (GET_CODE (base) == PLUS
3278 && CONST_INT_P (XEXP (base, 1)))
3280 offset += INTVAL (XEXP (base, 1));
3281 base = XEXP (base, 0);
3283 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3284 && (prev_set = single_set (prev_insn)) != 0
3285 && rtx_equal_p (SET_DEST (prev_set), base))
3287 base = SET_SRC (prev_set);
3288 base_insn = prev_insn;
3290 else
3291 break;
3294 if (base == ep->to_rtx)
3296 rtx src = plus_constant (Pmode, ep->to_rtx,
3297 offset - ep->offset);
3299 new_body = old_body;
3300 if (! replace)
3302 new_body = copy_insn (old_body);
3303 if (REG_NOTES (insn))
3304 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3306 PATTERN (insn) = new_body;
3307 old_set = single_set (insn);
3309 /* First see if this insn remains valid when we
3310 make the change. If not, keep the INSN_CODE
3311 the same and let reload fit it up. */
3312 validate_change (insn, &SET_SRC (old_set), src, 1);
3313 validate_change (insn, &SET_DEST (old_set),
3314 ep->to_rtx, 1);
3315 if (! apply_change_group ())
3317 SET_SRC (old_set) = src;
3318 SET_DEST (old_set) = ep->to_rtx;
3321 val = 1;
3322 goto done;
3325 #endif
3327 /* In this case this insn isn't serving a useful purpose. We
3328 will delete it in reload_as_needed once we know that this
3329 elimination is, in fact, being done.
3331 If REPLACE isn't set, we can't delete this insn, but needn't
3332 process it since it won't be used unless something changes. */
3333 if (replace)
3335 delete_dead_insn (insn);
3336 return 1;
3338 val = 1;
3339 goto done;
3343 /* We allow one special case which happens to work on all machines we
3344 currently support: a single set with the source or a REG_EQUAL
3345 note being a PLUS of an eliminable register and a constant. */
3346 plus_src = plus_cst_src = 0;
3347 if (old_set && REG_P (SET_DEST (old_set)))
3349 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3350 plus_src = SET_SRC (old_set);
3351 /* First see if the source is of the form (plus (...) CST). */
3352 if (plus_src
3353 && CONST_INT_P (XEXP (plus_src, 1)))
3354 plus_cst_src = plus_src;
3355 else if (REG_P (SET_SRC (old_set))
3356 || plus_src)
3358 /* Otherwise, see if we have a REG_EQUAL note of the form
3359 (plus (...) CST). */
3360 rtx links;
3361 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3363 if ((REG_NOTE_KIND (links) == REG_EQUAL
3364 || REG_NOTE_KIND (links) == REG_EQUIV)
3365 && GET_CODE (XEXP (links, 0)) == PLUS
3366 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3368 plus_cst_src = XEXP (links, 0);
3369 break;
3374 /* Check that the first operand of the PLUS is a hard reg or
3375 the lowpart subreg of one. */
3376 if (plus_cst_src)
3378 rtx reg = XEXP (plus_cst_src, 0);
3379 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3380 reg = SUBREG_REG (reg);
3382 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3383 plus_cst_src = 0;
3386 if (plus_cst_src)
3388 rtx reg = XEXP (plus_cst_src, 0);
3389 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3391 if (GET_CODE (reg) == SUBREG)
3392 reg = SUBREG_REG (reg);
3394 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3395 if (ep->from_rtx == reg && ep->can_eliminate)
3397 rtx to_rtx = ep->to_rtx;
3398 offset += ep->offset;
3399 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3401 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3402 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3403 to_rtx);
3404 /* If we have a nonzero offset, and the source is already
3405 a simple REG, the following transformation would
3406 increase the cost of the insn by replacing a simple REG
3407 with (plus (reg sp) CST). So try only when we already
3408 had a PLUS before. */
3409 if (offset == 0 || plus_src)
3411 rtx new_src = plus_constant (GET_MODE (to_rtx),
3412 to_rtx, offset);
3414 new_body = old_body;
3415 if (! replace)
3417 new_body = copy_insn (old_body);
3418 if (REG_NOTES (insn))
3419 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3421 PATTERN (insn) = new_body;
3422 old_set = single_set (insn);
3424 /* First see if this insn remains valid when we make the
3425 change. If not, try to replace the whole pattern with
3426 a simple set (this may help if the original insn was a
3427 PARALLEL that was only recognized as single_set due to
3428 REG_UNUSED notes). If this isn't valid either, keep
3429 the INSN_CODE the same and let reload fix it up. */
3430 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3432 rtx new_pat = gen_rtx_SET (VOIDmode,
3433 SET_DEST (old_set), new_src);
3435 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3436 SET_SRC (old_set) = new_src;
3439 else
3440 break;
3442 val = 1;
3443 /* This can't have an effect on elimination offsets, so skip right
3444 to the end. */
3445 goto done;
3449 /* Determine the effects of this insn on elimination offsets. */
3450 elimination_effects (old_body, VOIDmode);
3452 /* Eliminate all eliminable registers occurring in operands that
3453 can be handled by reload. */
3454 extract_insn (insn);
3455 for (i = 0; i < recog_data.n_operands; i++)
3457 orig_operand[i] = recog_data.operand[i];
3458 substed_operand[i] = recog_data.operand[i];
3460 /* For an asm statement, every operand is eliminable. */
3461 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3463 bool is_set_src, in_plus;
3465 /* Check for setting a register that we know about. */
3466 if (recog_data.operand_type[i] != OP_IN
3467 && REG_P (orig_operand[i]))
3469 /* If we are assigning to a register that can be eliminated, it
3470 must be as part of a PARALLEL, since the code above handles
3471 single SETs. We must indicate that we can no longer
3472 eliminate this reg. */
3473 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3474 ep++)
3475 if (ep->from_rtx == orig_operand[i])
3476 ep->can_eliminate = 0;
3479 /* Companion to the above plus substitution, we can allow
3480 invariants as the source of a plain move. */
3481 is_set_src = false;
3482 if (old_set
3483 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3484 is_set_src = true;
3485 in_plus = false;
3486 if (plus_src
3487 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3488 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3489 in_plus = true;
3491 substed_operand[i]
3492 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3493 replace ? insn : NULL_RTX,
3494 is_set_src || in_plus, false);
3495 if (substed_operand[i] != orig_operand[i])
3496 val = 1;
3497 /* Terminate the search in check_eliminable_occurrences at
3498 this point. */
3499 *recog_data.operand_loc[i] = 0;
3501 /* If an output operand changed from a REG to a MEM and INSN is an
3502 insn, write a CLOBBER insn. */
3503 if (recog_data.operand_type[i] != OP_IN
3504 && REG_P (orig_operand[i])
3505 && MEM_P (substed_operand[i])
3506 && replace)
3507 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3511 for (i = 0; i < recog_data.n_dups; i++)
3512 *recog_data.dup_loc[i]
3513 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3515 /* If any eliminable remain, they aren't eliminable anymore. */
3516 check_eliminable_occurrences (old_body);
3518 /* Substitute the operands; the new values are in the substed_operand
3519 array. */
3520 for (i = 0; i < recog_data.n_operands; i++)
3521 *recog_data.operand_loc[i] = substed_operand[i];
3522 for (i = 0; i < recog_data.n_dups; i++)
3523 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3525 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3526 re-recognize the insn. We do this in case we had a simple addition
3527 but now can do this as a load-address. This saves an insn in this
3528 common case.
3529 If re-recognition fails, the old insn code number will still be used,
3530 and some register operands may have changed into PLUS expressions.
3531 These will be handled by find_reloads by loading them into a register
3532 again. */
3534 if (val)
3536 /* If we aren't replacing things permanently and we changed something,
3537 make another copy to ensure that all the RTL is new. Otherwise
3538 things can go wrong if find_reload swaps commutative operands
3539 and one is inside RTL that has been copied while the other is not. */
3540 new_body = old_body;
3541 if (! replace)
3543 new_body = copy_insn (old_body);
3544 if (REG_NOTES (insn))
3545 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3547 PATTERN (insn) = new_body;
3549 /* If we had a move insn but now we don't, rerecognize it. This will
3550 cause spurious re-recognition if the old move had a PARALLEL since
3551 the new one still will, but we can't call single_set without
3552 having put NEW_BODY into the insn and the re-recognition won't
3553 hurt in this rare case. */
3554 /* ??? Why this huge if statement - why don't we just rerecognize the
3555 thing always? */
3556 if (! insn_is_asm
3557 && old_set != 0
3558 && ((REG_P (SET_SRC (old_set))
3559 && (GET_CODE (new_body) != SET
3560 || !REG_P (SET_SRC (new_body))))
3561 /* If this was a load from or store to memory, compare
3562 the MEM in recog_data.operand to the one in the insn.
3563 If they are not equal, then rerecognize the insn. */
3564 || (old_set != 0
3565 && ((MEM_P (SET_SRC (old_set))
3566 && SET_SRC (old_set) != recog_data.operand[1])
3567 || (MEM_P (SET_DEST (old_set))
3568 && SET_DEST (old_set) != recog_data.operand[0])))
3569 /* If this was an add insn before, rerecognize. */
3570 || GET_CODE (SET_SRC (old_set)) == PLUS))
3572 int new_icode = recog (PATTERN (insn), insn, 0);
3573 if (new_icode >= 0)
3574 INSN_CODE (insn) = new_icode;
3578 /* Restore the old body. If there were any changes to it, we made a copy
3579 of it while the changes were still in place, so we'll correctly return
3580 a modified insn below. */
3581 if (! replace)
3583 /* Restore the old body. */
3584 for (i = 0; i < recog_data.n_operands; i++)
3585 /* Restoring a top-level match_parallel would clobber the new_body
3586 we installed in the insn. */
3587 if (recog_data.operand_loc[i] != &PATTERN (insn))
3588 *recog_data.operand_loc[i] = orig_operand[i];
3589 for (i = 0; i < recog_data.n_dups; i++)
3590 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3593 /* Update all elimination pairs to reflect the status after the current
3594 insn. The changes we make were determined by the earlier call to
3595 elimination_effects.
3597 We also detect cases where register elimination cannot be done,
3598 namely, if a register would be both changed and referenced outside a MEM
3599 in the resulting insn since such an insn is often undefined and, even if
3600 not, we cannot know what meaning will be given to it. Note that it is
3601 valid to have a register used in an address in an insn that changes it
3602 (presumably with a pre- or post-increment or decrement).
3604 If anything changes, return nonzero. */
3606 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3608 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3609 ep->can_eliminate = 0;
3611 ep->ref_outside_mem = 0;
3613 if (ep->previous_offset != ep->offset)
3614 val = 1;
3617 done:
3618 /* If we changed something, perform elimination in REG_NOTES. This is
3619 needed even when REPLACE is zero because a REG_DEAD note might refer
3620 to a register that we eliminate and could cause a different number
3621 of spill registers to be needed in the final reload pass than in
3622 the pre-passes. */
3623 if (val && REG_NOTES (insn) != 0)
3624 REG_NOTES (insn)
3625 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3626 false);
3628 return val;
3631 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3632 register allocator. INSN is the instruction we need to examine, we perform
3633 eliminations in its operands and record cases where eliminating a reg with
3634 an invariant equivalence would add extra cost. */
3636 static void
3637 elimination_costs_in_insn (rtx insn)
3639 int icode = recog_memoized (insn);
3640 rtx old_body = PATTERN (insn);
3641 int insn_is_asm = asm_noperands (old_body) >= 0;
3642 rtx old_set = single_set (insn);
3643 int i;
3644 rtx orig_operand[MAX_RECOG_OPERANDS];
3645 rtx orig_dup[MAX_RECOG_OPERANDS];
3646 struct elim_table *ep;
3647 rtx plus_src, plus_cst_src;
3648 bool sets_reg_p;
3650 if (! insn_is_asm && icode < 0)
3652 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3653 || GET_CODE (PATTERN (insn)) == CLOBBER
3654 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3655 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3656 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3657 || DEBUG_INSN_P (insn));
3658 return;
3661 if (old_set != 0 && REG_P (SET_DEST (old_set))
3662 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3664 /* Check for setting an eliminable register. */
3665 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3666 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3667 return;
3670 /* We allow one special case which happens to work on all machines we
3671 currently support: a single set with the source or a REG_EQUAL
3672 note being a PLUS of an eliminable register and a constant. */
3673 plus_src = plus_cst_src = 0;
3674 sets_reg_p = false;
3675 if (old_set && REG_P (SET_DEST (old_set)))
3677 sets_reg_p = true;
3678 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3679 plus_src = SET_SRC (old_set);
3680 /* First see if the source is of the form (plus (...) CST). */
3681 if (plus_src
3682 && CONST_INT_P (XEXP (plus_src, 1)))
3683 plus_cst_src = plus_src;
3684 else if (REG_P (SET_SRC (old_set))
3685 || plus_src)
3687 /* Otherwise, see if we have a REG_EQUAL note of the form
3688 (plus (...) CST). */
3689 rtx links;
3690 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3692 if ((REG_NOTE_KIND (links) == REG_EQUAL
3693 || REG_NOTE_KIND (links) == REG_EQUIV)
3694 && GET_CODE (XEXP (links, 0)) == PLUS
3695 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3697 plus_cst_src = XEXP (links, 0);
3698 break;
3704 /* Determine the effects of this insn on elimination offsets. */
3705 elimination_effects (old_body, VOIDmode);
3707 /* Eliminate all eliminable registers occurring in operands that
3708 can be handled by reload. */
3709 extract_insn (insn);
3710 for (i = 0; i < recog_data.n_dups; i++)
3711 orig_dup[i] = *recog_data.dup_loc[i];
3713 for (i = 0; i < recog_data.n_operands; i++)
3715 orig_operand[i] = recog_data.operand[i];
3717 /* For an asm statement, every operand is eliminable. */
3718 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3720 bool is_set_src, in_plus;
3722 /* Check for setting a register that we know about. */
3723 if (recog_data.operand_type[i] != OP_IN
3724 && REG_P (orig_operand[i]))
3726 /* If we are assigning to a register that can be eliminated, it
3727 must be as part of a PARALLEL, since the code above handles
3728 single SETs. We must indicate that we can no longer
3729 eliminate this reg. */
3730 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3731 ep++)
3732 if (ep->from_rtx == orig_operand[i])
3733 ep->can_eliminate = 0;
3736 /* Companion to the above plus substitution, we can allow
3737 invariants as the source of a plain move. */
3738 is_set_src = false;
3739 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3740 is_set_src = true;
3741 if (is_set_src && !sets_reg_p)
3742 note_reg_elim_costly (&SET_SRC (old_set), insn);
3743 in_plus = false;
3744 if (plus_src && sets_reg_p
3745 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3746 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3747 in_plus = true;
3749 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3750 NULL_RTX,
3751 is_set_src || in_plus, true);
3752 /* Terminate the search in check_eliminable_occurrences at
3753 this point. */
3754 *recog_data.operand_loc[i] = 0;
3758 for (i = 0; i < recog_data.n_dups; i++)
3759 *recog_data.dup_loc[i]
3760 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3762 /* If any eliminable remain, they aren't eliminable anymore. */
3763 check_eliminable_occurrences (old_body);
3765 /* Restore the old body. */
3766 for (i = 0; i < recog_data.n_operands; i++)
3767 *recog_data.operand_loc[i] = orig_operand[i];
3768 for (i = 0; i < recog_data.n_dups; i++)
3769 *recog_data.dup_loc[i] = orig_dup[i];
3771 /* Update all elimination pairs to reflect the status after the current
3772 insn. The changes we make were determined by the earlier call to
3773 elimination_effects. */
3775 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3777 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3778 ep->can_eliminate = 0;
3780 ep->ref_outside_mem = 0;
3783 return;
3786 /* Loop through all elimination pairs.
3787 Recalculate the number not at initial offset.
3789 Compute the maximum offset (minimum offset if the stack does not
3790 grow downward) for each elimination pair. */
3792 static void
3793 update_eliminable_offsets (void)
3795 struct elim_table *ep;
3797 num_not_at_initial_offset = 0;
3798 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3800 ep->previous_offset = ep->offset;
3801 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3802 num_not_at_initial_offset++;
3806 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3807 replacement we currently believe is valid, mark it as not eliminable if X
3808 modifies DEST in any way other than by adding a constant integer to it.
3810 If DEST is the frame pointer, we do nothing because we assume that
3811 all assignments to the hard frame pointer are nonlocal gotos and are being
3812 done at a time when they are valid and do not disturb anything else.
3813 Some machines want to eliminate a fake argument pointer with either the
3814 frame or stack pointer. Assignments to the hard frame pointer must not
3815 prevent this elimination.
3817 Called via note_stores from reload before starting its passes to scan
3818 the insns of the function. */
3820 static void
3821 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3823 unsigned int i;
3825 /* A SUBREG of a hard register here is just changing its mode. We should
3826 not see a SUBREG of an eliminable hard register, but check just in
3827 case. */
3828 if (GET_CODE (dest) == SUBREG)
3829 dest = SUBREG_REG (dest);
3831 if (dest == hard_frame_pointer_rtx)
3832 return;
3834 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3835 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3836 && (GET_CODE (x) != SET
3837 || GET_CODE (SET_SRC (x)) != PLUS
3838 || XEXP (SET_SRC (x), 0) != dest
3839 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3841 reg_eliminate[i].can_eliminate_previous
3842 = reg_eliminate[i].can_eliminate = 0;
3843 num_eliminable--;
3847 /* Verify that the initial elimination offsets did not change since the
3848 last call to set_initial_elim_offsets. This is used to catch cases
3849 where something illegal happened during reload_as_needed that could
3850 cause incorrect code to be generated if we did not check for it. */
3852 static bool
3853 verify_initial_elim_offsets (void)
3855 HOST_WIDE_INT t;
3857 if (!num_eliminable)
3858 return true;
3860 #ifdef ELIMINABLE_REGS
3862 struct elim_table *ep;
3864 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3866 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3867 if (t != ep->initial_offset)
3868 return false;
3871 #else
3872 INITIAL_FRAME_POINTER_OFFSET (t);
3873 if (t != reg_eliminate[0].initial_offset)
3874 return false;
3875 #endif
3877 return true;
3880 /* Reset all offsets on eliminable registers to their initial values. */
3882 static void
3883 set_initial_elim_offsets (void)
3885 struct elim_table *ep = reg_eliminate;
3887 #ifdef ELIMINABLE_REGS
3888 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3890 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3891 ep->previous_offset = ep->offset = ep->initial_offset;
3893 #else
3894 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3895 ep->previous_offset = ep->offset = ep->initial_offset;
3896 #endif
3898 num_not_at_initial_offset = 0;
3901 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3903 static void
3904 set_initial_eh_label_offset (rtx label)
3906 set_label_offsets (label, NULL_RTX, 1);
3909 /* Initialize the known label offsets.
3910 Set a known offset for each forced label to be at the initial offset
3911 of each elimination. We do this because we assume that all
3912 computed jumps occur from a location where each elimination is
3913 at its initial offset.
3914 For all other labels, show that we don't know the offsets. */
3916 static void
3917 set_initial_label_offsets (void)
3919 rtx x;
3920 memset (offsets_known_at, 0, num_labels);
3922 for (x = forced_labels; x; x = XEXP (x, 1))
3923 if (XEXP (x, 0))
3924 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3926 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3927 if (XEXP (x, 0))
3928 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3930 for_each_eh_label (set_initial_eh_label_offset);
3933 /* Set all elimination offsets to the known values for the code label given
3934 by INSN. */
3936 static void
3937 set_offsets_for_label (rtx insn)
3939 unsigned int i;
3940 int label_nr = CODE_LABEL_NUMBER (insn);
3941 struct elim_table *ep;
3943 num_not_at_initial_offset = 0;
3944 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3946 ep->offset = ep->previous_offset
3947 = offsets_at[label_nr - first_label_num][i];
3948 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3949 num_not_at_initial_offset++;
3953 /* See if anything that happened changes which eliminations are valid.
3954 For example, on the SPARC, whether or not the frame pointer can
3955 be eliminated can depend on what registers have been used. We need
3956 not check some conditions again (such as flag_omit_frame_pointer)
3957 since they can't have changed. */
3959 static void
3960 update_eliminables (HARD_REG_SET *pset)
3962 int previous_frame_pointer_needed = frame_pointer_needed;
3963 struct elim_table *ep;
3965 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3966 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3967 && targetm.frame_pointer_required ())
3968 #ifdef ELIMINABLE_REGS
3969 || ! targetm.can_eliminate (ep->from, ep->to)
3970 #endif
3972 ep->can_eliminate = 0;
3974 /* Look for the case where we have discovered that we can't replace
3975 register A with register B and that means that we will now be
3976 trying to replace register A with register C. This means we can
3977 no longer replace register C with register B and we need to disable
3978 such an elimination, if it exists. This occurs often with A == ap,
3979 B == sp, and C == fp. */
3981 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3983 struct elim_table *op;
3984 int new_to = -1;
3986 if (! ep->can_eliminate && ep->can_eliminate_previous)
3988 /* Find the current elimination for ep->from, if there is a
3989 new one. */
3990 for (op = reg_eliminate;
3991 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3992 if (op->from == ep->from && op->can_eliminate)
3994 new_to = op->to;
3995 break;
3998 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3999 disable it. */
4000 for (op = reg_eliminate;
4001 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4002 if (op->from == new_to && op->to == ep->to)
4003 op->can_eliminate = 0;
4007 /* See if any registers that we thought we could eliminate the previous
4008 time are no longer eliminable. If so, something has changed and we
4009 must spill the register. Also, recompute the number of eliminable
4010 registers and see if the frame pointer is needed; it is if there is
4011 no elimination of the frame pointer that we can perform. */
4013 frame_pointer_needed = 1;
4014 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4016 if (ep->can_eliminate
4017 && ep->from == FRAME_POINTER_REGNUM
4018 && ep->to != HARD_FRAME_POINTER_REGNUM
4019 && (! SUPPORTS_STACK_ALIGNMENT
4020 || ! crtl->stack_realign_needed))
4021 frame_pointer_needed = 0;
4023 if (! ep->can_eliminate && ep->can_eliminate_previous)
4025 ep->can_eliminate_previous = 0;
4026 SET_HARD_REG_BIT (*pset, ep->from);
4027 num_eliminable--;
4031 /* If we didn't need a frame pointer last time, but we do now, spill
4032 the hard frame pointer. */
4033 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4034 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4037 /* Return true if X is used as the target register of an elimination. */
4039 bool
4040 elimination_target_reg_p (rtx x)
4042 struct elim_table *ep;
4044 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4045 if (ep->to_rtx == x && ep->can_eliminate)
4046 return true;
4048 return false;
4051 /* Initialize the table of registers to eliminate.
4052 Pre-condition: global flag frame_pointer_needed has been set before
4053 calling this function. */
4055 static void
4056 init_elim_table (void)
4058 struct elim_table *ep;
4059 #ifdef ELIMINABLE_REGS
4060 const struct elim_table_1 *ep1;
4061 #endif
4063 if (!reg_eliminate)
4064 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4066 num_eliminable = 0;
4068 #ifdef ELIMINABLE_REGS
4069 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4070 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4072 ep->from = ep1->from;
4073 ep->to = ep1->to;
4074 ep->can_eliminate = ep->can_eliminate_previous
4075 = (targetm.can_eliminate (ep->from, ep->to)
4076 && ! (ep->to == STACK_POINTER_REGNUM
4077 && frame_pointer_needed
4078 && (! SUPPORTS_STACK_ALIGNMENT
4079 || ! stack_realign_fp)));
4081 #else
4082 reg_eliminate[0].from = reg_eliminate_1[0].from;
4083 reg_eliminate[0].to = reg_eliminate_1[0].to;
4084 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4085 = ! frame_pointer_needed;
4086 #endif
4088 /* Count the number of eliminable registers and build the FROM and TO
4089 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4090 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4091 We depend on this. */
4092 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4094 num_eliminable += ep->can_eliminate;
4095 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4096 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4100 /* Find all the pseudo registers that didn't get hard regs
4101 but do have known equivalent constants or memory slots.
4102 These include parameters (known equivalent to parameter slots)
4103 and cse'd or loop-moved constant memory addresses.
4105 Record constant equivalents in reg_equiv_constant
4106 so they will be substituted by find_reloads.
4107 Record memory equivalents in reg_mem_equiv so they can
4108 be substituted eventually by altering the REG-rtx's. */
4110 static void
4111 init_eliminable_invariants (rtx first, bool do_subregs)
4113 int i;
4114 rtx insn;
4116 grow_reg_equivs ();
4117 if (do_subregs)
4118 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4119 else
4120 reg_max_ref_width = NULL;
4122 num_eliminable_invariants = 0;
4124 first_label_num = get_first_label_num ();
4125 num_labels = max_label_num () - first_label_num;
4127 /* Allocate the tables used to store offset information at labels. */
4128 offsets_known_at = XNEWVEC (char, num_labels);
4129 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4131 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4132 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4133 find largest such for each pseudo. FIRST is the head of the insn
4134 list. */
4136 for (insn = first; insn; insn = NEXT_INSN (insn))
4138 rtx set = single_set (insn);
4140 /* We may introduce USEs that we want to remove at the end, so
4141 we'll mark them with QImode. Make sure there are no
4142 previously-marked insns left by say regmove. */
4143 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4144 && GET_MODE (insn) != VOIDmode)
4145 PUT_MODE (insn, VOIDmode);
4147 if (do_subregs && NONDEBUG_INSN_P (insn))
4148 scan_paradoxical_subregs (PATTERN (insn));
4150 if (set != 0 && REG_P (SET_DEST (set)))
4152 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4153 rtx x;
4155 if (! note)
4156 continue;
4158 i = REGNO (SET_DEST (set));
4159 x = XEXP (note, 0);
4161 if (i <= LAST_VIRTUAL_REGISTER)
4162 continue;
4164 /* If flag_pic and we have constant, verify it's legitimate. */
4165 if (!CONSTANT_P (x)
4166 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4168 /* It can happen that a REG_EQUIV note contains a MEM
4169 that is not a legitimate memory operand. As later
4170 stages of reload assume that all addresses found
4171 in the reg_equiv_* arrays were originally legitimate,
4172 we ignore such REG_EQUIV notes. */
4173 if (memory_operand (x, VOIDmode))
4175 /* Always unshare the equivalence, so we can
4176 substitute into this insn without touching the
4177 equivalence. */
4178 reg_equiv_memory_loc (i) = copy_rtx (x);
4180 else if (function_invariant_p (x))
4182 enum machine_mode mode;
4184 mode = GET_MODE (SET_DEST (set));
4185 if (GET_CODE (x) == PLUS)
4187 /* This is PLUS of frame pointer and a constant,
4188 and might be shared. Unshare it. */
4189 reg_equiv_invariant (i) = copy_rtx (x);
4190 num_eliminable_invariants++;
4192 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4194 reg_equiv_invariant (i) = x;
4195 num_eliminable_invariants++;
4197 else if (targetm.legitimate_constant_p (mode, x))
4198 reg_equiv_constant (i) = x;
4199 else
4201 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4202 if (! reg_equiv_memory_loc (i))
4203 reg_equiv_init (i) = NULL_RTX;
4206 else
4208 reg_equiv_init (i) = NULL_RTX;
4209 continue;
4212 else
4213 reg_equiv_init (i) = NULL_RTX;
4217 if (dump_file)
4218 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4219 if (reg_equiv_init (i))
4221 fprintf (dump_file, "init_insns for %u: ", i);
4222 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4223 fprintf (dump_file, "\n");
4227 /* Indicate that we no longer have known memory locations or constants.
4228 Free all data involved in tracking these. */
4230 static void
4231 free_reg_equiv (void)
4233 int i;
4236 free (offsets_known_at);
4237 free (offsets_at);
4238 offsets_at = 0;
4239 offsets_known_at = 0;
4241 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4242 if (reg_equiv_alt_mem_list (i))
4243 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4244 VEC_free (reg_equivs_t, gc, reg_equivs);
4245 reg_equivs = NULL;
4249 /* Kick all pseudos out of hard register REGNO.
4251 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4252 because we found we can't eliminate some register. In the case, no pseudos
4253 are allowed to be in the register, even if they are only in a block that
4254 doesn't require spill registers, unlike the case when we are spilling this
4255 hard reg to produce another spill register.
4257 Return nonzero if any pseudos needed to be kicked out. */
4259 static void
4260 spill_hard_reg (unsigned int regno, int cant_eliminate)
4262 int i;
4264 if (cant_eliminate)
4266 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4267 df_set_regs_ever_live (regno, true);
4270 /* Spill every pseudo reg that was allocated to this reg
4271 or to something that overlaps this reg. */
4273 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4274 if (reg_renumber[i] >= 0
4275 && (unsigned int) reg_renumber[i] <= regno
4276 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4277 SET_REGNO_REG_SET (&spilled_pseudos, i);
4280 /* After find_reload_regs has been run for all insn that need reloads,
4281 and/or spill_hard_regs was called, this function is used to actually
4282 spill pseudo registers and try to reallocate them. It also sets up the
4283 spill_regs array for use by choose_reload_regs. */
4285 static int
4286 finish_spills (int global)
4288 struct insn_chain *chain;
4289 int something_changed = 0;
4290 unsigned i;
4291 reg_set_iterator rsi;
4293 /* Build the spill_regs array for the function. */
4294 /* If there are some registers still to eliminate and one of the spill regs
4295 wasn't ever used before, additional stack space may have to be
4296 allocated to store this register. Thus, we may have changed the offset
4297 between the stack and frame pointers, so mark that something has changed.
4299 One might think that we need only set VAL to 1 if this is a call-used
4300 register. However, the set of registers that must be saved by the
4301 prologue is not identical to the call-used set. For example, the
4302 register used by the call insn for the return PC is a call-used register,
4303 but must be saved by the prologue. */
4305 n_spills = 0;
4306 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4307 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4309 spill_reg_order[i] = n_spills;
4310 spill_regs[n_spills++] = i;
4311 if (num_eliminable && ! df_regs_ever_live_p (i))
4312 something_changed = 1;
4313 df_set_regs_ever_live (i, true);
4315 else
4316 spill_reg_order[i] = -1;
4318 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4319 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4321 /* Record the current hard register the pseudo is allocated to
4322 in pseudo_previous_regs so we avoid reallocating it to the
4323 same hard reg in a later pass. */
4324 gcc_assert (reg_renumber[i] >= 0);
4326 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4327 /* Mark it as no longer having a hard register home. */
4328 reg_renumber[i] = -1;
4329 if (ira_conflicts_p)
4330 /* Inform IRA about the change. */
4331 ira_mark_allocation_change (i);
4332 /* We will need to scan everything again. */
4333 something_changed = 1;
4336 /* Retry global register allocation if possible. */
4337 if (global && ira_conflicts_p)
4339 unsigned int n;
4341 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4342 /* For every insn that needs reloads, set the registers used as spill
4343 regs in pseudo_forbidden_regs for every pseudo live across the
4344 insn. */
4345 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4347 EXECUTE_IF_SET_IN_REG_SET
4348 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4350 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4351 chain->used_spill_regs);
4353 EXECUTE_IF_SET_IN_REG_SET
4354 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4356 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4357 chain->used_spill_regs);
4361 /* Retry allocating the pseudos spilled in IRA and the
4362 reload. For each reg, merge the various reg sets that
4363 indicate which hard regs can't be used, and call
4364 ira_reassign_pseudos. */
4365 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4366 if (reg_old_renumber[i] != reg_renumber[i])
4368 if (reg_renumber[i] < 0)
4369 temp_pseudo_reg_arr[n++] = i;
4370 else
4371 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4373 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4374 bad_spill_regs_global,
4375 pseudo_forbidden_regs, pseudo_previous_regs,
4376 &spilled_pseudos))
4377 something_changed = 1;
4379 /* Fix up the register information in the insn chain.
4380 This involves deleting those of the spilled pseudos which did not get
4381 a new hard register home from the live_{before,after} sets. */
4382 for (chain = reload_insn_chain; chain; chain = chain->next)
4384 HARD_REG_SET used_by_pseudos;
4385 HARD_REG_SET used_by_pseudos2;
4387 if (! ira_conflicts_p)
4389 /* Don't do it for IRA because IRA and the reload still can
4390 assign hard registers to the spilled pseudos on next
4391 reload iterations. */
4392 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4393 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4395 /* Mark any unallocated hard regs as available for spills. That
4396 makes inheritance work somewhat better. */
4397 if (chain->need_reload)
4399 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4400 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4401 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4403 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4404 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4405 /* Value of chain->used_spill_regs from previous iteration
4406 may be not included in the value calculated here because
4407 of possible removing caller-saves insns (see function
4408 delete_caller_save_insns. */
4409 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4410 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4414 CLEAR_REG_SET (&changed_allocation_pseudos);
4415 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4416 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4418 int regno = reg_renumber[i];
4419 if (reg_old_renumber[i] == regno)
4420 continue;
4422 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4424 alter_reg (i, reg_old_renumber[i], false);
4425 reg_old_renumber[i] = regno;
4426 if (dump_file)
4428 if (regno == -1)
4429 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4430 else
4431 fprintf (dump_file, " Register %d now in %d.\n\n",
4432 i, reg_renumber[i]);
4436 return something_changed;
4439 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4441 static void
4442 scan_paradoxical_subregs (rtx x)
4444 int i;
4445 const char *fmt;
4446 enum rtx_code code = GET_CODE (x);
4448 switch (code)
4450 case REG:
4451 case CONST:
4452 case SYMBOL_REF:
4453 case LABEL_REF:
4454 CASE_CONST_ANY:
4455 case CC0:
4456 case PC:
4457 case USE:
4458 case CLOBBER:
4459 return;
4461 case SUBREG:
4462 if (REG_P (SUBREG_REG (x))
4463 && (GET_MODE_SIZE (GET_MODE (x))
4464 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4466 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4467 = GET_MODE_SIZE (GET_MODE (x));
4468 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4470 return;
4472 default:
4473 break;
4476 fmt = GET_RTX_FORMAT (code);
4477 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4479 if (fmt[i] == 'e')
4480 scan_paradoxical_subregs (XEXP (x, i));
4481 else if (fmt[i] == 'E')
4483 int j;
4484 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4485 scan_paradoxical_subregs (XVECEXP (x, i, j));
4490 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4491 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4492 and apply the corresponding narrowing subreg to *OTHER_PTR.
4493 Return true if the operands were changed, false otherwise. */
4495 static bool
4496 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4498 rtx op, inner, other, tem;
4500 op = *op_ptr;
4501 if (!paradoxical_subreg_p (op))
4502 return false;
4503 inner = SUBREG_REG (op);
4505 other = *other_ptr;
4506 tem = gen_lowpart_common (GET_MODE (inner), other);
4507 if (!tem)
4508 return false;
4510 /* If the lowpart operation turned a hard register into a subreg,
4511 rather than simplifying it to another hard register, then the
4512 mode change cannot be properly represented. For example, OTHER
4513 might be valid in its current mode, but not in the new one. */
4514 if (GET_CODE (tem) == SUBREG
4515 && REG_P (other)
4516 && HARD_REGISTER_P (other))
4517 return false;
4519 *op_ptr = inner;
4520 *other_ptr = tem;
4521 return true;
4524 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4525 examine all of the reload insns between PREV and NEXT exclusive, and
4526 annotate all that may trap. */
4528 static void
4529 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4531 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4532 if (note == NULL)
4533 return;
4534 if (!insn_could_throw_p (insn))
4535 remove_note (insn, note);
4536 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4539 /* Reload pseudo-registers into hard regs around each insn as needed.
4540 Additional register load insns are output before the insn that needs it
4541 and perhaps store insns after insns that modify the reloaded pseudo reg.
4543 reg_last_reload_reg and reg_reloaded_contents keep track of
4544 which registers are already available in reload registers.
4545 We update these for the reloads that we perform,
4546 as the insns are scanned. */
4548 static void
4549 reload_as_needed (int live_known)
4551 struct insn_chain *chain;
4552 #if defined (AUTO_INC_DEC)
4553 int i;
4554 #endif
4555 rtx x, marker;
4557 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4558 memset (spill_reg_store, 0, sizeof spill_reg_store);
4559 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4560 INIT_REG_SET (&reg_has_output_reload);
4561 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4562 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4564 set_initial_elim_offsets ();
4566 /* Generate a marker insn that we will move around. */
4567 marker = emit_note (NOTE_INSN_DELETED);
4568 unlink_insn_chain (marker, marker);
4570 for (chain = reload_insn_chain; chain; chain = chain->next)
4572 rtx prev = 0;
4573 rtx insn = chain->insn;
4574 rtx old_next = NEXT_INSN (insn);
4575 #ifdef AUTO_INC_DEC
4576 rtx old_prev = PREV_INSN (insn);
4577 #endif
4579 /* If we pass a label, copy the offsets from the label information
4580 into the current offsets of each elimination. */
4581 if (LABEL_P (insn))
4582 set_offsets_for_label (insn);
4584 else if (INSN_P (insn))
4586 regset_head regs_to_forget;
4587 INIT_REG_SET (&regs_to_forget);
4588 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4590 /* If this is a USE and CLOBBER of a MEM, ensure that any
4591 references to eliminable registers have been removed. */
4593 if ((GET_CODE (PATTERN (insn)) == USE
4594 || GET_CODE (PATTERN (insn)) == CLOBBER)
4595 && MEM_P (XEXP (PATTERN (insn), 0)))
4596 XEXP (XEXP (PATTERN (insn), 0), 0)
4597 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4598 GET_MODE (XEXP (PATTERN (insn), 0)),
4599 NULL_RTX);
4601 /* If we need to do register elimination processing, do so.
4602 This might delete the insn, in which case we are done. */
4603 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4605 eliminate_regs_in_insn (insn, 1);
4606 if (NOTE_P (insn))
4608 update_eliminable_offsets ();
4609 CLEAR_REG_SET (&regs_to_forget);
4610 continue;
4614 /* If need_elim is nonzero but need_reload is zero, one might think
4615 that we could simply set n_reloads to 0. However, find_reloads
4616 could have done some manipulation of the insn (such as swapping
4617 commutative operands), and these manipulations are lost during
4618 the first pass for every insn that needs register elimination.
4619 So the actions of find_reloads must be redone here. */
4621 if (! chain->need_elim && ! chain->need_reload
4622 && ! chain->need_operand_change)
4623 n_reloads = 0;
4624 /* First find the pseudo regs that must be reloaded for this insn.
4625 This info is returned in the tables reload_... (see reload.h).
4626 Also modify the body of INSN by substituting RELOAD
4627 rtx's for those pseudo regs. */
4628 else
4630 CLEAR_REG_SET (&reg_has_output_reload);
4631 CLEAR_HARD_REG_SET (reg_is_output_reload);
4633 find_reloads (insn, 1, spill_indirect_levels, live_known,
4634 spill_reg_order);
4637 if (n_reloads > 0)
4639 rtx next = NEXT_INSN (insn);
4640 rtx p;
4642 /* ??? PREV can get deleted by reload inheritance.
4643 Work around this by emitting a marker note. */
4644 prev = PREV_INSN (insn);
4645 reorder_insns_nobb (marker, marker, prev);
4647 /* Now compute which reload regs to reload them into. Perhaps
4648 reusing reload regs from previous insns, or else output
4649 load insns to reload them. Maybe output store insns too.
4650 Record the choices of reload reg in reload_reg_rtx. */
4651 choose_reload_regs (chain);
4653 /* Generate the insns to reload operands into or out of
4654 their reload regs. */
4655 emit_reload_insns (chain);
4657 /* Substitute the chosen reload regs from reload_reg_rtx
4658 into the insn's body (or perhaps into the bodies of other
4659 load and store insn that we just made for reloading
4660 and that we moved the structure into). */
4661 subst_reloads (insn);
4663 prev = PREV_INSN (marker);
4664 unlink_insn_chain (marker, marker);
4666 /* Adjust the exception region notes for loads and stores. */
4667 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4668 fixup_eh_region_note (insn, prev, next);
4670 /* Adjust the location of REG_ARGS_SIZE. */
4671 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4672 if (p)
4674 remove_note (insn, p);
4675 fixup_args_size_notes (prev, PREV_INSN (next),
4676 INTVAL (XEXP (p, 0)));
4679 /* If this was an ASM, make sure that all the reload insns
4680 we have generated are valid. If not, give an error
4681 and delete them. */
4682 if (asm_noperands (PATTERN (insn)) >= 0)
4683 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4684 if (p != insn && INSN_P (p)
4685 && GET_CODE (PATTERN (p)) != USE
4686 && (recog_memoized (p) < 0
4687 || (extract_insn (p), ! constrain_operands (1))))
4689 error_for_asm (insn,
4690 "%<asm%> operand requires "
4691 "impossible reload");
4692 delete_insn (p);
4696 if (num_eliminable && chain->need_elim)
4697 update_eliminable_offsets ();
4699 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4700 is no longer validly lying around to save a future reload.
4701 Note that this does not detect pseudos that were reloaded
4702 for this insn in order to be stored in
4703 (obeying register constraints). That is correct; such reload
4704 registers ARE still valid. */
4705 forget_marked_reloads (&regs_to_forget);
4706 CLEAR_REG_SET (&regs_to_forget);
4708 /* There may have been CLOBBER insns placed after INSN. So scan
4709 between INSN and NEXT and use them to forget old reloads. */
4710 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4711 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4712 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4714 #ifdef AUTO_INC_DEC
4715 /* Likewise for regs altered by auto-increment in this insn.
4716 REG_INC notes have been changed by reloading:
4717 find_reloads_address_1 records substitutions for them,
4718 which have been performed by subst_reloads above. */
4719 for (i = n_reloads - 1; i >= 0; i--)
4721 rtx in_reg = rld[i].in_reg;
4722 if (in_reg)
4724 enum rtx_code code = GET_CODE (in_reg);
4725 /* PRE_INC / PRE_DEC will have the reload register ending up
4726 with the same value as the stack slot, but that doesn't
4727 hold true for POST_INC / POST_DEC. Either we have to
4728 convert the memory access to a true POST_INC / POST_DEC,
4729 or we can't use the reload register for inheritance. */
4730 if ((code == POST_INC || code == POST_DEC)
4731 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4732 REGNO (rld[i].reg_rtx))
4733 /* Make sure it is the inc/dec pseudo, and not
4734 some other (e.g. output operand) pseudo. */
4735 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4736 == REGNO (XEXP (in_reg, 0))))
4739 rtx reload_reg = rld[i].reg_rtx;
4740 enum machine_mode mode = GET_MODE (reload_reg);
4741 int n = 0;
4742 rtx p;
4744 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4746 /* We really want to ignore REG_INC notes here, so
4747 use PATTERN (p) as argument to reg_set_p . */
4748 if (reg_set_p (reload_reg, PATTERN (p)))
4749 break;
4750 n = count_occurrences (PATTERN (p), reload_reg, 0);
4751 if (! n)
4752 continue;
4753 if (n == 1)
4755 rtx replace_reg
4756 = gen_rtx_fmt_e (code, mode, reload_reg);
4758 validate_replace_rtx_group (reload_reg,
4759 replace_reg, p);
4760 n = verify_changes (0);
4762 /* We must also verify that the constraints
4763 are met after the replacement. Make sure
4764 extract_insn is only called for an insn
4765 where the replacements were found to be
4766 valid so far. */
4767 if (n)
4769 extract_insn (p);
4770 n = constrain_operands (1);
4773 /* If the constraints were not met, then
4774 undo the replacement, else confirm it. */
4775 if (!n)
4776 cancel_changes (0);
4777 else
4778 confirm_change_group ();
4780 break;
4782 if (n == 1)
4784 add_reg_note (p, REG_INC, reload_reg);
4785 /* Mark this as having an output reload so that the
4786 REG_INC processing code below won't invalidate
4787 the reload for inheritance. */
4788 SET_HARD_REG_BIT (reg_is_output_reload,
4789 REGNO (reload_reg));
4790 SET_REGNO_REG_SET (&reg_has_output_reload,
4791 REGNO (XEXP (in_reg, 0)));
4793 else
4794 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4795 NULL);
4797 else if ((code == PRE_INC || code == PRE_DEC)
4798 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4799 REGNO (rld[i].reg_rtx))
4800 /* Make sure it is the inc/dec pseudo, and not
4801 some other (e.g. output operand) pseudo. */
4802 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4803 == REGNO (XEXP (in_reg, 0))))
4805 SET_HARD_REG_BIT (reg_is_output_reload,
4806 REGNO (rld[i].reg_rtx));
4807 SET_REGNO_REG_SET (&reg_has_output_reload,
4808 REGNO (XEXP (in_reg, 0)));
4810 else if (code == PRE_INC || code == PRE_DEC
4811 || code == POST_INC || code == POST_DEC)
4813 int in_regno = REGNO (XEXP (in_reg, 0));
4815 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4817 int in_hard_regno;
4818 bool forget_p = true;
4820 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4821 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4822 in_hard_regno))
4824 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4825 x != old_next;
4826 x = NEXT_INSN (x))
4827 if (x == reg_reloaded_insn[in_hard_regno])
4829 forget_p = false;
4830 break;
4833 /* If for some reasons, we didn't set up
4834 reg_last_reload_reg in this insn,
4835 invalidate inheritance from previous
4836 insns for the incremented/decremented
4837 register. Such registers will be not in
4838 reg_has_output_reload. Invalidate it
4839 also if the corresponding element in
4840 reg_reloaded_insn is also
4841 invalidated. */
4842 if (forget_p)
4843 forget_old_reloads_1 (XEXP (in_reg, 0),
4844 NULL_RTX, NULL);
4849 /* If a pseudo that got a hard register is auto-incremented,
4850 we must purge records of copying it into pseudos without
4851 hard registers. */
4852 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4853 if (REG_NOTE_KIND (x) == REG_INC)
4855 /* See if this pseudo reg was reloaded in this insn.
4856 If so, its last-reload info is still valid
4857 because it is based on this insn's reload. */
4858 for (i = 0; i < n_reloads; i++)
4859 if (rld[i].out == XEXP (x, 0))
4860 break;
4862 if (i == n_reloads)
4863 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4865 #endif
4867 /* A reload reg's contents are unknown after a label. */
4868 if (LABEL_P (insn))
4869 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4871 /* Don't assume a reload reg is still good after a call insn
4872 if it is a call-used reg, or if it contains a value that will
4873 be partially clobbered by the call. */
4874 else if (CALL_P (insn))
4876 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4877 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4879 /* If this is a call to a setjmp-type function, we must not
4880 reuse any reload reg contents across the call; that will
4881 just be clobbered by other uses of the register in later
4882 code, before the longjmp. */
4883 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4884 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4888 /* Clean up. */
4889 free (reg_last_reload_reg);
4890 CLEAR_REG_SET (&reg_has_output_reload);
4893 /* Discard all record of any value reloaded from X,
4894 or reloaded in X from someplace else;
4895 unless X is an output reload reg of the current insn.
4897 X may be a hard reg (the reload reg)
4898 or it may be a pseudo reg that was reloaded from.
4900 When DATA is non-NULL just mark the registers in regset
4901 to be forgotten later. */
4903 static void
4904 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4905 void *data)
4907 unsigned int regno;
4908 unsigned int nr;
4909 regset regs = (regset) data;
4911 /* note_stores does give us subregs of hard regs,
4912 subreg_regno_offset requires a hard reg. */
4913 while (GET_CODE (x) == SUBREG)
4915 /* We ignore the subreg offset when calculating the regno,
4916 because we are using the entire underlying hard register
4917 below. */
4918 x = SUBREG_REG (x);
4921 if (!REG_P (x))
4922 return;
4924 regno = REGNO (x);
4926 if (regno >= FIRST_PSEUDO_REGISTER)
4927 nr = 1;
4928 else
4930 unsigned int i;
4932 nr = hard_regno_nregs[regno][GET_MODE (x)];
4933 /* Storing into a spilled-reg invalidates its contents.
4934 This can happen if a block-local pseudo is allocated to that reg
4935 and it wasn't spilled because this block's total need is 0.
4936 Then some insn might have an optional reload and use this reg. */
4937 if (!regs)
4938 for (i = 0; i < nr; i++)
4939 /* But don't do this if the reg actually serves as an output
4940 reload reg in the current instruction. */
4941 if (n_reloads == 0
4942 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4944 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4945 spill_reg_store[regno + i] = 0;
4949 if (regs)
4950 while (nr-- > 0)
4951 SET_REGNO_REG_SET (regs, regno + nr);
4952 else
4954 /* Since value of X has changed,
4955 forget any value previously copied from it. */
4957 while (nr-- > 0)
4958 /* But don't forget a copy if this is the output reload
4959 that establishes the copy's validity. */
4960 if (n_reloads == 0
4961 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4962 reg_last_reload_reg[regno + nr] = 0;
4966 /* Forget the reloads marked in regset by previous function. */
4967 static void
4968 forget_marked_reloads (regset regs)
4970 unsigned int reg;
4971 reg_set_iterator rsi;
4972 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4974 if (reg < FIRST_PSEUDO_REGISTER
4975 /* But don't do this if the reg actually serves as an output
4976 reload reg in the current instruction. */
4977 && (n_reloads == 0
4978 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4980 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4981 spill_reg_store[reg] = 0;
4983 if (n_reloads == 0
4984 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4985 reg_last_reload_reg[reg] = 0;
4989 /* The following HARD_REG_SETs indicate when each hard register is
4990 used for a reload of various parts of the current insn. */
4992 /* If reg is unavailable for all reloads. */
4993 static HARD_REG_SET reload_reg_unavailable;
4994 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4995 static HARD_REG_SET reload_reg_used;
4996 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4997 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4998 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4999 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5000 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5001 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5002 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5003 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5004 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5005 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5006 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5007 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5008 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5009 static HARD_REG_SET reload_reg_used_in_op_addr;
5010 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5011 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5012 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5013 static HARD_REG_SET reload_reg_used_in_insn;
5014 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5015 static HARD_REG_SET reload_reg_used_in_other_addr;
5017 /* If reg is in use as a reload reg for any sort of reload. */
5018 static HARD_REG_SET reload_reg_used_at_all;
5020 /* If reg is use as an inherited reload. We just mark the first register
5021 in the group. */
5022 static HARD_REG_SET reload_reg_used_for_inherit;
5024 /* Records which hard regs are used in any way, either as explicit use or
5025 by being allocated to a pseudo during any point of the current insn. */
5026 static HARD_REG_SET reg_used_in_insn;
5028 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5029 TYPE. MODE is used to indicate how many consecutive regs are
5030 actually used. */
5032 static void
5033 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5034 enum machine_mode mode)
5036 switch (type)
5038 case RELOAD_OTHER:
5039 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5040 break;
5042 case RELOAD_FOR_INPUT_ADDRESS:
5043 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5044 break;
5046 case RELOAD_FOR_INPADDR_ADDRESS:
5047 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5048 break;
5050 case RELOAD_FOR_OUTPUT_ADDRESS:
5051 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5052 break;
5054 case RELOAD_FOR_OUTADDR_ADDRESS:
5055 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5056 break;
5058 case RELOAD_FOR_OPERAND_ADDRESS:
5059 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5060 break;
5062 case RELOAD_FOR_OPADDR_ADDR:
5063 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5064 break;
5066 case RELOAD_FOR_OTHER_ADDRESS:
5067 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5068 break;
5070 case RELOAD_FOR_INPUT:
5071 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5072 break;
5074 case RELOAD_FOR_OUTPUT:
5075 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5076 break;
5078 case RELOAD_FOR_INSN:
5079 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5080 break;
5083 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5086 /* Similarly, but show REGNO is no longer in use for a reload. */
5088 static void
5089 clear_reload_reg_in_use (unsigned int regno, int opnum,
5090 enum reload_type type, enum machine_mode mode)
5092 unsigned int nregs = hard_regno_nregs[regno][mode];
5093 unsigned int start_regno, end_regno, r;
5094 int i;
5095 /* A complication is that for some reload types, inheritance might
5096 allow multiple reloads of the same types to share a reload register.
5097 We set check_opnum if we have to check only reloads with the same
5098 operand number, and check_any if we have to check all reloads. */
5099 int check_opnum = 0;
5100 int check_any = 0;
5101 HARD_REG_SET *used_in_set;
5103 switch (type)
5105 case RELOAD_OTHER:
5106 used_in_set = &reload_reg_used;
5107 break;
5109 case RELOAD_FOR_INPUT_ADDRESS:
5110 used_in_set = &reload_reg_used_in_input_addr[opnum];
5111 break;
5113 case RELOAD_FOR_INPADDR_ADDRESS:
5114 check_opnum = 1;
5115 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5116 break;
5118 case RELOAD_FOR_OUTPUT_ADDRESS:
5119 used_in_set = &reload_reg_used_in_output_addr[opnum];
5120 break;
5122 case RELOAD_FOR_OUTADDR_ADDRESS:
5123 check_opnum = 1;
5124 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5125 break;
5127 case RELOAD_FOR_OPERAND_ADDRESS:
5128 used_in_set = &reload_reg_used_in_op_addr;
5129 break;
5131 case RELOAD_FOR_OPADDR_ADDR:
5132 check_any = 1;
5133 used_in_set = &reload_reg_used_in_op_addr_reload;
5134 break;
5136 case RELOAD_FOR_OTHER_ADDRESS:
5137 used_in_set = &reload_reg_used_in_other_addr;
5138 check_any = 1;
5139 break;
5141 case RELOAD_FOR_INPUT:
5142 used_in_set = &reload_reg_used_in_input[opnum];
5143 break;
5145 case RELOAD_FOR_OUTPUT:
5146 used_in_set = &reload_reg_used_in_output[opnum];
5147 break;
5149 case RELOAD_FOR_INSN:
5150 used_in_set = &reload_reg_used_in_insn;
5151 break;
5152 default:
5153 gcc_unreachable ();
5155 /* We resolve conflicts with remaining reloads of the same type by
5156 excluding the intervals of reload registers by them from the
5157 interval of freed reload registers. Since we only keep track of
5158 one set of interval bounds, we might have to exclude somewhat
5159 more than what would be necessary if we used a HARD_REG_SET here.
5160 But this should only happen very infrequently, so there should
5161 be no reason to worry about it. */
5163 start_regno = regno;
5164 end_regno = regno + nregs;
5165 if (check_opnum || check_any)
5167 for (i = n_reloads - 1; i >= 0; i--)
5169 if (rld[i].when_needed == type
5170 && (check_any || rld[i].opnum == opnum)
5171 && rld[i].reg_rtx)
5173 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5174 unsigned int conflict_end
5175 = end_hard_regno (rld[i].mode, conflict_start);
5177 /* If there is an overlap with the first to-be-freed register,
5178 adjust the interval start. */
5179 if (conflict_start <= start_regno && conflict_end > start_regno)
5180 start_regno = conflict_end;
5181 /* Otherwise, if there is a conflict with one of the other
5182 to-be-freed registers, adjust the interval end. */
5183 if (conflict_start > start_regno && conflict_start < end_regno)
5184 end_regno = conflict_start;
5189 for (r = start_regno; r < end_regno; r++)
5190 CLEAR_HARD_REG_BIT (*used_in_set, r);
5193 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5194 specified by OPNUM and TYPE. */
5196 static int
5197 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5199 int i;
5201 /* In use for a RELOAD_OTHER means it's not available for anything. */
5202 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5203 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5204 return 0;
5206 switch (type)
5208 case RELOAD_OTHER:
5209 /* In use for anything means we can't use it for RELOAD_OTHER. */
5210 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5211 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5212 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5213 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5214 return 0;
5216 for (i = 0; i < reload_n_operands; i++)
5217 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5218 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5219 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5220 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5221 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5222 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5223 return 0;
5225 return 1;
5227 case RELOAD_FOR_INPUT:
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5229 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5230 return 0;
5232 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5233 return 0;
5235 /* If it is used for some other input, can't use it. */
5236 for (i = 0; i < reload_n_operands; i++)
5237 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5238 return 0;
5240 /* If it is used in a later operand's address, can't use it. */
5241 for (i = opnum + 1; i < reload_n_operands; i++)
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5243 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5244 return 0;
5246 return 1;
5248 case RELOAD_FOR_INPUT_ADDRESS:
5249 /* Can't use a register if it is used for an input address for this
5250 operand or used as an input in an earlier one. */
5251 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5252 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5253 return 0;
5255 for (i = 0; i < opnum; i++)
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5257 return 0;
5259 return 1;
5261 case RELOAD_FOR_INPADDR_ADDRESS:
5262 /* Can't use a register if it is used for an input address
5263 for this operand or used as an input in an earlier
5264 one. */
5265 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5266 return 0;
5268 for (i = 0; i < opnum; i++)
5269 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5270 return 0;
5272 return 1;
5274 case RELOAD_FOR_OUTPUT_ADDRESS:
5275 /* Can't use a register if it is used for an output address for this
5276 operand or used as an output in this or a later operand. Note
5277 that multiple output operands are emitted in reverse order, so
5278 the conflicting ones are those with lower indices. */
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5280 return 0;
5282 for (i = 0; i <= opnum; i++)
5283 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5284 return 0;
5286 return 1;
5288 case RELOAD_FOR_OUTADDR_ADDRESS:
5289 /* Can't use a register if it is used for an output address
5290 for this operand or used as an output in this or a
5291 later operand. Note that multiple output operands are
5292 emitted in reverse order, so the conflicting ones are
5293 those with lower indices. */
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5295 return 0;
5297 for (i = 0; i <= opnum; i++)
5298 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5299 return 0;
5301 return 1;
5303 case RELOAD_FOR_OPERAND_ADDRESS:
5304 for (i = 0; i < reload_n_operands; i++)
5305 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5306 return 0;
5308 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5309 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5311 case RELOAD_FOR_OPADDR_ADDR:
5312 for (i = 0; i < reload_n_operands; i++)
5313 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5314 return 0;
5316 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5318 case RELOAD_FOR_OUTPUT:
5319 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5320 outputs, or an operand address for this or an earlier output.
5321 Note that multiple output operands are emitted in reverse order,
5322 so the conflicting ones are those with higher indices. */
5323 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5324 return 0;
5326 for (i = 0; i < reload_n_operands; i++)
5327 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5328 return 0;
5330 for (i = opnum; i < reload_n_operands; i++)
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5332 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5333 return 0;
5335 return 1;
5337 case RELOAD_FOR_INSN:
5338 for (i = 0; i < reload_n_operands; i++)
5339 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5340 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5341 return 0;
5343 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5344 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5346 case RELOAD_FOR_OTHER_ADDRESS:
5347 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5349 default:
5350 gcc_unreachable ();
5354 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5355 the number RELOADNUM, is still available in REGNO at the end of the insn.
5357 We can assume that the reload reg was already tested for availability
5358 at the time it is needed, and we should not check this again,
5359 in case the reg has already been marked in use. */
5361 static int
5362 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5364 int opnum = rld[reloadnum].opnum;
5365 enum reload_type type = rld[reloadnum].when_needed;
5366 int i;
5368 /* See if there is a reload with the same type for this operand, using
5369 the same register. This case is not handled by the code below. */
5370 for (i = reloadnum + 1; i < n_reloads; i++)
5372 rtx reg;
5373 int nregs;
5375 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5376 continue;
5377 reg = rld[i].reg_rtx;
5378 if (reg == NULL_RTX)
5379 continue;
5380 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5381 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5382 return 0;
5385 switch (type)
5387 case RELOAD_OTHER:
5388 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5389 its value must reach the end. */
5390 return 1;
5392 /* If this use is for part of the insn,
5393 its value reaches if no subsequent part uses the same register.
5394 Just like the above function, don't try to do this with lots
5395 of fallthroughs. */
5397 case RELOAD_FOR_OTHER_ADDRESS:
5398 /* Here we check for everything else, since these don't conflict
5399 with anything else and everything comes later. */
5401 for (i = 0; i < reload_n_operands; i++)
5402 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5403 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5404 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5405 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5406 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5407 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5408 return 0;
5410 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5411 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5412 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5413 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5415 case RELOAD_FOR_INPUT_ADDRESS:
5416 case RELOAD_FOR_INPADDR_ADDRESS:
5417 /* Similar, except that we check only for this and subsequent inputs
5418 and the address of only subsequent inputs and we do not need
5419 to check for RELOAD_OTHER objects since they are known not to
5420 conflict. */
5422 for (i = opnum; i < reload_n_operands; i++)
5423 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5424 return 0;
5426 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5427 could be killed if the register is also used by reload with type
5428 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5429 if (type == RELOAD_FOR_INPADDR_ADDRESS
5430 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5431 return 0;
5433 for (i = opnum + 1; i < reload_n_operands; i++)
5434 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5435 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5436 return 0;
5438 for (i = 0; i < reload_n_operands; i++)
5439 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5440 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5441 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5442 return 0;
5444 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5445 return 0;
5447 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5448 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5449 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5451 case RELOAD_FOR_INPUT:
5452 /* Similar to input address, except we start at the next operand for
5453 both input and input address and we do not check for
5454 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5455 would conflict. */
5457 for (i = opnum + 1; i < reload_n_operands; i++)
5458 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5459 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5461 return 0;
5463 /* ... fall through ... */
5465 case RELOAD_FOR_OPERAND_ADDRESS:
5466 /* Check outputs and their addresses. */
5468 for (i = 0; i < reload_n_operands; i++)
5469 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5470 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5471 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5472 return 0;
5474 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5476 case RELOAD_FOR_OPADDR_ADDR:
5477 for (i = 0; i < reload_n_operands; i++)
5478 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5479 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5480 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5481 return 0;
5483 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5484 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5485 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5487 case RELOAD_FOR_INSN:
5488 /* These conflict with other outputs with RELOAD_OTHER. So
5489 we need only check for output addresses. */
5491 opnum = reload_n_operands;
5493 /* ... fall through ... */
5495 case RELOAD_FOR_OUTPUT:
5496 case RELOAD_FOR_OUTPUT_ADDRESS:
5497 case RELOAD_FOR_OUTADDR_ADDRESS:
5498 /* We already know these can't conflict with a later output. So the
5499 only thing to check are later output addresses.
5500 Note that multiple output operands are emitted in reverse order,
5501 so the conflicting ones are those with lower indices. */
5502 for (i = 0; i < opnum; i++)
5503 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5504 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5505 return 0;
5507 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5508 could be killed if the register is also used by reload with type
5509 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5510 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5511 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5512 return 0;
5514 return 1;
5516 default:
5517 gcc_unreachable ();
5521 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5522 every register in REG. */
5524 static bool
5525 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5527 unsigned int i;
5529 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5530 if (!reload_reg_reaches_end_p (i, reloadnum))
5531 return false;
5532 return true;
5536 /* Returns whether R1 and R2 are uniquely chained: the value of one
5537 is used by the other, and that value is not used by any other
5538 reload for this insn. This is used to partially undo the decision
5539 made in find_reloads when in the case of multiple
5540 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5541 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5542 reloads. This code tries to avoid the conflict created by that
5543 change. It might be cleaner to explicitly keep track of which
5544 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5545 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5546 this after the fact. */
5547 static bool
5548 reloads_unique_chain_p (int r1, int r2)
5550 int i;
5552 /* We only check input reloads. */
5553 if (! rld[r1].in || ! rld[r2].in)
5554 return false;
5556 /* Avoid anything with output reloads. */
5557 if (rld[r1].out || rld[r2].out)
5558 return false;
5560 /* "chained" means one reload is a component of the other reload,
5561 not the same as the other reload. */
5562 if (rld[r1].opnum != rld[r2].opnum
5563 || rtx_equal_p (rld[r1].in, rld[r2].in)
5564 || rld[r1].optional || rld[r2].optional
5565 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5566 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5567 return false;
5569 for (i = 0; i < n_reloads; i ++)
5570 /* Look for input reloads that aren't our two */
5571 if (i != r1 && i != r2 && rld[i].in)
5573 /* If our reload is mentioned at all, it isn't a simple chain. */
5574 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5575 return false;
5577 return true;
5580 /* The recursive function change all occurrences of WHAT in *WHERE
5581 to REPL. */
5582 static void
5583 substitute (rtx *where, const_rtx what, rtx repl)
5585 const char *fmt;
5586 int i;
5587 enum rtx_code code;
5589 if (*where == 0)
5590 return;
5592 if (*where == what || rtx_equal_p (*where, what))
5594 /* Record the location of the changed rtx. */
5595 VEC_safe_push (rtx_p, heap, substitute_stack, where);
5596 *where = repl;
5597 return;
5600 code = GET_CODE (*where);
5601 fmt = GET_RTX_FORMAT (code);
5602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5604 if (fmt[i] == 'E')
5606 int j;
5608 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5609 substitute (&XVECEXP (*where, i, j), what, repl);
5611 else if (fmt[i] == 'e')
5612 substitute (&XEXP (*where, i), what, repl);
5616 /* The function returns TRUE if chain of reload R1 and R2 (in any
5617 order) can be evaluated without usage of intermediate register for
5618 the reload containing another reload. It is important to see
5619 gen_reload to understand what the function is trying to do. As an
5620 example, let us have reload chain
5622 r2: const
5623 r1: <something> + const
5625 and reload R2 got reload reg HR. The function returns true if
5626 there is a correct insn HR = HR + <something>. Otherwise,
5627 gen_reload will use intermediate register (and this is the reload
5628 reg for R1) to reload <something>.
5630 We need this function to find a conflict for chain reloads. In our
5631 example, if HR = HR + <something> is incorrect insn, then we cannot
5632 use HR as a reload register for R2. If we do use it then we get a
5633 wrong code:
5635 HR = const
5636 HR = <something>
5637 HR = HR + HR
5640 static bool
5641 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5643 /* Assume other cases in gen_reload are not possible for
5644 chain reloads or do need an intermediate hard registers. */
5645 bool result = true;
5646 int regno, n, code;
5647 rtx out, in, insn;
5648 rtx last = get_last_insn ();
5650 /* Make r2 a component of r1. */
5651 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5653 n = r1;
5654 r1 = r2;
5655 r2 = n;
5657 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5658 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5659 gcc_assert (regno >= 0);
5660 out = gen_rtx_REG (rld[r1].mode, regno);
5661 in = rld[r1].in;
5662 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5664 /* If IN is a paradoxical SUBREG, remove it and try to put the
5665 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5666 strip_paradoxical_subreg (&in, &out);
5668 if (GET_CODE (in) == PLUS
5669 && (REG_P (XEXP (in, 0))
5670 || GET_CODE (XEXP (in, 0)) == SUBREG
5671 || MEM_P (XEXP (in, 0)))
5672 && (REG_P (XEXP (in, 1))
5673 || GET_CODE (XEXP (in, 1)) == SUBREG
5674 || CONSTANT_P (XEXP (in, 1))
5675 || MEM_P (XEXP (in, 1))))
5677 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5678 code = recog_memoized (insn);
5679 result = false;
5681 if (code >= 0)
5683 extract_insn (insn);
5684 /* We want constrain operands to treat this insn strictly in
5685 its validity determination, i.e., the way it would after
5686 reload has completed. */
5687 result = constrain_operands (1);
5690 delete_insns_since (last);
5693 /* Restore the original value at each changed address within R1. */
5694 while (!VEC_empty (rtx_p, substitute_stack))
5696 rtx *where = VEC_pop (rtx_p, substitute_stack);
5697 *where = rld[r2].in;
5700 return result;
5703 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5704 Return 0 otherwise.
5706 This function uses the same algorithm as reload_reg_free_p above. */
5708 static int
5709 reloads_conflict (int r1, int r2)
5711 enum reload_type r1_type = rld[r1].when_needed;
5712 enum reload_type r2_type = rld[r2].when_needed;
5713 int r1_opnum = rld[r1].opnum;
5714 int r2_opnum = rld[r2].opnum;
5716 /* RELOAD_OTHER conflicts with everything. */
5717 if (r2_type == RELOAD_OTHER)
5718 return 1;
5720 /* Otherwise, check conflicts differently for each type. */
5722 switch (r1_type)
5724 case RELOAD_FOR_INPUT:
5725 return (r2_type == RELOAD_FOR_INSN
5726 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5727 || r2_type == RELOAD_FOR_OPADDR_ADDR
5728 || r2_type == RELOAD_FOR_INPUT
5729 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5730 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5731 && r2_opnum > r1_opnum));
5733 case RELOAD_FOR_INPUT_ADDRESS:
5734 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5735 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5737 case RELOAD_FOR_INPADDR_ADDRESS:
5738 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5739 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5741 case RELOAD_FOR_OUTPUT_ADDRESS:
5742 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5743 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5745 case RELOAD_FOR_OUTADDR_ADDRESS:
5746 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5747 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5749 case RELOAD_FOR_OPERAND_ADDRESS:
5750 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5751 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5752 && (!reloads_unique_chain_p (r1, r2)
5753 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5755 case RELOAD_FOR_OPADDR_ADDR:
5756 return (r2_type == RELOAD_FOR_INPUT
5757 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5759 case RELOAD_FOR_OUTPUT:
5760 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5761 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5762 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5763 && r2_opnum >= r1_opnum));
5765 case RELOAD_FOR_INSN:
5766 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5767 || r2_type == RELOAD_FOR_INSN
5768 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5770 case RELOAD_FOR_OTHER_ADDRESS:
5771 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5773 case RELOAD_OTHER:
5774 return 1;
5776 default:
5777 gcc_unreachable ();
5781 /* Indexed by reload number, 1 if incoming value
5782 inherited from previous insns. */
5783 static char reload_inherited[MAX_RELOADS];
5785 /* For an inherited reload, this is the insn the reload was inherited from,
5786 if we know it. Otherwise, this is 0. */
5787 static rtx reload_inheritance_insn[MAX_RELOADS];
5789 /* If nonzero, this is a place to get the value of the reload,
5790 rather than using reload_in. */
5791 static rtx reload_override_in[MAX_RELOADS];
5793 /* For each reload, the hard register number of the register used,
5794 or -1 if we did not need a register for this reload. */
5795 static int reload_spill_index[MAX_RELOADS];
5797 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5798 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5800 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5801 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5803 /* Subroutine of free_for_value_p, used to check a single register.
5804 START_REGNO is the starting regno of the full reload register
5805 (possibly comprising multiple hard registers) that we are considering. */
5807 static int
5808 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5809 enum reload_type type, rtx value, rtx out,
5810 int reloadnum, int ignore_address_reloads)
5812 int time1;
5813 /* Set if we see an input reload that must not share its reload register
5814 with any new earlyclobber, but might otherwise share the reload
5815 register with an output or input-output reload. */
5816 int check_earlyclobber = 0;
5817 int i;
5818 int copy = 0;
5820 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5821 return 0;
5823 if (out == const0_rtx)
5825 copy = 1;
5826 out = NULL_RTX;
5829 /* We use some pseudo 'time' value to check if the lifetimes of the
5830 new register use would overlap with the one of a previous reload
5831 that is not read-only or uses a different value.
5832 The 'time' used doesn't have to be linear in any shape or form, just
5833 monotonic.
5834 Some reload types use different 'buckets' for each operand.
5835 So there are MAX_RECOG_OPERANDS different time values for each
5836 such reload type.
5837 We compute TIME1 as the time when the register for the prospective
5838 new reload ceases to be live, and TIME2 for each existing
5839 reload as the time when that the reload register of that reload
5840 becomes live.
5841 Where there is little to be gained by exact lifetime calculations,
5842 we just make conservative assumptions, i.e. a longer lifetime;
5843 this is done in the 'default:' cases. */
5844 switch (type)
5846 case RELOAD_FOR_OTHER_ADDRESS:
5847 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5848 time1 = copy ? 0 : 1;
5849 break;
5850 case RELOAD_OTHER:
5851 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5852 break;
5853 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5854 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5855 respectively, to the time values for these, we get distinct time
5856 values. To get distinct time values for each operand, we have to
5857 multiply opnum by at least three. We round that up to four because
5858 multiply by four is often cheaper. */
5859 case RELOAD_FOR_INPADDR_ADDRESS:
5860 time1 = opnum * 4 + 2;
5861 break;
5862 case RELOAD_FOR_INPUT_ADDRESS:
5863 time1 = opnum * 4 + 3;
5864 break;
5865 case RELOAD_FOR_INPUT:
5866 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5867 executes (inclusive). */
5868 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5869 break;
5870 case RELOAD_FOR_OPADDR_ADDR:
5871 /* opnum * 4 + 4
5872 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5873 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5874 break;
5875 case RELOAD_FOR_OPERAND_ADDRESS:
5876 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5877 is executed. */
5878 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5879 break;
5880 case RELOAD_FOR_OUTADDR_ADDRESS:
5881 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5882 break;
5883 case RELOAD_FOR_OUTPUT_ADDRESS:
5884 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5885 break;
5886 default:
5887 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5890 for (i = 0; i < n_reloads; i++)
5892 rtx reg = rld[i].reg_rtx;
5893 if (reg && REG_P (reg)
5894 && ((unsigned) regno - true_regnum (reg)
5895 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5896 && i != reloadnum)
5898 rtx other_input = rld[i].in;
5900 /* If the other reload loads the same input value, that
5901 will not cause a conflict only if it's loading it into
5902 the same register. */
5903 if (true_regnum (reg) != start_regno)
5904 other_input = NULL_RTX;
5905 if (! other_input || ! rtx_equal_p (other_input, value)
5906 || rld[i].out || out)
5908 int time2;
5909 switch (rld[i].when_needed)
5911 case RELOAD_FOR_OTHER_ADDRESS:
5912 time2 = 0;
5913 break;
5914 case RELOAD_FOR_INPADDR_ADDRESS:
5915 /* find_reloads makes sure that a
5916 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5917 by at most one - the first -
5918 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5919 address reload is inherited, the address address reload
5920 goes away, so we can ignore this conflict. */
5921 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5922 && ignore_address_reloads
5923 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5924 Then the address address is still needed to store
5925 back the new address. */
5926 && ! rld[reloadnum].out)
5927 continue;
5928 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5929 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5930 reloads go away. */
5931 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5932 && ignore_address_reloads
5933 /* Unless we are reloading an auto_inc expression. */
5934 && ! rld[reloadnum].out)
5935 continue;
5936 time2 = rld[i].opnum * 4 + 2;
5937 break;
5938 case RELOAD_FOR_INPUT_ADDRESS:
5939 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5940 && ignore_address_reloads
5941 && ! rld[reloadnum].out)
5942 continue;
5943 time2 = rld[i].opnum * 4 + 3;
5944 break;
5945 case RELOAD_FOR_INPUT:
5946 time2 = rld[i].opnum * 4 + 4;
5947 check_earlyclobber = 1;
5948 break;
5949 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5950 == MAX_RECOG_OPERAND * 4 */
5951 case RELOAD_FOR_OPADDR_ADDR:
5952 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5953 && ignore_address_reloads
5954 && ! rld[reloadnum].out)
5955 continue;
5956 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5957 break;
5958 case RELOAD_FOR_OPERAND_ADDRESS:
5959 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5960 check_earlyclobber = 1;
5961 break;
5962 case RELOAD_FOR_INSN:
5963 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5964 break;
5965 case RELOAD_FOR_OUTPUT:
5966 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5967 instruction is executed. */
5968 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5969 break;
5970 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5971 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5972 value. */
5973 case RELOAD_FOR_OUTADDR_ADDRESS:
5974 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5975 && ignore_address_reloads
5976 && ! rld[reloadnum].out)
5977 continue;
5978 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5979 break;
5980 case RELOAD_FOR_OUTPUT_ADDRESS:
5981 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5982 break;
5983 case RELOAD_OTHER:
5984 /* If there is no conflict in the input part, handle this
5985 like an output reload. */
5986 if (! rld[i].in || rtx_equal_p (other_input, value))
5988 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5989 /* Earlyclobbered outputs must conflict with inputs. */
5990 if (earlyclobber_operand_p (rld[i].out))
5991 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5993 break;
5995 time2 = 1;
5996 /* RELOAD_OTHER might be live beyond instruction execution,
5997 but this is not obvious when we set time2 = 1. So check
5998 here if there might be a problem with the new reload
5999 clobbering the register used by the RELOAD_OTHER. */
6000 if (out)
6001 return 0;
6002 break;
6003 default:
6004 return 0;
6006 if ((time1 >= time2
6007 && (! rld[i].in || rld[i].out
6008 || ! rtx_equal_p (other_input, value)))
6009 || (out && rld[reloadnum].out_reg
6010 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6011 return 0;
6016 /* Earlyclobbered outputs must conflict with inputs. */
6017 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6018 return 0;
6020 return 1;
6023 /* Return 1 if the value in reload reg REGNO, as used by a reload
6024 needed for the part of the insn specified by OPNUM and TYPE,
6025 may be used to load VALUE into it.
6027 MODE is the mode in which the register is used, this is needed to
6028 determine how many hard regs to test.
6030 Other read-only reloads with the same value do not conflict
6031 unless OUT is nonzero and these other reloads have to live while
6032 output reloads live.
6033 If OUT is CONST0_RTX, this is a special case: it means that the
6034 test should not be for using register REGNO as reload register, but
6035 for copying from register REGNO into the reload register.
6037 RELOADNUM is the number of the reload we want to load this value for;
6038 a reload does not conflict with itself.
6040 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6041 reloads that load an address for the very reload we are considering.
6043 The caller has to make sure that there is no conflict with the return
6044 register. */
6046 static int
6047 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6048 enum reload_type type, rtx value, rtx out, int reloadnum,
6049 int ignore_address_reloads)
6051 int nregs = hard_regno_nregs[regno][mode];
6052 while (nregs-- > 0)
6053 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6054 value, out, reloadnum,
6055 ignore_address_reloads))
6056 return 0;
6057 return 1;
6060 /* Return nonzero if the rtx X is invariant over the current function. */
6061 /* ??? Actually, the places where we use this expect exactly what is
6062 tested here, and not everything that is function invariant. In
6063 particular, the frame pointer and arg pointer are special cased;
6064 pic_offset_table_rtx is not, and we must not spill these things to
6065 memory. */
6068 function_invariant_p (const_rtx x)
6070 if (CONSTANT_P (x))
6071 return 1;
6072 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6073 return 1;
6074 if (GET_CODE (x) == PLUS
6075 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6076 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6077 return 1;
6078 return 0;
6081 /* Determine whether the reload reg X overlaps any rtx'es used for
6082 overriding inheritance. Return nonzero if so. */
6084 static int
6085 conflicts_with_override (rtx x)
6087 int i;
6088 for (i = 0; i < n_reloads; i++)
6089 if (reload_override_in[i]
6090 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6091 return 1;
6092 return 0;
6095 /* Give an error message saying we failed to find a reload for INSN,
6096 and clear out reload R. */
6097 static void
6098 failed_reload (rtx insn, int r)
6100 if (asm_noperands (PATTERN (insn)) < 0)
6101 /* It's the compiler's fault. */
6102 fatal_insn ("could not find a spill register", insn);
6104 /* It's the user's fault; the operand's mode and constraint
6105 don't match. Disable this reload so we don't crash in final. */
6106 error_for_asm (insn,
6107 "%<asm%> operand constraint incompatible with operand size");
6108 rld[r].in = 0;
6109 rld[r].out = 0;
6110 rld[r].reg_rtx = 0;
6111 rld[r].optional = 1;
6112 rld[r].secondary_p = 1;
6115 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6116 for reload R. If it's valid, get an rtx for it. Return nonzero if
6117 successful. */
6118 static int
6119 set_reload_reg (int i, int r)
6121 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6122 parameter. */
6123 int regno ATTRIBUTE_UNUSED;
6124 rtx reg = spill_reg_rtx[i];
6126 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6127 spill_reg_rtx[i] = reg
6128 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6130 regno = true_regnum (reg);
6132 /* Detect when the reload reg can't hold the reload mode.
6133 This used to be one `if', but Sequent compiler can't handle that. */
6134 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6136 enum machine_mode test_mode = VOIDmode;
6137 if (rld[r].in)
6138 test_mode = GET_MODE (rld[r].in);
6139 /* If rld[r].in has VOIDmode, it means we will load it
6140 in whatever mode the reload reg has: to wit, rld[r].mode.
6141 We have already tested that for validity. */
6142 /* Aside from that, we need to test that the expressions
6143 to reload from or into have modes which are valid for this
6144 reload register. Otherwise the reload insns would be invalid. */
6145 if (! (rld[r].in != 0 && test_mode != VOIDmode
6146 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6147 if (! (rld[r].out != 0
6148 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6150 /* The reg is OK. */
6151 last_spill_reg = i;
6153 /* Mark as in use for this insn the reload regs we use
6154 for this. */
6155 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6156 rld[r].when_needed, rld[r].mode);
6158 rld[r].reg_rtx = reg;
6159 reload_spill_index[r] = spill_regs[i];
6160 return 1;
6163 return 0;
6166 /* Find a spill register to use as a reload register for reload R.
6167 LAST_RELOAD is nonzero if this is the last reload for the insn being
6168 processed.
6170 Set rld[R].reg_rtx to the register allocated.
6172 We return 1 if successful, or 0 if we couldn't find a spill reg and
6173 we didn't change anything. */
6175 static int
6176 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6177 int last_reload)
6179 int i, pass, count;
6181 /* If we put this reload ahead, thinking it is a group,
6182 then insist on finding a group. Otherwise we can grab a
6183 reg that some other reload needs.
6184 (That can happen when we have a 68000 DATA_OR_FP_REG
6185 which is a group of data regs or one fp reg.)
6186 We need not be so restrictive if there are no more reloads
6187 for this insn.
6189 ??? Really it would be nicer to have smarter handling
6190 for that kind of reg class, where a problem like this is normal.
6191 Perhaps those classes should be avoided for reloading
6192 by use of more alternatives. */
6194 int force_group = rld[r].nregs > 1 && ! last_reload;
6196 /* If we want a single register and haven't yet found one,
6197 take any reg in the right class and not in use.
6198 If we want a consecutive group, here is where we look for it.
6200 We use three passes so we can first look for reload regs to
6201 reuse, which are already in use for other reloads in this insn,
6202 and only then use additional registers which are not "bad", then
6203 finally any register.
6205 I think that maximizing reuse is needed to make sure we don't
6206 run out of reload regs. Suppose we have three reloads, and
6207 reloads A and B can share regs. These need two regs.
6208 Suppose A and B are given different regs.
6209 That leaves none for C. */
6210 for (pass = 0; pass < 3; pass++)
6212 /* I is the index in spill_regs.
6213 We advance it round-robin between insns to use all spill regs
6214 equally, so that inherited reloads have a chance
6215 of leapfrogging each other. */
6217 i = last_spill_reg;
6219 for (count = 0; count < n_spills; count++)
6221 int rclass = (int) rld[r].rclass;
6222 int regnum;
6224 i++;
6225 if (i >= n_spills)
6226 i -= n_spills;
6227 regnum = spill_regs[i];
6229 if ((reload_reg_free_p (regnum, rld[r].opnum,
6230 rld[r].when_needed)
6231 || (rld[r].in
6232 /* We check reload_reg_used to make sure we
6233 don't clobber the return register. */
6234 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6235 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6236 rld[r].when_needed, rld[r].in,
6237 rld[r].out, r, 1)))
6238 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6239 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6240 /* Look first for regs to share, then for unshared. But
6241 don't share regs used for inherited reloads; they are
6242 the ones we want to preserve. */
6243 && (pass
6244 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6245 regnum)
6246 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6247 regnum))))
6249 int nr = hard_regno_nregs[regnum][rld[r].mode];
6251 /* During the second pass we want to avoid reload registers
6252 which are "bad" for this reload. */
6253 if (pass == 1
6254 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6255 continue;
6257 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6258 (on 68000) got us two FP regs. If NR is 1,
6259 we would reject both of them. */
6260 if (force_group)
6261 nr = rld[r].nregs;
6262 /* If we need only one reg, we have already won. */
6263 if (nr == 1)
6265 /* But reject a single reg if we demand a group. */
6266 if (force_group)
6267 continue;
6268 break;
6270 /* Otherwise check that as many consecutive regs as we need
6271 are available here. */
6272 while (nr > 1)
6274 int regno = regnum + nr - 1;
6275 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6276 && spill_reg_order[regno] >= 0
6277 && reload_reg_free_p (regno, rld[r].opnum,
6278 rld[r].when_needed)))
6279 break;
6280 nr--;
6282 if (nr == 1)
6283 break;
6287 /* If we found something on the current pass, omit later passes. */
6288 if (count < n_spills)
6289 break;
6292 /* We should have found a spill register by now. */
6293 if (count >= n_spills)
6294 return 0;
6296 /* I is the index in SPILL_REG_RTX of the reload register we are to
6297 allocate. Get an rtx for it and find its register number. */
6299 return set_reload_reg (i, r);
6302 /* Initialize all the tables needed to allocate reload registers.
6303 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6304 is the array we use to restore the reg_rtx field for every reload. */
6306 static void
6307 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6309 int i;
6311 for (i = 0; i < n_reloads; i++)
6312 rld[i].reg_rtx = save_reload_reg_rtx[i];
6314 memset (reload_inherited, 0, MAX_RELOADS);
6315 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6316 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6318 CLEAR_HARD_REG_SET (reload_reg_used);
6319 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6320 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6321 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6322 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6323 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6325 CLEAR_HARD_REG_SET (reg_used_in_insn);
6327 HARD_REG_SET tmp;
6328 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6329 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6330 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6331 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6332 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6333 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6336 for (i = 0; i < reload_n_operands; i++)
6338 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6339 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6340 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6341 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6342 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6343 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6346 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6348 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6350 for (i = 0; i < n_reloads; i++)
6351 /* If we have already decided to use a certain register,
6352 don't use it in another way. */
6353 if (rld[i].reg_rtx)
6354 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6355 rld[i].when_needed, rld[i].mode);
6358 /* Assign hard reg targets for the pseudo-registers we must reload
6359 into hard regs for this insn.
6360 Also output the instructions to copy them in and out of the hard regs.
6362 For machines with register classes, we are responsible for
6363 finding a reload reg in the proper class. */
6365 static void
6366 choose_reload_regs (struct insn_chain *chain)
6368 rtx insn = chain->insn;
6369 int i, j;
6370 unsigned int max_group_size = 1;
6371 enum reg_class group_class = NO_REGS;
6372 int pass, win, inheritance;
6374 rtx save_reload_reg_rtx[MAX_RELOADS];
6376 /* In order to be certain of getting the registers we need,
6377 we must sort the reloads into order of increasing register class.
6378 Then our grabbing of reload registers will parallel the process
6379 that provided the reload registers.
6381 Also note whether any of the reloads wants a consecutive group of regs.
6382 If so, record the maximum size of the group desired and what
6383 register class contains all the groups needed by this insn. */
6385 for (j = 0; j < n_reloads; j++)
6387 reload_order[j] = j;
6388 if (rld[j].reg_rtx != NULL_RTX)
6390 gcc_assert (REG_P (rld[j].reg_rtx)
6391 && HARD_REGISTER_P (rld[j].reg_rtx));
6392 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6394 else
6395 reload_spill_index[j] = -1;
6397 if (rld[j].nregs > 1)
6399 max_group_size = MAX (rld[j].nregs, max_group_size);
6400 group_class
6401 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6404 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6407 if (n_reloads > 1)
6408 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6410 /* If -O, try first with inheritance, then turning it off.
6411 If not -O, don't do inheritance.
6412 Using inheritance when not optimizing leads to paradoxes
6413 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6414 because one side of the comparison might be inherited. */
6415 win = 0;
6416 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6418 choose_reload_regs_init (chain, save_reload_reg_rtx);
6420 /* Process the reloads in order of preference just found.
6421 Beyond this point, subregs can be found in reload_reg_rtx.
6423 This used to look for an existing reloaded home for all of the
6424 reloads, and only then perform any new reloads. But that could lose
6425 if the reloads were done out of reg-class order because a later
6426 reload with a looser constraint might have an old home in a register
6427 needed by an earlier reload with a tighter constraint.
6429 To solve this, we make two passes over the reloads, in the order
6430 described above. In the first pass we try to inherit a reload
6431 from a previous insn. If there is a later reload that needs a
6432 class that is a proper subset of the class being processed, we must
6433 also allocate a spill register during the first pass.
6435 Then make a second pass over the reloads to allocate any reloads
6436 that haven't been given registers yet. */
6438 for (j = 0; j < n_reloads; j++)
6440 int r = reload_order[j];
6441 rtx search_equiv = NULL_RTX;
6443 /* Ignore reloads that got marked inoperative. */
6444 if (rld[r].out == 0 && rld[r].in == 0
6445 && ! rld[r].secondary_p)
6446 continue;
6448 /* If find_reloads chose to use reload_in or reload_out as a reload
6449 register, we don't need to chose one. Otherwise, try even if it
6450 found one since we might save an insn if we find the value lying
6451 around.
6452 Try also when reload_in is a pseudo without a hard reg. */
6453 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6454 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6455 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6456 && !MEM_P (rld[r].in)
6457 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6458 continue;
6460 #if 0 /* No longer needed for correct operation.
6461 It might give better code, or might not; worth an experiment? */
6462 /* If this is an optional reload, we can't inherit from earlier insns
6463 until we are sure that any non-optional reloads have been allocated.
6464 The following code takes advantage of the fact that optional reloads
6465 are at the end of reload_order. */
6466 if (rld[r].optional != 0)
6467 for (i = 0; i < j; i++)
6468 if ((rld[reload_order[i]].out != 0
6469 || rld[reload_order[i]].in != 0
6470 || rld[reload_order[i]].secondary_p)
6471 && ! rld[reload_order[i]].optional
6472 && rld[reload_order[i]].reg_rtx == 0)
6473 allocate_reload_reg (chain, reload_order[i], 0);
6474 #endif
6476 /* First see if this pseudo is already available as reloaded
6477 for a previous insn. We cannot try to inherit for reloads
6478 that are smaller than the maximum number of registers needed
6479 for groups unless the register we would allocate cannot be used
6480 for the groups.
6482 We could check here to see if this is a secondary reload for
6483 an object that is already in a register of the desired class.
6484 This would avoid the need for the secondary reload register.
6485 But this is complex because we can't easily determine what
6486 objects might want to be loaded via this reload. So let a
6487 register be allocated here. In `emit_reload_insns' we suppress
6488 one of the loads in the case described above. */
6490 if (inheritance)
6492 int byte = 0;
6493 int regno = -1;
6494 enum machine_mode mode = VOIDmode;
6496 if (rld[r].in == 0)
6498 else if (REG_P (rld[r].in))
6500 regno = REGNO (rld[r].in);
6501 mode = GET_MODE (rld[r].in);
6503 else if (REG_P (rld[r].in_reg))
6505 regno = REGNO (rld[r].in_reg);
6506 mode = GET_MODE (rld[r].in_reg);
6508 else if (GET_CODE (rld[r].in_reg) == SUBREG
6509 && REG_P (SUBREG_REG (rld[r].in_reg)))
6511 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6512 if (regno < FIRST_PSEUDO_REGISTER)
6513 regno = subreg_regno (rld[r].in_reg);
6514 else
6515 byte = SUBREG_BYTE (rld[r].in_reg);
6516 mode = GET_MODE (rld[r].in_reg);
6518 #ifdef AUTO_INC_DEC
6519 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6520 && REG_P (XEXP (rld[r].in_reg, 0)))
6522 regno = REGNO (XEXP (rld[r].in_reg, 0));
6523 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6524 rld[r].out = rld[r].in;
6526 #endif
6527 #if 0
6528 /* This won't work, since REGNO can be a pseudo reg number.
6529 Also, it takes much more hair to keep track of all the things
6530 that can invalidate an inherited reload of part of a pseudoreg. */
6531 else if (GET_CODE (rld[r].in) == SUBREG
6532 && REG_P (SUBREG_REG (rld[r].in)))
6533 regno = subreg_regno (rld[r].in);
6534 #endif
6536 if (regno >= 0
6537 && reg_last_reload_reg[regno] != 0
6538 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6539 >= GET_MODE_SIZE (mode) + byte)
6540 #ifdef CANNOT_CHANGE_MODE_CLASS
6541 /* Verify that the register it's in can be used in
6542 mode MODE. */
6543 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6544 GET_MODE (reg_last_reload_reg[regno]),
6545 mode)
6546 #endif
6549 enum reg_class rclass = rld[r].rclass, last_class;
6550 rtx last_reg = reg_last_reload_reg[regno];
6552 i = REGNO (last_reg);
6553 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6554 last_class = REGNO_REG_CLASS (i);
6556 if (reg_reloaded_contents[i] == regno
6557 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6558 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6559 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6560 /* Even if we can't use this register as a reload
6561 register, we might use it for reload_override_in,
6562 if copying it to the desired class is cheap
6563 enough. */
6564 || ((register_move_cost (mode, last_class, rclass)
6565 < memory_move_cost (mode, rclass, true))
6566 && (secondary_reload_class (1, rclass, mode,
6567 last_reg)
6568 == NO_REGS)
6569 #ifdef SECONDARY_MEMORY_NEEDED
6570 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6571 mode)
6572 #endif
6575 && (rld[r].nregs == max_group_size
6576 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6578 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6579 rld[r].when_needed, rld[r].in,
6580 const0_rtx, r, 1))
6582 /* If a group is needed, verify that all the subsequent
6583 registers still have their values intact. */
6584 int nr = hard_regno_nregs[i][rld[r].mode];
6585 int k;
6587 for (k = 1; k < nr; k++)
6588 if (reg_reloaded_contents[i + k] != regno
6589 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6590 break;
6592 if (k == nr)
6594 int i1;
6595 int bad_for_class;
6597 last_reg = (GET_MODE (last_reg) == mode
6598 ? last_reg : gen_rtx_REG (mode, i));
6600 bad_for_class = 0;
6601 for (k = 0; k < nr; k++)
6602 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6603 i+k);
6605 /* We found a register that contains the
6606 value we need. If this register is the
6607 same as an `earlyclobber' operand of the
6608 current insn, just mark it as a place to
6609 reload from since we can't use it as the
6610 reload register itself. */
6612 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6613 if (reg_overlap_mentioned_for_reload_p
6614 (reg_last_reload_reg[regno],
6615 reload_earlyclobbers[i1]))
6616 break;
6618 if (i1 != n_earlyclobbers
6619 || ! (free_for_value_p (i, rld[r].mode,
6620 rld[r].opnum,
6621 rld[r].when_needed, rld[r].in,
6622 rld[r].out, r, 1))
6623 /* Don't use it if we'd clobber a pseudo reg. */
6624 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6625 && rld[r].out
6626 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6627 /* Don't clobber the frame pointer. */
6628 || (i == HARD_FRAME_POINTER_REGNUM
6629 && frame_pointer_needed
6630 && rld[r].out)
6631 /* Don't really use the inherited spill reg
6632 if we need it wider than we've got it. */
6633 || (GET_MODE_SIZE (rld[r].mode)
6634 > GET_MODE_SIZE (mode))
6635 || bad_for_class
6637 /* If find_reloads chose reload_out as reload
6638 register, stay with it - that leaves the
6639 inherited register for subsequent reloads. */
6640 || (rld[r].out && rld[r].reg_rtx
6641 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6643 if (! rld[r].optional)
6645 reload_override_in[r] = last_reg;
6646 reload_inheritance_insn[r]
6647 = reg_reloaded_insn[i];
6650 else
6652 int k;
6653 /* We can use this as a reload reg. */
6654 /* Mark the register as in use for this part of
6655 the insn. */
6656 mark_reload_reg_in_use (i,
6657 rld[r].opnum,
6658 rld[r].when_needed,
6659 rld[r].mode);
6660 rld[r].reg_rtx = last_reg;
6661 reload_inherited[r] = 1;
6662 reload_inheritance_insn[r]
6663 = reg_reloaded_insn[i];
6664 reload_spill_index[r] = i;
6665 for (k = 0; k < nr; k++)
6666 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6667 i + k);
6674 /* Here's another way to see if the value is already lying around. */
6675 if (inheritance
6676 && rld[r].in != 0
6677 && ! reload_inherited[r]
6678 && rld[r].out == 0
6679 && (CONSTANT_P (rld[r].in)
6680 || GET_CODE (rld[r].in) == PLUS
6681 || REG_P (rld[r].in)
6682 || MEM_P (rld[r].in))
6683 && (rld[r].nregs == max_group_size
6684 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6685 search_equiv = rld[r].in;
6687 if (search_equiv)
6689 rtx equiv
6690 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6691 -1, NULL, 0, rld[r].mode);
6692 int regno = 0;
6694 if (equiv != 0)
6696 if (REG_P (equiv))
6697 regno = REGNO (equiv);
6698 else
6700 /* This must be a SUBREG of a hard register.
6701 Make a new REG since this might be used in an
6702 address and not all machines support SUBREGs
6703 there. */
6704 gcc_assert (GET_CODE (equiv) == SUBREG);
6705 regno = subreg_regno (equiv);
6706 equiv = gen_rtx_REG (rld[r].mode, regno);
6707 /* If we choose EQUIV as the reload register, but the
6708 loop below decides to cancel the inheritance, we'll
6709 end up reloading EQUIV in rld[r].mode, not the mode
6710 it had originally. That isn't safe when EQUIV isn't
6711 available as a spill register since its value might
6712 still be live at this point. */
6713 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6714 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6715 equiv = 0;
6719 /* If we found a spill reg, reject it unless it is free
6720 and of the desired class. */
6721 if (equiv != 0)
6723 int regs_used = 0;
6724 int bad_for_class = 0;
6725 int max_regno = regno + rld[r].nregs;
6727 for (i = regno; i < max_regno; i++)
6729 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6731 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6735 if ((regs_used
6736 && ! free_for_value_p (regno, rld[r].mode,
6737 rld[r].opnum, rld[r].when_needed,
6738 rld[r].in, rld[r].out, r, 1))
6739 || bad_for_class)
6740 equiv = 0;
6743 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6744 equiv = 0;
6746 /* We found a register that contains the value we need.
6747 If this register is the same as an `earlyclobber' operand
6748 of the current insn, just mark it as a place to reload from
6749 since we can't use it as the reload register itself. */
6751 if (equiv != 0)
6752 for (i = 0; i < n_earlyclobbers; i++)
6753 if (reg_overlap_mentioned_for_reload_p (equiv,
6754 reload_earlyclobbers[i]))
6756 if (! rld[r].optional)
6757 reload_override_in[r] = equiv;
6758 equiv = 0;
6759 break;
6762 /* If the equiv register we have found is explicitly clobbered
6763 in the current insn, it depends on the reload type if we
6764 can use it, use it for reload_override_in, or not at all.
6765 In particular, we then can't use EQUIV for a
6766 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6768 if (equiv != 0)
6770 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6771 switch (rld[r].when_needed)
6773 case RELOAD_FOR_OTHER_ADDRESS:
6774 case RELOAD_FOR_INPADDR_ADDRESS:
6775 case RELOAD_FOR_INPUT_ADDRESS:
6776 case RELOAD_FOR_OPADDR_ADDR:
6777 break;
6778 case RELOAD_OTHER:
6779 case RELOAD_FOR_INPUT:
6780 case RELOAD_FOR_OPERAND_ADDRESS:
6781 if (! rld[r].optional)
6782 reload_override_in[r] = equiv;
6783 /* Fall through. */
6784 default:
6785 equiv = 0;
6786 break;
6788 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6789 switch (rld[r].when_needed)
6791 case RELOAD_FOR_OTHER_ADDRESS:
6792 case RELOAD_FOR_INPADDR_ADDRESS:
6793 case RELOAD_FOR_INPUT_ADDRESS:
6794 case RELOAD_FOR_OPADDR_ADDR:
6795 case RELOAD_FOR_OPERAND_ADDRESS:
6796 case RELOAD_FOR_INPUT:
6797 break;
6798 case RELOAD_OTHER:
6799 if (! rld[r].optional)
6800 reload_override_in[r] = equiv;
6801 /* Fall through. */
6802 default:
6803 equiv = 0;
6804 break;
6808 /* If we found an equivalent reg, say no code need be generated
6809 to load it, and use it as our reload reg. */
6810 if (equiv != 0
6811 && (regno != HARD_FRAME_POINTER_REGNUM
6812 || !frame_pointer_needed))
6814 int nr = hard_regno_nregs[regno][rld[r].mode];
6815 int k;
6816 rld[r].reg_rtx = equiv;
6817 reload_spill_index[r] = regno;
6818 reload_inherited[r] = 1;
6820 /* If reg_reloaded_valid is not set for this register,
6821 there might be a stale spill_reg_store lying around.
6822 We must clear it, since otherwise emit_reload_insns
6823 might delete the store. */
6824 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6825 spill_reg_store[regno] = NULL_RTX;
6826 /* If any of the hard registers in EQUIV are spill
6827 registers, mark them as in use for this insn. */
6828 for (k = 0; k < nr; k++)
6830 i = spill_reg_order[regno + k];
6831 if (i >= 0)
6833 mark_reload_reg_in_use (regno, rld[r].opnum,
6834 rld[r].when_needed,
6835 rld[r].mode);
6836 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6837 regno + k);
6843 /* If we found a register to use already, or if this is an optional
6844 reload, we are done. */
6845 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6846 continue;
6848 #if 0
6849 /* No longer needed for correct operation. Might or might
6850 not give better code on the average. Want to experiment? */
6852 /* See if there is a later reload that has a class different from our
6853 class that intersects our class or that requires less register
6854 than our reload. If so, we must allocate a register to this
6855 reload now, since that reload might inherit a previous reload
6856 and take the only available register in our class. Don't do this
6857 for optional reloads since they will force all previous reloads
6858 to be allocated. Also don't do this for reloads that have been
6859 turned off. */
6861 for (i = j + 1; i < n_reloads; i++)
6863 int s = reload_order[i];
6865 if ((rld[s].in == 0 && rld[s].out == 0
6866 && ! rld[s].secondary_p)
6867 || rld[s].optional)
6868 continue;
6870 if ((rld[s].rclass != rld[r].rclass
6871 && reg_classes_intersect_p (rld[r].rclass,
6872 rld[s].rclass))
6873 || rld[s].nregs < rld[r].nregs)
6874 break;
6877 if (i == n_reloads)
6878 continue;
6880 allocate_reload_reg (chain, r, j == n_reloads - 1);
6881 #endif
6884 /* Now allocate reload registers for anything non-optional that
6885 didn't get one yet. */
6886 for (j = 0; j < n_reloads; j++)
6888 int r = reload_order[j];
6890 /* Ignore reloads that got marked inoperative. */
6891 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6892 continue;
6894 /* Skip reloads that already have a register allocated or are
6895 optional. */
6896 if (rld[r].reg_rtx != 0 || rld[r].optional)
6897 continue;
6899 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6900 break;
6903 /* If that loop got all the way, we have won. */
6904 if (j == n_reloads)
6906 win = 1;
6907 break;
6910 /* Loop around and try without any inheritance. */
6913 if (! win)
6915 /* First undo everything done by the failed attempt
6916 to allocate with inheritance. */
6917 choose_reload_regs_init (chain, save_reload_reg_rtx);
6919 /* Some sanity tests to verify that the reloads found in the first
6920 pass are identical to the ones we have now. */
6921 gcc_assert (chain->n_reloads == n_reloads);
6923 for (i = 0; i < n_reloads; i++)
6925 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6926 continue;
6927 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6928 for (j = 0; j < n_spills; j++)
6929 if (spill_regs[j] == chain->rld[i].regno)
6930 if (! set_reload_reg (j, i))
6931 failed_reload (chain->insn, i);
6935 /* If we thought we could inherit a reload, because it seemed that
6936 nothing else wanted the same reload register earlier in the insn,
6937 verify that assumption, now that all reloads have been assigned.
6938 Likewise for reloads where reload_override_in has been set. */
6940 /* If doing expensive optimizations, do one preliminary pass that doesn't
6941 cancel any inheritance, but removes reloads that have been needed only
6942 for reloads that we know can be inherited. */
6943 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6945 for (j = 0; j < n_reloads; j++)
6947 int r = reload_order[j];
6948 rtx check_reg;
6949 if (reload_inherited[r] && rld[r].reg_rtx)
6950 check_reg = rld[r].reg_rtx;
6951 else if (reload_override_in[r]
6952 && (REG_P (reload_override_in[r])
6953 || GET_CODE (reload_override_in[r]) == SUBREG))
6954 check_reg = reload_override_in[r];
6955 else
6956 continue;
6957 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6958 rld[r].opnum, rld[r].when_needed, rld[r].in,
6959 (reload_inherited[r]
6960 ? rld[r].out : const0_rtx),
6961 r, 1))
6963 if (pass)
6964 continue;
6965 reload_inherited[r] = 0;
6966 reload_override_in[r] = 0;
6968 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6969 reload_override_in, then we do not need its related
6970 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6971 likewise for other reload types.
6972 We handle this by removing a reload when its only replacement
6973 is mentioned in reload_in of the reload we are going to inherit.
6974 A special case are auto_inc expressions; even if the input is
6975 inherited, we still need the address for the output. We can
6976 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6977 If we succeeded removing some reload and we are doing a preliminary
6978 pass just to remove such reloads, make another pass, since the
6979 removal of one reload might allow us to inherit another one. */
6980 else if (rld[r].in
6981 && rld[r].out != rld[r].in
6982 && remove_address_replacements (rld[r].in) && pass)
6983 pass = 2;
6987 /* Now that reload_override_in is known valid,
6988 actually override reload_in. */
6989 for (j = 0; j < n_reloads; j++)
6990 if (reload_override_in[j])
6991 rld[j].in = reload_override_in[j];
6993 /* If this reload won't be done because it has been canceled or is
6994 optional and not inherited, clear reload_reg_rtx so other
6995 routines (such as subst_reloads) don't get confused. */
6996 for (j = 0; j < n_reloads; j++)
6997 if (rld[j].reg_rtx != 0
6998 && ((rld[j].optional && ! reload_inherited[j])
6999 || (rld[j].in == 0 && rld[j].out == 0
7000 && ! rld[j].secondary_p)))
7002 int regno = true_regnum (rld[j].reg_rtx);
7004 if (spill_reg_order[regno] >= 0)
7005 clear_reload_reg_in_use (regno, rld[j].opnum,
7006 rld[j].when_needed, rld[j].mode);
7007 rld[j].reg_rtx = 0;
7008 reload_spill_index[j] = -1;
7011 /* Record which pseudos and which spill regs have output reloads. */
7012 for (j = 0; j < n_reloads; j++)
7014 int r = reload_order[j];
7016 i = reload_spill_index[r];
7018 /* I is nonneg if this reload uses a register.
7019 If rld[r].reg_rtx is 0, this is an optional reload
7020 that we opted to ignore. */
7021 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7022 && rld[r].reg_rtx != 0)
7024 int nregno = REGNO (rld[r].out_reg);
7025 int nr = 1;
7027 if (nregno < FIRST_PSEUDO_REGISTER)
7028 nr = hard_regno_nregs[nregno][rld[r].mode];
7030 while (--nr >= 0)
7031 SET_REGNO_REG_SET (&reg_has_output_reload,
7032 nregno + nr);
7034 if (i >= 0)
7035 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7037 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7038 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7039 || rld[r].when_needed == RELOAD_FOR_INSN);
7044 /* Deallocate the reload register for reload R. This is called from
7045 remove_address_replacements. */
7047 void
7048 deallocate_reload_reg (int r)
7050 int regno;
7052 if (! rld[r].reg_rtx)
7053 return;
7054 regno = true_regnum (rld[r].reg_rtx);
7055 rld[r].reg_rtx = 0;
7056 if (spill_reg_order[regno] >= 0)
7057 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7058 rld[r].mode);
7059 reload_spill_index[r] = -1;
7062 /* These arrays are filled by emit_reload_insns and its subroutines. */
7063 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7064 static rtx other_input_address_reload_insns = 0;
7065 static rtx other_input_reload_insns = 0;
7066 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7067 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7068 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7069 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7070 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7071 static rtx operand_reload_insns = 0;
7072 static rtx other_operand_reload_insns = 0;
7073 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7075 /* Values to be put in spill_reg_store are put here first. Instructions
7076 must only be placed here if the associated reload register reaches
7077 the end of the instruction's reload sequence. */
7078 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7079 static HARD_REG_SET reg_reloaded_died;
7081 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7082 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7083 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7084 adjusted register, and return true. Otherwise, return false. */
7085 static bool
7086 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7087 enum reg_class new_class,
7088 enum machine_mode new_mode)
7091 rtx reg;
7093 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7095 unsigned regno = REGNO (reg);
7097 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7098 continue;
7099 if (GET_MODE (reg) != new_mode)
7101 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7102 continue;
7103 if (hard_regno_nregs[regno][new_mode]
7104 > hard_regno_nregs[regno][GET_MODE (reg)])
7105 continue;
7106 reg = reload_adjust_reg_for_mode (reg, new_mode);
7108 *reload_reg = reg;
7109 return true;
7111 return false;
7114 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7115 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7116 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7117 adjusted register, and return true. Otherwise, return false. */
7118 static bool
7119 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7120 enum insn_code icode)
7123 enum reg_class new_class = scratch_reload_class (icode);
7124 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7126 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7127 new_class, new_mode);
7130 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7131 has the number J. OLD contains the value to be used as input. */
7133 static void
7134 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7135 rtx old, int j)
7137 rtx insn = chain->insn;
7138 rtx reloadreg;
7139 rtx oldequiv_reg = 0;
7140 rtx oldequiv = 0;
7141 int special = 0;
7142 enum machine_mode mode;
7143 rtx *where;
7145 /* delete_output_reload is only invoked properly if old contains
7146 the original pseudo register. Since this is replaced with a
7147 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7148 find the pseudo in RELOAD_IN_REG. */
7149 if (reload_override_in[j]
7150 && REG_P (rl->in_reg))
7152 oldequiv = old;
7153 old = rl->in_reg;
7155 if (oldequiv == 0)
7156 oldequiv = old;
7157 else if (REG_P (oldequiv))
7158 oldequiv_reg = oldequiv;
7159 else if (GET_CODE (oldequiv) == SUBREG)
7160 oldequiv_reg = SUBREG_REG (oldequiv);
7162 reloadreg = reload_reg_rtx_for_input[j];
7163 mode = GET_MODE (reloadreg);
7165 /* If we are reloading from a register that was recently stored in
7166 with an output-reload, see if we can prove there was
7167 actually no need to store the old value in it. */
7169 if (optimize && REG_P (oldequiv)
7170 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7171 && spill_reg_store[REGNO (oldequiv)]
7172 && REG_P (old)
7173 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7174 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7175 rl->out_reg)))
7176 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7178 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7179 OLDEQUIV. */
7181 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7182 oldequiv = SUBREG_REG (oldequiv);
7183 if (GET_MODE (oldequiv) != VOIDmode
7184 && mode != GET_MODE (oldequiv))
7185 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7187 /* Switch to the right place to emit the reload insns. */
7188 switch (rl->when_needed)
7190 case RELOAD_OTHER:
7191 where = &other_input_reload_insns;
7192 break;
7193 case RELOAD_FOR_INPUT:
7194 where = &input_reload_insns[rl->opnum];
7195 break;
7196 case RELOAD_FOR_INPUT_ADDRESS:
7197 where = &input_address_reload_insns[rl->opnum];
7198 break;
7199 case RELOAD_FOR_INPADDR_ADDRESS:
7200 where = &inpaddr_address_reload_insns[rl->opnum];
7201 break;
7202 case RELOAD_FOR_OUTPUT_ADDRESS:
7203 where = &output_address_reload_insns[rl->opnum];
7204 break;
7205 case RELOAD_FOR_OUTADDR_ADDRESS:
7206 where = &outaddr_address_reload_insns[rl->opnum];
7207 break;
7208 case RELOAD_FOR_OPERAND_ADDRESS:
7209 where = &operand_reload_insns;
7210 break;
7211 case RELOAD_FOR_OPADDR_ADDR:
7212 where = &other_operand_reload_insns;
7213 break;
7214 case RELOAD_FOR_OTHER_ADDRESS:
7215 where = &other_input_address_reload_insns;
7216 break;
7217 default:
7218 gcc_unreachable ();
7221 push_to_sequence (*where);
7223 /* Auto-increment addresses must be reloaded in a special way. */
7224 if (rl->out && ! rl->out_reg)
7226 /* We are not going to bother supporting the case where a
7227 incremented register can't be copied directly from
7228 OLDEQUIV since this seems highly unlikely. */
7229 gcc_assert (rl->secondary_in_reload < 0);
7231 if (reload_inherited[j])
7232 oldequiv = reloadreg;
7234 old = XEXP (rl->in_reg, 0);
7236 /* Prevent normal processing of this reload. */
7237 special = 1;
7238 /* Output a special code sequence for this case. */
7239 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7242 /* If we are reloading a pseudo-register that was set by the previous
7243 insn, see if we can get rid of that pseudo-register entirely
7244 by redirecting the previous insn into our reload register. */
7246 else if (optimize && REG_P (old)
7247 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7248 && dead_or_set_p (insn, old)
7249 /* This is unsafe if some other reload
7250 uses the same reg first. */
7251 && ! conflicts_with_override (reloadreg)
7252 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7253 rl->when_needed, old, rl->out, j, 0))
7255 rtx temp = PREV_INSN (insn);
7256 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7257 temp = PREV_INSN (temp);
7258 if (temp
7259 && NONJUMP_INSN_P (temp)
7260 && GET_CODE (PATTERN (temp)) == SET
7261 && SET_DEST (PATTERN (temp)) == old
7262 /* Make sure we can access insn_operand_constraint. */
7263 && asm_noperands (PATTERN (temp)) < 0
7264 /* This is unsafe if operand occurs more than once in current
7265 insn. Perhaps some occurrences aren't reloaded. */
7266 && count_occurrences (PATTERN (insn), old, 0) == 1)
7268 rtx old = SET_DEST (PATTERN (temp));
7269 /* Store into the reload register instead of the pseudo. */
7270 SET_DEST (PATTERN (temp)) = reloadreg;
7272 /* Verify that resulting insn is valid. */
7273 extract_insn (temp);
7274 if (constrain_operands (1))
7276 /* If the previous insn is an output reload, the source is
7277 a reload register, and its spill_reg_store entry will
7278 contain the previous destination. This is now
7279 invalid. */
7280 if (REG_P (SET_SRC (PATTERN (temp)))
7281 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7283 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7284 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7287 /* If these are the only uses of the pseudo reg,
7288 pretend for GDB it lives in the reload reg we used. */
7289 if (REG_N_DEATHS (REGNO (old)) == 1
7290 && REG_N_SETS (REGNO (old)) == 1)
7292 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7293 if (ira_conflicts_p)
7294 /* Inform IRA about the change. */
7295 ira_mark_allocation_change (REGNO (old));
7296 alter_reg (REGNO (old), -1, false);
7298 special = 1;
7300 /* Adjust any debug insns between temp and insn. */
7301 while ((temp = NEXT_INSN (temp)) != insn)
7302 if (DEBUG_INSN_P (temp))
7303 replace_rtx (PATTERN (temp), old, reloadreg);
7304 else
7305 gcc_assert (NOTE_P (temp));
7307 else
7309 SET_DEST (PATTERN (temp)) = old;
7314 /* We can't do that, so output an insn to load RELOADREG. */
7316 /* If we have a secondary reload, pick up the secondary register
7317 and icode, if any. If OLDEQUIV and OLD are different or
7318 if this is an in-out reload, recompute whether or not we
7319 still need a secondary register and what the icode should
7320 be. If we still need a secondary register and the class or
7321 icode is different, go back to reloading from OLD if using
7322 OLDEQUIV means that we got the wrong type of register. We
7323 cannot have different class or icode due to an in-out reload
7324 because we don't make such reloads when both the input and
7325 output need secondary reload registers. */
7327 if (! special && rl->secondary_in_reload >= 0)
7329 rtx second_reload_reg = 0;
7330 rtx third_reload_reg = 0;
7331 int secondary_reload = rl->secondary_in_reload;
7332 rtx real_oldequiv = oldequiv;
7333 rtx real_old = old;
7334 rtx tmp;
7335 enum insn_code icode;
7336 enum insn_code tertiary_icode = CODE_FOR_nothing;
7338 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7339 and similarly for OLD.
7340 See comments in get_secondary_reload in reload.c. */
7341 /* If it is a pseudo that cannot be replaced with its
7342 equivalent MEM, we must fall back to reload_in, which
7343 will have all the necessary substitutions registered.
7344 Likewise for a pseudo that can't be replaced with its
7345 equivalent constant.
7347 Take extra care for subregs of such pseudos. Note that
7348 we cannot use reg_equiv_mem in this case because it is
7349 not in the right mode. */
7351 tmp = oldequiv;
7352 if (GET_CODE (tmp) == SUBREG)
7353 tmp = SUBREG_REG (tmp);
7354 if (REG_P (tmp)
7355 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7356 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7357 || reg_equiv_constant (REGNO (tmp)) != 0))
7359 if (! reg_equiv_mem (REGNO (tmp))
7360 || num_not_at_initial_offset
7361 || GET_CODE (oldequiv) == SUBREG)
7362 real_oldequiv = rl->in;
7363 else
7364 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7367 tmp = old;
7368 if (GET_CODE (tmp) == SUBREG)
7369 tmp = SUBREG_REG (tmp);
7370 if (REG_P (tmp)
7371 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7372 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7373 || reg_equiv_constant (REGNO (tmp)) != 0))
7375 if (! reg_equiv_mem (REGNO (tmp))
7376 || num_not_at_initial_offset
7377 || GET_CODE (old) == SUBREG)
7378 real_old = rl->in;
7379 else
7380 real_old = reg_equiv_mem (REGNO (tmp));
7383 second_reload_reg = rld[secondary_reload].reg_rtx;
7384 if (rld[secondary_reload].secondary_in_reload >= 0)
7386 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7388 third_reload_reg = rld[tertiary_reload].reg_rtx;
7389 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7390 /* We'd have to add more code for quartary reloads. */
7391 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7393 icode = rl->secondary_in_icode;
7395 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7396 || (rl->in != 0 && rl->out != 0))
7398 secondary_reload_info sri, sri2;
7399 enum reg_class new_class, new_t_class;
7401 sri.icode = CODE_FOR_nothing;
7402 sri.prev_sri = NULL;
7403 new_class
7404 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7405 rl->rclass, mode,
7406 &sri);
7408 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7409 second_reload_reg = 0;
7410 else if (new_class == NO_REGS)
7412 if (reload_adjust_reg_for_icode (&second_reload_reg,
7413 third_reload_reg,
7414 (enum insn_code) sri.icode))
7416 icode = (enum insn_code) sri.icode;
7417 third_reload_reg = 0;
7419 else
7421 oldequiv = old;
7422 real_oldequiv = real_old;
7425 else if (sri.icode != CODE_FOR_nothing)
7426 /* We currently lack a way to express this in reloads. */
7427 gcc_unreachable ();
7428 else
7430 sri2.icode = CODE_FOR_nothing;
7431 sri2.prev_sri = &sri;
7432 new_t_class
7433 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7434 new_class, mode,
7435 &sri);
7436 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7438 if (reload_adjust_reg_for_temp (&second_reload_reg,
7439 third_reload_reg,
7440 new_class, mode))
7442 third_reload_reg = 0;
7443 tertiary_icode = (enum insn_code) sri2.icode;
7445 else
7447 oldequiv = old;
7448 real_oldequiv = real_old;
7451 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7453 rtx intermediate = second_reload_reg;
7455 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7456 new_class, mode)
7457 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7458 ((enum insn_code)
7459 sri2.icode)))
7461 second_reload_reg = intermediate;
7462 tertiary_icode = (enum insn_code) sri2.icode;
7464 else
7466 oldequiv = old;
7467 real_oldequiv = real_old;
7470 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7472 rtx intermediate = second_reload_reg;
7474 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7475 new_class, mode)
7476 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7477 new_t_class, mode))
7479 second_reload_reg = intermediate;
7480 tertiary_icode = (enum insn_code) sri2.icode;
7482 else
7484 oldequiv = old;
7485 real_oldequiv = real_old;
7488 else
7490 /* This could be handled more intelligently too. */
7491 oldequiv = old;
7492 real_oldequiv = real_old;
7497 /* If we still need a secondary reload register, check
7498 to see if it is being used as a scratch or intermediate
7499 register and generate code appropriately. If we need
7500 a scratch register, use REAL_OLDEQUIV since the form of
7501 the insn may depend on the actual address if it is
7502 a MEM. */
7504 if (second_reload_reg)
7506 if (icode != CODE_FOR_nothing)
7508 /* We'd have to add extra code to handle this case. */
7509 gcc_assert (!third_reload_reg);
7511 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7512 second_reload_reg));
7513 special = 1;
7515 else
7517 /* See if we need a scratch register to load the
7518 intermediate register (a tertiary reload). */
7519 if (tertiary_icode != CODE_FOR_nothing)
7521 emit_insn ((GEN_FCN (tertiary_icode)
7522 (second_reload_reg, real_oldequiv,
7523 third_reload_reg)));
7525 else if (third_reload_reg)
7527 gen_reload (third_reload_reg, real_oldequiv,
7528 rl->opnum,
7529 rl->when_needed);
7530 gen_reload (second_reload_reg, third_reload_reg,
7531 rl->opnum,
7532 rl->when_needed);
7534 else
7535 gen_reload (second_reload_reg, real_oldequiv,
7536 rl->opnum,
7537 rl->when_needed);
7539 oldequiv = second_reload_reg;
7544 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7546 rtx real_oldequiv = oldequiv;
7548 if ((REG_P (oldequiv)
7549 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7550 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7551 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7552 || (GET_CODE (oldequiv) == SUBREG
7553 && REG_P (SUBREG_REG (oldequiv))
7554 && (REGNO (SUBREG_REG (oldequiv))
7555 >= FIRST_PSEUDO_REGISTER)
7556 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7557 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7558 || (CONSTANT_P (oldequiv)
7559 && (targetm.preferred_reload_class (oldequiv,
7560 REGNO_REG_CLASS (REGNO (reloadreg)))
7561 == NO_REGS)))
7562 real_oldequiv = rl->in;
7563 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7564 rl->when_needed);
7567 if (cfun->can_throw_non_call_exceptions)
7568 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7570 /* End this sequence. */
7571 *where = get_insns ();
7572 end_sequence ();
7574 /* Update reload_override_in so that delete_address_reloads_1
7575 can see the actual register usage. */
7576 if (oldequiv_reg)
7577 reload_override_in[j] = oldequiv;
7580 /* Generate insns to for the output reload RL, which is for the insn described
7581 by CHAIN and has the number J. */
7582 static void
7583 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7584 int j)
7586 rtx reloadreg;
7587 rtx insn = chain->insn;
7588 int special = 0;
7589 rtx old = rl->out;
7590 enum machine_mode mode;
7591 rtx p;
7592 rtx rl_reg_rtx;
7594 if (rl->when_needed == RELOAD_OTHER)
7595 start_sequence ();
7596 else
7597 push_to_sequence (output_reload_insns[rl->opnum]);
7599 rl_reg_rtx = reload_reg_rtx_for_output[j];
7600 mode = GET_MODE (rl_reg_rtx);
7602 reloadreg = rl_reg_rtx;
7604 /* If we need two reload regs, set RELOADREG to the intermediate
7605 one, since it will be stored into OLD. We might need a secondary
7606 register only for an input reload, so check again here. */
7608 if (rl->secondary_out_reload >= 0)
7610 rtx real_old = old;
7611 int secondary_reload = rl->secondary_out_reload;
7612 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7614 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7615 && reg_equiv_mem (REGNO (old)) != 0)
7616 real_old = reg_equiv_mem (REGNO (old));
7618 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7620 rtx second_reloadreg = reloadreg;
7621 reloadreg = rld[secondary_reload].reg_rtx;
7623 /* See if RELOADREG is to be used as a scratch register
7624 or as an intermediate register. */
7625 if (rl->secondary_out_icode != CODE_FOR_nothing)
7627 /* We'd have to add extra code to handle this case. */
7628 gcc_assert (tertiary_reload < 0);
7630 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7631 (real_old, second_reloadreg, reloadreg)));
7632 special = 1;
7634 else
7636 /* See if we need both a scratch and intermediate reload
7637 register. */
7639 enum insn_code tertiary_icode
7640 = rld[secondary_reload].secondary_out_icode;
7642 /* We'd have to add more code for quartary reloads. */
7643 gcc_assert (tertiary_reload < 0
7644 || rld[tertiary_reload].secondary_out_reload < 0);
7646 if (GET_MODE (reloadreg) != mode)
7647 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7649 if (tertiary_icode != CODE_FOR_nothing)
7651 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7653 /* Copy primary reload reg to secondary reload reg.
7654 (Note that these have been swapped above, then
7655 secondary reload reg to OLD using our insn.) */
7657 /* If REAL_OLD is a paradoxical SUBREG, remove it
7658 and try to put the opposite SUBREG on
7659 RELOADREG. */
7660 strip_paradoxical_subreg (&real_old, &reloadreg);
7662 gen_reload (reloadreg, second_reloadreg,
7663 rl->opnum, rl->when_needed);
7664 emit_insn ((GEN_FCN (tertiary_icode)
7665 (real_old, reloadreg, third_reloadreg)));
7666 special = 1;
7669 else
7671 /* Copy between the reload regs here and then to
7672 OUT later. */
7674 gen_reload (reloadreg, second_reloadreg,
7675 rl->opnum, rl->when_needed);
7676 if (tertiary_reload >= 0)
7678 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7680 gen_reload (third_reloadreg, reloadreg,
7681 rl->opnum, rl->when_needed);
7682 reloadreg = third_reloadreg;
7689 /* Output the last reload insn. */
7690 if (! special)
7692 rtx set;
7694 /* Don't output the last reload if OLD is not the dest of
7695 INSN and is in the src and is clobbered by INSN. */
7696 if (! flag_expensive_optimizations
7697 || !REG_P (old)
7698 || !(set = single_set (insn))
7699 || rtx_equal_p (old, SET_DEST (set))
7700 || !reg_mentioned_p (old, SET_SRC (set))
7701 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7702 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7703 gen_reload (old, reloadreg, rl->opnum,
7704 rl->when_needed);
7707 /* Look at all insns we emitted, just to be safe. */
7708 for (p = get_insns (); p; p = NEXT_INSN (p))
7709 if (INSN_P (p))
7711 rtx pat = PATTERN (p);
7713 /* If this output reload doesn't come from a spill reg,
7714 clear any memory of reloaded copies of the pseudo reg.
7715 If this output reload comes from a spill reg,
7716 reg_has_output_reload will make this do nothing. */
7717 note_stores (pat, forget_old_reloads_1, NULL);
7719 if (reg_mentioned_p (rl_reg_rtx, pat))
7721 rtx set = single_set (insn);
7722 if (reload_spill_index[j] < 0
7723 && set
7724 && SET_SRC (set) == rl_reg_rtx)
7726 int src = REGNO (SET_SRC (set));
7728 reload_spill_index[j] = src;
7729 SET_HARD_REG_BIT (reg_is_output_reload, src);
7730 if (find_regno_note (insn, REG_DEAD, src))
7731 SET_HARD_REG_BIT (reg_reloaded_died, src);
7733 if (HARD_REGISTER_P (rl_reg_rtx))
7735 int s = rl->secondary_out_reload;
7736 set = single_set (p);
7737 /* If this reload copies only to the secondary reload
7738 register, the secondary reload does the actual
7739 store. */
7740 if (s >= 0 && set == NULL_RTX)
7741 /* We can't tell what function the secondary reload
7742 has and where the actual store to the pseudo is
7743 made; leave new_spill_reg_store alone. */
7745 else if (s >= 0
7746 && SET_SRC (set) == rl_reg_rtx
7747 && SET_DEST (set) == rld[s].reg_rtx)
7749 /* Usually the next instruction will be the
7750 secondary reload insn; if we can confirm
7751 that it is, setting new_spill_reg_store to
7752 that insn will allow an extra optimization. */
7753 rtx s_reg = rld[s].reg_rtx;
7754 rtx next = NEXT_INSN (p);
7755 rld[s].out = rl->out;
7756 rld[s].out_reg = rl->out_reg;
7757 set = single_set (next);
7758 if (set && SET_SRC (set) == s_reg
7759 && reload_reg_rtx_reaches_end_p (s_reg, s))
7761 SET_HARD_REG_BIT (reg_is_output_reload,
7762 REGNO (s_reg));
7763 new_spill_reg_store[REGNO (s_reg)] = next;
7766 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7767 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7772 if (rl->when_needed == RELOAD_OTHER)
7774 emit_insn (other_output_reload_insns[rl->opnum]);
7775 other_output_reload_insns[rl->opnum] = get_insns ();
7777 else
7778 output_reload_insns[rl->opnum] = get_insns ();
7780 if (cfun->can_throw_non_call_exceptions)
7781 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7783 end_sequence ();
7786 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7787 and has the number J. */
7788 static void
7789 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7791 rtx insn = chain->insn;
7792 rtx old = (rl->in && MEM_P (rl->in)
7793 ? rl->in_reg : rl->in);
7794 rtx reg_rtx = rl->reg_rtx;
7796 if (old && reg_rtx)
7798 enum machine_mode mode;
7800 /* Determine the mode to reload in.
7801 This is very tricky because we have three to choose from.
7802 There is the mode the insn operand wants (rl->inmode).
7803 There is the mode of the reload register RELOADREG.
7804 There is the intrinsic mode of the operand, which we could find
7805 by stripping some SUBREGs.
7806 It turns out that RELOADREG's mode is irrelevant:
7807 we can change that arbitrarily.
7809 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7810 then the reload reg may not support QImode moves, so use SImode.
7811 If foo is in memory due to spilling a pseudo reg, this is safe,
7812 because the QImode value is in the least significant part of a
7813 slot big enough for a SImode. If foo is some other sort of
7814 memory reference, then it is impossible to reload this case,
7815 so previous passes had better make sure this never happens.
7817 Then consider a one-word union which has SImode and one of its
7818 members is a float, being fetched as (SUBREG:SF union:SI).
7819 We must fetch that as SFmode because we could be loading into
7820 a float-only register. In this case OLD's mode is correct.
7822 Consider an immediate integer: it has VOIDmode. Here we need
7823 to get a mode from something else.
7825 In some cases, there is a fourth mode, the operand's
7826 containing mode. If the insn specifies a containing mode for
7827 this operand, it overrides all others.
7829 I am not sure whether the algorithm here is always right,
7830 but it does the right things in those cases. */
7832 mode = GET_MODE (old);
7833 if (mode == VOIDmode)
7834 mode = rl->inmode;
7836 /* We cannot use gen_lowpart_common since it can do the wrong thing
7837 when REG_RTX has a multi-word mode. Note that REG_RTX must
7838 always be a REG here. */
7839 if (GET_MODE (reg_rtx) != mode)
7840 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7842 reload_reg_rtx_for_input[j] = reg_rtx;
7844 if (old != 0
7845 /* AUTO_INC reloads need to be handled even if inherited. We got an
7846 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7847 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7848 && ! rtx_equal_p (reg_rtx, old)
7849 && reg_rtx != 0)
7850 emit_input_reload_insns (chain, rld + j, old, j);
7852 /* When inheriting a wider reload, we have a MEM in rl->in,
7853 e.g. inheriting a SImode output reload for
7854 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7855 if (optimize && reload_inherited[j] && rl->in
7856 && MEM_P (rl->in)
7857 && MEM_P (rl->in_reg)
7858 && reload_spill_index[j] >= 0
7859 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7860 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7862 /* If we are reloading a register that was recently stored in with an
7863 output-reload, see if we can prove there was
7864 actually no need to store the old value in it. */
7866 if (optimize
7867 && (reload_inherited[j] || reload_override_in[j])
7868 && reg_rtx
7869 && REG_P (reg_rtx)
7870 && spill_reg_store[REGNO (reg_rtx)] != 0
7871 #if 0
7872 /* There doesn't seem to be any reason to restrict this to pseudos
7873 and doing so loses in the case where we are copying from a
7874 register of the wrong class. */
7875 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7876 #endif
7877 /* The insn might have already some references to stackslots
7878 replaced by MEMs, while reload_out_reg still names the
7879 original pseudo. */
7880 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7881 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7882 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7885 /* Do output reloading for reload RL, which is for the insn described by
7886 CHAIN and has the number J.
7887 ??? At some point we need to support handling output reloads of
7888 JUMP_INSNs or insns that set cc0. */
7889 static void
7890 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7892 rtx note, old;
7893 rtx insn = chain->insn;
7894 /* If this is an output reload that stores something that is
7895 not loaded in this same reload, see if we can eliminate a previous
7896 store. */
7897 rtx pseudo = rl->out_reg;
7898 rtx reg_rtx = rl->reg_rtx;
7900 if (rl->out && reg_rtx)
7902 enum machine_mode mode;
7904 /* Determine the mode to reload in.
7905 See comments above (for input reloading). */
7906 mode = GET_MODE (rl->out);
7907 if (mode == VOIDmode)
7909 /* VOIDmode should never happen for an output. */
7910 if (asm_noperands (PATTERN (insn)) < 0)
7911 /* It's the compiler's fault. */
7912 fatal_insn ("VOIDmode on an output", insn);
7913 error_for_asm (insn, "output operand is constant in %<asm%>");
7914 /* Prevent crash--use something we know is valid. */
7915 mode = word_mode;
7916 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7918 if (GET_MODE (reg_rtx) != mode)
7919 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7921 reload_reg_rtx_for_output[j] = reg_rtx;
7923 if (pseudo
7924 && optimize
7925 && REG_P (pseudo)
7926 && ! rtx_equal_p (rl->in_reg, pseudo)
7927 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7928 && reg_last_reload_reg[REGNO (pseudo)])
7930 int pseudo_no = REGNO (pseudo);
7931 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7933 /* We don't need to test full validity of last_regno for
7934 inherit here; we only want to know if the store actually
7935 matches the pseudo. */
7936 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7937 && reg_reloaded_contents[last_regno] == pseudo_no
7938 && spill_reg_store[last_regno]
7939 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7940 delete_output_reload (insn, j, last_regno, reg_rtx);
7943 old = rl->out_reg;
7944 if (old == 0
7945 || reg_rtx == 0
7946 || rtx_equal_p (old, reg_rtx))
7947 return;
7949 /* An output operand that dies right away does need a reload,
7950 but need not be copied from it. Show the new location in the
7951 REG_UNUSED note. */
7952 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7953 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7955 XEXP (note, 0) = reg_rtx;
7956 return;
7958 /* Likewise for a SUBREG of an operand that dies. */
7959 else if (GET_CODE (old) == SUBREG
7960 && REG_P (SUBREG_REG (old))
7961 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7962 SUBREG_REG (old))))
7964 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7965 return;
7967 else if (GET_CODE (old) == SCRATCH)
7968 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7969 but we don't want to make an output reload. */
7970 return;
7972 /* If is a JUMP_INSN, we can't support output reloads yet. */
7973 gcc_assert (NONJUMP_INSN_P (insn));
7975 emit_output_reload_insns (chain, rld + j, j);
7978 /* A reload copies values of MODE from register SRC to register DEST.
7979 Return true if it can be treated for inheritance purposes like a
7980 group of reloads, each one reloading a single hard register. The
7981 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7982 occupy the same number of hard registers. */
7984 static bool
7985 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7986 int src ATTRIBUTE_UNUSED,
7987 enum machine_mode mode ATTRIBUTE_UNUSED)
7989 #ifdef CANNOT_CHANGE_MODE_CLASS
7990 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7991 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7992 #else
7993 return true;
7994 #endif
7997 /* Output insns to reload values in and out of the chosen reload regs. */
7999 static void
8000 emit_reload_insns (struct insn_chain *chain)
8002 rtx insn = chain->insn;
8004 int j;
8006 CLEAR_HARD_REG_SET (reg_reloaded_died);
8008 for (j = 0; j < reload_n_operands; j++)
8009 input_reload_insns[j] = input_address_reload_insns[j]
8010 = inpaddr_address_reload_insns[j]
8011 = output_reload_insns[j] = output_address_reload_insns[j]
8012 = outaddr_address_reload_insns[j]
8013 = other_output_reload_insns[j] = 0;
8014 other_input_address_reload_insns = 0;
8015 other_input_reload_insns = 0;
8016 operand_reload_insns = 0;
8017 other_operand_reload_insns = 0;
8019 /* Dump reloads into the dump file. */
8020 if (dump_file)
8022 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8023 debug_reload_to_stream (dump_file);
8026 for (j = 0; j < n_reloads; j++)
8027 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8029 unsigned int i;
8031 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8032 new_spill_reg_store[i] = 0;
8035 /* Now output the instructions to copy the data into and out of the
8036 reload registers. Do these in the order that the reloads were reported,
8037 since reloads of base and index registers precede reloads of operands
8038 and the operands may need the base and index registers reloaded. */
8040 for (j = 0; j < n_reloads; j++)
8042 do_input_reload (chain, rld + j, j);
8043 do_output_reload (chain, rld + j, j);
8046 /* Now write all the insns we made for reloads in the order expected by
8047 the allocation functions. Prior to the insn being reloaded, we write
8048 the following reloads:
8050 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8052 RELOAD_OTHER reloads.
8054 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8055 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8056 RELOAD_FOR_INPUT reload for the operand.
8058 RELOAD_FOR_OPADDR_ADDRS reloads.
8060 RELOAD_FOR_OPERAND_ADDRESS reloads.
8062 After the insn being reloaded, we write the following:
8064 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8065 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8066 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8067 reloads for the operand. The RELOAD_OTHER output reloads are
8068 output in descending order by reload number. */
8070 emit_insn_before (other_input_address_reload_insns, insn);
8071 emit_insn_before (other_input_reload_insns, insn);
8073 for (j = 0; j < reload_n_operands; j++)
8075 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8076 emit_insn_before (input_address_reload_insns[j], insn);
8077 emit_insn_before (input_reload_insns[j], insn);
8080 emit_insn_before (other_operand_reload_insns, insn);
8081 emit_insn_before (operand_reload_insns, insn);
8083 for (j = 0; j < reload_n_operands; j++)
8085 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8086 x = emit_insn_after (output_address_reload_insns[j], x);
8087 x = emit_insn_after (output_reload_insns[j], x);
8088 emit_insn_after (other_output_reload_insns[j], x);
8091 /* For all the spill regs newly reloaded in this instruction,
8092 record what they were reloaded from, so subsequent instructions
8093 can inherit the reloads.
8095 Update spill_reg_store for the reloads of this insn.
8096 Copy the elements that were updated in the loop above. */
8098 for (j = 0; j < n_reloads; j++)
8100 int r = reload_order[j];
8101 int i = reload_spill_index[r];
8103 /* If this is a non-inherited input reload from a pseudo, we must
8104 clear any memory of a previous store to the same pseudo. Only do
8105 something if there will not be an output reload for the pseudo
8106 being reloaded. */
8107 if (rld[r].in_reg != 0
8108 && ! (reload_inherited[r] || reload_override_in[r]))
8110 rtx reg = rld[r].in_reg;
8112 if (GET_CODE (reg) == SUBREG)
8113 reg = SUBREG_REG (reg);
8115 if (REG_P (reg)
8116 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8117 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8119 int nregno = REGNO (reg);
8121 if (reg_last_reload_reg[nregno])
8123 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8125 if (reg_reloaded_contents[last_regno] == nregno)
8126 spill_reg_store[last_regno] = 0;
8131 /* I is nonneg if this reload used a register.
8132 If rld[r].reg_rtx is 0, this is an optional reload
8133 that we opted to ignore. */
8135 if (i >= 0 && rld[r].reg_rtx != 0)
8137 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8138 int k;
8140 /* For a multi register reload, we need to check if all or part
8141 of the value lives to the end. */
8142 for (k = 0; k < nr; k++)
8143 if (reload_reg_reaches_end_p (i + k, r))
8144 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8146 /* Maybe the spill reg contains a copy of reload_out. */
8147 if (rld[r].out != 0
8148 && (REG_P (rld[r].out)
8149 || (rld[r].out_reg
8150 ? REG_P (rld[r].out_reg)
8151 /* The reload value is an auto-modification of
8152 some kind. For PRE_INC, POST_INC, PRE_DEC
8153 and POST_DEC, we record an equivalence
8154 between the reload register and the operand
8155 on the optimistic assumption that we can make
8156 the equivalence hold. reload_as_needed must
8157 then either make it hold or invalidate the
8158 equivalence.
8160 PRE_MODIFY and POST_MODIFY addresses are reloaded
8161 somewhat differently, and allowing them here leads
8162 to problems. */
8163 : (GET_CODE (rld[r].out) != POST_MODIFY
8164 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8166 rtx reg;
8168 reg = reload_reg_rtx_for_output[r];
8169 if (reload_reg_rtx_reaches_end_p (reg, r))
8171 enum machine_mode mode = GET_MODE (reg);
8172 int regno = REGNO (reg);
8173 int nregs = hard_regno_nregs[regno][mode];
8174 rtx out = (REG_P (rld[r].out)
8175 ? rld[r].out
8176 : rld[r].out_reg
8177 ? rld[r].out_reg
8178 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8179 int out_regno = REGNO (out);
8180 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8181 : hard_regno_nregs[out_regno][mode]);
8182 bool piecemeal;
8184 spill_reg_store[regno] = new_spill_reg_store[regno];
8185 spill_reg_stored_to[regno] = out;
8186 reg_last_reload_reg[out_regno] = reg;
8188 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8189 && nregs == out_nregs
8190 && inherit_piecemeal_p (out_regno, regno, mode));
8192 /* If OUT_REGNO is a hard register, it may occupy more than
8193 one register. If it does, say what is in the
8194 rest of the registers assuming that both registers
8195 agree on how many words the object takes. If not,
8196 invalidate the subsequent registers. */
8198 if (HARD_REGISTER_NUM_P (out_regno))
8199 for (k = 1; k < out_nregs; k++)
8200 reg_last_reload_reg[out_regno + k]
8201 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8203 /* Now do the inverse operation. */
8204 for (k = 0; k < nregs; k++)
8206 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8207 reg_reloaded_contents[regno + k]
8208 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8209 ? out_regno
8210 : out_regno + k);
8211 reg_reloaded_insn[regno + k] = insn;
8212 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8213 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8214 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8215 regno + k);
8216 else
8217 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8218 regno + k);
8222 /* Maybe the spill reg contains a copy of reload_in. Only do
8223 something if there will not be an output reload for
8224 the register being reloaded. */
8225 else if (rld[r].out_reg == 0
8226 && rld[r].in != 0
8227 && ((REG_P (rld[r].in)
8228 && !HARD_REGISTER_P (rld[r].in)
8229 && !REGNO_REG_SET_P (&reg_has_output_reload,
8230 REGNO (rld[r].in)))
8231 || (REG_P (rld[r].in_reg)
8232 && !REGNO_REG_SET_P (&reg_has_output_reload,
8233 REGNO (rld[r].in_reg))))
8234 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8236 rtx reg;
8238 reg = reload_reg_rtx_for_input[r];
8239 if (reload_reg_rtx_reaches_end_p (reg, r))
8241 enum machine_mode mode;
8242 int regno;
8243 int nregs;
8244 int in_regno;
8245 int in_nregs;
8246 rtx in;
8247 bool piecemeal;
8249 mode = GET_MODE (reg);
8250 regno = REGNO (reg);
8251 nregs = hard_regno_nregs[regno][mode];
8252 if (REG_P (rld[r].in)
8253 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8254 in = rld[r].in;
8255 else if (REG_P (rld[r].in_reg))
8256 in = rld[r].in_reg;
8257 else
8258 in = XEXP (rld[r].in_reg, 0);
8259 in_regno = REGNO (in);
8261 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8262 : hard_regno_nregs[in_regno][mode]);
8264 reg_last_reload_reg[in_regno] = reg;
8266 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8267 && nregs == in_nregs
8268 && inherit_piecemeal_p (regno, in_regno, mode));
8270 if (HARD_REGISTER_NUM_P (in_regno))
8271 for (k = 1; k < in_nregs; k++)
8272 reg_last_reload_reg[in_regno + k]
8273 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8275 /* Unless we inherited this reload, show we haven't
8276 recently done a store.
8277 Previous stores of inherited auto_inc expressions
8278 also have to be discarded. */
8279 if (! reload_inherited[r]
8280 || (rld[r].out && ! rld[r].out_reg))
8281 spill_reg_store[regno] = 0;
8283 for (k = 0; k < nregs; k++)
8285 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8286 reg_reloaded_contents[regno + k]
8287 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8288 ? in_regno
8289 : in_regno + k);
8290 reg_reloaded_insn[regno + k] = insn;
8291 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8292 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8293 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8294 regno + k);
8295 else
8296 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8297 regno + k);
8303 /* The following if-statement was #if 0'd in 1.34 (or before...).
8304 It's reenabled in 1.35 because supposedly nothing else
8305 deals with this problem. */
8307 /* If a register gets output-reloaded from a non-spill register,
8308 that invalidates any previous reloaded copy of it.
8309 But forget_old_reloads_1 won't get to see it, because
8310 it thinks only about the original insn. So invalidate it here.
8311 Also do the same thing for RELOAD_OTHER constraints where the
8312 output is discarded. */
8313 if (i < 0
8314 && ((rld[r].out != 0
8315 && (REG_P (rld[r].out)
8316 || (MEM_P (rld[r].out)
8317 && REG_P (rld[r].out_reg))))
8318 || (rld[r].out == 0 && rld[r].out_reg
8319 && REG_P (rld[r].out_reg))))
8321 rtx out = ((rld[r].out && REG_P (rld[r].out))
8322 ? rld[r].out : rld[r].out_reg);
8323 int out_regno = REGNO (out);
8324 enum machine_mode mode = GET_MODE (out);
8326 /* REG_RTX is now set or clobbered by the main instruction.
8327 As the comment above explains, forget_old_reloads_1 only
8328 sees the original instruction, and there is no guarantee
8329 that the original instruction also clobbered REG_RTX.
8330 For example, if find_reloads sees that the input side of
8331 a matched operand pair dies in this instruction, it may
8332 use the input register as the reload register.
8334 Calling forget_old_reloads_1 is a waste of effort if
8335 REG_RTX is also the output register.
8337 If we know that REG_RTX holds the value of a pseudo
8338 register, the code after the call will record that fact. */
8339 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8340 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8342 if (!HARD_REGISTER_NUM_P (out_regno))
8344 rtx src_reg, store_insn = NULL_RTX;
8346 reg_last_reload_reg[out_regno] = 0;
8348 /* If we can find a hard register that is stored, record
8349 the storing insn so that we may delete this insn with
8350 delete_output_reload. */
8351 src_reg = reload_reg_rtx_for_output[r];
8353 if (src_reg)
8355 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8356 store_insn = new_spill_reg_store[REGNO (src_reg)];
8357 else
8358 src_reg = NULL_RTX;
8360 else
8362 /* If this is an optional reload, try to find the
8363 source reg from an input reload. */
8364 rtx set = single_set (insn);
8365 if (set && SET_DEST (set) == rld[r].out)
8367 int k;
8369 src_reg = SET_SRC (set);
8370 store_insn = insn;
8371 for (k = 0; k < n_reloads; k++)
8373 if (rld[k].in == src_reg)
8375 src_reg = reload_reg_rtx_for_input[k];
8376 break;
8381 if (src_reg && REG_P (src_reg)
8382 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8384 int src_regno, src_nregs, k;
8385 rtx note;
8387 gcc_assert (GET_MODE (src_reg) == mode);
8388 src_regno = REGNO (src_reg);
8389 src_nregs = hard_regno_nregs[src_regno][mode];
8390 /* The place where to find a death note varies with
8391 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8392 necessarily checked exactly in the code that moves
8393 notes, so just check both locations. */
8394 note = find_regno_note (insn, REG_DEAD, src_regno);
8395 if (! note && store_insn)
8396 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8397 for (k = 0; k < src_nregs; k++)
8399 spill_reg_store[src_regno + k] = store_insn;
8400 spill_reg_stored_to[src_regno + k] = out;
8401 reg_reloaded_contents[src_regno + k] = out_regno;
8402 reg_reloaded_insn[src_regno + k] = store_insn;
8403 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8404 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8405 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8406 mode))
8407 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8408 src_regno + k);
8409 else
8410 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8411 src_regno + k);
8412 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8413 if (note)
8414 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8415 else
8416 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8418 reg_last_reload_reg[out_regno] = src_reg;
8419 /* We have to set reg_has_output_reload here, or else
8420 forget_old_reloads_1 will clear reg_last_reload_reg
8421 right away. */
8422 SET_REGNO_REG_SET (&reg_has_output_reload,
8423 out_regno);
8426 else
8428 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8430 for (k = 0; k < out_nregs; k++)
8431 reg_last_reload_reg[out_regno + k] = 0;
8435 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8438 /* Go through the motions to emit INSN and test if it is strictly valid.
8439 Return the emitted insn if valid, else return NULL. */
8441 static rtx
8442 emit_insn_if_valid_for_reload (rtx insn)
8444 rtx last = get_last_insn ();
8445 int code;
8447 insn = emit_insn (insn);
8448 code = recog_memoized (insn);
8450 if (code >= 0)
8452 extract_insn (insn);
8453 /* We want constrain operands to treat this insn strictly in its
8454 validity determination, i.e., the way it would after reload has
8455 completed. */
8456 if (constrain_operands (1))
8457 return insn;
8460 delete_insns_since (last);
8461 return NULL;
8464 #ifdef SECONDARY_MEMORY_NEEDED
8465 /* If X is not a subreg, return it unmodified. If it is a subreg,
8466 look up whether we made a replacement for the SUBREG_REG. Return
8467 either the replacement or the SUBREG_REG. */
8469 static rtx
8470 replaced_subreg (rtx x)
8472 if (GET_CODE (x) == SUBREG)
8473 return find_replacement (&SUBREG_REG (x));
8474 return x;
8476 #endif
8478 /* Emit code to perform a reload from IN (which may be a reload register) to
8479 OUT (which may also be a reload register). IN or OUT is from operand
8480 OPNUM with reload type TYPE.
8482 Returns first insn emitted. */
8484 static rtx
8485 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8487 rtx last = get_last_insn ();
8488 rtx tem;
8489 #ifdef SECONDARY_MEMORY_NEEDED
8490 rtx tem1, tem2;
8491 #endif
8493 /* If IN is a paradoxical SUBREG, remove it and try to put the
8494 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8495 if (!strip_paradoxical_subreg (&in, &out))
8496 strip_paradoxical_subreg (&out, &in);
8498 /* How to do this reload can get quite tricky. Normally, we are being
8499 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8500 register that didn't get a hard register. In that case we can just
8501 call emit_move_insn.
8503 We can also be asked to reload a PLUS that adds a register or a MEM to
8504 another register, constant or MEM. This can occur during frame pointer
8505 elimination and while reloading addresses. This case is handled by
8506 trying to emit a single insn to perform the add. If it is not valid,
8507 we use a two insn sequence.
8509 Or we can be asked to reload an unary operand that was a fragment of
8510 an addressing mode, into a register. If it isn't recognized as-is,
8511 we try making the unop operand and the reload-register the same:
8512 (set reg:X (unop:X expr:Y))
8513 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8515 Finally, we could be called to handle an 'o' constraint by putting
8516 an address into a register. In that case, we first try to do this
8517 with a named pattern of "reload_load_address". If no such pattern
8518 exists, we just emit a SET insn and hope for the best (it will normally
8519 be valid on machines that use 'o').
8521 This entire process is made complex because reload will never
8522 process the insns we generate here and so we must ensure that
8523 they will fit their constraints and also by the fact that parts of
8524 IN might be being reloaded separately and replaced with spill registers.
8525 Because of this, we are, in some sense, just guessing the right approach
8526 here. The one listed above seems to work.
8528 ??? At some point, this whole thing needs to be rethought. */
8530 if (GET_CODE (in) == PLUS
8531 && (REG_P (XEXP (in, 0))
8532 || GET_CODE (XEXP (in, 0)) == SUBREG
8533 || MEM_P (XEXP (in, 0)))
8534 && (REG_P (XEXP (in, 1))
8535 || GET_CODE (XEXP (in, 1)) == SUBREG
8536 || CONSTANT_P (XEXP (in, 1))
8537 || MEM_P (XEXP (in, 1))))
8539 /* We need to compute the sum of a register or a MEM and another
8540 register, constant, or MEM, and put it into the reload
8541 register. The best possible way of doing this is if the machine
8542 has a three-operand ADD insn that accepts the required operands.
8544 The simplest approach is to try to generate such an insn and see if it
8545 is recognized and matches its constraints. If so, it can be used.
8547 It might be better not to actually emit the insn unless it is valid,
8548 but we need to pass the insn as an operand to `recog' and
8549 `extract_insn' and it is simpler to emit and then delete the insn if
8550 not valid than to dummy things up. */
8552 rtx op0, op1, tem, insn;
8553 enum insn_code code;
8555 op0 = find_replacement (&XEXP (in, 0));
8556 op1 = find_replacement (&XEXP (in, 1));
8558 /* Since constraint checking is strict, commutativity won't be
8559 checked, so we need to do that here to avoid spurious failure
8560 if the add instruction is two-address and the second operand
8561 of the add is the same as the reload reg, which is frequently
8562 the case. If the insn would be A = B + A, rearrange it so
8563 it will be A = A + B as constrain_operands expects. */
8565 if (REG_P (XEXP (in, 1))
8566 && REGNO (out) == REGNO (XEXP (in, 1)))
8567 tem = op0, op0 = op1, op1 = tem;
8569 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8570 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8572 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8573 if (insn)
8574 return insn;
8576 /* If that failed, we must use a conservative two-insn sequence.
8578 Use a move to copy one operand into the reload register. Prefer
8579 to reload a constant, MEM or pseudo since the move patterns can
8580 handle an arbitrary operand. If OP1 is not a constant, MEM or
8581 pseudo and OP1 is not a valid operand for an add instruction, then
8582 reload OP1.
8584 After reloading one of the operands into the reload register, add
8585 the reload register to the output register.
8587 If there is another way to do this for a specific machine, a
8588 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8589 we emit below. */
8591 code = optab_handler (add_optab, GET_MODE (out));
8593 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8594 || (REG_P (op1)
8595 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8596 || (code != CODE_FOR_nothing
8597 && !insn_operand_matches (code, 2, op1)))
8598 tem = op0, op0 = op1, op1 = tem;
8600 gen_reload (out, op0, opnum, type);
8602 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8603 This fixes a problem on the 32K where the stack pointer cannot
8604 be used as an operand of an add insn. */
8606 if (rtx_equal_p (op0, op1))
8607 op1 = out;
8609 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8610 if (insn)
8612 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8613 set_dst_reg_note (insn, REG_EQUIV, in, out);
8614 return insn;
8617 /* If that failed, copy the address register to the reload register.
8618 Then add the constant to the reload register. */
8620 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8621 gen_reload (out, op1, opnum, type);
8622 insn = emit_insn (gen_add2_insn (out, op0));
8623 set_dst_reg_note (insn, REG_EQUIV, in, out);
8626 #ifdef SECONDARY_MEMORY_NEEDED
8627 /* If we need a memory location to do the move, do it that way. */
8628 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8629 (REG_P (tem1) && REG_P (tem2)))
8630 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8631 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8632 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8633 REGNO_REG_CLASS (REGNO (tem2)),
8634 GET_MODE (out)))
8636 /* Get the memory to use and rewrite both registers to its mode. */
8637 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8639 if (GET_MODE (loc) != GET_MODE (out))
8640 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8642 if (GET_MODE (loc) != GET_MODE (in))
8643 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8645 gen_reload (loc, in, opnum, type);
8646 gen_reload (out, loc, opnum, type);
8648 #endif
8649 else if (REG_P (out) && UNARY_P (in))
8651 rtx insn;
8652 rtx op1;
8653 rtx out_moded;
8654 rtx set;
8656 op1 = find_replacement (&XEXP (in, 0));
8657 if (op1 != XEXP (in, 0))
8658 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8660 /* First, try a plain SET. */
8661 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8662 if (set)
8663 return set;
8665 /* If that failed, move the inner operand to the reload
8666 register, and try the same unop with the inner expression
8667 replaced with the reload register. */
8669 if (GET_MODE (op1) != GET_MODE (out))
8670 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8671 else
8672 out_moded = out;
8674 gen_reload (out_moded, op1, opnum, type);
8676 insn
8677 = gen_rtx_SET (VOIDmode, out,
8678 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8679 out_moded));
8680 insn = emit_insn_if_valid_for_reload (insn);
8681 if (insn)
8683 set_unique_reg_note (insn, REG_EQUIV, in);
8684 return insn;
8687 fatal_insn ("failure trying to reload:", set);
8689 /* If IN is a simple operand, use gen_move_insn. */
8690 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8692 tem = emit_insn (gen_move_insn (out, in));
8693 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8694 mark_jump_label (in, tem, 0);
8697 #ifdef HAVE_reload_load_address
8698 else if (HAVE_reload_load_address)
8699 emit_insn (gen_reload_load_address (out, in));
8700 #endif
8702 /* Otherwise, just write (set OUT IN) and hope for the best. */
8703 else
8704 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8706 /* Return the first insn emitted.
8707 We can not just return get_last_insn, because there may have
8708 been multiple instructions emitted. Also note that gen_move_insn may
8709 emit more than one insn itself, so we can not assume that there is one
8710 insn emitted per emit_insn_before call. */
8712 return last ? NEXT_INSN (last) : get_insns ();
8715 /* Delete a previously made output-reload whose result we now believe
8716 is not needed. First we double-check.
8718 INSN is the insn now being processed.
8719 LAST_RELOAD_REG is the hard register number for which we want to delete
8720 the last output reload.
8721 J is the reload-number that originally used REG. The caller has made
8722 certain that reload J doesn't use REG any longer for input.
8723 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8725 static void
8726 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8728 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8729 rtx reg = spill_reg_stored_to[last_reload_reg];
8730 int k;
8731 int n_occurrences;
8732 int n_inherited = 0;
8733 rtx i1;
8734 rtx substed;
8735 unsigned regno;
8736 int nregs;
8738 /* It is possible that this reload has been only used to set another reload
8739 we eliminated earlier and thus deleted this instruction too. */
8740 if (INSN_DELETED_P (output_reload_insn))
8741 return;
8743 /* Get the raw pseudo-register referred to. */
8745 while (GET_CODE (reg) == SUBREG)
8746 reg = SUBREG_REG (reg);
8747 substed = reg_equiv_memory_loc (REGNO (reg));
8749 /* This is unsafe if the operand occurs more often in the current
8750 insn than it is inherited. */
8751 for (k = n_reloads - 1; k >= 0; k--)
8753 rtx reg2 = rld[k].in;
8754 if (! reg2)
8755 continue;
8756 if (MEM_P (reg2) || reload_override_in[k])
8757 reg2 = rld[k].in_reg;
8758 #ifdef AUTO_INC_DEC
8759 if (rld[k].out && ! rld[k].out_reg)
8760 reg2 = XEXP (rld[k].in_reg, 0);
8761 #endif
8762 while (GET_CODE (reg2) == SUBREG)
8763 reg2 = SUBREG_REG (reg2);
8764 if (rtx_equal_p (reg2, reg))
8766 if (reload_inherited[k] || reload_override_in[k] || k == j)
8767 n_inherited++;
8768 else
8769 return;
8772 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8773 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8774 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8775 reg, 0);
8776 if (substed)
8777 n_occurrences += count_occurrences (PATTERN (insn),
8778 eliminate_regs (substed, VOIDmode,
8779 NULL_RTX), 0);
8780 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8782 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8783 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8785 if (n_occurrences > n_inherited)
8786 return;
8788 regno = REGNO (reg);
8789 if (regno >= FIRST_PSEUDO_REGISTER)
8790 nregs = 1;
8791 else
8792 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8794 /* If the pseudo-reg we are reloading is no longer referenced
8795 anywhere between the store into it and here,
8796 and we're within the same basic block, then the value can only
8797 pass through the reload reg and end up here.
8798 Otherwise, give up--return. */
8799 for (i1 = NEXT_INSN (output_reload_insn);
8800 i1 != insn; i1 = NEXT_INSN (i1))
8802 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8803 return;
8804 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8805 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8807 /* If this is USE in front of INSN, we only have to check that
8808 there are no more references than accounted for by inheritance. */
8809 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8811 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8812 i1 = NEXT_INSN (i1);
8814 if (n_occurrences <= n_inherited && i1 == insn)
8815 break;
8816 return;
8820 /* We will be deleting the insn. Remove the spill reg information. */
8821 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8823 spill_reg_store[last_reload_reg + k] = 0;
8824 spill_reg_stored_to[last_reload_reg + k] = 0;
8827 /* The caller has already checked that REG dies or is set in INSN.
8828 It has also checked that we are optimizing, and thus some
8829 inaccuracies in the debugging information are acceptable.
8830 So we could just delete output_reload_insn. But in some cases
8831 we can improve the debugging information without sacrificing
8832 optimization - maybe even improving the code: See if the pseudo
8833 reg has been completely replaced with reload regs. If so, delete
8834 the store insn and forget we had a stack slot for the pseudo. */
8835 if (rld[j].out != rld[j].in
8836 && REG_N_DEATHS (REGNO (reg)) == 1
8837 && REG_N_SETS (REGNO (reg)) == 1
8838 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8839 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8841 rtx i2;
8843 /* We know that it was used only between here and the beginning of
8844 the current basic block. (We also know that the last use before
8845 INSN was the output reload we are thinking of deleting, but never
8846 mind that.) Search that range; see if any ref remains. */
8847 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8849 rtx set = single_set (i2);
8851 /* Uses which just store in the pseudo don't count,
8852 since if they are the only uses, they are dead. */
8853 if (set != 0 && SET_DEST (set) == reg)
8854 continue;
8855 if (LABEL_P (i2)
8856 || JUMP_P (i2))
8857 break;
8858 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8859 && reg_mentioned_p (reg, PATTERN (i2)))
8861 /* Some other ref remains; just delete the output reload we
8862 know to be dead. */
8863 delete_address_reloads (output_reload_insn, insn);
8864 delete_insn (output_reload_insn);
8865 return;
8869 /* Delete the now-dead stores into this pseudo. Note that this
8870 loop also takes care of deleting output_reload_insn. */
8871 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8873 rtx set = single_set (i2);
8875 if (set != 0 && SET_DEST (set) == reg)
8877 delete_address_reloads (i2, insn);
8878 delete_insn (i2);
8880 if (LABEL_P (i2)
8881 || JUMP_P (i2))
8882 break;
8885 /* For the debugging info, say the pseudo lives in this reload reg. */
8886 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8887 if (ira_conflicts_p)
8888 /* Inform IRA about the change. */
8889 ira_mark_allocation_change (REGNO (reg));
8890 alter_reg (REGNO (reg), -1, false);
8892 else
8894 delete_address_reloads (output_reload_insn, insn);
8895 delete_insn (output_reload_insn);
8899 /* We are going to delete DEAD_INSN. Recursively delete loads of
8900 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8901 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8902 static void
8903 delete_address_reloads (rtx dead_insn, rtx current_insn)
8905 rtx set = single_set (dead_insn);
8906 rtx set2, dst, prev, next;
8907 if (set)
8909 rtx dst = SET_DEST (set);
8910 if (MEM_P (dst))
8911 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8913 /* If we deleted the store from a reloaded post_{in,de}c expression,
8914 we can delete the matching adds. */
8915 prev = PREV_INSN (dead_insn);
8916 next = NEXT_INSN (dead_insn);
8917 if (! prev || ! next)
8918 return;
8919 set = single_set (next);
8920 set2 = single_set (prev);
8921 if (! set || ! set2
8922 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8923 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8924 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8925 return;
8926 dst = SET_DEST (set);
8927 if (! rtx_equal_p (dst, SET_DEST (set2))
8928 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8929 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8930 || (INTVAL (XEXP (SET_SRC (set), 1))
8931 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8932 return;
8933 delete_related_insns (prev);
8934 delete_related_insns (next);
8937 /* Subfunction of delete_address_reloads: process registers found in X. */
8938 static void
8939 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8941 rtx prev, set, dst, i2;
8942 int i, j;
8943 enum rtx_code code = GET_CODE (x);
8945 if (code != REG)
8947 const char *fmt = GET_RTX_FORMAT (code);
8948 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8950 if (fmt[i] == 'e')
8951 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8952 else if (fmt[i] == 'E')
8954 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8955 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8956 current_insn);
8959 return;
8962 if (spill_reg_order[REGNO (x)] < 0)
8963 return;
8965 /* Scan backwards for the insn that sets x. This might be a way back due
8966 to inheritance. */
8967 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8969 code = GET_CODE (prev);
8970 if (code == CODE_LABEL || code == JUMP_INSN)
8971 return;
8972 if (!INSN_P (prev))
8973 continue;
8974 if (reg_set_p (x, PATTERN (prev)))
8975 break;
8976 if (reg_referenced_p (x, PATTERN (prev)))
8977 return;
8979 if (! prev || INSN_UID (prev) < reload_first_uid)
8980 return;
8981 /* Check that PREV only sets the reload register. */
8982 set = single_set (prev);
8983 if (! set)
8984 return;
8985 dst = SET_DEST (set);
8986 if (!REG_P (dst)
8987 || ! rtx_equal_p (dst, x))
8988 return;
8989 if (! reg_set_p (dst, PATTERN (dead_insn)))
8991 /* Check if DST was used in a later insn -
8992 it might have been inherited. */
8993 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8995 if (LABEL_P (i2))
8996 break;
8997 if (! INSN_P (i2))
8998 continue;
8999 if (reg_referenced_p (dst, PATTERN (i2)))
9001 /* If there is a reference to the register in the current insn,
9002 it might be loaded in a non-inherited reload. If no other
9003 reload uses it, that means the register is set before
9004 referenced. */
9005 if (i2 == current_insn)
9007 for (j = n_reloads - 1; j >= 0; j--)
9008 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9009 || reload_override_in[j] == dst)
9010 return;
9011 for (j = n_reloads - 1; j >= 0; j--)
9012 if (rld[j].in && rld[j].reg_rtx == dst)
9013 break;
9014 if (j >= 0)
9015 break;
9017 return;
9019 if (JUMP_P (i2))
9020 break;
9021 /* If DST is still live at CURRENT_INSN, check if it is used for
9022 any reload. Note that even if CURRENT_INSN sets DST, we still
9023 have to check the reloads. */
9024 if (i2 == current_insn)
9026 for (j = n_reloads - 1; j >= 0; j--)
9027 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9028 || reload_override_in[j] == dst)
9029 return;
9030 /* ??? We can't finish the loop here, because dst might be
9031 allocated to a pseudo in this block if no reload in this
9032 block needs any of the classes containing DST - see
9033 spill_hard_reg. There is no easy way to tell this, so we
9034 have to scan till the end of the basic block. */
9036 if (reg_set_p (dst, PATTERN (i2)))
9037 break;
9040 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9041 reg_reloaded_contents[REGNO (dst)] = -1;
9042 delete_insn (prev);
9045 /* Output reload-insns to reload VALUE into RELOADREG.
9046 VALUE is an autoincrement or autodecrement RTX whose operand
9047 is a register or memory location;
9048 so reloading involves incrementing that location.
9049 IN is either identical to VALUE, or some cheaper place to reload from.
9051 INC_AMOUNT is the number to increment or decrement by (always positive).
9052 This cannot be deduced from VALUE. */
9054 static void
9055 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9057 /* REG or MEM to be copied and incremented. */
9058 rtx incloc = find_replacement (&XEXP (value, 0));
9059 /* Nonzero if increment after copying. */
9060 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9061 || GET_CODE (value) == POST_MODIFY);
9062 rtx last;
9063 rtx inc;
9064 rtx add_insn;
9065 int code;
9066 rtx real_in = in == value ? incloc : in;
9068 /* No hard register is equivalent to this register after
9069 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9070 we could inc/dec that register as well (maybe even using it for
9071 the source), but I'm not sure it's worth worrying about. */
9072 if (REG_P (incloc))
9073 reg_last_reload_reg[REGNO (incloc)] = 0;
9075 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9077 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9078 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9080 else
9082 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9083 inc_amount = -inc_amount;
9085 inc = GEN_INT (inc_amount);
9088 /* If this is post-increment, first copy the location to the reload reg. */
9089 if (post && real_in != reloadreg)
9090 emit_insn (gen_move_insn (reloadreg, real_in));
9092 if (in == value)
9094 /* See if we can directly increment INCLOC. Use a method similar to
9095 that in gen_reload. */
9097 last = get_last_insn ();
9098 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9099 gen_rtx_PLUS (GET_MODE (incloc),
9100 incloc, inc)));
9102 code = recog_memoized (add_insn);
9103 if (code >= 0)
9105 extract_insn (add_insn);
9106 if (constrain_operands (1))
9108 /* If this is a pre-increment and we have incremented the value
9109 where it lives, copy the incremented value to RELOADREG to
9110 be used as an address. */
9112 if (! post)
9113 emit_insn (gen_move_insn (reloadreg, incloc));
9114 return;
9117 delete_insns_since (last);
9120 /* If couldn't do the increment directly, must increment in RELOADREG.
9121 The way we do this depends on whether this is pre- or post-increment.
9122 For pre-increment, copy INCLOC to the reload register, increment it
9123 there, then save back. */
9125 if (! post)
9127 if (in != reloadreg)
9128 emit_insn (gen_move_insn (reloadreg, real_in));
9129 emit_insn (gen_add2_insn (reloadreg, inc));
9130 emit_insn (gen_move_insn (incloc, reloadreg));
9132 else
9134 /* Postincrement.
9135 Because this might be a jump insn or a compare, and because RELOADREG
9136 may not be available after the insn in an input reload, we must do
9137 the incrementation before the insn being reloaded for.
9139 We have already copied IN to RELOADREG. Increment the copy in
9140 RELOADREG, save that back, then decrement RELOADREG so it has
9141 the original value. */
9143 emit_insn (gen_add2_insn (reloadreg, inc));
9144 emit_insn (gen_move_insn (incloc, reloadreg));
9145 if (CONST_INT_P (inc))
9146 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9147 else
9148 emit_insn (gen_sub2_insn (reloadreg, inc));
9152 #ifdef AUTO_INC_DEC
9153 static void
9154 add_auto_inc_notes (rtx insn, rtx x)
9156 enum rtx_code code = GET_CODE (x);
9157 const char *fmt;
9158 int i, j;
9160 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9162 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9163 return;
9166 /* Scan all the operand sub-expressions. */
9167 fmt = GET_RTX_FORMAT (code);
9168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9170 if (fmt[i] == 'e')
9171 add_auto_inc_notes (insn, XEXP (x, i));
9172 else if (fmt[i] == 'E')
9173 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9174 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9177 #endif