1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Memory allocator, based on tcmalloc.
6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
8 // The main allocator works in runs of pages.
9 // Small allocation sizes (up to and including 32 kB) are
10 // rounded to one of about 100 size classes, each of which
11 // has its own free list of objects of exactly that size.
12 // Any free page of memory can be split into a set of objects
13 // of one size class, which are then managed using free list
16 // The allocator's data structures are:
18 // FixAlloc: a free-list allocator for fixed-size objects,
19 // used to manage storage used by the allocator.
20 // MHeap: the malloc heap, managed at page (4096-byte) granularity.
21 // MSpan: a run of pages managed by the MHeap.
22 // MCentral: a shared free list for a given size class.
23 // MCache: a per-thread (in Go, per-M) cache for small objects.
24 // MStats: allocation statistics.
26 // Allocating a small object proceeds up a hierarchy of caches:
28 // 1. Round the size up to one of the small size classes
29 // and look in the corresponding MCache free list.
30 // If the list is not empty, allocate an object from it.
31 // This can all be done without acquiring a lock.
33 // 2. If the MCache free list is empty, replenish it by
34 // taking a bunch of objects from the MCentral free list.
35 // Moving a bunch amortizes the cost of acquiring the MCentral lock.
37 // 3. If the MCentral free list is empty, replenish it by
38 // allocating a run of pages from the MHeap and then
39 // chopping that memory into a objects of the given size.
40 // Allocating many objects amortizes the cost of locking
43 // 4. If the MHeap is empty or has no page runs large enough,
44 // allocate a new group of pages (at least 1MB) from the
45 // operating system. Allocating a large run of pages
46 // amortizes the cost of talking to the operating system.
48 // Freeing a small object proceeds up the same hierarchy:
50 // 1. Look up the size class for the object and add it to
51 // the MCache free list.
53 // 2. If the MCache free list is too long or the MCache has
54 // too much memory, return some to the MCentral free lists.
56 // 3. If all the objects in a given span have returned to
57 // the MCentral list, return that span to the page heap.
59 // 4. If the heap has too much memory, return some to the
62 // TODO(rsc): Step 4 is not implemented.
64 // Allocating and freeing a large object uses the page heap
65 // directly, bypassing the MCache and MCentral free lists.
67 // The small objects on the MCache and MCentral free lists
68 // may or may not be zeroed. They are zeroed if and only if
69 // the second word of the object is zero. The spans in the
70 // page heap are always zeroed. When a span full of objects
71 // is returned to the page heap, the objects that need to be
72 // are zeroed first. There are two main benefits to delaying the
75 // 1. stack frames allocated from the small object lists
76 // can avoid zeroing altogether.
77 // 2. the cost of zeroing when reusing a small object is
78 // charged to the mutator, not the garbage collector.
80 // This C code was written with an eye toward translating to Go
81 // in the future. Methods have the form Type_Method(Type *t, ...).
83 typedef struct MCentral MCentral
;
84 typedef struct MHeap MHeap
;
85 typedef struct MSpan MSpan
;
86 typedef struct MStats MStats
;
87 typedef struct MLink MLink
;
88 typedef struct MTypes MTypes
;
89 typedef struct GCStats GCStats
;
94 PageSize
= 1<<PageShift
,
95 PageMask
= PageSize
- 1,
97 typedef uintptr PageID
; // address >> PageShift
101 // Computed constant. The definition of MaxSmallSize and the
102 // algorithm in msize.c produce some number of different allocation
103 // size classes. NumSizeClasses is that number. It's needed here
104 // because there are static arrays of this length; when msize runs its
105 // size choosing algorithm it double-checks that NumSizeClasses agrees.
108 // Tunable constants.
109 MaxSmallSize
= 32<<10,
111 FixAllocChunk
= 16<<10, // Chunk size for FixAlloc
112 MaxMHeapList
= 1<<(20 - PageShift
), // Maximum page length for fixed-size list in MHeap.
113 HeapAllocChunk
= 1<<20, // Chunk size for heap growth
115 // Number of bits in page to span calculations (4k pages).
116 // On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
117 // On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
118 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
119 #if __SIZEOF_POINTER__ == 8
121 // Windows counts memory used by page table into committed memory
122 // of the process, so we can't reserve too much memory.
123 // See http://golang.org/issue/5402 and http://golang.org/issue/5236.
124 MHeapMap_Bits
= 35 - PageShift
,
126 MHeapMap_Bits
= 37 - PageShift
,
129 MHeapMap_Bits
= 32 - PageShift
,
132 // Max number of threads to run garbage collection.
133 // 2, 3, and 4 are all plausible maximums depending
134 // on the hardware details of the machine. The garbage
135 // collector scales well to 8 cpus.
139 // Maximum memory allocation size, a hint for callers.
140 // This must be a #define instead of an enum because it
142 #if __SIZEOF_POINTER__ == 8
143 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
145 #define MaxMem ((uintptr)-1)
148 // A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
154 // SysAlloc obtains a large chunk of zeroed memory from the
155 // operating system, typically on the order of a hundred kilobytes
158 // SysUnused notifies the operating system that the contents
159 // of the memory region are no longer needed and can be reused
160 // for other purposes.
161 // SysUsed notifies the operating system that the contents
162 // of the memory region are needed again.
164 // SysFree returns it unconditionally; this is only used if
165 // an out-of-memory error has been detected midway through
166 // an allocation. It is okay if SysFree is a no-op.
168 // SysReserve reserves address space without allocating memory.
169 // If the pointer passed to it is non-nil, the caller wants the
170 // reservation there, but SysReserve can still choose another
171 // location if that one is unavailable.
173 // SysMap maps previously reserved address space for use.
175 void* runtime_SysAlloc(uintptr nbytes
, uint64
*stat
);
176 void runtime_SysFree(void *v
, uintptr nbytes
, uint64
*stat
);
177 void runtime_SysUnused(void *v
, uintptr nbytes
);
178 void runtime_SysUsed(void *v
, uintptr nbytes
);
179 void runtime_SysMap(void *v
, uintptr nbytes
, uint64
*stat
);
180 void* runtime_SysReserve(void *v
, uintptr nbytes
);
182 // FixAlloc is a simple free-list allocator for fixed size objects.
183 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its
184 // MCache and MSpan objects.
186 // Memory returned by FixAlloc_Alloc is not zeroed.
187 // The caller is responsible for locking around FixAlloc calls.
188 // Callers can keep state in the object but the first word is
189 // smashed by freeing and reallocating.
193 void (*first
)(void *arg
, byte
*p
); // called first time p is returned
198 uintptr inuse
; // in-use bytes now
202 void runtime_FixAlloc_Init(FixAlloc
*f
, uintptr size
, void (*first
)(void*, byte
*), void *arg
, uint64
*stat
);
203 void* runtime_FixAlloc_Alloc(FixAlloc
*f
);
204 void runtime_FixAlloc_Free(FixAlloc
*f
, void *p
);
208 // Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
211 // General statistics.
212 uint64 alloc
; // bytes allocated and still in use
213 uint64 total_alloc
; // bytes allocated (even if freed)
214 uint64 sys
; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
215 uint64 nlookup
; // number of pointer lookups
216 uint64 nmalloc
; // number of mallocs
217 uint64 nfree
; // number of frees
219 // Statistics about malloc heap.
220 // protected by mheap.Lock
221 uint64 heap_alloc
; // bytes allocated and still in use
222 uint64 heap_sys
; // bytes obtained from system
223 uint64 heap_idle
; // bytes in idle spans
224 uint64 heap_inuse
; // bytes in non-idle spans
225 uint64 heap_released
; // bytes released to the OS
226 uint64 heap_objects
; // total number of allocated objects
228 // Statistics about allocation of low-level fixed-size structures.
229 // Protected by FixAlloc locks.
230 uint64 stacks_inuse
; // bootstrap stacks
232 uint64 mspan_inuse
; // MSpan structures
234 uint64 mcache_inuse
; // MCache structures
236 uint64 buckhash_sys
; // profiling bucket hash table
240 // Statistics about garbage collector.
241 // Protected by mheap or stopping the world during GC.
242 uint64 next_gc
; // next GC (in heap_alloc time)
243 uint64 last_gc
; // last GC (in absolute time)
244 uint64 pause_total_ns
;
245 uint64 pause_ns
[256];
250 // Statistics about allocation size classes.
255 } by_size
[NumSizeClasses
];
259 __asm__ (GOSYM_PREFIX
"runtime.VmemStats");
261 // Size classes. Computed and initialized by InitSizes.
263 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
264 // 1 <= sizeclass < NumSizeClasses, for n.
265 // Size class 0 is reserved to mean "not small".
267 // class_to_size[i] = largest size in class i
268 // class_to_allocnpages[i] = number of pages to allocate when
269 // making new objects in class i
271 int32
runtime_SizeToClass(int32
);
272 extern int32 runtime_class_to_size
[NumSizeClasses
];
273 extern int32 runtime_class_to_allocnpages
[NumSizeClasses
];
274 extern int8 runtime_size_to_class8
[1024/8 + 1];
275 extern int8 runtime_size_to_class128
[(MaxSmallSize
-1024)/128 + 1];
276 extern void runtime_InitSizes(void);
279 // Per-thread (in Go, per-M) cache for small objects.
280 // No locking needed because it is per-thread (per-M).
281 typedef struct MCacheList MCacheList
;
290 // The following members are accessed on every malloc,
291 // so they are grouped here for better caching.
292 int32 next_sample
; // trigger heap sample after allocating this many bytes
293 intptr local_cachealloc
; // bytes allocated (or freed) from cache since last lock of heap
294 // The rest is not accessed on every malloc.
295 MCacheList list
[NumSizeClasses
];
296 // Local allocator stats, flushed during GC.
297 uintptr local_nlookup
; // number of pointer lookups
298 uintptr local_largefree
; // bytes freed for large objects (>MaxSmallSize)
299 uintptr local_nlargefree
; // number of frees for large objects (>MaxSmallSize)
300 uintptr local_nsmallfree
[NumSizeClasses
]; // number of frees for small objects (<=MaxSmallSize)
303 void runtime_MCache_Refill(MCache
*c
, int32 sizeclass
);
304 void runtime_MCache_Free(MCache
*c
, void *p
, int32 sizeclass
, uintptr size
);
305 void runtime_MCache_ReleaseAll(MCache
*c
);
307 // MTypes describes the types of blocks allocated within a span.
308 // The compression field describes the layout of the data.
311 // All blocks are free, or no type information is available for
313 // The data field has no meaning.
315 // The span contains just one block.
316 // The data field holds the type information.
317 // The sysalloc field has no meaning.
319 // The span contains multiple blocks.
320 // The data field points to an array of type [NumBlocks]uintptr,
321 // and each element of the array holds the type of the corresponding
324 // The span contains at most seven different types of blocks.
325 // The data field points to the following structure:
327 // type [8]uintptr // type[0] is always 0
328 // index [NumBlocks]byte
330 // The type of the i-th block is: data.type[data.index[i]]
340 byte compression
; // one of MTypes_*
344 // An MSpan is a run of pages.
354 MSpan
*next
; // in a span linked list
355 MSpan
*prev
; // in a span linked list
356 PageID start
; // starting page number
357 uintptr npages
; // number of pages in span
358 MLink
*freelist
; // list of free objects
359 uint32 ref
; // number of allocated objects in this span
360 int32 sizeclass
; // size class
361 uintptr elemsize
; // computed from sizeclass or from npages
362 uint32 state
; // MSpanInUse etc
363 int64 unusedsince
; // First time spotted by GC in MSpanFree state
364 uintptr npreleased
; // number of pages released to the OS
365 byte
*limit
; // end of data in span
366 MTypes types
; // types of allocated objects in this span
369 void runtime_MSpan_Init(MSpan
*span
, PageID start
, uintptr npages
);
371 // Every MSpan is in one doubly-linked list,
372 // either one of the MHeap's free lists or one of the
373 // MCentral's span lists. We use empty MSpan structures as list heads.
374 void runtime_MSpanList_Init(MSpan
*list
);
375 bool runtime_MSpanList_IsEmpty(MSpan
*list
);
376 void runtime_MSpanList_Insert(MSpan
*list
, MSpan
*span
);
377 void runtime_MSpanList_Remove(MSpan
*span
); // from whatever list it is in
380 // Central list of free objects of a given size.
390 void runtime_MCentral_Init(MCentral
*c
, int32 sizeclass
);
391 int32
runtime_MCentral_AllocList(MCentral
*c
, MLink
**first
);
392 void runtime_MCentral_FreeList(MCentral
*c
, MLink
*first
);
393 void runtime_MCentral_FreeSpan(MCentral
*c
, MSpan
*s
, int32 n
, MLink
*start
, MLink
*end
);
396 // The heap itself is the "free[]" and "large" arrays,
397 // but all the other global data is here too.
401 MSpan free
[MaxMHeapList
]; // free lists of given length
402 MSpan large
; // free lists length >= MaxMHeapList
409 uintptr spans_mapped
;
411 // range of addresses we might see in the heap
413 uintptr bitmap_mapped
;
418 // central free lists for small size classes.
419 // the padding makes sure that the MCentrals are
420 // spaced CacheLineSize bytes apart, so that each MCentral.Lock
421 // gets its own cache line.
425 } central
[NumSizeClasses
];
427 FixAlloc spanalloc
; // allocator for Span*
428 FixAlloc cachealloc
; // allocator for MCache*
431 uint64 largefree
; // bytes freed for large objects (>MaxSmallSize)
432 uint64 nlargefree
; // number of frees for large objects (>MaxSmallSize)
433 uint64 nsmallfree
[NumSizeClasses
]; // number of frees for small objects (<=MaxSmallSize)
435 extern MHeap runtime_mheap
;
437 void runtime_MHeap_Init(MHeap
*h
);
438 MSpan
* runtime_MHeap_Alloc(MHeap
*h
, uintptr npage
, int32 sizeclass
, int32 acct
, int32 zeroed
);
439 void runtime_MHeap_Free(MHeap
*h
, MSpan
*s
, int32 acct
);
440 MSpan
* runtime_MHeap_Lookup(MHeap
*h
, void *v
);
441 MSpan
* runtime_MHeap_LookupMaybe(MHeap
*h
, void *v
);
442 void runtime_MGetSizeClassInfo(int32 sizeclass
, uintptr
*size
, int32
*npages
, int32
*nobj
);
443 void* runtime_MHeap_SysAlloc(MHeap
*h
, uintptr n
);
444 void runtime_MHeap_MapBits(MHeap
*h
);
445 void runtime_MHeap_MapSpans(MHeap
*h
);
446 void runtime_MHeap_Scavenger(void*);
448 void* runtime_mallocgc(uintptr size
, uintptr typ
, uint32 flag
);
449 void* runtime_persistentalloc(uintptr size
, uintptr align
, uint64
*stat
);
450 int32
runtime_mlookup(void *v
, byte
**base
, uintptr
*size
, MSpan
**s
);
451 void runtime_gc(int32 force
);
452 void runtime_markallocated(void *v
, uintptr n
, bool noptr
);
453 void runtime_checkallocated(void *v
, uintptr n
);
454 void runtime_markfreed(void *v
, uintptr n
);
455 void runtime_checkfreed(void *v
, uintptr n
);
456 extern int32 runtime_checking
;
457 void runtime_markspan(void *v
, uintptr size
, uintptr n
, bool leftover
);
458 void runtime_unmarkspan(void *v
, uintptr size
);
459 bool runtime_blockspecial(void*);
460 void runtime_setblockspecial(void*, bool);
461 void runtime_purgecachedstats(MCache
*);
462 void* runtime_cnew(const Type
*);
463 void* runtime_cnewarray(const Type
*, intgo
);
465 void runtime_settype_flush(M
*);
466 void runtime_settype_sysfree(MSpan
*);
467 uintptr
runtime_gettype(void*);
472 FlagNoScan
= 1<<0, // GC doesn't have to scan object
473 FlagNoProfiling
= 1<<1, // must not profile
474 FlagNoGC
= 1<<2, // must not free or scan for pointers
475 FlagNoZero
= 1<<3, // don't zero memory
476 FlagNoInvokeGC
= 1<<4, // don't invoke GC
479 typedef struct Obj Obj
;
482 byte
*p
; // data pointer
483 uintptr n
; // size of data in bytes
484 uintptr ti
; // type info
487 void runtime_MProf_Malloc(void*, uintptr
);
488 void runtime_MProf_Free(void*, uintptr
);
489 void runtime_MProf_GC(void);
490 void runtime_MProf_Mark(void (*addroot
)(Obj
));
491 int32
runtime_gcprocs(void);
492 void runtime_helpgc(int32 nproc
);
493 void runtime_gchelper(void);
495 struct __go_func_type
;
496 struct __go_ptr_type
;
497 bool runtime_getfinalizer(void *p
, bool del
, FuncVal
**fn
, const struct __go_func_type
**ft
, const struct __go_ptr_type
**ot
);
498 void runtime_walkfintab(void (*fn
)(void*), void (*scan
)(Obj
));
502 TypeInfo_SingleObject
= 0,
506 // Enables type information at the end of blocks allocated from heap
507 DebugTypeAtBlockEnd
= 0,
510 // defined in mgc0.go
511 void runtime_gc_m_ptr(Eface
*);
512 void runtime_gc_itab_ptr(Eface
*);
514 void runtime_memorydump(void);
516 void runtime_proc_scan(void (*)(Obj
));
517 void runtime_time_scan(void (*)(Obj
));
518 void runtime_netpoll_scan(void (*)(Obj
));