ChangeLog/libgcc
[official-gcc.git] / gcc / cse.c
blob58055ddae061d309d0e8e8dfeee7b2f0c107f311
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 /* stdio.h must precede rtl.h for FFS. */
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "basic-block.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "function.h"
38 #include "expr.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "ggc.h"
42 #include "timevar.h"
43 #include "except.h"
44 #include "target.h"
45 #include "params.h"
46 #include "rtlhooks-def.h"
47 #include "tree-pass.h"
48 #include "df.h"
49 #include "dbgcnt.h"
51 /* The basic idea of common subexpression elimination is to go
52 through the code, keeping a record of expressions that would
53 have the same value at the current scan point, and replacing
54 expressions encountered with the cheapest equivalent expression.
56 It is too complicated to keep track of the different possibilities
57 when control paths merge in this code; so, at each label, we forget all
58 that is known and start fresh. This can be described as processing each
59 extended basic block separately. We have a separate pass to perform
60 global CSE.
62 Note CSE can turn a conditional or computed jump into a nop or
63 an unconditional jump. When this occurs we arrange to run the jump
64 optimizer after CSE to delete the unreachable code.
66 We use two data structures to record the equivalent expressions:
67 a hash table for most expressions, and a vector of "quantity
68 numbers" to record equivalent (pseudo) registers.
70 The use of the special data structure for registers is desirable
71 because it is faster. It is possible because registers references
72 contain a fairly small number, the register number, taken from
73 a contiguously allocated series, and two register references are
74 identical if they have the same number. General expressions
75 do not have any such thing, so the only way to retrieve the
76 information recorded on an expression other than a register
77 is to keep it in a hash table.
79 Registers and "quantity numbers":
81 At the start of each basic block, all of the (hardware and pseudo)
82 registers used in the function are given distinct quantity
83 numbers to indicate their contents. During scan, when the code
84 copies one register into another, we copy the quantity number.
85 When a register is loaded in any other way, we allocate a new
86 quantity number to describe the value generated by this operation.
87 `REG_QTY (N)' records what quantity register N is currently thought
88 of as containing.
90 All real quantity numbers are greater than or equal to zero.
91 If register N has not been assigned a quantity, `REG_QTY (N)' will
92 equal -N - 1, which is always negative.
94 Quantity numbers below zero do not exist and none of the `qty_table'
95 entries should be referenced with a negative index.
97 We also maintain a bidirectional chain of registers for each
98 quantity number. The `qty_table` members `first_reg' and `last_reg',
99 and `reg_eqv_table' members `next' and `prev' hold these chains.
101 The first register in a chain is the one whose lifespan is least local.
102 Among equals, it is the one that was seen first.
103 We replace any equivalent register with that one.
105 If two registers have the same quantity number, it must be true that
106 REG expressions with qty_table `mode' must be in the hash table for both
107 registers and must be in the same class.
109 The converse is not true. Since hard registers may be referenced in
110 any mode, two REG expressions might be equivalent in the hash table
111 but not have the same quantity number if the quantity number of one
112 of the registers is not the same mode as those expressions.
114 Constants and quantity numbers
116 When a quantity has a known constant value, that value is stored
117 in the appropriate qty_table `const_rtx'. This is in addition to
118 putting the constant in the hash table as is usual for non-regs.
120 Whether a reg or a constant is preferred is determined by the configuration
121 macro CONST_COSTS and will often depend on the constant value. In any
122 event, expressions containing constants can be simplified, by fold_rtx.
124 When a quantity has a known nearly constant value (such as an address
125 of a stack slot), that value is stored in the appropriate qty_table
126 `const_rtx'.
128 Integer constants don't have a machine mode. However, cse
129 determines the intended machine mode from the destination
130 of the instruction that moves the constant. The machine mode
131 is recorded in the hash table along with the actual RTL
132 constant expression so that different modes are kept separate.
134 Other expressions:
136 To record known equivalences among expressions in general
137 we use a hash table called `table'. It has a fixed number of buckets
138 that contain chains of `struct table_elt' elements for expressions.
139 These chains connect the elements whose expressions have the same
140 hash codes.
142 Other chains through the same elements connect the elements which
143 currently have equivalent values.
145 Register references in an expression are canonicalized before hashing
146 the expression. This is done using `reg_qty' and qty_table `first_reg'.
147 The hash code of a register reference is computed using the quantity
148 number, not the register number.
150 When the value of an expression changes, it is necessary to remove from the
151 hash table not just that expression but all expressions whose values
152 could be different as a result.
154 1. If the value changing is in memory, except in special cases
155 ANYTHING referring to memory could be changed. That is because
156 nobody knows where a pointer does not point.
157 The function `invalidate_memory' removes what is necessary.
159 The special cases are when the address is constant or is
160 a constant plus a fixed register such as the frame pointer
161 or a static chain pointer. When such addresses are stored in,
162 we can tell exactly which other such addresses must be invalidated
163 due to overlap. `invalidate' does this.
164 All expressions that refer to non-constant
165 memory addresses are also invalidated. `invalidate_memory' does this.
167 2. If the value changing is a register, all expressions
168 containing references to that register, and only those,
169 must be removed.
171 Because searching the entire hash table for expressions that contain
172 a register is very slow, we try to figure out when it isn't necessary.
173 Precisely, this is necessary only when expressions have been
174 entered in the hash table using this register, and then the value has
175 changed, and then another expression wants to be added to refer to
176 the register's new value. This sequence of circumstances is rare
177 within any one basic block.
179 `REG_TICK' and `REG_IN_TABLE', accessors for members of
180 cse_reg_info, are used to detect this case. REG_TICK (i) is
181 incremented whenever a value is stored in register i.
182 REG_IN_TABLE (i) holds -1 if no references to register i have been
183 entered in the table; otherwise, it contains the value REG_TICK (i)
184 had when the references were entered. If we want to enter a
185 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
186 remove old references. Until we want to enter a new entry, the
187 mere fact that the two vectors don't match makes the entries be
188 ignored if anyone tries to match them.
190 Registers themselves are entered in the hash table as well as in
191 the equivalent-register chains. However, `REG_TICK' and
192 `REG_IN_TABLE' do not apply to expressions which are simple
193 register references. These expressions are removed from the table
194 immediately when they become invalid, and this can be done even if
195 we do not immediately search for all the expressions that refer to
196 the register.
198 A CLOBBER rtx in an instruction invalidates its operand for further
199 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
200 invalidates everything that resides in memory.
202 Related expressions:
204 Constant expressions that differ only by an additive integer
205 are called related. When a constant expression is put in
206 the table, the related expression with no constant term
207 is also entered. These are made to point at each other
208 so that it is possible to find out if there exists any
209 register equivalent to an expression related to a given expression. */
211 /* Length of qty_table vector. We know in advance we will not need
212 a quantity number this big. */
214 static int max_qty;
216 /* Next quantity number to be allocated.
217 This is 1 + the largest number needed so far. */
219 static int next_qty;
221 /* Per-qty information tracking.
223 `first_reg' and `last_reg' track the head and tail of the
224 chain of registers which currently contain this quantity.
226 `mode' contains the machine mode of this quantity.
228 `const_rtx' holds the rtx of the constant value of this
229 quantity, if known. A summations of the frame/arg pointer
230 and a constant can also be entered here. When this holds
231 a known value, `const_insn' is the insn which stored the
232 constant value.
234 `comparison_{code,const,qty}' are used to track when a
235 comparison between a quantity and some constant or register has
236 been passed. In such a case, we know the results of the comparison
237 in case we see it again. These members record a comparison that
238 is known to be true. `comparison_code' holds the rtx code of such
239 a comparison, else it is set to UNKNOWN and the other two
240 comparison members are undefined. `comparison_const' holds
241 the constant being compared against, or zero if the comparison
242 is not against a constant. `comparison_qty' holds the quantity
243 being compared against when the result is known. If the comparison
244 is not with a register, `comparison_qty' is -1. */
246 struct qty_table_elem
248 rtx const_rtx;
249 rtx const_insn;
250 rtx comparison_const;
251 int comparison_qty;
252 unsigned int first_reg, last_reg;
253 /* The sizes of these fields should match the sizes of the
254 code and mode fields of struct rtx_def (see rtl.h). */
255 ENUM_BITFIELD(rtx_code) comparison_code : 16;
256 ENUM_BITFIELD(machine_mode) mode : 8;
259 /* The table of all qtys, indexed by qty number. */
260 static struct qty_table_elem *qty_table;
262 /* Structure used to pass arguments via for_each_rtx to function
263 cse_change_cc_mode. */
264 struct change_cc_mode_args
266 rtx insn;
267 rtx newreg;
270 #ifdef HAVE_cc0
271 /* For machines that have a CC0, we do not record its value in the hash
272 table since its use is guaranteed to be the insn immediately following
273 its definition and any other insn is presumed to invalidate it.
275 Instead, we store below the current and last value assigned to CC0.
276 If it should happen to be a constant, it is stored in preference
277 to the actual assigned value. In case it is a constant, we store
278 the mode in which the constant should be interpreted. */
280 static rtx this_insn_cc0, prev_insn_cc0;
281 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
282 #endif
284 /* Insn being scanned. */
286 static rtx this_insn;
288 /* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
290 value.
292 Or -1 if this register is at the end of the chain.
294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296 /* Per-register equivalence chain. */
297 struct reg_eqv_elem
299 int next, prev;
302 /* The table of all register equivalence chains. */
303 static struct reg_eqv_elem *reg_eqv_table;
305 struct cse_reg_info
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
325 unsigned int subreg_ticked;
328 /* A table of cse_reg_info indexed by register numbers. */
329 static struct cse_reg_info *cse_reg_info_table;
331 /* The size of the above table. */
332 static unsigned int cse_reg_info_table_size;
334 /* The index of the first entry that has not been initialized. */
335 static unsigned int cse_reg_info_table_first_uninitialized;
337 /* The timestamp at the beginning of the current run of
338 cse_extended_basic_block. We increment this variable at the beginning of
339 the current run of cse_extended_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_extended_basic_block. */
343 static unsigned int cse_reg_info_timestamp;
345 /* A HARD_REG_SET containing all the hard registers for which there is
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
350 static HARD_REG_SET hard_regs_in_table;
352 /* Nonzero if cse has altered conditional jump insns
353 in such a way that jump optimization should be redone. */
355 static int cse_jumps_altered;
357 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
358 REG_LABEL, we have to rerun jump after CSE to put in the note. */
359 static int recorded_label_ref;
361 /* canon_hash stores 1 in do_not_record
362 if it notices a reference to CC0, PC, or some other volatile
363 subexpression. */
365 static int do_not_record;
367 /* canon_hash stores 1 in hash_arg_in_memory
368 if it notices a reference to memory within the expression being hashed. */
370 static int hash_arg_in_memory;
372 /* The hash table contains buckets which are chains of `struct table_elt's,
373 each recording one expression's information.
374 That expression is in the `exp' field.
376 The canon_exp field contains a canonical (from the point of view of
377 alias analysis) version of the `exp' field.
379 Those elements with the same hash code are chained in both directions
380 through the `next_same_hash' and `prev_same_hash' fields.
382 Each set of expressions with equivalent values
383 are on a two-way chain through the `next_same_value'
384 and `prev_same_value' fields, and all point with
385 the `first_same_value' field at the first element in
386 that chain. The chain is in order of increasing cost.
387 Each element's cost value is in its `cost' field.
389 The `in_memory' field is nonzero for elements that
390 involve any reference to memory. These elements are removed
391 whenever a write is done to an unidentified location in memory.
392 To be safe, we assume that a memory address is unidentified unless
393 the address is either a symbol constant or a constant plus
394 the frame pointer or argument pointer.
396 The `related_value' field is used to connect related expressions
397 (that differ by adding an integer).
398 The related expressions are chained in a circular fashion.
399 `related_value' is zero for expressions for which this
400 chain is not useful.
402 The `cost' field stores the cost of this element's expression.
403 The `regcost' field stores the value returned by approx_reg_cost for
404 this element's expression.
406 The `is_const' flag is set if the element is a constant (including
407 a fixed address).
409 The `flag' field is used as a temporary during some search routines.
411 The `mode' field is usually the same as GET_MODE (`exp'), but
412 if `exp' is a CONST_INT and has no machine mode then the `mode'
413 field is the mode it was being used as. Each constant is
414 recorded separately for each mode it is used with. */
416 struct table_elt
418 rtx exp;
419 rtx canon_exp;
420 struct table_elt *next_same_hash;
421 struct table_elt *prev_same_hash;
422 struct table_elt *next_same_value;
423 struct table_elt *prev_same_value;
424 struct table_elt *first_same_value;
425 struct table_elt *related_value;
426 int cost;
427 int regcost;
428 /* The size of this field should match the size
429 of the mode field of struct rtx_def (see rtl.h). */
430 ENUM_BITFIELD(machine_mode) mode : 8;
431 char in_memory;
432 char is_const;
433 char flag;
436 /* We don't want a lot of buckets, because we rarely have very many
437 things stored in the hash table, and a lot of buckets slows
438 down a lot of loops that happen frequently. */
439 #define HASH_SHIFT 5
440 #define HASH_SIZE (1 << HASH_SHIFT)
441 #define HASH_MASK (HASH_SIZE - 1)
443 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
444 register (hard registers may require `do_not_record' to be set). */
446 #define HASH(X, M) \
447 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
448 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
449 : canon_hash (X, M)) & HASH_MASK)
451 /* Like HASH, but without side-effects. */
452 #define SAFE_HASH(X, M) \
453 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
454 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
455 : safe_hash (X, M)) & HASH_MASK)
457 /* Determine whether register number N is considered a fixed register for the
458 purpose of approximating register costs.
459 It is desirable to replace other regs with fixed regs, to reduce need for
460 non-fixed hard regs.
461 A reg wins if it is either the frame pointer or designated as fixed. */
462 #define FIXED_REGNO_P(N) \
463 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
464 || fixed_regs[N] || global_regs[N])
466 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
467 hard registers and pointers into the frame are the cheapest with a cost
468 of 0. Next come pseudos with a cost of one and other hard registers with
469 a cost of 2. Aside from these special cases, call `rtx_cost'. */
471 #define CHEAP_REGNO(N) \
472 (REGNO_PTR_FRAME_P(N) \
473 || (HARD_REGISTER_NUM_P (N) \
474 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
476 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
477 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
479 /* Get the number of times this register has been updated in this
480 basic block. */
482 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
484 /* Get the point at which REG was recorded in the table. */
486 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
488 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
489 SUBREG). */
491 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
493 /* Get the quantity number for REG. */
495 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
497 /* Determine if the quantity number for register X represents a valid index
498 into the qty_table. */
500 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
502 static struct table_elt *table[HASH_SIZE];
504 /* Chain of `struct table_elt's made so far for this function
505 but currently removed from the table. */
507 static struct table_elt *free_element_chain;
509 /* Set to the cost of a constant pool reference if one was found for a
510 symbolic constant. If this was found, it means we should try to
511 convert constants into constant pool entries if they don't fit in
512 the insn. */
514 static int constant_pool_entries_cost;
515 static int constant_pool_entries_regcost;
517 /* This data describes a block that will be processed by
518 cse_extended_basic_block. */
520 struct cse_basic_block_data
522 /* Total number of SETs in block. */
523 int nsets;
524 /* Size of current branch path, if any. */
525 int path_size;
526 /* Current path, indicating which basic_blocks will be processed. */
527 struct branch_path
529 /* The basic block for this path entry. */
530 basic_block bb;
531 } *path;
535 /* Pointers to the live in/live out bitmaps for the boundaries of the
536 current EBB. */
537 static bitmap cse_ebb_live_in, cse_ebb_live_out;
539 /* A simple bitmap to track which basic blocks have been visited
540 already as part of an already processed extended basic block. */
541 static sbitmap cse_visited_basic_blocks;
543 static bool fixed_base_plus_p (rtx x);
544 static int notreg_cost (rtx, enum rtx_code);
545 static int approx_reg_cost_1 (rtx *, void *);
546 static int approx_reg_cost (rtx);
547 static int preferable (int, int, int, int);
548 static void new_basic_block (void);
549 static void make_new_qty (unsigned int, enum machine_mode);
550 static void make_regs_eqv (unsigned int, unsigned int);
551 static void delete_reg_equiv (unsigned int);
552 static int mention_regs (rtx);
553 static int insert_regs (rtx, struct table_elt *, int);
554 static void remove_from_table (struct table_elt *, unsigned);
555 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
556 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
557 static rtx lookup_as_function (rtx, enum rtx_code);
558 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
559 enum machine_mode);
560 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
561 static void invalidate (rtx, enum machine_mode);
562 static int cse_rtx_varies_p (rtx, int);
563 static void remove_invalid_refs (unsigned int);
564 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
565 enum machine_mode);
566 static void rehash_using_reg (rtx);
567 static void invalidate_memory (void);
568 static void invalidate_for_call (void);
569 static rtx use_related_value (rtx, struct table_elt *);
571 static inline unsigned canon_hash (rtx, enum machine_mode);
572 static inline unsigned safe_hash (rtx, enum machine_mode);
573 static unsigned hash_rtx_string (const char *);
575 static rtx canon_reg (rtx, rtx);
576 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
577 enum machine_mode *,
578 enum machine_mode *);
579 static rtx fold_rtx (rtx, rtx);
580 static rtx equiv_constant (rtx);
581 static void record_jump_equiv (rtx, bool);
582 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
583 int);
584 static void cse_insn (rtx, rtx);
585 static void cse_prescan_path (struct cse_basic_block_data *);
586 static void invalidate_from_clobbers (rtx);
587 static rtx cse_process_notes (rtx, rtx, bool *);
588 static void cse_extended_basic_block (struct cse_basic_block_data *);
589 static void count_reg_usage (rtx, int *, rtx, int);
590 static int check_for_label_ref (rtx *, void *);
591 extern void dump_class (struct table_elt*);
592 static void get_cse_reg_info_1 (unsigned int regno);
593 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
594 static int check_dependence (rtx *, void *);
596 static void flush_hash_table (void);
597 static bool insn_live_p (rtx, int *);
598 static bool set_live_p (rtx, rtx, int *);
599 static bool dead_libcall_p (rtx, int *);
600 static int cse_change_cc_mode (rtx *, void *);
601 static void cse_change_cc_mode_insn (rtx, rtx);
602 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
603 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
606 #undef RTL_HOOKS_GEN_LOWPART
607 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
609 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
611 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
612 virtual regs here because the simplify_*_operation routines are called
613 by integrate.c, which is called before virtual register instantiation. */
615 static bool
616 fixed_base_plus_p (rtx x)
618 switch (GET_CODE (x))
620 case REG:
621 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
622 return true;
623 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
624 return true;
625 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
626 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
627 return true;
628 return false;
630 case PLUS:
631 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
632 return false;
633 return fixed_base_plus_p (XEXP (x, 0));
635 default:
636 return false;
640 /* Dump the expressions in the equivalence class indicated by CLASSP.
641 This function is used only for debugging. */
642 void
643 dump_class (struct table_elt *classp)
645 struct table_elt *elt;
647 fprintf (stderr, "Equivalence chain for ");
648 print_rtl (stderr, classp->exp);
649 fprintf (stderr, ": \n");
651 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
653 print_rtl (stderr, elt->exp);
654 fprintf (stderr, "\n");
658 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
660 static int
661 approx_reg_cost_1 (rtx *xp, void *data)
663 rtx x = *xp;
664 int *cost_p = data;
666 if (x && REG_P (x))
668 unsigned int regno = REGNO (x);
670 if (! CHEAP_REGNO (regno))
672 if (regno < FIRST_PSEUDO_REGISTER)
674 if (SMALL_REGISTER_CLASSES)
675 return 1;
676 *cost_p += 2;
678 else
679 *cost_p += 1;
683 return 0;
686 /* Return an estimate of the cost of the registers used in an rtx.
687 This is mostly the number of different REG expressions in the rtx;
688 however for some exceptions like fixed registers we use a cost of
689 0. If any other hard register reference occurs, return MAX_COST. */
691 static int
692 approx_reg_cost (rtx x)
694 int cost = 0;
696 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
697 return MAX_COST;
699 return cost;
702 /* Return a negative value if an rtx A, whose costs are given by COST_A
703 and REGCOST_A, is more desirable than an rtx B.
704 Return a positive value if A is less desirable, or 0 if the two are
705 equally good. */
706 static int
707 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
709 /* First, get rid of cases involving expressions that are entirely
710 unwanted. */
711 if (cost_a != cost_b)
713 if (cost_a == MAX_COST)
714 return 1;
715 if (cost_b == MAX_COST)
716 return -1;
719 /* Avoid extending lifetimes of hardregs. */
720 if (regcost_a != regcost_b)
722 if (regcost_a == MAX_COST)
723 return 1;
724 if (regcost_b == MAX_COST)
725 return -1;
728 /* Normal operation costs take precedence. */
729 if (cost_a != cost_b)
730 return cost_a - cost_b;
731 /* Only if these are identical consider effects on register pressure. */
732 if (regcost_a != regcost_b)
733 return regcost_a - regcost_b;
734 return 0;
737 /* Internal function, to compute cost when X is not a register; called
738 from COST macro to keep it simple. */
740 static int
741 notreg_cost (rtx x, enum rtx_code outer)
743 return ((GET_CODE (x) == SUBREG
744 && REG_P (SUBREG_REG (x))
745 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
746 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
747 && (GET_MODE_SIZE (GET_MODE (x))
748 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
749 && subreg_lowpart_p (x)
750 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
751 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
753 : rtx_cost (x, outer) * 2);
757 /* Initialize CSE_REG_INFO_TABLE. */
759 static void
760 init_cse_reg_info (unsigned int nregs)
762 /* Do we need to grow the table? */
763 if (nregs > cse_reg_info_table_size)
765 unsigned int new_size;
767 if (cse_reg_info_table_size < 2048)
769 /* Compute a new size that is a power of 2 and no smaller
770 than the large of NREGS and 64. */
771 new_size = (cse_reg_info_table_size
772 ? cse_reg_info_table_size : 64);
774 while (new_size < nregs)
775 new_size *= 2;
777 else
779 /* If we need a big table, allocate just enough to hold
780 NREGS registers. */
781 new_size = nregs;
784 /* Reallocate the table with NEW_SIZE entries. */
785 if (cse_reg_info_table)
786 free (cse_reg_info_table);
787 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
788 cse_reg_info_table_size = new_size;
789 cse_reg_info_table_first_uninitialized = 0;
792 /* Do we have all of the first NREGS entries initialized? */
793 if (cse_reg_info_table_first_uninitialized < nregs)
795 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
796 unsigned int i;
798 /* Put the old timestamp on newly allocated entries so that they
799 will all be considered out of date. We do not touch those
800 entries beyond the first NREGS entries to be nice to the
801 virtual memory. */
802 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
803 cse_reg_info_table[i].timestamp = old_timestamp;
805 cse_reg_info_table_first_uninitialized = nregs;
809 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
811 static void
812 get_cse_reg_info_1 (unsigned int regno)
814 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
815 entry will be considered to have been initialized. */
816 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
818 /* Initialize the rest of the entry. */
819 cse_reg_info_table[regno].reg_tick = 1;
820 cse_reg_info_table[regno].reg_in_table = -1;
821 cse_reg_info_table[regno].subreg_ticked = -1;
822 cse_reg_info_table[regno].reg_qty = -regno - 1;
825 /* Find a cse_reg_info entry for REGNO. */
827 static inline struct cse_reg_info *
828 get_cse_reg_info (unsigned int regno)
830 struct cse_reg_info *p = &cse_reg_info_table[regno];
832 /* If this entry has not been initialized, go ahead and initialize
833 it. */
834 if (p->timestamp != cse_reg_info_timestamp)
835 get_cse_reg_info_1 (regno);
837 return p;
840 /* Clear the hash table and initialize each register with its own quantity,
841 for a new basic block. */
843 static void
844 new_basic_block (void)
846 int i;
848 next_qty = 0;
850 /* Invalidate cse_reg_info_table. */
851 cse_reg_info_timestamp++;
853 /* Clear out hash table state for this pass. */
854 CLEAR_HARD_REG_SET (hard_regs_in_table);
856 /* The per-quantity values used to be initialized here, but it is
857 much faster to initialize each as it is made in `make_new_qty'. */
859 for (i = 0; i < HASH_SIZE; i++)
861 struct table_elt *first;
863 first = table[i];
864 if (first != NULL)
866 struct table_elt *last = first;
868 table[i] = NULL;
870 while (last->next_same_hash != NULL)
871 last = last->next_same_hash;
873 /* Now relink this hash entire chain into
874 the free element list. */
876 last->next_same_hash = free_element_chain;
877 free_element_chain = first;
881 #ifdef HAVE_cc0
882 prev_insn_cc0 = 0;
883 #endif
886 /* Say that register REG contains a quantity in mode MODE not in any
887 register before and initialize that quantity. */
889 static void
890 make_new_qty (unsigned int reg, enum machine_mode mode)
892 int q;
893 struct qty_table_elem *ent;
894 struct reg_eqv_elem *eqv;
896 gcc_assert (next_qty < max_qty);
898 q = REG_QTY (reg) = next_qty++;
899 ent = &qty_table[q];
900 ent->first_reg = reg;
901 ent->last_reg = reg;
902 ent->mode = mode;
903 ent->const_rtx = ent->const_insn = NULL_RTX;
904 ent->comparison_code = UNKNOWN;
906 eqv = &reg_eqv_table[reg];
907 eqv->next = eqv->prev = -1;
910 /* Make reg NEW equivalent to reg OLD.
911 OLD is not changing; NEW is. */
913 static void
914 make_regs_eqv (unsigned int new, unsigned int old)
916 unsigned int lastr, firstr;
917 int q = REG_QTY (old);
918 struct qty_table_elem *ent;
920 ent = &qty_table[q];
922 /* Nothing should become eqv until it has a "non-invalid" qty number. */
923 gcc_assert (REGNO_QTY_VALID_P (old));
925 REG_QTY (new) = q;
926 firstr = ent->first_reg;
927 lastr = ent->last_reg;
929 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
930 hard regs. Among pseudos, if NEW will live longer than any other reg
931 of the same qty, and that is beyond the current basic block,
932 make it the new canonical replacement for this qty. */
933 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
934 /* Certain fixed registers might be of the class NO_REGS. This means
935 that not only can they not be allocated by the compiler, but
936 they cannot be used in substitutions or canonicalizations
937 either. */
938 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
939 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
940 || (new >= FIRST_PSEUDO_REGISTER
941 && (firstr < FIRST_PSEUDO_REGISTER
942 || (bitmap_bit_p (cse_ebb_live_out, new)
943 && !bitmap_bit_p (cse_ebb_live_out, firstr))
944 || (bitmap_bit_p (cse_ebb_live_in, new)
945 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
947 reg_eqv_table[firstr].prev = new;
948 reg_eqv_table[new].next = firstr;
949 reg_eqv_table[new].prev = -1;
950 ent->first_reg = new;
952 else
954 /* If NEW is a hard reg (known to be non-fixed), insert at end.
955 Otherwise, insert before any non-fixed hard regs that are at the
956 end. Registers of class NO_REGS cannot be used as an
957 equivalent for anything. */
958 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
959 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
960 && new >= FIRST_PSEUDO_REGISTER)
961 lastr = reg_eqv_table[lastr].prev;
962 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
963 if (reg_eqv_table[lastr].next >= 0)
964 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
965 else
966 qty_table[q].last_reg = new;
967 reg_eqv_table[lastr].next = new;
968 reg_eqv_table[new].prev = lastr;
972 /* Remove REG from its equivalence class. */
974 static void
975 delete_reg_equiv (unsigned int reg)
977 struct qty_table_elem *ent;
978 int q = REG_QTY (reg);
979 int p, n;
981 /* If invalid, do nothing. */
982 if (! REGNO_QTY_VALID_P (reg))
983 return;
985 ent = &qty_table[q];
987 p = reg_eqv_table[reg].prev;
988 n = reg_eqv_table[reg].next;
990 if (n != -1)
991 reg_eqv_table[n].prev = p;
992 else
993 ent->last_reg = p;
994 if (p != -1)
995 reg_eqv_table[p].next = n;
996 else
997 ent->first_reg = n;
999 REG_QTY (reg) = -reg - 1;
1002 /* Remove any invalid expressions from the hash table
1003 that refer to any of the registers contained in expression X.
1005 Make sure that newly inserted references to those registers
1006 as subexpressions will be considered valid.
1008 mention_regs is not called when a register itself
1009 is being stored in the table.
1011 Return 1 if we have done something that may have changed the hash code
1012 of X. */
1014 static int
1015 mention_regs (rtx x)
1017 enum rtx_code code;
1018 int i, j;
1019 const char *fmt;
1020 int changed = 0;
1022 if (x == 0)
1023 return 0;
1025 code = GET_CODE (x);
1026 if (code == REG)
1028 unsigned int regno = REGNO (x);
1029 unsigned int endregno = END_REGNO (x);
1030 unsigned int i;
1032 for (i = regno; i < endregno; i++)
1034 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1035 remove_invalid_refs (i);
1037 REG_IN_TABLE (i) = REG_TICK (i);
1038 SUBREG_TICKED (i) = -1;
1041 return 0;
1044 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1045 pseudo if they don't use overlapping words. We handle only pseudos
1046 here for simplicity. */
1047 if (code == SUBREG && REG_P (SUBREG_REG (x))
1048 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1050 unsigned int i = REGNO (SUBREG_REG (x));
1052 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1054 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1055 the last store to this register really stored into this
1056 subreg, then remove the memory of this subreg.
1057 Otherwise, remove any memory of the entire register and
1058 all its subregs from the table. */
1059 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1060 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1061 remove_invalid_refs (i);
1062 else
1063 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1066 REG_IN_TABLE (i) = REG_TICK (i);
1067 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1068 return 0;
1071 /* If X is a comparison or a COMPARE and either operand is a register
1072 that does not have a quantity, give it one. This is so that a later
1073 call to record_jump_equiv won't cause X to be assigned a different
1074 hash code and not found in the table after that call.
1076 It is not necessary to do this here, since rehash_using_reg can
1077 fix up the table later, but doing this here eliminates the need to
1078 call that expensive function in the most common case where the only
1079 use of the register is in the comparison. */
1081 if (code == COMPARE || COMPARISON_P (x))
1083 if (REG_P (XEXP (x, 0))
1084 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1085 if (insert_regs (XEXP (x, 0), NULL, 0))
1087 rehash_using_reg (XEXP (x, 0));
1088 changed = 1;
1091 if (REG_P (XEXP (x, 1))
1092 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1093 if (insert_regs (XEXP (x, 1), NULL, 0))
1095 rehash_using_reg (XEXP (x, 1));
1096 changed = 1;
1100 fmt = GET_RTX_FORMAT (code);
1101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1102 if (fmt[i] == 'e')
1103 changed |= mention_regs (XEXP (x, i));
1104 else if (fmt[i] == 'E')
1105 for (j = 0; j < XVECLEN (x, i); j++)
1106 changed |= mention_regs (XVECEXP (x, i, j));
1108 return changed;
1111 /* Update the register quantities for inserting X into the hash table
1112 with a value equivalent to CLASSP.
1113 (If the class does not contain a REG, it is irrelevant.)
1114 If MODIFIED is nonzero, X is a destination; it is being modified.
1115 Note that delete_reg_equiv should be called on a register
1116 before insert_regs is done on that register with MODIFIED != 0.
1118 Nonzero value means that elements of reg_qty have changed
1119 so X's hash code may be different. */
1121 static int
1122 insert_regs (rtx x, struct table_elt *classp, int modified)
1124 if (REG_P (x))
1126 unsigned int regno = REGNO (x);
1127 int qty_valid;
1129 /* If REGNO is in the equivalence table already but is of the
1130 wrong mode for that equivalence, don't do anything here. */
1132 qty_valid = REGNO_QTY_VALID_P (regno);
1133 if (qty_valid)
1135 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1137 if (ent->mode != GET_MODE (x))
1138 return 0;
1141 if (modified || ! qty_valid)
1143 if (classp)
1144 for (classp = classp->first_same_value;
1145 classp != 0;
1146 classp = classp->next_same_value)
1147 if (REG_P (classp->exp)
1148 && GET_MODE (classp->exp) == GET_MODE (x))
1150 unsigned c_regno = REGNO (classp->exp);
1152 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1154 /* Suppose that 5 is hard reg and 100 and 101 are
1155 pseudos. Consider
1157 (set (reg:si 100) (reg:si 5))
1158 (set (reg:si 5) (reg:si 100))
1159 (set (reg:di 101) (reg:di 5))
1161 We would now set REG_QTY (101) = REG_QTY (5), but the
1162 entry for 5 is in SImode. When we use this later in
1163 copy propagation, we get the register in wrong mode. */
1164 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1165 continue;
1167 make_regs_eqv (regno, c_regno);
1168 return 1;
1171 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1172 than REG_IN_TABLE to find out if there was only a single preceding
1173 invalidation - for the SUBREG - or another one, which would be
1174 for the full register. However, if we find here that REG_TICK
1175 indicates that the register is invalid, it means that it has
1176 been invalidated in a separate operation. The SUBREG might be used
1177 now (then this is a recursive call), or we might use the full REG
1178 now and a SUBREG of it later. So bump up REG_TICK so that
1179 mention_regs will do the right thing. */
1180 if (! modified
1181 && REG_IN_TABLE (regno) >= 0
1182 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1183 REG_TICK (regno)++;
1184 make_new_qty (regno, GET_MODE (x));
1185 return 1;
1188 return 0;
1191 /* If X is a SUBREG, we will likely be inserting the inner register in the
1192 table. If that register doesn't have an assigned quantity number at
1193 this point but does later, the insertion that we will be doing now will
1194 not be accessible because its hash code will have changed. So assign
1195 a quantity number now. */
1197 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1198 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1200 insert_regs (SUBREG_REG (x), NULL, 0);
1201 mention_regs (x);
1202 return 1;
1204 else
1205 return mention_regs (x);
1208 /* Look in or update the hash table. */
1210 /* Remove table element ELT from use in the table.
1211 HASH is its hash code, made using the HASH macro.
1212 It's an argument because often that is known in advance
1213 and we save much time not recomputing it. */
1215 static void
1216 remove_from_table (struct table_elt *elt, unsigned int hash)
1218 if (elt == 0)
1219 return;
1221 /* Mark this element as removed. See cse_insn. */
1222 elt->first_same_value = 0;
1224 /* Remove the table element from its equivalence class. */
1227 struct table_elt *prev = elt->prev_same_value;
1228 struct table_elt *next = elt->next_same_value;
1230 if (next)
1231 next->prev_same_value = prev;
1233 if (prev)
1234 prev->next_same_value = next;
1235 else
1237 struct table_elt *newfirst = next;
1238 while (next)
1240 next->first_same_value = newfirst;
1241 next = next->next_same_value;
1246 /* Remove the table element from its hash bucket. */
1249 struct table_elt *prev = elt->prev_same_hash;
1250 struct table_elt *next = elt->next_same_hash;
1252 if (next)
1253 next->prev_same_hash = prev;
1255 if (prev)
1256 prev->next_same_hash = next;
1257 else if (table[hash] == elt)
1258 table[hash] = next;
1259 else
1261 /* This entry is not in the proper hash bucket. This can happen
1262 when two classes were merged by `merge_equiv_classes'. Search
1263 for the hash bucket that it heads. This happens only very
1264 rarely, so the cost is acceptable. */
1265 for (hash = 0; hash < HASH_SIZE; hash++)
1266 if (table[hash] == elt)
1267 table[hash] = next;
1271 /* Remove the table element from its related-value circular chain. */
1273 if (elt->related_value != 0 && elt->related_value != elt)
1275 struct table_elt *p = elt->related_value;
1277 while (p->related_value != elt)
1278 p = p->related_value;
1279 p->related_value = elt->related_value;
1280 if (p->related_value == p)
1281 p->related_value = 0;
1284 /* Now add it to the free element chain. */
1285 elt->next_same_hash = free_element_chain;
1286 free_element_chain = elt;
1289 /* Look up X in the hash table and return its table element,
1290 or 0 if X is not in the table.
1292 MODE is the machine-mode of X, or if X is an integer constant
1293 with VOIDmode then MODE is the mode with which X will be used.
1295 Here we are satisfied to find an expression whose tree structure
1296 looks like X. */
1298 static struct table_elt *
1299 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1301 struct table_elt *p;
1303 for (p = table[hash]; p; p = p->next_same_hash)
1304 if (mode == p->mode && ((x == p->exp && REG_P (x))
1305 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1306 return p;
1308 return 0;
1311 /* Like `lookup' but don't care whether the table element uses invalid regs.
1312 Also ignore discrepancies in the machine mode of a register. */
1314 static struct table_elt *
1315 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1317 struct table_elt *p;
1319 if (REG_P (x))
1321 unsigned int regno = REGNO (x);
1323 /* Don't check the machine mode when comparing registers;
1324 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1325 for (p = table[hash]; p; p = p->next_same_hash)
1326 if (REG_P (p->exp)
1327 && REGNO (p->exp) == regno)
1328 return p;
1330 else
1332 for (p = table[hash]; p; p = p->next_same_hash)
1333 if (mode == p->mode
1334 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1335 return p;
1338 return 0;
1341 /* Look for an expression equivalent to X and with code CODE.
1342 If one is found, return that expression. */
1344 static rtx
1345 lookup_as_function (rtx x, enum rtx_code code)
1347 struct table_elt *p
1348 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1350 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1351 long as we are narrowing. So if we looked in vain for a mode narrower
1352 than word_mode before, look for word_mode now. */
1353 if (p == 0 && code == CONST_INT
1354 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1356 x = copy_rtx (x);
1357 PUT_MODE (x, word_mode);
1358 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1361 if (p == 0)
1362 return 0;
1364 for (p = p->first_same_value; p; p = p->next_same_value)
1365 if (GET_CODE (p->exp) == code
1366 /* Make sure this is a valid entry in the table. */
1367 && exp_equiv_p (p->exp, p->exp, 1, false))
1368 return p->exp;
1370 return 0;
1373 /* Insert X in the hash table, assuming HASH is its hash code
1374 and CLASSP is an element of the class it should go in
1375 (or 0 if a new class should be made).
1376 It is inserted at the proper position to keep the class in
1377 the order cheapest first.
1379 MODE is the machine-mode of X, or if X is an integer constant
1380 with VOIDmode then MODE is the mode with which X will be used.
1382 For elements of equal cheapness, the most recent one
1383 goes in front, except that the first element in the list
1384 remains first unless a cheaper element is added. The order of
1385 pseudo-registers does not matter, as canon_reg will be called to
1386 find the cheapest when a register is retrieved from the table.
1388 The in_memory field in the hash table element is set to 0.
1389 The caller must set it nonzero if appropriate.
1391 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1392 and if insert_regs returns a nonzero value
1393 you must then recompute its hash code before calling here.
1395 If necessary, update table showing constant values of quantities. */
1397 #define CHEAPER(X, Y) \
1398 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1400 static struct table_elt *
1401 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1403 struct table_elt *elt;
1405 /* If X is a register and we haven't made a quantity for it,
1406 something is wrong. */
1407 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1409 /* If X is a hard register, show it is being put in the table. */
1410 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1411 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1413 /* Put an element for X into the right hash bucket. */
1415 elt = free_element_chain;
1416 if (elt)
1417 free_element_chain = elt->next_same_hash;
1418 else
1419 elt = XNEW (struct table_elt);
1421 elt->exp = x;
1422 elt->canon_exp = NULL_RTX;
1423 elt->cost = COST (x);
1424 elt->regcost = approx_reg_cost (x);
1425 elt->next_same_value = 0;
1426 elt->prev_same_value = 0;
1427 elt->next_same_hash = table[hash];
1428 elt->prev_same_hash = 0;
1429 elt->related_value = 0;
1430 elt->in_memory = 0;
1431 elt->mode = mode;
1432 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1434 if (table[hash])
1435 table[hash]->prev_same_hash = elt;
1436 table[hash] = elt;
1438 /* Put it into the proper value-class. */
1439 if (classp)
1441 classp = classp->first_same_value;
1442 if (CHEAPER (elt, classp))
1443 /* Insert at the head of the class. */
1445 struct table_elt *p;
1446 elt->next_same_value = classp;
1447 classp->prev_same_value = elt;
1448 elt->first_same_value = elt;
1450 for (p = classp; p; p = p->next_same_value)
1451 p->first_same_value = elt;
1453 else
1455 /* Insert not at head of the class. */
1456 /* Put it after the last element cheaper than X. */
1457 struct table_elt *p, *next;
1459 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1460 p = next);
1462 /* Put it after P and before NEXT. */
1463 elt->next_same_value = next;
1464 if (next)
1465 next->prev_same_value = elt;
1467 elt->prev_same_value = p;
1468 p->next_same_value = elt;
1469 elt->first_same_value = classp;
1472 else
1473 elt->first_same_value = elt;
1475 /* If this is a constant being set equivalent to a register or a register
1476 being set equivalent to a constant, note the constant equivalence.
1478 If this is a constant, it cannot be equivalent to a different constant,
1479 and a constant is the only thing that can be cheaper than a register. So
1480 we know the register is the head of the class (before the constant was
1481 inserted).
1483 If this is a register that is not already known equivalent to a
1484 constant, we must check the entire class.
1486 If this is a register that is already known equivalent to an insn,
1487 update the qtys `const_insn' to show that `this_insn' is the latest
1488 insn making that quantity equivalent to the constant. */
1490 if (elt->is_const && classp && REG_P (classp->exp)
1491 && !REG_P (x))
1493 int exp_q = REG_QTY (REGNO (classp->exp));
1494 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1496 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1497 exp_ent->const_insn = this_insn;
1500 else if (REG_P (x)
1501 && classp
1502 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1503 && ! elt->is_const)
1505 struct table_elt *p;
1507 for (p = classp; p != 0; p = p->next_same_value)
1509 if (p->is_const && !REG_P (p->exp))
1511 int x_q = REG_QTY (REGNO (x));
1512 struct qty_table_elem *x_ent = &qty_table[x_q];
1514 x_ent->const_rtx
1515 = gen_lowpart (GET_MODE (x), p->exp);
1516 x_ent->const_insn = this_insn;
1517 break;
1522 else if (REG_P (x)
1523 && qty_table[REG_QTY (REGNO (x))].const_rtx
1524 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1525 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1527 /* If this is a constant with symbolic value,
1528 and it has a term with an explicit integer value,
1529 link it up with related expressions. */
1530 if (GET_CODE (x) == CONST)
1532 rtx subexp = get_related_value (x);
1533 unsigned subhash;
1534 struct table_elt *subelt, *subelt_prev;
1536 if (subexp != 0)
1538 /* Get the integer-free subexpression in the hash table. */
1539 subhash = SAFE_HASH (subexp, mode);
1540 subelt = lookup (subexp, subhash, mode);
1541 if (subelt == 0)
1542 subelt = insert (subexp, NULL, subhash, mode);
1543 /* Initialize SUBELT's circular chain if it has none. */
1544 if (subelt->related_value == 0)
1545 subelt->related_value = subelt;
1546 /* Find the element in the circular chain that precedes SUBELT. */
1547 subelt_prev = subelt;
1548 while (subelt_prev->related_value != subelt)
1549 subelt_prev = subelt_prev->related_value;
1550 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1551 This way the element that follows SUBELT is the oldest one. */
1552 elt->related_value = subelt_prev->related_value;
1553 subelt_prev->related_value = elt;
1557 return elt;
1560 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1561 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1562 the two classes equivalent.
1564 CLASS1 will be the surviving class; CLASS2 should not be used after this
1565 call.
1567 Any invalid entries in CLASS2 will not be copied. */
1569 static void
1570 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1572 struct table_elt *elt, *next, *new;
1574 /* Ensure we start with the head of the classes. */
1575 class1 = class1->first_same_value;
1576 class2 = class2->first_same_value;
1578 /* If they were already equal, forget it. */
1579 if (class1 == class2)
1580 return;
1582 for (elt = class2; elt; elt = next)
1584 unsigned int hash;
1585 rtx exp = elt->exp;
1586 enum machine_mode mode = elt->mode;
1588 next = elt->next_same_value;
1590 /* Remove old entry, make a new one in CLASS1's class.
1591 Don't do this for invalid entries as we cannot find their
1592 hash code (it also isn't necessary). */
1593 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1595 bool need_rehash = false;
1597 hash_arg_in_memory = 0;
1598 hash = HASH (exp, mode);
1600 if (REG_P (exp))
1602 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1603 delete_reg_equiv (REGNO (exp));
1606 remove_from_table (elt, hash);
1608 if (insert_regs (exp, class1, 0) || need_rehash)
1610 rehash_using_reg (exp);
1611 hash = HASH (exp, mode);
1613 new = insert (exp, class1, hash, mode);
1614 new->in_memory = hash_arg_in_memory;
1619 /* Flush the entire hash table. */
1621 static void
1622 flush_hash_table (void)
1624 int i;
1625 struct table_elt *p;
1627 for (i = 0; i < HASH_SIZE; i++)
1628 for (p = table[i]; p; p = table[i])
1630 /* Note that invalidate can remove elements
1631 after P in the current hash chain. */
1632 if (REG_P (p->exp))
1633 invalidate (p->exp, VOIDmode);
1634 else
1635 remove_from_table (p, i);
1639 /* Function called for each rtx to check whether true dependence exist. */
1640 struct check_dependence_data
1642 enum machine_mode mode;
1643 rtx exp;
1644 rtx addr;
1647 static int
1648 check_dependence (rtx *x, void *data)
1650 struct check_dependence_data *d = (struct check_dependence_data *) data;
1651 if (*x && MEM_P (*x))
1652 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1653 cse_rtx_varies_p);
1654 else
1655 return 0;
1658 /* Remove from the hash table, or mark as invalid, all expressions whose
1659 values could be altered by storing in X. X is a register, a subreg, or
1660 a memory reference with nonvarying address (because, when a memory
1661 reference with a varying address is stored in, all memory references are
1662 removed by invalidate_memory so specific invalidation is superfluous).
1663 FULL_MODE, if not VOIDmode, indicates that this much should be
1664 invalidated instead of just the amount indicated by the mode of X. This
1665 is only used for bitfield stores into memory.
1667 A nonvarying address may be just a register or just a symbol reference,
1668 or it may be either of those plus a numeric offset. */
1670 static void
1671 invalidate (rtx x, enum machine_mode full_mode)
1673 int i;
1674 struct table_elt *p;
1675 rtx addr;
1677 switch (GET_CODE (x))
1679 case REG:
1681 /* If X is a register, dependencies on its contents are recorded
1682 through the qty number mechanism. Just change the qty number of
1683 the register, mark it as invalid for expressions that refer to it,
1684 and remove it itself. */
1685 unsigned int regno = REGNO (x);
1686 unsigned int hash = HASH (x, GET_MODE (x));
1688 /* Remove REGNO from any quantity list it might be on and indicate
1689 that its value might have changed. If it is a pseudo, remove its
1690 entry from the hash table.
1692 For a hard register, we do the first two actions above for any
1693 additional hard registers corresponding to X. Then, if any of these
1694 registers are in the table, we must remove any REG entries that
1695 overlap these registers. */
1697 delete_reg_equiv (regno);
1698 REG_TICK (regno)++;
1699 SUBREG_TICKED (regno) = -1;
1701 if (regno >= FIRST_PSEUDO_REGISTER)
1703 /* Because a register can be referenced in more than one mode,
1704 we might have to remove more than one table entry. */
1705 struct table_elt *elt;
1707 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1708 remove_from_table (elt, hash);
1710 else
1712 HOST_WIDE_INT in_table
1713 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1714 unsigned int endregno = END_HARD_REGNO (x);
1715 unsigned int tregno, tendregno, rn;
1716 struct table_elt *p, *next;
1718 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1720 for (rn = regno + 1; rn < endregno; rn++)
1722 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1723 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1724 delete_reg_equiv (rn);
1725 REG_TICK (rn)++;
1726 SUBREG_TICKED (rn) = -1;
1729 if (in_table)
1730 for (hash = 0; hash < HASH_SIZE; hash++)
1731 for (p = table[hash]; p; p = next)
1733 next = p->next_same_hash;
1735 if (!REG_P (p->exp)
1736 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1737 continue;
1739 tregno = REGNO (p->exp);
1740 tendregno = END_HARD_REGNO (p->exp);
1741 if (tendregno > regno && tregno < endregno)
1742 remove_from_table (p, hash);
1746 return;
1748 case SUBREG:
1749 invalidate (SUBREG_REG (x), VOIDmode);
1750 return;
1752 case PARALLEL:
1753 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1754 invalidate (XVECEXP (x, 0, i), VOIDmode);
1755 return;
1757 case EXPR_LIST:
1758 /* This is part of a disjoint return value; extract the location in
1759 question ignoring the offset. */
1760 invalidate (XEXP (x, 0), VOIDmode);
1761 return;
1763 case MEM:
1764 addr = canon_rtx (get_addr (XEXP (x, 0)));
1765 /* Calculate the canonical version of X here so that
1766 true_dependence doesn't generate new RTL for X on each call. */
1767 x = canon_rtx (x);
1769 /* Remove all hash table elements that refer to overlapping pieces of
1770 memory. */
1771 if (full_mode == VOIDmode)
1772 full_mode = GET_MODE (x);
1774 for (i = 0; i < HASH_SIZE; i++)
1776 struct table_elt *next;
1778 for (p = table[i]; p; p = next)
1780 next = p->next_same_hash;
1781 if (p->in_memory)
1783 struct check_dependence_data d;
1785 /* Just canonicalize the expression once;
1786 otherwise each time we call invalidate
1787 true_dependence will canonicalize the
1788 expression again. */
1789 if (!p->canon_exp)
1790 p->canon_exp = canon_rtx (p->exp);
1791 d.exp = x;
1792 d.addr = addr;
1793 d.mode = full_mode;
1794 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1795 remove_from_table (p, i);
1799 return;
1801 default:
1802 gcc_unreachable ();
1806 /* Remove all expressions that refer to register REGNO,
1807 since they are already invalid, and we are about to
1808 mark that register valid again and don't want the old
1809 expressions to reappear as valid. */
1811 static void
1812 remove_invalid_refs (unsigned int regno)
1814 unsigned int i;
1815 struct table_elt *p, *next;
1817 for (i = 0; i < HASH_SIZE; i++)
1818 for (p = table[i]; p; p = next)
1820 next = p->next_same_hash;
1821 if (!REG_P (p->exp)
1822 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1823 remove_from_table (p, i);
1827 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1828 and mode MODE. */
1829 static void
1830 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1831 enum machine_mode mode)
1833 unsigned int i;
1834 struct table_elt *p, *next;
1835 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1837 for (i = 0; i < HASH_SIZE; i++)
1838 for (p = table[i]; p; p = next)
1840 rtx exp = p->exp;
1841 next = p->next_same_hash;
1843 if (!REG_P (exp)
1844 && (GET_CODE (exp) != SUBREG
1845 || !REG_P (SUBREG_REG (exp))
1846 || REGNO (SUBREG_REG (exp)) != regno
1847 || (((SUBREG_BYTE (exp)
1848 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1849 && SUBREG_BYTE (exp) <= end))
1850 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1851 remove_from_table (p, i);
1855 /* Recompute the hash codes of any valid entries in the hash table that
1856 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1858 This is called when we make a jump equivalence. */
1860 static void
1861 rehash_using_reg (rtx x)
1863 unsigned int i;
1864 struct table_elt *p, *next;
1865 unsigned hash;
1867 if (GET_CODE (x) == SUBREG)
1868 x = SUBREG_REG (x);
1870 /* If X is not a register or if the register is known not to be in any
1871 valid entries in the table, we have no work to do. */
1873 if (!REG_P (x)
1874 || REG_IN_TABLE (REGNO (x)) < 0
1875 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1876 return;
1878 /* Scan all hash chains looking for valid entries that mention X.
1879 If we find one and it is in the wrong hash chain, move it. */
1881 for (i = 0; i < HASH_SIZE; i++)
1882 for (p = table[i]; p; p = next)
1884 next = p->next_same_hash;
1885 if (reg_mentioned_p (x, p->exp)
1886 && exp_equiv_p (p->exp, p->exp, 1, false)
1887 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1889 if (p->next_same_hash)
1890 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1892 if (p->prev_same_hash)
1893 p->prev_same_hash->next_same_hash = p->next_same_hash;
1894 else
1895 table[i] = p->next_same_hash;
1897 p->next_same_hash = table[hash];
1898 p->prev_same_hash = 0;
1899 if (table[hash])
1900 table[hash]->prev_same_hash = p;
1901 table[hash] = p;
1906 /* Remove from the hash table any expression that is a call-clobbered
1907 register. Also update their TICK values. */
1909 static void
1910 invalidate_for_call (void)
1912 unsigned int regno, endregno;
1913 unsigned int i;
1914 unsigned hash;
1915 struct table_elt *p, *next;
1916 int in_table = 0;
1918 /* Go through all the hard registers. For each that is clobbered in
1919 a CALL_INSN, remove the register from quantity chains and update
1920 reg_tick if defined. Also see if any of these registers is currently
1921 in the table. */
1923 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1924 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1926 delete_reg_equiv (regno);
1927 if (REG_TICK (regno) >= 0)
1929 REG_TICK (regno)++;
1930 SUBREG_TICKED (regno) = -1;
1933 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1936 /* In the case where we have no call-clobbered hard registers in the
1937 table, we are done. Otherwise, scan the table and remove any
1938 entry that overlaps a call-clobbered register. */
1940 if (in_table)
1941 for (hash = 0; hash < HASH_SIZE; hash++)
1942 for (p = table[hash]; p; p = next)
1944 next = p->next_same_hash;
1946 if (!REG_P (p->exp)
1947 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1948 continue;
1950 regno = REGNO (p->exp);
1951 endregno = END_HARD_REGNO (p->exp);
1953 for (i = regno; i < endregno; i++)
1954 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1956 remove_from_table (p, hash);
1957 break;
1962 /* Given an expression X of type CONST,
1963 and ELT which is its table entry (or 0 if it
1964 is not in the hash table),
1965 return an alternate expression for X as a register plus integer.
1966 If none can be found, return 0. */
1968 static rtx
1969 use_related_value (rtx x, struct table_elt *elt)
1971 struct table_elt *relt = 0;
1972 struct table_elt *p, *q;
1973 HOST_WIDE_INT offset;
1975 /* First, is there anything related known?
1976 If we have a table element, we can tell from that.
1977 Otherwise, must look it up. */
1979 if (elt != 0 && elt->related_value != 0)
1980 relt = elt;
1981 else if (elt == 0 && GET_CODE (x) == CONST)
1983 rtx subexp = get_related_value (x);
1984 if (subexp != 0)
1985 relt = lookup (subexp,
1986 SAFE_HASH (subexp, GET_MODE (subexp)),
1987 GET_MODE (subexp));
1990 if (relt == 0)
1991 return 0;
1993 /* Search all related table entries for one that has an
1994 equivalent register. */
1996 p = relt;
1997 while (1)
1999 /* This loop is strange in that it is executed in two different cases.
2000 The first is when X is already in the table. Then it is searching
2001 the RELATED_VALUE list of X's class (RELT). The second case is when
2002 X is not in the table. Then RELT points to a class for the related
2003 value.
2005 Ensure that, whatever case we are in, that we ignore classes that have
2006 the same value as X. */
2008 if (rtx_equal_p (x, p->exp))
2009 q = 0;
2010 else
2011 for (q = p->first_same_value; q; q = q->next_same_value)
2012 if (REG_P (q->exp))
2013 break;
2015 if (q)
2016 break;
2018 p = p->related_value;
2020 /* We went all the way around, so there is nothing to be found.
2021 Alternatively, perhaps RELT was in the table for some other reason
2022 and it has no related values recorded. */
2023 if (p == relt || p == 0)
2024 break;
2027 if (q == 0)
2028 return 0;
2030 offset = (get_integer_term (x) - get_integer_term (p->exp));
2031 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2032 return plus_constant (q->exp, offset);
2035 /* Hash a string. Just add its bytes up. */
2036 static inline unsigned
2037 hash_rtx_string (const char *ps)
2039 unsigned hash = 0;
2040 const unsigned char *p = (const unsigned char *) ps;
2042 if (p)
2043 while (*p)
2044 hash += *p++;
2046 return hash;
2049 /* Hash an rtx. We are careful to make sure the value is never negative.
2050 Equivalent registers hash identically.
2051 MODE is used in hashing for CONST_INTs only;
2052 otherwise the mode of X is used.
2054 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2056 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2057 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2059 Note that cse_insn knows that the hash code of a MEM expression
2060 is just (int) MEM plus the hash code of the address. */
2062 unsigned
2063 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2064 int *hash_arg_in_memory_p, bool have_reg_qty)
2066 int i, j;
2067 unsigned hash = 0;
2068 enum rtx_code code;
2069 const char *fmt;
2071 /* Used to turn recursion into iteration. We can't rely on GCC's
2072 tail-recursion elimination since we need to keep accumulating values
2073 in HASH. */
2074 repeat:
2075 if (x == 0)
2076 return hash;
2078 code = GET_CODE (x);
2079 switch (code)
2081 case REG:
2083 unsigned int regno = REGNO (x);
2085 if (!reload_completed)
2087 /* On some machines, we can't record any non-fixed hard register,
2088 because extending its life will cause reload problems. We
2089 consider ap, fp, sp, gp to be fixed for this purpose.
2091 We also consider CCmode registers to be fixed for this purpose;
2092 failure to do so leads to failure to simplify 0<100 type of
2093 conditionals.
2095 On all machines, we can't record any global registers.
2096 Nor should we record any register that is in a small
2097 class, as defined by CLASS_LIKELY_SPILLED_P. */
2098 bool record;
2100 if (regno >= FIRST_PSEUDO_REGISTER)
2101 record = true;
2102 else if (x == frame_pointer_rtx
2103 || x == hard_frame_pointer_rtx
2104 || x == arg_pointer_rtx
2105 || x == stack_pointer_rtx
2106 || x == pic_offset_table_rtx)
2107 record = true;
2108 else if (global_regs[regno])
2109 record = false;
2110 else if (fixed_regs[regno])
2111 record = true;
2112 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2113 record = true;
2114 else if (SMALL_REGISTER_CLASSES)
2115 record = false;
2116 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2117 record = false;
2118 else
2119 record = true;
2121 if (!record)
2123 *do_not_record_p = 1;
2124 return 0;
2128 hash += ((unsigned int) REG << 7);
2129 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2130 return hash;
2133 /* We handle SUBREG of a REG specially because the underlying
2134 reg changes its hash value with every value change; we don't
2135 want to have to forget unrelated subregs when one subreg changes. */
2136 case SUBREG:
2138 if (REG_P (SUBREG_REG (x)))
2140 hash += (((unsigned int) SUBREG << 7)
2141 + REGNO (SUBREG_REG (x))
2142 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2143 return hash;
2145 break;
2148 case CONST_INT:
2149 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2150 + (unsigned int) INTVAL (x));
2151 return hash;
2153 case CONST_DOUBLE:
2154 /* This is like the general case, except that it only counts
2155 the integers representing the constant. */
2156 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2157 if (GET_MODE (x) != VOIDmode)
2158 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2159 else
2160 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2161 + (unsigned int) CONST_DOUBLE_HIGH (x));
2162 return hash;
2164 case CONST_VECTOR:
2166 int units;
2167 rtx elt;
2169 units = CONST_VECTOR_NUNITS (x);
2171 for (i = 0; i < units; ++i)
2173 elt = CONST_VECTOR_ELT (x, i);
2174 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2175 hash_arg_in_memory_p, have_reg_qty);
2178 return hash;
2181 /* Assume there is only one rtx object for any given label. */
2182 case LABEL_REF:
2183 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2184 differences and differences between each stage's debugging dumps. */
2185 hash += (((unsigned int) LABEL_REF << 7)
2186 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2187 return hash;
2189 case SYMBOL_REF:
2191 /* Don't hash on the symbol's address to avoid bootstrap differences.
2192 Different hash values may cause expressions to be recorded in
2193 different orders and thus different registers to be used in the
2194 final assembler. This also avoids differences in the dump files
2195 between various stages. */
2196 unsigned int h = 0;
2197 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2199 while (*p)
2200 h += (h << 7) + *p++; /* ??? revisit */
2202 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2203 return hash;
2206 case MEM:
2207 /* We don't record if marked volatile or if BLKmode since we don't
2208 know the size of the move. */
2209 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2211 *do_not_record_p = 1;
2212 return 0;
2214 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2215 *hash_arg_in_memory_p = 1;
2217 /* Now that we have already found this special case,
2218 might as well speed it up as much as possible. */
2219 hash += (unsigned) MEM;
2220 x = XEXP (x, 0);
2221 goto repeat;
2223 case USE:
2224 /* A USE that mentions non-volatile memory needs special
2225 handling since the MEM may be BLKmode which normally
2226 prevents an entry from being made. Pure calls are
2227 marked by a USE which mentions BLKmode memory.
2228 See calls.c:emit_call_1. */
2229 if (MEM_P (XEXP (x, 0))
2230 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2232 hash += (unsigned) USE;
2233 x = XEXP (x, 0);
2235 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2236 *hash_arg_in_memory_p = 1;
2238 /* Now that we have already found this special case,
2239 might as well speed it up as much as possible. */
2240 hash += (unsigned) MEM;
2241 x = XEXP (x, 0);
2242 goto repeat;
2244 break;
2246 case PRE_DEC:
2247 case PRE_INC:
2248 case POST_DEC:
2249 case POST_INC:
2250 case PRE_MODIFY:
2251 case POST_MODIFY:
2252 case PC:
2253 case CC0:
2254 case CALL:
2255 case UNSPEC_VOLATILE:
2256 *do_not_record_p = 1;
2257 return 0;
2259 case ASM_OPERANDS:
2260 if (MEM_VOLATILE_P (x))
2262 *do_not_record_p = 1;
2263 return 0;
2265 else
2267 /* We don't want to take the filename and line into account. */
2268 hash += (unsigned) code + (unsigned) GET_MODE (x)
2269 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2270 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2271 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2273 if (ASM_OPERANDS_INPUT_LENGTH (x))
2275 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2277 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2278 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2279 do_not_record_p, hash_arg_in_memory_p,
2280 have_reg_qty)
2281 + hash_rtx_string
2282 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2285 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2286 x = ASM_OPERANDS_INPUT (x, 0);
2287 mode = GET_MODE (x);
2288 goto repeat;
2291 return hash;
2293 break;
2295 default:
2296 break;
2299 i = GET_RTX_LENGTH (code) - 1;
2300 hash += (unsigned) code + (unsigned) GET_MODE (x);
2301 fmt = GET_RTX_FORMAT (code);
2302 for (; i >= 0; i--)
2304 switch (fmt[i])
2306 case 'e':
2307 /* If we are about to do the last recursive call
2308 needed at this level, change it into iteration.
2309 This function is called enough to be worth it. */
2310 if (i == 0)
2312 x = XEXP (x, i);
2313 goto repeat;
2316 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2317 hash_arg_in_memory_p, have_reg_qty);
2318 break;
2320 case 'E':
2321 for (j = 0; j < XVECLEN (x, i); j++)
2322 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2323 hash_arg_in_memory_p, have_reg_qty);
2324 break;
2326 case 's':
2327 hash += hash_rtx_string (XSTR (x, i));
2328 break;
2330 case 'i':
2331 hash += (unsigned int) XINT (x, i);
2332 break;
2334 case '0': case 't':
2335 /* Unused. */
2336 break;
2338 default:
2339 gcc_unreachable ();
2343 return hash;
2346 /* Hash an rtx X for cse via hash_rtx.
2347 Stores 1 in do_not_record if any subexpression is volatile.
2348 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2349 does not have the RTX_UNCHANGING_P bit set. */
2351 static inline unsigned
2352 canon_hash (rtx x, enum machine_mode mode)
2354 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2357 /* Like canon_hash but with no side effects, i.e. do_not_record
2358 and hash_arg_in_memory are not changed. */
2360 static inline unsigned
2361 safe_hash (rtx x, enum machine_mode mode)
2363 int dummy_do_not_record;
2364 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2367 /* Return 1 iff X and Y would canonicalize into the same thing,
2368 without actually constructing the canonicalization of either one.
2369 If VALIDATE is nonzero,
2370 we assume X is an expression being processed from the rtl
2371 and Y was found in the hash table. We check register refs
2372 in Y for being marked as valid.
2374 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2377 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2379 int i, j;
2380 enum rtx_code code;
2381 const char *fmt;
2383 /* Note: it is incorrect to assume an expression is equivalent to itself
2384 if VALIDATE is nonzero. */
2385 if (x == y && !validate)
2386 return 1;
2388 if (x == 0 || y == 0)
2389 return x == y;
2391 code = GET_CODE (x);
2392 if (code != GET_CODE (y))
2393 return 0;
2395 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2396 if (GET_MODE (x) != GET_MODE (y))
2397 return 0;
2399 switch (code)
2401 case PC:
2402 case CC0:
2403 case CONST_INT:
2404 case CONST_DOUBLE:
2405 return x == y;
2407 case LABEL_REF:
2408 return XEXP (x, 0) == XEXP (y, 0);
2410 case SYMBOL_REF:
2411 return XSTR (x, 0) == XSTR (y, 0);
2413 case REG:
2414 if (for_gcse)
2415 return REGNO (x) == REGNO (y);
2416 else
2418 unsigned int regno = REGNO (y);
2419 unsigned int i;
2420 unsigned int endregno = END_REGNO (y);
2422 /* If the quantities are not the same, the expressions are not
2423 equivalent. If there are and we are not to validate, they
2424 are equivalent. Otherwise, ensure all regs are up-to-date. */
2426 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2427 return 0;
2429 if (! validate)
2430 return 1;
2432 for (i = regno; i < endregno; i++)
2433 if (REG_IN_TABLE (i) != REG_TICK (i))
2434 return 0;
2436 return 1;
2439 case MEM:
2440 if (for_gcse)
2442 /* A volatile mem should not be considered equivalent to any
2443 other. */
2444 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2445 return 0;
2447 /* Can't merge two expressions in different alias sets, since we
2448 can decide that the expression is transparent in a block when
2449 it isn't, due to it being set with the different alias set.
2451 Also, can't merge two expressions with different MEM_ATTRS.
2452 They could e.g. be two different entities allocated into the
2453 same space on the stack (see e.g. PR25130). In that case, the
2454 MEM addresses can be the same, even though the two MEMs are
2455 absolutely not equivalent.
2457 But because really all MEM attributes should be the same for
2458 equivalent MEMs, we just use the invariant that MEMs that have
2459 the same attributes share the same mem_attrs data structure. */
2460 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2461 return 0;
2463 break;
2465 /* For commutative operations, check both orders. */
2466 case PLUS:
2467 case MULT:
2468 case AND:
2469 case IOR:
2470 case XOR:
2471 case NE:
2472 case EQ:
2473 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2474 validate, for_gcse)
2475 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2476 validate, for_gcse))
2477 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2478 validate, for_gcse)
2479 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2480 validate, for_gcse)));
2482 case ASM_OPERANDS:
2483 /* We don't use the generic code below because we want to
2484 disregard filename and line numbers. */
2486 /* A volatile asm isn't equivalent to any other. */
2487 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2488 return 0;
2490 if (GET_MODE (x) != GET_MODE (y)
2491 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2492 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2493 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2494 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2495 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2496 return 0;
2498 if (ASM_OPERANDS_INPUT_LENGTH (x))
2500 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2501 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2502 ASM_OPERANDS_INPUT (y, i),
2503 validate, for_gcse)
2504 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2505 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2506 return 0;
2509 return 1;
2511 default:
2512 break;
2515 /* Compare the elements. If any pair of corresponding elements
2516 fail to match, return 0 for the whole thing. */
2518 fmt = GET_RTX_FORMAT (code);
2519 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2521 switch (fmt[i])
2523 case 'e':
2524 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2525 validate, for_gcse))
2526 return 0;
2527 break;
2529 case 'E':
2530 if (XVECLEN (x, i) != XVECLEN (y, i))
2531 return 0;
2532 for (j = 0; j < XVECLEN (x, i); j++)
2533 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2534 validate, for_gcse))
2535 return 0;
2536 break;
2538 case 's':
2539 if (strcmp (XSTR (x, i), XSTR (y, i)))
2540 return 0;
2541 break;
2543 case 'i':
2544 if (XINT (x, i) != XINT (y, i))
2545 return 0;
2546 break;
2548 case 'w':
2549 if (XWINT (x, i) != XWINT (y, i))
2550 return 0;
2551 break;
2553 case '0':
2554 case 't':
2555 break;
2557 default:
2558 gcc_unreachable ();
2562 return 1;
2565 /* Return 1 if X has a value that can vary even between two
2566 executions of the program. 0 means X can be compared reliably
2567 against certain constants or near-constants. */
2569 static int
2570 cse_rtx_varies_p (rtx x, int from_alias)
2572 /* We need not check for X and the equivalence class being of the same
2573 mode because if X is equivalent to a constant in some mode, it
2574 doesn't vary in any mode. */
2576 if (REG_P (x)
2577 && REGNO_QTY_VALID_P (REGNO (x)))
2579 int x_q = REG_QTY (REGNO (x));
2580 struct qty_table_elem *x_ent = &qty_table[x_q];
2582 if (GET_MODE (x) == x_ent->mode
2583 && x_ent->const_rtx != NULL_RTX)
2584 return 0;
2587 if (GET_CODE (x) == PLUS
2588 && GET_CODE (XEXP (x, 1)) == CONST_INT
2589 && REG_P (XEXP (x, 0))
2590 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2592 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2593 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2595 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2596 && x0_ent->const_rtx != NULL_RTX)
2597 return 0;
2600 /* This can happen as the result of virtual register instantiation, if
2601 the initial constant is too large to be a valid address. This gives
2602 us a three instruction sequence, load large offset into a register,
2603 load fp minus a constant into a register, then a MEM which is the
2604 sum of the two `constant' registers. */
2605 if (GET_CODE (x) == PLUS
2606 && REG_P (XEXP (x, 0))
2607 && REG_P (XEXP (x, 1))
2608 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2609 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2611 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2612 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2613 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2614 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2616 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2617 && x0_ent->const_rtx != NULL_RTX
2618 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2619 && x1_ent->const_rtx != NULL_RTX)
2620 return 0;
2623 return rtx_varies_p (x, from_alias);
2626 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2627 the result if necessary. INSN is as for canon_reg. */
2629 static void
2630 validate_canon_reg (rtx *xloc, rtx insn)
2632 if (*xloc)
2634 rtx new = canon_reg (*xloc, insn);
2636 /* If replacing pseudo with hard reg or vice versa, ensure the
2637 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2638 gcc_assert (insn && new);
2639 validate_change (insn, xloc, new, 1);
2643 /* Canonicalize an expression:
2644 replace each register reference inside it
2645 with the "oldest" equivalent register.
2647 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2648 after we make our substitution. The calls are made with IN_GROUP nonzero
2649 so apply_change_group must be called upon the outermost return from this
2650 function (unless INSN is zero). The result of apply_change_group can
2651 generally be discarded since the changes we are making are optional. */
2653 static rtx
2654 canon_reg (rtx x, rtx insn)
2656 int i;
2657 enum rtx_code code;
2658 const char *fmt;
2660 if (x == 0)
2661 return x;
2663 code = GET_CODE (x);
2664 switch (code)
2666 case PC:
2667 case CC0:
2668 case CONST:
2669 case CONST_INT:
2670 case CONST_DOUBLE:
2671 case CONST_VECTOR:
2672 case SYMBOL_REF:
2673 case LABEL_REF:
2674 case ADDR_VEC:
2675 case ADDR_DIFF_VEC:
2676 return x;
2678 case REG:
2680 int first;
2681 int q;
2682 struct qty_table_elem *ent;
2684 /* Never replace a hard reg, because hard regs can appear
2685 in more than one machine mode, and we must preserve the mode
2686 of each occurrence. Also, some hard regs appear in
2687 MEMs that are shared and mustn't be altered. Don't try to
2688 replace any reg that maps to a reg of class NO_REGS. */
2689 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2690 || ! REGNO_QTY_VALID_P (REGNO (x)))
2691 return x;
2693 q = REG_QTY (REGNO (x));
2694 ent = &qty_table[q];
2695 first = ent->first_reg;
2696 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2697 : REGNO_REG_CLASS (first) == NO_REGS ? x
2698 : gen_rtx_REG (ent->mode, first));
2701 default:
2702 break;
2705 fmt = GET_RTX_FORMAT (code);
2706 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2708 int j;
2710 if (fmt[i] == 'e')
2711 validate_canon_reg (&XEXP (x, i), insn);
2712 else if (fmt[i] == 'E')
2713 for (j = 0; j < XVECLEN (x, i); j++)
2714 validate_canon_reg (&XVECEXP (x, i, j), insn);
2717 return x;
2720 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2721 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2722 what values are being compared.
2724 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2725 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2726 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2727 compared to produce cc0.
2729 The return value is the comparison operator and is either the code of
2730 A or the code corresponding to the inverse of the comparison. */
2732 static enum rtx_code
2733 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2734 enum machine_mode *pmode1, enum machine_mode *pmode2)
2736 rtx arg1, arg2;
2738 arg1 = *parg1, arg2 = *parg2;
2740 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2742 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2744 /* Set nonzero when we find something of interest. */
2745 rtx x = 0;
2746 int reverse_code = 0;
2747 struct table_elt *p = 0;
2749 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2750 On machines with CC0, this is the only case that can occur, since
2751 fold_rtx will return the COMPARE or item being compared with zero
2752 when given CC0. */
2754 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2755 x = arg1;
2757 /* If ARG1 is a comparison operator and CODE is testing for
2758 STORE_FLAG_VALUE, get the inner arguments. */
2760 else if (COMPARISON_P (arg1))
2762 #ifdef FLOAT_STORE_FLAG_VALUE
2763 REAL_VALUE_TYPE fsfv;
2764 #endif
2766 if (code == NE
2767 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2768 && code == LT && STORE_FLAG_VALUE == -1)
2769 #ifdef FLOAT_STORE_FLAG_VALUE
2770 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2771 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2772 REAL_VALUE_NEGATIVE (fsfv)))
2773 #endif
2775 x = arg1;
2776 else if (code == EQ
2777 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2778 && code == GE && STORE_FLAG_VALUE == -1)
2779 #ifdef FLOAT_STORE_FLAG_VALUE
2780 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2781 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2782 REAL_VALUE_NEGATIVE (fsfv)))
2783 #endif
2785 x = arg1, reverse_code = 1;
2788 /* ??? We could also check for
2790 (ne (and (eq (...) (const_int 1))) (const_int 0))
2792 and related forms, but let's wait until we see them occurring. */
2794 if (x == 0)
2795 /* Look up ARG1 in the hash table and see if it has an equivalence
2796 that lets us see what is being compared. */
2797 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2798 if (p)
2800 p = p->first_same_value;
2802 /* If what we compare is already known to be constant, that is as
2803 good as it gets.
2804 We need to break the loop in this case, because otherwise we
2805 can have an infinite loop when looking at a reg that is known
2806 to be a constant which is the same as a comparison of a reg
2807 against zero which appears later in the insn stream, which in
2808 turn is constant and the same as the comparison of the first reg
2809 against zero... */
2810 if (p->is_const)
2811 break;
2814 for (; p; p = p->next_same_value)
2816 enum machine_mode inner_mode = GET_MODE (p->exp);
2817 #ifdef FLOAT_STORE_FLAG_VALUE
2818 REAL_VALUE_TYPE fsfv;
2819 #endif
2821 /* If the entry isn't valid, skip it. */
2822 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2823 continue;
2825 if (GET_CODE (p->exp) == COMPARE
2826 /* Another possibility is that this machine has a compare insn
2827 that includes the comparison code. In that case, ARG1 would
2828 be equivalent to a comparison operation that would set ARG1 to
2829 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2830 ORIG_CODE is the actual comparison being done; if it is an EQ,
2831 we must reverse ORIG_CODE. On machine with a negative value
2832 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2833 || ((code == NE
2834 || (code == LT
2835 && GET_MODE_CLASS (inner_mode) == MODE_INT
2836 && (GET_MODE_BITSIZE (inner_mode)
2837 <= HOST_BITS_PER_WIDE_INT)
2838 && (STORE_FLAG_VALUE
2839 & ((HOST_WIDE_INT) 1
2840 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2841 #ifdef FLOAT_STORE_FLAG_VALUE
2842 || (code == LT
2843 && SCALAR_FLOAT_MODE_P (inner_mode)
2844 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2845 REAL_VALUE_NEGATIVE (fsfv)))
2846 #endif
2848 && COMPARISON_P (p->exp)))
2850 x = p->exp;
2851 break;
2853 else if ((code == EQ
2854 || (code == GE
2855 && GET_MODE_CLASS (inner_mode) == MODE_INT
2856 && (GET_MODE_BITSIZE (inner_mode)
2857 <= HOST_BITS_PER_WIDE_INT)
2858 && (STORE_FLAG_VALUE
2859 & ((HOST_WIDE_INT) 1
2860 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2861 #ifdef FLOAT_STORE_FLAG_VALUE
2862 || (code == GE
2863 && SCALAR_FLOAT_MODE_P (inner_mode)
2864 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2865 REAL_VALUE_NEGATIVE (fsfv)))
2866 #endif
2868 && COMPARISON_P (p->exp))
2870 reverse_code = 1;
2871 x = p->exp;
2872 break;
2875 /* If this non-trapping address, e.g. fp + constant, the
2876 equivalent is a better operand since it may let us predict
2877 the value of the comparison. */
2878 else if (!rtx_addr_can_trap_p (p->exp))
2880 arg1 = p->exp;
2881 continue;
2885 /* If we didn't find a useful equivalence for ARG1, we are done.
2886 Otherwise, set up for the next iteration. */
2887 if (x == 0)
2888 break;
2890 /* If we need to reverse the comparison, make sure that that is
2891 possible -- we can't necessarily infer the value of GE from LT
2892 with floating-point operands. */
2893 if (reverse_code)
2895 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2896 if (reversed == UNKNOWN)
2897 break;
2898 else
2899 code = reversed;
2901 else if (COMPARISON_P (x))
2902 code = GET_CODE (x);
2903 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2906 /* Return our results. Return the modes from before fold_rtx
2907 because fold_rtx might produce const_int, and then it's too late. */
2908 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2909 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2911 return code;
2914 /* If X is a nontrivial arithmetic operation on an argument for which
2915 a constant value can be determined, return the result of operating
2916 on that value, as a constant. Otherwise, return X, possibly with
2917 one or more operands changed to a forward-propagated constant.
2919 If X is a register whose contents are known, we do NOT return
2920 those contents here; equiv_constant is called to perform that task.
2921 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2923 INSN is the insn that we may be modifying. If it is 0, make a copy
2924 of X before modifying it. */
2926 static rtx
2927 fold_rtx (rtx x, rtx insn)
2929 enum rtx_code code;
2930 enum machine_mode mode;
2931 const char *fmt;
2932 int i;
2933 rtx new = 0;
2934 int changed = 0;
2936 /* Operands of X. */
2937 rtx folded_arg0;
2938 rtx folded_arg1;
2940 /* Constant equivalents of first three operands of X;
2941 0 when no such equivalent is known. */
2942 rtx const_arg0;
2943 rtx const_arg1;
2944 rtx const_arg2;
2946 /* The mode of the first operand of X. We need this for sign and zero
2947 extends. */
2948 enum machine_mode mode_arg0;
2950 if (x == 0)
2951 return x;
2953 /* Try to perform some initial simplifications on X. */
2954 code = GET_CODE (x);
2955 switch (code)
2957 case MEM:
2958 case SUBREG:
2959 if ((new = equiv_constant (x)) != NULL_RTX)
2960 return new;
2961 return x;
2963 case CONST:
2964 case CONST_INT:
2965 case CONST_DOUBLE:
2966 case CONST_VECTOR:
2967 case SYMBOL_REF:
2968 case LABEL_REF:
2969 case REG:
2970 case PC:
2971 /* No use simplifying an EXPR_LIST
2972 since they are used only for lists of args
2973 in a function call's REG_EQUAL note. */
2974 case EXPR_LIST:
2975 return x;
2977 #ifdef HAVE_cc0
2978 case CC0:
2979 return prev_insn_cc0;
2980 #endif
2982 case ASM_OPERANDS:
2983 if (insn)
2985 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2986 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
2987 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
2989 return x;
2991 #ifdef NO_FUNCTION_CSE
2992 case CALL:
2993 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
2994 return x;
2995 break;
2996 #endif
2998 /* Anything else goes through the loop below. */
2999 default:
3000 break;
3003 mode = GET_MODE (x);
3004 const_arg0 = 0;
3005 const_arg1 = 0;
3006 const_arg2 = 0;
3007 mode_arg0 = VOIDmode;
3009 /* Try folding our operands.
3010 Then see which ones have constant values known. */
3012 fmt = GET_RTX_FORMAT (code);
3013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3014 if (fmt[i] == 'e')
3016 rtx folded_arg = XEXP (x, i), const_arg;
3017 enum machine_mode mode_arg = GET_MODE (folded_arg);
3019 switch (GET_CODE (folded_arg))
3021 case MEM:
3022 case REG:
3023 case SUBREG:
3024 const_arg = equiv_constant (folded_arg);
3025 break;
3027 case CONST:
3028 case CONST_INT:
3029 case SYMBOL_REF:
3030 case LABEL_REF:
3031 case CONST_DOUBLE:
3032 case CONST_VECTOR:
3033 const_arg = folded_arg;
3034 break;
3036 #ifdef HAVE_cc0
3037 case CC0:
3038 folded_arg = prev_insn_cc0;
3039 mode_arg = prev_insn_cc0_mode;
3040 const_arg = equiv_constant (folded_arg);
3041 break;
3042 #endif
3044 default:
3045 folded_arg = fold_rtx (folded_arg, insn);
3046 const_arg = equiv_constant (folded_arg);
3047 break;
3050 /* For the first three operands, see if the operand
3051 is constant or equivalent to a constant. */
3052 switch (i)
3054 case 0:
3055 folded_arg0 = folded_arg;
3056 const_arg0 = const_arg;
3057 mode_arg0 = mode_arg;
3058 break;
3059 case 1:
3060 folded_arg1 = folded_arg;
3061 const_arg1 = const_arg;
3062 break;
3063 case 2:
3064 const_arg2 = const_arg;
3065 break;
3068 /* Pick the least expensive of the argument and an equivalent constant
3069 argument. */
3070 if (const_arg != 0
3071 && const_arg != folded_arg
3072 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3074 /* It's not safe to substitute the operand of a conversion
3075 operator with a constant, as the conversion's identity
3076 depends upon the mode of its operand. This optimization
3077 is handled by the call to simplify_unary_operation. */
3078 && (GET_RTX_CLASS (code) != RTX_UNARY
3079 || GET_MODE (const_arg) == mode_arg0
3080 || (code != ZERO_EXTEND
3081 && code != SIGN_EXTEND
3082 && code != TRUNCATE
3083 && code != FLOAT_TRUNCATE
3084 && code != FLOAT_EXTEND
3085 && code != FLOAT
3086 && code != FIX
3087 && code != UNSIGNED_FLOAT
3088 && code != UNSIGNED_FIX)))
3089 folded_arg = const_arg;
3091 if (folded_arg == XEXP (x, i))
3092 continue;
3094 if (insn == NULL_RTX && !changed)
3095 x = copy_rtx (x);
3096 changed = 1;
3097 validate_change (insn, &XEXP (x, i), folded_arg, 1);
3100 if (changed)
3102 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3103 consistent with the order in X. */
3104 if (canonicalize_change_group (insn, x))
3106 rtx tem;
3107 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3108 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3111 apply_change_group ();
3114 /* If X is an arithmetic operation, see if we can simplify it. */
3116 switch (GET_RTX_CLASS (code))
3118 case RTX_UNARY:
3120 int is_const = 0;
3122 /* We can't simplify extension ops unless we know the
3123 original mode. */
3124 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3125 && mode_arg0 == VOIDmode)
3126 break;
3128 /* If we had a CONST, strip it off and put it back later if we
3129 fold. */
3130 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3131 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3133 new = simplify_unary_operation (code, mode,
3134 const_arg0 ? const_arg0 : folded_arg0,
3135 mode_arg0);
3136 /* NEG of PLUS could be converted into MINUS, but that causes
3137 expressions of the form
3138 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3139 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3140 FIXME: those ports should be fixed. */
3141 if (new != 0 && is_const
3142 && GET_CODE (new) == PLUS
3143 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3144 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3145 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3146 new = gen_rtx_CONST (mode, new);
3148 break;
3150 case RTX_COMPARE:
3151 case RTX_COMM_COMPARE:
3152 /* See what items are actually being compared and set FOLDED_ARG[01]
3153 to those values and CODE to the actual comparison code. If any are
3154 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3155 do anything if both operands are already known to be constant. */
3157 /* ??? Vector mode comparisons are not supported yet. */
3158 if (VECTOR_MODE_P (mode))
3159 break;
3161 if (const_arg0 == 0 || const_arg1 == 0)
3163 struct table_elt *p0, *p1;
3164 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3165 enum machine_mode mode_arg1;
3167 #ifdef FLOAT_STORE_FLAG_VALUE
3168 if (SCALAR_FLOAT_MODE_P (mode))
3170 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3171 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3172 false_rtx = CONST0_RTX (mode);
3174 #endif
3176 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3177 &mode_arg0, &mode_arg1);
3179 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3180 what kinds of things are being compared, so we can't do
3181 anything with this comparison. */
3183 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3184 break;
3186 const_arg0 = equiv_constant (folded_arg0);
3187 const_arg1 = equiv_constant (folded_arg1);
3189 /* If we do not now have two constants being compared, see
3190 if we can nevertheless deduce some things about the
3191 comparison. */
3192 if (const_arg0 == 0 || const_arg1 == 0)
3194 if (const_arg1 != NULL)
3196 rtx cheapest_simplification;
3197 int cheapest_cost;
3198 rtx simp_result;
3199 struct table_elt *p;
3201 /* See if we can find an equivalent of folded_arg0
3202 that gets us a cheaper expression, possibly a
3203 constant through simplifications. */
3204 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3205 mode_arg0);
3207 if (p != NULL)
3209 cheapest_simplification = x;
3210 cheapest_cost = COST (x);
3212 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3214 int cost;
3216 /* If the entry isn't valid, skip it. */
3217 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3218 continue;
3220 /* Try to simplify using this equivalence. */
3221 simp_result
3222 = simplify_relational_operation (code, mode,
3223 mode_arg0,
3224 p->exp,
3225 const_arg1);
3227 if (simp_result == NULL)
3228 continue;
3230 cost = COST (simp_result);
3231 if (cost < cheapest_cost)
3233 cheapest_cost = cost;
3234 cheapest_simplification = simp_result;
3238 /* If we have a cheaper expression now, use that
3239 and try folding it further, from the top. */
3240 if (cheapest_simplification != x)
3241 return fold_rtx (cheapest_simplification, insn);
3245 /* Some addresses are known to be nonzero. We don't know
3246 their sign, but equality comparisons are known. */
3247 if (const_arg1 == const0_rtx
3248 && nonzero_address_p (folded_arg0))
3250 if (code == EQ)
3251 return false_rtx;
3252 else if (code == NE)
3253 return true_rtx;
3256 /* See if the two operands are the same. */
3258 if (folded_arg0 == folded_arg1
3259 || (REG_P (folded_arg0)
3260 && REG_P (folded_arg1)
3261 && (REG_QTY (REGNO (folded_arg0))
3262 == REG_QTY (REGNO (folded_arg1))))
3263 || ((p0 = lookup (folded_arg0,
3264 SAFE_HASH (folded_arg0, mode_arg0),
3265 mode_arg0))
3266 && (p1 = lookup (folded_arg1,
3267 SAFE_HASH (folded_arg1, mode_arg0),
3268 mode_arg0))
3269 && p0->first_same_value == p1->first_same_value))
3271 /* Sadly two equal NaNs are not equivalent. */
3272 if (!HONOR_NANS (mode_arg0))
3273 return ((code == EQ || code == LE || code == GE
3274 || code == LEU || code == GEU || code == UNEQ
3275 || code == UNLE || code == UNGE
3276 || code == ORDERED)
3277 ? true_rtx : false_rtx);
3278 /* Take care for the FP compares we can resolve. */
3279 if (code == UNEQ || code == UNLE || code == UNGE)
3280 return true_rtx;
3281 if (code == LTGT || code == LT || code == GT)
3282 return false_rtx;
3285 /* If FOLDED_ARG0 is a register, see if the comparison we are
3286 doing now is either the same as we did before or the reverse
3287 (we only check the reverse if not floating-point). */
3288 else if (REG_P (folded_arg0))
3290 int qty = REG_QTY (REGNO (folded_arg0));
3292 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3294 struct qty_table_elem *ent = &qty_table[qty];
3296 if ((comparison_dominates_p (ent->comparison_code, code)
3297 || (! FLOAT_MODE_P (mode_arg0)
3298 && comparison_dominates_p (ent->comparison_code,
3299 reverse_condition (code))))
3300 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3301 || (const_arg1
3302 && rtx_equal_p (ent->comparison_const,
3303 const_arg1))
3304 || (REG_P (folded_arg1)
3305 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3306 return (comparison_dominates_p (ent->comparison_code, code)
3307 ? true_rtx : false_rtx);
3313 /* If we are comparing against zero, see if the first operand is
3314 equivalent to an IOR with a constant. If so, we may be able to
3315 determine the result of this comparison. */
3317 if (const_arg1 == const0_rtx)
3319 rtx y = lookup_as_function (folded_arg0, IOR);
3320 rtx inner_const;
3322 if (y != 0
3323 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3324 && GET_CODE (inner_const) == CONST_INT
3325 && INTVAL (inner_const) != 0)
3327 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3328 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3329 && (INTVAL (inner_const)
3330 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3331 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3333 #ifdef FLOAT_STORE_FLAG_VALUE
3334 if (SCALAR_FLOAT_MODE_P (mode))
3336 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3337 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3338 false_rtx = CONST0_RTX (mode);
3340 #endif
3342 switch (code)
3344 case EQ:
3345 return false_rtx;
3346 case NE:
3347 return true_rtx;
3348 case LT: case LE:
3349 if (has_sign)
3350 return true_rtx;
3351 break;
3352 case GT: case GE:
3353 if (has_sign)
3354 return false_rtx;
3355 break;
3356 default:
3357 break;
3363 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3364 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3365 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3367 break;
3369 case RTX_BIN_ARITH:
3370 case RTX_COMM_ARITH:
3371 switch (code)
3373 case PLUS:
3374 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3375 with that LABEL_REF as its second operand. If so, the result is
3376 the first operand of that MINUS. This handles switches with an
3377 ADDR_DIFF_VEC table. */
3378 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3380 rtx y
3381 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3382 : lookup_as_function (folded_arg0, MINUS);
3384 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3385 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3386 return XEXP (y, 0);
3388 /* Now try for a CONST of a MINUS like the above. */
3389 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3390 : lookup_as_function (folded_arg0, CONST))) != 0
3391 && GET_CODE (XEXP (y, 0)) == MINUS
3392 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3393 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3394 return XEXP (XEXP (y, 0), 0);
3397 /* Likewise if the operands are in the other order. */
3398 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3400 rtx y
3401 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3402 : lookup_as_function (folded_arg1, MINUS);
3404 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3405 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3406 return XEXP (y, 0);
3408 /* Now try for a CONST of a MINUS like the above. */
3409 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3410 : lookup_as_function (folded_arg1, CONST))) != 0
3411 && GET_CODE (XEXP (y, 0)) == MINUS
3412 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3413 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3414 return XEXP (XEXP (y, 0), 0);
3417 /* If second operand is a register equivalent to a negative
3418 CONST_INT, see if we can find a register equivalent to the
3419 positive constant. Make a MINUS if so. Don't do this for
3420 a non-negative constant since we might then alternate between
3421 choosing positive and negative constants. Having the positive
3422 constant previously-used is the more common case. Be sure
3423 the resulting constant is non-negative; if const_arg1 were
3424 the smallest negative number this would overflow: depending
3425 on the mode, this would either just be the same value (and
3426 hence not save anything) or be incorrect. */
3427 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3428 && INTVAL (const_arg1) < 0
3429 /* This used to test
3431 -INTVAL (const_arg1) >= 0
3433 But The Sun V5.0 compilers mis-compiled that test. So
3434 instead we test for the problematic value in a more direct
3435 manner and hope the Sun compilers get it correct. */
3436 && INTVAL (const_arg1) !=
3437 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3438 && REG_P (folded_arg1))
3440 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3441 struct table_elt *p
3442 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3444 if (p)
3445 for (p = p->first_same_value; p; p = p->next_same_value)
3446 if (REG_P (p->exp))
3447 return simplify_gen_binary (MINUS, mode, folded_arg0,
3448 canon_reg (p->exp, NULL_RTX));
3450 goto from_plus;
3452 case MINUS:
3453 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3454 If so, produce (PLUS Z C2-C). */
3455 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3457 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3458 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3459 return fold_rtx (plus_constant (copy_rtx (y),
3460 -INTVAL (const_arg1)),
3461 NULL_RTX);
3464 /* Fall through. */
3466 from_plus:
3467 case SMIN: case SMAX: case UMIN: case UMAX:
3468 case IOR: case AND: case XOR:
3469 case MULT:
3470 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3471 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3472 is known to be of similar form, we may be able to replace the
3473 operation with a combined operation. This may eliminate the
3474 intermediate operation if every use is simplified in this way.
3475 Note that the similar optimization done by combine.c only works
3476 if the intermediate operation's result has only one reference. */
3478 if (REG_P (folded_arg0)
3479 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3481 int is_shift
3482 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3483 rtx y, inner_const, new_const;
3484 enum rtx_code associate_code;
3486 if (is_shift
3487 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3488 || INTVAL (const_arg1) < 0))
3490 if (SHIFT_COUNT_TRUNCATED)
3491 const_arg1 = GEN_INT (INTVAL (const_arg1)
3492 & (GET_MODE_BITSIZE (mode) - 1));
3493 else
3494 break;
3497 y = lookup_as_function (folded_arg0, code);
3498 if (y == 0)
3499 break;
3501 /* If we have compiled a statement like
3502 "if (x == (x & mask1))", and now are looking at
3503 "x & mask2", we will have a case where the first operand
3504 of Y is the same as our first operand. Unless we detect
3505 this case, an infinite loop will result. */
3506 if (XEXP (y, 0) == folded_arg0)
3507 break;
3509 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3510 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3511 break;
3513 /* Don't associate these operations if they are a PLUS with the
3514 same constant and it is a power of two. These might be doable
3515 with a pre- or post-increment. Similarly for two subtracts of
3516 identical powers of two with post decrement. */
3518 if (code == PLUS && const_arg1 == inner_const
3519 && ((HAVE_PRE_INCREMENT
3520 && exact_log2 (INTVAL (const_arg1)) >= 0)
3521 || (HAVE_POST_INCREMENT
3522 && exact_log2 (INTVAL (const_arg1)) >= 0)
3523 || (HAVE_PRE_DECREMENT
3524 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3525 || (HAVE_POST_DECREMENT
3526 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3527 break;
3529 if (is_shift
3530 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3531 || INTVAL (inner_const) < 0))
3533 if (SHIFT_COUNT_TRUNCATED)
3534 inner_const = GEN_INT (INTVAL (inner_const)
3535 & (GET_MODE_BITSIZE (mode) - 1));
3536 else
3537 break;
3540 /* Compute the code used to compose the constants. For example,
3541 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3543 associate_code = (is_shift || code == MINUS ? PLUS : code);
3545 new_const = simplify_binary_operation (associate_code, mode,
3546 const_arg1, inner_const);
3548 if (new_const == 0)
3549 break;
3551 /* If we are associating shift operations, don't let this
3552 produce a shift of the size of the object or larger.
3553 This could occur when we follow a sign-extend by a right
3554 shift on a machine that does a sign-extend as a pair
3555 of shifts. */
3557 if (is_shift
3558 && GET_CODE (new_const) == CONST_INT
3559 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3561 /* As an exception, we can turn an ASHIFTRT of this
3562 form into a shift of the number of bits - 1. */
3563 if (code == ASHIFTRT)
3564 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3565 else if (!side_effects_p (XEXP (y, 0)))
3566 return CONST0_RTX (mode);
3567 else
3568 break;
3571 y = copy_rtx (XEXP (y, 0));
3573 /* If Y contains our first operand (the most common way this
3574 can happen is if Y is a MEM), we would do into an infinite
3575 loop if we tried to fold it. So don't in that case. */
3577 if (! reg_mentioned_p (folded_arg0, y))
3578 y = fold_rtx (y, insn);
3580 return simplify_gen_binary (code, mode, y, new_const);
3582 break;
3584 case DIV: case UDIV:
3585 /* ??? The associative optimization performed immediately above is
3586 also possible for DIV and UDIV using associate_code of MULT.
3587 However, we would need extra code to verify that the
3588 multiplication does not overflow, that is, there is no overflow
3589 in the calculation of new_const. */
3590 break;
3592 default:
3593 break;
3596 new = simplify_binary_operation (code, mode,
3597 const_arg0 ? const_arg0 : folded_arg0,
3598 const_arg1 ? const_arg1 : folded_arg1);
3599 break;
3601 case RTX_OBJ:
3602 /* (lo_sum (high X) X) is simply X. */
3603 if (code == LO_SUM && const_arg0 != 0
3604 && GET_CODE (const_arg0) == HIGH
3605 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3606 return const_arg1;
3607 break;
3609 case RTX_TERNARY:
3610 case RTX_BITFIELD_OPS:
3611 new = simplify_ternary_operation (code, mode, mode_arg0,
3612 const_arg0 ? const_arg0 : folded_arg0,
3613 const_arg1 ? const_arg1 : folded_arg1,
3614 const_arg2 ? const_arg2 : XEXP (x, 2));
3615 break;
3617 default:
3618 break;
3621 return new ? new : x;
3624 /* Return a constant value currently equivalent to X.
3625 Return 0 if we don't know one. */
3627 static rtx
3628 equiv_constant (rtx x)
3630 if (REG_P (x)
3631 && REGNO_QTY_VALID_P (REGNO (x)))
3633 int x_q = REG_QTY (REGNO (x));
3634 struct qty_table_elem *x_ent = &qty_table[x_q];
3636 if (x_ent->const_rtx)
3637 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3640 if (x == 0 || CONSTANT_P (x))
3641 return x;
3643 if (GET_CODE (x) == SUBREG)
3645 rtx new;
3647 /* See if we previously assigned a constant value to this SUBREG. */
3648 if ((new = lookup_as_function (x, CONST_INT)) != 0
3649 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3650 return new;
3652 if (REG_P (SUBREG_REG (x))
3653 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3654 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3655 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3657 return 0;
3660 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3661 the hash table in case its value was seen before. */
3663 if (MEM_P (x))
3665 struct table_elt *elt;
3667 x = avoid_constant_pool_reference (x);
3668 if (CONSTANT_P (x))
3669 return x;
3671 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3672 if (elt == 0)
3673 return 0;
3675 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3676 if (elt->is_const && CONSTANT_P (elt->exp))
3677 return elt->exp;
3680 return 0;
3683 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3684 "taken" branch.
3686 In certain cases, this can cause us to add an equivalence. For example,
3687 if we are following the taken case of
3688 if (i == 2)
3689 we can add the fact that `i' and '2' are now equivalent.
3691 In any case, we can record that this comparison was passed. If the same
3692 comparison is seen later, we will know its value. */
3694 static void
3695 record_jump_equiv (rtx insn, bool taken)
3697 int cond_known_true;
3698 rtx op0, op1;
3699 rtx set;
3700 enum machine_mode mode, mode0, mode1;
3701 int reversed_nonequality = 0;
3702 enum rtx_code code;
3704 /* Ensure this is the right kind of insn. */
3705 gcc_assert (any_condjump_p (insn));
3707 set = pc_set (insn);
3709 /* See if this jump condition is known true or false. */
3710 if (taken)
3711 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3712 else
3713 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3715 /* Get the type of comparison being done and the operands being compared.
3716 If we had to reverse a non-equality condition, record that fact so we
3717 know that it isn't valid for floating-point. */
3718 code = GET_CODE (XEXP (SET_SRC (set), 0));
3719 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3720 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3722 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3723 if (! cond_known_true)
3725 code = reversed_comparison_code_parts (code, op0, op1, insn);
3727 /* Don't remember if we can't find the inverse. */
3728 if (code == UNKNOWN)
3729 return;
3732 /* The mode is the mode of the non-constant. */
3733 mode = mode0;
3734 if (mode1 != VOIDmode)
3735 mode = mode1;
3737 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3740 /* Yet another form of subreg creation. In this case, we want something in
3741 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3743 static rtx
3744 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3746 enum machine_mode op_mode = GET_MODE (op);
3747 if (op_mode == mode || op_mode == VOIDmode)
3748 return op;
3749 return lowpart_subreg (mode, op, op_mode);
3752 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3753 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3754 Make any useful entries we can with that information. Called from
3755 above function and called recursively. */
3757 static void
3758 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3759 rtx op1, int reversed_nonequality)
3761 unsigned op0_hash, op1_hash;
3762 int op0_in_memory, op1_in_memory;
3763 struct table_elt *op0_elt, *op1_elt;
3765 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3766 we know that they are also equal in the smaller mode (this is also
3767 true for all smaller modes whether or not there is a SUBREG, but
3768 is not worth testing for with no SUBREG). */
3770 /* Note that GET_MODE (op0) may not equal MODE. */
3771 if (code == EQ && GET_CODE (op0) == SUBREG
3772 && (GET_MODE_SIZE (GET_MODE (op0))
3773 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3775 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3776 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3777 if (tem)
3778 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3779 reversed_nonequality);
3782 if (code == EQ && GET_CODE (op1) == SUBREG
3783 && (GET_MODE_SIZE (GET_MODE (op1))
3784 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3786 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3787 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3788 if (tem)
3789 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3790 reversed_nonequality);
3793 /* Similarly, if this is an NE comparison, and either is a SUBREG
3794 making a smaller mode, we know the whole thing is also NE. */
3796 /* Note that GET_MODE (op0) may not equal MODE;
3797 if we test MODE instead, we can get an infinite recursion
3798 alternating between two modes each wider than MODE. */
3800 if (code == NE && GET_CODE (op0) == SUBREG
3801 && subreg_lowpart_p (op0)
3802 && (GET_MODE_SIZE (GET_MODE (op0))
3803 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3805 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3806 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3807 if (tem)
3808 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3809 reversed_nonequality);
3812 if (code == NE && GET_CODE (op1) == SUBREG
3813 && subreg_lowpart_p (op1)
3814 && (GET_MODE_SIZE (GET_MODE (op1))
3815 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3817 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3818 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3819 if (tem)
3820 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3821 reversed_nonequality);
3824 /* Hash both operands. */
3826 do_not_record = 0;
3827 hash_arg_in_memory = 0;
3828 op0_hash = HASH (op0, mode);
3829 op0_in_memory = hash_arg_in_memory;
3831 if (do_not_record)
3832 return;
3834 do_not_record = 0;
3835 hash_arg_in_memory = 0;
3836 op1_hash = HASH (op1, mode);
3837 op1_in_memory = hash_arg_in_memory;
3839 if (do_not_record)
3840 return;
3842 /* Look up both operands. */
3843 op0_elt = lookup (op0, op0_hash, mode);
3844 op1_elt = lookup (op1, op1_hash, mode);
3846 /* If both operands are already equivalent or if they are not in the
3847 table but are identical, do nothing. */
3848 if ((op0_elt != 0 && op1_elt != 0
3849 && op0_elt->first_same_value == op1_elt->first_same_value)
3850 || op0 == op1 || rtx_equal_p (op0, op1))
3851 return;
3853 /* If we aren't setting two things equal all we can do is save this
3854 comparison. Similarly if this is floating-point. In the latter
3855 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3856 If we record the equality, we might inadvertently delete code
3857 whose intent was to change -0 to +0. */
3859 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3861 struct qty_table_elem *ent;
3862 int qty;
3864 /* If we reversed a floating-point comparison, if OP0 is not a
3865 register, or if OP1 is neither a register or constant, we can't
3866 do anything. */
3868 if (!REG_P (op1))
3869 op1 = equiv_constant (op1);
3871 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3872 || !REG_P (op0) || op1 == 0)
3873 return;
3875 /* Put OP0 in the hash table if it isn't already. This gives it a
3876 new quantity number. */
3877 if (op0_elt == 0)
3879 if (insert_regs (op0, NULL, 0))
3881 rehash_using_reg (op0);
3882 op0_hash = HASH (op0, mode);
3884 /* If OP0 is contained in OP1, this changes its hash code
3885 as well. Faster to rehash than to check, except
3886 for the simple case of a constant. */
3887 if (! CONSTANT_P (op1))
3888 op1_hash = HASH (op1,mode);
3891 op0_elt = insert (op0, NULL, op0_hash, mode);
3892 op0_elt->in_memory = op0_in_memory;
3895 qty = REG_QTY (REGNO (op0));
3896 ent = &qty_table[qty];
3898 ent->comparison_code = code;
3899 if (REG_P (op1))
3901 /* Look it up again--in case op0 and op1 are the same. */
3902 op1_elt = lookup (op1, op1_hash, mode);
3904 /* Put OP1 in the hash table so it gets a new quantity number. */
3905 if (op1_elt == 0)
3907 if (insert_regs (op1, NULL, 0))
3909 rehash_using_reg (op1);
3910 op1_hash = HASH (op1, mode);
3913 op1_elt = insert (op1, NULL, op1_hash, mode);
3914 op1_elt->in_memory = op1_in_memory;
3917 ent->comparison_const = NULL_RTX;
3918 ent->comparison_qty = REG_QTY (REGNO (op1));
3920 else
3922 ent->comparison_const = op1;
3923 ent->comparison_qty = -1;
3926 return;
3929 /* If either side is still missing an equivalence, make it now,
3930 then merge the equivalences. */
3932 if (op0_elt == 0)
3934 if (insert_regs (op0, NULL, 0))
3936 rehash_using_reg (op0);
3937 op0_hash = HASH (op0, mode);
3940 op0_elt = insert (op0, NULL, op0_hash, mode);
3941 op0_elt->in_memory = op0_in_memory;
3944 if (op1_elt == 0)
3946 if (insert_regs (op1, NULL, 0))
3948 rehash_using_reg (op1);
3949 op1_hash = HASH (op1, mode);
3952 op1_elt = insert (op1, NULL, op1_hash, mode);
3953 op1_elt->in_memory = op1_in_memory;
3956 merge_equiv_classes (op0_elt, op1_elt);
3959 /* CSE processing for one instruction.
3960 First simplify sources and addresses of all assignments
3961 in the instruction, using previously-computed equivalents values.
3962 Then install the new sources and destinations in the table
3963 of available values.
3965 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3966 the insn. It means that INSN is inside libcall block. In this
3967 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
3969 /* Data on one SET contained in the instruction. */
3971 struct set
3973 /* The SET rtx itself. */
3974 rtx rtl;
3975 /* The SET_SRC of the rtx (the original value, if it is changing). */
3976 rtx src;
3977 /* The hash-table element for the SET_SRC of the SET. */
3978 struct table_elt *src_elt;
3979 /* Hash value for the SET_SRC. */
3980 unsigned src_hash;
3981 /* Hash value for the SET_DEST. */
3982 unsigned dest_hash;
3983 /* The SET_DEST, with SUBREG, etc., stripped. */
3984 rtx inner_dest;
3985 /* Nonzero if the SET_SRC is in memory. */
3986 char src_in_memory;
3987 /* Nonzero if the SET_SRC contains something
3988 whose value cannot be predicted and understood. */
3989 char src_volatile;
3990 /* Original machine mode, in case it becomes a CONST_INT.
3991 The size of this field should match the size of the mode
3992 field of struct rtx_def (see rtl.h). */
3993 ENUM_BITFIELD(machine_mode) mode : 8;
3994 /* A constant equivalent for SET_SRC, if any. */
3995 rtx src_const;
3996 /* Original SET_SRC value used for libcall notes. */
3997 rtx orig_src;
3998 /* Hash value of constant equivalent for SET_SRC. */
3999 unsigned src_const_hash;
4000 /* Table entry for constant equivalent for SET_SRC, if any. */
4001 struct table_elt *src_const_elt;
4002 /* Table entry for the destination address. */
4003 struct table_elt *dest_addr_elt;
4006 static void
4007 cse_insn (rtx insn, rtx libcall_insn)
4009 rtx x = PATTERN (insn);
4010 int i;
4011 rtx tem;
4012 int n_sets = 0;
4014 rtx src_eqv = 0;
4015 struct table_elt *src_eqv_elt = 0;
4016 int src_eqv_volatile = 0;
4017 int src_eqv_in_memory = 0;
4018 unsigned src_eqv_hash = 0;
4020 struct set *sets = (struct set *) 0;
4022 this_insn = insn;
4023 #ifdef HAVE_cc0
4024 /* Records what this insn does to set CC0. */
4025 this_insn_cc0 = 0;
4026 this_insn_cc0_mode = VOIDmode;
4027 #endif
4029 /* Find all the SETs and CLOBBERs in this instruction.
4030 Record all the SETs in the array `set' and count them.
4031 Also determine whether there is a CLOBBER that invalidates
4032 all memory references, or all references at varying addresses. */
4034 if (CALL_P (insn))
4036 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4038 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4039 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4040 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4044 if (GET_CODE (x) == SET)
4046 sets = alloca (sizeof (struct set));
4047 sets[0].rtl = x;
4049 /* Ignore SETs that are unconditional jumps.
4050 They never need cse processing, so this does not hurt.
4051 The reason is not efficiency but rather
4052 so that we can test at the end for instructions
4053 that have been simplified to unconditional jumps
4054 and not be misled by unchanged instructions
4055 that were unconditional jumps to begin with. */
4056 if (SET_DEST (x) == pc_rtx
4057 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4060 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4061 The hard function value register is used only once, to copy to
4062 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4063 Ensure we invalidate the destination register. On the 80386 no
4064 other code would invalidate it since it is a fixed_reg.
4065 We need not check the return of apply_change_group; see canon_reg. */
4067 else if (GET_CODE (SET_SRC (x)) == CALL)
4069 canon_reg (SET_SRC (x), insn);
4070 apply_change_group ();
4071 fold_rtx (SET_SRC (x), insn);
4072 invalidate (SET_DEST (x), VOIDmode);
4074 else
4075 n_sets = 1;
4077 else if (GET_CODE (x) == PARALLEL)
4079 int lim = XVECLEN (x, 0);
4081 sets = alloca (lim * sizeof (struct set));
4083 /* Find all regs explicitly clobbered in this insn,
4084 and ensure they are not replaced with any other regs
4085 elsewhere in this insn.
4086 When a reg that is clobbered is also used for input,
4087 we should presume that that is for a reason,
4088 and we should not substitute some other register
4089 which is not supposed to be clobbered.
4090 Therefore, this loop cannot be merged into the one below
4091 because a CALL may precede a CLOBBER and refer to the
4092 value clobbered. We must not let a canonicalization do
4093 anything in that case. */
4094 for (i = 0; i < lim; i++)
4096 rtx y = XVECEXP (x, 0, i);
4097 if (GET_CODE (y) == CLOBBER)
4099 rtx clobbered = XEXP (y, 0);
4101 if (REG_P (clobbered)
4102 || GET_CODE (clobbered) == SUBREG)
4103 invalidate (clobbered, VOIDmode);
4104 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4105 || GET_CODE (clobbered) == ZERO_EXTRACT)
4106 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4110 for (i = 0; i < lim; i++)
4112 rtx y = XVECEXP (x, 0, i);
4113 if (GET_CODE (y) == SET)
4115 /* As above, we ignore unconditional jumps and call-insns and
4116 ignore the result of apply_change_group. */
4117 if (GET_CODE (SET_SRC (y)) == CALL)
4119 canon_reg (SET_SRC (y), insn);
4120 apply_change_group ();
4121 fold_rtx (SET_SRC (y), insn);
4122 invalidate (SET_DEST (y), VOIDmode);
4124 else if (SET_DEST (y) == pc_rtx
4125 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4127 else
4128 sets[n_sets++].rtl = y;
4130 else if (GET_CODE (y) == CLOBBER)
4132 /* If we clobber memory, canon the address.
4133 This does nothing when a register is clobbered
4134 because we have already invalidated the reg. */
4135 if (MEM_P (XEXP (y, 0)))
4136 canon_reg (XEXP (y, 0), insn);
4138 else if (GET_CODE (y) == USE
4139 && ! (REG_P (XEXP (y, 0))
4140 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4141 canon_reg (y, insn);
4142 else if (GET_CODE (y) == CALL)
4144 /* The result of apply_change_group can be ignored; see
4145 canon_reg. */
4146 canon_reg (y, insn);
4147 apply_change_group ();
4148 fold_rtx (y, insn);
4152 else if (GET_CODE (x) == CLOBBER)
4154 if (MEM_P (XEXP (x, 0)))
4155 canon_reg (XEXP (x, 0), insn);
4158 /* Canonicalize a USE of a pseudo register or memory location. */
4159 else if (GET_CODE (x) == USE
4160 && ! (REG_P (XEXP (x, 0))
4161 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4162 canon_reg (XEXP (x, 0), insn);
4163 else if (GET_CODE (x) == CALL)
4165 /* The result of apply_change_group can be ignored; see canon_reg. */
4166 canon_reg (x, insn);
4167 apply_change_group ();
4168 fold_rtx (x, insn);
4171 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4172 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4173 is handled specially for this case, and if it isn't set, then there will
4174 be no equivalence for the destination. */
4175 if (n_sets == 1 && REG_NOTES (insn) != 0
4176 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4177 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4178 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4180 /* The result of apply_change_group can be ignored; see canon_reg. */
4181 canon_reg (XEXP (tem, 0), insn);
4182 apply_change_group ();
4183 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4184 XEXP (tem, 0) = src_eqv;
4185 df_notes_rescan (insn);
4188 /* Canonicalize sources and addresses of destinations.
4189 We do this in a separate pass to avoid problems when a MATCH_DUP is
4190 present in the insn pattern. In that case, we want to ensure that
4191 we don't break the duplicate nature of the pattern. So we will replace
4192 both operands at the same time. Otherwise, we would fail to find an
4193 equivalent substitution in the loop calling validate_change below.
4195 We used to suppress canonicalization of DEST if it appears in SRC,
4196 but we don't do this any more. */
4198 for (i = 0; i < n_sets; i++)
4200 rtx dest = SET_DEST (sets[i].rtl);
4201 rtx src = SET_SRC (sets[i].rtl);
4202 rtx new = canon_reg (src, insn);
4204 sets[i].orig_src = src;
4205 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4207 if (GET_CODE (dest) == ZERO_EXTRACT)
4209 validate_change (insn, &XEXP (dest, 1),
4210 canon_reg (XEXP (dest, 1), insn), 1);
4211 validate_change (insn, &XEXP (dest, 2),
4212 canon_reg (XEXP (dest, 2), insn), 1);
4215 while (GET_CODE (dest) == SUBREG
4216 || GET_CODE (dest) == ZERO_EXTRACT
4217 || GET_CODE (dest) == STRICT_LOW_PART)
4218 dest = XEXP (dest, 0);
4220 if (MEM_P (dest))
4221 canon_reg (dest, insn);
4224 /* Now that we have done all the replacements, we can apply the change
4225 group and see if they all work. Note that this will cause some
4226 canonicalizations that would have worked individually not to be applied
4227 because some other canonicalization didn't work, but this should not
4228 occur often.
4230 The result of apply_change_group can be ignored; see canon_reg. */
4232 apply_change_group ();
4234 /* Set sets[i].src_elt to the class each source belongs to.
4235 Detect assignments from or to volatile things
4236 and set set[i] to zero so they will be ignored
4237 in the rest of this function.
4239 Nothing in this loop changes the hash table or the register chains. */
4241 for (i = 0; i < n_sets; i++)
4243 rtx src, dest;
4244 rtx src_folded;
4245 struct table_elt *elt = 0, *p;
4246 enum machine_mode mode;
4247 rtx src_eqv_here;
4248 rtx src_const = 0;
4249 rtx src_related = 0;
4250 struct table_elt *src_const_elt = 0;
4251 int src_cost = MAX_COST;
4252 int src_eqv_cost = MAX_COST;
4253 int src_folded_cost = MAX_COST;
4254 int src_related_cost = MAX_COST;
4255 int src_elt_cost = MAX_COST;
4256 int src_regcost = MAX_COST;
4257 int src_eqv_regcost = MAX_COST;
4258 int src_folded_regcost = MAX_COST;
4259 int src_related_regcost = MAX_COST;
4260 int src_elt_regcost = MAX_COST;
4261 /* Set nonzero if we need to call force_const_mem on with the
4262 contents of src_folded before using it. */
4263 int src_folded_force_flag = 0;
4265 dest = SET_DEST (sets[i].rtl);
4266 src = SET_SRC (sets[i].rtl);
4268 /* If SRC is a constant that has no machine mode,
4269 hash it with the destination's machine mode.
4270 This way we can keep different modes separate. */
4272 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4273 sets[i].mode = mode;
4275 if (src_eqv)
4277 enum machine_mode eqvmode = mode;
4278 if (GET_CODE (dest) == STRICT_LOW_PART)
4279 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4280 do_not_record = 0;
4281 hash_arg_in_memory = 0;
4282 src_eqv_hash = HASH (src_eqv, eqvmode);
4284 /* Find the equivalence class for the equivalent expression. */
4286 if (!do_not_record)
4287 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4289 src_eqv_volatile = do_not_record;
4290 src_eqv_in_memory = hash_arg_in_memory;
4293 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4294 value of the INNER register, not the destination. So it is not
4295 a valid substitution for the source. But save it for later. */
4296 if (GET_CODE (dest) == STRICT_LOW_PART)
4297 src_eqv_here = 0;
4298 else
4299 src_eqv_here = src_eqv;
4301 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4302 simplified result, which may not necessarily be valid. */
4303 src_folded = fold_rtx (src, insn);
4305 #if 0
4306 /* ??? This caused bad code to be generated for the m68k port with -O2.
4307 Suppose src is (CONST_INT -1), and that after truncation src_folded
4308 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4309 At the end we will add src and src_const to the same equivalence
4310 class. We now have 3 and -1 on the same equivalence class. This
4311 causes later instructions to be mis-optimized. */
4312 /* If storing a constant in a bitfield, pre-truncate the constant
4313 so we will be able to record it later. */
4314 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4316 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4318 if (GET_CODE (src) == CONST_INT
4319 && GET_CODE (width) == CONST_INT
4320 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4321 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4322 src_folded
4323 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4324 << INTVAL (width)) - 1));
4326 #endif
4328 /* Compute SRC's hash code, and also notice if it
4329 should not be recorded at all. In that case,
4330 prevent any further processing of this assignment. */
4331 do_not_record = 0;
4332 hash_arg_in_memory = 0;
4334 sets[i].src = src;
4335 sets[i].src_hash = HASH (src, mode);
4336 sets[i].src_volatile = do_not_record;
4337 sets[i].src_in_memory = hash_arg_in_memory;
4339 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4340 a pseudo, do not record SRC. Using SRC as a replacement for
4341 anything else will be incorrect in that situation. Note that
4342 this usually occurs only for stack slots, in which case all the
4343 RTL would be referring to SRC, so we don't lose any optimization
4344 opportunities by not having SRC in the hash table. */
4346 if (MEM_P (src)
4347 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4348 && REG_P (dest)
4349 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4350 sets[i].src_volatile = 1;
4352 #if 0
4353 /* It is no longer clear why we used to do this, but it doesn't
4354 appear to still be needed. So let's try without it since this
4355 code hurts cse'ing widened ops. */
4356 /* If source is a paradoxical subreg (such as QI treated as an SI),
4357 treat it as volatile. It may do the work of an SI in one context
4358 where the extra bits are not being used, but cannot replace an SI
4359 in general. */
4360 if (GET_CODE (src) == SUBREG
4361 && (GET_MODE_SIZE (GET_MODE (src))
4362 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4363 sets[i].src_volatile = 1;
4364 #endif
4366 /* Locate all possible equivalent forms for SRC. Try to replace
4367 SRC in the insn with each cheaper equivalent.
4369 We have the following types of equivalents: SRC itself, a folded
4370 version, a value given in a REG_EQUAL note, or a value related
4371 to a constant.
4373 Each of these equivalents may be part of an additional class
4374 of equivalents (if more than one is in the table, they must be in
4375 the same class; we check for this).
4377 If the source is volatile, we don't do any table lookups.
4379 We note any constant equivalent for possible later use in a
4380 REG_NOTE. */
4382 if (!sets[i].src_volatile)
4383 elt = lookup (src, sets[i].src_hash, mode);
4385 sets[i].src_elt = elt;
4387 if (elt && src_eqv_here && src_eqv_elt)
4389 if (elt->first_same_value != src_eqv_elt->first_same_value)
4391 /* The REG_EQUAL is indicating that two formerly distinct
4392 classes are now equivalent. So merge them. */
4393 merge_equiv_classes (elt, src_eqv_elt);
4394 src_eqv_hash = HASH (src_eqv, elt->mode);
4395 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4398 src_eqv_here = 0;
4401 else if (src_eqv_elt)
4402 elt = src_eqv_elt;
4404 /* Try to find a constant somewhere and record it in `src_const'.
4405 Record its table element, if any, in `src_const_elt'. Look in
4406 any known equivalences first. (If the constant is not in the
4407 table, also set `sets[i].src_const_hash'). */
4408 if (elt)
4409 for (p = elt->first_same_value; p; p = p->next_same_value)
4410 if (p->is_const)
4412 src_const = p->exp;
4413 src_const_elt = elt;
4414 break;
4417 if (src_const == 0
4418 && (CONSTANT_P (src_folded)
4419 /* Consider (minus (label_ref L1) (label_ref L2)) as
4420 "constant" here so we will record it. This allows us
4421 to fold switch statements when an ADDR_DIFF_VEC is used. */
4422 || (GET_CODE (src_folded) == MINUS
4423 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4424 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4425 src_const = src_folded, src_const_elt = elt;
4426 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4427 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4429 /* If we don't know if the constant is in the table, get its
4430 hash code and look it up. */
4431 if (src_const && src_const_elt == 0)
4433 sets[i].src_const_hash = HASH (src_const, mode);
4434 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4437 sets[i].src_const = src_const;
4438 sets[i].src_const_elt = src_const_elt;
4440 /* If the constant and our source are both in the table, mark them as
4441 equivalent. Otherwise, if a constant is in the table but the source
4442 isn't, set ELT to it. */
4443 if (src_const_elt && elt
4444 && src_const_elt->first_same_value != elt->first_same_value)
4445 merge_equiv_classes (elt, src_const_elt);
4446 else if (src_const_elt && elt == 0)
4447 elt = src_const_elt;
4449 /* See if there is a register linearly related to a constant
4450 equivalent of SRC. */
4451 if (src_const
4452 && (GET_CODE (src_const) == CONST
4453 || (src_const_elt && src_const_elt->related_value != 0)))
4455 src_related = use_related_value (src_const, src_const_elt);
4456 if (src_related)
4458 struct table_elt *src_related_elt
4459 = lookup (src_related, HASH (src_related, mode), mode);
4460 if (src_related_elt && elt)
4462 if (elt->first_same_value
4463 != src_related_elt->first_same_value)
4464 /* This can occur when we previously saw a CONST
4465 involving a SYMBOL_REF and then see the SYMBOL_REF
4466 twice. Merge the involved classes. */
4467 merge_equiv_classes (elt, src_related_elt);
4469 src_related = 0;
4470 src_related_elt = 0;
4472 else if (src_related_elt && elt == 0)
4473 elt = src_related_elt;
4477 /* See if we have a CONST_INT that is already in a register in a
4478 wider mode. */
4480 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4481 && GET_MODE_CLASS (mode) == MODE_INT
4482 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4484 enum machine_mode wider_mode;
4486 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4487 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4488 && src_related == 0;
4489 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4491 struct table_elt *const_elt
4492 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4494 if (const_elt == 0)
4495 continue;
4497 for (const_elt = const_elt->first_same_value;
4498 const_elt; const_elt = const_elt->next_same_value)
4499 if (REG_P (const_elt->exp))
4501 src_related = gen_lowpart (mode, const_elt->exp);
4502 break;
4507 /* Another possibility is that we have an AND with a constant in
4508 a mode narrower than a word. If so, it might have been generated
4509 as part of an "if" which would narrow the AND. If we already
4510 have done the AND in a wider mode, we can use a SUBREG of that
4511 value. */
4513 if (flag_expensive_optimizations && ! src_related
4514 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4515 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4517 enum machine_mode tmode;
4518 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4520 for (tmode = GET_MODE_WIDER_MODE (mode);
4521 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4522 tmode = GET_MODE_WIDER_MODE (tmode))
4524 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4525 struct table_elt *larger_elt;
4527 if (inner)
4529 PUT_MODE (new_and, tmode);
4530 XEXP (new_and, 0) = inner;
4531 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4532 if (larger_elt == 0)
4533 continue;
4535 for (larger_elt = larger_elt->first_same_value;
4536 larger_elt; larger_elt = larger_elt->next_same_value)
4537 if (REG_P (larger_elt->exp))
4539 src_related
4540 = gen_lowpart (mode, larger_elt->exp);
4541 break;
4544 if (src_related)
4545 break;
4550 #ifdef LOAD_EXTEND_OP
4551 /* See if a MEM has already been loaded with a widening operation;
4552 if it has, we can use a subreg of that. Many CISC machines
4553 also have such operations, but this is only likely to be
4554 beneficial on these machines. */
4556 if (flag_expensive_optimizations && src_related == 0
4557 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4558 && GET_MODE_CLASS (mode) == MODE_INT
4559 && MEM_P (src) && ! do_not_record
4560 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4562 struct rtx_def memory_extend_buf;
4563 rtx memory_extend_rtx = &memory_extend_buf;
4564 enum machine_mode tmode;
4566 /* Set what we are trying to extend and the operation it might
4567 have been extended with. */
4568 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4569 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4570 XEXP (memory_extend_rtx, 0) = src;
4572 for (tmode = GET_MODE_WIDER_MODE (mode);
4573 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4574 tmode = GET_MODE_WIDER_MODE (tmode))
4576 struct table_elt *larger_elt;
4578 PUT_MODE (memory_extend_rtx, tmode);
4579 larger_elt = lookup (memory_extend_rtx,
4580 HASH (memory_extend_rtx, tmode), tmode);
4581 if (larger_elt == 0)
4582 continue;
4584 for (larger_elt = larger_elt->first_same_value;
4585 larger_elt; larger_elt = larger_elt->next_same_value)
4586 if (REG_P (larger_elt->exp))
4588 src_related = gen_lowpart (mode, larger_elt->exp);
4589 break;
4592 if (src_related)
4593 break;
4596 #endif /* LOAD_EXTEND_OP */
4598 if (src == src_folded)
4599 src_folded = 0;
4601 /* At this point, ELT, if nonzero, points to a class of expressions
4602 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4603 and SRC_RELATED, if nonzero, each contain additional equivalent
4604 expressions. Prune these latter expressions by deleting expressions
4605 already in the equivalence class.
4607 Check for an equivalent identical to the destination. If found,
4608 this is the preferred equivalent since it will likely lead to
4609 elimination of the insn. Indicate this by placing it in
4610 `src_related'. */
4612 if (elt)
4613 elt = elt->first_same_value;
4614 for (p = elt; p; p = p->next_same_value)
4616 enum rtx_code code = GET_CODE (p->exp);
4618 /* If the expression is not valid, ignore it. Then we do not
4619 have to check for validity below. In most cases, we can use
4620 `rtx_equal_p', since canonicalization has already been done. */
4621 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4622 continue;
4624 /* Also skip paradoxical subregs, unless that's what we're
4625 looking for. */
4626 if (code == SUBREG
4627 && (GET_MODE_SIZE (GET_MODE (p->exp))
4628 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4629 && ! (src != 0
4630 && GET_CODE (src) == SUBREG
4631 && GET_MODE (src) == GET_MODE (p->exp)
4632 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4633 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4634 continue;
4636 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4637 src = 0;
4638 else if (src_folded && GET_CODE (src_folded) == code
4639 && rtx_equal_p (src_folded, p->exp))
4640 src_folded = 0;
4641 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4642 && rtx_equal_p (src_eqv_here, p->exp))
4643 src_eqv_here = 0;
4644 else if (src_related && GET_CODE (src_related) == code
4645 && rtx_equal_p (src_related, p->exp))
4646 src_related = 0;
4648 /* This is the same as the destination of the insns, we want
4649 to prefer it. Copy it to src_related. The code below will
4650 then give it a negative cost. */
4651 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4652 src_related = dest;
4655 /* Find the cheapest valid equivalent, trying all the available
4656 possibilities. Prefer items not in the hash table to ones
4657 that are when they are equal cost. Note that we can never
4658 worsen an insn as the current contents will also succeed.
4659 If we find an equivalent identical to the destination, use it as best,
4660 since this insn will probably be eliminated in that case. */
4661 if (src)
4663 if (rtx_equal_p (src, dest))
4664 src_cost = src_regcost = -1;
4665 else
4667 src_cost = COST (src);
4668 src_regcost = approx_reg_cost (src);
4672 if (src_eqv_here)
4674 if (rtx_equal_p (src_eqv_here, dest))
4675 src_eqv_cost = src_eqv_regcost = -1;
4676 else
4678 src_eqv_cost = COST (src_eqv_here);
4679 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4683 if (src_folded)
4685 if (rtx_equal_p (src_folded, dest))
4686 src_folded_cost = src_folded_regcost = -1;
4687 else
4689 src_folded_cost = COST (src_folded);
4690 src_folded_regcost = approx_reg_cost (src_folded);
4694 if (src_related)
4696 if (rtx_equal_p (src_related, dest))
4697 src_related_cost = src_related_regcost = -1;
4698 else
4700 src_related_cost = COST (src_related);
4701 src_related_regcost = approx_reg_cost (src_related);
4705 /* If this was an indirect jump insn, a known label will really be
4706 cheaper even though it looks more expensive. */
4707 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4708 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4710 /* Terminate loop when replacement made. This must terminate since
4711 the current contents will be tested and will always be valid. */
4712 while (1)
4714 rtx trial;
4716 /* Skip invalid entries. */
4717 while (elt && !REG_P (elt->exp)
4718 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4719 elt = elt->next_same_value;
4721 /* A paradoxical subreg would be bad here: it'll be the right
4722 size, but later may be adjusted so that the upper bits aren't
4723 what we want. So reject it. */
4724 if (elt != 0
4725 && GET_CODE (elt->exp) == SUBREG
4726 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4727 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4728 /* It is okay, though, if the rtx we're trying to match
4729 will ignore any of the bits we can't predict. */
4730 && ! (src != 0
4731 && GET_CODE (src) == SUBREG
4732 && GET_MODE (src) == GET_MODE (elt->exp)
4733 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4734 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4736 elt = elt->next_same_value;
4737 continue;
4740 if (elt)
4742 src_elt_cost = elt->cost;
4743 src_elt_regcost = elt->regcost;
4746 /* Find cheapest and skip it for the next time. For items
4747 of equal cost, use this order:
4748 src_folded, src, src_eqv, src_related and hash table entry. */
4749 if (src_folded
4750 && preferable (src_folded_cost, src_folded_regcost,
4751 src_cost, src_regcost) <= 0
4752 && preferable (src_folded_cost, src_folded_regcost,
4753 src_eqv_cost, src_eqv_regcost) <= 0
4754 && preferable (src_folded_cost, src_folded_regcost,
4755 src_related_cost, src_related_regcost) <= 0
4756 && preferable (src_folded_cost, src_folded_regcost,
4757 src_elt_cost, src_elt_regcost) <= 0)
4759 trial = src_folded, src_folded_cost = MAX_COST;
4760 if (src_folded_force_flag)
4762 rtx forced = force_const_mem (mode, trial);
4763 if (forced)
4764 trial = forced;
4767 else if (src
4768 && preferable (src_cost, src_regcost,
4769 src_eqv_cost, src_eqv_regcost) <= 0
4770 && preferable (src_cost, src_regcost,
4771 src_related_cost, src_related_regcost) <= 0
4772 && preferable (src_cost, src_regcost,
4773 src_elt_cost, src_elt_regcost) <= 0)
4774 trial = src, src_cost = MAX_COST;
4775 else if (src_eqv_here
4776 && preferable (src_eqv_cost, src_eqv_regcost,
4777 src_related_cost, src_related_regcost) <= 0
4778 && preferable (src_eqv_cost, src_eqv_regcost,
4779 src_elt_cost, src_elt_regcost) <= 0)
4780 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
4781 else if (src_related
4782 && preferable (src_related_cost, src_related_regcost,
4783 src_elt_cost, src_elt_regcost) <= 0)
4784 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
4785 else
4787 trial = copy_rtx (elt->exp);
4788 elt = elt->next_same_value;
4789 src_elt_cost = MAX_COST;
4792 /* We don't normally have an insn matching (set (pc) (pc)), so
4793 check for this separately here. We will delete such an
4794 insn below.
4796 For other cases such as a table jump or conditional jump
4797 where we know the ultimate target, go ahead and replace the
4798 operand. While that may not make a valid insn, we will
4799 reemit the jump below (and also insert any necessary
4800 barriers). */
4801 if (n_sets == 1 && dest == pc_rtx
4802 && (trial == pc_rtx
4803 || (GET_CODE (trial) == LABEL_REF
4804 && ! condjump_p (insn))))
4806 /* Don't substitute non-local labels, this confuses CFG. */
4807 if (GET_CODE (trial) == LABEL_REF
4808 && LABEL_REF_NONLOCAL_P (trial))
4809 continue;
4811 SET_SRC (sets[i].rtl) = trial;
4812 cse_jumps_altered = 1;
4813 break;
4816 /* Reject certain invalid forms of CONST that we create. */
4817 else if (CONSTANT_P (trial)
4818 && GET_CODE (trial) == CONST
4819 /* Reject cases that will cause decode_rtx_const to
4820 die. On the alpha when simplifying a switch, we
4821 get (const (truncate (minus (label_ref)
4822 (label_ref)))). */
4823 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4824 /* Likewise on IA-64, except without the
4825 truncate. */
4826 || (GET_CODE (XEXP (trial, 0)) == MINUS
4827 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4828 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4829 /* Do nothing for this case. */
4832 /* Look for a substitution that makes a valid insn. */
4833 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
4835 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4837 /* If we just made a substitution inside a libcall, then we
4838 need to make the same substitution in any notes attached
4839 to the RETVAL insn. */
4840 if (libcall_insn
4841 && (REG_P (sets[i].orig_src)
4842 || GET_CODE (sets[i].orig_src) == SUBREG
4843 || MEM_P (sets[i].orig_src)))
4845 rtx note = find_reg_equal_equiv_note (libcall_insn);
4846 if (note != 0)
4847 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4848 sets[i].orig_src,
4849 copy_rtx (new));
4850 df_notes_rescan (libcall_insn);
4853 /* The result of apply_change_group can be ignored; see
4854 canon_reg. */
4856 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4857 apply_change_group ();
4859 break;
4862 /* If we previously found constant pool entries for
4863 constants and this is a constant, try making a
4864 pool entry. Put it in src_folded unless we already have done
4865 this since that is where it likely came from. */
4867 else if (constant_pool_entries_cost
4868 && CONSTANT_P (trial)
4869 && (src_folded == 0
4870 || (!MEM_P (src_folded)
4871 && ! src_folded_force_flag))
4872 && GET_MODE_CLASS (mode) != MODE_CC
4873 && mode != VOIDmode)
4875 src_folded_force_flag = 1;
4876 src_folded = trial;
4877 src_folded_cost = constant_pool_entries_cost;
4878 src_folded_regcost = constant_pool_entries_regcost;
4882 src = SET_SRC (sets[i].rtl);
4884 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4885 However, there is an important exception: If both are registers
4886 that are not the head of their equivalence class, replace SET_SRC
4887 with the head of the class. If we do not do this, we will have
4888 both registers live over a portion of the basic block. This way,
4889 their lifetimes will likely abut instead of overlapping. */
4890 if (REG_P (dest)
4891 && REGNO_QTY_VALID_P (REGNO (dest)))
4893 int dest_q = REG_QTY (REGNO (dest));
4894 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4896 if (dest_ent->mode == GET_MODE (dest)
4897 && dest_ent->first_reg != REGNO (dest)
4898 && REG_P (src) && REGNO (src) == REGNO (dest)
4899 /* Don't do this if the original insn had a hard reg as
4900 SET_SRC or SET_DEST. */
4901 && (!REG_P (sets[i].src)
4902 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4903 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4904 /* We can't call canon_reg here because it won't do anything if
4905 SRC is a hard register. */
4907 int src_q = REG_QTY (REGNO (src));
4908 struct qty_table_elem *src_ent = &qty_table[src_q];
4909 int first = src_ent->first_reg;
4910 rtx new_src
4911 = (first >= FIRST_PSEUDO_REGISTER
4912 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4914 /* We must use validate-change even for this, because this
4915 might be a special no-op instruction, suitable only to
4916 tag notes onto. */
4917 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4919 src = new_src;
4920 /* If we had a constant that is cheaper than what we are now
4921 setting SRC to, use that constant. We ignored it when we
4922 thought we could make this into a no-op. */
4923 if (src_const && COST (src_const) < COST (src)
4924 && validate_change (insn, &SET_SRC (sets[i].rtl),
4925 src_const, 0))
4926 src = src_const;
4931 /* If we made a change, recompute SRC values. */
4932 if (src != sets[i].src)
4934 do_not_record = 0;
4935 hash_arg_in_memory = 0;
4936 sets[i].src = src;
4937 sets[i].src_hash = HASH (src, mode);
4938 sets[i].src_volatile = do_not_record;
4939 sets[i].src_in_memory = hash_arg_in_memory;
4940 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4943 /* If this is a single SET, we are setting a register, and we have an
4944 equivalent constant, we want to add a REG_NOTE. We don't want
4945 to write a REG_EQUAL note for a constant pseudo since verifying that
4946 that pseudo hasn't been eliminated is a pain. Such a note also
4947 won't help anything.
4949 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4950 which can be created for a reference to a compile time computable
4951 entry in a jump table. */
4953 if (n_sets == 1 && src_const && REG_P (dest)
4954 && !REG_P (src_const)
4955 && ! (GET_CODE (src_const) == CONST
4956 && GET_CODE (XEXP (src_const, 0)) == MINUS
4957 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4958 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4960 /* We only want a REG_EQUAL note if src_const != src. */
4961 if (! rtx_equal_p (src, src_const))
4963 /* Make sure that the rtx is not shared. */
4964 src_const = copy_rtx (src_const);
4966 /* Record the actual constant value in a REG_EQUAL note,
4967 making a new one if one does not already exist. */
4968 set_unique_reg_note (insn, REG_EQUAL, src_const);
4969 df_notes_rescan (insn);
4973 /* Now deal with the destination. */
4974 do_not_record = 0;
4976 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4977 while (GET_CODE (dest) == SUBREG
4978 || GET_CODE (dest) == ZERO_EXTRACT
4979 || GET_CODE (dest) == STRICT_LOW_PART)
4980 dest = XEXP (dest, 0);
4982 sets[i].inner_dest = dest;
4984 if (MEM_P (dest))
4986 #ifdef PUSH_ROUNDING
4987 /* Stack pushes invalidate the stack pointer. */
4988 rtx addr = XEXP (dest, 0);
4989 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
4990 && XEXP (addr, 0) == stack_pointer_rtx)
4991 invalidate (stack_pointer_rtx, VOIDmode);
4992 #endif
4993 dest = fold_rtx (dest, insn);
4996 /* Compute the hash code of the destination now,
4997 before the effects of this instruction are recorded,
4998 since the register values used in the address computation
4999 are those before this instruction. */
5000 sets[i].dest_hash = HASH (dest, mode);
5002 /* Don't enter a bit-field in the hash table
5003 because the value in it after the store
5004 may not equal what was stored, due to truncation. */
5006 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5008 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5010 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5011 && GET_CODE (width) == CONST_INT
5012 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5013 && ! (INTVAL (src_const)
5014 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5015 /* Exception: if the value is constant,
5016 and it won't be truncated, record it. */
5018 else
5020 /* This is chosen so that the destination will be invalidated
5021 but no new value will be recorded.
5022 We must invalidate because sometimes constant
5023 values can be recorded for bitfields. */
5024 sets[i].src_elt = 0;
5025 sets[i].src_volatile = 1;
5026 src_eqv = 0;
5027 src_eqv_elt = 0;
5031 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5032 the insn. */
5033 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5035 /* One less use of the label this insn used to jump to. */
5036 delete_insn_and_edges (insn);
5037 cse_jumps_altered = 1;
5038 /* No more processing for this set. */
5039 sets[i].rtl = 0;
5042 /* If this SET is now setting PC to a label, we know it used to
5043 be a conditional or computed branch. */
5044 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5045 && !LABEL_REF_NONLOCAL_P (src))
5047 /* We reemit the jump in as many cases as possible just in
5048 case the form of an unconditional jump is significantly
5049 different than a computed jump or conditional jump.
5051 If this insn has multiple sets, then reemitting the
5052 jump is nontrivial. So instead we just force rerecognition
5053 and hope for the best. */
5054 if (n_sets == 1)
5056 rtx new, note;
5058 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5059 JUMP_LABEL (new) = XEXP (src, 0);
5060 LABEL_NUSES (XEXP (src, 0))++;
5062 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5063 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5064 if (note)
5066 XEXP (note, 1) = NULL_RTX;
5067 REG_NOTES (new) = note;
5070 delete_insn_and_edges (insn);
5071 insn = new;
5073 else
5074 INSN_CODE (insn) = -1;
5076 /* Do not bother deleting any unreachable code,
5077 let jump/flow do that. */
5079 cse_jumps_altered = 1;
5080 sets[i].rtl = 0;
5083 /* If destination is volatile, invalidate it and then do no further
5084 processing for this assignment. */
5086 else if (do_not_record)
5088 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5089 invalidate (dest, VOIDmode);
5090 else if (MEM_P (dest))
5091 invalidate (dest, VOIDmode);
5092 else if (GET_CODE (dest) == STRICT_LOW_PART
5093 || GET_CODE (dest) == ZERO_EXTRACT)
5094 invalidate (XEXP (dest, 0), GET_MODE (dest));
5095 sets[i].rtl = 0;
5098 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5099 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5101 #ifdef HAVE_cc0
5102 /* If setting CC0, record what it was set to, or a constant, if it
5103 is equivalent to a constant. If it is being set to a floating-point
5104 value, make a COMPARE with the appropriate constant of 0. If we
5105 don't do this, later code can interpret this as a test against
5106 const0_rtx, which can cause problems if we try to put it into an
5107 insn as a floating-point operand. */
5108 if (dest == cc0_rtx)
5110 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5111 this_insn_cc0_mode = mode;
5112 if (FLOAT_MODE_P (mode))
5113 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5114 CONST0_RTX (mode));
5116 #endif
5119 /* Now enter all non-volatile source expressions in the hash table
5120 if they are not already present.
5121 Record their equivalence classes in src_elt.
5122 This way we can insert the corresponding destinations into
5123 the same classes even if the actual sources are no longer in them
5124 (having been invalidated). */
5126 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5127 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5129 struct table_elt *elt;
5130 struct table_elt *classp = sets[0].src_elt;
5131 rtx dest = SET_DEST (sets[0].rtl);
5132 enum machine_mode eqvmode = GET_MODE (dest);
5134 if (GET_CODE (dest) == STRICT_LOW_PART)
5136 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5137 classp = 0;
5139 if (insert_regs (src_eqv, classp, 0))
5141 rehash_using_reg (src_eqv);
5142 src_eqv_hash = HASH (src_eqv, eqvmode);
5144 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5145 elt->in_memory = src_eqv_in_memory;
5146 src_eqv_elt = elt;
5148 /* Check to see if src_eqv_elt is the same as a set source which
5149 does not yet have an elt, and if so set the elt of the set source
5150 to src_eqv_elt. */
5151 for (i = 0; i < n_sets; i++)
5152 if (sets[i].rtl && sets[i].src_elt == 0
5153 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5154 sets[i].src_elt = src_eqv_elt;
5157 for (i = 0; i < n_sets; i++)
5158 if (sets[i].rtl && ! sets[i].src_volatile
5159 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5161 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5163 /* REG_EQUAL in setting a STRICT_LOW_PART
5164 gives an equivalent for the entire destination register,
5165 not just for the subreg being stored in now.
5166 This is a more interesting equivalence, so we arrange later
5167 to treat the entire reg as the destination. */
5168 sets[i].src_elt = src_eqv_elt;
5169 sets[i].src_hash = src_eqv_hash;
5171 else
5173 /* Insert source and constant equivalent into hash table, if not
5174 already present. */
5175 struct table_elt *classp = src_eqv_elt;
5176 rtx src = sets[i].src;
5177 rtx dest = SET_DEST (sets[i].rtl);
5178 enum machine_mode mode
5179 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5181 /* It's possible that we have a source value known to be
5182 constant but don't have a REG_EQUAL note on the insn.
5183 Lack of a note will mean src_eqv_elt will be NULL. This
5184 can happen where we've generated a SUBREG to access a
5185 CONST_INT that is already in a register in a wider mode.
5186 Ensure that the source expression is put in the proper
5187 constant class. */
5188 if (!classp)
5189 classp = sets[i].src_const_elt;
5191 if (sets[i].src_elt == 0)
5193 /* Don't put a hard register source into the table if this is
5194 the last insn of a libcall. In this case, we only need
5195 to put src_eqv_elt in src_elt. */
5196 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5198 struct table_elt *elt;
5200 /* Note that these insert_regs calls cannot remove
5201 any of the src_elt's, because they would have failed to
5202 match if not still valid. */
5203 if (insert_regs (src, classp, 0))
5205 rehash_using_reg (src);
5206 sets[i].src_hash = HASH (src, mode);
5208 elt = insert (src, classp, sets[i].src_hash, mode);
5209 elt->in_memory = sets[i].src_in_memory;
5210 sets[i].src_elt = classp = elt;
5212 else
5213 sets[i].src_elt = classp;
5215 if (sets[i].src_const && sets[i].src_const_elt == 0
5216 && src != sets[i].src_const
5217 && ! rtx_equal_p (sets[i].src_const, src))
5218 sets[i].src_elt = insert (sets[i].src_const, classp,
5219 sets[i].src_const_hash, mode);
5222 else if (sets[i].src_elt == 0)
5223 /* If we did not insert the source into the hash table (e.g., it was
5224 volatile), note the equivalence class for the REG_EQUAL value, if any,
5225 so that the destination goes into that class. */
5226 sets[i].src_elt = src_eqv_elt;
5228 /* Record destination addresses in the hash table. This allows us to
5229 check if they are invalidated by other sets. */
5230 for (i = 0; i < n_sets; i++)
5232 if (sets[i].rtl)
5234 rtx x = sets[i].inner_dest;
5235 struct table_elt *elt;
5236 enum machine_mode mode;
5237 unsigned hash;
5239 if (MEM_P (x))
5241 x = XEXP (x, 0);
5242 mode = GET_MODE (x);
5243 hash = HASH (x, mode);
5244 elt = lookup (x, hash, mode);
5245 if (!elt)
5247 if (insert_regs (x, NULL, 0))
5249 rtx dest = SET_DEST (sets[i].rtl);
5251 rehash_using_reg (x);
5252 hash = HASH (x, mode);
5253 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5255 elt = insert (x, NULL, hash, mode);
5258 sets[i].dest_addr_elt = elt;
5260 else
5261 sets[i].dest_addr_elt = NULL;
5265 invalidate_from_clobbers (x);
5267 /* Some registers are invalidated by subroutine calls. Memory is
5268 invalidated by non-constant calls. */
5270 if (CALL_P (insn))
5272 if (! CONST_OR_PURE_CALL_P (insn))
5273 invalidate_memory ();
5274 invalidate_for_call ();
5277 /* Now invalidate everything set by this instruction.
5278 If a SUBREG or other funny destination is being set,
5279 sets[i].rtl is still nonzero, so here we invalidate the reg
5280 a part of which is being set. */
5282 for (i = 0; i < n_sets; i++)
5283 if (sets[i].rtl)
5285 /* We can't use the inner dest, because the mode associated with
5286 a ZERO_EXTRACT is significant. */
5287 rtx dest = SET_DEST (sets[i].rtl);
5289 /* Needed for registers to remove the register from its
5290 previous quantity's chain.
5291 Needed for memory if this is a nonvarying address, unless
5292 we have just done an invalidate_memory that covers even those. */
5293 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5294 invalidate (dest, VOIDmode);
5295 else if (MEM_P (dest))
5296 invalidate (dest, VOIDmode);
5297 else if (GET_CODE (dest) == STRICT_LOW_PART
5298 || GET_CODE (dest) == ZERO_EXTRACT)
5299 invalidate (XEXP (dest, 0), GET_MODE (dest));
5302 /* A volatile ASM invalidates everything. */
5303 if (NONJUMP_INSN_P (insn)
5304 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5305 && MEM_VOLATILE_P (PATTERN (insn)))
5306 flush_hash_table ();
5308 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5309 the regs restored by the longjmp come from a later time
5310 than the setjmp. */
5311 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5313 flush_hash_table ();
5314 goto done;
5317 /* Make sure registers mentioned in destinations
5318 are safe for use in an expression to be inserted.
5319 This removes from the hash table
5320 any invalid entry that refers to one of these registers.
5322 We don't care about the return value from mention_regs because
5323 we are going to hash the SET_DEST values unconditionally. */
5325 for (i = 0; i < n_sets; i++)
5327 if (sets[i].rtl)
5329 rtx x = SET_DEST (sets[i].rtl);
5331 if (!REG_P (x))
5332 mention_regs (x);
5333 else
5335 /* We used to rely on all references to a register becoming
5336 inaccessible when a register changes to a new quantity,
5337 since that changes the hash code. However, that is not
5338 safe, since after HASH_SIZE new quantities we get a
5339 hash 'collision' of a register with its own invalid
5340 entries. And since SUBREGs have been changed not to
5341 change their hash code with the hash code of the register,
5342 it wouldn't work any longer at all. So we have to check
5343 for any invalid references lying around now.
5344 This code is similar to the REG case in mention_regs,
5345 but it knows that reg_tick has been incremented, and
5346 it leaves reg_in_table as -1 . */
5347 unsigned int regno = REGNO (x);
5348 unsigned int endregno = END_REGNO (x);
5349 unsigned int i;
5351 for (i = regno; i < endregno; i++)
5353 if (REG_IN_TABLE (i) >= 0)
5355 remove_invalid_refs (i);
5356 REG_IN_TABLE (i) = -1;
5363 /* We may have just removed some of the src_elt's from the hash table.
5364 So replace each one with the current head of the same class.
5365 Also check if destination addresses have been removed. */
5367 for (i = 0; i < n_sets; i++)
5368 if (sets[i].rtl)
5370 if (sets[i].dest_addr_elt
5371 && sets[i].dest_addr_elt->first_same_value == 0)
5373 /* The elt was removed, which means this destination is not
5374 valid after this instruction. */
5375 sets[i].rtl = NULL_RTX;
5377 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5378 /* If elt was removed, find current head of same class,
5379 or 0 if nothing remains of that class. */
5381 struct table_elt *elt = sets[i].src_elt;
5383 while (elt && elt->prev_same_value)
5384 elt = elt->prev_same_value;
5386 while (elt && elt->first_same_value == 0)
5387 elt = elt->next_same_value;
5388 sets[i].src_elt = elt ? elt->first_same_value : 0;
5392 /* Now insert the destinations into their equivalence classes. */
5394 for (i = 0; i < n_sets; i++)
5395 if (sets[i].rtl)
5397 rtx dest = SET_DEST (sets[i].rtl);
5398 struct table_elt *elt;
5400 /* Don't record value if we are not supposed to risk allocating
5401 floating-point values in registers that might be wider than
5402 memory. */
5403 if ((flag_float_store
5404 && MEM_P (dest)
5405 && FLOAT_MODE_P (GET_MODE (dest)))
5406 /* Don't record BLKmode values, because we don't know the
5407 size of it, and can't be sure that other BLKmode values
5408 have the same or smaller size. */
5409 || GET_MODE (dest) == BLKmode
5410 /* Don't record values of destinations set inside a libcall block
5411 since we might delete the libcall. Things should have been set
5412 up so we won't want to reuse such a value, but we play it safe
5413 here. */
5414 || libcall_insn
5415 /* If we didn't put a REG_EQUAL value or a source into the hash
5416 table, there is no point is recording DEST. */
5417 || sets[i].src_elt == 0
5418 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5419 or SIGN_EXTEND, don't record DEST since it can cause
5420 some tracking to be wrong.
5422 ??? Think about this more later. */
5423 || (GET_CODE (dest) == SUBREG
5424 && (GET_MODE_SIZE (GET_MODE (dest))
5425 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5426 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5427 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5428 continue;
5430 /* STRICT_LOW_PART isn't part of the value BEING set,
5431 and neither is the SUBREG inside it.
5432 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5433 if (GET_CODE (dest) == STRICT_LOW_PART)
5434 dest = SUBREG_REG (XEXP (dest, 0));
5436 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5437 /* Registers must also be inserted into chains for quantities. */
5438 if (insert_regs (dest, sets[i].src_elt, 1))
5440 /* If `insert_regs' changes something, the hash code must be
5441 recalculated. */
5442 rehash_using_reg (dest);
5443 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5446 elt = insert (dest, sets[i].src_elt,
5447 sets[i].dest_hash, GET_MODE (dest));
5449 elt->in_memory = (MEM_P (sets[i].inner_dest)
5450 && !MEM_READONLY_P (sets[i].inner_dest));
5452 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5453 narrower than M2, and both M1 and M2 are the same number of words,
5454 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5455 make that equivalence as well.
5457 However, BAR may have equivalences for which gen_lowpart
5458 will produce a simpler value than gen_lowpart applied to
5459 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5460 BAR's equivalences. If we don't get a simplified form, make
5461 the SUBREG. It will not be used in an equivalence, but will
5462 cause two similar assignments to be detected.
5464 Note the loop below will find SUBREG_REG (DEST) since we have
5465 already entered SRC and DEST of the SET in the table. */
5467 if (GET_CODE (dest) == SUBREG
5468 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5469 / UNITS_PER_WORD)
5470 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5471 && (GET_MODE_SIZE (GET_MODE (dest))
5472 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5473 && sets[i].src_elt != 0)
5475 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5476 struct table_elt *elt, *classp = 0;
5478 for (elt = sets[i].src_elt->first_same_value; elt;
5479 elt = elt->next_same_value)
5481 rtx new_src = 0;
5482 unsigned src_hash;
5483 struct table_elt *src_elt;
5484 int byte = 0;
5486 /* Ignore invalid entries. */
5487 if (!REG_P (elt->exp)
5488 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5489 continue;
5491 /* We may have already been playing subreg games. If the
5492 mode is already correct for the destination, use it. */
5493 if (GET_MODE (elt->exp) == new_mode)
5494 new_src = elt->exp;
5495 else
5497 /* Calculate big endian correction for the SUBREG_BYTE.
5498 We have already checked that M1 (GET_MODE (dest))
5499 is not narrower than M2 (new_mode). */
5500 if (BYTES_BIG_ENDIAN)
5501 byte = (GET_MODE_SIZE (GET_MODE (dest))
5502 - GET_MODE_SIZE (new_mode));
5504 new_src = simplify_gen_subreg (new_mode, elt->exp,
5505 GET_MODE (dest), byte);
5508 /* The call to simplify_gen_subreg fails if the value
5509 is VOIDmode, yet we can't do any simplification, e.g.
5510 for EXPR_LISTs denoting function call results.
5511 It is invalid to construct a SUBREG with a VOIDmode
5512 SUBREG_REG, hence a zero new_src means we can't do
5513 this substitution. */
5514 if (! new_src)
5515 continue;
5517 src_hash = HASH (new_src, new_mode);
5518 src_elt = lookup (new_src, src_hash, new_mode);
5520 /* Put the new source in the hash table is if isn't
5521 already. */
5522 if (src_elt == 0)
5524 if (insert_regs (new_src, classp, 0))
5526 rehash_using_reg (new_src);
5527 src_hash = HASH (new_src, new_mode);
5529 src_elt = insert (new_src, classp, src_hash, new_mode);
5530 src_elt->in_memory = elt->in_memory;
5532 else if (classp && classp != src_elt->first_same_value)
5533 /* Show that two things that we've seen before are
5534 actually the same. */
5535 merge_equiv_classes (src_elt, classp);
5537 classp = src_elt->first_same_value;
5538 /* Ignore invalid entries. */
5539 while (classp
5540 && !REG_P (classp->exp)
5541 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5542 classp = classp->next_same_value;
5547 /* Special handling for (set REG0 REG1) where REG0 is the
5548 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5549 be used in the sequel, so (if easily done) change this insn to
5550 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5551 that computed their value. Then REG1 will become a dead store
5552 and won't cloud the situation for later optimizations.
5554 Do not make this change if REG1 is a hard register, because it will
5555 then be used in the sequel and we may be changing a two-operand insn
5556 into a three-operand insn.
5558 Also do not do this if we are operating on a copy of INSN.
5560 Also don't do this if INSN ends a libcall; this would cause an unrelated
5561 register to be set in the middle of a libcall, and we then get bad code
5562 if the libcall is deleted. */
5564 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5565 && NEXT_INSN (PREV_INSN (insn)) == insn
5566 && REG_P (SET_SRC (sets[0].rtl))
5567 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5568 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5570 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5571 struct qty_table_elem *src_ent = &qty_table[src_q];
5573 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5574 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5576 /* Scan for the previous nonnote insn, but stop at a basic
5577 block boundary. */
5578 rtx prev = insn;
5579 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5582 prev = PREV_INSN (prev);
5584 while (prev != bb_head && NOTE_P (prev));
5586 /* Do not swap the registers around if the previous instruction
5587 attaches a REG_EQUIV note to REG1.
5589 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5590 from the pseudo that originally shadowed an incoming argument
5591 to another register. Some uses of REG_EQUIV might rely on it
5592 being attached to REG1 rather than REG2.
5594 This section previously turned the REG_EQUIV into a REG_EQUAL
5595 note. We cannot do that because REG_EQUIV may provide an
5596 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5597 if (NONJUMP_INSN_P (prev)
5598 && GET_CODE (PATTERN (prev)) == SET
5599 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5600 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5602 rtx dest = SET_DEST (sets[0].rtl);
5603 rtx src = SET_SRC (sets[0].rtl);
5604 rtx note;
5606 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5607 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5608 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5609 apply_change_group ();
5611 /* If INSN has a REG_EQUAL note, and this note mentions
5612 REG0, then we must delete it, because the value in
5613 REG0 has changed. If the note's value is REG1, we must
5614 also delete it because that is now this insn's dest. */
5615 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5616 if (note != 0
5617 && (reg_mentioned_p (dest, XEXP (note, 0))
5618 || rtx_equal_p (src, XEXP (note, 0))))
5619 remove_note (insn, note);
5624 done:;
5627 /* Remove from the hash table all expressions that reference memory. */
5629 static void
5630 invalidate_memory (void)
5632 int i;
5633 struct table_elt *p, *next;
5635 for (i = 0; i < HASH_SIZE; i++)
5636 for (p = table[i]; p; p = next)
5638 next = p->next_same_hash;
5639 if (p->in_memory)
5640 remove_from_table (p, i);
5644 /* Perform invalidation on the basis of everything about an insn
5645 except for invalidating the actual places that are SET in it.
5646 This includes the places CLOBBERed, and anything that might
5647 alias with something that is SET or CLOBBERed.
5649 X is the pattern of the insn. */
5651 static void
5652 invalidate_from_clobbers (rtx x)
5654 if (GET_CODE (x) == CLOBBER)
5656 rtx ref = XEXP (x, 0);
5657 if (ref)
5659 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5660 || MEM_P (ref))
5661 invalidate (ref, VOIDmode);
5662 else if (GET_CODE (ref) == STRICT_LOW_PART
5663 || GET_CODE (ref) == ZERO_EXTRACT)
5664 invalidate (XEXP (ref, 0), GET_MODE (ref));
5667 else if (GET_CODE (x) == PARALLEL)
5669 int i;
5670 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5672 rtx y = XVECEXP (x, 0, i);
5673 if (GET_CODE (y) == CLOBBER)
5675 rtx ref = XEXP (y, 0);
5676 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5677 || MEM_P (ref))
5678 invalidate (ref, VOIDmode);
5679 else if (GET_CODE (ref) == STRICT_LOW_PART
5680 || GET_CODE (ref) == ZERO_EXTRACT)
5681 invalidate (XEXP (ref, 0), GET_MODE (ref));
5687 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5688 and replace any registers in them with either an equivalent constant
5689 or the canonical form of the register. If we are inside an address,
5690 only do this if the address remains valid.
5692 OBJECT is 0 except when within a MEM in which case it is the MEM.
5694 Return the replacement for X. */
5696 static rtx
5697 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5699 enum rtx_code code = GET_CODE (x);
5700 const char *fmt = GET_RTX_FORMAT (code);
5701 int i;
5703 switch (code)
5705 case CONST_INT:
5706 case CONST:
5707 case SYMBOL_REF:
5708 case LABEL_REF:
5709 case CONST_DOUBLE:
5710 case CONST_VECTOR:
5711 case PC:
5712 case CC0:
5713 case LO_SUM:
5714 return x;
5716 case MEM:
5717 validate_change (x, &XEXP (x, 0),
5718 cse_process_notes (XEXP (x, 0), x, changed), 0);
5719 return x;
5721 case EXPR_LIST:
5722 case INSN_LIST:
5723 if (REG_NOTE_KIND (x) == REG_EQUAL)
5724 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5725 if (XEXP (x, 1))
5726 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5727 return x;
5729 case SIGN_EXTEND:
5730 case ZERO_EXTEND:
5731 case SUBREG:
5733 rtx new = cse_process_notes (XEXP (x, 0), object, changed);
5734 /* We don't substitute VOIDmode constants into these rtx,
5735 since they would impede folding. */
5736 if (GET_MODE (new) != VOIDmode)
5737 validate_change (object, &XEXP (x, 0), new, 0);
5738 return x;
5741 case REG:
5742 i = REG_QTY (REGNO (x));
5744 /* Return a constant or a constant register. */
5745 if (REGNO_QTY_VALID_P (REGNO (x)))
5747 struct qty_table_elem *ent = &qty_table[i];
5749 if (ent->const_rtx != NULL_RTX
5750 && (CONSTANT_P (ent->const_rtx)
5751 || REG_P (ent->const_rtx)))
5753 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5754 if (new)
5755 return copy_rtx (new);
5759 /* Otherwise, canonicalize this register. */
5760 return canon_reg (x, NULL_RTX);
5762 default:
5763 break;
5766 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5767 if (fmt[i] == 'e')
5768 validate_change (object, &XEXP (x, i),
5769 cse_process_notes (XEXP (x, i), object, changed), 0);
5771 return x;
5774 static rtx
5775 cse_process_notes (rtx x, rtx object, bool *changed)
5777 rtx new = cse_process_notes_1 (x, object, changed);
5778 if (new != x)
5779 *changed = true;
5780 return new;
5784 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5786 DATA is a pointer to a struct cse_basic_block_data, that is used to
5787 describe the path.
5788 It is filled with a queue of basic blocks, starting with FIRST_BB
5789 and following a trace through the CFG.
5791 If all paths starting at FIRST_BB have been followed, or no new path
5792 starting at FIRST_BB can be constructed, this function returns FALSE.
5793 Otherwise, DATA->path is filled and the function returns TRUE indicating
5794 that a path to follow was found.
5796 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5797 block in the path will be FIRST_BB. */
5799 static bool
5800 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5801 int follow_jumps)
5803 basic_block bb;
5804 edge e;
5805 int path_size;
5807 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5809 /* See if there is a previous path. */
5810 path_size = data->path_size;
5812 /* There is a previous path. Make sure it started with FIRST_BB. */
5813 if (path_size)
5814 gcc_assert (data->path[0].bb == first_bb);
5816 /* There was only one basic block in the last path. Clear the path and
5817 return, so that paths starting at another basic block can be tried. */
5818 if (path_size == 1)
5820 path_size = 0;
5821 goto done;
5824 /* If the path was empty from the beginning, construct a new path. */
5825 if (path_size == 0)
5826 data->path[path_size++].bb = first_bb;
5827 else
5829 /* Otherwise, path_size must be equal to or greater than 2, because
5830 a previous path exists that is at least two basic blocks long.
5832 Update the previous branch path, if any. If the last branch was
5833 previously along the branch edge, take the fallthrough edge now. */
5834 while (path_size >= 2)
5836 basic_block last_bb_in_path, previous_bb_in_path;
5837 edge e;
5839 --path_size;
5840 last_bb_in_path = data->path[path_size].bb;
5841 previous_bb_in_path = data->path[path_size - 1].bb;
5843 /* If we previously followed a path along the branch edge, try
5844 the fallthru edge now. */
5845 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5846 && any_condjump_p (BB_END (previous_bb_in_path))
5847 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5848 && e == BRANCH_EDGE (previous_bb_in_path))
5850 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5851 if (bb != EXIT_BLOCK_PTR
5852 && single_pred_p (bb)
5853 /* We used to assert here that we would only see blocks
5854 that we have not visited yet. But we may end up
5855 visiting basic blocks twice if the CFG has changed
5856 in this run of cse_main, because when the CFG changes
5857 the topological sort of the CFG also changes. A basic
5858 blocks that previously had more than two predecessors
5859 may now have a single predecessor, and become part of
5860 a path that starts at another basic block.
5862 We still want to visit each basic block only once, so
5863 halt the path here if we have already visited BB. */
5864 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5866 SET_BIT (cse_visited_basic_blocks, bb->index);
5867 data->path[path_size++].bb = bb;
5868 break;
5872 data->path[path_size].bb = NULL;
5875 /* If only one block remains in the path, bail. */
5876 if (path_size == 1)
5878 path_size = 0;
5879 goto done;
5883 /* Extend the path if possible. */
5884 if (follow_jumps)
5886 bb = data->path[path_size - 1].bb;
5887 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5889 if (single_succ_p (bb))
5890 e = single_succ_edge (bb);
5891 else if (EDGE_COUNT (bb->succs) == 2
5892 && any_condjump_p (BB_END (bb)))
5894 /* First try to follow the branch. If that doesn't lead
5895 to a useful path, follow the fallthru edge. */
5896 e = BRANCH_EDGE (bb);
5897 if (!single_pred_p (e->dest))
5898 e = FALLTHRU_EDGE (bb);
5900 else
5901 e = NULL;
5903 if (e && e->dest != EXIT_BLOCK_PTR
5904 && single_pred_p (e->dest)
5905 /* Avoid visiting basic blocks twice. The large comment
5906 above explains why this can happen. */
5907 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5909 basic_block bb2 = e->dest;
5910 SET_BIT (cse_visited_basic_blocks, bb2->index);
5911 data->path[path_size++].bb = bb2;
5912 bb = bb2;
5914 else
5915 bb = NULL;
5919 done:
5920 data->path_size = path_size;
5921 return path_size != 0;
5924 /* Dump the path in DATA to file F. NSETS is the number of sets
5925 in the path. */
5927 static void
5928 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5930 int path_entry;
5932 fprintf (f, ";; Following path with %d sets: ", nsets);
5933 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5934 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5935 fputc ('\n', dump_file);
5936 fflush (f);
5940 /* Return true if BB has exception handling successor edges. */
5942 static bool
5943 have_eh_succ_edges (basic_block bb)
5945 edge e;
5946 edge_iterator ei;
5948 FOR_EACH_EDGE (e, ei, bb->succs)
5949 if (e->flags & EDGE_EH)
5950 return true;
5952 return false;
5956 /* Scan to the end of the path described by DATA. Return an estimate of
5957 the total number of SETs of all insns in the path. */
5959 static void
5960 cse_prescan_path (struct cse_basic_block_data *data)
5962 int nsets = 0;
5963 int path_size = data->path_size;
5964 int path_entry;
5966 /* Scan to end of each basic block in the path. */
5967 for (path_entry = 0; path_entry < path_size; path_entry++)
5969 basic_block bb;
5970 rtx insn;
5972 bb = data->path[path_entry].bb;
5974 FOR_BB_INSNS (bb, insn)
5976 if (!INSN_P (insn))
5977 continue;
5979 /* A PARALLEL can have lots of SETs in it,
5980 especially if it is really an ASM_OPERANDS. */
5981 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5982 nsets += XVECLEN (PATTERN (insn), 0);
5983 else
5984 nsets += 1;
5988 data->nsets = nsets;
5991 /* Process a single extended basic block described by EBB_DATA. */
5993 static void
5994 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5996 int path_size = ebb_data->path_size;
5997 int path_entry;
5998 int num_insns = 0;
6000 /* Allocate the space needed by qty_table. */
6001 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6003 new_basic_block ();
6004 cse_ebb_live_in = DF_LIVE_IN (ebb_data->path[0].bb);
6005 cse_ebb_live_out = DF_LIVE_OUT (ebb_data->path[path_size - 1].bb);
6006 for (path_entry = 0; path_entry < path_size; path_entry++)
6008 basic_block bb;
6009 rtx insn;
6010 rtx libcall_insn = NULL_RTX;
6011 int no_conflict = 0;
6013 bb = ebb_data->path[path_entry].bb;
6014 FOR_BB_INSNS (bb, insn)
6016 /* If we have processed 1,000 insns, flush the hash table to
6017 avoid extreme quadratic behavior. We must not include NOTEs
6018 in the count since there may be more of them when generating
6019 debugging information. If we clear the table at different
6020 times, code generated with -g -O might be different than code
6021 generated with -O but not -g.
6023 FIXME: This is a real kludge and needs to be done some other
6024 way. */
6025 if (INSN_P (insn)
6026 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6028 flush_hash_table ();
6029 num_insns = 0;
6032 if (INSN_P (insn))
6034 /* Process notes first so we have all notes in canonical forms
6035 when looking for duplicate operations. */
6036 if (REG_NOTES (insn))
6038 bool changed = false;
6039 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6040 NULL_RTX, &changed);
6041 if (changed)
6042 df_notes_rescan (insn);
6045 /* Track when we are inside in LIBCALL block. Inside such
6046 a block we do not want to record destinations. The last
6047 insn of a LIBCALL block is not considered to be part of
6048 the block, since its destination is the result of the
6049 block and hence should be recorded. */
6050 if (REG_NOTES (insn) != 0)
6052 rtx p;
6054 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6055 libcall_insn = XEXP (p, 0);
6056 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6058 /* Keep libcall_insn for the last SET insn of
6059 a no-conflict block to prevent changing the
6060 destination. */
6061 if (!no_conflict)
6062 libcall_insn = NULL_RTX;
6063 else
6064 no_conflict = -1;
6066 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6067 no_conflict = 1;
6070 cse_insn (insn, libcall_insn);
6072 /* If we kept libcall_insn for a no-conflict bock,
6073 clear it here. */
6074 if (no_conflict == -1)
6076 libcall_insn = NULL_RTX;
6077 no_conflict = 0;
6080 /* If we haven't already found an insn where we added a LABEL_REF,
6081 check this one. */
6082 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6083 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6084 (void *) insn))
6085 recorded_label_ref = 1;
6087 #ifdef HAVE_cc0
6088 /* If the previous insn set CC0 and this insn no longer
6089 references CC0, delete the previous insn. Here we use
6090 fact that nothing expects CC0 to be valid over an insn,
6091 which is true until the final pass. */
6093 rtx prev_insn, tem;
6095 prev_insn = PREV_INSN (insn);
6096 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6097 && (tem = single_set (prev_insn)) != 0
6098 && SET_DEST (tem) == cc0_rtx
6099 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6100 delete_insn (prev_insn);
6103 /* If this insn is not the last insn in the basic block,
6104 it will be PREV_INSN(insn) in the next iteration. If
6105 we recorded any CC0-related information for this insn,
6106 remember it. */
6107 if (insn != BB_END (bb))
6109 prev_insn_cc0 = this_insn_cc0;
6110 prev_insn_cc0_mode = this_insn_cc0_mode;
6112 #endif
6116 /* Make sure that libcalls don't span multiple basic blocks. */
6117 gcc_assert (libcall_insn == NULL_RTX);
6119 /* With non-call exceptions, we are not always able to update
6120 the CFG properly inside cse_insn. So clean up possibly
6121 redundant EH edges here. */
6122 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6123 purge_dead_edges (bb);
6125 /* If we changed a conditional jump, we may have terminated
6126 the path we are following. Check that by verifying that
6127 the edge we would take still exists. If the edge does
6128 not exist anymore, purge the remainder of the path.
6129 Note that this will cause us to return to the caller. */
6130 if (path_entry < path_size - 1)
6132 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6133 if (!find_edge (bb, next_bb))
6137 path_size--;
6139 /* If we truncate the path, we must also reset the
6140 visited bit on the remaining blocks in the path,
6141 or we will never visit them at all. */
6142 RESET_BIT (cse_visited_basic_blocks,
6143 ebb_data->path[path_size].bb->index);
6144 ebb_data->path[path_size].bb = NULL;
6146 while (path_size - 1 != path_entry);
6147 ebb_data->path_size = path_size;
6151 /* If this is a conditional jump insn, record any known
6152 equivalences due to the condition being tested. */
6153 insn = BB_END (bb);
6154 if (path_entry < path_size - 1
6155 && JUMP_P (insn)
6156 && single_set (insn)
6157 && any_condjump_p (insn))
6159 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6160 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6161 record_jump_equiv (insn, taken);
6164 #ifdef HAVE_cc0
6165 /* Clear the CC0-tracking related insns, they can't provide
6166 useful information across basic block boundaries. */
6167 prev_insn_cc0 = 0;
6168 #endif
6171 gcc_assert (next_qty <= max_qty);
6173 free (qty_table);
6177 /* Perform cse on the instructions of a function.
6178 F is the first instruction.
6179 NREGS is one plus the highest pseudo-reg number used in the instruction.
6181 Returns 1 if jump_optimize should be redone due to simplifications
6182 in conditional jump instructions. */
6185 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6187 struct cse_basic_block_data ebb_data;
6188 basic_block bb;
6189 int *rc_order = XNEWVEC (int, last_basic_block);
6190 int i, n_blocks;
6192 df_set_flags (DF_LR_RUN_DCE);
6193 df_analyze ();
6194 df_set_flags (DF_DEFER_INSN_RESCAN);
6196 reg_scan (get_insns (), max_reg_num ());
6197 init_cse_reg_info (nregs);
6199 ebb_data.path = XNEWVEC (struct branch_path,
6200 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6202 cse_jumps_altered = 0;
6203 recorded_label_ref = 0;
6204 constant_pool_entries_cost = 0;
6205 constant_pool_entries_regcost = 0;
6206 ebb_data.path_size = 0;
6207 ebb_data.nsets = 0;
6208 rtl_hooks = cse_rtl_hooks;
6210 init_recog ();
6211 init_alias_analysis ();
6213 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6215 /* Set up the table of already visited basic blocks. */
6216 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6217 sbitmap_zero (cse_visited_basic_blocks);
6219 /* Loop over basic blocks in reverse completion order (RPO),
6220 excluding the ENTRY and EXIT blocks. */
6221 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6222 i = 0;
6223 while (i < n_blocks)
6225 /* Find the first block in the RPO queue that we have not yet
6226 processed before. */
6229 bb = BASIC_BLOCK (rc_order[i++]);
6231 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6232 && i < n_blocks);
6234 /* Find all paths starting with BB, and process them. */
6235 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6237 /* Pre-scan the path. */
6238 cse_prescan_path (&ebb_data);
6240 /* If this basic block has no sets, skip it. */
6241 if (ebb_data.nsets == 0)
6242 continue;
6244 /* Get a reasonable estimate for the maximum number of qty's
6245 needed for this path. For this, we take the number of sets
6246 and multiply that by MAX_RECOG_OPERANDS. */
6247 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6249 /* Dump the path we're about to process. */
6250 if (dump_file)
6251 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6253 cse_extended_basic_block (&ebb_data);
6257 /* Clean up. */
6258 end_alias_analysis ();
6259 free (reg_eqv_table);
6260 free (ebb_data.path);
6261 sbitmap_free (cse_visited_basic_blocks);
6262 free (rc_order);
6263 rtl_hooks = general_rtl_hooks;
6265 return cse_jumps_altered || recorded_label_ref;
6268 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
6269 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
6271 static int
6272 check_for_label_ref (rtx *rtl, void *data)
6274 rtx insn = (rtx) data;
6276 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
6277 we must rerun jump since it needs to place the note. If this is a
6278 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
6279 since no REG_LABEL will be added. */
6280 return (GET_CODE (*rtl) == LABEL_REF
6281 && ! LABEL_REF_NONLOCAL_P (*rtl)
6282 && LABEL_P (XEXP (*rtl, 0))
6283 && INSN_UID (XEXP (*rtl, 0)) != 0
6284 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
6287 /* Count the number of times registers are used (not set) in X.
6288 COUNTS is an array in which we accumulate the count, INCR is how much
6289 we count each register usage.
6291 Don't count a usage of DEST, which is the SET_DEST of a SET which
6292 contains X in its SET_SRC. This is because such a SET does not
6293 modify the liveness of DEST.
6294 DEST is set to pc_rtx for a trapping insn, which means that we must count
6295 uses of a SET_DEST regardless because the insn can't be deleted here. */
6297 static void
6298 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6300 enum rtx_code code;
6301 rtx note;
6302 const char *fmt;
6303 int i, j;
6305 if (x == 0)
6306 return;
6308 switch (code = GET_CODE (x))
6310 case REG:
6311 if (x != dest)
6312 counts[REGNO (x)] += incr;
6313 return;
6315 case PC:
6316 case CC0:
6317 case CONST:
6318 case CONST_INT:
6319 case CONST_DOUBLE:
6320 case CONST_VECTOR:
6321 case SYMBOL_REF:
6322 case LABEL_REF:
6323 return;
6325 case CLOBBER:
6326 /* If we are clobbering a MEM, mark any registers inside the address
6327 as being used. */
6328 if (MEM_P (XEXP (x, 0)))
6329 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6330 return;
6332 case SET:
6333 /* Unless we are setting a REG, count everything in SET_DEST. */
6334 if (!REG_P (SET_DEST (x)))
6335 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6336 count_reg_usage (SET_SRC (x), counts,
6337 dest ? dest : SET_DEST (x),
6338 incr);
6339 return;
6341 case CALL_INSN:
6342 case INSN:
6343 case JUMP_INSN:
6344 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6345 this fact by setting DEST to pc_rtx. */
6346 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6347 dest = pc_rtx;
6348 if (code == CALL_INSN)
6349 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6350 count_reg_usage (PATTERN (x), counts, dest, incr);
6352 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6353 use them. */
6355 note = find_reg_equal_equiv_note (x);
6356 if (note)
6358 rtx eqv = XEXP (note, 0);
6360 if (GET_CODE (eqv) == EXPR_LIST)
6361 /* This REG_EQUAL note describes the result of a function call.
6362 Process all the arguments. */
6365 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6366 eqv = XEXP (eqv, 1);
6368 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6369 else
6370 count_reg_usage (eqv, counts, dest, incr);
6372 return;
6374 case EXPR_LIST:
6375 if (REG_NOTE_KIND (x) == REG_EQUAL
6376 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6377 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6378 involving registers in the address. */
6379 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6380 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6382 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6383 return;
6385 case ASM_OPERANDS:
6386 /* If the asm is volatile, then this insn cannot be deleted,
6387 and so the inputs *must* be live. */
6388 if (MEM_VOLATILE_P (x))
6389 dest = NULL_RTX;
6390 /* Iterate over just the inputs, not the constraints as well. */
6391 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6392 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6393 return;
6395 case INSN_LIST:
6396 gcc_unreachable ();
6398 default:
6399 break;
6402 fmt = GET_RTX_FORMAT (code);
6403 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6405 if (fmt[i] == 'e')
6406 count_reg_usage (XEXP (x, i), counts, dest, incr);
6407 else if (fmt[i] == 'E')
6408 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6409 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6413 /* Return true if set is live. */
6414 static bool
6415 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6416 int *counts)
6418 #ifdef HAVE_cc0
6419 rtx tem;
6420 #endif
6422 if (set_noop_p (set))
6425 #ifdef HAVE_cc0
6426 else if (GET_CODE (SET_DEST (set)) == CC0
6427 && !side_effects_p (SET_SRC (set))
6428 && ((tem = next_nonnote_insn (insn)) == 0
6429 || !INSN_P (tem)
6430 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6431 return false;
6432 #endif
6433 else if (!REG_P (SET_DEST (set))
6434 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6435 || counts[REGNO (SET_DEST (set))] != 0
6436 || side_effects_p (SET_SRC (set)))
6437 return true;
6438 return false;
6441 /* Return true if insn is live. */
6443 static bool
6444 insn_live_p (rtx insn, int *counts)
6446 int i;
6447 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6448 return true;
6449 else if (GET_CODE (PATTERN (insn)) == SET)
6450 return set_live_p (PATTERN (insn), insn, counts);
6451 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6453 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6455 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6457 if (GET_CODE (elt) == SET)
6459 if (set_live_p (elt, insn, counts))
6460 return true;
6462 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6463 return true;
6465 return false;
6467 else
6468 return true;
6471 /* Return true if libcall is dead as a whole. */
6473 static bool
6474 dead_libcall_p (rtx insn, int *counts)
6476 rtx note, set, new;
6478 /* See if there's a REG_EQUAL note on this insn and try to
6479 replace the source with the REG_EQUAL expression.
6481 We assume that insns with REG_RETVALs can only be reg->reg
6482 copies at this point. */
6483 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6484 if (!note)
6485 return false;
6487 set = single_set (insn);
6488 if (!set)
6489 return false;
6491 new = simplify_rtx (XEXP (note, 0));
6492 if (!new)
6493 new = XEXP (note, 0);
6495 /* While changing insn, we must update the counts accordingly. */
6496 count_reg_usage (insn, counts, NULL_RTX, -1);
6498 if (validate_change (insn, &SET_SRC (set), new, 0))
6500 count_reg_usage (insn, counts, NULL_RTX, 1);
6501 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6502 remove_note (insn, note);
6503 return true;
6506 if (CONSTANT_P (new))
6508 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6509 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6511 count_reg_usage (insn, counts, NULL_RTX, 1);
6512 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6513 remove_note (insn, note);
6514 return true;
6518 count_reg_usage (insn, counts, NULL_RTX, 1);
6519 return false;
6522 /* Scan all the insns and delete any that are dead; i.e., they store a register
6523 that is never used or they copy a register to itself.
6525 This is used to remove insns made obviously dead by cse, loop or other
6526 optimizations. It improves the heuristics in loop since it won't try to
6527 move dead invariants out of loops or make givs for dead quantities. The
6528 remaining passes of the compilation are also sped up. */
6531 delete_trivially_dead_insns (rtx insns, int nreg)
6533 int *counts;
6534 rtx insn, prev;
6535 int in_libcall = 0, dead_libcall = 0;
6536 int ndead = 0;
6538 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6539 /* First count the number of times each register is used. */
6540 counts = XCNEWVEC (int, nreg);
6541 for (insn = insns; insn; insn = NEXT_INSN (insn))
6542 if (INSN_P (insn))
6543 count_reg_usage (insn, counts, NULL_RTX, 1);
6545 /* Go from the last insn to the first and delete insns that only set unused
6546 registers or copy a register to itself. As we delete an insn, remove
6547 usage counts for registers it uses.
6549 The first jump optimization pass may leave a real insn as the last
6550 insn in the function. We must not skip that insn or we may end
6551 up deleting code that is not really dead. */
6552 for (insn = get_last_insn (); insn; insn = prev)
6554 int live_insn = 0;
6556 prev = PREV_INSN (insn);
6557 if (!INSN_P (insn))
6558 continue;
6560 /* Don't delete any insns that are part of a libcall block unless
6561 we can delete the whole libcall block.
6563 Flow or loop might get confused if we did that. Remember
6564 that we are scanning backwards. */
6565 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6567 in_libcall = 1;
6568 live_insn = 1;
6569 dead_libcall = dead_libcall_p (insn, counts);
6571 else if (in_libcall)
6572 live_insn = ! dead_libcall;
6573 else
6574 live_insn = insn_live_p (insn, counts);
6576 /* If this is a dead insn, delete it and show registers in it aren't
6577 being used. */
6579 if (! live_insn && dbg_cnt (delete_trivial_dead))
6581 count_reg_usage (insn, counts, NULL_RTX, -1);
6582 delete_insn_and_edges (insn);
6583 ndead++;
6586 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6588 in_libcall = 0;
6589 dead_libcall = 0;
6593 if (dump_file && ndead)
6594 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6595 ndead);
6596 /* Clean up. */
6597 free (counts);
6598 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6599 return ndead;
6602 /* This function is called via for_each_rtx. The argument, NEWREG, is
6603 a condition code register with the desired mode. If we are looking
6604 at the same register in a different mode, replace it with
6605 NEWREG. */
6607 static int
6608 cse_change_cc_mode (rtx *loc, void *data)
6610 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6612 if (*loc
6613 && REG_P (*loc)
6614 && REGNO (*loc) == REGNO (args->newreg)
6615 && GET_MODE (*loc) != GET_MODE (args->newreg))
6617 validate_change (args->insn, loc, args->newreg, 1);
6619 return -1;
6621 return 0;
6624 /* Change the mode of any reference to the register REGNO (NEWREG) to
6625 GET_MODE (NEWREG) in INSN. */
6627 static void
6628 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6630 struct change_cc_mode_args args;
6631 int success;
6633 if (!INSN_P (insn))
6634 return;
6636 args.insn = insn;
6637 args.newreg = newreg;
6639 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6640 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6642 /* If the following assertion was triggered, there is most probably
6643 something wrong with the cc_modes_compatible back end function.
6644 CC modes only can be considered compatible if the insn - with the mode
6645 replaced by any of the compatible modes - can still be recognized. */
6646 success = apply_change_group ();
6647 gcc_assert (success);
6650 /* Change the mode of any reference to the register REGNO (NEWREG) to
6651 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6652 any instruction which modifies NEWREG. */
6654 static void
6655 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6657 rtx insn;
6659 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6661 if (! INSN_P (insn))
6662 continue;
6664 if (reg_set_p (newreg, insn))
6665 return;
6667 cse_change_cc_mode_insn (insn, newreg);
6671 /* BB is a basic block which finishes with CC_REG as a condition code
6672 register which is set to CC_SRC. Look through the successors of BB
6673 to find blocks which have a single predecessor (i.e., this one),
6674 and look through those blocks for an assignment to CC_REG which is
6675 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6676 permitted to change the mode of CC_SRC to a compatible mode. This
6677 returns VOIDmode if no equivalent assignments were found.
6678 Otherwise it returns the mode which CC_SRC should wind up with.
6680 The main complexity in this function is handling the mode issues.
6681 We may have more than one duplicate which we can eliminate, and we
6682 try to find a mode which will work for multiple duplicates. */
6684 static enum machine_mode
6685 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6687 bool found_equiv;
6688 enum machine_mode mode;
6689 unsigned int insn_count;
6690 edge e;
6691 rtx insns[2];
6692 enum machine_mode modes[2];
6693 rtx last_insns[2];
6694 unsigned int i;
6695 rtx newreg;
6696 edge_iterator ei;
6698 /* We expect to have two successors. Look at both before picking
6699 the final mode for the comparison. If we have more successors
6700 (i.e., some sort of table jump, although that seems unlikely),
6701 then we require all beyond the first two to use the same
6702 mode. */
6704 found_equiv = false;
6705 mode = GET_MODE (cc_src);
6706 insn_count = 0;
6707 FOR_EACH_EDGE (e, ei, bb->succs)
6709 rtx insn;
6710 rtx end;
6712 if (e->flags & EDGE_COMPLEX)
6713 continue;
6715 if (EDGE_COUNT (e->dest->preds) != 1
6716 || e->dest == EXIT_BLOCK_PTR)
6717 continue;
6719 end = NEXT_INSN (BB_END (e->dest));
6720 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6722 rtx set;
6724 if (! INSN_P (insn))
6725 continue;
6727 /* If CC_SRC is modified, we have to stop looking for
6728 something which uses it. */
6729 if (modified_in_p (cc_src, insn))
6730 break;
6732 /* Check whether INSN sets CC_REG to CC_SRC. */
6733 set = single_set (insn);
6734 if (set
6735 && REG_P (SET_DEST (set))
6736 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6738 bool found;
6739 enum machine_mode set_mode;
6740 enum machine_mode comp_mode;
6742 found = false;
6743 set_mode = GET_MODE (SET_SRC (set));
6744 comp_mode = set_mode;
6745 if (rtx_equal_p (cc_src, SET_SRC (set)))
6746 found = true;
6747 else if (GET_CODE (cc_src) == COMPARE
6748 && GET_CODE (SET_SRC (set)) == COMPARE
6749 && mode != set_mode
6750 && rtx_equal_p (XEXP (cc_src, 0),
6751 XEXP (SET_SRC (set), 0))
6752 && rtx_equal_p (XEXP (cc_src, 1),
6753 XEXP (SET_SRC (set), 1)))
6756 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6757 if (comp_mode != VOIDmode
6758 && (can_change_mode || comp_mode == mode))
6759 found = true;
6762 if (found)
6764 found_equiv = true;
6765 if (insn_count < ARRAY_SIZE (insns))
6767 insns[insn_count] = insn;
6768 modes[insn_count] = set_mode;
6769 last_insns[insn_count] = end;
6770 ++insn_count;
6772 if (mode != comp_mode)
6774 gcc_assert (can_change_mode);
6775 mode = comp_mode;
6777 /* The modified insn will be re-recognized later. */
6778 PUT_MODE (cc_src, mode);
6781 else
6783 if (set_mode != mode)
6785 /* We found a matching expression in the
6786 wrong mode, but we don't have room to
6787 store it in the array. Punt. This case
6788 should be rare. */
6789 break;
6791 /* INSN sets CC_REG to a value equal to CC_SRC
6792 with the right mode. We can simply delete
6793 it. */
6794 delete_insn (insn);
6797 /* We found an instruction to delete. Keep looking,
6798 in the hopes of finding a three-way jump. */
6799 continue;
6802 /* We found an instruction which sets the condition
6803 code, so don't look any farther. */
6804 break;
6807 /* If INSN sets CC_REG in some other way, don't look any
6808 farther. */
6809 if (reg_set_p (cc_reg, insn))
6810 break;
6813 /* If we fell off the bottom of the block, we can keep looking
6814 through successors. We pass CAN_CHANGE_MODE as false because
6815 we aren't prepared to handle compatibility between the
6816 further blocks and this block. */
6817 if (insn == end)
6819 enum machine_mode submode;
6821 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6822 if (submode != VOIDmode)
6824 gcc_assert (submode == mode);
6825 found_equiv = true;
6826 can_change_mode = false;
6831 if (! found_equiv)
6832 return VOIDmode;
6834 /* Now INSN_COUNT is the number of instructions we found which set
6835 CC_REG to a value equivalent to CC_SRC. The instructions are in
6836 INSNS. The modes used by those instructions are in MODES. */
6838 newreg = NULL_RTX;
6839 for (i = 0; i < insn_count; ++i)
6841 if (modes[i] != mode)
6843 /* We need to change the mode of CC_REG in INSNS[i] and
6844 subsequent instructions. */
6845 if (! newreg)
6847 if (GET_MODE (cc_reg) == mode)
6848 newreg = cc_reg;
6849 else
6850 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6852 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6853 newreg);
6856 delete_insn (insns[i]);
6859 return mode;
6862 /* If we have a fixed condition code register (or two), walk through
6863 the instructions and try to eliminate duplicate assignments. */
6865 static void
6866 cse_condition_code_reg (void)
6868 unsigned int cc_regno_1;
6869 unsigned int cc_regno_2;
6870 rtx cc_reg_1;
6871 rtx cc_reg_2;
6872 basic_block bb;
6874 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6875 return;
6877 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6878 if (cc_regno_2 != INVALID_REGNUM)
6879 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6880 else
6881 cc_reg_2 = NULL_RTX;
6883 FOR_EACH_BB (bb)
6885 rtx last_insn;
6886 rtx cc_reg;
6887 rtx insn;
6888 rtx cc_src_insn;
6889 rtx cc_src;
6890 enum machine_mode mode;
6891 enum machine_mode orig_mode;
6893 /* Look for blocks which end with a conditional jump based on a
6894 condition code register. Then look for the instruction which
6895 sets the condition code register. Then look through the
6896 successor blocks for instructions which set the condition
6897 code register to the same value. There are other possible
6898 uses of the condition code register, but these are by far the
6899 most common and the ones which we are most likely to be able
6900 to optimize. */
6902 last_insn = BB_END (bb);
6903 if (!JUMP_P (last_insn))
6904 continue;
6906 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6907 cc_reg = cc_reg_1;
6908 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6909 cc_reg = cc_reg_2;
6910 else
6911 continue;
6913 cc_src_insn = NULL_RTX;
6914 cc_src = NULL_RTX;
6915 for (insn = PREV_INSN (last_insn);
6916 insn && insn != PREV_INSN (BB_HEAD (bb));
6917 insn = PREV_INSN (insn))
6919 rtx set;
6921 if (! INSN_P (insn))
6922 continue;
6923 set = single_set (insn);
6924 if (set
6925 && REG_P (SET_DEST (set))
6926 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6928 cc_src_insn = insn;
6929 cc_src = SET_SRC (set);
6930 break;
6932 else if (reg_set_p (cc_reg, insn))
6933 break;
6936 if (! cc_src_insn)
6937 continue;
6939 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6940 continue;
6942 /* Now CC_REG is a condition code register used for a
6943 conditional jump at the end of the block, and CC_SRC, in
6944 CC_SRC_INSN, is the value to which that condition code
6945 register is set, and CC_SRC is still meaningful at the end of
6946 the basic block. */
6948 orig_mode = GET_MODE (cc_src);
6949 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
6950 if (mode != VOIDmode)
6952 gcc_assert (mode == GET_MODE (cc_src));
6953 if (mode != orig_mode)
6955 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6957 cse_change_cc_mode_insn (cc_src_insn, newreg);
6959 /* Do the same in the following insns that use the
6960 current value of CC_REG within BB. */
6961 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6962 NEXT_INSN (last_insn),
6963 newreg);
6970 /* Perform common subexpression elimination. Nonzero value from
6971 `cse_main' means that jumps were simplified and some code may now
6972 be unreachable, so do jump optimization again. */
6973 static bool
6974 gate_handle_cse (void)
6976 return optimize > 0;
6979 static unsigned int
6980 rest_of_handle_cse (void)
6982 int tem;
6984 if (dump_file)
6985 dump_flow_info (dump_file, dump_flags);
6987 tem = cse_main (get_insns (), max_reg_num ());
6989 /* If we are not running more CSE passes, then we are no longer
6990 expecting CSE to be run. But always rerun it in a cheap mode. */
6991 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6993 if (tem)
6994 rebuild_jump_labels (get_insns ());
6996 if (tem || optimize > 1)
6997 cleanup_cfg (0);
6999 return 0;
7002 struct tree_opt_pass pass_cse =
7004 "cse1", /* name */
7005 gate_handle_cse, /* gate */
7006 rest_of_handle_cse, /* execute */
7007 NULL, /* sub */
7008 NULL, /* next */
7009 0, /* static_pass_number */
7010 TV_CSE, /* tv_id */
7011 0, /* properties_required */
7012 0, /* properties_provided */
7013 0, /* properties_destroyed */
7014 0, /* todo_flags_start */
7015 TODO_df_finish |
7016 TODO_dump_func |
7017 TODO_ggc_collect |
7018 TODO_verify_flow, /* todo_flags_finish */
7019 's' /* letter */
7023 static bool
7024 gate_handle_cse2 (void)
7026 return optimize > 0 && flag_rerun_cse_after_loop;
7029 /* Run second CSE pass after loop optimizations. */
7030 static unsigned int
7031 rest_of_handle_cse2 (void)
7033 int tem;
7035 if (dump_file)
7036 dump_flow_info (dump_file, dump_flags);
7038 tem = cse_main (get_insns (), max_reg_num ());
7040 /* Run a pass to eliminate duplicated assignments to condition code
7041 registers. We have to run this after bypass_jumps, because it
7042 makes it harder for that pass to determine whether a jump can be
7043 bypassed safely. */
7044 cse_condition_code_reg ();
7046 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7048 if (tem)
7050 timevar_push (TV_JUMP);
7051 rebuild_jump_labels (get_insns ());
7052 cleanup_cfg (0);
7053 timevar_pop (TV_JUMP);
7055 cse_not_expected = 1;
7056 return 0;
7060 struct tree_opt_pass pass_cse2 =
7062 "cse2", /* name */
7063 gate_handle_cse2, /* gate */
7064 rest_of_handle_cse2, /* execute */
7065 NULL, /* sub */
7066 NULL, /* next */
7067 0, /* static_pass_number */
7068 TV_CSE2, /* tv_id */
7069 0, /* properties_required */
7070 0, /* properties_provided */
7071 0, /* properties_destroyed */
7072 0, /* todo_flags_start */
7073 TODO_df_finish |
7074 TODO_dump_func |
7075 TODO_ggc_collect |
7076 TODO_verify_flow, /* todo_flags_finish */
7077 't' /* letter */