* gcc.dg/ipa/PR64550.c: Update template.
[official-gcc.git] / gcc / reload.c
blob70b86a9f67430277cd7633bf74b85d6a59ce7054
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains subroutines used only from the file reload1.c.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
56 NOTE SIDE EFFECTS:
58 find_reloads can alter the operands of the instruction it is called on.
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
72 Using a reload register for several reloads in one insn:
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
86 #define REG_OK_STRICT
88 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
89 #undef DEBUG_RELOAD
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl-error.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "symtab.h"
99 #include "hashtab.h"
100 #include "hash-set.h"
101 #include "vec.h"
102 #include "machmode.h"
103 #include "hard-reg-set.h"
104 #include "input.h"
105 #include "function.h"
106 #include "rtl.h"
107 #include "flags.h"
108 #include "statistics.h"
109 #include "double-int.h"
110 #include "real.h"
111 #include "fixed-value.h"
112 #include "alias.h"
113 #include "wide-int.h"
114 #include "inchash.h"
115 #include "tree.h"
116 #include "expmed.h"
117 #include "dojump.h"
118 #include "explow.h"
119 #include "calls.h"
120 #include "emit-rtl.h"
121 #include "varasm.h"
122 #include "stmt.h"
123 #include "expr.h"
124 #include "insn-codes.h"
125 #include "optabs.h"
126 #include "recog.h"
127 #include "dominance.h"
128 #include "cfg.h"
129 #include "predict.h"
130 #include "basic-block.h"
131 #include "df.h"
132 #include "reload.h"
133 #include "regs.h"
134 #include "addresses.h"
135 #include "params.h"
136 #include "target.h"
137 #include "ira.h"
139 /* True if X is a constant that can be forced into the constant pool.
140 MODE is the mode of the operand, or VOIDmode if not known. */
141 #define CONST_POOL_OK_P(MODE, X) \
142 ((MODE) != VOIDmode \
143 && CONSTANT_P (X) \
144 && GET_CODE (X) != HIGH \
145 && !targetm.cannot_force_const_mem (MODE, X))
147 /* True if C is a non-empty register class that has too few registers
148 to be safely used as a reload target class. */
150 static inline bool
151 small_register_class_p (reg_class_t rclass)
153 return (reg_class_size [(int) rclass] == 1
154 || (reg_class_size [(int) rclass] >= 1
155 && targetm.class_likely_spilled_p (rclass)));
159 /* All reloads of the current insn are recorded here. See reload.h for
160 comments. */
161 int n_reloads;
162 struct reload rld[MAX_RELOADS];
164 /* All the "earlyclobber" operands of the current insn
165 are recorded here. */
166 int n_earlyclobbers;
167 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
169 int reload_n_operands;
171 /* Replacing reloads.
173 If `replace_reloads' is nonzero, then as each reload is recorded
174 an entry is made for it in the table `replacements'.
175 Then later `subst_reloads' can look through that table and
176 perform all the replacements needed. */
178 /* Nonzero means record the places to replace. */
179 static int replace_reloads;
181 /* Each replacement is recorded with a structure like this. */
182 struct replacement
184 rtx *where; /* Location to store in */
185 int what; /* which reload this is for */
186 machine_mode mode; /* mode it must have */
189 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
191 /* Number of replacements currently recorded. */
192 static int n_replacements;
194 /* Used to track what is modified by an operand. */
195 struct decomposition
197 int reg_flag; /* Nonzero if referencing a register. */
198 int safe; /* Nonzero if this can't conflict with anything. */
199 rtx base; /* Base address for MEM. */
200 HOST_WIDE_INT start; /* Starting offset or register number. */
201 HOST_WIDE_INT end; /* Ending offset or register number. */
204 #ifdef SECONDARY_MEMORY_NEEDED
206 /* Save MEMs needed to copy from one class of registers to another. One MEM
207 is used per mode, but normally only one or two modes are ever used.
209 We keep two versions, before and after register elimination. The one
210 after register elimination is record separately for each operand. This
211 is done in case the address is not valid to be sure that we separately
212 reload each. */
214 static rtx secondary_memlocs[NUM_MACHINE_MODES];
215 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
216 static int secondary_memlocs_elim_used = 0;
217 #endif
219 /* The instruction we are doing reloads for;
220 so we can test whether a register dies in it. */
221 static rtx_insn *this_insn;
223 /* Nonzero if this instruction is a user-specified asm with operands. */
224 static int this_insn_is_asm;
226 /* If hard_regs_live_known is nonzero,
227 we can tell which hard regs are currently live,
228 at least enough to succeed in choosing dummy reloads. */
229 static int hard_regs_live_known;
231 /* Indexed by hard reg number,
232 element is nonnegative if hard reg has been spilled.
233 This vector is passed to `find_reloads' as an argument
234 and is not changed here. */
235 static short *static_reload_reg_p;
237 /* Set to 1 in subst_reg_equivs if it changes anything. */
238 static int subst_reg_equivs_changed;
240 /* On return from push_reload, holds the reload-number for the OUT
241 operand, which can be different for that from the input operand. */
242 static int output_reloadnum;
244 /* Compare two RTX's. */
245 #define MATCHES(x, y) \
246 (x == y || (x != 0 && (REG_P (x) \
247 ? REG_P (y) && REGNO (x) == REGNO (y) \
248 : rtx_equal_p (x, y) && ! side_effects_p (x))))
250 /* Indicates if two reloads purposes are for similar enough things that we
251 can merge their reloads. */
252 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
253 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
254 || ((when1) == (when2) && (op1) == (op2)) \
255 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
256 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
257 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
258 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
259 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
261 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
262 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
263 ((when1) != (when2) \
264 || ! ((op1) == (op2) \
265 || (when1) == RELOAD_FOR_INPUT \
266 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
267 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
269 /* If we are going to reload an address, compute the reload type to
270 use. */
271 #define ADDR_TYPE(type) \
272 ((type) == RELOAD_FOR_INPUT_ADDRESS \
273 ? RELOAD_FOR_INPADDR_ADDRESS \
274 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
275 ? RELOAD_FOR_OUTADDR_ADDRESS \
276 : (type)))
278 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
279 machine_mode, enum reload_type,
280 enum insn_code *, secondary_reload_info *);
281 static enum reg_class find_valid_class (machine_mode, machine_mode,
282 int, unsigned int);
283 static void push_replacement (rtx *, int, machine_mode);
284 static void dup_replacements (rtx *, rtx *);
285 static void combine_reloads (void);
286 static int find_reusable_reload (rtx *, rtx, enum reg_class,
287 enum reload_type, int, int);
288 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, machine_mode,
289 machine_mode, reg_class_t, int, int);
290 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
291 static struct decomposition decompose (rtx);
292 static int immune_p (rtx, rtx, struct decomposition);
293 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
294 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int,
295 rtx_insn *, int *);
296 static rtx make_memloc (rtx, int);
297 static int maybe_memory_address_addr_space_p (machine_mode, rtx,
298 addr_space_t, rtx *);
299 static int find_reloads_address (machine_mode, rtx *, rtx, rtx *,
300 int, enum reload_type, int, rtx_insn *);
301 static rtx subst_reg_equivs (rtx, rtx_insn *);
302 static rtx subst_indexed_address (rtx);
303 static void update_auto_inc_notes (rtx_insn *, int, int);
304 static int find_reloads_address_1 (machine_mode, addr_space_t, rtx, int,
305 enum rtx_code, enum rtx_code, rtx *,
306 int, enum reload_type,int, rtx_insn *);
307 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
308 machine_mode, int,
309 enum reload_type, int);
310 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
311 int, rtx_insn *, int *);
312 static void copy_replacements_1 (rtx *, rtx *, int);
313 static int find_inc_amount (rtx, rtx);
314 static int refers_to_mem_for_reload_p (rtx);
315 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
316 rtx, rtx *);
318 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
319 list yet. */
321 static void
322 push_reg_equiv_alt_mem (int regno, rtx mem)
324 rtx it;
326 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
327 if (rtx_equal_p (XEXP (it, 0), mem))
328 return;
330 reg_equiv_alt_mem_list (regno)
331 = alloc_EXPR_LIST (REG_EQUIV, mem,
332 reg_equiv_alt_mem_list (regno));
335 /* Determine if any secondary reloads are needed for loading (if IN_P is
336 nonzero) or storing (if IN_P is zero) X to or from a reload register of
337 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
338 are needed, push them.
340 Return the reload number of the secondary reload we made, or -1 if
341 we didn't need one. *PICODE is set to the insn_code to use if we do
342 need a secondary reload. */
344 static int
345 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
346 enum reg_class reload_class,
347 machine_mode reload_mode, enum reload_type type,
348 enum insn_code *picode, secondary_reload_info *prev_sri)
350 enum reg_class rclass = NO_REGS;
351 enum reg_class scratch_class;
352 machine_mode mode = reload_mode;
353 enum insn_code icode = CODE_FOR_nothing;
354 enum insn_code t_icode = CODE_FOR_nothing;
355 enum reload_type secondary_type;
356 int s_reload, t_reload = -1;
357 const char *scratch_constraint;
358 secondary_reload_info sri;
360 if (type == RELOAD_FOR_INPUT_ADDRESS
361 || type == RELOAD_FOR_OUTPUT_ADDRESS
362 || type == RELOAD_FOR_INPADDR_ADDRESS
363 || type == RELOAD_FOR_OUTADDR_ADDRESS)
364 secondary_type = type;
365 else
366 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
368 *picode = CODE_FOR_nothing;
370 /* If X is a paradoxical SUBREG, use the inner value to determine both the
371 mode and object being reloaded. */
372 if (paradoxical_subreg_p (x))
374 x = SUBREG_REG (x);
375 reload_mode = GET_MODE (x);
378 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
379 is still a pseudo-register by now, it *must* have an equivalent MEM
380 but we don't want to assume that), use that equivalent when seeing if
381 a secondary reload is needed since whether or not a reload is needed
382 might be sensitive to the form of the MEM. */
384 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
385 && reg_equiv_mem (REGNO (x)))
386 x = reg_equiv_mem (REGNO (x));
388 sri.icode = CODE_FOR_nothing;
389 sri.prev_sri = prev_sri;
390 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
391 reload_mode, &sri);
392 icode = (enum insn_code) sri.icode;
394 /* If we don't need any secondary registers, done. */
395 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
396 return -1;
398 if (rclass != NO_REGS)
399 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
400 reload_mode, type, &t_icode, &sri);
402 /* If we will be using an insn, the secondary reload is for a
403 scratch register. */
405 if (icode != CODE_FOR_nothing)
407 /* If IN_P is nonzero, the reload register will be the output in
408 operand 0. If IN_P is zero, the reload register will be the input
409 in operand 1. Outputs should have an initial "=", which we must
410 skip. */
412 /* ??? It would be useful to be able to handle only two, or more than
413 three, operands, but for now we can only handle the case of having
414 exactly three: output, input and one temp/scratch. */
415 gcc_assert (insn_data[(int) icode].n_operands == 3);
417 /* ??? We currently have no way to represent a reload that needs
418 an icode to reload from an intermediate tertiary reload register.
419 We should probably have a new field in struct reload to tag a
420 chain of scratch operand reloads onto. */
421 gcc_assert (rclass == NO_REGS);
423 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
424 gcc_assert (*scratch_constraint == '=');
425 scratch_constraint++;
426 if (*scratch_constraint == '&')
427 scratch_constraint++;
428 scratch_class = (reg_class_for_constraint
429 (lookup_constraint (scratch_constraint)));
431 rclass = scratch_class;
432 mode = insn_data[(int) icode].operand[2].mode;
435 /* This case isn't valid, so fail. Reload is allowed to use the same
436 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
437 in the case of a secondary register, we actually need two different
438 registers for correct code. We fail here to prevent the possibility of
439 silently generating incorrect code later.
441 The convention is that secondary input reloads are valid only if the
442 secondary_class is different from class. If you have such a case, you
443 can not use secondary reloads, you must work around the problem some
444 other way.
446 Allow this when a reload_in/out pattern is being used. I.e. assume
447 that the generated code handles this case. */
449 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
450 || t_icode != CODE_FOR_nothing);
452 /* See if we can reuse an existing secondary reload. */
453 for (s_reload = 0; s_reload < n_reloads; s_reload++)
454 if (rld[s_reload].secondary_p
455 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
456 || reg_class_subset_p (rld[s_reload].rclass, rclass))
457 && ((in_p && rld[s_reload].inmode == mode)
458 || (! in_p && rld[s_reload].outmode == mode))
459 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
460 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
461 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
462 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
463 && (small_register_class_p (rclass)
464 || targetm.small_register_classes_for_mode_p (VOIDmode))
465 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
466 opnum, rld[s_reload].opnum))
468 if (in_p)
469 rld[s_reload].inmode = mode;
470 if (! in_p)
471 rld[s_reload].outmode = mode;
473 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
474 rld[s_reload].rclass = rclass;
476 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
477 rld[s_reload].optional &= optional;
478 rld[s_reload].secondary_p = 1;
479 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
480 opnum, rld[s_reload].opnum))
481 rld[s_reload].when_needed = RELOAD_OTHER;
483 break;
486 if (s_reload == n_reloads)
488 #ifdef SECONDARY_MEMORY_NEEDED
489 /* If we need a memory location to copy between the two reload regs,
490 set it up now. Note that we do the input case before making
491 the reload and the output case after. This is due to the
492 way reloads are output. */
494 if (in_p && icode == CODE_FOR_nothing
495 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
497 get_secondary_mem (x, reload_mode, opnum, type);
499 /* We may have just added new reloads. Make sure we add
500 the new reload at the end. */
501 s_reload = n_reloads;
503 #endif
505 /* We need to make a new secondary reload for this register class. */
506 rld[s_reload].in = rld[s_reload].out = 0;
507 rld[s_reload].rclass = rclass;
509 rld[s_reload].inmode = in_p ? mode : VOIDmode;
510 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
511 rld[s_reload].reg_rtx = 0;
512 rld[s_reload].optional = optional;
513 rld[s_reload].inc = 0;
514 /* Maybe we could combine these, but it seems too tricky. */
515 rld[s_reload].nocombine = 1;
516 rld[s_reload].in_reg = 0;
517 rld[s_reload].out_reg = 0;
518 rld[s_reload].opnum = opnum;
519 rld[s_reload].when_needed = secondary_type;
520 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
521 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
522 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
523 rld[s_reload].secondary_out_icode
524 = ! in_p ? t_icode : CODE_FOR_nothing;
525 rld[s_reload].secondary_p = 1;
527 n_reloads++;
529 #ifdef SECONDARY_MEMORY_NEEDED
530 if (! in_p && icode == CODE_FOR_nothing
531 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
532 get_secondary_mem (x, mode, opnum, type);
533 #endif
536 *picode = icode;
537 return s_reload;
540 /* If a secondary reload is needed, return its class. If both an intermediate
541 register and a scratch register is needed, we return the class of the
542 intermediate register. */
543 reg_class_t
544 secondary_reload_class (bool in_p, reg_class_t rclass, machine_mode mode,
545 rtx x)
547 enum insn_code icode;
548 secondary_reload_info sri;
550 sri.icode = CODE_FOR_nothing;
551 sri.prev_sri = NULL;
552 rclass
553 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
554 icode = (enum insn_code) sri.icode;
556 /* If there are no secondary reloads at all, we return NO_REGS.
557 If an intermediate register is needed, we return its class. */
558 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
559 return rclass;
561 /* No intermediate register is needed, but we have a special reload
562 pattern, which we assume for now needs a scratch register. */
563 return scratch_reload_class (icode);
566 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
567 three operands, verify that operand 2 is an output operand, and return
568 its register class.
569 ??? We'd like to be able to handle any pattern with at least 2 operands,
570 for zero or more scratch registers, but that needs more infrastructure. */
571 enum reg_class
572 scratch_reload_class (enum insn_code icode)
574 const char *scratch_constraint;
575 enum reg_class rclass;
577 gcc_assert (insn_data[(int) icode].n_operands == 3);
578 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
579 gcc_assert (*scratch_constraint == '=');
580 scratch_constraint++;
581 if (*scratch_constraint == '&')
582 scratch_constraint++;
583 rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
584 gcc_assert (rclass != NO_REGS);
585 return rclass;
588 #ifdef SECONDARY_MEMORY_NEEDED
590 /* Return a memory location that will be used to copy X in mode MODE.
591 If we haven't already made a location for this mode in this insn,
592 call find_reloads_address on the location being returned. */
595 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, machine_mode mode,
596 int opnum, enum reload_type type)
598 rtx loc;
599 int mem_valid;
601 /* By default, if MODE is narrower than a word, widen it to a word.
602 This is required because most machines that require these memory
603 locations do not support short load and stores from all registers
604 (e.g., FP registers). */
606 #ifdef SECONDARY_MEMORY_NEEDED_MODE
607 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
608 #else
609 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
610 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
611 #endif
613 /* If we already have made a MEM for this operand in MODE, return it. */
614 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
615 return secondary_memlocs_elim[(int) mode][opnum];
617 /* If this is the first time we've tried to get a MEM for this mode,
618 allocate a new one. `something_changed' in reload will get set
619 by noticing that the frame size has changed. */
621 if (secondary_memlocs[(int) mode] == 0)
623 #ifdef SECONDARY_MEMORY_NEEDED_RTX
624 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
625 #else
626 secondary_memlocs[(int) mode]
627 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
628 #endif
631 /* Get a version of the address doing any eliminations needed. If that
632 didn't give us a new MEM, make a new one if it isn't valid. */
634 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
635 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
636 MEM_ADDR_SPACE (loc));
638 if (! mem_valid && loc == secondary_memlocs[(int) mode])
639 loc = copy_rtx (loc);
641 /* The only time the call below will do anything is if the stack
642 offset is too large. In that case IND_LEVELS doesn't matter, so we
643 can just pass a zero. Adjust the type to be the address of the
644 corresponding object. If the address was valid, save the eliminated
645 address. If it wasn't valid, we need to make a reload each time, so
646 don't save it. */
648 if (! mem_valid)
650 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
651 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
652 : RELOAD_OTHER);
654 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
655 opnum, type, 0, 0);
658 secondary_memlocs_elim[(int) mode][opnum] = loc;
659 if (secondary_memlocs_elim_used <= (int)mode)
660 secondary_memlocs_elim_used = (int)mode + 1;
661 return loc;
664 /* Clear any secondary memory locations we've made. */
666 void
667 clear_secondary_mem (void)
669 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
671 #endif /* SECONDARY_MEMORY_NEEDED */
674 /* Find the largest class which has at least one register valid in
675 mode INNER, and which for every such register, that register number
676 plus N is also valid in OUTER (if in range) and is cheap to move
677 into REGNO. Such a class must exist. */
679 static enum reg_class
680 find_valid_class (machine_mode outer ATTRIBUTE_UNUSED,
681 machine_mode inner ATTRIBUTE_UNUSED, int n,
682 unsigned int dest_regno ATTRIBUTE_UNUSED)
684 int best_cost = -1;
685 int rclass;
686 int regno;
687 enum reg_class best_class = NO_REGS;
688 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
689 unsigned int best_size = 0;
690 int cost;
692 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
694 int bad = 0;
695 int good = 0;
696 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
697 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
699 if (HARD_REGNO_MODE_OK (regno, inner))
701 good = 1;
702 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
703 && ! HARD_REGNO_MODE_OK (regno + n, outer))
704 bad = 1;
708 if (bad || !good)
709 continue;
710 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
712 if ((reg_class_size[rclass] > best_size
713 && (best_cost < 0 || best_cost >= cost))
714 || best_cost > cost)
716 best_class = (enum reg_class) rclass;
717 best_size = reg_class_size[rclass];
718 best_cost = register_move_cost (outer, (enum reg_class) rclass,
719 dest_class);
723 gcc_assert (best_size != 0);
725 return best_class;
728 /* We are trying to reload a subreg of something that is not a register.
729 Find the largest class which contains only registers valid in
730 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
731 which we would eventually like to obtain the object. */
733 static enum reg_class
734 find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED,
735 machine_mode mode ATTRIBUTE_UNUSED,
736 enum reg_class dest_class ATTRIBUTE_UNUSED)
738 int best_cost = -1;
739 int rclass;
740 int regno;
741 enum reg_class best_class = NO_REGS;
742 unsigned int best_size = 0;
743 int cost;
745 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
747 int bad = 0;
748 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
750 if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
751 && !HARD_REGNO_MODE_OK (regno, mode))
752 bad = 1;
755 if (bad)
756 continue;
758 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
760 if ((reg_class_size[rclass] > best_size
761 && (best_cost < 0 || best_cost >= cost))
762 || best_cost > cost)
764 best_class = (enum reg_class) rclass;
765 best_size = reg_class_size[rclass];
766 best_cost = register_move_cost (outer, (enum reg_class) rclass,
767 dest_class);
771 gcc_assert (best_size != 0);
773 #ifdef LIMIT_RELOAD_CLASS
774 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
775 #endif
776 return best_class;
779 /* Return the number of a previously made reload that can be combined with
780 a new one, or n_reloads if none of the existing reloads can be used.
781 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
782 push_reload, they determine the kind of the new reload that we try to
783 combine. P_IN points to the corresponding value of IN, which can be
784 modified by this function.
785 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
787 static int
788 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
789 enum reload_type type, int opnum, int dont_share)
791 rtx in = *p_in;
792 int i;
793 /* We can't merge two reloads if the output of either one is
794 earlyclobbered. */
796 if (earlyclobber_operand_p (out))
797 return n_reloads;
799 /* We can use an existing reload if the class is right
800 and at least one of IN and OUT is a match
801 and the other is at worst neutral.
802 (A zero compared against anything is neutral.)
804 For targets with small register classes, don't use existing reloads
805 unless they are for the same thing since that can cause us to need
806 more reload registers than we otherwise would. */
808 for (i = 0; i < n_reloads; i++)
809 if ((reg_class_subset_p (rclass, rld[i].rclass)
810 || reg_class_subset_p (rld[i].rclass, rclass))
811 /* If the existing reload has a register, it must fit our class. */
812 && (rld[i].reg_rtx == 0
813 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
814 true_regnum (rld[i].reg_rtx)))
815 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
816 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
817 || (out != 0 && MATCHES (rld[i].out, out)
818 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
819 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
820 && (small_register_class_p (rclass)
821 || targetm.small_register_classes_for_mode_p (VOIDmode))
822 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
823 return i;
825 /* Reloading a plain reg for input can match a reload to postincrement
826 that reg, since the postincrement's value is the right value.
827 Likewise, it can match a preincrement reload, since we regard
828 the preincrementation as happening before any ref in this insn
829 to that register. */
830 for (i = 0; i < n_reloads; i++)
831 if ((reg_class_subset_p (rclass, rld[i].rclass)
832 || reg_class_subset_p (rld[i].rclass, rclass))
833 /* If the existing reload has a register, it must fit our
834 class. */
835 && (rld[i].reg_rtx == 0
836 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
837 true_regnum (rld[i].reg_rtx)))
838 && out == 0 && rld[i].out == 0 && rld[i].in != 0
839 && ((REG_P (in)
840 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
841 && MATCHES (XEXP (rld[i].in, 0), in))
842 || (REG_P (rld[i].in)
843 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
844 && MATCHES (XEXP (in, 0), rld[i].in)))
845 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
846 && (small_register_class_p (rclass)
847 || targetm.small_register_classes_for_mode_p (VOIDmode))
848 && MERGABLE_RELOADS (type, rld[i].when_needed,
849 opnum, rld[i].opnum))
851 /* Make sure reload_in ultimately has the increment,
852 not the plain register. */
853 if (REG_P (in))
854 *p_in = rld[i].in;
855 return i;
857 return n_reloads;
860 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
861 expression. MODE is the mode that X will be used in. OUTPUT is true if
862 the function is invoked for the output part of an enclosing reload. */
864 static bool
865 reload_inner_reg_of_subreg (rtx x, machine_mode mode, bool output)
867 rtx inner;
869 /* Only SUBREGs are problematical. */
870 if (GET_CODE (x) != SUBREG)
871 return false;
873 inner = SUBREG_REG (x);
875 /* If INNER is a constant or PLUS, then INNER will need reloading. */
876 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
877 return true;
879 /* If INNER is not a hard register, then INNER will not need reloading. */
880 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
881 return false;
883 /* If INNER is not ok for MODE, then INNER will need reloading. */
884 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
885 return true;
887 /* If this is for an output, and the outer part is a word or smaller,
888 INNER is larger than a word and the number of registers in INNER is
889 not the same as the number of words in INNER, then INNER will need
890 reloading (with an in-out reload). */
891 return (output
892 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
893 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
894 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
895 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
898 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
899 requiring an extra reload register. The caller has already found that
900 IN contains some reference to REGNO, so check that we can produce the
901 new value in a single step. E.g. if we have
902 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
903 instruction that adds one to a register, this should succeed.
904 However, if we have something like
905 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
906 needs to be loaded into a register first, we need a separate reload
907 register.
908 Such PLUS reloads are generated by find_reload_address_part.
909 The out-of-range PLUS expressions are usually introduced in the instruction
910 patterns by register elimination and substituting pseudos without a home
911 by their function-invariant equivalences. */
912 static int
913 can_reload_into (rtx in, int regno, machine_mode mode)
915 rtx dst;
916 rtx_insn *test_insn;
917 int r = 0;
918 struct recog_data_d save_recog_data;
920 /* For matching constraints, we often get notional input reloads where
921 we want to use the original register as the reload register. I.e.
922 technically this is a non-optional input-output reload, but IN is
923 already a valid register, and has been chosen as the reload register.
924 Speed this up, since it trivially works. */
925 if (REG_P (in))
926 return 1;
928 /* To test MEMs properly, we'd have to take into account all the reloads
929 that are already scheduled, which can become quite complicated.
930 And since we've already handled address reloads for this MEM, it
931 should always succeed anyway. */
932 if (MEM_P (in))
933 return 1;
935 /* If we can make a simple SET insn that does the job, everything should
936 be fine. */
937 dst = gen_rtx_REG (mode, regno);
938 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
939 save_recog_data = recog_data;
940 if (recog_memoized (test_insn) >= 0)
942 extract_insn (test_insn);
943 r = constrain_operands (1, get_enabled_alternatives (test_insn));
945 recog_data = save_recog_data;
946 return r;
949 /* Record one reload that needs to be performed.
950 IN is an rtx saying where the data are to be found before this instruction.
951 OUT says where they must be stored after the instruction.
952 (IN is zero for data not read, and OUT is zero for data not written.)
953 INLOC and OUTLOC point to the places in the instructions where
954 IN and OUT were found.
955 If IN and OUT are both nonzero, it means the same register must be used
956 to reload both IN and OUT.
958 RCLASS is a register class required for the reloaded data.
959 INMODE is the machine mode that the instruction requires
960 for the reg that replaces IN and OUTMODE is likewise for OUT.
962 If IN is zero, then OUT's location and mode should be passed as
963 INLOC and INMODE.
965 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
967 OPTIONAL nonzero means this reload does not need to be performed:
968 it can be discarded if that is more convenient.
970 OPNUM and TYPE say what the purpose of this reload is.
972 The return value is the reload-number for this reload.
974 If both IN and OUT are nonzero, in some rare cases we might
975 want to make two separate reloads. (Actually we never do this now.)
976 Therefore, the reload-number for OUT is stored in
977 output_reloadnum when we return; the return value applies to IN.
978 Usually (presently always), when IN and OUT are nonzero,
979 the two reload-numbers are equal, but the caller should be careful to
980 distinguish them. */
983 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
984 enum reg_class rclass, machine_mode inmode,
985 machine_mode outmode, int strict_low, int optional,
986 int opnum, enum reload_type type)
988 int i;
989 int dont_share = 0;
990 int dont_remove_subreg = 0;
991 #ifdef LIMIT_RELOAD_CLASS
992 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
993 #endif
994 int secondary_in_reload = -1, secondary_out_reload = -1;
995 enum insn_code secondary_in_icode = CODE_FOR_nothing;
996 enum insn_code secondary_out_icode = CODE_FOR_nothing;
997 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
998 subreg_in_class = NO_REGS;
1000 /* INMODE and/or OUTMODE could be VOIDmode if no mode
1001 has been specified for the operand. In that case,
1002 use the operand's mode as the mode to reload. */
1003 if (inmode == VOIDmode && in != 0)
1004 inmode = GET_MODE (in);
1005 if (outmode == VOIDmode && out != 0)
1006 outmode = GET_MODE (out);
1008 /* If find_reloads and friends until now missed to replace a pseudo
1009 with a constant of reg_equiv_constant something went wrong
1010 beforehand.
1011 Note that it can't simply be done here if we missed it earlier
1012 since the constant might need to be pushed into the literal pool
1013 and the resulting memref would probably need further
1014 reloading. */
1015 if (in != 0 && REG_P (in))
1017 int regno = REGNO (in);
1019 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1020 || reg_renumber[regno] >= 0
1021 || reg_equiv_constant (regno) == NULL_RTX);
1024 /* reg_equiv_constant only contains constants which are obviously
1025 not appropriate as destination. So if we would need to replace
1026 the destination pseudo with a constant we are in real
1027 trouble. */
1028 if (out != 0 && REG_P (out))
1030 int regno = REGNO (out);
1032 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1033 || reg_renumber[regno] >= 0
1034 || reg_equiv_constant (regno) == NULL_RTX);
1037 /* If we have a read-write operand with an address side-effect,
1038 change either IN or OUT so the side-effect happens only once. */
1039 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1040 switch (GET_CODE (XEXP (in, 0)))
1042 case POST_INC: case POST_DEC: case POST_MODIFY:
1043 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1044 break;
1046 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1047 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1048 break;
1050 default:
1051 break;
1054 /* If we are reloading a (SUBREG constant ...), really reload just the
1055 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1056 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1057 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1058 register is a pseudo, also reload the inside expression.
1059 For machines that extend byte loads, do this for any SUBREG of a pseudo
1060 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1061 M2 is an integral mode that gets extended when loaded.
1062 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1063 where either M1 is not valid for R or M2 is wider than a word but we
1064 only need one register to store an M2-sized quantity in R.
1065 (However, if OUT is nonzero, we need to reload the reg *and*
1066 the subreg, so do nothing here, and let following statement handle it.)
1068 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1069 we can't handle it here because CONST_INT does not indicate a mode.
1071 Similarly, we must reload the inside expression if we have a
1072 STRICT_LOW_PART (presumably, in == out in this case).
1074 Also reload the inner expression if it does not require a secondary
1075 reload but the SUBREG does.
1077 Finally, reload the inner expression if it is a register that is in
1078 the class whose registers cannot be referenced in a different size
1079 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1080 cannot reload just the inside since we might end up with the wrong
1081 register class. But if it is inside a STRICT_LOW_PART, we have
1082 no choice, so we hope we do get the right register class there. */
1084 if (in != 0 && GET_CODE (in) == SUBREG
1085 && (subreg_lowpart_p (in) || strict_low)
1086 #ifdef CANNOT_CHANGE_MODE_CLASS
1087 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1088 #endif
1089 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1090 && (CONSTANT_P (SUBREG_REG (in))
1091 || GET_CODE (SUBREG_REG (in)) == PLUS
1092 || strict_low
1093 || (((REG_P (SUBREG_REG (in))
1094 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1095 || MEM_P (SUBREG_REG (in)))
1096 && ((GET_MODE_PRECISION (inmode)
1097 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1098 #ifdef LOAD_EXTEND_OP
1099 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1100 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1101 <= UNITS_PER_WORD)
1102 && (GET_MODE_PRECISION (inmode)
1103 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1104 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1105 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1106 #endif
1107 #ifdef WORD_REGISTER_OPERATIONS
1108 || ((GET_MODE_PRECISION (inmode)
1109 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1110 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1111 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1112 / UNITS_PER_WORD)))
1113 #endif
1115 || (REG_P (SUBREG_REG (in))
1116 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1117 /* The case where out is nonzero
1118 is handled differently in the following statement. */
1119 && (out == 0 || subreg_lowpart_p (in))
1120 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1121 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1122 > UNITS_PER_WORD)
1123 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1124 / UNITS_PER_WORD)
1125 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1126 [GET_MODE (SUBREG_REG (in))]))
1127 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1128 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1129 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1130 SUBREG_REG (in))
1131 == NO_REGS))
1132 #ifdef CANNOT_CHANGE_MODE_CLASS
1133 || (REG_P (SUBREG_REG (in))
1134 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1135 && REG_CANNOT_CHANGE_MODE_P
1136 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1137 #endif
1140 #ifdef LIMIT_RELOAD_CLASS
1141 in_subreg_loc = inloc;
1142 #endif
1143 inloc = &SUBREG_REG (in);
1144 in = *inloc;
1145 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1146 if (MEM_P (in))
1147 /* This is supposed to happen only for paradoxical subregs made by
1148 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1149 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1150 #endif
1151 inmode = GET_MODE (in);
1154 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1155 where M1 is not valid for R if it was not handled by the code above.
1157 Similar issue for (SUBREG constant ...) if it was not handled by the
1158 code above. This can happen if SUBREG_BYTE != 0.
1160 However, we must reload the inner reg *as well as* the subreg in
1161 that case. */
1163 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1165 if (REG_P (SUBREG_REG (in)))
1166 subreg_in_class
1167 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1168 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1169 GET_MODE (SUBREG_REG (in)),
1170 SUBREG_BYTE (in),
1171 GET_MODE (in)),
1172 REGNO (SUBREG_REG (in)));
1173 else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1174 subreg_in_class = find_valid_class_1 (inmode,
1175 GET_MODE (SUBREG_REG (in)),
1176 rclass);
1178 /* This relies on the fact that emit_reload_insns outputs the
1179 instructions for input reloads of type RELOAD_OTHER in the same
1180 order as the reloads. Thus if the outer reload is also of type
1181 RELOAD_OTHER, we are guaranteed that this inner reload will be
1182 output before the outer reload. */
1183 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1184 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1185 dont_remove_subreg = 1;
1188 /* Similarly for paradoxical and problematical SUBREGs on the output.
1189 Note that there is no reason we need worry about the previous value
1190 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1191 entitled to clobber it all (except in the case of a word mode subreg
1192 or of a STRICT_LOW_PART, in that latter case the constraint should
1193 label it input-output.) */
1194 if (out != 0 && GET_CODE (out) == SUBREG
1195 && (subreg_lowpart_p (out) || strict_low)
1196 #ifdef CANNOT_CHANGE_MODE_CLASS
1197 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1198 #endif
1199 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1200 && (CONSTANT_P (SUBREG_REG (out))
1201 || strict_low
1202 || (((REG_P (SUBREG_REG (out))
1203 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1204 || MEM_P (SUBREG_REG (out)))
1205 && ((GET_MODE_PRECISION (outmode)
1206 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1207 #ifdef WORD_REGISTER_OPERATIONS
1208 || ((GET_MODE_PRECISION (outmode)
1209 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1210 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1211 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1212 / UNITS_PER_WORD)))
1213 #endif
1215 || (REG_P (SUBREG_REG (out))
1216 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1217 /* The case of a word mode subreg
1218 is handled differently in the following statement. */
1219 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1220 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1221 > UNITS_PER_WORD))
1222 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1223 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1224 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1225 SUBREG_REG (out))
1226 == NO_REGS))
1227 #ifdef CANNOT_CHANGE_MODE_CLASS
1228 || (REG_P (SUBREG_REG (out))
1229 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1230 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1231 GET_MODE (SUBREG_REG (out)),
1232 outmode))
1233 #endif
1236 #ifdef LIMIT_RELOAD_CLASS
1237 out_subreg_loc = outloc;
1238 #endif
1239 outloc = &SUBREG_REG (out);
1240 out = *outloc;
1241 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1242 gcc_assert (!MEM_P (out)
1243 || GET_MODE_SIZE (GET_MODE (out))
1244 <= GET_MODE_SIZE (outmode));
1245 #endif
1246 outmode = GET_MODE (out);
1249 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1250 where either M1 is not valid for R or M2 is wider than a word but we
1251 only need one register to store an M2-sized quantity in R.
1253 However, we must reload the inner reg *as well as* the subreg in
1254 that case and the inner reg is an in-out reload. */
1256 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1258 enum reg_class in_out_class
1259 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1260 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1261 GET_MODE (SUBREG_REG (out)),
1262 SUBREG_BYTE (out),
1263 GET_MODE (out)),
1264 REGNO (SUBREG_REG (out)));
1266 /* This relies on the fact that emit_reload_insns outputs the
1267 instructions for output reloads of type RELOAD_OTHER in reverse
1268 order of the reloads. Thus if the outer reload is also of type
1269 RELOAD_OTHER, we are guaranteed that this inner reload will be
1270 output after the outer reload. */
1271 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1272 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1273 0, 0, opnum, RELOAD_OTHER);
1274 dont_remove_subreg = 1;
1277 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1278 if (in != 0 && out != 0 && MEM_P (out)
1279 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1280 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1281 dont_share = 1;
1283 /* If IN is a SUBREG of a hard register, make a new REG. This
1284 simplifies some of the cases below. */
1286 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1287 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1288 && ! dont_remove_subreg)
1289 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1291 /* Similarly for OUT. */
1292 if (out != 0 && GET_CODE (out) == SUBREG
1293 && REG_P (SUBREG_REG (out))
1294 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1295 && ! dont_remove_subreg)
1296 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1298 /* Narrow down the class of register wanted if that is
1299 desirable on this machine for efficiency. */
1301 reg_class_t preferred_class = rclass;
1303 if (in != 0)
1304 preferred_class = targetm.preferred_reload_class (in, rclass);
1306 /* Output reloads may need analogous treatment, different in detail. */
1307 if (out != 0)
1308 preferred_class
1309 = targetm.preferred_output_reload_class (out, preferred_class);
1311 /* Discard what the target said if we cannot do it. */
1312 if (preferred_class != NO_REGS
1313 || (optional && type == RELOAD_FOR_OUTPUT))
1314 rclass = (enum reg_class) preferred_class;
1317 /* Make sure we use a class that can handle the actual pseudo
1318 inside any subreg. For example, on the 386, QImode regs
1319 can appear within SImode subregs. Although GENERAL_REGS
1320 can handle SImode, QImode needs a smaller class. */
1321 #ifdef LIMIT_RELOAD_CLASS
1322 if (in_subreg_loc)
1323 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1324 else if (in != 0 && GET_CODE (in) == SUBREG)
1325 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1327 if (out_subreg_loc)
1328 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1329 if (out != 0 && GET_CODE (out) == SUBREG)
1330 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1331 #endif
1333 /* Verify that this class is at least possible for the mode that
1334 is specified. */
1335 if (this_insn_is_asm)
1337 machine_mode mode;
1338 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1339 mode = inmode;
1340 else
1341 mode = outmode;
1342 if (mode == VOIDmode)
1344 error_for_asm (this_insn, "cannot reload integer constant "
1345 "operand in %<asm%>");
1346 mode = word_mode;
1347 if (in != 0)
1348 inmode = word_mode;
1349 if (out != 0)
1350 outmode = word_mode;
1352 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1353 if (HARD_REGNO_MODE_OK (i, mode)
1354 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1355 break;
1356 if (i == FIRST_PSEUDO_REGISTER)
1358 error_for_asm (this_insn, "impossible register constraint "
1359 "in %<asm%>");
1360 /* Avoid further trouble with this insn. */
1361 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1362 /* We used to continue here setting class to ALL_REGS, but it triggers
1363 sanity check on i386 for:
1364 void foo(long double d)
1366 asm("" :: "a" (d));
1368 Returning zero here ought to be safe as we take care in
1369 find_reloads to not process the reloads when instruction was
1370 replaced by USE. */
1372 return 0;
1376 /* Optional output reloads are always OK even if we have no register class,
1377 since the function of these reloads is only to have spill_reg_store etc.
1378 set, so that the storing insn can be deleted later. */
1379 gcc_assert (rclass != NO_REGS
1380 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1382 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1384 if (i == n_reloads)
1386 /* See if we need a secondary reload register to move between CLASS
1387 and IN or CLASS and OUT. Get the icode and push any required reloads
1388 needed for each of them if so. */
1390 if (in != 0)
1391 secondary_in_reload
1392 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1393 &secondary_in_icode, NULL);
1394 if (out != 0 && GET_CODE (out) != SCRATCH)
1395 secondary_out_reload
1396 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1397 type, &secondary_out_icode, NULL);
1399 /* We found no existing reload suitable for re-use.
1400 So add an additional reload. */
1402 #ifdef SECONDARY_MEMORY_NEEDED
1403 if (subreg_in_class == NO_REGS
1404 && in != 0
1405 && (REG_P (in)
1406 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1407 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1408 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1409 /* If a memory location is needed for the copy, make one. */
1410 if (subreg_in_class != NO_REGS
1411 && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1412 get_secondary_mem (in, inmode, opnum, type);
1413 #endif
1415 i = n_reloads;
1416 rld[i].in = in;
1417 rld[i].out = out;
1418 rld[i].rclass = rclass;
1419 rld[i].inmode = inmode;
1420 rld[i].outmode = outmode;
1421 rld[i].reg_rtx = 0;
1422 rld[i].optional = optional;
1423 rld[i].inc = 0;
1424 rld[i].nocombine = 0;
1425 rld[i].in_reg = inloc ? *inloc : 0;
1426 rld[i].out_reg = outloc ? *outloc : 0;
1427 rld[i].opnum = opnum;
1428 rld[i].when_needed = type;
1429 rld[i].secondary_in_reload = secondary_in_reload;
1430 rld[i].secondary_out_reload = secondary_out_reload;
1431 rld[i].secondary_in_icode = secondary_in_icode;
1432 rld[i].secondary_out_icode = secondary_out_icode;
1433 rld[i].secondary_p = 0;
1435 n_reloads++;
1437 #ifdef SECONDARY_MEMORY_NEEDED
1438 if (out != 0
1439 && (REG_P (out)
1440 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1441 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1442 && SECONDARY_MEMORY_NEEDED (rclass,
1443 REGNO_REG_CLASS (reg_or_subregno (out)),
1444 outmode))
1445 get_secondary_mem (out, outmode, opnum, type);
1446 #endif
1448 else
1450 /* We are reusing an existing reload,
1451 but we may have additional information for it.
1452 For example, we may now have both IN and OUT
1453 while the old one may have just one of them. */
1455 /* The modes can be different. If they are, we want to reload in
1456 the larger mode, so that the value is valid for both modes. */
1457 if (inmode != VOIDmode
1458 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1459 rld[i].inmode = inmode;
1460 if (outmode != VOIDmode
1461 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1462 rld[i].outmode = outmode;
1463 if (in != 0)
1465 rtx in_reg = inloc ? *inloc : 0;
1466 /* If we merge reloads for two distinct rtl expressions that
1467 are identical in content, there might be duplicate address
1468 reloads. Remove the extra set now, so that if we later find
1469 that we can inherit this reload, we can get rid of the
1470 address reloads altogether.
1472 Do not do this if both reloads are optional since the result
1473 would be an optional reload which could potentially leave
1474 unresolved address replacements.
1476 It is not sufficient to call transfer_replacements since
1477 choose_reload_regs will remove the replacements for address
1478 reloads of inherited reloads which results in the same
1479 problem. */
1480 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1481 && ! (rld[i].optional && optional))
1483 /* We must keep the address reload with the lower operand
1484 number alive. */
1485 if (opnum > rld[i].opnum)
1487 remove_address_replacements (in);
1488 in = rld[i].in;
1489 in_reg = rld[i].in_reg;
1491 else
1492 remove_address_replacements (rld[i].in);
1494 /* When emitting reloads we don't necessarily look at the in-
1495 and outmode, but also directly at the operands (in and out).
1496 So we can't simply overwrite them with whatever we have found
1497 for this (to-be-merged) reload, we have to "merge" that too.
1498 Reusing another reload already verified that we deal with the
1499 same operands, just possibly in different modes. So we
1500 overwrite the operands only when the new mode is larger.
1501 See also PR33613. */
1502 if (!rld[i].in
1503 || GET_MODE_SIZE (GET_MODE (in))
1504 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1505 rld[i].in = in;
1506 if (!rld[i].in_reg
1507 || (in_reg
1508 && GET_MODE_SIZE (GET_MODE (in_reg))
1509 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1510 rld[i].in_reg = in_reg;
1512 if (out != 0)
1514 if (!rld[i].out
1515 || (out
1516 && GET_MODE_SIZE (GET_MODE (out))
1517 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1518 rld[i].out = out;
1519 if (outloc
1520 && (!rld[i].out_reg
1521 || GET_MODE_SIZE (GET_MODE (*outloc))
1522 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1523 rld[i].out_reg = *outloc;
1525 if (reg_class_subset_p (rclass, rld[i].rclass))
1526 rld[i].rclass = rclass;
1527 rld[i].optional &= optional;
1528 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1529 opnum, rld[i].opnum))
1530 rld[i].when_needed = RELOAD_OTHER;
1531 rld[i].opnum = MIN (rld[i].opnum, opnum);
1534 /* If the ostensible rtx being reloaded differs from the rtx found
1535 in the location to substitute, this reload is not safe to combine
1536 because we cannot reliably tell whether it appears in the insn. */
1538 if (in != 0 && in != *inloc)
1539 rld[i].nocombine = 1;
1541 #if 0
1542 /* This was replaced by changes in find_reloads_address_1 and the new
1543 function inc_for_reload, which go with a new meaning of reload_inc. */
1545 /* If this is an IN/OUT reload in an insn that sets the CC,
1546 it must be for an autoincrement. It doesn't work to store
1547 the incremented value after the insn because that would clobber the CC.
1548 So we must do the increment of the value reloaded from,
1549 increment it, store it back, then decrement again. */
1550 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1552 out = 0;
1553 rld[i].out = 0;
1554 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1555 /* If we did not find a nonzero amount-to-increment-by,
1556 that contradicts the belief that IN is being incremented
1557 in an address in this insn. */
1558 gcc_assert (rld[i].inc != 0);
1560 #endif
1562 /* If we will replace IN and OUT with the reload-reg,
1563 record where they are located so that substitution need
1564 not do a tree walk. */
1566 if (replace_reloads)
1568 if (inloc != 0)
1570 struct replacement *r = &replacements[n_replacements++];
1571 r->what = i;
1572 r->where = inloc;
1573 r->mode = inmode;
1575 if (outloc != 0 && outloc != inloc)
1577 struct replacement *r = &replacements[n_replacements++];
1578 r->what = i;
1579 r->where = outloc;
1580 r->mode = outmode;
1584 /* If this reload is just being introduced and it has both
1585 an incoming quantity and an outgoing quantity that are
1586 supposed to be made to match, see if either one of the two
1587 can serve as the place to reload into.
1589 If one of them is acceptable, set rld[i].reg_rtx
1590 to that one. */
1592 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1594 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1595 inmode, outmode,
1596 rld[i].rclass, i,
1597 earlyclobber_operand_p (out));
1599 /* If the outgoing register already contains the same value
1600 as the incoming one, we can dispense with loading it.
1601 The easiest way to tell the caller that is to give a phony
1602 value for the incoming operand (same as outgoing one). */
1603 if (rld[i].reg_rtx == out
1604 && (REG_P (in) || CONSTANT_P (in))
1605 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1606 static_reload_reg_p, i, inmode))
1607 rld[i].in = out;
1610 /* If this is an input reload and the operand contains a register that
1611 dies in this insn and is used nowhere else, see if it is the right class
1612 to be used for this reload. Use it if so. (This occurs most commonly
1613 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1614 this if it is also an output reload that mentions the register unless
1615 the output is a SUBREG that clobbers an entire register.
1617 Note that the operand might be one of the spill regs, if it is a
1618 pseudo reg and we are in a block where spilling has not taken place.
1619 But if there is no spilling in this block, that is OK.
1620 An explicitly used hard reg cannot be a spill reg. */
1622 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1624 rtx note;
1625 int regno;
1626 machine_mode rel_mode = inmode;
1628 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1629 rel_mode = outmode;
1631 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1632 if (REG_NOTE_KIND (note) == REG_DEAD
1633 && REG_P (XEXP (note, 0))
1634 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1635 && reg_mentioned_p (XEXP (note, 0), in)
1636 /* Check that a former pseudo is valid; see find_dummy_reload. */
1637 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1638 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1639 ORIGINAL_REGNO (XEXP (note, 0)))
1640 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1641 && ! refers_to_regno_for_reload_p (regno,
1642 end_hard_regno (rel_mode,
1643 regno),
1644 PATTERN (this_insn), inloc)
1645 && ! find_reg_fusage (this_insn, USE, XEXP (note, 0))
1646 /* If this is also an output reload, IN cannot be used as
1647 the reload register if it is set in this insn unless IN
1648 is also OUT. */
1649 && (out == 0 || in == out
1650 || ! hard_reg_set_here_p (regno,
1651 end_hard_regno (rel_mode, regno),
1652 PATTERN (this_insn)))
1653 /* ??? Why is this code so different from the previous?
1654 Is there any simple coherent way to describe the two together?
1655 What's going on here. */
1656 && (in != out
1657 || (GET_CODE (in) == SUBREG
1658 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1659 / UNITS_PER_WORD)
1660 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1661 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1662 /* Make sure the operand fits in the reg that dies. */
1663 && (GET_MODE_SIZE (rel_mode)
1664 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1665 && HARD_REGNO_MODE_OK (regno, inmode)
1666 && HARD_REGNO_MODE_OK (regno, outmode))
1668 unsigned int offs;
1669 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1670 hard_regno_nregs[regno][outmode]);
1672 for (offs = 0; offs < nregs; offs++)
1673 if (fixed_regs[regno + offs]
1674 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1675 regno + offs))
1676 break;
1678 if (offs == nregs
1679 && (! (refers_to_regno_for_reload_p
1680 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1681 || can_reload_into (in, regno, inmode)))
1683 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1684 break;
1689 if (out)
1690 output_reloadnum = i;
1692 return i;
1695 /* Record an additional place we must replace a value
1696 for which we have already recorded a reload.
1697 RELOADNUM is the value returned by push_reload
1698 when the reload was recorded.
1699 This is used in insn patterns that use match_dup. */
1701 static void
1702 push_replacement (rtx *loc, int reloadnum, machine_mode mode)
1704 if (replace_reloads)
1706 struct replacement *r = &replacements[n_replacements++];
1707 r->what = reloadnum;
1708 r->where = loc;
1709 r->mode = mode;
1713 /* Duplicate any replacement we have recorded to apply at
1714 location ORIG_LOC to also be performed at DUP_LOC.
1715 This is used in insn patterns that use match_dup. */
1717 static void
1718 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1720 int i, n = n_replacements;
1722 for (i = 0; i < n; i++)
1724 struct replacement *r = &replacements[i];
1725 if (r->where == orig_loc)
1726 push_replacement (dup_loc, r->what, r->mode);
1730 /* Transfer all replacements that used to be in reload FROM to be in
1731 reload TO. */
1733 void
1734 transfer_replacements (int to, int from)
1736 int i;
1738 for (i = 0; i < n_replacements; i++)
1739 if (replacements[i].what == from)
1740 replacements[i].what = to;
1743 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1744 or a subpart of it. If we have any replacements registered for IN_RTX,
1745 cancel the reloads that were supposed to load them.
1746 Return nonzero if we canceled any reloads. */
1748 remove_address_replacements (rtx in_rtx)
1750 int i, j;
1751 char reload_flags[MAX_RELOADS];
1752 int something_changed = 0;
1754 memset (reload_flags, 0, sizeof reload_flags);
1755 for (i = 0, j = 0; i < n_replacements; i++)
1757 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1758 reload_flags[replacements[i].what] |= 1;
1759 else
1761 replacements[j++] = replacements[i];
1762 reload_flags[replacements[i].what] |= 2;
1765 /* Note that the following store must be done before the recursive calls. */
1766 n_replacements = j;
1768 for (i = n_reloads - 1; i >= 0; i--)
1770 if (reload_flags[i] == 1)
1772 deallocate_reload_reg (i);
1773 remove_address_replacements (rld[i].in);
1774 rld[i].in = 0;
1775 something_changed = 1;
1778 return something_changed;
1781 /* If there is only one output reload, and it is not for an earlyclobber
1782 operand, try to combine it with a (logically unrelated) input reload
1783 to reduce the number of reload registers needed.
1785 This is safe if the input reload does not appear in
1786 the value being output-reloaded, because this implies
1787 it is not needed any more once the original insn completes.
1789 If that doesn't work, see we can use any of the registers that
1790 die in this insn as a reload register. We can if it is of the right
1791 class and does not appear in the value being output-reloaded. */
1793 static void
1794 combine_reloads (void)
1796 int i, regno;
1797 int output_reload = -1;
1798 int secondary_out = -1;
1799 rtx note;
1801 /* Find the output reload; return unless there is exactly one
1802 and that one is mandatory. */
1804 for (i = 0; i < n_reloads; i++)
1805 if (rld[i].out != 0)
1807 if (output_reload >= 0)
1808 return;
1809 output_reload = i;
1812 if (output_reload < 0 || rld[output_reload].optional)
1813 return;
1815 /* An input-output reload isn't combinable. */
1817 if (rld[output_reload].in != 0)
1818 return;
1820 /* If this reload is for an earlyclobber operand, we can't do anything. */
1821 if (earlyclobber_operand_p (rld[output_reload].out))
1822 return;
1824 /* If there is a reload for part of the address of this operand, we would
1825 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1826 its life to the point where doing this combine would not lower the
1827 number of spill registers needed. */
1828 for (i = 0; i < n_reloads; i++)
1829 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1830 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1831 && rld[i].opnum == rld[output_reload].opnum)
1832 return;
1834 /* Check each input reload; can we combine it? */
1836 for (i = 0; i < n_reloads; i++)
1837 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1838 /* Life span of this reload must not extend past main insn. */
1839 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1840 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1841 && rld[i].when_needed != RELOAD_OTHER
1842 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1843 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1844 [(int) rld[output_reload].outmode])
1845 && rld[i].inc == 0
1846 && rld[i].reg_rtx == 0
1847 #ifdef SECONDARY_MEMORY_NEEDED
1848 /* Don't combine two reloads with different secondary
1849 memory locations. */
1850 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1851 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1852 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1853 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1854 #endif
1855 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1856 ? (rld[i].rclass == rld[output_reload].rclass)
1857 : (reg_class_subset_p (rld[i].rclass,
1858 rld[output_reload].rclass)
1859 || reg_class_subset_p (rld[output_reload].rclass,
1860 rld[i].rclass)))
1861 && (MATCHES (rld[i].in, rld[output_reload].out)
1862 /* Args reversed because the first arg seems to be
1863 the one that we imagine being modified
1864 while the second is the one that might be affected. */
1865 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1866 rld[i].in)
1867 /* However, if the input is a register that appears inside
1868 the output, then we also can't share.
1869 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1870 If the same reload reg is used for both reg 69 and the
1871 result to be stored in memory, then that result
1872 will clobber the address of the memory ref. */
1873 && ! (REG_P (rld[i].in)
1874 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1875 rld[output_reload].out))))
1876 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1877 rld[i].when_needed != RELOAD_FOR_INPUT)
1878 && (reg_class_size[(int) rld[i].rclass]
1879 || targetm.small_register_classes_for_mode_p (VOIDmode))
1880 /* We will allow making things slightly worse by combining an
1881 input and an output, but no worse than that. */
1882 && (rld[i].when_needed == RELOAD_FOR_INPUT
1883 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1885 int j;
1887 /* We have found a reload to combine with! */
1888 rld[i].out = rld[output_reload].out;
1889 rld[i].out_reg = rld[output_reload].out_reg;
1890 rld[i].outmode = rld[output_reload].outmode;
1891 /* Mark the old output reload as inoperative. */
1892 rld[output_reload].out = 0;
1893 /* The combined reload is needed for the entire insn. */
1894 rld[i].when_needed = RELOAD_OTHER;
1895 /* If the output reload had a secondary reload, copy it. */
1896 if (rld[output_reload].secondary_out_reload != -1)
1898 rld[i].secondary_out_reload
1899 = rld[output_reload].secondary_out_reload;
1900 rld[i].secondary_out_icode
1901 = rld[output_reload].secondary_out_icode;
1904 #ifdef SECONDARY_MEMORY_NEEDED
1905 /* Copy any secondary MEM. */
1906 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1907 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1908 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1909 #endif
1910 /* If required, minimize the register class. */
1911 if (reg_class_subset_p (rld[output_reload].rclass,
1912 rld[i].rclass))
1913 rld[i].rclass = rld[output_reload].rclass;
1915 /* Transfer all replacements from the old reload to the combined. */
1916 for (j = 0; j < n_replacements; j++)
1917 if (replacements[j].what == output_reload)
1918 replacements[j].what = i;
1920 return;
1923 /* If this insn has only one operand that is modified or written (assumed
1924 to be the first), it must be the one corresponding to this reload. It
1925 is safe to use anything that dies in this insn for that output provided
1926 that it does not occur in the output (we already know it isn't an
1927 earlyclobber. If this is an asm insn, give up. */
1929 if (INSN_CODE (this_insn) == -1)
1930 return;
1932 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1933 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1934 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1935 return;
1937 /* See if some hard register that dies in this insn and is not used in
1938 the output is the right class. Only works if the register we pick
1939 up can fully hold our output reload. */
1940 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1941 if (REG_NOTE_KIND (note) == REG_DEAD
1942 && REG_P (XEXP (note, 0))
1943 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1944 rld[output_reload].out)
1945 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1946 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1947 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1948 regno)
1949 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1950 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1951 /* Ensure that a secondary or tertiary reload for this output
1952 won't want this register. */
1953 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1954 || (!(TEST_HARD_REG_BIT
1955 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1956 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1957 || !(TEST_HARD_REG_BIT
1958 (reg_class_contents[(int) rld[secondary_out].rclass],
1959 regno)))))
1960 && !fixed_regs[regno]
1961 /* Check that a former pseudo is valid; see find_dummy_reload. */
1962 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1963 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1964 ORIGINAL_REGNO (XEXP (note, 0)))
1965 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1967 rld[output_reload].reg_rtx
1968 = gen_rtx_REG (rld[output_reload].outmode, regno);
1969 return;
1973 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1974 See if one of IN and OUT is a register that may be used;
1975 this is desirable since a spill-register won't be needed.
1976 If so, return the register rtx that proves acceptable.
1978 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1979 RCLASS is the register class required for the reload.
1981 If FOR_REAL is >= 0, it is the number of the reload,
1982 and in some cases when it can be discovered that OUT doesn't need
1983 to be computed, clear out rld[FOR_REAL].out.
1985 If FOR_REAL is -1, this should not be done, because this call
1986 is just to see if a register can be found, not to find and install it.
1988 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1989 puts an additional constraint on being able to use IN for OUT since
1990 IN must not appear elsewhere in the insn (it is assumed that IN itself
1991 is safe from the earlyclobber). */
1993 static rtx
1994 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1995 machine_mode inmode, machine_mode outmode,
1996 reg_class_t rclass, int for_real, int earlyclobber)
1998 rtx in = real_in;
1999 rtx out = real_out;
2000 int in_offset = 0;
2001 int out_offset = 0;
2002 rtx value = 0;
2004 /* If operands exceed a word, we can't use either of them
2005 unless they have the same size. */
2006 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
2007 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
2008 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
2009 return 0;
2011 /* Note that {in,out}_offset are needed only when 'in' or 'out'
2012 respectively refers to a hard register. */
2014 /* Find the inside of any subregs. */
2015 while (GET_CODE (out) == SUBREG)
2017 if (REG_P (SUBREG_REG (out))
2018 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
2019 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
2020 GET_MODE (SUBREG_REG (out)),
2021 SUBREG_BYTE (out),
2022 GET_MODE (out));
2023 out = SUBREG_REG (out);
2025 while (GET_CODE (in) == SUBREG)
2027 if (REG_P (SUBREG_REG (in))
2028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2029 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2030 GET_MODE (SUBREG_REG (in)),
2031 SUBREG_BYTE (in),
2032 GET_MODE (in));
2033 in = SUBREG_REG (in);
2036 /* Narrow down the reg class, the same way push_reload will;
2037 otherwise we might find a dummy now, but push_reload won't. */
2039 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2040 if (preferred_class != NO_REGS)
2041 rclass = (enum reg_class) preferred_class;
2044 /* See if OUT will do. */
2045 if (REG_P (out)
2046 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2048 unsigned int regno = REGNO (out) + out_offset;
2049 unsigned int nwords = hard_regno_nregs[regno][outmode];
2050 rtx saved_rtx;
2052 /* When we consider whether the insn uses OUT,
2053 ignore references within IN. They don't prevent us
2054 from copying IN into OUT, because those refs would
2055 move into the insn that reloads IN.
2057 However, we only ignore IN in its role as this reload.
2058 If the insn uses IN elsewhere and it contains OUT,
2059 that counts. We can't be sure it's the "same" operand
2060 so it might not go through this reload.
2062 We also need to avoid using OUT if it, or part of it, is a
2063 fixed register. Modifying such registers, even transiently,
2064 may have undefined effects on the machine, such as modifying
2065 the stack pointer. */
2066 saved_rtx = *inloc;
2067 *inloc = const0_rtx;
2069 if (regno < FIRST_PSEUDO_REGISTER
2070 && HARD_REGNO_MODE_OK (regno, outmode)
2071 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2072 PATTERN (this_insn), outloc))
2074 unsigned int i;
2076 for (i = 0; i < nwords; i++)
2077 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2078 regno + i)
2079 || fixed_regs[regno + i])
2080 break;
2082 if (i == nwords)
2084 if (REG_P (real_out))
2085 value = real_out;
2086 else
2087 value = gen_rtx_REG (outmode, regno);
2091 *inloc = saved_rtx;
2094 /* Consider using IN if OUT was not acceptable
2095 or if OUT dies in this insn (like the quotient in a divmod insn).
2096 We can't use IN unless it is dies in this insn,
2097 which means we must know accurately which hard regs are live.
2098 Also, the result can't go in IN if IN is used within OUT,
2099 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2100 if (hard_regs_live_known
2101 && REG_P (in)
2102 && REGNO (in) < FIRST_PSEUDO_REGISTER
2103 && (value == 0
2104 || find_reg_note (this_insn, REG_UNUSED, real_out))
2105 && find_reg_note (this_insn, REG_DEAD, real_in)
2106 && !fixed_regs[REGNO (in)]
2107 && HARD_REGNO_MODE_OK (REGNO (in),
2108 /* The only case where out and real_out might
2109 have different modes is where real_out
2110 is a subreg, and in that case, out
2111 has a real mode. */
2112 (GET_MODE (out) != VOIDmode
2113 ? GET_MODE (out) : outmode))
2114 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2115 /* However only do this if we can be sure that this input
2116 operand doesn't correspond with an uninitialized pseudo.
2117 global can assign some hardreg to it that is the same as
2118 the one assigned to a different, also live pseudo (as it
2119 can ignore the conflict). We must never introduce writes
2120 to such hardregs, as they would clobber the other live
2121 pseudo. See PR 20973. */
2122 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2123 ORIGINAL_REGNO (in))
2124 /* Similarly, only do this if we can be sure that the death
2125 note is still valid. global can assign some hardreg to
2126 the pseudo referenced in the note and simultaneously a
2127 subword of this hardreg to a different, also live pseudo,
2128 because only another subword of the hardreg is actually
2129 used in the insn. This cannot happen if the pseudo has
2130 been assigned exactly one hardreg. See PR 33732. */
2131 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2133 unsigned int regno = REGNO (in) + in_offset;
2134 unsigned int nwords = hard_regno_nregs[regno][inmode];
2136 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2137 && ! hard_reg_set_here_p (regno, regno + nwords,
2138 PATTERN (this_insn))
2139 && (! earlyclobber
2140 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2141 PATTERN (this_insn), inloc)))
2143 unsigned int i;
2145 for (i = 0; i < nwords; i++)
2146 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2147 regno + i))
2148 break;
2150 if (i == nwords)
2152 /* If we were going to use OUT as the reload reg
2153 and changed our mind, it means OUT is a dummy that
2154 dies here. So don't bother copying value to it. */
2155 if (for_real >= 0 && value == real_out)
2156 rld[for_real].out = 0;
2157 if (REG_P (real_in))
2158 value = real_in;
2159 else
2160 value = gen_rtx_REG (inmode, regno);
2165 return value;
2168 /* This page contains subroutines used mainly for determining
2169 whether the IN or an OUT of a reload can serve as the
2170 reload register. */
2172 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2175 earlyclobber_operand_p (rtx x)
2177 int i;
2179 for (i = 0; i < n_earlyclobbers; i++)
2180 if (reload_earlyclobbers[i] == x)
2181 return 1;
2183 return 0;
2186 /* Return 1 if expression X alters a hard reg in the range
2187 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2188 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2189 X should be the body of an instruction. */
2191 static int
2192 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2194 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2196 rtx op0 = SET_DEST (x);
2198 while (GET_CODE (op0) == SUBREG)
2199 op0 = SUBREG_REG (op0);
2200 if (REG_P (op0))
2202 unsigned int r = REGNO (op0);
2204 /* See if this reg overlaps range under consideration. */
2205 if (r < end_regno
2206 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2207 return 1;
2210 else if (GET_CODE (x) == PARALLEL)
2212 int i = XVECLEN (x, 0) - 1;
2214 for (; i >= 0; i--)
2215 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2216 return 1;
2219 return 0;
2222 /* Return 1 if ADDR is a valid memory address for mode MODE
2223 in address space AS, and check that each pseudo reg has the
2224 proper kind of hard reg. */
2227 strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
2228 rtx addr, addr_space_t as)
2230 #ifdef GO_IF_LEGITIMATE_ADDRESS
2231 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2232 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2233 return 0;
2235 win:
2236 return 1;
2237 #else
2238 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2239 #endif
2242 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2243 if they are the same hard reg, and has special hacks for
2244 autoincrement and autodecrement.
2245 This is specifically intended for find_reloads to use
2246 in determining whether two operands match.
2247 X is the operand whose number is the lower of the two.
2249 The value is 2 if Y contains a pre-increment that matches
2250 a non-incrementing address in X. */
2252 /* ??? To be completely correct, we should arrange to pass
2253 for X the output operand and for Y the input operand.
2254 For now, we assume that the output operand has the lower number
2255 because that is natural in (SET output (... input ...)). */
2258 operands_match_p (rtx x, rtx y)
2260 int i;
2261 RTX_CODE code = GET_CODE (x);
2262 const char *fmt;
2263 int success_2;
2265 if (x == y)
2266 return 1;
2267 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2268 && (REG_P (y) || (GET_CODE (y) == SUBREG
2269 && REG_P (SUBREG_REG (y)))))
2271 int j;
2273 if (code == SUBREG)
2275 i = REGNO (SUBREG_REG (x));
2276 if (i >= FIRST_PSEUDO_REGISTER)
2277 goto slow;
2278 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2279 GET_MODE (SUBREG_REG (x)),
2280 SUBREG_BYTE (x),
2281 GET_MODE (x));
2283 else
2284 i = REGNO (x);
2286 if (GET_CODE (y) == SUBREG)
2288 j = REGNO (SUBREG_REG (y));
2289 if (j >= FIRST_PSEUDO_REGISTER)
2290 goto slow;
2291 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2292 GET_MODE (SUBREG_REG (y)),
2293 SUBREG_BYTE (y),
2294 GET_MODE (y));
2296 else
2297 j = REGNO (y);
2299 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2300 multiple hard register group of scalar integer registers, so that
2301 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2302 register. */
2303 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2304 && SCALAR_INT_MODE_P (GET_MODE (x))
2305 && i < FIRST_PSEUDO_REGISTER)
2306 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2307 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2308 && SCALAR_INT_MODE_P (GET_MODE (y))
2309 && j < FIRST_PSEUDO_REGISTER)
2310 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2312 return i == j;
2314 /* If two operands must match, because they are really a single
2315 operand of an assembler insn, then two postincrements are invalid
2316 because the assembler insn would increment only once.
2317 On the other hand, a postincrement matches ordinary indexing
2318 if the postincrement is the output operand. */
2319 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2320 return operands_match_p (XEXP (x, 0), y);
2321 /* Two preincrements are invalid
2322 because the assembler insn would increment only once.
2323 On the other hand, a preincrement matches ordinary indexing
2324 if the preincrement is the input operand.
2325 In this case, return 2, since some callers need to do special
2326 things when this happens. */
2327 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2328 || GET_CODE (y) == PRE_MODIFY)
2329 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2331 slow:
2333 /* Now we have disposed of all the cases in which different rtx codes
2334 can match. */
2335 if (code != GET_CODE (y))
2336 return 0;
2338 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2339 if (GET_MODE (x) != GET_MODE (y))
2340 return 0;
2342 /* MEMs referring to different address space are not equivalent. */
2343 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2344 return 0;
2346 switch (code)
2348 CASE_CONST_UNIQUE:
2349 return 0;
2351 case LABEL_REF:
2352 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2353 case SYMBOL_REF:
2354 return XSTR (x, 0) == XSTR (y, 0);
2356 default:
2357 break;
2360 /* Compare the elements. If any pair of corresponding elements
2361 fail to match, return 0 for the whole things. */
2363 success_2 = 0;
2364 fmt = GET_RTX_FORMAT (code);
2365 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2367 int val, j;
2368 switch (fmt[i])
2370 case 'w':
2371 if (XWINT (x, i) != XWINT (y, i))
2372 return 0;
2373 break;
2375 case 'i':
2376 if (XINT (x, i) != XINT (y, i))
2377 return 0;
2378 break;
2380 case 'e':
2381 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2382 if (val == 0)
2383 return 0;
2384 /* If any subexpression returns 2,
2385 we should return 2 if we are successful. */
2386 if (val == 2)
2387 success_2 = 1;
2388 break;
2390 case '0':
2391 break;
2393 case 'E':
2394 if (XVECLEN (x, i) != XVECLEN (y, i))
2395 return 0;
2396 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2398 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2399 if (val == 0)
2400 return 0;
2401 if (val == 2)
2402 success_2 = 1;
2404 break;
2406 /* It is believed that rtx's at this level will never
2407 contain anything but integers and other rtx's,
2408 except for within LABEL_REFs and SYMBOL_REFs. */
2409 default:
2410 gcc_unreachable ();
2413 return 1 + success_2;
2416 /* Describe the range of registers or memory referenced by X.
2417 If X is a register, set REG_FLAG and put the first register
2418 number into START and the last plus one into END.
2419 If X is a memory reference, put a base address into BASE
2420 and a range of integer offsets into START and END.
2421 If X is pushing on the stack, we can assume it causes no trouble,
2422 so we set the SAFE field. */
2424 static struct decomposition
2425 decompose (rtx x)
2427 struct decomposition val;
2428 int all_const = 0;
2430 memset (&val, 0, sizeof (val));
2432 switch (GET_CODE (x))
2434 case MEM:
2436 rtx base = NULL_RTX, offset = 0;
2437 rtx addr = XEXP (x, 0);
2439 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2440 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2442 val.base = XEXP (addr, 0);
2443 val.start = -GET_MODE_SIZE (GET_MODE (x));
2444 val.end = GET_MODE_SIZE (GET_MODE (x));
2445 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2446 return val;
2449 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2451 if (GET_CODE (XEXP (addr, 1)) == PLUS
2452 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2453 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2455 val.base = XEXP (addr, 0);
2456 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2457 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2458 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2459 return val;
2463 if (GET_CODE (addr) == CONST)
2465 addr = XEXP (addr, 0);
2466 all_const = 1;
2468 if (GET_CODE (addr) == PLUS)
2470 if (CONSTANT_P (XEXP (addr, 0)))
2472 base = XEXP (addr, 1);
2473 offset = XEXP (addr, 0);
2475 else if (CONSTANT_P (XEXP (addr, 1)))
2477 base = XEXP (addr, 0);
2478 offset = XEXP (addr, 1);
2482 if (offset == 0)
2484 base = addr;
2485 offset = const0_rtx;
2487 if (GET_CODE (offset) == CONST)
2488 offset = XEXP (offset, 0);
2489 if (GET_CODE (offset) == PLUS)
2491 if (CONST_INT_P (XEXP (offset, 0)))
2493 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2494 offset = XEXP (offset, 0);
2496 else if (CONST_INT_P (XEXP (offset, 1)))
2498 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2499 offset = XEXP (offset, 1);
2501 else
2503 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2504 offset = const0_rtx;
2507 else if (!CONST_INT_P (offset))
2509 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2510 offset = const0_rtx;
2513 if (all_const && GET_CODE (base) == PLUS)
2514 base = gen_rtx_CONST (GET_MODE (base), base);
2516 gcc_assert (CONST_INT_P (offset));
2518 val.start = INTVAL (offset);
2519 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2520 val.base = base;
2522 break;
2524 case REG:
2525 val.reg_flag = 1;
2526 val.start = true_regnum (x);
2527 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2529 /* A pseudo with no hard reg. */
2530 val.start = REGNO (x);
2531 val.end = val.start + 1;
2533 else
2534 /* A hard reg. */
2535 val.end = end_hard_regno (GET_MODE (x), val.start);
2536 break;
2538 case SUBREG:
2539 if (!REG_P (SUBREG_REG (x)))
2540 /* This could be more precise, but it's good enough. */
2541 return decompose (SUBREG_REG (x));
2542 val.reg_flag = 1;
2543 val.start = true_regnum (x);
2544 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2545 return decompose (SUBREG_REG (x));
2546 else
2547 /* A hard reg. */
2548 val.end = val.start + subreg_nregs (x);
2549 break;
2551 case SCRATCH:
2552 /* This hasn't been assigned yet, so it can't conflict yet. */
2553 val.safe = 1;
2554 break;
2556 default:
2557 gcc_assert (CONSTANT_P (x));
2558 val.safe = 1;
2559 break;
2561 return val;
2564 /* Return 1 if altering Y will not modify the value of X.
2565 Y is also described by YDATA, which should be decompose (Y). */
2567 static int
2568 immune_p (rtx x, rtx y, struct decomposition ydata)
2570 struct decomposition xdata;
2572 if (ydata.reg_flag)
2573 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2574 if (ydata.safe)
2575 return 1;
2577 gcc_assert (MEM_P (y));
2578 /* If Y is memory and X is not, Y can't affect X. */
2579 if (!MEM_P (x))
2580 return 1;
2582 xdata = decompose (x);
2584 if (! rtx_equal_p (xdata.base, ydata.base))
2586 /* If bases are distinct symbolic constants, there is no overlap. */
2587 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2588 return 1;
2589 /* Constants and stack slots never overlap. */
2590 if (CONSTANT_P (xdata.base)
2591 && (ydata.base == frame_pointer_rtx
2592 || ydata.base == hard_frame_pointer_rtx
2593 || ydata.base == stack_pointer_rtx))
2594 return 1;
2595 if (CONSTANT_P (ydata.base)
2596 && (xdata.base == frame_pointer_rtx
2597 || xdata.base == hard_frame_pointer_rtx
2598 || xdata.base == stack_pointer_rtx))
2599 return 1;
2600 /* If either base is variable, we don't know anything. */
2601 return 0;
2604 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2607 /* Similar, but calls decompose. */
2610 safe_from_earlyclobber (rtx op, rtx clobber)
2612 struct decomposition early_data;
2614 early_data = decompose (clobber);
2615 return immune_p (op, clobber, early_data);
2618 /* Main entry point of this file: search the body of INSN
2619 for values that need reloading and record them with push_reload.
2620 REPLACE nonzero means record also where the values occur
2621 so that subst_reloads can be used.
2623 IND_LEVELS says how many levels of indirection are supported by this
2624 machine; a value of zero means that a memory reference is not a valid
2625 memory address.
2627 LIVE_KNOWN says we have valid information about which hard
2628 regs are live at each point in the program; this is true when
2629 we are called from global_alloc but false when stupid register
2630 allocation has been done.
2632 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2633 which is nonnegative if the reg has been commandeered for reloading into.
2634 It is copied into STATIC_RELOAD_REG_P and referenced from there
2635 by various subroutines.
2637 Return TRUE if some operands need to be changed, because of swapping
2638 commutative operands, reg_equiv_address substitution, or whatever. */
2641 find_reloads (rtx_insn *insn, int replace, int ind_levels, int live_known,
2642 short *reload_reg_p)
2644 int insn_code_number;
2645 int i, j;
2646 int noperands;
2647 /* These start out as the constraints for the insn
2648 and they are chewed up as we consider alternatives. */
2649 const char *constraints[MAX_RECOG_OPERANDS];
2650 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2651 a register. */
2652 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2653 char pref_or_nothing[MAX_RECOG_OPERANDS];
2654 /* Nonzero for a MEM operand whose entire address needs a reload.
2655 May be -1 to indicate the entire address may or may not need a reload. */
2656 int address_reloaded[MAX_RECOG_OPERANDS];
2657 /* Nonzero for an address operand that needs to be completely reloaded.
2658 May be -1 to indicate the entire operand may or may not need a reload. */
2659 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2660 /* Value of enum reload_type to use for operand. */
2661 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2662 /* Value of enum reload_type to use within address of operand. */
2663 enum reload_type address_type[MAX_RECOG_OPERANDS];
2664 /* Save the usage of each operand. */
2665 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2666 int no_input_reloads = 0, no_output_reloads = 0;
2667 int n_alternatives;
2668 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2669 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2670 char this_alternative_win[MAX_RECOG_OPERANDS];
2671 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2672 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2673 int this_alternative_matches[MAX_RECOG_OPERANDS];
2674 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2675 int this_alternative_number;
2676 int goal_alternative_number = 0;
2677 int operand_reloadnum[MAX_RECOG_OPERANDS];
2678 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2679 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2680 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2681 char goal_alternative_win[MAX_RECOG_OPERANDS];
2682 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2683 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2684 int goal_alternative_swapped;
2685 int best;
2686 int commutative;
2687 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2688 rtx substed_operand[MAX_RECOG_OPERANDS];
2689 rtx body = PATTERN (insn);
2690 rtx set = single_set (insn);
2691 int goal_earlyclobber = 0, this_earlyclobber;
2692 machine_mode operand_mode[MAX_RECOG_OPERANDS];
2693 int retval = 0;
2695 this_insn = insn;
2696 n_reloads = 0;
2697 n_replacements = 0;
2698 n_earlyclobbers = 0;
2699 replace_reloads = replace;
2700 hard_regs_live_known = live_known;
2701 static_reload_reg_p = reload_reg_p;
2703 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2704 neither are insns that SET cc0. Insns that use CC0 are not allowed
2705 to have any input reloads. */
2706 if (JUMP_P (insn) || CALL_P (insn))
2707 no_output_reloads = 1;
2709 #ifdef HAVE_cc0
2710 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2711 no_input_reloads = 1;
2712 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2713 no_output_reloads = 1;
2714 #endif
2716 #ifdef SECONDARY_MEMORY_NEEDED
2717 /* The eliminated forms of any secondary memory locations are per-insn, so
2718 clear them out here. */
2720 if (secondary_memlocs_elim_used)
2722 memset (secondary_memlocs_elim, 0,
2723 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2724 secondary_memlocs_elim_used = 0;
2726 #endif
2728 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2729 is cheap to move between them. If it is not, there may not be an insn
2730 to do the copy, so we may need a reload. */
2731 if (GET_CODE (body) == SET
2732 && REG_P (SET_DEST (body))
2733 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2734 && REG_P (SET_SRC (body))
2735 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2736 && register_move_cost (GET_MODE (SET_SRC (body)),
2737 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2738 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2739 return 0;
2741 extract_insn (insn);
2743 noperands = reload_n_operands = recog_data.n_operands;
2744 n_alternatives = recog_data.n_alternatives;
2746 /* Just return "no reloads" if insn has no operands with constraints. */
2747 if (noperands == 0 || n_alternatives == 0)
2748 return 0;
2750 insn_code_number = INSN_CODE (insn);
2751 this_insn_is_asm = insn_code_number < 0;
2753 memcpy (operand_mode, recog_data.operand_mode,
2754 noperands * sizeof (machine_mode));
2755 memcpy (constraints, recog_data.constraints,
2756 noperands * sizeof (const char *));
2758 commutative = -1;
2760 /* If we will need to know, later, whether some pair of operands
2761 are the same, we must compare them now and save the result.
2762 Reloading the base and index registers will clobber them
2763 and afterward they will fail to match. */
2765 for (i = 0; i < noperands; i++)
2767 const char *p;
2768 int c;
2769 char *end;
2771 substed_operand[i] = recog_data.operand[i];
2772 p = constraints[i];
2774 modified[i] = RELOAD_READ;
2776 /* Scan this operand's constraint to see if it is an output operand,
2777 an in-out operand, is commutative, or should match another. */
2779 while ((c = *p))
2781 p += CONSTRAINT_LEN (c, p);
2782 switch (c)
2784 case '=':
2785 modified[i] = RELOAD_WRITE;
2786 break;
2787 case '+':
2788 modified[i] = RELOAD_READ_WRITE;
2789 break;
2790 case '%':
2792 /* The last operand should not be marked commutative. */
2793 gcc_assert (i != noperands - 1);
2795 /* We currently only support one commutative pair of
2796 operands. Some existing asm code currently uses more
2797 than one pair. Previously, that would usually work,
2798 but sometimes it would crash the compiler. We
2799 continue supporting that case as well as we can by
2800 silently ignoring all but the first pair. In the
2801 future we may handle it correctly. */
2802 if (commutative < 0)
2803 commutative = i;
2804 else
2805 gcc_assert (this_insn_is_asm);
2807 break;
2808 /* Use of ISDIGIT is tempting here, but it may get expensive because
2809 of locale support we don't want. */
2810 case '0': case '1': case '2': case '3': case '4':
2811 case '5': case '6': case '7': case '8': case '9':
2813 c = strtoul (p - 1, &end, 10);
2814 p = end;
2816 operands_match[c][i]
2817 = operands_match_p (recog_data.operand[c],
2818 recog_data.operand[i]);
2820 /* An operand may not match itself. */
2821 gcc_assert (c != i);
2823 /* If C can be commuted with C+1, and C might need to match I,
2824 then C+1 might also need to match I. */
2825 if (commutative >= 0)
2827 if (c == commutative || c == commutative + 1)
2829 int other = c + (c == commutative ? 1 : -1);
2830 operands_match[other][i]
2831 = operands_match_p (recog_data.operand[other],
2832 recog_data.operand[i]);
2834 if (i == commutative || i == commutative + 1)
2836 int other = i + (i == commutative ? 1 : -1);
2837 operands_match[c][other]
2838 = operands_match_p (recog_data.operand[c],
2839 recog_data.operand[other]);
2841 /* Note that C is supposed to be less than I.
2842 No need to consider altering both C and I because in
2843 that case we would alter one into the other. */
2850 /* Examine each operand that is a memory reference or memory address
2851 and reload parts of the addresses into index registers.
2852 Also here any references to pseudo regs that didn't get hard regs
2853 but are equivalent to constants get replaced in the insn itself
2854 with those constants. Nobody will ever see them again.
2856 Finally, set up the preferred classes of each operand. */
2858 for (i = 0; i < noperands; i++)
2860 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2862 address_reloaded[i] = 0;
2863 address_operand_reloaded[i] = 0;
2864 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2865 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2866 : RELOAD_OTHER);
2867 address_type[i]
2868 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2869 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2870 : RELOAD_OTHER);
2872 if (*constraints[i] == 0)
2873 /* Ignore things like match_operator operands. */
2875 else if (insn_extra_address_constraint
2876 (lookup_constraint (constraints[i])))
2878 address_operand_reloaded[i]
2879 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2880 recog_data.operand[i],
2881 recog_data.operand_loc[i],
2882 i, operand_type[i], ind_levels, insn);
2884 /* If we now have a simple operand where we used to have a
2885 PLUS or MULT, re-recognize and try again. */
2886 if ((OBJECT_P (*recog_data.operand_loc[i])
2887 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2888 && (GET_CODE (recog_data.operand[i]) == MULT
2889 || GET_CODE (recog_data.operand[i]) == PLUS))
2891 INSN_CODE (insn) = -1;
2892 retval = find_reloads (insn, replace, ind_levels, live_known,
2893 reload_reg_p);
2894 return retval;
2897 recog_data.operand[i] = *recog_data.operand_loc[i];
2898 substed_operand[i] = recog_data.operand[i];
2900 /* Address operands are reloaded in their existing mode,
2901 no matter what is specified in the machine description. */
2902 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2904 /* If the address is a single CONST_INT pick address mode
2905 instead otherwise we will later not know in which mode
2906 the reload should be performed. */
2907 if (operand_mode[i] == VOIDmode)
2908 operand_mode[i] = Pmode;
2911 else if (code == MEM)
2913 address_reloaded[i]
2914 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2915 recog_data.operand_loc[i],
2916 XEXP (recog_data.operand[i], 0),
2917 &XEXP (recog_data.operand[i], 0),
2918 i, address_type[i], ind_levels, insn);
2919 recog_data.operand[i] = *recog_data.operand_loc[i];
2920 substed_operand[i] = recog_data.operand[i];
2922 else if (code == SUBREG)
2924 rtx reg = SUBREG_REG (recog_data.operand[i]);
2925 rtx op
2926 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2927 ind_levels,
2928 set != 0
2929 && &SET_DEST (set) == recog_data.operand_loc[i],
2930 insn,
2931 &address_reloaded[i]);
2933 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2934 that didn't get a hard register, emit a USE with a REG_EQUAL
2935 note in front so that we might inherit a previous, possibly
2936 wider reload. */
2938 if (replace
2939 && MEM_P (op)
2940 && REG_P (reg)
2941 && (GET_MODE_SIZE (GET_MODE (reg))
2942 >= GET_MODE_SIZE (GET_MODE (op)))
2943 && reg_equiv_constant (REGNO (reg)) == 0)
2944 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2945 insn),
2946 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2948 substed_operand[i] = recog_data.operand[i] = op;
2950 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2951 /* We can get a PLUS as an "operand" as a result of register
2952 elimination. See eliminate_regs and gen_reload. We handle
2953 a unary operator by reloading the operand. */
2954 substed_operand[i] = recog_data.operand[i]
2955 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2956 ind_levels, 0, insn,
2957 &address_reloaded[i]);
2958 else if (code == REG)
2960 /* This is equivalent to calling find_reloads_toplev.
2961 The code is duplicated for speed.
2962 When we find a pseudo always equivalent to a constant,
2963 we replace it by the constant. We must be sure, however,
2964 that we don't try to replace it in the insn in which it
2965 is being set. */
2966 int regno = REGNO (recog_data.operand[i]);
2967 if (reg_equiv_constant (regno) != 0
2968 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2970 /* Record the existing mode so that the check if constants are
2971 allowed will work when operand_mode isn't specified. */
2973 if (operand_mode[i] == VOIDmode)
2974 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2976 substed_operand[i] = recog_data.operand[i]
2977 = reg_equiv_constant (regno);
2979 if (reg_equiv_memory_loc (regno) != 0
2980 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2981 /* We need not give a valid is_set_dest argument since the case
2982 of a constant equivalence was checked above. */
2983 substed_operand[i] = recog_data.operand[i]
2984 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2985 ind_levels, 0, insn,
2986 &address_reloaded[i]);
2988 /* If the operand is still a register (we didn't replace it with an
2989 equivalent), get the preferred class to reload it into. */
2990 code = GET_CODE (recog_data.operand[i]);
2991 preferred_class[i]
2992 = ((code == REG && REGNO (recog_data.operand[i])
2993 >= FIRST_PSEUDO_REGISTER)
2994 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2995 : NO_REGS);
2996 pref_or_nothing[i]
2997 = (code == REG
2998 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2999 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
3002 /* If this is simply a copy from operand 1 to operand 0, merge the
3003 preferred classes for the operands. */
3004 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
3005 && recog_data.operand[1] == SET_SRC (set))
3007 preferred_class[0] = preferred_class[1]
3008 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
3009 pref_or_nothing[0] |= pref_or_nothing[1];
3010 pref_or_nothing[1] |= pref_or_nothing[0];
3013 /* Now see what we need for pseudo-regs that didn't get hard regs
3014 or got the wrong kind of hard reg. For this, we must consider
3015 all the operands together against the register constraints. */
3017 best = MAX_RECOG_OPERANDS * 2 + 600;
3019 goal_alternative_swapped = 0;
3021 /* The constraints are made of several alternatives.
3022 Each operand's constraint looks like foo,bar,... with commas
3023 separating the alternatives. The first alternatives for all
3024 operands go together, the second alternatives go together, etc.
3026 First loop over alternatives. */
3028 alternative_mask enabled = get_enabled_alternatives (insn);
3029 for (this_alternative_number = 0;
3030 this_alternative_number < n_alternatives;
3031 this_alternative_number++)
3033 int swapped;
3035 if (!TEST_BIT (enabled, this_alternative_number))
3037 int i;
3039 for (i = 0; i < recog_data.n_operands; i++)
3040 constraints[i] = skip_alternative (constraints[i]);
3042 continue;
3045 /* If insn is commutative (it's safe to exchange a certain pair
3046 of operands) then we need to try each alternative twice, the
3047 second time matching those two operands as if we had
3048 exchanged them. To do this, really exchange them in
3049 operands. */
3050 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3052 /* Loop over operands for one constraint alternative. */
3053 /* LOSERS counts those that don't fit this alternative
3054 and would require loading. */
3055 int losers = 0;
3056 /* BAD is set to 1 if it some operand can't fit this alternative
3057 even after reloading. */
3058 int bad = 0;
3059 /* REJECT is a count of how undesirable this alternative says it is
3060 if any reloading is required. If the alternative matches exactly
3061 then REJECT is ignored, but otherwise it gets this much
3062 counted against it in addition to the reloading needed. Each
3063 ? counts three times here since we want the disparaging caused by
3064 a bad register class to only count 1/3 as much. */
3065 int reject = 0;
3067 if (swapped)
3069 enum reg_class tclass;
3070 int t;
3072 recog_data.operand[commutative] = substed_operand[commutative + 1];
3073 recog_data.operand[commutative + 1] = substed_operand[commutative];
3074 /* Swap the duplicates too. */
3075 for (i = 0; i < recog_data.n_dups; i++)
3076 if (recog_data.dup_num[i] == commutative
3077 || recog_data.dup_num[i] == commutative + 1)
3078 *recog_data.dup_loc[i]
3079 = recog_data.operand[(int) recog_data.dup_num[i]];
3081 tclass = preferred_class[commutative];
3082 preferred_class[commutative] = preferred_class[commutative + 1];
3083 preferred_class[commutative + 1] = tclass;
3085 t = pref_or_nothing[commutative];
3086 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3087 pref_or_nothing[commutative + 1] = t;
3089 t = address_reloaded[commutative];
3090 address_reloaded[commutative] = address_reloaded[commutative + 1];
3091 address_reloaded[commutative + 1] = t;
3094 this_earlyclobber = 0;
3096 for (i = 0; i < noperands; i++)
3098 const char *p = constraints[i];
3099 char *end;
3100 int len;
3101 int win = 0;
3102 int did_match = 0;
3103 /* 0 => this operand can be reloaded somehow for this alternative. */
3104 int badop = 1;
3105 /* 0 => this operand can be reloaded if the alternative allows regs. */
3106 int winreg = 0;
3107 int c;
3108 int m;
3109 rtx operand = recog_data.operand[i];
3110 int offset = 0;
3111 /* Nonzero means this is a MEM that must be reloaded into a reg
3112 regardless of what the constraint says. */
3113 int force_reload = 0;
3114 int offmemok = 0;
3115 /* Nonzero if a constant forced into memory would be OK for this
3116 operand. */
3117 int constmemok = 0;
3118 int earlyclobber = 0;
3119 enum constraint_num cn;
3120 enum reg_class cl;
3122 /* If the predicate accepts a unary operator, it means that
3123 we need to reload the operand, but do not do this for
3124 match_operator and friends. */
3125 if (UNARY_P (operand) && *p != 0)
3126 operand = XEXP (operand, 0);
3128 /* If the operand is a SUBREG, extract
3129 the REG or MEM (or maybe even a constant) within.
3130 (Constants can occur as a result of reg_equiv_constant.) */
3132 while (GET_CODE (operand) == SUBREG)
3134 /* Offset only matters when operand is a REG and
3135 it is a hard reg. This is because it is passed
3136 to reg_fits_class_p if it is a REG and all pseudos
3137 return 0 from that function. */
3138 if (REG_P (SUBREG_REG (operand))
3139 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3141 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3142 GET_MODE (SUBREG_REG (operand)),
3143 SUBREG_BYTE (operand),
3144 GET_MODE (operand)) < 0)
3145 force_reload = 1;
3146 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3147 GET_MODE (SUBREG_REG (operand)),
3148 SUBREG_BYTE (operand),
3149 GET_MODE (operand));
3151 operand = SUBREG_REG (operand);
3152 /* Force reload if this is a constant or PLUS or if there may
3153 be a problem accessing OPERAND in the outer mode. */
3154 if (CONSTANT_P (operand)
3155 || GET_CODE (operand) == PLUS
3156 /* We must force a reload of paradoxical SUBREGs
3157 of a MEM because the alignment of the inner value
3158 may not be enough to do the outer reference. On
3159 big-endian machines, it may also reference outside
3160 the object.
3162 On machines that extend byte operations and we have a
3163 SUBREG where both the inner and outer modes are no wider
3164 than a word and the inner mode is narrower, is integral,
3165 and gets extended when loaded from memory, combine.c has
3166 made assumptions about the behavior of the machine in such
3167 register access. If the data is, in fact, in memory we
3168 must always load using the size assumed to be in the
3169 register and let the insn do the different-sized
3170 accesses.
3172 This is doubly true if WORD_REGISTER_OPERATIONS. In
3173 this case eliminate_regs has left non-paradoxical
3174 subregs for push_reload to see. Make sure it does
3175 by forcing the reload.
3177 ??? When is it right at this stage to have a subreg
3178 of a mem that is _not_ to be handled specially? IMO
3179 those should have been reduced to just a mem. */
3180 || ((MEM_P (operand)
3181 || (REG_P (operand)
3182 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3183 #ifndef WORD_REGISTER_OPERATIONS
3184 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3185 < BIGGEST_ALIGNMENT)
3186 && (GET_MODE_SIZE (operand_mode[i])
3187 > GET_MODE_SIZE (GET_MODE (operand))))
3188 || BYTES_BIG_ENDIAN
3189 #ifdef LOAD_EXTEND_OP
3190 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3191 && (GET_MODE_SIZE (GET_MODE (operand))
3192 <= UNITS_PER_WORD)
3193 && (GET_MODE_SIZE (operand_mode[i])
3194 > GET_MODE_SIZE (GET_MODE (operand)))
3195 && INTEGRAL_MODE_P (GET_MODE (operand))
3196 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3197 #endif
3199 #endif
3202 force_reload = 1;
3205 this_alternative[i] = NO_REGS;
3206 this_alternative_win[i] = 0;
3207 this_alternative_match_win[i] = 0;
3208 this_alternative_offmemok[i] = 0;
3209 this_alternative_earlyclobber[i] = 0;
3210 this_alternative_matches[i] = -1;
3212 /* An empty constraint or empty alternative
3213 allows anything which matched the pattern. */
3214 if (*p == 0 || *p == ',')
3215 win = 1, badop = 0;
3217 /* Scan this alternative's specs for this operand;
3218 set WIN if the operand fits any letter in this alternative.
3219 Otherwise, clear BADOP if this operand could
3220 fit some letter after reloads,
3221 or set WINREG if this operand could fit after reloads
3222 provided the constraint allows some registers. */
3225 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3227 case '\0':
3228 len = 0;
3229 break;
3230 case ',':
3231 c = '\0';
3232 break;
3234 case '?':
3235 reject += 6;
3236 break;
3238 case '!':
3239 reject = 600;
3240 break;
3242 case '#':
3243 /* Ignore rest of this alternative as far as
3244 reloading is concerned. */
3246 p++;
3247 while (*p && *p != ',');
3248 len = 0;
3249 break;
3251 case '0': case '1': case '2': case '3': case '4':
3252 case '5': case '6': case '7': case '8': case '9':
3253 m = strtoul (p, &end, 10);
3254 p = end;
3255 len = 0;
3257 this_alternative_matches[i] = m;
3258 /* We are supposed to match a previous operand.
3259 If we do, we win if that one did.
3260 If we do not, count both of the operands as losers.
3261 (This is too conservative, since most of the time
3262 only a single reload insn will be needed to make
3263 the two operands win. As a result, this alternative
3264 may be rejected when it is actually desirable.) */
3265 if ((swapped && (m != commutative || i != commutative + 1))
3266 /* If we are matching as if two operands were swapped,
3267 also pretend that operands_match had been computed
3268 with swapped.
3269 But if I is the second of those and C is the first,
3270 don't exchange them, because operands_match is valid
3271 only on one side of its diagonal. */
3272 ? (operands_match
3273 [(m == commutative || m == commutative + 1)
3274 ? 2 * commutative + 1 - m : m]
3275 [(i == commutative || i == commutative + 1)
3276 ? 2 * commutative + 1 - i : i])
3277 : operands_match[m][i])
3279 /* If we are matching a non-offsettable address where an
3280 offsettable address was expected, then we must reject
3281 this combination, because we can't reload it. */
3282 if (this_alternative_offmemok[m]
3283 && MEM_P (recog_data.operand[m])
3284 && this_alternative[m] == NO_REGS
3285 && ! this_alternative_win[m])
3286 bad = 1;
3288 did_match = this_alternative_win[m];
3290 else
3292 /* Operands don't match. */
3293 rtx value;
3294 int loc1, loc2;
3295 /* Retroactively mark the operand we had to match
3296 as a loser, if it wasn't already. */
3297 if (this_alternative_win[m])
3298 losers++;
3299 this_alternative_win[m] = 0;
3300 if (this_alternative[m] == NO_REGS)
3301 bad = 1;
3302 /* But count the pair only once in the total badness of
3303 this alternative, if the pair can be a dummy reload.
3304 The pointers in operand_loc are not swapped; swap
3305 them by hand if necessary. */
3306 if (swapped && i == commutative)
3307 loc1 = commutative + 1;
3308 else if (swapped && i == commutative + 1)
3309 loc1 = commutative;
3310 else
3311 loc1 = i;
3312 if (swapped && m == commutative)
3313 loc2 = commutative + 1;
3314 else if (swapped && m == commutative + 1)
3315 loc2 = commutative;
3316 else
3317 loc2 = m;
3318 value
3319 = find_dummy_reload (recog_data.operand[i],
3320 recog_data.operand[m],
3321 recog_data.operand_loc[loc1],
3322 recog_data.operand_loc[loc2],
3323 operand_mode[i], operand_mode[m],
3324 this_alternative[m], -1,
3325 this_alternative_earlyclobber[m]);
3327 if (value != 0)
3328 losers--;
3330 /* This can be fixed with reloads if the operand
3331 we are supposed to match can be fixed with reloads. */
3332 badop = 0;
3333 this_alternative[i] = this_alternative[m];
3335 /* If we have to reload this operand and some previous
3336 operand also had to match the same thing as this
3337 operand, we don't know how to do that. So reject this
3338 alternative. */
3339 if (! did_match || force_reload)
3340 for (j = 0; j < i; j++)
3341 if (this_alternative_matches[j]
3342 == this_alternative_matches[i])
3344 badop = 1;
3345 break;
3347 break;
3349 case 'p':
3350 /* All necessary reloads for an address_operand
3351 were handled in find_reloads_address. */
3352 this_alternative[i]
3353 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3354 ADDRESS, SCRATCH);
3355 win = 1;
3356 badop = 0;
3357 break;
3359 case TARGET_MEM_CONSTRAINT:
3360 if (force_reload)
3361 break;
3362 if (MEM_P (operand)
3363 || (REG_P (operand)
3364 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3365 && reg_renumber[REGNO (operand)] < 0))
3366 win = 1;
3367 if (CONST_POOL_OK_P (operand_mode[i], operand))
3368 badop = 0;
3369 constmemok = 1;
3370 break;
3372 case '<':
3373 if (MEM_P (operand)
3374 && ! address_reloaded[i]
3375 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3376 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3377 win = 1;
3378 break;
3380 case '>':
3381 if (MEM_P (operand)
3382 && ! address_reloaded[i]
3383 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3384 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3385 win = 1;
3386 break;
3388 /* Memory operand whose address is not offsettable. */
3389 case 'V':
3390 if (force_reload)
3391 break;
3392 if (MEM_P (operand)
3393 && ! (ind_levels ? offsettable_memref_p (operand)
3394 : offsettable_nonstrict_memref_p (operand))
3395 /* Certain mem addresses will become offsettable
3396 after they themselves are reloaded. This is important;
3397 we don't want our own handling of unoffsettables
3398 to override the handling of reg_equiv_address. */
3399 && !(REG_P (XEXP (operand, 0))
3400 && (ind_levels == 0
3401 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3402 win = 1;
3403 break;
3405 /* Memory operand whose address is offsettable. */
3406 case 'o':
3407 if (force_reload)
3408 break;
3409 if ((MEM_P (operand)
3410 /* If IND_LEVELS, find_reloads_address won't reload a
3411 pseudo that didn't get a hard reg, so we have to
3412 reject that case. */
3413 && ((ind_levels ? offsettable_memref_p (operand)
3414 : offsettable_nonstrict_memref_p (operand))
3415 /* A reloaded address is offsettable because it is now
3416 just a simple register indirect. */
3417 || address_reloaded[i] == 1))
3418 || (REG_P (operand)
3419 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3420 && reg_renumber[REGNO (operand)] < 0
3421 /* If reg_equiv_address is nonzero, we will be
3422 loading it into a register; hence it will be
3423 offsettable, but we cannot say that reg_equiv_mem
3424 is offsettable without checking. */
3425 && ((reg_equiv_mem (REGNO (operand)) != 0
3426 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3427 || (reg_equiv_address (REGNO (operand)) != 0))))
3428 win = 1;
3429 if (CONST_POOL_OK_P (operand_mode[i], operand)
3430 || MEM_P (operand))
3431 badop = 0;
3432 constmemok = 1;
3433 offmemok = 1;
3434 break;
3436 case '&':
3437 /* Output operand that is stored before the need for the
3438 input operands (and their index registers) is over. */
3439 earlyclobber = 1, this_earlyclobber = 1;
3440 break;
3442 case 'X':
3443 force_reload = 0;
3444 win = 1;
3445 break;
3447 case 'g':
3448 if (! force_reload
3449 /* A PLUS is never a valid operand, but reload can make
3450 it from a register when eliminating registers. */
3451 && GET_CODE (operand) != PLUS
3452 /* A SCRATCH is not a valid operand. */
3453 && GET_CODE (operand) != SCRATCH
3454 && (! CONSTANT_P (operand)
3455 || ! flag_pic
3456 || LEGITIMATE_PIC_OPERAND_P (operand))
3457 && (GENERAL_REGS == ALL_REGS
3458 || !REG_P (operand)
3459 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3460 && reg_renumber[REGNO (operand)] < 0)))
3461 win = 1;
3462 cl = GENERAL_REGS;
3463 goto reg;
3465 default:
3466 cn = lookup_constraint (p);
3467 switch (get_constraint_type (cn))
3469 case CT_REGISTER:
3470 cl = reg_class_for_constraint (cn);
3471 if (cl != NO_REGS)
3472 goto reg;
3473 break;
3475 case CT_CONST_INT:
3476 if (CONST_INT_P (operand)
3477 && (insn_const_int_ok_for_constraint
3478 (INTVAL (operand), cn)))
3479 win = true;
3480 break;
3482 case CT_MEMORY:
3483 if (force_reload)
3484 break;
3485 if (constraint_satisfied_p (operand, cn))
3486 win = 1;
3487 /* If the address was already reloaded,
3488 we win as well. */
3489 else if (MEM_P (operand) && address_reloaded[i] == 1)
3490 win = 1;
3491 /* Likewise if the address will be reloaded because
3492 reg_equiv_address is nonzero. For reg_equiv_mem
3493 we have to check. */
3494 else if (REG_P (operand)
3495 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3496 && reg_renumber[REGNO (operand)] < 0
3497 && ((reg_equiv_mem (REGNO (operand)) != 0
3498 && (constraint_satisfied_p
3499 (reg_equiv_mem (REGNO (operand)),
3500 cn)))
3501 || (reg_equiv_address (REGNO (operand))
3502 != 0)))
3503 win = 1;
3505 /* If we didn't already win, we can reload
3506 constants via force_const_mem, and other
3507 MEMs by reloading the address like for 'o'. */
3508 if (CONST_POOL_OK_P (operand_mode[i], operand)
3509 || MEM_P (operand))
3510 badop = 0;
3511 constmemok = 1;
3512 offmemok = 1;
3513 break;
3515 case CT_ADDRESS:
3516 if (constraint_satisfied_p (operand, cn))
3517 win = 1;
3519 /* If we didn't already win, we can reload
3520 the address into a base register. */
3521 this_alternative[i]
3522 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3523 ADDRESS, SCRATCH);
3524 badop = 0;
3525 break;
3527 case CT_FIXED_FORM:
3528 if (constraint_satisfied_p (operand, cn))
3529 win = 1;
3530 break;
3532 break;
3534 reg:
3535 this_alternative[i]
3536 = reg_class_subunion[this_alternative[i]][cl];
3537 if (GET_MODE (operand) == BLKmode)
3538 break;
3539 winreg = 1;
3540 if (REG_P (operand)
3541 && reg_fits_class_p (operand, this_alternative[i],
3542 offset, GET_MODE (recog_data.operand[i])))
3543 win = 1;
3544 break;
3546 while ((p += len), c);
3548 if (swapped == (commutative >= 0 ? 1 : 0))
3549 constraints[i] = p;
3551 /* If this operand could be handled with a reg,
3552 and some reg is allowed, then this operand can be handled. */
3553 if (winreg && this_alternative[i] != NO_REGS
3554 && (win || !class_only_fixed_regs[this_alternative[i]]))
3555 badop = 0;
3557 /* Record which operands fit this alternative. */
3558 this_alternative_earlyclobber[i] = earlyclobber;
3559 if (win && ! force_reload)
3560 this_alternative_win[i] = 1;
3561 else if (did_match && ! force_reload)
3562 this_alternative_match_win[i] = 1;
3563 else
3565 int const_to_mem = 0;
3567 this_alternative_offmemok[i] = offmemok;
3568 losers++;
3569 if (badop)
3570 bad = 1;
3571 /* Alternative loses if it has no regs for a reg operand. */
3572 if (REG_P (operand)
3573 && this_alternative[i] == NO_REGS
3574 && this_alternative_matches[i] < 0)
3575 bad = 1;
3577 /* If this is a constant that is reloaded into the desired
3578 class by copying it to memory first, count that as another
3579 reload. This is consistent with other code and is
3580 required to avoid choosing another alternative when
3581 the constant is moved into memory by this function on
3582 an early reload pass. Note that the test here is
3583 precisely the same as in the code below that calls
3584 force_const_mem. */
3585 if (CONST_POOL_OK_P (operand_mode[i], operand)
3586 && ((targetm.preferred_reload_class (operand,
3587 this_alternative[i])
3588 == NO_REGS)
3589 || no_input_reloads))
3591 const_to_mem = 1;
3592 if (this_alternative[i] != NO_REGS)
3593 losers++;
3596 /* Alternative loses if it requires a type of reload not
3597 permitted for this insn. We can always reload SCRATCH
3598 and objects with a REG_UNUSED note. */
3599 if (GET_CODE (operand) != SCRATCH
3600 && modified[i] != RELOAD_READ && no_output_reloads
3601 && ! find_reg_note (insn, REG_UNUSED, operand))
3602 bad = 1;
3603 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3604 && ! const_to_mem)
3605 bad = 1;
3607 /* If we can't reload this value at all, reject this
3608 alternative. Note that we could also lose due to
3609 LIMIT_RELOAD_CLASS, but we don't check that
3610 here. */
3612 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3614 if (targetm.preferred_reload_class (operand,
3615 this_alternative[i])
3616 == NO_REGS)
3617 reject = 600;
3619 if (operand_type[i] == RELOAD_FOR_OUTPUT
3620 && (targetm.preferred_output_reload_class (operand,
3621 this_alternative[i])
3622 == NO_REGS))
3623 reject = 600;
3626 /* We prefer to reload pseudos over reloading other things,
3627 since such reloads may be able to be eliminated later.
3628 If we are reloading a SCRATCH, we won't be generating any
3629 insns, just using a register, so it is also preferred.
3630 So bump REJECT in other cases. Don't do this in the
3631 case where we are forcing a constant into memory and
3632 it will then win since we don't want to have a different
3633 alternative match then. */
3634 if (! (REG_P (operand)
3635 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3636 && GET_CODE (operand) != SCRATCH
3637 && ! (const_to_mem && constmemok))
3638 reject += 2;
3640 /* Input reloads can be inherited more often than output
3641 reloads can be removed, so penalize output reloads. */
3642 if (operand_type[i] != RELOAD_FOR_INPUT
3643 && GET_CODE (operand) != SCRATCH)
3644 reject++;
3647 /* If this operand is a pseudo register that didn't get
3648 a hard reg and this alternative accepts some
3649 register, see if the class that we want is a subset
3650 of the preferred class for this register. If not,
3651 but it intersects that class, use the preferred class
3652 instead. If it does not intersect the preferred
3653 class, show that usage of this alternative should be
3654 discouraged; it will be discouraged more still if the
3655 register is `preferred or nothing'. We do this
3656 because it increases the chance of reusing our spill
3657 register in a later insn and avoiding a pair of
3658 memory stores and loads.
3660 Don't bother with this if this alternative will
3661 accept this operand.
3663 Don't do this for a multiword operand, since it is
3664 only a small win and has the risk of requiring more
3665 spill registers, which could cause a large loss.
3667 Don't do this if the preferred class has only one
3668 register because we might otherwise exhaust the
3669 class. */
3671 if (! win && ! did_match
3672 && this_alternative[i] != NO_REGS
3673 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3674 && reg_class_size [(int) preferred_class[i]] > 0
3675 && ! small_register_class_p (preferred_class[i]))
3677 if (! reg_class_subset_p (this_alternative[i],
3678 preferred_class[i]))
3680 /* Since we don't have a way of forming the intersection,
3681 we just do something special if the preferred class
3682 is a subset of the class we have; that's the most
3683 common case anyway. */
3684 if (reg_class_subset_p (preferred_class[i],
3685 this_alternative[i]))
3686 this_alternative[i] = preferred_class[i];
3687 else
3688 reject += (2 + 2 * pref_or_nothing[i]);
3693 /* Now see if any output operands that are marked "earlyclobber"
3694 in this alternative conflict with any input operands
3695 or any memory addresses. */
3697 for (i = 0; i < noperands; i++)
3698 if (this_alternative_earlyclobber[i]
3699 && (this_alternative_win[i] || this_alternative_match_win[i]))
3701 struct decomposition early_data;
3703 early_data = decompose (recog_data.operand[i]);
3705 gcc_assert (modified[i] != RELOAD_READ);
3707 if (this_alternative[i] == NO_REGS)
3709 this_alternative_earlyclobber[i] = 0;
3710 gcc_assert (this_insn_is_asm);
3711 error_for_asm (this_insn,
3712 "%<&%> constraint used with no register class");
3715 for (j = 0; j < noperands; j++)
3716 /* Is this an input operand or a memory ref? */
3717 if ((MEM_P (recog_data.operand[j])
3718 || modified[j] != RELOAD_WRITE)
3719 && j != i
3720 /* Ignore things like match_operator operands. */
3721 && !recog_data.is_operator[j]
3722 /* Don't count an input operand that is constrained to match
3723 the early clobber operand. */
3724 && ! (this_alternative_matches[j] == i
3725 && rtx_equal_p (recog_data.operand[i],
3726 recog_data.operand[j]))
3727 /* Is it altered by storing the earlyclobber operand? */
3728 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3729 early_data))
3731 /* If the output is in a non-empty few-regs class,
3732 it's costly to reload it, so reload the input instead. */
3733 if (small_register_class_p (this_alternative[i])
3734 && (REG_P (recog_data.operand[j])
3735 || GET_CODE (recog_data.operand[j]) == SUBREG))
3737 losers++;
3738 this_alternative_win[j] = 0;
3739 this_alternative_match_win[j] = 0;
3741 else
3742 break;
3744 /* If an earlyclobber operand conflicts with something,
3745 it must be reloaded, so request this and count the cost. */
3746 if (j != noperands)
3748 losers++;
3749 this_alternative_win[i] = 0;
3750 this_alternative_match_win[j] = 0;
3751 for (j = 0; j < noperands; j++)
3752 if (this_alternative_matches[j] == i
3753 && this_alternative_match_win[j])
3755 this_alternative_win[j] = 0;
3756 this_alternative_match_win[j] = 0;
3757 losers++;
3762 /* If one alternative accepts all the operands, no reload required,
3763 choose that alternative; don't consider the remaining ones. */
3764 if (losers == 0)
3766 /* Unswap these so that they are never swapped at `finish'. */
3767 if (swapped)
3769 recog_data.operand[commutative] = substed_operand[commutative];
3770 recog_data.operand[commutative + 1]
3771 = substed_operand[commutative + 1];
3773 for (i = 0; i < noperands; i++)
3775 goal_alternative_win[i] = this_alternative_win[i];
3776 goal_alternative_match_win[i] = this_alternative_match_win[i];
3777 goal_alternative[i] = this_alternative[i];
3778 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3779 goal_alternative_matches[i] = this_alternative_matches[i];
3780 goal_alternative_earlyclobber[i]
3781 = this_alternative_earlyclobber[i];
3783 goal_alternative_number = this_alternative_number;
3784 goal_alternative_swapped = swapped;
3785 goal_earlyclobber = this_earlyclobber;
3786 goto finish;
3789 /* REJECT, set by the ! and ? constraint characters and when a register
3790 would be reloaded into a non-preferred class, discourages the use of
3791 this alternative for a reload goal. REJECT is incremented by six
3792 for each ? and two for each non-preferred class. */
3793 losers = losers * 6 + reject;
3795 /* If this alternative can be made to work by reloading,
3796 and it needs less reloading than the others checked so far,
3797 record it as the chosen goal for reloading. */
3798 if (! bad)
3800 if (best > losers)
3802 for (i = 0; i < noperands; i++)
3804 goal_alternative[i] = this_alternative[i];
3805 goal_alternative_win[i] = this_alternative_win[i];
3806 goal_alternative_match_win[i]
3807 = this_alternative_match_win[i];
3808 goal_alternative_offmemok[i]
3809 = this_alternative_offmemok[i];
3810 goal_alternative_matches[i] = this_alternative_matches[i];
3811 goal_alternative_earlyclobber[i]
3812 = this_alternative_earlyclobber[i];
3814 goal_alternative_swapped = swapped;
3815 best = losers;
3816 goal_alternative_number = this_alternative_number;
3817 goal_earlyclobber = this_earlyclobber;
3821 if (swapped)
3823 enum reg_class tclass;
3824 int t;
3826 /* If the commutative operands have been swapped, swap
3827 them back in order to check the next alternative. */
3828 recog_data.operand[commutative] = substed_operand[commutative];
3829 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3830 /* Unswap the duplicates too. */
3831 for (i = 0; i < recog_data.n_dups; i++)
3832 if (recog_data.dup_num[i] == commutative
3833 || recog_data.dup_num[i] == commutative + 1)
3834 *recog_data.dup_loc[i]
3835 = recog_data.operand[(int) recog_data.dup_num[i]];
3837 /* Unswap the operand related information as well. */
3838 tclass = preferred_class[commutative];
3839 preferred_class[commutative] = preferred_class[commutative + 1];
3840 preferred_class[commutative + 1] = tclass;
3842 t = pref_or_nothing[commutative];
3843 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3844 pref_or_nothing[commutative + 1] = t;
3846 t = address_reloaded[commutative];
3847 address_reloaded[commutative] = address_reloaded[commutative + 1];
3848 address_reloaded[commutative + 1] = t;
3853 /* The operands don't meet the constraints.
3854 goal_alternative describes the alternative
3855 that we could reach by reloading the fewest operands.
3856 Reload so as to fit it. */
3858 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3860 /* No alternative works with reloads?? */
3861 if (insn_code_number >= 0)
3862 fatal_insn ("unable to generate reloads for:", insn);
3863 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3864 /* Avoid further trouble with this insn. */
3865 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3866 n_reloads = 0;
3867 return 0;
3870 /* Jump to `finish' from above if all operands are valid already.
3871 In that case, goal_alternative_win is all 1. */
3872 finish:
3874 /* Right now, for any pair of operands I and J that are required to match,
3875 with I < J,
3876 goal_alternative_matches[J] is I.
3877 Set up goal_alternative_matched as the inverse function:
3878 goal_alternative_matched[I] = J. */
3880 for (i = 0; i < noperands; i++)
3881 goal_alternative_matched[i] = -1;
3883 for (i = 0; i < noperands; i++)
3884 if (! goal_alternative_win[i]
3885 && goal_alternative_matches[i] >= 0)
3886 goal_alternative_matched[goal_alternative_matches[i]] = i;
3888 for (i = 0; i < noperands; i++)
3889 goal_alternative_win[i] |= goal_alternative_match_win[i];
3891 /* If the best alternative is with operands 1 and 2 swapped,
3892 consider them swapped before reporting the reloads. Update the
3893 operand numbers of any reloads already pushed. */
3895 if (goal_alternative_swapped)
3897 rtx tem;
3899 tem = substed_operand[commutative];
3900 substed_operand[commutative] = substed_operand[commutative + 1];
3901 substed_operand[commutative + 1] = tem;
3902 tem = recog_data.operand[commutative];
3903 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3904 recog_data.operand[commutative + 1] = tem;
3905 tem = *recog_data.operand_loc[commutative];
3906 *recog_data.operand_loc[commutative]
3907 = *recog_data.operand_loc[commutative + 1];
3908 *recog_data.operand_loc[commutative + 1] = tem;
3910 for (i = 0; i < n_reloads; i++)
3912 if (rld[i].opnum == commutative)
3913 rld[i].opnum = commutative + 1;
3914 else if (rld[i].opnum == commutative + 1)
3915 rld[i].opnum = commutative;
3919 for (i = 0; i < noperands; i++)
3921 operand_reloadnum[i] = -1;
3923 /* If this is an earlyclobber operand, we need to widen the scope.
3924 The reload must remain valid from the start of the insn being
3925 reloaded until after the operand is stored into its destination.
3926 We approximate this with RELOAD_OTHER even though we know that we
3927 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3929 One special case that is worth checking is when we have an
3930 output that is earlyclobber but isn't used past the insn (typically
3931 a SCRATCH). In this case, we only need have the reload live
3932 through the insn itself, but not for any of our input or output
3933 reloads.
3934 But we must not accidentally narrow the scope of an existing
3935 RELOAD_OTHER reload - leave these alone.
3937 In any case, anything needed to address this operand can remain
3938 however they were previously categorized. */
3940 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3941 operand_type[i]
3942 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3943 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3946 /* Any constants that aren't allowed and can't be reloaded
3947 into registers are here changed into memory references. */
3948 for (i = 0; i < noperands; i++)
3949 if (! goal_alternative_win[i])
3951 rtx op = recog_data.operand[i];
3952 rtx subreg = NULL_RTX;
3953 rtx plus = NULL_RTX;
3954 machine_mode mode = operand_mode[i];
3956 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3957 push_reload so we have to let them pass here. */
3958 if (GET_CODE (op) == SUBREG)
3960 subreg = op;
3961 op = SUBREG_REG (op);
3962 mode = GET_MODE (op);
3965 if (GET_CODE (op) == PLUS)
3967 plus = op;
3968 op = XEXP (op, 1);
3971 if (CONST_POOL_OK_P (mode, op)
3972 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3973 == NO_REGS)
3974 || no_input_reloads))
3976 int this_address_reloaded;
3977 rtx tem = force_const_mem (mode, op);
3979 /* If we stripped a SUBREG or a PLUS above add it back. */
3980 if (plus != NULL_RTX)
3981 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3983 if (subreg != NULL_RTX)
3984 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3986 this_address_reloaded = 0;
3987 substed_operand[i] = recog_data.operand[i]
3988 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3989 0, insn, &this_address_reloaded);
3991 /* If the alternative accepts constant pool refs directly
3992 there will be no reload needed at all. */
3993 if (plus == NULL_RTX
3994 && subreg == NULL_RTX
3995 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3996 ? substed_operand[i]
3997 : NULL,
3998 recog_data.constraints[i],
3999 goal_alternative_number))
4000 goal_alternative_win[i] = 1;
4004 /* Record the values of the earlyclobber operands for the caller. */
4005 if (goal_earlyclobber)
4006 for (i = 0; i < noperands; i++)
4007 if (goal_alternative_earlyclobber[i])
4008 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4010 /* Now record reloads for all the operands that need them. */
4011 for (i = 0; i < noperands; i++)
4012 if (! goal_alternative_win[i])
4014 /* Operands that match previous ones have already been handled. */
4015 if (goal_alternative_matches[i] >= 0)
4017 /* Handle an operand with a nonoffsettable address
4018 appearing where an offsettable address will do
4019 by reloading the address into a base register.
4021 ??? We can also do this when the operand is a register and
4022 reg_equiv_mem is not offsettable, but this is a bit tricky,
4023 so we don't bother with it. It may not be worth doing. */
4024 else if (goal_alternative_matched[i] == -1
4025 && goal_alternative_offmemok[i]
4026 && MEM_P (recog_data.operand[i]))
4028 /* If the address to be reloaded is a VOIDmode constant,
4029 use the default address mode as mode of the reload register,
4030 as would have been done by find_reloads_address. */
4031 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4032 machine_mode address_mode;
4034 address_mode = get_address_mode (recog_data.operand[i]);
4035 operand_reloadnum[i]
4036 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4037 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4038 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4039 address_mode,
4040 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4041 rld[operand_reloadnum[i]].inc
4042 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4044 /* If this operand is an output, we will have made any
4045 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4046 now we are treating part of the operand as an input, so
4047 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4049 if (modified[i] == RELOAD_WRITE)
4051 for (j = 0; j < n_reloads; j++)
4053 if (rld[j].opnum == i)
4055 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4056 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4057 else if (rld[j].when_needed
4058 == RELOAD_FOR_OUTADDR_ADDRESS)
4059 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4064 else if (goal_alternative_matched[i] == -1)
4066 operand_reloadnum[i]
4067 = push_reload ((modified[i] != RELOAD_WRITE
4068 ? recog_data.operand[i] : 0),
4069 (modified[i] != RELOAD_READ
4070 ? recog_data.operand[i] : 0),
4071 (modified[i] != RELOAD_WRITE
4072 ? recog_data.operand_loc[i] : 0),
4073 (modified[i] != RELOAD_READ
4074 ? recog_data.operand_loc[i] : 0),
4075 (enum reg_class) goal_alternative[i],
4076 (modified[i] == RELOAD_WRITE
4077 ? VOIDmode : operand_mode[i]),
4078 (modified[i] == RELOAD_READ
4079 ? VOIDmode : operand_mode[i]),
4080 (insn_code_number < 0 ? 0
4081 : insn_data[insn_code_number].operand[i].strict_low),
4082 0, i, operand_type[i]);
4084 /* In a matching pair of operands, one must be input only
4085 and the other must be output only.
4086 Pass the input operand as IN and the other as OUT. */
4087 else if (modified[i] == RELOAD_READ
4088 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4090 operand_reloadnum[i]
4091 = push_reload (recog_data.operand[i],
4092 recog_data.operand[goal_alternative_matched[i]],
4093 recog_data.operand_loc[i],
4094 recog_data.operand_loc[goal_alternative_matched[i]],
4095 (enum reg_class) goal_alternative[i],
4096 operand_mode[i],
4097 operand_mode[goal_alternative_matched[i]],
4098 0, 0, i, RELOAD_OTHER);
4099 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4101 else if (modified[i] == RELOAD_WRITE
4102 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4104 operand_reloadnum[goal_alternative_matched[i]]
4105 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4106 recog_data.operand[i],
4107 recog_data.operand_loc[goal_alternative_matched[i]],
4108 recog_data.operand_loc[i],
4109 (enum reg_class) goal_alternative[i],
4110 operand_mode[goal_alternative_matched[i]],
4111 operand_mode[i],
4112 0, 0, i, RELOAD_OTHER);
4113 operand_reloadnum[i] = output_reloadnum;
4115 else
4117 gcc_assert (insn_code_number < 0);
4118 error_for_asm (insn, "inconsistent operand constraints "
4119 "in an %<asm%>");
4120 /* Avoid further trouble with this insn. */
4121 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4122 n_reloads = 0;
4123 return 0;
4126 else if (goal_alternative_matched[i] < 0
4127 && goal_alternative_matches[i] < 0
4128 && address_operand_reloaded[i] != 1
4129 && optimize)
4131 /* For each non-matching operand that's a MEM or a pseudo-register
4132 that didn't get a hard register, make an optional reload.
4133 This may get done even if the insn needs no reloads otherwise. */
4135 rtx operand = recog_data.operand[i];
4137 while (GET_CODE (operand) == SUBREG)
4138 operand = SUBREG_REG (operand);
4139 if ((MEM_P (operand)
4140 || (REG_P (operand)
4141 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4142 /* If this is only for an output, the optional reload would not
4143 actually cause us to use a register now, just note that
4144 something is stored here. */
4145 && (goal_alternative[i] != NO_REGS
4146 || modified[i] == RELOAD_WRITE)
4147 && ! no_input_reloads
4148 /* An optional output reload might allow to delete INSN later.
4149 We mustn't make in-out reloads on insns that are not permitted
4150 output reloads.
4151 If this is an asm, we can't delete it; we must not even call
4152 push_reload for an optional output reload in this case,
4153 because we can't be sure that the constraint allows a register,
4154 and push_reload verifies the constraints for asms. */
4155 && (modified[i] == RELOAD_READ
4156 || (! no_output_reloads && ! this_insn_is_asm)))
4157 operand_reloadnum[i]
4158 = push_reload ((modified[i] != RELOAD_WRITE
4159 ? recog_data.operand[i] : 0),
4160 (modified[i] != RELOAD_READ
4161 ? recog_data.operand[i] : 0),
4162 (modified[i] != RELOAD_WRITE
4163 ? recog_data.operand_loc[i] : 0),
4164 (modified[i] != RELOAD_READ
4165 ? recog_data.operand_loc[i] : 0),
4166 (enum reg_class) goal_alternative[i],
4167 (modified[i] == RELOAD_WRITE
4168 ? VOIDmode : operand_mode[i]),
4169 (modified[i] == RELOAD_READ
4170 ? VOIDmode : operand_mode[i]),
4171 (insn_code_number < 0 ? 0
4172 : insn_data[insn_code_number].operand[i].strict_low),
4173 1, i, operand_type[i]);
4174 /* If a memory reference remains (either as a MEM or a pseudo that
4175 did not get a hard register), yet we can't make an optional
4176 reload, check if this is actually a pseudo register reference;
4177 we then need to emit a USE and/or a CLOBBER so that reload
4178 inheritance will do the right thing. */
4179 else if (replace
4180 && (MEM_P (operand)
4181 || (REG_P (operand)
4182 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4183 && reg_renumber [REGNO (operand)] < 0)))
4185 operand = *recog_data.operand_loc[i];
4187 while (GET_CODE (operand) == SUBREG)
4188 operand = SUBREG_REG (operand);
4189 if (REG_P (operand))
4191 if (modified[i] != RELOAD_WRITE)
4192 /* We mark the USE with QImode so that we recognize
4193 it as one that can be safely deleted at the end
4194 of reload. */
4195 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4196 insn), QImode);
4197 if (modified[i] != RELOAD_READ)
4198 emit_insn_after (gen_clobber (operand), insn);
4202 else if (goal_alternative_matches[i] >= 0
4203 && goal_alternative_win[goal_alternative_matches[i]]
4204 && modified[i] == RELOAD_READ
4205 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4206 && ! no_input_reloads && ! no_output_reloads
4207 && optimize)
4209 /* Similarly, make an optional reload for a pair of matching
4210 objects that are in MEM or a pseudo that didn't get a hard reg. */
4212 rtx operand = recog_data.operand[i];
4214 while (GET_CODE (operand) == SUBREG)
4215 operand = SUBREG_REG (operand);
4216 if ((MEM_P (operand)
4217 || (REG_P (operand)
4218 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4219 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4220 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4221 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4222 recog_data.operand[i],
4223 recog_data.operand_loc[goal_alternative_matches[i]],
4224 recog_data.operand_loc[i],
4225 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4226 operand_mode[goal_alternative_matches[i]],
4227 operand_mode[i],
4228 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4231 /* Perform whatever substitutions on the operands we are supposed
4232 to make due to commutativity or replacement of registers
4233 with equivalent constants or memory slots. */
4235 for (i = 0; i < noperands; i++)
4237 /* We only do this on the last pass through reload, because it is
4238 possible for some data (like reg_equiv_address) to be changed during
4239 later passes. Moreover, we lose the opportunity to get a useful
4240 reload_{in,out}_reg when we do these replacements. */
4242 if (replace)
4244 rtx substitution = substed_operand[i];
4246 *recog_data.operand_loc[i] = substitution;
4248 /* If we're replacing an operand with a LABEL_REF, we need to
4249 make sure that there's a REG_LABEL_OPERAND note attached to
4250 this instruction. */
4251 if (GET_CODE (substitution) == LABEL_REF
4252 && !find_reg_note (insn, REG_LABEL_OPERAND,
4253 LABEL_REF_LABEL (substitution))
4254 /* For a JUMP_P, if it was a branch target it must have
4255 already been recorded as such. */
4256 && (!JUMP_P (insn)
4257 || !label_is_jump_target_p (LABEL_REF_LABEL (substitution),
4258 insn)))
4260 add_reg_note (insn, REG_LABEL_OPERAND,
4261 LABEL_REF_LABEL (substitution));
4262 if (LABEL_P (LABEL_REF_LABEL (substitution)))
4263 ++LABEL_NUSES (LABEL_REF_LABEL (substitution));
4267 else
4268 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4271 /* If this insn pattern contains any MATCH_DUP's, make sure that
4272 they will be substituted if the operands they match are substituted.
4273 Also do now any substitutions we already did on the operands.
4275 Don't do this if we aren't making replacements because we might be
4276 propagating things allocated by frame pointer elimination into places
4277 it doesn't expect. */
4279 if (insn_code_number >= 0 && replace)
4280 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4282 int opno = recog_data.dup_num[i];
4283 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4284 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4287 #if 0
4288 /* This loses because reloading of prior insns can invalidate the equivalence
4289 (or at least find_equiv_reg isn't smart enough to find it any more),
4290 causing this insn to need more reload regs than it needed before.
4291 It may be too late to make the reload regs available.
4292 Now this optimization is done safely in choose_reload_regs. */
4294 /* For each reload of a reg into some other class of reg,
4295 search for an existing equivalent reg (same value now) in the right class.
4296 We can use it as long as we don't need to change its contents. */
4297 for (i = 0; i < n_reloads; i++)
4298 if (rld[i].reg_rtx == 0
4299 && rld[i].in != 0
4300 && REG_P (rld[i].in)
4301 && rld[i].out == 0)
4303 rld[i].reg_rtx
4304 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4305 static_reload_reg_p, 0, rld[i].inmode);
4306 /* Prevent generation of insn to load the value
4307 because the one we found already has the value. */
4308 if (rld[i].reg_rtx)
4309 rld[i].in = rld[i].reg_rtx;
4311 #endif
4313 /* If we detected error and replaced asm instruction by USE, forget about the
4314 reloads. */
4315 if (GET_CODE (PATTERN (insn)) == USE
4316 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4317 n_reloads = 0;
4319 /* Perhaps an output reload can be combined with another
4320 to reduce needs by one. */
4321 if (!goal_earlyclobber)
4322 combine_reloads ();
4324 /* If we have a pair of reloads for parts of an address, they are reloading
4325 the same object, the operands themselves were not reloaded, and they
4326 are for two operands that are supposed to match, merge the reloads and
4327 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4329 for (i = 0; i < n_reloads; i++)
4331 int k;
4333 for (j = i + 1; j < n_reloads; j++)
4334 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4335 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4336 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4337 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4338 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4339 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4340 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4341 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4342 && rtx_equal_p (rld[i].in, rld[j].in)
4343 && (operand_reloadnum[rld[i].opnum] < 0
4344 || rld[operand_reloadnum[rld[i].opnum]].optional)
4345 && (operand_reloadnum[rld[j].opnum] < 0
4346 || rld[operand_reloadnum[rld[j].opnum]].optional)
4347 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4348 || (goal_alternative_matches[rld[j].opnum]
4349 == rld[i].opnum)))
4351 for (k = 0; k < n_replacements; k++)
4352 if (replacements[k].what == j)
4353 replacements[k].what = i;
4355 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4356 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4357 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4358 else
4359 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4360 rld[j].in = 0;
4364 /* Scan all the reloads and update their type.
4365 If a reload is for the address of an operand and we didn't reload
4366 that operand, change the type. Similarly, change the operand number
4367 of a reload when two operands match. If a reload is optional, treat it
4368 as though the operand isn't reloaded.
4370 ??? This latter case is somewhat odd because if we do the optional
4371 reload, it means the object is hanging around. Thus we need only
4372 do the address reload if the optional reload was NOT done.
4374 Change secondary reloads to be the address type of their operand, not
4375 the normal type.
4377 If an operand's reload is now RELOAD_OTHER, change any
4378 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4379 RELOAD_FOR_OTHER_ADDRESS. */
4381 for (i = 0; i < n_reloads; i++)
4383 if (rld[i].secondary_p
4384 && rld[i].when_needed == operand_type[rld[i].opnum])
4385 rld[i].when_needed = address_type[rld[i].opnum];
4387 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4388 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4389 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4390 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4391 && (operand_reloadnum[rld[i].opnum] < 0
4392 || rld[operand_reloadnum[rld[i].opnum]].optional))
4394 /* If we have a secondary reload to go along with this reload,
4395 change its type to RELOAD_FOR_OPADDR_ADDR. */
4397 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4398 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4399 && rld[i].secondary_in_reload != -1)
4401 int secondary_in_reload = rld[i].secondary_in_reload;
4403 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4405 /* If there's a tertiary reload we have to change it also. */
4406 if (secondary_in_reload > 0
4407 && rld[secondary_in_reload].secondary_in_reload != -1)
4408 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4409 = RELOAD_FOR_OPADDR_ADDR;
4412 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4413 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4414 && rld[i].secondary_out_reload != -1)
4416 int secondary_out_reload = rld[i].secondary_out_reload;
4418 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4420 /* If there's a tertiary reload we have to change it also. */
4421 if (secondary_out_reload
4422 && rld[secondary_out_reload].secondary_out_reload != -1)
4423 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4424 = RELOAD_FOR_OPADDR_ADDR;
4427 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4428 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4429 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4430 else
4431 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4434 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4435 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4436 && operand_reloadnum[rld[i].opnum] >= 0
4437 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4438 == RELOAD_OTHER))
4439 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4441 if (goal_alternative_matches[rld[i].opnum] >= 0)
4442 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4445 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4446 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4447 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4449 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4450 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4451 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4452 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4453 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4454 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4455 This is complicated by the fact that a single operand can have more
4456 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4457 choose_reload_regs without affecting code quality, and cases that
4458 actually fail are extremely rare, so it turns out to be better to fix
4459 the problem here by not generating cases that choose_reload_regs will
4460 fail for. */
4461 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4462 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4463 a single operand.
4464 We can reduce the register pressure by exploiting that a
4465 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4466 does not conflict with any of them, if it is only used for the first of
4467 the RELOAD_FOR_X_ADDRESS reloads. */
4469 int first_op_addr_num = -2;
4470 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4471 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4472 int need_change = 0;
4473 /* We use last_op_addr_reload and the contents of the above arrays
4474 first as flags - -2 means no instance encountered, -1 means exactly
4475 one instance encountered.
4476 If more than one instance has been encountered, we store the reload
4477 number of the first reload of the kind in question; reload numbers
4478 are known to be non-negative. */
4479 for (i = 0; i < noperands; i++)
4480 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4481 for (i = n_reloads - 1; i >= 0; i--)
4483 switch (rld[i].when_needed)
4485 case RELOAD_FOR_OPERAND_ADDRESS:
4486 if (++first_op_addr_num >= 0)
4488 first_op_addr_num = i;
4489 need_change = 1;
4491 break;
4492 case RELOAD_FOR_INPUT_ADDRESS:
4493 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4495 first_inpaddr_num[rld[i].opnum] = i;
4496 need_change = 1;
4498 break;
4499 case RELOAD_FOR_OUTPUT_ADDRESS:
4500 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4502 first_outpaddr_num[rld[i].opnum] = i;
4503 need_change = 1;
4505 break;
4506 default:
4507 break;
4511 if (need_change)
4513 for (i = 0; i < n_reloads; i++)
4515 int first_num;
4516 enum reload_type type;
4518 switch (rld[i].when_needed)
4520 case RELOAD_FOR_OPADDR_ADDR:
4521 first_num = first_op_addr_num;
4522 type = RELOAD_FOR_OPERAND_ADDRESS;
4523 break;
4524 case RELOAD_FOR_INPADDR_ADDRESS:
4525 first_num = first_inpaddr_num[rld[i].opnum];
4526 type = RELOAD_FOR_INPUT_ADDRESS;
4527 break;
4528 case RELOAD_FOR_OUTADDR_ADDRESS:
4529 first_num = first_outpaddr_num[rld[i].opnum];
4530 type = RELOAD_FOR_OUTPUT_ADDRESS;
4531 break;
4532 default:
4533 continue;
4535 if (first_num < 0)
4536 continue;
4537 else if (i > first_num)
4538 rld[i].when_needed = type;
4539 else
4541 /* Check if the only TYPE reload that uses reload I is
4542 reload FIRST_NUM. */
4543 for (j = n_reloads - 1; j > first_num; j--)
4545 if (rld[j].when_needed == type
4546 && (rld[i].secondary_p
4547 ? rld[j].secondary_in_reload == i
4548 : reg_mentioned_p (rld[i].in, rld[j].in)))
4550 rld[i].when_needed = type;
4551 break;
4559 /* See if we have any reloads that are now allowed to be merged
4560 because we've changed when the reload is needed to
4561 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4562 check for the most common cases. */
4564 for (i = 0; i < n_reloads; i++)
4565 if (rld[i].in != 0 && rld[i].out == 0
4566 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4567 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4568 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4569 for (j = 0; j < n_reloads; j++)
4570 if (i != j && rld[j].in != 0 && rld[j].out == 0
4571 && rld[j].when_needed == rld[i].when_needed
4572 && MATCHES (rld[i].in, rld[j].in)
4573 && rld[i].rclass == rld[j].rclass
4574 && !rld[i].nocombine && !rld[j].nocombine
4575 && rld[i].reg_rtx == rld[j].reg_rtx)
4577 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4578 transfer_replacements (i, j);
4579 rld[j].in = 0;
4582 #ifdef HAVE_cc0
4583 /* If we made any reloads for addresses, see if they violate a
4584 "no input reloads" requirement for this insn. But loads that we
4585 do after the insn (such as for output addresses) are fine. */
4586 if (no_input_reloads)
4587 for (i = 0; i < n_reloads; i++)
4588 gcc_assert (rld[i].in == 0
4589 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4590 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4591 #endif
4593 /* Compute reload_mode and reload_nregs. */
4594 for (i = 0; i < n_reloads; i++)
4596 rld[i].mode
4597 = (rld[i].inmode == VOIDmode
4598 || (GET_MODE_SIZE (rld[i].outmode)
4599 > GET_MODE_SIZE (rld[i].inmode)))
4600 ? rld[i].outmode : rld[i].inmode;
4602 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4605 /* Special case a simple move with an input reload and a
4606 destination of a hard reg, if the hard reg is ok, use it. */
4607 for (i = 0; i < n_reloads; i++)
4608 if (rld[i].when_needed == RELOAD_FOR_INPUT
4609 && GET_CODE (PATTERN (insn)) == SET
4610 && REG_P (SET_DEST (PATTERN (insn)))
4611 && (SET_SRC (PATTERN (insn)) == rld[i].in
4612 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4613 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4615 rtx dest = SET_DEST (PATTERN (insn));
4616 unsigned int regno = REGNO (dest);
4618 if (regno < FIRST_PSEUDO_REGISTER
4619 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4620 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4622 int nr = hard_regno_nregs[regno][rld[i].mode];
4623 int ok = 1, nri;
4625 for (nri = 1; nri < nr; nri ++)
4626 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4628 ok = 0;
4629 break;
4632 if (ok)
4633 rld[i].reg_rtx = dest;
4637 return retval;
4640 /* Return true if alternative number ALTNUM in constraint-string
4641 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4642 MEM gives the reference if it didn't need any reloads, otherwise it
4643 is null. */
4645 static bool
4646 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4647 const char *constraint, int altnum)
4649 int c;
4651 /* Skip alternatives before the one requested. */
4652 while (altnum > 0)
4654 while (*constraint++ != ',')
4656 altnum--;
4658 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4659 If one of them is present, this alternative accepts the result of
4660 passing a constant-pool reference through find_reloads_toplev.
4662 The same is true of extra memory constraints if the address
4663 was reloaded into a register. However, the target may elect
4664 to disallow the original constant address, forcing it to be
4665 reloaded into a register instead. */
4666 for (; (c = *constraint) && c != ',' && c != '#';
4667 constraint += CONSTRAINT_LEN (c, constraint))
4669 enum constraint_num cn = lookup_constraint (constraint);
4670 if (insn_extra_memory_constraint (cn)
4671 && (mem == NULL || constraint_satisfied_p (mem, cn)))
4672 return true;
4674 return false;
4677 /* Scan X for memory references and scan the addresses for reloading.
4678 Also checks for references to "constant" regs that we want to eliminate
4679 and replaces them with the values they stand for.
4680 We may alter X destructively if it contains a reference to such.
4681 If X is just a constant reg, we return the equivalent value
4682 instead of X.
4684 IND_LEVELS says how many levels of indirect addressing this machine
4685 supports.
4687 OPNUM and TYPE identify the purpose of the reload.
4689 IS_SET_DEST is true if X is the destination of a SET, which is not
4690 appropriate to be replaced by a constant.
4692 INSN, if nonzero, is the insn in which we do the reload. It is used
4693 to determine if we may generate output reloads, and where to put USEs
4694 for pseudos that we have to replace with stack slots.
4696 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4697 result of find_reloads_address. */
4699 static rtx
4700 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4701 int ind_levels, int is_set_dest, rtx_insn *insn,
4702 int *address_reloaded)
4704 RTX_CODE code = GET_CODE (x);
4706 const char *fmt = GET_RTX_FORMAT (code);
4707 int i;
4708 int copied;
4710 if (code == REG)
4712 /* This code is duplicated for speed in find_reloads. */
4713 int regno = REGNO (x);
4714 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4715 x = reg_equiv_constant (regno);
4716 #if 0
4717 /* This creates (subreg (mem...)) which would cause an unnecessary
4718 reload of the mem. */
4719 else if (reg_equiv_mem (regno) != 0)
4720 x = reg_equiv_mem (regno);
4721 #endif
4722 else if (reg_equiv_memory_loc (regno)
4723 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4725 rtx mem = make_memloc (x, regno);
4726 if (reg_equiv_address (regno)
4727 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4729 /* If this is not a toplevel operand, find_reloads doesn't see
4730 this substitution. We have to emit a USE of the pseudo so
4731 that delete_output_reload can see it. */
4732 if (replace_reloads && recog_data.operand[opnum] != x)
4733 /* We mark the USE with QImode so that we recognize it
4734 as one that can be safely deleted at the end of
4735 reload. */
4736 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4737 QImode);
4738 x = mem;
4739 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4740 opnum, type, ind_levels, insn);
4741 if (!rtx_equal_p (x, mem))
4742 push_reg_equiv_alt_mem (regno, x);
4743 if (address_reloaded)
4744 *address_reloaded = i;
4747 return x;
4749 if (code == MEM)
4751 rtx tem = x;
4753 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4754 opnum, type, ind_levels, insn);
4755 if (address_reloaded)
4756 *address_reloaded = i;
4758 return tem;
4761 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4763 /* Check for SUBREG containing a REG that's equivalent to a
4764 constant. If the constant has a known value, truncate it
4765 right now. Similarly if we are extracting a single-word of a
4766 multi-word constant. If the constant is symbolic, allow it
4767 to be substituted normally. push_reload will strip the
4768 subreg later. The constant must not be VOIDmode, because we
4769 will lose the mode of the register (this should never happen
4770 because one of the cases above should handle it). */
4772 int regno = REGNO (SUBREG_REG (x));
4773 rtx tem;
4775 if (regno >= FIRST_PSEUDO_REGISTER
4776 && reg_renumber[regno] < 0
4777 && reg_equiv_constant (regno) != 0)
4779 tem =
4780 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4781 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4782 gcc_assert (tem);
4783 if (CONSTANT_P (tem)
4784 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4786 tem = force_const_mem (GET_MODE (x), tem);
4787 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4788 &XEXP (tem, 0), opnum, type,
4789 ind_levels, insn);
4790 if (address_reloaded)
4791 *address_reloaded = i;
4793 return tem;
4796 /* If the subreg contains a reg that will be converted to a mem,
4797 attempt to convert the whole subreg to a (narrower or wider)
4798 memory reference instead. If this succeeds, we're done --
4799 otherwise fall through to check whether the inner reg still
4800 needs address reloads anyway. */
4802 if (regno >= FIRST_PSEUDO_REGISTER
4803 && reg_equiv_memory_loc (regno) != 0)
4805 tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4806 insn, address_reloaded);
4807 if (tem)
4808 return tem;
4812 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4814 if (fmt[i] == 'e')
4816 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4817 ind_levels, is_set_dest, insn,
4818 address_reloaded);
4819 /* If we have replaced a reg with it's equivalent memory loc -
4820 that can still be handled here e.g. if it's in a paradoxical
4821 subreg - we must make the change in a copy, rather than using
4822 a destructive change. This way, find_reloads can still elect
4823 not to do the change. */
4824 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4826 x = shallow_copy_rtx (x);
4827 copied = 1;
4829 XEXP (x, i) = new_part;
4832 return x;
4835 /* Return a mem ref for the memory equivalent of reg REGNO.
4836 This mem ref is not shared with anything. */
4838 static rtx
4839 make_memloc (rtx ad, int regno)
4841 /* We must rerun eliminate_regs, in case the elimination
4842 offsets have changed. */
4843 rtx tem
4844 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4847 /* If TEM might contain a pseudo, we must copy it to avoid
4848 modifying it when we do the substitution for the reload. */
4849 if (rtx_varies_p (tem, 0))
4850 tem = copy_rtx (tem);
4852 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4853 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4855 /* Copy the result if it's still the same as the equivalence, to avoid
4856 modifying it when we do the substitution for the reload. */
4857 if (tem == reg_equiv_memory_loc (regno))
4858 tem = copy_rtx (tem);
4859 return tem;
4862 /* Returns true if AD could be turned into a valid memory reference
4863 to mode MODE in address space AS by reloading the part pointed to
4864 by PART into a register. */
4866 static int
4867 maybe_memory_address_addr_space_p (machine_mode mode, rtx ad,
4868 addr_space_t as, rtx *part)
4870 int retv;
4871 rtx tem = *part;
4872 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4874 *part = reg;
4875 retv = memory_address_addr_space_p (mode, ad, as);
4876 *part = tem;
4878 return retv;
4881 /* Record all reloads needed for handling memory address AD
4882 which appears in *LOC in a memory reference to mode MODE
4883 which itself is found in location *MEMREFLOC.
4884 Note that we take shortcuts assuming that no multi-reg machine mode
4885 occurs as part of an address.
4887 OPNUM and TYPE specify the purpose of this reload.
4889 IND_LEVELS says how many levels of indirect addressing this machine
4890 supports.
4892 INSN, if nonzero, is the insn in which we do the reload. It is used
4893 to determine if we may generate output reloads, and where to put USEs
4894 for pseudos that we have to replace with stack slots.
4896 Value is one if this address is reloaded or replaced as a whole; it is
4897 zero if the top level of this address was not reloaded or replaced, and
4898 it is -1 if it may or may not have been reloaded or replaced.
4900 Note that there is no verification that the address will be valid after
4901 this routine does its work. Instead, we rely on the fact that the address
4902 was valid when reload started. So we need only undo things that reload
4903 could have broken. These are wrong register types, pseudos not allocated
4904 to a hard register, and frame pointer elimination. */
4906 static int
4907 find_reloads_address (machine_mode mode, rtx *memrefloc, rtx ad,
4908 rtx *loc, int opnum, enum reload_type type,
4909 int ind_levels, rtx_insn *insn)
4911 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4912 : ADDR_SPACE_GENERIC;
4913 int regno;
4914 int removed_and = 0;
4915 int op_index;
4916 rtx tem;
4918 /* If the address is a register, see if it is a legitimate address and
4919 reload if not. We first handle the cases where we need not reload
4920 or where we must reload in a non-standard way. */
4922 if (REG_P (ad))
4924 regno = REGNO (ad);
4926 if (reg_equiv_constant (regno) != 0)
4928 find_reloads_address_part (reg_equiv_constant (regno), loc,
4929 base_reg_class (mode, as, MEM, SCRATCH),
4930 GET_MODE (ad), opnum, type, ind_levels);
4931 return 1;
4934 tem = reg_equiv_memory_loc (regno);
4935 if (tem != 0)
4937 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4939 tem = make_memloc (ad, regno);
4940 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4941 XEXP (tem, 0),
4942 MEM_ADDR_SPACE (tem)))
4944 rtx orig = tem;
4946 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4947 &XEXP (tem, 0), opnum,
4948 ADDR_TYPE (type), ind_levels, insn);
4949 if (!rtx_equal_p (tem, orig))
4950 push_reg_equiv_alt_mem (regno, tem);
4952 /* We can avoid a reload if the register's equivalent memory
4953 expression is valid as an indirect memory address.
4954 But not all addresses are valid in a mem used as an indirect
4955 address: only reg or reg+constant. */
4957 if (ind_levels > 0
4958 && strict_memory_address_addr_space_p (mode, tem, as)
4959 && (REG_P (XEXP (tem, 0))
4960 || (GET_CODE (XEXP (tem, 0)) == PLUS
4961 && REG_P (XEXP (XEXP (tem, 0), 0))
4962 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4964 /* TEM is not the same as what we'll be replacing the
4965 pseudo with after reload, put a USE in front of INSN
4966 in the final reload pass. */
4967 if (replace_reloads
4968 && num_not_at_initial_offset
4969 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4971 *loc = tem;
4972 /* We mark the USE with QImode so that we
4973 recognize it as one that can be safely
4974 deleted at the end of reload. */
4975 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4976 insn), QImode);
4978 /* This doesn't really count as replacing the address
4979 as a whole, since it is still a memory access. */
4981 return 0;
4983 ad = tem;
4987 /* The only remaining case where we can avoid a reload is if this is a
4988 hard register that is valid as a base register and which is not the
4989 subject of a CLOBBER in this insn. */
4991 else if (regno < FIRST_PSEUDO_REGISTER
4992 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4993 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4994 return 0;
4996 /* If we do not have one of the cases above, we must do the reload. */
4997 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4998 base_reg_class (mode, as, MEM, SCRATCH),
4999 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
5000 return 1;
5003 if (strict_memory_address_addr_space_p (mode, ad, as))
5005 /* The address appears valid, so reloads are not needed.
5006 But the address may contain an eliminable register.
5007 This can happen because a machine with indirect addressing
5008 may consider a pseudo register by itself a valid address even when
5009 it has failed to get a hard reg.
5010 So do a tree-walk to find and eliminate all such regs. */
5012 /* But first quickly dispose of a common case. */
5013 if (GET_CODE (ad) == PLUS
5014 && CONST_INT_P (XEXP (ad, 1))
5015 && REG_P (XEXP (ad, 0))
5016 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
5017 return 0;
5019 subst_reg_equivs_changed = 0;
5020 *loc = subst_reg_equivs (ad, insn);
5022 if (! subst_reg_equivs_changed)
5023 return 0;
5025 /* Check result for validity after substitution. */
5026 if (strict_memory_address_addr_space_p (mode, ad, as))
5027 return 0;
5030 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5033 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5035 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5036 ind_levels, win);
5038 break;
5039 win:
5040 *memrefloc = copy_rtx (*memrefloc);
5041 XEXP (*memrefloc, 0) = ad;
5042 move_replacements (&ad, &XEXP (*memrefloc, 0));
5043 return -1;
5045 while (0);
5046 #endif
5048 /* The address is not valid. We have to figure out why. First see if
5049 we have an outer AND and remove it if so. Then analyze what's inside. */
5051 if (GET_CODE (ad) == AND)
5053 removed_and = 1;
5054 loc = &XEXP (ad, 0);
5055 ad = *loc;
5058 /* One possibility for why the address is invalid is that it is itself
5059 a MEM. This can happen when the frame pointer is being eliminated, a
5060 pseudo is not allocated to a hard register, and the offset between the
5061 frame and stack pointers is not its initial value. In that case the
5062 pseudo will have been replaced by a MEM referring to the
5063 stack pointer. */
5064 if (MEM_P (ad))
5066 /* First ensure that the address in this MEM is valid. Then, unless
5067 indirect addresses are valid, reload the MEM into a register. */
5068 tem = ad;
5069 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5070 opnum, ADDR_TYPE (type),
5071 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5073 /* If tem was changed, then we must create a new memory reference to
5074 hold it and store it back into memrefloc. */
5075 if (tem != ad && memrefloc)
5077 *memrefloc = copy_rtx (*memrefloc);
5078 copy_replacements (tem, XEXP (*memrefloc, 0));
5079 loc = &XEXP (*memrefloc, 0);
5080 if (removed_and)
5081 loc = &XEXP (*loc, 0);
5084 /* Check similar cases as for indirect addresses as above except
5085 that we can allow pseudos and a MEM since they should have been
5086 taken care of above. */
5088 if (ind_levels == 0
5089 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5090 || MEM_P (XEXP (tem, 0))
5091 || ! (REG_P (XEXP (tem, 0))
5092 || (GET_CODE (XEXP (tem, 0)) == PLUS
5093 && REG_P (XEXP (XEXP (tem, 0), 0))
5094 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5096 /* Must use TEM here, not AD, since it is the one that will
5097 have any subexpressions reloaded, if needed. */
5098 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5099 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5100 VOIDmode, 0,
5101 0, opnum, type);
5102 return ! removed_and;
5104 else
5105 return 0;
5108 /* If we have address of a stack slot but it's not valid because the
5109 displacement is too large, compute the sum in a register.
5110 Handle all base registers here, not just fp/ap/sp, because on some
5111 targets (namely SH) we can also get too large displacements from
5112 big-endian corrections. */
5113 else if (GET_CODE (ad) == PLUS
5114 && REG_P (XEXP (ad, 0))
5115 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5116 && CONST_INT_P (XEXP (ad, 1))
5117 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5118 CONST_INT)
5119 /* Similarly, if we were to reload the base register and the
5120 mem+offset address is still invalid, then we want to reload
5121 the whole address, not just the base register. */
5122 || ! maybe_memory_address_addr_space_p
5123 (mode, ad, as, &(XEXP (ad, 0)))))
5126 /* Unshare the MEM rtx so we can safely alter it. */
5127 if (memrefloc)
5129 *memrefloc = copy_rtx (*memrefloc);
5130 loc = &XEXP (*memrefloc, 0);
5131 if (removed_and)
5132 loc = &XEXP (*loc, 0);
5135 if (double_reg_address_ok
5136 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5137 PLUS, CONST_INT))
5139 /* Unshare the sum as well. */
5140 *loc = ad = copy_rtx (ad);
5142 /* Reload the displacement into an index reg.
5143 We assume the frame pointer or arg pointer is a base reg. */
5144 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5145 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5146 type, ind_levels);
5147 return 0;
5149 else
5151 /* If the sum of two regs is not necessarily valid,
5152 reload the sum into a base reg.
5153 That will at least work. */
5154 find_reloads_address_part (ad, loc,
5155 base_reg_class (mode, as, MEM, SCRATCH),
5156 GET_MODE (ad), opnum, type, ind_levels);
5158 return ! removed_and;
5161 /* If we have an indexed stack slot, there are three possible reasons why
5162 it might be invalid: The index might need to be reloaded, the address
5163 might have been made by frame pointer elimination and hence have a
5164 constant out of range, or both reasons might apply.
5166 We can easily check for an index needing reload, but even if that is the
5167 case, we might also have an invalid constant. To avoid making the
5168 conservative assumption and requiring two reloads, we see if this address
5169 is valid when not interpreted strictly. If it is, the only problem is
5170 that the index needs a reload and find_reloads_address_1 will take care
5171 of it.
5173 Handle all base registers here, not just fp/ap/sp, because on some
5174 targets (namely SPARC) we can also get invalid addresses from preventive
5175 subreg big-endian corrections made by find_reloads_toplev. We
5176 can also get expressions involving LO_SUM (rather than PLUS) from
5177 find_reloads_subreg_address.
5179 If we decide to do something, it must be that `double_reg_address_ok'
5180 is true. We generate a reload of the base register + constant and
5181 rework the sum so that the reload register will be added to the index.
5182 This is safe because we know the address isn't shared.
5184 We check for the base register as both the first and second operand of
5185 the innermost PLUS and/or LO_SUM. */
5187 for (op_index = 0; op_index < 2; ++op_index)
5189 rtx operand, addend;
5190 enum rtx_code inner_code;
5192 if (GET_CODE (ad) != PLUS)
5193 continue;
5195 inner_code = GET_CODE (XEXP (ad, 0));
5196 if (!(GET_CODE (ad) == PLUS
5197 && CONST_INT_P (XEXP (ad, 1))
5198 && (inner_code == PLUS || inner_code == LO_SUM)))
5199 continue;
5201 operand = XEXP (XEXP (ad, 0), op_index);
5202 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5203 continue;
5205 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5207 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5208 GET_CODE (addend))
5209 || operand == frame_pointer_rtx
5210 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5211 || operand == hard_frame_pointer_rtx
5212 #endif
5213 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5214 || operand == arg_pointer_rtx
5215 #endif
5216 || operand == stack_pointer_rtx)
5217 && ! maybe_memory_address_addr_space_p
5218 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5220 rtx offset_reg;
5221 enum reg_class cls;
5223 offset_reg = plus_constant (GET_MODE (ad), operand,
5224 INTVAL (XEXP (ad, 1)));
5226 /* Form the adjusted address. */
5227 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5228 ad = gen_rtx_PLUS (GET_MODE (ad),
5229 op_index == 0 ? offset_reg : addend,
5230 op_index == 0 ? addend : offset_reg);
5231 else
5232 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5233 op_index == 0 ? offset_reg : addend,
5234 op_index == 0 ? addend : offset_reg);
5235 *loc = ad;
5237 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5238 find_reloads_address_part (XEXP (ad, op_index),
5239 &XEXP (ad, op_index), cls,
5240 GET_MODE (ad), opnum, type, ind_levels);
5241 find_reloads_address_1 (mode, as,
5242 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5243 GET_CODE (XEXP (ad, op_index)),
5244 &XEXP (ad, 1 - op_index), opnum,
5245 type, 0, insn);
5247 return 0;
5251 /* See if address becomes valid when an eliminable register
5252 in a sum is replaced. */
5254 tem = ad;
5255 if (GET_CODE (ad) == PLUS)
5256 tem = subst_indexed_address (ad);
5257 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5259 /* Ok, we win that way. Replace any additional eliminable
5260 registers. */
5262 subst_reg_equivs_changed = 0;
5263 tem = subst_reg_equivs (tem, insn);
5265 /* Make sure that didn't make the address invalid again. */
5267 if (! subst_reg_equivs_changed
5268 || strict_memory_address_addr_space_p (mode, tem, as))
5270 *loc = tem;
5271 return 0;
5275 /* If constants aren't valid addresses, reload the constant address
5276 into a register. */
5277 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5279 machine_mode address_mode = GET_MODE (ad);
5280 if (address_mode == VOIDmode)
5281 address_mode = targetm.addr_space.address_mode (as);
5283 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5284 Unshare it so we can safely alter it. */
5285 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5286 && CONSTANT_POOL_ADDRESS_P (ad))
5288 *memrefloc = copy_rtx (*memrefloc);
5289 loc = &XEXP (*memrefloc, 0);
5290 if (removed_and)
5291 loc = &XEXP (*loc, 0);
5294 find_reloads_address_part (ad, loc,
5295 base_reg_class (mode, as, MEM, SCRATCH),
5296 address_mode, opnum, type, ind_levels);
5297 return ! removed_and;
5300 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5301 opnum, type, ind_levels, insn);
5304 /* Find all pseudo regs appearing in AD
5305 that are eliminable in favor of equivalent values
5306 and do not have hard regs; replace them by their equivalents.
5307 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5308 front of it for pseudos that we have to replace with stack slots. */
5310 static rtx
5311 subst_reg_equivs (rtx ad, rtx_insn *insn)
5313 RTX_CODE code = GET_CODE (ad);
5314 int i;
5315 const char *fmt;
5317 switch (code)
5319 case HIGH:
5320 case CONST:
5321 CASE_CONST_ANY:
5322 case SYMBOL_REF:
5323 case LABEL_REF:
5324 case PC:
5325 case CC0:
5326 return ad;
5328 case REG:
5330 int regno = REGNO (ad);
5332 if (reg_equiv_constant (regno) != 0)
5334 subst_reg_equivs_changed = 1;
5335 return reg_equiv_constant (regno);
5337 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5339 rtx mem = make_memloc (ad, regno);
5340 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5342 subst_reg_equivs_changed = 1;
5343 /* We mark the USE with QImode so that we recognize it
5344 as one that can be safely deleted at the end of
5345 reload. */
5346 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5347 QImode);
5348 return mem;
5352 return ad;
5354 case PLUS:
5355 /* Quickly dispose of a common case. */
5356 if (XEXP (ad, 0) == frame_pointer_rtx
5357 && CONST_INT_P (XEXP (ad, 1)))
5358 return ad;
5359 break;
5361 default:
5362 break;
5365 fmt = GET_RTX_FORMAT (code);
5366 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5367 if (fmt[i] == 'e')
5368 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5369 return ad;
5372 /* Compute the sum of X and Y, making canonicalizations assumed in an
5373 address, namely: sum constant integers, surround the sum of two
5374 constants with a CONST, put the constant as the second operand, and
5375 group the constant on the outermost sum.
5377 This routine assumes both inputs are already in canonical form. */
5380 form_sum (machine_mode mode, rtx x, rtx y)
5382 rtx tem;
5384 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5385 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5387 if (CONST_INT_P (x))
5388 return plus_constant (mode, y, INTVAL (x));
5389 else if (CONST_INT_P (y))
5390 return plus_constant (mode, x, INTVAL (y));
5391 else if (CONSTANT_P (x))
5392 tem = x, x = y, y = tem;
5394 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5395 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5397 /* Note that if the operands of Y are specified in the opposite
5398 order in the recursive calls below, infinite recursion will occur. */
5399 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5400 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5402 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5403 constant will have been placed second. */
5404 if (CONSTANT_P (x) && CONSTANT_P (y))
5406 if (GET_CODE (x) == CONST)
5407 x = XEXP (x, 0);
5408 if (GET_CODE (y) == CONST)
5409 y = XEXP (y, 0);
5411 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5414 return gen_rtx_PLUS (mode, x, y);
5417 /* If ADDR is a sum containing a pseudo register that should be
5418 replaced with a constant (from reg_equiv_constant),
5419 return the result of doing so, and also apply the associative
5420 law so that the result is more likely to be a valid address.
5421 (But it is not guaranteed to be one.)
5423 Note that at most one register is replaced, even if more are
5424 replaceable. Also, we try to put the result into a canonical form
5425 so it is more likely to be a valid address.
5427 In all other cases, return ADDR. */
5429 static rtx
5430 subst_indexed_address (rtx addr)
5432 rtx op0 = 0, op1 = 0, op2 = 0;
5433 rtx tem;
5434 int regno;
5436 if (GET_CODE (addr) == PLUS)
5438 /* Try to find a register to replace. */
5439 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5440 if (REG_P (op0)
5441 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5442 && reg_renumber[regno] < 0
5443 && reg_equiv_constant (regno) != 0)
5444 op0 = reg_equiv_constant (regno);
5445 else if (REG_P (op1)
5446 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5447 && reg_renumber[regno] < 0
5448 && reg_equiv_constant (regno) != 0)
5449 op1 = reg_equiv_constant (regno);
5450 else if (GET_CODE (op0) == PLUS
5451 && (tem = subst_indexed_address (op0)) != op0)
5452 op0 = tem;
5453 else if (GET_CODE (op1) == PLUS
5454 && (tem = subst_indexed_address (op1)) != op1)
5455 op1 = tem;
5456 else
5457 return addr;
5459 /* Pick out up to three things to add. */
5460 if (GET_CODE (op1) == PLUS)
5461 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5462 else if (GET_CODE (op0) == PLUS)
5463 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5465 /* Compute the sum. */
5466 if (op2 != 0)
5467 op1 = form_sum (GET_MODE (addr), op1, op2);
5468 if (op1 != 0)
5469 op0 = form_sum (GET_MODE (addr), op0, op1);
5471 return op0;
5473 return addr;
5476 /* Update the REG_INC notes for an insn. It updates all REG_INC
5477 notes for the instruction which refer to REGNO the to refer
5478 to the reload number.
5480 INSN is the insn for which any REG_INC notes need updating.
5482 REGNO is the register number which has been reloaded.
5484 RELOADNUM is the reload number. */
5486 static void
5487 update_auto_inc_notes (rtx_insn *insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5488 int reloadnum ATTRIBUTE_UNUSED)
5490 #ifdef AUTO_INC_DEC
5491 rtx link;
5493 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5494 if (REG_NOTE_KIND (link) == REG_INC
5495 && (int) REGNO (XEXP (link, 0)) == regno)
5496 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5497 #endif
5500 /* Record the pseudo registers we must reload into hard registers in a
5501 subexpression of a would-be memory address, X referring to a value
5502 in mode MODE. (This function is not called if the address we find
5503 is strictly valid.)
5505 CONTEXT = 1 means we are considering regs as index regs,
5506 = 0 means we are considering them as base regs.
5507 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5508 or an autoinc code.
5509 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5510 is the code of the index part of the address. Otherwise, pass SCRATCH
5511 for this argument.
5512 OPNUM and TYPE specify the purpose of any reloads made.
5514 IND_LEVELS says how many levels of indirect addressing are
5515 supported at this point in the address.
5517 INSN, if nonzero, is the insn in which we do the reload. It is used
5518 to determine if we may generate output reloads.
5520 We return nonzero if X, as a whole, is reloaded or replaced. */
5522 /* Note that we take shortcuts assuming that no multi-reg machine mode
5523 occurs as part of an address.
5524 Also, this is not fully machine-customizable; it works for machines
5525 such as VAXen and 68000's and 32000's, but other possible machines
5526 could have addressing modes that this does not handle right.
5527 If you add push_reload calls here, you need to make sure gen_reload
5528 handles those cases gracefully. */
5530 static int
5531 find_reloads_address_1 (machine_mode mode, addr_space_t as,
5532 rtx x, int context,
5533 enum rtx_code outer_code, enum rtx_code index_code,
5534 rtx *loc, int opnum, enum reload_type type,
5535 int ind_levels, rtx_insn *insn)
5537 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5538 ((CONTEXT) == 0 \
5539 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5540 : REGNO_OK_FOR_INDEX_P (REGNO))
5542 enum reg_class context_reg_class;
5543 RTX_CODE code = GET_CODE (x);
5544 bool reloaded_inner_of_autoinc = false;
5546 if (context == 1)
5547 context_reg_class = INDEX_REG_CLASS;
5548 else
5549 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5551 switch (code)
5553 case PLUS:
5555 rtx orig_op0 = XEXP (x, 0);
5556 rtx orig_op1 = XEXP (x, 1);
5557 RTX_CODE code0 = GET_CODE (orig_op0);
5558 RTX_CODE code1 = GET_CODE (orig_op1);
5559 rtx op0 = orig_op0;
5560 rtx op1 = orig_op1;
5562 if (GET_CODE (op0) == SUBREG)
5564 op0 = SUBREG_REG (op0);
5565 code0 = GET_CODE (op0);
5566 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5567 op0 = gen_rtx_REG (word_mode,
5568 (REGNO (op0) +
5569 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5570 GET_MODE (SUBREG_REG (orig_op0)),
5571 SUBREG_BYTE (orig_op0),
5572 GET_MODE (orig_op0))));
5575 if (GET_CODE (op1) == SUBREG)
5577 op1 = SUBREG_REG (op1);
5578 code1 = GET_CODE (op1);
5579 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5580 /* ??? Why is this given op1's mode and above for
5581 ??? op0 SUBREGs we use word_mode? */
5582 op1 = gen_rtx_REG (GET_MODE (op1),
5583 (REGNO (op1) +
5584 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5585 GET_MODE (SUBREG_REG (orig_op1)),
5586 SUBREG_BYTE (orig_op1),
5587 GET_MODE (orig_op1))));
5589 /* Plus in the index register may be created only as a result of
5590 register rematerialization for expression like &localvar*4. Reload it.
5591 It may be possible to combine the displacement on the outer level,
5592 but it is probably not worthwhile to do so. */
5593 if (context == 1)
5595 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5596 opnum, ADDR_TYPE (type), ind_levels, insn);
5597 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5598 context_reg_class,
5599 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5600 return 1;
5603 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5604 || code0 == ZERO_EXTEND || code1 == MEM)
5606 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5607 &XEXP (x, 0), opnum, type, ind_levels,
5608 insn);
5609 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5610 &XEXP (x, 1), opnum, type, ind_levels,
5611 insn);
5614 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5615 || code1 == ZERO_EXTEND || code0 == MEM)
5617 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5618 &XEXP (x, 0), opnum, type, ind_levels,
5619 insn);
5620 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5621 &XEXP (x, 1), opnum, type, ind_levels,
5622 insn);
5625 else if (code0 == CONST_INT || code0 == CONST
5626 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5627 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5628 &XEXP (x, 1), opnum, type, ind_levels,
5629 insn);
5631 else if (code1 == CONST_INT || code1 == CONST
5632 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5633 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5634 &XEXP (x, 0), opnum, type, ind_levels,
5635 insn);
5637 else if (code0 == REG && code1 == REG)
5639 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5640 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5641 return 0;
5642 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5643 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5644 return 0;
5645 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5646 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5647 &XEXP (x, 1), opnum, type, ind_levels,
5648 insn);
5649 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5650 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5651 &XEXP (x, 0), opnum, type, ind_levels,
5652 insn);
5653 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5654 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5655 &XEXP (x, 0), opnum, type, ind_levels,
5656 insn);
5657 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5658 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5659 &XEXP (x, 1), opnum, type, ind_levels,
5660 insn);
5661 else
5663 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5664 &XEXP (x, 0), opnum, type, ind_levels,
5665 insn);
5666 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5667 &XEXP (x, 1), opnum, type, ind_levels,
5668 insn);
5672 else if (code0 == REG)
5674 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5675 &XEXP (x, 0), opnum, type, ind_levels,
5676 insn);
5677 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5678 &XEXP (x, 1), opnum, type, ind_levels,
5679 insn);
5682 else if (code1 == REG)
5684 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5685 &XEXP (x, 1), opnum, type, ind_levels,
5686 insn);
5687 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5688 &XEXP (x, 0), opnum, type, ind_levels,
5689 insn);
5693 return 0;
5695 case POST_MODIFY:
5696 case PRE_MODIFY:
5698 rtx op0 = XEXP (x, 0);
5699 rtx op1 = XEXP (x, 1);
5700 enum rtx_code index_code;
5701 int regno;
5702 int reloadnum;
5704 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5705 return 0;
5707 /* Currently, we only support {PRE,POST}_MODIFY constructs
5708 where a base register is {inc,dec}remented by the contents
5709 of another register or by a constant value. Thus, these
5710 operands must match. */
5711 gcc_assert (op0 == XEXP (op1, 0));
5713 /* Require index register (or constant). Let's just handle the
5714 register case in the meantime... If the target allows
5715 auto-modify by a constant then we could try replacing a pseudo
5716 register with its equivalent constant where applicable.
5718 We also handle the case where the register was eliminated
5719 resulting in a PLUS subexpression.
5721 If we later decide to reload the whole PRE_MODIFY or
5722 POST_MODIFY, inc_for_reload might clobber the reload register
5723 before reading the index. The index register might therefore
5724 need to live longer than a TYPE reload normally would, so be
5725 conservative and class it as RELOAD_OTHER. */
5726 if ((REG_P (XEXP (op1, 1))
5727 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5728 || GET_CODE (XEXP (op1, 1)) == PLUS)
5729 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5730 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5731 ind_levels, insn);
5733 gcc_assert (REG_P (XEXP (op1, 0)));
5735 regno = REGNO (XEXP (op1, 0));
5736 index_code = GET_CODE (XEXP (op1, 1));
5738 /* A register that is incremented cannot be constant! */
5739 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5740 || reg_equiv_constant (regno) == 0);
5742 /* Handle a register that is equivalent to a memory location
5743 which cannot be addressed directly. */
5744 if (reg_equiv_memory_loc (regno) != 0
5745 && (reg_equiv_address (regno) != 0
5746 || num_not_at_initial_offset))
5748 rtx tem = make_memloc (XEXP (x, 0), regno);
5750 if (reg_equiv_address (regno)
5751 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5753 rtx orig = tem;
5755 /* First reload the memory location's address.
5756 We can't use ADDR_TYPE (type) here, because we need to
5757 write back the value after reading it, hence we actually
5758 need two registers. */
5759 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5760 &XEXP (tem, 0), opnum,
5761 RELOAD_OTHER,
5762 ind_levels, insn);
5764 if (!rtx_equal_p (tem, orig))
5765 push_reg_equiv_alt_mem (regno, tem);
5767 /* Then reload the memory location into a base
5768 register. */
5769 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5770 &XEXP (op1, 0),
5771 base_reg_class (mode, as,
5772 code, index_code),
5773 GET_MODE (x), GET_MODE (x), 0,
5774 0, opnum, RELOAD_OTHER);
5776 update_auto_inc_notes (this_insn, regno, reloadnum);
5777 return 0;
5781 if (reg_renumber[regno] >= 0)
5782 regno = reg_renumber[regno];
5784 /* We require a base register here... */
5785 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5787 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5788 &XEXP (op1, 0), &XEXP (x, 0),
5789 base_reg_class (mode, as,
5790 code, index_code),
5791 GET_MODE (x), GET_MODE (x), 0, 0,
5792 opnum, RELOAD_OTHER);
5794 update_auto_inc_notes (this_insn, regno, reloadnum);
5795 return 0;
5798 return 0;
5800 case POST_INC:
5801 case POST_DEC:
5802 case PRE_INC:
5803 case PRE_DEC:
5804 if (REG_P (XEXP (x, 0)))
5806 int regno = REGNO (XEXP (x, 0));
5807 int value = 0;
5808 rtx x_orig = x;
5810 /* A register that is incremented cannot be constant! */
5811 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5812 || reg_equiv_constant (regno) == 0);
5814 /* Handle a register that is equivalent to a memory location
5815 which cannot be addressed directly. */
5816 if (reg_equiv_memory_loc (regno) != 0
5817 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5819 rtx tem = make_memloc (XEXP (x, 0), regno);
5820 if (reg_equiv_address (regno)
5821 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5823 rtx orig = tem;
5825 /* First reload the memory location's address.
5826 We can't use ADDR_TYPE (type) here, because we need to
5827 write back the value after reading it, hence we actually
5828 need two registers. */
5829 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5830 &XEXP (tem, 0), opnum, type,
5831 ind_levels, insn);
5832 reloaded_inner_of_autoinc = true;
5833 if (!rtx_equal_p (tem, orig))
5834 push_reg_equiv_alt_mem (regno, tem);
5835 /* Put this inside a new increment-expression. */
5836 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5837 /* Proceed to reload that, as if it contained a register. */
5841 /* If we have a hard register that is ok in this incdec context,
5842 don't make a reload. If the register isn't nice enough for
5843 autoincdec, we can reload it. But, if an autoincrement of a
5844 register that we here verified as playing nice, still outside
5845 isn't "valid", it must be that no autoincrement is "valid".
5846 If that is true and something made an autoincrement anyway,
5847 this must be a special context where one is allowed.
5848 (For example, a "push" instruction.)
5849 We can't improve this address, so leave it alone. */
5851 /* Otherwise, reload the autoincrement into a suitable hard reg
5852 and record how much to increment by. */
5854 if (reg_renumber[regno] >= 0)
5855 regno = reg_renumber[regno];
5856 if (regno >= FIRST_PSEUDO_REGISTER
5857 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5858 index_code))
5860 int reloadnum;
5862 /* If we can output the register afterwards, do so, this
5863 saves the extra update.
5864 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5865 CALL_INSN - and it does not set CC0.
5866 But don't do this if we cannot directly address the
5867 memory location, since this will make it harder to
5868 reuse address reloads, and increases register pressure.
5869 Also don't do this if we can probably update x directly. */
5870 rtx equiv = (MEM_P (XEXP (x, 0))
5871 ? XEXP (x, 0)
5872 : reg_equiv_mem (regno));
5873 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5874 if (insn && NONJUMP_INSN_P (insn) && equiv
5875 && memory_operand (equiv, GET_MODE (equiv))
5876 #ifdef HAVE_cc0
5877 && ! sets_cc0_p (PATTERN (insn))
5878 #endif
5879 && ! (icode != CODE_FOR_nothing
5880 && insn_operand_matches (icode, 0, equiv)
5881 && insn_operand_matches (icode, 1, equiv))
5882 /* Using RELOAD_OTHER means we emit this and the reload we
5883 made earlier in the wrong order. */
5884 && !reloaded_inner_of_autoinc)
5886 /* We use the original pseudo for loc, so that
5887 emit_reload_insns() knows which pseudo this
5888 reload refers to and updates the pseudo rtx, not
5889 its equivalent memory location, as well as the
5890 corresponding entry in reg_last_reload_reg. */
5891 loc = &XEXP (x_orig, 0);
5892 x = XEXP (x, 0);
5893 reloadnum
5894 = push_reload (x, x, loc, loc,
5895 context_reg_class,
5896 GET_MODE (x), GET_MODE (x), 0, 0,
5897 opnum, RELOAD_OTHER);
5899 else
5901 reloadnum
5902 = push_reload (x, x, loc, (rtx*) 0,
5903 context_reg_class,
5904 GET_MODE (x), GET_MODE (x), 0, 0,
5905 opnum, type);
5906 rld[reloadnum].inc
5907 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5909 value = 1;
5912 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5913 reloadnum);
5915 return value;
5917 return 0;
5919 case TRUNCATE:
5920 case SIGN_EXTEND:
5921 case ZERO_EXTEND:
5922 /* Look for parts to reload in the inner expression and reload them
5923 too, in addition to this operation. Reloading all inner parts in
5924 addition to this one shouldn't be necessary, but at this point,
5925 we don't know if we can possibly omit any part that *can* be
5926 reloaded. Targets that are better off reloading just either part
5927 (or perhaps even a different part of an outer expression), should
5928 define LEGITIMIZE_RELOAD_ADDRESS. */
5929 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5930 context, code, SCRATCH, &XEXP (x, 0), opnum,
5931 type, ind_levels, insn);
5932 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5933 context_reg_class,
5934 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5935 return 1;
5937 case MEM:
5938 /* This is probably the result of a substitution, by eliminate_regs, of
5939 an equivalent address for a pseudo that was not allocated to a hard
5940 register. Verify that the specified address is valid and reload it
5941 into a register.
5943 Since we know we are going to reload this item, don't decrement for
5944 the indirection level.
5946 Note that this is actually conservative: it would be slightly more
5947 efficient to use the value of SPILL_INDIRECT_LEVELS from
5948 reload1.c here. */
5950 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5951 opnum, ADDR_TYPE (type), ind_levels, insn);
5952 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5953 context_reg_class,
5954 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5955 return 1;
5957 case REG:
5959 int regno = REGNO (x);
5961 if (reg_equiv_constant (regno) != 0)
5963 find_reloads_address_part (reg_equiv_constant (regno), loc,
5964 context_reg_class,
5965 GET_MODE (x), opnum, type, ind_levels);
5966 return 1;
5969 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5970 that feeds this insn. */
5971 if (reg_equiv_mem (regno) != 0)
5973 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5974 context_reg_class,
5975 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5976 return 1;
5978 #endif
5980 if (reg_equiv_memory_loc (regno)
5981 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5983 rtx tem = make_memloc (x, regno);
5984 if (reg_equiv_address (regno) != 0
5985 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5987 x = tem;
5988 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5989 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5990 ind_levels, insn);
5991 if (!rtx_equal_p (x, tem))
5992 push_reg_equiv_alt_mem (regno, x);
5996 if (reg_renumber[regno] >= 0)
5997 regno = reg_renumber[regno];
5999 if (regno >= FIRST_PSEUDO_REGISTER
6000 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6001 index_code))
6003 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6004 context_reg_class,
6005 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6006 return 1;
6009 /* If a register appearing in an address is the subject of a CLOBBER
6010 in this insn, reload it into some other register to be safe.
6011 The CLOBBER is supposed to make the register unavailable
6012 from before this insn to after it. */
6013 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
6015 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6016 context_reg_class,
6017 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6018 return 1;
6021 return 0;
6023 case SUBREG:
6024 if (REG_P (SUBREG_REG (x)))
6026 /* If this is a SUBREG of a hard register and the resulting register
6027 is of the wrong class, reload the whole SUBREG. This avoids
6028 needless copies if SUBREG_REG is multi-word. */
6029 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6031 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6033 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6034 index_code))
6036 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6037 context_reg_class,
6038 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6039 return 1;
6042 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6043 is larger than the class size, then reload the whole SUBREG. */
6044 else
6046 enum reg_class rclass = context_reg_class;
6047 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6048 > reg_class_size[(int) rclass])
6050 /* If the inner register will be replaced by a memory
6051 reference, we can do this only if we can replace the
6052 whole subreg by a (narrower) memory reference. If
6053 this is not possible, fall through and reload just
6054 the inner register (including address reloads). */
6055 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6057 rtx tem = find_reloads_subreg_address (x, opnum,
6058 ADDR_TYPE (type),
6059 ind_levels, insn,
6060 NULL);
6061 if (tem)
6063 push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6064 GET_MODE (tem), VOIDmode, 0, 0,
6065 opnum, type);
6066 return 1;
6069 else
6071 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6072 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6073 return 1;
6078 break;
6080 default:
6081 break;
6085 const char *fmt = GET_RTX_FORMAT (code);
6086 int i;
6088 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6090 if (fmt[i] == 'e')
6091 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6092 we get here. */
6093 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6094 code, SCRATCH, &XEXP (x, i),
6095 opnum, type, ind_levels, insn);
6099 #undef REG_OK_FOR_CONTEXT
6100 return 0;
6103 /* X, which is found at *LOC, is a part of an address that needs to be
6104 reloaded into a register of class RCLASS. If X is a constant, or if
6105 X is a PLUS that contains a constant, check that the constant is a
6106 legitimate operand and that we are supposed to be able to load
6107 it into the register.
6109 If not, force the constant into memory and reload the MEM instead.
6111 MODE is the mode to use, in case X is an integer constant.
6113 OPNUM and TYPE describe the purpose of any reloads made.
6115 IND_LEVELS says how many levels of indirect addressing this machine
6116 supports. */
6118 static void
6119 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6120 machine_mode mode, int opnum,
6121 enum reload_type type, int ind_levels)
6123 if (CONSTANT_P (x)
6124 && (!targetm.legitimate_constant_p (mode, x)
6125 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6127 x = force_const_mem (mode, x);
6128 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6129 opnum, type, ind_levels, 0);
6132 else if (GET_CODE (x) == PLUS
6133 && CONSTANT_P (XEXP (x, 1))
6134 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6135 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6136 == NO_REGS))
6138 rtx tem;
6140 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6141 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6142 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6143 opnum, type, ind_levels, 0);
6146 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6147 mode, VOIDmode, 0, 0, opnum, type);
6150 /* X, a subreg of a pseudo, is a part of an address that needs to be
6151 reloaded, and the pseusdo is equivalent to a memory location.
6153 Attempt to replace the whole subreg by a (possibly narrower or wider)
6154 memory reference. If this is possible, return this new memory
6155 reference, and push all required address reloads. Otherwise,
6156 return NULL.
6158 OPNUM and TYPE identify the purpose of the reload.
6160 IND_LEVELS says how many levels of indirect addressing are
6161 supported at this point in the address.
6163 INSN, if nonzero, is the insn in which we do the reload. It is used
6164 to determine where to put USEs for pseudos that we have to replace with
6165 stack slots. */
6167 static rtx
6168 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6169 int ind_levels, rtx_insn *insn,
6170 int *address_reloaded)
6172 machine_mode outer_mode = GET_MODE (x);
6173 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6174 int regno = REGNO (SUBREG_REG (x));
6175 int reloaded = 0;
6176 rtx tem, orig;
6177 int offset;
6179 gcc_assert (reg_equiv_memory_loc (regno) != 0);
6181 /* We cannot replace the subreg with a modified memory reference if:
6183 - we have a paradoxical subreg that implicitly acts as a zero or
6184 sign extension operation due to LOAD_EXTEND_OP;
6186 - we have a subreg that is implicitly supposed to act on the full
6187 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6189 - the address of the equivalent memory location is mode-dependent; or
6191 - we have a paradoxical subreg and the resulting memory is not
6192 sufficiently aligned to allow access in the wider mode.
6194 In addition, we choose not to perform the replacement for *any*
6195 paradoxical subreg, even if it were possible in principle. This
6196 is to avoid generating wider memory references than necessary.
6198 This corresponds to how previous versions of reload used to handle
6199 paradoxical subregs where no address reload was required. */
6201 if (paradoxical_subreg_p (x))
6202 return NULL;
6204 #ifdef WORD_REGISTER_OPERATIONS
6205 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode)
6206 && ((GET_MODE_SIZE (outer_mode) - 1) / UNITS_PER_WORD
6207 == (GET_MODE_SIZE (inner_mode) - 1) / UNITS_PER_WORD))
6208 return NULL;
6209 #endif
6211 /* Since we don't attempt to handle paradoxical subregs, we can just
6212 call into simplify_subreg, which will handle all remaining checks
6213 for us. */
6214 orig = make_memloc (SUBREG_REG (x), regno);
6215 offset = SUBREG_BYTE (x);
6216 tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6217 if (!tem || !MEM_P (tem))
6218 return NULL;
6220 /* Now push all required address reloads, if any. */
6221 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6222 XEXP (tem, 0), &XEXP (tem, 0),
6223 opnum, type, ind_levels, insn);
6224 /* ??? Do we need to handle nonzero offsets somehow? */
6225 if (!offset && !rtx_equal_p (tem, orig))
6226 push_reg_equiv_alt_mem (regno, tem);
6228 /* For some processors an address may be valid in the original mode but
6229 not in a smaller mode. For example, ARM accepts a scaled index register
6230 in SImode but not in HImode. Note that this is only a problem if the
6231 address in reg_equiv_mem is already invalid in the new mode; other
6232 cases would be fixed by find_reloads_address as usual.
6234 ??? We attempt to handle such cases here by doing an additional reload
6235 of the full address after the usual processing by find_reloads_address.
6236 Note that this may not work in the general case, but it seems to cover
6237 the cases where this situation currently occurs. A more general fix
6238 might be to reload the *value* instead of the address, but this would
6239 not be expected by the callers of this routine as-is.
6241 If find_reloads_address already completed replaced the address, there
6242 is nothing further to do. */
6243 if (reloaded == 0
6244 && reg_equiv_mem (regno) != 0
6245 && !strict_memory_address_addr_space_p
6246 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6247 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6249 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6250 base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6251 MEM, SCRATCH),
6252 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6253 reloaded = 1;
6256 /* If this is not a toplevel operand, find_reloads doesn't see this
6257 substitution. We have to emit a USE of the pseudo so that
6258 delete_output_reload can see it. */
6259 if (replace_reloads && recog_data.operand[opnum] != x)
6260 /* We mark the USE with QImode so that we recognize it as one that
6261 can be safely deleted at the end of reload. */
6262 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6263 QImode);
6265 if (address_reloaded)
6266 *address_reloaded = reloaded;
6268 return tem;
6271 /* Substitute into the current INSN the registers into which we have reloaded
6272 the things that need reloading. The array `replacements'
6273 contains the locations of all pointers that must be changed
6274 and says what to replace them with.
6276 Return the rtx that X translates into; usually X, but modified. */
6278 void
6279 subst_reloads (rtx_insn *insn)
6281 int i;
6283 for (i = 0; i < n_replacements; i++)
6285 struct replacement *r = &replacements[i];
6286 rtx reloadreg = rld[r->what].reg_rtx;
6287 if (reloadreg)
6289 #ifdef DEBUG_RELOAD
6290 /* This checking takes a very long time on some platforms
6291 causing the gcc.c-torture/compile/limits-fnargs.c test
6292 to time out during testing. See PR 31850.
6294 Internal consistency test. Check that we don't modify
6295 anything in the equivalence arrays. Whenever something from
6296 those arrays needs to be reloaded, it must be unshared before
6297 being substituted into; the equivalence must not be modified.
6298 Otherwise, if the equivalence is used after that, it will
6299 have been modified, and the thing substituted (probably a
6300 register) is likely overwritten and not a usable equivalence. */
6301 int check_regno;
6303 for (check_regno = 0; check_regno < max_regno; check_regno++)
6305 #define CHECK_MODF(ARRAY) \
6306 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6307 || !loc_mentioned_in_p (r->where, \
6308 (*reg_equivs)[check_regno].ARRAY))
6310 CHECK_MODF (constant);
6311 CHECK_MODF (memory_loc);
6312 CHECK_MODF (address);
6313 CHECK_MODF (mem);
6314 #undef CHECK_MODF
6316 #endif /* DEBUG_RELOAD */
6318 /* If we're replacing a LABEL_REF with a register, there must
6319 already be an indication (to e.g. flow) which label this
6320 register refers to. */
6321 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6322 || !JUMP_P (insn)
6323 || find_reg_note (insn,
6324 REG_LABEL_OPERAND,
6325 XEXP (*r->where, 0))
6326 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6328 /* Encapsulate RELOADREG so its machine mode matches what
6329 used to be there. Note that gen_lowpart_common will
6330 do the wrong thing if RELOADREG is multi-word. RELOADREG
6331 will always be a REG here. */
6332 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6333 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6335 *r->where = reloadreg;
6337 /* If reload got no reg and isn't optional, something's wrong. */
6338 else
6339 gcc_assert (rld[r->what].optional);
6343 /* Make a copy of any replacements being done into X and move those
6344 copies to locations in Y, a copy of X. */
6346 void
6347 copy_replacements (rtx x, rtx y)
6349 copy_replacements_1 (&x, &y, n_replacements);
6352 static void
6353 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6355 int i, j;
6356 rtx x, y;
6357 struct replacement *r;
6358 enum rtx_code code;
6359 const char *fmt;
6361 for (j = 0; j < orig_replacements; j++)
6362 if (replacements[j].where == px)
6364 r = &replacements[n_replacements++];
6365 r->where = py;
6366 r->what = replacements[j].what;
6367 r->mode = replacements[j].mode;
6370 x = *px;
6371 y = *py;
6372 code = GET_CODE (x);
6373 fmt = GET_RTX_FORMAT (code);
6375 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6377 if (fmt[i] == 'e')
6378 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6379 else if (fmt[i] == 'E')
6380 for (j = XVECLEN (x, i); --j >= 0; )
6381 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6382 orig_replacements);
6386 /* Change any replacements being done to *X to be done to *Y. */
6388 void
6389 move_replacements (rtx *x, rtx *y)
6391 int i;
6393 for (i = 0; i < n_replacements; i++)
6394 if (replacements[i].where == x)
6395 replacements[i].where = y;
6398 /* If LOC was scheduled to be replaced by something, return the replacement.
6399 Otherwise, return *LOC. */
6402 find_replacement (rtx *loc)
6404 struct replacement *r;
6406 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6408 rtx reloadreg = rld[r->what].reg_rtx;
6410 if (reloadreg && r->where == loc)
6412 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6413 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6415 return reloadreg;
6417 else if (reloadreg && GET_CODE (*loc) == SUBREG
6418 && r->where == &SUBREG_REG (*loc))
6420 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6421 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6423 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6424 GET_MODE (SUBREG_REG (*loc)),
6425 SUBREG_BYTE (*loc));
6429 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6430 what's inside and make a new rtl if so. */
6431 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6432 || GET_CODE (*loc) == MULT)
6434 rtx x = find_replacement (&XEXP (*loc, 0));
6435 rtx y = find_replacement (&XEXP (*loc, 1));
6437 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6438 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6441 return *loc;
6444 /* Return nonzero if register in range [REGNO, ENDREGNO)
6445 appears either explicitly or implicitly in X
6446 other than being stored into (except for earlyclobber operands).
6448 References contained within the substructure at LOC do not count.
6449 LOC may be zero, meaning don't ignore anything.
6451 This is similar to refers_to_regno_p in rtlanal.c except that we
6452 look at equivalences for pseudos that didn't get hard registers. */
6454 static int
6455 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6456 rtx x, rtx *loc)
6458 int i;
6459 unsigned int r;
6460 RTX_CODE code;
6461 const char *fmt;
6463 if (x == 0)
6464 return 0;
6466 repeat:
6467 code = GET_CODE (x);
6469 switch (code)
6471 case REG:
6472 r = REGNO (x);
6474 /* If this is a pseudo, a hard register must not have been allocated.
6475 X must therefore either be a constant or be in memory. */
6476 if (r >= FIRST_PSEUDO_REGISTER)
6478 if (reg_equiv_memory_loc (r))
6479 return refers_to_regno_for_reload_p (regno, endregno,
6480 reg_equiv_memory_loc (r),
6481 (rtx*) 0);
6483 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6484 return 0;
6487 return (endregno > r
6488 && regno < r + (r < FIRST_PSEUDO_REGISTER
6489 ? hard_regno_nregs[r][GET_MODE (x)]
6490 : 1));
6492 case SUBREG:
6493 /* If this is a SUBREG of a hard reg, we can see exactly which
6494 registers are being modified. Otherwise, handle normally. */
6495 if (REG_P (SUBREG_REG (x))
6496 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6498 unsigned int inner_regno = subreg_regno (x);
6499 unsigned int inner_endregno
6500 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6501 ? subreg_nregs (x) : 1);
6503 return endregno > inner_regno && regno < inner_endregno;
6505 break;
6507 case CLOBBER:
6508 case SET:
6509 if (&SET_DEST (x) != loc
6510 /* Note setting a SUBREG counts as referring to the REG it is in for
6511 a pseudo but not for hard registers since we can
6512 treat each word individually. */
6513 && ((GET_CODE (SET_DEST (x)) == SUBREG
6514 && loc != &SUBREG_REG (SET_DEST (x))
6515 && REG_P (SUBREG_REG (SET_DEST (x)))
6516 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6517 && refers_to_regno_for_reload_p (regno, endregno,
6518 SUBREG_REG (SET_DEST (x)),
6519 loc))
6520 /* If the output is an earlyclobber operand, this is
6521 a conflict. */
6522 || ((!REG_P (SET_DEST (x))
6523 || earlyclobber_operand_p (SET_DEST (x)))
6524 && refers_to_regno_for_reload_p (regno, endregno,
6525 SET_DEST (x), loc))))
6526 return 1;
6528 if (code == CLOBBER || loc == &SET_SRC (x))
6529 return 0;
6530 x = SET_SRC (x);
6531 goto repeat;
6533 default:
6534 break;
6537 /* X does not match, so try its subexpressions. */
6539 fmt = GET_RTX_FORMAT (code);
6540 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6542 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6544 if (i == 0)
6546 x = XEXP (x, 0);
6547 goto repeat;
6549 else
6550 if (refers_to_regno_for_reload_p (regno, endregno,
6551 XEXP (x, i), loc))
6552 return 1;
6554 else if (fmt[i] == 'E')
6556 int j;
6557 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6558 if (loc != &XVECEXP (x, i, j)
6559 && refers_to_regno_for_reload_p (regno, endregno,
6560 XVECEXP (x, i, j), loc))
6561 return 1;
6564 return 0;
6567 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6568 we check if any register number in X conflicts with the relevant register
6569 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6570 contains a MEM (we don't bother checking for memory addresses that can't
6571 conflict because we expect this to be a rare case.
6573 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6574 that we look at equivalences for pseudos that didn't get hard registers. */
6577 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6579 int regno, endregno;
6581 /* Overly conservative. */
6582 if (GET_CODE (x) == STRICT_LOW_PART
6583 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6584 x = XEXP (x, 0);
6586 /* If either argument is a constant, then modifying X can not affect IN. */
6587 if (CONSTANT_P (x) || CONSTANT_P (in))
6588 return 0;
6589 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6590 return refers_to_mem_for_reload_p (in);
6591 else if (GET_CODE (x) == SUBREG)
6593 regno = REGNO (SUBREG_REG (x));
6594 if (regno < FIRST_PSEUDO_REGISTER)
6595 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6596 GET_MODE (SUBREG_REG (x)),
6597 SUBREG_BYTE (x),
6598 GET_MODE (x));
6599 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6600 ? subreg_nregs (x) : 1);
6602 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6604 else if (REG_P (x))
6606 regno = REGNO (x);
6608 /* If this is a pseudo, it must not have been assigned a hard register.
6609 Therefore, it must either be in memory or be a constant. */
6611 if (regno >= FIRST_PSEUDO_REGISTER)
6613 if (reg_equiv_memory_loc (regno))
6614 return refers_to_mem_for_reload_p (in);
6615 gcc_assert (reg_equiv_constant (regno));
6616 return 0;
6619 endregno = END_HARD_REGNO (x);
6621 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6623 else if (MEM_P (x))
6624 return refers_to_mem_for_reload_p (in);
6625 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6626 || GET_CODE (x) == CC0)
6627 return reg_mentioned_p (x, in);
6628 else
6630 gcc_assert (GET_CODE (x) == PLUS);
6632 /* We actually want to know if X is mentioned somewhere inside IN.
6633 We must not say that (plus (sp) (const_int 124)) is in
6634 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6635 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6636 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6637 while (MEM_P (in))
6638 in = XEXP (in, 0);
6639 if (REG_P (in))
6640 return 0;
6641 else if (GET_CODE (in) == PLUS)
6642 return (rtx_equal_p (x, in)
6643 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6644 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6645 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6646 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6649 gcc_unreachable ();
6652 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6653 registers. */
6655 static int
6656 refers_to_mem_for_reload_p (rtx x)
6658 const char *fmt;
6659 int i;
6661 if (MEM_P (x))
6662 return 1;
6664 if (REG_P (x))
6665 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6666 && reg_equiv_memory_loc (REGNO (x)));
6668 fmt = GET_RTX_FORMAT (GET_CODE (x));
6669 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6670 if (fmt[i] == 'e'
6671 && (MEM_P (XEXP (x, i))
6672 || refers_to_mem_for_reload_p (XEXP (x, i))))
6673 return 1;
6675 return 0;
6678 /* Check the insns before INSN to see if there is a suitable register
6679 containing the same value as GOAL.
6680 If OTHER is -1, look for a register in class RCLASS.
6681 Otherwise, just see if register number OTHER shares GOAL's value.
6683 Return an rtx for the register found, or zero if none is found.
6685 If RELOAD_REG_P is (short *)1,
6686 we reject any hard reg that appears in reload_reg_rtx
6687 because such a hard reg is also needed coming into this insn.
6689 If RELOAD_REG_P is any other nonzero value,
6690 it is a vector indexed by hard reg number
6691 and we reject any hard reg whose element in the vector is nonnegative
6692 as well as any that appears in reload_reg_rtx.
6694 If GOAL is zero, then GOALREG is a register number; we look
6695 for an equivalent for that register.
6697 MODE is the machine mode of the value we want an equivalence for.
6698 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6700 This function is used by jump.c as well as in the reload pass.
6702 If GOAL is the sum of the stack pointer and a constant, we treat it
6703 as if it were a constant except that sp is required to be unchanging. */
6706 find_equiv_reg (rtx goal, rtx_insn *insn, enum reg_class rclass, int other,
6707 short *reload_reg_p, int goalreg, machine_mode mode)
6709 rtx_insn *p = insn;
6710 rtx goaltry, valtry, value;
6711 rtx_insn *where;
6712 rtx pat;
6713 int regno = -1;
6714 int valueno;
6715 int goal_mem = 0;
6716 int goal_const = 0;
6717 int goal_mem_addr_varies = 0;
6718 int need_stable_sp = 0;
6719 int nregs;
6720 int valuenregs;
6721 int num = 0;
6723 if (goal == 0)
6724 regno = goalreg;
6725 else if (REG_P (goal))
6726 regno = REGNO (goal);
6727 else if (MEM_P (goal))
6729 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6730 if (MEM_VOLATILE_P (goal))
6731 return 0;
6732 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6733 return 0;
6734 /* An address with side effects must be reexecuted. */
6735 switch (code)
6737 case POST_INC:
6738 case PRE_INC:
6739 case POST_DEC:
6740 case PRE_DEC:
6741 case POST_MODIFY:
6742 case PRE_MODIFY:
6743 return 0;
6744 default:
6745 break;
6747 goal_mem = 1;
6749 else if (CONSTANT_P (goal))
6750 goal_const = 1;
6751 else if (GET_CODE (goal) == PLUS
6752 && XEXP (goal, 0) == stack_pointer_rtx
6753 && CONSTANT_P (XEXP (goal, 1)))
6754 goal_const = need_stable_sp = 1;
6755 else if (GET_CODE (goal) == PLUS
6756 && XEXP (goal, 0) == frame_pointer_rtx
6757 && CONSTANT_P (XEXP (goal, 1)))
6758 goal_const = 1;
6759 else
6760 return 0;
6762 num = 0;
6763 /* Scan insns back from INSN, looking for one that copies
6764 a value into or out of GOAL.
6765 Stop and give up if we reach a label. */
6767 while (1)
6769 p = PREV_INSN (p);
6770 if (p && DEBUG_INSN_P (p))
6771 continue;
6772 num++;
6773 if (p == 0 || LABEL_P (p)
6774 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6775 return 0;
6777 /* Don't reuse register contents from before a setjmp-type
6778 function call; on the second return (from the longjmp) it
6779 might have been clobbered by a later reuse. It doesn't
6780 seem worthwhile to actually go and see if it is actually
6781 reused even if that information would be readily available;
6782 just don't reuse it across the setjmp call. */
6783 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6784 return 0;
6786 if (NONJUMP_INSN_P (p)
6787 /* If we don't want spill regs ... */
6788 && (! (reload_reg_p != 0
6789 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6790 /* ... then ignore insns introduced by reload; they aren't
6791 useful and can cause results in reload_as_needed to be
6792 different from what they were when calculating the need for
6793 spills. If we notice an input-reload insn here, we will
6794 reject it below, but it might hide a usable equivalent.
6795 That makes bad code. It may even fail: perhaps no reg was
6796 spilled for this insn because it was assumed we would find
6797 that equivalent. */
6798 || INSN_UID (p) < reload_first_uid))
6800 rtx tem;
6801 pat = single_set (p);
6803 /* First check for something that sets some reg equal to GOAL. */
6804 if (pat != 0
6805 && ((regno >= 0
6806 && true_regnum (SET_SRC (pat)) == regno
6807 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6809 (regno >= 0
6810 && true_regnum (SET_DEST (pat)) == regno
6811 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6813 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6814 /* When looking for stack pointer + const,
6815 make sure we don't use a stack adjust. */
6816 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6817 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6818 || (goal_mem
6819 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6820 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6821 || (goal_mem
6822 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6823 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6824 /* If we are looking for a constant,
6825 and something equivalent to that constant was copied
6826 into a reg, we can use that reg. */
6827 || (goal_const && REG_NOTES (p) != 0
6828 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6829 && ((rtx_equal_p (XEXP (tem, 0), goal)
6830 && (valueno
6831 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6832 || (REG_P (SET_DEST (pat))
6833 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6834 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6835 && CONST_INT_P (goal)
6836 && 0 != (goaltry
6837 = operand_subword (XEXP (tem, 0), 0, 0,
6838 VOIDmode))
6839 && rtx_equal_p (goal, goaltry)
6840 && (valtry
6841 = operand_subword (SET_DEST (pat), 0, 0,
6842 VOIDmode))
6843 && (valueno = true_regnum (valtry)) >= 0)))
6844 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6845 NULL_RTX))
6846 && REG_P (SET_DEST (pat))
6847 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6848 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6849 && CONST_INT_P (goal)
6850 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6851 VOIDmode))
6852 && rtx_equal_p (goal, goaltry)
6853 && (valtry
6854 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6855 && (valueno = true_regnum (valtry)) >= 0)))
6857 if (other >= 0)
6859 if (valueno != other)
6860 continue;
6862 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6863 continue;
6864 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6865 mode, valueno))
6866 continue;
6867 value = valtry;
6868 where = p;
6869 break;
6874 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6875 (or copying VALUE into GOAL, if GOAL is also a register).
6876 Now verify that VALUE is really valid. */
6878 /* VALUENO is the register number of VALUE; a hard register. */
6880 /* Don't try to re-use something that is killed in this insn. We want
6881 to be able to trust REG_UNUSED notes. */
6882 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6883 return 0;
6885 /* If we propose to get the value from the stack pointer or if GOAL is
6886 a MEM based on the stack pointer, we need a stable SP. */
6887 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6888 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6889 goal)))
6890 need_stable_sp = 1;
6892 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6893 if (GET_MODE (value) != mode)
6894 return 0;
6896 /* Reject VALUE if it was loaded from GOAL
6897 and is also a register that appears in the address of GOAL. */
6899 if (goal_mem && value == SET_DEST (single_set (where))
6900 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6901 goal, (rtx*) 0))
6902 return 0;
6904 /* Reject registers that overlap GOAL. */
6906 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6907 nregs = hard_regno_nregs[regno][mode];
6908 else
6909 nregs = 1;
6910 valuenregs = hard_regno_nregs[valueno][mode];
6912 if (!goal_mem && !goal_const
6913 && regno + nregs > valueno && regno < valueno + valuenregs)
6914 return 0;
6916 /* Reject VALUE if it is one of the regs reserved for reloads.
6917 Reload1 knows how to reuse them anyway, and it would get
6918 confused if we allocated one without its knowledge.
6919 (Now that insns introduced by reload are ignored above,
6920 this case shouldn't happen, but I'm not positive.) */
6922 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6924 int i;
6925 for (i = 0; i < valuenregs; ++i)
6926 if (reload_reg_p[valueno + i] >= 0)
6927 return 0;
6930 /* Reject VALUE if it is a register being used for an input reload
6931 even if it is not one of those reserved. */
6933 if (reload_reg_p != 0)
6935 int i;
6936 for (i = 0; i < n_reloads; i++)
6937 if (rld[i].reg_rtx != 0 && rld[i].in)
6939 int regno1 = REGNO (rld[i].reg_rtx);
6940 int nregs1 = hard_regno_nregs[regno1]
6941 [GET_MODE (rld[i].reg_rtx)];
6942 if (regno1 < valueno + valuenregs
6943 && regno1 + nregs1 > valueno)
6944 return 0;
6948 if (goal_mem)
6949 /* We must treat frame pointer as varying here,
6950 since it can vary--in a nonlocal goto as generated by expand_goto. */
6951 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6953 /* Now verify that the values of GOAL and VALUE remain unaltered
6954 until INSN is reached. */
6956 p = insn;
6957 while (1)
6959 p = PREV_INSN (p);
6960 if (p == where)
6961 return value;
6963 /* Don't trust the conversion past a function call
6964 if either of the two is in a call-clobbered register, or memory. */
6965 if (CALL_P (p))
6967 int i;
6969 if (goal_mem || need_stable_sp)
6970 return 0;
6972 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6973 for (i = 0; i < nregs; ++i)
6974 if (call_used_regs[regno + i]
6975 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6976 return 0;
6978 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6979 for (i = 0; i < valuenregs; ++i)
6980 if (call_used_regs[valueno + i]
6981 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6982 return 0;
6985 if (INSN_P (p))
6987 pat = PATTERN (p);
6989 /* Watch out for unspec_volatile, and volatile asms. */
6990 if (volatile_insn_p (pat))
6991 return 0;
6993 /* If this insn P stores in either GOAL or VALUE, return 0.
6994 If GOAL is a memory ref and this insn writes memory, return 0.
6995 If GOAL is a memory ref and its address is not constant,
6996 and this insn P changes a register used in GOAL, return 0. */
6998 if (GET_CODE (pat) == COND_EXEC)
6999 pat = COND_EXEC_CODE (pat);
7000 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7002 rtx dest = SET_DEST (pat);
7003 while (GET_CODE (dest) == SUBREG
7004 || GET_CODE (dest) == ZERO_EXTRACT
7005 || GET_CODE (dest) == STRICT_LOW_PART)
7006 dest = XEXP (dest, 0);
7007 if (REG_P (dest))
7009 int xregno = REGNO (dest);
7010 int xnregs;
7011 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7012 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7013 else
7014 xnregs = 1;
7015 if (xregno < regno + nregs && xregno + xnregs > regno)
7016 return 0;
7017 if (xregno < valueno + valuenregs
7018 && xregno + xnregs > valueno)
7019 return 0;
7020 if (goal_mem_addr_varies
7021 && reg_overlap_mentioned_for_reload_p (dest, goal))
7022 return 0;
7023 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7024 return 0;
7026 else if (goal_mem && MEM_P (dest)
7027 && ! push_operand (dest, GET_MODE (dest)))
7028 return 0;
7029 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7030 && reg_equiv_memory_loc (regno) != 0)
7031 return 0;
7032 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7033 return 0;
7035 else if (GET_CODE (pat) == PARALLEL)
7037 int i;
7038 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7040 rtx v1 = XVECEXP (pat, 0, i);
7041 if (GET_CODE (v1) == COND_EXEC)
7042 v1 = COND_EXEC_CODE (v1);
7043 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7045 rtx dest = SET_DEST (v1);
7046 while (GET_CODE (dest) == SUBREG
7047 || GET_CODE (dest) == ZERO_EXTRACT
7048 || GET_CODE (dest) == STRICT_LOW_PART)
7049 dest = XEXP (dest, 0);
7050 if (REG_P (dest))
7052 int xregno = REGNO (dest);
7053 int xnregs;
7054 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7055 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7056 else
7057 xnregs = 1;
7058 if (xregno < regno + nregs
7059 && xregno + xnregs > regno)
7060 return 0;
7061 if (xregno < valueno + valuenregs
7062 && xregno + xnregs > valueno)
7063 return 0;
7064 if (goal_mem_addr_varies
7065 && reg_overlap_mentioned_for_reload_p (dest,
7066 goal))
7067 return 0;
7068 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7069 return 0;
7071 else if (goal_mem && MEM_P (dest)
7072 && ! push_operand (dest, GET_MODE (dest)))
7073 return 0;
7074 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7075 && reg_equiv_memory_loc (regno) != 0)
7076 return 0;
7077 else if (need_stable_sp
7078 && push_operand (dest, GET_MODE (dest)))
7079 return 0;
7084 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7086 rtx link;
7088 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7089 link = XEXP (link, 1))
7091 pat = XEXP (link, 0);
7092 if (GET_CODE (pat) == CLOBBER)
7094 rtx dest = SET_DEST (pat);
7096 if (REG_P (dest))
7098 int xregno = REGNO (dest);
7099 int xnregs
7100 = hard_regno_nregs[xregno][GET_MODE (dest)];
7102 if (xregno < regno + nregs
7103 && xregno + xnregs > regno)
7104 return 0;
7105 else if (xregno < valueno + valuenregs
7106 && xregno + xnregs > valueno)
7107 return 0;
7108 else if (goal_mem_addr_varies
7109 && reg_overlap_mentioned_for_reload_p (dest,
7110 goal))
7111 return 0;
7114 else if (goal_mem && MEM_P (dest)
7115 && ! push_operand (dest, GET_MODE (dest)))
7116 return 0;
7117 else if (need_stable_sp
7118 && push_operand (dest, GET_MODE (dest)))
7119 return 0;
7124 #ifdef AUTO_INC_DEC
7125 /* If this insn auto-increments or auto-decrements
7126 either regno or valueno, return 0 now.
7127 If GOAL is a memory ref and its address is not constant,
7128 and this insn P increments a register used in GOAL, return 0. */
7130 rtx link;
7132 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7133 if (REG_NOTE_KIND (link) == REG_INC
7134 && REG_P (XEXP (link, 0)))
7136 int incno = REGNO (XEXP (link, 0));
7137 if (incno < regno + nregs && incno >= regno)
7138 return 0;
7139 if (incno < valueno + valuenregs && incno >= valueno)
7140 return 0;
7141 if (goal_mem_addr_varies
7142 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7143 goal))
7144 return 0;
7147 #endif
7152 /* Find a place where INCED appears in an increment or decrement operator
7153 within X, and return the amount INCED is incremented or decremented by.
7154 The value is always positive. */
7156 static int
7157 find_inc_amount (rtx x, rtx inced)
7159 enum rtx_code code = GET_CODE (x);
7160 const char *fmt;
7161 int i;
7163 if (code == MEM)
7165 rtx addr = XEXP (x, 0);
7166 if ((GET_CODE (addr) == PRE_DEC
7167 || GET_CODE (addr) == POST_DEC
7168 || GET_CODE (addr) == PRE_INC
7169 || GET_CODE (addr) == POST_INC)
7170 && XEXP (addr, 0) == inced)
7171 return GET_MODE_SIZE (GET_MODE (x));
7172 else if ((GET_CODE (addr) == PRE_MODIFY
7173 || GET_CODE (addr) == POST_MODIFY)
7174 && GET_CODE (XEXP (addr, 1)) == PLUS
7175 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7176 && XEXP (addr, 0) == inced
7177 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7179 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7180 return i < 0 ? -i : i;
7184 fmt = GET_RTX_FORMAT (code);
7185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7187 if (fmt[i] == 'e')
7189 int tem = find_inc_amount (XEXP (x, i), inced);
7190 if (tem != 0)
7191 return tem;
7193 if (fmt[i] == 'E')
7195 int j;
7196 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7198 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7199 if (tem != 0)
7200 return tem;
7205 return 0;
7208 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7209 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7211 #ifdef AUTO_INC_DEC
7212 static int
7213 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7214 rtx insn)
7216 rtx link;
7218 gcc_assert (insn);
7220 if (! INSN_P (insn))
7221 return 0;
7223 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7224 if (REG_NOTE_KIND (link) == REG_INC)
7226 unsigned int test = (int) REGNO (XEXP (link, 0));
7227 if (test >= regno && test < endregno)
7228 return 1;
7230 return 0;
7232 #else
7234 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7236 #endif
7238 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7239 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7240 REG_INC. REGNO must refer to a hard register. */
7243 regno_clobbered_p (unsigned int regno, rtx_insn *insn, machine_mode mode,
7244 int sets)
7246 unsigned int nregs, endregno;
7248 /* regno must be a hard register. */
7249 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7251 nregs = hard_regno_nregs[regno][mode];
7252 endregno = regno + nregs;
7254 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7255 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7256 && REG_P (XEXP (PATTERN (insn), 0)))
7258 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7260 return test >= regno && test < endregno;
7263 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7264 return 1;
7266 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7268 int i = XVECLEN (PATTERN (insn), 0) - 1;
7270 for (; i >= 0; i--)
7272 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7273 if ((GET_CODE (elt) == CLOBBER
7274 || (sets == 1 && GET_CODE (elt) == SET))
7275 && REG_P (XEXP (elt, 0)))
7277 unsigned int test = REGNO (XEXP (elt, 0));
7279 if (test >= regno && test < endregno)
7280 return 1;
7282 if (sets == 2
7283 && reg_inc_found_and_valid_p (regno, endregno, elt))
7284 return 1;
7288 return 0;
7291 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7293 reload_adjust_reg_for_mode (rtx reloadreg, machine_mode mode)
7295 int regno;
7297 if (GET_MODE (reloadreg) == mode)
7298 return reloadreg;
7300 regno = REGNO (reloadreg);
7302 if (REG_WORDS_BIG_ENDIAN)
7303 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7304 - (int) hard_regno_nregs[regno][mode];
7306 return gen_rtx_REG (mode, regno);
7309 static const char *const reload_when_needed_name[] =
7311 "RELOAD_FOR_INPUT",
7312 "RELOAD_FOR_OUTPUT",
7313 "RELOAD_FOR_INSN",
7314 "RELOAD_FOR_INPUT_ADDRESS",
7315 "RELOAD_FOR_INPADDR_ADDRESS",
7316 "RELOAD_FOR_OUTPUT_ADDRESS",
7317 "RELOAD_FOR_OUTADDR_ADDRESS",
7318 "RELOAD_FOR_OPERAND_ADDRESS",
7319 "RELOAD_FOR_OPADDR_ADDR",
7320 "RELOAD_OTHER",
7321 "RELOAD_FOR_OTHER_ADDRESS"
7324 /* These functions are used to print the variables set by 'find_reloads' */
7326 DEBUG_FUNCTION void
7327 debug_reload_to_stream (FILE *f)
7329 int r;
7330 const char *prefix;
7332 if (! f)
7333 f = stderr;
7334 for (r = 0; r < n_reloads; r++)
7336 fprintf (f, "Reload %d: ", r);
7338 if (rld[r].in != 0)
7340 fprintf (f, "reload_in (%s) = ",
7341 GET_MODE_NAME (rld[r].inmode));
7342 print_inline_rtx (f, rld[r].in, 24);
7343 fprintf (f, "\n\t");
7346 if (rld[r].out != 0)
7348 fprintf (f, "reload_out (%s) = ",
7349 GET_MODE_NAME (rld[r].outmode));
7350 print_inline_rtx (f, rld[r].out, 24);
7351 fprintf (f, "\n\t");
7354 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7356 fprintf (f, "%s (opnum = %d)",
7357 reload_when_needed_name[(int) rld[r].when_needed],
7358 rld[r].opnum);
7360 if (rld[r].optional)
7361 fprintf (f, ", optional");
7363 if (rld[r].nongroup)
7364 fprintf (f, ", nongroup");
7366 if (rld[r].inc != 0)
7367 fprintf (f, ", inc by %d", rld[r].inc);
7369 if (rld[r].nocombine)
7370 fprintf (f, ", can't combine");
7372 if (rld[r].secondary_p)
7373 fprintf (f, ", secondary_reload_p");
7375 if (rld[r].in_reg != 0)
7377 fprintf (f, "\n\treload_in_reg: ");
7378 print_inline_rtx (f, rld[r].in_reg, 24);
7381 if (rld[r].out_reg != 0)
7383 fprintf (f, "\n\treload_out_reg: ");
7384 print_inline_rtx (f, rld[r].out_reg, 24);
7387 if (rld[r].reg_rtx != 0)
7389 fprintf (f, "\n\treload_reg_rtx: ");
7390 print_inline_rtx (f, rld[r].reg_rtx, 24);
7393 prefix = "\n\t";
7394 if (rld[r].secondary_in_reload != -1)
7396 fprintf (f, "%ssecondary_in_reload = %d",
7397 prefix, rld[r].secondary_in_reload);
7398 prefix = ", ";
7401 if (rld[r].secondary_out_reload != -1)
7402 fprintf (f, "%ssecondary_out_reload = %d\n",
7403 prefix, rld[r].secondary_out_reload);
7405 prefix = "\n\t";
7406 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7408 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7409 insn_data[rld[r].secondary_in_icode].name);
7410 prefix = ", ";
7413 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7414 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7415 insn_data[rld[r].secondary_out_icode].name);
7417 fprintf (f, "\n");
7421 DEBUG_FUNCTION void
7422 debug_reload (void)
7424 debug_reload_to_stream (stderr);