2014-06-25 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / gcc / tree-vrp.c
blob3d0916d457a664dd917c4450bbff473a58ee6474
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "flags.h"
26 #include "tree.h"
27 #include "stor-layout.h"
28 #include "calls.h"
29 #include "basic-block.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "gimple-fold.h"
33 #include "tree-eh.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimple-ssa.h"
40 #include "tree-cfg.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "tree-pass.h"
51 #include "tree-dump.h"
52 #include "gimple-pretty-print.h"
53 #include "diagnostic-core.h"
54 #include "intl.h"
55 #include "cfgloop.h"
56 #include "tree-scalar-evolution.h"
57 #include "tree-ssa-propagate.h"
58 #include "tree-chrec.h"
59 #include "tree-ssa-threadupdate.h"
60 #include "expr.h"
61 #include "optabs.h"
62 #include "tree-ssa-threadedge.h"
63 #include "wide-int.h"
67 /* Range of values that can be associated with an SSA_NAME after VRP
68 has executed. */
69 struct value_range_d
71 /* Lattice value represented by this range. */
72 enum value_range_type type;
74 /* Minimum and maximum values represented by this range. These
75 values should be interpreted as follows:
77 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
78 be NULL.
80 - If TYPE == VR_RANGE then MIN holds the minimum value and
81 MAX holds the maximum value of the range [MIN, MAX].
83 - If TYPE == ANTI_RANGE the variable is known to NOT
84 take any values in the range [MIN, MAX]. */
85 tree min;
86 tree max;
88 /* Set of SSA names whose value ranges are equivalent to this one.
89 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
90 bitmap equiv;
93 typedef struct value_range_d value_range_t;
95 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
97 /* Set of SSA names found live during the RPO traversal of the function
98 for still active basic-blocks. */
99 static sbitmap *live;
101 /* Return true if the SSA name NAME is live on the edge E. */
103 static bool
104 live_on_edge (edge e, tree name)
106 return (live[e->dest->index]
107 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
110 /* Local functions. */
111 static int compare_values (tree val1, tree val2);
112 static int compare_values_warnv (tree val1, tree val2, bool *);
113 static void vrp_meet (value_range_t *, value_range_t *);
114 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
115 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
116 tree, tree, bool, bool *,
117 bool *);
119 /* Location information for ASSERT_EXPRs. Each instance of this
120 structure describes an ASSERT_EXPR for an SSA name. Since a single
121 SSA name may have more than one assertion associated with it, these
122 locations are kept in a linked list attached to the corresponding
123 SSA name. */
124 struct assert_locus_d
126 /* Basic block where the assertion would be inserted. */
127 basic_block bb;
129 /* Some assertions need to be inserted on an edge (e.g., assertions
130 generated by COND_EXPRs). In those cases, BB will be NULL. */
131 edge e;
133 /* Pointer to the statement that generated this assertion. */
134 gimple_stmt_iterator si;
136 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
137 enum tree_code comp_code;
139 /* Value being compared against. */
140 tree val;
142 /* Expression to compare. */
143 tree expr;
145 /* Next node in the linked list. */
146 struct assert_locus_d *next;
149 typedef struct assert_locus_d *assert_locus_t;
151 /* If bit I is present, it means that SSA name N_i has a list of
152 assertions that should be inserted in the IL. */
153 static bitmap need_assert_for;
155 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
156 holds a list of ASSERT_LOCUS_T nodes that describe where
157 ASSERT_EXPRs for SSA name N_I should be inserted. */
158 static assert_locus_t *asserts_for;
160 /* Value range array. After propagation, VR_VALUE[I] holds the range
161 of values that SSA name N_I may take. */
162 static unsigned num_vr_values;
163 static value_range_t **vr_value;
164 static bool values_propagated;
166 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
167 number of executable edges we saw the last time we visited the
168 node. */
169 static int *vr_phi_edge_counts;
171 typedef struct {
172 gimple stmt;
173 tree vec;
174 } switch_update;
176 static vec<edge> to_remove_edges;
177 static vec<switch_update> to_update_switch_stmts;
180 /* Return the maximum value for TYPE. */
182 static inline tree
183 vrp_val_max (const_tree type)
185 if (!INTEGRAL_TYPE_P (type))
186 return NULL_TREE;
188 return TYPE_MAX_VALUE (type);
191 /* Return the minimum value for TYPE. */
193 static inline tree
194 vrp_val_min (const_tree type)
196 if (!INTEGRAL_TYPE_P (type))
197 return NULL_TREE;
199 return TYPE_MIN_VALUE (type);
202 /* Return whether VAL is equal to the maximum value of its type. This
203 will be true for a positive overflow infinity. We can't do a
204 simple equality comparison with TYPE_MAX_VALUE because C typedefs
205 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
206 to the integer constant with the same value in the type. */
208 static inline bool
209 vrp_val_is_max (const_tree val)
211 tree type_max = vrp_val_max (TREE_TYPE (val));
212 return (val == type_max
213 || (type_max != NULL_TREE
214 && operand_equal_p (val, type_max, 0)));
217 /* Return whether VAL is equal to the minimum value of its type. This
218 will be true for a negative overflow infinity. */
220 static inline bool
221 vrp_val_is_min (const_tree val)
223 tree type_min = vrp_val_min (TREE_TYPE (val));
224 return (val == type_min
225 || (type_min != NULL_TREE
226 && operand_equal_p (val, type_min, 0)));
230 /* Return whether TYPE should use an overflow infinity distinct from
231 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
232 represent a signed overflow during VRP computations. An infinity
233 is distinct from a half-range, which will go from some number to
234 TYPE_{MIN,MAX}_VALUE. */
236 static inline bool
237 needs_overflow_infinity (const_tree type)
239 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
242 /* Return whether TYPE can support our overflow infinity
243 representation: we use the TREE_OVERFLOW flag, which only exists
244 for constants. If TYPE doesn't support this, we don't optimize
245 cases which would require signed overflow--we drop them to
246 VARYING. */
248 static inline bool
249 supports_overflow_infinity (const_tree type)
251 tree min = vrp_val_min (type), max = vrp_val_max (type);
252 #ifdef ENABLE_CHECKING
253 gcc_assert (needs_overflow_infinity (type));
254 #endif
255 return (min != NULL_TREE
256 && CONSTANT_CLASS_P (min)
257 && max != NULL_TREE
258 && CONSTANT_CLASS_P (max));
261 /* VAL is the maximum or minimum value of a type. Return a
262 corresponding overflow infinity. */
264 static inline tree
265 make_overflow_infinity (tree val)
267 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
268 val = copy_node (val);
269 TREE_OVERFLOW (val) = 1;
270 return val;
273 /* Return a negative overflow infinity for TYPE. */
275 static inline tree
276 negative_overflow_infinity (tree type)
278 gcc_checking_assert (supports_overflow_infinity (type));
279 return make_overflow_infinity (vrp_val_min (type));
282 /* Return a positive overflow infinity for TYPE. */
284 static inline tree
285 positive_overflow_infinity (tree type)
287 gcc_checking_assert (supports_overflow_infinity (type));
288 return make_overflow_infinity (vrp_val_max (type));
291 /* Return whether VAL is a negative overflow infinity. */
293 static inline bool
294 is_negative_overflow_infinity (const_tree val)
296 return (TREE_OVERFLOW_P (val)
297 && needs_overflow_infinity (TREE_TYPE (val))
298 && vrp_val_is_min (val));
301 /* Return whether VAL is a positive overflow infinity. */
303 static inline bool
304 is_positive_overflow_infinity (const_tree val)
306 return (TREE_OVERFLOW_P (val)
307 && needs_overflow_infinity (TREE_TYPE (val))
308 && vrp_val_is_max (val));
311 /* Return whether VAL is a positive or negative overflow infinity. */
313 static inline bool
314 is_overflow_infinity (const_tree val)
316 return (TREE_OVERFLOW_P (val)
317 && needs_overflow_infinity (TREE_TYPE (val))
318 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
321 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
323 static inline bool
324 stmt_overflow_infinity (gimple stmt)
326 if (is_gimple_assign (stmt)
327 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
328 GIMPLE_SINGLE_RHS)
329 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
330 return false;
333 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
334 the same value with TREE_OVERFLOW clear. This can be used to avoid
335 confusing a regular value with an overflow value. */
337 static inline tree
338 avoid_overflow_infinity (tree val)
340 if (!is_overflow_infinity (val))
341 return val;
343 if (vrp_val_is_max (val))
344 return vrp_val_max (TREE_TYPE (val));
345 else
347 gcc_checking_assert (vrp_val_is_min (val));
348 return vrp_val_min (TREE_TYPE (val));
353 /* Return true if ARG is marked with the nonnull attribute in the
354 current function signature. */
356 static bool
357 nonnull_arg_p (const_tree arg)
359 tree t, attrs, fntype;
360 unsigned HOST_WIDE_INT arg_num;
362 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
364 /* The static chain decl is always non null. */
365 if (arg == cfun->static_chain_decl)
366 return true;
368 fntype = TREE_TYPE (current_function_decl);
369 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
371 attrs = lookup_attribute ("nonnull", attrs);
373 /* If "nonnull" wasn't specified, we know nothing about the argument. */
374 if (attrs == NULL_TREE)
375 return false;
377 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
378 if (TREE_VALUE (attrs) == NULL_TREE)
379 return true;
381 /* Get the position number for ARG in the function signature. */
382 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
384 t = DECL_CHAIN (t), arg_num++)
386 if (t == arg)
387 break;
390 gcc_assert (t == arg);
392 /* Now see if ARG_NUM is mentioned in the nonnull list. */
393 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
395 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
396 return true;
400 return false;
404 /* Set value range VR to VR_UNDEFINED. */
406 static inline void
407 set_value_range_to_undefined (value_range_t *vr)
409 vr->type = VR_UNDEFINED;
410 vr->min = vr->max = NULL_TREE;
411 if (vr->equiv)
412 bitmap_clear (vr->equiv);
416 /* Set value range VR to VR_VARYING. */
418 static inline void
419 set_value_range_to_varying (value_range_t *vr)
421 vr->type = VR_VARYING;
422 vr->min = vr->max = NULL_TREE;
423 if (vr->equiv)
424 bitmap_clear (vr->equiv);
428 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
430 static void
431 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
432 tree max, bitmap equiv)
434 #if defined ENABLE_CHECKING
435 /* Check the validity of the range. */
436 if (t == VR_RANGE || t == VR_ANTI_RANGE)
438 int cmp;
440 gcc_assert (min && max);
442 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
443 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
445 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
446 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
448 cmp = compare_values (min, max);
449 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
451 if (needs_overflow_infinity (TREE_TYPE (min)))
452 gcc_assert (!is_overflow_infinity (min)
453 || !is_overflow_infinity (max));
456 if (t == VR_UNDEFINED || t == VR_VARYING)
457 gcc_assert (min == NULL_TREE && max == NULL_TREE);
459 if (t == VR_UNDEFINED || t == VR_VARYING)
460 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
461 #endif
463 vr->type = t;
464 vr->min = min;
465 vr->max = max;
467 /* Since updating the equivalence set involves deep copying the
468 bitmaps, only do it if absolutely necessary. */
469 if (vr->equiv == NULL
470 && equiv != NULL)
471 vr->equiv = BITMAP_ALLOC (NULL);
473 if (equiv != vr->equiv)
475 if (equiv && !bitmap_empty_p (equiv))
476 bitmap_copy (vr->equiv, equiv);
477 else
478 bitmap_clear (vr->equiv);
483 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
484 This means adjusting T, MIN and MAX representing the case of a
485 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
486 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
487 In corner cases where MAX+1 or MIN-1 wraps this will fall back
488 to varying.
489 This routine exists to ease canonicalization in the case where we
490 extract ranges from var + CST op limit. */
492 static void
493 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
494 tree min, tree max, bitmap equiv)
496 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
497 if (t == VR_UNDEFINED)
499 set_value_range_to_undefined (vr);
500 return;
502 else if (t == VR_VARYING)
504 set_value_range_to_varying (vr);
505 return;
508 /* Nothing to canonicalize for symbolic ranges. */
509 if (TREE_CODE (min) != INTEGER_CST
510 || TREE_CODE (max) != INTEGER_CST)
512 set_value_range (vr, t, min, max, equiv);
513 return;
516 /* Wrong order for min and max, to swap them and the VR type we need
517 to adjust them. */
518 if (tree_int_cst_lt (max, min))
520 tree one, tmp;
522 /* For one bit precision if max < min, then the swapped
523 range covers all values, so for VR_RANGE it is varying and
524 for VR_ANTI_RANGE empty range, so drop to varying as well. */
525 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
527 set_value_range_to_varying (vr);
528 return;
531 one = build_int_cst (TREE_TYPE (min), 1);
532 tmp = int_const_binop (PLUS_EXPR, max, one);
533 max = int_const_binop (MINUS_EXPR, min, one);
534 min = tmp;
536 /* There's one corner case, if we had [C+1, C] before we now have
537 that again. But this represents an empty value range, so drop
538 to varying in this case. */
539 if (tree_int_cst_lt (max, min))
541 set_value_range_to_varying (vr);
542 return;
545 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
548 /* Anti-ranges that can be represented as ranges should be so. */
549 if (t == VR_ANTI_RANGE)
551 bool is_min = vrp_val_is_min (min);
552 bool is_max = vrp_val_is_max (max);
554 if (is_min && is_max)
556 /* We cannot deal with empty ranges, drop to varying.
557 ??? This could be VR_UNDEFINED instead. */
558 set_value_range_to_varying (vr);
559 return;
561 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
562 && (is_min || is_max))
564 /* Non-empty boolean ranges can always be represented
565 as a singleton range. */
566 if (is_min)
567 min = max = vrp_val_max (TREE_TYPE (min));
568 else
569 min = max = vrp_val_min (TREE_TYPE (min));
570 t = VR_RANGE;
572 else if (is_min
573 /* As a special exception preserve non-null ranges. */
574 && !(TYPE_UNSIGNED (TREE_TYPE (min))
575 && integer_zerop (max)))
577 tree one = build_int_cst (TREE_TYPE (max), 1);
578 min = int_const_binop (PLUS_EXPR, max, one);
579 max = vrp_val_max (TREE_TYPE (max));
580 t = VR_RANGE;
582 else if (is_max)
584 tree one = build_int_cst (TREE_TYPE (min), 1);
585 max = int_const_binop (MINUS_EXPR, min, one);
586 min = vrp_val_min (TREE_TYPE (min));
587 t = VR_RANGE;
591 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
592 if (needs_overflow_infinity (TREE_TYPE (min))
593 && is_overflow_infinity (min)
594 && is_overflow_infinity (max))
596 set_value_range_to_varying (vr);
597 return;
600 set_value_range (vr, t, min, max, equiv);
603 /* Copy value range FROM into value range TO. */
605 static inline void
606 copy_value_range (value_range_t *to, value_range_t *from)
608 set_value_range (to, from->type, from->min, from->max, from->equiv);
611 /* Set value range VR to a single value. This function is only called
612 with values we get from statements, and exists to clear the
613 TREE_OVERFLOW flag so that we don't think we have an overflow
614 infinity when we shouldn't. */
616 static inline void
617 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
619 gcc_assert (is_gimple_min_invariant (val));
620 if (TREE_OVERFLOW_P (val))
621 val = drop_tree_overflow (val);
622 set_value_range (vr, VR_RANGE, val, val, equiv);
625 /* Set value range VR to a non-negative range of type TYPE.
626 OVERFLOW_INFINITY indicates whether to use an overflow infinity
627 rather than TYPE_MAX_VALUE; this should be true if we determine
628 that the range is nonnegative based on the assumption that signed
629 overflow does not occur. */
631 static inline void
632 set_value_range_to_nonnegative (value_range_t *vr, tree type,
633 bool overflow_infinity)
635 tree zero;
637 if (overflow_infinity && !supports_overflow_infinity (type))
639 set_value_range_to_varying (vr);
640 return;
643 zero = build_int_cst (type, 0);
644 set_value_range (vr, VR_RANGE, zero,
645 (overflow_infinity
646 ? positive_overflow_infinity (type)
647 : TYPE_MAX_VALUE (type)),
648 vr->equiv);
651 /* Set value range VR to a non-NULL range of type TYPE. */
653 static inline void
654 set_value_range_to_nonnull (value_range_t *vr, tree type)
656 tree zero = build_int_cst (type, 0);
657 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
661 /* Set value range VR to a NULL range of type TYPE. */
663 static inline void
664 set_value_range_to_null (value_range_t *vr, tree type)
666 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
670 /* Set value range VR to a range of a truthvalue of type TYPE. */
672 static inline void
673 set_value_range_to_truthvalue (value_range_t *vr, tree type)
675 if (TYPE_PRECISION (type) == 1)
676 set_value_range_to_varying (vr);
677 else
678 set_value_range (vr, VR_RANGE,
679 build_int_cst (type, 0), build_int_cst (type, 1),
680 vr->equiv);
684 /* If abs (min) < abs (max), set VR to [-max, max], if
685 abs (min) >= abs (max), set VR to [-min, min]. */
687 static void
688 abs_extent_range (value_range_t *vr, tree min, tree max)
690 int cmp;
692 gcc_assert (TREE_CODE (min) == INTEGER_CST);
693 gcc_assert (TREE_CODE (max) == INTEGER_CST);
694 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
695 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
696 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
697 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
698 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
700 set_value_range_to_varying (vr);
701 return;
703 cmp = compare_values (min, max);
704 if (cmp == -1)
705 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
706 else if (cmp == 0 || cmp == 1)
708 max = min;
709 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
711 else
713 set_value_range_to_varying (vr);
714 return;
716 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
720 /* Return value range information for VAR.
722 If we have no values ranges recorded (ie, VRP is not running), then
723 return NULL. Otherwise create an empty range if none existed for VAR. */
725 static value_range_t *
726 get_value_range (const_tree var)
728 static const struct value_range_d vr_const_varying
729 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
730 value_range_t *vr;
731 tree sym;
732 unsigned ver = SSA_NAME_VERSION (var);
734 /* If we have no recorded ranges, then return NULL. */
735 if (! vr_value)
736 return NULL;
738 /* If we query the range for a new SSA name return an unmodifiable VARYING.
739 We should get here at most from the substitute-and-fold stage which
740 will never try to change values. */
741 if (ver >= num_vr_values)
742 return CONST_CAST (value_range_t *, &vr_const_varying);
744 vr = vr_value[ver];
745 if (vr)
746 return vr;
748 /* After propagation finished do not allocate new value-ranges. */
749 if (values_propagated)
750 return CONST_CAST (value_range_t *, &vr_const_varying);
752 /* Create a default value range. */
753 vr_value[ver] = vr = XCNEW (value_range_t);
755 /* Defer allocating the equivalence set. */
756 vr->equiv = NULL;
758 /* If VAR is a default definition of a parameter, the variable can
759 take any value in VAR's type. */
760 if (SSA_NAME_IS_DEFAULT_DEF (var))
762 sym = SSA_NAME_VAR (var);
763 if (TREE_CODE (sym) == PARM_DECL)
765 /* Try to use the "nonnull" attribute to create ~[0, 0]
766 anti-ranges for pointers. Note that this is only valid with
767 default definitions of PARM_DECLs. */
768 if (POINTER_TYPE_P (TREE_TYPE (sym))
769 && nonnull_arg_p (sym))
770 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
771 else
772 set_value_range_to_varying (vr);
774 else if (TREE_CODE (sym) == RESULT_DECL
775 && DECL_BY_REFERENCE (sym))
776 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
779 return vr;
782 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
784 static inline bool
785 vrp_operand_equal_p (const_tree val1, const_tree val2)
787 if (val1 == val2)
788 return true;
789 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
790 return false;
791 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
794 /* Return true, if the bitmaps B1 and B2 are equal. */
796 static inline bool
797 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
799 return (b1 == b2
800 || ((!b1 || bitmap_empty_p (b1))
801 && (!b2 || bitmap_empty_p (b2)))
802 || (b1 && b2
803 && bitmap_equal_p (b1, b2)));
806 /* Update the value range and equivalence set for variable VAR to
807 NEW_VR. Return true if NEW_VR is different from VAR's previous
808 value.
810 NOTE: This function assumes that NEW_VR is a temporary value range
811 object created for the sole purpose of updating VAR's range. The
812 storage used by the equivalence set from NEW_VR will be freed by
813 this function. Do not call update_value_range when NEW_VR
814 is the range object associated with another SSA name. */
816 static inline bool
817 update_value_range (const_tree var, value_range_t *new_vr)
819 value_range_t *old_vr;
820 bool is_new;
822 /* Update the value range, if necessary. */
823 old_vr = get_value_range (var);
824 is_new = old_vr->type != new_vr->type
825 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
826 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
827 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
829 if (is_new)
831 /* Do not allow transitions up the lattice. The following
832 is slightly more awkward than just new_vr->type < old_vr->type
833 because VR_RANGE and VR_ANTI_RANGE need to be considered
834 the same. We may not have is_new when transitioning to
835 UNDEFINED or from VARYING. */
836 if (new_vr->type == VR_UNDEFINED
837 || old_vr->type == VR_VARYING)
838 set_value_range_to_varying (old_vr);
839 else
840 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
841 new_vr->equiv);
844 BITMAP_FREE (new_vr->equiv);
846 return is_new;
850 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
851 point where equivalence processing can be turned on/off. */
853 static void
854 add_equivalence (bitmap *equiv, const_tree var)
856 unsigned ver = SSA_NAME_VERSION (var);
857 value_range_t *vr = vr_value[ver];
859 if (*equiv == NULL)
860 *equiv = BITMAP_ALLOC (NULL);
861 bitmap_set_bit (*equiv, ver);
862 if (vr && vr->equiv)
863 bitmap_ior_into (*equiv, vr->equiv);
867 /* Return true if VR is ~[0, 0]. */
869 static inline bool
870 range_is_nonnull (value_range_t *vr)
872 return vr->type == VR_ANTI_RANGE
873 && integer_zerop (vr->min)
874 && integer_zerop (vr->max);
878 /* Return true if VR is [0, 0]. */
880 static inline bool
881 range_is_null (value_range_t *vr)
883 return vr->type == VR_RANGE
884 && integer_zerop (vr->min)
885 && integer_zerop (vr->max);
888 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
889 a singleton. */
891 static inline bool
892 range_int_cst_p (value_range_t *vr)
894 return (vr->type == VR_RANGE
895 && TREE_CODE (vr->max) == INTEGER_CST
896 && TREE_CODE (vr->min) == INTEGER_CST);
899 /* Return true if VR is a INTEGER_CST singleton. */
901 static inline bool
902 range_int_cst_singleton_p (value_range_t *vr)
904 return (range_int_cst_p (vr)
905 && !is_overflow_infinity (vr->min)
906 && !is_overflow_infinity (vr->max)
907 && tree_int_cst_equal (vr->min, vr->max));
910 /* Return true if value range VR involves at least one symbol. */
912 static inline bool
913 symbolic_range_p (value_range_t *vr)
915 return (!is_gimple_min_invariant (vr->min)
916 || !is_gimple_min_invariant (vr->max));
919 /* Return true if value range VR uses an overflow infinity. */
921 static inline bool
922 overflow_infinity_range_p (value_range_t *vr)
924 return (vr->type == VR_RANGE
925 && (is_overflow_infinity (vr->min)
926 || is_overflow_infinity (vr->max)));
929 /* Return false if we can not make a valid comparison based on VR;
930 this will be the case if it uses an overflow infinity and overflow
931 is not undefined (i.e., -fno-strict-overflow is in effect).
932 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
933 uses an overflow infinity. */
935 static bool
936 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
938 gcc_assert (vr->type == VR_RANGE);
939 if (is_overflow_infinity (vr->min))
941 *strict_overflow_p = true;
942 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
943 return false;
945 if (is_overflow_infinity (vr->max))
947 *strict_overflow_p = true;
948 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
949 return false;
951 return true;
955 /* Return true if the result of assignment STMT is know to be non-negative.
956 If the return value is based on the assumption that signed overflow is
957 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
958 *STRICT_OVERFLOW_P.*/
960 static bool
961 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
963 enum tree_code code = gimple_assign_rhs_code (stmt);
964 switch (get_gimple_rhs_class (code))
966 case GIMPLE_UNARY_RHS:
967 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
968 gimple_expr_type (stmt),
969 gimple_assign_rhs1 (stmt),
970 strict_overflow_p);
971 case GIMPLE_BINARY_RHS:
972 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
973 gimple_expr_type (stmt),
974 gimple_assign_rhs1 (stmt),
975 gimple_assign_rhs2 (stmt),
976 strict_overflow_p);
977 case GIMPLE_TERNARY_RHS:
978 return false;
979 case GIMPLE_SINGLE_RHS:
980 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
981 strict_overflow_p);
982 case GIMPLE_INVALID_RHS:
983 gcc_unreachable ();
984 default:
985 gcc_unreachable ();
989 /* Return true if return value of call STMT is know to be non-negative.
990 If the return value is based on the assumption that signed overflow is
991 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
992 *STRICT_OVERFLOW_P.*/
994 static bool
995 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
997 tree arg0 = gimple_call_num_args (stmt) > 0 ?
998 gimple_call_arg (stmt, 0) : NULL_TREE;
999 tree arg1 = gimple_call_num_args (stmt) > 1 ?
1000 gimple_call_arg (stmt, 1) : NULL_TREE;
1002 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
1003 gimple_call_fndecl (stmt),
1004 arg0,
1005 arg1,
1006 strict_overflow_p);
1009 /* Return true if STMT is know to to compute a non-negative value.
1010 If the return value is based on the assumption that signed overflow is
1011 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1012 *STRICT_OVERFLOW_P.*/
1014 static bool
1015 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1017 switch (gimple_code (stmt))
1019 case GIMPLE_ASSIGN:
1020 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1021 case GIMPLE_CALL:
1022 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1023 default:
1024 gcc_unreachable ();
1028 /* Return true if the result of assignment STMT is know to be non-zero.
1029 If the return value is based on the assumption that signed overflow is
1030 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1031 *STRICT_OVERFLOW_P.*/
1033 static bool
1034 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1036 enum tree_code code = gimple_assign_rhs_code (stmt);
1037 switch (get_gimple_rhs_class (code))
1039 case GIMPLE_UNARY_RHS:
1040 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1041 gimple_expr_type (stmt),
1042 gimple_assign_rhs1 (stmt),
1043 strict_overflow_p);
1044 case GIMPLE_BINARY_RHS:
1045 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1046 gimple_expr_type (stmt),
1047 gimple_assign_rhs1 (stmt),
1048 gimple_assign_rhs2 (stmt),
1049 strict_overflow_p);
1050 case GIMPLE_TERNARY_RHS:
1051 return false;
1052 case GIMPLE_SINGLE_RHS:
1053 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1054 strict_overflow_p);
1055 case GIMPLE_INVALID_RHS:
1056 gcc_unreachable ();
1057 default:
1058 gcc_unreachable ();
1062 /* Return true if STMT is known to compute a non-zero value.
1063 If the return value is based on the assumption that signed overflow is
1064 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1065 *STRICT_OVERFLOW_P.*/
1067 static bool
1068 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1070 switch (gimple_code (stmt))
1072 case GIMPLE_ASSIGN:
1073 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1074 case GIMPLE_CALL:
1076 tree fndecl = gimple_call_fndecl (stmt);
1077 if (!fndecl) return false;
1078 if (flag_delete_null_pointer_checks && !flag_check_new
1079 && DECL_IS_OPERATOR_NEW (fndecl)
1080 && !TREE_NOTHROW (fndecl))
1081 return true;
1082 if (flag_delete_null_pointer_checks &&
1083 lookup_attribute ("returns_nonnull",
1084 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1085 return true;
1086 return gimple_alloca_call_p (stmt);
1088 default:
1089 gcc_unreachable ();
1093 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1094 obtained so far. */
1096 static bool
1097 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1099 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1100 return true;
1102 /* If we have an expression of the form &X->a, then the expression
1103 is nonnull if X is nonnull. */
1104 if (is_gimple_assign (stmt)
1105 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1107 tree expr = gimple_assign_rhs1 (stmt);
1108 tree base = get_base_address (TREE_OPERAND (expr, 0));
1110 if (base != NULL_TREE
1111 && TREE_CODE (base) == MEM_REF
1112 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1114 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1115 if (range_is_nonnull (vr))
1116 return true;
1120 return false;
1123 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1124 a gimple invariant, or SSA_NAME +- CST. */
1126 static bool
1127 valid_value_p (tree expr)
1129 if (TREE_CODE (expr) == SSA_NAME)
1130 return true;
1132 if (TREE_CODE (expr) == PLUS_EXPR
1133 || TREE_CODE (expr) == MINUS_EXPR)
1134 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1135 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1137 return is_gimple_min_invariant (expr);
1140 /* Return
1141 1 if VAL < VAL2
1142 0 if !(VAL < VAL2)
1143 -2 if those are incomparable. */
1144 static inline int
1145 operand_less_p (tree val, tree val2)
1147 /* LT is folded faster than GE and others. Inline the common case. */
1148 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1149 return tree_int_cst_lt (val, val2);
1150 else
1152 tree tcmp;
1154 fold_defer_overflow_warnings ();
1156 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1158 fold_undefer_and_ignore_overflow_warnings ();
1160 if (!tcmp
1161 || TREE_CODE (tcmp) != INTEGER_CST)
1162 return -2;
1164 if (!integer_zerop (tcmp))
1165 return 1;
1168 /* val >= val2, not considering overflow infinity. */
1169 if (is_negative_overflow_infinity (val))
1170 return is_negative_overflow_infinity (val2) ? 0 : 1;
1171 else if (is_positive_overflow_infinity (val2))
1172 return is_positive_overflow_infinity (val) ? 0 : 1;
1174 return 0;
1177 /* Compare two values VAL1 and VAL2. Return
1179 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1180 -1 if VAL1 < VAL2,
1181 0 if VAL1 == VAL2,
1182 +1 if VAL1 > VAL2, and
1183 +2 if VAL1 != VAL2
1185 This is similar to tree_int_cst_compare but supports pointer values
1186 and values that cannot be compared at compile time.
1188 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1189 true if the return value is only valid if we assume that signed
1190 overflow is undefined. */
1192 static int
1193 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1195 if (val1 == val2)
1196 return 0;
1198 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1199 both integers. */
1200 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1201 == POINTER_TYPE_P (TREE_TYPE (val2)));
1202 /* Convert the two values into the same type. This is needed because
1203 sizetype causes sign extension even for unsigned types. */
1204 val2 = fold_convert (TREE_TYPE (val1), val2);
1205 STRIP_USELESS_TYPE_CONVERSION (val2);
1207 if ((TREE_CODE (val1) == SSA_NAME
1208 || TREE_CODE (val1) == PLUS_EXPR
1209 || TREE_CODE (val1) == MINUS_EXPR)
1210 && (TREE_CODE (val2) == SSA_NAME
1211 || TREE_CODE (val2) == PLUS_EXPR
1212 || TREE_CODE (val2) == MINUS_EXPR))
1214 tree n1, c1, n2, c2;
1215 enum tree_code code1, code2;
1217 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1218 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1219 same name, return -2. */
1220 if (TREE_CODE (val1) == SSA_NAME)
1222 code1 = SSA_NAME;
1223 n1 = val1;
1224 c1 = NULL_TREE;
1226 else
1228 code1 = TREE_CODE (val1);
1229 n1 = TREE_OPERAND (val1, 0);
1230 c1 = TREE_OPERAND (val1, 1);
1231 if (tree_int_cst_sgn (c1) == -1)
1233 if (is_negative_overflow_infinity (c1))
1234 return -2;
1235 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1236 if (!c1)
1237 return -2;
1238 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1242 if (TREE_CODE (val2) == SSA_NAME)
1244 code2 = SSA_NAME;
1245 n2 = val2;
1246 c2 = NULL_TREE;
1248 else
1250 code2 = TREE_CODE (val2);
1251 n2 = TREE_OPERAND (val2, 0);
1252 c2 = TREE_OPERAND (val2, 1);
1253 if (tree_int_cst_sgn (c2) == -1)
1255 if (is_negative_overflow_infinity (c2))
1256 return -2;
1257 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1258 if (!c2)
1259 return -2;
1260 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1264 /* Both values must use the same name. */
1265 if (n1 != n2)
1266 return -2;
1268 if (code1 == SSA_NAME
1269 && code2 == SSA_NAME)
1270 /* NAME == NAME */
1271 return 0;
1273 /* If overflow is defined we cannot simplify more. */
1274 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1275 return -2;
1277 if (strict_overflow_p != NULL
1278 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1279 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1280 *strict_overflow_p = true;
1282 if (code1 == SSA_NAME)
1284 if (code2 == PLUS_EXPR)
1285 /* NAME < NAME + CST */
1286 return -1;
1287 else if (code2 == MINUS_EXPR)
1288 /* NAME > NAME - CST */
1289 return 1;
1291 else if (code1 == PLUS_EXPR)
1293 if (code2 == SSA_NAME)
1294 /* NAME + CST > NAME */
1295 return 1;
1296 else if (code2 == PLUS_EXPR)
1297 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1298 return compare_values_warnv (c1, c2, strict_overflow_p);
1299 else if (code2 == MINUS_EXPR)
1300 /* NAME + CST1 > NAME - CST2 */
1301 return 1;
1303 else if (code1 == MINUS_EXPR)
1305 if (code2 == SSA_NAME)
1306 /* NAME - CST < NAME */
1307 return -1;
1308 else if (code2 == PLUS_EXPR)
1309 /* NAME - CST1 < NAME + CST2 */
1310 return -1;
1311 else if (code2 == MINUS_EXPR)
1312 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1313 C1 and C2 are swapped in the call to compare_values. */
1314 return compare_values_warnv (c2, c1, strict_overflow_p);
1317 gcc_unreachable ();
1320 /* We cannot compare non-constants. */
1321 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1322 return -2;
1324 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1326 /* We cannot compare overflowed values, except for overflow
1327 infinities. */
1328 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1330 if (strict_overflow_p != NULL)
1331 *strict_overflow_p = true;
1332 if (is_negative_overflow_infinity (val1))
1333 return is_negative_overflow_infinity (val2) ? 0 : -1;
1334 else if (is_negative_overflow_infinity (val2))
1335 return 1;
1336 else if (is_positive_overflow_infinity (val1))
1337 return is_positive_overflow_infinity (val2) ? 0 : 1;
1338 else if (is_positive_overflow_infinity (val2))
1339 return -1;
1340 return -2;
1343 return tree_int_cst_compare (val1, val2);
1345 else
1347 tree t;
1349 /* First see if VAL1 and VAL2 are not the same. */
1350 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1351 return 0;
1353 /* If VAL1 is a lower address than VAL2, return -1. */
1354 if (operand_less_p (val1, val2) == 1)
1355 return -1;
1357 /* If VAL1 is a higher address than VAL2, return +1. */
1358 if (operand_less_p (val2, val1) == 1)
1359 return 1;
1361 /* If VAL1 is different than VAL2, return +2.
1362 For integer constants we either have already returned -1 or 1
1363 or they are equivalent. We still might succeed in proving
1364 something about non-trivial operands. */
1365 if (TREE_CODE (val1) != INTEGER_CST
1366 || TREE_CODE (val2) != INTEGER_CST)
1368 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1369 if (t && integer_onep (t))
1370 return 2;
1373 return -2;
1377 /* Compare values like compare_values_warnv, but treat comparisons of
1378 nonconstants which rely on undefined overflow as incomparable. */
1380 static int
1381 compare_values (tree val1, tree val2)
1383 bool sop;
1384 int ret;
1386 sop = false;
1387 ret = compare_values_warnv (val1, val2, &sop);
1388 if (sop
1389 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1390 ret = -2;
1391 return ret;
1395 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1396 0 if VAL is not inside [MIN, MAX],
1397 -2 if we cannot tell either way.
1399 Benchmark compile/20001226-1.c compilation time after changing this
1400 function. */
1402 static inline int
1403 value_inside_range (tree val, tree min, tree max)
1405 int cmp1, cmp2;
1407 cmp1 = operand_less_p (val, min);
1408 if (cmp1 == -2)
1409 return -2;
1410 if (cmp1 == 1)
1411 return 0;
1413 cmp2 = operand_less_p (max, val);
1414 if (cmp2 == -2)
1415 return -2;
1417 return !cmp2;
1421 /* Return true if value ranges VR0 and VR1 have a non-empty
1422 intersection.
1424 Benchmark compile/20001226-1.c compilation time after changing this
1425 function.
1428 static inline bool
1429 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1431 /* The value ranges do not intersect if the maximum of the first range is
1432 less than the minimum of the second range or vice versa.
1433 When those relations are unknown, we can't do any better. */
1434 if (operand_less_p (vr0->max, vr1->min) != 0)
1435 return false;
1436 if (operand_less_p (vr1->max, vr0->min) != 0)
1437 return false;
1438 return true;
1442 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1443 include the value zero, -2 if we cannot tell. */
1445 static inline int
1446 range_includes_zero_p (tree min, tree max)
1448 tree zero = build_int_cst (TREE_TYPE (min), 0);
1449 return value_inside_range (zero, min, max);
1452 /* Return true if *VR is know to only contain nonnegative values. */
1454 static inline bool
1455 value_range_nonnegative_p (value_range_t *vr)
1457 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1458 which would return a useful value should be encoded as a
1459 VR_RANGE. */
1460 if (vr->type == VR_RANGE)
1462 int result = compare_values (vr->min, integer_zero_node);
1463 return (result == 0 || result == 1);
1466 return false;
1469 /* If *VR has a value rante that is a single constant value return that,
1470 otherwise return NULL_TREE. */
1472 static tree
1473 value_range_constant_singleton (value_range_t *vr)
1475 if (vr->type == VR_RANGE
1476 && operand_equal_p (vr->min, vr->max, 0)
1477 && is_gimple_min_invariant (vr->min))
1478 return vr->min;
1480 return NULL_TREE;
1483 /* If OP has a value range with a single constant value return that,
1484 otherwise return NULL_TREE. This returns OP itself if OP is a
1485 constant. */
1487 static tree
1488 op_with_constant_singleton_value_range (tree op)
1490 if (is_gimple_min_invariant (op))
1491 return op;
1493 if (TREE_CODE (op) != SSA_NAME)
1494 return NULL_TREE;
1496 return value_range_constant_singleton (get_value_range (op));
1499 /* Return true if op is in a boolean [0, 1] value-range. */
1501 static bool
1502 op_with_boolean_value_range_p (tree op)
1504 value_range_t *vr;
1506 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1507 return true;
1509 if (integer_zerop (op)
1510 || integer_onep (op))
1511 return true;
1513 if (TREE_CODE (op) != SSA_NAME)
1514 return false;
1516 vr = get_value_range (op);
1517 return (vr->type == VR_RANGE
1518 && integer_zerop (vr->min)
1519 && integer_onep (vr->max));
1522 /* Extract value range information from an ASSERT_EXPR EXPR and store
1523 it in *VR_P. */
1525 static void
1526 extract_range_from_assert (value_range_t *vr_p, tree expr)
1528 tree var, cond, limit, min, max, type;
1529 value_range_t *limit_vr;
1530 enum tree_code cond_code;
1532 var = ASSERT_EXPR_VAR (expr);
1533 cond = ASSERT_EXPR_COND (expr);
1535 gcc_assert (COMPARISON_CLASS_P (cond));
1537 /* Find VAR in the ASSERT_EXPR conditional. */
1538 if (var == TREE_OPERAND (cond, 0)
1539 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1540 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1542 /* If the predicate is of the form VAR COMP LIMIT, then we just
1543 take LIMIT from the RHS and use the same comparison code. */
1544 cond_code = TREE_CODE (cond);
1545 limit = TREE_OPERAND (cond, 1);
1546 cond = TREE_OPERAND (cond, 0);
1548 else
1550 /* If the predicate is of the form LIMIT COMP VAR, then we need
1551 to flip around the comparison code to create the proper range
1552 for VAR. */
1553 cond_code = swap_tree_comparison (TREE_CODE (cond));
1554 limit = TREE_OPERAND (cond, 0);
1555 cond = TREE_OPERAND (cond, 1);
1558 limit = avoid_overflow_infinity (limit);
1560 type = TREE_TYPE (var);
1561 gcc_assert (limit != var);
1563 /* For pointer arithmetic, we only keep track of pointer equality
1564 and inequality. */
1565 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1567 set_value_range_to_varying (vr_p);
1568 return;
1571 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1572 try to use LIMIT's range to avoid creating symbolic ranges
1573 unnecessarily. */
1574 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1576 /* LIMIT's range is only interesting if it has any useful information. */
1577 if (limit_vr
1578 && (limit_vr->type == VR_UNDEFINED
1579 || limit_vr->type == VR_VARYING
1580 || symbolic_range_p (limit_vr)))
1581 limit_vr = NULL;
1583 /* Initially, the new range has the same set of equivalences of
1584 VAR's range. This will be revised before returning the final
1585 value. Since assertions may be chained via mutually exclusive
1586 predicates, we will need to trim the set of equivalences before
1587 we are done. */
1588 gcc_assert (vr_p->equiv == NULL);
1589 add_equivalence (&vr_p->equiv, var);
1591 /* Extract a new range based on the asserted comparison for VAR and
1592 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1593 will only use it for equality comparisons (EQ_EXPR). For any
1594 other kind of assertion, we cannot derive a range from LIMIT's
1595 anti-range that can be used to describe the new range. For
1596 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1597 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1598 no single range for x_2 that could describe LE_EXPR, so we might
1599 as well build the range [b_4, +INF] for it.
1600 One special case we handle is extracting a range from a
1601 range test encoded as (unsigned)var + CST <= limit. */
1602 if (TREE_CODE (cond) == NOP_EXPR
1603 || TREE_CODE (cond) == PLUS_EXPR)
1605 if (TREE_CODE (cond) == PLUS_EXPR)
1607 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1608 TREE_OPERAND (cond, 1));
1609 max = int_const_binop (PLUS_EXPR, limit, min);
1610 cond = TREE_OPERAND (cond, 0);
1612 else
1614 min = build_int_cst (TREE_TYPE (var), 0);
1615 max = limit;
1618 /* Make sure to not set TREE_OVERFLOW on the final type
1619 conversion. We are willingly interpreting large positive
1620 unsigned values as negative singed values here. */
1621 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1622 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1624 /* We can transform a max, min range to an anti-range or
1625 vice-versa. Use set_and_canonicalize_value_range which does
1626 this for us. */
1627 if (cond_code == LE_EXPR)
1628 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1629 min, max, vr_p->equiv);
1630 else if (cond_code == GT_EXPR)
1631 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1632 min, max, vr_p->equiv);
1633 else
1634 gcc_unreachable ();
1636 else if (cond_code == EQ_EXPR)
1638 enum value_range_type range_type;
1640 if (limit_vr)
1642 range_type = limit_vr->type;
1643 min = limit_vr->min;
1644 max = limit_vr->max;
1646 else
1648 range_type = VR_RANGE;
1649 min = limit;
1650 max = limit;
1653 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1655 /* When asserting the equality VAR == LIMIT and LIMIT is another
1656 SSA name, the new range will also inherit the equivalence set
1657 from LIMIT. */
1658 if (TREE_CODE (limit) == SSA_NAME)
1659 add_equivalence (&vr_p->equiv, limit);
1661 else if (cond_code == NE_EXPR)
1663 /* As described above, when LIMIT's range is an anti-range and
1664 this assertion is an inequality (NE_EXPR), then we cannot
1665 derive anything from the anti-range. For instance, if
1666 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1667 not imply that VAR's range is [0, 0]. So, in the case of
1668 anti-ranges, we just assert the inequality using LIMIT and
1669 not its anti-range.
1671 If LIMIT_VR is a range, we can only use it to build a new
1672 anti-range if LIMIT_VR is a single-valued range. For
1673 instance, if LIMIT_VR is [0, 1], the predicate
1674 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1675 Rather, it means that for value 0 VAR should be ~[0, 0]
1676 and for value 1, VAR should be ~[1, 1]. We cannot
1677 represent these ranges.
1679 The only situation in which we can build a valid
1680 anti-range is when LIMIT_VR is a single-valued range
1681 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1682 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1683 if (limit_vr
1684 && limit_vr->type == VR_RANGE
1685 && compare_values (limit_vr->min, limit_vr->max) == 0)
1687 min = limit_vr->min;
1688 max = limit_vr->max;
1690 else
1692 /* In any other case, we cannot use LIMIT's range to build a
1693 valid anti-range. */
1694 min = max = limit;
1697 /* If MIN and MAX cover the whole range for their type, then
1698 just use the original LIMIT. */
1699 if (INTEGRAL_TYPE_P (type)
1700 && vrp_val_is_min (min)
1701 && vrp_val_is_max (max))
1702 min = max = limit;
1704 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1705 min, max, vr_p->equiv);
1707 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1709 min = TYPE_MIN_VALUE (type);
1711 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1712 max = limit;
1713 else
1715 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1716 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1717 LT_EXPR. */
1718 max = limit_vr->max;
1721 /* If the maximum value forces us to be out of bounds, simply punt.
1722 It would be pointless to try and do anything more since this
1723 all should be optimized away above us. */
1724 if ((cond_code == LT_EXPR
1725 && compare_values (max, min) == 0)
1726 || is_overflow_infinity (max))
1727 set_value_range_to_varying (vr_p);
1728 else
1730 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1731 if (cond_code == LT_EXPR)
1733 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1734 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1735 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1736 build_int_cst (TREE_TYPE (max), -1));
1737 else
1738 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1739 build_int_cst (TREE_TYPE (max), 1));
1740 if (EXPR_P (max))
1741 TREE_NO_WARNING (max) = 1;
1744 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1747 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1749 max = TYPE_MAX_VALUE (type);
1751 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1752 min = limit;
1753 else
1755 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1756 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1757 GT_EXPR. */
1758 min = limit_vr->min;
1761 /* If the minimum value forces us to be out of bounds, simply punt.
1762 It would be pointless to try and do anything more since this
1763 all should be optimized away above us. */
1764 if ((cond_code == GT_EXPR
1765 && compare_values (min, max) == 0)
1766 || is_overflow_infinity (min))
1767 set_value_range_to_varying (vr_p);
1768 else
1770 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1771 if (cond_code == GT_EXPR)
1773 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1774 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1775 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1776 build_int_cst (TREE_TYPE (min), -1));
1777 else
1778 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1779 build_int_cst (TREE_TYPE (min), 1));
1780 if (EXPR_P (min))
1781 TREE_NO_WARNING (min) = 1;
1784 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1787 else
1788 gcc_unreachable ();
1790 /* Finally intersect the new range with what we already know about var. */
1791 vrp_intersect_ranges (vr_p, get_value_range (var));
1795 /* Extract range information from SSA name VAR and store it in VR. If
1796 VAR has an interesting range, use it. Otherwise, create the
1797 range [VAR, VAR] and return it. This is useful in situations where
1798 we may have conditionals testing values of VARYING names. For
1799 instance,
1801 x_3 = y_5;
1802 if (x_3 > y_5)
1805 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1806 always false. */
1808 static void
1809 extract_range_from_ssa_name (value_range_t *vr, tree var)
1811 value_range_t *var_vr = get_value_range (var);
1813 if (var_vr->type != VR_VARYING)
1814 copy_value_range (vr, var_vr);
1815 else
1816 set_value_range (vr, VR_RANGE, var, var, NULL);
1818 add_equivalence (&vr->equiv, var);
1822 /* Wrapper around int_const_binop. If the operation overflows and we
1823 are not using wrapping arithmetic, then adjust the result to be
1824 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1825 NULL_TREE if we need to use an overflow infinity representation but
1826 the type does not support it. */
1828 static tree
1829 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1831 tree res;
1833 res = int_const_binop (code, val1, val2);
1835 /* If we are using unsigned arithmetic, operate symbolically
1836 on -INF and +INF as int_const_binop only handles signed overflow. */
1837 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1839 int checkz = compare_values (res, val1);
1840 bool overflow = false;
1842 /* Ensure that res = val1 [+*] val2 >= val1
1843 or that res = val1 - val2 <= val1. */
1844 if ((code == PLUS_EXPR
1845 && !(checkz == 1 || checkz == 0))
1846 || (code == MINUS_EXPR
1847 && !(checkz == 0 || checkz == -1)))
1849 overflow = true;
1851 /* Checking for multiplication overflow is done by dividing the
1852 output of the multiplication by the first input of the
1853 multiplication. If the result of that division operation is
1854 not equal to the second input of the multiplication, then the
1855 multiplication overflowed. */
1856 else if (code == MULT_EXPR && !integer_zerop (val1))
1858 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1859 res,
1860 val1);
1861 int check = compare_values (tmp, val2);
1863 if (check != 0)
1864 overflow = true;
1867 if (overflow)
1869 res = copy_node (res);
1870 TREE_OVERFLOW (res) = 1;
1874 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1875 /* If the singed operation wraps then int_const_binop has done
1876 everything we want. */
1878 /* Signed division of -1/0 overflows and by the time it gets here
1879 returns NULL_TREE. */
1880 else if (!res)
1881 return NULL_TREE;
1882 else if ((TREE_OVERFLOW (res)
1883 && !TREE_OVERFLOW (val1)
1884 && !TREE_OVERFLOW (val2))
1885 || is_overflow_infinity (val1)
1886 || is_overflow_infinity (val2))
1888 /* If the operation overflowed but neither VAL1 nor VAL2 are
1889 overflown, return -INF or +INF depending on the operation
1890 and the combination of signs of the operands. */
1891 int sgn1 = tree_int_cst_sgn (val1);
1892 int sgn2 = tree_int_cst_sgn (val2);
1894 if (needs_overflow_infinity (TREE_TYPE (res))
1895 && !supports_overflow_infinity (TREE_TYPE (res)))
1896 return NULL_TREE;
1898 /* We have to punt on adding infinities of different signs,
1899 since we can't tell what the sign of the result should be.
1900 Likewise for subtracting infinities of the same sign. */
1901 if (((code == PLUS_EXPR && sgn1 != sgn2)
1902 || (code == MINUS_EXPR && sgn1 == sgn2))
1903 && is_overflow_infinity (val1)
1904 && is_overflow_infinity (val2))
1905 return NULL_TREE;
1907 /* Don't try to handle division or shifting of infinities. */
1908 if ((code == TRUNC_DIV_EXPR
1909 || code == FLOOR_DIV_EXPR
1910 || code == CEIL_DIV_EXPR
1911 || code == EXACT_DIV_EXPR
1912 || code == ROUND_DIV_EXPR
1913 || code == RSHIFT_EXPR)
1914 && (is_overflow_infinity (val1)
1915 || is_overflow_infinity (val2)))
1916 return NULL_TREE;
1918 /* Notice that we only need to handle the restricted set of
1919 operations handled by extract_range_from_binary_expr.
1920 Among them, only multiplication, addition and subtraction
1921 can yield overflow without overflown operands because we
1922 are working with integral types only... except in the
1923 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1924 for division too. */
1926 /* For multiplication, the sign of the overflow is given
1927 by the comparison of the signs of the operands. */
1928 if ((code == MULT_EXPR && sgn1 == sgn2)
1929 /* For addition, the operands must be of the same sign
1930 to yield an overflow. Its sign is therefore that
1931 of one of the operands, for example the first. For
1932 infinite operands X + -INF is negative, not positive. */
1933 || (code == PLUS_EXPR
1934 && (sgn1 >= 0
1935 ? !is_negative_overflow_infinity (val2)
1936 : is_positive_overflow_infinity (val2)))
1937 /* For subtraction, non-infinite operands must be of
1938 different signs to yield an overflow. Its sign is
1939 therefore that of the first operand or the opposite of
1940 that of the second operand. A first operand of 0 counts
1941 as positive here, for the corner case 0 - (-INF), which
1942 overflows, but must yield +INF. For infinite operands 0
1943 - INF is negative, not positive. */
1944 || (code == MINUS_EXPR
1945 && (sgn1 >= 0
1946 ? !is_positive_overflow_infinity (val2)
1947 : is_negative_overflow_infinity (val2)))
1948 /* We only get in here with positive shift count, so the
1949 overflow direction is the same as the sign of val1.
1950 Actually rshift does not overflow at all, but we only
1951 handle the case of shifting overflowed -INF and +INF. */
1952 || (code == RSHIFT_EXPR
1953 && sgn1 >= 0)
1954 /* For division, the only case is -INF / -1 = +INF. */
1955 || code == TRUNC_DIV_EXPR
1956 || code == FLOOR_DIV_EXPR
1957 || code == CEIL_DIV_EXPR
1958 || code == EXACT_DIV_EXPR
1959 || code == ROUND_DIV_EXPR)
1960 return (needs_overflow_infinity (TREE_TYPE (res))
1961 ? positive_overflow_infinity (TREE_TYPE (res))
1962 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1963 else
1964 return (needs_overflow_infinity (TREE_TYPE (res))
1965 ? negative_overflow_infinity (TREE_TYPE (res))
1966 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1969 return res;
1973 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1974 bitmask if some bit is unset, it means for all numbers in the range
1975 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1976 bitmask if some bit is set, it means for all numbers in the range
1977 the bit is 1, otherwise it might be 0 or 1. */
1979 static bool
1980 zero_nonzero_bits_from_vr (const tree expr_type,
1981 value_range_t *vr,
1982 wide_int *may_be_nonzero,
1983 wide_int *must_be_nonzero)
1985 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1986 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1987 if (!range_int_cst_p (vr)
1988 || is_overflow_infinity (vr->min)
1989 || is_overflow_infinity (vr->max))
1990 return false;
1992 if (range_int_cst_singleton_p (vr))
1994 *may_be_nonzero = vr->min;
1995 *must_be_nonzero = *may_be_nonzero;
1997 else if (tree_int_cst_sgn (vr->min) >= 0
1998 || tree_int_cst_sgn (vr->max) < 0)
2000 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
2001 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
2002 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
2003 if (xor_mask != 0)
2005 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
2006 may_be_nonzero->get_precision ());
2007 *may_be_nonzero = *may_be_nonzero | mask;
2008 *must_be_nonzero = must_be_nonzero->and_not (mask);
2012 return true;
2015 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2016 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2017 false otherwise. If *AR can be represented with a single range
2018 *VR1 will be VR_UNDEFINED. */
2020 static bool
2021 ranges_from_anti_range (value_range_t *ar,
2022 value_range_t *vr0, value_range_t *vr1)
2024 tree type = TREE_TYPE (ar->min);
2026 vr0->type = VR_UNDEFINED;
2027 vr1->type = VR_UNDEFINED;
2029 if (ar->type != VR_ANTI_RANGE
2030 || TREE_CODE (ar->min) != INTEGER_CST
2031 || TREE_CODE (ar->max) != INTEGER_CST
2032 || !vrp_val_min (type)
2033 || !vrp_val_max (type))
2034 return false;
2036 if (!vrp_val_is_min (ar->min))
2038 vr0->type = VR_RANGE;
2039 vr0->min = vrp_val_min (type);
2040 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2042 if (!vrp_val_is_max (ar->max))
2044 vr1->type = VR_RANGE;
2045 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2046 vr1->max = vrp_val_max (type);
2048 if (vr0->type == VR_UNDEFINED)
2050 *vr0 = *vr1;
2051 vr1->type = VR_UNDEFINED;
2054 return vr0->type != VR_UNDEFINED;
2057 /* Helper to extract a value-range *VR for a multiplicative operation
2058 *VR0 CODE *VR1. */
2060 static void
2061 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2062 enum tree_code code,
2063 value_range_t *vr0, value_range_t *vr1)
2065 enum value_range_type type;
2066 tree val[4];
2067 size_t i;
2068 tree min, max;
2069 bool sop;
2070 int cmp;
2072 /* Multiplications, divisions and shifts are a bit tricky to handle,
2073 depending on the mix of signs we have in the two ranges, we
2074 need to operate on different values to get the minimum and
2075 maximum values for the new range. One approach is to figure
2076 out all the variations of range combinations and do the
2077 operations.
2079 However, this involves several calls to compare_values and it
2080 is pretty convoluted. It's simpler to do the 4 operations
2081 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2082 MAX1) and then figure the smallest and largest values to form
2083 the new range. */
2084 gcc_assert (code == MULT_EXPR
2085 || code == TRUNC_DIV_EXPR
2086 || code == FLOOR_DIV_EXPR
2087 || code == CEIL_DIV_EXPR
2088 || code == EXACT_DIV_EXPR
2089 || code == ROUND_DIV_EXPR
2090 || code == RSHIFT_EXPR
2091 || code == LSHIFT_EXPR);
2092 gcc_assert ((vr0->type == VR_RANGE
2093 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2094 && vr0->type == vr1->type);
2096 type = vr0->type;
2098 /* Compute the 4 cross operations. */
2099 sop = false;
2100 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2101 if (val[0] == NULL_TREE)
2102 sop = true;
2104 if (vr1->max == vr1->min)
2105 val[1] = NULL_TREE;
2106 else
2108 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2109 if (val[1] == NULL_TREE)
2110 sop = true;
2113 if (vr0->max == vr0->min)
2114 val[2] = NULL_TREE;
2115 else
2117 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2118 if (val[2] == NULL_TREE)
2119 sop = true;
2122 if (vr0->min == vr0->max || vr1->min == vr1->max)
2123 val[3] = NULL_TREE;
2124 else
2126 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2127 if (val[3] == NULL_TREE)
2128 sop = true;
2131 if (sop)
2133 set_value_range_to_varying (vr);
2134 return;
2137 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2138 of VAL[i]. */
2139 min = val[0];
2140 max = val[0];
2141 for (i = 1; i < 4; i++)
2143 if (!is_gimple_min_invariant (min)
2144 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2145 || !is_gimple_min_invariant (max)
2146 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2147 break;
2149 if (val[i])
2151 if (!is_gimple_min_invariant (val[i])
2152 || (TREE_OVERFLOW (val[i])
2153 && !is_overflow_infinity (val[i])))
2155 /* If we found an overflowed value, set MIN and MAX
2156 to it so that we set the resulting range to
2157 VARYING. */
2158 min = max = val[i];
2159 break;
2162 if (compare_values (val[i], min) == -1)
2163 min = val[i];
2165 if (compare_values (val[i], max) == 1)
2166 max = val[i];
2170 /* If either MIN or MAX overflowed, then set the resulting range to
2171 VARYING. But we do accept an overflow infinity
2172 representation. */
2173 if (min == NULL_TREE
2174 || !is_gimple_min_invariant (min)
2175 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2176 || max == NULL_TREE
2177 || !is_gimple_min_invariant (max)
2178 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2180 set_value_range_to_varying (vr);
2181 return;
2184 /* We punt if:
2185 1) [-INF, +INF]
2186 2) [-INF, +-INF(OVF)]
2187 3) [+-INF(OVF), +INF]
2188 4) [+-INF(OVF), +-INF(OVF)]
2189 We learn nothing when we have INF and INF(OVF) on both sides.
2190 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2191 overflow. */
2192 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2193 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2195 set_value_range_to_varying (vr);
2196 return;
2199 cmp = compare_values (min, max);
2200 if (cmp == -2 || cmp == 1)
2202 /* If the new range has its limits swapped around (MIN > MAX),
2203 then the operation caused one of them to wrap around, mark
2204 the new range VARYING. */
2205 set_value_range_to_varying (vr);
2207 else
2208 set_value_range (vr, type, min, max, NULL);
2211 /* Extract range information from a binary operation CODE based on
2212 the ranges of each of its operands, *VR0 and *VR1 with resulting
2213 type EXPR_TYPE. The resulting range is stored in *VR. */
2215 static void
2216 extract_range_from_binary_expr_1 (value_range_t *vr,
2217 enum tree_code code, tree expr_type,
2218 value_range_t *vr0_, value_range_t *vr1_)
2220 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2221 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2222 enum value_range_type type;
2223 tree min = NULL_TREE, max = NULL_TREE;
2224 int cmp;
2226 if (!INTEGRAL_TYPE_P (expr_type)
2227 && !POINTER_TYPE_P (expr_type))
2229 set_value_range_to_varying (vr);
2230 return;
2233 /* Not all binary expressions can be applied to ranges in a
2234 meaningful way. Handle only arithmetic operations. */
2235 if (code != PLUS_EXPR
2236 && code != MINUS_EXPR
2237 && code != POINTER_PLUS_EXPR
2238 && code != MULT_EXPR
2239 && code != TRUNC_DIV_EXPR
2240 && code != FLOOR_DIV_EXPR
2241 && code != CEIL_DIV_EXPR
2242 && code != EXACT_DIV_EXPR
2243 && code != ROUND_DIV_EXPR
2244 && code != TRUNC_MOD_EXPR
2245 && code != RSHIFT_EXPR
2246 && code != LSHIFT_EXPR
2247 && code != MIN_EXPR
2248 && code != MAX_EXPR
2249 && code != BIT_AND_EXPR
2250 && code != BIT_IOR_EXPR
2251 && code != BIT_XOR_EXPR)
2253 set_value_range_to_varying (vr);
2254 return;
2257 /* If both ranges are UNDEFINED, so is the result. */
2258 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2260 set_value_range_to_undefined (vr);
2261 return;
2263 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2264 code. At some point we may want to special-case operations that
2265 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2266 operand. */
2267 else if (vr0.type == VR_UNDEFINED)
2268 set_value_range_to_varying (&vr0);
2269 else if (vr1.type == VR_UNDEFINED)
2270 set_value_range_to_varying (&vr1);
2272 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2273 and express ~[] op X as ([]' op X) U ([]'' op X). */
2274 if (vr0.type == VR_ANTI_RANGE
2275 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2277 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2278 if (vrtem1.type != VR_UNDEFINED)
2280 value_range_t vrres = VR_INITIALIZER;
2281 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2282 &vrtem1, vr1_);
2283 vrp_meet (vr, &vrres);
2285 return;
2287 /* Likewise for X op ~[]. */
2288 if (vr1.type == VR_ANTI_RANGE
2289 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2291 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2292 if (vrtem1.type != VR_UNDEFINED)
2294 value_range_t vrres = VR_INITIALIZER;
2295 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2296 vr0_, &vrtem1);
2297 vrp_meet (vr, &vrres);
2299 return;
2302 /* The type of the resulting value range defaults to VR0.TYPE. */
2303 type = vr0.type;
2305 /* Refuse to operate on VARYING ranges, ranges of different kinds
2306 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2307 because we may be able to derive a useful range even if one of
2308 the operands is VR_VARYING or symbolic range. Similarly for
2309 divisions. TODO, we may be able to derive anti-ranges in
2310 some cases. */
2311 if (code != BIT_AND_EXPR
2312 && code != BIT_IOR_EXPR
2313 && code != TRUNC_DIV_EXPR
2314 && code != FLOOR_DIV_EXPR
2315 && code != CEIL_DIV_EXPR
2316 && code != EXACT_DIV_EXPR
2317 && code != ROUND_DIV_EXPR
2318 && code != TRUNC_MOD_EXPR
2319 && code != MIN_EXPR
2320 && code != MAX_EXPR
2321 && (vr0.type == VR_VARYING
2322 || vr1.type == VR_VARYING
2323 || vr0.type != vr1.type
2324 || symbolic_range_p (&vr0)
2325 || symbolic_range_p (&vr1)))
2327 set_value_range_to_varying (vr);
2328 return;
2331 /* Now evaluate the expression to determine the new range. */
2332 if (POINTER_TYPE_P (expr_type))
2334 if (code == MIN_EXPR || code == MAX_EXPR)
2336 /* For MIN/MAX expressions with pointers, we only care about
2337 nullness, if both are non null, then the result is nonnull.
2338 If both are null, then the result is null. Otherwise they
2339 are varying. */
2340 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2341 set_value_range_to_nonnull (vr, expr_type);
2342 else if (range_is_null (&vr0) && range_is_null (&vr1))
2343 set_value_range_to_null (vr, expr_type);
2344 else
2345 set_value_range_to_varying (vr);
2347 else if (code == POINTER_PLUS_EXPR)
2349 /* For pointer types, we are really only interested in asserting
2350 whether the expression evaluates to non-NULL. */
2351 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2352 set_value_range_to_nonnull (vr, expr_type);
2353 else if (range_is_null (&vr0) && range_is_null (&vr1))
2354 set_value_range_to_null (vr, expr_type);
2355 else
2356 set_value_range_to_varying (vr);
2358 else if (code == BIT_AND_EXPR)
2360 /* For pointer types, we are really only interested in asserting
2361 whether the expression evaluates to non-NULL. */
2362 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2363 set_value_range_to_nonnull (vr, expr_type);
2364 else if (range_is_null (&vr0) || range_is_null (&vr1))
2365 set_value_range_to_null (vr, expr_type);
2366 else
2367 set_value_range_to_varying (vr);
2369 else
2370 set_value_range_to_varying (vr);
2372 return;
2375 /* For integer ranges, apply the operation to each end of the
2376 range and see what we end up with. */
2377 if (code == PLUS_EXPR || code == MINUS_EXPR)
2379 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2380 ranges compute the precise range for such case if possible. */
2381 if (range_int_cst_p (&vr0)
2382 && range_int_cst_p (&vr1))
2384 signop sgn = TYPE_SIGN (expr_type);
2385 unsigned int prec = TYPE_PRECISION (expr_type);
2386 wide_int type_min = wi::min_value (TYPE_PRECISION (expr_type), sgn);
2387 wide_int type_max = wi::max_value (TYPE_PRECISION (expr_type), sgn);
2388 wide_int wmin, wmax;
2389 int min_ovf = 0;
2390 int max_ovf = 0;
2392 if (code == PLUS_EXPR)
2394 wmin = wi::add (vr0.min, vr1.min);
2395 wmax = wi::add (vr0.max, vr1.max);
2397 /* Check for overflow. */
2398 if (wi::cmp (vr1.min, 0, sgn) != wi::cmp (wmin, vr0.min, sgn))
2399 min_ovf = wi::cmp (vr0.min, wmin, sgn);
2400 if (wi::cmp (vr1.max, 0, sgn) != wi::cmp (wmax, vr0.max, sgn))
2401 max_ovf = wi::cmp (vr0.max, wmax, sgn);
2403 else /* if (code == MINUS_EXPR) */
2405 wmin = wi::sub (vr0.min, vr1.max);
2406 wmax = wi::sub (vr0.max, vr1.min);
2408 if (wi::cmp (0, vr1.max, sgn) != wi::cmp (wmin, vr0.min, sgn))
2409 min_ovf = wi::cmp (vr0.min, vr1.max, sgn);
2410 if (wi::cmp (0, vr1.min, sgn) != wi::cmp (wmax, vr0.max, sgn))
2411 max_ovf = wi::cmp (vr0.max, vr1.min, sgn);
2414 /* For non-wrapping arithmetic look at possibly smaller
2415 value-ranges of the type. */
2416 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2418 if (vrp_val_min (expr_type))
2419 type_min = vrp_val_min (expr_type);
2420 if (vrp_val_max (expr_type))
2421 type_max = vrp_val_max (expr_type);
2424 /* Check for type overflow. */
2425 if (min_ovf == 0)
2427 if (wi::cmp (wmin, type_min, sgn) == -1)
2428 min_ovf = -1;
2429 else if (wi::cmp (wmin, type_max, sgn) == 1)
2430 min_ovf = 1;
2432 if (max_ovf == 0)
2434 if (wi::cmp (wmax, type_min, sgn) == -1)
2435 max_ovf = -1;
2436 else if (wi::cmp (wmax, type_max, sgn) == 1)
2437 max_ovf = 1;
2440 if (TYPE_OVERFLOW_WRAPS (expr_type))
2442 /* If overflow wraps, truncate the values and adjust the
2443 range kind and bounds appropriately. */
2444 wide_int tmin = wide_int::from (wmin, prec, sgn);
2445 wide_int tmax = wide_int::from (wmax, prec, sgn);
2446 if (min_ovf == max_ovf)
2448 /* No overflow or both overflow or underflow. The
2449 range kind stays VR_RANGE. */
2450 min = wide_int_to_tree (expr_type, tmin);
2451 max = wide_int_to_tree (expr_type, tmax);
2453 else if (min_ovf == -1
2454 && max_ovf == 1)
2456 /* Underflow and overflow, drop to VR_VARYING. */
2457 set_value_range_to_varying (vr);
2458 return;
2460 else
2462 /* Min underflow or max overflow. The range kind
2463 changes to VR_ANTI_RANGE. */
2464 bool covers = false;
2465 wide_int tem = tmin;
2466 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2467 || (max_ovf == 1 && min_ovf == 0));
2468 type = VR_ANTI_RANGE;
2469 tmin = tmax + 1;
2470 if (wi::cmp (tmin, tmax, sgn) < 0)
2471 covers = true;
2472 tmax = tem - 1;
2473 if (wi::cmp (tmax, tem, sgn) > 0)
2474 covers = true;
2475 /* If the anti-range would cover nothing, drop to varying.
2476 Likewise if the anti-range bounds are outside of the
2477 types values. */
2478 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2480 set_value_range_to_varying (vr);
2481 return;
2483 min = wide_int_to_tree (expr_type, tmin);
2484 max = wide_int_to_tree (expr_type, tmax);
2487 else
2489 /* If overflow does not wrap, saturate to the types min/max
2490 value. */
2491 if (min_ovf == -1)
2493 if (needs_overflow_infinity (expr_type)
2494 && supports_overflow_infinity (expr_type))
2495 min = negative_overflow_infinity (expr_type);
2496 else
2497 min = wide_int_to_tree (expr_type, type_min);
2499 else if (min_ovf == 1)
2501 if (needs_overflow_infinity (expr_type)
2502 && supports_overflow_infinity (expr_type))
2503 min = positive_overflow_infinity (expr_type);
2504 else
2505 min = wide_int_to_tree (expr_type, type_max);
2507 else
2508 min = wide_int_to_tree (expr_type, wmin);
2510 if (max_ovf == -1)
2512 if (needs_overflow_infinity (expr_type)
2513 && supports_overflow_infinity (expr_type))
2514 max = negative_overflow_infinity (expr_type);
2515 else
2516 max = wide_int_to_tree (expr_type, type_min);
2518 else if (max_ovf == 1)
2520 if (needs_overflow_infinity (expr_type)
2521 && supports_overflow_infinity (expr_type))
2522 max = positive_overflow_infinity (expr_type);
2523 else
2524 max = wide_int_to_tree (expr_type, type_max);
2526 else
2527 max = wide_int_to_tree (expr_type, wmax);
2529 if (needs_overflow_infinity (expr_type)
2530 && supports_overflow_infinity (expr_type))
2532 if (is_negative_overflow_infinity (vr0.min)
2533 || (code == PLUS_EXPR
2534 ? is_negative_overflow_infinity (vr1.min)
2535 : is_positive_overflow_infinity (vr1.max)))
2536 min = negative_overflow_infinity (expr_type);
2537 if (is_positive_overflow_infinity (vr0.max)
2538 || (code == PLUS_EXPR
2539 ? is_positive_overflow_infinity (vr1.max)
2540 : is_negative_overflow_infinity (vr1.min)))
2541 max = positive_overflow_infinity (expr_type);
2544 else
2546 /* For other cases, for example if we have a PLUS_EXPR with two
2547 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2548 to compute a precise range for such a case.
2549 ??? General even mixed range kind operations can be expressed
2550 by for example transforming ~[3, 5] + [1, 2] to range-only
2551 operations and a union primitive:
2552 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2553 [-INF+1, 4] U [6, +INF(OVF)]
2554 though usually the union is not exactly representable with
2555 a single range or anti-range as the above is
2556 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2557 but one could use a scheme similar to equivalences for this. */
2558 set_value_range_to_varying (vr);
2559 return;
2562 else if (code == MIN_EXPR
2563 || code == MAX_EXPR)
2565 if (vr0.type == VR_RANGE
2566 && !symbolic_range_p (&vr0))
2568 type = VR_RANGE;
2569 if (vr1.type == VR_RANGE
2570 && !symbolic_range_p (&vr1))
2572 /* For operations that make the resulting range directly
2573 proportional to the original ranges, apply the operation to
2574 the same end of each range. */
2575 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2576 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2578 else if (code == MIN_EXPR)
2580 min = vrp_val_min (expr_type);
2581 max = vr0.max;
2583 else if (code == MAX_EXPR)
2585 min = vr0.min;
2586 max = vrp_val_max (expr_type);
2589 else if (vr1.type == VR_RANGE
2590 && !symbolic_range_p (&vr1))
2592 type = VR_RANGE;
2593 if (code == MIN_EXPR)
2595 min = vrp_val_min (expr_type);
2596 max = vr1.max;
2598 else if (code == MAX_EXPR)
2600 min = vr1.min;
2601 max = vrp_val_max (expr_type);
2604 else
2606 set_value_range_to_varying (vr);
2607 return;
2610 else if (code == MULT_EXPR)
2612 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2613 drop to varying. This test requires 2*prec bits if both
2614 operands are signed and 2*prec + 2 bits if either is not. */
2616 signop sign = TYPE_SIGN (expr_type);
2617 unsigned int prec = TYPE_PRECISION (expr_type);
2619 if (range_int_cst_p (&vr0)
2620 && range_int_cst_p (&vr1)
2621 && TYPE_OVERFLOW_WRAPS (expr_type))
2623 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2624 typedef generic_wide_int
2625 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2626 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2627 vrp_int size = sizem1 + 1;
2629 /* Extend the values using the sign of the result to PREC2.
2630 From here on out, everthing is just signed math no matter
2631 what the input types were. */
2632 vrp_int min0 = vrp_int_cst (vr0.min);
2633 vrp_int max0 = vrp_int_cst (vr0.max);
2634 vrp_int min1 = vrp_int_cst (vr1.min);
2635 vrp_int max1 = vrp_int_cst (vr1.max);
2636 /* Canonicalize the intervals. */
2637 if (sign == UNSIGNED)
2639 if (wi::ltu_p (size, min0 + max0))
2641 min0 -= size;
2642 max0 -= size;
2645 if (wi::ltu_p (size, min1 + max1))
2647 min1 -= size;
2648 max1 -= size;
2652 vrp_int prod0 = min0 * min1;
2653 vrp_int prod1 = min0 * max1;
2654 vrp_int prod2 = max0 * min1;
2655 vrp_int prod3 = max0 * max1;
2657 /* Sort the 4 products so that min is in prod0 and max is in
2658 prod3. */
2659 /* min0min1 > max0max1 */
2660 if (wi::gts_p (prod0, prod3))
2662 vrp_int tmp = prod3;
2663 prod3 = prod0;
2664 prod0 = tmp;
2667 /* min0max1 > max0min1 */
2668 if (wi::gts_p (prod1, prod2))
2670 vrp_int tmp = prod2;
2671 prod2 = prod1;
2672 prod1 = tmp;
2675 if (wi::gts_p (prod0, prod1))
2677 vrp_int tmp = prod1;
2678 prod1 = prod0;
2679 prod0 = tmp;
2682 if (wi::gts_p (prod2, prod3))
2684 vrp_int tmp = prod3;
2685 prod3 = prod2;
2686 prod2 = tmp;
2689 /* diff = max - min. */
2690 prod2 = prod3 - prod0;
2691 if (wi::geu_p (prod2, sizem1))
2693 /* the range covers all values. */
2694 set_value_range_to_varying (vr);
2695 return;
2698 /* The following should handle the wrapping and selecting
2699 VR_ANTI_RANGE for us. */
2700 min = wide_int_to_tree (expr_type, prod0);
2701 max = wide_int_to_tree (expr_type, prod3);
2702 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2703 return;
2706 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2707 drop to VR_VARYING. It would take more effort to compute a
2708 precise range for such a case. For example, if we have
2709 op0 == 65536 and op1 == 65536 with their ranges both being
2710 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2711 we cannot claim that the product is in ~[0,0]. Note that we
2712 are guaranteed to have vr0.type == vr1.type at this
2713 point. */
2714 if (vr0.type == VR_ANTI_RANGE
2715 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2717 set_value_range_to_varying (vr);
2718 return;
2721 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2722 return;
2724 else if (code == RSHIFT_EXPR
2725 || code == LSHIFT_EXPR)
2727 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2728 then drop to VR_VARYING. Outside of this range we get undefined
2729 behavior from the shift operation. We cannot even trust
2730 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2731 shifts, and the operation at the tree level may be widened. */
2732 if (range_int_cst_p (&vr1)
2733 && compare_tree_int (vr1.min, 0) >= 0
2734 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2736 if (code == RSHIFT_EXPR)
2738 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2739 return;
2741 /* We can map lshifts by constants to MULT_EXPR handling. */
2742 else if (code == LSHIFT_EXPR
2743 && range_int_cst_singleton_p (&vr1))
2745 bool saved_flag_wrapv;
2746 value_range_t vr1p = VR_INITIALIZER;
2747 vr1p.type = VR_RANGE;
2748 vr1p.min = (wide_int_to_tree
2749 (expr_type,
2750 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2751 TYPE_PRECISION (expr_type))));
2752 vr1p.max = vr1p.min;
2753 /* We have to use a wrapping multiply though as signed overflow
2754 on lshifts is implementation defined in C89. */
2755 saved_flag_wrapv = flag_wrapv;
2756 flag_wrapv = 1;
2757 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2758 &vr0, &vr1p);
2759 flag_wrapv = saved_flag_wrapv;
2760 return;
2762 else if (code == LSHIFT_EXPR
2763 && range_int_cst_p (&vr0))
2765 int prec = TYPE_PRECISION (expr_type);
2766 int overflow_pos = prec;
2767 int bound_shift;
2768 wide_int low_bound, high_bound;
2769 bool uns = TYPE_UNSIGNED (expr_type);
2770 bool in_bounds = false;
2772 if (!uns)
2773 overflow_pos -= 1;
2775 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2776 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2777 overflow. However, for that to happen, vr1.max needs to be
2778 zero, which means vr1 is a singleton range of zero, which
2779 means it should be handled by the previous LSHIFT_EXPR
2780 if-clause. */
2781 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2782 wide_int complement = ~(bound - 1);
2784 if (uns)
2786 low_bound = bound;
2787 high_bound = complement;
2788 if (wi::ltu_p (vr0.max, low_bound))
2790 /* [5, 6] << [1, 2] == [10, 24]. */
2791 /* We're shifting out only zeroes, the value increases
2792 monotonically. */
2793 in_bounds = true;
2795 else if (wi::ltu_p (high_bound, vr0.min))
2797 /* [0xffffff00, 0xffffffff] << [1, 2]
2798 == [0xfffffc00, 0xfffffffe]. */
2799 /* We're shifting out only ones, the value decreases
2800 monotonically. */
2801 in_bounds = true;
2804 else
2806 /* [-1, 1] << [1, 2] == [-4, 4]. */
2807 low_bound = complement;
2808 high_bound = bound;
2809 if (wi::lts_p (vr0.max, high_bound)
2810 && wi::lts_p (low_bound, vr0.min))
2812 /* For non-negative numbers, we're shifting out only
2813 zeroes, the value increases monotonically.
2814 For negative numbers, we're shifting out only ones, the
2815 value decreases monotomically. */
2816 in_bounds = true;
2820 if (in_bounds)
2822 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2823 return;
2827 set_value_range_to_varying (vr);
2828 return;
2830 else if (code == TRUNC_DIV_EXPR
2831 || code == FLOOR_DIV_EXPR
2832 || code == CEIL_DIV_EXPR
2833 || code == EXACT_DIV_EXPR
2834 || code == ROUND_DIV_EXPR)
2836 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2838 /* For division, if op1 has VR_RANGE but op0 does not, something
2839 can be deduced just from that range. Say [min, max] / [4, max]
2840 gives [min / 4, max / 4] range. */
2841 if (vr1.type == VR_RANGE
2842 && !symbolic_range_p (&vr1)
2843 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2845 vr0.type = type = VR_RANGE;
2846 vr0.min = vrp_val_min (expr_type);
2847 vr0.max = vrp_val_max (expr_type);
2849 else
2851 set_value_range_to_varying (vr);
2852 return;
2856 /* For divisions, if flag_non_call_exceptions is true, we must
2857 not eliminate a division by zero. */
2858 if (cfun->can_throw_non_call_exceptions
2859 && (vr1.type != VR_RANGE
2860 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2862 set_value_range_to_varying (vr);
2863 return;
2866 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2867 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2868 include 0. */
2869 if (vr0.type == VR_RANGE
2870 && (vr1.type != VR_RANGE
2871 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2873 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2874 int cmp;
2876 min = NULL_TREE;
2877 max = NULL_TREE;
2878 if (TYPE_UNSIGNED (expr_type)
2879 || value_range_nonnegative_p (&vr1))
2881 /* For unsigned division or when divisor is known
2882 to be non-negative, the range has to cover
2883 all numbers from 0 to max for positive max
2884 and all numbers from min to 0 for negative min. */
2885 cmp = compare_values (vr0.max, zero);
2886 if (cmp == -1)
2887 max = zero;
2888 else if (cmp == 0 || cmp == 1)
2889 max = vr0.max;
2890 else
2891 type = VR_VARYING;
2892 cmp = compare_values (vr0.min, zero);
2893 if (cmp == 1)
2894 min = zero;
2895 else if (cmp == 0 || cmp == -1)
2896 min = vr0.min;
2897 else
2898 type = VR_VARYING;
2900 else
2902 /* Otherwise the range is -max .. max or min .. -min
2903 depending on which bound is bigger in absolute value,
2904 as the division can change the sign. */
2905 abs_extent_range (vr, vr0.min, vr0.max);
2906 return;
2908 if (type == VR_VARYING)
2910 set_value_range_to_varying (vr);
2911 return;
2914 else
2916 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2917 return;
2920 else if (code == TRUNC_MOD_EXPR)
2922 if (vr1.type != VR_RANGE
2923 || range_includes_zero_p (vr1.min, vr1.max) != 0
2924 || vrp_val_is_min (vr1.min))
2926 set_value_range_to_varying (vr);
2927 return;
2929 type = VR_RANGE;
2930 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2931 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2932 if (tree_int_cst_lt (max, vr1.max))
2933 max = vr1.max;
2934 max = int_const_binop (MINUS_EXPR, max, build_int_cst (TREE_TYPE (max), 1));
2935 /* If the dividend is non-negative the modulus will be
2936 non-negative as well. */
2937 if (TYPE_UNSIGNED (expr_type)
2938 || value_range_nonnegative_p (&vr0))
2939 min = build_int_cst (TREE_TYPE (max), 0);
2940 else
2941 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2943 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2945 bool int_cst_range0, int_cst_range1;
2946 wide_int may_be_nonzero0, may_be_nonzero1;
2947 wide_int must_be_nonzero0, must_be_nonzero1;
2949 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
2950 &may_be_nonzero0,
2951 &must_be_nonzero0);
2952 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
2953 &may_be_nonzero1,
2954 &must_be_nonzero1);
2956 type = VR_RANGE;
2957 if (code == BIT_AND_EXPR)
2959 min = wide_int_to_tree (expr_type,
2960 must_be_nonzero0 & must_be_nonzero1);
2961 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
2962 /* If both input ranges contain only negative values we can
2963 truncate the result range maximum to the minimum of the
2964 input range maxima. */
2965 if (int_cst_range0 && int_cst_range1
2966 && tree_int_cst_sgn (vr0.max) < 0
2967 && tree_int_cst_sgn (vr1.max) < 0)
2969 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
2970 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
2972 /* If either input range contains only non-negative values
2973 we can truncate the result range maximum to the respective
2974 maximum of the input range. */
2975 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2976 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
2977 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2978 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
2979 max = wide_int_to_tree (expr_type, wmax);
2981 else if (code == BIT_IOR_EXPR)
2983 max = wide_int_to_tree (expr_type,
2984 may_be_nonzero0 | may_be_nonzero1);
2985 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
2986 /* If the input ranges contain only positive values we can
2987 truncate the minimum of the result range to the maximum
2988 of the input range minima. */
2989 if (int_cst_range0 && int_cst_range1
2990 && tree_int_cst_sgn (vr0.min) >= 0
2991 && tree_int_cst_sgn (vr1.min) >= 0)
2993 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
2994 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
2996 /* If either input range contains only negative values
2997 we can truncate the minimum of the result range to the
2998 respective minimum range. */
2999 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3000 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3001 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3002 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3003 min = wide_int_to_tree (expr_type, wmin);
3005 else if (code == BIT_XOR_EXPR)
3007 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3008 | ~(may_be_nonzero0 | may_be_nonzero1));
3009 wide_int result_one_bits
3010 = (must_be_nonzero0.and_not (may_be_nonzero1)
3011 | must_be_nonzero1.and_not (may_be_nonzero0));
3012 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3013 min = wide_int_to_tree (expr_type, result_one_bits);
3014 /* If the range has all positive or all negative values the
3015 result is better than VARYING. */
3016 if (tree_int_cst_sgn (min) < 0
3017 || tree_int_cst_sgn (max) >= 0)
3019 else
3020 max = min = NULL_TREE;
3023 else
3024 gcc_unreachable ();
3026 /* If either MIN or MAX overflowed, then set the resulting range to
3027 VARYING. But we do accept an overflow infinity
3028 representation. */
3029 if (min == NULL_TREE
3030 || !is_gimple_min_invariant (min)
3031 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3032 || max == NULL_TREE
3033 || !is_gimple_min_invariant (max)
3034 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3036 set_value_range_to_varying (vr);
3037 return;
3040 /* We punt if:
3041 1) [-INF, +INF]
3042 2) [-INF, +-INF(OVF)]
3043 3) [+-INF(OVF), +INF]
3044 4) [+-INF(OVF), +-INF(OVF)]
3045 We learn nothing when we have INF and INF(OVF) on both sides.
3046 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3047 overflow. */
3048 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3049 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3051 set_value_range_to_varying (vr);
3052 return;
3055 cmp = compare_values (min, max);
3056 if (cmp == -2 || cmp == 1)
3058 /* If the new range has its limits swapped around (MIN > MAX),
3059 then the operation caused one of them to wrap around, mark
3060 the new range VARYING. */
3061 set_value_range_to_varying (vr);
3063 else
3064 set_value_range (vr, type, min, max, NULL);
3067 /* Extract range information from a binary expression OP0 CODE OP1 based on
3068 the ranges of each of its operands with resulting type EXPR_TYPE.
3069 The resulting range is stored in *VR. */
3071 static void
3072 extract_range_from_binary_expr (value_range_t *vr,
3073 enum tree_code code,
3074 tree expr_type, tree op0, tree op1)
3076 value_range_t vr0 = VR_INITIALIZER;
3077 value_range_t vr1 = VR_INITIALIZER;
3079 /* Get value ranges for each operand. For constant operands, create
3080 a new value range with the operand to simplify processing. */
3081 if (TREE_CODE (op0) == SSA_NAME)
3082 vr0 = *(get_value_range (op0));
3083 else if (is_gimple_min_invariant (op0))
3084 set_value_range_to_value (&vr0, op0, NULL);
3085 else
3086 set_value_range_to_varying (&vr0);
3088 if (TREE_CODE (op1) == SSA_NAME)
3089 vr1 = *(get_value_range (op1));
3090 else if (is_gimple_min_invariant (op1))
3091 set_value_range_to_value (&vr1, op1, NULL);
3092 else
3093 set_value_range_to_varying (&vr1);
3095 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3098 /* Extract range information from a unary operation CODE based on
3099 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3100 The The resulting range is stored in *VR. */
3102 static void
3103 extract_range_from_unary_expr_1 (value_range_t *vr,
3104 enum tree_code code, tree type,
3105 value_range_t *vr0_, tree op0_type)
3107 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3109 /* VRP only operates on integral and pointer types. */
3110 if (!(INTEGRAL_TYPE_P (op0_type)
3111 || POINTER_TYPE_P (op0_type))
3112 || !(INTEGRAL_TYPE_P (type)
3113 || POINTER_TYPE_P (type)))
3115 set_value_range_to_varying (vr);
3116 return;
3119 /* If VR0 is UNDEFINED, so is the result. */
3120 if (vr0.type == VR_UNDEFINED)
3122 set_value_range_to_undefined (vr);
3123 return;
3126 /* Handle operations that we express in terms of others. */
3127 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3129 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3130 copy_value_range (vr, &vr0);
3131 return;
3133 else if (code == NEGATE_EXPR)
3135 /* -X is simply 0 - X, so re-use existing code that also handles
3136 anti-ranges fine. */
3137 value_range_t zero = VR_INITIALIZER;
3138 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3139 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3140 return;
3142 else if (code == BIT_NOT_EXPR)
3144 /* ~X is simply -1 - X, so re-use existing code that also handles
3145 anti-ranges fine. */
3146 value_range_t minusone = VR_INITIALIZER;
3147 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3148 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3149 type, &minusone, &vr0);
3150 return;
3153 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3154 and express op ~[] as (op []') U (op []''). */
3155 if (vr0.type == VR_ANTI_RANGE
3156 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3158 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3159 if (vrtem1.type != VR_UNDEFINED)
3161 value_range_t vrres = VR_INITIALIZER;
3162 extract_range_from_unary_expr_1 (&vrres, code, type,
3163 &vrtem1, op0_type);
3164 vrp_meet (vr, &vrres);
3166 return;
3169 if (CONVERT_EXPR_CODE_P (code))
3171 tree inner_type = op0_type;
3172 tree outer_type = type;
3174 /* If the expression evaluates to a pointer, we are only interested in
3175 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3176 if (POINTER_TYPE_P (type))
3178 if (range_is_nonnull (&vr0))
3179 set_value_range_to_nonnull (vr, type);
3180 else if (range_is_null (&vr0))
3181 set_value_range_to_null (vr, type);
3182 else
3183 set_value_range_to_varying (vr);
3184 return;
3187 /* If VR0 is varying and we increase the type precision, assume
3188 a full range for the following transformation. */
3189 if (vr0.type == VR_VARYING
3190 && INTEGRAL_TYPE_P (inner_type)
3191 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3193 vr0.type = VR_RANGE;
3194 vr0.min = TYPE_MIN_VALUE (inner_type);
3195 vr0.max = TYPE_MAX_VALUE (inner_type);
3198 /* If VR0 is a constant range or anti-range and the conversion is
3199 not truncating we can convert the min and max values and
3200 canonicalize the resulting range. Otherwise we can do the
3201 conversion if the size of the range is less than what the
3202 precision of the target type can represent and the range is
3203 not an anti-range. */
3204 if ((vr0.type == VR_RANGE
3205 || vr0.type == VR_ANTI_RANGE)
3206 && TREE_CODE (vr0.min) == INTEGER_CST
3207 && TREE_CODE (vr0.max) == INTEGER_CST
3208 && (!is_overflow_infinity (vr0.min)
3209 || (vr0.type == VR_RANGE
3210 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3211 && needs_overflow_infinity (outer_type)
3212 && supports_overflow_infinity (outer_type)))
3213 && (!is_overflow_infinity (vr0.max)
3214 || (vr0.type == VR_RANGE
3215 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3216 && needs_overflow_infinity (outer_type)
3217 && supports_overflow_infinity (outer_type)))
3218 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3219 || (vr0.type == VR_RANGE
3220 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3221 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3222 size_int (TYPE_PRECISION (outer_type)))))))
3224 tree new_min, new_max;
3225 if (is_overflow_infinity (vr0.min))
3226 new_min = negative_overflow_infinity (outer_type);
3227 else
3228 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3229 0, false);
3230 if (is_overflow_infinity (vr0.max))
3231 new_max = positive_overflow_infinity (outer_type);
3232 else
3233 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3234 0, false);
3235 set_and_canonicalize_value_range (vr, vr0.type,
3236 new_min, new_max, NULL);
3237 return;
3240 set_value_range_to_varying (vr);
3241 return;
3243 else if (code == ABS_EXPR)
3245 tree min, max;
3246 int cmp;
3248 /* Pass through vr0 in the easy cases. */
3249 if (TYPE_UNSIGNED (type)
3250 || value_range_nonnegative_p (&vr0))
3252 copy_value_range (vr, &vr0);
3253 return;
3256 /* For the remaining varying or symbolic ranges we can't do anything
3257 useful. */
3258 if (vr0.type == VR_VARYING
3259 || symbolic_range_p (&vr0))
3261 set_value_range_to_varying (vr);
3262 return;
3265 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3266 useful range. */
3267 if (!TYPE_OVERFLOW_UNDEFINED (type)
3268 && ((vr0.type == VR_RANGE
3269 && vrp_val_is_min (vr0.min))
3270 || (vr0.type == VR_ANTI_RANGE
3271 && !vrp_val_is_min (vr0.min))))
3273 set_value_range_to_varying (vr);
3274 return;
3277 /* ABS_EXPR may flip the range around, if the original range
3278 included negative values. */
3279 if (is_overflow_infinity (vr0.min))
3280 min = positive_overflow_infinity (type);
3281 else if (!vrp_val_is_min (vr0.min))
3282 min = fold_unary_to_constant (code, type, vr0.min);
3283 else if (!needs_overflow_infinity (type))
3284 min = TYPE_MAX_VALUE (type);
3285 else if (supports_overflow_infinity (type))
3286 min = positive_overflow_infinity (type);
3287 else
3289 set_value_range_to_varying (vr);
3290 return;
3293 if (is_overflow_infinity (vr0.max))
3294 max = positive_overflow_infinity (type);
3295 else if (!vrp_val_is_min (vr0.max))
3296 max = fold_unary_to_constant (code, type, vr0.max);
3297 else if (!needs_overflow_infinity (type))
3298 max = TYPE_MAX_VALUE (type);
3299 else if (supports_overflow_infinity (type)
3300 /* We shouldn't generate [+INF, +INF] as set_value_range
3301 doesn't like this and ICEs. */
3302 && !is_positive_overflow_infinity (min))
3303 max = positive_overflow_infinity (type);
3304 else
3306 set_value_range_to_varying (vr);
3307 return;
3310 cmp = compare_values (min, max);
3312 /* If a VR_ANTI_RANGEs contains zero, then we have
3313 ~[-INF, min(MIN, MAX)]. */
3314 if (vr0.type == VR_ANTI_RANGE)
3316 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3318 /* Take the lower of the two values. */
3319 if (cmp != 1)
3320 max = min;
3322 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3323 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3324 flag_wrapv is set and the original anti-range doesn't include
3325 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3326 if (TYPE_OVERFLOW_WRAPS (type))
3328 tree type_min_value = TYPE_MIN_VALUE (type);
3330 min = (vr0.min != type_min_value
3331 ? int_const_binop (PLUS_EXPR, type_min_value,
3332 build_int_cst (TREE_TYPE (type_min_value), 1))
3333 : type_min_value);
3335 else
3337 if (overflow_infinity_range_p (&vr0))
3338 min = negative_overflow_infinity (type);
3339 else
3340 min = TYPE_MIN_VALUE (type);
3343 else
3345 /* All else has failed, so create the range [0, INF], even for
3346 flag_wrapv since TYPE_MIN_VALUE is in the original
3347 anti-range. */
3348 vr0.type = VR_RANGE;
3349 min = build_int_cst (type, 0);
3350 if (needs_overflow_infinity (type))
3352 if (supports_overflow_infinity (type))
3353 max = positive_overflow_infinity (type);
3354 else
3356 set_value_range_to_varying (vr);
3357 return;
3360 else
3361 max = TYPE_MAX_VALUE (type);
3365 /* If the range contains zero then we know that the minimum value in the
3366 range will be zero. */
3367 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3369 if (cmp == 1)
3370 max = min;
3371 min = build_int_cst (type, 0);
3373 else
3375 /* If the range was reversed, swap MIN and MAX. */
3376 if (cmp == 1)
3378 tree t = min;
3379 min = max;
3380 max = t;
3384 cmp = compare_values (min, max);
3385 if (cmp == -2 || cmp == 1)
3387 /* If the new range has its limits swapped around (MIN > MAX),
3388 then the operation caused one of them to wrap around, mark
3389 the new range VARYING. */
3390 set_value_range_to_varying (vr);
3392 else
3393 set_value_range (vr, vr0.type, min, max, NULL);
3394 return;
3397 /* For unhandled operations fall back to varying. */
3398 set_value_range_to_varying (vr);
3399 return;
3403 /* Extract range information from a unary expression CODE OP0 based on
3404 the range of its operand with resulting type TYPE.
3405 The resulting range is stored in *VR. */
3407 static void
3408 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3409 tree type, tree op0)
3411 value_range_t vr0 = VR_INITIALIZER;
3413 /* Get value ranges for the operand. For constant operands, create
3414 a new value range with the operand to simplify processing. */
3415 if (TREE_CODE (op0) == SSA_NAME)
3416 vr0 = *(get_value_range (op0));
3417 else if (is_gimple_min_invariant (op0))
3418 set_value_range_to_value (&vr0, op0, NULL);
3419 else
3420 set_value_range_to_varying (&vr0);
3422 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3426 /* Extract range information from a conditional expression STMT based on
3427 the ranges of each of its operands and the expression code. */
3429 static void
3430 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3432 tree op0, op1;
3433 value_range_t vr0 = VR_INITIALIZER;
3434 value_range_t vr1 = VR_INITIALIZER;
3436 /* Get value ranges for each operand. For constant operands, create
3437 a new value range with the operand to simplify processing. */
3438 op0 = gimple_assign_rhs2 (stmt);
3439 if (TREE_CODE (op0) == SSA_NAME)
3440 vr0 = *(get_value_range (op0));
3441 else if (is_gimple_min_invariant (op0))
3442 set_value_range_to_value (&vr0, op0, NULL);
3443 else
3444 set_value_range_to_varying (&vr0);
3446 op1 = gimple_assign_rhs3 (stmt);
3447 if (TREE_CODE (op1) == SSA_NAME)
3448 vr1 = *(get_value_range (op1));
3449 else if (is_gimple_min_invariant (op1))
3450 set_value_range_to_value (&vr1, op1, NULL);
3451 else
3452 set_value_range_to_varying (&vr1);
3454 /* The resulting value range is the union of the operand ranges */
3455 copy_value_range (vr, &vr0);
3456 vrp_meet (vr, &vr1);
3460 /* Extract range information from a comparison expression EXPR based
3461 on the range of its operand and the expression code. */
3463 static void
3464 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3465 tree type, tree op0, tree op1)
3467 bool sop = false;
3468 tree val;
3470 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3471 NULL);
3473 /* A disadvantage of using a special infinity as an overflow
3474 representation is that we lose the ability to record overflow
3475 when we don't have an infinity. So we have to ignore a result
3476 which relies on overflow. */
3478 if (val && !is_overflow_infinity (val) && !sop)
3480 /* Since this expression was found on the RHS of an assignment,
3481 its type may be different from _Bool. Convert VAL to EXPR's
3482 type. */
3483 val = fold_convert (type, val);
3484 if (is_gimple_min_invariant (val))
3485 set_value_range_to_value (vr, val, vr->equiv);
3486 else
3487 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3489 else
3490 /* The result of a comparison is always true or false. */
3491 set_value_range_to_truthvalue (vr, type);
3494 /* Try to derive a nonnegative or nonzero range out of STMT relying
3495 primarily on generic routines in fold in conjunction with range data.
3496 Store the result in *VR */
3498 static void
3499 extract_range_basic (value_range_t *vr, gimple stmt)
3501 bool sop = false;
3502 tree type = gimple_expr_type (stmt);
3504 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3506 tree fndecl = gimple_call_fndecl (stmt), arg;
3507 int mini, maxi, zerov = 0, prec;
3509 switch (DECL_FUNCTION_CODE (fndecl))
3511 case BUILT_IN_CONSTANT_P:
3512 /* If the call is __builtin_constant_p and the argument is a
3513 function parameter resolve it to false. This avoids bogus
3514 array bound warnings.
3515 ??? We could do this as early as inlining is finished. */
3516 arg = gimple_call_arg (stmt, 0);
3517 if (TREE_CODE (arg) == SSA_NAME
3518 && SSA_NAME_IS_DEFAULT_DEF (arg)
3519 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3521 set_value_range_to_null (vr, type);
3522 return;
3524 break;
3525 /* Both __builtin_ffs* and __builtin_popcount return
3526 [0, prec]. */
3527 CASE_INT_FN (BUILT_IN_FFS):
3528 CASE_INT_FN (BUILT_IN_POPCOUNT):
3529 arg = gimple_call_arg (stmt, 0);
3530 prec = TYPE_PRECISION (TREE_TYPE (arg));
3531 mini = 0;
3532 maxi = prec;
3533 if (TREE_CODE (arg) == SSA_NAME)
3535 value_range_t *vr0 = get_value_range (arg);
3536 /* If arg is non-zero, then ffs or popcount
3537 are non-zero. */
3538 if (((vr0->type == VR_RANGE
3539 && integer_nonzerop (vr0->min))
3540 || (vr0->type == VR_ANTI_RANGE
3541 && integer_zerop (vr0->min)))
3542 && !is_overflow_infinity (vr0->min))
3543 mini = 1;
3544 /* If some high bits are known to be zero,
3545 we can decrease the maximum. */
3546 if (vr0->type == VR_RANGE
3547 && TREE_CODE (vr0->max) == INTEGER_CST
3548 && !is_overflow_infinity (vr0->max))
3549 maxi = tree_floor_log2 (vr0->max) + 1;
3551 goto bitop_builtin;
3552 /* __builtin_parity* returns [0, 1]. */
3553 CASE_INT_FN (BUILT_IN_PARITY):
3554 mini = 0;
3555 maxi = 1;
3556 goto bitop_builtin;
3557 /* __builtin_c[lt]z* return [0, prec-1], except for
3558 when the argument is 0, but that is undefined behavior.
3559 On many targets where the CLZ RTL or optab value is defined
3560 for 0 the value is prec, so include that in the range
3561 by default. */
3562 CASE_INT_FN (BUILT_IN_CLZ):
3563 arg = gimple_call_arg (stmt, 0);
3564 prec = TYPE_PRECISION (TREE_TYPE (arg));
3565 mini = 0;
3566 maxi = prec;
3567 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3568 != CODE_FOR_nothing
3569 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3570 zerov)
3571 /* Handle only the single common value. */
3572 && zerov != prec)
3573 /* Magic value to give up, unless vr0 proves
3574 arg is non-zero. */
3575 mini = -2;
3576 if (TREE_CODE (arg) == SSA_NAME)
3578 value_range_t *vr0 = get_value_range (arg);
3579 /* From clz of VR_RANGE minimum we can compute
3580 result maximum. */
3581 if (vr0->type == VR_RANGE
3582 && TREE_CODE (vr0->min) == INTEGER_CST
3583 && !is_overflow_infinity (vr0->min))
3585 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3586 if (maxi != prec)
3587 mini = 0;
3589 else if (vr0->type == VR_ANTI_RANGE
3590 && integer_zerop (vr0->min)
3591 && !is_overflow_infinity (vr0->min))
3593 maxi = prec - 1;
3594 mini = 0;
3596 if (mini == -2)
3597 break;
3598 /* From clz of VR_RANGE maximum we can compute
3599 result minimum. */
3600 if (vr0->type == VR_RANGE
3601 && TREE_CODE (vr0->max) == INTEGER_CST
3602 && !is_overflow_infinity (vr0->max))
3604 mini = prec - 1 - tree_floor_log2 (vr0->max);
3605 if (mini == prec)
3606 break;
3609 if (mini == -2)
3610 break;
3611 goto bitop_builtin;
3612 /* __builtin_ctz* return [0, prec-1], except for
3613 when the argument is 0, but that is undefined behavior.
3614 If there is a ctz optab for this mode and
3615 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3616 otherwise just assume 0 won't be seen. */
3617 CASE_INT_FN (BUILT_IN_CTZ):
3618 arg = gimple_call_arg (stmt, 0);
3619 prec = TYPE_PRECISION (TREE_TYPE (arg));
3620 mini = 0;
3621 maxi = prec - 1;
3622 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3623 != CODE_FOR_nothing
3624 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3625 zerov))
3627 /* Handle only the two common values. */
3628 if (zerov == -1)
3629 mini = -1;
3630 else if (zerov == prec)
3631 maxi = prec;
3632 else
3633 /* Magic value to give up, unless vr0 proves
3634 arg is non-zero. */
3635 mini = -2;
3637 if (TREE_CODE (arg) == SSA_NAME)
3639 value_range_t *vr0 = get_value_range (arg);
3640 /* If arg is non-zero, then use [0, prec - 1]. */
3641 if (((vr0->type == VR_RANGE
3642 && integer_nonzerop (vr0->min))
3643 || (vr0->type == VR_ANTI_RANGE
3644 && integer_zerop (vr0->min)))
3645 && !is_overflow_infinity (vr0->min))
3647 mini = 0;
3648 maxi = prec - 1;
3650 /* If some high bits are known to be zero,
3651 we can decrease the result maximum. */
3652 if (vr0->type == VR_RANGE
3653 && TREE_CODE (vr0->max) == INTEGER_CST
3654 && !is_overflow_infinity (vr0->max))
3656 maxi = tree_floor_log2 (vr0->max);
3657 /* For vr0 [0, 0] give up. */
3658 if (maxi == -1)
3659 break;
3662 if (mini == -2)
3663 break;
3664 goto bitop_builtin;
3665 /* __builtin_clrsb* returns [0, prec-1]. */
3666 CASE_INT_FN (BUILT_IN_CLRSB):
3667 arg = gimple_call_arg (stmt, 0);
3668 prec = TYPE_PRECISION (TREE_TYPE (arg));
3669 mini = 0;
3670 maxi = prec - 1;
3671 goto bitop_builtin;
3672 bitop_builtin:
3673 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3674 build_int_cst (type, maxi), NULL);
3675 return;
3676 default:
3677 break;
3680 else if (is_gimple_call (stmt)
3681 && gimple_call_internal_p (stmt))
3683 enum tree_code subcode = ERROR_MARK;
3684 switch (gimple_call_internal_fn (stmt))
3686 case IFN_UBSAN_CHECK_ADD:
3687 subcode = PLUS_EXPR;
3688 break;
3689 case IFN_UBSAN_CHECK_SUB:
3690 subcode = MINUS_EXPR;
3691 break;
3692 case IFN_UBSAN_CHECK_MUL:
3693 subcode = MULT_EXPR;
3694 break;
3695 default:
3696 break;
3698 if (subcode != ERROR_MARK)
3700 bool saved_flag_wrapv = flag_wrapv;
3701 /* Pretend the arithmetics is wrapping. If there is
3702 any overflow, we'll complain, but will actually do
3703 wrapping operation. */
3704 flag_wrapv = 1;
3705 extract_range_from_binary_expr (vr, subcode, type,
3706 gimple_call_arg (stmt, 0),
3707 gimple_call_arg (stmt, 1));
3708 flag_wrapv = saved_flag_wrapv;
3710 /* If for both arguments vrp_valueize returned non-NULL,
3711 this should have been already folded and if not, it
3712 wasn't folded because of overflow. Avoid removing the
3713 UBSAN_CHECK_* calls in that case. */
3714 if (vr->type == VR_RANGE
3715 && (vr->min == vr->max
3716 || operand_equal_p (vr->min, vr->max, 0)))
3717 set_value_range_to_varying (vr);
3718 return;
3721 if (INTEGRAL_TYPE_P (type)
3722 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3723 set_value_range_to_nonnegative (vr, type,
3724 sop || stmt_overflow_infinity (stmt));
3725 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3726 && !sop)
3727 set_value_range_to_nonnull (vr, type);
3728 else
3729 set_value_range_to_varying (vr);
3733 /* Try to compute a useful range out of assignment STMT and store it
3734 in *VR. */
3736 static void
3737 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3739 enum tree_code code = gimple_assign_rhs_code (stmt);
3741 if (code == ASSERT_EXPR)
3742 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3743 else if (code == SSA_NAME)
3744 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3745 else if (TREE_CODE_CLASS (code) == tcc_binary)
3746 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3747 gimple_expr_type (stmt),
3748 gimple_assign_rhs1 (stmt),
3749 gimple_assign_rhs2 (stmt));
3750 else if (TREE_CODE_CLASS (code) == tcc_unary)
3751 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3752 gimple_expr_type (stmt),
3753 gimple_assign_rhs1 (stmt));
3754 else if (code == COND_EXPR)
3755 extract_range_from_cond_expr (vr, stmt);
3756 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3757 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3758 gimple_expr_type (stmt),
3759 gimple_assign_rhs1 (stmt),
3760 gimple_assign_rhs2 (stmt));
3761 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3762 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3763 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3764 else
3765 set_value_range_to_varying (vr);
3767 if (vr->type == VR_VARYING)
3768 extract_range_basic (vr, stmt);
3771 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3772 would be profitable to adjust VR using scalar evolution information
3773 for VAR. If so, update VR with the new limits. */
3775 static void
3776 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3777 gimple stmt, tree var)
3779 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3780 enum ev_direction dir;
3782 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3783 better opportunities than a regular range, but I'm not sure. */
3784 if (vr->type == VR_ANTI_RANGE)
3785 return;
3787 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3789 /* Like in PR19590, scev can return a constant function. */
3790 if (is_gimple_min_invariant (chrec))
3792 set_value_range_to_value (vr, chrec, vr->equiv);
3793 return;
3796 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3797 return;
3799 init = initial_condition_in_loop_num (chrec, loop->num);
3800 tem = op_with_constant_singleton_value_range (init);
3801 if (tem)
3802 init = tem;
3803 step = evolution_part_in_loop_num (chrec, loop->num);
3804 tem = op_with_constant_singleton_value_range (step);
3805 if (tem)
3806 step = tem;
3808 /* If STEP is symbolic, we can't know whether INIT will be the
3809 minimum or maximum value in the range. Also, unless INIT is
3810 a simple expression, compare_values and possibly other functions
3811 in tree-vrp won't be able to handle it. */
3812 if (step == NULL_TREE
3813 || !is_gimple_min_invariant (step)
3814 || !valid_value_p (init))
3815 return;
3817 dir = scev_direction (chrec);
3818 if (/* Do not adjust ranges if we do not know whether the iv increases
3819 or decreases, ... */
3820 dir == EV_DIR_UNKNOWN
3821 /* ... or if it may wrap. */
3822 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3823 true))
3824 return;
3826 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3827 negative_overflow_infinity and positive_overflow_infinity,
3828 because we have concluded that the loop probably does not
3829 wrap. */
3831 type = TREE_TYPE (var);
3832 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3833 tmin = lower_bound_in_type (type, type);
3834 else
3835 tmin = TYPE_MIN_VALUE (type);
3836 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3837 tmax = upper_bound_in_type (type, type);
3838 else
3839 tmax = TYPE_MAX_VALUE (type);
3841 /* Try to use estimated number of iterations for the loop to constrain the
3842 final value in the evolution. */
3843 if (TREE_CODE (step) == INTEGER_CST
3844 && is_gimple_val (init)
3845 && (TREE_CODE (init) != SSA_NAME
3846 || get_value_range (init)->type == VR_RANGE))
3848 widest_int nit;
3850 /* We are only entering here for loop header PHI nodes, so using
3851 the number of latch executions is the correct thing to use. */
3852 if (max_loop_iterations (loop, &nit))
3854 value_range_t maxvr = VR_INITIALIZER;
3855 signop sgn = TYPE_SIGN (TREE_TYPE (step));
3856 bool overflow;
3858 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
3859 &overflow);
3860 /* If the multiplication overflowed we can't do a meaningful
3861 adjustment. Likewise if the result doesn't fit in the type
3862 of the induction variable. For a signed type we have to
3863 check whether the result has the expected signedness which
3864 is that of the step as number of iterations is unsigned. */
3865 if (!overflow
3866 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
3867 && (sgn == UNSIGNED
3868 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
3870 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
3871 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3872 TREE_TYPE (init), init, tem);
3873 /* Likewise if the addition did. */
3874 if (maxvr.type == VR_RANGE)
3876 tmin = maxvr.min;
3877 tmax = maxvr.max;
3883 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3885 min = tmin;
3886 max = tmax;
3888 /* For VARYING or UNDEFINED ranges, just about anything we get
3889 from scalar evolutions should be better. */
3891 if (dir == EV_DIR_DECREASES)
3892 max = init;
3893 else
3894 min = init;
3896 else if (vr->type == VR_RANGE)
3898 min = vr->min;
3899 max = vr->max;
3901 if (dir == EV_DIR_DECREASES)
3903 /* INIT is the maximum value. If INIT is lower than VR->MAX
3904 but no smaller than VR->MIN, set VR->MAX to INIT. */
3905 if (compare_values (init, max) == -1)
3906 max = init;
3908 /* According to the loop information, the variable does not
3909 overflow. If we think it does, probably because of an
3910 overflow due to arithmetic on a different INF value,
3911 reset now. */
3912 if (is_negative_overflow_infinity (min)
3913 || compare_values (min, tmin) == -1)
3914 min = tmin;
3917 else
3919 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3920 if (compare_values (init, min) == 1)
3921 min = init;
3923 if (is_positive_overflow_infinity (max)
3924 || compare_values (tmax, max) == -1)
3925 max = tmax;
3928 else
3929 return;
3931 /* If we just created an invalid range with the minimum
3932 greater than the maximum, we fail conservatively.
3933 This should happen only in unreachable
3934 parts of code, or for invalid programs. */
3935 if (compare_values (min, max) == 1
3936 || (is_negative_overflow_infinity (min)
3937 && is_positive_overflow_infinity (max)))
3938 return;
3940 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3944 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3946 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3947 all the values in the ranges.
3949 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3951 - Return NULL_TREE if it is not always possible to determine the
3952 value of the comparison.
3954 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3955 overflow infinity was used in the test. */
3958 static tree
3959 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3960 bool *strict_overflow_p)
3962 /* VARYING or UNDEFINED ranges cannot be compared. */
3963 if (vr0->type == VR_VARYING
3964 || vr0->type == VR_UNDEFINED
3965 || vr1->type == VR_VARYING
3966 || vr1->type == VR_UNDEFINED)
3967 return NULL_TREE;
3969 /* Anti-ranges need to be handled separately. */
3970 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3972 /* If both are anti-ranges, then we cannot compute any
3973 comparison. */
3974 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3975 return NULL_TREE;
3977 /* These comparisons are never statically computable. */
3978 if (comp == GT_EXPR
3979 || comp == GE_EXPR
3980 || comp == LT_EXPR
3981 || comp == LE_EXPR)
3982 return NULL_TREE;
3984 /* Equality can be computed only between a range and an
3985 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3986 if (vr0->type == VR_RANGE)
3988 /* To simplify processing, make VR0 the anti-range. */
3989 value_range_t *tmp = vr0;
3990 vr0 = vr1;
3991 vr1 = tmp;
3994 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3996 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3997 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3998 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4000 return NULL_TREE;
4003 if (!usable_range_p (vr0, strict_overflow_p)
4004 || !usable_range_p (vr1, strict_overflow_p))
4005 return NULL_TREE;
4007 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4008 operands around and change the comparison code. */
4009 if (comp == GT_EXPR || comp == GE_EXPR)
4011 value_range_t *tmp;
4012 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4013 tmp = vr0;
4014 vr0 = vr1;
4015 vr1 = tmp;
4018 if (comp == EQ_EXPR)
4020 /* Equality may only be computed if both ranges represent
4021 exactly one value. */
4022 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4023 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4025 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4026 strict_overflow_p);
4027 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4028 strict_overflow_p);
4029 if (cmp_min == 0 && cmp_max == 0)
4030 return boolean_true_node;
4031 else if (cmp_min != -2 && cmp_max != -2)
4032 return boolean_false_node;
4034 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4035 else if (compare_values_warnv (vr0->min, vr1->max,
4036 strict_overflow_p) == 1
4037 || compare_values_warnv (vr1->min, vr0->max,
4038 strict_overflow_p) == 1)
4039 return boolean_false_node;
4041 return NULL_TREE;
4043 else if (comp == NE_EXPR)
4045 int cmp1, cmp2;
4047 /* If VR0 is completely to the left or completely to the right
4048 of VR1, they are always different. Notice that we need to
4049 make sure that both comparisons yield similar results to
4050 avoid comparing values that cannot be compared at
4051 compile-time. */
4052 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4053 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4054 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4055 return boolean_true_node;
4057 /* If VR0 and VR1 represent a single value and are identical,
4058 return false. */
4059 else if (compare_values_warnv (vr0->min, vr0->max,
4060 strict_overflow_p) == 0
4061 && compare_values_warnv (vr1->min, vr1->max,
4062 strict_overflow_p) == 0
4063 && compare_values_warnv (vr0->min, vr1->min,
4064 strict_overflow_p) == 0
4065 && compare_values_warnv (vr0->max, vr1->max,
4066 strict_overflow_p) == 0)
4067 return boolean_false_node;
4069 /* Otherwise, they may or may not be different. */
4070 else
4071 return NULL_TREE;
4073 else if (comp == LT_EXPR || comp == LE_EXPR)
4075 int tst;
4077 /* If VR0 is to the left of VR1, return true. */
4078 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4079 if ((comp == LT_EXPR && tst == -1)
4080 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4082 if (overflow_infinity_range_p (vr0)
4083 || overflow_infinity_range_p (vr1))
4084 *strict_overflow_p = true;
4085 return boolean_true_node;
4088 /* If VR0 is to the right of VR1, return false. */
4089 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4090 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4091 || (comp == LE_EXPR && tst == 1))
4093 if (overflow_infinity_range_p (vr0)
4094 || overflow_infinity_range_p (vr1))
4095 *strict_overflow_p = true;
4096 return boolean_false_node;
4099 /* Otherwise, we don't know. */
4100 return NULL_TREE;
4103 gcc_unreachable ();
4107 /* Given a value range VR, a value VAL and a comparison code COMP, return
4108 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4109 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4110 always returns false. Return NULL_TREE if it is not always
4111 possible to determine the value of the comparison. Also set
4112 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4113 infinity was used in the test. */
4115 static tree
4116 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4117 bool *strict_overflow_p)
4119 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4120 return NULL_TREE;
4122 /* Anti-ranges need to be handled separately. */
4123 if (vr->type == VR_ANTI_RANGE)
4125 /* For anti-ranges, the only predicates that we can compute at
4126 compile time are equality and inequality. */
4127 if (comp == GT_EXPR
4128 || comp == GE_EXPR
4129 || comp == LT_EXPR
4130 || comp == LE_EXPR)
4131 return NULL_TREE;
4133 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4134 if (value_inside_range (val, vr->min, vr->max) == 1)
4135 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4137 return NULL_TREE;
4140 if (!usable_range_p (vr, strict_overflow_p))
4141 return NULL_TREE;
4143 if (comp == EQ_EXPR)
4145 /* EQ_EXPR may only be computed if VR represents exactly
4146 one value. */
4147 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4149 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4150 if (cmp == 0)
4151 return boolean_true_node;
4152 else if (cmp == -1 || cmp == 1 || cmp == 2)
4153 return boolean_false_node;
4155 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4156 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4157 return boolean_false_node;
4159 return NULL_TREE;
4161 else if (comp == NE_EXPR)
4163 /* If VAL is not inside VR, then they are always different. */
4164 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4165 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4166 return boolean_true_node;
4168 /* If VR represents exactly one value equal to VAL, then return
4169 false. */
4170 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4171 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4172 return boolean_false_node;
4174 /* Otherwise, they may or may not be different. */
4175 return NULL_TREE;
4177 else if (comp == LT_EXPR || comp == LE_EXPR)
4179 int tst;
4181 /* If VR is to the left of VAL, return true. */
4182 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4183 if ((comp == LT_EXPR && tst == -1)
4184 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4186 if (overflow_infinity_range_p (vr))
4187 *strict_overflow_p = true;
4188 return boolean_true_node;
4191 /* If VR is to the right of VAL, return false. */
4192 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4193 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4194 || (comp == LE_EXPR && tst == 1))
4196 if (overflow_infinity_range_p (vr))
4197 *strict_overflow_p = true;
4198 return boolean_false_node;
4201 /* Otherwise, we don't know. */
4202 return NULL_TREE;
4204 else if (comp == GT_EXPR || comp == GE_EXPR)
4206 int tst;
4208 /* If VR is to the right of VAL, return true. */
4209 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4210 if ((comp == GT_EXPR && tst == 1)
4211 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4213 if (overflow_infinity_range_p (vr))
4214 *strict_overflow_p = true;
4215 return boolean_true_node;
4218 /* If VR is to the left of VAL, return false. */
4219 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4220 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4221 || (comp == GE_EXPR && tst == -1))
4223 if (overflow_infinity_range_p (vr))
4224 *strict_overflow_p = true;
4225 return boolean_false_node;
4228 /* Otherwise, we don't know. */
4229 return NULL_TREE;
4232 gcc_unreachable ();
4236 /* Debugging dumps. */
4238 void dump_value_range (FILE *, value_range_t *);
4239 void debug_value_range (value_range_t *);
4240 void dump_all_value_ranges (FILE *);
4241 void debug_all_value_ranges (void);
4242 void dump_vr_equiv (FILE *, bitmap);
4243 void debug_vr_equiv (bitmap);
4246 /* Dump value range VR to FILE. */
4248 void
4249 dump_value_range (FILE *file, value_range_t *vr)
4251 if (vr == NULL)
4252 fprintf (file, "[]");
4253 else if (vr->type == VR_UNDEFINED)
4254 fprintf (file, "UNDEFINED");
4255 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4257 tree type = TREE_TYPE (vr->min);
4259 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4261 if (is_negative_overflow_infinity (vr->min))
4262 fprintf (file, "-INF(OVF)");
4263 else if (INTEGRAL_TYPE_P (type)
4264 && !TYPE_UNSIGNED (type)
4265 && vrp_val_is_min (vr->min))
4266 fprintf (file, "-INF");
4267 else
4268 print_generic_expr (file, vr->min, 0);
4270 fprintf (file, ", ");
4272 if (is_positive_overflow_infinity (vr->max))
4273 fprintf (file, "+INF(OVF)");
4274 else if (INTEGRAL_TYPE_P (type)
4275 && vrp_val_is_max (vr->max))
4276 fprintf (file, "+INF");
4277 else
4278 print_generic_expr (file, vr->max, 0);
4280 fprintf (file, "]");
4282 if (vr->equiv)
4284 bitmap_iterator bi;
4285 unsigned i, c = 0;
4287 fprintf (file, " EQUIVALENCES: { ");
4289 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4291 print_generic_expr (file, ssa_name (i), 0);
4292 fprintf (file, " ");
4293 c++;
4296 fprintf (file, "} (%u elements)", c);
4299 else if (vr->type == VR_VARYING)
4300 fprintf (file, "VARYING");
4301 else
4302 fprintf (file, "INVALID RANGE");
4306 /* Dump value range VR to stderr. */
4308 DEBUG_FUNCTION void
4309 debug_value_range (value_range_t *vr)
4311 dump_value_range (stderr, vr);
4312 fprintf (stderr, "\n");
4316 /* Dump value ranges of all SSA_NAMEs to FILE. */
4318 void
4319 dump_all_value_ranges (FILE *file)
4321 size_t i;
4323 for (i = 0; i < num_vr_values; i++)
4325 if (vr_value[i])
4327 print_generic_expr (file, ssa_name (i), 0);
4328 fprintf (file, ": ");
4329 dump_value_range (file, vr_value[i]);
4330 fprintf (file, "\n");
4334 fprintf (file, "\n");
4338 /* Dump all value ranges to stderr. */
4340 DEBUG_FUNCTION void
4341 debug_all_value_ranges (void)
4343 dump_all_value_ranges (stderr);
4347 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4348 create a new SSA name N and return the assertion assignment
4349 'N = ASSERT_EXPR <V, V OP W>'. */
4351 static gimple
4352 build_assert_expr_for (tree cond, tree v)
4354 tree a;
4355 gimple assertion;
4357 gcc_assert (TREE_CODE (v) == SSA_NAME
4358 && COMPARISON_CLASS_P (cond));
4360 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4361 assertion = gimple_build_assign (NULL_TREE, a);
4363 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4364 operand of the ASSERT_EXPR. Create it so the new name and the old one
4365 are registered in the replacement table so that we can fix the SSA web
4366 after adding all the ASSERT_EXPRs. */
4367 create_new_def_for (v, assertion, NULL);
4369 return assertion;
4373 /* Return false if EXPR is a predicate expression involving floating
4374 point values. */
4376 static inline bool
4377 fp_predicate (gimple stmt)
4379 GIMPLE_CHECK (stmt, GIMPLE_COND);
4381 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4384 /* If the range of values taken by OP can be inferred after STMT executes,
4385 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4386 describes the inferred range. Return true if a range could be
4387 inferred. */
4389 static bool
4390 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4392 *val_p = NULL_TREE;
4393 *comp_code_p = ERROR_MARK;
4395 /* Do not attempt to infer anything in names that flow through
4396 abnormal edges. */
4397 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4398 return false;
4400 /* Similarly, don't infer anything from statements that may throw
4401 exceptions. ??? Relax this requirement? */
4402 if (stmt_could_throw_p (stmt))
4403 return false;
4405 /* If STMT is the last statement of a basic block with no normal
4406 successors, there is no point inferring anything about any of its
4407 operands. We would not be able to find a proper insertion point
4408 for the assertion, anyway. */
4409 if (stmt_ends_bb_p (stmt))
4411 edge_iterator ei;
4412 edge e;
4414 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4415 if (!(e->flags & EDGE_ABNORMAL))
4416 break;
4417 if (e == NULL)
4418 return false;
4421 if (infer_nonnull_range (stmt, op, true, true))
4423 *val_p = build_int_cst (TREE_TYPE (op), 0);
4424 *comp_code_p = NE_EXPR;
4425 return true;
4428 return false;
4432 void dump_asserts_for (FILE *, tree);
4433 void debug_asserts_for (tree);
4434 void dump_all_asserts (FILE *);
4435 void debug_all_asserts (void);
4437 /* Dump all the registered assertions for NAME to FILE. */
4439 void
4440 dump_asserts_for (FILE *file, tree name)
4442 assert_locus_t loc;
4444 fprintf (file, "Assertions to be inserted for ");
4445 print_generic_expr (file, name, 0);
4446 fprintf (file, "\n");
4448 loc = asserts_for[SSA_NAME_VERSION (name)];
4449 while (loc)
4451 fprintf (file, "\t");
4452 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4453 fprintf (file, "\n\tBB #%d", loc->bb->index);
4454 if (loc->e)
4456 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4457 loc->e->dest->index);
4458 dump_edge_info (file, loc->e, dump_flags, 0);
4460 fprintf (file, "\n\tPREDICATE: ");
4461 print_generic_expr (file, name, 0);
4462 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4463 print_generic_expr (file, loc->val, 0);
4464 fprintf (file, "\n\n");
4465 loc = loc->next;
4468 fprintf (file, "\n");
4472 /* Dump all the registered assertions for NAME to stderr. */
4474 DEBUG_FUNCTION void
4475 debug_asserts_for (tree name)
4477 dump_asserts_for (stderr, name);
4481 /* Dump all the registered assertions for all the names to FILE. */
4483 void
4484 dump_all_asserts (FILE *file)
4486 unsigned i;
4487 bitmap_iterator bi;
4489 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4490 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4491 dump_asserts_for (file, ssa_name (i));
4492 fprintf (file, "\n");
4496 /* Dump all the registered assertions for all the names to stderr. */
4498 DEBUG_FUNCTION void
4499 debug_all_asserts (void)
4501 dump_all_asserts (stderr);
4505 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4506 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4507 E->DEST, then register this location as a possible insertion point
4508 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4510 BB, E and SI provide the exact insertion point for the new
4511 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4512 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4513 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4514 must not be NULL. */
4516 static void
4517 register_new_assert_for (tree name, tree expr,
4518 enum tree_code comp_code,
4519 tree val,
4520 basic_block bb,
4521 edge e,
4522 gimple_stmt_iterator si)
4524 assert_locus_t n, loc, last_loc;
4525 basic_block dest_bb;
4527 gcc_checking_assert (bb == NULL || e == NULL);
4529 if (e == NULL)
4530 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4531 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4533 /* Never build an assert comparing against an integer constant with
4534 TREE_OVERFLOW set. This confuses our undefined overflow warning
4535 machinery. */
4536 if (TREE_OVERFLOW_P (val))
4537 val = drop_tree_overflow (val);
4539 /* The new assertion A will be inserted at BB or E. We need to
4540 determine if the new location is dominated by a previously
4541 registered location for A. If we are doing an edge insertion,
4542 assume that A will be inserted at E->DEST. Note that this is not
4543 necessarily true.
4545 If E is a critical edge, it will be split. But even if E is
4546 split, the new block will dominate the same set of blocks that
4547 E->DEST dominates.
4549 The reverse, however, is not true, blocks dominated by E->DEST
4550 will not be dominated by the new block created to split E. So,
4551 if the insertion location is on a critical edge, we will not use
4552 the new location to move another assertion previously registered
4553 at a block dominated by E->DEST. */
4554 dest_bb = (bb) ? bb : e->dest;
4556 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4557 VAL at a block dominating DEST_BB, then we don't need to insert a new
4558 one. Similarly, if the same assertion already exists at a block
4559 dominated by DEST_BB and the new location is not on a critical
4560 edge, then update the existing location for the assertion (i.e.,
4561 move the assertion up in the dominance tree).
4563 Note, this is implemented as a simple linked list because there
4564 should not be more than a handful of assertions registered per
4565 name. If this becomes a performance problem, a table hashed by
4566 COMP_CODE and VAL could be implemented. */
4567 loc = asserts_for[SSA_NAME_VERSION (name)];
4568 last_loc = loc;
4569 while (loc)
4571 if (loc->comp_code == comp_code
4572 && (loc->val == val
4573 || operand_equal_p (loc->val, val, 0))
4574 && (loc->expr == expr
4575 || operand_equal_p (loc->expr, expr, 0)))
4577 /* If E is not a critical edge and DEST_BB
4578 dominates the existing location for the assertion, move
4579 the assertion up in the dominance tree by updating its
4580 location information. */
4581 if ((e == NULL || !EDGE_CRITICAL_P (e))
4582 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4584 loc->bb = dest_bb;
4585 loc->e = e;
4586 loc->si = si;
4587 return;
4591 /* Update the last node of the list and move to the next one. */
4592 last_loc = loc;
4593 loc = loc->next;
4596 /* If we didn't find an assertion already registered for
4597 NAME COMP_CODE VAL, add a new one at the end of the list of
4598 assertions associated with NAME. */
4599 n = XNEW (struct assert_locus_d);
4600 n->bb = dest_bb;
4601 n->e = e;
4602 n->si = si;
4603 n->comp_code = comp_code;
4604 n->val = val;
4605 n->expr = expr;
4606 n->next = NULL;
4608 if (last_loc)
4609 last_loc->next = n;
4610 else
4611 asserts_for[SSA_NAME_VERSION (name)] = n;
4613 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4616 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4617 Extract a suitable test code and value and store them into *CODE_P and
4618 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4620 If no extraction was possible, return FALSE, otherwise return TRUE.
4622 If INVERT is true, then we invert the result stored into *CODE_P. */
4624 static bool
4625 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4626 tree cond_op0, tree cond_op1,
4627 bool invert, enum tree_code *code_p,
4628 tree *val_p)
4630 enum tree_code comp_code;
4631 tree val;
4633 /* Otherwise, we have a comparison of the form NAME COMP VAL
4634 or VAL COMP NAME. */
4635 if (name == cond_op1)
4637 /* If the predicate is of the form VAL COMP NAME, flip
4638 COMP around because we need to register NAME as the
4639 first operand in the predicate. */
4640 comp_code = swap_tree_comparison (cond_code);
4641 val = cond_op0;
4643 else
4645 /* The comparison is of the form NAME COMP VAL, so the
4646 comparison code remains unchanged. */
4647 comp_code = cond_code;
4648 val = cond_op1;
4651 /* Invert the comparison code as necessary. */
4652 if (invert)
4653 comp_code = invert_tree_comparison (comp_code, 0);
4655 /* VRP does not handle float types. */
4656 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4657 return false;
4659 /* Do not register always-false predicates.
4660 FIXME: this works around a limitation in fold() when dealing with
4661 enumerations. Given 'enum { N1, N2 } x;', fold will not
4662 fold 'if (x > N2)' to 'if (0)'. */
4663 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4664 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4666 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4667 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4669 if (comp_code == GT_EXPR
4670 && (!max
4671 || compare_values (val, max) == 0))
4672 return false;
4674 if (comp_code == LT_EXPR
4675 && (!min
4676 || compare_values (val, min) == 0))
4677 return false;
4679 *code_p = comp_code;
4680 *val_p = val;
4681 return true;
4684 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4685 (otherwise return VAL). VAL and MASK must be zero-extended for
4686 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4687 (to transform signed values into unsigned) and at the end xor
4688 SGNBIT back. */
4690 static wide_int
4691 masked_increment (const wide_int &val_in, const wide_int &mask,
4692 const wide_int &sgnbit, unsigned int prec)
4694 wide_int bit = wi::one (prec), res;
4695 unsigned int i;
4697 wide_int val = val_in ^ sgnbit;
4698 for (i = 0; i < prec; i++, bit += bit)
4700 res = mask;
4701 if ((res & bit) == 0)
4702 continue;
4703 res = bit - 1;
4704 res = (val + bit).and_not (res);
4705 res &= mask;
4706 if (wi::gtu_p (res, val))
4707 return res ^ sgnbit;
4709 return val ^ sgnbit;
4712 /* Try to register an edge assertion for SSA name NAME on edge E for
4713 the condition COND contributing to the conditional jump pointed to by BSI.
4714 Invert the condition COND if INVERT is true.
4715 Return true if an assertion for NAME could be registered. */
4717 static bool
4718 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4719 enum tree_code cond_code,
4720 tree cond_op0, tree cond_op1, bool invert)
4722 tree val;
4723 enum tree_code comp_code;
4724 bool retval = false;
4726 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4727 cond_op0,
4728 cond_op1,
4729 invert, &comp_code, &val))
4730 return false;
4732 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4733 reachable from E. */
4734 if (live_on_edge (e, name)
4735 && !has_single_use (name))
4737 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4738 retval = true;
4741 /* In the case of NAME <= CST and NAME being defined as
4742 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4743 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4744 This catches range and anti-range tests. */
4745 if ((comp_code == LE_EXPR
4746 || comp_code == GT_EXPR)
4747 && TREE_CODE (val) == INTEGER_CST
4748 && TYPE_UNSIGNED (TREE_TYPE (val)))
4750 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4751 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4753 /* Extract CST2 from the (optional) addition. */
4754 if (is_gimple_assign (def_stmt)
4755 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4757 name2 = gimple_assign_rhs1 (def_stmt);
4758 cst2 = gimple_assign_rhs2 (def_stmt);
4759 if (TREE_CODE (name2) == SSA_NAME
4760 && TREE_CODE (cst2) == INTEGER_CST)
4761 def_stmt = SSA_NAME_DEF_STMT (name2);
4764 /* Extract NAME2 from the (optional) sign-changing cast. */
4765 if (gimple_assign_cast_p (def_stmt))
4767 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4768 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4769 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4770 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4771 name3 = gimple_assign_rhs1 (def_stmt);
4774 /* If name3 is used later, create an ASSERT_EXPR for it. */
4775 if (name3 != NULL_TREE
4776 && TREE_CODE (name3) == SSA_NAME
4777 && (cst2 == NULL_TREE
4778 || TREE_CODE (cst2) == INTEGER_CST)
4779 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4780 && live_on_edge (e, name3)
4781 && !has_single_use (name3))
4783 tree tmp;
4785 /* Build an expression for the range test. */
4786 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4787 if (cst2 != NULL_TREE)
4788 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4790 if (dump_file)
4792 fprintf (dump_file, "Adding assert for ");
4793 print_generic_expr (dump_file, name3, 0);
4794 fprintf (dump_file, " from ");
4795 print_generic_expr (dump_file, tmp, 0);
4796 fprintf (dump_file, "\n");
4799 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4801 retval = true;
4804 /* If name2 is used later, create an ASSERT_EXPR for it. */
4805 if (name2 != NULL_TREE
4806 && TREE_CODE (name2) == SSA_NAME
4807 && TREE_CODE (cst2) == INTEGER_CST
4808 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4809 && live_on_edge (e, name2)
4810 && !has_single_use (name2))
4812 tree tmp;
4814 /* Build an expression for the range test. */
4815 tmp = name2;
4816 if (TREE_TYPE (name) != TREE_TYPE (name2))
4817 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4818 if (cst2 != NULL_TREE)
4819 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4821 if (dump_file)
4823 fprintf (dump_file, "Adding assert for ");
4824 print_generic_expr (dump_file, name2, 0);
4825 fprintf (dump_file, " from ");
4826 print_generic_expr (dump_file, tmp, 0);
4827 fprintf (dump_file, "\n");
4830 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4832 retval = true;
4836 /* In the case of post-in/decrement tests like if (i++) ... and uses
4837 of the in/decremented value on the edge the extra name we want to
4838 assert for is not on the def chain of the name compared. Instead
4839 it is in the set of use stmts. */
4840 if ((comp_code == NE_EXPR
4841 || comp_code == EQ_EXPR)
4842 && TREE_CODE (val) == INTEGER_CST)
4844 imm_use_iterator ui;
4845 gimple use_stmt;
4846 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4848 /* Cut off to use-stmts that are in the predecessor. */
4849 if (gimple_bb (use_stmt) != e->src)
4850 continue;
4852 if (!is_gimple_assign (use_stmt))
4853 continue;
4855 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4856 if (code != PLUS_EXPR
4857 && code != MINUS_EXPR)
4858 continue;
4860 tree cst = gimple_assign_rhs2 (use_stmt);
4861 if (TREE_CODE (cst) != INTEGER_CST)
4862 continue;
4864 tree name2 = gimple_assign_lhs (use_stmt);
4865 if (live_on_edge (e, name2))
4867 cst = int_const_binop (code, val, cst);
4868 register_new_assert_for (name2, name2, comp_code, cst,
4869 NULL, e, bsi);
4870 retval = true;
4875 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
4876 && TREE_CODE (val) == INTEGER_CST)
4878 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4879 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
4880 tree val2 = NULL_TREE;
4881 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
4882 wide_int mask = wi::zero (prec);
4883 unsigned int nprec = prec;
4884 enum tree_code rhs_code = ERROR_MARK;
4886 if (is_gimple_assign (def_stmt))
4887 rhs_code = gimple_assign_rhs_code (def_stmt);
4889 /* Add asserts for NAME cmp CST and NAME being defined
4890 as NAME = (int) NAME2. */
4891 if (!TYPE_UNSIGNED (TREE_TYPE (val))
4892 && (comp_code == LE_EXPR || comp_code == LT_EXPR
4893 || comp_code == GT_EXPR || comp_code == GE_EXPR)
4894 && gimple_assign_cast_p (def_stmt))
4896 name2 = gimple_assign_rhs1 (def_stmt);
4897 if (CONVERT_EXPR_CODE_P (rhs_code)
4898 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4899 && TYPE_UNSIGNED (TREE_TYPE (name2))
4900 && prec == TYPE_PRECISION (TREE_TYPE (name2))
4901 && (comp_code == LE_EXPR || comp_code == GT_EXPR
4902 || !tree_int_cst_equal (val,
4903 TYPE_MIN_VALUE (TREE_TYPE (val))))
4904 && live_on_edge (e, name2)
4905 && !has_single_use (name2))
4907 tree tmp, cst;
4908 enum tree_code new_comp_code = comp_code;
4910 cst = fold_convert (TREE_TYPE (name2),
4911 TYPE_MIN_VALUE (TREE_TYPE (val)));
4912 /* Build an expression for the range test. */
4913 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
4914 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
4915 fold_convert (TREE_TYPE (name2), val));
4916 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
4918 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
4919 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
4920 build_int_cst (TREE_TYPE (name2), 1));
4923 if (dump_file)
4925 fprintf (dump_file, "Adding assert for ");
4926 print_generic_expr (dump_file, name2, 0);
4927 fprintf (dump_file, " from ");
4928 print_generic_expr (dump_file, tmp, 0);
4929 fprintf (dump_file, "\n");
4932 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
4933 e, bsi);
4935 retval = true;
4939 /* Add asserts for NAME cmp CST and NAME being defined as
4940 NAME = NAME2 >> CST2.
4942 Extract CST2 from the right shift. */
4943 if (rhs_code == RSHIFT_EXPR)
4945 name2 = gimple_assign_rhs1 (def_stmt);
4946 cst2 = gimple_assign_rhs2 (def_stmt);
4947 if (TREE_CODE (name2) == SSA_NAME
4948 && tree_fits_uhwi_p (cst2)
4949 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4950 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
4951 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
4952 && live_on_edge (e, name2)
4953 && !has_single_use (name2))
4955 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
4956 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
4959 if (val2 != NULL_TREE
4960 && TREE_CODE (val2) == INTEGER_CST
4961 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
4962 TREE_TYPE (val),
4963 val2, cst2), val))
4965 enum tree_code new_comp_code = comp_code;
4966 tree tmp, new_val;
4968 tmp = name2;
4969 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
4971 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
4973 tree type = build_nonstandard_integer_type (prec, 1);
4974 tmp = build1 (NOP_EXPR, type, name2);
4975 val2 = fold_convert (type, val2);
4977 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
4978 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
4979 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
4981 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
4983 wide_int minval
4984 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
4985 new_val = val2;
4986 if (minval == new_val)
4987 new_val = NULL_TREE;
4989 else
4991 wide_int maxval
4992 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
4993 mask |= val2;
4994 if (mask == maxval)
4995 new_val = NULL_TREE;
4996 else
4997 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5000 if (new_val)
5002 if (dump_file)
5004 fprintf (dump_file, "Adding assert for ");
5005 print_generic_expr (dump_file, name2, 0);
5006 fprintf (dump_file, " from ");
5007 print_generic_expr (dump_file, tmp, 0);
5008 fprintf (dump_file, "\n");
5011 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5012 NULL, e, bsi);
5013 retval = true;
5017 /* Add asserts for NAME cmp CST and NAME being defined as
5018 NAME = NAME2 & CST2.
5020 Extract CST2 from the and.
5022 Also handle
5023 NAME = (unsigned) NAME2;
5024 casts where NAME's type is unsigned and has smaller precision
5025 than NAME2's type as if it was NAME = NAME2 & MASK. */
5026 names[0] = NULL_TREE;
5027 names[1] = NULL_TREE;
5028 cst2 = NULL_TREE;
5029 if (rhs_code == BIT_AND_EXPR
5030 || (CONVERT_EXPR_CODE_P (rhs_code)
5031 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5032 && TYPE_UNSIGNED (TREE_TYPE (val))
5033 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5034 > prec
5035 && !retval))
5037 name2 = gimple_assign_rhs1 (def_stmt);
5038 if (rhs_code == BIT_AND_EXPR)
5039 cst2 = gimple_assign_rhs2 (def_stmt);
5040 else
5042 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5043 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5045 if (TREE_CODE (name2) == SSA_NAME
5046 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5047 && TREE_CODE (cst2) == INTEGER_CST
5048 && !integer_zerop (cst2)
5049 && (nprec > 1
5050 || TYPE_UNSIGNED (TREE_TYPE (val))))
5052 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5053 if (gimple_assign_cast_p (def_stmt2))
5055 names[1] = gimple_assign_rhs1 (def_stmt2);
5056 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5057 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5058 || (TYPE_PRECISION (TREE_TYPE (name2))
5059 != TYPE_PRECISION (TREE_TYPE (names[1])))
5060 || !live_on_edge (e, names[1])
5061 || has_single_use (names[1]))
5062 names[1] = NULL_TREE;
5064 if (live_on_edge (e, name2)
5065 && !has_single_use (name2))
5066 names[0] = name2;
5069 if (names[0] || names[1])
5071 wide_int minv, maxv, valv, cst2v;
5072 wide_int tem, sgnbit;
5073 bool valid_p = false, valn, cst2n;
5074 enum tree_code ccode = comp_code;
5076 valv = wide_int::from (val, nprec, UNSIGNED);
5077 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5078 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5079 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5080 /* If CST2 doesn't have most significant bit set,
5081 but VAL is negative, we have comparison like
5082 if ((x & 0x123) > -4) (always true). Just give up. */
5083 if (!cst2n && valn)
5084 ccode = ERROR_MARK;
5085 if (cst2n)
5086 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5087 else
5088 sgnbit = wi::zero (nprec);
5089 minv = valv & cst2v;
5090 switch (ccode)
5092 case EQ_EXPR:
5093 /* Minimum unsigned value for equality is VAL & CST2
5094 (should be equal to VAL, otherwise we probably should
5095 have folded the comparison into false) and
5096 maximum unsigned value is VAL | ~CST2. */
5097 maxv = valv | ~cst2v;
5098 valid_p = true;
5099 break;
5101 case NE_EXPR:
5102 tem = valv | ~cst2v;
5103 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5104 if (valv == 0)
5106 cst2n = false;
5107 sgnbit = wi::zero (nprec);
5108 goto gt_expr;
5110 /* If (VAL | ~CST2) is all ones, handle it as
5111 (X & CST2) < VAL. */
5112 if (tem == -1)
5114 cst2n = false;
5115 valn = false;
5116 sgnbit = wi::zero (nprec);
5117 goto lt_expr;
5119 if (!cst2n && wi::neg_p (cst2v))
5120 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5121 if (sgnbit != 0)
5123 if (valv == sgnbit)
5125 cst2n = true;
5126 valn = true;
5127 goto gt_expr;
5129 if (tem == wi::mask (nprec - 1, false, nprec))
5131 cst2n = true;
5132 goto lt_expr;
5134 if (!cst2n)
5135 sgnbit = wi::zero (nprec);
5137 break;
5139 case GE_EXPR:
5140 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5141 is VAL and maximum unsigned value is ~0. For signed
5142 comparison, if CST2 doesn't have most significant bit
5143 set, handle it similarly. If CST2 has MSB set,
5144 the minimum is the same, and maximum is ~0U/2. */
5145 if (minv != valv)
5147 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5148 VAL. */
5149 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5150 if (minv == valv)
5151 break;
5153 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5154 valid_p = true;
5155 break;
5157 case GT_EXPR:
5158 gt_expr:
5159 /* Find out smallest MINV where MINV > VAL
5160 && (MINV & CST2) == MINV, if any. If VAL is signed and
5161 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5162 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5163 if (minv == valv)
5164 break;
5165 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5166 valid_p = true;
5167 break;
5169 case LE_EXPR:
5170 /* Minimum unsigned value for <= is 0 and maximum
5171 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5172 Otherwise, find smallest VAL2 where VAL2 > VAL
5173 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5174 as maximum.
5175 For signed comparison, if CST2 doesn't have most
5176 significant bit set, handle it similarly. If CST2 has
5177 MSB set, the maximum is the same and minimum is INT_MIN. */
5178 if (minv == valv)
5179 maxv = valv;
5180 else
5182 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5183 if (maxv == valv)
5184 break;
5185 maxv -= 1;
5187 maxv |= ~cst2v;
5188 minv = sgnbit;
5189 valid_p = true;
5190 break;
5192 case LT_EXPR:
5193 lt_expr:
5194 /* Minimum unsigned value for < is 0 and maximum
5195 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5196 Otherwise, find smallest VAL2 where VAL2 > VAL
5197 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5198 as maximum.
5199 For signed comparison, if CST2 doesn't have most
5200 significant bit set, handle it similarly. If CST2 has
5201 MSB set, the maximum is the same and minimum is INT_MIN. */
5202 if (minv == valv)
5204 if (valv == sgnbit)
5205 break;
5206 maxv = valv;
5208 else
5210 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5211 if (maxv == valv)
5212 break;
5214 maxv -= 1;
5215 maxv |= ~cst2v;
5216 minv = sgnbit;
5217 valid_p = true;
5218 break;
5220 default:
5221 break;
5223 if (valid_p
5224 && (maxv - minv) != -1)
5226 tree tmp, new_val, type;
5227 int i;
5229 for (i = 0; i < 2; i++)
5230 if (names[i])
5232 wide_int maxv2 = maxv;
5233 tmp = names[i];
5234 type = TREE_TYPE (names[i]);
5235 if (!TYPE_UNSIGNED (type))
5237 type = build_nonstandard_integer_type (nprec, 1);
5238 tmp = build1 (NOP_EXPR, type, names[i]);
5240 if (minv != 0)
5242 tmp = build2 (PLUS_EXPR, type, tmp,
5243 wide_int_to_tree (type, -minv));
5244 maxv2 = maxv - minv;
5246 new_val = wide_int_to_tree (type, maxv2);
5248 if (dump_file)
5250 fprintf (dump_file, "Adding assert for ");
5251 print_generic_expr (dump_file, names[i], 0);
5252 fprintf (dump_file, " from ");
5253 print_generic_expr (dump_file, tmp, 0);
5254 fprintf (dump_file, "\n");
5257 register_new_assert_for (names[i], tmp, LE_EXPR,
5258 new_val, NULL, e, bsi);
5259 retval = true;
5265 return retval;
5268 /* OP is an operand of a truth value expression which is known to have
5269 a particular value. Register any asserts for OP and for any
5270 operands in OP's defining statement.
5272 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5273 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5275 static bool
5276 register_edge_assert_for_1 (tree op, enum tree_code code,
5277 edge e, gimple_stmt_iterator bsi)
5279 bool retval = false;
5280 gimple op_def;
5281 tree val;
5282 enum tree_code rhs_code;
5284 /* We only care about SSA_NAMEs. */
5285 if (TREE_CODE (op) != SSA_NAME)
5286 return false;
5288 /* We know that OP will have a zero or nonzero value. If OP is used
5289 more than once go ahead and register an assert for OP. */
5290 if (live_on_edge (e, op)
5291 && !has_single_use (op))
5293 val = build_int_cst (TREE_TYPE (op), 0);
5294 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5295 retval = true;
5298 /* Now look at how OP is set. If it's set from a comparison,
5299 a truth operation or some bit operations, then we may be able
5300 to register information about the operands of that assignment. */
5301 op_def = SSA_NAME_DEF_STMT (op);
5302 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5303 return retval;
5305 rhs_code = gimple_assign_rhs_code (op_def);
5307 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5309 bool invert = (code == EQ_EXPR ? true : false);
5310 tree op0 = gimple_assign_rhs1 (op_def);
5311 tree op1 = gimple_assign_rhs2 (op_def);
5313 if (TREE_CODE (op0) == SSA_NAME)
5314 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5315 invert);
5316 if (TREE_CODE (op1) == SSA_NAME)
5317 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5318 invert);
5320 else if ((code == NE_EXPR
5321 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5322 || (code == EQ_EXPR
5323 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5325 /* Recurse on each operand. */
5326 tree op0 = gimple_assign_rhs1 (op_def);
5327 tree op1 = gimple_assign_rhs2 (op_def);
5328 if (TREE_CODE (op0) == SSA_NAME
5329 && has_single_use (op0))
5330 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5331 if (TREE_CODE (op1) == SSA_NAME
5332 && has_single_use (op1))
5333 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
5335 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5336 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5338 /* Recurse, flipping CODE. */
5339 code = invert_tree_comparison (code, false);
5340 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5341 code, e, bsi);
5343 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5345 /* Recurse through the copy. */
5346 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5347 code, e, bsi);
5349 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5351 /* Recurse through the type conversion, unless it is a narrowing
5352 conversion or conversion from non-integral type. */
5353 tree rhs = gimple_assign_rhs1 (op_def);
5354 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5355 && (TYPE_PRECISION (TREE_TYPE (rhs))
5356 <= TYPE_PRECISION (TREE_TYPE (op))))
5357 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
5360 return retval;
5363 /* Try to register an edge assertion for SSA name NAME on edge E for
5364 the condition COND contributing to the conditional jump pointed to by SI.
5365 Return true if an assertion for NAME could be registered. */
5367 static bool
5368 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5369 enum tree_code cond_code, tree cond_op0,
5370 tree cond_op1)
5372 tree val;
5373 enum tree_code comp_code;
5374 bool retval = false;
5375 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5377 /* Do not attempt to infer anything in names that flow through
5378 abnormal edges. */
5379 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5380 return false;
5382 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5383 cond_op0, cond_op1,
5384 is_else_edge,
5385 &comp_code, &val))
5386 return false;
5388 /* Register ASSERT_EXPRs for name. */
5389 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5390 cond_op1, is_else_edge);
5393 /* If COND is effectively an equality test of an SSA_NAME against
5394 the value zero or one, then we may be able to assert values
5395 for SSA_NAMEs which flow into COND. */
5397 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5398 statement of NAME we can assert both operands of the BIT_AND_EXPR
5399 have nonzero value. */
5400 if (((comp_code == EQ_EXPR && integer_onep (val))
5401 || (comp_code == NE_EXPR && integer_zerop (val))))
5403 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5405 if (is_gimple_assign (def_stmt)
5406 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5408 tree op0 = gimple_assign_rhs1 (def_stmt);
5409 tree op1 = gimple_assign_rhs2 (def_stmt);
5410 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5411 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5415 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5416 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5417 have zero value. */
5418 if (((comp_code == EQ_EXPR && integer_zerop (val))
5419 || (comp_code == NE_EXPR && integer_onep (val))))
5421 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5423 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5424 necessarily zero value, or if type-precision is one. */
5425 if (is_gimple_assign (def_stmt)
5426 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5427 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5428 || comp_code == EQ_EXPR)))
5430 tree op0 = gimple_assign_rhs1 (def_stmt);
5431 tree op1 = gimple_assign_rhs2 (def_stmt);
5432 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5433 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5437 return retval;
5441 /* Determine whether the outgoing edges of BB should receive an
5442 ASSERT_EXPR for each of the operands of BB's LAST statement.
5443 The last statement of BB must be a COND_EXPR.
5445 If any of the sub-graphs rooted at BB have an interesting use of
5446 the predicate operands, an assert location node is added to the
5447 list of assertions for the corresponding operands. */
5449 static bool
5450 find_conditional_asserts (basic_block bb, gimple last)
5452 bool need_assert;
5453 gimple_stmt_iterator bsi;
5454 tree op;
5455 edge_iterator ei;
5456 edge e;
5457 ssa_op_iter iter;
5459 need_assert = false;
5460 bsi = gsi_for_stmt (last);
5462 /* Look for uses of the operands in each of the sub-graphs
5463 rooted at BB. We need to check each of the outgoing edges
5464 separately, so that we know what kind of ASSERT_EXPR to
5465 insert. */
5466 FOR_EACH_EDGE (e, ei, bb->succs)
5468 if (e->dest == bb)
5469 continue;
5471 /* Register the necessary assertions for each operand in the
5472 conditional predicate. */
5473 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5475 need_assert |= register_edge_assert_for (op, e, bsi,
5476 gimple_cond_code (last),
5477 gimple_cond_lhs (last),
5478 gimple_cond_rhs (last));
5482 return need_assert;
5485 struct case_info
5487 tree expr;
5488 basic_block bb;
5491 /* Compare two case labels sorting first by the destination bb index
5492 and then by the case value. */
5494 static int
5495 compare_case_labels (const void *p1, const void *p2)
5497 const struct case_info *ci1 = (const struct case_info *) p1;
5498 const struct case_info *ci2 = (const struct case_info *) p2;
5499 int idx1 = ci1->bb->index;
5500 int idx2 = ci2->bb->index;
5502 if (idx1 < idx2)
5503 return -1;
5504 else if (idx1 == idx2)
5506 /* Make sure the default label is first in a group. */
5507 if (!CASE_LOW (ci1->expr))
5508 return -1;
5509 else if (!CASE_LOW (ci2->expr))
5510 return 1;
5511 else
5512 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5513 CASE_LOW (ci2->expr));
5515 else
5516 return 1;
5519 /* Determine whether the outgoing edges of BB should receive an
5520 ASSERT_EXPR for each of the operands of BB's LAST statement.
5521 The last statement of BB must be a SWITCH_EXPR.
5523 If any of the sub-graphs rooted at BB have an interesting use of
5524 the predicate operands, an assert location node is added to the
5525 list of assertions for the corresponding operands. */
5527 static bool
5528 find_switch_asserts (basic_block bb, gimple last)
5530 bool need_assert;
5531 gimple_stmt_iterator bsi;
5532 tree op;
5533 edge e;
5534 struct case_info *ci;
5535 size_t n = gimple_switch_num_labels (last);
5536 #if GCC_VERSION >= 4000
5537 unsigned int idx;
5538 #else
5539 /* Work around GCC 3.4 bug (PR 37086). */
5540 volatile unsigned int idx;
5541 #endif
5543 need_assert = false;
5544 bsi = gsi_for_stmt (last);
5545 op = gimple_switch_index (last);
5546 if (TREE_CODE (op) != SSA_NAME)
5547 return false;
5549 /* Build a vector of case labels sorted by destination label. */
5550 ci = XNEWVEC (struct case_info, n);
5551 for (idx = 0; idx < n; ++idx)
5553 ci[idx].expr = gimple_switch_label (last, idx);
5554 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5556 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5558 for (idx = 0; idx < n; ++idx)
5560 tree min, max;
5561 tree cl = ci[idx].expr;
5562 basic_block cbb = ci[idx].bb;
5564 min = CASE_LOW (cl);
5565 max = CASE_HIGH (cl);
5567 /* If there are multiple case labels with the same destination
5568 we need to combine them to a single value range for the edge. */
5569 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5571 /* Skip labels until the last of the group. */
5572 do {
5573 ++idx;
5574 } while (idx < n && cbb == ci[idx].bb);
5575 --idx;
5577 /* Pick up the maximum of the case label range. */
5578 if (CASE_HIGH (ci[idx].expr))
5579 max = CASE_HIGH (ci[idx].expr);
5580 else
5581 max = CASE_LOW (ci[idx].expr);
5584 /* Nothing to do if the range includes the default label until we
5585 can register anti-ranges. */
5586 if (min == NULL_TREE)
5587 continue;
5589 /* Find the edge to register the assert expr on. */
5590 e = find_edge (bb, cbb);
5592 /* Register the necessary assertions for the operand in the
5593 SWITCH_EXPR. */
5594 need_assert |= register_edge_assert_for (op, e, bsi,
5595 max ? GE_EXPR : EQ_EXPR,
5597 fold_convert (TREE_TYPE (op),
5598 min));
5599 if (max)
5601 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5603 fold_convert (TREE_TYPE (op),
5604 max));
5608 XDELETEVEC (ci);
5609 return need_assert;
5613 /* Traverse all the statements in block BB looking for statements that
5614 may generate useful assertions for the SSA names in their operand.
5615 If a statement produces a useful assertion A for name N_i, then the
5616 list of assertions already generated for N_i is scanned to
5617 determine if A is actually needed.
5619 If N_i already had the assertion A at a location dominating the
5620 current location, then nothing needs to be done. Otherwise, the
5621 new location for A is recorded instead.
5623 1- For every statement S in BB, all the variables used by S are
5624 added to bitmap FOUND_IN_SUBGRAPH.
5626 2- If statement S uses an operand N in a way that exposes a known
5627 value range for N, then if N was not already generated by an
5628 ASSERT_EXPR, create a new assert location for N. For instance,
5629 if N is a pointer and the statement dereferences it, we can
5630 assume that N is not NULL.
5632 3- COND_EXPRs are a special case of #2. We can derive range
5633 information from the predicate but need to insert different
5634 ASSERT_EXPRs for each of the sub-graphs rooted at the
5635 conditional block. If the last statement of BB is a conditional
5636 expression of the form 'X op Y', then
5638 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5640 b) If the conditional is the only entry point to the sub-graph
5641 corresponding to the THEN_CLAUSE, recurse into it. On
5642 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5643 an ASSERT_EXPR is added for the corresponding variable.
5645 c) Repeat step (b) on the ELSE_CLAUSE.
5647 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5649 For instance,
5651 if (a == 9)
5652 b = a;
5653 else
5654 b = c + 1;
5656 In this case, an assertion on the THEN clause is useful to
5657 determine that 'a' is always 9 on that edge. However, an assertion
5658 on the ELSE clause would be unnecessary.
5660 4- If BB does not end in a conditional expression, then we recurse
5661 into BB's dominator children.
5663 At the end of the recursive traversal, every SSA name will have a
5664 list of locations where ASSERT_EXPRs should be added. When a new
5665 location for name N is found, it is registered by calling
5666 register_new_assert_for. That function keeps track of all the
5667 registered assertions to prevent adding unnecessary assertions.
5668 For instance, if a pointer P_4 is dereferenced more than once in a
5669 dominator tree, only the location dominating all the dereference of
5670 P_4 will receive an ASSERT_EXPR.
5672 If this function returns true, then it means that there are names
5673 for which we need to generate ASSERT_EXPRs. Those assertions are
5674 inserted by process_assert_insertions. */
5676 static bool
5677 find_assert_locations_1 (basic_block bb, sbitmap live)
5679 gimple_stmt_iterator si;
5680 gimple last;
5681 bool need_assert;
5683 need_assert = false;
5684 last = last_stmt (bb);
5686 /* If BB's last statement is a conditional statement involving integer
5687 operands, determine if we need to add ASSERT_EXPRs. */
5688 if (last
5689 && gimple_code (last) == GIMPLE_COND
5690 && !fp_predicate (last)
5691 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5692 need_assert |= find_conditional_asserts (bb, last);
5694 /* If BB's last statement is a switch statement involving integer
5695 operands, determine if we need to add ASSERT_EXPRs. */
5696 if (last
5697 && gimple_code (last) == GIMPLE_SWITCH
5698 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5699 need_assert |= find_switch_asserts (bb, last);
5701 /* Traverse all the statements in BB marking used names and looking
5702 for statements that may infer assertions for their used operands. */
5703 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5705 gimple stmt;
5706 tree op;
5707 ssa_op_iter i;
5709 stmt = gsi_stmt (si);
5711 if (is_gimple_debug (stmt))
5712 continue;
5714 /* See if we can derive an assertion for any of STMT's operands. */
5715 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5717 tree value;
5718 enum tree_code comp_code;
5720 /* If op is not live beyond this stmt, do not bother to insert
5721 asserts for it. */
5722 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5723 continue;
5725 /* If OP is used in such a way that we can infer a value
5726 range for it, and we don't find a previous assertion for
5727 it, create a new assertion location node for OP. */
5728 if (infer_value_range (stmt, op, &comp_code, &value))
5730 /* If we are able to infer a nonzero value range for OP,
5731 then walk backwards through the use-def chain to see if OP
5732 was set via a typecast.
5734 If so, then we can also infer a nonzero value range
5735 for the operand of the NOP_EXPR. */
5736 if (comp_code == NE_EXPR && integer_zerop (value))
5738 tree t = op;
5739 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5741 while (is_gimple_assign (def_stmt)
5742 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5743 && TREE_CODE
5744 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5745 && POINTER_TYPE_P
5746 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5748 t = gimple_assign_rhs1 (def_stmt);
5749 def_stmt = SSA_NAME_DEF_STMT (t);
5751 /* Note we want to register the assert for the
5752 operand of the NOP_EXPR after SI, not after the
5753 conversion. */
5754 if (! has_single_use (t))
5756 register_new_assert_for (t, t, comp_code, value,
5757 bb, NULL, si);
5758 need_assert = true;
5763 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5764 need_assert = true;
5768 /* Update live. */
5769 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5770 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5771 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5772 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5775 /* Traverse all PHI nodes in BB, updating live. */
5776 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5778 use_operand_p arg_p;
5779 ssa_op_iter i;
5780 gimple phi = gsi_stmt (si);
5781 tree res = gimple_phi_result (phi);
5783 if (virtual_operand_p (res))
5784 continue;
5786 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5788 tree arg = USE_FROM_PTR (arg_p);
5789 if (TREE_CODE (arg) == SSA_NAME)
5790 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5793 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5796 return need_assert;
5799 /* Do an RPO walk over the function computing SSA name liveness
5800 on-the-fly and deciding on assert expressions to insert.
5801 Returns true if there are assert expressions to be inserted. */
5803 static bool
5804 find_assert_locations (void)
5806 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
5807 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
5808 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
5809 int rpo_cnt, i;
5810 bool need_asserts;
5812 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
5813 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5814 for (i = 0; i < rpo_cnt; ++i)
5815 bb_rpo[rpo[i]] = i;
5817 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
5818 the order we compute liveness and insert asserts we otherwise
5819 fail to insert asserts into the loop latch. */
5820 loop_p loop;
5821 FOR_EACH_LOOP (loop, 0)
5823 i = loop->latch->index;
5824 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
5825 for (gimple_stmt_iterator gsi = gsi_start_phis (loop->header);
5826 !gsi_end_p (gsi); gsi_next (&gsi))
5828 gimple phi = gsi_stmt (gsi);
5829 if (virtual_operand_p (gimple_phi_result (phi)))
5830 continue;
5831 tree arg = gimple_phi_arg_def (phi, j);
5832 if (TREE_CODE (arg) == SSA_NAME)
5834 if (live[i] == NULL)
5836 live[i] = sbitmap_alloc (num_ssa_names);
5837 bitmap_clear (live[i]);
5839 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
5844 need_asserts = false;
5845 for (i = rpo_cnt - 1; i >= 0; --i)
5847 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
5848 edge e;
5849 edge_iterator ei;
5851 if (!live[rpo[i]])
5853 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5854 bitmap_clear (live[rpo[i]]);
5857 /* Process BB and update the live information with uses in
5858 this block. */
5859 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5861 /* Merge liveness into the predecessor blocks and free it. */
5862 if (!bitmap_empty_p (live[rpo[i]]))
5864 int pred_rpo = i;
5865 FOR_EACH_EDGE (e, ei, bb->preds)
5867 int pred = e->src->index;
5868 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
5869 continue;
5871 if (!live[pred])
5873 live[pred] = sbitmap_alloc (num_ssa_names);
5874 bitmap_clear (live[pred]);
5876 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
5878 if (bb_rpo[pred] < pred_rpo)
5879 pred_rpo = bb_rpo[pred];
5882 /* Record the RPO number of the last visited block that needs
5883 live information from this block. */
5884 last_rpo[rpo[i]] = pred_rpo;
5886 else
5888 sbitmap_free (live[rpo[i]]);
5889 live[rpo[i]] = NULL;
5892 /* We can free all successors live bitmaps if all their
5893 predecessors have been visited already. */
5894 FOR_EACH_EDGE (e, ei, bb->succs)
5895 if (last_rpo[e->dest->index] == i
5896 && live[e->dest->index])
5898 sbitmap_free (live[e->dest->index]);
5899 live[e->dest->index] = NULL;
5903 XDELETEVEC (rpo);
5904 XDELETEVEC (bb_rpo);
5905 XDELETEVEC (last_rpo);
5906 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
5907 if (live[i])
5908 sbitmap_free (live[i]);
5909 XDELETEVEC (live);
5911 return need_asserts;
5914 /* Create an ASSERT_EXPR for NAME and insert it in the location
5915 indicated by LOC. Return true if we made any edge insertions. */
5917 static bool
5918 process_assert_insertions_for (tree name, assert_locus_t loc)
5920 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5921 gimple stmt;
5922 tree cond;
5923 gimple assert_stmt;
5924 edge_iterator ei;
5925 edge e;
5927 /* If we have X <=> X do not insert an assert expr for that. */
5928 if (loc->expr == loc->val)
5929 return false;
5931 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5932 assert_stmt = build_assert_expr_for (cond, name);
5933 if (loc->e)
5935 /* We have been asked to insert the assertion on an edge. This
5936 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5937 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5938 || (gimple_code (gsi_stmt (loc->si))
5939 == GIMPLE_SWITCH));
5941 gsi_insert_on_edge (loc->e, assert_stmt);
5942 return true;
5945 /* Otherwise, we can insert right after LOC->SI iff the
5946 statement must not be the last statement in the block. */
5947 stmt = gsi_stmt (loc->si);
5948 if (!stmt_ends_bb_p (stmt))
5950 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5951 return false;
5954 /* If STMT must be the last statement in BB, we can only insert new
5955 assertions on the non-abnormal edge out of BB. Note that since
5956 STMT is not control flow, there may only be one non-abnormal edge
5957 out of BB. */
5958 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5959 if (!(e->flags & EDGE_ABNORMAL))
5961 gsi_insert_on_edge (e, assert_stmt);
5962 return true;
5965 gcc_unreachable ();
5969 /* Process all the insertions registered for every name N_i registered
5970 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5971 found in ASSERTS_FOR[i]. */
5973 static void
5974 process_assert_insertions (void)
5976 unsigned i;
5977 bitmap_iterator bi;
5978 bool update_edges_p = false;
5979 int num_asserts = 0;
5981 if (dump_file && (dump_flags & TDF_DETAILS))
5982 dump_all_asserts (dump_file);
5984 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5986 assert_locus_t loc = asserts_for[i];
5987 gcc_assert (loc);
5989 while (loc)
5991 assert_locus_t next = loc->next;
5992 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5993 free (loc);
5994 loc = next;
5995 num_asserts++;
5999 if (update_edges_p)
6000 gsi_commit_edge_inserts ();
6002 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6003 num_asserts);
6007 /* Traverse the flowgraph looking for conditional jumps to insert range
6008 expressions. These range expressions are meant to provide information
6009 to optimizations that need to reason in terms of value ranges. They
6010 will not be expanded into RTL. For instance, given:
6012 x = ...
6013 y = ...
6014 if (x < y)
6015 y = x - 2;
6016 else
6017 x = y + 3;
6019 this pass will transform the code into:
6021 x = ...
6022 y = ...
6023 if (x < y)
6025 x = ASSERT_EXPR <x, x < y>
6026 y = x - 2
6028 else
6030 y = ASSERT_EXPR <y, x >= y>
6031 x = y + 3
6034 The idea is that once copy and constant propagation have run, other
6035 optimizations will be able to determine what ranges of values can 'x'
6036 take in different paths of the code, simply by checking the reaching
6037 definition of 'x'. */
6039 static void
6040 insert_range_assertions (void)
6042 need_assert_for = BITMAP_ALLOC (NULL);
6043 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6045 calculate_dominance_info (CDI_DOMINATORS);
6047 if (find_assert_locations ())
6049 process_assert_insertions ();
6050 update_ssa (TODO_update_ssa_no_phi);
6053 if (dump_file && (dump_flags & TDF_DETAILS))
6055 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6056 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6059 free (asserts_for);
6060 BITMAP_FREE (need_assert_for);
6063 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6064 and "struct" hacks. If VRP can determine that the
6065 array subscript is a constant, check if it is outside valid
6066 range. If the array subscript is a RANGE, warn if it is
6067 non-overlapping with valid range.
6068 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6070 static void
6071 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6073 value_range_t* vr = NULL;
6074 tree low_sub, up_sub;
6075 tree low_bound, up_bound, up_bound_p1;
6076 tree base;
6078 if (TREE_NO_WARNING (ref))
6079 return;
6081 low_sub = up_sub = TREE_OPERAND (ref, 1);
6082 up_bound = array_ref_up_bound (ref);
6084 /* Can not check flexible arrays. */
6085 if (!up_bound
6086 || TREE_CODE (up_bound) != INTEGER_CST)
6087 return;
6089 /* Accesses to trailing arrays via pointers may access storage
6090 beyond the types array bounds. */
6091 base = get_base_address (ref);
6092 if (base && TREE_CODE (base) == MEM_REF)
6094 tree cref, next = NULL_TREE;
6096 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6097 return;
6099 cref = TREE_OPERAND (ref, 0);
6100 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6101 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6102 next && TREE_CODE (next) != FIELD_DECL;
6103 next = DECL_CHAIN (next))
6106 /* If this is the last field in a struct type or a field in a
6107 union type do not warn. */
6108 if (!next)
6109 return;
6112 low_bound = array_ref_low_bound (ref);
6113 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6114 build_int_cst (TREE_TYPE (up_bound), 1));
6116 if (TREE_CODE (low_sub) == SSA_NAME)
6118 vr = get_value_range (low_sub);
6119 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6121 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6122 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6126 if (vr && vr->type == VR_ANTI_RANGE)
6128 if (TREE_CODE (up_sub) == INTEGER_CST
6129 && tree_int_cst_lt (up_bound, up_sub)
6130 && TREE_CODE (low_sub) == INTEGER_CST
6131 && tree_int_cst_lt (low_sub, low_bound))
6133 warning_at (location, OPT_Warray_bounds,
6134 "array subscript is outside array bounds");
6135 TREE_NO_WARNING (ref) = 1;
6138 else if (TREE_CODE (up_sub) == INTEGER_CST
6139 && (ignore_off_by_one
6140 ? (tree_int_cst_lt (up_bound, up_sub)
6141 && !tree_int_cst_equal (up_bound_p1, up_sub))
6142 : (tree_int_cst_lt (up_bound, up_sub)
6143 || tree_int_cst_equal (up_bound_p1, up_sub))))
6145 if (dump_file && (dump_flags & TDF_DETAILS))
6147 fprintf (dump_file, "Array bound warning for ");
6148 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6149 fprintf (dump_file, "\n");
6151 warning_at (location, OPT_Warray_bounds,
6152 "array subscript is above array bounds");
6153 TREE_NO_WARNING (ref) = 1;
6155 else if (TREE_CODE (low_sub) == INTEGER_CST
6156 && tree_int_cst_lt (low_sub, low_bound))
6158 if (dump_file && (dump_flags & TDF_DETAILS))
6160 fprintf (dump_file, "Array bound warning for ");
6161 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6162 fprintf (dump_file, "\n");
6164 warning_at (location, OPT_Warray_bounds,
6165 "array subscript is below array bounds");
6166 TREE_NO_WARNING (ref) = 1;
6170 /* Searches if the expr T, located at LOCATION computes
6171 address of an ARRAY_REF, and call check_array_ref on it. */
6173 static void
6174 search_for_addr_array (tree t, location_t location)
6176 while (TREE_CODE (t) == SSA_NAME)
6178 gimple g = SSA_NAME_DEF_STMT (t);
6180 if (gimple_code (g) != GIMPLE_ASSIGN)
6181 return;
6183 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6184 != GIMPLE_SINGLE_RHS)
6185 return;
6187 t = gimple_assign_rhs1 (g);
6191 /* We are only interested in addresses of ARRAY_REF's. */
6192 if (TREE_CODE (t) != ADDR_EXPR)
6193 return;
6195 /* Check each ARRAY_REFs in the reference chain. */
6198 if (TREE_CODE (t) == ARRAY_REF)
6199 check_array_ref (location, t, true /*ignore_off_by_one*/);
6201 t = TREE_OPERAND (t, 0);
6203 while (handled_component_p (t));
6205 if (TREE_CODE (t) == MEM_REF
6206 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6207 && !TREE_NO_WARNING (t))
6209 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6210 tree low_bound, up_bound, el_sz;
6211 offset_int idx;
6212 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6213 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6214 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6215 return;
6217 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6218 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6219 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6220 if (!low_bound
6221 || TREE_CODE (low_bound) != INTEGER_CST
6222 || !up_bound
6223 || TREE_CODE (up_bound) != INTEGER_CST
6224 || !el_sz
6225 || TREE_CODE (el_sz) != INTEGER_CST)
6226 return;
6228 idx = mem_ref_offset (t);
6229 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6230 if (wi::lts_p (idx, 0))
6232 if (dump_file && (dump_flags & TDF_DETAILS))
6234 fprintf (dump_file, "Array bound warning for ");
6235 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6236 fprintf (dump_file, "\n");
6238 warning_at (location, OPT_Warray_bounds,
6239 "array subscript is below array bounds");
6240 TREE_NO_WARNING (t) = 1;
6242 else if (wi::gts_p (idx, (wi::to_offset (up_bound)
6243 - wi::to_offset (low_bound) + 1)))
6245 if (dump_file && (dump_flags & TDF_DETAILS))
6247 fprintf (dump_file, "Array bound warning for ");
6248 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6249 fprintf (dump_file, "\n");
6251 warning_at (location, OPT_Warray_bounds,
6252 "array subscript is above array bounds");
6253 TREE_NO_WARNING (t) = 1;
6258 /* walk_tree() callback that checks if *TP is
6259 an ARRAY_REF inside an ADDR_EXPR (in which an array
6260 subscript one outside the valid range is allowed). Call
6261 check_array_ref for each ARRAY_REF found. The location is
6262 passed in DATA. */
6264 static tree
6265 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6267 tree t = *tp;
6268 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6269 location_t location;
6271 if (EXPR_HAS_LOCATION (t))
6272 location = EXPR_LOCATION (t);
6273 else
6275 location_t *locp = (location_t *) wi->info;
6276 location = *locp;
6279 *walk_subtree = TRUE;
6281 if (TREE_CODE (t) == ARRAY_REF)
6282 check_array_ref (location, t, false /*ignore_off_by_one*/);
6284 if (TREE_CODE (t) == MEM_REF
6285 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6286 search_for_addr_array (TREE_OPERAND (t, 0), location);
6288 if (TREE_CODE (t) == ADDR_EXPR)
6289 *walk_subtree = FALSE;
6291 return NULL_TREE;
6294 /* Walk over all statements of all reachable BBs and call check_array_bounds
6295 on them. */
6297 static void
6298 check_all_array_refs (void)
6300 basic_block bb;
6301 gimple_stmt_iterator si;
6303 FOR_EACH_BB_FN (bb, cfun)
6305 edge_iterator ei;
6306 edge e;
6307 bool executable = false;
6309 /* Skip blocks that were found to be unreachable. */
6310 FOR_EACH_EDGE (e, ei, bb->preds)
6311 executable |= !!(e->flags & EDGE_EXECUTABLE);
6312 if (!executable)
6313 continue;
6315 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6317 gimple stmt = gsi_stmt (si);
6318 struct walk_stmt_info wi;
6319 if (!gimple_has_location (stmt))
6320 continue;
6322 if (is_gimple_call (stmt))
6324 size_t i;
6325 size_t n = gimple_call_num_args (stmt);
6326 for (i = 0; i < n; i++)
6328 tree arg = gimple_call_arg (stmt, i);
6329 search_for_addr_array (arg, gimple_location (stmt));
6332 else
6334 memset (&wi, 0, sizeof (wi));
6335 wi.info = CONST_CAST (void *, (const void *)
6336 gimple_location_ptr (stmt));
6338 walk_gimple_op (gsi_stmt (si),
6339 check_array_bounds,
6340 &wi);
6346 /* Return true if all imm uses of VAR are either in STMT, or
6347 feed (optionally through a chain of single imm uses) GIMPLE_COND
6348 in basic block COND_BB. */
6350 static bool
6351 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6353 use_operand_p use_p, use2_p;
6354 imm_use_iterator iter;
6356 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6357 if (USE_STMT (use_p) != stmt)
6359 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6360 if (is_gimple_debug (use_stmt))
6361 continue;
6362 while (is_gimple_assign (use_stmt)
6363 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6364 && single_imm_use (gimple_assign_lhs (use_stmt),
6365 &use2_p, &use_stmt2))
6366 use_stmt = use_stmt2;
6367 if (gimple_code (use_stmt) != GIMPLE_COND
6368 || gimple_bb (use_stmt) != cond_bb)
6369 return false;
6371 return true;
6374 /* Handle
6375 _4 = x_3 & 31;
6376 if (_4 != 0)
6377 goto <bb 6>;
6378 else
6379 goto <bb 7>;
6380 <bb 6>:
6381 __builtin_unreachable ();
6382 <bb 7>:
6383 x_5 = ASSERT_EXPR <x_3, ...>;
6384 If x_3 has no other immediate uses (checked by caller),
6385 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6386 from the non-zero bitmask. */
6388 static void
6389 maybe_set_nonzero_bits (basic_block bb, tree var)
6391 edge e = single_pred_edge (bb);
6392 basic_block cond_bb = e->src;
6393 gimple stmt = last_stmt (cond_bb);
6394 tree cst;
6396 if (stmt == NULL
6397 || gimple_code (stmt) != GIMPLE_COND
6398 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6399 ? EQ_EXPR : NE_EXPR)
6400 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6401 || !integer_zerop (gimple_cond_rhs (stmt)))
6402 return;
6404 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6405 if (!is_gimple_assign (stmt)
6406 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6407 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6408 return;
6409 if (gimple_assign_rhs1 (stmt) != var)
6411 gimple stmt2;
6413 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6414 return;
6415 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6416 if (!gimple_assign_cast_p (stmt2)
6417 || gimple_assign_rhs1 (stmt2) != var
6418 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6419 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6420 != TYPE_PRECISION (TREE_TYPE (var))))
6421 return;
6423 cst = gimple_assign_rhs2 (stmt);
6424 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6427 /* Convert range assertion expressions into the implied copies and
6428 copy propagate away the copies. Doing the trivial copy propagation
6429 here avoids the need to run the full copy propagation pass after
6430 VRP.
6432 FIXME, this will eventually lead to copy propagation removing the
6433 names that had useful range information attached to them. For
6434 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6435 then N_i will have the range [3, +INF].
6437 However, by converting the assertion into the implied copy
6438 operation N_i = N_j, we will then copy-propagate N_j into the uses
6439 of N_i and lose the range information. We may want to hold on to
6440 ASSERT_EXPRs a little while longer as the ranges could be used in
6441 things like jump threading.
6443 The problem with keeping ASSERT_EXPRs around is that passes after
6444 VRP need to handle them appropriately.
6446 Another approach would be to make the range information a first
6447 class property of the SSA_NAME so that it can be queried from
6448 any pass. This is made somewhat more complex by the need for
6449 multiple ranges to be associated with one SSA_NAME. */
6451 static void
6452 remove_range_assertions (void)
6454 basic_block bb;
6455 gimple_stmt_iterator si;
6456 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6457 a basic block preceeded by GIMPLE_COND branching to it and
6458 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6459 int is_unreachable;
6461 /* Note that the BSI iterator bump happens at the bottom of the
6462 loop and no bump is necessary if we're removing the statement
6463 referenced by the current BSI. */
6464 FOR_EACH_BB_FN (bb, cfun)
6465 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6467 gimple stmt = gsi_stmt (si);
6468 gimple use_stmt;
6470 if (is_gimple_assign (stmt)
6471 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6473 tree lhs = gimple_assign_lhs (stmt);
6474 tree rhs = gimple_assign_rhs1 (stmt);
6475 tree var;
6476 tree cond = fold (ASSERT_EXPR_COND (rhs));
6477 use_operand_p use_p;
6478 imm_use_iterator iter;
6480 gcc_assert (cond != boolean_false_node);
6482 var = ASSERT_EXPR_VAR (rhs);
6483 gcc_assert (TREE_CODE (var) == SSA_NAME);
6485 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6486 && SSA_NAME_RANGE_INFO (lhs))
6488 if (is_unreachable == -1)
6490 is_unreachable = 0;
6491 if (single_pred_p (bb)
6492 && assert_unreachable_fallthru_edge_p
6493 (single_pred_edge (bb)))
6494 is_unreachable = 1;
6496 /* Handle
6497 if (x_7 >= 10 && x_7 < 20)
6498 __builtin_unreachable ();
6499 x_8 = ASSERT_EXPR <x_7, ...>;
6500 if the only uses of x_7 are in the ASSERT_EXPR and
6501 in the condition. In that case, we can copy the
6502 range info from x_8 computed in this pass also
6503 for x_7. */
6504 if (is_unreachable
6505 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6506 single_pred (bb)))
6508 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6509 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6510 SSA_NAME_RANGE_INFO (lhs)->get_max ());
6511 maybe_set_nonzero_bits (bb, var);
6515 /* Propagate the RHS into every use of the LHS. */
6516 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6517 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6518 SET_USE (use_p, var);
6520 /* And finally, remove the copy, it is not needed. */
6521 gsi_remove (&si, true);
6522 release_defs (stmt);
6524 else
6526 if (!is_gimple_debug (gsi_stmt (si)))
6527 is_unreachable = 0;
6528 gsi_next (&si);
6534 /* Return true if STMT is interesting for VRP. */
6536 static bool
6537 stmt_interesting_for_vrp (gimple stmt)
6539 if (gimple_code (stmt) == GIMPLE_PHI)
6541 tree res = gimple_phi_result (stmt);
6542 return (!virtual_operand_p (res)
6543 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6544 || POINTER_TYPE_P (TREE_TYPE (res))));
6546 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6548 tree lhs = gimple_get_lhs (stmt);
6550 /* In general, assignments with virtual operands are not useful
6551 for deriving ranges, with the obvious exception of calls to
6552 builtin functions. */
6553 if (lhs && TREE_CODE (lhs) == SSA_NAME
6554 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6555 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6556 && (is_gimple_call (stmt)
6557 || !gimple_vuse (stmt)))
6558 return true;
6560 else if (gimple_code (stmt) == GIMPLE_COND
6561 || gimple_code (stmt) == GIMPLE_SWITCH)
6562 return true;
6564 return false;
6568 /* Initialize local data structures for VRP. */
6570 static void
6571 vrp_initialize (void)
6573 basic_block bb;
6575 values_propagated = false;
6576 num_vr_values = num_ssa_names;
6577 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6578 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6580 FOR_EACH_BB_FN (bb, cfun)
6582 gimple_stmt_iterator si;
6584 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6586 gimple phi = gsi_stmt (si);
6587 if (!stmt_interesting_for_vrp (phi))
6589 tree lhs = PHI_RESULT (phi);
6590 set_value_range_to_varying (get_value_range (lhs));
6591 prop_set_simulate_again (phi, false);
6593 else
6594 prop_set_simulate_again (phi, true);
6597 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6599 gimple stmt = gsi_stmt (si);
6601 /* If the statement is a control insn, then we do not
6602 want to avoid simulating the statement once. Failure
6603 to do so means that those edges will never get added. */
6604 if (stmt_ends_bb_p (stmt))
6605 prop_set_simulate_again (stmt, true);
6606 else if (!stmt_interesting_for_vrp (stmt))
6608 ssa_op_iter i;
6609 tree def;
6610 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6611 set_value_range_to_varying (get_value_range (def));
6612 prop_set_simulate_again (stmt, false);
6614 else
6615 prop_set_simulate_again (stmt, true);
6620 /* Return the singleton value-range for NAME or NAME. */
6622 static inline tree
6623 vrp_valueize (tree name)
6625 if (TREE_CODE (name) == SSA_NAME)
6627 value_range_t *vr = get_value_range (name);
6628 if (vr->type == VR_RANGE
6629 && (vr->min == vr->max
6630 || operand_equal_p (vr->min, vr->max, 0)))
6631 return vr->min;
6633 return name;
6636 /* Visit assignment STMT. If it produces an interesting range, record
6637 the SSA name in *OUTPUT_P. */
6639 static enum ssa_prop_result
6640 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6642 tree def, lhs;
6643 ssa_op_iter iter;
6644 enum gimple_code code = gimple_code (stmt);
6645 lhs = gimple_get_lhs (stmt);
6647 /* We only keep track of ranges in integral and pointer types. */
6648 if (TREE_CODE (lhs) == SSA_NAME
6649 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6650 /* It is valid to have NULL MIN/MAX values on a type. See
6651 build_range_type. */
6652 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6653 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6654 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6656 value_range_t new_vr = VR_INITIALIZER;
6658 /* Try folding the statement to a constant first. */
6659 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6660 if (tem)
6661 set_value_range_to_value (&new_vr, tem, NULL);
6662 /* Then dispatch to value-range extracting functions. */
6663 else if (code == GIMPLE_CALL)
6664 extract_range_basic (&new_vr, stmt);
6665 else
6666 extract_range_from_assignment (&new_vr, stmt);
6668 if (update_value_range (lhs, &new_vr))
6670 *output_p = lhs;
6672 if (dump_file && (dump_flags & TDF_DETAILS))
6674 fprintf (dump_file, "Found new range for ");
6675 print_generic_expr (dump_file, lhs, 0);
6676 fprintf (dump_file, ": ");
6677 dump_value_range (dump_file, &new_vr);
6678 fprintf (dump_file, "\n");
6681 if (new_vr.type == VR_VARYING)
6682 return SSA_PROP_VARYING;
6684 return SSA_PROP_INTERESTING;
6687 return SSA_PROP_NOT_INTERESTING;
6690 /* Every other statement produces no useful ranges. */
6691 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6692 set_value_range_to_varying (get_value_range (def));
6694 return SSA_PROP_VARYING;
6697 /* Helper that gets the value range of the SSA_NAME with version I
6698 or a symbolic range containing the SSA_NAME only if the value range
6699 is varying or undefined. */
6701 static inline value_range_t
6702 get_vr_for_comparison (int i)
6704 value_range_t vr = *get_value_range (ssa_name (i));
6706 /* If name N_i does not have a valid range, use N_i as its own
6707 range. This allows us to compare against names that may
6708 have N_i in their ranges. */
6709 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6711 vr.type = VR_RANGE;
6712 vr.min = ssa_name (i);
6713 vr.max = ssa_name (i);
6716 return vr;
6719 /* Compare all the value ranges for names equivalent to VAR with VAL
6720 using comparison code COMP. Return the same value returned by
6721 compare_range_with_value, including the setting of
6722 *STRICT_OVERFLOW_P. */
6724 static tree
6725 compare_name_with_value (enum tree_code comp, tree var, tree val,
6726 bool *strict_overflow_p)
6728 bitmap_iterator bi;
6729 unsigned i;
6730 bitmap e;
6731 tree retval, t;
6732 int used_strict_overflow;
6733 bool sop;
6734 value_range_t equiv_vr;
6736 /* Get the set of equivalences for VAR. */
6737 e = get_value_range (var)->equiv;
6739 /* Start at -1. Set it to 0 if we do a comparison without relying
6740 on overflow, or 1 if all comparisons rely on overflow. */
6741 used_strict_overflow = -1;
6743 /* Compare vars' value range with val. */
6744 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6745 sop = false;
6746 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6747 if (retval)
6748 used_strict_overflow = sop ? 1 : 0;
6750 /* If the equiv set is empty we have done all work we need to do. */
6751 if (e == NULL)
6753 if (retval
6754 && used_strict_overflow > 0)
6755 *strict_overflow_p = true;
6756 return retval;
6759 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6761 equiv_vr = get_vr_for_comparison (i);
6762 sop = false;
6763 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6764 if (t)
6766 /* If we get different answers from different members
6767 of the equivalence set this check must be in a dead
6768 code region. Folding it to a trap representation
6769 would be correct here. For now just return don't-know. */
6770 if (retval != NULL
6771 && t != retval)
6773 retval = NULL_TREE;
6774 break;
6776 retval = t;
6778 if (!sop)
6779 used_strict_overflow = 0;
6780 else if (used_strict_overflow < 0)
6781 used_strict_overflow = 1;
6785 if (retval
6786 && used_strict_overflow > 0)
6787 *strict_overflow_p = true;
6789 return retval;
6793 /* Given a comparison code COMP and names N1 and N2, compare all the
6794 ranges equivalent to N1 against all the ranges equivalent to N2
6795 to determine the value of N1 COMP N2. Return the same value
6796 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6797 whether we relied on an overflow infinity in the comparison. */
6800 static tree
6801 compare_names (enum tree_code comp, tree n1, tree n2,
6802 bool *strict_overflow_p)
6804 tree t, retval;
6805 bitmap e1, e2;
6806 bitmap_iterator bi1, bi2;
6807 unsigned i1, i2;
6808 int used_strict_overflow;
6809 static bitmap_obstack *s_obstack = NULL;
6810 static bitmap s_e1 = NULL, s_e2 = NULL;
6812 /* Compare the ranges of every name equivalent to N1 against the
6813 ranges of every name equivalent to N2. */
6814 e1 = get_value_range (n1)->equiv;
6815 e2 = get_value_range (n2)->equiv;
6817 /* Use the fake bitmaps if e1 or e2 are not available. */
6818 if (s_obstack == NULL)
6820 s_obstack = XNEW (bitmap_obstack);
6821 bitmap_obstack_initialize (s_obstack);
6822 s_e1 = BITMAP_ALLOC (s_obstack);
6823 s_e2 = BITMAP_ALLOC (s_obstack);
6825 if (e1 == NULL)
6826 e1 = s_e1;
6827 if (e2 == NULL)
6828 e2 = s_e2;
6830 /* Add N1 and N2 to their own set of equivalences to avoid
6831 duplicating the body of the loop just to check N1 and N2
6832 ranges. */
6833 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6834 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6836 /* If the equivalence sets have a common intersection, then the two
6837 names can be compared without checking their ranges. */
6838 if (bitmap_intersect_p (e1, e2))
6840 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6841 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6843 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6844 ? boolean_true_node
6845 : boolean_false_node;
6848 /* Start at -1. Set it to 0 if we do a comparison without relying
6849 on overflow, or 1 if all comparisons rely on overflow. */
6850 used_strict_overflow = -1;
6852 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6853 N2 to their own set of equivalences to avoid duplicating the body
6854 of the loop just to check N1 and N2 ranges. */
6855 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6857 value_range_t vr1 = get_vr_for_comparison (i1);
6859 t = retval = NULL_TREE;
6860 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6862 bool sop = false;
6864 value_range_t vr2 = get_vr_for_comparison (i2);
6866 t = compare_ranges (comp, &vr1, &vr2, &sop);
6867 if (t)
6869 /* If we get different answers from different members
6870 of the equivalence set this check must be in a dead
6871 code region. Folding it to a trap representation
6872 would be correct here. For now just return don't-know. */
6873 if (retval != NULL
6874 && t != retval)
6876 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6877 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6878 return NULL_TREE;
6880 retval = t;
6882 if (!sop)
6883 used_strict_overflow = 0;
6884 else if (used_strict_overflow < 0)
6885 used_strict_overflow = 1;
6889 if (retval)
6891 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6892 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6893 if (used_strict_overflow > 0)
6894 *strict_overflow_p = true;
6895 return retval;
6899 /* None of the equivalent ranges are useful in computing this
6900 comparison. */
6901 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6902 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6903 return NULL_TREE;
6906 /* Helper function for vrp_evaluate_conditional_warnv. */
6908 static tree
6909 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
6910 tree op0, tree op1,
6911 bool * strict_overflow_p)
6913 value_range_t *vr0, *vr1;
6915 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
6916 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
6918 tree res = NULL_TREE;
6919 if (vr0 && vr1)
6920 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
6921 if (!res && vr0)
6922 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
6923 if (!res && vr1)
6924 res = (compare_range_with_value
6925 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
6926 return res;
6929 /* Helper function for vrp_evaluate_conditional_warnv. */
6931 static tree
6932 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
6933 tree op1, bool use_equiv_p,
6934 bool *strict_overflow_p, bool *only_ranges)
6936 tree ret;
6937 if (only_ranges)
6938 *only_ranges = true;
6940 /* We only deal with integral and pointer types. */
6941 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
6942 && !POINTER_TYPE_P (TREE_TYPE (op0)))
6943 return NULL_TREE;
6945 if (use_equiv_p)
6947 if (only_ranges
6948 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
6949 (code, op0, op1, strict_overflow_p)))
6950 return ret;
6951 *only_ranges = false;
6952 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
6953 return compare_names (code, op0, op1, strict_overflow_p);
6954 else if (TREE_CODE (op0) == SSA_NAME)
6955 return compare_name_with_value (code, op0, op1, strict_overflow_p);
6956 else if (TREE_CODE (op1) == SSA_NAME)
6957 return (compare_name_with_value
6958 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
6960 else
6961 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
6962 strict_overflow_p);
6963 return NULL_TREE;
6966 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
6967 information. Return NULL if the conditional can not be evaluated.
6968 The ranges of all the names equivalent with the operands in COND
6969 will be used when trying to compute the value. If the result is
6970 based on undefined signed overflow, issue a warning if
6971 appropriate. */
6973 static tree
6974 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
6976 bool sop;
6977 tree ret;
6978 bool only_ranges;
6980 /* Some passes and foldings leak constants with overflow flag set
6981 into the IL. Avoid doing wrong things with these and bail out. */
6982 if ((TREE_CODE (op0) == INTEGER_CST
6983 && TREE_OVERFLOW (op0))
6984 || (TREE_CODE (op1) == INTEGER_CST
6985 && TREE_OVERFLOW (op1)))
6986 return NULL_TREE;
6988 sop = false;
6989 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6990 &only_ranges);
6992 if (ret && sop)
6994 enum warn_strict_overflow_code wc;
6995 const char* warnmsg;
6997 if (is_gimple_min_invariant (ret))
6999 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7000 warnmsg = G_("assuming signed overflow does not occur when "
7001 "simplifying conditional to constant");
7003 else
7005 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7006 warnmsg = G_("assuming signed overflow does not occur when "
7007 "simplifying conditional");
7010 if (issue_strict_overflow_warning (wc))
7012 location_t location;
7014 if (!gimple_has_location (stmt))
7015 location = input_location;
7016 else
7017 location = gimple_location (stmt);
7018 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7022 if (warn_type_limits
7023 && ret && only_ranges
7024 && TREE_CODE_CLASS (code) == tcc_comparison
7025 && TREE_CODE (op0) == SSA_NAME)
7027 /* If the comparison is being folded and the operand on the LHS
7028 is being compared against a constant value that is outside of
7029 the natural range of OP0's type, then the predicate will
7030 always fold regardless of the value of OP0. If -Wtype-limits
7031 was specified, emit a warning. */
7032 tree type = TREE_TYPE (op0);
7033 value_range_t *vr0 = get_value_range (op0);
7035 if (vr0->type != VR_VARYING
7036 && INTEGRAL_TYPE_P (type)
7037 && vrp_val_is_min (vr0->min)
7038 && vrp_val_is_max (vr0->max)
7039 && is_gimple_min_invariant (op1))
7041 location_t location;
7043 if (!gimple_has_location (stmt))
7044 location = input_location;
7045 else
7046 location = gimple_location (stmt);
7048 warning_at (location, OPT_Wtype_limits,
7049 integer_zerop (ret)
7050 ? G_("comparison always false "
7051 "due to limited range of data type")
7052 : G_("comparison always true "
7053 "due to limited range of data type"));
7057 return ret;
7061 /* Visit conditional statement STMT. If we can determine which edge
7062 will be taken out of STMT's basic block, record it in
7063 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7064 SSA_PROP_VARYING. */
7066 static enum ssa_prop_result
7067 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
7069 tree val;
7070 bool sop;
7072 *taken_edge_p = NULL;
7074 if (dump_file && (dump_flags & TDF_DETAILS))
7076 tree use;
7077 ssa_op_iter i;
7079 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7080 print_gimple_stmt (dump_file, stmt, 0, 0);
7081 fprintf (dump_file, "\nWith known ranges\n");
7083 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7085 fprintf (dump_file, "\t");
7086 print_generic_expr (dump_file, use, 0);
7087 fprintf (dump_file, ": ");
7088 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7091 fprintf (dump_file, "\n");
7094 /* Compute the value of the predicate COND by checking the known
7095 ranges of each of its operands.
7097 Note that we cannot evaluate all the equivalent ranges here
7098 because those ranges may not yet be final and with the current
7099 propagation strategy, we cannot determine when the value ranges
7100 of the names in the equivalence set have changed.
7102 For instance, given the following code fragment
7104 i_5 = PHI <8, i_13>
7106 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7107 if (i_14 == 1)
7110 Assume that on the first visit to i_14, i_5 has the temporary
7111 range [8, 8] because the second argument to the PHI function is
7112 not yet executable. We derive the range ~[0, 0] for i_14 and the
7113 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7114 the first time, since i_14 is equivalent to the range [8, 8], we
7115 determine that the predicate is always false.
7117 On the next round of propagation, i_13 is determined to be
7118 VARYING, which causes i_5 to drop down to VARYING. So, another
7119 visit to i_14 is scheduled. In this second visit, we compute the
7120 exact same range and equivalence set for i_14, namely ~[0, 0] and
7121 { i_5 }. But we did not have the previous range for i_5
7122 registered, so vrp_visit_assignment thinks that the range for
7123 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7124 is not visited again, which stops propagation from visiting
7125 statements in the THEN clause of that if().
7127 To properly fix this we would need to keep the previous range
7128 value for the names in the equivalence set. This way we would've
7129 discovered that from one visit to the other i_5 changed from
7130 range [8, 8] to VR_VARYING.
7132 However, fixing this apparent limitation may not be worth the
7133 additional checking. Testing on several code bases (GCC, DLV,
7134 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7135 4 more predicates folded in SPEC. */
7136 sop = false;
7138 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7139 gimple_cond_lhs (stmt),
7140 gimple_cond_rhs (stmt),
7141 false, &sop, NULL);
7142 if (val)
7144 if (!sop)
7145 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7146 else
7148 if (dump_file && (dump_flags & TDF_DETAILS))
7149 fprintf (dump_file,
7150 "\nIgnoring predicate evaluation because "
7151 "it assumes that signed overflow is undefined");
7152 val = NULL_TREE;
7156 if (dump_file && (dump_flags & TDF_DETAILS))
7158 fprintf (dump_file, "\nPredicate evaluates to: ");
7159 if (val == NULL_TREE)
7160 fprintf (dump_file, "DON'T KNOW\n");
7161 else
7162 print_generic_stmt (dump_file, val, 0);
7165 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7168 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7169 that includes the value VAL. The search is restricted to the range
7170 [START_IDX, n - 1] where n is the size of VEC.
7172 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7173 returned.
7175 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7176 it is placed in IDX and false is returned.
7178 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7179 returned. */
7181 static bool
7182 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
7184 size_t n = gimple_switch_num_labels (stmt);
7185 size_t low, high;
7187 /* Find case label for minimum of the value range or the next one.
7188 At each iteration we are searching in [low, high - 1]. */
7190 for (low = start_idx, high = n; high != low; )
7192 tree t;
7193 int cmp;
7194 /* Note that i != high, so we never ask for n. */
7195 size_t i = (high + low) / 2;
7196 t = gimple_switch_label (stmt, i);
7198 /* Cache the result of comparing CASE_LOW and val. */
7199 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7201 if (cmp == 0)
7203 /* Ranges cannot be empty. */
7204 *idx = i;
7205 return true;
7207 else if (cmp > 0)
7208 high = i;
7209 else
7211 low = i + 1;
7212 if (CASE_HIGH (t) != NULL
7213 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7215 *idx = i;
7216 return true;
7221 *idx = high;
7222 return false;
7225 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7226 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7227 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7228 then MAX_IDX < MIN_IDX.
7229 Returns true if the default label is not needed. */
7231 static bool
7232 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7233 size_t *max_idx)
7235 size_t i, j;
7236 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7237 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7239 if (i == j
7240 && min_take_default
7241 && max_take_default)
7243 /* Only the default case label reached.
7244 Return an empty range. */
7245 *min_idx = 1;
7246 *max_idx = 0;
7247 return false;
7249 else
7251 bool take_default = min_take_default || max_take_default;
7252 tree low, high;
7253 size_t k;
7255 if (max_take_default)
7256 j--;
7258 /* If the case label range is continuous, we do not need
7259 the default case label. Verify that. */
7260 high = CASE_LOW (gimple_switch_label (stmt, i));
7261 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7262 high = CASE_HIGH (gimple_switch_label (stmt, i));
7263 for (k = i + 1; k <= j; ++k)
7265 low = CASE_LOW (gimple_switch_label (stmt, k));
7266 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7268 take_default = true;
7269 break;
7271 high = low;
7272 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7273 high = CASE_HIGH (gimple_switch_label (stmt, k));
7276 *min_idx = i;
7277 *max_idx = j;
7278 return !take_default;
7282 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7283 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7284 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7285 Returns true if the default label is not needed. */
7287 static bool
7288 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7289 size_t *max_idx1, size_t *min_idx2,
7290 size_t *max_idx2)
7292 size_t i, j, k, l;
7293 unsigned int n = gimple_switch_num_labels (stmt);
7294 bool take_default;
7295 tree case_low, case_high;
7296 tree min = vr->min, max = vr->max;
7298 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7300 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7302 /* Set second range to emtpy. */
7303 *min_idx2 = 1;
7304 *max_idx2 = 0;
7306 if (vr->type == VR_RANGE)
7308 *min_idx1 = i;
7309 *max_idx1 = j;
7310 return !take_default;
7313 /* Set first range to all case labels. */
7314 *min_idx1 = 1;
7315 *max_idx1 = n - 1;
7317 if (i > j)
7318 return false;
7320 /* Make sure all the values of case labels [i , j] are contained in
7321 range [MIN, MAX]. */
7322 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7323 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7324 if (tree_int_cst_compare (case_low, min) < 0)
7325 i += 1;
7326 if (case_high != NULL_TREE
7327 && tree_int_cst_compare (max, case_high) < 0)
7328 j -= 1;
7330 if (i > j)
7331 return false;
7333 /* If the range spans case labels [i, j], the corresponding anti-range spans
7334 the labels [1, i - 1] and [j + 1, n - 1]. */
7335 k = j + 1;
7336 l = n - 1;
7337 if (k > l)
7339 k = 1;
7340 l = 0;
7343 j = i - 1;
7344 i = 1;
7345 if (i > j)
7347 i = k;
7348 j = l;
7349 k = 1;
7350 l = 0;
7353 *min_idx1 = i;
7354 *max_idx1 = j;
7355 *min_idx2 = k;
7356 *max_idx2 = l;
7357 return false;
7360 /* Visit switch statement STMT. If we can determine which edge
7361 will be taken out of STMT's basic block, record it in
7362 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7363 SSA_PROP_VARYING. */
7365 static enum ssa_prop_result
7366 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7368 tree op, val;
7369 value_range_t *vr;
7370 size_t i = 0, j = 0, k, l;
7371 bool take_default;
7373 *taken_edge_p = NULL;
7374 op = gimple_switch_index (stmt);
7375 if (TREE_CODE (op) != SSA_NAME)
7376 return SSA_PROP_VARYING;
7378 vr = get_value_range (op);
7379 if (dump_file && (dump_flags & TDF_DETAILS))
7381 fprintf (dump_file, "\nVisiting switch expression with operand ");
7382 print_generic_expr (dump_file, op, 0);
7383 fprintf (dump_file, " with known range ");
7384 dump_value_range (dump_file, vr);
7385 fprintf (dump_file, "\n");
7388 if ((vr->type != VR_RANGE
7389 && vr->type != VR_ANTI_RANGE)
7390 || symbolic_range_p (vr))
7391 return SSA_PROP_VARYING;
7393 /* Find the single edge that is taken from the switch expression. */
7394 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7396 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7397 label */
7398 if (j < i)
7400 gcc_assert (take_default);
7401 val = gimple_switch_default_label (stmt);
7403 else
7405 /* Check if labels with index i to j and maybe the default label
7406 are all reaching the same label. */
7408 val = gimple_switch_label (stmt, i);
7409 if (take_default
7410 && CASE_LABEL (gimple_switch_default_label (stmt))
7411 != CASE_LABEL (val))
7413 if (dump_file && (dump_flags & TDF_DETAILS))
7414 fprintf (dump_file, " not a single destination for this "
7415 "range\n");
7416 return SSA_PROP_VARYING;
7418 for (++i; i <= j; ++i)
7420 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7422 if (dump_file && (dump_flags & TDF_DETAILS))
7423 fprintf (dump_file, " not a single destination for this "
7424 "range\n");
7425 return SSA_PROP_VARYING;
7428 for (; k <= l; ++k)
7430 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7432 if (dump_file && (dump_flags & TDF_DETAILS))
7433 fprintf (dump_file, " not a single destination for this "
7434 "range\n");
7435 return SSA_PROP_VARYING;
7440 *taken_edge_p = find_edge (gimple_bb (stmt),
7441 label_to_block (CASE_LABEL (val)));
7443 if (dump_file && (dump_flags & TDF_DETAILS))
7445 fprintf (dump_file, " will take edge to ");
7446 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7449 return SSA_PROP_INTERESTING;
7453 /* Evaluate statement STMT. If the statement produces a useful range,
7454 return SSA_PROP_INTERESTING and record the SSA name with the
7455 interesting range into *OUTPUT_P.
7457 If STMT is a conditional branch and we can determine its truth
7458 value, the taken edge is recorded in *TAKEN_EDGE_P.
7460 If STMT produces a varying value, return SSA_PROP_VARYING. */
7462 static enum ssa_prop_result
7463 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7465 tree def;
7466 ssa_op_iter iter;
7468 if (dump_file && (dump_flags & TDF_DETAILS))
7470 fprintf (dump_file, "\nVisiting statement:\n");
7471 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7474 if (!stmt_interesting_for_vrp (stmt))
7475 gcc_assert (stmt_ends_bb_p (stmt));
7476 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7477 return vrp_visit_assignment_or_call (stmt, output_p);
7478 else if (gimple_code (stmt) == GIMPLE_COND)
7479 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7480 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7481 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7483 /* All other statements produce nothing of interest for VRP, so mark
7484 their outputs varying and prevent further simulation. */
7485 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7486 set_value_range_to_varying (get_value_range (def));
7488 return SSA_PROP_VARYING;
7491 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7492 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7493 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7494 possible such range. The resulting range is not canonicalized. */
7496 static void
7497 union_ranges (enum value_range_type *vr0type,
7498 tree *vr0min, tree *vr0max,
7499 enum value_range_type vr1type,
7500 tree vr1min, tree vr1max)
7502 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7503 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7505 /* [] is vr0, () is vr1 in the following classification comments. */
7506 if (mineq && maxeq)
7508 /* [( )] */
7509 if (*vr0type == vr1type)
7510 /* Nothing to do for equal ranges. */
7512 else if ((*vr0type == VR_RANGE
7513 && vr1type == VR_ANTI_RANGE)
7514 || (*vr0type == VR_ANTI_RANGE
7515 && vr1type == VR_RANGE))
7517 /* For anti-range with range union the result is varying. */
7518 goto give_up;
7520 else
7521 gcc_unreachable ();
7523 else if (operand_less_p (*vr0max, vr1min) == 1
7524 || operand_less_p (vr1max, *vr0min) == 1)
7526 /* [ ] ( ) or ( ) [ ]
7527 If the ranges have an empty intersection, result of the union
7528 operation is the anti-range or if both are anti-ranges
7529 it covers all. */
7530 if (*vr0type == VR_ANTI_RANGE
7531 && vr1type == VR_ANTI_RANGE)
7532 goto give_up;
7533 else if (*vr0type == VR_ANTI_RANGE
7534 && vr1type == VR_RANGE)
7536 else if (*vr0type == VR_RANGE
7537 && vr1type == VR_ANTI_RANGE)
7539 *vr0type = vr1type;
7540 *vr0min = vr1min;
7541 *vr0max = vr1max;
7543 else if (*vr0type == VR_RANGE
7544 && vr1type == VR_RANGE)
7546 /* The result is the convex hull of both ranges. */
7547 if (operand_less_p (*vr0max, vr1min) == 1)
7549 /* If the result can be an anti-range, create one. */
7550 if (TREE_CODE (*vr0max) == INTEGER_CST
7551 && TREE_CODE (vr1min) == INTEGER_CST
7552 && vrp_val_is_min (*vr0min)
7553 && vrp_val_is_max (vr1max))
7555 tree min = int_const_binop (PLUS_EXPR,
7556 *vr0max,
7557 build_int_cst (TREE_TYPE (*vr0max), 1));
7558 tree max = int_const_binop (MINUS_EXPR,
7559 vr1min,
7560 build_int_cst (TREE_TYPE (vr1min), 1));
7561 if (!operand_less_p (max, min))
7563 *vr0type = VR_ANTI_RANGE;
7564 *vr0min = min;
7565 *vr0max = max;
7567 else
7568 *vr0max = vr1max;
7570 else
7571 *vr0max = vr1max;
7573 else
7575 /* If the result can be an anti-range, create one. */
7576 if (TREE_CODE (vr1max) == INTEGER_CST
7577 && TREE_CODE (*vr0min) == INTEGER_CST
7578 && vrp_val_is_min (vr1min)
7579 && vrp_val_is_max (*vr0max))
7581 tree min = int_const_binop (PLUS_EXPR,
7582 vr1max,
7583 build_int_cst (TREE_TYPE (vr1max), 1));
7584 tree max = int_const_binop (MINUS_EXPR,
7585 *vr0min,
7586 build_int_cst (TREE_TYPE (*vr0min), 1));
7587 if (!operand_less_p (max, min))
7589 *vr0type = VR_ANTI_RANGE;
7590 *vr0min = min;
7591 *vr0max = max;
7593 else
7594 *vr0min = vr1min;
7596 else
7597 *vr0min = vr1min;
7600 else
7601 gcc_unreachable ();
7603 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7604 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7606 /* [ ( ) ] or [( ) ] or [ ( )] */
7607 if (*vr0type == VR_RANGE
7608 && vr1type == VR_RANGE)
7610 else if (*vr0type == VR_ANTI_RANGE
7611 && vr1type == VR_ANTI_RANGE)
7613 *vr0type = vr1type;
7614 *vr0min = vr1min;
7615 *vr0max = vr1max;
7617 else if (*vr0type == VR_ANTI_RANGE
7618 && vr1type == VR_RANGE)
7620 /* Arbitrarily choose the right or left gap. */
7621 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7622 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7623 build_int_cst (TREE_TYPE (vr1min), 1));
7624 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7625 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
7626 build_int_cst (TREE_TYPE (vr1max), 1));
7627 else
7628 goto give_up;
7630 else if (*vr0type == VR_RANGE
7631 && vr1type == VR_ANTI_RANGE)
7632 /* The result covers everything. */
7633 goto give_up;
7634 else
7635 gcc_unreachable ();
7637 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7638 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7640 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7641 if (*vr0type == VR_RANGE
7642 && vr1type == VR_RANGE)
7644 *vr0type = vr1type;
7645 *vr0min = vr1min;
7646 *vr0max = vr1max;
7648 else if (*vr0type == VR_ANTI_RANGE
7649 && vr1type == VR_ANTI_RANGE)
7651 else if (*vr0type == VR_RANGE
7652 && vr1type == VR_ANTI_RANGE)
7654 *vr0type = VR_ANTI_RANGE;
7655 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7657 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7658 build_int_cst (TREE_TYPE (*vr0min), 1));
7659 *vr0min = vr1min;
7661 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7663 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7664 build_int_cst (TREE_TYPE (*vr0max), 1));
7665 *vr0max = vr1max;
7667 else
7668 goto give_up;
7670 else if (*vr0type == VR_ANTI_RANGE
7671 && vr1type == VR_RANGE)
7672 /* The result covers everything. */
7673 goto give_up;
7674 else
7675 gcc_unreachable ();
7677 else if ((operand_less_p (vr1min, *vr0max) == 1
7678 || operand_equal_p (vr1min, *vr0max, 0))
7679 && operand_less_p (*vr0min, vr1min) == 1
7680 && operand_less_p (*vr0max, vr1max) == 1)
7682 /* [ ( ] ) or [ ]( ) */
7683 if (*vr0type == VR_RANGE
7684 && vr1type == VR_RANGE)
7685 *vr0max = vr1max;
7686 else if (*vr0type == VR_ANTI_RANGE
7687 && vr1type == VR_ANTI_RANGE)
7688 *vr0min = vr1min;
7689 else if (*vr0type == VR_ANTI_RANGE
7690 && vr1type == VR_RANGE)
7692 if (TREE_CODE (vr1min) == INTEGER_CST)
7693 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7694 build_int_cst (TREE_TYPE (vr1min), 1));
7695 else
7696 goto give_up;
7698 else if (*vr0type == VR_RANGE
7699 && vr1type == VR_ANTI_RANGE)
7701 if (TREE_CODE (*vr0max) == INTEGER_CST)
7703 *vr0type = vr1type;
7704 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7705 build_int_cst (TREE_TYPE (*vr0max), 1));
7706 *vr0max = vr1max;
7708 else
7709 goto give_up;
7711 else
7712 gcc_unreachable ();
7714 else if ((operand_less_p (*vr0min, vr1max) == 1
7715 || operand_equal_p (*vr0min, vr1max, 0))
7716 && operand_less_p (vr1min, *vr0min) == 1
7717 && operand_less_p (vr1max, *vr0max) == 1)
7719 /* ( [ ) ] or ( )[ ] */
7720 if (*vr0type == VR_RANGE
7721 && vr1type == VR_RANGE)
7722 *vr0min = vr1min;
7723 else if (*vr0type == VR_ANTI_RANGE
7724 && vr1type == VR_ANTI_RANGE)
7725 *vr0max = vr1max;
7726 else if (*vr0type == VR_ANTI_RANGE
7727 && vr1type == VR_RANGE)
7729 if (TREE_CODE (vr1max) == INTEGER_CST)
7730 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
7731 build_int_cst (TREE_TYPE (vr1max), 1));
7732 else
7733 goto give_up;
7735 else if (*vr0type == VR_RANGE
7736 && vr1type == VR_ANTI_RANGE)
7738 if (TREE_CODE (*vr0min) == INTEGER_CST)
7740 *vr0type = vr1type;
7741 *vr0min = vr1min;
7742 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7743 build_int_cst (TREE_TYPE (*vr0min), 1));
7745 else
7746 goto give_up;
7748 else
7749 gcc_unreachable ();
7751 else
7752 goto give_up;
7754 return;
7756 give_up:
7757 *vr0type = VR_VARYING;
7758 *vr0min = NULL_TREE;
7759 *vr0max = NULL_TREE;
7762 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7763 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7764 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7765 possible such range. The resulting range is not canonicalized. */
7767 static void
7768 intersect_ranges (enum value_range_type *vr0type,
7769 tree *vr0min, tree *vr0max,
7770 enum value_range_type vr1type,
7771 tree vr1min, tree vr1max)
7773 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7774 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7776 /* [] is vr0, () is vr1 in the following classification comments. */
7777 if (mineq && maxeq)
7779 /* [( )] */
7780 if (*vr0type == vr1type)
7781 /* Nothing to do for equal ranges. */
7783 else if ((*vr0type == VR_RANGE
7784 && vr1type == VR_ANTI_RANGE)
7785 || (*vr0type == VR_ANTI_RANGE
7786 && vr1type == VR_RANGE))
7788 /* For anti-range with range intersection the result is empty. */
7789 *vr0type = VR_UNDEFINED;
7790 *vr0min = NULL_TREE;
7791 *vr0max = NULL_TREE;
7793 else
7794 gcc_unreachable ();
7796 else if (operand_less_p (*vr0max, vr1min) == 1
7797 || operand_less_p (vr1max, *vr0min) == 1)
7799 /* [ ] ( ) or ( ) [ ]
7800 If the ranges have an empty intersection, the result of the
7801 intersect operation is the range for intersecting an
7802 anti-range with a range or empty when intersecting two ranges. */
7803 if (*vr0type == VR_RANGE
7804 && vr1type == VR_ANTI_RANGE)
7806 else if (*vr0type == VR_ANTI_RANGE
7807 && vr1type == VR_RANGE)
7809 *vr0type = vr1type;
7810 *vr0min = vr1min;
7811 *vr0max = vr1max;
7813 else if (*vr0type == VR_RANGE
7814 && vr1type == VR_RANGE)
7816 *vr0type = VR_UNDEFINED;
7817 *vr0min = NULL_TREE;
7818 *vr0max = NULL_TREE;
7820 else if (*vr0type == VR_ANTI_RANGE
7821 && vr1type == VR_ANTI_RANGE)
7823 /* If the anti-ranges are adjacent to each other merge them. */
7824 if (TREE_CODE (*vr0max) == INTEGER_CST
7825 && TREE_CODE (vr1min) == INTEGER_CST
7826 && operand_less_p (*vr0max, vr1min) == 1
7827 && integer_onep (int_const_binop (MINUS_EXPR,
7828 vr1min, *vr0max)))
7829 *vr0max = vr1max;
7830 else if (TREE_CODE (vr1max) == INTEGER_CST
7831 && TREE_CODE (*vr0min) == INTEGER_CST
7832 && operand_less_p (vr1max, *vr0min) == 1
7833 && integer_onep (int_const_binop (MINUS_EXPR,
7834 *vr0min, vr1max)))
7835 *vr0min = vr1min;
7836 /* Else arbitrarily take VR0. */
7839 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7840 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7842 /* [ ( ) ] or [( ) ] or [ ( )] */
7843 if (*vr0type == VR_RANGE
7844 && vr1type == VR_RANGE)
7846 /* If both are ranges the result is the inner one. */
7847 *vr0type = vr1type;
7848 *vr0min = vr1min;
7849 *vr0max = vr1max;
7851 else if (*vr0type == VR_RANGE
7852 && vr1type == VR_ANTI_RANGE)
7854 /* Choose the right gap if the left one is empty. */
7855 if (mineq)
7857 if (TREE_CODE (vr1max) == INTEGER_CST)
7858 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
7859 build_int_cst (TREE_TYPE (vr1max), 1));
7860 else
7861 *vr0min = vr1max;
7863 /* Choose the left gap if the right one is empty. */
7864 else if (maxeq)
7866 if (TREE_CODE (vr1min) == INTEGER_CST)
7867 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7868 build_int_cst (TREE_TYPE (vr1min), 1));
7869 else
7870 *vr0max = vr1min;
7872 /* Choose the anti-range if the range is effectively varying. */
7873 else if (vrp_val_is_min (*vr0min)
7874 && vrp_val_is_max (*vr0max))
7876 *vr0type = vr1type;
7877 *vr0min = vr1min;
7878 *vr0max = vr1max;
7880 /* Else choose the range. */
7882 else if (*vr0type == VR_ANTI_RANGE
7883 && vr1type == VR_ANTI_RANGE)
7884 /* If both are anti-ranges the result is the outer one. */
7886 else if (*vr0type == VR_ANTI_RANGE
7887 && vr1type == VR_RANGE)
7889 /* The intersection is empty. */
7890 *vr0type = VR_UNDEFINED;
7891 *vr0min = NULL_TREE;
7892 *vr0max = NULL_TREE;
7894 else
7895 gcc_unreachable ();
7897 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7898 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7900 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7901 if (*vr0type == VR_RANGE
7902 && vr1type == VR_RANGE)
7903 /* Choose the inner range. */
7905 else if (*vr0type == VR_ANTI_RANGE
7906 && vr1type == VR_RANGE)
7908 /* Choose the right gap if the left is empty. */
7909 if (mineq)
7911 *vr0type = VR_RANGE;
7912 if (TREE_CODE (*vr0max) == INTEGER_CST)
7913 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7914 build_int_cst (TREE_TYPE (*vr0max), 1));
7915 else
7916 *vr0min = *vr0max;
7917 *vr0max = vr1max;
7919 /* Choose the left gap if the right is empty. */
7920 else if (maxeq)
7922 *vr0type = VR_RANGE;
7923 if (TREE_CODE (*vr0min) == INTEGER_CST)
7924 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7925 build_int_cst (TREE_TYPE (*vr0min), 1));
7926 else
7927 *vr0max = *vr0min;
7928 *vr0min = vr1min;
7930 /* Choose the anti-range if the range is effectively varying. */
7931 else if (vrp_val_is_min (vr1min)
7932 && vrp_val_is_max (vr1max))
7934 /* Else choose the range. */
7935 else
7937 *vr0type = vr1type;
7938 *vr0min = vr1min;
7939 *vr0max = vr1max;
7942 else if (*vr0type == VR_ANTI_RANGE
7943 && vr1type == VR_ANTI_RANGE)
7945 /* If both are anti-ranges the result is the outer one. */
7946 *vr0type = vr1type;
7947 *vr0min = vr1min;
7948 *vr0max = vr1max;
7950 else if (vr1type == VR_ANTI_RANGE
7951 && *vr0type == VR_RANGE)
7953 /* The intersection is empty. */
7954 *vr0type = VR_UNDEFINED;
7955 *vr0min = NULL_TREE;
7956 *vr0max = NULL_TREE;
7958 else
7959 gcc_unreachable ();
7961 else if ((operand_less_p (vr1min, *vr0max) == 1
7962 || operand_equal_p (vr1min, *vr0max, 0))
7963 && operand_less_p (*vr0min, vr1min) == 1)
7965 /* [ ( ] ) or [ ]( ) */
7966 if (*vr0type == VR_ANTI_RANGE
7967 && vr1type == VR_ANTI_RANGE)
7968 *vr0max = vr1max;
7969 else if (*vr0type == VR_RANGE
7970 && vr1type == VR_RANGE)
7971 *vr0min = vr1min;
7972 else if (*vr0type == VR_RANGE
7973 && vr1type == VR_ANTI_RANGE)
7975 if (TREE_CODE (vr1min) == INTEGER_CST)
7976 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7977 build_int_cst (TREE_TYPE (vr1min), 1));
7978 else
7979 *vr0max = vr1min;
7981 else if (*vr0type == VR_ANTI_RANGE
7982 && vr1type == VR_RANGE)
7984 *vr0type = VR_RANGE;
7985 if (TREE_CODE (*vr0max) == INTEGER_CST)
7986 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7987 build_int_cst (TREE_TYPE (*vr0max), 1));
7988 else
7989 *vr0min = *vr0max;
7990 *vr0max = vr1max;
7992 else
7993 gcc_unreachable ();
7995 else if ((operand_less_p (*vr0min, vr1max) == 1
7996 || operand_equal_p (*vr0min, vr1max, 0))
7997 && operand_less_p (vr1min, *vr0min) == 1)
7999 /* ( [ ) ] or ( )[ ] */
8000 if (*vr0type == VR_ANTI_RANGE
8001 && vr1type == VR_ANTI_RANGE)
8002 *vr0min = vr1min;
8003 else if (*vr0type == VR_RANGE
8004 && vr1type == VR_RANGE)
8005 *vr0max = vr1max;
8006 else if (*vr0type == VR_RANGE
8007 && vr1type == VR_ANTI_RANGE)
8009 if (TREE_CODE (vr1max) == INTEGER_CST)
8010 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8011 build_int_cst (TREE_TYPE (vr1max), 1));
8012 else
8013 *vr0min = vr1max;
8015 else if (*vr0type == VR_ANTI_RANGE
8016 && vr1type == VR_RANGE)
8018 *vr0type = VR_RANGE;
8019 if (TREE_CODE (*vr0min) == INTEGER_CST)
8020 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8021 build_int_cst (TREE_TYPE (*vr0min), 1));
8022 else
8023 *vr0max = *vr0min;
8024 *vr0min = vr1min;
8026 else
8027 gcc_unreachable ();
8030 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8031 result for the intersection. That's always a conservative
8032 correct estimate. */
8034 return;
8038 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8039 in *VR0. This may not be the smallest possible such range. */
8041 static void
8042 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8044 value_range_t saved;
8046 /* If either range is VR_VARYING the other one wins. */
8047 if (vr1->type == VR_VARYING)
8048 return;
8049 if (vr0->type == VR_VARYING)
8051 copy_value_range (vr0, vr1);
8052 return;
8055 /* When either range is VR_UNDEFINED the resulting range is
8056 VR_UNDEFINED, too. */
8057 if (vr0->type == VR_UNDEFINED)
8058 return;
8059 if (vr1->type == VR_UNDEFINED)
8061 set_value_range_to_undefined (vr0);
8062 return;
8065 /* Save the original vr0 so we can return it as conservative intersection
8066 result when our worker turns things to varying. */
8067 saved = *vr0;
8068 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8069 vr1->type, vr1->min, vr1->max);
8070 /* Make sure to canonicalize the result though as the inversion of a
8071 VR_RANGE can still be a VR_RANGE. */
8072 set_and_canonicalize_value_range (vr0, vr0->type,
8073 vr0->min, vr0->max, vr0->equiv);
8074 /* If that failed, use the saved original VR0. */
8075 if (vr0->type == VR_VARYING)
8077 *vr0 = saved;
8078 return;
8080 /* If the result is VR_UNDEFINED there is no need to mess with
8081 the equivalencies. */
8082 if (vr0->type == VR_UNDEFINED)
8083 return;
8085 /* The resulting set of equivalences for range intersection is the union of
8086 the two sets. */
8087 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8088 bitmap_ior_into (vr0->equiv, vr1->equiv);
8089 else if (vr1->equiv && !vr0->equiv)
8090 bitmap_copy (vr0->equiv, vr1->equiv);
8093 static void
8094 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8096 if (dump_file && (dump_flags & TDF_DETAILS))
8098 fprintf (dump_file, "Intersecting\n ");
8099 dump_value_range (dump_file, vr0);
8100 fprintf (dump_file, "\nand\n ");
8101 dump_value_range (dump_file, vr1);
8102 fprintf (dump_file, "\n");
8104 vrp_intersect_ranges_1 (vr0, vr1);
8105 if (dump_file && (dump_flags & TDF_DETAILS))
8107 fprintf (dump_file, "to\n ");
8108 dump_value_range (dump_file, vr0);
8109 fprintf (dump_file, "\n");
8113 /* Meet operation for value ranges. Given two value ranges VR0 and
8114 VR1, store in VR0 a range that contains both VR0 and VR1. This
8115 may not be the smallest possible such range. */
8117 static void
8118 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8120 value_range_t saved;
8122 if (vr0->type == VR_UNDEFINED)
8124 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8125 return;
8128 if (vr1->type == VR_UNDEFINED)
8130 /* VR0 already has the resulting range. */
8131 return;
8134 if (vr0->type == VR_VARYING)
8136 /* Nothing to do. VR0 already has the resulting range. */
8137 return;
8140 if (vr1->type == VR_VARYING)
8142 set_value_range_to_varying (vr0);
8143 return;
8146 saved = *vr0;
8147 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8148 vr1->type, vr1->min, vr1->max);
8149 if (vr0->type == VR_VARYING)
8151 /* Failed to find an efficient meet. Before giving up and setting
8152 the result to VARYING, see if we can at least derive a useful
8153 anti-range. FIXME, all this nonsense about distinguishing
8154 anti-ranges from ranges is necessary because of the odd
8155 semantics of range_includes_zero_p and friends. */
8156 if (((saved.type == VR_RANGE
8157 && range_includes_zero_p (saved.min, saved.max) == 0)
8158 || (saved.type == VR_ANTI_RANGE
8159 && range_includes_zero_p (saved.min, saved.max) == 1))
8160 && ((vr1->type == VR_RANGE
8161 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8162 || (vr1->type == VR_ANTI_RANGE
8163 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8165 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8167 /* Since this meet operation did not result from the meeting of
8168 two equivalent names, VR0 cannot have any equivalences. */
8169 if (vr0->equiv)
8170 bitmap_clear (vr0->equiv);
8171 return;
8174 set_value_range_to_varying (vr0);
8175 return;
8177 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8178 vr0->equiv);
8179 if (vr0->type == VR_VARYING)
8180 return;
8182 /* The resulting set of equivalences is always the intersection of
8183 the two sets. */
8184 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8185 bitmap_and_into (vr0->equiv, vr1->equiv);
8186 else if (vr0->equiv && !vr1->equiv)
8187 bitmap_clear (vr0->equiv);
8190 static void
8191 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8193 if (dump_file && (dump_flags & TDF_DETAILS))
8195 fprintf (dump_file, "Meeting\n ");
8196 dump_value_range (dump_file, vr0);
8197 fprintf (dump_file, "\nand\n ");
8198 dump_value_range (dump_file, vr1);
8199 fprintf (dump_file, "\n");
8201 vrp_meet_1 (vr0, vr1);
8202 if (dump_file && (dump_flags & TDF_DETAILS))
8204 fprintf (dump_file, "to\n ");
8205 dump_value_range (dump_file, vr0);
8206 fprintf (dump_file, "\n");
8211 /* Visit all arguments for PHI node PHI that flow through executable
8212 edges. If a valid value range can be derived from all the incoming
8213 value ranges, set a new range for the LHS of PHI. */
8215 static enum ssa_prop_result
8216 vrp_visit_phi_node (gimple phi)
8218 size_t i;
8219 tree lhs = PHI_RESULT (phi);
8220 value_range_t *lhs_vr = get_value_range (lhs);
8221 value_range_t vr_result = VR_INITIALIZER;
8222 bool first = true;
8223 int edges, old_edges;
8224 struct loop *l;
8226 if (dump_file && (dump_flags & TDF_DETAILS))
8228 fprintf (dump_file, "\nVisiting PHI node: ");
8229 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8232 edges = 0;
8233 for (i = 0; i < gimple_phi_num_args (phi); i++)
8235 edge e = gimple_phi_arg_edge (phi, i);
8237 if (dump_file && (dump_flags & TDF_DETAILS))
8239 fprintf (dump_file,
8240 " Argument #%d (%d -> %d %sexecutable)\n",
8241 (int) i, e->src->index, e->dest->index,
8242 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8245 if (e->flags & EDGE_EXECUTABLE)
8247 tree arg = PHI_ARG_DEF (phi, i);
8248 value_range_t vr_arg;
8250 ++edges;
8252 if (TREE_CODE (arg) == SSA_NAME)
8254 vr_arg = *(get_value_range (arg));
8255 /* Do not allow equivalences or symbolic ranges to leak in from
8256 backedges. That creates invalid equivalencies.
8257 See PR53465 and PR54767. */
8258 if (e->flags & EDGE_DFS_BACK)
8260 if (vr_arg.type == VR_RANGE
8261 || vr_arg.type == VR_ANTI_RANGE)
8263 vr_arg.equiv = NULL;
8264 if (symbolic_range_p (&vr_arg))
8266 vr_arg.type = VR_VARYING;
8267 vr_arg.min = NULL_TREE;
8268 vr_arg.max = NULL_TREE;
8272 else
8274 /* If the non-backedge arguments range is VR_VARYING then
8275 we can still try recording a simple equivalence. */
8276 if (vr_arg.type == VR_VARYING)
8278 vr_arg.type = VR_RANGE;
8279 vr_arg.min = arg;
8280 vr_arg.max = arg;
8281 vr_arg.equiv = NULL;
8285 else
8287 if (TREE_OVERFLOW_P (arg))
8288 arg = drop_tree_overflow (arg);
8290 vr_arg.type = VR_RANGE;
8291 vr_arg.min = arg;
8292 vr_arg.max = arg;
8293 vr_arg.equiv = NULL;
8296 if (dump_file && (dump_flags & TDF_DETAILS))
8298 fprintf (dump_file, "\t");
8299 print_generic_expr (dump_file, arg, dump_flags);
8300 fprintf (dump_file, ": ");
8301 dump_value_range (dump_file, &vr_arg);
8302 fprintf (dump_file, "\n");
8305 if (first)
8306 copy_value_range (&vr_result, &vr_arg);
8307 else
8308 vrp_meet (&vr_result, &vr_arg);
8309 first = false;
8311 if (vr_result.type == VR_VARYING)
8312 break;
8316 if (vr_result.type == VR_VARYING)
8317 goto varying;
8318 else if (vr_result.type == VR_UNDEFINED)
8319 goto update_range;
8321 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8322 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8324 /* To prevent infinite iterations in the algorithm, derive ranges
8325 when the new value is slightly bigger or smaller than the
8326 previous one. We don't do this if we have seen a new executable
8327 edge; this helps us avoid an overflow infinity for conditionals
8328 which are not in a loop. If the old value-range was VR_UNDEFINED
8329 use the updated range and iterate one more time. */
8330 if (edges > 0
8331 && gimple_phi_num_args (phi) > 1
8332 && edges == old_edges
8333 && lhs_vr->type != VR_UNDEFINED)
8335 /* Compare old and new ranges, fall back to varying if the
8336 values are not comparable. */
8337 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8338 if (cmp_min == -2)
8339 goto varying;
8340 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8341 if (cmp_max == -2)
8342 goto varying;
8344 /* For non VR_RANGE or for pointers fall back to varying if
8345 the range changed. */
8346 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8347 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8348 && (cmp_min != 0 || cmp_max != 0))
8349 goto varying;
8351 /* If the new minimum is larger than than the previous one
8352 retain the old value. If the new minimum value is smaller
8353 than the previous one and not -INF go all the way to -INF + 1.
8354 In the first case, to avoid infinite bouncing between different
8355 minimums, and in the other case to avoid iterating millions of
8356 times to reach -INF. Going to -INF + 1 also lets the following
8357 iteration compute whether there will be any overflow, at the
8358 expense of one additional iteration. */
8359 if (cmp_min < 0)
8360 vr_result.min = lhs_vr->min;
8361 else if (cmp_min > 0
8362 && !vrp_val_is_min (vr_result.min))
8363 vr_result.min
8364 = int_const_binop (PLUS_EXPR,
8365 vrp_val_min (TREE_TYPE (vr_result.min)),
8366 build_int_cst (TREE_TYPE (vr_result.min), 1));
8368 /* Similarly for the maximum value. */
8369 if (cmp_max > 0)
8370 vr_result.max = lhs_vr->max;
8371 else if (cmp_max < 0
8372 && !vrp_val_is_max (vr_result.max))
8373 vr_result.max
8374 = int_const_binop (MINUS_EXPR,
8375 vrp_val_max (TREE_TYPE (vr_result.min)),
8376 build_int_cst (TREE_TYPE (vr_result.min), 1));
8378 /* If we dropped either bound to +-INF then if this is a loop
8379 PHI node SCEV may known more about its value-range. */
8380 if ((cmp_min > 0 || cmp_min < 0
8381 || cmp_max < 0 || cmp_max > 0)
8382 && (l = loop_containing_stmt (phi))
8383 && l->header == gimple_bb (phi))
8384 adjust_range_with_scev (&vr_result, l, phi, lhs);
8386 /* If we will end up with a (-INF, +INF) range, set it to
8387 VARYING. Same if the previous max value was invalid for
8388 the type and we end up with vr_result.min > vr_result.max. */
8389 if ((vrp_val_is_max (vr_result.max)
8390 && vrp_val_is_min (vr_result.min))
8391 || compare_values (vr_result.min,
8392 vr_result.max) > 0)
8393 goto varying;
8396 /* If the new range is different than the previous value, keep
8397 iterating. */
8398 update_range:
8399 if (update_value_range (lhs, &vr_result))
8401 if (dump_file && (dump_flags & TDF_DETAILS))
8403 fprintf (dump_file, "Found new range for ");
8404 print_generic_expr (dump_file, lhs, 0);
8405 fprintf (dump_file, ": ");
8406 dump_value_range (dump_file, &vr_result);
8407 fprintf (dump_file, "\n");
8410 return SSA_PROP_INTERESTING;
8413 /* Nothing changed, don't add outgoing edges. */
8414 return SSA_PROP_NOT_INTERESTING;
8416 /* No match found. Set the LHS to VARYING. */
8417 varying:
8418 set_value_range_to_varying (lhs_vr);
8419 return SSA_PROP_VARYING;
8422 /* Simplify boolean operations if the source is known
8423 to be already a boolean. */
8424 static bool
8425 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8427 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8428 tree lhs, op0, op1;
8429 bool need_conversion;
8431 /* We handle only !=/== case here. */
8432 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8434 op0 = gimple_assign_rhs1 (stmt);
8435 if (!op_with_boolean_value_range_p (op0))
8436 return false;
8438 op1 = gimple_assign_rhs2 (stmt);
8439 if (!op_with_boolean_value_range_p (op1))
8440 return false;
8442 /* Reduce number of cases to handle to NE_EXPR. As there is no
8443 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8444 if (rhs_code == EQ_EXPR)
8446 if (TREE_CODE (op1) == INTEGER_CST)
8447 op1 = int_const_binop (BIT_XOR_EXPR, op1,
8448 build_int_cst (TREE_TYPE (op1), 1));
8449 else
8450 return false;
8453 lhs = gimple_assign_lhs (stmt);
8454 need_conversion
8455 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8457 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8458 if (need_conversion
8459 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8460 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8461 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8462 return false;
8464 /* For A != 0 we can substitute A itself. */
8465 if (integer_zerop (op1))
8466 gimple_assign_set_rhs_with_ops (gsi,
8467 need_conversion
8468 ? NOP_EXPR : TREE_CODE (op0),
8469 op0, NULL_TREE);
8470 /* For A != B we substitute A ^ B. Either with conversion. */
8471 else if (need_conversion)
8473 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8474 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8475 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8476 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8478 /* Or without. */
8479 else
8480 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8481 update_stmt (gsi_stmt (*gsi));
8483 return true;
8486 /* Simplify a division or modulo operator to a right shift or
8487 bitwise and if the first operand is unsigned or is greater
8488 than zero and the second operand is an exact power of two. */
8490 static bool
8491 simplify_div_or_mod_using_ranges (gimple stmt)
8493 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8494 tree val = NULL;
8495 tree op0 = gimple_assign_rhs1 (stmt);
8496 tree op1 = gimple_assign_rhs2 (stmt);
8497 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8499 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8501 val = integer_one_node;
8503 else
8505 bool sop = false;
8507 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8509 if (val
8510 && sop
8511 && integer_onep (val)
8512 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8514 location_t location;
8516 if (!gimple_has_location (stmt))
8517 location = input_location;
8518 else
8519 location = gimple_location (stmt);
8520 warning_at (location, OPT_Wstrict_overflow,
8521 "assuming signed overflow does not occur when "
8522 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8526 if (val && integer_onep (val))
8528 tree t;
8530 if (rhs_code == TRUNC_DIV_EXPR)
8532 t = build_int_cst (integer_type_node, tree_log2 (op1));
8533 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8534 gimple_assign_set_rhs1 (stmt, op0);
8535 gimple_assign_set_rhs2 (stmt, t);
8537 else
8539 t = build_int_cst (TREE_TYPE (op1), 1);
8540 t = int_const_binop (MINUS_EXPR, op1, t);
8541 t = fold_convert (TREE_TYPE (op0), t);
8543 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8544 gimple_assign_set_rhs1 (stmt, op0);
8545 gimple_assign_set_rhs2 (stmt, t);
8548 update_stmt (stmt);
8549 return true;
8552 return false;
8555 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8556 ABS_EXPR. If the operand is <= 0, then simplify the
8557 ABS_EXPR into a NEGATE_EXPR. */
8559 static bool
8560 simplify_abs_using_ranges (gimple stmt)
8562 tree val = NULL;
8563 tree op = gimple_assign_rhs1 (stmt);
8564 tree type = TREE_TYPE (op);
8565 value_range_t *vr = get_value_range (op);
8567 if (TYPE_UNSIGNED (type))
8569 val = integer_zero_node;
8571 else if (vr)
8573 bool sop = false;
8575 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8576 if (!val)
8578 sop = false;
8579 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8580 &sop);
8582 if (val)
8584 if (integer_zerop (val))
8585 val = integer_one_node;
8586 else if (integer_onep (val))
8587 val = integer_zero_node;
8591 if (val
8592 && (integer_onep (val) || integer_zerop (val)))
8594 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8596 location_t location;
8598 if (!gimple_has_location (stmt))
8599 location = input_location;
8600 else
8601 location = gimple_location (stmt);
8602 warning_at (location, OPT_Wstrict_overflow,
8603 "assuming signed overflow does not occur when "
8604 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8607 gimple_assign_set_rhs1 (stmt, op);
8608 if (integer_onep (val))
8609 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8610 else
8611 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8612 update_stmt (stmt);
8613 return true;
8617 return false;
8620 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8621 If all the bits that are being cleared by & are already
8622 known to be zero from VR, or all the bits that are being
8623 set by | are already known to be one from VR, the bit
8624 operation is redundant. */
8626 static bool
8627 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8629 tree op0 = gimple_assign_rhs1 (stmt);
8630 tree op1 = gimple_assign_rhs2 (stmt);
8631 tree op = NULL_TREE;
8632 value_range_t vr0 = VR_INITIALIZER;
8633 value_range_t vr1 = VR_INITIALIZER;
8634 wide_int may_be_nonzero0, may_be_nonzero1;
8635 wide_int must_be_nonzero0, must_be_nonzero1;
8636 wide_int mask;
8638 if (TREE_CODE (op0) == SSA_NAME)
8639 vr0 = *(get_value_range (op0));
8640 else if (is_gimple_min_invariant (op0))
8641 set_value_range_to_value (&vr0, op0, NULL);
8642 else
8643 return false;
8645 if (TREE_CODE (op1) == SSA_NAME)
8646 vr1 = *(get_value_range (op1));
8647 else if (is_gimple_min_invariant (op1))
8648 set_value_range_to_value (&vr1, op1, NULL);
8649 else
8650 return false;
8652 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
8653 &must_be_nonzero0))
8654 return false;
8655 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
8656 &must_be_nonzero1))
8657 return false;
8659 switch (gimple_assign_rhs_code (stmt))
8661 case BIT_AND_EXPR:
8662 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8663 if (mask == 0)
8665 op = op0;
8666 break;
8668 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8669 if (mask == 0)
8671 op = op1;
8672 break;
8674 break;
8675 case BIT_IOR_EXPR:
8676 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8677 if (mask == 0)
8679 op = op1;
8680 break;
8682 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8683 if (mask == 0)
8685 op = op0;
8686 break;
8688 break;
8689 default:
8690 gcc_unreachable ();
8693 if (op == NULL_TREE)
8694 return false;
8696 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8697 update_stmt (gsi_stmt (*gsi));
8698 return true;
8701 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8702 a known value range VR.
8704 If there is one and only one value which will satisfy the
8705 conditional, then return that value. Else return NULL. */
8707 static tree
8708 test_for_singularity (enum tree_code cond_code, tree op0,
8709 tree op1, value_range_t *vr)
8711 tree min = NULL;
8712 tree max = NULL;
8714 /* Extract minimum/maximum values which satisfy the
8715 the conditional as it was written. */
8716 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8718 /* This should not be negative infinity; there is no overflow
8719 here. */
8720 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8722 max = op1;
8723 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8725 tree one = build_int_cst (TREE_TYPE (op0), 1);
8726 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8727 if (EXPR_P (max))
8728 TREE_NO_WARNING (max) = 1;
8731 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8733 /* This should not be positive infinity; there is no overflow
8734 here. */
8735 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8737 min = op1;
8738 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8740 tree one = build_int_cst (TREE_TYPE (op0), 1);
8741 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8742 if (EXPR_P (min))
8743 TREE_NO_WARNING (min) = 1;
8747 /* Now refine the minimum and maximum values using any
8748 value range information we have for op0. */
8749 if (min && max)
8751 if (compare_values (vr->min, min) == 1)
8752 min = vr->min;
8753 if (compare_values (vr->max, max) == -1)
8754 max = vr->max;
8756 /* If the new min/max values have converged to a single value,
8757 then there is only one value which can satisfy the condition,
8758 return that value. */
8759 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8760 return min;
8762 return NULL;
8765 /* Return whether the value range *VR fits in an integer type specified
8766 by PRECISION and UNSIGNED_P. */
8768 static bool
8769 range_fits_type_p (value_range_t *vr, unsigned dest_precision, signop dest_sgn)
8771 tree src_type;
8772 unsigned src_precision;
8773 widest_int tem;
8774 signop src_sgn;
8776 /* We can only handle integral and pointer types. */
8777 src_type = TREE_TYPE (vr->min);
8778 if (!INTEGRAL_TYPE_P (src_type)
8779 && !POINTER_TYPE_P (src_type))
8780 return false;
8782 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
8783 and so is an identity transform. */
8784 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8785 src_sgn = TYPE_SIGN (src_type);
8786 if ((src_precision < dest_precision
8787 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
8788 || (src_precision == dest_precision && src_sgn == dest_sgn))
8789 return true;
8791 /* Now we can only handle ranges with constant bounds. */
8792 if (vr->type != VR_RANGE
8793 || TREE_CODE (vr->min) != INTEGER_CST
8794 || TREE_CODE (vr->max) != INTEGER_CST)
8795 return false;
8797 /* For sign changes, the MSB of the wide_int has to be clear.
8798 An unsigned value with its MSB set cannot be represented by
8799 a signed wide_int, while a negative value cannot be represented
8800 by an unsigned wide_int. */
8801 if (src_sgn != dest_sgn
8802 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
8803 return false;
8805 /* Then we can perform the conversion on both ends and compare
8806 the result for equality. */
8807 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
8808 if (tem != wi::to_widest (vr->min))
8809 return false;
8810 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
8811 if (tem != wi::to_widest (vr->max))
8812 return false;
8814 return true;
8817 /* Simplify a conditional using a relational operator to an equality
8818 test if the range information indicates only one value can satisfy
8819 the original conditional. */
8821 static bool
8822 simplify_cond_using_ranges (gimple stmt)
8824 tree op0 = gimple_cond_lhs (stmt);
8825 tree op1 = gimple_cond_rhs (stmt);
8826 enum tree_code cond_code = gimple_cond_code (stmt);
8828 if (cond_code != NE_EXPR
8829 && cond_code != EQ_EXPR
8830 && TREE_CODE (op0) == SSA_NAME
8831 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8832 && is_gimple_min_invariant (op1))
8834 value_range_t *vr = get_value_range (op0);
8836 /* If we have range information for OP0, then we might be
8837 able to simplify this conditional. */
8838 if (vr->type == VR_RANGE)
8840 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8842 if (new_tree)
8844 if (dump_file)
8846 fprintf (dump_file, "Simplified relational ");
8847 print_gimple_stmt (dump_file, stmt, 0, 0);
8848 fprintf (dump_file, " into ");
8851 gimple_cond_set_code (stmt, EQ_EXPR);
8852 gimple_cond_set_lhs (stmt, op0);
8853 gimple_cond_set_rhs (stmt, new_tree);
8855 update_stmt (stmt);
8857 if (dump_file)
8859 print_gimple_stmt (dump_file, stmt, 0, 0);
8860 fprintf (dump_file, "\n");
8863 return true;
8866 /* Try again after inverting the condition. We only deal
8867 with integral types here, so no need to worry about
8868 issues with inverting FP comparisons. */
8869 cond_code = invert_tree_comparison (cond_code, false);
8870 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8872 if (new_tree)
8874 if (dump_file)
8876 fprintf (dump_file, "Simplified relational ");
8877 print_gimple_stmt (dump_file, stmt, 0, 0);
8878 fprintf (dump_file, " into ");
8881 gimple_cond_set_code (stmt, NE_EXPR);
8882 gimple_cond_set_lhs (stmt, op0);
8883 gimple_cond_set_rhs (stmt, new_tree);
8885 update_stmt (stmt);
8887 if (dump_file)
8889 print_gimple_stmt (dump_file, stmt, 0, 0);
8890 fprintf (dump_file, "\n");
8893 return true;
8898 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
8899 see if OP0 was set by a type conversion where the source of
8900 the conversion is another SSA_NAME with a range that fits
8901 into the range of OP0's type.
8903 If so, the conversion is redundant as the earlier SSA_NAME can be
8904 used for the comparison directly if we just massage the constant in the
8905 comparison. */
8906 if (TREE_CODE (op0) == SSA_NAME
8907 && TREE_CODE (op1) == INTEGER_CST)
8909 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
8910 tree innerop;
8912 if (!is_gimple_assign (def_stmt)
8913 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
8914 return false;
8916 innerop = gimple_assign_rhs1 (def_stmt);
8918 if (TREE_CODE (innerop) == SSA_NAME
8919 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
8921 value_range_t *vr = get_value_range (innerop);
8923 if (range_int_cst_p (vr)
8924 && range_fits_type_p (vr,
8925 TYPE_PRECISION (TREE_TYPE (op0)),
8926 TYPE_SIGN (TREE_TYPE (op0)))
8927 && int_fits_type_p (op1, TREE_TYPE (innerop))
8928 /* The range must not have overflowed, or if it did overflow
8929 we must not be wrapping/trapping overflow and optimizing
8930 with strict overflow semantics. */
8931 && ((!is_negative_overflow_infinity (vr->min)
8932 && !is_positive_overflow_infinity (vr->max))
8933 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
8935 /* If the range overflowed and the user has asked for warnings
8936 when strict overflow semantics were used to optimize code,
8937 issue an appropriate warning. */
8938 if ((is_negative_overflow_infinity (vr->min)
8939 || is_positive_overflow_infinity (vr->max))
8940 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
8942 location_t location;
8944 if (!gimple_has_location (stmt))
8945 location = input_location;
8946 else
8947 location = gimple_location (stmt);
8948 warning_at (location, OPT_Wstrict_overflow,
8949 "assuming signed overflow does not occur when "
8950 "simplifying conditional");
8953 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
8954 gimple_cond_set_lhs (stmt, innerop);
8955 gimple_cond_set_rhs (stmt, newconst);
8956 return true;
8961 return false;
8964 /* Simplify a switch statement using the value range of the switch
8965 argument. */
8967 static bool
8968 simplify_switch_using_ranges (gimple stmt)
8970 tree op = gimple_switch_index (stmt);
8971 value_range_t *vr;
8972 bool take_default;
8973 edge e;
8974 edge_iterator ei;
8975 size_t i = 0, j = 0, n, n2;
8976 tree vec2;
8977 switch_update su;
8978 size_t k = 1, l = 0;
8980 if (TREE_CODE (op) == SSA_NAME)
8982 vr = get_value_range (op);
8984 /* We can only handle integer ranges. */
8985 if ((vr->type != VR_RANGE
8986 && vr->type != VR_ANTI_RANGE)
8987 || symbolic_range_p (vr))
8988 return false;
8990 /* Find case label for min/max of the value range. */
8991 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
8993 else if (TREE_CODE (op) == INTEGER_CST)
8995 take_default = !find_case_label_index (stmt, 1, op, &i);
8996 if (take_default)
8998 i = 1;
8999 j = 0;
9001 else
9003 j = i;
9006 else
9007 return false;
9009 n = gimple_switch_num_labels (stmt);
9011 /* Bail out if this is just all edges taken. */
9012 if (i == 1
9013 && j == n - 1
9014 && take_default)
9015 return false;
9017 /* Build a new vector of taken case labels. */
9018 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9019 n2 = 0;
9021 /* Add the default edge, if necessary. */
9022 if (take_default)
9023 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9025 for (; i <= j; ++i, ++n2)
9026 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9028 for (; k <= l; ++k, ++n2)
9029 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9031 /* Mark needed edges. */
9032 for (i = 0; i < n2; ++i)
9034 e = find_edge (gimple_bb (stmt),
9035 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9036 e->aux = (void *)-1;
9039 /* Queue not needed edges for later removal. */
9040 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9042 if (e->aux == (void *)-1)
9044 e->aux = NULL;
9045 continue;
9048 if (dump_file && (dump_flags & TDF_DETAILS))
9050 fprintf (dump_file, "removing unreachable case label\n");
9052 to_remove_edges.safe_push (e);
9053 e->flags &= ~EDGE_EXECUTABLE;
9056 /* And queue an update for the stmt. */
9057 su.stmt = stmt;
9058 su.vec = vec2;
9059 to_update_switch_stmts.safe_push (su);
9060 return false;
9063 /* Simplify an integral conversion from an SSA name in STMT. */
9065 static bool
9066 simplify_conversion_using_ranges (gimple stmt)
9068 tree innerop, middleop, finaltype;
9069 gimple def_stmt;
9070 value_range_t *innervr;
9071 signop inner_sgn, middle_sgn, final_sgn;
9072 unsigned inner_prec, middle_prec, final_prec;
9073 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9075 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9076 if (!INTEGRAL_TYPE_P (finaltype))
9077 return false;
9078 middleop = gimple_assign_rhs1 (stmt);
9079 def_stmt = SSA_NAME_DEF_STMT (middleop);
9080 if (!is_gimple_assign (def_stmt)
9081 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9082 return false;
9083 innerop = gimple_assign_rhs1 (def_stmt);
9084 if (TREE_CODE (innerop) != SSA_NAME
9085 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9086 return false;
9088 /* Get the value-range of the inner operand. */
9089 innervr = get_value_range (innerop);
9090 if (innervr->type != VR_RANGE
9091 || TREE_CODE (innervr->min) != INTEGER_CST
9092 || TREE_CODE (innervr->max) != INTEGER_CST)
9093 return false;
9095 /* Simulate the conversion chain to check if the result is equal if
9096 the middle conversion is removed. */
9097 innermin = wi::to_widest (innervr->min);
9098 innermax = wi::to_widest (innervr->max);
9100 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9101 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9102 final_prec = TYPE_PRECISION (finaltype);
9104 /* If the first conversion is not injective, the second must not
9105 be widening. */
9106 if (wi::gtu_p (innermax - innermin,
9107 wi::mask <widest_int> (middle_prec, false))
9108 && middle_prec < final_prec)
9109 return false;
9110 /* We also want a medium value so that we can track the effect that
9111 narrowing conversions with sign change have. */
9112 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9113 if (inner_sgn == UNSIGNED)
9114 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9115 else
9116 innermed = 0;
9117 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9118 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9119 innermed = innermin;
9121 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
9122 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9123 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9124 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9126 /* Require that the final conversion applied to both the original
9127 and the intermediate range produces the same result. */
9128 final_sgn = TYPE_SIGN (finaltype);
9129 if (wi::ext (middlemin, final_prec, final_sgn)
9130 != wi::ext (innermin, final_prec, final_sgn)
9131 || wi::ext (middlemed, final_prec, final_sgn)
9132 != wi::ext (innermed, final_prec, final_sgn)
9133 || wi::ext (middlemax, final_prec, final_sgn)
9134 != wi::ext (innermax, final_prec, final_sgn))
9135 return false;
9137 gimple_assign_set_rhs1 (stmt, innerop);
9138 update_stmt (stmt);
9139 return true;
9142 /* Simplify a conversion from integral SSA name to float in STMT. */
9144 static bool
9145 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9147 tree rhs1 = gimple_assign_rhs1 (stmt);
9148 value_range_t *vr = get_value_range (rhs1);
9149 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9150 enum machine_mode mode;
9151 tree tem;
9152 gimple conv;
9154 /* We can only handle constant ranges. */
9155 if (vr->type != VR_RANGE
9156 || TREE_CODE (vr->min) != INTEGER_CST
9157 || TREE_CODE (vr->max) != INTEGER_CST)
9158 return false;
9160 /* First check if we can use a signed type in place of an unsigned. */
9161 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9162 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9163 != CODE_FOR_nothing)
9164 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
9165 mode = TYPE_MODE (TREE_TYPE (rhs1));
9166 /* If we can do the conversion in the current input mode do nothing. */
9167 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9168 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9169 return false;
9170 /* Otherwise search for a mode we can use, starting from the narrowest
9171 integer mode available. */
9172 else
9174 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9177 /* If we cannot do a signed conversion to float from mode
9178 or if the value-range does not fit in the signed type
9179 try with a wider mode. */
9180 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9181 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
9182 break;
9184 mode = GET_MODE_WIDER_MODE (mode);
9185 /* But do not widen the input. Instead leave that to the
9186 optabs expansion code. */
9187 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9188 return false;
9190 while (mode != VOIDmode);
9191 if (mode == VOIDmode)
9192 return false;
9195 /* It works, insert a truncation or sign-change before the
9196 float conversion. */
9197 tem = make_ssa_name (build_nonstandard_integer_type
9198 (GET_MODE_PRECISION (mode), 0), NULL);
9199 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
9200 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9201 gimple_assign_set_rhs1 (stmt, tem);
9202 update_stmt (stmt);
9204 return true;
9207 /* Simplify an internal fn call using ranges if possible. */
9209 static bool
9210 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9212 enum tree_code subcode;
9213 switch (gimple_call_internal_fn (stmt))
9215 case IFN_UBSAN_CHECK_ADD:
9216 subcode = PLUS_EXPR;
9217 break;
9218 case IFN_UBSAN_CHECK_SUB:
9219 subcode = MINUS_EXPR;
9220 break;
9221 case IFN_UBSAN_CHECK_MUL:
9222 subcode = MULT_EXPR;
9223 break;
9224 default:
9225 return false;
9228 value_range_t vr0 = VR_INITIALIZER;
9229 value_range_t vr1 = VR_INITIALIZER;
9230 tree op0 = gimple_call_arg (stmt, 0);
9231 tree op1 = gimple_call_arg (stmt, 1);
9233 if (TREE_CODE (op0) == SSA_NAME)
9234 vr0 = *get_value_range (op0);
9235 else if (TREE_CODE (op0) == INTEGER_CST)
9236 set_value_range_to_value (&vr0, op0, NULL);
9237 else
9238 set_value_range_to_varying (&vr0);
9240 if (TREE_CODE (op1) == SSA_NAME)
9241 vr1 = *get_value_range (op1);
9242 else if (TREE_CODE (op1) == INTEGER_CST)
9243 set_value_range_to_value (&vr1, op1, NULL);
9244 else
9245 set_value_range_to_varying (&vr1);
9247 if (!range_int_cst_p (&vr0))
9249 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9250 optimize at least x = y + 0; x = y - 0; x = y * 0;
9251 and x = y * 1; which never overflow. */
9252 if (!range_int_cst_p (&vr1))
9253 return false;
9254 if (tree_int_cst_sgn (vr1.min) == -1)
9255 return false;
9256 if (compare_tree_int (vr1.max, subcode == MULT_EXPR) == 1)
9257 return false;
9259 else if (!range_int_cst_p (&vr1))
9261 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9262 optimize at least x = 0 + y; x = 0 * y; and x = 1 * y;
9263 which never overflow. */
9264 if (subcode == MINUS_EXPR)
9265 return false;
9266 if (!range_int_cst_p (&vr0))
9267 return false;
9268 if (tree_int_cst_sgn (vr0.min) == -1)
9269 return false;
9270 if (compare_tree_int (vr0.max, subcode == MULT_EXPR) == 1)
9271 return false;
9273 else
9275 tree r1 = int_const_binop (subcode, vr0.min, vr1.min);
9276 tree r2 = int_const_binop (subcode, vr0.max, vr1.max);
9277 if (r1 == NULL_TREE || TREE_OVERFLOW (r1)
9278 || r2 == NULL_TREE || TREE_OVERFLOW (r2))
9279 return false;
9280 if (subcode == MULT_EXPR)
9282 tree r3 = int_const_binop (subcode, vr0.min, vr1.max);
9283 tree r4 = int_const_binop (subcode, vr0.max, vr1.min);
9284 if (r3 == NULL_TREE || TREE_OVERFLOW (r3)
9285 || r4 == NULL_TREE || TREE_OVERFLOW (r4))
9286 return false;
9290 gimple g = gimple_build_assign_with_ops (subcode, gimple_call_lhs (stmt),
9291 op0, op1);
9292 gsi_replace (gsi, g, false);
9293 return true;
9296 /* Simplify STMT using ranges if possible. */
9298 static bool
9299 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9301 gimple stmt = gsi_stmt (*gsi);
9302 if (is_gimple_assign (stmt))
9304 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9305 tree rhs1 = gimple_assign_rhs1 (stmt);
9307 switch (rhs_code)
9309 case EQ_EXPR:
9310 case NE_EXPR:
9311 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9312 if the RHS is zero or one, and the LHS are known to be boolean
9313 values. */
9314 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9315 return simplify_truth_ops_using_ranges (gsi, stmt);
9316 break;
9318 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9319 and BIT_AND_EXPR respectively if the first operand is greater
9320 than zero and the second operand is an exact power of two. */
9321 case TRUNC_DIV_EXPR:
9322 case TRUNC_MOD_EXPR:
9323 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
9324 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9325 return simplify_div_or_mod_using_ranges (stmt);
9326 break;
9328 /* Transform ABS (X) into X or -X as appropriate. */
9329 case ABS_EXPR:
9330 if (TREE_CODE (rhs1) == SSA_NAME
9331 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9332 return simplify_abs_using_ranges (stmt);
9333 break;
9335 case BIT_AND_EXPR:
9336 case BIT_IOR_EXPR:
9337 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9338 if all the bits being cleared are already cleared or
9339 all the bits being set are already set. */
9340 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9341 return simplify_bit_ops_using_ranges (gsi, stmt);
9342 break;
9344 CASE_CONVERT:
9345 if (TREE_CODE (rhs1) == SSA_NAME
9346 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9347 return simplify_conversion_using_ranges (stmt);
9348 break;
9350 case FLOAT_EXPR:
9351 if (TREE_CODE (rhs1) == SSA_NAME
9352 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9353 return simplify_float_conversion_using_ranges (gsi, stmt);
9354 break;
9356 default:
9357 break;
9360 else if (gimple_code (stmt) == GIMPLE_COND)
9361 return simplify_cond_using_ranges (stmt);
9362 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9363 return simplify_switch_using_ranges (stmt);
9364 else if (is_gimple_call (stmt)
9365 && gimple_call_internal_p (stmt))
9366 return simplify_internal_call_using_ranges (gsi, stmt);
9368 return false;
9371 /* If the statement pointed by SI has a predicate whose value can be
9372 computed using the value range information computed by VRP, compute
9373 its value and return true. Otherwise, return false. */
9375 static bool
9376 fold_predicate_in (gimple_stmt_iterator *si)
9378 bool assignment_p = false;
9379 tree val;
9380 gimple stmt = gsi_stmt (*si);
9382 if (is_gimple_assign (stmt)
9383 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9385 assignment_p = true;
9386 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9387 gimple_assign_rhs1 (stmt),
9388 gimple_assign_rhs2 (stmt),
9389 stmt);
9391 else if (gimple_code (stmt) == GIMPLE_COND)
9392 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9393 gimple_cond_lhs (stmt),
9394 gimple_cond_rhs (stmt),
9395 stmt);
9396 else
9397 return false;
9399 if (val)
9401 if (assignment_p)
9402 val = fold_convert (gimple_expr_type (stmt), val);
9404 if (dump_file)
9406 fprintf (dump_file, "Folding predicate ");
9407 print_gimple_expr (dump_file, stmt, 0, 0);
9408 fprintf (dump_file, " to ");
9409 print_generic_expr (dump_file, val, 0);
9410 fprintf (dump_file, "\n");
9413 if (is_gimple_assign (stmt))
9414 gimple_assign_set_rhs_from_tree (si, val);
9415 else
9417 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9418 if (integer_zerop (val))
9419 gimple_cond_make_false (stmt);
9420 else if (integer_onep (val))
9421 gimple_cond_make_true (stmt);
9422 else
9423 gcc_unreachable ();
9426 return true;
9429 return false;
9432 /* Callback for substitute_and_fold folding the stmt at *SI. */
9434 static bool
9435 vrp_fold_stmt (gimple_stmt_iterator *si)
9437 if (fold_predicate_in (si))
9438 return true;
9440 return simplify_stmt_using_ranges (si);
9443 /* Stack of dest,src equivalency pairs that need to be restored after
9444 each attempt to thread a block's incoming edge to an outgoing edge.
9446 A NULL entry is used to mark the end of pairs which need to be
9447 restored. */
9448 static vec<tree> equiv_stack;
9450 /* A trivial wrapper so that we can present the generic jump threading
9451 code with a simple API for simplifying statements. STMT is the
9452 statement we want to simplify, WITHIN_STMT provides the location
9453 for any overflow warnings. */
9455 static tree
9456 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9458 if (gimple_code (stmt) == GIMPLE_COND)
9459 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9460 gimple_cond_lhs (stmt),
9461 gimple_cond_rhs (stmt), within_stmt);
9463 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9465 value_range_t new_vr = VR_INITIALIZER;
9466 tree lhs = gimple_assign_lhs (stmt);
9468 if (TREE_CODE (lhs) == SSA_NAME
9469 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9470 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9472 extract_range_from_assignment (&new_vr, stmt);
9473 if (range_int_cst_singleton_p (&new_vr))
9474 return new_vr.min;
9478 return NULL_TREE;
9481 /* Blocks which have more than one predecessor and more than
9482 one successor present jump threading opportunities, i.e.,
9483 when the block is reached from a specific predecessor, we
9484 may be able to determine which of the outgoing edges will
9485 be traversed. When this optimization applies, we are able
9486 to avoid conditionals at runtime and we may expose secondary
9487 optimization opportunities.
9489 This routine is effectively a driver for the generic jump
9490 threading code. It basically just presents the generic code
9491 with edges that may be suitable for jump threading.
9493 Unlike DOM, we do not iterate VRP if jump threading was successful.
9494 While iterating may expose new opportunities for VRP, it is expected
9495 those opportunities would be very limited and the compile time cost
9496 to expose those opportunities would be significant.
9498 As jump threading opportunities are discovered, they are registered
9499 for later realization. */
9501 static void
9502 identify_jump_threads (void)
9504 basic_block bb;
9505 gimple dummy;
9506 int i;
9507 edge e;
9509 /* Ugh. When substituting values earlier in this pass we can
9510 wipe the dominance information. So rebuild the dominator
9511 information as we need it within the jump threading code. */
9512 calculate_dominance_info (CDI_DOMINATORS);
9514 /* We do not allow VRP information to be used for jump threading
9515 across a back edge in the CFG. Otherwise it becomes too
9516 difficult to avoid eliminating loop exit tests. Of course
9517 EDGE_DFS_BACK is not accurate at this time so we have to
9518 recompute it. */
9519 mark_dfs_back_edges ();
9521 /* Do not thread across edges we are about to remove. Just marking
9522 them as EDGE_DFS_BACK will do. */
9523 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9524 e->flags |= EDGE_DFS_BACK;
9526 /* Allocate our unwinder stack to unwind any temporary equivalences
9527 that might be recorded. */
9528 equiv_stack.create (20);
9530 /* To avoid lots of silly node creation, we create a single
9531 conditional and just modify it in-place when attempting to
9532 thread jumps. */
9533 dummy = gimple_build_cond (EQ_EXPR,
9534 integer_zero_node, integer_zero_node,
9535 NULL, NULL);
9537 /* Walk through all the blocks finding those which present a
9538 potential jump threading opportunity. We could set this up
9539 as a dominator walker and record data during the walk, but
9540 I doubt it's worth the effort for the classes of jump
9541 threading opportunities we are trying to identify at this
9542 point in compilation. */
9543 FOR_EACH_BB_FN (bb, cfun)
9545 gimple last;
9547 /* If the generic jump threading code does not find this block
9548 interesting, then there is nothing to do. */
9549 if (! potentially_threadable_block (bb))
9550 continue;
9552 /* We only care about blocks ending in a COND_EXPR. While there
9553 may be some value in handling SWITCH_EXPR here, I doubt it's
9554 terribly important. */
9555 last = gsi_stmt (gsi_last_bb (bb));
9557 /* We're basically looking for a switch or any kind of conditional with
9558 integral or pointer type arguments. Note the type of the second
9559 argument will be the same as the first argument, so no need to
9560 check it explicitly. */
9561 if (gimple_code (last) == GIMPLE_SWITCH
9562 || (gimple_code (last) == GIMPLE_COND
9563 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9564 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9565 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9566 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9567 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9569 edge_iterator ei;
9571 /* We've got a block with multiple predecessors and multiple
9572 successors which also ends in a suitable conditional or
9573 switch statement. For each predecessor, see if we can thread
9574 it to a specific successor. */
9575 FOR_EACH_EDGE (e, ei, bb->preds)
9577 /* Do not thread across back edges or abnormal edges
9578 in the CFG. */
9579 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9580 continue;
9582 thread_across_edge (dummy, e, true, &equiv_stack,
9583 simplify_stmt_for_jump_threading);
9588 /* We do not actually update the CFG or SSA graphs at this point as
9589 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9590 handle ASSERT_EXPRs gracefully. */
9593 /* We identified all the jump threading opportunities earlier, but could
9594 not transform the CFG at that time. This routine transforms the
9595 CFG and arranges for the dominator tree to be rebuilt if necessary.
9597 Note the SSA graph update will occur during the normal TODO
9598 processing by the pass manager. */
9599 static void
9600 finalize_jump_threads (void)
9602 thread_through_all_blocks (false);
9603 equiv_stack.release ();
9607 /* Traverse all the blocks folding conditionals with known ranges. */
9609 static void
9610 vrp_finalize (void)
9612 size_t i;
9614 values_propagated = true;
9616 if (dump_file)
9618 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9619 dump_all_value_ranges (dump_file);
9620 fprintf (dump_file, "\n");
9623 substitute_and_fold (op_with_constant_singleton_value_range,
9624 vrp_fold_stmt, false);
9626 if (warn_array_bounds)
9627 check_all_array_refs ();
9629 /* We must identify jump threading opportunities before we release
9630 the datastructures built by VRP. */
9631 identify_jump_threads ();
9633 /* Set value range to non pointer SSA_NAMEs. */
9634 for (i = 0; i < num_vr_values; i++)
9635 if (vr_value[i])
9637 tree name = ssa_name (i);
9639 if (!name
9640 || POINTER_TYPE_P (TREE_TYPE (name))
9641 || (vr_value[i]->type == VR_VARYING)
9642 || (vr_value[i]->type == VR_UNDEFINED))
9643 continue;
9645 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
9646 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
9647 && (vr_value[i]->type == VR_RANGE
9648 || vr_value[i]->type == VR_ANTI_RANGE))
9649 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
9650 vr_value[i]->max);
9653 /* Free allocated memory. */
9654 for (i = 0; i < num_vr_values; i++)
9655 if (vr_value[i])
9657 BITMAP_FREE (vr_value[i]->equiv);
9658 free (vr_value[i]);
9661 free (vr_value);
9662 free (vr_phi_edge_counts);
9664 /* So that we can distinguish between VRP data being available
9665 and not available. */
9666 vr_value = NULL;
9667 vr_phi_edge_counts = NULL;
9671 /* Main entry point to VRP (Value Range Propagation). This pass is
9672 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9673 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9674 Programming Language Design and Implementation, pp. 67-78, 1995.
9675 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9677 This is essentially an SSA-CCP pass modified to deal with ranges
9678 instead of constants.
9680 While propagating ranges, we may find that two or more SSA name
9681 have equivalent, though distinct ranges. For instance,
9683 1 x_9 = p_3->a;
9684 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9685 3 if (p_4 == q_2)
9686 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9687 5 endif
9688 6 if (q_2)
9690 In the code above, pointer p_5 has range [q_2, q_2], but from the
9691 code we can also determine that p_5 cannot be NULL and, if q_2 had
9692 a non-varying range, p_5's range should also be compatible with it.
9694 These equivalences are created by two expressions: ASSERT_EXPR and
9695 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9696 result of another assertion, then we can use the fact that p_5 and
9697 p_4 are equivalent when evaluating p_5's range.
9699 Together with value ranges, we also propagate these equivalences
9700 between names so that we can take advantage of information from
9701 multiple ranges when doing final replacement. Note that this
9702 equivalency relation is transitive but not symmetric.
9704 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9705 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9706 in contexts where that assertion does not hold (e.g., in line 6).
9708 TODO, the main difference between this pass and Patterson's is that
9709 we do not propagate edge probabilities. We only compute whether
9710 edges can be taken or not. That is, instead of having a spectrum
9711 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9712 DON'T KNOW. In the future, it may be worthwhile to propagate
9713 probabilities to aid branch prediction. */
9715 static unsigned int
9716 execute_vrp (void)
9718 int i;
9719 edge e;
9720 switch_update *su;
9722 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9723 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9724 scev_initialize ();
9726 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9727 Inserting assertions may split edges which will invalidate
9728 EDGE_DFS_BACK. */
9729 insert_range_assertions ();
9731 to_remove_edges.create (10);
9732 to_update_switch_stmts.create (5);
9733 threadedge_initialize_values ();
9735 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9736 mark_dfs_back_edges ();
9738 vrp_initialize ();
9739 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9740 vrp_finalize ();
9742 free_numbers_of_iterations_estimates ();
9744 /* ASSERT_EXPRs must be removed before finalizing jump threads
9745 as finalizing jump threads calls the CFG cleanup code which
9746 does not properly handle ASSERT_EXPRs. */
9747 remove_range_assertions ();
9749 /* If we exposed any new variables, go ahead and put them into
9750 SSA form now, before we handle jump threading. This simplifies
9751 interactions between rewriting of _DECL nodes into SSA form
9752 and rewriting SSA_NAME nodes into SSA form after block
9753 duplication and CFG manipulation. */
9754 update_ssa (TODO_update_ssa);
9756 finalize_jump_threads ();
9758 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9759 CFG in a broken state and requires a cfg_cleanup run. */
9760 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9761 remove_edge (e);
9762 /* Update SWITCH_EXPR case label vector. */
9763 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9765 size_t j;
9766 size_t n = TREE_VEC_LENGTH (su->vec);
9767 tree label;
9768 gimple_switch_set_num_labels (su->stmt, n);
9769 for (j = 0; j < n; j++)
9770 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9771 /* As we may have replaced the default label with a regular one
9772 make sure to make it a real default label again. This ensures
9773 optimal expansion. */
9774 label = gimple_switch_label (su->stmt, 0);
9775 CASE_LOW (label) = NULL_TREE;
9776 CASE_HIGH (label) = NULL_TREE;
9779 if (to_remove_edges.length () > 0)
9781 free_dominance_info (CDI_DOMINATORS);
9782 loops_state_set (LOOPS_NEED_FIXUP);
9785 to_remove_edges.release ();
9786 to_update_switch_stmts.release ();
9787 threadedge_finalize_values ();
9789 scev_finalize ();
9790 loop_optimizer_finalize ();
9791 return 0;
9794 namespace {
9796 const pass_data pass_data_vrp =
9798 GIMPLE_PASS, /* type */
9799 "vrp", /* name */
9800 OPTGROUP_NONE, /* optinfo_flags */
9801 true, /* has_execute */
9802 TV_TREE_VRP, /* tv_id */
9803 PROP_ssa, /* properties_required */
9804 0, /* properties_provided */
9805 0, /* properties_destroyed */
9806 0, /* todo_flags_start */
9807 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
9810 class pass_vrp : public gimple_opt_pass
9812 public:
9813 pass_vrp (gcc::context *ctxt)
9814 : gimple_opt_pass (pass_data_vrp, ctxt)
9817 /* opt_pass methods: */
9818 opt_pass * clone () { return new pass_vrp (m_ctxt); }
9819 virtual bool gate (function *) { return flag_tree_vrp != 0; }
9820 virtual unsigned int execute (function *) { return execute_vrp (); }
9822 }; // class pass_vrp
9824 } // anon namespace
9826 gimple_opt_pass *
9827 make_pass_vrp (gcc::context *ctxt)
9829 return new pass_vrp (ctxt);