Daily bump.
[official-gcc.git] / gcc / fortran / trans-types.c
blob998448125056f8ead373f603150086341c70dcbf
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2020 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* trans-types.c -- gfortran backend types */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "target.h"
28 #include "tree.h"
29 #include "gfortran.h"
30 #include "trans.h"
31 #include "stringpool.h"
32 #include "fold-const.h"
33 #include "stor-layout.h"
34 #include "langhooks.h" /* For iso-c-bindings.def. */
35 #include "toplev.h" /* For rest_of_decl_compilation. */
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "trans-array.h"
39 #include "dwarf2out.h" /* For struct array_descr_info. */
40 #include "attribs.h"
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
56 tree gfc_array_index_type;
57 tree gfc_array_range_type;
58 tree gfc_character1_type_node;
59 tree pvoid_type_node;
60 tree prvoid_type_node;
61 tree ppvoid_type_node;
62 tree pchar_type_node;
63 tree pfunc_type_node;
65 tree logical_type_node;
66 tree logical_true_node;
67 tree logical_false_node;
68 tree gfc_charlen_type_node;
70 tree gfc_float128_type_node = NULL_TREE;
71 tree gfc_complex_float128_type_node = NULL_TREE;
73 bool gfc_real16_is_float128 = false;
75 static GTY(()) tree gfc_desc_dim_type;
76 static GTY(()) tree gfc_max_array_element_size;
77 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
78 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
80 /* Arrays for all integral and real kinds. We'll fill this in at runtime
81 after the target has a chance to process command-line options. */
83 #define MAX_INT_KINDS 5
84 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
85 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
86 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
87 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
89 #define MAX_REAL_KINDS 5
90 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
91 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
92 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
94 #define MAX_CHARACTER_KINDS 2
95 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
96 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
97 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
99 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
101 /* The integer kind to use for array indices. This will be set to the
102 proper value based on target information from the backend. */
104 int gfc_index_integer_kind;
106 /* The default kinds of the various types. */
108 int gfc_default_integer_kind;
109 int gfc_max_integer_kind;
110 int gfc_default_real_kind;
111 int gfc_default_double_kind;
112 int gfc_default_character_kind;
113 int gfc_default_logical_kind;
114 int gfc_default_complex_kind;
115 int gfc_c_int_kind;
116 int gfc_atomic_int_kind;
117 int gfc_atomic_logical_kind;
119 /* The kind size used for record offsets. If the target system supports
120 kind=8, this will be set to 8, otherwise it is set to 4. */
121 int gfc_intio_kind;
123 /* The integer kind used to store character lengths. */
124 int gfc_charlen_int_kind;
126 /* Kind of internal integer for storing object sizes. */
127 int gfc_size_kind;
129 /* The size of the numeric storage unit and character storage unit. */
130 int gfc_numeric_storage_size;
131 int gfc_character_storage_size;
133 tree dtype_type_node = NULL_TREE;
136 /* Build the dtype_type_node if necessary. */
137 tree get_dtype_type_node (void)
139 tree field;
140 tree dtype_node;
141 tree *dtype_chain = NULL;
143 if (dtype_type_node == NULL_TREE)
145 dtype_node = make_node (RECORD_TYPE);
146 TYPE_NAME (dtype_node) = get_identifier ("dtype_type");
147 TYPE_NAMELESS (dtype_node) = 1;
148 field = gfc_add_field_to_struct_1 (dtype_node,
149 get_identifier ("elem_len"),
150 size_type_node, &dtype_chain);
151 TREE_NO_WARNING (field) = 1;
152 field = gfc_add_field_to_struct_1 (dtype_node,
153 get_identifier ("version"),
154 integer_type_node, &dtype_chain);
155 TREE_NO_WARNING (field) = 1;
156 field = gfc_add_field_to_struct_1 (dtype_node,
157 get_identifier ("rank"),
158 signed_char_type_node, &dtype_chain);
159 TREE_NO_WARNING (field) = 1;
160 field = gfc_add_field_to_struct_1 (dtype_node,
161 get_identifier ("type"),
162 signed_char_type_node, &dtype_chain);
163 TREE_NO_WARNING (field) = 1;
164 field = gfc_add_field_to_struct_1 (dtype_node,
165 get_identifier ("attribute"),
166 short_integer_type_node, &dtype_chain);
167 TREE_NO_WARNING (field) = 1;
168 gfc_finish_type (dtype_node);
169 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (dtype_node)) = 1;
170 dtype_type_node = dtype_node;
172 return dtype_type_node;
175 bool
176 gfc_check_any_c_kind (gfc_typespec *ts)
178 int i;
180 for (i = 0; i < ISOCBINDING_NUMBER; i++)
182 /* Check for any C interoperable kind for the given type/kind in ts.
183 This can be used after verify_c_interop to make sure that the
184 Fortran kind being used exists in at least some form for C. */
185 if (c_interop_kinds_table[i].f90_type == ts->type &&
186 c_interop_kinds_table[i].value == ts->kind)
187 return true;
190 return false;
194 static int
195 get_real_kind_from_node (tree type)
197 int i;
199 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
200 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
201 return gfc_real_kinds[i].kind;
203 return -4;
206 static int
207 get_int_kind_from_node (tree type)
209 int i;
211 if (!type)
212 return -2;
214 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
215 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
216 return gfc_integer_kinds[i].kind;
218 return -1;
221 static int
222 get_int_kind_from_name (const char *name)
224 return get_int_kind_from_node (get_typenode_from_name (name));
228 /* Get the kind number corresponding to an integer of given size,
229 following the required return values for ISO_FORTRAN_ENV INT* constants:
230 -2 is returned if we support a kind of larger size, -1 otherwise. */
232 gfc_get_int_kind_from_width_isofortranenv (int size)
234 int i;
236 /* Look for a kind with matching storage size. */
237 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
238 if (gfc_integer_kinds[i].bit_size == size)
239 return gfc_integer_kinds[i].kind;
241 /* Look for a kind with larger storage size. */
242 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
243 if (gfc_integer_kinds[i].bit_size > size)
244 return -2;
246 return -1;
250 /* Get the kind number corresponding to a real of a given storage size.
251 If two real's have the same storage size, then choose the real with
252 the largest precision. If a kind type is unavailable and a real
253 exists with wider storage, then return -2; otherwise, return -1. */
256 gfc_get_real_kind_from_width_isofortranenv (int size)
258 int digits, i, kind;
260 size /= 8;
262 kind = -1;
263 digits = 0;
265 /* Look for a kind with matching storage size. */
266 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
267 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
269 if (gfc_real_kinds[i].digits > digits)
271 digits = gfc_real_kinds[i].digits;
272 kind = gfc_real_kinds[i].kind;
276 if (kind != -1)
277 return kind;
279 /* Look for a kind with larger storage size. */
280 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
281 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
282 kind = -2;
284 return kind;
289 static int
290 get_int_kind_from_width (int size)
292 int i;
294 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
295 if (gfc_integer_kinds[i].bit_size == size)
296 return gfc_integer_kinds[i].kind;
298 return -2;
301 static int
302 get_int_kind_from_minimal_width (int size)
304 int i;
306 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
307 if (gfc_integer_kinds[i].bit_size >= size)
308 return gfc_integer_kinds[i].kind;
310 return -2;
314 /* Generate the CInteropKind_t objects for the C interoperable
315 kinds. */
317 void
318 gfc_init_c_interop_kinds (void)
320 int i;
322 /* init all pointers in the list to NULL */
323 for (i = 0; i < ISOCBINDING_NUMBER; i++)
325 /* Initialize the name and value fields. */
326 c_interop_kinds_table[i].name[0] = '\0';
327 c_interop_kinds_table[i].value = -100;
328 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
331 #define NAMED_INTCST(a,b,c,d) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_REALCST(a,b,c,d) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_REAL; \
338 c_interop_kinds_table[a].value = c;
339 #define NAMED_CMPXCST(a,b,c,d) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_LOGCST(a,b,c) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_CHARKNDCST(a,b,c) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
350 c_interop_kinds_table[a].value = c;
351 #define NAMED_CHARCST(a,b,c) \
352 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
353 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
354 c_interop_kinds_table[a].value = c;
355 #define DERIVED_TYPE(a,b,c) \
356 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
357 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
358 c_interop_kinds_table[a].value = c;
359 #define NAMED_FUNCTION(a,b,c,d) \
360 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
361 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
362 c_interop_kinds_table[a].value = c;
363 #define NAMED_SUBROUTINE(a,b,c,d) \
364 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
365 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
366 c_interop_kinds_table[a].value = c;
367 #include "iso-c-binding.def"
371 /* Query the target to determine which machine modes are available for
372 computation. Choose KIND numbers for them. */
374 void
375 gfc_init_kinds (void)
377 opt_scalar_int_mode int_mode_iter;
378 opt_scalar_float_mode float_mode_iter;
379 int i_index, r_index, kind;
380 bool saw_i4 = false, saw_i8 = false;
381 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
383 i_index = 0;
384 FOR_EACH_MODE_IN_CLASS (int_mode_iter, MODE_INT)
386 scalar_int_mode mode = int_mode_iter.require ();
387 int kind, bitsize;
389 if (!targetm.scalar_mode_supported_p (mode))
390 continue;
392 /* The middle end doesn't support constants larger than 2*HWI.
393 Perhaps the target hook shouldn't have accepted these either,
394 but just to be safe... */
395 bitsize = GET_MODE_BITSIZE (mode);
396 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
397 continue;
399 gcc_assert (i_index != MAX_INT_KINDS);
401 /* Let the kind equal the bit size divided by 8. This insulates the
402 programmer from the underlying byte size. */
403 kind = bitsize / 8;
405 if (kind == 4)
406 saw_i4 = true;
407 if (kind == 8)
408 saw_i8 = true;
410 gfc_integer_kinds[i_index].kind = kind;
411 gfc_integer_kinds[i_index].radix = 2;
412 gfc_integer_kinds[i_index].digits = bitsize - 1;
413 gfc_integer_kinds[i_index].bit_size = bitsize;
415 gfc_logical_kinds[i_index].kind = kind;
416 gfc_logical_kinds[i_index].bit_size = bitsize;
418 i_index += 1;
421 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
422 used for large file access. */
424 if (saw_i8)
425 gfc_intio_kind = 8;
426 else
427 gfc_intio_kind = 4;
429 /* If we do not at least have kind = 4, everything is pointless. */
430 gcc_assert(saw_i4);
432 /* Set the maximum integer kind. Used with at least BOZ constants. */
433 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
435 r_index = 0;
436 FOR_EACH_MODE_IN_CLASS (float_mode_iter, MODE_FLOAT)
438 scalar_float_mode mode = float_mode_iter.require ();
439 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
440 int kind;
442 if (fmt == NULL)
443 continue;
444 if (!targetm.scalar_mode_supported_p (mode))
445 continue;
447 /* Only let float, double, long double and __float128 go through.
448 Runtime support for others is not provided, so they would be
449 useless. */
450 if (!targetm.libgcc_floating_mode_supported_p (mode))
451 continue;
452 if (mode != TYPE_MODE (float_type_node)
453 && (mode != TYPE_MODE (double_type_node))
454 && (mode != TYPE_MODE (long_double_type_node))
455 #if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
456 && (mode != TFmode)
457 #endif
459 continue;
461 /* Let the kind equal the precision divided by 8, rounding up. Again,
462 this insulates the programmer from the underlying byte size.
464 Also, it effectively deals with IEEE extended formats. There, the
465 total size of the type may equal 16, but it's got 6 bytes of padding
466 and the increased size can get in the way of a real IEEE quad format
467 which may also be supported by the target.
469 We round up so as to handle IA-64 __floatreg (RFmode), which is an
470 82 bit type. Not to be confused with __float80 (XFmode), which is
471 an 80 bit type also supported by IA-64. So XFmode should come out
472 to be kind=10, and RFmode should come out to be kind=11. Egads. */
474 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
476 if (kind == 4)
477 saw_r4 = true;
478 if (kind == 8)
479 saw_r8 = true;
480 if (kind == 10)
481 saw_r10 = true;
482 if (kind == 16)
483 saw_r16 = true;
485 /* Careful we don't stumble a weird internal mode. */
486 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
487 /* Or have too many modes for the allocated space. */
488 gcc_assert (r_index != MAX_REAL_KINDS);
490 gfc_real_kinds[r_index].kind = kind;
491 gfc_real_kinds[r_index].radix = fmt->b;
492 gfc_real_kinds[r_index].digits = fmt->p;
493 gfc_real_kinds[r_index].min_exponent = fmt->emin;
494 gfc_real_kinds[r_index].max_exponent = fmt->emax;
495 if (fmt->pnan < fmt->p)
496 /* This is an IBM extended double format (or the MIPS variant)
497 made up of two IEEE doubles. The value of the long double is
498 the sum of the values of the two parts. The most significant
499 part is required to be the value of the long double rounded
500 to the nearest double. If we use emax of 1024 then we can't
501 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
502 rounding will make the most significant part overflow. */
503 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
504 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
505 r_index += 1;
508 /* Choose the default integer kind. We choose 4 unless the user directs us
509 otherwise. Even if the user specified that the default integer kind is 8,
510 the numeric storage size is not 64 bits. In this case, a warning will be
511 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
513 gfc_numeric_storage_size = 4 * 8;
515 if (flag_default_integer)
517 if (!saw_i8)
518 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
519 "%<-fdefault-integer-8%> option");
521 gfc_default_integer_kind = 8;
524 else if (flag_integer4_kind == 8)
526 if (!saw_i8)
527 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
528 "%<-finteger-4-integer-8%> option");
530 gfc_default_integer_kind = 8;
532 else if (saw_i4)
534 gfc_default_integer_kind = 4;
536 else
538 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
539 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
542 /* Choose the default real kind. Again, we choose 4 when possible. */
543 if (flag_default_real_8)
545 if (!saw_r8)
546 gfc_fatal_error ("REAL(KIND=8) is not available for "
547 "%<-fdefault-real-8%> option");
549 gfc_default_real_kind = 8;
551 else if (flag_default_real_10)
553 if (!saw_r10)
554 gfc_fatal_error ("REAL(KIND=10) is not available for "
555 "%<-fdefault-real-10%> option");
557 gfc_default_real_kind = 10;
559 else if (flag_default_real_16)
561 if (!saw_r16)
562 gfc_fatal_error ("REAL(KIND=16) is not available for "
563 "%<-fdefault-real-16%> option");
565 gfc_default_real_kind = 16;
567 else if (flag_real4_kind == 8)
569 if (!saw_r8)
570 gfc_fatal_error ("REAL(KIND=8) is not available for %<-freal-4-real-8%> "
571 "option");
573 gfc_default_real_kind = 8;
575 else if (flag_real4_kind == 10)
577 if (!saw_r10)
578 gfc_fatal_error ("REAL(KIND=10) is not available for "
579 "%<-freal-4-real-10%> option");
581 gfc_default_real_kind = 10;
583 else if (flag_real4_kind == 16)
585 if (!saw_r16)
586 gfc_fatal_error ("REAL(KIND=16) is not available for "
587 "%<-freal-4-real-16%> option");
589 gfc_default_real_kind = 16;
591 else if (saw_r4)
592 gfc_default_real_kind = 4;
593 else
594 gfc_default_real_kind = gfc_real_kinds[0].kind;
596 /* Choose the default double kind. If -fdefault-real and -fdefault-double
597 are specified, we use kind=8, if it's available. If -fdefault-real is
598 specified without -fdefault-double, we use kind=16, if it's available.
599 Otherwise we do not change anything. */
600 if (flag_default_double && saw_r8)
601 gfc_default_double_kind = 8;
602 else if (flag_default_real_8 || flag_default_real_10 || flag_default_real_16)
604 /* Use largest available kind. */
605 if (saw_r16)
606 gfc_default_double_kind = 16;
607 else if (saw_r10)
608 gfc_default_double_kind = 10;
609 else if (saw_r8)
610 gfc_default_double_kind = 8;
611 else
612 gfc_default_double_kind = gfc_default_real_kind;
614 else if (flag_real8_kind == 4)
616 if (!saw_r4)
617 gfc_fatal_error ("REAL(KIND=4) is not available for "
618 "%<-freal-8-real-4%> option");
620 gfc_default_double_kind = 4;
622 else if (flag_real8_kind == 10 )
624 if (!saw_r10)
625 gfc_fatal_error ("REAL(KIND=10) is not available for "
626 "%<-freal-8-real-10%> option");
628 gfc_default_double_kind = 10;
630 else if (flag_real8_kind == 16 )
632 if (!saw_r16)
633 gfc_fatal_error ("REAL(KIND=10) is not available for "
634 "%<-freal-8-real-16%> option");
636 gfc_default_double_kind = 16;
638 else if (saw_r4 && saw_r8)
639 gfc_default_double_kind = 8;
640 else
642 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
643 real ... occupies two contiguous numeric storage units.
645 Therefore we must be supplied a kind twice as large as we chose
646 for single precision. There are loopholes, in that double
647 precision must *occupy* two storage units, though it doesn't have
648 to *use* two storage units. Which means that you can make this
649 kind artificially wide by padding it. But at present there are
650 no GCC targets for which a two-word type does not exist, so we
651 just let gfc_validate_kind abort and tell us if something breaks. */
653 gfc_default_double_kind
654 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
657 /* The default logical kind is constrained to be the same as the
658 default integer kind. Similarly with complex and real. */
659 gfc_default_logical_kind = gfc_default_integer_kind;
660 gfc_default_complex_kind = gfc_default_real_kind;
662 /* We only have two character kinds: ASCII and UCS-4.
663 ASCII corresponds to a 8-bit integer type, if one is available.
664 UCS-4 corresponds to a 32-bit integer type, if one is available. */
665 i_index = 0;
666 if ((kind = get_int_kind_from_width (8)) > 0)
668 gfc_character_kinds[i_index].kind = kind;
669 gfc_character_kinds[i_index].bit_size = 8;
670 gfc_character_kinds[i_index].name = "ascii";
671 i_index++;
673 if ((kind = get_int_kind_from_width (32)) > 0)
675 gfc_character_kinds[i_index].kind = kind;
676 gfc_character_kinds[i_index].bit_size = 32;
677 gfc_character_kinds[i_index].name = "iso_10646";
678 i_index++;
681 /* Choose the smallest integer kind for our default character. */
682 gfc_default_character_kind = gfc_character_kinds[0].kind;
683 gfc_character_storage_size = gfc_default_character_kind * 8;
685 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
687 /* Pick a kind the same size as the C "int" type. */
688 gfc_c_int_kind = INT_TYPE_SIZE / 8;
690 /* Choose atomic kinds to match C's int. */
691 gfc_atomic_int_kind = gfc_c_int_kind;
692 gfc_atomic_logical_kind = gfc_c_int_kind;
696 /* Make sure that a valid kind is present. Returns an index into the
697 associated kinds array, -1 if the kind is not present. */
699 static int
700 validate_integer (int kind)
702 int i;
704 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
705 if (gfc_integer_kinds[i].kind == kind)
706 return i;
708 return -1;
711 static int
712 validate_real (int kind)
714 int i;
716 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
717 if (gfc_real_kinds[i].kind == kind)
718 return i;
720 return -1;
723 static int
724 validate_logical (int kind)
726 int i;
728 for (i = 0; gfc_logical_kinds[i].kind; i++)
729 if (gfc_logical_kinds[i].kind == kind)
730 return i;
732 return -1;
735 static int
736 validate_character (int kind)
738 int i;
740 for (i = 0; gfc_character_kinds[i].kind; i++)
741 if (gfc_character_kinds[i].kind == kind)
742 return i;
744 return -1;
747 /* Validate a kind given a basic type. The return value is the same
748 for the child functions, with -1 indicating nonexistence of the
749 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
752 gfc_validate_kind (bt type, int kind, bool may_fail)
754 int rc;
756 switch (type)
758 case BT_REAL: /* Fall through */
759 case BT_COMPLEX:
760 rc = validate_real (kind);
761 break;
762 case BT_INTEGER:
763 rc = validate_integer (kind);
764 break;
765 case BT_LOGICAL:
766 rc = validate_logical (kind);
767 break;
768 case BT_CHARACTER:
769 rc = validate_character (kind);
770 break;
772 default:
773 gfc_internal_error ("gfc_validate_kind(): Got bad type");
776 if (rc < 0 && !may_fail)
777 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
779 return rc;
783 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
784 Reuse common type nodes where possible. Recognize if the kind matches up
785 with a C type. This will be used later in determining which routines may
786 be scarfed from libm. */
788 static tree
789 gfc_build_int_type (gfc_integer_info *info)
791 int mode_precision = info->bit_size;
793 if (mode_precision == CHAR_TYPE_SIZE)
794 info->c_char = 1;
795 if (mode_precision == SHORT_TYPE_SIZE)
796 info->c_short = 1;
797 if (mode_precision == INT_TYPE_SIZE)
798 info->c_int = 1;
799 if (mode_precision == LONG_TYPE_SIZE)
800 info->c_long = 1;
801 if (mode_precision == LONG_LONG_TYPE_SIZE)
802 info->c_long_long = 1;
804 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
805 return intQI_type_node;
806 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
807 return intHI_type_node;
808 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
809 return intSI_type_node;
810 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
811 return intDI_type_node;
812 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
813 return intTI_type_node;
815 return make_signed_type (mode_precision);
818 tree
819 gfc_build_uint_type (int size)
821 if (size == CHAR_TYPE_SIZE)
822 return unsigned_char_type_node;
823 if (size == SHORT_TYPE_SIZE)
824 return short_unsigned_type_node;
825 if (size == INT_TYPE_SIZE)
826 return unsigned_type_node;
827 if (size == LONG_TYPE_SIZE)
828 return long_unsigned_type_node;
829 if (size == LONG_LONG_TYPE_SIZE)
830 return long_long_unsigned_type_node;
832 return make_unsigned_type (size);
836 static tree
837 gfc_build_real_type (gfc_real_info *info)
839 int mode_precision = info->mode_precision;
840 tree new_type;
842 if (mode_precision == FLOAT_TYPE_SIZE)
843 info->c_float = 1;
844 if (mode_precision == DOUBLE_TYPE_SIZE)
845 info->c_double = 1;
846 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
847 info->c_long_double = 1;
848 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
850 info->c_float128 = 1;
851 gfc_real16_is_float128 = true;
854 if (TYPE_PRECISION (float_type_node) == mode_precision)
855 return float_type_node;
856 if (TYPE_PRECISION (double_type_node) == mode_precision)
857 return double_type_node;
858 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
859 return long_double_type_node;
861 new_type = make_node (REAL_TYPE);
862 TYPE_PRECISION (new_type) = mode_precision;
863 layout_type (new_type);
864 return new_type;
867 static tree
868 gfc_build_complex_type (tree scalar_type)
870 tree new_type;
872 if (scalar_type == NULL)
873 return NULL;
874 if (scalar_type == float_type_node)
875 return complex_float_type_node;
876 if (scalar_type == double_type_node)
877 return complex_double_type_node;
878 if (scalar_type == long_double_type_node)
879 return complex_long_double_type_node;
881 new_type = make_node (COMPLEX_TYPE);
882 TREE_TYPE (new_type) = scalar_type;
883 layout_type (new_type);
884 return new_type;
887 static tree
888 gfc_build_logical_type (gfc_logical_info *info)
890 int bit_size = info->bit_size;
891 tree new_type;
893 if (bit_size == BOOL_TYPE_SIZE)
895 info->c_bool = 1;
896 return boolean_type_node;
899 new_type = make_unsigned_type (bit_size);
900 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
901 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
902 TYPE_PRECISION (new_type) = 1;
904 return new_type;
908 /* Create the backend type nodes. We map them to their
909 equivalent C type, at least for now. We also give
910 names to the types here, and we push them in the
911 global binding level context.*/
913 void
914 gfc_init_types (void)
916 char name_buf[26];
917 int index;
918 tree type;
919 unsigned n;
921 /* Create and name the types. */
922 #define PUSH_TYPE(name, node) \
923 pushdecl (build_decl (input_location, \
924 TYPE_DECL, get_identifier (name), node))
926 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
928 type = gfc_build_int_type (&gfc_integer_kinds[index]);
929 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
930 if (TYPE_STRING_FLAG (type))
931 type = make_signed_type (gfc_integer_kinds[index].bit_size);
932 gfc_integer_types[index] = type;
933 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
934 gfc_integer_kinds[index].kind);
935 PUSH_TYPE (name_buf, type);
938 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
940 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
941 gfc_logical_types[index] = type;
942 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
943 gfc_logical_kinds[index].kind);
944 PUSH_TYPE (name_buf, type);
947 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
949 type = gfc_build_real_type (&gfc_real_kinds[index]);
950 gfc_real_types[index] = type;
951 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
952 gfc_real_kinds[index].kind);
953 PUSH_TYPE (name_buf, type);
955 if (gfc_real_kinds[index].c_float128)
956 gfc_float128_type_node = type;
958 type = gfc_build_complex_type (type);
959 gfc_complex_types[index] = type;
960 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
961 gfc_real_kinds[index].kind);
962 PUSH_TYPE (name_buf, type);
964 if (gfc_real_kinds[index].c_float128)
965 gfc_complex_float128_type_node = type;
968 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
970 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
971 type = build_qualified_type (type, TYPE_UNQUALIFIED);
972 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
973 gfc_character_kinds[index].kind);
974 PUSH_TYPE (name_buf, type);
975 gfc_character_types[index] = type;
976 gfc_pcharacter_types[index] = build_pointer_type (type);
978 gfc_character1_type_node = gfc_character_types[0];
980 PUSH_TYPE ("byte", unsigned_char_type_node);
981 PUSH_TYPE ("void", void_type_node);
983 /* DBX debugging output gets upset if these aren't set. */
984 if (!TYPE_NAME (integer_type_node))
985 PUSH_TYPE ("c_integer", integer_type_node);
986 if (!TYPE_NAME (char_type_node))
987 PUSH_TYPE ("c_char", char_type_node);
989 #undef PUSH_TYPE
991 pvoid_type_node = build_pointer_type (void_type_node);
992 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
993 ppvoid_type_node = build_pointer_type (pvoid_type_node);
994 pchar_type_node = build_pointer_type (gfc_character1_type_node);
995 pfunc_type_node
996 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
998 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
999 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
1000 since this function is called before gfc_init_constants. */
1001 gfc_array_range_type
1002 = build_range_type (gfc_array_index_type,
1003 build_int_cst (gfc_array_index_type, 0),
1004 NULL_TREE);
1006 /* The maximum array element size that can be handled is determined
1007 by the number of bits available to store this field in the array
1008 descriptor. */
1010 n = TYPE_PRECISION (size_type_node);
1011 gfc_max_array_element_size
1012 = wide_int_to_tree (size_type_node,
1013 wi::mask (n, UNSIGNED,
1014 TYPE_PRECISION (size_type_node)));
1016 logical_type_node = gfc_get_logical_type (gfc_default_logical_kind);
1017 logical_true_node = build_int_cst (logical_type_node, 1);
1018 logical_false_node = build_int_cst (logical_type_node, 0);
1020 /* Character lengths are of type size_t, except signed. */
1021 gfc_charlen_int_kind = get_int_kind_from_node (size_type_node);
1022 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
1024 /* Fortran kind number of size_type_node (size_t). This is used for
1025 the _size member in vtables. */
1026 gfc_size_kind = get_int_kind_from_node (size_type_node);
1029 /* Get the type node for the given type and kind. */
1031 tree
1032 gfc_get_int_type (int kind)
1034 int index = gfc_validate_kind (BT_INTEGER, kind, true);
1035 return index < 0 ? 0 : gfc_integer_types[index];
1038 tree
1039 gfc_get_real_type (int kind)
1041 int index = gfc_validate_kind (BT_REAL, kind, true);
1042 return index < 0 ? 0 : gfc_real_types[index];
1045 tree
1046 gfc_get_complex_type (int kind)
1048 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
1049 return index < 0 ? 0 : gfc_complex_types[index];
1052 tree
1053 gfc_get_logical_type (int kind)
1055 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1056 return index < 0 ? 0 : gfc_logical_types[index];
1059 tree
1060 gfc_get_char_type (int kind)
1062 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1063 return index < 0 ? 0 : gfc_character_types[index];
1066 tree
1067 gfc_get_pchar_type (int kind)
1069 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1070 return index < 0 ? 0 : gfc_pcharacter_types[index];
1074 /* Create a character type with the given kind and length. */
1076 tree
1077 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1079 tree bounds, type;
1081 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1082 type = build_array_type (eltype, bounds);
1083 TYPE_STRING_FLAG (type) = 1;
1085 return type;
1088 tree
1089 gfc_get_character_type_len (int kind, tree len)
1091 gfc_validate_kind (BT_CHARACTER, kind, false);
1092 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1096 /* Get a type node for a character kind. */
1098 tree
1099 gfc_get_character_type (int kind, gfc_charlen * cl)
1101 tree len;
1103 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1104 if (len && POINTER_TYPE_P (TREE_TYPE (len)))
1105 len = build_fold_indirect_ref (len);
1107 return gfc_get_character_type_len (kind, len);
1110 /* Convert a basic type. This will be an array for character types. */
1112 tree
1113 gfc_typenode_for_spec (gfc_typespec * spec, int codim)
1115 tree basetype;
1117 switch (spec->type)
1119 case BT_UNKNOWN:
1120 gcc_unreachable ();
1122 case BT_INTEGER:
1123 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1124 has been resolved. This is done so we can convert C_PTR and
1125 C_FUNPTR to simple variables that get translated to (void *). */
1126 if (spec->f90_type == BT_VOID)
1128 if (spec->u.derived
1129 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1130 basetype = ptr_type_node;
1131 else
1132 basetype = pfunc_type_node;
1134 else
1135 basetype = gfc_get_int_type (spec->kind);
1136 break;
1138 case BT_REAL:
1139 basetype = gfc_get_real_type (spec->kind);
1140 break;
1142 case BT_COMPLEX:
1143 basetype = gfc_get_complex_type (spec->kind);
1144 break;
1146 case BT_LOGICAL:
1147 basetype = gfc_get_logical_type (spec->kind);
1148 break;
1150 case BT_CHARACTER:
1151 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1152 break;
1154 case BT_HOLLERITH:
1155 /* Since this cannot be used, return a length one character. */
1156 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1157 gfc_index_one_node);
1158 break;
1160 case BT_UNION:
1161 basetype = gfc_get_union_type (spec->u.derived);
1162 break;
1164 case BT_DERIVED:
1165 case BT_CLASS:
1166 basetype = gfc_get_derived_type (spec->u.derived, codim);
1168 if (spec->type == BT_CLASS)
1169 GFC_CLASS_TYPE_P (basetype) = 1;
1171 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1172 type and kind to fit a (void *) and the basetype returned was a
1173 ptr_type_node. We need to pass up this new information to the
1174 symbol that was declared of type C_PTR or C_FUNPTR. */
1175 if (spec->u.derived->ts.f90_type == BT_VOID)
1177 spec->type = BT_INTEGER;
1178 spec->kind = gfc_index_integer_kind;
1179 spec->f90_type = BT_VOID;
1180 spec->is_c_interop = 1; /* Mark as escaping later. */
1182 break;
1183 case BT_VOID:
1184 case BT_ASSUMED:
1185 /* This is for the second arg to c_f_pointer and c_f_procpointer
1186 of the iso_c_binding module, to accept any ptr type. */
1187 basetype = ptr_type_node;
1188 if (spec->f90_type == BT_VOID)
1190 if (spec->u.derived
1191 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1192 basetype = ptr_type_node;
1193 else
1194 basetype = pfunc_type_node;
1196 break;
1197 case BT_PROCEDURE:
1198 basetype = pfunc_type_node;
1199 break;
1200 default:
1201 gcc_unreachable ();
1203 return basetype;
1206 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1208 static tree
1209 gfc_conv_array_bound (gfc_expr * expr)
1211 /* If expr is an integer constant, return that. */
1212 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1213 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1215 /* Otherwise return NULL. */
1216 return NULL_TREE;
1219 /* Return the type of an element of the array. Note that scalar coarrays
1220 are special. In particular, for GFC_ARRAY_TYPE_P, the original argument
1221 (with POINTER_TYPE stripped) is returned. */
1223 tree
1224 gfc_get_element_type (tree type)
1226 tree element;
1228 if (GFC_ARRAY_TYPE_P (type))
1230 if (TREE_CODE (type) == POINTER_TYPE)
1231 type = TREE_TYPE (type);
1232 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1234 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1235 element = type;
1237 else
1239 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1240 element = TREE_TYPE (type);
1243 else
1245 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1246 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1248 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1249 element = TREE_TYPE (element);
1251 /* For arrays, which are not scalar coarrays. */
1252 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1253 element = TREE_TYPE (element);
1256 return element;
1259 /* Build an array. This function is called from gfc_sym_type().
1260 Actually returns array descriptor type.
1262 Format of array descriptors is as follows:
1264 struct gfc_array_descriptor
1266 array *data;
1267 index offset;
1268 struct dtype_type dtype;
1269 struct descriptor_dimension dimension[N_DIM];
1272 struct dtype_type
1274 size_t elem_len;
1275 int version;
1276 signed char rank;
1277 signed char type;
1278 signed short attribute;
1281 struct descriptor_dimension
1283 index stride;
1284 index lbound;
1285 index ubound;
1288 Translation code should use gfc_conv_descriptor_* rather than
1289 accessing the descriptor directly. Any changes to the array
1290 descriptor type will require changes in gfc_conv_descriptor_* and
1291 gfc_build_array_initializer.
1293 This is represented internally as a RECORD_TYPE. The index nodes
1294 are gfc_array_index_type and the data node is a pointer to the
1295 data. See below for the handling of character types.
1297 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1298 this generated poor code for assumed/deferred size arrays. These
1299 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1300 of the GENERIC grammar. Also, there is no way to explicitly set
1301 the array stride, so all data must be packed(1). I've tried to
1302 mark all the functions which would require modification with a GCC
1303 ARRAYS comment.
1305 The data component points to the first element in the array. The
1306 offset field is the position of the origin of the array (i.e. element
1307 (0, 0 ...)). This may be outside the bounds of the array.
1309 An element is accessed by
1310 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1311 This gives good performance as the computation does not involve the
1312 bounds of the array. For packed arrays, this is optimized further
1313 by substituting the known strides.
1315 This system has one problem: all array bounds must be within 2^31
1316 elements of the origin (2^63 on 64-bit machines). For example
1317 integer, dimension (80000:90000, 80000:90000, 2) :: array
1318 may not work properly on 32-bit machines because 80000*80000 >
1319 2^31, so the calculation for stride2 would overflow. This may
1320 still work, but I haven't checked, and it relies on the overflow
1321 doing the right thing.
1323 The way to fix this problem is to access elements as follows:
1324 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1325 Obviously this is much slower. I will make this a compile time
1326 option, something like -fsmall-array-offsets. Mixing code compiled
1327 with and without this switch will work.
1329 (1) This can be worked around by modifying the upper bound of the
1330 previous dimension. This requires extra fields in the descriptor
1331 (both real_ubound and fake_ubound). */
1334 /* Returns true if the array sym does not require a descriptor. */
1337 gfc_is_nodesc_array (gfc_symbol * sym)
1339 symbol_attribute *array_attr;
1340 gfc_array_spec *as;
1341 bool is_classarray = IS_CLASS_ARRAY (sym);
1343 array_attr = is_classarray ? &CLASS_DATA (sym)->attr : &sym->attr;
1344 as = is_classarray ? CLASS_DATA (sym)->as : sym->as;
1346 gcc_assert (array_attr->dimension || array_attr->codimension);
1348 /* We only want local arrays. */
1349 if ((sym->ts.type != BT_CLASS && sym->attr.pointer)
1350 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer)
1351 || array_attr->allocatable)
1352 return 0;
1354 /* We want a descriptor for associate-name arrays that do not have an
1355 explicitly known shape already. */
1356 if (sym->assoc && as->type != AS_EXPLICIT)
1357 return 0;
1359 /* The dummy is stored in sym and not in the component. */
1360 if (sym->attr.dummy)
1361 return as->type != AS_ASSUMED_SHAPE
1362 && as->type != AS_ASSUMED_RANK;
1364 if (sym->attr.result || sym->attr.function)
1365 return 0;
1367 gcc_assert (as->type == AS_EXPLICIT || as->cp_was_assumed);
1369 return 1;
1373 /* Create an array descriptor type. */
1375 static tree
1376 gfc_build_array_type (tree type, gfc_array_spec * as,
1377 enum gfc_array_kind akind, bool restricted,
1378 bool contiguous, int codim)
1380 tree lbound[GFC_MAX_DIMENSIONS];
1381 tree ubound[GFC_MAX_DIMENSIONS];
1382 int n, corank;
1384 /* Assumed-shape arrays do not have codimension information stored in the
1385 descriptor. */
1386 corank = MAX (as->corank, codim);
1387 if (as->type == AS_ASSUMED_SHAPE ||
1388 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1389 corank = codim;
1391 if (as->type == AS_ASSUMED_RANK)
1392 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1394 lbound[n] = NULL_TREE;
1395 ubound[n] = NULL_TREE;
1398 for (n = 0; n < as->rank; n++)
1400 /* Create expressions for the known bounds of the array. */
1401 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1402 lbound[n] = gfc_index_one_node;
1403 else
1404 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1405 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1408 for (n = as->rank; n < as->rank + corank; n++)
1410 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1411 lbound[n] = gfc_index_one_node;
1412 else
1413 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1415 if (n < as->rank + corank - 1)
1416 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1419 if (as->type == AS_ASSUMED_SHAPE)
1420 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1421 : GFC_ARRAY_ASSUMED_SHAPE;
1422 else if (as->type == AS_ASSUMED_RANK)
1423 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1424 : GFC_ARRAY_ASSUMED_RANK;
1425 return gfc_get_array_type_bounds (type, as->rank == -1
1426 ? GFC_MAX_DIMENSIONS : as->rank,
1427 corank, lbound, ubound, 0, akind,
1428 restricted);
1431 /* Returns the struct descriptor_dimension type. */
1433 static tree
1434 gfc_get_desc_dim_type (void)
1436 tree type;
1437 tree decl, *chain = NULL;
1439 if (gfc_desc_dim_type)
1440 return gfc_desc_dim_type;
1442 /* Build the type node. */
1443 type = make_node (RECORD_TYPE);
1445 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1446 TYPE_PACKED (type) = 1;
1448 /* Consists of the stride, lbound and ubound members. */
1449 decl = gfc_add_field_to_struct_1 (type,
1450 get_identifier ("stride"),
1451 gfc_array_index_type, &chain);
1452 TREE_NO_WARNING (decl) = 1;
1454 decl = gfc_add_field_to_struct_1 (type,
1455 get_identifier ("lbound"),
1456 gfc_array_index_type, &chain);
1457 TREE_NO_WARNING (decl) = 1;
1459 decl = gfc_add_field_to_struct_1 (type,
1460 get_identifier ("ubound"),
1461 gfc_array_index_type, &chain);
1462 TREE_NO_WARNING (decl) = 1;
1464 /* Finish off the type. */
1465 gfc_finish_type (type);
1466 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1468 gfc_desc_dim_type = type;
1469 return type;
1473 /* Return the DTYPE for an array. This describes the type and type parameters
1474 of the array. */
1475 /* TODO: Only call this when the value is actually used, and make all the
1476 unknown cases abort. */
1478 tree
1479 gfc_get_dtype_rank_type (int rank, tree etype)
1481 tree size;
1482 int n;
1483 tree tmp;
1484 tree dtype;
1485 tree field;
1486 vec<constructor_elt, va_gc> *v = NULL;
1488 size = TYPE_SIZE_UNIT (etype);
1490 switch (TREE_CODE (etype))
1492 case INTEGER_TYPE:
1493 n = BT_INTEGER;
1494 break;
1496 case BOOLEAN_TYPE:
1497 n = BT_LOGICAL;
1498 break;
1500 case REAL_TYPE:
1501 n = BT_REAL;
1502 break;
1504 case COMPLEX_TYPE:
1505 n = BT_COMPLEX;
1506 break;
1508 case RECORD_TYPE:
1509 if (GFC_CLASS_TYPE_P (etype))
1510 n = BT_CLASS;
1511 else
1512 n = BT_DERIVED;
1513 break;
1515 /* We will never have arrays of arrays. */
1516 case ARRAY_TYPE:
1517 n = BT_CHARACTER;
1518 if (size == NULL_TREE)
1519 size = TYPE_SIZE_UNIT (TREE_TYPE (etype));
1520 break;
1522 case POINTER_TYPE:
1523 n = BT_ASSUMED;
1524 if (TREE_CODE (TREE_TYPE (etype)) != VOID_TYPE)
1525 size = TYPE_SIZE_UNIT (TREE_TYPE (etype));
1526 else
1527 size = build_int_cst (size_type_node, 0);
1528 break;
1530 default:
1531 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1532 /* We can encounter strange array types for temporary arrays. */
1533 return gfc_index_zero_node;
1536 tmp = get_dtype_type_node ();
1537 field = gfc_advance_chain (TYPE_FIELDS (tmp),
1538 GFC_DTYPE_ELEM_LEN);
1539 CONSTRUCTOR_APPEND_ELT (v, field,
1540 fold_convert (TREE_TYPE (field), size));
1542 field = gfc_advance_chain (TYPE_FIELDS (dtype_type_node),
1543 GFC_DTYPE_RANK);
1544 CONSTRUCTOR_APPEND_ELT (v, field,
1545 build_int_cst (TREE_TYPE (field), rank));
1547 field = gfc_advance_chain (TYPE_FIELDS (dtype_type_node),
1548 GFC_DTYPE_TYPE);
1549 CONSTRUCTOR_APPEND_ELT (v, field,
1550 build_int_cst (TREE_TYPE (field), n));
1552 dtype = build_constructor (tmp, v);
1554 return dtype;
1558 tree
1559 gfc_get_dtype (tree type)
1561 tree dtype;
1562 tree etype;
1563 int rank;
1565 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1567 rank = GFC_TYPE_ARRAY_RANK (type);
1568 etype = gfc_get_element_type (type);
1569 dtype = gfc_get_dtype_rank_type (rank, etype);
1571 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1572 return dtype;
1576 /* Build an array type for use without a descriptor, packed according
1577 to the value of PACKED. */
1579 tree
1580 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1581 bool restricted)
1583 tree range;
1584 tree type;
1585 tree tmp;
1586 int n;
1587 int known_stride;
1588 int known_offset;
1589 mpz_t offset;
1590 mpz_t stride;
1591 mpz_t delta;
1592 gfc_expr *expr;
1594 mpz_init_set_ui (offset, 0);
1595 mpz_init_set_ui (stride, 1);
1596 mpz_init (delta);
1598 /* We don't use build_array_type because this does not include
1599 lang-specific information (i.e. the bounds of the array) when checking
1600 for duplicates. */
1601 if (as->rank)
1602 type = make_node (ARRAY_TYPE);
1603 else
1604 type = build_variant_type_copy (etype);
1606 GFC_ARRAY_TYPE_P (type) = 1;
1607 TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1609 known_stride = (packed != PACKED_NO);
1610 known_offset = 1;
1611 for (n = 0; n < as->rank; n++)
1613 /* Fill in the stride and bound components of the type. */
1614 if (known_stride)
1615 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1616 else
1617 tmp = NULL_TREE;
1618 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1620 expr = as->lower[n];
1621 if (expr->expr_type == EXPR_CONSTANT)
1623 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1624 gfc_index_integer_kind);
1626 else
1628 known_stride = 0;
1629 tmp = NULL_TREE;
1631 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1633 if (known_stride)
1635 /* Calculate the offset. */
1636 mpz_mul (delta, stride, as->lower[n]->value.integer);
1637 mpz_sub (offset, offset, delta);
1639 else
1640 known_offset = 0;
1642 expr = as->upper[n];
1643 if (expr && expr->expr_type == EXPR_CONSTANT)
1645 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1646 gfc_index_integer_kind);
1648 else
1650 tmp = NULL_TREE;
1651 known_stride = 0;
1653 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1655 if (known_stride)
1657 /* Calculate the stride. */
1658 mpz_sub (delta, as->upper[n]->value.integer,
1659 as->lower[n]->value.integer);
1660 mpz_add_ui (delta, delta, 1);
1661 mpz_mul (stride, stride, delta);
1664 /* Only the first stride is known for partial packed arrays. */
1665 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1666 known_stride = 0;
1668 for (n = as->rank; n < as->rank + as->corank; n++)
1670 expr = as->lower[n];
1671 if (expr->expr_type == EXPR_CONSTANT)
1672 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1673 gfc_index_integer_kind);
1674 else
1675 tmp = NULL_TREE;
1676 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1678 expr = as->upper[n];
1679 if (expr && expr->expr_type == EXPR_CONSTANT)
1680 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1681 gfc_index_integer_kind);
1682 else
1683 tmp = NULL_TREE;
1684 if (n < as->rank + as->corank - 1)
1685 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1688 if (known_offset)
1690 GFC_TYPE_ARRAY_OFFSET (type) =
1691 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1693 else
1694 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1696 if (known_stride)
1698 GFC_TYPE_ARRAY_SIZE (type) =
1699 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1701 else
1702 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1704 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1705 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1706 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1707 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1708 NULL_TREE);
1709 /* TODO: use main type if it is unbounded. */
1710 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1711 build_pointer_type (build_array_type (etype, range));
1712 if (restricted)
1713 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1714 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1715 TYPE_QUAL_RESTRICT);
1717 if (as->rank == 0)
1719 if (packed != PACKED_STATIC || flag_coarray == GFC_FCOARRAY_LIB)
1721 type = build_pointer_type (type);
1723 if (restricted)
1724 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1726 GFC_ARRAY_TYPE_P (type) = 1;
1727 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1730 return type;
1733 if (known_stride)
1735 mpz_sub_ui (stride, stride, 1);
1736 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1738 else
1739 range = NULL_TREE;
1741 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1742 TYPE_DOMAIN (type) = range;
1744 build_pointer_type (etype);
1745 TREE_TYPE (type) = etype;
1747 layout_type (type);
1749 mpz_clear (offset);
1750 mpz_clear (stride);
1751 mpz_clear (delta);
1753 /* Represent packed arrays as multi-dimensional if they have rank >
1754 1 and with proper bounds, instead of flat arrays. This makes for
1755 better debug info. */
1756 if (known_offset)
1758 tree gtype = etype, rtype, type_decl;
1760 for (n = as->rank - 1; n >= 0; n--)
1762 rtype = build_range_type (gfc_array_index_type,
1763 GFC_TYPE_ARRAY_LBOUND (type, n),
1764 GFC_TYPE_ARRAY_UBOUND (type, n));
1765 gtype = build_array_type (gtype, rtype);
1767 TYPE_NAME (type) = type_decl = build_decl (input_location,
1768 TYPE_DECL, NULL, gtype);
1769 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1772 if (packed != PACKED_STATIC || !known_stride
1773 || (as->corank && flag_coarray == GFC_FCOARRAY_LIB))
1775 /* For dummy arrays and automatic (heap allocated) arrays we
1776 want a pointer to the array. */
1777 type = build_pointer_type (type);
1778 if (restricted)
1779 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1780 GFC_ARRAY_TYPE_P (type) = 1;
1781 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1783 return type;
1787 /* Return or create the base type for an array descriptor. */
1789 static tree
1790 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1792 tree fat_type, decl, arraytype, *chain = NULL;
1793 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1794 int idx;
1796 /* Assumed-rank array. */
1797 if (dimen == -1)
1798 dimen = GFC_MAX_DIMENSIONS;
1800 idx = 2 * (codimen + dimen) + restricted;
1802 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1804 if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
1806 if (gfc_array_descriptor_base_caf[idx])
1807 return gfc_array_descriptor_base_caf[idx];
1809 else if (gfc_array_descriptor_base[idx])
1810 return gfc_array_descriptor_base[idx];
1812 /* Build the type node. */
1813 fat_type = make_node (RECORD_TYPE);
1815 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1816 TYPE_NAME (fat_type) = get_identifier (name);
1817 TYPE_NAMELESS (fat_type) = 1;
1819 /* Add the data member as the first element of the descriptor. */
1820 gfc_add_field_to_struct_1 (fat_type,
1821 get_identifier ("data"),
1822 (restricted
1823 ? prvoid_type_node
1824 : ptr_type_node), &chain);
1826 /* Add the base component. */
1827 decl = gfc_add_field_to_struct_1 (fat_type,
1828 get_identifier ("offset"),
1829 gfc_array_index_type, &chain);
1830 TREE_NO_WARNING (decl) = 1;
1832 /* Add the dtype component. */
1833 decl = gfc_add_field_to_struct_1 (fat_type,
1834 get_identifier ("dtype"),
1835 get_dtype_type_node (), &chain);
1836 TREE_NO_WARNING (decl) = 1;
1838 /* Add the span component. */
1839 decl = gfc_add_field_to_struct_1 (fat_type,
1840 get_identifier ("span"),
1841 gfc_array_index_type, &chain);
1842 TREE_NO_WARNING (decl) = 1;
1844 /* Build the array type for the stride and bound components. */
1845 if (dimen + codimen > 0)
1847 arraytype =
1848 build_array_type (gfc_get_desc_dim_type (),
1849 build_range_type (gfc_array_index_type,
1850 gfc_index_zero_node,
1851 gfc_rank_cst[codimen + dimen - 1]));
1853 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1854 arraytype, &chain);
1855 TREE_NO_WARNING (decl) = 1;
1858 if (flag_coarray == GFC_FCOARRAY_LIB)
1860 decl = gfc_add_field_to_struct_1 (fat_type,
1861 get_identifier ("token"),
1862 prvoid_type_node, &chain);
1863 TREE_NO_WARNING (decl) = 1;
1866 /* Finish off the type. */
1867 gfc_finish_type (fat_type);
1868 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1870 if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
1871 gfc_array_descriptor_base_caf[idx] = fat_type;
1872 else
1873 gfc_array_descriptor_base[idx] = fat_type;
1875 return fat_type;
1879 /* Build an array (descriptor) type with given bounds. */
1881 tree
1882 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1883 tree * ubound, int packed,
1884 enum gfc_array_kind akind, bool restricted)
1886 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1887 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1888 const char *type_name;
1889 int n;
1891 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1892 fat_type = build_distinct_type_copy (base_type);
1893 /* Unshare TYPE_FIELDs. */
1894 for (tree *tp = &TYPE_FIELDS (fat_type); *tp; tp = &DECL_CHAIN (*tp))
1896 tree next = DECL_CHAIN (*tp);
1897 *tp = copy_node (*tp);
1898 DECL_CONTEXT (*tp) = fat_type;
1899 DECL_CHAIN (*tp) = next;
1901 /* Make sure that nontarget and target array type have the same canonical
1902 type (and same stub decl for debug info). */
1903 base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1904 TYPE_CANONICAL (fat_type) = base_type;
1905 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1907 tmp = TYPE_NAME (etype);
1908 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1909 tmp = DECL_NAME (tmp);
1910 if (tmp)
1911 type_name = IDENTIFIER_POINTER (tmp);
1912 else
1913 type_name = "unknown";
1914 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1915 GFC_MAX_SYMBOL_LEN, type_name);
1916 TYPE_NAME (fat_type) = get_identifier (name);
1917 TYPE_NAMELESS (fat_type) = 1;
1919 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1920 TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1922 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1923 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1924 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1925 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1927 /* Build an array descriptor record type. */
1928 if (packed != 0)
1929 stride = gfc_index_one_node;
1930 else
1931 stride = NULL_TREE;
1932 for (n = 0; n < dimen + codimen; n++)
1934 if (n < dimen)
1935 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1937 if (lbound)
1938 lower = lbound[n];
1939 else
1940 lower = NULL_TREE;
1942 if (lower != NULL_TREE)
1944 if (INTEGER_CST_P (lower))
1945 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1946 else
1947 lower = NULL_TREE;
1950 if (codimen && n == dimen + codimen - 1)
1951 break;
1953 upper = ubound[n];
1954 if (upper != NULL_TREE)
1956 if (INTEGER_CST_P (upper))
1957 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1958 else
1959 upper = NULL_TREE;
1962 if (n >= dimen)
1963 continue;
1965 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1967 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1968 gfc_array_index_type, upper, lower);
1969 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1970 gfc_array_index_type, tmp,
1971 gfc_index_one_node);
1972 stride = fold_build2_loc (input_location, MULT_EXPR,
1973 gfc_array_index_type, tmp, stride);
1974 /* Check the folding worked. */
1975 gcc_assert (INTEGER_CST_P (stride));
1977 else
1978 stride = NULL_TREE;
1980 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1982 /* TODO: known offsets for descriptors. */
1983 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1985 if (dimen == 0)
1987 arraytype = build_pointer_type (etype);
1988 if (restricted)
1989 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1991 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1992 return fat_type;
1995 /* We define data as an array with the correct size if possible.
1996 Much better than doing pointer arithmetic. */
1997 if (stride)
1998 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1999 int_const_binop (MINUS_EXPR, stride,
2000 build_int_cst (TREE_TYPE (stride), 1)));
2001 else
2002 rtype = gfc_array_range_type;
2003 arraytype = build_array_type (etype, rtype);
2004 arraytype = build_pointer_type (arraytype);
2005 if (restricted)
2006 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
2007 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
2009 /* This will generate the base declarations we need to emit debug
2010 information for this type. FIXME: there must be a better way to
2011 avoid divergence between compilations with and without debug
2012 information. */
2014 struct array_descr_info info;
2015 gfc_get_array_descr_info (fat_type, &info);
2016 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
2019 return fat_type;
2022 /* Build a pointer type. This function is called from gfc_sym_type(). */
2024 static tree
2025 gfc_build_pointer_type (gfc_symbol * sym, tree type)
2027 /* Array pointer types aren't actually pointers. */
2028 if (sym->attr.dimension)
2029 return type;
2030 else
2031 return build_pointer_type (type);
2034 static tree gfc_nonrestricted_type (tree t);
2035 /* Given two record or union type nodes TO and FROM, ensure
2036 that all fields in FROM have a corresponding field in TO,
2037 their type being nonrestrict variants. This accepts a TO
2038 node that already has a prefix of the fields in FROM. */
2039 static void
2040 mirror_fields (tree to, tree from)
2042 tree fto, ffrom;
2043 tree *chain;
2045 /* Forward to the end of TOs fields. */
2046 fto = TYPE_FIELDS (to);
2047 ffrom = TYPE_FIELDS (from);
2048 chain = &TYPE_FIELDS (to);
2049 while (fto)
2051 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
2052 chain = &DECL_CHAIN (fto);
2053 fto = DECL_CHAIN (fto);
2054 ffrom = DECL_CHAIN (ffrom);
2057 /* Now add all fields remaining in FROM (starting with ffrom). */
2058 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
2060 tree newfield = copy_node (ffrom);
2061 DECL_CONTEXT (newfield) = to;
2062 /* The store to DECL_CHAIN might seem redundant with the
2063 stores to *chain, but not clearing it here would mean
2064 leaving a chain into the old fields. If ever
2065 our called functions would look at them confusion
2066 will arise. */
2067 DECL_CHAIN (newfield) = NULL_TREE;
2068 *chain = newfield;
2069 chain = &DECL_CHAIN (newfield);
2071 if (TREE_CODE (ffrom) == FIELD_DECL)
2073 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
2074 TREE_TYPE (newfield) = elemtype;
2077 *chain = NULL_TREE;
2080 /* Given a type T, returns a different type of the same structure,
2081 except that all types it refers to (recursively) are always
2082 non-restrict qualified types. */
2083 static tree
2084 gfc_nonrestricted_type (tree t)
2086 tree ret = t;
2088 /* If the type isn't laid out yet, don't copy it. If something
2089 needs it for real it should wait until the type got finished. */
2090 if (!TYPE_SIZE (t))
2091 return t;
2093 if (!TYPE_LANG_SPECIFIC (t))
2094 TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
2095 /* If we're dealing with this very node already further up
2096 the call chain (recursion via pointers and struct members)
2097 we haven't yet determined if we really need a new type node.
2098 Assume we don't, return T itself. */
2099 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2100 return t;
2102 /* If we have calculated this all already, just return it. */
2103 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2104 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2106 /* Mark this type. */
2107 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2109 switch (TREE_CODE (t))
2111 default:
2112 break;
2114 case POINTER_TYPE:
2115 case REFERENCE_TYPE:
2117 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2118 if (totype == TREE_TYPE (t))
2119 ret = t;
2120 else if (TREE_CODE (t) == POINTER_TYPE)
2121 ret = build_pointer_type (totype);
2122 else
2123 ret = build_reference_type (totype);
2124 ret = build_qualified_type (ret,
2125 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2127 break;
2129 case ARRAY_TYPE:
2131 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2132 if (elemtype == TREE_TYPE (t))
2133 ret = t;
2134 else
2136 ret = build_variant_type_copy (t);
2137 TREE_TYPE (ret) = elemtype;
2138 if (TYPE_LANG_SPECIFIC (t)
2139 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2141 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2142 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2143 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2145 TYPE_LANG_SPECIFIC (ret)
2146 = ggc_cleared_alloc<struct lang_type> ();
2147 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2148 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2153 break;
2155 case RECORD_TYPE:
2156 case UNION_TYPE:
2157 case QUAL_UNION_TYPE:
2159 tree field;
2160 /* First determine if we need a new type at all.
2161 Careful, the two calls to gfc_nonrestricted_type per field
2162 might return different values. That happens exactly when
2163 one of the fields reaches back to this very record type
2164 (via pointers). The first calls will assume that we don't
2165 need to copy T (see the error_mark_node marking). If there
2166 are any reasons for copying T apart from having to copy T,
2167 we'll indeed copy it, and the second calls to
2168 gfc_nonrestricted_type will use that new node if they
2169 reach back to T. */
2170 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2171 if (TREE_CODE (field) == FIELD_DECL)
2173 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2174 if (elemtype != TREE_TYPE (field))
2175 break;
2177 if (!field)
2178 break;
2179 ret = build_variant_type_copy (t);
2180 TYPE_FIELDS (ret) = NULL_TREE;
2182 /* Here we make sure that as soon as we know we have to copy
2183 T, that also fields reaching back to us will use the new
2184 copy. It's okay if that copy still contains the old fields,
2185 we won't look at them. */
2186 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2187 mirror_fields (ret, t);
2189 break;
2192 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2193 return ret;
2197 /* Return the type for a symbol. Special handling is required for character
2198 types to get the correct level of indirection.
2199 For functions return the return type.
2200 For subroutines return void_type_node.
2201 Calling this multiple times for the same symbol should be avoided,
2202 especially for character and array types. */
2204 tree
2205 gfc_sym_type (gfc_symbol * sym)
2207 tree type;
2208 int byref;
2209 bool restricted;
2211 /* Procedure Pointers inside COMMON blocks. */
2212 if (sym->attr.proc_pointer && sym->attr.in_common)
2214 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2215 sym->attr.proc_pointer = 0;
2216 type = build_pointer_type (gfc_get_function_type (sym));
2217 sym->attr.proc_pointer = 1;
2218 return type;
2221 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2222 return void_type_node;
2224 /* In the case of a function the fake result variable may have a
2225 type different from the function type, so don't return early in
2226 that case. */
2227 if (sym->backend_decl && !sym->attr.function)
2228 return TREE_TYPE (sym->backend_decl);
2230 if (sym->attr.result
2231 && sym->ts.type == BT_CHARACTER
2232 && sym->ts.u.cl->backend_decl == NULL_TREE
2233 && sym->ns->proc_name
2234 && sym->ns->proc_name->ts.u.cl
2235 && sym->ns->proc_name->ts.u.cl->backend_decl != NULL_TREE)
2236 sym->ts.u.cl->backend_decl = sym->ns->proc_name->ts.u.cl->backend_decl;
2238 if (sym->ts.type == BT_CHARACTER
2239 && ((sym->attr.function && sym->attr.is_bind_c)
2240 || (sym->attr.result
2241 && sym->ns->proc_name
2242 && sym->ns->proc_name->attr.is_bind_c)
2243 || (sym->ts.deferred && (!sym->ts.u.cl
2244 || !sym->ts.u.cl->backend_decl))))
2245 type = gfc_character1_type_node;
2246 else
2247 type = gfc_typenode_for_spec (&sym->ts, sym->attr.codimension);
2249 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2250 byref = 1;
2251 else
2252 byref = 0;
2254 restricted = !sym->attr.target && !sym->attr.pointer
2255 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2256 if (!restricted)
2257 type = gfc_nonrestricted_type (type);
2259 if (sym->attr.dimension || sym->attr.codimension)
2261 if (gfc_is_nodesc_array (sym))
2263 /* If this is a character argument of unknown length, just use the
2264 base type. */
2265 if (sym->ts.type != BT_CHARACTER
2266 || !(sym->attr.dummy || sym->attr.function)
2267 || sym->ts.u.cl->backend_decl)
2269 type = gfc_get_nodesc_array_type (type, sym->as,
2270 byref ? PACKED_FULL
2271 : PACKED_STATIC,
2272 restricted);
2273 byref = 0;
2276 else
2278 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2279 if (sym->attr.pointer)
2280 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2281 : GFC_ARRAY_POINTER;
2282 else if (sym->attr.allocatable)
2283 akind = GFC_ARRAY_ALLOCATABLE;
2284 type = gfc_build_array_type (type, sym->as, akind, restricted,
2285 sym->attr.contiguous, false);
2288 else
2290 if (sym->attr.allocatable || sym->attr.pointer
2291 || gfc_is_associate_pointer (sym))
2292 type = gfc_build_pointer_type (sym, type);
2295 /* We currently pass all parameters by reference.
2296 See f95_get_function_decl. For dummy function parameters return the
2297 function type. */
2298 if (byref)
2300 /* We must use pointer types for potentially absent variables. The
2301 optimizers assume a reference type argument is never NULL. */
2302 if (sym->attr.optional
2303 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2304 type = build_pointer_type (type);
2305 else
2307 type = build_reference_type (type);
2308 if (restricted)
2309 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2313 return (type);
2316 /* Layout and output debug info for a record type. */
2318 void
2319 gfc_finish_type (tree type)
2321 tree decl;
2323 decl = build_decl (input_location,
2324 TYPE_DECL, NULL_TREE, type);
2325 TYPE_STUB_DECL (type) = decl;
2326 layout_type (type);
2327 rest_of_type_compilation (type, 1);
2328 rest_of_decl_compilation (decl, 1, 0);
2331 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2332 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2333 to the end of the field list pointed to by *CHAIN.
2335 Returns a pointer to the new field. */
2337 static tree
2338 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2340 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2342 DECL_CONTEXT (decl) = context;
2343 DECL_CHAIN (decl) = NULL_TREE;
2344 if (TYPE_FIELDS (context) == NULL_TREE)
2345 TYPE_FIELDS (context) = decl;
2346 if (chain != NULL)
2348 if (*chain != NULL)
2349 **chain = decl;
2350 *chain = &DECL_CHAIN (decl);
2353 return decl;
2356 /* Like `gfc_add_field_to_struct_1', but adds alignment
2357 information. */
2359 tree
2360 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2362 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2364 DECL_INITIAL (decl) = 0;
2365 SET_DECL_ALIGN (decl, 0);
2366 DECL_USER_ALIGN (decl) = 0;
2368 return decl;
2372 /* Copy the backend_decl and component backend_decls if
2373 the two derived type symbols are "equal", as described
2374 in 4.4.2 and resolved by gfc_compare_derived_types. */
2377 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2378 bool from_gsym)
2380 gfc_component *to_cm;
2381 gfc_component *from_cm;
2383 if (from == to)
2384 return 1;
2386 if (from->backend_decl == NULL
2387 || !gfc_compare_derived_types (from, to))
2388 return 0;
2390 to->backend_decl = from->backend_decl;
2392 to_cm = to->components;
2393 from_cm = from->components;
2395 /* Copy the component declarations. If a component is itself
2396 a derived type, we need a copy of its component declarations.
2397 This is done by recursing into gfc_get_derived_type and
2398 ensures that the component's component declarations have
2399 been built. If it is a character, we need the character
2400 length, as well. */
2401 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2403 to_cm->backend_decl = from_cm->backend_decl;
2404 to_cm->caf_token = from_cm->caf_token;
2405 if (from_cm->ts.type == BT_UNION)
2406 gfc_get_union_type (to_cm->ts.u.derived);
2407 else if (from_cm->ts.type == BT_DERIVED
2408 && (!from_cm->attr.pointer || from_gsym))
2409 gfc_get_derived_type (to_cm->ts.u.derived);
2410 else if (from_cm->ts.type == BT_CLASS
2411 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2412 gfc_get_derived_type (to_cm->ts.u.derived);
2413 else if (from_cm->ts.type == BT_CHARACTER)
2414 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2417 return 1;
2421 /* Build a tree node for a procedure pointer component. */
2423 tree
2424 gfc_get_ppc_type (gfc_component* c)
2426 tree t;
2428 /* Explicit interface. */
2429 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2430 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2432 /* Implicit interface (only return value may be known). */
2433 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2434 t = gfc_typenode_for_spec (&c->ts);
2435 else
2436 t = void_type_node;
2438 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2442 /* Build a tree node for a union type. Requires building each map
2443 structure which is an element of the union. */
2445 tree
2446 gfc_get_union_type (gfc_symbol *un)
2448 gfc_component *map = NULL;
2449 tree typenode = NULL, map_type = NULL, map_field = NULL;
2450 tree *chain = NULL;
2452 if (un->backend_decl)
2454 if (TYPE_FIELDS (un->backend_decl) || un->attr.proc_pointer_comp)
2455 return un->backend_decl;
2456 else
2457 typenode = un->backend_decl;
2459 else
2461 typenode = make_node (UNION_TYPE);
2462 TYPE_NAME (typenode) = get_identifier (un->name);
2465 /* Add each contained MAP as a field. */
2466 for (map = un->components; map; map = map->next)
2468 gcc_assert (map->ts.type == BT_DERIVED);
2470 /* The map's type node, which is defined within this union's context. */
2471 map_type = gfc_get_derived_type (map->ts.u.derived);
2472 TYPE_CONTEXT (map_type) = typenode;
2474 /* The map field's declaration. */
2475 map_field = gfc_add_field_to_struct(typenode, get_identifier(map->name),
2476 map_type, &chain);
2477 if (map->loc.lb)
2478 gfc_set_decl_location (map_field, &map->loc);
2479 else if (un->declared_at.lb)
2480 gfc_set_decl_location (map_field, &un->declared_at);
2482 DECL_PACKED (map_field) |= TYPE_PACKED (typenode);
2483 DECL_NAMELESS(map_field) = true;
2485 /* We should never clobber another backend declaration for this map,
2486 because each map component is unique. */
2487 if (!map->backend_decl)
2488 map->backend_decl = map_field;
2491 un->backend_decl = typenode;
2492 gfc_finish_type (typenode);
2494 return typenode;
2498 /* Build a tree node for a derived type. If there are equal
2499 derived types, with different local names, these are built
2500 at the same time. If an equal derived type has been built
2501 in a parent namespace, this is used. */
2503 tree
2504 gfc_get_derived_type (gfc_symbol * derived, int codimen)
2506 tree typenode = NULL, field = NULL, field_type = NULL;
2507 tree canonical = NULL_TREE;
2508 tree *chain = NULL;
2509 bool got_canonical = false;
2510 bool unlimited_entity = false;
2511 gfc_component *c;
2512 gfc_namespace *ns;
2513 tree tmp;
2514 bool coarray_flag;
2516 coarray_flag = flag_coarray == GFC_FCOARRAY_LIB
2517 && derived->module && !derived->attr.vtype;
2519 gcc_assert (!derived->attr.pdt_template);
2521 if (derived->attr.unlimited_polymorphic
2522 || (flag_coarray == GFC_FCOARRAY_LIB
2523 && derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2524 && (derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE
2525 || derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE
2526 || derived->intmod_sym_id == ISOFORTRAN_TEAM_TYPE)))
2527 return ptr_type_node;
2529 if (flag_coarray != GFC_FCOARRAY_LIB
2530 && derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2531 && (derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE
2532 || derived->intmod_sym_id == ISOFORTRAN_TEAM_TYPE))
2533 return gfc_get_int_type (gfc_default_integer_kind);
2535 if (derived && derived->attr.flavor == FL_PROCEDURE
2536 && derived->attr.generic)
2537 derived = gfc_find_dt_in_generic (derived);
2539 /* See if it's one of the iso_c_binding derived types. */
2540 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2542 if (derived->backend_decl)
2543 return derived->backend_decl;
2545 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2546 derived->backend_decl = ptr_type_node;
2547 else
2548 derived->backend_decl = pfunc_type_node;
2550 derived->ts.kind = gfc_index_integer_kind;
2551 derived->ts.type = BT_INTEGER;
2552 /* Set the f90_type to BT_VOID as a way to recognize something of type
2553 BT_INTEGER that needs to fit a void * for the purpose of the
2554 iso_c_binding derived types. */
2555 derived->ts.f90_type = BT_VOID;
2557 return derived->backend_decl;
2560 /* If use associated, use the module type for this one. */
2561 if (derived->backend_decl == NULL
2562 && derived->attr.use_assoc
2563 && derived->module
2564 && gfc_get_module_backend_decl (derived))
2565 goto copy_derived_types;
2567 /* The derived types from an earlier namespace can be used as the
2568 canonical type. */
2569 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2570 && gfc_global_ns_list)
2572 for (ns = gfc_global_ns_list;
2573 ns->translated && !got_canonical;
2574 ns = ns->sibling)
2576 if (ns->derived_types)
2578 for (gfc_symbol *dt = ns->derived_types; dt && !got_canonical;
2579 dt = dt->dt_next)
2581 gfc_copy_dt_decls_ifequal (dt, derived, true);
2582 if (derived->backend_decl)
2583 got_canonical = true;
2584 if (dt->dt_next == ns->derived_types)
2585 break;
2591 /* Store up the canonical type to be added to this one. */
2592 if (got_canonical)
2594 if (TYPE_CANONICAL (derived->backend_decl))
2595 canonical = TYPE_CANONICAL (derived->backend_decl);
2596 else
2597 canonical = derived->backend_decl;
2599 derived->backend_decl = NULL_TREE;
2602 /* derived->backend_decl != 0 means we saw it before, but its
2603 components' backend_decl may have not been built. */
2604 if (derived->backend_decl)
2606 /* Its components' backend_decl have been built or we are
2607 seeing recursion through the formal arglist of a procedure
2608 pointer component. */
2609 if (TYPE_FIELDS (derived->backend_decl))
2610 return derived->backend_decl;
2611 else if (derived->attr.abstract
2612 && derived->attr.proc_pointer_comp)
2614 /* If an abstract derived type with procedure pointer
2615 components has no other type of component, return the
2616 backend_decl. Otherwise build the components if any of the
2617 non-procedure pointer components have no backend_decl. */
2618 for (c = derived->components; c; c = c->next)
2620 bool same_alloc_type = c->attr.allocatable
2621 && derived == c->ts.u.derived;
2622 if (!c->attr.proc_pointer
2623 && !same_alloc_type
2624 && c->backend_decl == NULL)
2625 break;
2626 else if (c->next == NULL)
2627 return derived->backend_decl;
2629 typenode = derived->backend_decl;
2631 else
2632 typenode = derived->backend_decl;
2634 else
2636 /* We see this derived type first time, so build the type node. */
2637 typenode = make_node (RECORD_TYPE);
2638 TYPE_NAME (typenode) = get_identifier (derived->name);
2639 TYPE_PACKED (typenode) = flag_pack_derived;
2640 derived->backend_decl = typenode;
2643 if (derived->components
2644 && derived->components->ts.type == BT_DERIVED
2645 && strcmp (derived->components->name, "_data") == 0
2646 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2647 unlimited_entity = true;
2649 /* Go through the derived type components, building them as
2650 necessary. The reason for doing this now is that it is
2651 possible to recurse back to this derived type through a
2652 pointer component (PR24092). If this happens, the fields
2653 will be built and so we can return the type. */
2654 for (c = derived->components; c; c = c->next)
2656 bool same_alloc_type = c->attr.allocatable
2657 && derived == c->ts.u.derived;
2659 if (c->ts.type == BT_UNION && c->ts.u.derived->backend_decl == NULL)
2660 c->ts.u.derived->backend_decl = gfc_get_union_type (c->ts.u.derived);
2662 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2663 continue;
2665 if ((!c->attr.pointer && !c->attr.proc_pointer
2666 && !same_alloc_type)
2667 || c->ts.u.derived->backend_decl == NULL)
2669 int local_codim = c->attr.codimension ? c->as->corank: codimen;
2670 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived,
2671 local_codim);
2674 if (c->ts.u.derived->attr.is_iso_c)
2676 /* Need to copy the modified ts from the derived type. The
2677 typespec was modified because C_PTR/C_FUNPTR are translated
2678 into (void *) from derived types. */
2679 c->ts.type = c->ts.u.derived->ts.type;
2680 c->ts.kind = c->ts.u.derived->ts.kind;
2681 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2682 if (c->initializer)
2684 c->initializer->ts.type = c->ts.type;
2685 c->initializer->ts.kind = c->ts.kind;
2686 c->initializer->ts.f90_type = c->ts.f90_type;
2687 c->initializer->expr_type = EXPR_NULL;
2692 if (TYPE_FIELDS (derived->backend_decl))
2693 return derived->backend_decl;
2695 /* Build the type member list. Install the newly created RECORD_TYPE
2696 node as DECL_CONTEXT of each FIELD_DECL. In this case we must go
2697 through only the top-level linked list of components so we correctly
2698 build UNION_TYPE nodes for BT_UNION components. MAPs and other nested
2699 types are built as part of gfc_get_union_type. */
2700 for (c = derived->components; c; c = c->next)
2702 bool same_alloc_type = c->attr.allocatable
2703 && derived == c->ts.u.derived;
2704 /* Prevent infinite recursion, when the procedure pointer type is
2705 the same as derived, by forcing the procedure pointer component to
2706 be built as if the explicit interface does not exist. */
2707 if (c->attr.proc_pointer
2708 && (c->ts.type != BT_DERIVED || (c->ts.u.derived
2709 && !gfc_compare_derived_types (derived, c->ts.u.derived)))
2710 && (c->ts.type != BT_CLASS || (CLASS_DATA (c)->ts.u.derived
2711 && !gfc_compare_derived_types (derived, CLASS_DATA (c)->ts.u.derived))))
2712 field_type = gfc_get_ppc_type (c);
2713 else if (c->attr.proc_pointer && derived->backend_decl)
2715 tmp = build_function_type_list (derived->backend_decl, NULL_TREE);
2716 field_type = build_pointer_type (tmp);
2718 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2719 field_type = c->ts.u.derived->backend_decl;
2720 else if (c->attr.caf_token)
2721 field_type = pvoid_type_node;
2722 else
2724 if (c->ts.type == BT_CHARACTER
2725 && !c->ts.deferred && !c->attr.pdt_string)
2727 /* Evaluate the string length. */
2728 gfc_conv_const_charlen (c->ts.u.cl);
2729 gcc_assert (c->ts.u.cl->backend_decl);
2731 else if (c->ts.type == BT_CHARACTER)
2732 c->ts.u.cl->backend_decl
2733 = build_int_cst (gfc_charlen_type_node, 0);
2735 field_type = gfc_typenode_for_spec (&c->ts, codimen);
2738 /* This returns an array descriptor type. Initialization may be
2739 required. */
2740 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2742 if (c->attr.pointer || c->attr.allocatable || c->attr.pdt_array)
2744 enum gfc_array_kind akind;
2745 if (c->attr.pointer)
2746 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2747 : GFC_ARRAY_POINTER;
2748 else
2749 akind = GFC_ARRAY_ALLOCATABLE;
2750 /* Pointers to arrays aren't actually pointer types. The
2751 descriptors are separate, but the data is common. */
2752 field_type = gfc_build_array_type (field_type, c->as, akind,
2753 !c->attr.target
2754 && !c->attr.pointer,
2755 c->attr.contiguous,
2756 codimen);
2758 else
2759 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2760 PACKED_STATIC,
2761 !c->attr.target);
2763 else if ((c->attr.pointer || c->attr.allocatable || c->attr.pdt_string)
2764 && !c->attr.proc_pointer
2765 && !(unlimited_entity && c == derived->components))
2766 field_type = build_pointer_type (field_type);
2768 if (c->attr.pointer || same_alloc_type)
2769 field_type = gfc_nonrestricted_type (field_type);
2771 /* vtype fields can point to different types to the base type. */
2772 if (c->ts.type == BT_DERIVED
2773 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2774 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2775 ptr_mode, true);
2777 /* Ensure that the CLASS language specific flag is set. */
2778 if (c->ts.type == BT_CLASS)
2780 if (POINTER_TYPE_P (field_type))
2781 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2782 else
2783 GFC_CLASS_TYPE_P (field_type) = 1;
2786 field = gfc_add_field_to_struct (typenode,
2787 get_identifier (c->name),
2788 field_type, &chain);
2789 if (c->loc.lb)
2790 gfc_set_decl_location (field, &c->loc);
2791 else if (derived->declared_at.lb)
2792 gfc_set_decl_location (field, &derived->declared_at);
2794 gfc_finish_decl_attrs (field, &c->attr);
2796 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2798 gcc_assert (field);
2799 if (!c->backend_decl)
2800 c->backend_decl = field;
2802 if (c->attr.pointer && c->attr.dimension
2803 && !(c->ts.type == BT_DERIVED
2804 && strcmp (c->name, "_data") == 0))
2805 GFC_DECL_PTR_ARRAY_P (c->backend_decl) = 1;
2808 /* Now lay out the derived type, including the fields. */
2809 if (canonical)
2810 TYPE_CANONICAL (typenode) = canonical;
2812 gfc_finish_type (typenode);
2813 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2814 if (derived->module && derived->ns->proc_name
2815 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2817 if (derived->ns->proc_name->backend_decl
2818 && TREE_CODE (derived->ns->proc_name->backend_decl)
2819 == NAMESPACE_DECL)
2821 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2822 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2823 = derived->ns->proc_name->backend_decl;
2827 derived->backend_decl = typenode;
2829 copy_derived_types:
2831 for (c = derived->components; c; c = c->next)
2833 /* Do not add a caf_token field for class container components. */
2834 if ((codimen || coarray_flag)
2835 && !c->attr.dimension && !c->attr.codimension
2836 && (c->attr.allocatable || c->attr.pointer)
2837 && !derived->attr.is_class)
2839 /* Provide sufficient space to hold "_caf_symbol". */
2840 char caf_name[GFC_MAX_SYMBOL_LEN + 6];
2841 gfc_component *token;
2842 snprintf (caf_name, sizeof (caf_name), "_caf_%s", c->name);
2843 token = gfc_find_component (derived, caf_name, true, true, NULL);
2844 gcc_assert (token);
2845 c->caf_token = token->backend_decl;
2846 TREE_NO_WARNING (c->caf_token) = 1;
2850 for (gfc_symbol *dt = gfc_derived_types; dt; dt = dt->dt_next)
2852 gfc_copy_dt_decls_ifequal (derived, dt, false);
2853 if (dt->dt_next == gfc_derived_types)
2854 break;
2857 return derived->backend_decl;
2862 gfc_return_by_reference (gfc_symbol * sym)
2864 if (!sym->attr.function)
2865 return 0;
2867 if (sym->attr.dimension)
2868 return 1;
2870 if (sym->ts.type == BT_CHARACTER
2871 && !sym->attr.is_bind_c
2872 && (!sym->attr.result
2873 || !sym->ns->proc_name
2874 || !sym->ns->proc_name->attr.is_bind_c))
2875 return 1;
2877 /* Possibly return complex numbers by reference for g77 compatibility.
2878 We don't do this for calls to intrinsics (as the library uses the
2879 -fno-f2c calling convention), nor for calls to functions which always
2880 require an explicit interface, as no compatibility problems can
2881 arise there. */
2882 if (flag_f2c && sym->ts.type == BT_COMPLEX
2883 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2884 return 1;
2886 return 0;
2889 static tree
2890 gfc_get_mixed_entry_union (gfc_namespace *ns)
2892 tree type;
2893 tree *chain = NULL;
2894 char name[GFC_MAX_SYMBOL_LEN + 1];
2895 gfc_entry_list *el, *el2;
2897 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2898 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2900 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2902 /* Build the type node. */
2903 type = make_node (UNION_TYPE);
2905 TYPE_NAME (type) = get_identifier (name);
2907 for (el = ns->entries; el; el = el->next)
2909 /* Search for duplicates. */
2910 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2911 if (el2->sym->result == el->sym->result)
2912 break;
2914 if (el == el2)
2915 gfc_add_field_to_struct_1 (type,
2916 get_identifier (el->sym->result->name),
2917 gfc_sym_type (el->sym->result), &chain);
2920 /* Finish off the type. */
2921 gfc_finish_type (type);
2922 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2923 return type;
2926 /* Create a "fn spec" based on the formal arguments;
2927 cf. create_function_arglist. */
2929 static tree
2930 create_fn_spec (gfc_symbol *sym, tree fntype)
2932 char spec[150];
2933 size_t spec_len;
2934 gfc_formal_arglist *f;
2935 tree tmp;
2937 memset (&spec, 0, sizeof (spec));
2938 spec[0] = '.';
2939 spec_len = 1;
2941 if (sym->attr.entry_master)
2942 spec[spec_len++] = 'R';
2943 if (gfc_return_by_reference (sym))
2945 gfc_symbol *result = sym->result ? sym->result : sym;
2947 if (result->attr.pointer || sym->attr.proc_pointer)
2948 spec[spec_len++] = '.';
2949 else
2950 spec[spec_len++] = 'w';
2951 if (sym->ts.type == BT_CHARACTER)
2952 spec[spec_len++] = 'R';
2955 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2956 if (spec_len < sizeof (spec))
2958 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2959 || f->sym->attr.external || f->sym->attr.cray_pointer
2960 || (f->sym->ts.type == BT_DERIVED
2961 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2962 || f->sym->ts.u.derived->attr.pointer_comp))
2963 || (f->sym->ts.type == BT_CLASS
2964 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2965 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp))
2966 || (f->sym->ts.type == BT_INTEGER && f->sym->ts.is_c_interop))
2967 spec[spec_len++] = '.';
2968 else if (f->sym->attr.intent == INTENT_IN)
2969 spec[spec_len++] = 'r';
2970 else if (f->sym)
2971 spec[spec_len++] = 'w';
2974 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2975 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2976 return build_type_attribute_variant (fntype, tmp);
2979 tree
2980 gfc_get_function_type (gfc_symbol * sym, gfc_actual_arglist *actual_args)
2982 tree type;
2983 vec<tree, va_gc> *typelist = NULL;
2984 gfc_formal_arglist *f;
2985 gfc_symbol *arg;
2986 int alternate_return = 0;
2987 bool is_varargs = true;
2989 /* Make sure this symbol is a function, a subroutine or the main
2990 program. */
2991 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2992 || sym->attr.flavor == FL_PROGRAM);
2994 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2995 so that they can be detected here and handled further down. */
2996 if (sym->backend_decl == NULL)
2997 sym->backend_decl = error_mark_node;
2998 else if (sym->backend_decl == error_mark_node)
2999 goto arg_type_list_done;
3000 else if (sym->attr.proc_pointer)
3001 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
3002 else
3003 return TREE_TYPE (sym->backend_decl);
3005 if (sym->attr.entry_master)
3006 /* Additional parameter for selecting an entry point. */
3007 vec_safe_push (typelist, gfc_array_index_type);
3009 if (sym->result)
3010 arg = sym->result;
3011 else
3012 arg = sym;
3014 if (arg->ts.type == BT_CHARACTER)
3015 gfc_conv_const_charlen (arg->ts.u.cl);
3017 /* Some functions we use an extra parameter for the return value. */
3018 if (gfc_return_by_reference (sym))
3020 type = gfc_sym_type (arg);
3021 if (arg->ts.type == BT_COMPLEX
3022 || arg->attr.dimension
3023 || arg->ts.type == BT_CHARACTER)
3024 type = build_reference_type (type);
3026 vec_safe_push (typelist, type);
3027 if (arg->ts.type == BT_CHARACTER)
3029 if (!arg->ts.deferred)
3030 /* Transfer by value. */
3031 vec_safe_push (typelist, gfc_charlen_type_node);
3032 else
3033 /* Deferred character lengths are transferred by reference
3034 so that the value can be returned. */
3035 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
3038 if (sym->backend_decl == error_mark_node && actual_args != NULL
3039 && sym->formal == NULL && (sym->attr.proc == PROC_EXTERNAL
3040 || sym->attr.proc == PROC_UNKNOWN))
3041 gfc_get_formal_from_actual_arglist (sym, actual_args);
3043 /* Build the argument types for the function. */
3044 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
3046 arg = f->sym;
3047 if (arg)
3049 /* Evaluate constant character lengths here so that they can be
3050 included in the type. */
3051 if (arg->ts.type == BT_CHARACTER)
3052 gfc_conv_const_charlen (arg->ts.u.cl);
3054 if (arg->attr.flavor == FL_PROCEDURE)
3056 type = gfc_get_function_type (arg);
3057 type = build_pointer_type (type);
3059 else
3060 type = gfc_sym_type (arg);
3062 /* Parameter Passing Convention
3064 We currently pass all parameters by reference.
3065 Parameters with INTENT(IN) could be passed by value.
3066 The problem arises if a function is called via an implicit
3067 prototype. In this situation the INTENT is not known.
3068 For this reason all parameters to global functions must be
3069 passed by reference. Passing by value would potentially
3070 generate bad code. Worse there would be no way of telling that
3071 this code was bad, except that it would give incorrect results.
3073 Contained procedures could pass by value as these are never
3074 used without an explicit interface, and cannot be passed as
3075 actual parameters for a dummy procedure. */
3077 vec_safe_push (typelist, type);
3079 else
3081 if (sym->attr.subroutine)
3082 alternate_return = 1;
3086 /* Add hidden string length parameters. */
3087 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
3089 arg = f->sym;
3090 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
3092 if (!arg->ts.deferred)
3093 /* Transfer by value. */
3094 type = gfc_charlen_type_node;
3095 else
3096 /* Deferred character lengths are transferred by reference
3097 so that the value can be returned. */
3098 type = build_pointer_type (gfc_charlen_type_node);
3100 vec_safe_push (typelist, type);
3102 /* For noncharacter scalar intrinsic types, VALUE passes the value,
3103 hence, the optional status cannot be transferred via a NULL pointer.
3104 Thus, we will use a hidden argument in that case. */
3105 else if (arg
3106 && arg->attr.optional
3107 && arg->attr.value
3108 && !arg->attr.dimension
3109 && arg->ts.type != BT_CLASS
3110 && !gfc_bt_struct (arg->ts.type))
3111 vec_safe_push (typelist, boolean_type_node);
3114 if (!vec_safe_is_empty (typelist)
3115 || sym->attr.is_main_program
3116 || sym->attr.if_source != IFSRC_UNKNOWN)
3117 is_varargs = false;
3119 if (sym->backend_decl == error_mark_node)
3120 sym->backend_decl = NULL_TREE;
3122 arg_type_list_done:
3124 if (alternate_return)
3125 type = integer_type_node;
3126 else if (!sym->attr.function || gfc_return_by_reference (sym))
3127 type = void_type_node;
3128 else if (sym->attr.mixed_entry_master)
3129 type = gfc_get_mixed_entry_union (sym->ns);
3130 else if (flag_f2c && sym->ts.type == BT_REAL
3131 && sym->ts.kind == gfc_default_real_kind
3132 && !sym->attr.always_explicit)
3134 /* Special case: f2c calling conventions require that (scalar)
3135 default REAL functions return the C type double instead. f2c
3136 compatibility is only an issue with functions that don't
3137 require an explicit interface, as only these could be
3138 implemented in Fortran 77. */
3139 sym->ts.kind = gfc_default_double_kind;
3140 type = gfc_typenode_for_spec (&sym->ts);
3141 sym->ts.kind = gfc_default_real_kind;
3143 else if (sym->result && sym->result->attr.proc_pointer)
3144 /* Procedure pointer return values. */
3146 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
3148 /* Unset proc_pointer as gfc_get_function_type
3149 is called recursively. */
3150 sym->result->attr.proc_pointer = 0;
3151 type = build_pointer_type (gfc_get_function_type (sym->result));
3152 sym->result->attr.proc_pointer = 1;
3154 else
3155 type = gfc_sym_type (sym->result);
3157 else
3158 type = gfc_sym_type (sym);
3160 if (is_varargs)
3161 type = build_varargs_function_type_vec (type, typelist);
3162 else
3163 type = build_function_type_vec (type, typelist);
3164 type = create_fn_spec (sym, type);
3166 return type;
3169 /* Language hooks for middle-end access to type nodes. */
3171 /* Return an integer type with BITS bits of precision,
3172 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
3174 tree
3175 gfc_type_for_size (unsigned bits, int unsignedp)
3177 if (!unsignedp)
3179 int i;
3180 for (i = 0; i <= MAX_INT_KINDS; ++i)
3182 tree type = gfc_integer_types[i];
3183 if (type && bits == TYPE_PRECISION (type))
3184 return type;
3187 /* Handle TImode as a special case because it is used by some backends
3188 (e.g. ARM) even though it is not available for normal use. */
3189 #if HOST_BITS_PER_WIDE_INT >= 64
3190 if (bits == TYPE_PRECISION (intTI_type_node))
3191 return intTI_type_node;
3192 #endif
3194 if (bits <= TYPE_PRECISION (intQI_type_node))
3195 return intQI_type_node;
3196 if (bits <= TYPE_PRECISION (intHI_type_node))
3197 return intHI_type_node;
3198 if (bits <= TYPE_PRECISION (intSI_type_node))
3199 return intSI_type_node;
3200 if (bits <= TYPE_PRECISION (intDI_type_node))
3201 return intDI_type_node;
3202 if (bits <= TYPE_PRECISION (intTI_type_node))
3203 return intTI_type_node;
3205 else
3207 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
3208 return unsigned_intQI_type_node;
3209 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
3210 return unsigned_intHI_type_node;
3211 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
3212 return unsigned_intSI_type_node;
3213 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
3214 return unsigned_intDI_type_node;
3215 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
3216 return unsigned_intTI_type_node;
3219 return NULL_TREE;
3222 /* Return a data type that has machine mode MODE. If the mode is an
3223 integer, then UNSIGNEDP selects between signed and unsigned types. */
3225 tree
3226 gfc_type_for_mode (machine_mode mode, int unsignedp)
3228 int i;
3229 tree *base;
3230 scalar_int_mode int_mode;
3232 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3233 base = gfc_real_types;
3234 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
3235 base = gfc_complex_types;
3236 else if (is_a <scalar_int_mode> (mode, &int_mode))
3238 tree type = gfc_type_for_size (GET_MODE_PRECISION (int_mode), unsignedp);
3239 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
3241 else if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
3242 && valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
3244 unsigned int elem_bits = vector_element_size (GET_MODE_BITSIZE (mode),
3245 GET_MODE_NUNITS (mode));
3246 tree bool_type = build_nonstandard_boolean_type (elem_bits);
3247 return build_vector_type_for_mode (bool_type, mode);
3249 else if (VECTOR_MODE_P (mode)
3250 && valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
3252 machine_mode inner_mode = GET_MODE_INNER (mode);
3253 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
3254 if (inner_type != NULL_TREE)
3255 return build_vector_type_for_mode (inner_type, mode);
3256 return NULL_TREE;
3258 else
3259 return NULL_TREE;
3261 for (i = 0; i <= MAX_REAL_KINDS; ++i)
3263 tree type = base[i];
3264 if (type && mode == TYPE_MODE (type))
3265 return type;
3268 return NULL_TREE;
3271 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
3272 in that case. */
3274 bool
3275 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
3277 int rank, dim;
3278 bool indirect = false;
3279 tree etype, ptype, t, base_decl;
3280 tree data_off, span_off, dim_off, dtype_off, dim_size, elem_size;
3281 tree lower_suboff, upper_suboff, stride_suboff;
3282 tree dtype, field, rank_off;
3284 if (! GFC_DESCRIPTOR_TYPE_P (type))
3286 if (! POINTER_TYPE_P (type))
3287 return false;
3288 type = TREE_TYPE (type);
3289 if (! GFC_DESCRIPTOR_TYPE_P (type))
3290 return false;
3291 indirect = true;
3294 rank = GFC_TYPE_ARRAY_RANK (type);
3295 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3296 return false;
3298 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3299 gcc_assert (POINTER_TYPE_P (etype));
3300 etype = TREE_TYPE (etype);
3302 /* If the type is not a scalar coarray. */
3303 if (TREE_CODE (etype) == ARRAY_TYPE)
3304 etype = TREE_TYPE (etype);
3306 /* Can't handle variable sized elements yet. */
3307 if (int_size_in_bytes (etype) <= 0)
3308 return false;
3309 /* Nor non-constant lower bounds in assumed shape arrays. */
3310 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3311 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3313 for (dim = 0; dim < rank; dim++)
3314 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3315 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3316 return false;
3319 memset (info, '\0', sizeof (*info));
3320 info->ndimensions = rank;
3321 info->ordering = array_descr_ordering_column_major;
3322 info->element_type = etype;
3323 ptype = build_pointer_type (gfc_array_index_type);
3324 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3325 if (!base_decl)
3327 base_decl = make_node (DEBUG_EXPR_DECL);
3328 DECL_ARTIFICIAL (base_decl) = 1;
3329 TREE_TYPE (base_decl) = indirect ? build_pointer_type (ptype) : ptype;
3330 SET_DECL_MODE (base_decl, TYPE_MODE (TREE_TYPE (base_decl)));
3331 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3333 info->base_decl = base_decl;
3334 if (indirect)
3335 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3337 gfc_get_descriptor_offsets_for_info (type, &data_off, &dtype_off, &span_off,
3338 &dim_off, &dim_size, &stride_suboff,
3339 &lower_suboff, &upper_suboff);
3341 t = fold_build_pointer_plus (base_decl, span_off);
3342 elem_size = build1 (INDIRECT_REF, gfc_array_index_type, t);
3344 t = base_decl;
3345 if (!integer_zerop (data_off))
3346 t = fold_build_pointer_plus (t, data_off);
3347 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3348 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3349 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3350 info->allocated = build2 (NE_EXPR, logical_type_node,
3351 info->data_location, null_pointer_node);
3352 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3353 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3354 info->associated = build2 (NE_EXPR, logical_type_node,
3355 info->data_location, null_pointer_node);
3356 if ((GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK
3357 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT)
3358 && dwarf_version >= 5)
3360 rank = 1;
3361 info->ndimensions = 1;
3362 t = base_decl;
3363 if (!integer_zerop (dtype_off))
3364 t = fold_build_pointer_plus (t, dtype_off);
3365 dtype = TYPE_MAIN_VARIANT (get_dtype_type_node ());
3366 field = gfc_advance_chain (TYPE_FIELDS (dtype), GFC_DTYPE_RANK);
3367 rank_off = byte_position (field);
3368 if (!integer_zerop (dtype_off))
3369 t = fold_build_pointer_plus (t, rank_off);
3371 t = build1 (NOP_EXPR, build_pointer_type (gfc_array_index_type), t);
3372 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3373 info->rank = t;
3374 t = build0 (PLACEHOLDER_EXPR, TREE_TYPE (dim_off));
3375 t = size_binop (MULT_EXPR, t, dim_size);
3376 dim_off = build2 (PLUS_EXPR, TREE_TYPE (dim_off), t, dim_off);
3379 for (dim = 0; dim < rank; dim++)
3381 t = fold_build_pointer_plus (base_decl,
3382 size_binop (PLUS_EXPR,
3383 dim_off, lower_suboff));
3384 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3385 info->dimen[dim].lower_bound = t;
3386 t = fold_build_pointer_plus (base_decl,
3387 size_binop (PLUS_EXPR,
3388 dim_off, upper_suboff));
3389 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3390 info->dimen[dim].upper_bound = t;
3391 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3392 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3394 /* Assumed shape arrays have known lower bounds. */
3395 info->dimen[dim].upper_bound
3396 = build2 (MINUS_EXPR, gfc_array_index_type,
3397 info->dimen[dim].upper_bound,
3398 info->dimen[dim].lower_bound);
3399 info->dimen[dim].lower_bound
3400 = fold_convert (gfc_array_index_type,
3401 GFC_TYPE_ARRAY_LBOUND (type, dim));
3402 info->dimen[dim].upper_bound
3403 = build2 (PLUS_EXPR, gfc_array_index_type,
3404 info->dimen[dim].lower_bound,
3405 info->dimen[dim].upper_bound);
3407 t = fold_build_pointer_plus (base_decl,
3408 size_binop (PLUS_EXPR,
3409 dim_off, stride_suboff));
3410 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3411 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3412 info->dimen[dim].stride = t;
3413 if (dim + 1 < rank)
3414 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3417 return true;
3421 /* Create a type to handle vector subscripts for coarray library calls. It
3422 has the form:
3423 struct caf_vector_t {
3424 size_t nvec; // size of the vector
3425 union {
3426 struct {
3427 void *vector;
3428 int kind;
3429 } v;
3430 struct {
3431 ptrdiff_t lower_bound;
3432 ptrdiff_t upper_bound;
3433 ptrdiff_t stride;
3434 } triplet;
3435 } u;
3437 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3438 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3440 tree
3441 gfc_get_caf_vector_type (int dim)
3443 static tree vector_types[GFC_MAX_DIMENSIONS];
3444 static tree vec_type = NULL_TREE;
3445 tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
3447 if (vector_types[dim-1] != NULL_TREE)
3448 return vector_types[dim-1];
3450 if (vec_type == NULL_TREE)
3452 chain = 0;
3453 vect_struct_type = make_node (RECORD_TYPE);
3454 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3455 get_identifier ("vector"),
3456 pvoid_type_node, &chain);
3457 TREE_NO_WARNING (tmp) = 1;
3458 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3459 get_identifier ("kind"),
3460 integer_type_node, &chain);
3461 TREE_NO_WARNING (tmp) = 1;
3462 gfc_finish_type (vect_struct_type);
3464 chain = 0;
3465 triplet_struct_type = make_node (RECORD_TYPE);
3466 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3467 get_identifier ("lower_bound"),
3468 gfc_array_index_type, &chain);
3469 TREE_NO_WARNING (tmp) = 1;
3470 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3471 get_identifier ("upper_bound"),
3472 gfc_array_index_type, &chain);
3473 TREE_NO_WARNING (tmp) = 1;
3474 tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
3475 gfc_array_index_type, &chain);
3476 TREE_NO_WARNING (tmp) = 1;
3477 gfc_finish_type (triplet_struct_type);
3479 chain = 0;
3480 union_type = make_node (UNION_TYPE);
3481 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3482 vect_struct_type, &chain);
3483 TREE_NO_WARNING (tmp) = 1;
3484 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
3485 triplet_struct_type, &chain);
3486 TREE_NO_WARNING (tmp) = 1;
3487 gfc_finish_type (union_type);
3489 chain = 0;
3490 vec_type = make_node (RECORD_TYPE);
3491 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
3492 size_type_node, &chain);
3493 TREE_NO_WARNING (tmp) = 1;
3494 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
3495 union_type, &chain);
3496 TREE_NO_WARNING (tmp) = 1;
3497 gfc_finish_type (vec_type);
3498 TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
3501 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3502 gfc_rank_cst[dim-1]);
3503 vector_types[dim-1] = build_array_type (vec_type, tmp);
3504 return vector_types[dim-1];
3508 tree
3509 gfc_get_caf_reference_type ()
3511 static tree reference_type = NULL_TREE;
3512 tree c_struct_type, s_struct_type, v_struct_type, union_type, dim_union_type,
3513 a_struct_type, u_union_type, tmp, *chain;
3515 if (reference_type != NULL_TREE)
3516 return reference_type;
3518 chain = 0;
3519 c_struct_type = make_node (RECORD_TYPE);
3520 tmp = gfc_add_field_to_struct_1 (c_struct_type,
3521 get_identifier ("offset"),
3522 gfc_array_index_type, &chain);
3523 TREE_NO_WARNING (tmp) = 1;
3524 tmp = gfc_add_field_to_struct_1 (c_struct_type,
3525 get_identifier ("caf_token_offset"),
3526 gfc_array_index_type, &chain);
3527 TREE_NO_WARNING (tmp) = 1;
3528 gfc_finish_type (c_struct_type);
3530 chain = 0;
3531 s_struct_type = make_node (RECORD_TYPE);
3532 tmp = gfc_add_field_to_struct_1 (s_struct_type,
3533 get_identifier ("start"),
3534 gfc_array_index_type, &chain);
3535 TREE_NO_WARNING (tmp) = 1;
3536 tmp = gfc_add_field_to_struct_1 (s_struct_type,
3537 get_identifier ("end"),
3538 gfc_array_index_type, &chain);
3539 TREE_NO_WARNING (tmp) = 1;
3540 tmp = gfc_add_field_to_struct_1 (s_struct_type,
3541 get_identifier ("stride"),
3542 gfc_array_index_type, &chain);
3543 TREE_NO_WARNING (tmp) = 1;
3544 gfc_finish_type (s_struct_type);
3546 chain = 0;
3547 v_struct_type = make_node (RECORD_TYPE);
3548 tmp = gfc_add_field_to_struct_1 (v_struct_type,
3549 get_identifier ("vector"),
3550 pvoid_type_node, &chain);
3551 TREE_NO_WARNING (tmp) = 1;
3552 tmp = gfc_add_field_to_struct_1 (v_struct_type,
3553 get_identifier ("nvec"),
3554 size_type_node, &chain);
3555 TREE_NO_WARNING (tmp) = 1;
3556 tmp = gfc_add_field_to_struct_1 (v_struct_type,
3557 get_identifier ("kind"),
3558 integer_type_node, &chain);
3559 TREE_NO_WARNING (tmp) = 1;
3560 gfc_finish_type (v_struct_type);
3562 chain = 0;
3563 union_type = make_node (UNION_TYPE);
3564 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("s"),
3565 s_struct_type, &chain);
3566 TREE_NO_WARNING (tmp) = 1;
3567 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3568 v_struct_type, &chain);
3569 TREE_NO_WARNING (tmp) = 1;
3570 gfc_finish_type (union_type);
3572 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3573 gfc_rank_cst[GFC_MAX_DIMENSIONS - 1]);
3574 dim_union_type = build_array_type (union_type, tmp);
3576 chain = 0;
3577 a_struct_type = make_node (RECORD_TYPE);
3578 tmp = gfc_add_field_to_struct_1 (a_struct_type, get_identifier ("mode"),
3579 build_array_type (unsigned_char_type_node,
3580 build_range_type (gfc_array_index_type,
3581 gfc_index_zero_node,
3582 gfc_rank_cst[GFC_MAX_DIMENSIONS - 1])),
3583 &chain);
3584 TREE_NO_WARNING (tmp) = 1;
3585 tmp = gfc_add_field_to_struct_1 (a_struct_type,
3586 get_identifier ("static_array_type"),
3587 integer_type_node, &chain);
3588 TREE_NO_WARNING (tmp) = 1;
3589 tmp = gfc_add_field_to_struct_1 (a_struct_type, get_identifier ("dim"),
3590 dim_union_type, &chain);
3591 TREE_NO_WARNING (tmp) = 1;
3592 gfc_finish_type (a_struct_type);
3594 chain = 0;
3595 u_union_type = make_node (UNION_TYPE);
3596 tmp = gfc_add_field_to_struct_1 (u_union_type, get_identifier ("c"),
3597 c_struct_type, &chain);
3598 TREE_NO_WARNING (tmp) = 1;
3599 tmp = gfc_add_field_to_struct_1 (u_union_type, get_identifier ("a"),
3600 a_struct_type, &chain);
3601 TREE_NO_WARNING (tmp) = 1;
3602 gfc_finish_type (u_union_type);
3604 chain = 0;
3605 reference_type = make_node (RECORD_TYPE);
3606 tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("next"),
3607 build_pointer_type (reference_type), &chain);
3608 TREE_NO_WARNING (tmp) = 1;
3609 tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("type"),
3610 integer_type_node, &chain);
3611 TREE_NO_WARNING (tmp) = 1;
3612 tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("item_size"),
3613 size_type_node, &chain);
3614 TREE_NO_WARNING (tmp) = 1;
3615 tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("u"),
3616 u_union_type, &chain);
3617 TREE_NO_WARNING (tmp) = 1;
3618 gfc_finish_type (reference_type);
3619 TYPE_NAME (reference_type) = get_identifier ("caf_reference_t");
3621 return reference_type;
3624 #include "gt-fortran-trans-types.h"