gengtype.h (options::info): Change type to const char *.
[official-gcc.git] / gcc / dwarf2out.c
blob4a1037fdf72cf7970fa052d67ff895a15e5e57f9
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
125 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
126 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
127 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
128 int flags;
130 flags = (! flag_pic
131 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
132 && (fde_encoding & 0x70) != DW_EH_PE_aligned
133 && (per_encoding & 0x70) != DW_EH_PE_absptr
134 && (per_encoding & 0x70) != DW_EH_PE_aligned
135 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
136 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
137 ? 0 : SECTION_WRITE;
138 named_section_flags (EH_FRAME_SECTION_NAME, flags);
139 #else
140 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
141 #endif
142 #endif
145 /* Version of targetm.eh_frame_section for systems using collect2. */
146 void
147 collect2_eh_frame_section (void)
149 tree label = get_file_function_name ('F');
151 data_section ();
152 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
153 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
154 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
157 /* Default version of targetm.eh_frame_section. */
158 void
159 default_eh_frame_section (void)
161 #ifdef EH_FRAME_SECTION_NAME
162 named_section_eh_frame_section ();
163 #else
164 collect2_eh_frame_section ();
165 #endif
168 /* Array of RTXes referenced by the debugging information, which therefore
169 must be kept around forever. */
170 static GTY(()) varray_type used_rtx_varray;
172 /* A pointer to the base of a list of incomplete types which might be
173 completed at some later time. incomplete_types_list needs to be a VARRAY
174 because we want to tell the garbage collector about it. */
175 static GTY(()) varray_type incomplete_types;
177 /* A pointer to the base of a table of references to declaration
178 scopes. This table is a display which tracks the nesting
179 of declaration scopes at the current scope and containing
180 scopes. This table is used to find the proper place to
181 define type declaration DIE's. */
182 static GTY(()) varray_type decl_scope_table;
184 /* How to start an assembler comment. */
185 #ifndef ASM_COMMENT_START
186 #define ASM_COMMENT_START ";#"
187 #endif
189 typedef struct dw_cfi_struct *dw_cfi_ref;
190 typedef struct dw_fde_struct *dw_fde_ref;
191 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
193 /* Call frames are described using a sequence of Call Frame
194 Information instructions. The register number, offset
195 and address fields are provided as possible operands;
196 their use is selected by the opcode field. */
198 enum dw_cfi_oprnd_type {
199 dw_cfi_oprnd_unused,
200 dw_cfi_oprnd_reg_num,
201 dw_cfi_oprnd_offset,
202 dw_cfi_oprnd_addr,
203 dw_cfi_oprnd_loc
206 typedef union dw_cfi_oprnd_struct GTY(())
208 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
209 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
210 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
211 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
213 dw_cfi_oprnd;
215 typedef struct dw_cfi_struct GTY(())
217 dw_cfi_ref dw_cfi_next;
218 enum dwarf_call_frame_info dw_cfi_opc;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd1;
221 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
222 dw_cfi_oprnd2;
224 dw_cfi_node;
226 /* This is how we define the location of the CFA. We use to handle it
227 as REG + OFFSET all the time, but now it can be more complex.
228 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
229 Instead of passing around REG and OFFSET, we pass a copy
230 of this structure. */
231 typedef struct cfa_loc GTY(())
233 unsigned long reg;
234 HOST_WIDE_INT offset;
235 HOST_WIDE_INT base_offset;
236 int indirect; /* 1 if CFA is accessed via a dereference. */
237 } dw_cfa_location;
239 /* All call frame descriptions (FDE's) in the GCC generated DWARF
240 refer to a single Common Information Entry (CIE), defined at
241 the beginning of the .debug_frame section. This use of a single
242 CIE obviates the need to keep track of multiple CIE's
243 in the DWARF generation routines below. */
245 typedef struct dw_fde_struct GTY(())
247 tree decl;
248 const char *dw_fde_begin;
249 const char *dw_fde_current_label;
250 const char *dw_fde_end;
251 dw_cfi_ref dw_fde_cfi;
252 unsigned funcdef_number;
253 unsigned all_throwers_are_sibcalls : 1;
254 unsigned nothrow : 1;
255 unsigned uses_eh_lsda : 1;
257 dw_fde_node;
259 /* Maximum size (in bytes) of an artificially generated label. */
260 #define MAX_ARTIFICIAL_LABEL_BYTES 30
262 /* The size of addresses as they appear in the Dwarf 2 data.
263 Some architectures use word addresses to refer to code locations,
264 but Dwarf 2 info always uses byte addresses. On such machines,
265 Dwarf 2 addresses need to be larger than the architecture's
266 pointers. */
267 #ifndef DWARF2_ADDR_SIZE
268 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
269 #endif
271 /* The size in bytes of a DWARF field indicating an offset or length
272 relative to a debug info section, specified to be 4 bytes in the
273 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
274 as PTR_SIZE. */
276 #ifndef DWARF_OFFSET_SIZE
277 #define DWARF_OFFSET_SIZE 4
278 #endif
280 /* According to the (draft) DWARF 3 specification, the initial length
281 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
282 bytes are 0xffffffff, followed by the length stored in the next 8
283 bytes.
285 However, the SGI/MIPS ABI uses an initial length which is equal to
286 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
288 #ifndef DWARF_INITIAL_LENGTH_SIZE
289 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
290 #endif
292 #define DWARF_VERSION 2
294 /* Round SIZE up to the nearest BOUNDARY. */
295 #define DWARF_ROUND(SIZE,BOUNDARY) \
296 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
298 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
299 #ifndef DWARF_CIE_DATA_ALIGNMENT
300 #ifdef STACK_GROWS_DOWNWARD
301 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
302 #else
303 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
304 #endif
305 #endif
307 /* A pointer to the base of a table that contains frame description
308 information for each routine. */
309 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
311 /* Number of elements currently allocated for fde_table. */
312 static GTY(()) unsigned fde_table_allocated;
314 /* Number of elements in fde_table currently in use. */
315 static GTY(()) unsigned fde_table_in_use;
317 /* Size (in elements) of increments by which we may expand the
318 fde_table. */
319 #define FDE_TABLE_INCREMENT 256
321 /* A list of call frame insns for the CIE. */
322 static GTY(()) dw_cfi_ref cie_cfi_head;
324 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
325 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
326 attribute that accelerates the lookup of the FDE associated
327 with the subprogram. This variable holds the table index of the FDE
328 associated with the current function (body) definition. */
329 static unsigned current_funcdef_fde;
330 #endif
332 struct indirect_string_node GTY(())
334 const char *str;
335 unsigned int refcount;
336 unsigned int form;
337 char *label;
340 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
342 static GTY(()) int dw2_string_counter;
343 static GTY(()) unsigned long dwarf2out_cfi_label_num;
345 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
347 /* Forward declarations for functions defined in this file. */
349 static char *stripattributes (const char *);
350 static const char *dwarf_cfi_name (unsigned);
351 static dw_cfi_ref new_cfi (void);
352 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
353 static void add_fde_cfi (const char *, dw_cfi_ref);
354 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
355 static void lookup_cfa (dw_cfa_location *);
356 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
357 static void initial_return_save (rtx);
358 static HOST_WIDE_INT stack_adjust_offset (rtx);
359 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
360 static void output_call_frame_info (int);
361 static void dwarf2out_stack_adjust (rtx);
362 static void flush_queued_reg_saves (void);
363 static bool clobbers_queued_reg_save (rtx);
364 static void dwarf2out_frame_debug_expr (rtx, const char *);
366 /* Support for complex CFA locations. */
367 static void output_cfa_loc (dw_cfi_ref);
368 static void get_cfa_from_loc_descr (dw_cfa_location *,
369 struct dw_loc_descr_struct *);
370 static struct dw_loc_descr_struct *build_cfa_loc
371 (dw_cfa_location *);
372 static void def_cfa_1 (const char *, dw_cfa_location *);
374 /* How to start an assembler comment. */
375 #ifndef ASM_COMMENT_START
376 #define ASM_COMMENT_START ";#"
377 #endif
379 /* Data and reference forms for relocatable data. */
380 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
381 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
383 #ifndef DEBUG_FRAME_SECTION
384 #define DEBUG_FRAME_SECTION ".debug_frame"
385 #endif
387 #ifndef FUNC_BEGIN_LABEL
388 #define FUNC_BEGIN_LABEL "LFB"
389 #endif
391 #ifndef FUNC_END_LABEL
392 #define FUNC_END_LABEL "LFE"
393 #endif
395 #ifndef FRAME_BEGIN_LABEL
396 #define FRAME_BEGIN_LABEL "Lframe"
397 #endif
398 #define CIE_AFTER_SIZE_LABEL "LSCIE"
399 #define CIE_END_LABEL "LECIE"
400 #define FDE_LABEL "LSFDE"
401 #define FDE_AFTER_SIZE_LABEL "LASFDE"
402 #define FDE_END_LABEL "LEFDE"
403 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
404 #define LINE_NUMBER_END_LABEL "LELT"
405 #define LN_PROLOG_AS_LABEL "LASLTP"
406 #define LN_PROLOG_END_LABEL "LELTP"
407 #define DIE_LABEL_PREFIX "DW"
409 /* The DWARF 2 CFA column which tracks the return address. Normally this
410 is the column for PC, or the first column after all of the hard
411 registers. */
412 #ifndef DWARF_FRAME_RETURN_COLUMN
413 #ifdef PC_REGNUM
414 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
415 #else
416 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
417 #endif
418 #endif
420 /* The mapping from gcc register number to DWARF 2 CFA column number. By
421 default, we just provide columns for all registers. */
422 #ifndef DWARF_FRAME_REGNUM
423 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
424 #endif
426 /* The offset from the incoming value of %sp to the top of the stack frame
427 for the current function. */
428 #ifndef INCOMING_FRAME_SP_OFFSET
429 #define INCOMING_FRAME_SP_OFFSET 0
430 #endif
432 /* Hook used by __throw. */
435 expand_builtin_dwarf_sp_column (void)
437 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
440 /* Return a pointer to a copy of the section string name S with all
441 attributes stripped off, and an asterisk prepended (for assemble_name). */
443 static inline char *
444 stripattributes (const char *s)
446 char *stripped = xmalloc (strlen (s) + 2);
447 char *p = stripped;
449 *p++ = '*';
451 while (*s && *s != ',')
452 *p++ = *s++;
454 *p = '\0';
455 return stripped;
458 /* Generate code to initialize the register size table. */
460 void
461 expand_builtin_init_dwarf_reg_sizes (tree address)
463 int i;
464 enum machine_mode mode = TYPE_MODE (char_type_node);
465 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
466 rtx mem = gen_rtx_MEM (BLKmode, addr);
467 bool wrote_return_column = false;
469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
472 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
473 enum machine_mode save_mode = reg_raw_mode[i];
474 HOST_WIDE_INT size;
476 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
477 save_mode = choose_hard_reg_mode (i, 1, true);
478 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
480 if (save_mode == VOIDmode)
481 continue;
482 wrote_return_column = true;
484 size = GET_MODE_SIZE (save_mode);
485 if (offset < 0)
486 continue;
488 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
491 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
492 if (! wrote_return_column)
493 abort ();
494 i = DWARF_ALT_FRAME_RETURN_COLUMN;
495 wrote_return_column = false;
496 #else
497 i = DWARF_FRAME_RETURN_COLUMN;
498 #endif
500 if (! wrote_return_column)
502 enum machine_mode save_mode = Pmode;
503 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
504 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
505 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
509 /* Convert a DWARF call frame info. operation to its string name */
511 static const char *
512 dwarf_cfi_name (unsigned int cfi_opc)
514 switch (cfi_opc)
516 case DW_CFA_advance_loc:
517 return "DW_CFA_advance_loc";
518 case DW_CFA_offset:
519 return "DW_CFA_offset";
520 case DW_CFA_restore:
521 return "DW_CFA_restore";
522 case DW_CFA_nop:
523 return "DW_CFA_nop";
524 case DW_CFA_set_loc:
525 return "DW_CFA_set_loc";
526 case DW_CFA_advance_loc1:
527 return "DW_CFA_advance_loc1";
528 case DW_CFA_advance_loc2:
529 return "DW_CFA_advance_loc2";
530 case DW_CFA_advance_loc4:
531 return "DW_CFA_advance_loc4";
532 case DW_CFA_offset_extended:
533 return "DW_CFA_offset_extended";
534 case DW_CFA_restore_extended:
535 return "DW_CFA_restore_extended";
536 case DW_CFA_undefined:
537 return "DW_CFA_undefined";
538 case DW_CFA_same_value:
539 return "DW_CFA_same_value";
540 case DW_CFA_register:
541 return "DW_CFA_register";
542 case DW_CFA_remember_state:
543 return "DW_CFA_remember_state";
544 case DW_CFA_restore_state:
545 return "DW_CFA_restore_state";
546 case DW_CFA_def_cfa:
547 return "DW_CFA_def_cfa";
548 case DW_CFA_def_cfa_register:
549 return "DW_CFA_def_cfa_register";
550 case DW_CFA_def_cfa_offset:
551 return "DW_CFA_def_cfa_offset";
553 /* DWARF 3 */
554 case DW_CFA_def_cfa_expression:
555 return "DW_CFA_def_cfa_expression";
556 case DW_CFA_expression:
557 return "DW_CFA_expression";
558 case DW_CFA_offset_extended_sf:
559 return "DW_CFA_offset_extended_sf";
560 case DW_CFA_def_cfa_sf:
561 return "DW_CFA_def_cfa_sf";
562 case DW_CFA_def_cfa_offset_sf:
563 return "DW_CFA_def_cfa_offset_sf";
565 /* SGI/MIPS specific */
566 case DW_CFA_MIPS_advance_loc8:
567 return "DW_CFA_MIPS_advance_loc8";
569 /* GNU extensions */
570 case DW_CFA_GNU_window_save:
571 return "DW_CFA_GNU_window_save";
572 case DW_CFA_GNU_args_size:
573 return "DW_CFA_GNU_args_size";
574 case DW_CFA_GNU_negative_offset_extended:
575 return "DW_CFA_GNU_negative_offset_extended";
577 default:
578 return "DW_CFA_<unknown>";
582 /* Return a pointer to a newly allocated Call Frame Instruction. */
584 static inline dw_cfi_ref
585 new_cfi (void)
587 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
589 cfi->dw_cfi_next = NULL;
590 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
591 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
593 return cfi;
596 /* Add a Call Frame Instruction to list of instructions. */
598 static inline void
599 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
601 dw_cfi_ref *p;
603 /* Find the end of the chain. */
604 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
607 *p = cfi;
610 /* Generate a new label for the CFI info to refer to. */
612 char *
613 dwarf2out_cfi_label (void)
615 static char label[20];
617 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
618 ASM_OUTPUT_LABEL (asm_out_file, label);
619 return label;
622 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
623 or to the CIE if LABEL is NULL. */
625 static void
626 add_fde_cfi (const char *label, dw_cfi_ref cfi)
628 if (label)
630 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
632 if (*label == 0)
633 label = dwarf2out_cfi_label ();
635 if (fde->dw_fde_current_label == NULL
636 || strcmp (label, fde->dw_fde_current_label) != 0)
638 dw_cfi_ref xcfi;
640 fde->dw_fde_current_label = label = xstrdup (label);
642 /* Set the location counter to the new label. */
643 xcfi = new_cfi ();
644 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
645 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
646 add_cfi (&fde->dw_fde_cfi, xcfi);
649 add_cfi (&fde->dw_fde_cfi, cfi);
652 else
653 add_cfi (&cie_cfi_head, cfi);
656 /* Subroutine of lookup_cfa. */
658 static inline void
659 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
661 switch (cfi->dw_cfi_opc)
663 case DW_CFA_def_cfa_offset:
664 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
665 break;
666 case DW_CFA_def_cfa_register:
667 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
668 break;
669 case DW_CFA_def_cfa:
670 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
671 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
672 break;
673 case DW_CFA_def_cfa_expression:
674 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
675 break;
676 default:
677 break;
681 /* Find the previous value for the CFA. */
683 static void
684 lookup_cfa (dw_cfa_location *loc)
686 dw_cfi_ref cfi;
688 loc->reg = (unsigned long) -1;
689 loc->offset = 0;
690 loc->indirect = 0;
691 loc->base_offset = 0;
693 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
694 lookup_cfa_1 (cfi, loc);
696 if (fde_table_in_use)
698 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
699 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
700 lookup_cfa_1 (cfi, loc);
704 /* The current rule for calculating the DWARF2 canonical frame address. */
705 static dw_cfa_location cfa;
707 /* The register used for saving registers to the stack, and its offset
708 from the CFA. */
709 static dw_cfa_location cfa_store;
711 /* The running total of the size of arguments pushed onto the stack. */
712 static HOST_WIDE_INT args_size;
714 /* The last args_size we actually output. */
715 static HOST_WIDE_INT old_args_size;
717 /* Entry point to update the canonical frame address (CFA).
718 LABEL is passed to add_fde_cfi. The value of CFA is now to be
719 calculated from REG+OFFSET. */
721 void
722 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
724 dw_cfa_location loc;
725 loc.indirect = 0;
726 loc.base_offset = 0;
727 loc.reg = reg;
728 loc.offset = offset;
729 def_cfa_1 (label, &loc);
732 /* This routine does the actual work. The CFA is now calculated from
733 the dw_cfa_location structure. */
735 static void
736 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
738 dw_cfi_ref cfi;
739 dw_cfa_location old_cfa, loc;
741 cfa = *loc_p;
742 loc = *loc_p;
744 if (cfa_store.reg == loc.reg && loc.indirect == 0)
745 cfa_store.offset = loc.offset;
747 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
748 lookup_cfa (&old_cfa);
750 /* If nothing changed, no need to issue any call frame instructions. */
751 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
752 && loc.indirect == old_cfa.indirect
753 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
754 return;
756 cfi = new_cfi ();
758 if (loc.reg == old_cfa.reg && !loc.indirect)
760 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
761 indicating the CFA register did not change but the offset
762 did. */
763 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
764 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
767 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
768 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
769 && !loc.indirect)
771 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
772 indicating the CFA register has changed to <register> but the
773 offset has not changed. */
774 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
775 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
777 #endif
779 else if (loc.indirect == 0)
781 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
782 indicating the CFA register has changed to <register> with
783 the specified offset. */
784 cfi->dw_cfi_opc = DW_CFA_def_cfa;
785 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
786 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
788 else
790 /* Construct a DW_CFA_def_cfa_expression instruction to
791 calculate the CFA using a full location expression since no
792 register-offset pair is available. */
793 struct dw_loc_descr_struct *loc_list;
795 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
796 loc_list = build_cfa_loc (&loc);
797 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
800 add_fde_cfi (label, cfi);
803 /* Add the CFI for saving a register. REG is the CFA column number.
804 LABEL is passed to add_fde_cfi.
805 If SREG is -1, the register is saved at OFFSET from the CFA;
806 otherwise it is saved in SREG. */
808 static void
809 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
811 dw_cfi_ref cfi = new_cfi ();
813 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
815 if (sreg == INVALID_REGNUM)
817 if (reg & ~0x3f)
818 /* The register number won't fit in 6 bits, so we have to use
819 the long form. */
820 cfi->dw_cfi_opc = DW_CFA_offset_extended;
821 else
822 cfi->dw_cfi_opc = DW_CFA_offset;
824 #ifdef ENABLE_CHECKING
826 /* If we get an offset that is not a multiple of
827 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
828 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
829 description. */
830 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
832 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
833 abort ();
835 #endif
836 offset /= DWARF_CIE_DATA_ALIGNMENT;
837 if (offset < 0)
838 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
840 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
842 else if (sreg == reg)
843 cfi->dw_cfi_opc = DW_CFA_same_value;
844 else
846 cfi->dw_cfi_opc = DW_CFA_register;
847 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
850 add_fde_cfi (label, cfi);
853 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
854 This CFI tells the unwinder that it needs to restore the window registers
855 from the previous frame's window save area.
857 ??? Perhaps we should note in the CIE where windows are saved (instead of
858 assuming 0(cfa)) and what registers are in the window. */
860 void
861 dwarf2out_window_save (const char *label)
863 dw_cfi_ref cfi = new_cfi ();
865 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
866 add_fde_cfi (label, cfi);
869 /* Add a CFI to update the running total of the size of arguments
870 pushed onto the stack. */
872 void
873 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
875 dw_cfi_ref cfi;
877 if (size == old_args_size)
878 return;
880 old_args_size = size;
882 cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
884 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
885 add_fde_cfi (label, cfi);
888 /* Entry point for saving a register to the stack. REG is the GCC register
889 number. LABEL and OFFSET are passed to reg_save. */
891 void
892 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
894 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
897 /* Entry point for saving the return address in the stack.
898 LABEL and OFFSET are passed to reg_save. */
900 void
901 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
903 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
906 /* Entry point for saving the return address in a register.
907 LABEL and SREG are passed to reg_save. */
909 void
910 dwarf2out_return_reg (const char *label, unsigned int sreg)
912 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
915 /* Record the initial position of the return address. RTL is
916 INCOMING_RETURN_ADDR_RTX. */
918 static void
919 initial_return_save (rtx rtl)
921 unsigned int reg = INVALID_REGNUM;
922 HOST_WIDE_INT offset = 0;
924 switch (GET_CODE (rtl))
926 case REG:
927 /* RA is in a register. */
928 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
929 break;
931 case MEM:
932 /* RA is on the stack. */
933 rtl = XEXP (rtl, 0);
934 switch (GET_CODE (rtl))
936 case REG:
937 if (REGNO (rtl) != STACK_POINTER_REGNUM)
938 abort ();
939 offset = 0;
940 break;
942 case PLUS:
943 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
944 abort ();
945 offset = INTVAL (XEXP (rtl, 1));
946 break;
948 case MINUS:
949 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
950 abort ();
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
954 default:
955 abort ();
958 break;
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
965 abort ();
966 initial_return_save (XEXP (rtl, 0));
967 return;
969 default:
970 abort ();
973 if (reg != DWARF_FRAME_RETURN_COLUMN)
974 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
977 /* Given a SET, calculate the amount of stack adjustment it
978 contains. */
980 static HOST_WIDE_INT
981 stack_adjust_offset (rtx pattern)
983 rtx src = SET_SRC (pattern);
984 rtx dest = SET_DEST (pattern);
985 HOST_WIDE_INT offset = 0;
986 enum rtx_code code;
988 if (dest == stack_pointer_rtx)
990 /* (set (reg sp) (plus (reg sp) (const_int))) */
991 code = GET_CODE (src);
992 if (! (code == PLUS || code == MINUS)
993 || XEXP (src, 0) != stack_pointer_rtx
994 || GET_CODE (XEXP (src, 1)) != CONST_INT)
995 return 0;
997 offset = INTVAL (XEXP (src, 1));
998 if (code == PLUS)
999 offset = -offset;
1001 else if (MEM_P (dest))
1003 /* (set (mem (pre_dec (reg sp))) (foo)) */
1004 src = XEXP (dest, 0);
1005 code = GET_CODE (src);
1007 switch (code)
1009 case PRE_MODIFY:
1010 case POST_MODIFY:
1011 if (XEXP (src, 0) == stack_pointer_rtx)
1013 rtx val = XEXP (XEXP (src, 1), 1);
1014 /* We handle only adjustments by constant amount. */
1015 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1016 GET_CODE (val) != CONST_INT)
1017 abort ();
1018 offset = -INTVAL (val);
1019 break;
1021 return 0;
1023 case PRE_DEC:
1024 case POST_DEC:
1025 if (XEXP (src, 0) == stack_pointer_rtx)
1027 offset = GET_MODE_SIZE (GET_MODE (dest));
1028 break;
1030 return 0;
1032 case PRE_INC:
1033 case POST_INC:
1034 if (XEXP (src, 0) == stack_pointer_rtx)
1036 offset = -GET_MODE_SIZE (GET_MODE (dest));
1037 break;
1039 return 0;
1041 default:
1042 return 0;
1045 else
1046 return 0;
1048 return offset;
1051 /* Check INSN to see if it looks like a push or a stack adjustment, and
1052 make a note of it if it does. EH uses this information to find out how
1053 much extra space it needs to pop off the stack. */
1055 static void
1056 dwarf2out_stack_adjust (rtx insn)
1058 HOST_WIDE_INT offset;
1059 const char *label;
1060 int i;
1062 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1063 with this function. Proper support would require all frame-related
1064 insns to be marked, and to be able to handle saving state around
1065 epilogues textually in the middle of the function. */
1066 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1067 return;
1069 if (!flag_asynchronous_unwind_tables && CALL_P (insn))
1071 /* Extract the size of the args from the CALL rtx itself. */
1072 insn = PATTERN (insn);
1073 if (GET_CODE (insn) == PARALLEL)
1074 insn = XVECEXP (insn, 0, 0);
1075 if (GET_CODE (insn) == SET)
1076 insn = SET_SRC (insn);
1077 if (GET_CODE (insn) != CALL)
1078 abort ();
1080 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1081 return;
1084 /* If only calls can throw, and we have a frame pointer,
1085 save up adjustments until we see the CALL_INSN. */
1086 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1087 return;
1089 if (BARRIER_P (insn))
1091 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1092 the compiler will have already emitted a stack adjustment, but
1093 doesn't bother for calls to noreturn functions. */
1094 #ifdef STACK_GROWS_DOWNWARD
1095 offset = -args_size;
1096 #else
1097 offset = args_size;
1098 #endif
1100 else if (GET_CODE (PATTERN (insn)) == SET)
1101 offset = stack_adjust_offset (PATTERN (insn));
1102 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1103 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1105 /* There may be stack adjustments inside compound insns. Search
1106 for them. */
1107 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1108 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1109 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1111 else
1112 return;
1114 if (offset == 0)
1115 return;
1117 if (cfa.reg == STACK_POINTER_REGNUM)
1118 cfa.offset += offset;
1120 #ifndef STACK_GROWS_DOWNWARD
1121 offset = -offset;
1122 #endif
1124 args_size += offset;
1125 if (args_size < 0)
1126 args_size = 0;
1128 label = dwarf2out_cfi_label ();
1129 def_cfa_1 (label, &cfa);
1130 dwarf2out_args_size (label, args_size);
1133 #endif
1135 /* We delay emitting a register save until either (a) we reach the end
1136 of the prologue or (b) the register is clobbered. This clusters
1137 register saves so that there are fewer pc advances. */
1139 struct queued_reg_save GTY(())
1141 struct queued_reg_save *next;
1142 rtx reg;
1143 HOST_WIDE_INT cfa_offset;
1144 rtx saved_reg;
1147 static GTY(()) struct queued_reg_save *queued_reg_saves;
1149 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1150 struct reg_saved_in_data GTY(()) {
1151 rtx orig_reg;
1152 rtx saved_in_reg;
1155 /* A list of registers saved in other registers.
1156 The list intentionally has a small maximum capacity of 4; if your
1157 port needs more than that, you might consider implementing a
1158 more efficient data structure. */
1159 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1160 static GTY(()) size_t num_regs_saved_in_regs;
1162 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1163 static const char *last_reg_save_label;
1165 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1166 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1168 static void
1169 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1171 struct queued_reg_save *q;
1173 /* Duplicates waste space, but it's also necessary to remove them
1174 for correctness, since the queue gets output in reverse
1175 order. */
1176 for (q = queued_reg_saves; q != NULL; q = q->next)
1177 if (REGNO (q->reg) == REGNO (reg))
1178 break;
1180 if (q == NULL)
1182 q = ggc_alloc (sizeof (*q));
1183 q->next = queued_reg_saves;
1184 queued_reg_saves = q;
1187 q->reg = reg;
1188 q->cfa_offset = offset;
1189 q->saved_reg = sreg;
1191 last_reg_save_label = label;
1194 /* Output all the entries in QUEUED_REG_SAVES. */
1196 static void
1197 flush_queued_reg_saves (void)
1199 struct queued_reg_save *q;
1201 for (q = queued_reg_saves; q; q = q->next)
1203 size_t i;
1204 unsigned int reg, sreg;
1206 for (i = 0; i < num_regs_saved_in_regs; i++)
1207 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1208 break;
1209 if (q->saved_reg && i == num_regs_saved_in_regs)
1211 if (i == ARRAY_SIZE (regs_saved_in_regs))
1212 abort ();
1213 num_regs_saved_in_regs++;
1215 if (i != num_regs_saved_in_regs)
1217 regs_saved_in_regs[i].orig_reg = q->reg;
1218 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1221 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1222 if (q->saved_reg)
1223 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1224 else
1225 sreg = INVALID_REGNUM;
1226 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1229 queued_reg_saves = NULL;
1230 last_reg_save_label = NULL;
1233 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1234 location for? Or, does it clobber a register which we've previously
1235 said that some other register is saved in, and for which we now
1236 have a new location for? */
1238 static bool
1239 clobbers_queued_reg_save (rtx insn)
1241 struct queued_reg_save *q;
1243 for (q = queued_reg_saves; q; q = q->next)
1245 size_t i;
1246 if (modified_in_p (q->reg, insn))
1247 return true;
1248 for (i = 0; i < num_regs_saved_in_regs; i++)
1249 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1250 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1251 return true;
1254 return false;
1257 /* What register, if any, is currently saved in REG? */
1259 static rtx
1260 reg_saved_in (rtx reg)
1262 unsigned int regn = REGNO (reg);
1263 size_t i;
1264 struct queued_reg_save *q;
1266 for (q = queued_reg_saves; q; q = q->next)
1267 if (q->saved_reg && regn == REGNO (q->saved_reg))
1268 return q->reg;
1270 for (i = 0; i < num_regs_saved_in_regs; i++)
1271 if (regs_saved_in_regs[i].saved_in_reg
1272 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1273 return regs_saved_in_regs[i].orig_reg;
1275 return NULL_RTX;
1279 /* A temporary register holding an integral value used in adjusting SP
1280 or setting up the store_reg. The "offset" field holds the integer
1281 value, not an offset. */
1282 static dw_cfa_location cfa_temp;
1284 /* Record call frame debugging information for an expression EXPR,
1285 which either sets SP or FP (adjusting how we calculate the frame
1286 address) or saves a register to the stack or another register.
1287 LABEL indicates the address of EXPR.
1289 This function encodes a state machine mapping rtxes to actions on
1290 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1291 users need not read the source code.
1293 The High-Level Picture
1295 Changes in the register we use to calculate the CFA: Currently we
1296 assume that if you copy the CFA register into another register, we
1297 should take the other one as the new CFA register; this seems to
1298 work pretty well. If it's wrong for some target, it's simple
1299 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1301 Changes in the register we use for saving registers to the stack:
1302 This is usually SP, but not always. Again, we deduce that if you
1303 copy SP into another register (and SP is not the CFA register),
1304 then the new register is the one we will be using for register
1305 saves. This also seems to work.
1307 Register saves: There's not much guesswork about this one; if
1308 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1309 register save, and the register used to calculate the destination
1310 had better be the one we think we're using for this purpose.
1311 It's also assumed that a copy from a call-saved register to another
1312 register is saving that register if RTX_FRAME_RELATED_P is set on
1313 that instruction. If the copy is from a call-saved register to
1314 the *same* register, that means that the register is now the same
1315 value as in the caller.
1317 Except: If the register being saved is the CFA register, and the
1318 offset is nonzero, we are saving the CFA, so we assume we have to
1319 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1320 the intent is to save the value of SP from the previous frame.
1322 In addition, if a register has previously been saved to a different
1323 register,
1325 Invariants / Summaries of Rules
1327 cfa current rule for calculating the CFA. It usually
1328 consists of a register and an offset.
1329 cfa_store register used by prologue code to save things to the stack
1330 cfa_store.offset is the offset from the value of
1331 cfa_store.reg to the actual CFA
1332 cfa_temp register holding an integral value. cfa_temp.offset
1333 stores the value, which will be used to adjust the
1334 stack pointer. cfa_temp is also used like cfa_store,
1335 to track stores to the stack via fp or a temp reg.
1337 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1338 with cfa.reg as the first operand changes the cfa.reg and its
1339 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1340 cfa_temp.offset.
1342 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1343 expression yielding a constant. This sets cfa_temp.reg
1344 and cfa_temp.offset.
1346 Rule 5: Create a new register cfa_store used to save items to the
1347 stack.
1349 Rules 10-14: Save a register to the stack. Define offset as the
1350 difference of the original location and cfa_store's
1351 location (or cfa_temp's location if cfa_temp is used).
1353 The Rules
1355 "{a,b}" indicates a choice of a xor b.
1356 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1358 Rule 1:
1359 (set <reg1> <reg2>:cfa.reg)
1360 effects: cfa.reg = <reg1>
1361 cfa.offset unchanged
1362 cfa_temp.reg = <reg1>
1363 cfa_temp.offset = cfa.offset
1365 Rule 2:
1366 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1367 {<const_int>,<reg>:cfa_temp.reg}))
1368 effects: cfa.reg = sp if fp used
1369 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1370 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1371 if cfa_store.reg==sp
1373 Rule 3:
1374 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1375 effects: cfa.reg = fp
1376 cfa_offset += +/- <const_int>
1378 Rule 4:
1379 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1380 constraints: <reg1> != fp
1381 <reg1> != sp
1382 effects: cfa.reg = <reg1>
1383 cfa_temp.reg = <reg1>
1384 cfa_temp.offset = cfa.offset
1386 Rule 5:
1387 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1388 constraints: <reg1> != fp
1389 <reg1> != sp
1390 effects: cfa_store.reg = <reg1>
1391 cfa_store.offset = cfa.offset - cfa_temp.offset
1393 Rule 6:
1394 (set <reg> <const_int>)
1395 effects: cfa_temp.reg = <reg>
1396 cfa_temp.offset = <const_int>
1398 Rule 7:
1399 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1400 effects: cfa_temp.reg = <reg1>
1401 cfa_temp.offset |= <const_int>
1403 Rule 8:
1404 (set <reg> (high <exp>))
1405 effects: none
1407 Rule 9:
1408 (set <reg> (lo_sum <exp> <const_int>))
1409 effects: cfa_temp.reg = <reg>
1410 cfa_temp.offset = <const_int>
1412 Rule 10:
1413 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1414 effects: cfa_store.offset -= <const_int>
1415 cfa.offset = cfa_store.offset if cfa.reg == sp
1416 cfa.reg = sp
1417 cfa.base_offset = -cfa_store.offset
1419 Rule 11:
1420 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1421 effects: cfa_store.offset += -/+ mode_size(mem)
1422 cfa.offset = cfa_store.offset if cfa.reg == sp
1423 cfa.reg = sp
1424 cfa.base_offset = -cfa_store.offset
1426 Rule 12:
1427 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1429 <reg2>)
1430 effects: cfa.reg = <reg1>
1431 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1433 Rule 13:
1434 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1435 effects: cfa.reg = <reg1>
1436 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1438 Rule 14:
1439 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1440 effects: cfa.reg = <reg1>
1441 cfa.base_offset = -cfa_temp.offset
1442 cfa_temp.offset -= mode_size(mem) */
1444 static void
1445 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1447 rtx src, dest;
1448 HOST_WIDE_INT offset;
1450 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1451 the PARALLEL independently. The first element is always processed if
1452 it is a SET. This is for backward compatibility. Other elements
1453 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1454 flag is set in them. */
1455 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1457 int par_index;
1458 int limit = XVECLEN (expr, 0);
1460 for (par_index = 0; par_index < limit; par_index++)
1461 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1462 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1463 || par_index == 0))
1464 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1466 return;
1469 if (GET_CODE (expr) != SET)
1470 abort ();
1472 src = SET_SRC (expr);
1473 dest = SET_DEST (expr);
1475 if (GET_CODE (src) == REG)
1477 rtx rsi = reg_saved_in (src);
1478 if (rsi)
1479 src = rsi;
1482 switch (GET_CODE (dest))
1484 case REG:
1485 switch (GET_CODE (src))
1487 /* Setting FP from SP. */
1488 case REG:
1489 if (cfa.reg == (unsigned) REGNO (src))
1491 /* Rule 1 */
1492 /* Update the CFA rule wrt SP or FP. Make sure src is
1493 relative to the current CFA register.
1495 We used to require that dest be either SP or FP, but the
1496 ARM copies SP to a temporary register, and from there to
1497 FP. So we just rely on the backends to only set
1498 RTX_FRAME_RELATED_P on appropriate insns. */
1499 cfa.reg = REGNO (dest);
1500 cfa_temp.reg = cfa.reg;
1501 cfa_temp.offset = cfa.offset;
1503 else if (call_used_regs [REGNO (dest)]
1504 && ! fixed_regs [REGNO (dest)])
1506 /* Saving a register in a register. */
1507 queue_reg_save (label, src, dest, 0);
1509 else
1510 abort ();
1511 break;
1513 case PLUS:
1514 case MINUS:
1515 case LO_SUM:
1516 if (dest == stack_pointer_rtx)
1518 /* Rule 2 */
1519 /* Adjusting SP. */
1520 switch (GET_CODE (XEXP (src, 1)))
1522 case CONST_INT:
1523 offset = INTVAL (XEXP (src, 1));
1524 break;
1525 case REG:
1526 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1527 abort ();
1528 offset = cfa_temp.offset;
1529 break;
1530 default:
1531 abort ();
1534 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1536 /* Restoring SP from FP in the epilogue. */
1537 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1538 abort ();
1539 cfa.reg = STACK_POINTER_REGNUM;
1541 else if (GET_CODE (src) == LO_SUM)
1542 /* Assume we've set the source reg of the LO_SUM from sp. */
1544 else if (XEXP (src, 0) != stack_pointer_rtx)
1545 abort ();
1547 if (GET_CODE (src) != MINUS)
1548 offset = -offset;
1549 if (cfa.reg == STACK_POINTER_REGNUM)
1550 cfa.offset += offset;
1551 if (cfa_store.reg == STACK_POINTER_REGNUM)
1552 cfa_store.offset += offset;
1554 else if (dest == hard_frame_pointer_rtx)
1556 /* Rule 3 */
1557 /* Either setting the FP from an offset of the SP,
1558 or adjusting the FP */
1559 if (! frame_pointer_needed)
1560 abort ();
1562 if (REG_P (XEXP (src, 0))
1563 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1564 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1566 offset = INTVAL (XEXP (src, 1));
1567 if (GET_CODE (src) != MINUS)
1568 offset = -offset;
1569 cfa.offset += offset;
1570 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1572 else
1573 abort ();
1575 else
1577 if (GET_CODE (src) == MINUS)
1578 abort ();
1580 /* Rule 4 */
1581 if (REG_P (XEXP (src, 0))
1582 && REGNO (XEXP (src, 0)) == cfa.reg
1583 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1585 /* Setting a temporary CFA register that will be copied
1586 into the FP later on. */
1587 offset = - INTVAL (XEXP (src, 1));
1588 cfa.offset += offset;
1589 cfa.reg = REGNO (dest);
1590 /* Or used to save regs to the stack. */
1591 cfa_temp.reg = cfa.reg;
1592 cfa_temp.offset = cfa.offset;
1595 /* Rule 5 */
1596 else if (REG_P (XEXP (src, 0))
1597 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1598 && XEXP (src, 1) == stack_pointer_rtx)
1600 /* Setting a scratch register that we will use instead
1601 of SP for saving registers to the stack. */
1602 if (cfa.reg != STACK_POINTER_REGNUM)
1603 abort ();
1604 cfa_store.reg = REGNO (dest);
1605 cfa_store.offset = cfa.offset - cfa_temp.offset;
1608 /* Rule 9 */
1609 else if (GET_CODE (src) == LO_SUM
1610 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1612 cfa_temp.reg = REGNO (dest);
1613 cfa_temp.offset = INTVAL (XEXP (src, 1));
1615 else
1616 abort ();
1618 break;
1620 /* Rule 6 */
1621 case CONST_INT:
1622 cfa_temp.reg = REGNO (dest);
1623 cfa_temp.offset = INTVAL (src);
1624 break;
1626 /* Rule 7 */
1627 case IOR:
1628 if (!REG_P (XEXP (src, 0))
1629 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1630 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1631 abort ();
1633 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1634 cfa_temp.reg = REGNO (dest);
1635 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1636 break;
1638 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1639 which will fill in all of the bits. */
1640 /* Rule 8 */
1641 case HIGH:
1642 break;
1644 default:
1645 abort ();
1648 def_cfa_1 (label, &cfa);
1649 break;
1651 case MEM:
1652 if (!REG_P (src))
1653 abort ();
1655 /* Saving a register to the stack. Make sure dest is relative to the
1656 CFA register. */
1657 switch (GET_CODE (XEXP (dest, 0)))
1659 /* Rule 10 */
1660 /* With a push. */
1661 case PRE_MODIFY:
1662 /* We can't handle variable size modifications. */
1663 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1664 abort ();
1665 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1667 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1668 || cfa_store.reg != STACK_POINTER_REGNUM)
1669 abort ();
1671 cfa_store.offset += offset;
1672 if (cfa.reg == STACK_POINTER_REGNUM)
1673 cfa.offset = cfa_store.offset;
1675 offset = -cfa_store.offset;
1676 break;
1678 /* Rule 11 */
1679 case PRE_INC:
1680 case PRE_DEC:
1681 offset = GET_MODE_SIZE (GET_MODE (dest));
1682 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1683 offset = -offset;
1685 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1686 || cfa_store.reg != STACK_POINTER_REGNUM)
1687 abort ();
1689 cfa_store.offset += offset;
1690 if (cfa.reg == STACK_POINTER_REGNUM)
1691 cfa.offset = cfa_store.offset;
1693 offset = -cfa_store.offset;
1694 break;
1696 /* Rule 12 */
1697 /* With an offset. */
1698 case PLUS:
1699 case MINUS:
1700 case LO_SUM:
1701 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1702 abort ();
1703 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1704 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1705 offset = -offset;
1707 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1708 offset -= cfa_store.offset;
1709 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1710 offset -= cfa_temp.offset;
1711 else
1712 abort ();
1713 break;
1715 /* Rule 13 */
1716 /* Without an offset. */
1717 case REG:
1718 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1719 offset = -cfa_store.offset;
1720 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1721 offset = -cfa_temp.offset;
1722 else
1723 abort ();
1724 break;
1726 /* Rule 14 */
1727 case POST_INC:
1728 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1729 abort ();
1730 offset = -cfa_temp.offset;
1731 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1732 break;
1734 default:
1735 abort ();
1738 if (REGNO (src) != STACK_POINTER_REGNUM
1739 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1740 && (unsigned) REGNO (src) == cfa.reg)
1742 /* We're storing the current CFA reg into the stack. */
1744 if (cfa.offset == 0)
1746 /* If the source register is exactly the CFA, assume
1747 we're saving SP like any other register; this happens
1748 on the ARM. */
1749 def_cfa_1 (label, &cfa);
1750 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1751 break;
1753 else
1755 /* Otherwise, we'll need to look in the stack to
1756 calculate the CFA. */
1757 rtx x = XEXP (dest, 0);
1759 if (!REG_P (x))
1760 x = XEXP (x, 0);
1761 if (!REG_P (x))
1762 abort ();
1764 cfa.reg = REGNO (x);
1765 cfa.base_offset = offset;
1766 cfa.indirect = 1;
1767 def_cfa_1 (label, &cfa);
1768 break;
1772 def_cfa_1 (label, &cfa);
1773 queue_reg_save (label, src, NULL_RTX, offset);
1774 break;
1776 default:
1777 abort ();
1781 /* Record call frame debugging information for INSN, which either
1782 sets SP or FP (adjusting how we calculate the frame address) or saves a
1783 register to the stack. If INSN is NULL_RTX, initialize our state. */
1785 void
1786 dwarf2out_frame_debug (rtx insn)
1788 const char *label;
1789 rtx src;
1791 if (insn == NULL_RTX)
1793 size_t i;
1795 /* Flush any queued register saves. */
1796 flush_queued_reg_saves ();
1798 /* Set up state for generating call frame debug info. */
1799 lookup_cfa (&cfa);
1800 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1801 abort ();
1803 cfa.reg = STACK_POINTER_REGNUM;
1804 cfa_store = cfa;
1805 cfa_temp.reg = -1;
1806 cfa_temp.offset = 0;
1808 for (i = 0; i < num_regs_saved_in_regs; i++)
1810 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1811 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1813 num_regs_saved_in_regs = 0;
1814 return;
1817 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1818 flush_queued_reg_saves ();
1820 if (! RTX_FRAME_RELATED_P (insn))
1822 if (!ACCUMULATE_OUTGOING_ARGS)
1823 dwarf2out_stack_adjust (insn);
1825 return;
1828 label = dwarf2out_cfi_label ();
1829 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1830 if (src)
1831 insn = XEXP (src, 0);
1832 else
1833 insn = PATTERN (insn);
1835 dwarf2out_frame_debug_expr (insn, label);
1838 #endif
1840 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1841 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1842 (enum dwarf_call_frame_info cfi);
1844 static enum dw_cfi_oprnd_type
1845 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1847 switch (cfi)
1849 case DW_CFA_nop:
1850 case DW_CFA_GNU_window_save:
1851 return dw_cfi_oprnd_unused;
1853 case DW_CFA_set_loc:
1854 case DW_CFA_advance_loc1:
1855 case DW_CFA_advance_loc2:
1856 case DW_CFA_advance_loc4:
1857 case DW_CFA_MIPS_advance_loc8:
1858 return dw_cfi_oprnd_addr;
1860 case DW_CFA_offset:
1861 case DW_CFA_offset_extended:
1862 case DW_CFA_def_cfa:
1863 case DW_CFA_offset_extended_sf:
1864 case DW_CFA_def_cfa_sf:
1865 case DW_CFA_restore_extended:
1866 case DW_CFA_undefined:
1867 case DW_CFA_same_value:
1868 case DW_CFA_def_cfa_register:
1869 case DW_CFA_register:
1870 return dw_cfi_oprnd_reg_num;
1872 case DW_CFA_def_cfa_offset:
1873 case DW_CFA_GNU_args_size:
1874 case DW_CFA_def_cfa_offset_sf:
1875 return dw_cfi_oprnd_offset;
1877 case DW_CFA_def_cfa_expression:
1878 case DW_CFA_expression:
1879 return dw_cfi_oprnd_loc;
1881 default:
1882 abort ();
1886 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1887 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1888 (enum dwarf_call_frame_info cfi);
1890 static enum dw_cfi_oprnd_type
1891 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1893 switch (cfi)
1895 case DW_CFA_def_cfa:
1896 case DW_CFA_def_cfa_sf:
1897 case DW_CFA_offset:
1898 case DW_CFA_offset_extended_sf:
1899 case DW_CFA_offset_extended:
1900 return dw_cfi_oprnd_offset;
1902 case DW_CFA_register:
1903 return dw_cfi_oprnd_reg_num;
1905 default:
1906 return dw_cfi_oprnd_unused;
1910 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1912 /* Map register numbers held in the call frame info that gcc has
1913 collected using DWARF_FRAME_REGNUM to those that should be output in
1914 .debug_frame and .eh_frame. */
1915 #ifndef DWARF2_FRAME_REG_OUT
1916 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1917 #endif
1919 /* Output a Call Frame Information opcode and its operand(s). */
1921 static void
1922 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1924 unsigned long r;
1925 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1926 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1927 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1928 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1929 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1930 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1932 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1933 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1934 "DW_CFA_offset, column 0x%lx", r);
1935 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1937 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1939 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1940 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1941 "DW_CFA_restore, column 0x%lx", r);
1943 else
1945 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1946 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1948 switch (cfi->dw_cfi_opc)
1950 case DW_CFA_set_loc:
1951 if (for_eh)
1952 dw2_asm_output_encoded_addr_rtx (
1953 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1954 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1955 NULL);
1956 else
1957 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1958 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1959 break;
1961 case DW_CFA_advance_loc1:
1962 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1963 fde->dw_fde_current_label, NULL);
1964 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1965 break;
1967 case DW_CFA_advance_loc2:
1968 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1969 fde->dw_fde_current_label, NULL);
1970 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1971 break;
1973 case DW_CFA_advance_loc4:
1974 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1975 fde->dw_fde_current_label, NULL);
1976 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1977 break;
1979 case DW_CFA_MIPS_advance_loc8:
1980 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1981 fde->dw_fde_current_label, NULL);
1982 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1983 break;
1985 case DW_CFA_offset_extended:
1986 case DW_CFA_def_cfa:
1987 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1988 dw2_asm_output_data_uleb128 (r, NULL);
1989 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1990 break;
1992 case DW_CFA_offset_extended_sf:
1993 case DW_CFA_def_cfa_sf:
1994 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1995 dw2_asm_output_data_uleb128 (r, NULL);
1996 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1997 break;
1999 case DW_CFA_restore_extended:
2000 case DW_CFA_undefined:
2001 case DW_CFA_same_value:
2002 case DW_CFA_def_cfa_register:
2003 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2004 dw2_asm_output_data_uleb128 (r, NULL);
2005 break;
2007 case DW_CFA_register:
2008 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2009 dw2_asm_output_data_uleb128 (r, NULL);
2010 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2011 dw2_asm_output_data_uleb128 (r, NULL);
2012 break;
2014 case DW_CFA_def_cfa_offset:
2015 case DW_CFA_GNU_args_size:
2016 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2017 break;
2019 case DW_CFA_def_cfa_offset_sf:
2020 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2021 break;
2023 case DW_CFA_GNU_window_save:
2024 break;
2026 case DW_CFA_def_cfa_expression:
2027 case DW_CFA_expression:
2028 output_cfa_loc (cfi);
2029 break;
2031 case DW_CFA_GNU_negative_offset_extended:
2032 /* Obsoleted by DW_CFA_offset_extended_sf. */
2033 abort ();
2035 default:
2036 break;
2041 /* Output the call frame information used to record information
2042 that relates to calculating the frame pointer, and records the
2043 location of saved registers. */
2045 static void
2046 output_call_frame_info (int for_eh)
2048 unsigned int i;
2049 dw_fde_ref fde;
2050 dw_cfi_ref cfi;
2051 char l1[20], l2[20], section_start_label[20];
2052 bool any_lsda_needed = false;
2053 char augmentation[6];
2054 int augmentation_size;
2055 int fde_encoding = DW_EH_PE_absptr;
2056 int per_encoding = DW_EH_PE_absptr;
2057 int lsda_encoding = DW_EH_PE_absptr;
2059 /* Don't emit a CIE if there won't be any FDEs. */
2060 if (fde_table_in_use == 0)
2061 return;
2063 /* If we make FDEs linkonce, we may have to emit an empty label for
2064 an FDE that wouldn't otherwise be emitted. We want to avoid
2065 having an FDE kept around when the function it refers to is
2066 discarded. (Example where this matters: a primary function
2067 template in C++ requires EH information, but an explicit
2068 specialization doesn't. */
2069 if (TARGET_USES_WEAK_UNWIND_INFO
2070 && ! flag_asynchronous_unwind_tables
2071 && for_eh)
2072 for (i = 0; i < fde_table_in_use; i++)
2073 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2074 && !fde_table[i].uses_eh_lsda
2075 && ! DECL_ONE_ONLY (fde_table[i].decl))
2076 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2077 for_eh, /* empty */ 1);
2079 /* If we don't have any functions we'll want to unwind out of, don't
2080 emit any EH unwind information. Note that if exceptions aren't
2081 enabled, we won't have collected nothrow information, and if we
2082 asked for asynchronous tables, we always want this info. */
2083 if (for_eh)
2085 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2087 for (i = 0; i < fde_table_in_use; i++)
2088 if (fde_table[i].uses_eh_lsda)
2089 any_eh_needed = any_lsda_needed = true;
2090 else if (TARGET_USES_WEAK_UNWIND_INFO
2091 && DECL_ONE_ONLY (fde_table[i].decl))
2092 any_eh_needed = 1;
2093 else if (! fde_table[i].nothrow
2094 && ! fde_table[i].all_throwers_are_sibcalls)
2095 any_eh_needed = true;
2097 if (! any_eh_needed)
2098 return;
2101 /* We're going to be generating comments, so turn on app. */
2102 if (flag_debug_asm)
2103 app_enable ();
2105 if (for_eh)
2106 targetm.asm_out.eh_frame_section ();
2107 else
2108 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2110 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2111 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2113 /* Output the CIE. */
2114 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2115 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2116 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2117 "Length of Common Information Entry");
2118 ASM_OUTPUT_LABEL (asm_out_file, l1);
2120 /* Now that the CIE pointer is PC-relative for EH,
2121 use 0 to identify the CIE. */
2122 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2123 (for_eh ? 0 : DW_CIE_ID),
2124 "CIE Identifier Tag");
2126 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2128 augmentation[0] = 0;
2129 augmentation_size = 0;
2130 if (for_eh)
2132 char *p;
2134 /* Augmentation:
2135 z Indicates that a uleb128 is present to size the
2136 augmentation section.
2137 L Indicates the encoding (and thus presence) of
2138 an LSDA pointer in the FDE augmentation.
2139 R Indicates a non-default pointer encoding for
2140 FDE code pointers.
2141 P Indicates the presence of an encoding + language
2142 personality routine in the CIE augmentation. */
2144 fde_encoding = TARGET_USES_WEAK_UNWIND_INFO
2145 ? ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1)
2146 : ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2147 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2148 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2150 p = augmentation + 1;
2151 if (eh_personality_libfunc)
2153 *p++ = 'P';
2154 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2156 if (any_lsda_needed)
2158 *p++ = 'L';
2159 augmentation_size += 1;
2161 if (fde_encoding != DW_EH_PE_absptr)
2163 *p++ = 'R';
2164 augmentation_size += 1;
2166 if (p > augmentation + 1)
2168 augmentation[0] = 'z';
2169 *p = '\0';
2172 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2173 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2175 int offset = ( 4 /* Length */
2176 + 4 /* CIE Id */
2177 + 1 /* CIE version */
2178 + strlen (augmentation) + 1 /* Augmentation */
2179 + size_of_uleb128 (1) /* Code alignment */
2180 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2181 + 1 /* RA column */
2182 + 1 /* Augmentation size */
2183 + 1 /* Personality encoding */ );
2184 int pad = -offset & (PTR_SIZE - 1);
2186 augmentation_size += pad;
2188 /* Augmentations should be small, so there's scarce need to
2189 iterate for a solution. Die if we exceed one uleb128 byte. */
2190 if (size_of_uleb128 (augmentation_size) != 1)
2191 abort ();
2195 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2196 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2197 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2198 "CIE Data Alignment Factor");
2200 if (DW_CIE_VERSION == 1)
2201 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2202 else
2203 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2205 if (augmentation[0])
2207 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2208 if (eh_personality_libfunc)
2210 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2211 eh_data_format_name (per_encoding));
2212 dw2_asm_output_encoded_addr_rtx (per_encoding,
2213 eh_personality_libfunc, NULL);
2216 if (any_lsda_needed)
2217 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2218 eh_data_format_name (lsda_encoding));
2220 if (fde_encoding != DW_EH_PE_absptr)
2221 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2222 eh_data_format_name (fde_encoding));
2225 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2226 output_cfi (cfi, NULL, for_eh);
2228 /* Pad the CIE out to an address sized boundary. */
2229 ASM_OUTPUT_ALIGN (asm_out_file,
2230 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2231 ASM_OUTPUT_LABEL (asm_out_file, l2);
2233 /* Loop through all of the FDE's. */
2234 for (i = 0; i < fde_table_in_use; i++)
2236 fde = &fde_table[i];
2238 /* Don't emit EH unwind info for leaf functions that don't need it. */
2239 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2240 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2241 && (! TARGET_USES_WEAK_UNWIND_INFO || ! DECL_ONE_ONLY (fde->decl))
2242 && !fde->uses_eh_lsda)
2243 continue;
2245 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2246 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2247 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2248 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2249 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2250 "FDE Length");
2251 ASM_OUTPUT_LABEL (asm_out_file, l1);
2253 if (for_eh)
2254 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2255 else
2256 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2257 "FDE CIE offset");
2259 if (for_eh)
2261 if (TARGET_USES_WEAK_UNWIND_INFO
2262 && DECL_ONE_ONLY (fde->decl))
2263 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2264 gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER
2265 (DECL_ASSEMBLER_NAME (fde->decl))),
2266 "FDE initial location");
2267 else
2269 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2270 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2271 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2272 sym_ref,
2273 "FDE initial location");
2275 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2276 fde->dw_fde_end, fde->dw_fde_begin,
2277 "FDE address range");
2279 else
2281 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2282 "FDE initial location");
2283 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2284 fde->dw_fde_end, fde->dw_fde_begin,
2285 "FDE address range");
2288 if (augmentation[0])
2290 if (any_lsda_needed)
2292 int size = size_of_encoded_value (lsda_encoding);
2294 if (lsda_encoding == DW_EH_PE_aligned)
2296 int offset = ( 4 /* Length */
2297 + 4 /* CIE offset */
2298 + 2 * size_of_encoded_value (fde_encoding)
2299 + 1 /* Augmentation size */ );
2300 int pad = -offset & (PTR_SIZE - 1);
2302 size += pad;
2303 if (size_of_uleb128 (size) != 1)
2304 abort ();
2307 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2309 if (fde->uses_eh_lsda)
2311 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2312 fde->funcdef_number);
2313 dw2_asm_output_encoded_addr_rtx (
2314 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2315 "Language Specific Data Area");
2317 else
2319 if (lsda_encoding == DW_EH_PE_aligned)
2320 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2321 dw2_asm_output_data
2322 (size_of_encoded_value (lsda_encoding), 0,
2323 "Language Specific Data Area (none)");
2326 else
2327 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2330 /* Loop through the Call Frame Instructions associated with
2331 this FDE. */
2332 fde->dw_fde_current_label = fde->dw_fde_begin;
2333 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2334 output_cfi (cfi, fde, for_eh);
2336 /* Pad the FDE out to an address sized boundary. */
2337 ASM_OUTPUT_ALIGN (asm_out_file,
2338 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2339 ASM_OUTPUT_LABEL (asm_out_file, l2);
2342 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2343 dw2_asm_output_data (4, 0, "End of Table");
2344 #ifdef MIPS_DEBUGGING_INFO
2345 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2346 get a value of 0. Putting .align 0 after the label fixes it. */
2347 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2348 #endif
2350 /* Turn off app to make assembly quicker. */
2351 if (flag_debug_asm)
2352 app_disable ();
2355 /* Output a marker (i.e. a label) for the beginning of a function, before
2356 the prologue. */
2358 void
2359 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2360 const char *file ATTRIBUTE_UNUSED)
2362 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2363 dw_fde_ref fde;
2365 current_function_func_begin_label = 0;
2367 #ifdef TARGET_UNWIND_INFO
2368 /* ??? current_function_func_begin_label is also used by except.c
2369 for call-site information. We must emit this label if it might
2370 be used. */
2371 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2372 && ! dwarf2out_do_frame ())
2373 return;
2374 #else
2375 if (! dwarf2out_do_frame ())
2376 return;
2377 #endif
2379 function_section (current_function_decl);
2380 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2381 current_function_funcdef_no);
2382 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2383 current_function_funcdef_no);
2384 current_function_func_begin_label = get_identifier (label);
2386 #ifdef TARGET_UNWIND_INFO
2387 /* We can elide the fde allocation if we're not emitting debug info. */
2388 if (! dwarf2out_do_frame ())
2389 return;
2390 #endif
2392 /* Expand the fde table if necessary. */
2393 if (fde_table_in_use == fde_table_allocated)
2395 fde_table_allocated += FDE_TABLE_INCREMENT;
2396 fde_table = ggc_realloc (fde_table,
2397 fde_table_allocated * sizeof (dw_fde_node));
2398 memset (fde_table + fde_table_in_use, 0,
2399 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2402 /* Record the FDE associated with this function. */
2403 current_funcdef_fde = fde_table_in_use;
2405 /* Add the new FDE at the end of the fde_table. */
2406 fde = &fde_table[fde_table_in_use++];
2407 fde->decl = current_function_decl;
2408 fde->dw_fde_begin = xstrdup (label);
2409 fde->dw_fde_current_label = NULL;
2410 fde->dw_fde_end = NULL;
2411 fde->dw_fde_cfi = NULL;
2412 fde->funcdef_number = current_function_funcdef_no;
2413 fde->nothrow = TREE_NOTHROW (current_function_decl);
2414 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2415 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2417 args_size = old_args_size = 0;
2419 /* We only want to output line number information for the genuine dwarf2
2420 prologue case, not the eh frame case. */
2421 #ifdef DWARF2_DEBUGGING_INFO
2422 if (file)
2423 dwarf2out_source_line (line, file);
2424 #endif
2427 /* Output a marker (i.e. a label) for the absolute end of the generated code
2428 for a function definition. This gets called *after* the epilogue code has
2429 been generated. */
2431 void
2432 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2433 const char *file ATTRIBUTE_UNUSED)
2435 dw_fde_ref fde;
2436 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2438 /* Output a label to mark the endpoint of the code generated for this
2439 function. */
2440 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2441 current_function_funcdef_no);
2442 ASM_OUTPUT_LABEL (asm_out_file, label);
2443 fde = &fde_table[fde_table_in_use - 1];
2444 fde->dw_fde_end = xstrdup (label);
2447 void
2448 dwarf2out_frame_init (void)
2450 /* Allocate the initial hunk of the fde_table. */
2451 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2452 fde_table_allocated = FDE_TABLE_INCREMENT;
2453 fde_table_in_use = 0;
2455 /* Generate the CFA instructions common to all FDE's. Do it now for the
2456 sake of lookup_cfa. */
2458 #ifdef DWARF2_UNWIND_INFO
2459 /* On entry, the Canonical Frame Address is at SP. */
2460 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2461 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2462 #endif
2465 void
2466 dwarf2out_frame_finish (void)
2468 /* Output call frame information. */
2469 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2470 output_call_frame_info (0);
2472 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2473 output_call_frame_info (1);
2475 #endif
2477 /* And now, the subset of the debugging information support code necessary
2478 for emitting location expressions. */
2480 /* We need some way to distinguish DW_OP_addr with a direct symbol
2481 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2482 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2485 typedef struct dw_val_struct *dw_val_ref;
2486 typedef struct die_struct *dw_die_ref;
2487 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2488 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2490 /* Each DIE may have a series of attribute/value pairs. Values
2491 can take on several forms. The forms that are used in this
2492 implementation are listed below. */
2494 enum dw_val_class
2496 dw_val_class_addr,
2497 dw_val_class_offset,
2498 dw_val_class_loc,
2499 dw_val_class_loc_list,
2500 dw_val_class_range_list,
2501 dw_val_class_const,
2502 dw_val_class_unsigned_const,
2503 dw_val_class_long_long,
2504 dw_val_class_vec,
2505 dw_val_class_flag,
2506 dw_val_class_die_ref,
2507 dw_val_class_fde_ref,
2508 dw_val_class_lbl_id,
2509 dw_val_class_lbl_offset,
2510 dw_val_class_str
2513 /* Describe a double word constant value. */
2514 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2516 typedef struct dw_long_long_struct GTY(())
2518 unsigned long hi;
2519 unsigned long low;
2521 dw_long_long_const;
2523 /* Describe a floating point constant value, or a vector constant value. */
2525 typedef struct dw_vec_struct GTY(())
2527 unsigned char * GTY((length ("%h.length"))) array;
2528 unsigned length;
2529 unsigned elt_size;
2531 dw_vec_const;
2533 /* The dw_val_node describes an attribute's value, as it is
2534 represented internally. */
2536 typedef struct dw_val_struct GTY(())
2538 enum dw_val_class val_class;
2539 union dw_val_struct_union
2541 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2542 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2543 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2544 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2545 HOST_WIDE_INT GTY ((default)) val_int;
2546 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2547 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2548 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2549 struct dw_val_die_union
2551 dw_die_ref die;
2552 int external;
2553 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2554 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2555 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2556 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2557 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2559 GTY ((desc ("%1.val_class"))) v;
2561 dw_val_node;
2563 /* Locations in memory are described using a sequence of stack machine
2564 operations. */
2566 typedef struct dw_loc_descr_struct GTY(())
2568 dw_loc_descr_ref dw_loc_next;
2569 enum dwarf_location_atom dw_loc_opc;
2570 dw_val_node dw_loc_oprnd1;
2571 dw_val_node dw_loc_oprnd2;
2572 int dw_loc_addr;
2574 dw_loc_descr_node;
2576 /* Location lists are ranges + location descriptions for that range,
2577 so you can track variables that are in different places over
2578 their entire life. */
2579 typedef struct dw_loc_list_struct GTY(())
2581 dw_loc_list_ref dw_loc_next;
2582 const char *begin; /* Label for begin address of range */
2583 const char *end; /* Label for end address of range */
2584 char *ll_symbol; /* Label for beginning of location list.
2585 Only on head of list */
2586 const char *section; /* Section this loclist is relative to */
2587 dw_loc_descr_ref expr;
2588 } dw_loc_list_node;
2590 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2592 static const char *dwarf_stack_op_name (unsigned);
2593 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2594 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2595 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2596 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2597 static unsigned long size_of_locs (dw_loc_descr_ref);
2598 static void output_loc_operands (dw_loc_descr_ref);
2599 static void output_loc_sequence (dw_loc_descr_ref);
2601 /* Convert a DWARF stack opcode into its string name. */
2603 static const char *
2604 dwarf_stack_op_name (unsigned int op)
2606 switch (op)
2608 case DW_OP_addr:
2609 case INTERNAL_DW_OP_tls_addr:
2610 return "DW_OP_addr";
2611 case DW_OP_deref:
2612 return "DW_OP_deref";
2613 case DW_OP_const1u:
2614 return "DW_OP_const1u";
2615 case DW_OP_const1s:
2616 return "DW_OP_const1s";
2617 case DW_OP_const2u:
2618 return "DW_OP_const2u";
2619 case DW_OP_const2s:
2620 return "DW_OP_const2s";
2621 case DW_OP_const4u:
2622 return "DW_OP_const4u";
2623 case DW_OP_const4s:
2624 return "DW_OP_const4s";
2625 case DW_OP_const8u:
2626 return "DW_OP_const8u";
2627 case DW_OP_const8s:
2628 return "DW_OP_const8s";
2629 case DW_OP_constu:
2630 return "DW_OP_constu";
2631 case DW_OP_consts:
2632 return "DW_OP_consts";
2633 case DW_OP_dup:
2634 return "DW_OP_dup";
2635 case DW_OP_drop:
2636 return "DW_OP_drop";
2637 case DW_OP_over:
2638 return "DW_OP_over";
2639 case DW_OP_pick:
2640 return "DW_OP_pick";
2641 case DW_OP_swap:
2642 return "DW_OP_swap";
2643 case DW_OP_rot:
2644 return "DW_OP_rot";
2645 case DW_OP_xderef:
2646 return "DW_OP_xderef";
2647 case DW_OP_abs:
2648 return "DW_OP_abs";
2649 case DW_OP_and:
2650 return "DW_OP_and";
2651 case DW_OP_div:
2652 return "DW_OP_div";
2653 case DW_OP_minus:
2654 return "DW_OP_minus";
2655 case DW_OP_mod:
2656 return "DW_OP_mod";
2657 case DW_OP_mul:
2658 return "DW_OP_mul";
2659 case DW_OP_neg:
2660 return "DW_OP_neg";
2661 case DW_OP_not:
2662 return "DW_OP_not";
2663 case DW_OP_or:
2664 return "DW_OP_or";
2665 case DW_OP_plus:
2666 return "DW_OP_plus";
2667 case DW_OP_plus_uconst:
2668 return "DW_OP_plus_uconst";
2669 case DW_OP_shl:
2670 return "DW_OP_shl";
2671 case DW_OP_shr:
2672 return "DW_OP_shr";
2673 case DW_OP_shra:
2674 return "DW_OP_shra";
2675 case DW_OP_xor:
2676 return "DW_OP_xor";
2677 case DW_OP_bra:
2678 return "DW_OP_bra";
2679 case DW_OP_eq:
2680 return "DW_OP_eq";
2681 case DW_OP_ge:
2682 return "DW_OP_ge";
2683 case DW_OP_gt:
2684 return "DW_OP_gt";
2685 case DW_OP_le:
2686 return "DW_OP_le";
2687 case DW_OP_lt:
2688 return "DW_OP_lt";
2689 case DW_OP_ne:
2690 return "DW_OP_ne";
2691 case DW_OP_skip:
2692 return "DW_OP_skip";
2693 case DW_OP_lit0:
2694 return "DW_OP_lit0";
2695 case DW_OP_lit1:
2696 return "DW_OP_lit1";
2697 case DW_OP_lit2:
2698 return "DW_OP_lit2";
2699 case DW_OP_lit3:
2700 return "DW_OP_lit3";
2701 case DW_OP_lit4:
2702 return "DW_OP_lit4";
2703 case DW_OP_lit5:
2704 return "DW_OP_lit5";
2705 case DW_OP_lit6:
2706 return "DW_OP_lit6";
2707 case DW_OP_lit7:
2708 return "DW_OP_lit7";
2709 case DW_OP_lit8:
2710 return "DW_OP_lit8";
2711 case DW_OP_lit9:
2712 return "DW_OP_lit9";
2713 case DW_OP_lit10:
2714 return "DW_OP_lit10";
2715 case DW_OP_lit11:
2716 return "DW_OP_lit11";
2717 case DW_OP_lit12:
2718 return "DW_OP_lit12";
2719 case DW_OP_lit13:
2720 return "DW_OP_lit13";
2721 case DW_OP_lit14:
2722 return "DW_OP_lit14";
2723 case DW_OP_lit15:
2724 return "DW_OP_lit15";
2725 case DW_OP_lit16:
2726 return "DW_OP_lit16";
2727 case DW_OP_lit17:
2728 return "DW_OP_lit17";
2729 case DW_OP_lit18:
2730 return "DW_OP_lit18";
2731 case DW_OP_lit19:
2732 return "DW_OP_lit19";
2733 case DW_OP_lit20:
2734 return "DW_OP_lit20";
2735 case DW_OP_lit21:
2736 return "DW_OP_lit21";
2737 case DW_OP_lit22:
2738 return "DW_OP_lit22";
2739 case DW_OP_lit23:
2740 return "DW_OP_lit23";
2741 case DW_OP_lit24:
2742 return "DW_OP_lit24";
2743 case DW_OP_lit25:
2744 return "DW_OP_lit25";
2745 case DW_OP_lit26:
2746 return "DW_OP_lit26";
2747 case DW_OP_lit27:
2748 return "DW_OP_lit27";
2749 case DW_OP_lit28:
2750 return "DW_OP_lit28";
2751 case DW_OP_lit29:
2752 return "DW_OP_lit29";
2753 case DW_OP_lit30:
2754 return "DW_OP_lit30";
2755 case DW_OP_lit31:
2756 return "DW_OP_lit31";
2757 case DW_OP_reg0:
2758 return "DW_OP_reg0";
2759 case DW_OP_reg1:
2760 return "DW_OP_reg1";
2761 case DW_OP_reg2:
2762 return "DW_OP_reg2";
2763 case DW_OP_reg3:
2764 return "DW_OP_reg3";
2765 case DW_OP_reg4:
2766 return "DW_OP_reg4";
2767 case DW_OP_reg5:
2768 return "DW_OP_reg5";
2769 case DW_OP_reg6:
2770 return "DW_OP_reg6";
2771 case DW_OP_reg7:
2772 return "DW_OP_reg7";
2773 case DW_OP_reg8:
2774 return "DW_OP_reg8";
2775 case DW_OP_reg9:
2776 return "DW_OP_reg9";
2777 case DW_OP_reg10:
2778 return "DW_OP_reg10";
2779 case DW_OP_reg11:
2780 return "DW_OP_reg11";
2781 case DW_OP_reg12:
2782 return "DW_OP_reg12";
2783 case DW_OP_reg13:
2784 return "DW_OP_reg13";
2785 case DW_OP_reg14:
2786 return "DW_OP_reg14";
2787 case DW_OP_reg15:
2788 return "DW_OP_reg15";
2789 case DW_OP_reg16:
2790 return "DW_OP_reg16";
2791 case DW_OP_reg17:
2792 return "DW_OP_reg17";
2793 case DW_OP_reg18:
2794 return "DW_OP_reg18";
2795 case DW_OP_reg19:
2796 return "DW_OP_reg19";
2797 case DW_OP_reg20:
2798 return "DW_OP_reg20";
2799 case DW_OP_reg21:
2800 return "DW_OP_reg21";
2801 case DW_OP_reg22:
2802 return "DW_OP_reg22";
2803 case DW_OP_reg23:
2804 return "DW_OP_reg23";
2805 case DW_OP_reg24:
2806 return "DW_OP_reg24";
2807 case DW_OP_reg25:
2808 return "DW_OP_reg25";
2809 case DW_OP_reg26:
2810 return "DW_OP_reg26";
2811 case DW_OP_reg27:
2812 return "DW_OP_reg27";
2813 case DW_OP_reg28:
2814 return "DW_OP_reg28";
2815 case DW_OP_reg29:
2816 return "DW_OP_reg29";
2817 case DW_OP_reg30:
2818 return "DW_OP_reg30";
2819 case DW_OP_reg31:
2820 return "DW_OP_reg31";
2821 case DW_OP_breg0:
2822 return "DW_OP_breg0";
2823 case DW_OP_breg1:
2824 return "DW_OP_breg1";
2825 case DW_OP_breg2:
2826 return "DW_OP_breg2";
2827 case DW_OP_breg3:
2828 return "DW_OP_breg3";
2829 case DW_OP_breg4:
2830 return "DW_OP_breg4";
2831 case DW_OP_breg5:
2832 return "DW_OP_breg5";
2833 case DW_OP_breg6:
2834 return "DW_OP_breg6";
2835 case DW_OP_breg7:
2836 return "DW_OP_breg7";
2837 case DW_OP_breg8:
2838 return "DW_OP_breg8";
2839 case DW_OP_breg9:
2840 return "DW_OP_breg9";
2841 case DW_OP_breg10:
2842 return "DW_OP_breg10";
2843 case DW_OP_breg11:
2844 return "DW_OP_breg11";
2845 case DW_OP_breg12:
2846 return "DW_OP_breg12";
2847 case DW_OP_breg13:
2848 return "DW_OP_breg13";
2849 case DW_OP_breg14:
2850 return "DW_OP_breg14";
2851 case DW_OP_breg15:
2852 return "DW_OP_breg15";
2853 case DW_OP_breg16:
2854 return "DW_OP_breg16";
2855 case DW_OP_breg17:
2856 return "DW_OP_breg17";
2857 case DW_OP_breg18:
2858 return "DW_OP_breg18";
2859 case DW_OP_breg19:
2860 return "DW_OP_breg19";
2861 case DW_OP_breg20:
2862 return "DW_OP_breg20";
2863 case DW_OP_breg21:
2864 return "DW_OP_breg21";
2865 case DW_OP_breg22:
2866 return "DW_OP_breg22";
2867 case DW_OP_breg23:
2868 return "DW_OP_breg23";
2869 case DW_OP_breg24:
2870 return "DW_OP_breg24";
2871 case DW_OP_breg25:
2872 return "DW_OP_breg25";
2873 case DW_OP_breg26:
2874 return "DW_OP_breg26";
2875 case DW_OP_breg27:
2876 return "DW_OP_breg27";
2877 case DW_OP_breg28:
2878 return "DW_OP_breg28";
2879 case DW_OP_breg29:
2880 return "DW_OP_breg29";
2881 case DW_OP_breg30:
2882 return "DW_OP_breg30";
2883 case DW_OP_breg31:
2884 return "DW_OP_breg31";
2885 case DW_OP_regx:
2886 return "DW_OP_regx";
2887 case DW_OP_fbreg:
2888 return "DW_OP_fbreg";
2889 case DW_OP_bregx:
2890 return "DW_OP_bregx";
2891 case DW_OP_piece:
2892 return "DW_OP_piece";
2893 case DW_OP_deref_size:
2894 return "DW_OP_deref_size";
2895 case DW_OP_xderef_size:
2896 return "DW_OP_xderef_size";
2897 case DW_OP_nop:
2898 return "DW_OP_nop";
2899 case DW_OP_push_object_address:
2900 return "DW_OP_push_object_address";
2901 case DW_OP_call2:
2902 return "DW_OP_call2";
2903 case DW_OP_call4:
2904 return "DW_OP_call4";
2905 case DW_OP_call_ref:
2906 return "DW_OP_call_ref";
2907 case DW_OP_GNU_push_tls_address:
2908 return "DW_OP_GNU_push_tls_address";
2909 default:
2910 return "OP_<unknown>";
2914 /* Return a pointer to a newly allocated location description. Location
2915 descriptions are simple expression terms that can be strung
2916 together to form more complicated location (address) descriptions. */
2918 static inline dw_loc_descr_ref
2919 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2920 unsigned HOST_WIDE_INT oprnd2)
2922 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2924 descr->dw_loc_opc = op;
2925 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2926 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2927 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2928 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2930 return descr;
2934 /* Add a location description term to a location description expression. */
2936 static inline void
2937 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2939 dw_loc_descr_ref *d;
2941 /* Find the end of the chain. */
2942 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2945 *d = descr;
2948 /* Return the size of a location descriptor. */
2950 static unsigned long
2951 size_of_loc_descr (dw_loc_descr_ref loc)
2953 unsigned long size = 1;
2955 switch (loc->dw_loc_opc)
2957 case DW_OP_addr:
2958 case INTERNAL_DW_OP_tls_addr:
2959 size += DWARF2_ADDR_SIZE;
2960 break;
2961 case DW_OP_const1u:
2962 case DW_OP_const1s:
2963 size += 1;
2964 break;
2965 case DW_OP_const2u:
2966 case DW_OP_const2s:
2967 size += 2;
2968 break;
2969 case DW_OP_const4u:
2970 case DW_OP_const4s:
2971 size += 4;
2972 break;
2973 case DW_OP_const8u:
2974 case DW_OP_const8s:
2975 size += 8;
2976 break;
2977 case DW_OP_constu:
2978 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2979 break;
2980 case DW_OP_consts:
2981 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2982 break;
2983 case DW_OP_pick:
2984 size += 1;
2985 break;
2986 case DW_OP_plus_uconst:
2987 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2988 break;
2989 case DW_OP_skip:
2990 case DW_OP_bra:
2991 size += 2;
2992 break;
2993 case DW_OP_breg0:
2994 case DW_OP_breg1:
2995 case DW_OP_breg2:
2996 case DW_OP_breg3:
2997 case DW_OP_breg4:
2998 case DW_OP_breg5:
2999 case DW_OP_breg6:
3000 case DW_OP_breg7:
3001 case DW_OP_breg8:
3002 case DW_OP_breg9:
3003 case DW_OP_breg10:
3004 case DW_OP_breg11:
3005 case DW_OP_breg12:
3006 case DW_OP_breg13:
3007 case DW_OP_breg14:
3008 case DW_OP_breg15:
3009 case DW_OP_breg16:
3010 case DW_OP_breg17:
3011 case DW_OP_breg18:
3012 case DW_OP_breg19:
3013 case DW_OP_breg20:
3014 case DW_OP_breg21:
3015 case DW_OP_breg22:
3016 case DW_OP_breg23:
3017 case DW_OP_breg24:
3018 case DW_OP_breg25:
3019 case DW_OP_breg26:
3020 case DW_OP_breg27:
3021 case DW_OP_breg28:
3022 case DW_OP_breg29:
3023 case DW_OP_breg30:
3024 case DW_OP_breg31:
3025 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3026 break;
3027 case DW_OP_regx:
3028 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3029 break;
3030 case DW_OP_fbreg:
3031 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3032 break;
3033 case DW_OP_bregx:
3034 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3035 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3036 break;
3037 case DW_OP_piece:
3038 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3039 break;
3040 case DW_OP_deref_size:
3041 case DW_OP_xderef_size:
3042 size += 1;
3043 break;
3044 case DW_OP_call2:
3045 size += 2;
3046 break;
3047 case DW_OP_call4:
3048 size += 4;
3049 break;
3050 case DW_OP_call_ref:
3051 size += DWARF2_ADDR_SIZE;
3052 break;
3053 default:
3054 break;
3057 return size;
3060 /* Return the size of a series of location descriptors. */
3062 static unsigned long
3063 size_of_locs (dw_loc_descr_ref loc)
3065 unsigned long size;
3067 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3069 loc->dw_loc_addr = size;
3070 size += size_of_loc_descr (loc);
3073 return size;
3076 /* Output location description stack opcode's operands (if any). */
3078 static void
3079 output_loc_operands (dw_loc_descr_ref loc)
3081 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3082 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3084 switch (loc->dw_loc_opc)
3086 #ifdef DWARF2_DEBUGGING_INFO
3087 case DW_OP_addr:
3088 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3089 break;
3090 case DW_OP_const2u:
3091 case DW_OP_const2s:
3092 dw2_asm_output_data (2, val1->v.val_int, NULL);
3093 break;
3094 case DW_OP_const4u:
3095 case DW_OP_const4s:
3096 dw2_asm_output_data (4, val1->v.val_int, NULL);
3097 break;
3098 case DW_OP_const8u:
3099 case DW_OP_const8s:
3100 if (HOST_BITS_PER_LONG < 64)
3101 abort ();
3102 dw2_asm_output_data (8, val1->v.val_int, NULL);
3103 break;
3104 case DW_OP_skip:
3105 case DW_OP_bra:
3107 int offset;
3109 if (val1->val_class == dw_val_class_loc)
3110 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3111 else
3112 abort ();
3114 dw2_asm_output_data (2, offset, NULL);
3116 break;
3117 #else
3118 case DW_OP_addr:
3119 case DW_OP_const2u:
3120 case DW_OP_const2s:
3121 case DW_OP_const4u:
3122 case DW_OP_const4s:
3123 case DW_OP_const8u:
3124 case DW_OP_const8s:
3125 case DW_OP_skip:
3126 case DW_OP_bra:
3127 /* We currently don't make any attempt to make sure these are
3128 aligned properly like we do for the main unwind info, so
3129 don't support emitting things larger than a byte if we're
3130 only doing unwinding. */
3131 abort ();
3132 #endif
3133 case DW_OP_const1u:
3134 case DW_OP_const1s:
3135 dw2_asm_output_data (1, val1->v.val_int, NULL);
3136 break;
3137 case DW_OP_constu:
3138 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3139 break;
3140 case DW_OP_consts:
3141 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3142 break;
3143 case DW_OP_pick:
3144 dw2_asm_output_data (1, val1->v.val_int, NULL);
3145 break;
3146 case DW_OP_plus_uconst:
3147 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3148 break;
3149 case DW_OP_breg0:
3150 case DW_OP_breg1:
3151 case DW_OP_breg2:
3152 case DW_OP_breg3:
3153 case DW_OP_breg4:
3154 case DW_OP_breg5:
3155 case DW_OP_breg6:
3156 case DW_OP_breg7:
3157 case DW_OP_breg8:
3158 case DW_OP_breg9:
3159 case DW_OP_breg10:
3160 case DW_OP_breg11:
3161 case DW_OP_breg12:
3162 case DW_OP_breg13:
3163 case DW_OP_breg14:
3164 case DW_OP_breg15:
3165 case DW_OP_breg16:
3166 case DW_OP_breg17:
3167 case DW_OP_breg18:
3168 case DW_OP_breg19:
3169 case DW_OP_breg20:
3170 case DW_OP_breg21:
3171 case DW_OP_breg22:
3172 case DW_OP_breg23:
3173 case DW_OP_breg24:
3174 case DW_OP_breg25:
3175 case DW_OP_breg26:
3176 case DW_OP_breg27:
3177 case DW_OP_breg28:
3178 case DW_OP_breg29:
3179 case DW_OP_breg30:
3180 case DW_OP_breg31:
3181 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3182 break;
3183 case DW_OP_regx:
3184 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3185 break;
3186 case DW_OP_fbreg:
3187 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3188 break;
3189 case DW_OP_bregx:
3190 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3191 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3192 break;
3193 case DW_OP_piece:
3194 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3195 break;
3196 case DW_OP_deref_size:
3197 case DW_OP_xderef_size:
3198 dw2_asm_output_data (1, val1->v.val_int, NULL);
3199 break;
3201 case INTERNAL_DW_OP_tls_addr:
3202 #ifdef ASM_OUTPUT_DWARF_DTPREL
3203 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3204 val1->v.val_addr);
3205 fputc ('\n', asm_out_file);
3206 #else
3207 abort ();
3208 #endif
3209 break;
3211 default:
3212 /* Other codes have no operands. */
3213 break;
3217 /* Output a sequence of location operations. */
3219 static void
3220 output_loc_sequence (dw_loc_descr_ref loc)
3222 for (; loc != NULL; loc = loc->dw_loc_next)
3224 /* Output the opcode. */
3225 dw2_asm_output_data (1, loc->dw_loc_opc,
3226 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3228 /* Output the operand(s) (if any). */
3229 output_loc_operands (loc);
3233 /* This routine will generate the correct assembly data for a location
3234 description based on a cfi entry with a complex address. */
3236 static void
3237 output_cfa_loc (dw_cfi_ref cfi)
3239 dw_loc_descr_ref loc;
3240 unsigned long size;
3242 /* Output the size of the block. */
3243 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3244 size = size_of_locs (loc);
3245 dw2_asm_output_data_uleb128 (size, NULL);
3247 /* Now output the operations themselves. */
3248 output_loc_sequence (loc);
3251 /* This function builds a dwarf location descriptor sequence from
3252 a dw_cfa_location. */
3254 static struct dw_loc_descr_struct *
3255 build_cfa_loc (dw_cfa_location *cfa)
3257 struct dw_loc_descr_struct *head, *tmp;
3259 if (cfa->indirect == 0)
3260 abort ();
3262 if (cfa->base_offset)
3264 if (cfa->reg <= 31)
3265 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3266 else
3267 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3269 else if (cfa->reg <= 31)
3270 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3271 else
3272 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3274 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3275 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3276 add_loc_descr (&head, tmp);
3277 if (cfa->offset != 0)
3279 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3280 add_loc_descr (&head, tmp);
3283 return head;
3286 /* This function fills in aa dw_cfa_location structure from a dwarf location
3287 descriptor sequence. */
3289 static void
3290 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3292 struct dw_loc_descr_struct *ptr;
3293 cfa->offset = 0;
3294 cfa->base_offset = 0;
3295 cfa->indirect = 0;
3296 cfa->reg = -1;
3298 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3300 enum dwarf_location_atom op = ptr->dw_loc_opc;
3302 switch (op)
3304 case DW_OP_reg0:
3305 case DW_OP_reg1:
3306 case DW_OP_reg2:
3307 case DW_OP_reg3:
3308 case DW_OP_reg4:
3309 case DW_OP_reg5:
3310 case DW_OP_reg6:
3311 case DW_OP_reg7:
3312 case DW_OP_reg8:
3313 case DW_OP_reg9:
3314 case DW_OP_reg10:
3315 case DW_OP_reg11:
3316 case DW_OP_reg12:
3317 case DW_OP_reg13:
3318 case DW_OP_reg14:
3319 case DW_OP_reg15:
3320 case DW_OP_reg16:
3321 case DW_OP_reg17:
3322 case DW_OP_reg18:
3323 case DW_OP_reg19:
3324 case DW_OP_reg20:
3325 case DW_OP_reg21:
3326 case DW_OP_reg22:
3327 case DW_OP_reg23:
3328 case DW_OP_reg24:
3329 case DW_OP_reg25:
3330 case DW_OP_reg26:
3331 case DW_OP_reg27:
3332 case DW_OP_reg28:
3333 case DW_OP_reg29:
3334 case DW_OP_reg30:
3335 case DW_OP_reg31:
3336 cfa->reg = op - DW_OP_reg0;
3337 break;
3338 case DW_OP_regx:
3339 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3340 break;
3341 case DW_OP_breg0:
3342 case DW_OP_breg1:
3343 case DW_OP_breg2:
3344 case DW_OP_breg3:
3345 case DW_OP_breg4:
3346 case DW_OP_breg5:
3347 case DW_OP_breg6:
3348 case DW_OP_breg7:
3349 case DW_OP_breg8:
3350 case DW_OP_breg9:
3351 case DW_OP_breg10:
3352 case DW_OP_breg11:
3353 case DW_OP_breg12:
3354 case DW_OP_breg13:
3355 case DW_OP_breg14:
3356 case DW_OP_breg15:
3357 case DW_OP_breg16:
3358 case DW_OP_breg17:
3359 case DW_OP_breg18:
3360 case DW_OP_breg19:
3361 case DW_OP_breg20:
3362 case DW_OP_breg21:
3363 case DW_OP_breg22:
3364 case DW_OP_breg23:
3365 case DW_OP_breg24:
3366 case DW_OP_breg25:
3367 case DW_OP_breg26:
3368 case DW_OP_breg27:
3369 case DW_OP_breg28:
3370 case DW_OP_breg29:
3371 case DW_OP_breg30:
3372 case DW_OP_breg31:
3373 cfa->reg = op - DW_OP_breg0;
3374 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3375 break;
3376 case DW_OP_bregx:
3377 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3378 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3379 break;
3380 case DW_OP_deref:
3381 cfa->indirect = 1;
3382 break;
3383 case DW_OP_plus_uconst:
3384 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3385 break;
3386 default:
3387 internal_error ("DW_LOC_OP %s not implemented\n",
3388 dwarf_stack_op_name (ptr->dw_loc_opc));
3392 #endif /* .debug_frame support */
3394 /* And now, the support for symbolic debugging information. */
3395 #ifdef DWARF2_DEBUGGING_INFO
3397 /* .debug_str support. */
3398 static int output_indirect_string (void **, void *);
3400 static void dwarf2out_init (const char *);
3401 static void dwarf2out_finish (const char *);
3402 static void dwarf2out_define (unsigned int, const char *);
3403 static void dwarf2out_undef (unsigned int, const char *);
3404 static void dwarf2out_start_source_file (unsigned, const char *);
3405 static void dwarf2out_end_source_file (unsigned);
3406 static void dwarf2out_begin_block (unsigned, unsigned);
3407 static void dwarf2out_end_block (unsigned, unsigned);
3408 static bool dwarf2out_ignore_block (tree);
3409 static void dwarf2out_global_decl (tree);
3410 static void dwarf2out_type_decl (tree, int);
3411 static void dwarf2out_imported_module_or_decl (tree, tree);
3412 static void dwarf2out_abstract_function (tree);
3413 static void dwarf2out_var_location (rtx);
3414 static void dwarf2out_begin_function (tree);
3416 /* The debug hooks structure. */
3418 const struct gcc_debug_hooks dwarf2_debug_hooks =
3420 dwarf2out_init,
3421 dwarf2out_finish,
3422 dwarf2out_define,
3423 dwarf2out_undef,
3424 dwarf2out_start_source_file,
3425 dwarf2out_end_source_file,
3426 dwarf2out_begin_block,
3427 dwarf2out_end_block,
3428 dwarf2out_ignore_block,
3429 dwarf2out_source_line,
3430 dwarf2out_begin_prologue,
3431 debug_nothing_int_charstar, /* end_prologue */
3432 dwarf2out_end_epilogue,
3433 dwarf2out_begin_function,
3434 debug_nothing_int, /* end_function */
3435 dwarf2out_decl, /* function_decl */
3436 dwarf2out_global_decl,
3437 dwarf2out_type_decl, /* type_decl */
3438 dwarf2out_imported_module_or_decl,
3439 debug_nothing_tree, /* deferred_inline_function */
3440 /* The DWARF 2 backend tries to reduce debugging bloat by not
3441 emitting the abstract description of inline functions until
3442 something tries to reference them. */
3443 dwarf2out_abstract_function, /* outlining_inline_function */
3444 debug_nothing_rtx, /* label */
3445 debug_nothing_int, /* handle_pch */
3446 dwarf2out_var_location
3448 #endif
3450 /* NOTE: In the comments in this file, many references are made to
3451 "Debugging Information Entries". This term is abbreviated as `DIE'
3452 throughout the remainder of this file. */
3454 /* An internal representation of the DWARF output is built, and then
3455 walked to generate the DWARF debugging info. The walk of the internal
3456 representation is done after the entire program has been compiled.
3457 The types below are used to describe the internal representation. */
3459 /* Various DIE's use offsets relative to the beginning of the
3460 .debug_info section to refer to each other. */
3462 typedef long int dw_offset;
3464 /* Define typedefs here to avoid circular dependencies. */
3466 typedef struct dw_attr_struct *dw_attr_ref;
3467 typedef struct dw_line_info_struct *dw_line_info_ref;
3468 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3469 typedef struct pubname_struct *pubname_ref;
3470 typedef struct dw_ranges_struct *dw_ranges_ref;
3472 /* Each entry in the line_info_table maintains the file and
3473 line number associated with the label generated for that
3474 entry. The label gives the PC value associated with
3475 the line number entry. */
3477 typedef struct dw_line_info_struct GTY(())
3479 unsigned long dw_file_num;
3480 unsigned long dw_line_num;
3482 dw_line_info_entry;
3484 /* Line information for functions in separate sections; each one gets its
3485 own sequence. */
3486 typedef struct dw_separate_line_info_struct GTY(())
3488 unsigned long dw_file_num;
3489 unsigned long dw_line_num;
3490 unsigned long function;
3492 dw_separate_line_info_entry;
3494 /* Each DIE attribute has a field specifying the attribute kind,
3495 a link to the next attribute in the chain, and an attribute value.
3496 Attributes are typically linked below the DIE they modify. */
3498 typedef struct dw_attr_struct GTY(())
3500 enum dwarf_attribute dw_attr;
3501 dw_attr_ref dw_attr_next;
3502 dw_val_node dw_attr_val;
3504 dw_attr_node;
3506 /* The Debugging Information Entry (DIE) structure */
3508 typedef struct die_struct GTY(())
3510 enum dwarf_tag die_tag;
3511 char *die_symbol;
3512 dw_attr_ref die_attr;
3513 dw_die_ref die_parent;
3514 dw_die_ref die_child;
3515 dw_die_ref die_sib;
3516 dw_die_ref die_definition; /* ref from a specification to its definition */
3517 dw_offset die_offset;
3518 unsigned long die_abbrev;
3519 int die_mark;
3520 unsigned int decl_id;
3522 die_node;
3524 /* The pubname structure */
3526 typedef struct pubname_struct GTY(())
3528 dw_die_ref die;
3529 char *name;
3531 pubname_entry;
3533 struct dw_ranges_struct GTY(())
3535 int block_num;
3538 /* The limbo die list structure. */
3539 typedef struct limbo_die_struct GTY(())
3541 dw_die_ref die;
3542 tree created_for;
3543 struct limbo_die_struct *next;
3545 limbo_die_node;
3547 /* How to start an assembler comment. */
3548 #ifndef ASM_COMMENT_START
3549 #define ASM_COMMENT_START ";#"
3550 #endif
3552 /* Define a macro which returns nonzero for a TYPE_DECL which was
3553 implicitly generated for a tagged type.
3555 Note that unlike the gcc front end (which generates a NULL named
3556 TYPE_DECL node for each complete tagged type, each array type, and
3557 each function type node created) the g++ front end generates a
3558 _named_ TYPE_DECL node for each tagged type node created.
3559 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3560 generate a DW_TAG_typedef DIE for them. */
3562 #define TYPE_DECL_IS_STUB(decl) \
3563 (DECL_NAME (decl) == NULL_TREE \
3564 || (DECL_ARTIFICIAL (decl) \
3565 && is_tagged_type (TREE_TYPE (decl)) \
3566 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3567 /* This is necessary for stub decls that \
3568 appear in nested inline functions. */ \
3569 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3570 && (decl_ultimate_origin (decl) \
3571 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3573 /* Information concerning the compilation unit's programming
3574 language, and compiler version. */
3576 /* Fixed size portion of the DWARF compilation unit header. */
3577 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3578 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3580 /* Fixed size portion of public names info. */
3581 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3583 /* Fixed size portion of the address range info. */
3584 #define DWARF_ARANGES_HEADER_SIZE \
3585 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3586 DWARF2_ADDR_SIZE * 2) \
3587 - DWARF_INITIAL_LENGTH_SIZE)
3589 /* Size of padding portion in the address range info. It must be
3590 aligned to twice the pointer size. */
3591 #define DWARF_ARANGES_PAD_SIZE \
3592 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3593 DWARF2_ADDR_SIZE * 2) \
3594 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3596 /* Use assembler line directives if available. */
3597 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3598 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3599 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3600 #else
3601 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3602 #endif
3603 #endif
3605 /* Minimum line offset in a special line info. opcode.
3606 This value was chosen to give a reasonable range of values. */
3607 #define DWARF_LINE_BASE -10
3609 /* First special line opcode - leave room for the standard opcodes. */
3610 #define DWARF_LINE_OPCODE_BASE 10
3612 /* Range of line offsets in a special line info. opcode. */
3613 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3615 /* Flag that indicates the initial value of the is_stmt_start flag.
3616 In the present implementation, we do not mark any lines as
3617 the beginning of a source statement, because that information
3618 is not made available by the GCC front-end. */
3619 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3621 #ifdef DWARF2_DEBUGGING_INFO
3622 /* This location is used by calc_die_sizes() to keep track
3623 the offset of each DIE within the .debug_info section. */
3624 static unsigned long next_die_offset;
3625 #endif
3627 /* Record the root of the DIE's built for the current compilation unit. */
3628 static GTY(()) dw_die_ref comp_unit_die;
3630 /* A list of DIEs with a NULL parent waiting to be relocated. */
3631 static GTY(()) limbo_die_node *limbo_die_list;
3633 /* Filenames referenced by this compilation unit. */
3634 static GTY(()) varray_type file_table;
3635 static GTY(()) varray_type file_table_emitted;
3636 static GTY(()) size_t file_table_last_lookup_index;
3638 /* A hash table of references to DIE's that describe declarations.
3639 The key is a DECL_UID() which is a unique number identifying each decl. */
3640 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3642 /* Node of the variable location list. */
3643 struct var_loc_node GTY ((chain_next ("%h.next")))
3645 rtx GTY (()) var_loc_note;
3646 const char * GTY (()) label;
3647 struct var_loc_node * GTY (()) next;
3650 /* Variable location list. */
3651 struct var_loc_list_def GTY (())
3653 struct var_loc_node * GTY (()) first;
3655 /* Do not mark the last element of the chained list because
3656 it is marked through the chain. */
3657 struct var_loc_node * GTY ((skip ("%h"))) last;
3659 /* DECL_UID of the variable decl. */
3660 unsigned int decl_id;
3662 typedef struct var_loc_list_def var_loc_list;
3665 /* Table of decl location linked lists. */
3666 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3668 /* A pointer to the base of a list of references to DIE's that
3669 are uniquely identified by their tag, presence/absence of
3670 children DIE's, and list of attribute/value pairs. */
3671 static GTY((length ("abbrev_die_table_allocated")))
3672 dw_die_ref *abbrev_die_table;
3674 /* Number of elements currently allocated for abbrev_die_table. */
3675 static GTY(()) unsigned abbrev_die_table_allocated;
3677 /* Number of elements in type_die_table currently in use. */
3678 static GTY(()) unsigned abbrev_die_table_in_use;
3680 /* Size (in elements) of increments by which we may expand the
3681 abbrev_die_table. */
3682 #define ABBREV_DIE_TABLE_INCREMENT 256
3684 /* A pointer to the base of a table that contains line information
3685 for each source code line in .text in the compilation unit. */
3686 static GTY((length ("line_info_table_allocated")))
3687 dw_line_info_ref line_info_table;
3689 /* Number of elements currently allocated for line_info_table. */
3690 static GTY(()) unsigned line_info_table_allocated;
3692 /* Number of elements in line_info_table currently in use. */
3693 static GTY(()) unsigned line_info_table_in_use;
3695 /* A pointer to the base of a table that contains line information
3696 for each source code line outside of .text in the compilation unit. */
3697 static GTY ((length ("separate_line_info_table_allocated")))
3698 dw_separate_line_info_ref separate_line_info_table;
3700 /* Number of elements currently allocated for separate_line_info_table. */
3701 static GTY(()) unsigned separate_line_info_table_allocated;
3703 /* Number of elements in separate_line_info_table currently in use. */
3704 static GTY(()) unsigned separate_line_info_table_in_use;
3706 /* Size (in elements) of increments by which we may expand the
3707 line_info_table. */
3708 #define LINE_INFO_TABLE_INCREMENT 1024
3710 /* A pointer to the base of a table that contains a list of publicly
3711 accessible names. */
3712 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3714 /* Number of elements currently allocated for pubname_table. */
3715 static GTY(()) unsigned pubname_table_allocated;
3717 /* Number of elements in pubname_table currently in use. */
3718 static GTY(()) unsigned pubname_table_in_use;
3720 /* Size (in elements) of increments by which we may expand the
3721 pubname_table. */
3722 #define PUBNAME_TABLE_INCREMENT 64
3724 /* Array of dies for which we should generate .debug_arange info. */
3725 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3727 /* Number of elements currently allocated for arange_table. */
3728 static GTY(()) unsigned arange_table_allocated;
3730 /* Number of elements in arange_table currently in use. */
3731 static GTY(()) unsigned arange_table_in_use;
3733 /* Size (in elements) of increments by which we may expand the
3734 arange_table. */
3735 #define ARANGE_TABLE_INCREMENT 64
3737 /* Array of dies for which we should generate .debug_ranges info. */
3738 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3740 /* Number of elements currently allocated for ranges_table. */
3741 static GTY(()) unsigned ranges_table_allocated;
3743 /* Number of elements in ranges_table currently in use. */
3744 static GTY(()) unsigned ranges_table_in_use;
3746 /* Size (in elements) of increments by which we may expand the
3747 ranges_table. */
3748 #define RANGES_TABLE_INCREMENT 64
3750 /* Whether we have location lists that need outputting */
3751 static GTY(()) unsigned have_location_lists;
3753 /* Unique label counter. */
3754 static GTY(()) unsigned int loclabel_num;
3756 #ifdef DWARF2_DEBUGGING_INFO
3757 /* Record whether the function being analyzed contains inlined functions. */
3758 static int current_function_has_inlines;
3759 #endif
3760 #if 0 && defined (MIPS_DEBUGGING_INFO)
3761 static int comp_unit_has_inlines;
3762 #endif
3764 /* Number of file tables emitted in maybe_emit_file(). */
3765 static GTY(()) int emitcount = 0;
3767 /* Number of internal labels generated by gen_internal_sym(). */
3768 static GTY(()) int label_num;
3770 #ifdef DWARF2_DEBUGGING_INFO
3772 /* Forward declarations for functions defined in this file. */
3774 static int is_pseudo_reg (rtx);
3775 static tree type_main_variant (tree);
3776 static int is_tagged_type (tree);
3777 static const char *dwarf_tag_name (unsigned);
3778 static const char *dwarf_attr_name (unsigned);
3779 static const char *dwarf_form_name (unsigned);
3780 #if 0
3781 static const char *dwarf_type_encoding_name (unsigned);
3782 #endif
3783 static tree decl_ultimate_origin (tree);
3784 static tree block_ultimate_origin (tree);
3785 static tree decl_class_context (tree);
3786 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3787 static inline enum dw_val_class AT_class (dw_attr_ref);
3788 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3789 static inline unsigned AT_flag (dw_attr_ref);
3790 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3791 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3792 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3793 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3794 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3795 unsigned long);
3796 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3797 unsigned int, unsigned char *);
3798 static hashval_t debug_str_do_hash (const void *);
3799 static int debug_str_eq (const void *, const void *);
3800 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3801 static inline const char *AT_string (dw_attr_ref);
3802 static int AT_string_form (dw_attr_ref);
3803 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3804 static void add_AT_specification (dw_die_ref, dw_die_ref);
3805 static inline dw_die_ref AT_ref (dw_attr_ref);
3806 static inline int AT_ref_external (dw_attr_ref);
3807 static inline void set_AT_ref_external (dw_attr_ref, int);
3808 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3809 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3810 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3811 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3812 dw_loc_list_ref);
3813 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3814 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3815 static inline rtx AT_addr (dw_attr_ref);
3816 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3817 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3818 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3819 unsigned HOST_WIDE_INT);
3820 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3821 unsigned long);
3822 static inline const char *AT_lbl (dw_attr_ref);
3823 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3824 static const char *get_AT_low_pc (dw_die_ref);
3825 static const char *get_AT_hi_pc (dw_die_ref);
3826 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3827 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3828 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3829 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3830 static bool is_c_family (void);
3831 static bool is_cxx (void);
3832 static bool is_java (void);
3833 static bool is_fortran (void);
3834 static bool is_ada (void);
3835 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3836 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3837 static inline void free_die (dw_die_ref);
3838 static void remove_children (dw_die_ref);
3839 static void add_child_die (dw_die_ref, dw_die_ref);
3840 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3841 static dw_die_ref lookup_type_die (tree);
3842 static void equate_type_number_to_die (tree, dw_die_ref);
3843 static hashval_t decl_die_table_hash (const void *);
3844 static int decl_die_table_eq (const void *, const void *);
3845 static dw_die_ref lookup_decl_die (tree);
3846 static hashval_t decl_loc_table_hash (const void *);
3847 static int decl_loc_table_eq (const void *, const void *);
3848 static var_loc_list *lookup_decl_loc (tree);
3849 static void equate_decl_number_to_die (tree, dw_die_ref);
3850 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3851 static void print_spaces (FILE *);
3852 static void print_die (dw_die_ref, FILE *);
3853 static void print_dwarf_line_table (FILE *);
3854 static void reverse_die_lists (dw_die_ref);
3855 static void reverse_all_dies (dw_die_ref);
3856 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3857 static dw_die_ref pop_compile_unit (dw_die_ref);
3858 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3859 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3860 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3861 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3862 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3863 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3864 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3865 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3866 static void compute_section_prefix (dw_die_ref);
3867 static int is_type_die (dw_die_ref);
3868 static int is_comdat_die (dw_die_ref);
3869 static int is_symbol_die (dw_die_ref);
3870 static void assign_symbol_names (dw_die_ref);
3871 static void break_out_includes (dw_die_ref);
3872 static hashval_t htab_cu_hash (const void *);
3873 static int htab_cu_eq (const void *, const void *);
3874 static void htab_cu_del (void *);
3875 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3876 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3877 static void add_sibling_attributes (dw_die_ref);
3878 static void build_abbrev_table (dw_die_ref);
3879 static void output_location_lists (dw_die_ref);
3880 static int constant_size (long unsigned);
3881 static unsigned long size_of_die (dw_die_ref);
3882 static void calc_die_sizes (dw_die_ref);
3883 static void mark_dies (dw_die_ref);
3884 static void unmark_dies (dw_die_ref);
3885 static void unmark_all_dies (dw_die_ref);
3886 static unsigned long size_of_pubnames (void);
3887 static unsigned long size_of_aranges (void);
3888 static enum dwarf_form value_format (dw_attr_ref);
3889 static void output_value_format (dw_attr_ref);
3890 static void output_abbrev_section (void);
3891 static void output_die_symbol (dw_die_ref);
3892 static void output_die (dw_die_ref);
3893 static void output_compilation_unit_header (void);
3894 static void output_comp_unit (dw_die_ref, int);
3895 static const char *dwarf2_name (tree, int);
3896 static void add_pubname (tree, dw_die_ref);
3897 static void output_pubnames (void);
3898 static void add_arange (tree, dw_die_ref);
3899 static void output_aranges (void);
3900 static unsigned int add_ranges (tree);
3901 static void output_ranges (void);
3902 static void output_line_info (void);
3903 static void output_file_names (void);
3904 static dw_die_ref base_type_die (tree);
3905 static tree root_type (tree);
3906 static int is_base_type (tree);
3907 static bool is_subrange_type (tree);
3908 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3909 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3910 static int type_is_enum (tree);
3911 static unsigned int dbx_reg_number (rtx);
3912 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3913 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3914 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3915 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3916 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3917 static int is_based_loc (rtx);
3918 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3919 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3920 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3921 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3922 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3923 static tree field_type (tree);
3924 static unsigned int simple_type_align_in_bits (tree);
3925 static unsigned int simple_decl_align_in_bits (tree);
3926 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3927 static HOST_WIDE_INT field_byte_offset (tree);
3928 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3929 dw_loc_descr_ref);
3930 static void add_data_member_location_attribute (dw_die_ref, tree);
3931 static void add_const_value_attribute (dw_die_ref, rtx);
3932 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3933 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3934 static void insert_float (rtx, unsigned char *);
3935 static rtx rtl_for_decl_location (tree);
3936 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3937 enum dwarf_attribute);
3938 static void tree_add_const_value_attribute (dw_die_ref, tree);
3939 static void add_name_attribute (dw_die_ref, const char *);
3940 static void add_comp_dir_attribute (dw_die_ref);
3941 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3942 static void add_subscript_info (dw_die_ref, tree);
3943 static void add_byte_size_attribute (dw_die_ref, tree);
3944 static void add_bit_offset_attribute (dw_die_ref, tree);
3945 static void add_bit_size_attribute (dw_die_ref, tree);
3946 static void add_prototyped_attribute (dw_die_ref, tree);
3947 static void add_abstract_origin_attribute (dw_die_ref, tree);
3948 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3949 static void add_src_coords_attributes (dw_die_ref, tree);
3950 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3951 static void push_decl_scope (tree);
3952 static void pop_decl_scope (void);
3953 static dw_die_ref scope_die_for (tree, dw_die_ref);
3954 static inline int local_scope_p (dw_die_ref);
3955 static inline int class_or_namespace_scope_p (dw_die_ref);
3956 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3957 static const char *type_tag (tree);
3958 static tree member_declared_type (tree);
3959 #if 0
3960 static const char *decl_start_label (tree);
3961 #endif
3962 static void gen_array_type_die (tree, dw_die_ref);
3963 static void gen_set_type_die (tree, dw_die_ref);
3964 #if 0
3965 static void gen_entry_point_die (tree, dw_die_ref);
3966 #endif
3967 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3968 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3969 static void gen_inlined_union_type_die (tree, dw_die_ref);
3970 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3971 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3972 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3973 static void gen_formal_types_die (tree, dw_die_ref);
3974 static void gen_subprogram_die (tree, dw_die_ref);
3975 static void gen_variable_die (tree, dw_die_ref);
3976 static void gen_label_die (tree, dw_die_ref);
3977 static void gen_lexical_block_die (tree, dw_die_ref, int);
3978 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3979 static void gen_field_die (tree, dw_die_ref);
3980 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3981 static dw_die_ref gen_compile_unit_die (const char *);
3982 static void gen_string_type_die (tree, dw_die_ref);
3983 static void gen_inheritance_die (tree, tree, dw_die_ref);
3984 static void gen_member_die (tree, dw_die_ref);
3985 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3986 static void gen_subroutine_type_die (tree, dw_die_ref);
3987 static void gen_typedef_die (tree, dw_die_ref);
3988 static void gen_type_die (tree, dw_die_ref);
3989 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3990 static void gen_block_die (tree, dw_die_ref, int);
3991 static void decls_for_scope (tree, dw_die_ref, int);
3992 static int is_redundant_typedef (tree);
3993 static void gen_namespace_die (tree);
3994 static void gen_decl_die (tree, dw_die_ref);
3995 static dw_die_ref force_decl_die (tree);
3996 static dw_die_ref force_type_die (tree);
3997 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3998 static void declare_in_namespace (tree, dw_die_ref);
3999 static unsigned lookup_filename (const char *);
4000 static void init_file_table (void);
4001 static void retry_incomplete_types (void);
4002 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4003 static void splice_child_die (dw_die_ref, dw_die_ref);
4004 static int file_info_cmp (const void *, const void *);
4005 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4006 const char *, const char *, unsigned);
4007 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4008 const char *, const char *,
4009 const char *);
4010 static void output_loc_list (dw_loc_list_ref);
4011 static char *gen_internal_sym (const char *);
4013 static void prune_unmark_dies (dw_die_ref);
4014 static void prune_unused_types_mark (dw_die_ref, int);
4015 static void prune_unused_types_walk (dw_die_ref);
4016 static void prune_unused_types_walk_attribs (dw_die_ref);
4017 static void prune_unused_types_prune (dw_die_ref);
4018 static void prune_unused_types (void);
4019 static int maybe_emit_file (int);
4021 /* Section names used to hold DWARF debugging information. */
4022 #ifndef DEBUG_INFO_SECTION
4023 #define DEBUG_INFO_SECTION ".debug_info"
4024 #endif
4025 #ifndef DEBUG_ABBREV_SECTION
4026 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4027 #endif
4028 #ifndef DEBUG_ARANGES_SECTION
4029 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4030 #endif
4031 #ifndef DEBUG_MACINFO_SECTION
4032 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4033 #endif
4034 #ifndef DEBUG_LINE_SECTION
4035 #define DEBUG_LINE_SECTION ".debug_line"
4036 #endif
4037 #ifndef DEBUG_LOC_SECTION
4038 #define DEBUG_LOC_SECTION ".debug_loc"
4039 #endif
4040 #ifndef DEBUG_PUBNAMES_SECTION
4041 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4042 #endif
4043 #ifndef DEBUG_STR_SECTION
4044 #define DEBUG_STR_SECTION ".debug_str"
4045 #endif
4046 #ifndef DEBUG_RANGES_SECTION
4047 #define DEBUG_RANGES_SECTION ".debug_ranges"
4048 #endif
4050 /* Standard ELF section names for compiled code and data. */
4051 #ifndef TEXT_SECTION_NAME
4052 #define TEXT_SECTION_NAME ".text"
4053 #endif
4055 /* Section flags for .debug_str section. */
4056 #define DEBUG_STR_SECTION_FLAGS \
4057 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4058 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4059 : SECTION_DEBUG)
4061 /* Labels we insert at beginning sections we can reference instead of
4062 the section names themselves. */
4064 #ifndef TEXT_SECTION_LABEL
4065 #define TEXT_SECTION_LABEL "Ltext"
4066 #endif
4067 #ifndef DEBUG_LINE_SECTION_LABEL
4068 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4069 #endif
4070 #ifndef DEBUG_INFO_SECTION_LABEL
4071 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4072 #endif
4073 #ifndef DEBUG_ABBREV_SECTION_LABEL
4074 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4075 #endif
4076 #ifndef DEBUG_LOC_SECTION_LABEL
4077 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4078 #endif
4079 #ifndef DEBUG_RANGES_SECTION_LABEL
4080 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4081 #endif
4082 #ifndef DEBUG_MACINFO_SECTION_LABEL
4083 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4084 #endif
4086 /* Definitions of defaults for formats and names of various special
4087 (artificial) labels which may be generated within this file (when the -g
4088 options is used and DWARF2_DEBUGGING_INFO is in effect.
4089 If necessary, these may be overridden from within the tm.h file, but
4090 typically, overriding these defaults is unnecessary. */
4092 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4093 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4094 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4095 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4096 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4097 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4098 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4099 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4101 #ifndef TEXT_END_LABEL
4102 #define TEXT_END_LABEL "Letext"
4103 #endif
4104 #ifndef BLOCK_BEGIN_LABEL
4105 #define BLOCK_BEGIN_LABEL "LBB"
4106 #endif
4107 #ifndef BLOCK_END_LABEL
4108 #define BLOCK_END_LABEL "LBE"
4109 #endif
4110 #ifndef LINE_CODE_LABEL
4111 #define LINE_CODE_LABEL "LM"
4112 #endif
4113 #ifndef SEPARATE_LINE_CODE_LABEL
4114 #define SEPARATE_LINE_CODE_LABEL "LSM"
4115 #endif
4117 /* We allow a language front-end to designate a function that is to be
4118 called to "demangle" any name before it it put into a DIE. */
4120 static const char *(*demangle_name_func) (const char *);
4122 void
4123 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4125 demangle_name_func = func;
4128 /* Test if rtl node points to a pseudo register. */
4130 static inline int
4131 is_pseudo_reg (rtx rtl)
4133 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4134 || (GET_CODE (rtl) == SUBREG
4135 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4138 /* Return a reference to a type, with its const and volatile qualifiers
4139 removed. */
4141 static inline tree
4142 type_main_variant (tree type)
4144 type = TYPE_MAIN_VARIANT (type);
4146 /* ??? There really should be only one main variant among any group of
4147 variants of a given type (and all of the MAIN_VARIANT values for all
4148 members of the group should point to that one type) but sometimes the C
4149 front-end messes this up for array types, so we work around that bug
4150 here. */
4151 if (TREE_CODE (type) == ARRAY_TYPE)
4152 while (type != TYPE_MAIN_VARIANT (type))
4153 type = TYPE_MAIN_VARIANT (type);
4155 return type;
4158 /* Return nonzero if the given type node represents a tagged type. */
4160 static inline int
4161 is_tagged_type (tree type)
4163 enum tree_code code = TREE_CODE (type);
4165 return (code == RECORD_TYPE || code == UNION_TYPE
4166 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4169 /* Convert a DIE tag into its string name. */
4171 static const char *
4172 dwarf_tag_name (unsigned int tag)
4174 switch (tag)
4176 case DW_TAG_padding:
4177 return "DW_TAG_padding";
4178 case DW_TAG_array_type:
4179 return "DW_TAG_array_type";
4180 case DW_TAG_class_type:
4181 return "DW_TAG_class_type";
4182 case DW_TAG_entry_point:
4183 return "DW_TAG_entry_point";
4184 case DW_TAG_enumeration_type:
4185 return "DW_TAG_enumeration_type";
4186 case DW_TAG_formal_parameter:
4187 return "DW_TAG_formal_parameter";
4188 case DW_TAG_imported_declaration:
4189 return "DW_TAG_imported_declaration";
4190 case DW_TAG_label:
4191 return "DW_TAG_label";
4192 case DW_TAG_lexical_block:
4193 return "DW_TAG_lexical_block";
4194 case DW_TAG_member:
4195 return "DW_TAG_member";
4196 case DW_TAG_pointer_type:
4197 return "DW_TAG_pointer_type";
4198 case DW_TAG_reference_type:
4199 return "DW_TAG_reference_type";
4200 case DW_TAG_compile_unit:
4201 return "DW_TAG_compile_unit";
4202 case DW_TAG_string_type:
4203 return "DW_TAG_string_type";
4204 case DW_TAG_structure_type:
4205 return "DW_TAG_structure_type";
4206 case DW_TAG_subroutine_type:
4207 return "DW_TAG_subroutine_type";
4208 case DW_TAG_typedef:
4209 return "DW_TAG_typedef";
4210 case DW_TAG_union_type:
4211 return "DW_TAG_union_type";
4212 case DW_TAG_unspecified_parameters:
4213 return "DW_TAG_unspecified_parameters";
4214 case DW_TAG_variant:
4215 return "DW_TAG_variant";
4216 case DW_TAG_common_block:
4217 return "DW_TAG_common_block";
4218 case DW_TAG_common_inclusion:
4219 return "DW_TAG_common_inclusion";
4220 case DW_TAG_inheritance:
4221 return "DW_TAG_inheritance";
4222 case DW_TAG_inlined_subroutine:
4223 return "DW_TAG_inlined_subroutine";
4224 case DW_TAG_module:
4225 return "DW_TAG_module";
4226 case DW_TAG_ptr_to_member_type:
4227 return "DW_TAG_ptr_to_member_type";
4228 case DW_TAG_set_type:
4229 return "DW_TAG_set_type";
4230 case DW_TAG_subrange_type:
4231 return "DW_TAG_subrange_type";
4232 case DW_TAG_with_stmt:
4233 return "DW_TAG_with_stmt";
4234 case DW_TAG_access_declaration:
4235 return "DW_TAG_access_declaration";
4236 case DW_TAG_base_type:
4237 return "DW_TAG_base_type";
4238 case DW_TAG_catch_block:
4239 return "DW_TAG_catch_block";
4240 case DW_TAG_const_type:
4241 return "DW_TAG_const_type";
4242 case DW_TAG_constant:
4243 return "DW_TAG_constant";
4244 case DW_TAG_enumerator:
4245 return "DW_TAG_enumerator";
4246 case DW_TAG_file_type:
4247 return "DW_TAG_file_type";
4248 case DW_TAG_friend:
4249 return "DW_TAG_friend";
4250 case DW_TAG_namelist:
4251 return "DW_TAG_namelist";
4252 case DW_TAG_namelist_item:
4253 return "DW_TAG_namelist_item";
4254 case DW_TAG_namespace:
4255 return "DW_TAG_namespace";
4256 case DW_TAG_packed_type:
4257 return "DW_TAG_packed_type";
4258 case DW_TAG_subprogram:
4259 return "DW_TAG_subprogram";
4260 case DW_TAG_template_type_param:
4261 return "DW_TAG_template_type_param";
4262 case DW_TAG_template_value_param:
4263 return "DW_TAG_template_value_param";
4264 case DW_TAG_thrown_type:
4265 return "DW_TAG_thrown_type";
4266 case DW_TAG_try_block:
4267 return "DW_TAG_try_block";
4268 case DW_TAG_variant_part:
4269 return "DW_TAG_variant_part";
4270 case DW_TAG_variable:
4271 return "DW_TAG_variable";
4272 case DW_TAG_volatile_type:
4273 return "DW_TAG_volatile_type";
4274 case DW_TAG_imported_module:
4275 return "DW_TAG_imported_module";
4276 case DW_TAG_MIPS_loop:
4277 return "DW_TAG_MIPS_loop";
4278 case DW_TAG_format_label:
4279 return "DW_TAG_format_label";
4280 case DW_TAG_function_template:
4281 return "DW_TAG_function_template";
4282 case DW_TAG_class_template:
4283 return "DW_TAG_class_template";
4284 case DW_TAG_GNU_BINCL:
4285 return "DW_TAG_GNU_BINCL";
4286 case DW_TAG_GNU_EINCL:
4287 return "DW_TAG_GNU_EINCL";
4288 default:
4289 return "DW_TAG_<unknown>";
4293 /* Convert a DWARF attribute code into its string name. */
4295 static const char *
4296 dwarf_attr_name (unsigned int attr)
4298 switch (attr)
4300 case DW_AT_sibling:
4301 return "DW_AT_sibling";
4302 case DW_AT_location:
4303 return "DW_AT_location";
4304 case DW_AT_name:
4305 return "DW_AT_name";
4306 case DW_AT_ordering:
4307 return "DW_AT_ordering";
4308 case DW_AT_subscr_data:
4309 return "DW_AT_subscr_data";
4310 case DW_AT_byte_size:
4311 return "DW_AT_byte_size";
4312 case DW_AT_bit_offset:
4313 return "DW_AT_bit_offset";
4314 case DW_AT_bit_size:
4315 return "DW_AT_bit_size";
4316 case DW_AT_element_list:
4317 return "DW_AT_element_list";
4318 case DW_AT_stmt_list:
4319 return "DW_AT_stmt_list";
4320 case DW_AT_low_pc:
4321 return "DW_AT_low_pc";
4322 case DW_AT_high_pc:
4323 return "DW_AT_high_pc";
4324 case DW_AT_language:
4325 return "DW_AT_language";
4326 case DW_AT_member:
4327 return "DW_AT_member";
4328 case DW_AT_discr:
4329 return "DW_AT_discr";
4330 case DW_AT_discr_value:
4331 return "DW_AT_discr_value";
4332 case DW_AT_visibility:
4333 return "DW_AT_visibility";
4334 case DW_AT_import:
4335 return "DW_AT_import";
4336 case DW_AT_string_length:
4337 return "DW_AT_string_length";
4338 case DW_AT_common_reference:
4339 return "DW_AT_common_reference";
4340 case DW_AT_comp_dir:
4341 return "DW_AT_comp_dir";
4342 case DW_AT_const_value:
4343 return "DW_AT_const_value";
4344 case DW_AT_containing_type:
4345 return "DW_AT_containing_type";
4346 case DW_AT_default_value:
4347 return "DW_AT_default_value";
4348 case DW_AT_inline:
4349 return "DW_AT_inline";
4350 case DW_AT_is_optional:
4351 return "DW_AT_is_optional";
4352 case DW_AT_lower_bound:
4353 return "DW_AT_lower_bound";
4354 case DW_AT_producer:
4355 return "DW_AT_producer";
4356 case DW_AT_prototyped:
4357 return "DW_AT_prototyped";
4358 case DW_AT_return_addr:
4359 return "DW_AT_return_addr";
4360 case DW_AT_start_scope:
4361 return "DW_AT_start_scope";
4362 case DW_AT_stride_size:
4363 return "DW_AT_stride_size";
4364 case DW_AT_upper_bound:
4365 return "DW_AT_upper_bound";
4366 case DW_AT_abstract_origin:
4367 return "DW_AT_abstract_origin";
4368 case DW_AT_accessibility:
4369 return "DW_AT_accessibility";
4370 case DW_AT_address_class:
4371 return "DW_AT_address_class";
4372 case DW_AT_artificial:
4373 return "DW_AT_artificial";
4374 case DW_AT_base_types:
4375 return "DW_AT_base_types";
4376 case DW_AT_calling_convention:
4377 return "DW_AT_calling_convention";
4378 case DW_AT_count:
4379 return "DW_AT_count";
4380 case DW_AT_data_member_location:
4381 return "DW_AT_data_member_location";
4382 case DW_AT_decl_column:
4383 return "DW_AT_decl_column";
4384 case DW_AT_decl_file:
4385 return "DW_AT_decl_file";
4386 case DW_AT_decl_line:
4387 return "DW_AT_decl_line";
4388 case DW_AT_declaration:
4389 return "DW_AT_declaration";
4390 case DW_AT_discr_list:
4391 return "DW_AT_discr_list";
4392 case DW_AT_encoding:
4393 return "DW_AT_encoding";
4394 case DW_AT_external:
4395 return "DW_AT_external";
4396 case DW_AT_frame_base:
4397 return "DW_AT_frame_base";
4398 case DW_AT_friend:
4399 return "DW_AT_friend";
4400 case DW_AT_identifier_case:
4401 return "DW_AT_identifier_case";
4402 case DW_AT_macro_info:
4403 return "DW_AT_macro_info";
4404 case DW_AT_namelist_items:
4405 return "DW_AT_namelist_items";
4406 case DW_AT_priority:
4407 return "DW_AT_priority";
4408 case DW_AT_segment:
4409 return "DW_AT_segment";
4410 case DW_AT_specification:
4411 return "DW_AT_specification";
4412 case DW_AT_static_link:
4413 return "DW_AT_static_link";
4414 case DW_AT_type:
4415 return "DW_AT_type";
4416 case DW_AT_use_location:
4417 return "DW_AT_use_location";
4418 case DW_AT_variable_parameter:
4419 return "DW_AT_variable_parameter";
4420 case DW_AT_virtuality:
4421 return "DW_AT_virtuality";
4422 case DW_AT_vtable_elem_location:
4423 return "DW_AT_vtable_elem_location";
4425 case DW_AT_allocated:
4426 return "DW_AT_allocated";
4427 case DW_AT_associated:
4428 return "DW_AT_associated";
4429 case DW_AT_data_location:
4430 return "DW_AT_data_location";
4431 case DW_AT_stride:
4432 return "DW_AT_stride";
4433 case DW_AT_entry_pc:
4434 return "DW_AT_entry_pc";
4435 case DW_AT_use_UTF8:
4436 return "DW_AT_use_UTF8";
4437 case DW_AT_extension:
4438 return "DW_AT_extension";
4439 case DW_AT_ranges:
4440 return "DW_AT_ranges";
4441 case DW_AT_trampoline:
4442 return "DW_AT_trampoline";
4443 case DW_AT_call_column:
4444 return "DW_AT_call_column";
4445 case DW_AT_call_file:
4446 return "DW_AT_call_file";
4447 case DW_AT_call_line:
4448 return "DW_AT_call_line";
4450 case DW_AT_MIPS_fde:
4451 return "DW_AT_MIPS_fde";
4452 case DW_AT_MIPS_loop_begin:
4453 return "DW_AT_MIPS_loop_begin";
4454 case DW_AT_MIPS_tail_loop_begin:
4455 return "DW_AT_MIPS_tail_loop_begin";
4456 case DW_AT_MIPS_epilog_begin:
4457 return "DW_AT_MIPS_epilog_begin";
4458 case DW_AT_MIPS_loop_unroll_factor:
4459 return "DW_AT_MIPS_loop_unroll_factor";
4460 case DW_AT_MIPS_software_pipeline_depth:
4461 return "DW_AT_MIPS_software_pipeline_depth";
4462 case DW_AT_MIPS_linkage_name:
4463 return "DW_AT_MIPS_linkage_name";
4464 case DW_AT_MIPS_stride:
4465 return "DW_AT_MIPS_stride";
4466 case DW_AT_MIPS_abstract_name:
4467 return "DW_AT_MIPS_abstract_name";
4468 case DW_AT_MIPS_clone_origin:
4469 return "DW_AT_MIPS_clone_origin";
4470 case DW_AT_MIPS_has_inlines:
4471 return "DW_AT_MIPS_has_inlines";
4473 case DW_AT_sf_names:
4474 return "DW_AT_sf_names";
4475 case DW_AT_src_info:
4476 return "DW_AT_src_info";
4477 case DW_AT_mac_info:
4478 return "DW_AT_mac_info";
4479 case DW_AT_src_coords:
4480 return "DW_AT_src_coords";
4481 case DW_AT_body_begin:
4482 return "DW_AT_body_begin";
4483 case DW_AT_body_end:
4484 return "DW_AT_body_end";
4485 case DW_AT_GNU_vector:
4486 return "DW_AT_GNU_vector";
4488 case DW_AT_VMS_rtnbeg_pd_address:
4489 return "DW_AT_VMS_rtnbeg_pd_address";
4491 default:
4492 return "DW_AT_<unknown>";
4496 /* Convert a DWARF value form code into its string name. */
4498 static const char *
4499 dwarf_form_name (unsigned int form)
4501 switch (form)
4503 case DW_FORM_addr:
4504 return "DW_FORM_addr";
4505 case DW_FORM_block2:
4506 return "DW_FORM_block2";
4507 case DW_FORM_block4:
4508 return "DW_FORM_block4";
4509 case DW_FORM_data2:
4510 return "DW_FORM_data2";
4511 case DW_FORM_data4:
4512 return "DW_FORM_data4";
4513 case DW_FORM_data8:
4514 return "DW_FORM_data8";
4515 case DW_FORM_string:
4516 return "DW_FORM_string";
4517 case DW_FORM_block:
4518 return "DW_FORM_block";
4519 case DW_FORM_block1:
4520 return "DW_FORM_block1";
4521 case DW_FORM_data1:
4522 return "DW_FORM_data1";
4523 case DW_FORM_flag:
4524 return "DW_FORM_flag";
4525 case DW_FORM_sdata:
4526 return "DW_FORM_sdata";
4527 case DW_FORM_strp:
4528 return "DW_FORM_strp";
4529 case DW_FORM_udata:
4530 return "DW_FORM_udata";
4531 case DW_FORM_ref_addr:
4532 return "DW_FORM_ref_addr";
4533 case DW_FORM_ref1:
4534 return "DW_FORM_ref1";
4535 case DW_FORM_ref2:
4536 return "DW_FORM_ref2";
4537 case DW_FORM_ref4:
4538 return "DW_FORM_ref4";
4539 case DW_FORM_ref8:
4540 return "DW_FORM_ref8";
4541 case DW_FORM_ref_udata:
4542 return "DW_FORM_ref_udata";
4543 case DW_FORM_indirect:
4544 return "DW_FORM_indirect";
4545 default:
4546 return "DW_FORM_<unknown>";
4550 /* Convert a DWARF type code into its string name. */
4552 #if 0
4553 static const char *
4554 dwarf_type_encoding_name (unsigned enc)
4556 switch (enc)
4558 case DW_ATE_address:
4559 return "DW_ATE_address";
4560 case DW_ATE_boolean:
4561 return "DW_ATE_boolean";
4562 case DW_ATE_complex_float:
4563 return "DW_ATE_complex_float";
4564 case DW_ATE_float:
4565 return "DW_ATE_float";
4566 case DW_ATE_signed:
4567 return "DW_ATE_signed";
4568 case DW_ATE_signed_char:
4569 return "DW_ATE_signed_char";
4570 case DW_ATE_unsigned:
4571 return "DW_ATE_unsigned";
4572 case DW_ATE_unsigned_char:
4573 return "DW_ATE_unsigned_char";
4574 default:
4575 return "DW_ATE_<unknown>";
4578 #endif
4580 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4581 instance of an inlined instance of a decl which is local to an inline
4582 function, so we have to trace all of the way back through the origin chain
4583 to find out what sort of node actually served as the original seed for the
4584 given block. */
4586 static tree
4587 decl_ultimate_origin (tree decl)
4589 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4590 nodes in the function to point to themselves; ignore that if
4591 we're trying to output the abstract instance of this function. */
4592 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4593 return NULL_TREE;
4595 #ifdef ENABLE_CHECKING
4596 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4597 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4598 most distant ancestor, this should never happen. */
4599 abort ();
4600 #endif
4602 return DECL_ABSTRACT_ORIGIN (decl);
4605 /* Determine the "ultimate origin" of a block. The block may be an inlined
4606 instance of an inlined instance of a block which is local to an inline
4607 function, so we have to trace all of the way back through the origin chain
4608 to find out what sort of node actually served as the original seed for the
4609 given block. */
4611 static tree
4612 block_ultimate_origin (tree block)
4614 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4616 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4617 nodes in the function to point to themselves; ignore that if
4618 we're trying to output the abstract instance of this function. */
4619 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4620 return NULL_TREE;
4622 if (immediate_origin == NULL_TREE)
4623 return NULL_TREE;
4624 else
4626 tree ret_val;
4627 tree lookahead = immediate_origin;
4631 ret_val = lookahead;
4632 lookahead = (TREE_CODE (ret_val) == BLOCK
4633 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4635 while (lookahead != NULL && lookahead != ret_val);
4637 return ret_val;
4641 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4642 of a virtual function may refer to a base class, so we check the 'this'
4643 parameter. */
4645 static tree
4646 decl_class_context (tree decl)
4648 tree context = NULL_TREE;
4650 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4651 context = DECL_CONTEXT (decl);
4652 else
4653 context = TYPE_MAIN_VARIANT
4654 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4656 if (context && !TYPE_P (context))
4657 context = NULL_TREE;
4659 return context;
4662 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4663 addition order, and correct that in reverse_all_dies. */
4665 static inline void
4666 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4668 if (die != NULL && attr != NULL)
4670 attr->dw_attr_next = die->die_attr;
4671 die->die_attr = attr;
4675 static inline enum dw_val_class
4676 AT_class (dw_attr_ref a)
4678 return a->dw_attr_val.val_class;
4681 /* Add a flag value attribute to a DIE. */
4683 static inline void
4684 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4686 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4688 attr->dw_attr_next = NULL;
4689 attr->dw_attr = attr_kind;
4690 attr->dw_attr_val.val_class = dw_val_class_flag;
4691 attr->dw_attr_val.v.val_flag = flag;
4692 add_dwarf_attr (die, attr);
4695 static inline unsigned
4696 AT_flag (dw_attr_ref a)
4698 if (a && AT_class (a) == dw_val_class_flag)
4699 return a->dw_attr_val.v.val_flag;
4701 abort ();
4704 /* Add a signed integer attribute value to a DIE. */
4706 static inline void
4707 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4709 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4711 attr->dw_attr_next = NULL;
4712 attr->dw_attr = attr_kind;
4713 attr->dw_attr_val.val_class = dw_val_class_const;
4714 attr->dw_attr_val.v.val_int = int_val;
4715 add_dwarf_attr (die, attr);
4718 static inline HOST_WIDE_INT
4719 AT_int (dw_attr_ref a)
4721 if (a && AT_class (a) == dw_val_class_const)
4722 return a->dw_attr_val.v.val_int;
4724 abort ();
4727 /* Add an unsigned integer attribute value to a DIE. */
4729 static inline void
4730 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4731 unsigned HOST_WIDE_INT unsigned_val)
4733 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4735 attr->dw_attr_next = NULL;
4736 attr->dw_attr = attr_kind;
4737 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4738 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4739 add_dwarf_attr (die, attr);
4742 static inline unsigned HOST_WIDE_INT
4743 AT_unsigned (dw_attr_ref a)
4745 if (a && AT_class (a) == dw_val_class_unsigned_const)
4746 return a->dw_attr_val.v.val_unsigned;
4748 abort ();
4751 /* Add an unsigned double integer attribute value to a DIE. */
4753 static inline void
4754 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4755 long unsigned int val_hi, long unsigned int val_low)
4757 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4759 attr->dw_attr_next = NULL;
4760 attr->dw_attr = attr_kind;
4761 attr->dw_attr_val.val_class = dw_val_class_long_long;
4762 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4763 attr->dw_attr_val.v.val_long_long.low = val_low;
4764 add_dwarf_attr (die, attr);
4767 /* Add a floating point attribute value to a DIE and return it. */
4769 static inline void
4770 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4771 unsigned int length, unsigned int elt_size, unsigned char *array)
4773 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4775 attr->dw_attr_next = NULL;
4776 attr->dw_attr = attr_kind;
4777 attr->dw_attr_val.val_class = dw_val_class_vec;
4778 attr->dw_attr_val.v.val_vec.length = length;
4779 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4780 attr->dw_attr_val.v.val_vec.array = array;
4781 add_dwarf_attr (die, attr);
4784 /* Hash and equality functions for debug_str_hash. */
4786 static hashval_t
4787 debug_str_do_hash (const void *x)
4789 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4792 static int
4793 debug_str_eq (const void *x1, const void *x2)
4795 return strcmp ((((const struct indirect_string_node *)x1)->str),
4796 (const char *)x2) == 0;
4799 /* Add a string attribute value to a DIE. */
4801 static inline void
4802 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4804 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4805 struct indirect_string_node *node;
4806 void **slot;
4808 if (! debug_str_hash)
4809 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4810 debug_str_eq, NULL);
4812 slot = htab_find_slot_with_hash (debug_str_hash, str,
4813 htab_hash_string (str), INSERT);
4814 if (*slot == NULL)
4815 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4816 node = (struct indirect_string_node *) *slot;
4817 node->str = ggc_strdup (str);
4818 node->refcount++;
4820 attr->dw_attr_next = NULL;
4821 attr->dw_attr = attr_kind;
4822 attr->dw_attr_val.val_class = dw_val_class_str;
4823 attr->dw_attr_val.v.val_str = node;
4824 add_dwarf_attr (die, attr);
4827 static inline const char *
4828 AT_string (dw_attr_ref a)
4830 if (a && AT_class (a) == dw_val_class_str)
4831 return a->dw_attr_val.v.val_str->str;
4833 abort ();
4836 /* Find out whether a string should be output inline in DIE
4837 or out-of-line in .debug_str section. */
4839 static int
4840 AT_string_form (dw_attr_ref a)
4842 if (a && AT_class (a) == dw_val_class_str)
4844 struct indirect_string_node *node;
4845 unsigned int len;
4846 char label[32];
4848 node = a->dw_attr_val.v.val_str;
4849 if (node->form)
4850 return node->form;
4852 len = strlen (node->str) + 1;
4854 /* If the string is shorter or equal to the size of the reference, it is
4855 always better to put it inline. */
4856 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4857 return node->form = DW_FORM_string;
4859 /* If we cannot expect the linker to merge strings in .debug_str
4860 section, only put it into .debug_str if it is worth even in this
4861 single module. */
4862 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4863 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4864 return node->form = DW_FORM_string;
4866 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4867 ++dw2_string_counter;
4868 node->label = xstrdup (label);
4870 return node->form = DW_FORM_strp;
4873 abort ();
4876 /* Add a DIE reference attribute value to a DIE. */
4878 static inline void
4879 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4881 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4883 attr->dw_attr_next = NULL;
4884 attr->dw_attr = attr_kind;
4885 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4886 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4887 attr->dw_attr_val.v.val_die_ref.external = 0;
4888 add_dwarf_attr (die, attr);
4891 /* Add an AT_specification attribute to a DIE, and also make the back
4892 pointer from the specification to the definition. */
4894 static inline void
4895 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4897 add_AT_die_ref (die, DW_AT_specification, targ_die);
4898 if (targ_die->die_definition)
4899 abort ();
4900 targ_die->die_definition = die;
4903 static inline dw_die_ref
4904 AT_ref (dw_attr_ref a)
4906 if (a && AT_class (a) == dw_val_class_die_ref)
4907 return a->dw_attr_val.v.val_die_ref.die;
4909 abort ();
4912 static inline int
4913 AT_ref_external (dw_attr_ref a)
4915 if (a && AT_class (a) == dw_val_class_die_ref)
4916 return a->dw_attr_val.v.val_die_ref.external;
4918 return 0;
4921 static inline void
4922 set_AT_ref_external (dw_attr_ref a, int i)
4924 if (a && AT_class (a) == dw_val_class_die_ref)
4925 a->dw_attr_val.v.val_die_ref.external = i;
4926 else
4927 abort ();
4930 /* Add an FDE reference attribute value to a DIE. */
4932 static inline void
4933 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4935 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4937 attr->dw_attr_next = NULL;
4938 attr->dw_attr = attr_kind;
4939 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4940 attr->dw_attr_val.v.val_fde_index = targ_fde;
4941 add_dwarf_attr (die, attr);
4944 /* Add a location description attribute value to a DIE. */
4946 static inline void
4947 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4949 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4951 attr->dw_attr_next = NULL;
4952 attr->dw_attr = attr_kind;
4953 attr->dw_attr_val.val_class = dw_val_class_loc;
4954 attr->dw_attr_val.v.val_loc = loc;
4955 add_dwarf_attr (die, attr);
4958 static inline dw_loc_descr_ref
4959 AT_loc (dw_attr_ref a)
4961 if (a && AT_class (a) == dw_val_class_loc)
4962 return a->dw_attr_val.v.val_loc;
4964 abort ();
4967 static inline void
4968 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4970 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4972 attr->dw_attr_next = NULL;
4973 attr->dw_attr = attr_kind;
4974 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4975 attr->dw_attr_val.v.val_loc_list = loc_list;
4976 add_dwarf_attr (die, attr);
4977 have_location_lists = 1;
4980 static inline dw_loc_list_ref
4981 AT_loc_list (dw_attr_ref a)
4983 if (a && AT_class (a) == dw_val_class_loc_list)
4984 return a->dw_attr_val.v.val_loc_list;
4986 abort ();
4989 /* Add an address constant attribute value to a DIE. */
4991 static inline void
4992 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4994 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4996 attr->dw_attr_next = NULL;
4997 attr->dw_attr = attr_kind;
4998 attr->dw_attr_val.val_class = dw_val_class_addr;
4999 attr->dw_attr_val.v.val_addr = addr;
5000 add_dwarf_attr (die, attr);
5003 static inline rtx
5004 AT_addr (dw_attr_ref a)
5006 if (a && AT_class (a) == dw_val_class_addr)
5007 return a->dw_attr_val.v.val_addr;
5009 abort ();
5012 /* Add a label identifier attribute value to a DIE. */
5014 static inline void
5015 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5017 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5019 attr->dw_attr_next = NULL;
5020 attr->dw_attr = attr_kind;
5021 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5022 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5023 add_dwarf_attr (die, attr);
5026 /* Add a section offset attribute value to a DIE. */
5028 static inline void
5029 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5031 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5033 attr->dw_attr_next = NULL;
5034 attr->dw_attr = attr_kind;
5035 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5036 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5037 add_dwarf_attr (die, attr);
5040 /* Add an offset attribute value to a DIE. */
5042 static inline void
5043 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5044 unsigned HOST_WIDE_INT offset)
5046 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5048 attr->dw_attr_next = NULL;
5049 attr->dw_attr = attr_kind;
5050 attr->dw_attr_val.val_class = dw_val_class_offset;
5051 attr->dw_attr_val.v.val_offset = offset;
5052 add_dwarf_attr (die, attr);
5055 /* Add an range_list attribute value to a DIE. */
5057 static void
5058 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5059 long unsigned int offset)
5061 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5063 attr->dw_attr_next = NULL;
5064 attr->dw_attr = attr_kind;
5065 attr->dw_attr_val.val_class = dw_val_class_range_list;
5066 attr->dw_attr_val.v.val_offset = offset;
5067 add_dwarf_attr (die, attr);
5070 static inline const char *
5071 AT_lbl (dw_attr_ref a)
5073 if (a && (AT_class (a) == dw_val_class_lbl_id
5074 || AT_class (a) == dw_val_class_lbl_offset))
5075 return a->dw_attr_val.v.val_lbl_id;
5077 abort ();
5080 /* Get the attribute of type attr_kind. */
5082 static dw_attr_ref
5083 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5085 dw_attr_ref a;
5086 dw_die_ref spec = NULL;
5088 if (die != NULL)
5090 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5091 if (a->dw_attr == attr_kind)
5092 return a;
5093 else if (a->dw_attr == DW_AT_specification
5094 || a->dw_attr == DW_AT_abstract_origin)
5095 spec = AT_ref (a);
5097 if (spec)
5098 return get_AT (spec, attr_kind);
5101 return NULL;
5104 /* Return the "low pc" attribute value, typically associated with a subprogram
5105 DIE. Return null if the "low pc" attribute is either not present, or if it
5106 cannot be represented as an assembler label identifier. */
5108 static inline const char *
5109 get_AT_low_pc (dw_die_ref die)
5111 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5113 return a ? AT_lbl (a) : NULL;
5116 /* Return the "high pc" attribute value, typically associated with a subprogram
5117 DIE. Return null if the "high pc" attribute is either not present, or if it
5118 cannot be represented as an assembler label identifier. */
5120 static inline const char *
5121 get_AT_hi_pc (dw_die_ref die)
5123 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5125 return a ? AT_lbl (a) : NULL;
5128 /* Return the value of the string attribute designated by ATTR_KIND, or
5129 NULL if it is not present. */
5131 static inline const char *
5132 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5134 dw_attr_ref a = get_AT (die, attr_kind);
5136 return a ? AT_string (a) : NULL;
5139 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5140 if it is not present. */
5142 static inline int
5143 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5145 dw_attr_ref a = get_AT (die, attr_kind);
5147 return a ? AT_flag (a) : 0;
5150 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5151 if it is not present. */
5153 static inline unsigned
5154 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5156 dw_attr_ref a = get_AT (die, attr_kind);
5158 return a ? AT_unsigned (a) : 0;
5161 static inline dw_die_ref
5162 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5164 dw_attr_ref a = get_AT (die, attr_kind);
5166 return a ? AT_ref (a) : NULL;
5169 /* Return TRUE if the language is C or C++. */
5171 static inline bool
5172 is_c_family (void)
5174 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5176 return (lang == DW_LANG_C || lang == DW_LANG_C89
5177 || lang == DW_LANG_C_plus_plus);
5180 /* Return TRUE if the language is C++. */
5182 static inline bool
5183 is_cxx (void)
5185 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5186 == DW_LANG_C_plus_plus);
5189 /* Return TRUE if the language is Fortran. */
5191 static inline bool
5192 is_fortran (void)
5194 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5196 return (lang == DW_LANG_Fortran77
5197 || lang == DW_LANG_Fortran90
5198 || lang == DW_LANG_Fortran95);
5201 /* Return TRUE if the language is Java. */
5203 static inline bool
5204 is_java (void)
5206 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5208 return lang == DW_LANG_Java;
5211 /* Return TRUE if the language is Ada. */
5213 static inline bool
5214 is_ada (void)
5216 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5218 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5221 /* Free up the memory used by A. */
5223 static inline void free_AT (dw_attr_ref);
5224 static inline void
5225 free_AT (dw_attr_ref a)
5227 if (AT_class (a) == dw_val_class_str)
5228 if (a->dw_attr_val.v.val_str->refcount)
5229 a->dw_attr_val.v.val_str->refcount--;
5232 /* Remove the specified attribute if present. */
5234 static void
5235 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5237 dw_attr_ref *p;
5238 dw_attr_ref removed = NULL;
5240 if (die != NULL)
5242 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5243 if ((*p)->dw_attr == attr_kind)
5245 removed = *p;
5246 *p = (*p)->dw_attr_next;
5247 break;
5250 if (removed != 0)
5251 free_AT (removed);
5255 /* Remove child die whose die_tag is specified tag. */
5257 static void
5258 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5260 dw_die_ref current, prev, next;
5261 current = die->die_child;
5262 prev = NULL;
5263 while (current != NULL)
5265 if (current->die_tag == tag)
5267 next = current->die_sib;
5268 if (prev == NULL)
5269 die->die_child = next;
5270 else
5271 prev->die_sib = next;
5272 free_die (current);
5273 current = next;
5275 else
5277 prev = current;
5278 current = current->die_sib;
5283 /* Free up the memory used by DIE. */
5285 static inline void
5286 free_die (dw_die_ref die)
5288 remove_children (die);
5291 /* Discard the children of this DIE. */
5293 static void
5294 remove_children (dw_die_ref die)
5296 dw_die_ref child_die = die->die_child;
5298 die->die_child = NULL;
5300 while (child_die != NULL)
5302 dw_die_ref tmp_die = child_die;
5303 dw_attr_ref a;
5305 child_die = child_die->die_sib;
5307 for (a = tmp_die->die_attr; a != NULL;)
5309 dw_attr_ref tmp_a = a;
5311 a = a->dw_attr_next;
5312 free_AT (tmp_a);
5315 free_die (tmp_die);
5319 /* Add a child DIE below its parent. We build the lists up in reverse
5320 addition order, and correct that in reverse_all_dies. */
5322 static inline void
5323 add_child_die (dw_die_ref die, dw_die_ref child_die)
5325 if (die != NULL && child_die != NULL)
5327 if (die == child_die)
5328 abort ();
5330 child_die->die_parent = die;
5331 child_die->die_sib = die->die_child;
5332 die->die_child = child_die;
5336 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5337 is the specification, to the front of PARENT's list of children. */
5339 static void
5340 splice_child_die (dw_die_ref parent, dw_die_ref child)
5342 dw_die_ref *p;
5344 /* We want the declaration DIE from inside the class, not the
5345 specification DIE at toplevel. */
5346 if (child->die_parent != parent)
5348 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5350 if (tmp)
5351 child = tmp;
5354 if (child->die_parent != parent
5355 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5356 abort ();
5358 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5359 if (*p == child)
5361 *p = child->die_sib;
5362 break;
5365 child->die_parent = parent;
5366 child->die_sib = parent->die_child;
5367 parent->die_child = child;
5370 /* Return a pointer to a newly created DIE node. */
5372 static inline dw_die_ref
5373 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5375 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5377 die->die_tag = tag_value;
5379 if (parent_die != NULL)
5380 add_child_die (parent_die, die);
5381 else
5383 limbo_die_node *limbo_node;
5385 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5386 limbo_node->die = die;
5387 limbo_node->created_for = t;
5388 limbo_node->next = limbo_die_list;
5389 limbo_die_list = limbo_node;
5392 return die;
5395 /* Return the DIE associated with the given type specifier. */
5397 static inline dw_die_ref
5398 lookup_type_die (tree type)
5400 return TYPE_SYMTAB_DIE (type);
5403 /* Equate a DIE to a given type specifier. */
5405 static inline void
5406 equate_type_number_to_die (tree type, dw_die_ref type_die)
5408 TYPE_SYMTAB_DIE (type) = type_die;
5411 /* Returns a hash value for X (which really is a die_struct). */
5413 static hashval_t
5414 decl_die_table_hash (const void *x)
5416 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5419 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5421 static int
5422 decl_die_table_eq (const void *x, const void *y)
5424 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5427 /* Return the DIE associated with a given declaration. */
5429 static inline dw_die_ref
5430 lookup_decl_die (tree decl)
5432 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5435 /* Returns a hash value for X (which really is a var_loc_list). */
5437 static hashval_t
5438 decl_loc_table_hash (const void *x)
5440 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5443 /* Return nonzero if decl_id of var_loc_list X is the same as
5444 UID of decl *Y. */
5446 static int
5447 decl_loc_table_eq (const void *x, const void *y)
5449 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5452 /* Return the var_loc list associated with a given declaration. */
5454 static inline var_loc_list *
5455 lookup_decl_loc (tree decl)
5457 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5460 /* Equate a DIE to a particular declaration. */
5462 static void
5463 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5465 unsigned int decl_id = DECL_UID (decl);
5466 void **slot;
5468 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5469 *slot = decl_die;
5470 decl_die->decl_id = decl_id;
5473 /* Add a variable location node to the linked list for DECL. */
5475 static void
5476 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5478 unsigned int decl_id = DECL_UID (decl);
5479 var_loc_list *temp;
5480 void **slot;
5482 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5483 if (*slot == NULL)
5485 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5486 temp->decl_id = decl_id;
5487 *slot = temp;
5489 else
5490 temp = *slot;
5492 if (temp->last)
5494 /* If the current location is the same as the end of the list,
5495 we have nothing to do. */
5496 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5497 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5499 /* Add LOC to the end of list and update LAST. */
5500 temp->last->next = loc;
5501 temp->last = loc;
5504 /* Do not add empty location to the beginning of the list. */
5505 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5507 temp->first = loc;
5508 temp->last = loc;
5512 /* Keep track of the number of spaces used to indent the
5513 output of the debugging routines that print the structure of
5514 the DIE internal representation. */
5515 static int print_indent;
5517 /* Indent the line the number of spaces given by print_indent. */
5519 static inline void
5520 print_spaces (FILE *outfile)
5522 fprintf (outfile, "%*s", print_indent, "");
5525 /* Print the information associated with a given DIE, and its children.
5526 This routine is a debugging aid only. */
5528 static void
5529 print_die (dw_die_ref die, FILE *outfile)
5531 dw_attr_ref a;
5532 dw_die_ref c;
5534 print_spaces (outfile);
5535 fprintf (outfile, "DIE %4lu: %s\n",
5536 die->die_offset, dwarf_tag_name (die->die_tag));
5537 print_spaces (outfile);
5538 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5539 fprintf (outfile, " offset: %lu\n", die->die_offset);
5541 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5543 print_spaces (outfile);
5544 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5546 switch (AT_class (a))
5548 case dw_val_class_addr:
5549 fprintf (outfile, "address");
5550 break;
5551 case dw_val_class_offset:
5552 fprintf (outfile, "offset");
5553 break;
5554 case dw_val_class_loc:
5555 fprintf (outfile, "location descriptor");
5556 break;
5557 case dw_val_class_loc_list:
5558 fprintf (outfile, "location list -> label:%s",
5559 AT_loc_list (a)->ll_symbol);
5560 break;
5561 case dw_val_class_range_list:
5562 fprintf (outfile, "range list");
5563 break;
5564 case dw_val_class_const:
5565 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5566 break;
5567 case dw_val_class_unsigned_const:
5568 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5569 break;
5570 case dw_val_class_long_long:
5571 fprintf (outfile, "constant (%lu,%lu)",
5572 a->dw_attr_val.v.val_long_long.hi,
5573 a->dw_attr_val.v.val_long_long.low);
5574 break;
5575 case dw_val_class_vec:
5576 fprintf (outfile, "floating-point or vector constant");
5577 break;
5578 case dw_val_class_flag:
5579 fprintf (outfile, "%u", AT_flag (a));
5580 break;
5581 case dw_val_class_die_ref:
5582 if (AT_ref (a) != NULL)
5584 if (AT_ref (a)->die_symbol)
5585 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5586 else
5587 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5589 else
5590 fprintf (outfile, "die -> <null>");
5591 break;
5592 case dw_val_class_lbl_id:
5593 case dw_val_class_lbl_offset:
5594 fprintf (outfile, "label: %s", AT_lbl (a));
5595 break;
5596 case dw_val_class_str:
5597 if (AT_string (a) != NULL)
5598 fprintf (outfile, "\"%s\"", AT_string (a));
5599 else
5600 fprintf (outfile, "<null>");
5601 break;
5602 default:
5603 break;
5606 fprintf (outfile, "\n");
5609 if (die->die_child != NULL)
5611 print_indent += 4;
5612 for (c = die->die_child; c != NULL; c = c->die_sib)
5613 print_die (c, outfile);
5615 print_indent -= 4;
5617 if (print_indent == 0)
5618 fprintf (outfile, "\n");
5621 /* Print the contents of the source code line number correspondence table.
5622 This routine is a debugging aid only. */
5624 static void
5625 print_dwarf_line_table (FILE *outfile)
5627 unsigned i;
5628 dw_line_info_ref line_info;
5630 fprintf (outfile, "\n\nDWARF source line information\n");
5631 for (i = 1; i < line_info_table_in_use; i++)
5633 line_info = &line_info_table[i];
5634 fprintf (outfile, "%5d: ", i);
5635 fprintf (outfile, "%-20s",
5636 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5637 fprintf (outfile, "%6ld", line_info->dw_line_num);
5638 fprintf (outfile, "\n");
5641 fprintf (outfile, "\n\n");
5644 /* Print the information collected for a given DIE. */
5646 void
5647 debug_dwarf_die (dw_die_ref die)
5649 print_die (die, stderr);
5652 /* Print all DWARF information collected for the compilation unit.
5653 This routine is a debugging aid only. */
5655 void
5656 debug_dwarf (void)
5658 print_indent = 0;
5659 print_die (comp_unit_die, stderr);
5660 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5661 print_dwarf_line_table (stderr);
5664 /* We build up the lists of children and attributes by pushing new ones
5665 onto the beginning of the list. Reverse the lists for DIE so that
5666 they are in order of addition. */
5668 static void
5669 reverse_die_lists (dw_die_ref die)
5671 dw_die_ref c, cp, cn;
5672 dw_attr_ref a, ap, an;
5674 for (a = die->die_attr, ap = 0; a; a = an)
5676 an = a->dw_attr_next;
5677 a->dw_attr_next = ap;
5678 ap = a;
5681 die->die_attr = ap;
5683 for (c = die->die_child, cp = 0; c; c = cn)
5685 cn = c->die_sib;
5686 c->die_sib = cp;
5687 cp = c;
5690 die->die_child = cp;
5693 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5694 reverse all dies in add_sibling_attributes, which runs through all the dies,
5695 it would reverse all the dies. Now, however, since we don't call
5696 reverse_die_lists in add_sibling_attributes, we need a routine to
5697 recursively reverse all the dies. This is that routine. */
5699 static void
5700 reverse_all_dies (dw_die_ref die)
5702 dw_die_ref c;
5704 reverse_die_lists (die);
5706 for (c = die->die_child; c; c = c->die_sib)
5707 reverse_all_dies (c);
5710 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5711 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5712 DIE that marks the start of the DIEs for this include file. */
5714 static dw_die_ref
5715 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5717 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5718 dw_die_ref new_unit = gen_compile_unit_die (filename);
5720 new_unit->die_sib = old_unit;
5721 return new_unit;
5724 /* Close an include-file CU and reopen the enclosing one. */
5726 static dw_die_ref
5727 pop_compile_unit (dw_die_ref old_unit)
5729 dw_die_ref new_unit = old_unit->die_sib;
5731 old_unit->die_sib = NULL;
5732 return new_unit;
5735 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5736 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5738 /* Calculate the checksum of a location expression. */
5740 static inline void
5741 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5743 CHECKSUM (loc->dw_loc_opc);
5744 CHECKSUM (loc->dw_loc_oprnd1);
5745 CHECKSUM (loc->dw_loc_oprnd2);
5748 /* Calculate the checksum of an attribute. */
5750 static void
5751 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5753 dw_loc_descr_ref loc;
5754 rtx r;
5756 CHECKSUM (at->dw_attr);
5758 /* We don't care about differences in file numbering. */
5759 if (at->dw_attr == DW_AT_decl_file
5760 /* Or that this was compiled with a different compiler snapshot; if
5761 the output is the same, that's what matters. */
5762 || at->dw_attr == DW_AT_producer)
5763 return;
5765 switch (AT_class (at))
5767 case dw_val_class_const:
5768 CHECKSUM (at->dw_attr_val.v.val_int);
5769 break;
5770 case dw_val_class_unsigned_const:
5771 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5772 break;
5773 case dw_val_class_long_long:
5774 CHECKSUM (at->dw_attr_val.v.val_long_long);
5775 break;
5776 case dw_val_class_vec:
5777 CHECKSUM (at->dw_attr_val.v.val_vec);
5778 break;
5779 case dw_val_class_flag:
5780 CHECKSUM (at->dw_attr_val.v.val_flag);
5781 break;
5782 case dw_val_class_str:
5783 CHECKSUM_STRING (AT_string (at));
5784 break;
5786 case dw_val_class_addr:
5787 r = AT_addr (at);
5788 switch (GET_CODE (r))
5790 case SYMBOL_REF:
5791 CHECKSUM_STRING (XSTR (r, 0));
5792 break;
5794 default:
5795 abort ();
5797 break;
5799 case dw_val_class_offset:
5800 CHECKSUM (at->dw_attr_val.v.val_offset);
5801 break;
5803 case dw_val_class_loc:
5804 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5805 loc_checksum (loc, ctx);
5806 break;
5808 case dw_val_class_die_ref:
5809 die_checksum (AT_ref (at), ctx, mark);
5810 break;
5812 case dw_val_class_fde_ref:
5813 case dw_val_class_lbl_id:
5814 case dw_val_class_lbl_offset:
5815 break;
5817 default:
5818 break;
5822 /* Calculate the checksum of a DIE. */
5824 static void
5825 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5827 dw_die_ref c;
5828 dw_attr_ref a;
5830 /* To avoid infinite recursion. */
5831 if (die->die_mark)
5833 CHECKSUM (die->die_mark);
5834 return;
5836 die->die_mark = ++(*mark);
5838 CHECKSUM (die->die_tag);
5840 for (a = die->die_attr; a; a = a->dw_attr_next)
5841 attr_checksum (a, ctx, mark);
5843 for (c = die->die_child; c; c = c->die_sib)
5844 die_checksum (c, ctx, mark);
5847 #undef CHECKSUM
5848 #undef CHECKSUM_STRING
5850 /* Do the location expressions look same? */
5851 static inline int
5852 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5854 return loc1->dw_loc_opc == loc2->dw_loc_opc
5855 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5856 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5859 /* Do the values look the same? */
5860 static int
5861 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5863 dw_loc_descr_ref loc1, loc2;
5864 rtx r1, r2;
5866 if (v1->val_class != v2->val_class)
5867 return 0;
5869 switch (v1->val_class)
5871 case dw_val_class_const:
5872 return v1->v.val_int == v2->v.val_int;
5873 case dw_val_class_unsigned_const:
5874 return v1->v.val_unsigned == v2->v.val_unsigned;
5875 case dw_val_class_long_long:
5876 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5877 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5878 case dw_val_class_vec:
5879 if (v1->v.val_vec.length != v2->v.val_vec.length
5880 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5881 return 0;
5882 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5883 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5884 return 0;
5885 return 1;
5886 case dw_val_class_flag:
5887 return v1->v.val_flag == v2->v.val_flag;
5888 case dw_val_class_str:
5889 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5891 case dw_val_class_addr:
5892 r1 = v1->v.val_addr;
5893 r2 = v2->v.val_addr;
5894 if (GET_CODE (r1) != GET_CODE (r2))
5895 return 0;
5896 switch (GET_CODE (r1))
5898 case SYMBOL_REF:
5899 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5901 default:
5902 abort ();
5905 case dw_val_class_offset:
5906 return v1->v.val_offset == v2->v.val_offset;
5908 case dw_val_class_loc:
5909 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5910 loc1 && loc2;
5911 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5912 if (!same_loc_p (loc1, loc2, mark))
5913 return 0;
5914 return !loc1 && !loc2;
5916 case dw_val_class_die_ref:
5917 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5919 case dw_val_class_fde_ref:
5920 case dw_val_class_lbl_id:
5921 case dw_val_class_lbl_offset:
5922 return 1;
5924 default:
5925 return 1;
5929 /* Do the attributes look the same? */
5931 static int
5932 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5934 if (at1->dw_attr != at2->dw_attr)
5935 return 0;
5937 /* We don't care about differences in file numbering. */
5938 if (at1->dw_attr == DW_AT_decl_file
5939 /* Or that this was compiled with a different compiler snapshot; if
5940 the output is the same, that's what matters. */
5941 || at1->dw_attr == DW_AT_producer)
5942 return 1;
5944 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5947 /* Do the dies look the same? */
5949 static int
5950 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5952 dw_die_ref c1, c2;
5953 dw_attr_ref a1, a2;
5955 /* To avoid infinite recursion. */
5956 if (die1->die_mark)
5957 return die1->die_mark == die2->die_mark;
5958 die1->die_mark = die2->die_mark = ++(*mark);
5960 if (die1->die_tag != die2->die_tag)
5961 return 0;
5963 for (a1 = die1->die_attr, a2 = die2->die_attr;
5964 a1 && a2;
5965 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5966 if (!same_attr_p (a1, a2, mark))
5967 return 0;
5968 if (a1 || a2)
5969 return 0;
5971 for (c1 = die1->die_child, c2 = die2->die_child;
5972 c1 && c2;
5973 c1 = c1->die_sib, c2 = c2->die_sib)
5974 if (!same_die_p (c1, c2, mark))
5975 return 0;
5976 if (c1 || c2)
5977 return 0;
5979 return 1;
5982 /* Do the dies look the same? Wrapper around same_die_p. */
5984 static int
5985 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5987 int mark = 0;
5988 int ret = same_die_p (die1, die2, &mark);
5990 unmark_all_dies (die1);
5991 unmark_all_dies (die2);
5993 return ret;
5996 /* The prefix to attach to symbols on DIEs in the current comdat debug
5997 info section. */
5998 static char *comdat_symbol_id;
6000 /* The index of the current symbol within the current comdat CU. */
6001 static unsigned int comdat_symbol_number;
6003 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6004 children, and set comdat_symbol_id accordingly. */
6006 static void
6007 compute_section_prefix (dw_die_ref unit_die)
6009 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6010 const char *base = die_name ? lbasename (die_name) : "anonymous";
6011 char *name = alloca (strlen (base) + 64);
6012 char *p;
6013 int i, mark;
6014 unsigned char checksum[16];
6015 struct md5_ctx ctx;
6017 /* Compute the checksum of the DIE, then append part of it as hex digits to
6018 the name filename of the unit. */
6020 md5_init_ctx (&ctx);
6021 mark = 0;
6022 die_checksum (unit_die, &ctx, &mark);
6023 unmark_all_dies (unit_die);
6024 md5_finish_ctx (&ctx, checksum);
6026 sprintf (name, "%s.", base);
6027 clean_symbol_name (name);
6029 p = name + strlen (name);
6030 for (i = 0; i < 4; i++)
6032 sprintf (p, "%.2x", checksum[i]);
6033 p += 2;
6036 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6037 comdat_symbol_number = 0;
6040 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6042 static int
6043 is_type_die (dw_die_ref die)
6045 switch (die->die_tag)
6047 case DW_TAG_array_type:
6048 case DW_TAG_class_type:
6049 case DW_TAG_enumeration_type:
6050 case DW_TAG_pointer_type:
6051 case DW_TAG_reference_type:
6052 case DW_TAG_string_type:
6053 case DW_TAG_structure_type:
6054 case DW_TAG_subroutine_type:
6055 case DW_TAG_union_type:
6056 case DW_TAG_ptr_to_member_type:
6057 case DW_TAG_set_type:
6058 case DW_TAG_subrange_type:
6059 case DW_TAG_base_type:
6060 case DW_TAG_const_type:
6061 case DW_TAG_file_type:
6062 case DW_TAG_packed_type:
6063 case DW_TAG_volatile_type:
6064 case DW_TAG_typedef:
6065 return 1;
6066 default:
6067 return 0;
6071 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6072 Basically, we want to choose the bits that are likely to be shared between
6073 compilations (types) and leave out the bits that are specific to individual
6074 compilations (functions). */
6076 static int
6077 is_comdat_die (dw_die_ref c)
6079 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6080 we do for stabs. The advantage is a greater likelihood of sharing between
6081 objects that don't include headers in the same order (and therefore would
6082 put the base types in a different comdat). jason 8/28/00 */
6084 if (c->die_tag == DW_TAG_base_type)
6085 return 0;
6087 if (c->die_tag == DW_TAG_pointer_type
6088 || c->die_tag == DW_TAG_reference_type
6089 || c->die_tag == DW_TAG_const_type
6090 || c->die_tag == DW_TAG_volatile_type)
6092 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6094 return t ? is_comdat_die (t) : 0;
6097 return is_type_die (c);
6100 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6101 compilation unit. */
6103 static int
6104 is_symbol_die (dw_die_ref c)
6106 return (is_type_die (c)
6107 || (get_AT (c, DW_AT_declaration)
6108 && !get_AT (c, DW_AT_specification)));
6111 static char *
6112 gen_internal_sym (const char *prefix)
6114 char buf[256];
6116 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6117 return xstrdup (buf);
6120 /* Assign symbols to all worthy DIEs under DIE. */
6122 static void
6123 assign_symbol_names (dw_die_ref die)
6125 dw_die_ref c;
6127 if (is_symbol_die (die))
6129 if (comdat_symbol_id)
6131 char *p = alloca (strlen (comdat_symbol_id) + 64);
6133 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6134 comdat_symbol_id, comdat_symbol_number++);
6135 die->die_symbol = xstrdup (p);
6137 else
6138 die->die_symbol = gen_internal_sym ("LDIE");
6141 for (c = die->die_child; c != NULL; c = c->die_sib)
6142 assign_symbol_names (c);
6145 struct cu_hash_table_entry
6147 dw_die_ref cu;
6148 unsigned min_comdat_num, max_comdat_num;
6149 struct cu_hash_table_entry *next;
6152 /* Routines to manipulate hash table of CUs. */
6153 static hashval_t
6154 htab_cu_hash (const void *of)
6156 const struct cu_hash_table_entry *entry = of;
6158 return htab_hash_string (entry->cu->die_symbol);
6161 static int
6162 htab_cu_eq (const void *of1, const void *of2)
6164 const struct cu_hash_table_entry *entry1 = of1;
6165 const struct die_struct *entry2 = of2;
6167 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6170 static void
6171 htab_cu_del (void *what)
6173 struct cu_hash_table_entry *next, *entry = what;
6175 while (entry)
6177 next = entry->next;
6178 free (entry);
6179 entry = next;
6183 /* Check whether we have already seen this CU and set up SYM_NUM
6184 accordingly. */
6185 static int
6186 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6188 struct cu_hash_table_entry dummy;
6189 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6191 dummy.max_comdat_num = 0;
6193 slot = (struct cu_hash_table_entry **)
6194 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6195 INSERT);
6196 entry = *slot;
6198 for (; entry; last = entry, entry = entry->next)
6200 if (same_die_p_wrap (cu, entry->cu))
6201 break;
6204 if (entry)
6206 *sym_num = entry->min_comdat_num;
6207 return 1;
6210 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6211 entry->cu = cu;
6212 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6213 entry->next = *slot;
6214 *slot = entry;
6216 return 0;
6219 /* Record SYM_NUM to record of CU in HTABLE. */
6220 static void
6221 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6223 struct cu_hash_table_entry **slot, *entry;
6225 slot = (struct cu_hash_table_entry **)
6226 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6227 NO_INSERT);
6228 entry = *slot;
6230 entry->max_comdat_num = sym_num;
6233 /* Traverse the DIE (which is always comp_unit_die), and set up
6234 additional compilation units for each of the include files we see
6235 bracketed by BINCL/EINCL. */
6237 static void
6238 break_out_includes (dw_die_ref die)
6240 dw_die_ref *ptr;
6241 dw_die_ref unit = NULL;
6242 limbo_die_node *node, **pnode;
6243 htab_t cu_hash_table;
6245 for (ptr = &(die->die_child); *ptr;)
6247 dw_die_ref c = *ptr;
6249 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6250 || (unit && is_comdat_die (c)))
6252 /* This DIE is for a secondary CU; remove it from the main one. */
6253 *ptr = c->die_sib;
6255 if (c->die_tag == DW_TAG_GNU_BINCL)
6257 unit = push_new_compile_unit (unit, c);
6258 free_die (c);
6260 else if (c->die_tag == DW_TAG_GNU_EINCL)
6262 unit = pop_compile_unit (unit);
6263 free_die (c);
6265 else
6266 add_child_die (unit, c);
6268 else
6270 /* Leave this DIE in the main CU. */
6271 ptr = &(c->die_sib);
6272 continue;
6276 #if 0
6277 /* We can only use this in debugging, since the frontend doesn't check
6278 to make sure that we leave every include file we enter. */
6279 if (unit != NULL)
6280 abort ();
6281 #endif
6283 assign_symbol_names (die);
6284 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6285 for (node = limbo_die_list, pnode = &limbo_die_list;
6286 node;
6287 node = node->next)
6289 int is_dupl;
6291 compute_section_prefix (node->die);
6292 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6293 &comdat_symbol_number);
6294 assign_symbol_names (node->die);
6295 if (is_dupl)
6296 *pnode = node->next;
6297 else
6299 pnode = &node->next;
6300 record_comdat_symbol_number (node->die, cu_hash_table,
6301 comdat_symbol_number);
6304 htab_delete (cu_hash_table);
6307 /* Traverse the DIE and add a sibling attribute if it may have the
6308 effect of speeding up access to siblings. To save some space,
6309 avoid generating sibling attributes for DIE's without children. */
6311 static void
6312 add_sibling_attributes (dw_die_ref die)
6314 dw_die_ref c;
6316 if (die->die_tag != DW_TAG_compile_unit
6317 && die->die_sib && die->die_child != NULL)
6318 /* Add the sibling link to the front of the attribute list. */
6319 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6321 for (c = die->die_child; c != NULL; c = c->die_sib)
6322 add_sibling_attributes (c);
6325 /* Output all location lists for the DIE and its children. */
6327 static void
6328 output_location_lists (dw_die_ref die)
6330 dw_die_ref c;
6331 dw_attr_ref d_attr;
6333 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6334 if (AT_class (d_attr) == dw_val_class_loc_list)
6335 output_loc_list (AT_loc_list (d_attr));
6337 for (c = die->die_child; c != NULL; c = c->die_sib)
6338 output_location_lists (c);
6342 /* The format of each DIE (and its attribute value pairs) is encoded in an
6343 abbreviation table. This routine builds the abbreviation table and assigns
6344 a unique abbreviation id for each abbreviation entry. The children of each
6345 die are visited recursively. */
6347 static void
6348 build_abbrev_table (dw_die_ref die)
6350 unsigned long abbrev_id;
6351 unsigned int n_alloc;
6352 dw_die_ref c;
6353 dw_attr_ref d_attr, a_attr;
6355 /* Scan the DIE references, and mark as external any that refer to
6356 DIEs from other CUs (i.e. those which are not marked). */
6357 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6358 if (AT_class (d_attr) == dw_val_class_die_ref
6359 && AT_ref (d_attr)->die_mark == 0)
6361 if (AT_ref (d_attr)->die_symbol == 0)
6362 abort ();
6364 set_AT_ref_external (d_attr, 1);
6367 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6369 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6371 if (abbrev->die_tag == die->die_tag)
6373 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6375 a_attr = abbrev->die_attr;
6376 d_attr = die->die_attr;
6378 while (a_attr != NULL && d_attr != NULL)
6380 if ((a_attr->dw_attr != d_attr->dw_attr)
6381 || (value_format (a_attr) != value_format (d_attr)))
6382 break;
6384 a_attr = a_attr->dw_attr_next;
6385 d_attr = d_attr->dw_attr_next;
6388 if (a_attr == NULL && d_attr == NULL)
6389 break;
6394 if (abbrev_id >= abbrev_die_table_in_use)
6396 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6398 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6399 abbrev_die_table = ggc_realloc (abbrev_die_table,
6400 sizeof (dw_die_ref) * n_alloc);
6402 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6403 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6404 abbrev_die_table_allocated = n_alloc;
6407 ++abbrev_die_table_in_use;
6408 abbrev_die_table[abbrev_id] = die;
6411 die->die_abbrev = abbrev_id;
6412 for (c = die->die_child; c != NULL; c = c->die_sib)
6413 build_abbrev_table (c);
6416 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6418 static int
6419 constant_size (long unsigned int value)
6421 int log;
6423 if (value == 0)
6424 log = 0;
6425 else
6426 log = floor_log2 (value);
6428 log = log / 8;
6429 log = 1 << (floor_log2 (log) + 1);
6431 return log;
6434 /* Return the size of a DIE as it is represented in the
6435 .debug_info section. */
6437 static unsigned long
6438 size_of_die (dw_die_ref die)
6440 unsigned long size = 0;
6441 dw_attr_ref a;
6443 size += size_of_uleb128 (die->die_abbrev);
6444 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6446 switch (AT_class (a))
6448 case dw_val_class_addr:
6449 size += DWARF2_ADDR_SIZE;
6450 break;
6451 case dw_val_class_offset:
6452 size += DWARF_OFFSET_SIZE;
6453 break;
6454 case dw_val_class_loc:
6456 unsigned long lsize = size_of_locs (AT_loc (a));
6458 /* Block length. */
6459 size += constant_size (lsize);
6460 size += lsize;
6462 break;
6463 case dw_val_class_loc_list:
6464 size += DWARF_OFFSET_SIZE;
6465 break;
6466 case dw_val_class_range_list:
6467 size += DWARF_OFFSET_SIZE;
6468 break;
6469 case dw_val_class_const:
6470 size += size_of_sleb128 (AT_int (a));
6471 break;
6472 case dw_val_class_unsigned_const:
6473 size += constant_size (AT_unsigned (a));
6474 break;
6475 case dw_val_class_long_long:
6476 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6477 break;
6478 case dw_val_class_vec:
6479 size += 1 + (a->dw_attr_val.v.val_vec.length
6480 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6481 break;
6482 case dw_val_class_flag:
6483 size += 1;
6484 break;
6485 case dw_val_class_die_ref:
6486 if (AT_ref_external (a))
6487 size += DWARF2_ADDR_SIZE;
6488 else
6489 size += DWARF_OFFSET_SIZE;
6490 break;
6491 case dw_val_class_fde_ref:
6492 size += DWARF_OFFSET_SIZE;
6493 break;
6494 case dw_val_class_lbl_id:
6495 size += DWARF2_ADDR_SIZE;
6496 break;
6497 case dw_val_class_lbl_offset:
6498 size += DWARF_OFFSET_SIZE;
6499 break;
6500 case dw_val_class_str:
6501 if (AT_string_form (a) == DW_FORM_strp)
6502 size += DWARF_OFFSET_SIZE;
6503 else
6504 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6505 break;
6506 default:
6507 abort ();
6511 return size;
6514 /* Size the debugging information associated with a given DIE. Visits the
6515 DIE's children recursively. Updates the global variable next_die_offset, on
6516 each time through. Uses the current value of next_die_offset to update the
6517 die_offset field in each DIE. */
6519 static void
6520 calc_die_sizes (dw_die_ref die)
6522 dw_die_ref c;
6524 die->die_offset = next_die_offset;
6525 next_die_offset += size_of_die (die);
6527 for (c = die->die_child; c != NULL; c = c->die_sib)
6528 calc_die_sizes (c);
6530 if (die->die_child != NULL)
6531 /* Count the null byte used to terminate sibling lists. */
6532 next_die_offset += 1;
6535 /* Set the marks for a die and its children. We do this so
6536 that we know whether or not a reference needs to use FORM_ref_addr; only
6537 DIEs in the same CU will be marked. We used to clear out the offset
6538 and use that as the flag, but ran into ordering problems. */
6540 static void
6541 mark_dies (dw_die_ref die)
6543 dw_die_ref c;
6545 if (die->die_mark)
6546 abort ();
6548 die->die_mark = 1;
6549 for (c = die->die_child; c; c = c->die_sib)
6550 mark_dies (c);
6553 /* Clear the marks for a die and its children. */
6555 static void
6556 unmark_dies (dw_die_ref die)
6558 dw_die_ref c;
6560 if (!die->die_mark)
6561 abort ();
6563 die->die_mark = 0;
6564 for (c = die->die_child; c; c = c->die_sib)
6565 unmark_dies (c);
6568 /* Clear the marks for a die, its children and referred dies. */
6570 static void
6571 unmark_all_dies (dw_die_ref die)
6573 dw_die_ref c;
6574 dw_attr_ref a;
6576 if (!die->die_mark)
6577 return;
6578 die->die_mark = 0;
6580 for (c = die->die_child; c; c = c->die_sib)
6581 unmark_all_dies (c);
6583 for (a = die->die_attr; a; a = a->dw_attr_next)
6584 if (AT_class (a) == dw_val_class_die_ref)
6585 unmark_all_dies (AT_ref (a));
6588 /* Return the size of the .debug_pubnames table generated for the
6589 compilation unit. */
6591 static unsigned long
6592 size_of_pubnames (void)
6594 unsigned long size;
6595 unsigned i;
6597 size = DWARF_PUBNAMES_HEADER_SIZE;
6598 for (i = 0; i < pubname_table_in_use; i++)
6600 pubname_ref p = &pubname_table[i];
6601 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6604 size += DWARF_OFFSET_SIZE;
6605 return size;
6608 /* Return the size of the information in the .debug_aranges section. */
6610 static unsigned long
6611 size_of_aranges (void)
6613 unsigned long size;
6615 size = DWARF_ARANGES_HEADER_SIZE;
6617 /* Count the address/length pair for this compilation unit. */
6618 size += 2 * DWARF2_ADDR_SIZE;
6619 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6621 /* Count the two zero words used to terminated the address range table. */
6622 size += 2 * DWARF2_ADDR_SIZE;
6623 return size;
6626 /* Select the encoding of an attribute value. */
6628 static enum dwarf_form
6629 value_format (dw_attr_ref a)
6631 switch (a->dw_attr_val.val_class)
6633 case dw_val_class_addr:
6634 return DW_FORM_addr;
6635 case dw_val_class_range_list:
6636 case dw_val_class_offset:
6637 if (DWARF_OFFSET_SIZE == 4)
6638 return DW_FORM_data4;
6639 if (DWARF_OFFSET_SIZE == 8)
6640 return DW_FORM_data8;
6641 abort ();
6642 case dw_val_class_loc_list:
6643 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6644 .debug_loc section */
6645 return DW_FORM_data4;
6646 case dw_val_class_loc:
6647 switch (constant_size (size_of_locs (AT_loc (a))))
6649 case 1:
6650 return DW_FORM_block1;
6651 case 2:
6652 return DW_FORM_block2;
6653 default:
6654 abort ();
6656 case dw_val_class_const:
6657 return DW_FORM_sdata;
6658 case dw_val_class_unsigned_const:
6659 switch (constant_size (AT_unsigned (a)))
6661 case 1:
6662 return DW_FORM_data1;
6663 case 2:
6664 return DW_FORM_data2;
6665 case 4:
6666 return DW_FORM_data4;
6667 case 8:
6668 return DW_FORM_data8;
6669 default:
6670 abort ();
6672 case dw_val_class_long_long:
6673 return DW_FORM_block1;
6674 case dw_val_class_vec:
6675 return DW_FORM_block1;
6676 case dw_val_class_flag:
6677 return DW_FORM_flag;
6678 case dw_val_class_die_ref:
6679 if (AT_ref_external (a))
6680 return DW_FORM_ref_addr;
6681 else
6682 return DW_FORM_ref;
6683 case dw_val_class_fde_ref:
6684 return DW_FORM_data;
6685 case dw_val_class_lbl_id:
6686 return DW_FORM_addr;
6687 case dw_val_class_lbl_offset:
6688 return DW_FORM_data;
6689 case dw_val_class_str:
6690 return AT_string_form (a);
6692 default:
6693 abort ();
6697 /* Output the encoding of an attribute value. */
6699 static void
6700 output_value_format (dw_attr_ref a)
6702 enum dwarf_form form = value_format (a);
6704 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6707 /* Output the .debug_abbrev section which defines the DIE abbreviation
6708 table. */
6710 static void
6711 output_abbrev_section (void)
6713 unsigned long abbrev_id;
6715 dw_attr_ref a_attr;
6717 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6719 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6721 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6722 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6723 dwarf_tag_name (abbrev->die_tag));
6725 if (abbrev->die_child != NULL)
6726 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6727 else
6728 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6730 for (a_attr = abbrev->die_attr; a_attr != NULL;
6731 a_attr = a_attr->dw_attr_next)
6733 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6734 dwarf_attr_name (a_attr->dw_attr));
6735 output_value_format (a_attr);
6738 dw2_asm_output_data (1, 0, NULL);
6739 dw2_asm_output_data (1, 0, NULL);
6742 /* Terminate the table. */
6743 dw2_asm_output_data (1, 0, NULL);
6746 /* Output a symbol we can use to refer to this DIE from another CU. */
6748 static inline void
6749 output_die_symbol (dw_die_ref die)
6751 char *sym = die->die_symbol;
6753 if (sym == 0)
6754 return;
6756 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6757 /* We make these global, not weak; if the target doesn't support
6758 .linkonce, it doesn't support combining the sections, so debugging
6759 will break. */
6760 targetm.asm_out.globalize_label (asm_out_file, sym);
6762 ASM_OUTPUT_LABEL (asm_out_file, sym);
6765 /* Return a new location list, given the begin and end range, and the
6766 expression. gensym tells us whether to generate a new internal symbol for
6767 this location list node, which is done for the head of the list only. */
6769 static inline dw_loc_list_ref
6770 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6771 const char *section, unsigned int gensym)
6773 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6775 retlist->begin = begin;
6776 retlist->end = end;
6777 retlist->expr = expr;
6778 retlist->section = section;
6779 if (gensym)
6780 retlist->ll_symbol = gen_internal_sym ("LLST");
6782 return retlist;
6785 /* Add a location description expression to a location list. */
6787 static inline void
6788 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6789 const char *begin, const char *end,
6790 const char *section)
6792 dw_loc_list_ref *d;
6794 /* Find the end of the chain. */
6795 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6798 /* Add a new location list node to the list. */
6799 *d = new_loc_list (descr, begin, end, section, 0);
6802 /* Output the location list given to us. */
6804 static void
6805 output_loc_list (dw_loc_list_ref list_head)
6807 dw_loc_list_ref curr = list_head;
6809 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6811 /* Walk the location list, and output each range + expression. */
6812 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6814 unsigned long size;
6815 if (separate_line_info_table_in_use == 0)
6817 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6818 "Location list begin address (%s)",
6819 list_head->ll_symbol);
6820 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6821 "Location list end address (%s)",
6822 list_head->ll_symbol);
6824 else
6826 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6827 "Location list begin address (%s)",
6828 list_head->ll_symbol);
6829 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6830 "Location list end address (%s)",
6831 list_head->ll_symbol);
6833 size = size_of_locs (curr->expr);
6835 /* Output the block length for this list of location operations. */
6836 if (size > 0xffff)
6837 abort ();
6838 dw2_asm_output_data (2, size, "%s", "Location expression size");
6840 output_loc_sequence (curr->expr);
6843 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6844 "Location list terminator begin (%s)",
6845 list_head->ll_symbol);
6846 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6847 "Location list terminator end (%s)",
6848 list_head->ll_symbol);
6851 /* Output the DIE and its attributes. Called recursively to generate
6852 the definitions of each child DIE. */
6854 static void
6855 output_die (dw_die_ref die)
6857 dw_attr_ref a;
6858 dw_die_ref c;
6859 unsigned long size;
6861 /* If someone in another CU might refer to us, set up a symbol for
6862 them to point to. */
6863 if (die->die_symbol)
6864 output_die_symbol (die);
6866 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6867 die->die_offset, dwarf_tag_name (die->die_tag));
6869 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6871 const char *name = dwarf_attr_name (a->dw_attr);
6873 switch (AT_class (a))
6875 case dw_val_class_addr:
6876 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6877 break;
6879 case dw_val_class_offset:
6880 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6881 "%s", name);
6882 break;
6884 case dw_val_class_range_list:
6886 char *p = strchr (ranges_section_label, '\0');
6888 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6889 a->dw_attr_val.v.val_offset);
6890 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6891 "%s", name);
6892 *p = '\0';
6894 break;
6896 case dw_val_class_loc:
6897 size = size_of_locs (AT_loc (a));
6899 /* Output the block length for this list of location operations. */
6900 dw2_asm_output_data (constant_size (size), size, "%s", name);
6902 output_loc_sequence (AT_loc (a));
6903 break;
6905 case dw_val_class_const:
6906 /* ??? It would be slightly more efficient to use a scheme like is
6907 used for unsigned constants below, but gdb 4.x does not sign
6908 extend. Gdb 5.x does sign extend. */
6909 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6910 break;
6912 case dw_val_class_unsigned_const:
6913 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6914 AT_unsigned (a), "%s", name);
6915 break;
6917 case dw_val_class_long_long:
6919 unsigned HOST_WIDE_INT first, second;
6921 dw2_asm_output_data (1,
6922 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6923 "%s", name);
6925 if (WORDS_BIG_ENDIAN)
6927 first = a->dw_attr_val.v.val_long_long.hi;
6928 second = a->dw_attr_val.v.val_long_long.low;
6930 else
6932 first = a->dw_attr_val.v.val_long_long.low;
6933 second = a->dw_attr_val.v.val_long_long.hi;
6936 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6937 first, "long long constant");
6938 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6939 second, NULL);
6941 break;
6943 case dw_val_class_vec:
6945 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6946 unsigned int len = a->dw_attr_val.v.val_vec.length;
6947 unsigned int i;
6948 unsigned char *p;
6950 dw2_asm_output_data (1, len * elt_size, "%s", name);
6951 if (elt_size > sizeof (HOST_WIDE_INT))
6953 elt_size /= 2;
6954 len *= 2;
6956 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6957 i < len;
6958 i++, p += elt_size)
6959 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6960 "fp or vector constant word %u", i);
6961 break;
6964 case dw_val_class_flag:
6965 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6966 break;
6968 case dw_val_class_loc_list:
6970 char *sym = AT_loc_list (a)->ll_symbol;
6972 if (sym == 0)
6973 abort ();
6974 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6976 break;
6978 case dw_val_class_die_ref:
6979 if (AT_ref_external (a))
6981 char *sym = AT_ref (a)->die_symbol;
6983 if (sym == 0)
6984 abort ();
6985 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6987 else if (AT_ref (a)->die_offset == 0)
6988 abort ();
6989 else
6990 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6991 "%s", name);
6992 break;
6994 case dw_val_class_fde_ref:
6996 char l1[20];
6998 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6999 a->dw_attr_val.v.val_fde_index * 2);
7000 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7002 break;
7004 case dw_val_class_lbl_id:
7005 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7006 break;
7008 case dw_val_class_lbl_offset:
7009 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7010 break;
7012 case dw_val_class_str:
7013 if (AT_string_form (a) == DW_FORM_strp)
7014 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7015 a->dw_attr_val.v.val_str->label,
7016 "%s: \"%s\"", name, AT_string (a));
7017 else
7018 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7019 break;
7021 default:
7022 abort ();
7026 for (c = die->die_child; c != NULL; c = c->die_sib)
7027 output_die (c);
7029 /* Add null byte to terminate sibling list. */
7030 if (die->die_child != NULL)
7031 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7032 die->die_offset);
7035 /* Output the compilation unit that appears at the beginning of the
7036 .debug_info section, and precedes the DIE descriptions. */
7038 static void
7039 output_compilation_unit_header (void)
7041 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7042 dw2_asm_output_data (4, 0xffffffff,
7043 "Initial length escape value indicating 64-bit DWARF extension");
7044 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7045 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7046 "Length of Compilation Unit Info");
7047 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7048 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7049 "Offset Into Abbrev. Section");
7050 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7053 /* Output the compilation unit DIE and its children. */
7055 static void
7056 output_comp_unit (dw_die_ref die, int output_if_empty)
7058 const char *secname;
7059 char *oldsym, *tmp;
7061 /* Unless we are outputting main CU, we may throw away empty ones. */
7062 if (!output_if_empty && die->die_child == NULL)
7063 return;
7065 /* Even if there are no children of this DIE, we must output the information
7066 about the compilation unit. Otherwise, on an empty translation unit, we
7067 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7068 will then complain when examining the file. First mark all the DIEs in
7069 this CU so we know which get local refs. */
7070 mark_dies (die);
7072 build_abbrev_table (die);
7074 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7075 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7076 calc_die_sizes (die);
7078 oldsym = die->die_symbol;
7079 if (oldsym)
7081 tmp = alloca (strlen (oldsym) + 24);
7083 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7084 secname = tmp;
7085 die->die_symbol = NULL;
7087 else
7088 secname = (const char *) DEBUG_INFO_SECTION;
7090 /* Output debugging information. */
7091 named_section_flags (secname, SECTION_DEBUG);
7092 output_compilation_unit_header ();
7093 output_die (die);
7095 /* Leave the marks on the main CU, so we can check them in
7096 output_pubnames. */
7097 if (oldsym)
7099 unmark_dies (die);
7100 die->die_symbol = oldsym;
7104 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7105 output of lang_hooks.decl_printable_name for C++ looks like
7106 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7108 static const char *
7109 dwarf2_name (tree decl, int scope)
7111 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7114 /* Add a new entry to .debug_pubnames if appropriate. */
7116 static void
7117 add_pubname (tree decl, dw_die_ref die)
7119 pubname_ref p;
7121 if (! TREE_PUBLIC (decl))
7122 return;
7124 if (pubname_table_in_use == pubname_table_allocated)
7126 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7127 pubname_table
7128 = ggc_realloc (pubname_table,
7129 (pubname_table_allocated * sizeof (pubname_entry)));
7130 memset (pubname_table + pubname_table_in_use, 0,
7131 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7134 p = &pubname_table[pubname_table_in_use++];
7135 p->die = die;
7136 p->name = xstrdup (dwarf2_name (decl, 1));
7139 /* Output the public names table used to speed up access to externally
7140 visible names. For now, only generate entries for externally
7141 visible procedures. */
7143 static void
7144 output_pubnames (void)
7146 unsigned i;
7147 unsigned long pubnames_length = size_of_pubnames ();
7149 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7150 dw2_asm_output_data (4, 0xffffffff,
7151 "Initial length escape value indicating 64-bit DWARF extension");
7152 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7153 "Length of Public Names Info");
7154 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7155 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7156 "Offset of Compilation Unit Info");
7157 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7158 "Compilation Unit Length");
7160 for (i = 0; i < pubname_table_in_use; i++)
7162 pubname_ref pub = &pubname_table[i];
7164 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7165 if (pub->die->die_mark == 0)
7166 abort ();
7168 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7169 "DIE offset");
7171 dw2_asm_output_nstring (pub->name, -1, "external name");
7174 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7177 /* Add a new entry to .debug_aranges if appropriate. */
7179 static void
7180 add_arange (tree decl, dw_die_ref die)
7182 if (! DECL_SECTION_NAME (decl))
7183 return;
7185 if (arange_table_in_use == arange_table_allocated)
7187 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7188 arange_table = ggc_realloc (arange_table,
7189 (arange_table_allocated
7190 * sizeof (dw_die_ref)));
7191 memset (arange_table + arange_table_in_use, 0,
7192 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7195 arange_table[arange_table_in_use++] = die;
7198 /* Output the information that goes into the .debug_aranges table.
7199 Namely, define the beginning and ending address range of the
7200 text section generated for this compilation unit. */
7202 static void
7203 output_aranges (void)
7205 unsigned i;
7206 unsigned long aranges_length = size_of_aranges ();
7208 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7209 dw2_asm_output_data (4, 0xffffffff,
7210 "Initial length escape value indicating 64-bit DWARF extension");
7211 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7212 "Length of Address Ranges Info");
7213 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7215 "Offset of Compilation Unit Info");
7216 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7217 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7219 /* We need to align to twice the pointer size here. */
7220 if (DWARF_ARANGES_PAD_SIZE)
7222 /* Pad using a 2 byte words so that padding is correct for any
7223 pointer size. */
7224 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7225 2 * DWARF2_ADDR_SIZE);
7226 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7227 dw2_asm_output_data (2, 0, NULL);
7230 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7231 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7232 text_section_label, "Length");
7234 for (i = 0; i < arange_table_in_use; i++)
7236 dw_die_ref die = arange_table[i];
7238 /* We shouldn't see aranges for DIEs outside of the main CU. */
7239 if (die->die_mark == 0)
7240 abort ();
7242 if (die->die_tag == DW_TAG_subprogram)
7244 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7245 "Address");
7246 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7247 get_AT_low_pc (die), "Length");
7249 else
7251 /* A static variable; extract the symbol from DW_AT_location.
7252 Note that this code isn't currently hit, as we only emit
7253 aranges for functions (jason 9/23/99). */
7254 dw_attr_ref a = get_AT (die, DW_AT_location);
7255 dw_loc_descr_ref loc;
7257 if (! a || AT_class (a) != dw_val_class_loc)
7258 abort ();
7260 loc = AT_loc (a);
7261 if (loc->dw_loc_opc != DW_OP_addr)
7262 abort ();
7264 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7265 loc->dw_loc_oprnd1.v.val_addr, "Address");
7266 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7267 get_AT_unsigned (die, DW_AT_byte_size),
7268 "Length");
7272 /* Output the terminator words. */
7273 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7274 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7277 /* Add a new entry to .debug_ranges. Return the offset at which it
7278 was placed. */
7280 static unsigned int
7281 add_ranges (tree block)
7283 unsigned int in_use = ranges_table_in_use;
7285 if (in_use == ranges_table_allocated)
7287 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7288 ranges_table
7289 = ggc_realloc (ranges_table, (ranges_table_allocated
7290 * sizeof (struct dw_ranges_struct)));
7291 memset (ranges_table + ranges_table_in_use, 0,
7292 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7295 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7296 ranges_table_in_use = in_use + 1;
7298 return in_use * 2 * DWARF2_ADDR_SIZE;
7301 static void
7302 output_ranges (void)
7304 unsigned i;
7305 static const char *const start_fmt = "Offset 0x%x";
7306 const char *fmt = start_fmt;
7308 for (i = 0; i < ranges_table_in_use; i++)
7310 int block_num = ranges_table[i].block_num;
7312 if (block_num)
7314 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7315 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7317 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7318 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7320 /* If all code is in the text section, then the compilation
7321 unit base address defaults to DW_AT_low_pc, which is the
7322 base of the text section. */
7323 if (separate_line_info_table_in_use == 0)
7325 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7326 text_section_label,
7327 fmt, i * 2 * DWARF2_ADDR_SIZE);
7328 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7329 text_section_label, NULL);
7332 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7333 compilation unit base address to zero, which allows us to
7334 use absolute addresses, and not worry about whether the
7335 target supports cross-section arithmetic. */
7336 else
7338 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7339 fmt, i * 2 * DWARF2_ADDR_SIZE);
7340 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7343 fmt = NULL;
7345 else
7347 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7348 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7349 fmt = start_fmt;
7354 /* Data structure containing information about input files. */
7355 struct file_info
7357 char *path; /* Complete file name. */
7358 char *fname; /* File name part. */
7359 int length; /* Length of entire string. */
7360 int file_idx; /* Index in input file table. */
7361 int dir_idx; /* Index in directory table. */
7364 /* Data structure containing information about directories with source
7365 files. */
7366 struct dir_info
7368 char *path; /* Path including directory name. */
7369 int length; /* Path length. */
7370 int prefix; /* Index of directory entry which is a prefix. */
7371 int count; /* Number of files in this directory. */
7372 int dir_idx; /* Index of directory used as base. */
7373 int used; /* Used in the end? */
7376 /* Callback function for file_info comparison. We sort by looking at
7377 the directories in the path. */
7379 static int
7380 file_info_cmp (const void *p1, const void *p2)
7382 const struct file_info *s1 = p1;
7383 const struct file_info *s2 = p2;
7384 unsigned char *cp1;
7385 unsigned char *cp2;
7387 /* Take care of file names without directories. We need to make sure that
7388 we return consistent values to qsort since some will get confused if
7389 we return the same value when identical operands are passed in opposite
7390 orders. So if neither has a directory, return 0 and otherwise return
7391 1 or -1 depending on which one has the directory. */
7392 if ((s1->path == s1->fname || s2->path == s2->fname))
7393 return (s2->path == s2->fname) - (s1->path == s1->fname);
7395 cp1 = (unsigned char *) s1->path;
7396 cp2 = (unsigned char *) s2->path;
7398 while (1)
7400 ++cp1;
7401 ++cp2;
7402 /* Reached the end of the first path? If so, handle like above. */
7403 if ((cp1 == (unsigned char *) s1->fname)
7404 || (cp2 == (unsigned char *) s2->fname))
7405 return ((cp2 == (unsigned char *) s2->fname)
7406 - (cp1 == (unsigned char *) s1->fname));
7408 /* Character of current path component the same? */
7409 else if (*cp1 != *cp2)
7410 return *cp1 - *cp2;
7414 /* Output the directory table and the file name table. We try to minimize
7415 the total amount of memory needed. A heuristic is used to avoid large
7416 slowdowns with many input files. */
7418 static void
7419 output_file_names (void)
7421 struct file_info *files;
7422 struct dir_info *dirs;
7423 int *saved;
7424 int *savehere;
7425 int *backmap;
7426 size_t ndirs;
7427 int idx_offset;
7428 size_t i;
7429 int idx;
7431 /* Handle the case where file_table is empty. */
7432 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7434 dw2_asm_output_data (1, 0, "End directory table");
7435 dw2_asm_output_data (1, 0, "End file name table");
7436 return;
7439 /* Allocate the various arrays we need. */
7440 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7441 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7443 /* Sort the file names. */
7444 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7446 char *f;
7448 /* Skip all leading "./". */
7449 f = VARRAY_CHAR_PTR (file_table, i);
7450 while (f[0] == '.' && f[1] == '/')
7451 f += 2;
7453 /* Create a new array entry. */
7454 files[i].path = f;
7455 files[i].length = strlen (f);
7456 files[i].file_idx = i;
7458 /* Search for the file name part. */
7459 f = strrchr (f, '/');
7460 files[i].fname = f == NULL ? files[i].path : f + 1;
7463 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7464 sizeof (files[0]), file_info_cmp);
7466 /* Find all the different directories used. */
7467 dirs[0].path = files[1].path;
7468 dirs[0].length = files[1].fname - files[1].path;
7469 dirs[0].prefix = -1;
7470 dirs[0].count = 1;
7471 dirs[0].dir_idx = 0;
7472 dirs[0].used = 0;
7473 files[1].dir_idx = 0;
7474 ndirs = 1;
7476 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7477 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7478 && memcmp (dirs[ndirs - 1].path, files[i].path,
7479 dirs[ndirs - 1].length) == 0)
7481 /* Same directory as last entry. */
7482 files[i].dir_idx = ndirs - 1;
7483 ++dirs[ndirs - 1].count;
7485 else
7487 size_t j;
7489 /* This is a new directory. */
7490 dirs[ndirs].path = files[i].path;
7491 dirs[ndirs].length = files[i].fname - files[i].path;
7492 dirs[ndirs].count = 1;
7493 dirs[ndirs].dir_idx = ndirs;
7494 dirs[ndirs].used = 0;
7495 files[i].dir_idx = ndirs;
7497 /* Search for a prefix. */
7498 dirs[ndirs].prefix = -1;
7499 for (j = 0; j < ndirs; j++)
7500 if (dirs[j].length < dirs[ndirs].length
7501 && dirs[j].length > 1
7502 && (dirs[ndirs].prefix == -1
7503 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7504 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7505 dirs[ndirs].prefix = j;
7507 ++ndirs;
7510 /* Now to the actual work. We have to find a subset of the directories which
7511 allow expressing the file name using references to the directory table
7512 with the least amount of characters. We do not do an exhaustive search
7513 where we would have to check out every combination of every single
7514 possible prefix. Instead we use a heuristic which provides nearly optimal
7515 results in most cases and never is much off. */
7516 saved = alloca (ndirs * sizeof (int));
7517 savehere = alloca (ndirs * sizeof (int));
7519 memset (saved, '\0', ndirs * sizeof (saved[0]));
7520 for (i = 0; i < ndirs; i++)
7522 size_t j;
7523 int total;
7525 /* We can always save some space for the current directory. But this
7526 does not mean it will be enough to justify adding the directory. */
7527 savehere[i] = dirs[i].length;
7528 total = (savehere[i] - saved[i]) * dirs[i].count;
7530 for (j = i + 1; j < ndirs; j++)
7532 savehere[j] = 0;
7533 if (saved[j] < dirs[i].length)
7535 /* Determine whether the dirs[i] path is a prefix of the
7536 dirs[j] path. */
7537 int k;
7539 k = dirs[j].prefix;
7540 while (k != -1 && k != (int) i)
7541 k = dirs[k].prefix;
7543 if (k == (int) i)
7545 /* Yes it is. We can possibly safe some memory but
7546 writing the filenames in dirs[j] relative to
7547 dirs[i]. */
7548 savehere[j] = dirs[i].length;
7549 total += (savehere[j] - saved[j]) * dirs[j].count;
7554 /* Check whether we can safe enough to justify adding the dirs[i]
7555 directory. */
7556 if (total > dirs[i].length + 1)
7558 /* It's worthwhile adding. */
7559 for (j = i; j < ndirs; j++)
7560 if (savehere[j] > 0)
7562 /* Remember how much we saved for this directory so far. */
7563 saved[j] = savehere[j];
7565 /* Remember the prefix directory. */
7566 dirs[j].dir_idx = i;
7571 /* We have to emit them in the order they appear in the file_table array
7572 since the index is used in the debug info generation. To do this
7573 efficiently we generate a back-mapping of the indices first. */
7574 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7575 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7577 backmap[files[i].file_idx] = i;
7579 /* Mark this directory as used. */
7580 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7583 /* That was it. We are ready to emit the information. First emit the
7584 directory name table. We have to make sure the first actually emitted
7585 directory name has index one; zero is reserved for the current working
7586 directory. Make sure we do not confuse these indices with the one for the
7587 constructed table (even though most of the time they are identical). */
7588 idx = 1;
7589 idx_offset = dirs[0].length > 0 ? 1 : 0;
7590 for (i = 1 - idx_offset; i < ndirs; i++)
7591 if (dirs[i].used != 0)
7593 dirs[i].used = idx++;
7594 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7595 "Directory Entry: 0x%x", dirs[i].used);
7598 dw2_asm_output_data (1, 0, "End directory table");
7600 /* Correct the index for the current working directory entry if it
7601 exists. */
7602 if (idx_offset == 0)
7603 dirs[0].used = 0;
7605 /* Now write all the file names. */
7606 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7608 int file_idx = backmap[i];
7609 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7611 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7612 "File Entry: 0x%lx", (unsigned long) i);
7614 /* Include directory index. */
7615 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7617 /* Modification time. */
7618 dw2_asm_output_data_uleb128 (0, NULL);
7620 /* File length in bytes. */
7621 dw2_asm_output_data_uleb128 (0, NULL);
7624 dw2_asm_output_data (1, 0, "End file name table");
7628 /* Output the source line number correspondence information. This
7629 information goes into the .debug_line section. */
7631 static void
7632 output_line_info (void)
7634 char l1[20], l2[20], p1[20], p2[20];
7635 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7636 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7637 unsigned opc;
7638 unsigned n_op_args;
7639 unsigned long lt_index;
7640 unsigned long current_line;
7641 long line_offset;
7642 long line_delta;
7643 unsigned long current_file;
7644 unsigned long function;
7646 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7647 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7648 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7649 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7651 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7652 dw2_asm_output_data (4, 0xffffffff,
7653 "Initial length escape value indicating 64-bit DWARF extension");
7654 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7655 "Length of Source Line Info");
7656 ASM_OUTPUT_LABEL (asm_out_file, l1);
7658 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7659 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7660 ASM_OUTPUT_LABEL (asm_out_file, p1);
7662 /* Define the architecture-dependent minimum instruction length (in
7663 bytes). In this implementation of DWARF, this field is used for
7664 information purposes only. Since GCC generates assembly language,
7665 we have no a priori knowledge of how many instruction bytes are
7666 generated for each source line, and therefore can use only the
7667 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7668 commands. Accordingly, we fix this as `1', which is "correct
7669 enough" for all architectures, and don't let the target override. */
7670 dw2_asm_output_data (1, 1,
7671 "Minimum Instruction Length");
7673 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7674 "Default is_stmt_start flag");
7675 dw2_asm_output_data (1, DWARF_LINE_BASE,
7676 "Line Base Value (Special Opcodes)");
7677 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7678 "Line Range Value (Special Opcodes)");
7679 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7680 "Special Opcode Base");
7682 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7684 switch (opc)
7686 case DW_LNS_advance_pc:
7687 case DW_LNS_advance_line:
7688 case DW_LNS_set_file:
7689 case DW_LNS_set_column:
7690 case DW_LNS_fixed_advance_pc:
7691 n_op_args = 1;
7692 break;
7693 default:
7694 n_op_args = 0;
7695 break;
7698 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7699 opc, n_op_args);
7702 /* Write out the information about the files we use. */
7703 output_file_names ();
7704 ASM_OUTPUT_LABEL (asm_out_file, p2);
7706 /* We used to set the address register to the first location in the text
7707 section here, but that didn't accomplish anything since we already
7708 have a line note for the opening brace of the first function. */
7710 /* Generate the line number to PC correspondence table, encoded as
7711 a series of state machine operations. */
7712 current_file = 1;
7713 current_line = 1;
7714 strcpy (prev_line_label, text_section_label);
7715 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7717 dw_line_info_ref line_info = &line_info_table[lt_index];
7719 #if 0
7720 /* Disable this optimization for now; GDB wants to see two line notes
7721 at the beginning of a function so it can find the end of the
7722 prologue. */
7724 /* Don't emit anything for redundant notes. Just updating the
7725 address doesn't accomplish anything, because we already assume
7726 that anything after the last address is this line. */
7727 if (line_info->dw_line_num == current_line
7728 && line_info->dw_file_num == current_file)
7729 continue;
7730 #endif
7732 /* Emit debug info for the address of the current line.
7734 Unfortunately, we have little choice here currently, and must always
7735 use the most general form. GCC does not know the address delta
7736 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7737 attributes which will give an upper bound on the address range. We
7738 could perhaps use length attributes to determine when it is safe to
7739 use DW_LNS_fixed_advance_pc. */
7741 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7742 if (0)
7744 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7745 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7746 "DW_LNS_fixed_advance_pc");
7747 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7749 else
7751 /* This can handle any delta. This takes
7752 4+DWARF2_ADDR_SIZE bytes. */
7753 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7754 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7755 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7756 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7759 strcpy (prev_line_label, line_label);
7761 /* Emit debug info for the source file of the current line, if
7762 different from the previous line. */
7763 if (line_info->dw_file_num != current_file)
7765 current_file = line_info->dw_file_num;
7766 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7767 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7768 VARRAY_CHAR_PTR (file_table,
7769 current_file));
7772 /* Emit debug info for the current line number, choosing the encoding
7773 that uses the least amount of space. */
7774 if (line_info->dw_line_num != current_line)
7776 line_offset = line_info->dw_line_num - current_line;
7777 line_delta = line_offset - DWARF_LINE_BASE;
7778 current_line = line_info->dw_line_num;
7779 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7780 /* This can handle deltas from -10 to 234, using the current
7781 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7782 takes 1 byte. */
7783 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7784 "line %lu", current_line);
7785 else
7787 /* This can handle any delta. This takes at least 4 bytes,
7788 depending on the value being encoded. */
7789 dw2_asm_output_data (1, DW_LNS_advance_line,
7790 "advance to line %lu", current_line);
7791 dw2_asm_output_data_sleb128 (line_offset, NULL);
7792 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7795 else
7796 /* We still need to start a new row, so output a copy insn. */
7797 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7800 /* Emit debug info for the address of the end of the function. */
7801 if (0)
7803 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7804 "DW_LNS_fixed_advance_pc");
7805 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7807 else
7809 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7810 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7811 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7812 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7815 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7816 dw2_asm_output_data_uleb128 (1, NULL);
7817 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7819 function = 0;
7820 current_file = 1;
7821 current_line = 1;
7822 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7824 dw_separate_line_info_ref line_info
7825 = &separate_line_info_table[lt_index];
7827 #if 0
7828 /* Don't emit anything for redundant notes. */
7829 if (line_info->dw_line_num == current_line
7830 && line_info->dw_file_num == current_file
7831 && line_info->function == function)
7832 goto cont;
7833 #endif
7835 /* Emit debug info for the address of the current line. If this is
7836 a new function, or the first line of a function, then we need
7837 to handle it differently. */
7838 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7839 lt_index);
7840 if (function != line_info->function)
7842 function = line_info->function;
7844 /* Set the address register to the first line in the function. */
7845 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7846 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7847 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7848 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7850 else
7852 /* ??? See the DW_LNS_advance_pc comment above. */
7853 if (0)
7855 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7856 "DW_LNS_fixed_advance_pc");
7857 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7859 else
7861 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7862 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7863 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7864 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7868 strcpy (prev_line_label, line_label);
7870 /* Emit debug info for the source file of the current line, if
7871 different from the previous line. */
7872 if (line_info->dw_file_num != current_file)
7874 current_file = line_info->dw_file_num;
7875 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7876 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7877 VARRAY_CHAR_PTR (file_table,
7878 current_file));
7881 /* Emit debug info for the current line number, choosing the encoding
7882 that uses the least amount of space. */
7883 if (line_info->dw_line_num != current_line)
7885 line_offset = line_info->dw_line_num - current_line;
7886 line_delta = line_offset - DWARF_LINE_BASE;
7887 current_line = line_info->dw_line_num;
7888 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7889 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7890 "line %lu", current_line);
7891 else
7893 dw2_asm_output_data (1, DW_LNS_advance_line,
7894 "advance to line %lu", current_line);
7895 dw2_asm_output_data_sleb128 (line_offset, NULL);
7896 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7899 else
7900 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7902 #if 0
7903 cont:
7904 #endif
7906 lt_index++;
7908 /* If we're done with a function, end its sequence. */
7909 if (lt_index == separate_line_info_table_in_use
7910 || separate_line_info_table[lt_index].function != function)
7912 current_file = 1;
7913 current_line = 1;
7915 /* Emit debug info for the address of the end of the function. */
7916 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7917 if (0)
7919 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7920 "DW_LNS_fixed_advance_pc");
7921 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7923 else
7925 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7926 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7927 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7928 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7931 /* Output the marker for the end of this sequence. */
7932 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7933 dw2_asm_output_data_uleb128 (1, NULL);
7934 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7938 /* Output the marker for the end of the line number info. */
7939 ASM_OUTPUT_LABEL (asm_out_file, l2);
7942 /* Given a pointer to a tree node for some base type, return a pointer to
7943 a DIE that describes the given type.
7945 This routine must only be called for GCC type nodes that correspond to
7946 Dwarf base (fundamental) types. */
7948 static dw_die_ref
7949 base_type_die (tree type)
7951 dw_die_ref base_type_result;
7952 const char *type_name;
7953 enum dwarf_type encoding;
7954 tree name = TYPE_NAME (type);
7956 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7957 return 0;
7959 if (name)
7961 if (TREE_CODE (name) == TYPE_DECL)
7962 name = DECL_NAME (name);
7964 type_name = IDENTIFIER_POINTER (name);
7966 else
7967 type_name = "__unknown__";
7969 switch (TREE_CODE (type))
7971 case INTEGER_TYPE:
7972 /* Carefully distinguish the C character types, without messing
7973 up if the language is not C. Note that we check only for the names
7974 that contain spaces; other names might occur by coincidence in other
7975 languages. */
7976 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7977 && (type == char_type_node
7978 || ! strcmp (type_name, "signed char")
7979 || ! strcmp (type_name, "unsigned char"))))
7981 if (TYPE_UNSIGNED (type))
7982 encoding = DW_ATE_unsigned;
7983 else
7984 encoding = DW_ATE_signed;
7985 break;
7987 /* else fall through. */
7989 case CHAR_TYPE:
7990 /* GNU Pascal/Ada CHAR type. Not used in C. */
7991 if (TYPE_UNSIGNED (type))
7992 encoding = DW_ATE_unsigned_char;
7993 else
7994 encoding = DW_ATE_signed_char;
7995 break;
7997 case REAL_TYPE:
7998 encoding = DW_ATE_float;
7999 break;
8001 /* Dwarf2 doesn't know anything about complex ints, so use
8002 a user defined type for it. */
8003 case COMPLEX_TYPE:
8004 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8005 encoding = DW_ATE_complex_float;
8006 else
8007 encoding = DW_ATE_lo_user;
8008 break;
8010 case BOOLEAN_TYPE:
8011 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8012 encoding = DW_ATE_boolean;
8013 break;
8015 default:
8016 /* No other TREE_CODEs are Dwarf fundamental types. */
8017 abort ();
8020 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8021 if (demangle_name_func)
8022 type_name = (*demangle_name_func) (type_name);
8024 add_AT_string (base_type_result, DW_AT_name, type_name);
8025 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8026 int_size_in_bytes (type));
8027 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8029 return base_type_result;
8032 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8033 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8034 a given type is generally the same as the given type, except that if the
8035 given type is a pointer or reference type, then the root type of the given
8036 type is the root type of the "basis" type for the pointer or reference
8037 type. (This definition of the "root" type is recursive.) Also, the root
8038 type of a `const' qualified type or a `volatile' qualified type is the
8039 root type of the given type without the qualifiers. */
8041 static tree
8042 root_type (tree type)
8044 if (TREE_CODE (type) == ERROR_MARK)
8045 return error_mark_node;
8047 switch (TREE_CODE (type))
8049 case ERROR_MARK:
8050 return error_mark_node;
8052 case POINTER_TYPE:
8053 case REFERENCE_TYPE:
8054 return type_main_variant (root_type (TREE_TYPE (type)));
8056 default:
8057 return type_main_variant (type);
8061 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8062 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8064 static inline int
8065 is_base_type (tree type)
8067 switch (TREE_CODE (type))
8069 case ERROR_MARK:
8070 case VOID_TYPE:
8071 case INTEGER_TYPE:
8072 case REAL_TYPE:
8073 case COMPLEX_TYPE:
8074 case BOOLEAN_TYPE:
8075 case CHAR_TYPE:
8076 return 1;
8078 case SET_TYPE:
8079 case ARRAY_TYPE:
8080 case RECORD_TYPE:
8081 case UNION_TYPE:
8082 case QUAL_UNION_TYPE:
8083 case ENUMERAL_TYPE:
8084 case FUNCTION_TYPE:
8085 case METHOD_TYPE:
8086 case POINTER_TYPE:
8087 case REFERENCE_TYPE:
8088 case FILE_TYPE:
8089 case OFFSET_TYPE:
8090 case LANG_TYPE:
8091 case VECTOR_TYPE:
8092 return 0;
8094 default:
8095 abort ();
8098 return 0;
8101 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8102 node, return the size in bits for the type if it is a constant, or else
8103 return the alignment for the type if the type's size is not constant, or
8104 else return BITS_PER_WORD if the type actually turns out to be an
8105 ERROR_MARK node. */
8107 static inline unsigned HOST_WIDE_INT
8108 simple_type_size_in_bits (tree type)
8110 if (TREE_CODE (type) == ERROR_MARK)
8111 return BITS_PER_WORD;
8112 else if (TYPE_SIZE (type) == NULL_TREE)
8113 return 0;
8114 else if (host_integerp (TYPE_SIZE (type), 1))
8115 return tree_low_cst (TYPE_SIZE (type), 1);
8116 else
8117 return TYPE_ALIGN (type);
8120 /* Return true if the debug information for the given type should be
8121 emitted as a subrange type. */
8123 static inline bool
8124 is_subrange_type (tree type)
8126 tree subtype = TREE_TYPE (type);
8128 /* Subrange types are identified by the fact that they are integer
8129 types, and that they have a subtype which is either an integer type
8130 or an enumeral type. */
8132 if (TREE_CODE (type) != INTEGER_TYPE
8133 || subtype == NULL_TREE)
8134 return false;
8136 if (TREE_CODE (subtype) != INTEGER_TYPE
8137 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8138 return false;
8140 if (TREE_CODE (type) == TREE_CODE (subtype)
8141 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8142 && TYPE_MIN_VALUE (type) != NULL
8143 && TYPE_MIN_VALUE (subtype) != NULL
8144 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8145 && TYPE_MAX_VALUE (type) != NULL
8146 && TYPE_MAX_VALUE (subtype) != NULL
8147 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8149 /* The type and its subtype have the same representation. If in
8150 addition the two types also have the same name, then the given
8151 type is not a subrange type, but rather a plain base type. */
8152 /* FIXME: brobecker/2004-03-22:
8153 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8154 therefore be sufficient to check the TYPE_SIZE node pointers
8155 rather than checking the actual size. Unfortunately, we have
8156 found some cases, such as in the Ada "integer" type, where
8157 this is not the case. Until this problem is solved, we need to
8158 keep checking the actual size. */
8159 tree type_name = TYPE_NAME (type);
8160 tree subtype_name = TYPE_NAME (subtype);
8162 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8163 type_name = DECL_NAME (type_name);
8165 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8166 subtype_name = DECL_NAME (subtype_name);
8168 if (type_name == subtype_name)
8169 return false;
8172 return true;
8175 /* Given a pointer to a tree node for a subrange type, return a pointer
8176 to a DIE that describes the given type. */
8178 static dw_die_ref
8179 subrange_type_die (tree type, dw_die_ref context_die)
8181 dw_die_ref subtype_die;
8182 dw_die_ref subrange_die;
8183 tree name = TYPE_NAME (type);
8184 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8185 tree subtype = TREE_TYPE (type);
8187 if (context_die == NULL)
8188 context_die = comp_unit_die;
8190 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8191 subtype_die = gen_enumeration_type_die (subtype, context_die);
8192 else
8193 subtype_die = base_type_die (subtype);
8195 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8197 if (name != NULL)
8199 if (TREE_CODE (name) == TYPE_DECL)
8200 name = DECL_NAME (name);
8201 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8204 if (int_size_in_bytes (subtype) != size_in_bytes)
8206 /* The size of the subrange type and its base type do not match,
8207 so we need to generate a size attribute for the subrange type. */
8208 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8211 if (TYPE_MIN_VALUE (type) != NULL)
8212 add_bound_info (subrange_die, DW_AT_lower_bound,
8213 TYPE_MIN_VALUE (type));
8214 if (TYPE_MAX_VALUE (type) != NULL)
8215 add_bound_info (subrange_die, DW_AT_upper_bound,
8216 TYPE_MAX_VALUE (type));
8217 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8219 return subrange_die;
8222 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8223 entry that chains various modifiers in front of the given type. */
8225 static dw_die_ref
8226 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8227 dw_die_ref context_die)
8229 enum tree_code code = TREE_CODE (type);
8230 dw_die_ref mod_type_die = NULL;
8231 dw_die_ref sub_die = NULL;
8232 tree item_type = NULL;
8234 if (code != ERROR_MARK)
8236 tree qualified_type;
8238 /* See if we already have the appropriately qualified variant of
8239 this type. */
8240 qualified_type
8241 = get_qualified_type (type,
8242 ((is_const_type ? TYPE_QUAL_CONST : 0)
8243 | (is_volatile_type
8244 ? TYPE_QUAL_VOLATILE : 0)));
8246 /* If we do, then we can just use its DIE, if it exists. */
8247 if (qualified_type)
8249 mod_type_die = lookup_type_die (qualified_type);
8250 if (mod_type_die)
8251 return mod_type_die;
8254 /* Handle C typedef types. */
8255 if (qualified_type && TYPE_NAME (qualified_type)
8256 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8257 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8259 tree type_name = TYPE_NAME (qualified_type);
8260 tree dtype = TREE_TYPE (type_name);
8262 if (qualified_type == dtype)
8264 /* For a named type, use the typedef. */
8265 gen_type_die (qualified_type, context_die);
8266 mod_type_die = lookup_type_die (qualified_type);
8268 else if (is_const_type < TYPE_READONLY (dtype)
8269 || is_volatile_type < TYPE_VOLATILE (dtype))
8270 /* cv-unqualified version of named type. Just use the unnamed
8271 type to which it refers. */
8272 mod_type_die
8273 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8274 is_const_type, is_volatile_type,
8275 context_die);
8277 /* Else cv-qualified version of named type; fall through. */
8280 if (mod_type_die)
8281 /* OK. */
8283 else if (is_const_type)
8285 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8286 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8288 else if (is_volatile_type)
8290 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8291 sub_die = modified_type_die (type, 0, 0, context_die);
8293 else if (code == POINTER_TYPE)
8295 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8296 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8297 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8298 #if 0
8299 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8300 #endif
8301 item_type = TREE_TYPE (type);
8303 else if (code == REFERENCE_TYPE)
8305 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8306 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8307 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8308 #if 0
8309 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8310 #endif
8311 item_type = TREE_TYPE (type);
8313 else if (is_subrange_type (type))
8314 mod_type_die = subrange_type_die (type, context_die);
8315 else if (is_base_type (type))
8316 mod_type_die = base_type_die (type);
8317 else
8319 gen_type_die (type, context_die);
8321 /* We have to get the type_main_variant here (and pass that to the
8322 `lookup_type_die' routine) because the ..._TYPE node we have
8323 might simply be a *copy* of some original type node (where the
8324 copy was created to help us keep track of typedef names) and
8325 that copy might have a different TYPE_UID from the original
8326 ..._TYPE node. */
8327 if (TREE_CODE (type) != VECTOR_TYPE)
8328 mod_type_die = lookup_type_die (type_main_variant (type));
8329 else
8330 /* Vectors have the debugging information in the type,
8331 not the main variant. */
8332 mod_type_die = lookup_type_die (type);
8333 if (mod_type_die == NULL)
8334 abort ();
8337 /* We want to equate the qualified type to the die below. */
8338 type = qualified_type;
8341 if (type)
8342 equate_type_number_to_die (type, mod_type_die);
8343 if (item_type)
8344 /* We must do this after the equate_type_number_to_die call, in case
8345 this is a recursive type. This ensures that the modified_type_die
8346 recursion will terminate even if the type is recursive. Recursive
8347 types are possible in Ada. */
8348 sub_die = modified_type_die (item_type,
8349 TYPE_READONLY (item_type),
8350 TYPE_VOLATILE (item_type),
8351 context_die);
8353 if (sub_die != NULL)
8354 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8356 return mod_type_die;
8359 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8360 an enumerated type. */
8362 static inline int
8363 type_is_enum (tree type)
8365 return TREE_CODE (type) == ENUMERAL_TYPE;
8368 /* Return the DBX register number described by a given RTL node. */
8370 static unsigned int
8371 dbx_reg_number (rtx rtl)
8373 unsigned regno = REGNO (rtl);
8375 if (regno >= FIRST_PSEUDO_REGISTER)
8376 abort ();
8378 return DBX_REGISTER_NUMBER (regno);
8381 /* Return a location descriptor that designates a machine register or
8382 zero if there is none. */
8384 static dw_loc_descr_ref
8385 reg_loc_descriptor (rtx rtl)
8387 unsigned reg;
8388 rtx regs;
8390 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8391 return 0;
8393 reg = dbx_reg_number (rtl);
8394 regs = targetm.dwarf_register_span (rtl);
8396 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8397 || regs)
8398 return multiple_reg_loc_descriptor (rtl, regs);
8399 else
8400 return one_reg_loc_descriptor (reg);
8403 /* Return a location descriptor that designates a machine register for
8404 a given hard register number. */
8406 static dw_loc_descr_ref
8407 one_reg_loc_descriptor (unsigned int regno)
8409 if (regno <= 31)
8410 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8411 else
8412 return new_loc_descr (DW_OP_regx, regno, 0);
8415 /* Given an RTL of a register, return a location descriptor that
8416 designates a value that spans more than one register. */
8418 static dw_loc_descr_ref
8419 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8421 int nregs, size, i;
8422 unsigned reg;
8423 dw_loc_descr_ref loc_result = NULL;
8425 reg = dbx_reg_number (rtl);
8426 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8428 /* Simple, contiguous registers. */
8429 if (regs == NULL_RTX)
8431 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8433 loc_result = NULL;
8434 while (nregs--)
8436 dw_loc_descr_ref t;
8438 t = one_reg_loc_descriptor (reg);
8439 add_loc_descr (&loc_result, t);
8440 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8441 ++reg;
8443 return loc_result;
8446 /* Now onto stupid register sets in non contiguous locations. */
8448 if (GET_CODE (regs) != PARALLEL)
8449 abort ();
8451 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8452 loc_result = NULL;
8454 for (i = 0; i < XVECLEN (regs, 0); ++i)
8456 dw_loc_descr_ref t;
8458 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8459 add_loc_descr (&loc_result, t);
8460 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8461 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8463 return loc_result;
8466 /* Return a location descriptor that designates a constant. */
8468 static dw_loc_descr_ref
8469 int_loc_descriptor (HOST_WIDE_INT i)
8471 enum dwarf_location_atom op;
8473 /* Pick the smallest representation of a constant, rather than just
8474 defaulting to the LEB encoding. */
8475 if (i >= 0)
8477 if (i <= 31)
8478 op = DW_OP_lit0 + i;
8479 else if (i <= 0xff)
8480 op = DW_OP_const1u;
8481 else if (i <= 0xffff)
8482 op = DW_OP_const2u;
8483 else if (HOST_BITS_PER_WIDE_INT == 32
8484 || i <= 0xffffffff)
8485 op = DW_OP_const4u;
8486 else
8487 op = DW_OP_constu;
8489 else
8491 if (i >= -0x80)
8492 op = DW_OP_const1s;
8493 else if (i >= -0x8000)
8494 op = DW_OP_const2s;
8495 else if (HOST_BITS_PER_WIDE_INT == 32
8496 || i >= -0x80000000)
8497 op = DW_OP_const4s;
8498 else
8499 op = DW_OP_consts;
8502 return new_loc_descr (op, i, 0);
8505 /* Return a location descriptor that designates a base+offset location. */
8507 static dw_loc_descr_ref
8508 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8510 dw_loc_descr_ref loc_result;
8511 /* For the "frame base", we use the frame pointer or stack pointer
8512 registers, since the RTL for local variables is relative to one of
8513 them. */
8514 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8515 ? HARD_FRAME_POINTER_REGNUM
8516 : STACK_POINTER_REGNUM);
8518 if (reg == fp_reg && can_use_fbreg)
8519 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8520 else if (reg <= 31)
8521 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8522 else
8523 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8525 return loc_result;
8528 /* Return true if this RTL expression describes a base+offset calculation. */
8530 static inline int
8531 is_based_loc (rtx rtl)
8533 return (GET_CODE (rtl) == PLUS
8534 && ((REG_P (XEXP (rtl, 0))
8535 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8536 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8539 /* The following routine converts the RTL for a variable or parameter
8540 (resident in memory) into an equivalent Dwarf representation of a
8541 mechanism for getting the address of that same variable onto the top of a
8542 hypothetical "address evaluation" stack.
8544 When creating memory location descriptors, we are effectively transforming
8545 the RTL for a memory-resident object into its Dwarf postfix expression
8546 equivalent. This routine recursively descends an RTL tree, turning
8547 it into Dwarf postfix code as it goes.
8549 MODE is the mode of the memory reference, needed to handle some
8550 autoincrement addressing modes.
8552 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8553 list for RTL. We can't use it when we are emitting location list for
8554 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8555 which describes how frame base changes when !frame_pointer_needed.
8557 Return 0 if we can't represent the location. */
8559 static dw_loc_descr_ref
8560 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8562 dw_loc_descr_ref mem_loc_result = NULL;
8563 enum dwarf_location_atom op;
8565 /* Note that for a dynamically sized array, the location we will generate a
8566 description of here will be the lowest numbered location which is
8567 actually within the array. That's *not* necessarily the same as the
8568 zeroth element of the array. */
8570 rtl = targetm.delegitimize_address (rtl);
8572 switch (GET_CODE (rtl))
8574 case POST_INC:
8575 case POST_DEC:
8576 case POST_MODIFY:
8577 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8578 just fall into the SUBREG code. */
8580 /* ... fall through ... */
8582 case SUBREG:
8583 /* The case of a subreg may arise when we have a local (register)
8584 variable or a formal (register) parameter which doesn't quite fill
8585 up an entire register. For now, just assume that it is
8586 legitimate to make the Dwarf info refer to the whole register which
8587 contains the given subreg. */
8588 rtl = SUBREG_REG (rtl);
8590 /* ... fall through ... */
8592 case REG:
8593 /* Whenever a register number forms a part of the description of the
8594 method for calculating the (dynamic) address of a memory resident
8595 object, DWARF rules require the register number be referred to as
8596 a "base register". This distinction is not based in any way upon
8597 what category of register the hardware believes the given register
8598 belongs to. This is strictly DWARF terminology we're dealing with
8599 here. Note that in cases where the location of a memory-resident
8600 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8601 OP_CONST (0)) the actual DWARF location descriptor that we generate
8602 may just be OP_BASEREG (basereg). This may look deceptively like
8603 the object in question was allocated to a register (rather than in
8604 memory) so DWARF consumers need to be aware of the subtle
8605 distinction between OP_REG and OP_BASEREG. */
8606 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8607 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8608 can_use_fbreg);
8609 break;
8611 case MEM:
8612 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8613 can_use_fbreg);
8614 if (mem_loc_result != 0)
8615 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8616 break;
8618 case LO_SUM:
8619 rtl = XEXP (rtl, 1);
8621 /* ... fall through ... */
8623 case LABEL_REF:
8624 /* Some ports can transform a symbol ref into a label ref, because
8625 the symbol ref is too far away and has to be dumped into a constant
8626 pool. */
8627 case CONST:
8628 case SYMBOL_REF:
8629 /* Alternatively, the symbol in the constant pool might be referenced
8630 by a different symbol. */
8631 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8633 bool marked;
8634 rtx tmp = get_pool_constant_mark (rtl, &marked);
8636 if (GET_CODE (tmp) == SYMBOL_REF)
8638 rtl = tmp;
8639 if (CONSTANT_POOL_ADDRESS_P (tmp))
8640 get_pool_constant_mark (tmp, &marked);
8641 else
8642 marked = true;
8645 /* If all references to this pool constant were optimized away,
8646 it was not output and thus we can't represent it.
8647 FIXME: might try to use DW_OP_const_value here, though
8648 DW_OP_piece complicates it. */
8649 if (!marked)
8650 return 0;
8653 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8654 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8655 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8656 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8657 break;
8659 case PRE_MODIFY:
8660 /* Extract the PLUS expression nested inside and fall into
8661 PLUS code below. */
8662 rtl = XEXP (rtl, 1);
8663 goto plus;
8665 case PRE_INC:
8666 case PRE_DEC:
8667 /* Turn these into a PLUS expression and fall into the PLUS code
8668 below. */
8669 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8670 GEN_INT (GET_CODE (rtl) == PRE_INC
8671 ? GET_MODE_UNIT_SIZE (mode)
8672 : -GET_MODE_UNIT_SIZE (mode)));
8674 /* ... fall through ... */
8676 case PLUS:
8677 plus:
8678 if (is_based_loc (rtl))
8679 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8680 INTVAL (XEXP (rtl, 1)),
8681 can_use_fbreg);
8682 else
8684 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8685 can_use_fbreg);
8686 if (mem_loc_result == 0)
8687 break;
8689 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8690 && INTVAL (XEXP (rtl, 1)) >= 0)
8691 add_loc_descr (&mem_loc_result,
8692 new_loc_descr (DW_OP_plus_uconst,
8693 INTVAL (XEXP (rtl, 1)), 0));
8694 else
8696 add_loc_descr (&mem_loc_result,
8697 mem_loc_descriptor (XEXP (rtl, 1), mode,
8698 can_use_fbreg));
8699 add_loc_descr (&mem_loc_result,
8700 new_loc_descr (DW_OP_plus, 0, 0));
8703 break;
8705 /* If a pseudo-reg is optimized away, it is possible for it to
8706 be replaced with a MEM containing a multiply or shift. */
8707 case MULT:
8708 op = DW_OP_mul;
8709 goto do_binop;
8711 case ASHIFT:
8712 op = DW_OP_shl;
8713 goto do_binop;
8715 case ASHIFTRT:
8716 op = DW_OP_shra;
8717 goto do_binop;
8719 case LSHIFTRT:
8720 op = DW_OP_shr;
8721 goto do_binop;
8723 do_binop:
8725 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8726 can_use_fbreg);
8727 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8728 can_use_fbreg);
8730 if (op0 == 0 || op1 == 0)
8731 break;
8733 mem_loc_result = op0;
8734 add_loc_descr (&mem_loc_result, op1);
8735 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8736 break;
8739 case CONST_INT:
8740 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8741 break;
8743 default:
8744 abort ();
8747 return mem_loc_result;
8750 /* Return a descriptor that describes the concatenation of two locations.
8751 This is typically a complex variable. */
8753 static dw_loc_descr_ref
8754 concat_loc_descriptor (rtx x0, rtx x1)
8756 dw_loc_descr_ref cc_loc_result = NULL;
8757 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8758 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8760 if (x0_ref == 0 || x1_ref == 0)
8761 return 0;
8763 cc_loc_result = x0_ref;
8764 add_loc_descr (&cc_loc_result,
8765 new_loc_descr (DW_OP_piece,
8766 GET_MODE_SIZE (GET_MODE (x0)), 0));
8768 add_loc_descr (&cc_loc_result, x1_ref);
8769 add_loc_descr (&cc_loc_result,
8770 new_loc_descr (DW_OP_piece,
8771 GET_MODE_SIZE (GET_MODE (x1)), 0));
8773 return cc_loc_result;
8776 /* Output a proper Dwarf location descriptor for a variable or parameter
8777 which is either allocated in a register or in a memory location. For a
8778 register, we just generate an OP_REG and the register number. For a
8779 memory location we provide a Dwarf postfix expression describing how to
8780 generate the (dynamic) address of the object onto the address stack.
8782 If we don't know how to describe it, return 0. */
8784 static dw_loc_descr_ref
8785 loc_descriptor (rtx rtl, bool can_use_fbreg)
8787 dw_loc_descr_ref loc_result = NULL;
8789 switch (GET_CODE (rtl))
8791 case SUBREG:
8792 /* The case of a subreg may arise when we have a local (register)
8793 variable or a formal (register) parameter which doesn't quite fill
8794 up an entire register. For now, just assume that it is
8795 legitimate to make the Dwarf info refer to the whole register which
8796 contains the given subreg. */
8797 rtl = SUBREG_REG (rtl);
8799 /* ... fall through ... */
8801 case REG:
8802 loc_result = reg_loc_descriptor (rtl);
8803 break;
8805 case MEM:
8806 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8807 can_use_fbreg);
8808 break;
8810 case CONCAT:
8811 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8812 break;
8814 case VAR_LOCATION:
8815 /* Single part. */
8816 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8818 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8820 /* Multiple parts. */
8821 else
8823 rtvec par_elems = XVEC (XEXP (rtl, 1), 0);
8824 int num_elem = GET_NUM_ELEM (par_elems);
8825 enum machine_mode mode;
8826 int i;
8828 /* Create the first one, so we have something to add to. */
8829 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8830 can_use_fbreg);
8831 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8832 add_loc_descr (&loc_result,
8833 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8834 for (i = 1; i < num_elem; i++)
8836 dw_loc_descr_ref temp;
8838 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8839 can_use_fbreg);
8840 add_loc_descr (&loc_result, temp);
8841 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8842 add_loc_descr (&loc_result,
8843 new_loc_descr (DW_OP_piece,
8844 GET_MODE_SIZE (mode), 0));
8847 break;
8849 default:
8850 abort ();
8853 return loc_result;
8856 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8857 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8858 looking for an address. Otherwise, we return a value. If we can't make a
8859 descriptor, return 0. */
8861 static dw_loc_descr_ref
8862 loc_descriptor_from_tree (tree loc, int addressp)
8864 dw_loc_descr_ref ret, ret1;
8865 int indirect_p = 0;
8866 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8867 enum dwarf_location_atom op;
8869 /* ??? Most of the time we do not take proper care for sign/zero
8870 extending the values properly. Hopefully this won't be a real
8871 problem... */
8873 switch (TREE_CODE (loc))
8875 case ERROR_MARK:
8876 return 0;
8878 case PLACEHOLDER_EXPR:
8879 /* This case involves extracting fields from an object to determine the
8880 position of other fields. We don't try to encode this here. The
8881 only user of this is Ada, which encodes the needed information using
8882 the names of types. */
8883 return 0;
8885 case CALL_EXPR:
8886 return 0;
8888 case PREINCREMENT_EXPR:
8889 case PREDECREMENT_EXPR:
8890 case POSTINCREMENT_EXPR:
8891 case POSTDECREMENT_EXPR:
8892 /* There are no opcodes for these operations. */
8893 return 0;
8895 case ADDR_EXPR:
8896 /* We can support this only if we can look through conversions and
8897 find an INDIRECT_EXPR. */
8898 for (loc = TREE_OPERAND (loc, 0);
8899 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8900 || TREE_CODE (loc) == NON_LVALUE_EXPR
8901 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8902 || TREE_CODE (loc) == SAVE_EXPR;
8903 loc = TREE_OPERAND (loc, 0))
8906 return (TREE_CODE (loc) == INDIRECT_REF
8907 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8908 : 0);
8910 case VAR_DECL:
8911 if (DECL_THREAD_LOCAL (loc))
8913 rtx rtl;
8915 #ifndef ASM_OUTPUT_DWARF_DTPREL
8916 /* If this is not defined, we have no way to emit the data. */
8917 return 0;
8918 #endif
8920 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8921 look up addresses of objects in the current module. */
8922 if (DECL_EXTERNAL (loc))
8923 return 0;
8925 rtl = rtl_for_decl_location (loc);
8926 if (rtl == NULL_RTX)
8927 return 0;
8929 if (!MEM_P (rtl))
8930 return 0;
8931 rtl = XEXP (rtl, 0);
8932 if (! CONSTANT_P (rtl))
8933 return 0;
8935 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8936 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8937 ret->dw_loc_oprnd1.v.val_addr = rtl;
8939 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8940 add_loc_descr (&ret, ret1);
8942 indirect_p = 1;
8943 break;
8945 /* Fall through. */
8947 case PARM_DECL:
8948 case RESULT_DECL:
8950 rtx rtl = rtl_for_decl_location (loc);
8952 if (rtl == NULL_RTX)
8953 return 0;
8954 else if (CONSTANT_P (rtl))
8956 ret = new_loc_descr (DW_OP_addr, 0, 0);
8957 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8958 ret->dw_loc_oprnd1.v.val_addr = rtl;
8959 indirect_p = 1;
8961 else
8963 enum machine_mode mode = GET_MODE (rtl);
8965 if (MEM_P (rtl))
8967 indirect_p = 1;
8968 rtl = XEXP (rtl, 0);
8971 ret = mem_loc_descriptor (rtl, mode, true);
8974 break;
8976 case INDIRECT_REF:
8977 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8978 indirect_p = 1;
8979 break;
8981 case COMPOUND_EXPR:
8982 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8984 case NOP_EXPR:
8985 case CONVERT_EXPR:
8986 case NON_LVALUE_EXPR:
8987 case VIEW_CONVERT_EXPR:
8988 case SAVE_EXPR:
8989 case MODIFY_EXPR:
8990 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8992 case COMPONENT_REF:
8993 case BIT_FIELD_REF:
8994 case ARRAY_REF:
8995 case ARRAY_RANGE_REF:
8997 tree obj, offset;
8998 HOST_WIDE_INT bitsize, bitpos, bytepos;
8999 enum machine_mode mode;
9000 int volatilep;
9002 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9003 &unsignedp, &volatilep);
9005 if (obj == loc)
9006 return 0;
9008 ret = loc_descriptor_from_tree (obj, 1);
9009 if (ret == 0
9010 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9011 return 0;
9013 if (offset != NULL_TREE)
9015 /* Variable offset. */
9016 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
9017 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9020 if (!addressp)
9021 indirect_p = 1;
9023 bytepos = bitpos / BITS_PER_UNIT;
9024 if (bytepos > 0)
9025 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9026 else if (bytepos < 0)
9028 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9029 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9031 break;
9034 case INTEGER_CST:
9035 if (host_integerp (loc, 0))
9036 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9037 else
9038 return 0;
9039 break;
9041 case CONSTRUCTOR:
9043 /* Get an RTL for this, if something has been emitted. */
9044 rtx rtl = lookup_constant_def (loc);
9045 enum machine_mode mode;
9047 if (!MEM_P (rtl))
9048 return 0;
9049 mode = GET_MODE (rtl);
9050 rtl = XEXP (rtl, 0);
9052 rtl = targetm.delegitimize_address (rtl);
9054 indirect_p = 1;
9055 ret = mem_loc_descriptor (rtl, mode, true);
9056 break;
9059 case TRUTH_AND_EXPR:
9060 case TRUTH_ANDIF_EXPR:
9061 case BIT_AND_EXPR:
9062 op = DW_OP_and;
9063 goto do_binop;
9065 case TRUTH_XOR_EXPR:
9066 case BIT_XOR_EXPR:
9067 op = DW_OP_xor;
9068 goto do_binop;
9070 case TRUTH_OR_EXPR:
9071 case TRUTH_ORIF_EXPR:
9072 case BIT_IOR_EXPR:
9073 op = DW_OP_or;
9074 goto do_binop;
9076 case FLOOR_DIV_EXPR:
9077 case CEIL_DIV_EXPR:
9078 case ROUND_DIV_EXPR:
9079 case TRUNC_DIV_EXPR:
9080 op = DW_OP_div;
9081 goto do_binop;
9083 case MINUS_EXPR:
9084 op = DW_OP_minus;
9085 goto do_binop;
9087 case FLOOR_MOD_EXPR:
9088 case CEIL_MOD_EXPR:
9089 case ROUND_MOD_EXPR:
9090 case TRUNC_MOD_EXPR:
9091 op = DW_OP_mod;
9092 goto do_binop;
9094 case MULT_EXPR:
9095 op = DW_OP_mul;
9096 goto do_binop;
9098 case LSHIFT_EXPR:
9099 op = DW_OP_shl;
9100 goto do_binop;
9102 case RSHIFT_EXPR:
9103 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9104 goto do_binop;
9106 case PLUS_EXPR:
9107 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9108 && host_integerp (TREE_OPERAND (loc, 1), 0))
9110 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9111 if (ret == 0)
9112 return 0;
9114 add_loc_descr (&ret,
9115 new_loc_descr (DW_OP_plus_uconst,
9116 tree_low_cst (TREE_OPERAND (loc, 1),
9118 0));
9119 break;
9122 op = DW_OP_plus;
9123 goto do_binop;
9125 case LE_EXPR:
9126 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9127 return 0;
9129 op = DW_OP_le;
9130 goto do_binop;
9132 case GE_EXPR:
9133 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9134 return 0;
9136 op = DW_OP_ge;
9137 goto do_binop;
9139 case LT_EXPR:
9140 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9141 return 0;
9143 op = DW_OP_lt;
9144 goto do_binop;
9146 case GT_EXPR:
9147 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9148 return 0;
9150 op = DW_OP_gt;
9151 goto do_binop;
9153 case EQ_EXPR:
9154 op = DW_OP_eq;
9155 goto do_binop;
9157 case NE_EXPR:
9158 op = DW_OP_ne;
9159 goto do_binop;
9161 do_binop:
9162 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9163 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9164 if (ret == 0 || ret1 == 0)
9165 return 0;
9167 add_loc_descr (&ret, ret1);
9168 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9169 break;
9171 case TRUTH_NOT_EXPR:
9172 case BIT_NOT_EXPR:
9173 op = DW_OP_not;
9174 goto do_unop;
9176 case ABS_EXPR:
9177 op = DW_OP_abs;
9178 goto do_unop;
9180 case NEGATE_EXPR:
9181 op = DW_OP_neg;
9182 goto do_unop;
9184 do_unop:
9185 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9186 if (ret == 0)
9187 return 0;
9189 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9190 break;
9192 case MIN_EXPR:
9193 case MAX_EXPR:
9195 const enum tree_code code =
9196 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9198 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9199 build2 (code, integer_type_node,
9200 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9201 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9204 /* ... fall through ... */
9206 case COND_EXPR:
9208 dw_loc_descr_ref lhs
9209 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9210 dw_loc_descr_ref rhs
9211 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
9212 dw_loc_descr_ref bra_node, jump_node, tmp;
9214 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9215 if (ret == 0 || lhs == 0 || rhs == 0)
9216 return 0;
9218 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9219 add_loc_descr (&ret, bra_node);
9221 add_loc_descr (&ret, rhs);
9222 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9223 add_loc_descr (&ret, jump_node);
9225 add_loc_descr (&ret, lhs);
9226 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9227 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9229 /* ??? Need a node to point the skip at. Use a nop. */
9230 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9231 add_loc_descr (&ret, tmp);
9232 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9233 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9235 break;
9237 default:
9238 /* Leave front-end specific codes as simply unknown. This comes
9239 up, for instance, with the C STMT_EXPR. */
9240 if ((unsigned int) TREE_CODE (loc)
9241 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9242 return 0;
9244 /* Otherwise this is a generic code; we should just lists all of
9245 these explicitly. Aborting means we forgot one. */
9246 abort ();
9249 /* Show if we can't fill the request for an address. */
9250 if (addressp && indirect_p == 0)
9251 return 0;
9253 /* If we've got an address and don't want one, dereference. */
9254 if (!addressp && indirect_p > 0)
9256 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9258 if (size > DWARF2_ADDR_SIZE || size == -1)
9259 return 0;
9260 else if (size == DWARF2_ADDR_SIZE)
9261 op = DW_OP_deref;
9262 else
9263 op = DW_OP_deref_size;
9265 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9268 return ret;
9271 /* Given a value, round it up to the lowest multiple of `boundary'
9272 which is not less than the value itself. */
9274 static inline HOST_WIDE_INT
9275 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9277 return (((value + boundary - 1) / boundary) * boundary);
9280 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9281 pointer to the declared type for the relevant field variable, or return
9282 `integer_type_node' if the given node turns out to be an
9283 ERROR_MARK node. */
9285 static inline tree
9286 field_type (tree decl)
9288 tree type;
9290 if (TREE_CODE (decl) == ERROR_MARK)
9291 return integer_type_node;
9293 type = DECL_BIT_FIELD_TYPE (decl);
9294 if (type == NULL_TREE)
9295 type = TREE_TYPE (decl);
9297 return type;
9300 /* Given a pointer to a tree node, return the alignment in bits for
9301 it, or else return BITS_PER_WORD if the node actually turns out to
9302 be an ERROR_MARK node. */
9304 static inline unsigned
9305 simple_type_align_in_bits (tree type)
9307 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9310 static inline unsigned
9311 simple_decl_align_in_bits (tree decl)
9313 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9316 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9317 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9318 or return 0 if we are unable to determine what that offset is, either
9319 because the argument turns out to be a pointer to an ERROR_MARK node, or
9320 because the offset is actually variable. (We can't handle the latter case
9321 just yet). */
9323 static HOST_WIDE_INT
9324 field_byte_offset (tree decl)
9326 unsigned int type_align_in_bits;
9327 unsigned int decl_align_in_bits;
9328 unsigned HOST_WIDE_INT type_size_in_bits;
9329 HOST_WIDE_INT object_offset_in_bits;
9330 tree type;
9331 tree field_size_tree;
9332 HOST_WIDE_INT bitpos_int;
9333 HOST_WIDE_INT deepest_bitpos;
9334 unsigned HOST_WIDE_INT field_size_in_bits;
9336 if (TREE_CODE (decl) == ERROR_MARK)
9337 return 0;
9338 else if (TREE_CODE (decl) != FIELD_DECL)
9339 abort ();
9341 type = field_type (decl);
9342 field_size_tree = DECL_SIZE (decl);
9344 /* The size could be unspecified if there was an error, or for
9345 a flexible array member. */
9346 if (! field_size_tree)
9347 field_size_tree = bitsize_zero_node;
9349 /* We cannot yet cope with fields whose positions are variable, so
9350 for now, when we see such things, we simply return 0. Someday, we may
9351 be able to handle such cases, but it will be damn difficult. */
9352 if (! host_integerp (bit_position (decl), 0))
9353 return 0;
9355 bitpos_int = int_bit_position (decl);
9357 /* If we don't know the size of the field, pretend it's a full word. */
9358 if (host_integerp (field_size_tree, 1))
9359 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9360 else
9361 field_size_in_bits = BITS_PER_WORD;
9363 type_size_in_bits = simple_type_size_in_bits (type);
9364 type_align_in_bits = simple_type_align_in_bits (type);
9365 decl_align_in_bits = simple_decl_align_in_bits (decl);
9367 /* The GCC front-end doesn't make any attempt to keep track of the starting
9368 bit offset (relative to the start of the containing structure type) of the
9369 hypothetical "containing object" for a bit-field. Thus, when computing
9370 the byte offset value for the start of the "containing object" of a
9371 bit-field, we must deduce this information on our own. This can be rather
9372 tricky to do in some cases. For example, handling the following structure
9373 type definition when compiling for an i386/i486 target (which only aligns
9374 long long's to 32-bit boundaries) can be very tricky:
9376 struct S { int field1; long long field2:31; };
9378 Fortunately, there is a simple rule-of-thumb which can be used in such
9379 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9380 structure shown above. It decides to do this based upon one simple rule
9381 for bit-field allocation. GCC allocates each "containing object" for each
9382 bit-field at the first (i.e. lowest addressed) legitimate alignment
9383 boundary (based upon the required minimum alignment for the declared type
9384 of the field) which it can possibly use, subject to the condition that
9385 there is still enough available space remaining in the containing object
9386 (when allocated at the selected point) to fully accommodate all of the
9387 bits of the bit-field itself.
9389 This simple rule makes it obvious why GCC allocates 8 bytes for each
9390 object of the structure type shown above. When looking for a place to
9391 allocate the "containing object" for `field2', the compiler simply tries
9392 to allocate a 64-bit "containing object" at each successive 32-bit
9393 boundary (starting at zero) until it finds a place to allocate that 64-
9394 bit field such that at least 31 contiguous (and previously unallocated)
9395 bits remain within that selected 64 bit field. (As it turns out, for the
9396 example above, the compiler finds it is OK to allocate the "containing
9397 object" 64-bit field at bit-offset zero within the structure type.)
9399 Here we attempt to work backwards from the limited set of facts we're
9400 given, and we try to deduce from those facts, where GCC must have believed
9401 that the containing object started (within the structure type). The value
9402 we deduce is then used (by the callers of this routine) to generate
9403 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9404 and, in the case of DW_AT_location, regular fields as well). */
9406 /* Figure out the bit-distance from the start of the structure to the
9407 "deepest" bit of the bit-field. */
9408 deepest_bitpos = bitpos_int + field_size_in_bits;
9410 /* This is the tricky part. Use some fancy footwork to deduce where the
9411 lowest addressed bit of the containing object must be. */
9412 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9414 /* Round up to type_align by default. This works best for bitfields. */
9415 object_offset_in_bits += type_align_in_bits - 1;
9416 object_offset_in_bits /= type_align_in_bits;
9417 object_offset_in_bits *= type_align_in_bits;
9419 if (object_offset_in_bits > bitpos_int)
9421 /* Sigh, the decl must be packed. */
9422 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9424 /* Round up to decl_align instead. */
9425 object_offset_in_bits += decl_align_in_bits - 1;
9426 object_offset_in_bits /= decl_align_in_bits;
9427 object_offset_in_bits *= decl_align_in_bits;
9430 return object_offset_in_bits / BITS_PER_UNIT;
9433 /* The following routines define various Dwarf attributes and any data
9434 associated with them. */
9436 /* Add a location description attribute value to a DIE.
9438 This emits location attributes suitable for whole variables and
9439 whole parameters. Note that the location attributes for struct fields are
9440 generated by the routine `data_member_location_attribute' below. */
9442 static inline void
9443 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9444 dw_loc_descr_ref descr)
9446 if (descr != 0)
9447 add_AT_loc (die, attr_kind, descr);
9450 /* Attach the specialized form of location attribute used for data members of
9451 struct and union types. In the special case of a FIELD_DECL node which
9452 represents a bit-field, the "offset" part of this special location
9453 descriptor must indicate the distance in bytes from the lowest-addressed
9454 byte of the containing struct or union type to the lowest-addressed byte of
9455 the "containing object" for the bit-field. (See the `field_byte_offset'
9456 function above).
9458 For any given bit-field, the "containing object" is a hypothetical object
9459 (of some integral or enum type) within which the given bit-field lives. The
9460 type of this hypothetical "containing object" is always the same as the
9461 declared type of the individual bit-field itself (for GCC anyway... the
9462 DWARF spec doesn't actually mandate this). Note that it is the size (in
9463 bytes) of the hypothetical "containing object" which will be given in the
9464 DW_AT_byte_size attribute for this bit-field. (See the
9465 `byte_size_attribute' function below.) It is also used when calculating the
9466 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9467 function below.) */
9469 static void
9470 add_data_member_location_attribute (dw_die_ref die, tree decl)
9472 HOST_WIDE_INT offset;
9473 dw_loc_descr_ref loc_descr = 0;
9475 if (TREE_CODE (decl) == TREE_BINFO)
9477 /* We're working on the TAG_inheritance for a base class. */
9478 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9480 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9481 aren't at a fixed offset from all (sub)objects of the same
9482 type. We need to extract the appropriate offset from our
9483 vtable. The following dwarf expression means
9485 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9487 This is specific to the V3 ABI, of course. */
9489 dw_loc_descr_ref tmp;
9491 /* Make a copy of the object address. */
9492 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9493 add_loc_descr (&loc_descr, tmp);
9495 /* Extract the vtable address. */
9496 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9497 add_loc_descr (&loc_descr, tmp);
9499 /* Calculate the address of the offset. */
9500 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9501 if (offset >= 0)
9502 abort ();
9504 tmp = int_loc_descriptor (-offset);
9505 add_loc_descr (&loc_descr, tmp);
9506 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9507 add_loc_descr (&loc_descr, tmp);
9509 /* Extract the offset. */
9510 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9511 add_loc_descr (&loc_descr, tmp);
9513 /* Add it to the object address. */
9514 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9515 add_loc_descr (&loc_descr, tmp);
9517 else
9518 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9520 else
9521 offset = field_byte_offset (decl);
9523 if (! loc_descr)
9525 enum dwarf_location_atom op;
9527 /* The DWARF2 standard says that we should assume that the structure
9528 address is already on the stack, so we can specify a structure field
9529 address by using DW_OP_plus_uconst. */
9531 #ifdef MIPS_DEBUGGING_INFO
9532 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9533 operator correctly. It works only if we leave the offset on the
9534 stack. */
9535 op = DW_OP_constu;
9536 #else
9537 op = DW_OP_plus_uconst;
9538 #endif
9540 loc_descr = new_loc_descr (op, offset, 0);
9543 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9546 /* Writes integer values to dw_vec_const array. */
9548 static void
9549 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9551 while (size != 0)
9553 *dest++ = val & 0xff;
9554 val >>= 8;
9555 --size;
9559 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9561 static HOST_WIDE_INT
9562 extract_int (const unsigned char *src, unsigned int size)
9564 HOST_WIDE_INT val = 0;
9566 src += size;
9567 while (size != 0)
9569 val <<= 8;
9570 val |= *--src & 0xff;
9571 --size;
9573 return val;
9576 /* Writes floating point values to dw_vec_const array. */
9578 static void
9579 insert_float (rtx rtl, unsigned char *array)
9581 REAL_VALUE_TYPE rv;
9582 long val[4];
9583 int i;
9585 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9586 real_to_target (val, &rv, GET_MODE (rtl));
9588 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9589 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9591 insert_int (val[i], 4, array);
9592 array += 4;
9596 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9597 does not have a "location" either in memory or in a register. These
9598 things can arise in GNU C when a constant is passed as an actual parameter
9599 to an inlined function. They can also arise in C++ where declared
9600 constants do not necessarily get memory "homes". */
9602 static void
9603 add_const_value_attribute (dw_die_ref die, rtx rtl)
9605 switch (GET_CODE (rtl))
9607 case CONST_INT:
9609 HOST_WIDE_INT val = INTVAL (rtl);
9611 if (val < 0)
9612 add_AT_int (die, DW_AT_const_value, val);
9613 else
9614 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9616 break;
9618 case CONST_DOUBLE:
9619 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9620 floating-point constant. A CONST_DOUBLE is used whenever the
9621 constant requires more than one word in order to be adequately
9622 represented. We output CONST_DOUBLEs as blocks. */
9624 enum machine_mode mode = GET_MODE (rtl);
9626 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9628 unsigned int length = GET_MODE_SIZE (mode);
9629 unsigned char *array = ggc_alloc (length);
9631 insert_float (rtl, array);
9632 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9634 else
9636 /* ??? We really should be using HOST_WIDE_INT throughout. */
9637 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9638 abort ();
9640 add_AT_long_long (die, DW_AT_const_value,
9641 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9644 break;
9646 case CONST_VECTOR:
9648 enum machine_mode mode = GET_MODE (rtl);
9649 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9650 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9651 unsigned char *array = ggc_alloc (length * elt_size);
9652 unsigned int i;
9653 unsigned char *p;
9655 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
9657 for (i = 0, p = array; i < length; i++, p += elt_size)
9659 rtx elt = CONST_VECTOR_ELT (rtl, i);
9660 HOST_WIDE_INT lo, hi;
9661 if (GET_CODE (elt) == CONST_INT)
9663 lo = INTVAL (elt);
9664 hi = -(lo < 0);
9666 else if (GET_CODE (elt) == CONST_DOUBLE)
9668 lo = CONST_DOUBLE_LOW (elt);
9669 hi = CONST_DOUBLE_HIGH (elt);
9671 else
9672 abort ();
9674 if (elt_size <= sizeof (HOST_WIDE_INT))
9675 insert_int (lo, elt_size, p);
9676 else if (elt_size == 2 * sizeof (HOST_WIDE_INT))
9678 unsigned char *p0 = p;
9679 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9681 if (WORDS_BIG_ENDIAN)
9683 p0 = p1;
9684 p1 = p;
9686 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9687 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9689 else
9690 abort ();
9693 else if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
9695 for (i = 0, p = array; i < length; i++, p += elt_size)
9697 rtx elt = CONST_VECTOR_ELT (rtl, i);
9698 insert_float (elt, p);
9701 else
9702 abort ();
9704 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9706 break;
9708 case CONST_STRING:
9709 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9710 break;
9712 case SYMBOL_REF:
9713 case LABEL_REF:
9714 case CONST:
9715 add_AT_addr (die, DW_AT_const_value, rtl);
9716 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9717 break;
9719 case PLUS:
9720 /* In cases where an inlined instance of an inline function is passed
9721 the address of an `auto' variable (which is local to the caller) we
9722 can get a situation where the DECL_RTL of the artificial local
9723 variable (for the inlining) which acts as a stand-in for the
9724 corresponding formal parameter (of the inline function) will look
9725 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9726 exactly a compile-time constant expression, but it isn't the address
9727 of the (artificial) local variable either. Rather, it represents the
9728 *value* which the artificial local variable always has during its
9729 lifetime. We currently have no way to represent such quasi-constant
9730 values in Dwarf, so for now we just punt and generate nothing. */
9731 break;
9733 default:
9734 /* No other kinds of rtx should be possible here. */
9735 abort ();
9740 static rtx
9741 rtl_for_decl_location (tree decl)
9743 rtx rtl;
9745 /* Here we have to decide where we are going to say the parameter "lives"
9746 (as far as the debugger is concerned). We only have a couple of
9747 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9749 DECL_RTL normally indicates where the parameter lives during most of the
9750 activation of the function. If optimization is enabled however, this
9751 could be either NULL or else a pseudo-reg. Both of those cases indicate
9752 that the parameter doesn't really live anywhere (as far as the code
9753 generation parts of GCC are concerned) during most of the function's
9754 activation. That will happen (for example) if the parameter is never
9755 referenced within the function.
9757 We could just generate a location descriptor here for all non-NULL
9758 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9759 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9760 where DECL_RTL is NULL or is a pseudo-reg.
9762 Note however that we can only get away with using DECL_INCOMING_RTL as
9763 a backup substitute for DECL_RTL in certain limited cases. In cases
9764 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9765 we can be sure that the parameter was passed using the same type as it is
9766 declared to have within the function, and that its DECL_INCOMING_RTL
9767 points us to a place where a value of that type is passed.
9769 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9770 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9771 because in these cases DECL_INCOMING_RTL points us to a value of some
9772 type which is *different* from the type of the parameter itself. Thus,
9773 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9774 such cases, the debugger would end up (for example) trying to fetch a
9775 `float' from a place which actually contains the first part of a
9776 `double'. That would lead to really incorrect and confusing
9777 output at debug-time.
9779 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9780 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9781 are a couple of exceptions however. On little-endian machines we can
9782 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9783 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9784 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9785 when (on a little-endian machine) a non-prototyped function has a
9786 parameter declared to be of type `short' or `char'. In such cases,
9787 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9788 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9789 passed `int' value. If the debugger then uses that address to fetch
9790 a `short' or a `char' (on a little-endian machine) the result will be
9791 the correct data, so we allow for such exceptional cases below.
9793 Note that our goal here is to describe the place where the given formal
9794 parameter lives during most of the function's activation (i.e. between the
9795 end of the prologue and the start of the epilogue). We'll do that as best
9796 as we can. Note however that if the given formal parameter is modified
9797 sometime during the execution of the function, then a stack backtrace (at
9798 debug-time) will show the function as having been called with the *new*
9799 value rather than the value which was originally passed in. This happens
9800 rarely enough that it is not a major problem, but it *is* a problem, and
9801 I'd like to fix it.
9803 A future version of dwarf2out.c may generate two additional attributes for
9804 any given DW_TAG_formal_parameter DIE which will describe the "passed
9805 type" and the "passed location" for the given formal parameter in addition
9806 to the attributes we now generate to indicate the "declared type" and the
9807 "active location" for each parameter. This additional set of attributes
9808 could be used by debuggers for stack backtraces. Separately, note that
9809 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9810 This happens (for example) for inlined-instances of inline function formal
9811 parameters which are never referenced. This really shouldn't be
9812 happening. All PARM_DECL nodes should get valid non-NULL
9813 DECL_INCOMING_RTL values. FIXME. */
9815 /* Use DECL_RTL as the "location" unless we find something better. */
9816 rtl = DECL_RTL_IF_SET (decl);
9818 /* When generating abstract instances, ignore everything except
9819 constants, symbols living in memory, and symbols living in
9820 fixed registers. */
9821 if (! reload_completed)
9823 if (rtl
9824 && (CONSTANT_P (rtl)
9825 || (MEM_P (rtl)
9826 && CONSTANT_P (XEXP (rtl, 0)))
9827 || (REG_P (rtl)
9828 && TREE_CODE (decl) == VAR_DECL
9829 && TREE_STATIC (decl))))
9831 rtl = targetm.delegitimize_address (rtl);
9832 return rtl;
9834 rtl = NULL_RTX;
9836 else if (TREE_CODE (decl) == PARM_DECL)
9838 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9840 tree declared_type = type_main_variant (TREE_TYPE (decl));
9841 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9843 /* This decl represents a formal parameter which was optimized out.
9844 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9845 all cases where (rtl == NULL_RTX) just below. */
9846 if (declared_type == passed_type)
9847 rtl = DECL_INCOMING_RTL (decl);
9848 else if (! BYTES_BIG_ENDIAN
9849 && TREE_CODE (declared_type) == INTEGER_TYPE
9850 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9851 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9852 rtl = DECL_INCOMING_RTL (decl);
9855 /* If the parm was passed in registers, but lives on the stack, then
9856 make a big endian correction if the mode of the type of the
9857 parameter is not the same as the mode of the rtl. */
9858 /* ??? This is the same series of checks that are made in dbxout.c before
9859 we reach the big endian correction code there. It isn't clear if all
9860 of these checks are necessary here, but keeping them all is the safe
9861 thing to do. */
9862 else if (MEM_P (rtl)
9863 && XEXP (rtl, 0) != const0_rtx
9864 && ! CONSTANT_P (XEXP (rtl, 0))
9865 /* Not passed in memory. */
9866 && !MEM_P (DECL_INCOMING_RTL (decl))
9867 /* Not passed by invisible reference. */
9868 && (!REG_P (XEXP (rtl, 0))
9869 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9870 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9871 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9872 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9873 #endif
9875 /* Big endian correction check. */
9876 && BYTES_BIG_ENDIAN
9877 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9878 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9879 < UNITS_PER_WORD))
9881 int offset = (UNITS_PER_WORD
9882 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9884 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9885 plus_constant (XEXP (rtl, 0), offset));
9888 else if (TREE_CODE (decl) == VAR_DECL
9889 && rtl
9890 && MEM_P (rtl)
9891 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
9892 && BYTES_BIG_ENDIAN)
9894 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
9895 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
9897 /* If a variable is declared "register" yet is smaller than
9898 a register, then if we store the variable to memory, it
9899 looks like we're storing a register-sized value, when in
9900 fact we are not. We need to adjust the offset of the
9901 storage location to reflect the actual value's bytes,
9902 else gdb will not be able to display it. */
9903 if (rsize > dsize)
9904 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9905 plus_constant (XEXP (rtl, 0), rsize-dsize));
9908 if (rtl != NULL_RTX)
9910 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9911 #ifdef LEAF_REG_REMAP
9912 if (current_function_uses_only_leaf_regs)
9913 leaf_renumber_regs_insn (rtl);
9914 #endif
9917 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9918 and will have been substituted directly into all expressions that use it.
9919 C does not have such a concept, but C++ and other languages do. */
9920 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9922 /* If a variable is initialized with a string constant without embedded
9923 zeros, build CONST_STRING. */
9924 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9925 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9927 tree arrtype = TREE_TYPE (decl);
9928 tree enttype = TREE_TYPE (arrtype);
9929 tree domain = TYPE_DOMAIN (arrtype);
9930 tree init = DECL_INITIAL (decl);
9931 enum machine_mode mode = TYPE_MODE (enttype);
9933 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9934 && domain
9935 && integer_zerop (TYPE_MIN_VALUE (domain))
9936 && compare_tree_int (TYPE_MAX_VALUE (domain),
9937 TREE_STRING_LENGTH (init) - 1) == 0
9938 && ((size_t) TREE_STRING_LENGTH (init)
9939 == strlen (TREE_STRING_POINTER (init)) + 1))
9940 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9942 /* If the initializer is something that we know will expand into an
9943 immediate RTL constant, expand it now. Expanding anything else
9944 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9945 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9946 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9948 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9949 EXPAND_INITIALIZER);
9950 /* If expand_expr returns a MEM, it wasn't immediate. */
9951 if (rtl && MEM_P (rtl))
9952 abort ();
9956 if (rtl)
9957 rtl = targetm.delegitimize_address (rtl);
9959 /* If we don't look past the constant pool, we risk emitting a
9960 reference to a constant pool entry that isn't referenced from
9961 code, and thus is not emitted. */
9962 if (rtl)
9963 rtl = avoid_constant_pool_reference (rtl);
9965 return rtl;
9968 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9969 data attribute for a variable or a parameter. We generate the
9970 DW_AT_const_value attribute only in those cases where the given variable
9971 or parameter does not have a true "location" either in memory or in a
9972 register. This can happen (for example) when a constant is passed as an
9973 actual argument in a call to an inline function. (It's possible that
9974 these things can crop up in other ways also.) Note that one type of
9975 constant value which can be passed into an inlined function is a constant
9976 pointer. This can happen for example if an actual argument in an inlined
9977 function call evaluates to a compile-time constant address. */
9979 static void
9980 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9981 enum dwarf_attribute attr)
9983 rtx rtl;
9984 dw_loc_descr_ref descr;
9985 var_loc_list *loc_list;
9987 if (TREE_CODE (decl) == ERROR_MARK)
9988 return;
9989 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL
9990 && TREE_CODE (decl) != RESULT_DECL)
9991 abort ();
9993 /* See if we possibly have multiple locations for this variable. */
9994 loc_list = lookup_decl_loc (decl);
9996 /* If it truly has multiple locations, the first and last node will
9997 differ. */
9998 if (loc_list && loc_list->first != loc_list->last)
10000 const char *secname;
10001 const char *endname;
10002 dw_loc_list_ref list;
10003 rtx varloc;
10004 struct var_loc_node *node;
10006 /* We need to figure out what section we should use as the base
10007 for the address ranges where a given location is valid.
10008 1. If this particular DECL has a section associated with it,
10009 use that.
10010 2. If this function has a section associated with it, use
10011 that.
10012 3. Otherwise, use the text section.
10013 XXX: If you split a variable across multiple sections, this
10014 won't notice. */
10016 if (DECL_SECTION_NAME (decl))
10018 tree sectree = DECL_SECTION_NAME (decl);
10019 secname = TREE_STRING_POINTER (sectree);
10021 else if (current_function_decl
10022 && DECL_SECTION_NAME (current_function_decl))
10024 tree sectree = DECL_SECTION_NAME (current_function_decl);
10025 secname = TREE_STRING_POINTER (sectree);
10027 else
10028 secname = text_section_label;
10030 /* Now that we know what section we are using for a base,
10031 actually construct the list of locations.
10032 The first location information is what is passed to the
10033 function that creates the location list, and the remaining
10034 locations just get added on to that list.
10035 Note that we only know the start address for a location
10036 (IE location changes), so to build the range, we use
10037 the range [current location start, next location start].
10038 This means we have to special case the last node, and generate
10039 a range of [last location start, end of function label]. */
10041 node = loc_list->first;
10042 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10043 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
10044 node->label, node->next->label, secname, 1);
10045 node = node->next;
10047 for (; node->next; node = node->next)
10048 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10050 /* The variable has a location between NODE->LABEL and
10051 NODE->NEXT->LABEL. */
10052 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10053 add_loc_descr_to_loc_list (&list,
10054 loc_descriptor (varloc,
10055 attr != DW_AT_frame_base),
10056 node->label, node->next->label, secname);
10059 /* If the variable has a location at the last label
10060 it keeps its location until the end of function. */
10061 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10063 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10065 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10066 if (!current_function_decl)
10067 endname = text_end_label;
10068 else
10070 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10071 current_function_funcdef_no);
10072 endname = ggc_strdup (label_id);
10074 add_loc_descr_to_loc_list (&list,
10075 loc_descriptor (varloc,
10076 attr != DW_AT_frame_base),
10077 node->label, endname, secname);
10080 /* Finally, add the location list to the DIE, and we are done. */
10081 add_AT_loc_list (die, attr, list);
10082 return;
10085 rtl = rtl_for_decl_location (decl);
10086 if (rtl == NULL_RTX)
10087 return;
10089 switch (GET_CODE (rtl))
10091 case CONST_INT:
10092 case CONST_DOUBLE:
10093 case CONST_VECTOR:
10094 case CONST_STRING:
10095 case SYMBOL_REF:
10096 case LABEL_REF:
10097 case CONST:
10098 case PLUS:
10099 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
10100 add_const_value_attribute (die, rtl);
10101 break;
10103 case MEM:
10104 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
10106 /* Need loc_descriptor_from_tree since that's where we know
10107 how to handle TLS variables. Want the object's address
10108 since the top-level DW_AT_location assumes such. See
10109 the confusion in loc_descriptor for reference. */
10110 descr = loc_descriptor_from_tree (decl, 1);
10112 else
10114 case REG:
10115 case SUBREG:
10116 case CONCAT:
10117 descr = loc_descriptor (rtl, true);
10119 add_AT_location_description (die, attr, descr);
10120 break;
10122 case PARALLEL:
10124 rtvec par_elems = XVEC (rtl, 0);
10125 int num_elem = GET_NUM_ELEM (par_elems);
10126 enum machine_mode mode;
10127 int i;
10129 /* Create the first one, so we have something to add to. */
10130 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0), true);
10131 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
10132 add_loc_descr (&descr,
10133 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
10134 for (i = 1; i < num_elem; i++)
10136 dw_loc_descr_ref temp;
10138 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0), true);
10139 add_loc_descr (&descr, temp);
10140 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
10141 add_loc_descr (&descr,
10142 new_loc_descr (DW_OP_piece,
10143 GET_MODE_SIZE (mode), 0));
10146 add_AT_location_description (die, DW_AT_location, descr);
10147 break;
10149 default:
10150 abort ();
10154 /* If we don't have a copy of this variable in memory for some reason (such
10155 as a C++ member constant that doesn't have an out-of-line definition),
10156 we should tell the debugger about the constant value. */
10158 static void
10159 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10161 tree init = DECL_INITIAL (decl);
10162 tree type = TREE_TYPE (decl);
10164 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
10165 && initializer_constant_valid_p (init, type) == null_pointer_node)
10166 /* OK */;
10167 else
10168 return;
10170 switch (TREE_CODE (type))
10172 case INTEGER_TYPE:
10173 if (host_integerp (init, 0))
10174 add_AT_unsigned (var_die, DW_AT_const_value,
10175 tree_low_cst (init, 0));
10176 else
10177 add_AT_long_long (var_die, DW_AT_const_value,
10178 TREE_INT_CST_HIGH (init),
10179 TREE_INT_CST_LOW (init));
10180 break;
10182 default:;
10186 /* Generate a DW_AT_name attribute given some string value to be included as
10187 the value of the attribute. */
10189 static void
10190 add_name_attribute (dw_die_ref die, const char *name_string)
10192 if (name_string != NULL && *name_string != 0)
10194 if (demangle_name_func)
10195 name_string = (*demangle_name_func) (name_string);
10197 add_AT_string (die, DW_AT_name, name_string);
10201 /* Generate a DW_AT_comp_dir attribute for DIE. */
10203 static void
10204 add_comp_dir_attribute (dw_die_ref die)
10206 const char *wd = get_src_pwd ();
10207 if (wd != NULL)
10208 add_AT_string (die, DW_AT_comp_dir, wd);
10211 /* Given a tree node describing an array bound (either lower or upper) output
10212 a representation for that bound. */
10214 static void
10215 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10217 switch (TREE_CODE (bound))
10219 case ERROR_MARK:
10220 return;
10222 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10223 case INTEGER_CST:
10224 if (! host_integerp (bound, 0)
10225 || (bound_attr == DW_AT_lower_bound
10226 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10227 || (is_fortran () && integer_onep (bound)))))
10228 /* Use the default. */
10230 else
10231 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10232 break;
10234 case CONVERT_EXPR:
10235 case NOP_EXPR:
10236 case NON_LVALUE_EXPR:
10237 case VIEW_CONVERT_EXPR:
10238 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10239 break;
10241 case SAVE_EXPR:
10242 break;
10244 case VAR_DECL:
10245 case PARM_DECL:
10246 case RESULT_DECL:
10248 dw_die_ref decl_die = lookup_decl_die (bound);
10250 /* ??? Can this happen, or should the variable have been bound
10251 first? Probably it can, since I imagine that we try to create
10252 the types of parameters in the order in which they exist in
10253 the list, and won't have created a forward reference to a
10254 later parameter. */
10255 if (decl_die != NULL)
10256 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10257 break;
10260 default:
10262 /* Otherwise try to create a stack operation procedure to
10263 evaluate the value of the array bound. */
10265 dw_die_ref ctx, decl_die;
10266 dw_loc_descr_ref loc;
10268 loc = loc_descriptor_from_tree (bound, 0);
10269 if (loc == NULL)
10270 break;
10272 if (current_function_decl == 0)
10273 ctx = comp_unit_die;
10274 else
10275 ctx = lookup_decl_die (current_function_decl);
10277 decl_die = new_die (DW_TAG_variable, ctx, bound);
10278 add_AT_flag (decl_die, DW_AT_artificial, 1);
10279 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10280 add_AT_loc (decl_die, DW_AT_location, loc);
10282 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10283 break;
10288 /* Note that the block of subscript information for an array type also
10289 includes information about the element type of type given array type. */
10291 static void
10292 add_subscript_info (dw_die_ref type_die, tree type)
10294 #ifndef MIPS_DEBUGGING_INFO
10295 unsigned dimension_number;
10296 #endif
10297 tree lower, upper;
10298 dw_die_ref subrange_die;
10300 /* The GNU compilers represent multidimensional array types as sequences of
10301 one dimensional array types whose element types are themselves array
10302 types. Here we squish that down, so that each multidimensional array
10303 type gets only one array_type DIE in the Dwarf debugging info. The draft
10304 Dwarf specification say that we are allowed to do this kind of
10305 compression in C (because there is no difference between an array or
10306 arrays and a multidimensional array in C) but for other source languages
10307 (e.g. Ada) we probably shouldn't do this. */
10309 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10310 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10311 We work around this by disabling this feature. See also
10312 gen_array_type_die. */
10313 #ifndef MIPS_DEBUGGING_INFO
10314 for (dimension_number = 0;
10315 TREE_CODE (type) == ARRAY_TYPE;
10316 type = TREE_TYPE (type), dimension_number++)
10317 #endif
10319 tree domain = TYPE_DOMAIN (type);
10321 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10322 and (in GNU C only) variable bounds. Handle all three forms
10323 here. */
10324 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10325 if (domain)
10327 /* We have an array type with specified bounds. */
10328 lower = TYPE_MIN_VALUE (domain);
10329 upper = TYPE_MAX_VALUE (domain);
10331 /* Define the index type. */
10332 if (TREE_TYPE (domain))
10334 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10335 TREE_TYPE field. We can't emit debug info for this
10336 because it is an unnamed integral type. */
10337 if (TREE_CODE (domain) == INTEGER_TYPE
10338 && TYPE_NAME (domain) == NULL_TREE
10339 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10340 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10342 else
10343 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10344 type_die);
10347 /* ??? If upper is NULL, the array has unspecified length,
10348 but it does have a lower bound. This happens with Fortran
10349 dimension arr(N:*)
10350 Since the debugger is definitely going to need to know N
10351 to produce useful results, go ahead and output the lower
10352 bound solo, and hope the debugger can cope. */
10354 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10355 if (upper)
10356 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10359 /* Otherwise we have an array type with an unspecified length. The
10360 DWARF-2 spec does not say how to handle this; let's just leave out the
10361 bounds. */
10365 static void
10366 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10368 unsigned size;
10370 switch (TREE_CODE (tree_node))
10372 case ERROR_MARK:
10373 size = 0;
10374 break;
10375 case ENUMERAL_TYPE:
10376 case RECORD_TYPE:
10377 case UNION_TYPE:
10378 case QUAL_UNION_TYPE:
10379 size = int_size_in_bytes (tree_node);
10380 break;
10381 case FIELD_DECL:
10382 /* For a data member of a struct or union, the DW_AT_byte_size is
10383 generally given as the number of bytes normally allocated for an
10384 object of the *declared* type of the member itself. This is true
10385 even for bit-fields. */
10386 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10387 break;
10388 default:
10389 abort ();
10392 /* Note that `size' might be -1 when we get to this point. If it is, that
10393 indicates that the byte size of the entity in question is variable. We
10394 have no good way of expressing this fact in Dwarf at the present time,
10395 so just let the -1 pass on through. */
10396 add_AT_unsigned (die, DW_AT_byte_size, size);
10399 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10400 which specifies the distance in bits from the highest order bit of the
10401 "containing object" for the bit-field to the highest order bit of the
10402 bit-field itself.
10404 For any given bit-field, the "containing object" is a hypothetical object
10405 (of some integral or enum type) within which the given bit-field lives. The
10406 type of this hypothetical "containing object" is always the same as the
10407 declared type of the individual bit-field itself. The determination of the
10408 exact location of the "containing object" for a bit-field is rather
10409 complicated. It's handled by the `field_byte_offset' function (above).
10411 Note that it is the size (in bytes) of the hypothetical "containing object"
10412 which will be given in the DW_AT_byte_size attribute for this bit-field.
10413 (See `byte_size_attribute' above). */
10415 static inline void
10416 add_bit_offset_attribute (dw_die_ref die, tree decl)
10418 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10419 tree type = DECL_BIT_FIELD_TYPE (decl);
10420 HOST_WIDE_INT bitpos_int;
10421 HOST_WIDE_INT highest_order_object_bit_offset;
10422 HOST_WIDE_INT highest_order_field_bit_offset;
10423 HOST_WIDE_INT unsigned bit_offset;
10425 /* Must be a field and a bit field. */
10426 if (!type
10427 || TREE_CODE (decl) != FIELD_DECL)
10428 abort ();
10430 /* We can't yet handle bit-fields whose offsets are variable, so if we
10431 encounter such things, just return without generating any attribute
10432 whatsoever. Likewise for variable or too large size. */
10433 if (! host_integerp (bit_position (decl), 0)
10434 || ! host_integerp (DECL_SIZE (decl), 1))
10435 return;
10437 bitpos_int = int_bit_position (decl);
10439 /* Note that the bit offset is always the distance (in bits) from the
10440 highest-order bit of the "containing object" to the highest-order bit of
10441 the bit-field itself. Since the "high-order end" of any object or field
10442 is different on big-endian and little-endian machines, the computation
10443 below must take account of these differences. */
10444 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10445 highest_order_field_bit_offset = bitpos_int;
10447 if (! BYTES_BIG_ENDIAN)
10449 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10450 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10453 bit_offset
10454 = (! BYTES_BIG_ENDIAN
10455 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10456 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10458 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10461 /* For a FIELD_DECL node which represents a bit field, output an attribute
10462 which specifies the length in bits of the given field. */
10464 static inline void
10465 add_bit_size_attribute (dw_die_ref die, tree decl)
10467 /* Must be a field and a bit field. */
10468 if (TREE_CODE (decl) != FIELD_DECL
10469 || ! DECL_BIT_FIELD_TYPE (decl))
10470 abort ();
10472 if (host_integerp (DECL_SIZE (decl), 1))
10473 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10476 /* If the compiled language is ANSI C, then add a 'prototyped'
10477 attribute, if arg types are given for the parameters of a function. */
10479 static inline void
10480 add_prototyped_attribute (dw_die_ref die, tree func_type)
10482 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10483 && TYPE_ARG_TYPES (func_type) != NULL)
10484 add_AT_flag (die, DW_AT_prototyped, 1);
10487 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10488 by looking in either the type declaration or object declaration
10489 equate table. */
10491 static inline void
10492 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10494 dw_die_ref origin_die = NULL;
10496 if (TREE_CODE (origin) != FUNCTION_DECL)
10498 /* We may have gotten separated from the block for the inlined
10499 function, if we're in an exception handler or some such; make
10500 sure that the abstract function has been written out.
10502 Doing this for nested functions is wrong, however; functions are
10503 distinct units, and our context might not even be inline. */
10504 tree fn = origin;
10506 if (TYPE_P (fn))
10507 fn = TYPE_STUB_DECL (fn);
10509 fn = decl_function_context (fn);
10510 if (fn)
10511 dwarf2out_abstract_function (fn);
10514 if (DECL_P (origin))
10515 origin_die = lookup_decl_die (origin);
10516 else if (TYPE_P (origin))
10517 origin_die = lookup_type_die (origin);
10519 if (origin_die == NULL)
10520 abort ();
10522 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10525 /* We do not currently support the pure_virtual attribute. */
10527 static inline void
10528 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10530 if (DECL_VINDEX (func_decl))
10532 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10534 if (host_integerp (DECL_VINDEX (func_decl), 0))
10535 add_AT_loc (die, DW_AT_vtable_elem_location,
10536 new_loc_descr (DW_OP_constu,
10537 tree_low_cst (DECL_VINDEX (func_decl), 0),
10538 0));
10540 /* GNU extension: Record what type this method came from originally. */
10541 if (debug_info_level > DINFO_LEVEL_TERSE)
10542 add_AT_die_ref (die, DW_AT_containing_type,
10543 lookup_type_die (DECL_CONTEXT (func_decl)));
10547 /* Add source coordinate attributes for the given decl. */
10549 static void
10550 add_src_coords_attributes (dw_die_ref die, tree decl)
10552 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10553 unsigned file_index = lookup_filename (s.file);
10555 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10556 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10559 /* Add a DW_AT_name attribute and source coordinate attribute for the
10560 given decl, but only if it actually has a name. */
10562 static void
10563 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10565 tree decl_name;
10567 decl_name = DECL_NAME (decl);
10568 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10570 add_name_attribute (die, dwarf2_name (decl, 0));
10571 if (! DECL_ARTIFICIAL (decl))
10572 add_src_coords_attributes (die, decl);
10574 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10575 && TREE_PUBLIC (decl)
10576 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10577 && !DECL_ABSTRACT (decl))
10578 add_AT_string (die, DW_AT_MIPS_linkage_name,
10579 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10582 #ifdef VMS_DEBUGGING_INFO
10583 /* Get the function's name, as described by its RTL. This may be different
10584 from the DECL_NAME name used in the source file. */
10585 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10587 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10588 XEXP (DECL_RTL (decl), 0));
10589 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10591 #endif
10594 /* Push a new declaration scope. */
10596 static void
10597 push_decl_scope (tree scope)
10599 VARRAY_PUSH_TREE (decl_scope_table, scope);
10602 /* Pop a declaration scope. */
10604 static inline void
10605 pop_decl_scope (void)
10607 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10608 abort ();
10610 VARRAY_POP (decl_scope_table);
10613 /* Return the DIE for the scope that immediately contains this type.
10614 Non-named types get global scope. Named types nested in other
10615 types get their containing scope if it's open, or global scope
10616 otherwise. All other types (i.e. function-local named types) get
10617 the current active scope. */
10619 static dw_die_ref
10620 scope_die_for (tree t, dw_die_ref context_die)
10622 dw_die_ref scope_die = NULL;
10623 tree containing_scope;
10624 int i;
10626 /* Non-types always go in the current scope. */
10627 if (! TYPE_P (t))
10628 abort ();
10630 containing_scope = TYPE_CONTEXT (t);
10632 /* Use the containing namespace if it was passed in (for a declaration). */
10633 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10635 if (context_die == lookup_decl_die (containing_scope))
10636 /* OK */;
10637 else
10638 containing_scope = NULL_TREE;
10641 /* Ignore function type "scopes" from the C frontend. They mean that
10642 a tagged type is local to a parmlist of a function declarator, but
10643 that isn't useful to DWARF. */
10644 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10645 containing_scope = NULL_TREE;
10647 if (containing_scope == NULL_TREE)
10648 scope_die = comp_unit_die;
10649 else if (TYPE_P (containing_scope))
10651 /* For types, we can just look up the appropriate DIE. But
10652 first we check to see if we're in the middle of emitting it
10653 so we know where the new DIE should go. */
10654 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10655 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10656 break;
10658 if (i < 0)
10660 if (debug_info_level > DINFO_LEVEL_TERSE
10661 && !TREE_ASM_WRITTEN (containing_scope))
10662 abort ();
10664 /* If none of the current dies are suitable, we get file scope. */
10665 scope_die = comp_unit_die;
10667 else
10668 scope_die = lookup_type_die (containing_scope);
10670 else
10671 scope_die = context_die;
10673 return scope_die;
10676 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10678 static inline int
10679 local_scope_p (dw_die_ref context_die)
10681 for (; context_die; context_die = context_die->die_parent)
10682 if (context_die->die_tag == DW_TAG_inlined_subroutine
10683 || context_die->die_tag == DW_TAG_subprogram)
10684 return 1;
10686 return 0;
10689 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10690 whether or not to treat a DIE in this context as a declaration. */
10692 static inline int
10693 class_or_namespace_scope_p (dw_die_ref context_die)
10695 return (context_die
10696 && (context_die->die_tag == DW_TAG_structure_type
10697 || context_die->die_tag == DW_TAG_union_type
10698 || context_die->die_tag == DW_TAG_namespace));
10701 /* Many forms of DIEs require a "type description" attribute. This
10702 routine locates the proper "type descriptor" die for the type given
10703 by 'type', and adds a DW_AT_type attribute below the given die. */
10705 static void
10706 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10707 int decl_volatile, dw_die_ref context_die)
10709 enum tree_code code = TREE_CODE (type);
10710 dw_die_ref type_die = NULL;
10712 /* ??? If this type is an unnamed subrange type of an integral or
10713 floating-point type, use the inner type. This is because we have no
10714 support for unnamed types in base_type_die. This can happen if this is
10715 an Ada subrange type. Correct solution is emit a subrange type die. */
10716 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10717 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10718 type = TREE_TYPE (type), code = TREE_CODE (type);
10720 if (code == ERROR_MARK
10721 /* Handle a special case. For functions whose return type is void, we
10722 generate *no* type attribute. (Note that no object may have type
10723 `void', so this only applies to function return types). */
10724 || code == VOID_TYPE)
10725 return;
10727 type_die = modified_type_die (type,
10728 decl_const || TYPE_READONLY (type),
10729 decl_volatile || TYPE_VOLATILE (type),
10730 context_die);
10732 if (type_die != NULL)
10733 add_AT_die_ref (object_die, DW_AT_type, type_die);
10736 /* Given a tree pointer to a struct, class, union, or enum type node, return
10737 a pointer to the (string) tag name for the given type, or zero if the type
10738 was declared without a tag. */
10740 static const char *
10741 type_tag (tree type)
10743 const char *name = 0;
10745 if (TYPE_NAME (type) != 0)
10747 tree t = 0;
10749 /* Find the IDENTIFIER_NODE for the type name. */
10750 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10751 t = TYPE_NAME (type);
10753 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10754 a TYPE_DECL node, regardless of whether or not a `typedef' was
10755 involved. */
10756 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10757 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10758 t = DECL_NAME (TYPE_NAME (type));
10760 /* Now get the name as a string, or invent one. */
10761 if (t != 0)
10762 name = IDENTIFIER_POINTER (t);
10765 return (name == 0 || *name == '\0') ? 0 : name;
10768 /* Return the type associated with a data member, make a special check
10769 for bit field types. */
10771 static inline tree
10772 member_declared_type (tree member)
10774 return (DECL_BIT_FIELD_TYPE (member)
10775 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10778 /* Get the decl's label, as described by its RTL. This may be different
10779 from the DECL_NAME name used in the source file. */
10781 #if 0
10782 static const char *
10783 decl_start_label (tree decl)
10785 rtx x;
10786 const char *fnname;
10788 x = DECL_RTL (decl);
10789 if (!MEM_P (x))
10790 abort ();
10792 x = XEXP (x, 0);
10793 if (GET_CODE (x) != SYMBOL_REF)
10794 abort ();
10796 fnname = XSTR (x, 0);
10797 return fnname;
10799 #endif
10801 /* These routines generate the internal representation of the DIE's for
10802 the compilation unit. Debugging information is collected by walking
10803 the declaration trees passed in from dwarf2out_decl(). */
10805 static void
10806 gen_array_type_die (tree type, dw_die_ref context_die)
10808 dw_die_ref scope_die = scope_die_for (type, context_die);
10809 dw_die_ref array_die;
10810 tree element_type;
10812 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10813 the inner array type comes before the outer array type. Thus we must
10814 call gen_type_die before we call new_die. See below also. */
10815 #ifdef MIPS_DEBUGGING_INFO
10816 gen_type_die (TREE_TYPE (type), context_die);
10817 #endif
10819 array_die = new_die (DW_TAG_array_type, scope_die, type);
10820 add_name_attribute (array_die, type_tag (type));
10821 equate_type_number_to_die (type, array_die);
10823 if (TREE_CODE (type) == VECTOR_TYPE)
10825 /* The frontend feeds us a representation for the vector as a struct
10826 containing an array. Pull out the array type. */
10827 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10828 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10831 #if 0
10832 /* We default the array ordering. SDB will probably do
10833 the right things even if DW_AT_ordering is not present. It's not even
10834 an issue until we start to get into multidimensional arrays anyway. If
10835 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10836 then we'll have to put the DW_AT_ordering attribute back in. (But if
10837 and when we find out that we need to put these in, we will only do so
10838 for multidimensional arrays. */
10839 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10840 #endif
10842 #ifdef MIPS_DEBUGGING_INFO
10843 /* The SGI compilers handle arrays of unknown bound by setting
10844 AT_declaration and not emitting any subrange DIEs. */
10845 if (! TYPE_DOMAIN (type))
10846 add_AT_flag (array_die, DW_AT_declaration, 1);
10847 else
10848 #endif
10849 add_subscript_info (array_die, type);
10851 /* Add representation of the type of the elements of this array type. */
10852 element_type = TREE_TYPE (type);
10854 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10855 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10856 We work around this by disabling this feature. See also
10857 add_subscript_info. */
10858 #ifndef MIPS_DEBUGGING_INFO
10859 while (TREE_CODE (element_type) == ARRAY_TYPE)
10860 element_type = TREE_TYPE (element_type);
10862 gen_type_die (element_type, context_die);
10863 #endif
10865 add_type_attribute (array_die, element_type, 0, 0, context_die);
10868 static void
10869 gen_set_type_die (tree type, dw_die_ref context_die)
10871 dw_die_ref type_die
10872 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10874 equate_type_number_to_die (type, type_die);
10875 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10878 #if 0
10879 static void
10880 gen_entry_point_die (tree decl, dw_die_ref context_die)
10882 tree origin = decl_ultimate_origin (decl);
10883 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10885 if (origin != NULL)
10886 add_abstract_origin_attribute (decl_die, origin);
10887 else
10889 add_name_and_src_coords_attributes (decl_die, decl);
10890 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10891 0, 0, context_die);
10894 if (DECL_ABSTRACT (decl))
10895 equate_decl_number_to_die (decl, decl_die);
10896 else
10897 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10899 #endif
10901 /* Walk through the list of incomplete types again, trying once more to
10902 emit full debugging info for them. */
10904 static void
10905 retry_incomplete_types (void)
10907 int i;
10909 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10910 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10913 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10915 static void
10916 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10918 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10920 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10921 be incomplete and such types are not marked. */
10922 add_abstract_origin_attribute (type_die, type);
10925 /* Generate a DIE to represent an inlined instance of a structure type. */
10927 static void
10928 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10930 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10932 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10933 be incomplete and such types are not marked. */
10934 add_abstract_origin_attribute (type_die, type);
10937 /* Generate a DIE to represent an inlined instance of a union type. */
10939 static void
10940 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10942 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10944 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10945 be incomplete and such types are not marked. */
10946 add_abstract_origin_attribute (type_die, type);
10949 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10950 include all of the information about the enumeration values also. Each
10951 enumerated type name/value is listed as a child of the enumerated type
10952 DIE. */
10954 static dw_die_ref
10955 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10957 dw_die_ref type_die = lookup_type_die (type);
10959 if (type_die == NULL)
10961 type_die = new_die (DW_TAG_enumeration_type,
10962 scope_die_for (type, context_die), type);
10963 equate_type_number_to_die (type, type_die);
10964 add_name_attribute (type_die, type_tag (type));
10966 else if (! TYPE_SIZE (type))
10967 return type_die;
10968 else
10969 remove_AT (type_die, DW_AT_declaration);
10971 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10972 given enum type is incomplete, do not generate the DW_AT_byte_size
10973 attribute or the DW_AT_element_list attribute. */
10974 if (TYPE_SIZE (type))
10976 tree link;
10978 TREE_ASM_WRITTEN (type) = 1;
10979 add_byte_size_attribute (type_die, type);
10980 if (TYPE_STUB_DECL (type) != NULL_TREE)
10981 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10983 /* If the first reference to this type was as the return type of an
10984 inline function, then it may not have a parent. Fix this now. */
10985 if (type_die->die_parent == NULL)
10986 add_child_die (scope_die_for (type, context_die), type_die);
10988 for (link = TYPE_VALUES (type);
10989 link != NULL; link = TREE_CHAIN (link))
10991 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10992 tree value = TREE_VALUE (link);
10994 add_name_attribute (enum_die,
10995 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10997 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
10998 /* DWARF2 does not provide a way of indicating whether or
10999 not enumeration constants are signed or unsigned. GDB
11000 always assumes the values are signed, so we output all
11001 values as if they were signed. That means that
11002 enumeration constants with very large unsigned values
11003 will appear to have negative values in the debugger. */
11004 add_AT_int (enum_die, DW_AT_const_value,
11005 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11008 else
11009 add_AT_flag (type_die, DW_AT_declaration, 1);
11011 return type_die;
11014 /* Generate a DIE to represent either a real live formal parameter decl or to
11015 represent just the type of some formal parameter position in some function
11016 type.
11018 Note that this routine is a bit unusual because its argument may be a
11019 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11020 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11021 node. If it's the former then this function is being called to output a
11022 DIE to represent a formal parameter object (or some inlining thereof). If
11023 it's the latter, then this function is only being called to output a
11024 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11025 argument type of some subprogram type. */
11027 static dw_die_ref
11028 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11030 dw_die_ref parm_die
11031 = new_die (DW_TAG_formal_parameter, context_die, node);
11032 tree origin;
11034 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11036 case 'd':
11037 origin = decl_ultimate_origin (node);
11038 if (origin != NULL)
11039 add_abstract_origin_attribute (parm_die, origin);
11040 else
11042 add_name_and_src_coords_attributes (parm_die, node);
11043 add_type_attribute (parm_die, TREE_TYPE (node),
11044 TREE_READONLY (node),
11045 TREE_THIS_VOLATILE (node),
11046 context_die);
11047 if (DECL_ARTIFICIAL (node))
11048 add_AT_flag (parm_die, DW_AT_artificial, 1);
11051 equate_decl_number_to_die (node, parm_die);
11052 if (! DECL_ABSTRACT (node))
11053 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11055 break;
11057 case 't':
11058 /* We were called with some kind of a ..._TYPE node. */
11059 add_type_attribute (parm_die, node, 0, 0, context_die);
11060 break;
11062 default:
11063 abort ();
11066 return parm_die;
11069 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11070 at the end of an (ANSI prototyped) formal parameters list. */
11072 static void
11073 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11075 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11078 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11079 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11080 parameters as specified in some function type specification (except for
11081 those which appear as part of a function *definition*). */
11083 static void
11084 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11086 tree link;
11087 tree formal_type = NULL;
11088 tree first_parm_type;
11089 tree arg;
11091 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11093 arg = DECL_ARGUMENTS (function_or_method_type);
11094 function_or_method_type = TREE_TYPE (function_or_method_type);
11096 else
11097 arg = NULL_TREE;
11099 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11101 /* Make our first pass over the list of formal parameter types and output a
11102 DW_TAG_formal_parameter DIE for each one. */
11103 for (link = first_parm_type; link; )
11105 dw_die_ref parm_die;
11107 formal_type = TREE_VALUE (link);
11108 if (formal_type == void_type_node)
11109 break;
11111 /* Output a (nameless) DIE to represent the formal parameter itself. */
11112 parm_die = gen_formal_parameter_die (formal_type, context_die);
11113 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11114 && link == first_parm_type)
11115 || (arg && DECL_ARTIFICIAL (arg)))
11116 add_AT_flag (parm_die, DW_AT_artificial, 1);
11118 link = TREE_CHAIN (link);
11119 if (arg)
11120 arg = TREE_CHAIN (arg);
11123 /* If this function type has an ellipsis, add a
11124 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11125 if (formal_type != void_type_node)
11126 gen_unspecified_parameters_die (function_or_method_type, context_die);
11128 /* Make our second (and final) pass over the list of formal parameter types
11129 and output DIEs to represent those types (as necessary). */
11130 for (link = TYPE_ARG_TYPES (function_or_method_type);
11131 link && TREE_VALUE (link);
11132 link = TREE_CHAIN (link))
11133 gen_type_die (TREE_VALUE (link), context_die);
11136 /* We want to generate the DIE for TYPE so that we can generate the
11137 die for MEMBER, which has been defined; we will need to refer back
11138 to the member declaration nested within TYPE. If we're trying to
11139 generate minimal debug info for TYPE, processing TYPE won't do the
11140 trick; we need to attach the member declaration by hand. */
11142 static void
11143 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11145 gen_type_die (type, context_die);
11147 /* If we're trying to avoid duplicate debug info, we may not have
11148 emitted the member decl for this function. Emit it now. */
11149 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11150 && ! lookup_decl_die (member))
11152 if (decl_ultimate_origin (member))
11153 abort ();
11155 push_decl_scope (type);
11156 if (TREE_CODE (member) == FUNCTION_DECL)
11157 gen_subprogram_die (member, lookup_type_die (type));
11158 else
11159 gen_variable_die (member, lookup_type_die (type));
11161 pop_decl_scope ();
11165 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11166 may later generate inlined and/or out-of-line instances of. */
11168 static void
11169 dwarf2out_abstract_function (tree decl)
11171 dw_die_ref old_die;
11172 tree save_fn;
11173 tree context;
11174 int was_abstract = DECL_ABSTRACT (decl);
11176 /* Make sure we have the actual abstract inline, not a clone. */
11177 decl = DECL_ORIGIN (decl);
11179 old_die = lookup_decl_die (decl);
11180 if (old_die && get_AT (old_die, DW_AT_inline))
11181 /* We've already generated the abstract instance. */
11182 return;
11184 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11185 we don't get confused by DECL_ABSTRACT. */
11186 if (debug_info_level > DINFO_LEVEL_TERSE)
11188 context = decl_class_context (decl);
11189 if (context)
11190 gen_type_die_for_member
11191 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11194 /* Pretend we've just finished compiling this function. */
11195 save_fn = current_function_decl;
11196 current_function_decl = decl;
11198 set_decl_abstract_flags (decl, 1);
11199 dwarf2out_decl (decl);
11200 if (! was_abstract)
11201 set_decl_abstract_flags (decl, 0);
11203 current_function_decl = save_fn;
11206 /* Generate a DIE to represent a declared function (either file-scope or
11207 block-local). */
11209 static void
11210 gen_subprogram_die (tree decl, dw_die_ref context_die)
11212 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11213 tree origin = decl_ultimate_origin (decl);
11214 dw_die_ref subr_die;
11215 rtx fp_reg;
11216 tree fn_arg_types;
11217 tree outer_scope;
11218 dw_die_ref old_die = lookup_decl_die (decl);
11219 int declaration = (current_function_decl != decl
11220 || class_or_namespace_scope_p (context_die));
11222 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11223 started to generate the abstract instance of an inline, decided to output
11224 its containing class, and proceeded to emit the declaration of the inline
11225 from the member list for the class. If so, DECLARATION takes priority;
11226 we'll get back to the abstract instance when done with the class. */
11228 /* The class-scope declaration DIE must be the primary DIE. */
11229 if (origin && declaration && class_or_namespace_scope_p (context_die))
11231 origin = NULL;
11232 if (old_die)
11233 abort ();
11236 if (origin != NULL)
11238 if (declaration && ! local_scope_p (context_die))
11239 abort ();
11241 /* Fixup die_parent for the abstract instance of a nested
11242 inline function. */
11243 if (old_die && old_die->die_parent == NULL)
11244 add_child_die (context_die, old_die);
11246 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11247 add_abstract_origin_attribute (subr_die, origin);
11249 else if (old_die)
11251 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11252 unsigned file_index = lookup_filename (s.file);
11254 if (!get_AT_flag (old_die, DW_AT_declaration)
11255 /* We can have a normal definition following an inline one in the
11256 case of redefinition of GNU C extern inlines.
11257 It seems reasonable to use AT_specification in this case. */
11258 && !get_AT (old_die, DW_AT_inline))
11260 /* ??? This can happen if there is a bug in the program, for
11261 instance, if it has duplicate function definitions. Ideally,
11262 we should detect this case and ignore it. For now, if we have
11263 already reported an error, any error at all, then assume that
11264 we got here because of an input error, not a dwarf2 bug. */
11265 if (errorcount)
11266 return;
11267 abort ();
11270 /* If the definition comes from the same place as the declaration,
11271 maybe use the old DIE. We always want the DIE for this function
11272 that has the *_pc attributes to be under comp_unit_die so the
11273 debugger can find it. We also need to do this for abstract
11274 instances of inlines, since the spec requires the out-of-line copy
11275 to have the same parent. For local class methods, this doesn't
11276 apply; we just use the old DIE. */
11277 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11278 && (DECL_ARTIFICIAL (decl)
11279 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11280 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11281 == (unsigned) s.line))))
11283 subr_die = old_die;
11285 /* Clear out the declaration attribute and the formal parameters.
11286 Do not remove all children, because it is possible that this
11287 declaration die was forced using force_decl_die(). In such
11288 cases die that forced declaration die (e.g. TAG_imported_module)
11289 is one of the children that we do not want to remove. */
11290 remove_AT (subr_die, DW_AT_declaration);
11291 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11293 else
11295 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11296 add_AT_specification (subr_die, old_die);
11297 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11298 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11299 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11300 != (unsigned) s.line)
11301 add_AT_unsigned
11302 (subr_die, DW_AT_decl_line, s.line);
11305 else
11307 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11309 if (TREE_PUBLIC (decl))
11310 add_AT_flag (subr_die, DW_AT_external, 1);
11312 add_name_and_src_coords_attributes (subr_die, decl);
11313 if (debug_info_level > DINFO_LEVEL_TERSE)
11315 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11316 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11317 0, 0, context_die);
11320 add_pure_or_virtual_attribute (subr_die, decl);
11321 if (DECL_ARTIFICIAL (decl))
11322 add_AT_flag (subr_die, DW_AT_artificial, 1);
11324 if (TREE_PROTECTED (decl))
11325 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11326 else if (TREE_PRIVATE (decl))
11327 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11330 if (declaration)
11332 if (!old_die || !get_AT (old_die, DW_AT_inline))
11334 add_AT_flag (subr_die, DW_AT_declaration, 1);
11336 /* The first time we see a member function, it is in the context of
11337 the class to which it belongs. We make sure of this by emitting
11338 the class first. The next time is the definition, which is
11339 handled above. The two may come from the same source text.
11341 Note that force_decl_die() forces function declaration die. It is
11342 later reused to represent definition. */
11343 equate_decl_number_to_die (decl, subr_die);
11346 else if (DECL_ABSTRACT (decl))
11348 if (DECL_DECLARED_INLINE_P (decl))
11350 if (cgraph_function_possibly_inlined_p (decl))
11351 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11352 else
11353 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11355 else
11357 if (cgraph_function_possibly_inlined_p (decl))
11358 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11359 else
11360 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11363 equate_decl_number_to_die (decl, subr_die);
11365 else if (!DECL_EXTERNAL (decl))
11367 if (!old_die || !get_AT (old_die, DW_AT_inline))
11368 equate_decl_number_to_die (decl, subr_die);
11370 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11371 current_function_funcdef_no);
11372 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11373 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11374 current_function_funcdef_no);
11375 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11377 add_pubname (decl, subr_die);
11378 add_arange (decl, subr_die);
11380 #ifdef MIPS_DEBUGGING_INFO
11381 /* Add a reference to the FDE for this routine. */
11382 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11383 #endif
11385 /* Define the "frame base" location for this routine. We use the
11386 frame pointer or stack pointer registers, since the RTL for local
11387 variables is relative to one of them. */
11388 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11390 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11391 DW_AT_frame_base);
11393 else
11395 fp_reg
11396 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11397 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11400 if (cfun->static_chain_decl)
11401 add_AT_location_description (subr_die, DW_AT_static_link,
11402 loc_descriptor_from_tree (cfun->static_chain_decl, 0));
11405 /* Now output descriptions of the arguments for this function. This gets
11406 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11407 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11408 `...' at the end of the formal parameter list. In order to find out if
11409 there was a trailing ellipsis or not, we must instead look at the type
11410 associated with the FUNCTION_DECL. This will be a node of type
11411 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11412 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11413 an ellipsis at the end. */
11415 /* In the case where we are describing a mere function declaration, all we
11416 need to do here (and all we *can* do here) is to describe the *types* of
11417 its formal parameters. */
11418 if (debug_info_level <= DINFO_LEVEL_TERSE)
11420 else if (declaration)
11421 gen_formal_types_die (decl, subr_die);
11422 else
11424 /* Generate DIEs to represent all known formal parameters. */
11425 tree arg_decls = DECL_ARGUMENTS (decl);
11426 tree parm;
11428 /* When generating DIEs, generate the unspecified_parameters DIE
11429 instead if we come across the arg "__builtin_va_alist" */
11430 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11431 if (TREE_CODE (parm) == PARM_DECL)
11433 if (DECL_NAME (parm)
11434 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11435 "__builtin_va_alist"))
11436 gen_unspecified_parameters_die (parm, subr_die);
11437 else
11438 gen_decl_die (parm, subr_die);
11441 /* Decide whether we need an unspecified_parameters DIE at the end.
11442 There are 2 more cases to do this for: 1) the ansi ... declaration -
11443 this is detectable when the end of the arg list is not a
11444 void_type_node 2) an unprototyped function declaration (not a
11445 definition). This just means that we have no info about the
11446 parameters at all. */
11447 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11448 if (fn_arg_types != NULL)
11450 /* This is the prototyped case, check for.... */
11451 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11452 gen_unspecified_parameters_die (decl, subr_die);
11454 else if (DECL_INITIAL (decl) == NULL_TREE)
11455 gen_unspecified_parameters_die (decl, subr_die);
11458 /* Output Dwarf info for all of the stuff within the body of the function
11459 (if it has one - it may be just a declaration). */
11460 outer_scope = DECL_INITIAL (decl);
11462 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11463 a function. This BLOCK actually represents the outermost binding contour
11464 for the function, i.e. the contour in which the function's formal
11465 parameters and labels get declared. Curiously, it appears that the front
11466 end doesn't actually put the PARM_DECL nodes for the current function onto
11467 the BLOCK_VARS list for this outer scope, but are strung off of the
11468 DECL_ARGUMENTS list for the function instead.
11470 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11471 the LABEL_DECL nodes for the function however, and we output DWARF info
11472 for those in decls_for_scope. Just within the `outer_scope' there will be
11473 a BLOCK node representing the function's outermost pair of curly braces,
11474 and any blocks used for the base and member initializers of a C++
11475 constructor function. */
11476 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11478 /* Emit a DW_TAG_variable DIE for a named return value. */
11479 if (DECL_NAME (DECL_RESULT (decl)))
11480 gen_decl_die (DECL_RESULT (decl), subr_die);
11482 current_function_has_inlines = 0;
11483 decls_for_scope (outer_scope, subr_die, 0);
11485 #if 0 && defined (MIPS_DEBUGGING_INFO)
11486 if (current_function_has_inlines)
11488 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11489 if (! comp_unit_has_inlines)
11491 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11492 comp_unit_has_inlines = 1;
11495 #endif
11499 /* Generate a DIE to represent a declared data object. */
11501 static void
11502 gen_variable_die (tree decl, dw_die_ref context_die)
11504 tree origin = decl_ultimate_origin (decl);
11505 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11507 dw_die_ref old_die = lookup_decl_die (decl);
11508 int declaration = (DECL_EXTERNAL (decl)
11509 || class_or_namespace_scope_p (context_die));
11511 if (origin != NULL)
11512 add_abstract_origin_attribute (var_die, origin);
11514 /* Loop unrolling can create multiple blocks that refer to the same
11515 static variable, so we must test for the DW_AT_declaration flag.
11517 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11518 copy decls and set the DECL_ABSTRACT flag on them instead of
11519 sharing them.
11521 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11522 else if (old_die && TREE_STATIC (decl)
11523 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11525 /* This is a definition of a C++ class level static. */
11526 add_AT_specification (var_die, old_die);
11527 if (DECL_NAME (decl))
11529 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11530 unsigned file_index = lookup_filename (s.file);
11532 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11533 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11535 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11536 != (unsigned) s.line)
11538 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11541 else
11543 add_name_and_src_coords_attributes (var_die, decl);
11544 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11545 TREE_THIS_VOLATILE (decl), context_die);
11547 if (TREE_PUBLIC (decl))
11548 add_AT_flag (var_die, DW_AT_external, 1);
11550 if (DECL_ARTIFICIAL (decl))
11551 add_AT_flag (var_die, DW_AT_artificial, 1);
11553 if (TREE_PROTECTED (decl))
11554 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11555 else if (TREE_PRIVATE (decl))
11556 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11559 if (declaration)
11560 add_AT_flag (var_die, DW_AT_declaration, 1);
11562 if (DECL_ABSTRACT (decl) || declaration)
11563 equate_decl_number_to_die (decl, var_die);
11565 if (! declaration && ! DECL_ABSTRACT (decl))
11567 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11568 add_pubname (decl, var_die);
11570 else
11571 tree_add_const_value_attribute (var_die, decl);
11574 /* Generate a DIE to represent a label identifier. */
11576 static void
11577 gen_label_die (tree decl, dw_die_ref context_die)
11579 tree origin = decl_ultimate_origin (decl);
11580 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11581 rtx insn;
11582 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11584 if (origin != NULL)
11585 add_abstract_origin_attribute (lbl_die, origin);
11586 else
11587 add_name_and_src_coords_attributes (lbl_die, decl);
11589 if (DECL_ABSTRACT (decl))
11590 equate_decl_number_to_die (decl, lbl_die);
11591 else
11593 insn = DECL_RTL_IF_SET (decl);
11595 /* Deleted labels are programmer specified labels which have been
11596 eliminated because of various optimizations. We still emit them
11597 here so that it is possible to put breakpoints on them. */
11598 if (insn
11599 && (LABEL_P (insn)
11600 || ((NOTE_P (insn)
11601 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11603 /* When optimization is enabled (via -O) some parts of the compiler
11604 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11605 represent source-level labels which were explicitly declared by
11606 the user. This really shouldn't be happening though, so catch
11607 it if it ever does happen. */
11608 if (INSN_DELETED_P (insn))
11609 abort ();
11611 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11612 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11617 /* Generate a DIE for a lexical block. */
11619 static void
11620 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11622 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11623 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11625 if (! BLOCK_ABSTRACT (stmt))
11627 if (BLOCK_FRAGMENT_CHAIN (stmt))
11629 tree chain;
11631 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11633 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11636 add_ranges (chain);
11637 chain = BLOCK_FRAGMENT_CHAIN (chain);
11639 while (chain);
11640 add_ranges (NULL);
11642 else
11644 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11645 BLOCK_NUMBER (stmt));
11646 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11647 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11648 BLOCK_NUMBER (stmt));
11649 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11653 decls_for_scope (stmt, stmt_die, depth);
11656 /* Generate a DIE for an inlined subprogram. */
11658 static void
11659 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11661 tree decl = block_ultimate_origin (stmt);
11663 /* Emit info for the abstract instance first, if we haven't yet. We
11664 must emit this even if the block is abstract, otherwise when we
11665 emit the block below (or elsewhere), we may end up trying to emit
11666 a die whose origin die hasn't been emitted, and crashing. */
11667 dwarf2out_abstract_function (decl);
11669 if (! BLOCK_ABSTRACT (stmt))
11671 dw_die_ref subr_die
11672 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11673 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11675 add_abstract_origin_attribute (subr_die, decl);
11676 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11677 BLOCK_NUMBER (stmt));
11678 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11679 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11680 BLOCK_NUMBER (stmt));
11681 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11682 decls_for_scope (stmt, subr_die, depth);
11683 current_function_has_inlines = 1;
11685 else
11686 /* We may get here if we're the outer block of function A that was
11687 inlined into function B that was inlined into function C. When
11688 generating debugging info for C, dwarf2out_abstract_function(B)
11689 would mark all inlined blocks as abstract, including this one.
11690 So, we wouldn't (and shouldn't) expect labels to be generated
11691 for this one. Instead, just emit debugging info for
11692 declarations within the block. This is particularly important
11693 in the case of initializers of arguments passed from B to us:
11694 if they're statement expressions containing declarations, we
11695 wouldn't generate dies for their abstract variables, and then,
11696 when generating dies for the real variables, we'd die (pun
11697 intended :-) */
11698 gen_lexical_block_die (stmt, context_die, depth);
11701 /* Generate a DIE for a field in a record, or structure. */
11703 static void
11704 gen_field_die (tree decl, dw_die_ref context_die)
11706 dw_die_ref decl_die;
11708 if (TREE_TYPE (decl) == error_mark_node)
11709 return;
11711 decl_die = new_die (DW_TAG_member, context_die, decl);
11712 add_name_and_src_coords_attributes (decl_die, decl);
11713 add_type_attribute (decl_die, member_declared_type (decl),
11714 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11715 context_die);
11717 if (DECL_BIT_FIELD_TYPE (decl))
11719 add_byte_size_attribute (decl_die, decl);
11720 add_bit_size_attribute (decl_die, decl);
11721 add_bit_offset_attribute (decl_die, decl);
11724 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11725 add_data_member_location_attribute (decl_die, decl);
11727 if (DECL_ARTIFICIAL (decl))
11728 add_AT_flag (decl_die, DW_AT_artificial, 1);
11730 if (TREE_PROTECTED (decl))
11731 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11732 else if (TREE_PRIVATE (decl))
11733 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11736 #if 0
11737 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11738 Use modified_type_die instead.
11739 We keep this code here just in case these types of DIEs may be needed to
11740 represent certain things in other languages (e.g. Pascal) someday. */
11742 static void
11743 gen_pointer_type_die (tree type, dw_die_ref context_die)
11745 dw_die_ref ptr_die
11746 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11748 equate_type_number_to_die (type, ptr_die);
11749 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11750 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11753 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11754 Use modified_type_die instead.
11755 We keep this code here just in case these types of DIEs may be needed to
11756 represent certain things in other languages (e.g. Pascal) someday. */
11758 static void
11759 gen_reference_type_die (tree type, dw_die_ref context_die)
11761 dw_die_ref ref_die
11762 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11764 equate_type_number_to_die (type, ref_die);
11765 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11766 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11768 #endif
11770 /* Generate a DIE for a pointer to a member type. */
11772 static void
11773 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11775 dw_die_ref ptr_die
11776 = new_die (DW_TAG_ptr_to_member_type,
11777 scope_die_for (type, context_die), type);
11779 equate_type_number_to_die (type, ptr_die);
11780 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11781 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11782 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11785 /* Generate the DIE for the compilation unit. */
11787 static dw_die_ref
11788 gen_compile_unit_die (const char *filename)
11790 dw_die_ref die;
11791 char producer[250];
11792 const char *language_string = lang_hooks.name;
11793 int language;
11795 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11797 if (filename)
11799 add_name_attribute (die, filename);
11800 /* Don't add cwd for <built-in>. */
11801 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11802 add_comp_dir_attribute (die);
11805 sprintf (producer, "%s %s", language_string, version_string);
11807 #ifdef MIPS_DEBUGGING_INFO
11808 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11809 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11810 not appear in the producer string, the debugger reaches the conclusion
11811 that the object file is stripped and has no debugging information.
11812 To get the MIPS/SGI debugger to believe that there is debugging
11813 information in the object file, we add a -g to the producer string. */
11814 if (debug_info_level > DINFO_LEVEL_TERSE)
11815 strcat (producer, " -g");
11816 #endif
11818 add_AT_string (die, DW_AT_producer, producer);
11820 if (strcmp (language_string, "GNU C++") == 0)
11821 language = DW_LANG_C_plus_plus;
11822 else if (strcmp (language_string, "GNU Ada") == 0)
11823 language = DW_LANG_Ada95;
11824 else if (strcmp (language_string, "GNU F77") == 0)
11825 language = DW_LANG_Fortran77;
11826 else if (strcmp (language_string, "GNU F95") == 0)
11827 language = DW_LANG_Fortran95;
11828 else if (strcmp (language_string, "GNU Pascal") == 0)
11829 language = DW_LANG_Pascal83;
11830 else if (strcmp (language_string, "GNU Java") == 0)
11831 language = DW_LANG_Java;
11832 else
11833 language = DW_LANG_C89;
11835 add_AT_unsigned (die, DW_AT_language, language);
11836 return die;
11839 /* Generate a DIE for a string type. */
11841 static void
11842 gen_string_type_die (tree type, dw_die_ref context_die)
11844 dw_die_ref type_die
11845 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11847 equate_type_number_to_die (type, type_die);
11849 /* ??? Fudge the string length attribute for now.
11850 TODO: add string length info. */
11851 #if 0
11852 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11853 bound_representation (upper_bound, 0, 'u');
11854 #endif
11857 /* Generate the DIE for a base class. */
11859 static void
11860 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11862 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11864 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11865 add_data_member_location_attribute (die, binfo);
11867 if (BINFO_VIRTUAL_P (binfo))
11868 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11870 if (access == access_public_node)
11871 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11872 else if (access == access_protected_node)
11873 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11876 /* Generate a DIE for a class member. */
11878 static void
11879 gen_member_die (tree type, dw_die_ref context_die)
11881 tree member;
11882 tree binfo = TYPE_BINFO (type);
11883 dw_die_ref child;
11885 /* If this is not an incomplete type, output descriptions of each of its
11886 members. Note that as we output the DIEs necessary to represent the
11887 members of this record or union type, we will also be trying to output
11888 DIEs to represent the *types* of those members. However the `type'
11889 function (above) will specifically avoid generating type DIEs for member
11890 types *within* the list of member DIEs for this (containing) type except
11891 for those types (of members) which are explicitly marked as also being
11892 members of this (containing) type themselves. The g++ front- end can
11893 force any given type to be treated as a member of some other (containing)
11894 type by setting the TYPE_CONTEXT of the given (member) type to point to
11895 the TREE node representing the appropriate (containing) type. */
11897 /* First output info about the base classes. */
11898 if (binfo)
11900 VEC (tree) *accesses = BINFO_BASE_ACCESSES (binfo);
11901 int i;
11902 tree base;
11904 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
11905 gen_inheritance_die (base,
11906 (accesses ? VEC_index (tree, accesses, i)
11907 : access_public_node), context_die);
11910 /* Now output info about the data members and type members. */
11911 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11913 /* If we thought we were generating minimal debug info for TYPE
11914 and then changed our minds, some of the member declarations
11915 may have already been defined. Don't define them again, but
11916 do put them in the right order. */
11918 child = lookup_decl_die (member);
11919 if (child)
11920 splice_child_die (context_die, child);
11921 else
11922 gen_decl_die (member, context_die);
11925 /* Now output info about the function members (if any). */
11926 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11928 /* Don't include clones in the member list. */
11929 if (DECL_ABSTRACT_ORIGIN (member))
11930 continue;
11932 child = lookup_decl_die (member);
11933 if (child)
11934 splice_child_die (context_die, child);
11935 else
11936 gen_decl_die (member, context_die);
11940 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11941 is set, we pretend that the type was never defined, so we only get the
11942 member DIEs needed by later specification DIEs. */
11944 static void
11945 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11947 dw_die_ref type_die = lookup_type_die (type);
11948 dw_die_ref scope_die = 0;
11949 int nested = 0;
11950 int complete = (TYPE_SIZE (type)
11951 && (! TYPE_STUB_DECL (type)
11952 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11953 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11955 if (type_die && ! complete)
11956 return;
11958 if (TYPE_CONTEXT (type) != NULL_TREE
11959 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11960 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11961 nested = 1;
11963 scope_die = scope_die_for (type, context_die);
11965 if (! type_die || (nested && scope_die == comp_unit_die))
11966 /* First occurrence of type or toplevel definition of nested class. */
11968 dw_die_ref old_die = type_die;
11970 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11971 ? DW_TAG_structure_type : DW_TAG_union_type,
11972 scope_die, type);
11973 equate_type_number_to_die (type, type_die);
11974 if (old_die)
11975 add_AT_specification (type_die, old_die);
11976 else
11977 add_name_attribute (type_die, type_tag (type));
11979 else
11980 remove_AT (type_die, DW_AT_declaration);
11982 /* If this type has been completed, then give it a byte_size attribute and
11983 then give a list of members. */
11984 if (complete && !ns_decl)
11986 /* Prevent infinite recursion in cases where the type of some member of
11987 this type is expressed in terms of this type itself. */
11988 TREE_ASM_WRITTEN (type) = 1;
11989 add_byte_size_attribute (type_die, type);
11990 if (TYPE_STUB_DECL (type) != NULL_TREE)
11991 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11993 /* If the first reference to this type was as the return type of an
11994 inline function, then it may not have a parent. Fix this now. */
11995 if (type_die->die_parent == NULL)
11996 add_child_die (scope_die, type_die);
11998 push_decl_scope (type);
11999 gen_member_die (type, type_die);
12000 pop_decl_scope ();
12002 /* GNU extension: Record what type our vtable lives in. */
12003 if (TYPE_VFIELD (type))
12005 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12007 gen_type_die (vtype, context_die);
12008 add_AT_die_ref (type_die, DW_AT_containing_type,
12009 lookup_type_die (vtype));
12012 else
12014 add_AT_flag (type_die, DW_AT_declaration, 1);
12016 /* We don't need to do this for function-local types. */
12017 if (TYPE_STUB_DECL (type)
12018 && ! decl_function_context (TYPE_STUB_DECL (type)))
12019 VARRAY_PUSH_TREE (incomplete_types, type);
12023 /* Generate a DIE for a subroutine _type_. */
12025 static void
12026 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12028 tree return_type = TREE_TYPE (type);
12029 dw_die_ref subr_die
12030 = new_die (DW_TAG_subroutine_type,
12031 scope_die_for (type, context_die), type);
12033 equate_type_number_to_die (type, subr_die);
12034 add_prototyped_attribute (subr_die, type);
12035 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12036 gen_formal_types_die (type, subr_die);
12039 /* Generate a DIE for a type definition. */
12041 static void
12042 gen_typedef_die (tree decl, dw_die_ref context_die)
12044 dw_die_ref type_die;
12045 tree origin;
12047 if (TREE_ASM_WRITTEN (decl))
12048 return;
12050 TREE_ASM_WRITTEN (decl) = 1;
12051 type_die = new_die (DW_TAG_typedef, context_die, decl);
12052 origin = decl_ultimate_origin (decl);
12053 if (origin != NULL)
12054 add_abstract_origin_attribute (type_die, origin);
12055 else
12057 tree type;
12059 add_name_and_src_coords_attributes (type_die, decl);
12060 if (DECL_ORIGINAL_TYPE (decl))
12062 type = DECL_ORIGINAL_TYPE (decl);
12064 if (type == TREE_TYPE (decl))
12065 abort ();
12066 else
12067 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12069 else
12070 type = TREE_TYPE (decl);
12072 add_type_attribute (type_die, type, TREE_READONLY (decl),
12073 TREE_THIS_VOLATILE (decl), context_die);
12076 if (DECL_ABSTRACT (decl))
12077 equate_decl_number_to_die (decl, type_die);
12080 /* Generate a type description DIE. */
12082 static void
12083 gen_type_die (tree type, dw_die_ref context_die)
12085 int need_pop;
12087 if (type == NULL_TREE || type == error_mark_node)
12088 return;
12090 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12091 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12093 if (TREE_ASM_WRITTEN (type))
12094 return;
12096 /* Prevent broken recursion; we can't hand off to the same type. */
12097 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
12098 abort ();
12100 TREE_ASM_WRITTEN (type) = 1;
12101 gen_decl_die (TYPE_NAME (type), context_die);
12102 return;
12105 /* We are going to output a DIE to represent the unqualified version
12106 of this type (i.e. without any const or volatile qualifiers) so
12107 get the main variant (i.e. the unqualified version) of this type
12108 now. (Vectors are special because the debugging info is in the
12109 cloned type itself). */
12110 if (TREE_CODE (type) != VECTOR_TYPE)
12111 type = type_main_variant (type);
12113 if (TREE_ASM_WRITTEN (type))
12114 return;
12116 switch (TREE_CODE (type))
12118 case ERROR_MARK:
12119 break;
12121 case POINTER_TYPE:
12122 case REFERENCE_TYPE:
12123 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12124 ensures that the gen_type_die recursion will terminate even if the
12125 type is recursive. Recursive types are possible in Ada. */
12126 /* ??? We could perhaps do this for all types before the switch
12127 statement. */
12128 TREE_ASM_WRITTEN (type) = 1;
12130 /* For these types, all that is required is that we output a DIE (or a
12131 set of DIEs) to represent the "basis" type. */
12132 gen_type_die (TREE_TYPE (type), context_die);
12133 break;
12135 case OFFSET_TYPE:
12136 /* This code is used for C++ pointer-to-data-member types.
12137 Output a description of the relevant class type. */
12138 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12140 /* Output a description of the type of the object pointed to. */
12141 gen_type_die (TREE_TYPE (type), context_die);
12143 /* Now output a DIE to represent this pointer-to-data-member type
12144 itself. */
12145 gen_ptr_to_mbr_type_die (type, context_die);
12146 break;
12148 case SET_TYPE:
12149 gen_type_die (TYPE_DOMAIN (type), context_die);
12150 gen_set_type_die (type, context_die);
12151 break;
12153 case FILE_TYPE:
12154 gen_type_die (TREE_TYPE (type), context_die);
12155 abort (); /* No way to represent these in Dwarf yet! */
12156 break;
12158 case FUNCTION_TYPE:
12159 /* Force out return type (in case it wasn't forced out already). */
12160 gen_type_die (TREE_TYPE (type), context_die);
12161 gen_subroutine_type_die (type, context_die);
12162 break;
12164 case METHOD_TYPE:
12165 /* Force out return type (in case it wasn't forced out already). */
12166 gen_type_die (TREE_TYPE (type), context_die);
12167 gen_subroutine_type_die (type, context_die);
12168 break;
12170 case ARRAY_TYPE:
12171 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12173 gen_type_die (TREE_TYPE (type), context_die);
12174 gen_string_type_die (type, context_die);
12176 else
12177 gen_array_type_die (type, context_die);
12178 break;
12180 case VECTOR_TYPE:
12181 gen_array_type_die (type, context_die);
12182 break;
12184 case ENUMERAL_TYPE:
12185 case RECORD_TYPE:
12186 case UNION_TYPE:
12187 case QUAL_UNION_TYPE:
12188 /* If this is a nested type whose containing class hasn't been written
12189 out yet, writing it out will cover this one, too. This does not apply
12190 to instantiations of member class templates; they need to be added to
12191 the containing class as they are generated. FIXME: This hurts the
12192 idea of combining type decls from multiple TUs, since we can't predict
12193 what set of template instantiations we'll get. */
12194 if (TYPE_CONTEXT (type)
12195 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12196 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12198 gen_type_die (TYPE_CONTEXT (type), context_die);
12200 if (TREE_ASM_WRITTEN (type))
12201 return;
12203 /* If that failed, attach ourselves to the stub. */
12204 push_decl_scope (TYPE_CONTEXT (type));
12205 context_die = lookup_type_die (TYPE_CONTEXT (type));
12206 need_pop = 1;
12208 else
12210 declare_in_namespace (type, context_die);
12211 need_pop = 0;
12214 if (TREE_CODE (type) == ENUMERAL_TYPE)
12215 gen_enumeration_type_die (type, context_die);
12216 else
12217 gen_struct_or_union_type_die (type, context_die);
12219 if (need_pop)
12220 pop_decl_scope ();
12222 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12223 it up if it is ever completed. gen_*_type_die will set it for us
12224 when appropriate. */
12225 return;
12227 case VOID_TYPE:
12228 case INTEGER_TYPE:
12229 case REAL_TYPE:
12230 case COMPLEX_TYPE:
12231 case BOOLEAN_TYPE:
12232 case CHAR_TYPE:
12233 /* No DIEs needed for fundamental types. */
12234 break;
12236 case LANG_TYPE:
12237 /* No Dwarf representation currently defined. */
12238 break;
12240 default:
12241 abort ();
12244 TREE_ASM_WRITTEN (type) = 1;
12247 /* Generate a DIE for a tagged type instantiation. */
12249 static void
12250 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12252 if (type == NULL_TREE || type == error_mark_node)
12253 return;
12255 /* We are going to output a DIE to represent the unqualified version of
12256 this type (i.e. without any const or volatile qualifiers) so make sure
12257 that we have the main variant (i.e. the unqualified version) of this
12258 type now. */
12259 if (type != type_main_variant (type))
12260 abort ();
12262 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12263 an instance of an unresolved type. */
12265 switch (TREE_CODE (type))
12267 case ERROR_MARK:
12268 break;
12270 case ENUMERAL_TYPE:
12271 gen_inlined_enumeration_type_die (type, context_die);
12272 break;
12274 case RECORD_TYPE:
12275 gen_inlined_structure_type_die (type, context_die);
12276 break;
12278 case UNION_TYPE:
12279 case QUAL_UNION_TYPE:
12280 gen_inlined_union_type_die (type, context_die);
12281 break;
12283 default:
12284 abort ();
12288 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12289 things which are local to the given block. */
12291 static void
12292 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12294 int must_output_die = 0;
12295 tree origin;
12296 tree decl;
12297 enum tree_code origin_code;
12299 /* Ignore blocks never really used to make RTL. */
12300 if (stmt == NULL_TREE || !TREE_USED (stmt)
12301 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12302 return;
12304 /* If the block is one fragment of a non-contiguous block, do not
12305 process the variables, since they will have been done by the
12306 origin block. Do process subblocks. */
12307 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12309 tree sub;
12311 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12312 gen_block_die (sub, context_die, depth + 1);
12314 return;
12317 /* Determine the "ultimate origin" of this block. This block may be an
12318 inlined instance of an inlined instance of inline function, so we have
12319 to trace all of the way back through the origin chain to find out what
12320 sort of node actually served as the original seed for the creation of
12321 the current block. */
12322 origin = block_ultimate_origin (stmt);
12323 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12325 /* Determine if we need to output any Dwarf DIEs at all to represent this
12326 block. */
12327 if (origin_code == FUNCTION_DECL)
12328 /* The outer scopes for inlinings *must* always be represented. We
12329 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12330 must_output_die = 1;
12331 else
12333 /* In the case where the current block represents an inlining of the
12334 "body block" of an inline function, we must *NOT* output any DIE for
12335 this block because we have already output a DIE to represent the whole
12336 inlined function scope and the "body block" of any function doesn't
12337 really represent a different scope according to ANSI C rules. So we
12338 check here to make sure that this block does not represent a "body
12339 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12340 if (! is_body_block (origin ? origin : stmt))
12342 /* Determine if this block directly contains any "significant"
12343 local declarations which we will need to output DIEs for. */
12344 if (debug_info_level > DINFO_LEVEL_TERSE)
12345 /* We are not in terse mode so *any* local declaration counts
12346 as being a "significant" one. */
12347 must_output_die = (BLOCK_VARS (stmt) != NULL);
12348 else
12349 /* We are in terse mode, so only local (nested) function
12350 definitions count as "significant" local declarations. */
12351 for (decl = BLOCK_VARS (stmt);
12352 decl != NULL; decl = TREE_CHAIN (decl))
12353 if (TREE_CODE (decl) == FUNCTION_DECL
12354 && DECL_INITIAL (decl))
12356 must_output_die = 1;
12357 break;
12362 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12363 DIE for any block which contains no significant local declarations at
12364 all. Rather, in such cases we just call `decls_for_scope' so that any
12365 needed Dwarf info for any sub-blocks will get properly generated. Note
12366 that in terse mode, our definition of what constitutes a "significant"
12367 local declaration gets restricted to include only inlined function
12368 instances and local (nested) function definitions. */
12369 if (must_output_die)
12371 if (origin_code == FUNCTION_DECL)
12372 gen_inlined_subroutine_die (stmt, context_die, depth);
12373 else
12374 gen_lexical_block_die (stmt, context_die, depth);
12376 else
12377 decls_for_scope (stmt, context_die, depth);
12380 /* Generate all of the decls declared within a given scope and (recursively)
12381 all of its sub-blocks. */
12383 static void
12384 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12386 tree decl;
12387 tree subblocks;
12389 /* Ignore blocks never really used to make RTL. */
12390 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12391 return;
12393 /* Output the DIEs to represent all of the data objects and typedefs
12394 declared directly within this block but not within any nested
12395 sub-blocks. Also, nested function and tag DIEs have been
12396 generated with a parent of NULL; fix that up now. */
12397 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12399 dw_die_ref die;
12401 if (TREE_CODE (decl) == FUNCTION_DECL)
12402 die = lookup_decl_die (decl);
12403 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12404 die = lookup_type_die (TREE_TYPE (decl));
12405 else
12406 die = NULL;
12408 if (die != NULL && die->die_parent == NULL)
12409 add_child_die (context_die, die);
12410 else
12411 gen_decl_die (decl, context_die);
12414 /* If we're at -g1, we're not interested in subblocks. */
12415 if (debug_info_level <= DINFO_LEVEL_TERSE)
12416 return;
12418 /* Output the DIEs to represent all sub-blocks (and the items declared
12419 therein) of this block. */
12420 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12421 subblocks != NULL;
12422 subblocks = BLOCK_CHAIN (subblocks))
12423 gen_block_die (subblocks, context_die, depth + 1);
12426 /* Is this a typedef we can avoid emitting? */
12428 static inline int
12429 is_redundant_typedef (tree decl)
12431 if (TYPE_DECL_IS_STUB (decl))
12432 return 1;
12434 if (DECL_ARTIFICIAL (decl)
12435 && DECL_CONTEXT (decl)
12436 && is_tagged_type (DECL_CONTEXT (decl))
12437 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12438 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12439 /* Also ignore the artificial member typedef for the class name. */
12440 return 1;
12442 return 0;
12445 /* Returns the DIE for decl or aborts. */
12447 static dw_die_ref
12448 force_decl_die (tree decl)
12450 dw_die_ref decl_die;
12451 unsigned saved_external_flag;
12452 tree save_fn = NULL_TREE;
12453 decl_die = lookup_decl_die (decl);
12454 if (!decl_die)
12456 dw_die_ref context_die;
12457 tree decl_context = DECL_CONTEXT (decl);
12458 if (decl_context)
12460 /* Find die that represents this context. */
12461 if (TYPE_P (decl_context))
12462 context_die = force_type_die (decl_context);
12463 else
12464 context_die = force_decl_die (decl_context);
12466 else
12467 context_die = comp_unit_die;
12469 switch (TREE_CODE (decl))
12471 case FUNCTION_DECL:
12472 /* Clear current_function_decl, so that gen_subprogram_die thinks
12473 that this is a declaration. At this point, we just want to force
12474 declaration die. */
12475 save_fn = current_function_decl;
12476 current_function_decl = NULL_TREE;
12477 gen_subprogram_die (decl, context_die);
12478 current_function_decl = save_fn;
12479 break;
12481 case VAR_DECL:
12482 /* Set external flag to force declaration die. Restore it after
12483 gen_decl_die() call. */
12484 saved_external_flag = DECL_EXTERNAL (decl);
12485 DECL_EXTERNAL (decl) = 1;
12486 gen_decl_die (decl, context_die);
12487 DECL_EXTERNAL (decl) = saved_external_flag;
12488 break;
12490 case NAMESPACE_DECL:
12491 dwarf2out_decl (decl);
12492 break;
12494 default:
12495 abort ();
12498 /* See if we can find the die for this deci now.
12499 If not then abort. */
12500 if (!decl_die)
12501 decl_die = lookup_decl_die (decl);
12502 if (!decl_die)
12503 abort ();
12506 return decl_die;
12509 /* Returns the DIE for decl or aborts. */
12511 static dw_die_ref
12512 force_type_die (tree type)
12514 dw_die_ref type_die;
12516 type_die = lookup_type_die (type);
12517 if (!type_die)
12519 dw_die_ref context_die;
12520 if (TYPE_CONTEXT (type))
12521 if (TYPE_P (TYPE_CONTEXT (type)))
12522 context_die = force_type_die (TYPE_CONTEXT (type));
12523 else
12524 context_die = force_decl_die (TYPE_CONTEXT (type));
12525 else
12526 context_die = comp_unit_die;
12528 gen_type_die (type, context_die);
12529 type_die = lookup_type_die (type);
12530 if (!type_die)
12531 abort();
12533 return type_die;
12536 /* Force out any required namespaces to be able to output DECL,
12537 and return the new context_die for it, if it's changed. */
12539 static dw_die_ref
12540 setup_namespace_context (tree thing, dw_die_ref context_die)
12542 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
12543 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12544 /* Force out the namespace. */
12545 context_die = force_decl_die (context);
12547 return context_die;
12550 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12551 type) within its namespace, if appropriate.
12553 For compatibility with older debuggers, namespace DIEs only contain
12554 declarations; all definitions are emitted at CU scope. */
12556 static void
12557 declare_in_namespace (tree thing, dw_die_ref context_die)
12559 dw_die_ref ns_context;
12561 if (debug_info_level <= DINFO_LEVEL_TERSE)
12562 return;
12564 ns_context = setup_namespace_context (thing, context_die);
12566 if (ns_context != context_die)
12568 if (DECL_P (thing))
12569 gen_decl_die (thing, ns_context);
12570 else
12571 gen_type_die (thing, ns_context);
12575 /* Generate a DIE for a namespace or namespace alias. */
12577 static void
12578 gen_namespace_die (tree decl)
12580 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12582 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12583 they are an alias of. */
12584 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12586 /* Output a real namespace. */
12587 dw_die_ref namespace_die
12588 = new_die (DW_TAG_namespace, context_die, decl);
12589 add_name_and_src_coords_attributes (namespace_die, decl);
12590 equate_decl_number_to_die (decl, namespace_die);
12592 else
12594 /* Output a namespace alias. */
12596 /* Force out the namespace we are an alias of, if necessary. */
12597 dw_die_ref origin_die
12598 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12600 /* Now create the namespace alias DIE. */
12601 dw_die_ref namespace_die
12602 = new_die (DW_TAG_imported_declaration, context_die, decl);
12603 add_name_and_src_coords_attributes (namespace_die, decl);
12604 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12605 equate_decl_number_to_die (decl, namespace_die);
12609 /* Generate Dwarf debug information for a decl described by DECL. */
12611 static void
12612 gen_decl_die (tree decl, dw_die_ref context_die)
12614 tree origin;
12616 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12617 return;
12619 switch (TREE_CODE (decl))
12621 case ERROR_MARK:
12622 break;
12624 case CONST_DECL:
12625 /* The individual enumerators of an enum type get output when we output
12626 the Dwarf representation of the relevant enum type itself. */
12627 break;
12629 case FUNCTION_DECL:
12630 /* Don't output any DIEs to represent mere function declarations,
12631 unless they are class members or explicit block externs. */
12632 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12633 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12634 break;
12636 #if 0
12637 /* FIXME */
12638 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12639 on local redeclarations of global functions. That seems broken. */
12640 if (current_function_decl != decl)
12641 /* This is only a declaration. */;
12642 #endif
12644 /* If we're emitting a clone, emit info for the abstract instance. */
12645 if (DECL_ORIGIN (decl) != decl)
12646 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12648 /* If we're emitting an out-of-line copy of an inline function,
12649 emit info for the abstract instance and set up to refer to it. */
12650 else if (cgraph_function_possibly_inlined_p (decl)
12651 && ! DECL_ABSTRACT (decl)
12652 && ! class_or_namespace_scope_p (context_die)
12653 /* dwarf2out_abstract_function won't emit a die if this is just
12654 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12655 that case, because that works only if we have a die. */
12656 && DECL_INITIAL (decl) != NULL_TREE)
12658 dwarf2out_abstract_function (decl);
12659 set_decl_origin_self (decl);
12662 /* Otherwise we're emitting the primary DIE for this decl. */
12663 else if (debug_info_level > DINFO_LEVEL_TERSE)
12665 /* Before we describe the FUNCTION_DECL itself, make sure that we
12666 have described its return type. */
12667 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12669 /* And its virtual context. */
12670 if (DECL_VINDEX (decl) != NULL_TREE)
12671 gen_type_die (DECL_CONTEXT (decl), context_die);
12673 /* And its containing type. */
12674 origin = decl_class_context (decl);
12675 if (origin != NULL_TREE)
12676 gen_type_die_for_member (origin, decl, context_die);
12678 /* And its containing namespace. */
12679 declare_in_namespace (decl, context_die);
12682 /* Now output a DIE to represent the function itself. */
12683 gen_subprogram_die (decl, context_die);
12684 break;
12686 case TYPE_DECL:
12687 /* If we are in terse mode, don't generate any DIEs to represent any
12688 actual typedefs. */
12689 if (debug_info_level <= DINFO_LEVEL_TERSE)
12690 break;
12692 /* In the special case of a TYPE_DECL node representing the declaration
12693 of some type tag, if the given TYPE_DECL is marked as having been
12694 instantiated from some other (original) TYPE_DECL node (e.g. one which
12695 was generated within the original definition of an inline function) we
12696 have to generate a special (abbreviated) DW_TAG_structure_type,
12697 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12698 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12700 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12701 break;
12704 if (is_redundant_typedef (decl))
12705 gen_type_die (TREE_TYPE (decl), context_die);
12706 else
12707 /* Output a DIE to represent the typedef itself. */
12708 gen_typedef_die (decl, context_die);
12709 break;
12711 case LABEL_DECL:
12712 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12713 gen_label_die (decl, context_die);
12714 break;
12716 case VAR_DECL:
12717 case RESULT_DECL:
12718 /* If we are in terse mode, don't generate any DIEs to represent any
12719 variable declarations or definitions. */
12720 if (debug_info_level <= DINFO_LEVEL_TERSE)
12721 break;
12723 /* Output any DIEs that are needed to specify the type of this data
12724 object. */
12725 gen_type_die (TREE_TYPE (decl), context_die);
12727 /* And its containing type. */
12728 origin = decl_class_context (decl);
12729 if (origin != NULL_TREE)
12730 gen_type_die_for_member (origin, decl, context_die);
12732 /* And its containing namespace. */
12733 declare_in_namespace (decl, context_die);
12735 /* Now output the DIE to represent the data object itself. This gets
12736 complicated because of the possibility that the VAR_DECL really
12737 represents an inlined instance of a formal parameter for an inline
12738 function. */
12739 origin = decl_ultimate_origin (decl);
12740 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12741 gen_formal_parameter_die (decl, context_die);
12742 else
12743 gen_variable_die (decl, context_die);
12744 break;
12746 case FIELD_DECL:
12747 /* Ignore the nameless fields that are used to skip bits but handle C++
12748 anonymous unions and structs. */
12749 if (DECL_NAME (decl) != NULL_TREE
12750 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12751 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12753 gen_type_die (member_declared_type (decl), context_die);
12754 gen_field_die (decl, context_die);
12756 break;
12758 case PARM_DECL:
12759 gen_type_die (TREE_TYPE (decl), context_die);
12760 gen_formal_parameter_die (decl, context_die);
12761 break;
12763 case NAMESPACE_DECL:
12764 gen_namespace_die (decl);
12765 break;
12767 default:
12768 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12769 /* Probably some frontend-internal decl. Assume we don't care. */
12770 break;
12771 abort ();
12775 /* Add Ada "use" clause information for SGI Workshop debugger. */
12777 void
12778 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12780 unsigned int file_index;
12782 if (filename != NULL)
12784 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12785 tree context_list_decl
12786 = build_decl (LABEL_DECL, get_identifier (context_list),
12787 void_type_node);
12789 TREE_PUBLIC (context_list_decl) = TRUE;
12790 add_name_attribute (unit_die, context_list);
12791 file_index = lookup_filename (filename);
12792 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12793 add_pubname (context_list_decl, unit_die);
12797 /* Output debug information for global decl DECL. Called from toplev.c after
12798 compilation proper has finished. */
12800 static void
12801 dwarf2out_global_decl (tree decl)
12803 /* Output DWARF2 information for file-scope tentative data object
12804 declarations, file-scope (extern) function declarations (which had no
12805 corresponding body) and file-scope tagged type declarations and
12806 definitions which have not yet been forced out. */
12807 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12808 dwarf2out_decl (decl);
12811 /* Output debug information for type decl DECL. Called from toplev.c
12812 and from language front ends (to record built-in types). */
12813 static void
12814 dwarf2out_type_decl (tree decl, int local)
12816 if (!local)
12817 dwarf2out_decl (decl);
12820 /* Output debug information for imported module or decl. */
12822 static void
12823 dwarf2out_imported_module_or_decl (tree decl, tree context)
12825 dw_die_ref imported_die, at_import_die;
12826 dw_die_ref scope_die;
12827 unsigned file_index;
12828 expanded_location xloc;
12830 if (debug_info_level <= DINFO_LEVEL_TERSE)
12831 return;
12833 if (!decl)
12834 abort ();
12836 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12837 We need decl DIE for reference and scope die. First, get DIE for the decl
12838 itself. */
12840 /* Get the scope die for decl context. Use comp_unit_die for global module
12841 or decl. If die is not found for non globals, force new die. */
12842 if (!context)
12843 scope_die = comp_unit_die;
12844 else if (TYPE_P (context))
12845 scope_die = force_type_die (context);
12846 else
12847 scope_die = force_decl_die (context);
12849 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12850 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12851 at_import_die = force_type_die (TREE_TYPE (decl));
12852 else
12853 at_import_die = force_decl_die (decl);
12855 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12856 if (TREE_CODE (decl) == NAMESPACE_DECL)
12857 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12858 else
12859 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12861 xloc = expand_location (input_location);
12862 file_index = lookup_filename (xloc.file);
12863 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12864 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12865 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12868 /* Write the debugging output for DECL. */
12870 void
12871 dwarf2out_decl (tree decl)
12873 dw_die_ref context_die = comp_unit_die;
12875 switch (TREE_CODE (decl))
12877 case ERROR_MARK:
12878 return;
12880 case FUNCTION_DECL:
12881 /* What we would really like to do here is to filter out all mere
12882 file-scope declarations of file-scope functions which are never
12883 referenced later within this translation unit (and keep all of ones
12884 that *are* referenced later on) but we aren't clairvoyant, so we have
12885 no idea which functions will be referenced in the future (i.e. later
12886 on within the current translation unit). So here we just ignore all
12887 file-scope function declarations which are not also definitions. If
12888 and when the debugger needs to know something about these functions,
12889 it will have to hunt around and find the DWARF information associated
12890 with the definition of the function.
12892 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12893 nodes represent definitions and which ones represent mere
12894 declarations. We have to check DECL_INITIAL instead. That's because
12895 the C front-end supports some weird semantics for "extern inline"
12896 function definitions. These can get inlined within the current
12897 translation unit (an thus, we need to generate Dwarf info for their
12898 abstract instances so that the Dwarf info for the concrete inlined
12899 instances can have something to refer to) but the compiler never
12900 generates any out-of-lines instances of such things (despite the fact
12901 that they *are* definitions).
12903 The important point is that the C front-end marks these "extern
12904 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12905 them anyway. Note that the C++ front-end also plays some similar games
12906 for inline function definitions appearing within include files which
12907 also contain `#pragma interface' pragmas. */
12908 if (DECL_INITIAL (decl) == NULL_TREE)
12909 return;
12911 /* If we're a nested function, initially use a parent of NULL; if we're
12912 a plain function, this will be fixed up in decls_for_scope. If
12913 we're a method, it will be ignored, since we already have a DIE. */
12914 if (decl_function_context (decl)
12915 /* But if we're in terse mode, we don't care about scope. */
12916 && debug_info_level > DINFO_LEVEL_TERSE)
12917 context_die = NULL;
12918 break;
12920 case VAR_DECL:
12921 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12922 declaration and if the declaration was never even referenced from
12923 within this entire compilation unit. We suppress these DIEs in
12924 order to save space in the .debug section (by eliminating entries
12925 which are probably useless). Note that we must not suppress
12926 block-local extern declarations (whether used or not) because that
12927 would screw-up the debugger's name lookup mechanism and cause it to
12928 miss things which really ought to be in scope at a given point. */
12929 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12930 return;
12932 /* If we are in terse mode, don't generate any DIEs to represent any
12933 variable declarations or definitions. */
12934 if (debug_info_level <= DINFO_LEVEL_TERSE)
12935 return;
12936 break;
12938 case NAMESPACE_DECL:
12939 if (debug_info_level <= DINFO_LEVEL_TERSE)
12940 return;
12941 if (lookup_decl_die (decl) != NULL)
12942 return;
12943 break;
12945 case TYPE_DECL:
12946 /* Don't emit stubs for types unless they are needed by other DIEs. */
12947 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12948 return;
12950 /* Don't bother trying to generate any DIEs to represent any of the
12951 normal built-in types for the language we are compiling. */
12952 if (DECL_IS_BUILTIN (decl))
12954 /* OK, we need to generate one for `bool' so GDB knows what type
12955 comparisons have. */
12956 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12957 == DW_LANG_C_plus_plus)
12958 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12959 && ! DECL_IGNORED_P (decl))
12960 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12962 return;
12965 /* If we are in terse mode, don't generate any DIEs for types. */
12966 if (debug_info_level <= DINFO_LEVEL_TERSE)
12967 return;
12969 /* If we're a function-scope tag, initially use a parent of NULL;
12970 this will be fixed up in decls_for_scope. */
12971 if (decl_function_context (decl))
12972 context_die = NULL;
12974 break;
12976 default:
12977 return;
12980 gen_decl_die (decl, context_die);
12983 /* Output a marker (i.e. a label) for the beginning of the generated code for
12984 a lexical block. */
12986 static void
12987 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12988 unsigned int blocknum)
12990 function_section (current_function_decl);
12991 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12994 /* Output a marker (i.e. a label) for the end of the generated code for a
12995 lexical block. */
12997 static void
12998 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13000 function_section (current_function_decl);
13001 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13004 /* Returns nonzero if it is appropriate not to emit any debugging
13005 information for BLOCK, because it doesn't contain any instructions.
13007 Don't allow this for blocks with nested functions or local classes
13008 as we would end up with orphans, and in the presence of scheduling
13009 we may end up calling them anyway. */
13011 static bool
13012 dwarf2out_ignore_block (tree block)
13014 tree decl;
13016 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13017 if (TREE_CODE (decl) == FUNCTION_DECL
13018 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13019 return 0;
13021 return 1;
13024 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13025 dwarf2out.c) and return its "index". The index of each (known) filename is
13026 just a unique number which is associated with only that one filename. We
13027 need such numbers for the sake of generating labels (in the .debug_sfnames
13028 section) and references to those files numbers (in the .debug_srcinfo
13029 and.debug_macinfo sections). If the filename given as an argument is not
13030 found in our current list, add it to the list and assign it the next
13031 available unique index number. In order to speed up searches, we remember
13032 the index of the filename was looked up last. This handles the majority of
13033 all searches. */
13035 static unsigned
13036 lookup_filename (const char *file_name)
13038 size_t i, n;
13039 char *save_file_name;
13041 /* Check to see if the file name that was searched on the previous
13042 call matches this file name. If so, return the index. */
13043 if (file_table_last_lookup_index != 0)
13045 const char *last
13046 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13047 if (strcmp (file_name, last) == 0)
13048 return file_table_last_lookup_index;
13051 /* Didn't match the previous lookup, search the table */
13052 n = VARRAY_ACTIVE_SIZE (file_table);
13053 for (i = 1; i < n; i++)
13054 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13056 file_table_last_lookup_index = i;
13057 return i;
13060 /* Add the new entry to the end of the filename table. */
13061 file_table_last_lookup_index = n;
13062 save_file_name = (char *) ggc_strdup (file_name);
13063 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13064 VARRAY_PUSH_UINT (file_table_emitted, 0);
13066 return i;
13069 static int
13070 maybe_emit_file (int fileno)
13072 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13074 if (!VARRAY_UINT (file_table_emitted, fileno))
13076 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13077 fprintf (asm_out_file, "\t.file %u ",
13078 VARRAY_UINT (file_table_emitted, fileno));
13079 output_quoted_string (asm_out_file,
13080 VARRAY_CHAR_PTR (file_table, fileno));
13081 fputc ('\n', asm_out_file);
13083 return VARRAY_UINT (file_table_emitted, fileno);
13085 else
13086 return fileno;
13089 static void
13090 init_file_table (void)
13092 /* Allocate the initial hunk of the file_table. */
13093 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13094 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13096 /* Skip the first entry - file numbers begin at 1. */
13097 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13098 VARRAY_PUSH_UINT (file_table_emitted, 0);
13099 file_table_last_lookup_index = 0;
13102 /* Called by the final INSN scan whenever we see a var location. We
13103 use it to drop labels in the right places, and throw the location in
13104 our lookup table. */
13106 static void
13107 dwarf2out_var_location (rtx loc_note)
13109 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13110 struct var_loc_node *newloc;
13111 rtx prev_insn;
13112 static rtx last_insn;
13113 static const char *last_label;
13115 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13116 return;
13117 prev_insn = PREV_INSN (loc_note);
13119 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13120 /* If the insn we processed last time is the previous insn
13121 and it is also a var location note, use the label we emitted
13122 last time. */
13123 if (last_insn != NULL_RTX
13124 && last_insn == prev_insn
13125 && NOTE_P (prev_insn)
13126 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13128 newloc->label = last_label;
13130 else
13132 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13133 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13134 loclabel_num++;
13135 newloc->label = ggc_strdup (loclabel);
13137 newloc->var_loc_note = loc_note;
13138 newloc->next = NULL;
13140 last_insn = loc_note;
13141 last_label = newloc->label;
13143 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
13146 /* We need to reset the locations at the beginning of each
13147 function. We can't do this in the end_function hook, because the
13148 declarations that use the locations won't have been outputted when
13149 that hook is called. */
13151 static void
13152 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13154 htab_empty (decl_loc_table);
13157 /* Output a label to mark the beginning of a source code line entry
13158 and record information relating to this source line, in
13159 'line_info_table' for later output of the .debug_line section. */
13161 static void
13162 dwarf2out_source_line (unsigned int line, const char *filename)
13164 if (debug_info_level >= DINFO_LEVEL_NORMAL
13165 && line != 0)
13167 function_section (current_function_decl);
13169 /* If requested, emit something human-readable. */
13170 if (flag_debug_asm)
13171 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13172 filename, line);
13174 if (DWARF2_ASM_LINE_DEBUG_INFO)
13176 unsigned file_num = lookup_filename (filename);
13178 file_num = maybe_emit_file (file_num);
13180 /* Emit the .loc directive understood by GNU as. */
13181 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13183 /* Indicate that line number info exists. */
13184 line_info_table_in_use++;
13186 /* Indicate that multiple line number tables exist. */
13187 if (DECL_SECTION_NAME (current_function_decl))
13188 separate_line_info_table_in_use++;
13190 else if (DECL_SECTION_NAME (current_function_decl))
13192 dw_separate_line_info_ref line_info;
13193 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13194 separate_line_info_table_in_use);
13196 /* Expand the line info table if necessary. */
13197 if (separate_line_info_table_in_use
13198 == separate_line_info_table_allocated)
13200 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13201 separate_line_info_table
13202 = ggc_realloc (separate_line_info_table,
13203 separate_line_info_table_allocated
13204 * sizeof (dw_separate_line_info_entry));
13205 memset (separate_line_info_table
13206 + separate_line_info_table_in_use,
13208 (LINE_INFO_TABLE_INCREMENT
13209 * sizeof (dw_separate_line_info_entry)));
13212 /* Add the new entry at the end of the line_info_table. */
13213 line_info
13214 = &separate_line_info_table[separate_line_info_table_in_use++];
13215 line_info->dw_file_num = lookup_filename (filename);
13216 line_info->dw_line_num = line;
13217 line_info->function = current_function_funcdef_no;
13219 else
13221 dw_line_info_ref line_info;
13223 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13224 line_info_table_in_use);
13226 /* Expand the line info table if necessary. */
13227 if (line_info_table_in_use == line_info_table_allocated)
13229 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13230 line_info_table
13231 = ggc_realloc (line_info_table,
13232 (line_info_table_allocated
13233 * sizeof (dw_line_info_entry)));
13234 memset (line_info_table + line_info_table_in_use, 0,
13235 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13238 /* Add the new entry at the end of the line_info_table. */
13239 line_info = &line_info_table[line_info_table_in_use++];
13240 line_info->dw_file_num = lookup_filename (filename);
13241 line_info->dw_line_num = line;
13246 /* Record the beginning of a new source file. */
13248 static void
13249 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13251 if (flag_eliminate_dwarf2_dups)
13253 /* Record the beginning of the file for break_out_includes. */
13254 dw_die_ref bincl_die;
13256 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13257 add_AT_string (bincl_die, DW_AT_name, filename);
13260 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13262 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13263 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13264 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13265 lineno);
13266 maybe_emit_file (lookup_filename (filename));
13267 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13268 "Filename we just started");
13272 /* Record the end of a source file. */
13274 static void
13275 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13277 if (flag_eliminate_dwarf2_dups)
13278 /* Record the end of the file for break_out_includes. */
13279 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13281 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13283 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13284 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13288 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13289 the tail part of the directive line, i.e. the part which is past the
13290 initial whitespace, #, whitespace, directive-name, whitespace part. */
13292 static void
13293 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13294 const char *buffer ATTRIBUTE_UNUSED)
13296 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13298 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13299 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13300 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13301 dw2_asm_output_nstring (buffer, -1, "The macro");
13305 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13306 the tail part of the directive line, i.e. the part which is past the
13307 initial whitespace, #, whitespace, directive-name, whitespace part. */
13309 static void
13310 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13311 const char *buffer ATTRIBUTE_UNUSED)
13313 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13315 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13316 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13317 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13318 dw2_asm_output_nstring (buffer, -1, "The macro");
13322 /* Set up for Dwarf output at the start of compilation. */
13324 static void
13325 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13327 init_file_table ();
13329 /* Allocate the decl_die_table. */
13330 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13331 decl_die_table_eq, NULL);
13333 /* Allocate the decl_loc_table. */
13334 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13335 decl_loc_table_eq, NULL);
13337 /* Allocate the initial hunk of the decl_scope_table. */
13338 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13340 /* Allocate the initial hunk of the abbrev_die_table. */
13341 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13342 * sizeof (dw_die_ref));
13343 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13344 /* Zero-th entry is allocated, but unused */
13345 abbrev_die_table_in_use = 1;
13347 /* Allocate the initial hunk of the line_info_table. */
13348 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13349 * sizeof (dw_line_info_entry));
13350 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13352 /* Zero-th entry is allocated, but unused */
13353 line_info_table_in_use = 1;
13355 /* Generate the initial DIE for the .debug section. Note that the (string)
13356 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13357 will (typically) be a relative pathname and that this pathname should be
13358 taken as being relative to the directory from which the compiler was
13359 invoked when the given (base) source file was compiled. We will fill
13360 in this value in dwarf2out_finish. */
13361 comp_unit_die = gen_compile_unit_die (NULL);
13363 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13365 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13367 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13368 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13369 DEBUG_ABBREV_SECTION_LABEL, 0);
13370 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13371 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13372 else
13373 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
13375 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13376 DEBUG_INFO_SECTION_LABEL, 0);
13377 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13378 DEBUG_LINE_SECTION_LABEL, 0);
13379 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13380 DEBUG_RANGES_SECTION_LABEL, 0);
13381 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13382 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13383 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13384 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13385 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13386 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13388 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13390 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13391 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13392 DEBUG_MACINFO_SECTION_LABEL, 0);
13393 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13396 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13398 text_section ();
13399 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13403 /* A helper function for dwarf2out_finish called through
13404 ht_forall. Emit one queued .debug_str string. */
13406 static int
13407 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13409 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13411 if (node->form == DW_FORM_strp)
13413 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13414 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13415 assemble_string (node->str, strlen (node->str) + 1);
13418 return 1;
13423 /* Clear the marks for a die and its children.
13424 Be cool if the mark isn't set. */
13426 static void
13427 prune_unmark_dies (dw_die_ref die)
13429 dw_die_ref c;
13430 die->die_mark = 0;
13431 for (c = die->die_child; c; c = c->die_sib)
13432 prune_unmark_dies (c);
13436 /* Given DIE that we're marking as used, find any other dies
13437 it references as attributes and mark them as used. */
13439 static void
13440 prune_unused_types_walk_attribs (dw_die_ref die)
13442 dw_attr_ref a;
13444 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13446 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13448 /* A reference to another DIE.
13449 Make sure that it will get emitted. */
13450 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13452 else if (a->dw_attr == DW_AT_decl_file)
13454 /* A reference to a file. Make sure the file name is emitted. */
13455 a->dw_attr_val.v.val_unsigned =
13456 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13462 /* Mark DIE as being used. If DOKIDS is true, then walk down
13463 to DIE's children. */
13465 static void
13466 prune_unused_types_mark (dw_die_ref die, int dokids)
13468 dw_die_ref c;
13470 if (die->die_mark == 0)
13472 /* We haven't done this node yet. Mark it as used. */
13473 die->die_mark = 1;
13475 /* We also have to mark its parents as used.
13476 (But we don't want to mark our parents' kids due to this.) */
13477 if (die->die_parent)
13478 prune_unused_types_mark (die->die_parent, 0);
13480 /* Mark any referenced nodes. */
13481 prune_unused_types_walk_attribs (die);
13483 /* If this node is a specification,
13484 also mark the definition, if it exists. */
13485 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13486 prune_unused_types_mark (die->die_definition, 1);
13489 if (dokids && die->die_mark != 2)
13491 /* We need to walk the children, but haven't done so yet.
13492 Remember that we've walked the kids. */
13493 die->die_mark = 2;
13495 /* Walk them. */
13496 for (c = die->die_child; c; c = c->die_sib)
13498 /* If this is an array type, we need to make sure our
13499 kids get marked, even if they're types. */
13500 if (die->die_tag == DW_TAG_array_type)
13501 prune_unused_types_mark (c, 1);
13502 else
13503 prune_unused_types_walk (c);
13509 /* Walk the tree DIE and mark types that we actually use. */
13511 static void
13512 prune_unused_types_walk (dw_die_ref die)
13514 dw_die_ref c;
13516 /* Don't do anything if this node is already marked. */
13517 if (die->die_mark)
13518 return;
13520 switch (die->die_tag) {
13521 case DW_TAG_const_type:
13522 case DW_TAG_packed_type:
13523 case DW_TAG_pointer_type:
13524 case DW_TAG_reference_type:
13525 case DW_TAG_volatile_type:
13526 case DW_TAG_typedef:
13527 case DW_TAG_array_type:
13528 case DW_TAG_structure_type:
13529 case DW_TAG_union_type:
13530 case DW_TAG_class_type:
13531 case DW_TAG_friend:
13532 case DW_TAG_variant_part:
13533 case DW_TAG_enumeration_type:
13534 case DW_TAG_subroutine_type:
13535 case DW_TAG_string_type:
13536 case DW_TAG_set_type:
13537 case DW_TAG_subrange_type:
13538 case DW_TAG_ptr_to_member_type:
13539 case DW_TAG_file_type:
13540 /* It's a type node --- don't mark it. */
13541 return;
13543 default:
13544 /* Mark everything else. */
13545 break;
13548 die->die_mark = 1;
13550 /* Now, mark any dies referenced from here. */
13551 prune_unused_types_walk_attribs (die);
13553 /* Mark children. */
13554 for (c = die->die_child; c; c = c->die_sib)
13555 prune_unused_types_walk (c);
13559 /* Remove from the tree DIE any dies that aren't marked. */
13561 static void
13562 prune_unused_types_prune (dw_die_ref die)
13564 dw_die_ref c, p, n;
13565 if (!die->die_mark)
13566 abort();
13568 p = NULL;
13569 for (c = die->die_child; c; c = n)
13571 n = c->die_sib;
13572 if (c->die_mark)
13574 prune_unused_types_prune (c);
13575 p = c;
13577 else
13579 if (p)
13580 p->die_sib = n;
13581 else
13582 die->die_child = n;
13583 free_die (c);
13589 /* Remove dies representing declarations that we never use. */
13591 static void
13592 prune_unused_types (void)
13594 unsigned int i;
13595 limbo_die_node *node;
13597 /* Clear all the marks. */
13598 prune_unmark_dies (comp_unit_die);
13599 for (node = limbo_die_list; node; node = node->next)
13600 prune_unmark_dies (node->die);
13602 /* Set the mark on nodes that are actually used. */
13603 prune_unused_types_walk (comp_unit_die);
13604 for (node = limbo_die_list; node; node = node->next)
13605 prune_unused_types_walk (node->die);
13607 /* Also set the mark on nodes referenced from the
13608 pubname_table or arange_table. */
13609 for (i = 0; i < pubname_table_in_use; i++)
13610 prune_unused_types_mark (pubname_table[i].die, 1);
13611 for (i = 0; i < arange_table_in_use; i++)
13612 prune_unused_types_mark (arange_table[i], 1);
13614 /* Get rid of nodes that aren't marked. */
13615 prune_unused_types_prune (comp_unit_die);
13616 for (node = limbo_die_list; node; node = node->next)
13617 prune_unused_types_prune (node->die);
13619 /* Leave the marks clear. */
13620 prune_unmark_dies (comp_unit_die);
13621 for (node = limbo_die_list; node; node = node->next)
13622 prune_unmark_dies (node->die);
13625 /* Output stuff that dwarf requires at the end of every file,
13626 and generate the DWARF-2 debugging info. */
13628 static void
13629 dwarf2out_finish (const char *filename)
13631 limbo_die_node *node, *next_node;
13632 dw_die_ref die = 0;
13634 /* Add the name for the main input file now. We delayed this from
13635 dwarf2out_init to avoid complications with PCH. */
13636 add_name_attribute (comp_unit_die, filename);
13637 if (filename[0] != DIR_SEPARATOR)
13638 add_comp_dir_attribute (comp_unit_die);
13639 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13641 size_t i;
13642 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13643 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13644 /* Don't add cwd for <built-in>. */
13645 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13647 add_comp_dir_attribute (comp_unit_die);
13648 break;
13652 /* Traverse the limbo die list, and add parent/child links. The only
13653 dies without parents that should be here are concrete instances of
13654 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13655 For concrete instances, we can get the parent die from the abstract
13656 instance. */
13657 for (node = limbo_die_list; node; node = next_node)
13659 next_node = node->next;
13660 die = node->die;
13662 if (die->die_parent == NULL)
13664 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13665 tree context;
13667 if (origin)
13668 add_child_die (origin->die_parent, die);
13669 else if (die == comp_unit_die)
13671 else if (errorcount > 0 || sorrycount > 0)
13672 /* It's OK to be confused by errors in the input. */
13673 add_child_die (comp_unit_die, die);
13674 else if (node->created_for
13675 && ((DECL_P (node->created_for)
13676 && (context = DECL_CONTEXT (node->created_for)))
13677 || (TYPE_P (node->created_for)
13678 && (context = TYPE_CONTEXT (node->created_for))))
13679 && TREE_CODE (context) == FUNCTION_DECL)
13681 /* In certain situations, the lexical block containing a
13682 nested function can be optimized away, which results
13683 in the nested function die being orphaned. Likewise
13684 with the return type of that nested function. Force
13685 this to be a child of the containing function. */
13686 origin = lookup_decl_die (context);
13687 if (! origin)
13688 abort ();
13689 add_child_die (origin, die);
13691 else
13692 abort ();
13696 limbo_die_list = NULL;
13698 /* Walk through the list of incomplete types again, trying once more to
13699 emit full debugging info for them. */
13700 retry_incomplete_types ();
13702 /* We need to reverse all the dies before break_out_includes, or
13703 we'll see the end of an include file before the beginning. */
13704 reverse_all_dies (comp_unit_die);
13706 if (flag_eliminate_unused_debug_types)
13707 prune_unused_types ();
13709 /* Generate separate CUs for each of the include files we've seen.
13710 They will go into limbo_die_list. */
13711 if (flag_eliminate_dwarf2_dups)
13712 break_out_includes (comp_unit_die);
13714 /* Traverse the DIE's and add add sibling attributes to those DIE's
13715 that have children. */
13716 add_sibling_attributes (comp_unit_die);
13717 for (node = limbo_die_list; node; node = node->next)
13718 add_sibling_attributes (node->die);
13720 /* Output a terminator label for the .text section. */
13721 text_section ();
13722 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13724 /* Output the source line correspondence table. We must do this
13725 even if there is no line information. Otherwise, on an empty
13726 translation unit, we will generate a present, but empty,
13727 .debug_info section. IRIX 6.5 `nm' will then complain when
13728 examining the file. */
13729 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13731 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13732 output_line_info ();
13735 /* Output location list section if necessary. */
13736 if (have_location_lists)
13738 /* Output the location lists info. */
13739 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13740 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13741 DEBUG_LOC_SECTION_LABEL, 0);
13742 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13743 output_location_lists (die);
13744 have_location_lists = 0;
13747 /* We can only use the low/high_pc attributes if all of the code was
13748 in .text. */
13749 if (separate_line_info_table_in_use == 0)
13751 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13752 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13755 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13756 "base address". Use zero so that these addresses become absolute. */
13757 else if (have_location_lists || ranges_table_in_use)
13758 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13760 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13761 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13762 debug_line_section_label);
13764 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13765 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13767 /* Output all of the compilation units. We put the main one last so that
13768 the offsets are available to output_pubnames. */
13769 for (node = limbo_die_list; node; node = node->next)
13770 output_comp_unit (node->die, 0);
13772 output_comp_unit (comp_unit_die, 0);
13774 /* Output the abbreviation table. */
13775 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13776 output_abbrev_section ();
13778 /* Output public names table if necessary. */
13779 if (pubname_table_in_use)
13781 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13782 output_pubnames ();
13785 /* Output the address range information. We only put functions in the arange
13786 table, so don't write it out if we don't have any. */
13787 if (fde_table_in_use)
13789 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13790 output_aranges ();
13793 /* Output ranges section if necessary. */
13794 if (ranges_table_in_use)
13796 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13797 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13798 output_ranges ();
13801 /* Have to end the primary source file. */
13802 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13804 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13805 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13806 dw2_asm_output_data (1, 0, "End compilation unit");
13809 /* If we emitted any DW_FORM_strp form attribute, output the string
13810 table too. */
13811 if (debug_str_hash)
13812 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13814 #else
13816 /* This should never be used, but its address is needed for comparisons. */
13817 const struct gcc_debug_hooks dwarf2_debug_hooks;
13819 #endif /* DWARF2_DEBUGGING_INFO */
13821 #include "gt-dwarf2out.h"