1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Gary Funck (gary@intrepid.com).
4 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
5 Extensively modified by Jason Merrill (jason@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* TODO: Emit .debug_line header even when there are no functions, since
24 the file numbers are used by .debug_info. Alternately, leave
25 out locations for types and decls.
26 Avoid talking about ctors and op= for PODs.
27 Factor out common prologue sequences into multiple CIEs. */
29 /* The first part of this file deals with the DWARF 2 frame unwind
30 information, which is also used by the GCC efficient exception handling
31 mechanism. The second part, controlled only by an #ifdef
32 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 /* DWARF2 Abbreviation Glossary:
37 CFA = Canonical Frame Address
38 a fixed address on the stack which identifies a call frame.
39 We define it to be the value of SP just before the call insn.
40 The CFA register and offset, which may change during the course
41 of the function, are used to calculate its value at runtime.
43 CFI = Call Frame Instruction
44 an instruction for the DWARF2 abstract machine
46 CIE = Common Information Entry
47 information describing information common to one or more FDEs
49 DIE = Debugging Information Entry
51 FDE = Frame Description Entry
52 information describing the stack call frame, in particular,
53 how to restore registers
55 DW_CFA_... = DWARF2 CFA call frame instruction
56 DW_TAG_... = DWARF2 DIE tag */
60 #include "coretypes.h"
67 #include "stringpool.h"
68 #include "insn-config.h"
71 #include "diagnostic.h"
72 #include "fold-const.h"
73 #include "stor-layout.h"
81 #include "dwarf2out.h"
82 #include "dwarf2asm.h"
85 #include "tree-pretty-print.h"
87 #include "common/common-target.h"
88 #include "langhooks.h"
93 #include "gdb/gdb-index.h"
95 #include "stringpool.h"
98 static void dwarf2out_source_line (unsigned int, unsigned int, const char *,
100 static rtx_insn
*last_var_location_insn
;
101 static rtx_insn
*cached_next_real_insn
;
102 static void dwarf2out_decl (tree
);
104 #ifndef XCOFF_DEBUGGING_INFO
105 #define XCOFF_DEBUGGING_INFO 0
108 #ifndef HAVE_XCOFF_DWARF_EXTRAS
109 #define HAVE_XCOFF_DWARF_EXTRAS 0
112 #ifdef VMS_DEBUGGING_INFO
113 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
115 /* Define this macro to be a nonzero value if the directory specifications
116 which are output in the debug info should end with a separator. */
117 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
118 /* Define this macro to evaluate to a nonzero value if GCC should refrain
119 from generating indirect strings in DWARF2 debug information, for instance
120 if your target is stuck with an old version of GDB that is unable to
121 process them properly or uses VMS Debug. */
122 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
124 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
125 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
128 /* ??? Poison these here until it can be done generically. They've been
129 totally replaced in this file; make sure it stays that way. */
130 #undef DWARF2_UNWIND_INFO
131 #undef DWARF2_FRAME_INFO
132 #if (GCC_VERSION >= 3000)
133 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
136 /* The size of the target's pointer type. */
138 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
141 /* Array of RTXes referenced by the debugging information, which therefore
142 must be kept around forever. */
143 static GTY(()) vec
<rtx
, va_gc
> *used_rtx_array
;
145 /* A pointer to the base of a list of incomplete types which might be
146 completed at some later time. incomplete_types_list needs to be a
147 vec<tree, va_gc> *because we want to tell the garbage collector about
149 static GTY(()) vec
<tree
, va_gc
> *incomplete_types
;
151 /* A pointer to the base of a table of references to declaration
152 scopes. This table is a display which tracks the nesting
153 of declaration scopes at the current scope and containing
154 scopes. This table is used to find the proper place to
155 define type declaration DIE's. */
156 static GTY(()) vec
<tree
, va_gc
> *decl_scope_table
;
158 /* Pointers to various DWARF2 sections. */
159 static GTY(()) section
*debug_info_section
;
160 static GTY(()) section
*debug_skeleton_info_section
;
161 static GTY(()) section
*debug_abbrev_section
;
162 static GTY(()) section
*debug_skeleton_abbrev_section
;
163 static GTY(()) section
*debug_aranges_section
;
164 static GTY(()) section
*debug_addr_section
;
165 static GTY(()) section
*debug_macinfo_section
;
166 static const char *debug_macinfo_section_name
;
167 static unsigned macinfo_label_base
= 1;
168 static GTY(()) section
*debug_line_section
;
169 static GTY(()) section
*debug_skeleton_line_section
;
170 static GTY(()) section
*debug_loc_section
;
171 static GTY(()) section
*debug_pubnames_section
;
172 static GTY(()) section
*debug_pubtypes_section
;
173 static GTY(()) section
*debug_str_section
;
174 static GTY(()) section
*debug_line_str_section
;
175 static GTY(()) section
*debug_str_dwo_section
;
176 static GTY(()) section
*debug_str_offsets_section
;
177 static GTY(()) section
*debug_ranges_section
;
178 static GTY(()) section
*debug_frame_section
;
180 /* Maximum size (in bytes) of an artificially generated label. */
181 #define MAX_ARTIFICIAL_LABEL_BYTES 40
183 /* According to the (draft) DWARF 3 specification, the initial length
184 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
185 bytes are 0xffffffff, followed by the length stored in the next 8
188 However, the SGI/MIPS ABI uses an initial length which is equal to
189 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
191 #ifndef DWARF_INITIAL_LENGTH_SIZE
192 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
195 #ifndef DWARF_INITIAL_LENGTH_SIZE_STR
196 #define DWARF_INITIAL_LENGTH_SIZE_STR (DWARF_OFFSET_SIZE == 4 ? "-4" : "-12")
199 /* Round SIZE up to the nearest BOUNDARY. */
200 #define DWARF_ROUND(SIZE,BOUNDARY) \
201 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
203 /* CIE identifier. */
204 #if HOST_BITS_PER_WIDE_INT >= 64
205 #define DWARF_CIE_ID \
206 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
208 #define DWARF_CIE_ID DW_CIE_ID
212 /* A vector for a table that contains frame description
213 information for each routine. */
214 #define NOT_INDEXED (-1U)
215 #define NO_INDEX_ASSIGNED (-2U)
217 static GTY(()) vec
<dw_fde_ref
, va_gc
> *fde_vec
;
219 struct GTY((for_user
)) indirect_string_node
{
221 unsigned int refcount
;
222 enum dwarf_form form
;
227 struct indirect_string_hasher
: ggc_ptr_hash
<indirect_string_node
>
229 typedef const char *compare_type
;
231 static hashval_t
hash (indirect_string_node
*);
232 static bool equal (indirect_string_node
*, const char *);
235 static GTY (()) hash_table
<indirect_string_hasher
> *debug_str_hash
;
237 static GTY (()) hash_table
<indirect_string_hasher
> *debug_line_str_hash
;
239 /* With split_debug_info, both the comp_dir and dwo_name go in the
240 main object file, rather than the dwo, similar to the force_direct
241 parameter elsewhere but with additional complications:
243 1) The string is needed in both the main object file and the dwo.
244 That is, the comp_dir and dwo_name will appear in both places.
246 2) Strings can use four forms: DW_FORM_string, DW_FORM_strp,
247 DW_FORM_line_strp or DW_FORM_GNU_str_index.
249 3) GCC chooses the form to use late, depending on the size and
252 Rather than forcing the all debug string handling functions and
253 callers to deal with these complications, simply use a separate,
254 special-cased string table for any attribute that should go in the
255 main object file. This limits the complexity to just the places
258 static GTY (()) hash_table
<indirect_string_hasher
> *skeleton_debug_str_hash
;
260 static GTY(()) int dw2_string_counter
;
262 /* True if the compilation unit places functions in more than one section. */
263 static GTY(()) bool have_multiple_function_sections
= false;
265 /* Whether the default text and cold text sections have been used at all. */
267 static GTY(()) bool text_section_used
= false;
268 static GTY(()) bool cold_text_section_used
= false;
270 /* The default cold text section. */
271 static GTY(()) section
*cold_text_section
;
273 /* The DIE for C++14 'auto' in a function return type. */
274 static GTY(()) dw_die_ref auto_die
;
276 /* The DIE for C++14 'decltype(auto)' in a function return type. */
277 static GTY(()) dw_die_ref decltype_auto_die
;
279 /* Forward declarations for functions defined in this file. */
281 static void output_call_frame_info (int);
282 static void dwarf2out_note_section_used (void);
284 /* Personality decl of current unit. Used only when assembler does not support
286 static GTY(()) rtx current_unit_personality
;
288 /* .debug_rnglists next index. */
289 static unsigned int rnglist_idx
;
291 /* Data and reference forms for relocatable data. */
292 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
293 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
295 #ifndef DEBUG_FRAME_SECTION
296 #define DEBUG_FRAME_SECTION ".debug_frame"
299 #ifndef FUNC_BEGIN_LABEL
300 #define FUNC_BEGIN_LABEL "LFB"
303 #ifndef FUNC_END_LABEL
304 #define FUNC_END_LABEL "LFE"
307 #ifndef PROLOGUE_END_LABEL
308 #define PROLOGUE_END_LABEL "LPE"
311 #ifndef EPILOGUE_BEGIN_LABEL
312 #define EPILOGUE_BEGIN_LABEL "LEB"
315 #ifndef FRAME_BEGIN_LABEL
316 #define FRAME_BEGIN_LABEL "Lframe"
318 #define CIE_AFTER_SIZE_LABEL "LSCIE"
319 #define CIE_END_LABEL "LECIE"
320 #define FDE_LABEL "LSFDE"
321 #define FDE_AFTER_SIZE_LABEL "LASFDE"
322 #define FDE_END_LABEL "LEFDE"
323 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
324 #define LINE_NUMBER_END_LABEL "LELT"
325 #define LN_PROLOG_AS_LABEL "LASLTP"
326 #define LN_PROLOG_END_LABEL "LELTP"
327 #define DIE_LABEL_PREFIX "DW"
329 /* Match the base name of a file to the base name of a compilation unit. */
332 matches_main_base (const char *path
)
334 /* Cache the last query. */
335 static const char *last_path
= NULL
;
336 static int last_match
= 0;
337 if (path
!= last_path
)
340 int length
= base_of_path (path
, &base
);
342 last_match
= (length
== main_input_baselength
343 && memcmp (base
, main_input_basename
, length
) == 0);
348 #ifdef DEBUG_DEBUG_STRUCT
351 dump_struct_debug (tree type
, enum debug_info_usage usage
,
352 enum debug_struct_file criterion
, int generic
,
353 int matches
, int result
)
355 /* Find the type name. */
356 tree type_decl
= TYPE_STUB_DECL (type
);
358 const char *name
= 0;
359 if (TREE_CODE (t
) == TYPE_DECL
)
362 name
= IDENTIFIER_POINTER (t
);
364 fprintf (stderr
, " struct %d %s %s %s %s %d %p %s\n",
366 DECL_IN_SYSTEM_HEADER (type_decl
) ? "sys" : "usr",
367 matches
? "bas" : "hdr",
368 generic
? "gen" : "ord",
369 usage
== DINFO_USAGE_DFN
? ";" :
370 usage
== DINFO_USAGE_DIR_USE
? "." : "*",
372 (void*) type_decl
, name
);
375 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
376 dump_struct_debug (type, usage, criterion, generic, matches, result)
380 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
385 /* Get the number of HOST_WIDE_INTs needed to represent the precision
386 of the number. Some constants have a large uniform precision, so
387 we get the precision needed for the actual value of the number. */
390 get_full_len (const wide_int
&op
)
392 int prec
= wi::min_precision (op
, UNSIGNED
);
393 return ((prec
+ HOST_BITS_PER_WIDE_INT
- 1)
394 / HOST_BITS_PER_WIDE_INT
);
398 should_emit_struct_debug (tree type
, enum debug_info_usage usage
)
400 enum debug_struct_file criterion
;
402 bool generic
= lang_hooks
.types
.generic_p (type
);
405 criterion
= debug_struct_generic
[usage
];
407 criterion
= debug_struct_ordinary
[usage
];
409 if (criterion
== DINFO_STRUCT_FILE_NONE
)
410 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, false, false);
411 if (criterion
== DINFO_STRUCT_FILE_ANY
)
412 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, false, true);
414 type_decl
= TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type
));
416 if (type_decl
!= NULL
)
418 if (criterion
== DINFO_STRUCT_FILE_SYS
&& DECL_IN_SYSTEM_HEADER (type_decl
))
419 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, false, true);
421 if (matches_main_base (DECL_SOURCE_FILE (type_decl
)))
422 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, true, true);
425 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, false, false);
428 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
429 switch to the data section instead, and write out a synthetic start label
430 for collect2 the first time around. */
433 switch_to_eh_frame_section (bool back ATTRIBUTE_UNUSED
)
435 if (eh_frame_section
== 0)
439 if (EH_TABLES_CAN_BE_READ_ONLY
)
445 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
447 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
449 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
452 || ((fde_encoding
& 0x70) != DW_EH_PE_absptr
453 && (fde_encoding
& 0x70) != DW_EH_PE_aligned
454 && (per_encoding
& 0x70) != DW_EH_PE_absptr
455 && (per_encoding
& 0x70) != DW_EH_PE_aligned
456 && (lsda_encoding
& 0x70) != DW_EH_PE_absptr
457 && (lsda_encoding
& 0x70) != DW_EH_PE_aligned
))
458 ? 0 : SECTION_WRITE
);
461 flags
= SECTION_WRITE
;
463 #ifdef EH_FRAME_SECTION_NAME
464 eh_frame_section
= get_section (EH_FRAME_SECTION_NAME
, flags
, NULL
);
466 eh_frame_section
= ((flags
== SECTION_WRITE
)
467 ? data_section
: readonly_data_section
);
468 #endif /* EH_FRAME_SECTION_NAME */
471 switch_to_section (eh_frame_section
);
473 #ifdef EH_FRAME_THROUGH_COLLECT2
474 /* We have no special eh_frame section. Emit special labels to guide
478 tree label
= get_file_function_name ("F");
479 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
480 targetm
.asm_out
.globalize_label (asm_out_file
,
481 IDENTIFIER_POINTER (label
));
482 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
487 /* Switch [BACK] to the eh or debug frame table section, depending on
491 switch_to_frame_table_section (int for_eh
, bool back
)
494 switch_to_eh_frame_section (back
);
497 if (!debug_frame_section
)
498 debug_frame_section
= get_section (DEBUG_FRAME_SECTION
,
499 SECTION_DEBUG
, NULL
);
500 switch_to_section (debug_frame_section
);
504 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
506 enum dw_cfi_oprnd_type
507 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi
)
512 case DW_CFA_GNU_window_save
:
513 case DW_CFA_remember_state
:
514 case DW_CFA_restore_state
:
515 return dw_cfi_oprnd_unused
;
518 case DW_CFA_advance_loc1
:
519 case DW_CFA_advance_loc2
:
520 case DW_CFA_advance_loc4
:
521 case DW_CFA_MIPS_advance_loc8
:
522 return dw_cfi_oprnd_addr
;
525 case DW_CFA_offset_extended
:
527 case DW_CFA_offset_extended_sf
:
528 case DW_CFA_def_cfa_sf
:
530 case DW_CFA_restore_extended
:
531 case DW_CFA_undefined
:
532 case DW_CFA_same_value
:
533 case DW_CFA_def_cfa_register
:
534 case DW_CFA_register
:
535 case DW_CFA_expression
:
536 case DW_CFA_val_expression
:
537 return dw_cfi_oprnd_reg_num
;
539 case DW_CFA_def_cfa_offset
:
540 case DW_CFA_GNU_args_size
:
541 case DW_CFA_def_cfa_offset_sf
:
542 return dw_cfi_oprnd_offset
;
544 case DW_CFA_def_cfa_expression
:
545 return dw_cfi_oprnd_loc
;
552 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
554 enum dw_cfi_oprnd_type
555 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi
)
560 case DW_CFA_def_cfa_sf
:
562 case DW_CFA_offset_extended_sf
:
563 case DW_CFA_offset_extended
:
564 return dw_cfi_oprnd_offset
;
566 case DW_CFA_register
:
567 return dw_cfi_oprnd_reg_num
;
569 case DW_CFA_expression
:
570 case DW_CFA_val_expression
:
571 return dw_cfi_oprnd_loc
;
574 return dw_cfi_oprnd_unused
;
578 /* Output one FDE. */
581 output_fde (dw_fde_ref fde
, bool for_eh
, bool second
,
582 char *section_start_label
, int fde_encoding
, char *augmentation
,
583 bool any_lsda_needed
, int lsda_encoding
)
585 const char *begin
, *end
;
586 static unsigned int j
;
587 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
], l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
589 targetm
.asm_out
.emit_unwind_label (asm_out_file
, fde
->decl
, for_eh
,
591 targetm
.asm_out
.internal_label (asm_out_file
, FDE_LABEL
,
593 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ j
);
594 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ j
);
595 if (!XCOFF_DEBUGGING_INFO
|| for_eh
)
597 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4 && !for_eh
)
598 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
599 " indicating 64-bit DWARF extension");
600 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
603 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
606 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
608 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, section_start_label
,
609 debug_frame_section
, "FDE CIE offset");
611 begin
= second
? fde
->dw_fde_second_begin
: fde
->dw_fde_begin
;
612 end
= second
? fde
->dw_fde_second_end
: fde
->dw_fde_end
;
616 rtx sym_ref
= gen_rtx_SYMBOL_REF (Pmode
, begin
);
617 SYMBOL_REF_FLAGS (sym_ref
) |= SYMBOL_FLAG_LOCAL
;
618 dw2_asm_output_encoded_addr_rtx (fde_encoding
, sym_ref
, false,
619 "FDE initial location");
620 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
621 end
, begin
, "FDE address range");
625 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, begin
, "FDE initial location");
626 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, end
, begin
, "FDE address range");
633 int size
= size_of_encoded_value (lsda_encoding
);
635 if (lsda_encoding
== DW_EH_PE_aligned
)
637 int offset
= ( 4 /* Length */
639 + 2 * size_of_encoded_value (fde_encoding
)
640 + 1 /* Augmentation size */ );
641 int pad
= -offset
& (PTR_SIZE
- 1);
644 gcc_assert (size_of_uleb128 (size
) == 1);
647 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
649 if (fde
->uses_eh_lsda
)
651 ASM_GENERATE_INTERNAL_LABEL (l1
, second
? "LLSDAC" : "LLSDA",
652 fde
->funcdef_number
);
653 dw2_asm_output_encoded_addr_rtx (lsda_encoding
,
654 gen_rtx_SYMBOL_REF (Pmode
, l1
),
656 "Language Specific Data Area");
660 if (lsda_encoding
== DW_EH_PE_aligned
)
661 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
662 dw2_asm_output_data (size_of_encoded_value (lsda_encoding
), 0,
663 "Language Specific Data Area (none)");
667 dw2_asm_output_data_uleb128 (0, "Augmentation size");
670 /* Loop through the Call Frame Instructions associated with this FDE. */
671 fde
->dw_fde_current_label
= begin
;
673 size_t from
, until
, i
;
676 until
= vec_safe_length (fde
->dw_fde_cfi
);
678 if (fde
->dw_fde_second_begin
== NULL
)
681 until
= fde
->dw_fde_switch_cfi_index
;
683 from
= fde
->dw_fde_switch_cfi_index
;
685 for (i
= from
; i
< until
; i
++)
686 output_cfi ((*fde
->dw_fde_cfi
)[i
], fde
, for_eh
);
689 /* If we are to emit a ref/link from function bodies to their frame tables,
690 do it now. This is typically performed to make sure that tables
691 associated with functions are dragged with them and not discarded in
692 garbage collecting links. We need to do this on a per function basis to
693 cope with -ffunction-sections. */
695 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
696 /* Switch to the function section, emit the ref to the tables, and
697 switch *back* into the table section. */
698 switch_to_section (function_section (fde
->decl
));
699 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label
);
700 switch_to_frame_table_section (for_eh
, true);
703 /* Pad the FDE out to an address sized boundary. */
704 ASM_OUTPUT_ALIGN (asm_out_file
,
705 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
706 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
711 /* Return true if frame description entry FDE is needed for EH. */
714 fde_needed_for_eh_p (dw_fde_ref fde
)
716 if (flag_asynchronous_unwind_tables
)
719 if (TARGET_USES_WEAK_UNWIND_INFO
&& DECL_WEAK (fde
->decl
))
722 if (fde
->uses_eh_lsda
)
725 /* If exceptions are enabled, we have collected nothrow info. */
726 if (flag_exceptions
&& (fde
->all_throwers_are_sibcalls
|| fde
->nothrow
))
732 /* Output the call frame information used to record information
733 that relates to calculating the frame pointer, and records the
734 location of saved registers. */
737 output_call_frame_info (int for_eh
)
742 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
], l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
743 char section_start_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
744 bool any_lsda_needed
= false;
745 char augmentation
[6];
746 int augmentation_size
;
747 int fde_encoding
= DW_EH_PE_absptr
;
748 int per_encoding
= DW_EH_PE_absptr
;
749 int lsda_encoding
= DW_EH_PE_absptr
;
751 rtx personality
= NULL
;
754 /* Don't emit a CIE if there won't be any FDEs. */
758 /* Nothing to do if the assembler's doing it all. */
759 if (dwarf2out_do_cfi_asm ())
762 /* If we don't have any functions we'll want to unwind out of, don't emit
763 any EH unwind information. If we make FDEs linkonce, we may have to
764 emit an empty label for an FDE that wouldn't otherwise be emitted. We
765 want to avoid having an FDE kept around when the function it refers to
766 is discarded. Example where this matters: a primary function template
767 in C++ requires EH information, an explicit specialization doesn't. */
770 bool any_eh_needed
= false;
772 FOR_EACH_VEC_ELT (*fde_vec
, i
, fde
)
774 if (fde
->uses_eh_lsda
)
775 any_eh_needed
= any_lsda_needed
= true;
776 else if (fde_needed_for_eh_p (fde
))
777 any_eh_needed
= true;
778 else if (TARGET_USES_WEAK_UNWIND_INFO
)
779 targetm
.asm_out
.emit_unwind_label (asm_out_file
, fde
->decl
, 1, 1);
786 /* We're going to be generating comments, so turn on app. */
790 /* Switch to the proper frame section, first time. */
791 switch_to_frame_table_section (for_eh
, false);
793 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
794 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
796 /* Output the CIE. */
797 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
798 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
799 if (!XCOFF_DEBUGGING_INFO
|| for_eh
)
801 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4 && !for_eh
)
802 dw2_asm_output_data (4, 0xffffffff,
803 "Initial length escape value indicating 64-bit DWARF extension");
804 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
805 "Length of Common Information Entry");
807 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
809 /* Now that the CIE pointer is PC-relative for EH,
810 use 0 to identify the CIE. */
811 dw2_asm_output_data ((for_eh
? 4 : DWARF_OFFSET_SIZE
),
812 (for_eh
? 0 : DWARF_CIE_ID
),
813 "CIE Identifier Tag");
815 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
816 use CIE version 1, unless that would produce incorrect results
817 due to overflowing the return register column. */
818 return_reg
= DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN
, for_eh
);
820 if (return_reg
>= 256 || dwarf_version
> 2)
822 dw2_asm_output_data (1, dw_cie_version
, "CIE Version");
825 augmentation_size
= 0;
827 personality
= current_unit_personality
;
833 z Indicates that a uleb128 is present to size the
834 augmentation section.
835 L Indicates the encoding (and thus presence) of
836 an LSDA pointer in the FDE augmentation.
837 R Indicates a non-default pointer encoding for
839 P Indicates the presence of an encoding + language
840 personality routine in the CIE augmentation. */
842 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
843 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
844 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
846 p
= augmentation
+ 1;
850 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
851 assemble_external_libcall (personality
);
856 augmentation_size
+= 1;
858 if (fde_encoding
!= DW_EH_PE_absptr
)
861 augmentation_size
+= 1;
863 if (p
> augmentation
+ 1)
865 augmentation
[0] = 'z';
869 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
870 if (personality
&& per_encoding
== DW_EH_PE_aligned
)
872 int offset
= ( 4 /* Length */
874 + 1 /* CIE version */
875 + strlen (augmentation
) + 1 /* Augmentation */
876 + size_of_uleb128 (1) /* Code alignment */
877 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
879 + 1 /* Augmentation size */
880 + 1 /* Personality encoding */ );
881 int pad
= -offset
& (PTR_SIZE
- 1);
883 augmentation_size
+= pad
;
885 /* Augmentations should be small, so there's scarce need to
886 iterate for a solution. Die if we exceed one uleb128 byte. */
887 gcc_assert (size_of_uleb128 (augmentation_size
) == 1);
891 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
892 if (dw_cie_version
>= 4)
894 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "CIE Address Size");
895 dw2_asm_output_data (1, 0, "CIE Segment Size");
897 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
898 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
899 "CIE Data Alignment Factor");
901 if (dw_cie_version
== 1)
902 dw2_asm_output_data (1, return_reg
, "CIE RA Column");
904 dw2_asm_output_data_uleb128 (return_reg
, "CIE RA Column");
908 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
911 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
912 eh_data_format_name (per_encoding
));
913 dw2_asm_output_encoded_addr_rtx (per_encoding
,
919 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
920 eh_data_format_name (lsda_encoding
));
922 if (fde_encoding
!= DW_EH_PE_absptr
)
923 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
924 eh_data_format_name (fde_encoding
));
927 FOR_EACH_VEC_ELT (*cie_cfi_vec
, i
, cfi
)
928 output_cfi (cfi
, NULL
, for_eh
);
930 /* Pad the CIE out to an address sized boundary. */
931 ASM_OUTPUT_ALIGN (asm_out_file
,
932 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
933 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
935 /* Loop through all of the FDE's. */
936 FOR_EACH_VEC_ELT (*fde_vec
, i
, fde
)
940 /* Don't emit EH unwind info for leaf functions that don't need it. */
941 if (for_eh
&& !fde_needed_for_eh_p (fde
))
944 for (k
= 0; k
< (fde
->dw_fde_second_begin
? 2 : 1); k
++)
945 output_fde (fde
, for_eh
, k
, section_start_label
, fde_encoding
,
946 augmentation
, any_lsda_needed
, lsda_encoding
);
949 if (for_eh
&& targetm
.terminate_dw2_eh_frame_info
)
950 dw2_asm_output_data (4, 0, "End of Table");
952 /* Turn off app to make assembly quicker. */
957 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
960 dwarf2out_do_cfi_startproc (bool second
)
964 rtx personality
= get_personality_function (current_function_decl
);
966 fprintf (asm_out_file
, "\t.cfi_startproc\n");
970 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
973 /* ??? The GAS support isn't entirely consistent. We have to
974 handle indirect support ourselves, but PC-relative is done
975 in the assembler. Further, the assembler can't handle any
976 of the weirder relocation types. */
977 if (enc
& DW_EH_PE_indirect
)
978 ref
= dw2_force_const_mem (ref
, true);
980 fprintf (asm_out_file
, "\t.cfi_personality %#x,", enc
);
981 output_addr_const (asm_out_file
, ref
);
982 fputc ('\n', asm_out_file
);
985 if (crtl
->uses_eh_lsda
)
987 char lab
[MAX_ARTIFICIAL_LABEL_BYTES
];
989 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
990 ASM_GENERATE_INTERNAL_LABEL (lab
, second
? "LLSDAC" : "LLSDA",
991 current_function_funcdef_no
);
992 ref
= gen_rtx_SYMBOL_REF (Pmode
, lab
);
993 SYMBOL_REF_FLAGS (ref
) = SYMBOL_FLAG_LOCAL
;
995 if (enc
& DW_EH_PE_indirect
)
996 ref
= dw2_force_const_mem (ref
, true);
998 fprintf (asm_out_file
, "\t.cfi_lsda %#x,", enc
);
999 output_addr_const (asm_out_file
, ref
);
1000 fputc ('\n', asm_out_file
);
1004 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
1005 this allocation may be done before pass_final. */
1008 dwarf2out_alloc_current_fde (void)
1012 fde
= ggc_cleared_alloc
<dw_fde_node
> ();
1013 fde
->decl
= current_function_decl
;
1014 fde
->funcdef_number
= current_function_funcdef_no
;
1015 fde
->fde_index
= vec_safe_length (fde_vec
);
1016 fde
->all_throwers_are_sibcalls
= crtl
->all_throwers_are_sibcalls
;
1017 fde
->uses_eh_lsda
= crtl
->uses_eh_lsda
;
1018 fde
->nothrow
= crtl
->nothrow
;
1019 fde
->drap_reg
= INVALID_REGNUM
;
1020 fde
->vdrap_reg
= INVALID_REGNUM
;
1022 /* Record the FDE associated with this function. */
1024 vec_safe_push (fde_vec
, fde
);
1029 /* Output a marker (i.e. a label) for the beginning of a function, before
1033 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED
,
1034 unsigned int column ATTRIBUTE_UNUSED
,
1035 const char *file ATTRIBUTE_UNUSED
)
1037 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1043 current_function_func_begin_label
= NULL
;
1045 do_frame
= dwarf2out_do_frame ();
1047 /* ??? current_function_func_begin_label is also used by except.c for
1048 call-site information. We must emit this label if it might be used. */
1050 && (!flag_exceptions
1051 || targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
))
1054 fnsec
= function_section (current_function_decl
);
1055 switch_to_section (fnsec
);
1056 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
1057 current_function_funcdef_no
);
1058 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
1059 current_function_funcdef_no
);
1060 dup_label
= xstrdup (label
);
1061 current_function_func_begin_label
= dup_label
;
1063 /* We can elide the fde allocation if we're not emitting debug info. */
1067 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1068 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1069 would include pass_dwarf2_frame. If we've not created the FDE yet,
1073 fde
= dwarf2out_alloc_current_fde ();
1075 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1076 fde
->dw_fde_begin
= dup_label
;
1077 fde
->dw_fde_current_label
= dup_label
;
1078 fde
->in_std_section
= (fnsec
== text_section
1079 || (cold_text_section
&& fnsec
== cold_text_section
));
1081 /* We only want to output line number information for the genuine dwarf2
1082 prologue case, not the eh frame case. */
1083 #ifdef DWARF2_DEBUGGING_INFO
1085 dwarf2out_source_line (line
, column
, file
, 0, true);
1088 if (dwarf2out_do_cfi_asm ())
1089 dwarf2out_do_cfi_startproc (false);
1092 rtx personality
= get_personality_function (current_function_decl
);
1093 if (!current_unit_personality
)
1094 current_unit_personality
= personality
;
1096 /* We cannot keep a current personality per function as without CFI
1097 asm, at the point where we emit the CFI data, there is no current
1098 function anymore. */
1099 if (personality
&& current_unit_personality
!= personality
)
1100 sorry ("multiple EH personalities are supported only with assemblers "
1101 "supporting .cfi_personality directive");
1105 /* Output a marker (i.e. a label) for the end of the generated code
1106 for a function prologue. This gets called *after* the prologue code has
1110 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED
,
1111 const char *file ATTRIBUTE_UNUSED
)
1113 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1115 /* Output a label to mark the endpoint of the code generated for this
1117 ASM_GENERATE_INTERNAL_LABEL (label
, PROLOGUE_END_LABEL
,
1118 current_function_funcdef_no
);
1119 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, PROLOGUE_END_LABEL
,
1120 current_function_funcdef_no
);
1121 cfun
->fde
->dw_fde_vms_end_prologue
= xstrdup (label
);
1124 /* Output a marker (i.e. a label) for the beginning of the generated code
1125 for a function epilogue. This gets called *before* the prologue code has
1129 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED
,
1130 const char *file ATTRIBUTE_UNUSED
)
1132 dw_fde_ref fde
= cfun
->fde
;
1133 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1135 if (fde
->dw_fde_vms_begin_epilogue
)
1138 /* Output a label to mark the endpoint of the code generated for this
1140 ASM_GENERATE_INTERNAL_LABEL (label
, EPILOGUE_BEGIN_LABEL
,
1141 current_function_funcdef_no
);
1142 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, EPILOGUE_BEGIN_LABEL
,
1143 current_function_funcdef_no
);
1144 fde
->dw_fde_vms_begin_epilogue
= xstrdup (label
);
1147 /* Output a marker (i.e. a label) for the absolute end of the generated code
1148 for a function definition. This gets called *after* the epilogue code has
1152 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED
,
1153 const char *file ATTRIBUTE_UNUSED
)
1156 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1158 last_var_location_insn
= NULL
;
1159 cached_next_real_insn
= NULL
;
1161 if (dwarf2out_do_cfi_asm ())
1162 fprintf (asm_out_file
, "\t.cfi_endproc\n");
1164 /* Output a label to mark the endpoint of the code generated for this
1166 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
1167 current_function_funcdef_no
);
1168 ASM_OUTPUT_LABEL (asm_out_file
, label
);
1170 gcc_assert (fde
!= NULL
);
1171 if (fde
->dw_fde_second_begin
== NULL
)
1172 fde
->dw_fde_end
= xstrdup (label
);
1176 dwarf2out_frame_finish (void)
1178 /* Output call frame information. */
1179 if (targetm
.debug_unwind_info () == UI_DWARF2
)
1180 output_call_frame_info (0);
1182 /* Output another copy for the unwinder. */
1183 if ((flag_unwind_tables
|| flag_exceptions
)
1184 && targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
1185 output_call_frame_info (1);
1188 /* Note that the current function section is being used for code. */
1191 dwarf2out_note_section_used (void)
1193 section
*sec
= current_function_section ();
1194 if (sec
== text_section
)
1195 text_section_used
= true;
1196 else if (sec
== cold_text_section
)
1197 cold_text_section_used
= true;
1200 static void var_location_switch_text_section (void);
1201 static void set_cur_line_info_table (section
*);
1204 dwarf2out_switch_text_section (void)
1207 dw_fde_ref fde
= cfun
->fde
;
1209 gcc_assert (cfun
&& fde
&& fde
->dw_fde_second_begin
== NULL
);
1211 if (!in_cold_section_p
)
1213 fde
->dw_fde_end
= crtl
->subsections
.cold_section_end_label
;
1214 fde
->dw_fde_second_begin
= crtl
->subsections
.hot_section_label
;
1215 fde
->dw_fde_second_end
= crtl
->subsections
.hot_section_end_label
;
1219 fde
->dw_fde_end
= crtl
->subsections
.hot_section_end_label
;
1220 fde
->dw_fde_second_begin
= crtl
->subsections
.cold_section_label
;
1221 fde
->dw_fde_second_end
= crtl
->subsections
.cold_section_end_label
;
1223 have_multiple_function_sections
= true;
1225 /* There is no need to mark used sections when not debugging. */
1226 if (cold_text_section
!= NULL
)
1227 dwarf2out_note_section_used ();
1229 if (dwarf2out_do_cfi_asm ())
1230 fprintf (asm_out_file
, "\t.cfi_endproc\n");
1232 /* Now do the real section switch. */
1233 sect
= current_function_section ();
1234 switch_to_section (sect
);
1236 fde
->second_in_std_section
1237 = (sect
== text_section
1238 || (cold_text_section
&& sect
== cold_text_section
));
1240 if (dwarf2out_do_cfi_asm ())
1241 dwarf2out_do_cfi_startproc (true);
1243 var_location_switch_text_section ();
1245 if (cold_text_section
!= NULL
)
1246 set_cur_line_info_table (sect
);
1249 /* And now, the subset of the debugging information support code necessary
1250 for emitting location expressions. */
1252 /* Data about a single source file. */
1253 struct GTY((for_user
)) dwarf_file_data
{
1254 const char * filename
;
1258 /* Describe an entry into the .debug_addr section. */
1262 ate_kind_rtx_dtprel
,
1266 struct GTY((for_user
)) addr_table_entry
{
1268 unsigned int refcount
;
1270 union addr_table_entry_struct_union
1272 rtx
GTY ((tag ("0"))) rtl
;
1273 char * GTY ((tag ("1"))) label
;
1275 GTY ((desc ("%1.kind"))) addr
;
1278 /* Location lists are ranges + location descriptions for that range,
1279 so you can track variables that are in different places over
1280 their entire life. */
1281 typedef struct GTY(()) dw_loc_list_struct
{
1282 dw_loc_list_ref dw_loc_next
;
1283 const char *begin
; /* Label and addr_entry for start of range */
1284 addr_table_entry
*begin_entry
;
1285 const char *end
; /* Label for end of range */
1286 char *ll_symbol
; /* Label for beginning of location list.
1287 Only on head of list */
1288 const char *section
; /* Section this loclist is relative to */
1289 dw_loc_descr_ref expr
;
1291 /* True if all addresses in this and subsequent lists are known to be
1294 /* True if this list has been replaced by dw_loc_next. */
1296 /* True if it has been emitted into .debug_loc* / .debug_loclists*
1298 unsigned char emitted
: 1;
1299 /* True if hash field is index rather than hash value. */
1300 unsigned char num_assigned
: 1;
1301 /* True if .debug_loclists.dwo offset has been emitted for it already. */
1302 unsigned char offset_emitted
: 1;
1303 /* True if note_variable_value_in_expr has been called on it. */
1304 unsigned char noted_variable_value
: 1;
1305 /* True if the range should be emitted even if begin and end
1310 static dw_loc_descr_ref
int_loc_descriptor (HOST_WIDE_INT
);
1311 static dw_loc_descr_ref
uint_loc_descriptor (unsigned HOST_WIDE_INT
);
1313 /* Convert a DWARF stack opcode into its string name. */
1316 dwarf_stack_op_name (unsigned int op
)
1318 const char *name
= get_DW_OP_name (op
);
1323 return "OP_<unknown>";
1326 /* Return a pointer to a newly allocated location description. Location
1327 descriptions are simple expression terms that can be strung
1328 together to form more complicated location (address) descriptions. */
1330 static inline dw_loc_descr_ref
1331 new_loc_descr (enum dwarf_location_atom op
, unsigned HOST_WIDE_INT oprnd1
,
1332 unsigned HOST_WIDE_INT oprnd2
)
1334 dw_loc_descr_ref descr
= ggc_cleared_alloc
<dw_loc_descr_node
> ();
1336 descr
->dw_loc_opc
= op
;
1337 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
1338 descr
->dw_loc_oprnd1
.val_entry
= NULL
;
1339 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
1340 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
1341 descr
->dw_loc_oprnd2
.val_entry
= NULL
;
1342 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
1347 /* Return a pointer to a newly allocated location description for
1350 static inline dw_loc_descr_ref
1351 new_reg_loc_descr (unsigned int reg
, unsigned HOST_WIDE_INT offset
)
1354 return new_loc_descr ((enum dwarf_location_atom
) (DW_OP_breg0
+ reg
),
1357 return new_loc_descr (DW_OP_bregx
, reg
, offset
);
1360 /* Add a location description term to a location description expression. */
1363 add_loc_descr (dw_loc_descr_ref
*list_head
, dw_loc_descr_ref descr
)
1365 dw_loc_descr_ref
*d
;
1367 /* Find the end of the chain. */
1368 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
1374 /* Compare two location operands for exact equality. */
1377 dw_val_equal_p (dw_val_node
*a
, dw_val_node
*b
)
1379 if (a
->val_class
!= b
->val_class
)
1381 switch (a
->val_class
)
1383 case dw_val_class_none
:
1385 case dw_val_class_addr
:
1386 return rtx_equal_p (a
->v
.val_addr
, b
->v
.val_addr
);
1388 case dw_val_class_offset
:
1389 case dw_val_class_unsigned_const
:
1390 case dw_val_class_const
:
1391 case dw_val_class_unsigned_const_implicit
:
1392 case dw_val_class_const_implicit
:
1393 case dw_val_class_range_list
:
1394 /* These are all HOST_WIDE_INT, signed or unsigned. */
1395 return a
->v
.val_unsigned
== b
->v
.val_unsigned
;
1397 case dw_val_class_loc
:
1398 return a
->v
.val_loc
== b
->v
.val_loc
;
1399 case dw_val_class_loc_list
:
1400 return a
->v
.val_loc_list
== b
->v
.val_loc_list
;
1401 case dw_val_class_die_ref
:
1402 return a
->v
.val_die_ref
.die
== b
->v
.val_die_ref
.die
;
1403 case dw_val_class_fde_ref
:
1404 return a
->v
.val_fde_index
== b
->v
.val_fde_index
;
1405 case dw_val_class_lbl_id
:
1406 case dw_val_class_lineptr
:
1407 case dw_val_class_macptr
:
1408 case dw_val_class_loclistsptr
:
1409 case dw_val_class_high_pc
:
1410 return strcmp (a
->v
.val_lbl_id
, b
->v
.val_lbl_id
) == 0;
1411 case dw_val_class_str
:
1412 return a
->v
.val_str
== b
->v
.val_str
;
1413 case dw_val_class_flag
:
1414 return a
->v
.val_flag
== b
->v
.val_flag
;
1415 case dw_val_class_file
:
1416 case dw_val_class_file_implicit
:
1417 return a
->v
.val_file
== b
->v
.val_file
;
1418 case dw_val_class_decl_ref
:
1419 return a
->v
.val_decl_ref
== b
->v
.val_decl_ref
;
1421 case dw_val_class_const_double
:
1422 return (a
->v
.val_double
.high
== b
->v
.val_double
.high
1423 && a
->v
.val_double
.low
== b
->v
.val_double
.low
);
1425 case dw_val_class_wide_int
:
1426 return *a
->v
.val_wide
== *b
->v
.val_wide
;
1428 case dw_val_class_vec
:
1430 size_t a_len
= a
->v
.val_vec
.elt_size
* a
->v
.val_vec
.length
;
1431 size_t b_len
= b
->v
.val_vec
.elt_size
* b
->v
.val_vec
.length
;
1433 return (a_len
== b_len
1434 && !memcmp (a
->v
.val_vec
.array
, b
->v
.val_vec
.array
, a_len
));
1437 case dw_val_class_data8
:
1438 return memcmp (a
->v
.val_data8
, b
->v
.val_data8
, 8) == 0;
1440 case dw_val_class_vms_delta
:
1441 return (!strcmp (a
->v
.val_vms_delta
.lbl1
, b
->v
.val_vms_delta
.lbl1
)
1442 && !strcmp (a
->v
.val_vms_delta
.lbl1
, b
->v
.val_vms_delta
.lbl1
));
1444 case dw_val_class_discr_value
:
1445 return (a
->v
.val_discr_value
.pos
== b
->v
.val_discr_value
.pos
1446 && a
->v
.val_discr_value
.v
.uval
== b
->v
.val_discr_value
.v
.uval
);
1447 case dw_val_class_discr_list
:
1448 /* It makes no sense comparing two discriminant value lists. */
1454 /* Compare two location atoms for exact equality. */
1457 loc_descr_equal_p_1 (dw_loc_descr_ref a
, dw_loc_descr_ref b
)
1459 if (a
->dw_loc_opc
!= b
->dw_loc_opc
)
1462 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1463 address size, but since we always allocate cleared storage it
1464 should be zero for other types of locations. */
1465 if (a
->dtprel
!= b
->dtprel
)
1468 return (dw_val_equal_p (&a
->dw_loc_oprnd1
, &b
->dw_loc_oprnd1
)
1469 && dw_val_equal_p (&a
->dw_loc_oprnd2
, &b
->dw_loc_oprnd2
));
1472 /* Compare two complete location expressions for exact equality. */
1475 loc_descr_equal_p (dw_loc_descr_ref a
, dw_loc_descr_ref b
)
1481 if (a
== NULL
|| b
== NULL
)
1483 if (!loc_descr_equal_p_1 (a
, b
))
1492 /* Add a constant OFFSET to a location expression. */
1495 loc_descr_plus_const (dw_loc_descr_ref
*list_head
, HOST_WIDE_INT offset
)
1497 dw_loc_descr_ref loc
;
1500 gcc_assert (*list_head
!= NULL
);
1505 /* Find the end of the chain. */
1506 for (loc
= *list_head
; loc
->dw_loc_next
!= NULL
; loc
= loc
->dw_loc_next
)
1510 if (loc
->dw_loc_opc
== DW_OP_fbreg
1511 || (loc
->dw_loc_opc
>= DW_OP_breg0
&& loc
->dw_loc_opc
<= DW_OP_breg31
))
1512 p
= &loc
->dw_loc_oprnd1
.v
.val_int
;
1513 else if (loc
->dw_loc_opc
== DW_OP_bregx
)
1514 p
= &loc
->dw_loc_oprnd2
.v
.val_int
;
1516 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1517 offset. Don't optimize if an signed integer overflow would happen. */
1519 && ((offset
> 0 && *p
<= INTTYPE_MAXIMUM (HOST_WIDE_INT
) - offset
)
1520 || (offset
< 0 && *p
>= INTTYPE_MINIMUM (HOST_WIDE_INT
) - offset
)))
1523 else if (offset
> 0)
1524 loc
->dw_loc_next
= new_loc_descr (DW_OP_plus_uconst
, offset
, 0);
1529 = uint_loc_descriptor (-(unsigned HOST_WIDE_INT
) offset
);
1530 add_loc_descr (&loc
->dw_loc_next
, new_loc_descr (DW_OP_minus
, 0, 0));
1534 /* Add a constant OFFSET to a location list. */
1537 loc_list_plus_const (dw_loc_list_ref list_head
, HOST_WIDE_INT offset
)
1540 for (d
= list_head
; d
!= NULL
; d
= d
->dw_loc_next
)
1541 loc_descr_plus_const (&d
->expr
, offset
);
1544 #define DWARF_REF_SIZE \
1545 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : DWARF_OFFSET_SIZE)
1547 /* The number of bits that can be encoded by largest DW_FORM_dataN.
1548 In DWARF4 and earlier it is DW_FORM_data8 with 64 bits, in DWARF5
1549 DW_FORM_data16 with 128 bits. */
1550 #define DWARF_LARGEST_DATA_FORM_BITS \
1551 (dwarf_version >= 5 ? 128 : 64)
1553 /* Utility inline function for construction of ops that were GNU extension
1555 static inline enum dwarf_location_atom
1556 dwarf_OP (enum dwarf_location_atom op
)
1560 case DW_OP_implicit_pointer
:
1561 if (dwarf_version
< 5)
1562 return DW_OP_GNU_implicit_pointer
;
1565 case DW_OP_entry_value
:
1566 if (dwarf_version
< 5)
1567 return DW_OP_GNU_entry_value
;
1570 case DW_OP_const_type
:
1571 if (dwarf_version
< 5)
1572 return DW_OP_GNU_const_type
;
1575 case DW_OP_regval_type
:
1576 if (dwarf_version
< 5)
1577 return DW_OP_GNU_regval_type
;
1580 case DW_OP_deref_type
:
1581 if (dwarf_version
< 5)
1582 return DW_OP_GNU_deref_type
;
1586 if (dwarf_version
< 5)
1587 return DW_OP_GNU_convert
;
1590 case DW_OP_reinterpret
:
1591 if (dwarf_version
< 5)
1592 return DW_OP_GNU_reinterpret
;
1601 /* Similarly for attributes. */
1602 static inline enum dwarf_attribute
1603 dwarf_AT (enum dwarf_attribute at
)
1607 case DW_AT_call_return_pc
:
1608 if (dwarf_version
< 5)
1609 return DW_AT_low_pc
;
1612 case DW_AT_call_tail_call
:
1613 if (dwarf_version
< 5)
1614 return DW_AT_GNU_tail_call
;
1617 case DW_AT_call_origin
:
1618 if (dwarf_version
< 5)
1619 return DW_AT_abstract_origin
;
1622 case DW_AT_call_target
:
1623 if (dwarf_version
< 5)
1624 return DW_AT_GNU_call_site_target
;
1627 case DW_AT_call_target_clobbered
:
1628 if (dwarf_version
< 5)
1629 return DW_AT_GNU_call_site_target_clobbered
;
1632 case DW_AT_call_parameter
:
1633 if (dwarf_version
< 5)
1634 return DW_AT_abstract_origin
;
1637 case DW_AT_call_value
:
1638 if (dwarf_version
< 5)
1639 return DW_AT_GNU_call_site_value
;
1642 case DW_AT_call_data_value
:
1643 if (dwarf_version
< 5)
1644 return DW_AT_GNU_call_site_data_value
;
1647 case DW_AT_call_all_calls
:
1648 if (dwarf_version
< 5)
1649 return DW_AT_GNU_all_call_sites
;
1652 case DW_AT_call_all_tail_calls
:
1653 if (dwarf_version
< 5)
1654 return DW_AT_GNU_all_tail_call_sites
;
1657 case DW_AT_dwo_name
:
1658 if (dwarf_version
< 5)
1659 return DW_AT_GNU_dwo_name
;
1668 /* And similarly for tags. */
1669 static inline enum dwarf_tag
1670 dwarf_TAG (enum dwarf_tag tag
)
1674 case DW_TAG_call_site
:
1675 if (dwarf_version
< 5)
1676 return DW_TAG_GNU_call_site
;
1679 case DW_TAG_call_site_parameter
:
1680 if (dwarf_version
< 5)
1681 return DW_TAG_GNU_call_site_parameter
;
1690 static unsigned long int get_base_type_offset (dw_die_ref
);
1692 /* Return the size of a location descriptor. */
1694 static unsigned long
1695 size_of_loc_descr (dw_loc_descr_ref loc
)
1697 unsigned long size
= 1;
1699 switch (loc
->dw_loc_opc
)
1702 size
+= DWARF2_ADDR_SIZE
;
1704 case DW_OP_GNU_addr_index
:
1705 case DW_OP_GNU_const_index
:
1706 gcc_assert (loc
->dw_loc_oprnd1
.val_entry
->index
!= NO_INDEX_ASSIGNED
);
1707 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.val_entry
->index
);
1726 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1729 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
1734 case DW_OP_plus_uconst
:
1735 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1773 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
1776 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1779 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
1782 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1783 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
1786 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1788 case DW_OP_bit_piece
:
1789 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1790 size
+= size_of_uleb128 (loc
->dw_loc_oprnd2
.v
.val_unsigned
);
1792 case DW_OP_deref_size
:
1793 case DW_OP_xderef_size
:
1802 case DW_OP_call_ref
:
1803 case DW_OP_GNU_variable_value
:
1804 size
+= DWARF_REF_SIZE
;
1806 case DW_OP_implicit_value
:
1807 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
)
1808 + loc
->dw_loc_oprnd1
.v
.val_unsigned
;
1810 case DW_OP_implicit_pointer
:
1811 case DW_OP_GNU_implicit_pointer
:
1812 size
+= DWARF_REF_SIZE
+ size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
1814 case DW_OP_entry_value
:
1815 case DW_OP_GNU_entry_value
:
1817 unsigned long op_size
= size_of_locs (loc
->dw_loc_oprnd1
.v
.val_loc
);
1818 size
+= size_of_uleb128 (op_size
) + op_size
;
1821 case DW_OP_const_type
:
1822 case DW_OP_GNU_const_type
:
1825 = get_base_type_offset (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
);
1826 size
+= size_of_uleb128 (o
) + 1;
1827 switch (loc
->dw_loc_oprnd2
.val_class
)
1829 case dw_val_class_vec
:
1830 size
+= loc
->dw_loc_oprnd2
.v
.val_vec
.length
1831 * loc
->dw_loc_oprnd2
.v
.val_vec
.elt_size
;
1833 case dw_val_class_const
:
1834 size
+= HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
;
1836 case dw_val_class_const_double
:
1837 size
+= HOST_BITS_PER_DOUBLE_INT
/ BITS_PER_UNIT
;
1839 case dw_val_class_wide_int
:
1840 size
+= (get_full_len (*loc
->dw_loc_oprnd2
.v
.val_wide
)
1841 * HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
);
1848 case DW_OP_regval_type
:
1849 case DW_OP_GNU_regval_type
:
1852 = get_base_type_offset (loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
);
1853 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
)
1854 + size_of_uleb128 (o
);
1857 case DW_OP_deref_type
:
1858 case DW_OP_GNU_deref_type
:
1861 = get_base_type_offset (loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
);
1862 size
+= 1 + size_of_uleb128 (o
);
1866 case DW_OP_reinterpret
:
1867 case DW_OP_GNU_convert
:
1868 case DW_OP_GNU_reinterpret
:
1869 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_unsigned_const
)
1870 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1874 = get_base_type_offset (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
);
1875 size
+= size_of_uleb128 (o
);
1878 case DW_OP_GNU_parameter_ref
:
1888 /* Return the size of a series of location descriptors. */
1891 size_of_locs (dw_loc_descr_ref loc
)
1896 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
1897 field, to avoid writing to a PCH file. */
1898 for (size
= 0, l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
1900 if (l
->dw_loc_opc
== DW_OP_skip
|| l
->dw_loc_opc
== DW_OP_bra
)
1902 size
+= size_of_loc_descr (l
);
1907 for (size
= 0, l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
1909 l
->dw_loc_addr
= size
;
1910 size
+= size_of_loc_descr (l
);
1916 /* Return the size of the value in a DW_AT_discr_value attribute. */
1919 size_of_discr_value (dw_discr_value
*discr_value
)
1921 if (discr_value
->pos
)
1922 return size_of_uleb128 (discr_value
->v
.uval
);
1924 return size_of_sleb128 (discr_value
->v
.sval
);
1927 /* Return the size of the value in a DW_AT_discr_list attribute. */
1930 size_of_discr_list (dw_discr_list_ref discr_list
)
1934 for (dw_discr_list_ref list
= discr_list
;
1936 list
= list
->dw_discr_next
)
1938 /* One byte for the discriminant value descriptor, and then one or two
1939 LEB128 numbers, depending on whether it's a single case label or a
1942 size
+= size_of_discr_value (&list
->dw_discr_lower_bound
);
1943 if (list
->dw_discr_range
!= 0)
1944 size
+= size_of_discr_value (&list
->dw_discr_upper_bound
);
1949 static HOST_WIDE_INT
extract_int (const unsigned char *, unsigned);
1950 static void get_ref_die_offset_label (char *, dw_die_ref
);
1951 static unsigned long int get_ref_die_offset (dw_die_ref
);
1953 /* Output location description stack opcode's operands (if any).
1954 The for_eh_or_skip parameter controls whether register numbers are
1955 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
1956 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
1957 info). This should be suppressed for the cases that have not been converted
1958 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
1961 output_loc_operands (dw_loc_descr_ref loc
, int for_eh_or_skip
)
1963 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
1964 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
1966 switch (loc
->dw_loc_opc
)
1968 #ifdef DWARF2_DEBUGGING_INFO
1971 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
1976 gcc_assert (targetm
.asm_out
.output_dwarf_dtprel
);
1977 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
, 4,
1979 fputc ('\n', asm_out_file
);
1984 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
1989 gcc_assert (targetm
.asm_out
.output_dwarf_dtprel
);
1990 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
, 8,
1992 fputc ('\n', asm_out_file
);
1997 gcc_assert (HOST_BITS_PER_WIDE_INT
>= 64);
1998 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
2005 gcc_assert (val1
->val_class
== dw_val_class_loc
);
2006 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
2008 dw2_asm_output_data (2, offset
, NULL
);
2011 case DW_OP_implicit_value
:
2012 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2013 switch (val2
->val_class
)
2015 case dw_val_class_const
:
2016 dw2_asm_output_data (val1
->v
.val_unsigned
, val2
->v
.val_int
, NULL
);
2018 case dw_val_class_vec
:
2020 unsigned int elt_size
= val2
->v
.val_vec
.elt_size
;
2021 unsigned int len
= val2
->v
.val_vec
.length
;
2025 if (elt_size
> sizeof (HOST_WIDE_INT
))
2030 for (i
= 0, p
= (unsigned char *) val2
->v
.val_vec
.array
;
2033 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
2034 "fp or vector constant word %u", i
);
2037 case dw_val_class_const_double
:
2039 unsigned HOST_WIDE_INT first
, second
;
2041 if (WORDS_BIG_ENDIAN
)
2043 first
= val2
->v
.val_double
.high
;
2044 second
= val2
->v
.val_double
.low
;
2048 first
= val2
->v
.val_double
.low
;
2049 second
= val2
->v
.val_double
.high
;
2051 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
2053 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
2057 case dw_val_class_wide_int
:
2060 int len
= get_full_len (*val2
->v
.val_wide
);
2061 if (WORDS_BIG_ENDIAN
)
2062 for (i
= len
- 1; i
>= 0; --i
)
2063 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
2064 val2
->v
.val_wide
->elt (i
), NULL
);
2066 for (i
= 0; i
< len
; ++i
)
2067 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
2068 val2
->v
.val_wide
->elt (i
), NULL
);
2071 case dw_val_class_addr
:
2072 gcc_assert (val1
->v
.val_unsigned
== DWARF2_ADDR_SIZE
);
2073 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val2
->v
.val_addr
, NULL
);
2088 case DW_OP_implicit_value
:
2089 /* We currently don't make any attempt to make sure these are
2090 aligned properly like we do for the main unwind info, so
2091 don't support emitting things larger than a byte if we're
2092 only doing unwinding. */
2097 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2100 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2103 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2106 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2108 case DW_OP_plus_uconst
:
2109 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2143 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2147 unsigned r
= val1
->v
.val_unsigned
;
2148 if (for_eh_or_skip
>= 0)
2149 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2150 gcc_assert (size_of_uleb128 (r
)
2151 == size_of_uleb128 (val1
->v
.val_unsigned
));
2152 dw2_asm_output_data_uleb128 (r
, NULL
);
2156 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2160 unsigned r
= val1
->v
.val_unsigned
;
2161 if (for_eh_or_skip
>= 0)
2162 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2163 gcc_assert (size_of_uleb128 (r
)
2164 == size_of_uleb128 (val1
->v
.val_unsigned
));
2165 dw2_asm_output_data_uleb128 (r
, NULL
);
2166 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
2170 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2172 case DW_OP_bit_piece
:
2173 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2174 dw2_asm_output_data_uleb128 (val2
->v
.val_unsigned
, NULL
);
2176 case DW_OP_deref_size
:
2177 case DW_OP_xderef_size
:
2178 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2184 if (targetm
.asm_out
.output_dwarf_dtprel
)
2186 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
,
2189 fputc ('\n', asm_out_file
);
2196 #ifdef DWARF2_DEBUGGING_INFO
2197 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
2204 case DW_OP_GNU_addr_index
:
2205 case DW_OP_GNU_const_index
:
2206 gcc_assert (loc
->dw_loc_oprnd1
.val_entry
->index
!= NO_INDEX_ASSIGNED
);
2207 dw2_asm_output_data_uleb128 (loc
->dw_loc_oprnd1
.val_entry
->index
,
2208 "(index into .debug_addr)");
2214 unsigned long die_offset
2215 = get_ref_die_offset (val1
->v
.val_die_ref
.die
);
2216 /* Make sure the offset has been computed and that we can encode it as
2218 gcc_assert (die_offset
> 0
2219 && die_offset
<= (loc
->dw_loc_opc
== DW_OP_call2
2222 dw2_asm_output_data ((loc
->dw_loc_opc
== DW_OP_call2
) ? 2 : 4,
2227 case DW_OP_call_ref
:
2228 case DW_OP_GNU_variable_value
:
2230 char label
[MAX_ARTIFICIAL_LABEL_BYTES
2231 + HOST_BITS_PER_WIDE_INT
/ 2 + 2];
2232 gcc_assert (val1
->val_class
== dw_val_class_die_ref
);
2233 get_ref_die_offset_label (label
, val1
->v
.val_die_ref
.die
);
2234 dw2_asm_output_offset (DWARF_REF_SIZE
, label
, debug_info_section
, NULL
);
2238 case DW_OP_implicit_pointer
:
2239 case DW_OP_GNU_implicit_pointer
:
2241 char label
[MAX_ARTIFICIAL_LABEL_BYTES
2242 + HOST_BITS_PER_WIDE_INT
/ 2 + 2];
2243 gcc_assert (val1
->val_class
== dw_val_class_die_ref
);
2244 get_ref_die_offset_label (label
, val1
->v
.val_die_ref
.die
);
2245 dw2_asm_output_offset (DWARF_REF_SIZE
, label
, debug_info_section
, NULL
);
2246 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
2250 case DW_OP_entry_value
:
2251 case DW_OP_GNU_entry_value
:
2252 dw2_asm_output_data_uleb128 (size_of_locs (val1
->v
.val_loc
), NULL
);
2253 output_loc_sequence (val1
->v
.val_loc
, for_eh_or_skip
);
2256 case DW_OP_const_type
:
2257 case DW_OP_GNU_const_type
:
2259 unsigned long o
= get_base_type_offset (val1
->v
.val_die_ref
.die
), l
;
2261 dw2_asm_output_data_uleb128 (o
, NULL
);
2262 switch (val2
->val_class
)
2264 case dw_val_class_const
:
2265 l
= HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
2266 dw2_asm_output_data (1, l
, NULL
);
2267 dw2_asm_output_data (l
, val2
->v
.val_int
, NULL
);
2269 case dw_val_class_vec
:
2271 unsigned int elt_size
= val2
->v
.val_vec
.elt_size
;
2272 unsigned int len
= val2
->v
.val_vec
.length
;
2277 dw2_asm_output_data (1, l
, NULL
);
2278 if (elt_size
> sizeof (HOST_WIDE_INT
))
2283 for (i
= 0, p
= (unsigned char *) val2
->v
.val_vec
.array
;
2286 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
2287 "fp or vector constant word %u", i
);
2290 case dw_val_class_const_double
:
2292 unsigned HOST_WIDE_INT first
, second
;
2293 l
= HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
2295 dw2_asm_output_data (1, 2 * l
, NULL
);
2296 if (WORDS_BIG_ENDIAN
)
2298 first
= val2
->v
.val_double
.high
;
2299 second
= val2
->v
.val_double
.low
;
2303 first
= val2
->v
.val_double
.low
;
2304 second
= val2
->v
.val_double
.high
;
2306 dw2_asm_output_data (l
, first
, NULL
);
2307 dw2_asm_output_data (l
, second
, NULL
);
2310 case dw_val_class_wide_int
:
2313 int len
= get_full_len (*val2
->v
.val_wide
);
2314 l
= HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
2316 dw2_asm_output_data (1, len
* l
, NULL
);
2317 if (WORDS_BIG_ENDIAN
)
2318 for (i
= len
- 1; i
>= 0; --i
)
2319 dw2_asm_output_data (l
, val2
->v
.val_wide
->elt (i
), NULL
);
2321 for (i
= 0; i
< len
; ++i
)
2322 dw2_asm_output_data (l
, val2
->v
.val_wide
->elt (i
), NULL
);
2330 case DW_OP_regval_type
:
2331 case DW_OP_GNU_regval_type
:
2333 unsigned r
= val1
->v
.val_unsigned
;
2334 unsigned long o
= get_base_type_offset (val2
->v
.val_die_ref
.die
);
2336 if (for_eh_or_skip
>= 0)
2338 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2339 gcc_assert (size_of_uleb128 (r
)
2340 == size_of_uleb128 (val1
->v
.val_unsigned
));
2342 dw2_asm_output_data_uleb128 (r
, NULL
);
2343 dw2_asm_output_data_uleb128 (o
, NULL
);
2346 case DW_OP_deref_type
:
2347 case DW_OP_GNU_deref_type
:
2349 unsigned long o
= get_base_type_offset (val2
->v
.val_die_ref
.die
);
2351 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2352 dw2_asm_output_data_uleb128 (o
, NULL
);
2356 case DW_OP_reinterpret
:
2357 case DW_OP_GNU_convert
:
2358 case DW_OP_GNU_reinterpret
:
2359 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_unsigned_const
)
2360 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2363 unsigned long o
= get_base_type_offset (val1
->v
.val_die_ref
.die
);
2365 dw2_asm_output_data_uleb128 (o
, NULL
);
2369 case DW_OP_GNU_parameter_ref
:
2372 gcc_assert (val1
->val_class
== dw_val_class_die_ref
);
2373 o
= get_ref_die_offset (val1
->v
.val_die_ref
.die
);
2374 dw2_asm_output_data (4, o
, NULL
);
2379 /* Other codes have no operands. */
2384 /* Output a sequence of location operations.
2385 The for_eh_or_skip parameter controls whether register numbers are
2386 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2387 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2388 info). This should be suppressed for the cases that have not been converted
2389 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2392 output_loc_sequence (dw_loc_descr_ref loc
, int for_eh_or_skip
)
2394 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
2396 enum dwarf_location_atom opc
= loc
->dw_loc_opc
;
2397 /* Output the opcode. */
2398 if (for_eh_or_skip
>= 0
2399 && opc
>= DW_OP_breg0
&& opc
<= DW_OP_breg31
)
2401 unsigned r
= (opc
- DW_OP_breg0
);
2402 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2403 gcc_assert (r
<= 31);
2404 opc
= (enum dwarf_location_atom
) (DW_OP_breg0
+ r
);
2406 else if (for_eh_or_skip
>= 0
2407 && opc
>= DW_OP_reg0
&& opc
<= DW_OP_reg31
)
2409 unsigned r
= (opc
- DW_OP_reg0
);
2410 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2411 gcc_assert (r
<= 31);
2412 opc
= (enum dwarf_location_atom
) (DW_OP_reg0
+ r
);
2415 dw2_asm_output_data (1, opc
,
2416 "%s", dwarf_stack_op_name (opc
));
2418 /* Output the operand(s) (if any). */
2419 output_loc_operands (loc
, for_eh_or_skip
);
2423 /* Output location description stack opcode's operands (if any).
2424 The output is single bytes on a line, suitable for .cfi_escape. */
2427 output_loc_operands_raw (dw_loc_descr_ref loc
)
2429 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
2430 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
2432 switch (loc
->dw_loc_opc
)
2435 case DW_OP_GNU_addr_index
:
2436 case DW_OP_GNU_const_index
:
2437 case DW_OP_implicit_value
:
2438 /* We cannot output addresses in .cfi_escape, only bytes. */
2444 case DW_OP_deref_size
:
2445 case DW_OP_xderef_size
:
2446 fputc (',', asm_out_file
);
2447 dw2_asm_output_data_raw (1, val1
->v
.val_int
);
2452 fputc (',', asm_out_file
);
2453 dw2_asm_output_data_raw (2, val1
->v
.val_int
);
2458 fputc (',', asm_out_file
);
2459 dw2_asm_output_data_raw (4, val1
->v
.val_int
);
2464 gcc_assert (HOST_BITS_PER_WIDE_INT
>= 64);
2465 fputc (',', asm_out_file
);
2466 dw2_asm_output_data_raw (8, val1
->v
.val_int
);
2474 gcc_assert (val1
->val_class
== dw_val_class_loc
);
2475 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
2477 fputc (',', asm_out_file
);
2478 dw2_asm_output_data_raw (2, offset
);
2484 unsigned r
= DWARF2_FRAME_REG_OUT (val1
->v
.val_unsigned
, 1);
2485 gcc_assert (size_of_uleb128 (r
)
2486 == size_of_uleb128 (val1
->v
.val_unsigned
));
2487 fputc (',', asm_out_file
);
2488 dw2_asm_output_data_uleb128_raw (r
);
2493 case DW_OP_plus_uconst
:
2495 fputc (',', asm_out_file
);
2496 dw2_asm_output_data_uleb128_raw (val1
->v
.val_unsigned
);
2499 case DW_OP_bit_piece
:
2500 fputc (',', asm_out_file
);
2501 dw2_asm_output_data_uleb128_raw (val1
->v
.val_unsigned
);
2502 dw2_asm_output_data_uleb128_raw (val2
->v
.val_unsigned
);
2539 fputc (',', asm_out_file
);
2540 dw2_asm_output_data_sleb128_raw (val1
->v
.val_int
);
2545 unsigned r
= DWARF2_FRAME_REG_OUT (val1
->v
.val_unsigned
, 1);
2546 gcc_assert (size_of_uleb128 (r
)
2547 == size_of_uleb128 (val1
->v
.val_unsigned
));
2548 fputc (',', asm_out_file
);
2549 dw2_asm_output_data_uleb128_raw (r
);
2550 fputc (',', asm_out_file
);
2551 dw2_asm_output_data_sleb128_raw (val2
->v
.val_int
);
2555 case DW_OP_implicit_pointer
:
2556 case DW_OP_entry_value
:
2557 case DW_OP_const_type
:
2558 case DW_OP_regval_type
:
2559 case DW_OP_deref_type
:
2561 case DW_OP_reinterpret
:
2562 case DW_OP_GNU_implicit_pointer
:
2563 case DW_OP_GNU_entry_value
:
2564 case DW_OP_GNU_const_type
:
2565 case DW_OP_GNU_regval_type
:
2566 case DW_OP_GNU_deref_type
:
2567 case DW_OP_GNU_convert
:
2568 case DW_OP_GNU_reinterpret
:
2569 case DW_OP_GNU_parameter_ref
:
2574 /* Other codes have no operands. */
2580 output_loc_sequence_raw (dw_loc_descr_ref loc
)
2584 enum dwarf_location_atom opc
= loc
->dw_loc_opc
;
2585 /* Output the opcode. */
2586 if (opc
>= DW_OP_breg0
&& opc
<= DW_OP_breg31
)
2588 unsigned r
= (opc
- DW_OP_breg0
);
2589 r
= DWARF2_FRAME_REG_OUT (r
, 1);
2590 gcc_assert (r
<= 31);
2591 opc
= (enum dwarf_location_atom
) (DW_OP_breg0
+ r
);
2593 else if (opc
>= DW_OP_reg0
&& opc
<= DW_OP_reg31
)
2595 unsigned r
= (opc
- DW_OP_reg0
);
2596 r
= DWARF2_FRAME_REG_OUT (r
, 1);
2597 gcc_assert (r
<= 31);
2598 opc
= (enum dwarf_location_atom
) (DW_OP_reg0
+ r
);
2600 /* Output the opcode. */
2601 fprintf (asm_out_file
, "%#x", opc
);
2602 output_loc_operands_raw (loc
);
2604 if (!loc
->dw_loc_next
)
2606 loc
= loc
->dw_loc_next
;
2608 fputc (',', asm_out_file
);
2612 /* This function builds a dwarf location descriptor sequence from a
2613 dw_cfa_location, adding the given OFFSET to the result of the
2616 struct dw_loc_descr_node
*
2617 build_cfa_loc (dw_cfa_location
*cfa
, HOST_WIDE_INT offset
)
2619 struct dw_loc_descr_node
*head
, *tmp
;
2621 offset
+= cfa
->offset
;
2625 head
= new_reg_loc_descr (cfa
->reg
, cfa
->base_offset
);
2626 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
2627 head
->dw_loc_oprnd1
.val_entry
= NULL
;
2628 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
2629 add_loc_descr (&head
, tmp
);
2632 tmp
= new_loc_descr (DW_OP_plus_uconst
, offset
, 0);
2633 add_loc_descr (&head
, tmp
);
2637 head
= new_reg_loc_descr (cfa
->reg
, offset
);
2642 /* This function builds a dwarf location descriptor sequence for
2643 the address at OFFSET from the CFA when stack is aligned to
2646 struct dw_loc_descr_node
*
2647 build_cfa_aligned_loc (dw_cfa_location
*cfa
,
2648 HOST_WIDE_INT offset
, HOST_WIDE_INT alignment
)
2650 struct dw_loc_descr_node
*head
;
2651 unsigned int dwarf_fp
2652 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
);
2654 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2655 if (cfa
->reg
== HARD_FRAME_POINTER_REGNUM
&& cfa
->indirect
== 0)
2657 head
= new_reg_loc_descr (dwarf_fp
, 0);
2658 add_loc_descr (&head
, int_loc_descriptor (alignment
));
2659 add_loc_descr (&head
, new_loc_descr (DW_OP_and
, 0, 0));
2660 loc_descr_plus_const (&head
, offset
);
2663 head
= new_reg_loc_descr (dwarf_fp
, offset
);
2667 /* And now, the support for symbolic debugging information. */
2669 /* .debug_str support. */
2671 static void dwarf2out_init (const char *);
2672 static void dwarf2out_finish (const char *);
2673 static void dwarf2out_early_finish (const char *);
2674 static void dwarf2out_assembly_start (void);
2675 static void dwarf2out_define (unsigned int, const char *);
2676 static void dwarf2out_undef (unsigned int, const char *);
2677 static void dwarf2out_start_source_file (unsigned, const char *);
2678 static void dwarf2out_end_source_file (unsigned);
2679 static void dwarf2out_function_decl (tree
);
2680 static void dwarf2out_begin_block (unsigned, unsigned);
2681 static void dwarf2out_end_block (unsigned, unsigned);
2682 static bool dwarf2out_ignore_block (const_tree
);
2683 static void dwarf2out_early_global_decl (tree
);
2684 static void dwarf2out_late_global_decl (tree
);
2685 static void dwarf2out_type_decl (tree
, int);
2686 static void dwarf2out_imported_module_or_decl (tree
, tree
, tree
, bool, bool);
2687 static void dwarf2out_imported_module_or_decl_1 (tree
, tree
, tree
,
2689 static void dwarf2out_abstract_function (tree
);
2690 static void dwarf2out_var_location (rtx_insn
*);
2691 static void dwarf2out_size_function (tree
);
2692 static void dwarf2out_begin_function (tree
);
2693 static void dwarf2out_end_function (unsigned int);
2694 static void dwarf2out_register_main_translation_unit (tree unit
);
2695 static void dwarf2out_set_name (tree
, tree
);
2696 static void dwarf2out_register_external_die (tree decl
, const char *sym
,
2697 unsigned HOST_WIDE_INT off
);
2698 static bool dwarf2out_die_ref_for_decl (tree decl
, const char **sym
,
2699 unsigned HOST_WIDE_INT
*off
);
2701 /* The debug hooks structure. */
2703 const struct gcc_debug_hooks dwarf2_debug_hooks
=
2707 dwarf2out_early_finish
,
2708 dwarf2out_assembly_start
,
2711 dwarf2out_start_source_file
,
2712 dwarf2out_end_source_file
,
2713 dwarf2out_begin_block
,
2714 dwarf2out_end_block
,
2715 dwarf2out_ignore_block
,
2716 dwarf2out_source_line
,
2717 dwarf2out_begin_prologue
,
2718 #if VMS_DEBUGGING_INFO
2719 dwarf2out_vms_end_prologue
,
2720 dwarf2out_vms_begin_epilogue
,
2722 debug_nothing_int_charstar
,
2723 debug_nothing_int_charstar
,
2725 dwarf2out_end_epilogue
,
2726 dwarf2out_begin_function
,
2727 dwarf2out_end_function
, /* end_function */
2728 dwarf2out_register_main_translation_unit
,
2729 dwarf2out_function_decl
, /* function_decl */
2730 dwarf2out_early_global_decl
,
2731 dwarf2out_late_global_decl
,
2732 dwarf2out_type_decl
, /* type_decl */
2733 dwarf2out_imported_module_or_decl
,
2734 dwarf2out_die_ref_for_decl
,
2735 dwarf2out_register_external_die
,
2736 debug_nothing_tree
, /* deferred_inline_function */
2737 /* The DWARF 2 backend tries to reduce debugging bloat by not
2738 emitting the abstract description of inline functions until
2739 something tries to reference them. */
2740 dwarf2out_abstract_function
, /* outlining_inline_function */
2741 debug_nothing_rtx_code_label
, /* label */
2742 debug_nothing_int
, /* handle_pch */
2743 dwarf2out_var_location
,
2744 dwarf2out_size_function
, /* size_function */
2745 dwarf2out_switch_text_section
,
2747 1, /* start_end_main_source_file */
2748 TYPE_SYMTAB_IS_DIE
/* tree_type_symtab_field */
2751 const struct gcc_debug_hooks dwarf2_lineno_debug_hooks
=
2754 debug_nothing_charstar
,
2755 debug_nothing_charstar
,
2756 dwarf2out_assembly_start
,
2757 debug_nothing_int_charstar
,
2758 debug_nothing_int_charstar
,
2759 debug_nothing_int_charstar
,
2761 debug_nothing_int_int
, /* begin_block */
2762 debug_nothing_int_int
, /* end_block */
2763 debug_true_const_tree
, /* ignore_block */
2764 dwarf2out_source_line
, /* source_line */
2765 debug_nothing_int_int_charstar
, /* begin_prologue */
2766 debug_nothing_int_charstar
, /* end_prologue */
2767 debug_nothing_int_charstar
, /* begin_epilogue */
2768 debug_nothing_int_charstar
, /* end_epilogue */
2769 debug_nothing_tree
, /* begin_function */
2770 debug_nothing_int
, /* end_function */
2771 debug_nothing_tree
, /* register_main_translation_unit */
2772 debug_nothing_tree
, /* function_decl */
2773 debug_nothing_tree
, /* early_global_decl */
2774 debug_nothing_tree
, /* late_global_decl */
2775 debug_nothing_tree_int
, /* type_decl */
2776 debug_nothing_tree_tree_tree_bool_bool
,/* imported_module_or_decl */
2777 debug_false_tree_charstarstar_uhwistar
,/* die_ref_for_decl */
2778 debug_nothing_tree_charstar_uhwi
, /* register_external_die */
2779 debug_nothing_tree
, /* deferred_inline_function */
2780 debug_nothing_tree
, /* outlining_inline_function */
2781 debug_nothing_rtx_code_label
, /* label */
2782 debug_nothing_int
, /* handle_pch */
2783 debug_nothing_rtx_insn
, /* var_location */
2784 debug_nothing_tree
, /* size_function */
2785 debug_nothing_void
, /* switch_text_section */
2786 debug_nothing_tree_tree
, /* set_name */
2787 0, /* start_end_main_source_file */
2788 TYPE_SYMTAB_IS_ADDRESS
/* tree_type_symtab_field */
2791 /* NOTE: In the comments in this file, many references are made to
2792 "Debugging Information Entries". This term is abbreviated as `DIE'
2793 throughout the remainder of this file. */
2795 /* An internal representation of the DWARF output is built, and then
2796 walked to generate the DWARF debugging info. The walk of the internal
2797 representation is done after the entire program has been compiled.
2798 The types below are used to describe the internal representation. */
2800 /* Whether to put type DIEs into their own section .debug_types instead
2801 of making them part of the .debug_info section. Only supported for
2802 Dwarf V4 or higher and the user didn't disable them through
2803 -fno-debug-types-section. It is more efficient to put them in a
2804 separate comdat sections since the linker will then be able to
2805 remove duplicates. But not all tools support .debug_types sections
2806 yet. For Dwarf V5 or higher .debug_types doesn't exist any more,
2807 it is DW_UT_type unit type in .debug_info section. */
2809 #define use_debug_types (dwarf_version >= 4 && flag_debug_types_section)
2811 /* Various DIE's use offsets relative to the beginning of the
2812 .debug_info section to refer to each other. */
2814 typedef long int dw_offset
;
2816 struct comdat_type_node
;
2818 /* The entries in the line_info table more-or-less mirror the opcodes
2819 that are used in the real dwarf line table. Arrays of these entries
2820 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
2823 enum dw_line_info_opcode
{
2824 /* Emit DW_LNE_set_address; the operand is the label index. */
2827 /* Emit a row to the matrix with the given line. This may be done
2828 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
2832 /* Emit a DW_LNS_set_file. */
2835 /* Emit a DW_LNS_set_column. */
2838 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
2841 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
2842 LI_set_prologue_end
,
2843 LI_set_epilogue_begin
,
2845 /* Emit a DW_LNE_set_discriminator. */
2846 LI_set_discriminator
2849 typedef struct GTY(()) dw_line_info_struct
{
2850 enum dw_line_info_opcode opcode
;
2852 } dw_line_info_entry
;
2855 struct GTY(()) dw_line_info_table
{
2856 /* The label that marks the end of this section. */
2857 const char *end_label
;
2859 /* The values for the last row of the matrix, as collected in the table.
2860 These are used to minimize the changes to the next row. */
2861 unsigned int file_num
;
2862 unsigned int line_num
;
2863 unsigned int column_num
;
2868 vec
<dw_line_info_entry
, va_gc
> *entries
;
2872 /* Each DIE attribute has a field specifying the attribute kind,
2873 a link to the next attribute in the chain, and an attribute value.
2874 Attributes are typically linked below the DIE they modify. */
2876 typedef struct GTY(()) dw_attr_struct
{
2877 enum dwarf_attribute dw_attr
;
2878 dw_val_node dw_attr_val
;
2883 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
2884 The children of each node form a circular list linked by
2885 die_sib. die_child points to the node *before* the "first" child node. */
2887 typedef struct GTY((chain_circular ("%h.die_sib"), for_user
)) die_struct
{
2888 union die_symbol_or_type_node
2890 const char * GTY ((tag ("0"))) die_symbol
;
2891 comdat_type_node
*GTY ((tag ("1"))) die_type_node
;
2893 GTY ((desc ("%0.comdat_type_p"))) die_id
;
2894 vec
<dw_attr_node
, va_gc
> *die_attr
;
2895 dw_die_ref die_parent
;
2896 dw_die_ref die_child
;
2898 dw_die_ref die_definition
; /* ref from a specification to its definition */
2899 dw_offset die_offset
;
2900 unsigned long die_abbrev
;
2902 unsigned int decl_id
;
2903 enum dwarf_tag die_tag
;
2904 /* Die is used and must not be pruned as unused. */
2905 BOOL_BITFIELD die_perennial_p
: 1;
2906 BOOL_BITFIELD comdat_type_p
: 1; /* DIE has a type signature */
2907 /* For an external ref to die_symbol if die_offset contains an extra
2908 offset to that symbol. */
2909 BOOL_BITFIELD with_offset
: 1;
2910 /* Whether this DIE was removed from the DIE tree, for example via
2911 prune_unused_types. We don't consider those present from the
2912 DIE lookup routines. */
2913 BOOL_BITFIELD removed
: 1;
2914 /* Lots of spare bits. */
2918 /* Set to TRUE while dwarf2out_early_global_decl is running. */
2919 static bool early_dwarf
;
2920 static bool early_dwarf_finished
;
2921 struct set_early_dwarf
{
2923 set_early_dwarf () : saved(early_dwarf
)
2925 gcc_assert (! early_dwarf_finished
);
2928 ~set_early_dwarf () { early_dwarf
= saved
; }
2931 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
2932 #define FOR_EACH_CHILD(die, c, expr) do { \
2933 c = die->die_child; \
2937 } while (c != die->die_child); \
2940 /* The pubname structure */
2942 typedef struct GTY(()) pubname_struct
{
2949 struct GTY(()) dw_ranges
{
2951 /* If this is positive, it's a block number, otherwise it's a
2952 bitwise-negated index into dw_ranges_by_label. */
2954 /* Index for the range list for DW_FORM_rnglistx. */
2955 unsigned int idx
: 31;
2956 /* True if this range might be possibly in a different section
2957 from previous entry. */
2958 unsigned int maybe_new_sec
: 1;
2961 /* A structure to hold a macinfo entry. */
2963 typedef struct GTY(()) macinfo_struct
{
2965 unsigned HOST_WIDE_INT lineno
;
2971 struct GTY(()) dw_ranges_by_label
{
2976 /* The comdat type node structure. */
2977 struct GTY(()) comdat_type_node
2979 dw_die_ref root_die
;
2980 dw_die_ref type_die
;
2981 dw_die_ref skeleton_die
;
2982 char signature
[DWARF_TYPE_SIGNATURE_SIZE
];
2983 comdat_type_node
*next
;
2986 /* A list of DIEs for which we can't determine ancestry (parent_die
2987 field) just yet. Later in dwarf2out_finish we will fill in the
2989 typedef struct GTY(()) limbo_die_struct
{
2991 /* The tree for which this DIE was created. We use this to
2992 determine ancestry later. */
2994 struct limbo_die_struct
*next
;
2998 typedef struct skeleton_chain_struct
3002 struct skeleton_chain_struct
*parent
;
3004 skeleton_chain_node
;
3006 /* Define a macro which returns nonzero for a TYPE_DECL which was
3007 implicitly generated for a type.
3009 Note that, unlike the C front-end (which generates a NULL named
3010 TYPE_DECL node for each complete tagged type, each array type,
3011 and each function type node created) the C++ front-end generates
3012 a _named_ TYPE_DECL node for each tagged type node created.
3013 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3014 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
3015 front-end, but for each type, tagged or not. */
3017 #define TYPE_DECL_IS_STUB(decl) \
3018 (DECL_NAME (decl) == NULL_TREE \
3019 || (DECL_ARTIFICIAL (decl) \
3020 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3021 /* This is necessary for stub decls that \
3022 appear in nested inline functions. */ \
3023 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3024 && (decl_ultimate_origin (decl) \
3025 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3027 /* Information concerning the compilation unit's programming
3028 language, and compiler version. */
3030 /* Fixed size portion of the DWARF compilation unit header. */
3031 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3032 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE \
3033 + (dwarf_version >= 5 ? 4 : 3))
3035 /* Fixed size portion of the DWARF comdat type unit header. */
3036 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
3037 (DWARF_COMPILE_UNIT_HEADER_SIZE \
3038 + DWARF_TYPE_SIGNATURE_SIZE + DWARF_OFFSET_SIZE)
3040 /* Fixed size portion of the DWARF skeleton compilation unit header. */
3041 #define DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE \
3042 (DWARF_COMPILE_UNIT_HEADER_SIZE + (dwarf_version >= 5 ? 8 : 0))
3044 /* Fixed size portion of public names info. */
3045 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3047 /* Fixed size portion of the address range info. */
3048 #define DWARF_ARANGES_HEADER_SIZE \
3049 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3050 DWARF2_ADDR_SIZE * 2) \
3051 - DWARF_INITIAL_LENGTH_SIZE)
3053 /* Size of padding portion in the address range info. It must be
3054 aligned to twice the pointer size. */
3055 #define DWARF_ARANGES_PAD_SIZE \
3056 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3057 DWARF2_ADDR_SIZE * 2) \
3058 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3060 /* Use assembler line directives if available. */
3061 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3062 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3063 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3065 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3069 /* Minimum line offset in a special line info. opcode.
3070 This value was chosen to give a reasonable range of values. */
3071 #define DWARF_LINE_BASE -10
3073 /* First special line opcode - leave room for the standard opcodes. */
3074 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
3076 /* Range of line offsets in a special line info. opcode. */
3077 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3079 /* Flag that indicates the initial value of the is_stmt_start flag.
3080 In the present implementation, we do not mark any lines as
3081 the beginning of a source statement, because that information
3082 is not made available by the GCC front-end. */
3083 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3085 /* Maximum number of operations per instruction bundle. */
3086 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
3087 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
3090 /* This location is used by calc_die_sizes() to keep track
3091 the offset of each DIE within the .debug_info section. */
3092 static unsigned long next_die_offset
;
3094 /* Record the root of the DIE's built for the current compilation unit. */
3095 static GTY(()) dw_die_ref single_comp_unit_die
;
3097 /* A list of type DIEs that have been separated into comdat sections. */
3098 static GTY(()) comdat_type_node
*comdat_type_list
;
3100 /* A list of CU DIEs that have been separated. */
3101 static GTY(()) limbo_die_node
*cu_die_list
;
3103 /* A list of DIEs with a NULL parent waiting to be relocated. */
3104 static GTY(()) limbo_die_node
*limbo_die_list
;
3106 /* A list of DIEs for which we may have to generate
3107 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
3108 static GTY(()) limbo_die_node
*deferred_asm_name
;
3110 struct dwarf_file_hasher
: ggc_ptr_hash
<dwarf_file_data
>
3112 typedef const char *compare_type
;
3114 static hashval_t
hash (dwarf_file_data
*);
3115 static bool equal (dwarf_file_data
*, const char *);
3118 /* Filenames referenced by this compilation unit. */
3119 static GTY(()) hash_table
<dwarf_file_hasher
> *file_table
;
3121 struct decl_die_hasher
: ggc_ptr_hash
<die_node
>
3123 typedef tree compare_type
;
3125 static hashval_t
hash (die_node
*);
3126 static bool equal (die_node
*, tree
);
3128 /* A hash table of references to DIE's that describe declarations.
3129 The key is a DECL_UID() which is a unique number identifying each decl. */
3130 static GTY (()) hash_table
<decl_die_hasher
> *decl_die_table
;
3132 struct GTY ((for_user
)) variable_value_struct
{
3133 unsigned int decl_id
;
3134 vec
<dw_die_ref
, va_gc
> *dies
;
3137 struct variable_value_hasher
: ggc_ptr_hash
<variable_value_struct
>
3139 typedef tree compare_type
;
3141 static hashval_t
hash (variable_value_struct
*);
3142 static bool equal (variable_value_struct
*, tree
);
3144 /* A hash table of DIEs that contain DW_OP_GNU_variable_value with
3145 dw_val_class_decl_ref class, indexed by FUNCTION_DECLs which is
3146 DECL_CONTEXT of the referenced VAR_DECLs. */
3147 static GTY (()) hash_table
<variable_value_hasher
> *variable_value_hash
;
3149 struct block_die_hasher
: ggc_ptr_hash
<die_struct
>
3151 static hashval_t
hash (die_struct
*);
3152 static bool equal (die_struct
*, die_struct
*);
3155 /* A hash table of references to DIE's that describe COMMON blocks.
3156 The key is DECL_UID() ^ die_parent. */
3157 static GTY (()) hash_table
<block_die_hasher
> *common_block_die_table
;
3159 typedef struct GTY(()) die_arg_entry_struct
{
3165 /* Node of the variable location list. */
3166 struct GTY ((chain_next ("%h.next"))) var_loc_node
{
3167 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
3168 EXPR_LIST chain. For small bitsizes, bitsize is encoded
3169 in mode of the EXPR_LIST node and first EXPR_LIST operand
3170 is either NOTE_INSN_VAR_LOCATION for a piece with a known
3171 location or NULL for padding. For larger bitsizes,
3172 mode is 0 and first operand is a CONCAT with bitsize
3173 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
3174 NULL as second operand. */
3176 const char * GTY (()) label
;
3177 struct var_loc_node
* GTY (()) next
;
3180 /* Variable location list. */
3181 struct GTY ((for_user
)) var_loc_list_def
{
3182 struct var_loc_node
* GTY (()) first
;
3184 /* Pointer to the last but one or last element of the
3185 chained list. If the list is empty, both first and
3186 last are NULL, if the list contains just one node
3187 or the last node certainly is not redundant, it points
3188 to the last node, otherwise points to the last but one.
3189 Do not mark it for GC because it is marked through the chain. */
3190 struct var_loc_node
* GTY ((skip ("%h"))) last
;
3192 /* Pointer to the last element before section switch,
3193 if NULL, either sections weren't switched or first
3194 is after section switch. */
3195 struct var_loc_node
* GTY ((skip ("%h"))) last_before_switch
;
3197 /* DECL_UID of the variable decl. */
3198 unsigned int decl_id
;
3200 typedef struct var_loc_list_def var_loc_list
;
3202 /* Call argument location list. */
3203 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node
{
3204 rtx
GTY (()) call_arg_loc_note
;
3205 const char * GTY (()) label
;
3206 tree
GTY (()) block
;
3208 rtx
GTY (()) symbol_ref
;
3209 struct call_arg_loc_node
* GTY (()) next
;
3213 struct decl_loc_hasher
: ggc_ptr_hash
<var_loc_list
>
3215 typedef const_tree compare_type
;
3217 static hashval_t
hash (var_loc_list
*);
3218 static bool equal (var_loc_list
*, const_tree
);
3221 /* Table of decl location linked lists. */
3222 static GTY (()) hash_table
<decl_loc_hasher
> *decl_loc_table
;
3224 /* Head and tail of call_arg_loc chain. */
3225 static GTY (()) struct call_arg_loc_node
*call_arg_locations
;
3226 static struct call_arg_loc_node
*call_arg_loc_last
;
3228 /* Number of call sites in the current function. */
3229 static int call_site_count
= -1;
3230 /* Number of tail call sites in the current function. */
3231 static int tail_call_site_count
= -1;
3233 /* A cached location list. */
3234 struct GTY ((for_user
)) cached_dw_loc_list_def
{
3235 /* The DECL_UID of the decl that this entry describes. */
3236 unsigned int decl_id
;
3238 /* The cached location list. */
3239 dw_loc_list_ref loc_list
;
3241 typedef struct cached_dw_loc_list_def cached_dw_loc_list
;
3243 struct dw_loc_list_hasher
: ggc_ptr_hash
<cached_dw_loc_list
>
3246 typedef const_tree compare_type
;
3248 static hashval_t
hash (cached_dw_loc_list
*);
3249 static bool equal (cached_dw_loc_list
*, const_tree
);
3252 /* Table of cached location lists. */
3253 static GTY (()) hash_table
<dw_loc_list_hasher
> *cached_dw_loc_list_table
;
3255 /* A vector of references to DIE's that are uniquely identified by their tag,
3256 presence/absence of children DIE's, and list of attribute/value pairs. */
3257 static GTY(()) vec
<dw_die_ref
, va_gc
> *abbrev_die_table
;
3259 /* A hash map to remember the stack usage for DWARF procedures. The value
3260 stored is the stack size difference between before the DWARF procedure
3261 invokation and after it returned. In other words, for a DWARF procedure
3262 that consumes N stack slots and that pushes M ones, this stores M - N. */
3263 static hash_map
<dw_die_ref
, int> *dwarf_proc_stack_usage_map
;
3265 /* A global counter for generating labels for line number data. */
3266 static unsigned int line_info_label_num
;
3268 /* The current table to which we should emit line number information
3269 for the current function. This will be set up at the beginning of
3270 assembly for the function. */
3271 static GTY(()) dw_line_info_table
*cur_line_info_table
;
3273 /* The two default tables of line number info. */
3274 static GTY(()) dw_line_info_table
*text_section_line_info
;
3275 static GTY(()) dw_line_info_table
*cold_text_section_line_info
;
3277 /* The set of all non-default tables of line number info. */
3278 static GTY(()) vec
<dw_line_info_table
*, va_gc
> *separate_line_info
;
3280 /* A flag to tell pubnames/types export if there is an info section to
3282 static bool info_section_emitted
;
3284 /* A pointer to the base of a table that contains a list of publicly
3285 accessible names. */
3286 static GTY (()) vec
<pubname_entry
, va_gc
> *pubname_table
;
3288 /* A pointer to the base of a table that contains a list of publicly
3289 accessible types. */
3290 static GTY (()) vec
<pubname_entry
, va_gc
> *pubtype_table
;
3292 /* A pointer to the base of a table that contains a list of macro
3293 defines/undefines (and file start/end markers). */
3294 static GTY (()) vec
<macinfo_entry
, va_gc
> *macinfo_table
;
3296 /* True if .debug_macinfo or .debug_macros section is going to be
3298 #define have_macinfo \
3299 ((!XCOFF_DEBUGGING_INFO || HAVE_XCOFF_DWARF_EXTRAS) \
3300 && debug_info_level >= DINFO_LEVEL_VERBOSE \
3301 && !macinfo_table->is_empty ())
3303 /* Vector of dies for which we should generate .debug_ranges info. */
3304 static GTY (()) vec
<dw_ranges
, va_gc
> *ranges_table
;
3306 /* Vector of pairs of labels referenced in ranges_table. */
3307 static GTY (()) vec
<dw_ranges_by_label
, va_gc
> *ranges_by_label
;
3309 /* Whether we have location lists that need outputting */
3310 static GTY(()) bool have_location_lists
;
3312 /* Unique label counter. */
3313 static GTY(()) unsigned int loclabel_num
;
3315 /* Unique label counter for point-of-call tables. */
3316 static GTY(()) unsigned int poc_label_num
;
3318 /* The last file entry emitted by maybe_emit_file(). */
3319 static GTY(()) struct dwarf_file_data
* last_emitted_file
;
3321 /* Number of internal labels generated by gen_internal_sym(). */
3322 static GTY(()) int label_num
;
3324 static GTY(()) vec
<die_arg_entry
, va_gc
> *tmpl_value_parm_die_table
;
3326 /* Instances of generic types for which we need to generate debug
3327 info that describe their generic parameters and arguments. That
3328 generation needs to happen once all types are properly laid out so
3329 we do it at the end of compilation. */
3330 static GTY(()) vec
<tree
, va_gc
> *generic_type_instances
;
3332 /* Offset from the "steady-state frame pointer" to the frame base,
3333 within the current function. */
3334 static HOST_WIDE_INT frame_pointer_fb_offset
;
3335 static bool frame_pointer_fb_offset_valid
;
3337 static vec
<dw_die_ref
> base_types
;
3339 /* Flags to represent a set of attribute classes for attributes that represent
3340 a scalar value (bounds, pointers, ...). */
3343 dw_scalar_form_constant
= 0x01,
3344 dw_scalar_form_exprloc
= 0x02,
3345 dw_scalar_form_reference
= 0x04
3348 /* Forward declarations for functions defined in this file. */
3350 static int is_pseudo_reg (const_rtx
);
3351 static tree
type_main_variant (tree
);
3352 static int is_tagged_type (const_tree
);
3353 static const char *dwarf_tag_name (unsigned);
3354 static const char *dwarf_attr_name (unsigned);
3355 static const char *dwarf_form_name (unsigned);
3356 static tree
decl_ultimate_origin (const_tree
);
3357 static tree
decl_class_context (tree
);
3358 static void add_dwarf_attr (dw_die_ref
, dw_attr_node
*);
3359 static inline enum dw_val_class
AT_class (dw_attr_node
*);
3360 static inline unsigned int AT_index (dw_attr_node
*);
3361 static void add_AT_flag (dw_die_ref
, enum dwarf_attribute
, unsigned);
3362 static inline unsigned AT_flag (dw_attr_node
*);
3363 static void add_AT_int (dw_die_ref
, enum dwarf_attribute
, HOST_WIDE_INT
);
3364 static inline HOST_WIDE_INT
AT_int (dw_attr_node
*);
3365 static void add_AT_unsigned (dw_die_ref
, enum dwarf_attribute
, unsigned HOST_WIDE_INT
);
3366 static inline unsigned HOST_WIDE_INT
AT_unsigned (dw_attr_node
*);
3367 static void add_AT_double (dw_die_ref
, enum dwarf_attribute
,
3368 HOST_WIDE_INT
, unsigned HOST_WIDE_INT
);
3369 static inline void add_AT_vec (dw_die_ref
, enum dwarf_attribute
, unsigned int,
3370 unsigned int, unsigned char *);
3371 static void add_AT_data8 (dw_die_ref
, enum dwarf_attribute
, unsigned char *);
3372 static void add_AT_string (dw_die_ref
, enum dwarf_attribute
, const char *);
3373 static inline const char *AT_string (dw_attr_node
*);
3374 static enum dwarf_form
AT_string_form (dw_attr_node
*);
3375 static void add_AT_die_ref (dw_die_ref
, enum dwarf_attribute
, dw_die_ref
);
3376 static void add_AT_specification (dw_die_ref
, dw_die_ref
);
3377 static inline dw_die_ref
AT_ref (dw_attr_node
*);
3378 static inline int AT_ref_external (dw_attr_node
*);
3379 static inline void set_AT_ref_external (dw_attr_node
*, int);
3380 static void add_AT_fde_ref (dw_die_ref
, enum dwarf_attribute
, unsigned);
3381 static void add_AT_loc (dw_die_ref
, enum dwarf_attribute
, dw_loc_descr_ref
);
3382 static inline dw_loc_descr_ref
AT_loc (dw_attr_node
*);
3383 static void add_AT_loc_list (dw_die_ref
, enum dwarf_attribute
,
3385 static inline dw_loc_list_ref
AT_loc_list (dw_attr_node
*);
3386 static addr_table_entry
*add_addr_table_entry (void *, enum ate_kind
);
3387 static void remove_addr_table_entry (addr_table_entry
*);
3388 static void add_AT_addr (dw_die_ref
, enum dwarf_attribute
, rtx
, bool);
3389 static inline rtx
AT_addr (dw_attr_node
*);
3390 static void add_AT_lbl_id (dw_die_ref
, enum dwarf_attribute
, const char *);
3391 static void add_AT_lineptr (dw_die_ref
, enum dwarf_attribute
, const char *);
3392 static void add_AT_macptr (dw_die_ref
, enum dwarf_attribute
, const char *);
3393 static void add_AT_loclistsptr (dw_die_ref
, enum dwarf_attribute
,
3395 static void add_AT_offset (dw_die_ref
, enum dwarf_attribute
,
3396 unsigned HOST_WIDE_INT
);
3397 static void add_AT_range_list (dw_die_ref
, enum dwarf_attribute
,
3398 unsigned long, bool);
3399 static inline const char *AT_lbl (dw_attr_node
*);
3400 static dw_attr_node
*get_AT (dw_die_ref
, enum dwarf_attribute
);
3401 static const char *get_AT_low_pc (dw_die_ref
);
3402 static const char *get_AT_hi_pc (dw_die_ref
);
3403 static const char *get_AT_string (dw_die_ref
, enum dwarf_attribute
);
3404 static int get_AT_flag (dw_die_ref
, enum dwarf_attribute
);
3405 static unsigned get_AT_unsigned (dw_die_ref
, enum dwarf_attribute
);
3406 static inline dw_die_ref
get_AT_ref (dw_die_ref
, enum dwarf_attribute
);
3407 static bool is_cxx (void);
3408 static bool is_cxx (const_tree
);
3409 static bool is_fortran (void);
3410 static bool is_ada (void);
3411 static bool remove_AT (dw_die_ref
, enum dwarf_attribute
);
3412 static void remove_child_TAG (dw_die_ref
, enum dwarf_tag
);
3413 static void add_child_die (dw_die_ref
, dw_die_ref
);
3414 static dw_die_ref
new_die (enum dwarf_tag
, dw_die_ref
, tree
);
3415 static dw_die_ref
lookup_type_die (tree
);
3416 static dw_die_ref
strip_naming_typedef (tree
, dw_die_ref
);
3417 static dw_die_ref
lookup_type_die_strip_naming_typedef (tree
);
3418 static void equate_type_number_to_die (tree
, dw_die_ref
);
3419 static dw_die_ref
lookup_decl_die (tree
);
3420 static var_loc_list
*lookup_decl_loc (const_tree
);
3421 static void equate_decl_number_to_die (tree
, dw_die_ref
);
3422 static struct var_loc_node
*add_var_loc_to_decl (tree
, rtx
, const char *);
3423 static void print_spaces (FILE *);
3424 static void print_die (dw_die_ref
, FILE *);
3425 static void loc_checksum (dw_loc_descr_ref
, struct md5_ctx
*);
3426 static void attr_checksum (dw_attr_node
*, struct md5_ctx
*, int *);
3427 static void die_checksum (dw_die_ref
, struct md5_ctx
*, int *);
3428 static void checksum_sleb128 (HOST_WIDE_INT
, struct md5_ctx
*);
3429 static void checksum_uleb128 (unsigned HOST_WIDE_INT
, struct md5_ctx
*);
3430 static void loc_checksum_ordered (dw_loc_descr_ref
, struct md5_ctx
*);
3431 static void attr_checksum_ordered (enum dwarf_tag
, dw_attr_node
*,
3432 struct md5_ctx
*, int *);
3433 struct checksum_attributes
;
3434 static void collect_checksum_attributes (struct checksum_attributes
*, dw_die_ref
);
3435 static void die_checksum_ordered (dw_die_ref
, struct md5_ctx
*, int *);
3436 static void checksum_die_context (dw_die_ref
, struct md5_ctx
*);
3437 static void generate_type_signature (dw_die_ref
, comdat_type_node
*);
3438 static int same_loc_p (dw_loc_descr_ref
, dw_loc_descr_ref
, int *);
3439 static int same_dw_val_p (const dw_val_node
*, const dw_val_node
*, int *);
3440 static int same_attr_p (dw_attr_node
*, dw_attr_node
*, int *);
3441 static int same_die_p (dw_die_ref
, dw_die_ref
, int *);
3442 static int is_type_die (dw_die_ref
);
3443 static int is_comdat_die (dw_die_ref
);
3444 static inline bool is_template_instantiation (dw_die_ref
);
3445 static int is_declaration_die (dw_die_ref
);
3446 static int should_move_die_to_comdat (dw_die_ref
);
3447 static dw_die_ref
clone_as_declaration (dw_die_ref
);
3448 static dw_die_ref
clone_die (dw_die_ref
);
3449 static dw_die_ref
clone_tree (dw_die_ref
);
3450 static dw_die_ref
copy_declaration_context (dw_die_ref
, dw_die_ref
);
3451 static void generate_skeleton_ancestor_tree (skeleton_chain_node
*);
3452 static void generate_skeleton_bottom_up (skeleton_chain_node
*);
3453 static dw_die_ref
generate_skeleton (dw_die_ref
);
3454 static dw_die_ref
remove_child_or_replace_with_skeleton (dw_die_ref
,
3457 static void break_out_comdat_types (dw_die_ref
);
3458 static void copy_decls_for_unworthy_types (dw_die_ref
);
3460 static void add_sibling_attributes (dw_die_ref
);
3461 static void output_location_lists (dw_die_ref
);
3462 static int constant_size (unsigned HOST_WIDE_INT
);
3463 static unsigned long size_of_die (dw_die_ref
);
3464 static void calc_die_sizes (dw_die_ref
);
3465 static void calc_base_type_die_sizes (void);
3466 static void mark_dies (dw_die_ref
);
3467 static void unmark_dies (dw_die_ref
);
3468 static void unmark_all_dies (dw_die_ref
);
3469 static unsigned long size_of_pubnames (vec
<pubname_entry
, va_gc
> *);
3470 static unsigned long size_of_aranges (void);
3471 static enum dwarf_form
value_format (dw_attr_node
*);
3472 static void output_value_format (dw_attr_node
*);
3473 static void output_abbrev_section (void);
3474 static void output_die_abbrevs (unsigned long, dw_die_ref
);
3475 static void output_die (dw_die_ref
);
3476 static void output_compilation_unit_header (enum dwarf_unit_type
);
3477 static void output_comp_unit (dw_die_ref
, int, const unsigned char *);
3478 static void output_comdat_type_unit (comdat_type_node
*);
3479 static const char *dwarf2_name (tree
, int);
3480 static void add_pubname (tree
, dw_die_ref
);
3481 static void add_enumerator_pubname (const char *, dw_die_ref
);
3482 static void add_pubname_string (const char *, dw_die_ref
);
3483 static void add_pubtype (tree
, dw_die_ref
);
3484 static void output_pubnames (vec
<pubname_entry
, va_gc
> *);
3485 static void output_aranges (void);
3486 static unsigned int add_ranges (const_tree
, bool = false);
3487 static void add_ranges_by_labels (dw_die_ref
, const char *, const char *,
3489 static void output_ranges (void);
3490 static dw_line_info_table
*new_line_info_table (void);
3491 static void output_line_info (bool);
3492 static void output_file_names (void);
3493 static dw_die_ref
base_type_die (tree
, bool);
3494 static int is_base_type (tree
);
3495 static dw_die_ref
subrange_type_die (tree
, tree
, tree
, tree
, dw_die_ref
);
3496 static int decl_quals (const_tree
);
3497 static dw_die_ref
modified_type_die (tree
, int, bool, dw_die_ref
);
3498 static dw_die_ref
generic_parameter_die (tree
, tree
, bool, dw_die_ref
);
3499 static dw_die_ref
template_parameter_pack_die (tree
, tree
, dw_die_ref
);
3500 static int type_is_enum (const_tree
);
3501 static unsigned int dbx_reg_number (const_rtx
);
3502 static void add_loc_descr_op_piece (dw_loc_descr_ref
*, int);
3503 static dw_loc_descr_ref
reg_loc_descriptor (rtx
, enum var_init_status
);
3504 static dw_loc_descr_ref
one_reg_loc_descriptor (unsigned int,
3505 enum var_init_status
);
3506 static dw_loc_descr_ref
multiple_reg_loc_descriptor (rtx
, rtx
,
3507 enum var_init_status
);
3508 static dw_loc_descr_ref
based_loc_descr (rtx
, HOST_WIDE_INT
,
3509 enum var_init_status
);
3510 static int is_based_loc (const_rtx
);
3511 static bool resolve_one_addr (rtx
*);
3512 static dw_loc_descr_ref
concat_loc_descriptor (rtx
, rtx
,
3513 enum var_init_status
);
3514 static dw_loc_descr_ref
loc_descriptor (rtx
, machine_mode mode
,
3515 enum var_init_status
);
3516 struct loc_descr_context
;
3517 static void add_loc_descr_to_each (dw_loc_list_ref list
, dw_loc_descr_ref ref
);
3518 static void add_loc_list (dw_loc_list_ref
*ret
, dw_loc_list_ref list
);
3519 static dw_loc_list_ref
loc_list_from_tree (tree
, int,
3520 struct loc_descr_context
*);
3521 static dw_loc_descr_ref
loc_descriptor_from_tree (tree
, int,
3522 struct loc_descr_context
*);
3523 static HOST_WIDE_INT
ceiling (HOST_WIDE_INT
, unsigned int);
3524 static tree
field_type (const_tree
);
3525 static unsigned int simple_type_align_in_bits (const_tree
);
3526 static unsigned int simple_decl_align_in_bits (const_tree
);
3527 static unsigned HOST_WIDE_INT
simple_type_size_in_bits (const_tree
);
3529 static dw_loc_descr_ref
field_byte_offset (const_tree
, struct vlr_context
*,
3531 static void add_AT_location_description (dw_die_ref
, enum dwarf_attribute
,
3533 static void add_data_member_location_attribute (dw_die_ref
, tree
,
3534 struct vlr_context
*);
3535 static bool add_const_value_attribute (dw_die_ref
, rtx
);
3536 static void insert_int (HOST_WIDE_INT
, unsigned, unsigned char *);
3537 static void insert_wide_int (const wide_int
&, unsigned char *, int);
3538 static void insert_float (const_rtx
, unsigned char *);
3539 static rtx
rtl_for_decl_location (tree
);
3540 static bool add_location_or_const_value_attribute (dw_die_ref
, tree
, bool);
3541 static bool tree_add_const_value_attribute (dw_die_ref
, tree
);
3542 static bool tree_add_const_value_attribute_for_decl (dw_die_ref
, tree
);
3543 static void add_name_attribute (dw_die_ref
, const char *);
3544 static void add_gnat_descriptive_type_attribute (dw_die_ref
, tree
, dw_die_ref
);
3545 static void add_comp_dir_attribute (dw_die_ref
);
3546 static void add_scalar_info (dw_die_ref
, enum dwarf_attribute
, tree
, int,
3547 struct loc_descr_context
*);
3548 static void add_bound_info (dw_die_ref
, enum dwarf_attribute
, tree
,
3549 struct loc_descr_context
*);
3550 static void add_subscript_info (dw_die_ref
, tree
, bool);
3551 static void add_byte_size_attribute (dw_die_ref
, tree
);
3552 static void add_alignment_attribute (dw_die_ref
, tree
);
3553 static inline void add_bit_offset_attribute (dw_die_ref
, tree
,
3554 struct vlr_context
*);
3555 static void add_bit_size_attribute (dw_die_ref
, tree
);
3556 static void add_prototyped_attribute (dw_die_ref
, tree
);
3557 static dw_die_ref
add_abstract_origin_attribute (dw_die_ref
, tree
);
3558 static void add_pure_or_virtual_attribute (dw_die_ref
, tree
);
3559 static void add_src_coords_attributes (dw_die_ref
, tree
);
3560 static void add_name_and_src_coords_attributes (dw_die_ref
, tree
, bool = false);
3561 static void add_discr_value (dw_die_ref
, dw_discr_value
*);
3562 static void add_discr_list (dw_die_ref
, dw_discr_list_ref
);
3563 static inline dw_discr_list_ref
AT_discr_list (dw_attr_node
*);
3564 static void push_decl_scope (tree
);
3565 static void pop_decl_scope (void);
3566 static dw_die_ref
scope_die_for (tree
, dw_die_ref
);
3567 static inline int local_scope_p (dw_die_ref
);
3568 static inline int class_scope_p (dw_die_ref
);
3569 static inline int class_or_namespace_scope_p (dw_die_ref
);
3570 static void add_type_attribute (dw_die_ref
, tree
, int, bool, dw_die_ref
);
3571 static void add_calling_convention_attribute (dw_die_ref
, tree
);
3572 static const char *type_tag (const_tree
);
3573 static tree
member_declared_type (const_tree
);
3575 static const char *decl_start_label (tree
);
3577 static void gen_array_type_die (tree
, dw_die_ref
);
3578 static void gen_descr_array_type_die (tree
, struct array_descr_info
*, dw_die_ref
);
3580 static void gen_entry_point_die (tree
, dw_die_ref
);
3582 static dw_die_ref
gen_enumeration_type_die (tree
, dw_die_ref
);
3583 static dw_die_ref
gen_formal_parameter_die (tree
, tree
, bool, dw_die_ref
);
3584 static dw_die_ref
gen_formal_parameter_pack_die (tree
, tree
, dw_die_ref
, tree
*);
3585 static void gen_unspecified_parameters_die (tree
, dw_die_ref
);
3586 static void gen_formal_types_die (tree
, dw_die_ref
);
3587 static void gen_subprogram_die (tree
, dw_die_ref
);
3588 static void gen_variable_die (tree
, tree
, dw_die_ref
);
3589 static void gen_const_die (tree
, dw_die_ref
);
3590 static void gen_label_die (tree
, dw_die_ref
);
3591 static void gen_lexical_block_die (tree
, dw_die_ref
);
3592 static void gen_inlined_subroutine_die (tree
, dw_die_ref
);
3593 static void gen_field_die (tree
, struct vlr_context
*, dw_die_ref
);
3594 static void gen_ptr_to_mbr_type_die (tree
, dw_die_ref
);
3595 static dw_die_ref
gen_compile_unit_die (const char *);
3596 static void gen_inheritance_die (tree
, tree
, tree
, dw_die_ref
);
3597 static void gen_member_die (tree
, dw_die_ref
);
3598 static void gen_struct_or_union_type_die (tree
, dw_die_ref
,
3599 enum debug_info_usage
);
3600 static void gen_subroutine_type_die (tree
, dw_die_ref
);
3601 static void gen_typedef_die (tree
, dw_die_ref
);
3602 static void gen_type_die (tree
, dw_die_ref
);
3603 static void gen_block_die (tree
, dw_die_ref
);
3604 static void decls_for_scope (tree
, dw_die_ref
);
3605 static bool is_naming_typedef_decl (const_tree
);
3606 static inline dw_die_ref
get_context_die (tree
);
3607 static void gen_namespace_die (tree
, dw_die_ref
);
3608 static dw_die_ref
gen_namelist_decl (tree
, dw_die_ref
, tree
);
3609 static dw_die_ref
gen_decl_die (tree
, tree
, struct vlr_context
*, dw_die_ref
);
3610 static dw_die_ref
force_decl_die (tree
);
3611 static dw_die_ref
force_type_die (tree
);
3612 static dw_die_ref
setup_namespace_context (tree
, dw_die_ref
);
3613 static dw_die_ref
declare_in_namespace (tree
, dw_die_ref
);
3614 static struct dwarf_file_data
* lookup_filename (const char *);
3615 static void retry_incomplete_types (void);
3616 static void gen_type_die_for_member (tree
, tree
, dw_die_ref
);
3617 static void gen_generic_params_dies (tree
);
3618 static void gen_tagged_type_die (tree
, dw_die_ref
, enum debug_info_usage
);
3619 static void gen_type_die_with_usage (tree
, dw_die_ref
, enum debug_info_usage
);
3620 static void splice_child_die (dw_die_ref
, dw_die_ref
);
3621 static int file_info_cmp (const void *, const void *);
3622 static dw_loc_list_ref
new_loc_list (dw_loc_descr_ref
, const char *,
3623 const char *, const char *);
3624 static void output_loc_list (dw_loc_list_ref
);
3625 static char *gen_internal_sym (const char *);
3626 static bool want_pubnames (void);
3628 static void prune_unmark_dies (dw_die_ref
);
3629 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref
);
3630 static void prune_unused_types_mark (dw_die_ref
, int);
3631 static void prune_unused_types_walk (dw_die_ref
);
3632 static void prune_unused_types_walk_attribs (dw_die_ref
);
3633 static void prune_unused_types_prune (dw_die_ref
);
3634 static void prune_unused_types (void);
3635 static int maybe_emit_file (struct dwarf_file_data
*fd
);
3636 static inline const char *AT_vms_delta1 (dw_attr_node
*);
3637 static inline const char *AT_vms_delta2 (dw_attr_node
*);
3638 static inline void add_AT_vms_delta (dw_die_ref
, enum dwarf_attribute
,
3639 const char *, const char *);
3640 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref
, tree
);
3641 static void gen_remaining_tmpl_value_param_die_attribute (void);
3642 static bool generic_type_p (tree
);
3643 static void schedule_generic_params_dies_gen (tree t
);
3644 static void gen_scheduled_generic_parms_dies (void);
3645 static void resolve_variable_values (void);
3647 static const char *comp_dir_string (void);
3649 static void hash_loc_operands (dw_loc_descr_ref
, inchash::hash
&);
3651 /* enum for tracking thread-local variables whose address is really an offset
3652 relative to the TLS pointer, which will need link-time relocation, but will
3653 not need relocation by the DWARF consumer. */
3661 /* Return the operator to use for an address of a variable. For dtprel_true, we
3662 use DW_OP_const*. For regular variables, which need both link-time
3663 relocation and consumer-level relocation (e.g., to account for shared objects
3664 loaded at a random address), we use DW_OP_addr*. */
3666 static inline enum dwarf_location_atom
3667 dw_addr_op (enum dtprel_bool dtprel
)
3669 if (dtprel
== dtprel_true
)
3670 return (dwarf_split_debug_info
? DW_OP_GNU_const_index
3671 : (DWARF2_ADDR_SIZE
== 4 ? DW_OP_const4u
: DW_OP_const8u
));
3673 return dwarf_split_debug_info
? DW_OP_GNU_addr_index
: DW_OP_addr
;
3676 /* Return a pointer to a newly allocated address location description. If
3677 dwarf_split_debug_info is true, then record the address with the appropriate
3679 static inline dw_loc_descr_ref
3680 new_addr_loc_descr (rtx addr
, enum dtprel_bool dtprel
)
3682 dw_loc_descr_ref ref
= new_loc_descr (dw_addr_op (dtprel
), 0, 0);
3684 ref
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
3685 ref
->dw_loc_oprnd1
.v
.val_addr
= addr
;
3686 ref
->dtprel
= dtprel
;
3687 if (dwarf_split_debug_info
)
3688 ref
->dw_loc_oprnd1
.val_entry
3689 = add_addr_table_entry (addr
,
3690 dtprel
? ate_kind_rtx_dtprel
: ate_kind_rtx
);
3692 ref
->dw_loc_oprnd1
.val_entry
= NULL
;
3697 /* Section names used to hold DWARF debugging information. */
3699 #ifndef DEBUG_INFO_SECTION
3700 #define DEBUG_INFO_SECTION ".debug_info"
3702 #ifndef DEBUG_DWO_INFO_SECTION
3703 #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
3705 #ifndef DEBUG_LTO_INFO_SECTION
3706 #define DEBUG_LTO_INFO_SECTION ".gnu.debuglto_.debug_info"
3708 #ifndef DEBUG_LTO_DWO_INFO_SECTION
3709 #define DEBUG_LTO_DWO_INFO_SECTION ".gnu.debuglto_.debug_info.dwo"
3711 #ifndef DEBUG_ABBREV_SECTION
3712 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3714 #ifndef DEBUG_LTO_ABBREV_SECTION
3715 #define DEBUG_LTO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev"
3717 #ifndef DEBUG_DWO_ABBREV_SECTION
3718 #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
3720 #ifndef DEBUG_LTO_DWO_ABBREV_SECTION
3721 #define DEBUG_LTO_DWO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev.dwo"
3723 #ifndef DEBUG_ARANGES_SECTION
3724 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3726 #ifndef DEBUG_ADDR_SECTION
3727 #define DEBUG_ADDR_SECTION ".debug_addr"
3729 #ifndef DEBUG_MACINFO_SECTION
3730 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3732 #ifndef DEBUG_LTO_MACINFO_SECTION
3733 #define DEBUG_LTO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo"
3735 #ifndef DEBUG_DWO_MACINFO_SECTION
3736 #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo"
3738 #ifndef DEBUG_LTO_DWO_MACINFO_SECTION
3739 #define DEBUG_LTO_DWO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo.dwo"
3741 #ifndef DEBUG_MACRO_SECTION
3742 #define DEBUG_MACRO_SECTION ".debug_macro"
3744 #ifndef DEBUG_LTO_MACRO_SECTION
3745 #define DEBUG_LTO_MACRO_SECTION ".gnu.debuglto_.debug_macro"
3747 #ifndef DEBUG_DWO_MACRO_SECTION
3748 #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo"
3750 #ifndef DEBUG_LTO_DWO_MACRO_SECTION
3751 #define DEBUG_LTO_DWO_MACRO_SECTION ".gnu.debuglto_.debug_macro.dwo"
3753 #ifndef DEBUG_LINE_SECTION
3754 #define DEBUG_LINE_SECTION ".debug_line"
3756 #ifndef DEBUG_LTO_LINE_SECTION
3757 #define DEBUG_LTO_LINE_SECTION ".gnu.debuglto_.debug_line"
3759 #ifndef DEBUG_DWO_LINE_SECTION
3760 #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
3762 #ifndef DEBUG_LTO_DWO_LINE_SECTION
3763 #define DEBUG_LTO_DWO_LINE_SECTION ".gnu.debuglto_.debug_line.dwo"
3765 #ifndef DEBUG_LOC_SECTION
3766 #define DEBUG_LOC_SECTION ".debug_loc"
3768 #ifndef DEBUG_DWO_LOC_SECTION
3769 #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo"
3771 #ifndef DEBUG_LOCLISTS_SECTION
3772 #define DEBUG_LOCLISTS_SECTION ".debug_loclists"
3774 #ifndef DEBUG_DWO_LOCLISTS_SECTION
3775 #define DEBUG_DWO_LOCLISTS_SECTION ".debug_loclists.dwo"
3777 #ifndef DEBUG_PUBNAMES_SECTION
3778 #define DEBUG_PUBNAMES_SECTION \
3779 ((debug_generate_pub_sections == 2) \
3780 ? ".debug_gnu_pubnames" : ".debug_pubnames")
3782 #ifndef DEBUG_PUBTYPES_SECTION
3783 #define DEBUG_PUBTYPES_SECTION \
3784 ((debug_generate_pub_sections == 2) \
3785 ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
3787 #ifndef DEBUG_STR_OFFSETS_SECTION
3788 #define DEBUG_STR_OFFSETS_SECTION ".debug_str_offsets"
3790 #ifndef DEBUG_DWO_STR_OFFSETS_SECTION
3791 #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
3793 #ifndef DEBUG_LTO_DWO_STR_OFFSETS_SECTION
3794 #define DEBUG_LTO_DWO_STR_OFFSETS_SECTION ".gnu.debuglto_.debug_str_offsets.dwo"
3796 #ifndef DEBUG_STR_SECTION
3797 #define DEBUG_STR_SECTION ".debug_str"
3799 #ifndef DEBUG_LTO_STR_SECTION
3800 #define DEBUG_LTO_STR_SECTION ".gnu.debuglto_.debug_str"
3802 #ifndef DEBUG_STR_DWO_SECTION
3803 #define DEBUG_STR_DWO_SECTION ".debug_str.dwo"
3805 #ifndef DEBUG_LTO_STR_DWO_SECTION
3806 #define DEBUG_LTO_STR_DWO_SECTION ".gnu.debuglto_.debug_str.dwo"
3808 #ifndef DEBUG_RANGES_SECTION
3809 #define DEBUG_RANGES_SECTION ".debug_ranges"
3811 #ifndef DEBUG_RNGLISTS_SECTION
3812 #define DEBUG_RNGLISTS_SECTION ".debug_rnglists"
3814 #ifndef DEBUG_LINE_STR_SECTION
3815 #define DEBUG_LINE_STR_SECTION ".debug_line_str"
3817 #ifndef DEBUG_LTO_LINE_STR_SECTION
3818 #define DEBUG_LTO_LINE_STR_SECTION ".gnu.debuglto_.debug_line_str"
3821 /* Standard ELF section names for compiled code and data. */
3822 #ifndef TEXT_SECTION_NAME
3823 #define TEXT_SECTION_NAME ".text"
3826 /* Section flags for .debug_str section. */
3827 #define DEBUG_STR_SECTION_FLAGS \
3828 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
3829 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3832 /* Section flags for .debug_str.dwo section. */
3833 #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)
3835 /* Attribute used to refer to the macro section. */
3836 #define DEBUG_MACRO_ATTRIBUTE (dwarf_version >= 5 ? DW_AT_macros \
3837 : dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros)
3839 /* Labels we insert at beginning sections we can reference instead of
3840 the section names themselves. */
3842 #ifndef TEXT_SECTION_LABEL
3843 #define TEXT_SECTION_LABEL "Ltext"
3845 #ifndef COLD_TEXT_SECTION_LABEL
3846 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
3848 #ifndef DEBUG_LINE_SECTION_LABEL
3849 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3851 #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
3852 #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line"
3854 #ifndef DEBUG_INFO_SECTION_LABEL
3855 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3857 #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
3858 #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info"
3860 #ifndef DEBUG_ABBREV_SECTION_LABEL
3861 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3863 #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
3864 #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
3866 #ifndef DEBUG_ADDR_SECTION_LABEL
3867 #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr"
3869 #ifndef DEBUG_LOC_SECTION_LABEL
3870 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3872 #ifndef DEBUG_RANGES_SECTION_LABEL
3873 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3875 #ifndef DEBUG_MACINFO_SECTION_LABEL
3876 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3878 #ifndef DEBUG_MACRO_SECTION_LABEL
3879 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
3881 #define SKELETON_COMP_DIE_ABBREV 1
3882 #define SKELETON_TYPE_DIE_ABBREV 2
3884 /* Definitions of defaults for formats and names of various special
3885 (artificial) labels which may be generated within this file (when the -g
3886 options is used and DWARF2_DEBUGGING_INFO is in effect.
3887 If necessary, these may be overridden from within the tm.h file, but
3888 typically, overriding these defaults is unnecessary. */
3890 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3891 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3892 static char cold_text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3893 static char cold_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3894 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3895 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3896 static char debug_skeleton_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3897 static char debug_skeleton_abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3898 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3899 static char debug_addr_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3900 static char debug_skeleton_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3901 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3902 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3903 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
3904 static char ranges_base_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
3906 #ifndef TEXT_END_LABEL
3907 #define TEXT_END_LABEL "Letext"
3909 #ifndef COLD_END_LABEL
3910 #define COLD_END_LABEL "Letext_cold"
3912 #ifndef BLOCK_BEGIN_LABEL
3913 #define BLOCK_BEGIN_LABEL "LBB"
3915 #ifndef BLOCK_END_LABEL
3916 #define BLOCK_END_LABEL "LBE"
3918 #ifndef LINE_CODE_LABEL
3919 #define LINE_CODE_LABEL "LM"
3923 /* Return the root of the DIE's built for the current compilation unit. */
3925 comp_unit_die (void)
3927 if (!single_comp_unit_die
)
3928 single_comp_unit_die
= gen_compile_unit_die (NULL
);
3929 return single_comp_unit_die
;
3932 /* We allow a language front-end to designate a function that is to be
3933 called to "demangle" any name before it is put into a DIE. */
3935 static const char *(*demangle_name_func
) (const char *);
3938 dwarf2out_set_demangle_name_func (const char *(*func
) (const char *))
3940 demangle_name_func
= func
;
3943 /* Test if rtl node points to a pseudo register. */
3946 is_pseudo_reg (const_rtx rtl
)
3948 return ((REG_P (rtl
) && REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
3949 || (GET_CODE (rtl
) == SUBREG
3950 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
3953 /* Return a reference to a type, with its const and volatile qualifiers
3957 type_main_variant (tree type
)
3959 type
= TYPE_MAIN_VARIANT (type
);
3961 /* ??? There really should be only one main variant among any group of
3962 variants of a given type (and all of the MAIN_VARIANT values for all
3963 members of the group should point to that one type) but sometimes the C
3964 front-end messes this up for array types, so we work around that bug
3966 if (TREE_CODE (type
) == ARRAY_TYPE
)
3967 while (type
!= TYPE_MAIN_VARIANT (type
))
3968 type
= TYPE_MAIN_VARIANT (type
);
3973 /* Return nonzero if the given type node represents a tagged type. */
3976 is_tagged_type (const_tree type
)
3978 enum tree_code code
= TREE_CODE (type
);
3980 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
3981 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
3984 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
3987 get_ref_die_offset_label (char *label
, dw_die_ref ref
)
3989 sprintf (label
, "%s+%ld", debug_info_section_label
, ref
->die_offset
);
3992 /* Return die_offset of a DIE reference to a base type. */
3994 static unsigned long int
3995 get_base_type_offset (dw_die_ref ref
)
3997 if (ref
->die_offset
)
3998 return ref
->die_offset
;
3999 if (comp_unit_die ()->die_abbrev
)
4001 calc_base_type_die_sizes ();
4002 gcc_assert (ref
->die_offset
);
4004 return ref
->die_offset
;
4007 /* Return die_offset of a DIE reference other than base type. */
4009 static unsigned long int
4010 get_ref_die_offset (dw_die_ref ref
)
4012 gcc_assert (ref
->die_offset
);
4013 return ref
->die_offset
;
4016 /* Convert a DIE tag into its string name. */
4019 dwarf_tag_name (unsigned int tag
)
4021 const char *name
= get_DW_TAG_name (tag
);
4026 return "DW_TAG_<unknown>";
4029 /* Convert a DWARF attribute code into its string name. */
4032 dwarf_attr_name (unsigned int attr
)
4038 #if VMS_DEBUGGING_INFO
4039 case DW_AT_HP_prologue
:
4040 return "DW_AT_HP_prologue";
4042 case DW_AT_MIPS_loop_unroll_factor
:
4043 return "DW_AT_MIPS_loop_unroll_factor";
4046 #if VMS_DEBUGGING_INFO
4047 case DW_AT_HP_epilogue
:
4048 return "DW_AT_HP_epilogue";
4050 case DW_AT_MIPS_stride
:
4051 return "DW_AT_MIPS_stride";
4055 name
= get_DW_AT_name (attr
);
4060 return "DW_AT_<unknown>";
4063 /* Convert a DWARF value form code into its string name. */
4066 dwarf_form_name (unsigned int form
)
4068 const char *name
= get_DW_FORM_name (form
);
4073 return "DW_FORM_<unknown>";
4076 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4077 instance of an inlined instance of a decl which is local to an inline
4078 function, so we have to trace all of the way back through the origin chain
4079 to find out what sort of node actually served as the original seed for the
4083 decl_ultimate_origin (const_tree decl
)
4085 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl
), TS_DECL_COMMON
))
4088 /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
4089 we're trying to output the abstract instance of this function. */
4090 if (DECL_ABSTRACT_P (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4093 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4094 most distant ancestor, this should never happen. */
4095 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl
)));
4097 return DECL_ABSTRACT_ORIGIN (decl
);
4100 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4101 of a virtual function may refer to a base class, so we check the 'this'
4105 decl_class_context (tree decl
)
4107 tree context
= NULL_TREE
;
4109 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4110 context
= DECL_CONTEXT (decl
);
4112 context
= TYPE_MAIN_VARIANT
4113 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4115 if (context
&& !TYPE_P (context
))
4116 context
= NULL_TREE
;
4121 /* Add an attribute/value pair to a DIE. */
4124 add_dwarf_attr (dw_die_ref die
, dw_attr_node
*attr
)
4126 /* Maybe this should be an assert? */
4132 /* Check we do not add duplicate attrs. Can't use get_AT here
4133 because that recurses to the specification/abstract origin DIE. */
4136 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
4137 gcc_assert (a
->dw_attr
!= attr
->dw_attr
);
4140 vec_safe_reserve (die
->die_attr
, 1);
4141 vec_safe_push (die
->die_attr
, *attr
);
4144 static inline enum dw_val_class
4145 AT_class (dw_attr_node
*a
)
4147 return a
->dw_attr_val
.val_class
;
4150 /* Return the index for any attribute that will be referenced with a
4151 DW_FORM_GNU_addr_index or DW_FORM_GNU_str_index. String indices
4152 are stored in dw_attr_val.v.val_str for reference counting
4155 static inline unsigned int
4156 AT_index (dw_attr_node
*a
)
4158 if (AT_class (a
) == dw_val_class_str
)
4159 return a
->dw_attr_val
.v
.val_str
->index
;
4160 else if (a
->dw_attr_val
.val_entry
!= NULL
)
4161 return a
->dw_attr_val
.val_entry
->index
;
4165 /* Add a flag value attribute to a DIE. */
4168 add_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int flag
)
4172 attr
.dw_attr
= attr_kind
;
4173 attr
.dw_attr_val
.val_class
= dw_val_class_flag
;
4174 attr
.dw_attr_val
.val_entry
= NULL
;
4175 attr
.dw_attr_val
.v
.val_flag
= flag
;
4176 add_dwarf_attr (die
, &attr
);
4179 static inline unsigned
4180 AT_flag (dw_attr_node
*a
)
4182 gcc_assert (a
&& AT_class (a
) == dw_val_class_flag
);
4183 return a
->dw_attr_val
.v
.val_flag
;
4186 /* Add a signed integer attribute value to a DIE. */
4189 add_AT_int (dw_die_ref die
, enum dwarf_attribute attr_kind
, HOST_WIDE_INT int_val
)
4193 attr
.dw_attr
= attr_kind
;
4194 attr
.dw_attr_val
.val_class
= dw_val_class_const
;
4195 attr
.dw_attr_val
.val_entry
= NULL
;
4196 attr
.dw_attr_val
.v
.val_int
= int_val
;
4197 add_dwarf_attr (die
, &attr
);
4200 static inline HOST_WIDE_INT
4201 AT_int (dw_attr_node
*a
)
4203 gcc_assert (a
&& (AT_class (a
) == dw_val_class_const
4204 || AT_class (a
) == dw_val_class_const_implicit
));
4205 return a
->dw_attr_val
.v
.val_int
;
4208 /* Add an unsigned integer attribute value to a DIE. */
4211 add_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4212 unsigned HOST_WIDE_INT unsigned_val
)
4216 attr
.dw_attr
= attr_kind
;
4217 attr
.dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
4218 attr
.dw_attr_val
.val_entry
= NULL
;
4219 attr
.dw_attr_val
.v
.val_unsigned
= unsigned_val
;
4220 add_dwarf_attr (die
, &attr
);
4223 static inline unsigned HOST_WIDE_INT
4224 AT_unsigned (dw_attr_node
*a
)
4226 gcc_assert (a
&& (AT_class (a
) == dw_val_class_unsigned_const
4227 || AT_class (a
) == dw_val_class_unsigned_const_implicit
));
4228 return a
->dw_attr_val
.v
.val_unsigned
;
4231 /* Add an unsigned wide integer attribute value to a DIE. */
4234 add_AT_wide (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4239 attr
.dw_attr
= attr_kind
;
4240 attr
.dw_attr_val
.val_class
= dw_val_class_wide_int
;
4241 attr
.dw_attr_val
.val_entry
= NULL
;
4242 attr
.dw_attr_val
.v
.val_wide
= ggc_alloc
<wide_int
> ();
4243 *attr
.dw_attr_val
.v
.val_wide
= w
;
4244 add_dwarf_attr (die
, &attr
);
4247 /* Add an unsigned double integer attribute value to a DIE. */
4250 add_AT_double (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4251 HOST_WIDE_INT high
, unsigned HOST_WIDE_INT low
)
4255 attr
.dw_attr
= attr_kind
;
4256 attr
.dw_attr_val
.val_class
= dw_val_class_const_double
;
4257 attr
.dw_attr_val
.val_entry
= NULL
;
4258 attr
.dw_attr_val
.v
.val_double
.high
= high
;
4259 attr
.dw_attr_val
.v
.val_double
.low
= low
;
4260 add_dwarf_attr (die
, &attr
);
4263 /* Add a floating point attribute value to a DIE and return it. */
4266 add_AT_vec (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4267 unsigned int length
, unsigned int elt_size
, unsigned char *array
)
4271 attr
.dw_attr
= attr_kind
;
4272 attr
.dw_attr_val
.val_class
= dw_val_class_vec
;
4273 attr
.dw_attr_val
.val_entry
= NULL
;
4274 attr
.dw_attr_val
.v
.val_vec
.length
= length
;
4275 attr
.dw_attr_val
.v
.val_vec
.elt_size
= elt_size
;
4276 attr
.dw_attr_val
.v
.val_vec
.array
= array
;
4277 add_dwarf_attr (die
, &attr
);
4280 /* Add an 8-byte data attribute value to a DIE. */
4283 add_AT_data8 (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4284 unsigned char data8
[8])
4288 attr
.dw_attr
= attr_kind
;
4289 attr
.dw_attr_val
.val_class
= dw_val_class_data8
;
4290 attr
.dw_attr_val
.val_entry
= NULL
;
4291 memcpy (attr
.dw_attr_val
.v
.val_data8
, data8
, 8);
4292 add_dwarf_attr (die
, &attr
);
4295 /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using
4296 dwarf_split_debug_info, address attributes in dies destined for the
4297 final executable have force_direct set to avoid using indexed
4301 add_AT_low_high_pc (dw_die_ref die
, const char *lbl_low
, const char *lbl_high
,
4307 lbl_id
= xstrdup (lbl_low
);
4308 attr
.dw_attr
= DW_AT_low_pc
;
4309 attr
.dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4310 attr
.dw_attr_val
.v
.val_lbl_id
= lbl_id
;
4311 if (dwarf_split_debug_info
&& !force_direct
)
4312 attr
.dw_attr_val
.val_entry
4313 = add_addr_table_entry (lbl_id
, ate_kind_label
);
4315 attr
.dw_attr_val
.val_entry
= NULL
;
4316 add_dwarf_attr (die
, &attr
);
4318 attr
.dw_attr
= DW_AT_high_pc
;
4319 if (dwarf_version
< 4)
4320 attr
.dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4322 attr
.dw_attr_val
.val_class
= dw_val_class_high_pc
;
4323 lbl_id
= xstrdup (lbl_high
);
4324 attr
.dw_attr_val
.v
.val_lbl_id
= lbl_id
;
4325 if (attr
.dw_attr_val
.val_class
== dw_val_class_lbl_id
4326 && dwarf_split_debug_info
&& !force_direct
)
4327 attr
.dw_attr_val
.val_entry
4328 = add_addr_table_entry (lbl_id
, ate_kind_label
);
4330 attr
.dw_attr_val
.val_entry
= NULL
;
4331 add_dwarf_attr (die
, &attr
);
4334 /* Hash and equality functions for debug_str_hash. */
4337 indirect_string_hasher::hash (indirect_string_node
*x
)
4339 return htab_hash_string (x
->str
);
4343 indirect_string_hasher::equal (indirect_string_node
*x1
, const char *x2
)
4345 return strcmp (x1
->str
, x2
) == 0;
4348 /* Add STR to the given string hash table. */
4350 static struct indirect_string_node
*
4351 find_AT_string_in_table (const char *str
,
4352 hash_table
<indirect_string_hasher
> *table
)
4354 struct indirect_string_node
*node
;
4356 indirect_string_node
**slot
4357 = table
->find_slot_with_hash (str
, htab_hash_string (str
), INSERT
);
4360 node
= ggc_cleared_alloc
<indirect_string_node
> ();
4361 node
->str
= ggc_strdup (str
);
4371 /* Add STR to the indirect string hash table. */
4373 static struct indirect_string_node
*
4374 find_AT_string (const char *str
)
4376 if (! debug_str_hash
)
4377 debug_str_hash
= hash_table
<indirect_string_hasher
>::create_ggc (10);
4379 return find_AT_string_in_table (str
, debug_str_hash
);
4382 /* Add a string attribute value to a DIE. */
4385 add_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *str
)
4388 struct indirect_string_node
*node
;
4390 node
= find_AT_string (str
);
4392 attr
.dw_attr
= attr_kind
;
4393 attr
.dw_attr_val
.val_class
= dw_val_class_str
;
4394 attr
.dw_attr_val
.val_entry
= NULL
;
4395 attr
.dw_attr_val
.v
.val_str
= node
;
4396 add_dwarf_attr (die
, &attr
);
4399 static inline const char *
4400 AT_string (dw_attr_node
*a
)
4402 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
4403 return a
->dw_attr_val
.v
.val_str
->str
;
4406 /* Call this function directly to bypass AT_string_form's logic to put
4407 the string inline in the die. */
4410 set_indirect_string (struct indirect_string_node
*node
)
4412 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4413 /* Already indirect is a no op. */
4414 if (node
->form
== DW_FORM_strp
4415 || node
->form
== DW_FORM_line_strp
4416 || node
->form
== DW_FORM_GNU_str_index
)
4418 gcc_assert (node
->label
);
4421 ASM_GENERATE_INTERNAL_LABEL (label
, "LASF", dw2_string_counter
);
4422 ++dw2_string_counter
;
4423 node
->label
= xstrdup (label
);
4425 if (!dwarf_split_debug_info
)
4427 node
->form
= DW_FORM_strp
;
4428 node
->index
= NOT_INDEXED
;
4432 node
->form
= DW_FORM_GNU_str_index
;
4433 node
->index
= NO_INDEX_ASSIGNED
;
4437 /* A helper function for dwarf2out_finish, called to reset indirect
4438 string decisions done for early LTO dwarf output before fat object
4442 reset_indirect_string (indirect_string_node
**h
, void *)
4444 struct indirect_string_node
*node
= *h
;
4445 if (node
->form
== DW_FORM_strp
|| node
->form
== DW_FORM_GNU_str_index
)
4449 node
->form
= (dwarf_form
) 0;
4455 /* Find out whether a string should be output inline in DIE
4456 or out-of-line in .debug_str section. */
4458 static enum dwarf_form
4459 find_string_form (struct indirect_string_node
*node
)
4466 len
= strlen (node
->str
) + 1;
4468 /* If the string is shorter or equal to the size of the reference, it is
4469 always better to put it inline. */
4470 if (len
<= DWARF_OFFSET_SIZE
|| node
->refcount
== 0)
4471 return node
->form
= DW_FORM_string
;
4473 /* If we cannot expect the linker to merge strings in .debug_str
4474 section, only put it into .debug_str if it is worth even in this
4476 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4477 || ((debug_str_section
->common
.flags
& SECTION_MERGE
) == 0
4478 && (len
- DWARF_OFFSET_SIZE
) * node
->refcount
<= len
))
4479 return node
->form
= DW_FORM_string
;
4481 set_indirect_string (node
);
4486 /* Find out whether the string referenced from the attribute should be
4487 output inline in DIE or out-of-line in .debug_str section. */
4489 static enum dwarf_form
4490 AT_string_form (dw_attr_node
*a
)
4492 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
4493 return find_string_form (a
->dw_attr_val
.v
.val_str
);
4496 /* Add a DIE reference attribute value to a DIE. */
4499 add_AT_die_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_die_ref targ_die
)
4502 gcc_checking_assert (targ_die
!= NULL
);
4504 /* With LTO we can end up trying to reference something we didn't create
4505 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4506 if (targ_die
== NULL
)
4509 attr
.dw_attr
= attr_kind
;
4510 attr
.dw_attr_val
.val_class
= dw_val_class_die_ref
;
4511 attr
.dw_attr_val
.val_entry
= NULL
;
4512 attr
.dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
4513 attr
.dw_attr_val
.v
.val_die_ref
.external
= 0;
4514 add_dwarf_attr (die
, &attr
);
4517 /* Change DIE reference REF to point to NEW_DIE instead. */
4520 change_AT_die_ref (dw_attr_node
*ref
, dw_die_ref new_die
)
4522 gcc_assert (ref
->dw_attr_val
.val_class
== dw_val_class_die_ref
);
4523 ref
->dw_attr_val
.v
.val_die_ref
.die
= new_die
;
4524 ref
->dw_attr_val
.v
.val_die_ref
.external
= 0;
4527 /* Add an AT_specification attribute to a DIE, and also make the back
4528 pointer from the specification to the definition. */
4531 add_AT_specification (dw_die_ref die
, dw_die_ref targ_die
)
4533 add_AT_die_ref (die
, DW_AT_specification
, targ_die
);
4534 gcc_assert (!targ_die
->die_definition
);
4535 targ_die
->die_definition
= die
;
4538 static inline dw_die_ref
4539 AT_ref (dw_attr_node
*a
)
4541 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
4542 return a
->dw_attr_val
.v
.val_die_ref
.die
;
4546 AT_ref_external (dw_attr_node
*a
)
4548 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4549 return a
->dw_attr_val
.v
.val_die_ref
.external
;
4555 set_AT_ref_external (dw_attr_node
*a
, int i
)
4557 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
4558 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
4561 /* Add an FDE reference attribute value to a DIE. */
4564 add_AT_fde_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int targ_fde
)
4568 attr
.dw_attr
= attr_kind
;
4569 attr
.dw_attr_val
.val_class
= dw_val_class_fde_ref
;
4570 attr
.dw_attr_val
.val_entry
= NULL
;
4571 attr
.dw_attr_val
.v
.val_fde_index
= targ_fde
;
4572 add_dwarf_attr (die
, &attr
);
4575 /* Add a location description attribute value to a DIE. */
4578 add_AT_loc (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_descr_ref loc
)
4582 attr
.dw_attr
= attr_kind
;
4583 attr
.dw_attr_val
.val_class
= dw_val_class_loc
;
4584 attr
.dw_attr_val
.val_entry
= NULL
;
4585 attr
.dw_attr_val
.v
.val_loc
= loc
;
4586 add_dwarf_attr (die
, &attr
);
4589 static inline dw_loc_descr_ref
4590 AT_loc (dw_attr_node
*a
)
4592 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc
);
4593 return a
->dw_attr_val
.v
.val_loc
;
4597 add_AT_loc_list (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_list_ref loc_list
)
4601 if (XCOFF_DEBUGGING_INFO
&& !HAVE_XCOFF_DWARF_EXTRAS
)
4604 attr
.dw_attr
= attr_kind
;
4605 attr
.dw_attr_val
.val_class
= dw_val_class_loc_list
;
4606 attr
.dw_attr_val
.val_entry
= NULL
;
4607 attr
.dw_attr_val
.v
.val_loc_list
= loc_list
;
4608 add_dwarf_attr (die
, &attr
);
4609 have_location_lists
= true;
4612 static inline dw_loc_list_ref
4613 AT_loc_list (dw_attr_node
*a
)
4615 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc_list
);
4616 return a
->dw_attr_val
.v
.val_loc_list
;
4619 static inline dw_loc_list_ref
*
4620 AT_loc_list_ptr (dw_attr_node
*a
)
4622 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc_list
);
4623 return &a
->dw_attr_val
.v
.val_loc_list
;
4626 struct addr_hasher
: ggc_ptr_hash
<addr_table_entry
>
4628 static hashval_t
hash (addr_table_entry
*);
4629 static bool equal (addr_table_entry
*, addr_table_entry
*);
4632 /* Table of entries into the .debug_addr section. */
4634 static GTY (()) hash_table
<addr_hasher
> *addr_index_table
;
4636 /* Hash an address_table_entry. */
4639 addr_hasher::hash (addr_table_entry
*a
)
4641 inchash::hash hstate
;
4647 case ate_kind_rtx_dtprel
:
4650 case ate_kind_label
:
4651 return htab_hash_string (a
->addr
.label
);
4655 inchash::add_rtx (a
->addr
.rtl
, hstate
);
4656 return hstate
.end ();
4659 /* Determine equality for two address_table_entries. */
4662 addr_hasher::equal (addr_table_entry
*a1
, addr_table_entry
*a2
)
4664 if (a1
->kind
!= a2
->kind
)
4669 case ate_kind_rtx_dtprel
:
4670 return rtx_equal_p (a1
->addr
.rtl
, a2
->addr
.rtl
);
4671 case ate_kind_label
:
4672 return strcmp (a1
->addr
.label
, a2
->addr
.label
) == 0;
4678 /* Initialize an addr_table_entry. */
4681 init_addr_table_entry (addr_table_entry
*e
, enum ate_kind kind
, void *addr
)
4687 case ate_kind_rtx_dtprel
:
4688 e
->addr
.rtl
= (rtx
) addr
;
4690 case ate_kind_label
:
4691 e
->addr
.label
= (char *) addr
;
4695 e
->index
= NO_INDEX_ASSIGNED
;
4698 /* Add attr to the address table entry to the table. Defer setting an
4699 index until output time. */
4701 static addr_table_entry
*
4702 add_addr_table_entry (void *addr
, enum ate_kind kind
)
4704 addr_table_entry
*node
;
4705 addr_table_entry finder
;
4707 gcc_assert (dwarf_split_debug_info
);
4708 if (! addr_index_table
)
4709 addr_index_table
= hash_table
<addr_hasher
>::create_ggc (10);
4710 init_addr_table_entry (&finder
, kind
, addr
);
4711 addr_table_entry
**slot
= addr_index_table
->find_slot (&finder
, INSERT
);
4713 if (*slot
== HTAB_EMPTY_ENTRY
)
4715 node
= ggc_cleared_alloc
<addr_table_entry
> ();
4716 init_addr_table_entry (node
, kind
, addr
);
4726 /* Remove an entry from the addr table by decrementing its refcount.
4727 Strictly, decrementing the refcount would be enough, but the
4728 assertion that the entry is actually in the table has found
4732 remove_addr_table_entry (addr_table_entry
*entry
)
4734 gcc_assert (dwarf_split_debug_info
&& addr_index_table
);
4735 /* After an index is assigned, the table is frozen. */
4736 gcc_assert (entry
->refcount
> 0 && entry
->index
== NO_INDEX_ASSIGNED
);
4740 /* Given a location list, remove all addresses it refers to from the
4744 remove_loc_list_addr_table_entries (dw_loc_descr_ref descr
)
4746 for (; descr
; descr
= descr
->dw_loc_next
)
4747 if (descr
->dw_loc_oprnd1
.val_entry
!= NULL
)
4749 gcc_assert (descr
->dw_loc_oprnd1
.val_entry
->index
== NO_INDEX_ASSIGNED
);
4750 remove_addr_table_entry (descr
->dw_loc_oprnd1
.val_entry
);
4754 /* A helper function for dwarf2out_finish called through
4755 htab_traverse. Assign an addr_table_entry its index. All entries
4756 must be collected into the table when this function is called,
4757 because the indexing code relies on htab_traverse to traverse nodes
4758 in the same order for each run. */
4761 index_addr_table_entry (addr_table_entry
**h
, unsigned int *index
)
4763 addr_table_entry
*node
= *h
;
4765 /* Don't index unreferenced nodes. */
4766 if (node
->refcount
== 0)
4769 gcc_assert (node
->index
== NO_INDEX_ASSIGNED
);
4770 node
->index
= *index
;
4776 /* Add an address constant attribute value to a DIE. When using
4777 dwarf_split_debug_info, address attributes in dies destined for the
4778 final executable should be direct references--setting the parameter
4779 force_direct ensures this behavior. */
4782 add_AT_addr (dw_die_ref die
, enum dwarf_attribute attr_kind
, rtx addr
,
4787 attr
.dw_attr
= attr_kind
;
4788 attr
.dw_attr_val
.val_class
= dw_val_class_addr
;
4789 attr
.dw_attr_val
.v
.val_addr
= addr
;
4790 if (dwarf_split_debug_info
&& !force_direct
)
4791 attr
.dw_attr_val
.val_entry
= add_addr_table_entry (addr
, ate_kind_rtx
);
4793 attr
.dw_attr_val
.val_entry
= NULL
;
4794 add_dwarf_attr (die
, &attr
);
4797 /* Get the RTX from to an address DIE attribute. */
4800 AT_addr (dw_attr_node
*a
)
4802 gcc_assert (a
&& AT_class (a
) == dw_val_class_addr
);
4803 return a
->dw_attr_val
.v
.val_addr
;
4806 /* Add a file attribute value to a DIE. */
4809 add_AT_file (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4810 struct dwarf_file_data
*fd
)
4814 attr
.dw_attr
= attr_kind
;
4815 attr
.dw_attr_val
.val_class
= dw_val_class_file
;
4816 attr
.dw_attr_val
.val_entry
= NULL
;
4817 attr
.dw_attr_val
.v
.val_file
= fd
;
4818 add_dwarf_attr (die
, &attr
);
4821 /* Get the dwarf_file_data from a file DIE attribute. */
4823 static inline struct dwarf_file_data
*
4824 AT_file (dw_attr_node
*a
)
4826 gcc_assert (a
&& (AT_class (a
) == dw_val_class_file
4827 || AT_class (a
) == dw_val_class_file_implicit
));
4828 return a
->dw_attr_val
.v
.val_file
;
4831 /* Add a vms delta attribute value to a DIE. */
4834 add_AT_vms_delta (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4835 const char *lbl1
, const char *lbl2
)
4839 attr
.dw_attr
= attr_kind
;
4840 attr
.dw_attr_val
.val_class
= dw_val_class_vms_delta
;
4841 attr
.dw_attr_val
.val_entry
= NULL
;
4842 attr
.dw_attr_val
.v
.val_vms_delta
.lbl1
= xstrdup (lbl1
);
4843 attr
.dw_attr_val
.v
.val_vms_delta
.lbl2
= xstrdup (lbl2
);
4844 add_dwarf_attr (die
, &attr
);
4847 /* Add a label identifier attribute value to a DIE. */
4850 add_AT_lbl_id (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4855 attr
.dw_attr
= attr_kind
;
4856 attr
.dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4857 attr
.dw_attr_val
.val_entry
= NULL
;
4858 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
4859 if (dwarf_split_debug_info
)
4860 attr
.dw_attr_val
.val_entry
4861 = add_addr_table_entry (attr
.dw_attr_val
.v
.val_lbl_id
,
4863 add_dwarf_attr (die
, &attr
);
4866 /* Add a section offset attribute value to a DIE, an offset into the
4867 debug_line section. */
4870 add_AT_lineptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4875 attr
.dw_attr
= attr_kind
;
4876 attr
.dw_attr_val
.val_class
= dw_val_class_lineptr
;
4877 attr
.dw_attr_val
.val_entry
= NULL
;
4878 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
4879 add_dwarf_attr (die
, &attr
);
4882 /* Add a section offset attribute value to a DIE, an offset into the
4883 debug_loclists section. */
4886 add_AT_loclistsptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4891 attr
.dw_attr
= attr_kind
;
4892 attr
.dw_attr_val
.val_class
= dw_val_class_loclistsptr
;
4893 attr
.dw_attr_val
.val_entry
= NULL
;
4894 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
4895 add_dwarf_attr (die
, &attr
);
4898 /* Add a section offset attribute value to a DIE, an offset into the
4899 debug_macinfo section. */
4902 add_AT_macptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4907 attr
.dw_attr
= attr_kind
;
4908 attr
.dw_attr_val
.val_class
= dw_val_class_macptr
;
4909 attr
.dw_attr_val
.val_entry
= NULL
;
4910 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
4911 add_dwarf_attr (die
, &attr
);
4914 /* Add an offset attribute value to a DIE. */
4917 add_AT_offset (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4918 unsigned HOST_WIDE_INT offset
)
4922 attr
.dw_attr
= attr_kind
;
4923 attr
.dw_attr_val
.val_class
= dw_val_class_offset
;
4924 attr
.dw_attr_val
.val_entry
= NULL
;
4925 attr
.dw_attr_val
.v
.val_offset
= offset
;
4926 add_dwarf_attr (die
, &attr
);
4929 /* Add a range_list attribute value to a DIE. When using
4930 dwarf_split_debug_info, address attributes in dies destined for the
4931 final executable should be direct references--setting the parameter
4932 force_direct ensures this behavior. */
4934 #define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
4935 #define RELOCATED_OFFSET (NULL)
4938 add_AT_range_list (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4939 long unsigned int offset
, bool force_direct
)
4943 attr
.dw_attr
= attr_kind
;
4944 attr
.dw_attr_val
.val_class
= dw_val_class_range_list
;
4945 /* For the range_list attribute, use val_entry to store whether the
4946 offset should follow split-debug-info or normal semantics. This
4947 value is read in output_range_list_offset. */
4948 if (dwarf_split_debug_info
&& !force_direct
)
4949 attr
.dw_attr_val
.val_entry
= UNRELOCATED_OFFSET
;
4951 attr
.dw_attr_val
.val_entry
= RELOCATED_OFFSET
;
4952 attr
.dw_attr_val
.v
.val_offset
= offset
;
4953 add_dwarf_attr (die
, &attr
);
4956 /* Return the start label of a delta attribute. */
4958 static inline const char *
4959 AT_vms_delta1 (dw_attr_node
*a
)
4961 gcc_assert (a
&& (AT_class (a
) == dw_val_class_vms_delta
));
4962 return a
->dw_attr_val
.v
.val_vms_delta
.lbl1
;
4965 /* Return the end label of a delta attribute. */
4967 static inline const char *
4968 AT_vms_delta2 (dw_attr_node
*a
)
4970 gcc_assert (a
&& (AT_class (a
) == dw_val_class_vms_delta
));
4971 return a
->dw_attr_val
.v
.val_vms_delta
.lbl2
;
4974 static inline const char *
4975 AT_lbl (dw_attr_node
*a
)
4977 gcc_assert (a
&& (AT_class (a
) == dw_val_class_lbl_id
4978 || AT_class (a
) == dw_val_class_lineptr
4979 || AT_class (a
) == dw_val_class_macptr
4980 || AT_class (a
) == dw_val_class_loclistsptr
4981 || AT_class (a
) == dw_val_class_high_pc
));
4982 return a
->dw_attr_val
.v
.val_lbl_id
;
4985 /* Get the attribute of type attr_kind. */
4987 static dw_attr_node
*
4988 get_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
4992 dw_die_ref spec
= NULL
;
4997 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
4998 if (a
->dw_attr
== attr_kind
)
5000 else if (a
->dw_attr
== DW_AT_specification
5001 || a
->dw_attr
== DW_AT_abstract_origin
)
5005 return get_AT (spec
, attr_kind
);
5010 /* Returns the parent of the declaration of DIE. */
5013 get_die_parent (dw_die_ref die
)
5020 if ((t
= get_AT_ref (die
, DW_AT_abstract_origin
))
5021 || (t
= get_AT_ref (die
, DW_AT_specification
)))
5024 return die
->die_parent
;
5027 /* Return the "low pc" attribute value, typically associated with a subprogram
5028 DIE. Return null if the "low pc" attribute is either not present, or if it
5029 cannot be represented as an assembler label identifier. */
5031 static inline const char *
5032 get_AT_low_pc (dw_die_ref die
)
5034 dw_attr_node
*a
= get_AT (die
, DW_AT_low_pc
);
5036 return a
? AT_lbl (a
) : NULL
;
5039 /* Return the "high pc" attribute value, typically associated with a subprogram
5040 DIE. Return null if the "high pc" attribute is either not present, or if it
5041 cannot be represented as an assembler label identifier. */
5043 static inline const char *
5044 get_AT_hi_pc (dw_die_ref die
)
5046 dw_attr_node
*a
= get_AT (die
, DW_AT_high_pc
);
5048 return a
? AT_lbl (a
) : NULL
;
5051 /* Return the value of the string attribute designated by ATTR_KIND, or
5052 NULL if it is not present. */
5054 static inline const char *
5055 get_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5057 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5059 return a
? AT_string (a
) : NULL
;
5062 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5063 if it is not present. */
5066 get_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5068 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5070 return a
? AT_flag (a
) : 0;
5073 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5074 if it is not present. */
5076 static inline unsigned
5077 get_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5079 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5081 return a
? AT_unsigned (a
) : 0;
5084 static inline dw_die_ref
5085 get_AT_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5087 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5089 return a
? AT_ref (a
) : NULL
;
5092 static inline struct dwarf_file_data
*
5093 get_AT_file (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5095 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5097 return a
? AT_file (a
) : NULL
;
5100 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
5103 get_ultimate_context (const_tree decl
)
5105 while (decl
&& TREE_CODE (decl
) != TRANSLATION_UNIT_DECL
)
5107 if (TREE_CODE (decl
) == BLOCK
)
5108 decl
= BLOCK_SUPERCONTEXT (decl
);
5110 decl
= get_containing_scope (decl
);
5115 /* Return TRUE if the language is C++. */
5120 unsigned int lang
= get_AT_unsigned (comp_unit_die (), DW_AT_language
);
5122 return (lang
== DW_LANG_C_plus_plus
|| lang
== DW_LANG_ObjC_plus_plus
5123 || lang
== DW_LANG_C_plus_plus_11
|| lang
== DW_LANG_C_plus_plus_14
);
5126 /* Return TRUE if DECL was created by the C++ frontend. */
5129 is_cxx (const_tree decl
)
5133 const_tree context
= get_ultimate_context (decl
);
5134 if (context
&& TRANSLATION_UNIT_LANGUAGE (context
))
5135 return strncmp (TRANSLATION_UNIT_LANGUAGE (context
), "GNU C++", 7) == 0;
5140 /* Return TRUE if the language is Fortran. */
5145 unsigned int lang
= get_AT_unsigned (comp_unit_die (), DW_AT_language
);
5147 return (lang
== DW_LANG_Fortran77
5148 || lang
== DW_LANG_Fortran90
5149 || lang
== DW_LANG_Fortran95
5150 || lang
== DW_LANG_Fortran03
5151 || lang
== DW_LANG_Fortran08
);
5155 is_fortran (const_tree decl
)
5159 const_tree context
= get_ultimate_context (decl
);
5160 if (context
&& TRANSLATION_UNIT_LANGUAGE (context
))
5161 return (strncmp (TRANSLATION_UNIT_LANGUAGE (context
),
5162 "GNU Fortran", 11) == 0
5163 || strcmp (TRANSLATION_UNIT_LANGUAGE (context
),
5166 return is_fortran ();
5169 /* Return TRUE if the language is Ada. */
5174 unsigned int lang
= get_AT_unsigned (comp_unit_die (), DW_AT_language
);
5176 return lang
== DW_LANG_Ada95
|| lang
== DW_LANG_Ada83
;
5179 /* Remove the specified attribute if present. Return TRUE if removal
5183 remove_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5191 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
5192 if (a
->dw_attr
== attr_kind
)
5194 if (AT_class (a
) == dw_val_class_str
)
5195 if (a
->dw_attr_val
.v
.val_str
->refcount
)
5196 a
->dw_attr_val
.v
.val_str
->refcount
--;
5198 /* vec::ordered_remove should help reduce the number of abbrevs
5200 die
->die_attr
->ordered_remove (ix
);
5206 /* Remove CHILD from its parent. PREV must have the property that
5207 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5210 remove_child_with_prev (dw_die_ref child
, dw_die_ref prev
)
5212 gcc_assert (child
->die_parent
== prev
->die_parent
);
5213 gcc_assert (prev
->die_sib
== child
);
5216 gcc_assert (child
->die_parent
->die_child
== child
);
5220 prev
->die_sib
= child
->die_sib
;
5221 if (child
->die_parent
->die_child
== child
)
5222 child
->die_parent
->die_child
= prev
;
5223 child
->die_sib
= NULL
;
5226 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
5227 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
5230 replace_child (dw_die_ref old_child
, dw_die_ref new_child
, dw_die_ref prev
)
5232 dw_die_ref parent
= old_child
->die_parent
;
5234 gcc_assert (parent
== prev
->die_parent
);
5235 gcc_assert (prev
->die_sib
== old_child
);
5237 new_child
->die_parent
= parent
;
5238 if (prev
== old_child
)
5240 gcc_assert (parent
->die_child
== old_child
);
5241 new_child
->die_sib
= new_child
;
5245 prev
->die_sib
= new_child
;
5246 new_child
->die_sib
= old_child
->die_sib
;
5248 if (old_child
->die_parent
->die_child
== old_child
)
5249 old_child
->die_parent
->die_child
= new_child
;
5250 old_child
->die_sib
= NULL
;
5253 /* Move all children from OLD_PARENT to NEW_PARENT. */
5256 move_all_children (dw_die_ref old_parent
, dw_die_ref new_parent
)
5259 new_parent
->die_child
= old_parent
->die_child
;
5260 old_parent
->die_child
= NULL
;
5261 FOR_EACH_CHILD (new_parent
, c
, c
->die_parent
= new_parent
);
5264 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5268 remove_child_TAG (dw_die_ref die
, enum dwarf_tag tag
)
5274 dw_die_ref prev
= c
;
5276 while (c
->die_tag
== tag
)
5278 remove_child_with_prev (c
, prev
);
5279 c
->die_parent
= NULL
;
5280 /* Might have removed every child. */
5281 if (die
->die_child
== NULL
)
5285 } while (c
!= die
->die_child
);
5288 /* Add a CHILD_DIE as the last child of DIE. */
5291 add_child_die (dw_die_ref die
, dw_die_ref child_die
)
5293 /* FIXME this should probably be an assert. */
5294 if (! die
|| ! child_die
)
5296 gcc_assert (die
!= child_die
);
5298 child_die
->die_parent
= die
;
5301 child_die
->die_sib
= die
->die_child
->die_sib
;
5302 die
->die_child
->die_sib
= child_die
;
5305 child_die
->die_sib
= child_die
;
5306 die
->die_child
= child_die
;
5309 /* Like add_child_die, but put CHILD_DIE after AFTER_DIE. */
5312 add_child_die_after (dw_die_ref die
, dw_die_ref child_die
,
5313 dw_die_ref after_die
)
5319 && die
!= child_die
);
5321 child_die
->die_parent
= die
;
5322 child_die
->die_sib
= after_die
->die_sib
;
5323 after_die
->die_sib
= child_die
;
5324 if (die
->die_child
== after_die
)
5325 die
->die_child
= child_die
;
5328 /* Unassociate CHILD from its parent, and make its parent be
5332 reparent_child (dw_die_ref child
, dw_die_ref new_parent
)
5334 for (dw_die_ref p
= child
->die_parent
->die_child
; ; p
= p
->die_sib
)
5335 if (p
->die_sib
== child
)
5337 remove_child_with_prev (child
, p
);
5340 add_child_die (new_parent
, child
);
5343 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5344 is the specification, to the end of PARENT's list of children.
5345 This is done by removing and re-adding it. */
5348 splice_child_die (dw_die_ref parent
, dw_die_ref child
)
5350 /* We want the declaration DIE from inside the class, not the
5351 specification DIE at toplevel. */
5352 if (child
->die_parent
!= parent
)
5354 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5360 gcc_assert (child
->die_parent
== parent
5361 || (child
->die_parent
5362 == get_AT_ref (parent
, DW_AT_specification
)));
5364 reparent_child (child
, parent
);
5367 /* Create and return a new die with a parent of PARENT_DIE. If
5368 PARENT_DIE is NULL, the new DIE is placed in limbo and an
5369 associated tree T must be supplied to determine parenthood
5372 static inline dw_die_ref
5373 new_die (enum dwarf_tag tag_value
, dw_die_ref parent_die
, tree t
)
5375 dw_die_ref die
= ggc_cleared_alloc
<die_node
> ();
5377 die
->die_tag
= tag_value
;
5379 if (parent_die
!= NULL
)
5380 add_child_die (parent_die
, die
);
5383 limbo_die_node
*limbo_node
;
5385 /* No DIEs created after early dwarf should end up in limbo,
5386 because the limbo list should not persist past LTO
5388 if (tag_value
!= DW_TAG_compile_unit
5389 /* These are allowed because they're generated while
5390 breaking out COMDAT units late. */
5391 && tag_value
!= DW_TAG_type_unit
5392 && tag_value
!= DW_TAG_skeleton_unit
5394 /* Allow nested functions to live in limbo because they will
5395 only temporarily live there, as decls_for_scope will fix
5397 && (TREE_CODE (t
) != FUNCTION_DECL
5398 || !decl_function_context (t
))
5399 /* Same as nested functions above but for types. Types that
5400 are local to a function will be fixed in
5402 && (!RECORD_OR_UNION_TYPE_P (t
)
5403 || !TYPE_CONTEXT (t
)
5404 || TREE_CODE (TYPE_CONTEXT (t
)) != FUNCTION_DECL
)
5405 /* FIXME debug-early: Allow late limbo DIE creation for LTO,
5406 especially in the ltrans stage, but once we implement LTO
5407 dwarf streaming, we should remove this exception. */
5410 fprintf (stderr
, "symbol ended up in limbo too late:");
5411 debug_generic_stmt (t
);
5415 limbo_node
= ggc_cleared_alloc
<limbo_die_node
> ();
5416 limbo_node
->die
= die
;
5417 limbo_node
->created_for
= t
;
5418 limbo_node
->next
= limbo_die_list
;
5419 limbo_die_list
= limbo_node
;
5425 /* Return the DIE associated with the given type specifier. */
5427 static inline dw_die_ref
5428 lookup_type_die (tree type
)
5430 dw_die_ref die
= TYPE_SYMTAB_DIE (type
);
5431 if (die
&& die
->removed
)
5433 TYPE_SYMTAB_DIE (type
) = NULL
;
5439 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
5440 anonymous type named by the typedef TYPE_DIE, return the DIE of the
5441 anonymous type instead the one of the naming typedef. */
5443 static inline dw_die_ref
5444 strip_naming_typedef (tree type
, dw_die_ref type_die
)
5447 && TREE_CODE (type
) == RECORD_TYPE
5449 && type_die
->die_tag
== DW_TAG_typedef
5450 && is_naming_typedef_decl (TYPE_NAME (type
)))
5451 type_die
= get_AT_ref (type_die
, DW_AT_type
);
5455 /* Like lookup_type_die, but if type is an anonymous type named by a
5456 typedef[1], return the DIE of the anonymous type instead the one of
5457 the naming typedef. This is because in gen_typedef_die, we did
5458 equate the anonymous struct named by the typedef with the DIE of
5459 the naming typedef. So by default, lookup_type_die on an anonymous
5460 struct yields the DIE of the naming typedef.
5462 [1]: Read the comment of is_naming_typedef_decl to learn about what
5463 a naming typedef is. */
5465 static inline dw_die_ref
5466 lookup_type_die_strip_naming_typedef (tree type
)
5468 dw_die_ref die
= lookup_type_die (type
);
5469 return strip_naming_typedef (type
, die
);
5472 /* Equate a DIE to a given type specifier. */
5475 equate_type_number_to_die (tree type
, dw_die_ref type_die
)
5477 TYPE_SYMTAB_DIE (type
) = type_die
;
5480 /* Returns a hash value for X (which really is a die_struct). */
5483 decl_die_hasher::hash (die_node
*x
)
5485 return (hashval_t
) x
->decl_id
;
5488 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5491 decl_die_hasher::equal (die_node
*x
, tree y
)
5493 return (x
->decl_id
== DECL_UID (y
));
5496 /* Return the DIE associated with a given declaration. */
5498 static inline dw_die_ref
5499 lookup_decl_die (tree decl
)
5501 dw_die_ref
*die
= decl_die_table
->find_slot_with_hash (decl
, DECL_UID (decl
),
5505 if ((*die
)->removed
)
5507 decl_die_table
->clear_slot (die
);
5514 /* For DECL which might have early dwarf output query a SYMBOL + OFFSET
5515 style reference. Return true if we found one refering to a DIE for
5516 DECL, otherwise return false. */
5519 dwarf2out_die_ref_for_decl (tree decl
, const char **sym
,
5520 unsigned HOST_WIDE_INT
*off
)
5524 if (flag_wpa
&& !decl_die_table
)
5527 if (TREE_CODE (decl
) == BLOCK
)
5528 die
= BLOCK_DIE (decl
);
5530 die
= lookup_decl_die (decl
);
5534 /* During WPA stage we currently use DIEs to store the
5535 decl <-> label + offset map. That's quite inefficient but it
5539 dw_die_ref ref
= get_AT_ref (die
, DW_AT_abstract_origin
);
5542 gcc_assert (die
== comp_unit_die ());
5545 *off
= ref
->die_offset
;
5546 *sym
= ref
->die_id
.die_symbol
;
5550 /* Similar to get_ref_die_offset_label, but using the "correct"
5552 *off
= die
->die_offset
;
5553 while (die
->die_parent
)
5554 die
= die
->die_parent
;
5555 /* For the containing CU DIE we compute a die_symbol in
5556 compute_comp_unit_symbol. */
5557 gcc_assert (die
->die_tag
== DW_TAG_compile_unit
5558 && die
->die_id
.die_symbol
!= NULL
);
5559 *sym
= die
->die_id
.die_symbol
;
5563 /* Add a reference of kind ATTR_KIND to a DIE at SYMBOL + OFFSET to DIE. */
5566 add_AT_external_die_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5567 const char *symbol
, HOST_WIDE_INT offset
)
5569 /* Create a fake DIE that contains the reference. Don't use
5570 new_die because we don't want to end up in the limbo list. */
5571 dw_die_ref ref
= ggc_cleared_alloc
<die_node
> ();
5572 ref
->die_tag
= die
->die_tag
;
5573 ref
->die_id
.die_symbol
= IDENTIFIER_POINTER (get_identifier (symbol
));
5574 ref
->die_offset
= offset
;
5575 ref
->with_offset
= 1;
5576 add_AT_die_ref (die
, attr_kind
, ref
);
5579 /* Create a DIE for DECL if required and add a reference to a DIE
5580 at SYMBOL + OFFSET which contains attributes dumped early. */
5583 dwarf2out_register_external_die (tree decl
, const char *sym
,
5584 unsigned HOST_WIDE_INT off
)
5586 if (debug_info_level
== DINFO_LEVEL_NONE
)
5589 if (flag_wpa
&& !decl_die_table
)
5590 decl_die_table
= hash_table
<decl_die_hasher
>::create_ggc (1000);
5593 = TREE_CODE (decl
) == BLOCK
? BLOCK_DIE (decl
) : lookup_decl_die (decl
);
5597 dw_die_ref parent
= NULL
;
5598 /* Need to lookup a DIE for the decls context - the containing
5599 function or translation unit. */
5600 if (TREE_CODE (decl
) == BLOCK
)
5602 ctx
= BLOCK_SUPERCONTEXT (decl
);
5603 /* ??? We do not output DIEs for all scopes thus skip as
5604 many DIEs as needed. */
5605 while (TREE_CODE (ctx
) == BLOCK
5606 && !BLOCK_DIE (ctx
))
5607 ctx
= BLOCK_SUPERCONTEXT (ctx
);
5610 ctx
= DECL_CONTEXT (decl
);
5611 while (ctx
&& TYPE_P (ctx
))
5612 ctx
= TYPE_CONTEXT (ctx
);
5615 if (TREE_CODE (ctx
) == BLOCK
)
5616 parent
= BLOCK_DIE (ctx
);
5617 else if (TREE_CODE (ctx
) == TRANSLATION_UNIT_DECL
5618 /* Keep the 1:1 association during WPA. */
5620 /* Otherwise all late annotations go to the main CU which
5621 imports the original CUs. */
5622 parent
= comp_unit_die ();
5623 else if (TREE_CODE (ctx
) == FUNCTION_DECL
5624 && TREE_CODE (decl
) != PARM_DECL
5625 && TREE_CODE (decl
) != BLOCK
)
5626 /* Leave function local entities parent determination to when
5627 we process scope vars. */
5630 parent
= lookup_decl_die (ctx
);
5633 /* In some cases the FEs fail to set DECL_CONTEXT properly.
5634 Handle this case gracefully by globalizing stuff. */
5635 parent
= comp_unit_die ();
5636 /* Create a DIE "stub". */
5637 switch (TREE_CODE (decl
))
5639 case TRANSLATION_UNIT_DECL
:
5642 die
= comp_unit_die ();
5643 dw_die_ref import
= new_die (DW_TAG_imported_unit
, die
, NULL_TREE
);
5644 add_AT_external_die_ref (import
, DW_AT_import
, sym
, off
);
5645 /* We re-target all CU decls to the LTRANS CU DIE, so no need
5646 to create a DIE for the original CUs. */
5649 /* Keep the 1:1 association during WPA. */
5650 die
= new_die (DW_TAG_compile_unit
, NULL
, decl
);
5652 case NAMESPACE_DECL
:
5653 if (is_fortran (decl
))
5654 die
= new_die (DW_TAG_module
, parent
, decl
);
5656 die
= new_die (DW_TAG_namespace
, parent
, decl
);
5659 die
= new_die (DW_TAG_subprogram
, parent
, decl
);
5662 die
= new_die (DW_TAG_variable
, parent
, decl
);
5665 die
= new_die (DW_TAG_variable
, parent
, decl
);
5668 die
= new_die (DW_TAG_formal_parameter
, parent
, decl
);
5671 die
= new_die (DW_TAG_constant
, parent
, decl
);
5674 die
= new_die (DW_TAG_label
, parent
, decl
);
5677 die
= new_die (DW_TAG_lexical_block
, parent
, decl
);
5682 if (TREE_CODE (decl
) == BLOCK
)
5683 BLOCK_DIE (decl
) = die
;
5685 equate_decl_number_to_die (decl
, die
);
5687 /* Add a reference to the DIE providing early debug at $sym + off. */
5688 add_AT_external_die_ref (die
, DW_AT_abstract_origin
, sym
, off
);
5691 /* Returns a hash value for X (which really is a var_loc_list). */
5694 decl_loc_hasher::hash (var_loc_list
*x
)
5696 return (hashval_t
) x
->decl_id
;
5699 /* Return nonzero if decl_id of var_loc_list X is the same as
5703 decl_loc_hasher::equal (var_loc_list
*x
, const_tree y
)
5705 return (x
->decl_id
== DECL_UID (y
));
5708 /* Return the var_loc list associated with a given declaration. */
5710 static inline var_loc_list
*
5711 lookup_decl_loc (const_tree decl
)
5713 if (!decl_loc_table
)
5715 return decl_loc_table
->find_with_hash (decl
, DECL_UID (decl
));
5718 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
5721 dw_loc_list_hasher::hash (cached_dw_loc_list
*x
)
5723 return (hashval_t
) x
->decl_id
;
5726 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
5730 dw_loc_list_hasher::equal (cached_dw_loc_list
*x
, const_tree y
)
5732 return (x
->decl_id
== DECL_UID (y
));
5735 /* Equate a DIE to a particular declaration. */
5738 equate_decl_number_to_die (tree decl
, dw_die_ref decl_die
)
5740 unsigned int decl_id
= DECL_UID (decl
);
5742 *decl_die_table
->find_slot_with_hash (decl
, decl_id
, INSERT
) = decl_die
;
5743 decl_die
->decl_id
= decl_id
;
5746 /* Return how many bits covers PIECE EXPR_LIST. */
5748 static HOST_WIDE_INT
5749 decl_piece_bitsize (rtx piece
)
5751 int ret
= (int) GET_MODE (piece
);
5754 gcc_assert (GET_CODE (XEXP (piece
, 0)) == CONCAT
5755 && CONST_INT_P (XEXP (XEXP (piece
, 0), 0)));
5756 return INTVAL (XEXP (XEXP (piece
, 0), 0));
5759 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
5762 decl_piece_varloc_ptr (rtx piece
)
5764 if ((int) GET_MODE (piece
))
5765 return &XEXP (piece
, 0);
5767 return &XEXP (XEXP (piece
, 0), 1);
5770 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
5771 Next is the chain of following piece nodes. */
5773 static rtx_expr_list
*
5774 decl_piece_node (rtx loc_note
, HOST_WIDE_INT bitsize
, rtx next
)
5776 if (bitsize
> 0 && bitsize
<= (int) MAX_MACHINE_MODE
)
5777 return alloc_EXPR_LIST (bitsize
, loc_note
, next
);
5779 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode
,
5784 /* Return rtx that should be stored into loc field for
5785 LOC_NOTE and BITPOS/BITSIZE. */
5788 construct_piece_list (rtx loc_note
, HOST_WIDE_INT bitpos
,
5789 HOST_WIDE_INT bitsize
)
5793 loc_note
= decl_piece_node (loc_note
, bitsize
, NULL_RTX
);
5795 loc_note
= decl_piece_node (NULL_RTX
, bitpos
, loc_note
);
5800 /* This function either modifies location piece list *DEST in
5801 place (if SRC and INNER is NULL), or copies location piece list
5802 *SRC to *DEST while modifying it. Location BITPOS is modified
5803 to contain LOC_NOTE, any pieces overlapping it are removed resp.
5804 not copied and if needed some padding around it is added.
5805 When modifying in place, DEST should point to EXPR_LIST where
5806 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
5807 to the start of the whole list and INNER points to the EXPR_LIST
5808 where earlier pieces cover PIECE_BITPOS bits. */
5811 adjust_piece_list (rtx
*dest
, rtx
*src
, rtx
*inner
,
5812 HOST_WIDE_INT bitpos
, HOST_WIDE_INT piece_bitpos
,
5813 HOST_WIDE_INT bitsize
, rtx loc_note
)
5816 bool copy
= inner
!= NULL
;
5820 /* First copy all nodes preceding the current bitpos. */
5821 while (src
!= inner
)
5823 *dest
= decl_piece_node (*decl_piece_varloc_ptr (*src
),
5824 decl_piece_bitsize (*src
), NULL_RTX
);
5825 dest
= &XEXP (*dest
, 1);
5826 src
= &XEXP (*src
, 1);
5829 /* Add padding if needed. */
5830 if (bitpos
!= piece_bitpos
)
5832 *dest
= decl_piece_node (NULL_RTX
, bitpos
- piece_bitpos
,
5833 copy
? NULL_RTX
: *dest
);
5834 dest
= &XEXP (*dest
, 1);
5836 else if (*dest
&& decl_piece_bitsize (*dest
) == bitsize
)
5839 /* A piece with correct bitpos and bitsize already exist,
5840 just update the location for it and return. */
5841 *decl_piece_varloc_ptr (*dest
) = loc_note
;
5844 /* Add the piece that changed. */
5845 *dest
= decl_piece_node (loc_note
, bitsize
, copy
? NULL_RTX
: *dest
);
5846 dest
= &XEXP (*dest
, 1);
5847 /* Skip over pieces that overlap it. */
5848 diff
= bitpos
- piece_bitpos
+ bitsize
;
5851 while (diff
> 0 && *src
)
5854 diff
-= decl_piece_bitsize (piece
);
5856 src
= &XEXP (piece
, 1);
5859 *src
= XEXP (piece
, 1);
5860 free_EXPR_LIST_node (piece
);
5863 /* Add padding if needed. */
5864 if (diff
< 0 && *src
)
5868 *dest
= decl_piece_node (NULL_RTX
, -diff
, copy
? NULL_RTX
: *dest
);
5869 dest
= &XEXP (*dest
, 1);
5873 /* Finally copy all nodes following it. */
5876 *dest
= decl_piece_node (*decl_piece_varloc_ptr (*src
),
5877 decl_piece_bitsize (*src
), NULL_RTX
);
5878 dest
= &XEXP (*dest
, 1);
5879 src
= &XEXP (*src
, 1);
5883 /* Add a variable location node to the linked list for DECL. */
5885 static struct var_loc_node
*
5886 add_var_loc_to_decl (tree decl
, rtx loc_note
, const char *label
)
5888 unsigned int decl_id
;
5890 struct var_loc_node
*loc
= NULL
;
5891 HOST_WIDE_INT bitsize
= -1, bitpos
= -1;
5893 if (VAR_P (decl
) && DECL_HAS_DEBUG_EXPR_P (decl
))
5895 tree realdecl
= DECL_DEBUG_EXPR (decl
);
5896 if (handled_component_p (realdecl
)
5897 || (TREE_CODE (realdecl
) == MEM_REF
5898 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5900 HOST_WIDE_INT maxsize
;
5903 = get_ref_base_and_extent (realdecl
, &bitpos
, &bitsize
, &maxsize
,
5905 if (!DECL_P (innerdecl
)
5906 || DECL_IGNORED_P (innerdecl
)
5907 || TREE_STATIC (innerdecl
)
5909 || bitpos
+ bitsize
> 256
5910 || bitsize
!= maxsize
)
5916 decl_id
= DECL_UID (decl
);
5918 = decl_loc_table
->find_slot_with_hash (decl
, decl_id
, INSERT
);
5921 temp
= ggc_cleared_alloc
<var_loc_list
> ();
5922 temp
->decl_id
= decl_id
;
5928 /* For PARM_DECLs try to keep around the original incoming value,
5929 even if that means we'll emit a zero-range .debug_loc entry. */
5931 && temp
->first
== temp
->last
5932 && TREE_CODE (decl
) == PARM_DECL
5933 && NOTE_P (temp
->first
->loc
)
5934 && NOTE_VAR_LOCATION_DECL (temp
->first
->loc
) == decl
5935 && DECL_INCOMING_RTL (decl
)
5936 && NOTE_VAR_LOCATION_LOC (temp
->first
->loc
)
5937 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp
->first
->loc
))
5938 == GET_CODE (DECL_INCOMING_RTL (decl
))
5939 && prev_real_insn (as_a
<rtx_insn
*> (temp
->first
->loc
)) == NULL_RTX
5941 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp
->first
->loc
),
5942 NOTE_VAR_LOCATION_LOC (loc_note
))
5943 || (NOTE_VAR_LOCATION_STATUS (temp
->first
->loc
)
5944 != NOTE_VAR_LOCATION_STATUS (loc_note
))))
5946 loc
= ggc_cleared_alloc
<var_loc_node
> ();
5947 temp
->first
->next
= loc
;
5949 loc
->loc
= construct_piece_list (loc_note
, bitpos
, bitsize
);
5951 else if (temp
->last
)
5953 struct var_loc_node
*last
= temp
->last
, *unused
= NULL
;
5954 rtx
*piece_loc
= NULL
, last_loc_note
;
5955 HOST_WIDE_INT piece_bitpos
= 0;
5959 gcc_assert (last
->next
== NULL
);
5961 if (bitsize
!= -1 && GET_CODE (last
->loc
) == EXPR_LIST
)
5963 piece_loc
= &last
->loc
;
5966 HOST_WIDE_INT cur_bitsize
= decl_piece_bitsize (*piece_loc
);
5967 if (piece_bitpos
+ cur_bitsize
> bitpos
)
5969 piece_bitpos
+= cur_bitsize
;
5970 piece_loc
= &XEXP (*piece_loc
, 1);
5974 /* TEMP->LAST here is either pointer to the last but one or
5975 last element in the chained list, LAST is pointer to the
5977 if (label
&& strcmp (last
->label
, label
) == 0)
5979 /* For SRA optimized variables if there weren't any real
5980 insns since last note, just modify the last node. */
5981 if (piece_loc
!= NULL
)
5983 adjust_piece_list (piece_loc
, NULL
, NULL
,
5984 bitpos
, piece_bitpos
, bitsize
, loc_note
);
5987 /* If the last note doesn't cover any instructions, remove it. */
5988 if (temp
->last
!= last
)
5990 temp
->last
->next
= NULL
;
5993 gcc_assert (strcmp (last
->label
, label
) != 0);
5997 gcc_assert (temp
->first
== temp
->last
5998 || (temp
->first
->next
== temp
->last
5999 && TREE_CODE (decl
) == PARM_DECL
));
6000 memset (temp
->last
, '\0', sizeof (*temp
->last
));
6001 temp
->last
->loc
= construct_piece_list (loc_note
, bitpos
, bitsize
);
6005 if (bitsize
== -1 && NOTE_P (last
->loc
))
6006 last_loc_note
= last
->loc
;
6007 else if (piece_loc
!= NULL
6008 && *piece_loc
!= NULL_RTX
6009 && piece_bitpos
== bitpos
6010 && decl_piece_bitsize (*piece_loc
) == bitsize
)
6011 last_loc_note
= *decl_piece_varloc_ptr (*piece_loc
);
6013 last_loc_note
= NULL_RTX
;
6014 /* If the current location is the same as the end of the list,
6015 and either both or neither of the locations is uninitialized,
6016 we have nothing to do. */
6017 if (last_loc_note
== NULL_RTX
6018 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note
),
6019 NOTE_VAR_LOCATION_LOC (loc_note
)))
6020 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note
)
6021 != NOTE_VAR_LOCATION_STATUS (loc_note
))
6022 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note
)
6023 == VAR_INIT_STATUS_UNINITIALIZED
)
6024 || (NOTE_VAR_LOCATION_STATUS (loc_note
)
6025 == VAR_INIT_STATUS_UNINITIALIZED
))))
6027 /* Add LOC to the end of list and update LAST. If the last
6028 element of the list has been removed above, reuse its
6029 memory for the new node, otherwise allocate a new one. */
6033 memset (loc
, '\0', sizeof (*loc
));
6036 loc
= ggc_cleared_alloc
<var_loc_node
> ();
6037 if (bitsize
== -1 || piece_loc
== NULL
)
6038 loc
->loc
= construct_piece_list (loc_note
, bitpos
, bitsize
);
6040 adjust_piece_list (&loc
->loc
, &last
->loc
, piece_loc
,
6041 bitpos
, piece_bitpos
, bitsize
, loc_note
);
6043 /* Ensure TEMP->LAST will point either to the new last but one
6044 element of the chain, or to the last element in it. */
6045 if (last
!= temp
->last
)
6053 loc
= ggc_cleared_alloc
<var_loc_node
> ();
6056 loc
->loc
= construct_piece_list (loc_note
, bitpos
, bitsize
);
6061 /* Keep track of the number of spaces used to indent the
6062 output of the debugging routines that print the structure of
6063 the DIE internal representation. */
6064 static int print_indent
;
6066 /* Indent the line the number of spaces given by print_indent. */
6069 print_spaces (FILE *outfile
)
6071 fprintf (outfile
, "%*s", print_indent
, "");
6074 /* Print a type signature in hex. */
6077 print_signature (FILE *outfile
, char *sig
)
6081 for (i
= 0; i
< DWARF_TYPE_SIGNATURE_SIZE
; i
++)
6082 fprintf (outfile
, "%02x", sig
[i
] & 0xff);
6086 print_discr_value (FILE *outfile
, dw_discr_value
*discr_value
)
6088 if (discr_value
->pos
)
6089 fprintf (outfile
, HOST_WIDE_INT_PRINT_UNSIGNED
, discr_value
->v
.sval
);
6091 fprintf (outfile
, HOST_WIDE_INT_PRINT_DEC
, discr_value
->v
.uval
);
6094 static void print_loc_descr (dw_loc_descr_ref
, FILE *);
6096 /* Print the value associated to the VAL DWARF value node to OUTFILE. If
6097 RECURSE, output location descriptor operations. */
6100 print_dw_val (dw_val_node
*val
, bool recurse
, FILE *outfile
)
6102 switch (val
->val_class
)
6104 case dw_val_class_addr
:
6105 fprintf (outfile
, "address");
6107 case dw_val_class_offset
:
6108 fprintf (outfile
, "offset");
6110 case dw_val_class_loc
:
6111 fprintf (outfile
, "location descriptor");
6112 if (val
->v
.val_loc
== NULL
)
6113 fprintf (outfile
, " -> <null>\n");
6116 fprintf (outfile
, ":\n");
6118 print_loc_descr (val
->v
.val_loc
, outfile
);
6122 fprintf (outfile
, " (%p)\n", (void *) val
->v
.val_loc
);
6124 case dw_val_class_loc_list
:
6125 fprintf (outfile
, "location list -> label:%s",
6126 val
->v
.val_loc_list
->ll_symbol
);
6128 case dw_val_class_range_list
:
6129 fprintf (outfile
, "range list");
6131 case dw_val_class_const
:
6132 case dw_val_class_const_implicit
:
6133 fprintf (outfile
, HOST_WIDE_INT_PRINT_DEC
, val
->v
.val_int
);
6135 case dw_val_class_unsigned_const
:
6136 case dw_val_class_unsigned_const_implicit
:
6137 fprintf (outfile
, HOST_WIDE_INT_PRINT_UNSIGNED
, val
->v
.val_unsigned
);
6139 case dw_val_class_const_double
:
6140 fprintf (outfile
, "constant (" HOST_WIDE_INT_PRINT_DEC
","\
6141 HOST_WIDE_INT_PRINT_UNSIGNED
")",
6142 val
->v
.val_double
.high
,
6143 val
->v
.val_double
.low
);
6145 case dw_val_class_wide_int
:
6147 int i
= val
->v
.val_wide
->get_len ();
6148 fprintf (outfile
, "constant (");
6150 if (val
->v
.val_wide
->elt (i
- 1) == 0)
6151 fprintf (outfile
, "0x");
6152 fprintf (outfile
, HOST_WIDE_INT_PRINT_HEX
,
6153 val
->v
.val_wide
->elt (--i
));
6155 fprintf (outfile
, HOST_WIDE_INT_PRINT_PADDED_HEX
,
6156 val
->v
.val_wide
->elt (i
));
6157 fprintf (outfile
, ")");
6160 case dw_val_class_vec
:
6161 fprintf (outfile
, "floating-point or vector constant");
6163 case dw_val_class_flag
:
6164 fprintf (outfile
, "%u", val
->v
.val_flag
);
6166 case dw_val_class_die_ref
:
6167 if (val
->v
.val_die_ref
.die
!= NULL
)
6169 dw_die_ref die
= val
->v
.val_die_ref
.die
;
6171 if (die
->comdat_type_p
)
6173 fprintf (outfile
, "die -> signature: ");
6174 print_signature (outfile
,
6175 die
->die_id
.die_type_node
->signature
);
6177 else if (die
->die_id
.die_symbol
)
6179 fprintf (outfile
, "die -> label: %s", die
->die_id
.die_symbol
);
6180 if (die
->with_offset
)
6181 fprintf (outfile
, " + %ld", die
->die_offset
);
6184 fprintf (outfile
, "die -> %ld", die
->die_offset
);
6185 fprintf (outfile
, " (%p)", (void *) die
);
6188 fprintf (outfile
, "die -> <null>");
6190 case dw_val_class_vms_delta
:
6191 fprintf (outfile
, "delta: @slotcount(%s-%s)",
6192 val
->v
.val_vms_delta
.lbl2
, val
->v
.val_vms_delta
.lbl1
);
6194 case dw_val_class_lbl_id
:
6195 case dw_val_class_lineptr
:
6196 case dw_val_class_macptr
:
6197 case dw_val_class_loclistsptr
:
6198 case dw_val_class_high_pc
:
6199 fprintf (outfile
, "label: %s", val
->v
.val_lbl_id
);
6201 case dw_val_class_str
:
6202 if (val
->v
.val_str
->str
!= NULL
)
6203 fprintf (outfile
, "\"%s\"", val
->v
.val_str
->str
);
6205 fprintf (outfile
, "<null>");
6207 case dw_val_class_file
:
6208 case dw_val_class_file_implicit
:
6209 fprintf (outfile
, "\"%s\" (%d)", val
->v
.val_file
->filename
,
6210 val
->v
.val_file
->emitted_number
);
6212 case dw_val_class_data8
:
6216 for (i
= 0; i
< 8; i
++)
6217 fprintf (outfile
, "%02x", val
->v
.val_data8
[i
]);
6220 case dw_val_class_discr_value
:
6221 print_discr_value (outfile
, &val
->v
.val_discr_value
);
6223 case dw_val_class_discr_list
:
6224 for (dw_discr_list_ref node
= val
->v
.val_discr_list
;
6226 node
= node
->dw_discr_next
)
6228 if (node
->dw_discr_range
)
6230 fprintf (outfile
, " .. ");
6231 print_discr_value (outfile
, &node
->dw_discr_lower_bound
);
6232 print_discr_value (outfile
, &node
->dw_discr_upper_bound
);
6235 print_discr_value (outfile
, &node
->dw_discr_lower_bound
);
6237 if (node
->dw_discr_next
!= NULL
)
6238 fprintf (outfile
, " | ");
6245 /* Likewise, for a DIE attribute. */
6248 print_attribute (dw_attr_node
*a
, bool recurse
, FILE *outfile
)
6250 print_dw_val (&a
->dw_attr_val
, recurse
, outfile
);
6254 /* Print the list of operands in the LOC location description to OUTFILE. This
6255 routine is a debugging aid only. */
6258 print_loc_descr (dw_loc_descr_ref loc
, FILE *outfile
)
6260 dw_loc_descr_ref l
= loc
;
6264 print_spaces (outfile
);
6265 fprintf (outfile
, "<null>\n");
6269 for (l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
6271 print_spaces (outfile
);
6272 fprintf (outfile
, "(%p) %s",
6274 dwarf_stack_op_name (l
->dw_loc_opc
));
6275 if (l
->dw_loc_oprnd1
.val_class
!= dw_val_class_none
)
6277 fprintf (outfile
, " ");
6278 print_dw_val (&l
->dw_loc_oprnd1
, false, outfile
);
6280 if (l
->dw_loc_oprnd2
.val_class
!= dw_val_class_none
)
6282 fprintf (outfile
, ", ");
6283 print_dw_val (&l
->dw_loc_oprnd2
, false, outfile
);
6285 fprintf (outfile
, "\n");
6289 /* Print the information associated with a given DIE, and its children.
6290 This routine is a debugging aid only. */
6293 print_die (dw_die_ref die
, FILE *outfile
)
6299 print_spaces (outfile
);
6300 fprintf (outfile
, "DIE %4ld: %s (%p)\n",
6301 die
->die_offset
, dwarf_tag_name (die
->die_tag
),
6303 print_spaces (outfile
);
6304 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
6305 fprintf (outfile
, " offset: %ld", die
->die_offset
);
6306 fprintf (outfile
, " mark: %d\n", die
->die_mark
);
6308 if (die
->comdat_type_p
)
6310 print_spaces (outfile
);
6311 fprintf (outfile
, " signature: ");
6312 print_signature (outfile
, die
->die_id
.die_type_node
->signature
);
6313 fprintf (outfile
, "\n");
6316 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
6318 print_spaces (outfile
);
6319 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
6321 print_attribute (a
, true, outfile
);
6322 fprintf (outfile
, "\n");
6325 if (die
->die_child
!= NULL
)
6328 FOR_EACH_CHILD (die
, c
, print_die (c
, outfile
));
6331 if (print_indent
== 0)
6332 fprintf (outfile
, "\n");
6335 /* Print the list of operations in the LOC location description. */
6338 debug_dwarf_loc_descr (dw_loc_descr_ref loc
)
6340 print_loc_descr (loc
, stderr
);
6343 /* Print the information collected for a given DIE. */
6346 debug_dwarf_die (dw_die_ref die
)
6348 print_die (die
, stderr
);
6352 debug (die_struct
&ref
)
6354 print_die (&ref
, stderr
);
6358 debug (die_struct
*ptr
)
6363 fprintf (stderr
, "<nil>\n");
6367 /* Print all DWARF information collected for the compilation unit.
6368 This routine is a debugging aid only. */
6374 print_die (comp_unit_die (), stderr
);
6377 /* Verify the DIE tree structure. */
6380 verify_die (dw_die_ref die
)
6382 gcc_assert (!die
->die_mark
);
6383 if (die
->die_parent
== NULL
6384 && die
->die_sib
== NULL
)
6386 /* Verify the die_sib list is cyclic. */
6393 while (x
&& !x
->die_mark
);
6394 gcc_assert (x
== die
);
6398 /* Verify all dies have the same parent. */
6399 gcc_assert (x
->die_parent
== die
->die_parent
);
6402 /* Verify the child has the proper parent and recurse. */
6403 gcc_assert (x
->die_child
->die_parent
== x
);
6404 verify_die (x
->die_child
);
6409 while (x
&& x
->die_mark
);
6412 /* Sanity checks on DIEs. */
6415 check_die (dw_die_ref die
)
6419 bool inline_found
= false;
6420 int n_location
= 0, n_low_pc
= 0, n_high_pc
= 0, n_artificial
= 0;
6421 int n_decl_line
= 0, n_decl_column
= 0, n_decl_file
= 0;
6422 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
6427 if (a
->dw_attr_val
.v
.val_unsigned
)
6428 inline_found
= true;
6430 case DW_AT_location
:
6439 case DW_AT_artificial
:
6442 case DW_AT_decl_column
:
6445 case DW_AT_decl_line
:
6448 case DW_AT_decl_file
:
6455 if (n_location
> 1 || n_low_pc
> 1 || n_high_pc
> 1 || n_artificial
> 1
6456 || n_decl_column
> 1 || n_decl_line
> 1 || n_decl_file
> 1)
6458 fprintf (stderr
, "Duplicate attributes in DIE:\n");
6459 debug_dwarf_die (die
);
6464 /* A debugging information entry that is a member of an abstract
6465 instance tree [that has DW_AT_inline] should not contain any
6466 attributes which describe aspects of the subroutine which vary
6467 between distinct inlined expansions or distinct out-of-line
6469 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
6470 gcc_assert (a
->dw_attr
!= DW_AT_low_pc
6471 && a
->dw_attr
!= DW_AT_high_pc
6472 && a
->dw_attr
!= DW_AT_location
6473 && a
->dw_attr
!= DW_AT_frame_base
6474 && a
->dw_attr
!= DW_AT_call_all_calls
6475 && a
->dw_attr
!= DW_AT_GNU_all_call_sites
);
6479 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6480 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
6481 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
6483 /* Calculate the checksum of a location expression. */
6486 loc_checksum (dw_loc_descr_ref loc
, struct md5_ctx
*ctx
)
6489 inchash::hash hstate
;
6492 tem
= (loc
->dtprel
<< 8) | ((unsigned int) loc
->dw_loc_opc
);
6494 hash_loc_operands (loc
, hstate
);
6495 hash
= hstate
.end();
6499 /* Calculate the checksum of an attribute. */
6502 attr_checksum (dw_attr_node
*at
, struct md5_ctx
*ctx
, int *mark
)
6504 dw_loc_descr_ref loc
;
6507 CHECKSUM (at
->dw_attr
);
6509 /* We don't care that this was compiled with a different compiler
6510 snapshot; if the output is the same, that's what matters. */
6511 if (at
->dw_attr
== DW_AT_producer
)
6514 switch (AT_class (at
))
6516 case dw_val_class_const
:
6517 case dw_val_class_const_implicit
:
6518 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
6520 case dw_val_class_unsigned_const
:
6521 case dw_val_class_unsigned_const_implicit
:
6522 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
6524 case dw_val_class_const_double
:
6525 CHECKSUM (at
->dw_attr_val
.v
.val_double
);
6527 case dw_val_class_wide_int
:
6528 CHECKSUM_BLOCK (at
->dw_attr_val
.v
.val_wide
->get_val (),
6529 get_full_len (*at
->dw_attr_val
.v
.val_wide
)
6530 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
6532 case dw_val_class_vec
:
6533 CHECKSUM_BLOCK (at
->dw_attr_val
.v
.val_vec
.array
,
6534 (at
->dw_attr_val
.v
.val_vec
.length
6535 * at
->dw_attr_val
.v
.val_vec
.elt_size
));
6537 case dw_val_class_flag
:
6538 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
6540 case dw_val_class_str
:
6541 CHECKSUM_STRING (AT_string (at
));
6544 case dw_val_class_addr
:
6546 gcc_assert (GET_CODE (r
) == SYMBOL_REF
);
6547 CHECKSUM_STRING (XSTR (r
, 0));
6550 case dw_val_class_offset
:
6551 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
6554 case dw_val_class_loc
:
6555 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
6556 loc_checksum (loc
, ctx
);
6559 case dw_val_class_die_ref
:
6560 die_checksum (AT_ref (at
), ctx
, mark
);
6563 case dw_val_class_fde_ref
:
6564 case dw_val_class_vms_delta
:
6565 case dw_val_class_lbl_id
:
6566 case dw_val_class_lineptr
:
6567 case dw_val_class_macptr
:
6568 case dw_val_class_loclistsptr
:
6569 case dw_val_class_high_pc
:
6572 case dw_val_class_file
:
6573 case dw_val_class_file_implicit
:
6574 CHECKSUM_STRING (AT_file (at
)->filename
);
6577 case dw_val_class_data8
:
6578 CHECKSUM (at
->dw_attr_val
.v
.val_data8
);
6586 /* Calculate the checksum of a DIE. */
6589 die_checksum (dw_die_ref die
, struct md5_ctx
*ctx
, int *mark
)
6595 /* To avoid infinite recursion. */
6598 CHECKSUM (die
->die_mark
);
6601 die
->die_mark
= ++(*mark
);
6603 CHECKSUM (die
->die_tag
);
6605 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
6606 attr_checksum (a
, ctx
, mark
);
6608 FOR_EACH_CHILD (die
, c
, die_checksum (c
, ctx
, mark
));
6612 #undef CHECKSUM_BLOCK
6613 #undef CHECKSUM_STRING
6615 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
6616 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6617 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
6618 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
6619 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
6620 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
6621 #define CHECKSUM_ATTR(FOO) \
6622 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
6624 /* Calculate the checksum of a number in signed LEB128 format. */
6627 checksum_sleb128 (HOST_WIDE_INT value
, struct md5_ctx
*ctx
)
6634 byte
= (value
& 0x7f);
6636 more
= !((value
== 0 && (byte
& 0x40) == 0)
6637 || (value
== -1 && (byte
& 0x40) != 0));
6646 /* Calculate the checksum of a number in unsigned LEB128 format. */
6649 checksum_uleb128 (unsigned HOST_WIDE_INT value
, struct md5_ctx
*ctx
)
6653 unsigned char byte
= (value
& 0x7f);
6656 /* More bytes to follow. */
6664 /* Checksum the context of the DIE. This adds the names of any
6665 surrounding namespaces or structures to the checksum. */
6668 checksum_die_context (dw_die_ref die
, struct md5_ctx
*ctx
)
6672 int tag
= die
->die_tag
;
6674 if (tag
!= DW_TAG_namespace
6675 && tag
!= DW_TAG_structure_type
6676 && tag
!= DW_TAG_class_type
)
6679 name
= get_AT_string (die
, DW_AT_name
);
6681 spec
= get_AT_ref (die
, DW_AT_specification
);
6685 if (die
->die_parent
!= NULL
)
6686 checksum_die_context (die
->die_parent
, ctx
);
6688 CHECKSUM_ULEB128 ('C');
6689 CHECKSUM_ULEB128 (tag
);
6691 CHECKSUM_STRING (name
);
6694 /* Calculate the checksum of a location expression. */
6697 loc_checksum_ordered (dw_loc_descr_ref loc
, struct md5_ctx
*ctx
)
6699 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
6700 were emitted as a DW_FORM_sdata instead of a location expression. */
6701 if (loc
->dw_loc_opc
== DW_OP_plus_uconst
&& loc
->dw_loc_next
== NULL
)
6703 CHECKSUM_ULEB128 (DW_FORM_sdata
);
6704 CHECKSUM_SLEB128 ((HOST_WIDE_INT
) loc
->dw_loc_oprnd1
.v
.val_unsigned
);
6708 /* Otherwise, just checksum the raw location expression. */
6711 inchash::hash hstate
;
6714 CHECKSUM_ULEB128 (loc
->dtprel
);
6715 CHECKSUM_ULEB128 (loc
->dw_loc_opc
);
6716 hash_loc_operands (loc
, hstate
);
6717 hash
= hstate
.end ();
6719 loc
= loc
->dw_loc_next
;
6723 /* Calculate the checksum of an attribute. */
6726 attr_checksum_ordered (enum dwarf_tag tag
, dw_attr_node
*at
,
6727 struct md5_ctx
*ctx
, int *mark
)
6729 dw_loc_descr_ref loc
;
6732 if (AT_class (at
) == dw_val_class_die_ref
)
6734 dw_die_ref target_die
= AT_ref (at
);
6736 /* For pointer and reference types, we checksum only the (qualified)
6737 name of the target type (if there is a name). For friend entries,
6738 we checksum only the (qualified) name of the target type or function.
6739 This allows the checksum to remain the same whether the target type
6740 is complete or not. */
6741 if ((at
->dw_attr
== DW_AT_type
6742 && (tag
== DW_TAG_pointer_type
6743 || tag
== DW_TAG_reference_type
6744 || tag
== DW_TAG_rvalue_reference_type
6745 || tag
== DW_TAG_ptr_to_member_type
))
6746 || (at
->dw_attr
== DW_AT_friend
6747 && tag
== DW_TAG_friend
))
6749 dw_attr_node
*name_attr
= get_AT (target_die
, DW_AT_name
);
6751 if (name_attr
!= NULL
)
6753 dw_die_ref decl
= get_AT_ref (target_die
, DW_AT_specification
);
6757 CHECKSUM_ULEB128 ('N');
6758 CHECKSUM_ULEB128 (at
->dw_attr
);
6759 if (decl
->die_parent
!= NULL
)
6760 checksum_die_context (decl
->die_parent
, ctx
);
6761 CHECKSUM_ULEB128 ('E');
6762 CHECKSUM_STRING (AT_string (name_attr
));
6767 /* For all other references to another DIE, we check to see if the
6768 target DIE has already been visited. If it has, we emit a
6769 backward reference; if not, we descend recursively. */
6770 if (target_die
->die_mark
> 0)
6772 CHECKSUM_ULEB128 ('R');
6773 CHECKSUM_ULEB128 (at
->dw_attr
);
6774 CHECKSUM_ULEB128 (target_die
->die_mark
);
6778 dw_die_ref decl
= get_AT_ref (target_die
, DW_AT_specification
);
6782 target_die
->die_mark
= ++(*mark
);
6783 CHECKSUM_ULEB128 ('T');
6784 CHECKSUM_ULEB128 (at
->dw_attr
);
6785 if (decl
->die_parent
!= NULL
)
6786 checksum_die_context (decl
->die_parent
, ctx
);
6787 die_checksum_ordered (target_die
, ctx
, mark
);
6792 CHECKSUM_ULEB128 ('A');
6793 CHECKSUM_ULEB128 (at
->dw_attr
);
6795 switch (AT_class (at
))
6797 case dw_val_class_const
:
6798 case dw_val_class_const_implicit
:
6799 CHECKSUM_ULEB128 (DW_FORM_sdata
);
6800 CHECKSUM_SLEB128 (at
->dw_attr_val
.v
.val_int
);
6803 case dw_val_class_unsigned_const
:
6804 case dw_val_class_unsigned_const_implicit
:
6805 CHECKSUM_ULEB128 (DW_FORM_sdata
);
6806 CHECKSUM_SLEB128 ((int) at
->dw_attr_val
.v
.val_unsigned
);
6809 case dw_val_class_const_double
:
6810 CHECKSUM_ULEB128 (DW_FORM_block
);
6811 CHECKSUM_ULEB128 (sizeof (at
->dw_attr_val
.v
.val_double
));
6812 CHECKSUM (at
->dw_attr_val
.v
.val_double
);
6815 case dw_val_class_wide_int
:
6816 CHECKSUM_ULEB128 (DW_FORM_block
);
6817 CHECKSUM_ULEB128 (get_full_len (*at
->dw_attr_val
.v
.val_wide
)
6818 * HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
);
6819 CHECKSUM_BLOCK (at
->dw_attr_val
.v
.val_wide
->get_val (),
6820 get_full_len (*at
->dw_attr_val
.v
.val_wide
)
6821 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
6824 case dw_val_class_vec
:
6825 CHECKSUM_ULEB128 (DW_FORM_block
);
6826 CHECKSUM_ULEB128 (at
->dw_attr_val
.v
.val_vec
.length
6827 * at
->dw_attr_val
.v
.val_vec
.elt_size
);
6828 CHECKSUM_BLOCK (at
->dw_attr_val
.v
.val_vec
.array
,
6829 (at
->dw_attr_val
.v
.val_vec
.length
6830 * at
->dw_attr_val
.v
.val_vec
.elt_size
));
6833 case dw_val_class_flag
:
6834 CHECKSUM_ULEB128 (DW_FORM_flag
);
6835 CHECKSUM_ULEB128 (at
->dw_attr_val
.v
.val_flag
? 1 : 0);
6838 case dw_val_class_str
:
6839 CHECKSUM_ULEB128 (DW_FORM_string
);
6840 CHECKSUM_STRING (AT_string (at
));
6843 case dw_val_class_addr
:
6845 gcc_assert (GET_CODE (r
) == SYMBOL_REF
);
6846 CHECKSUM_ULEB128 (DW_FORM_string
);
6847 CHECKSUM_STRING (XSTR (r
, 0));
6850 case dw_val_class_offset
:
6851 CHECKSUM_ULEB128 (DW_FORM_sdata
);
6852 CHECKSUM_ULEB128 (at
->dw_attr_val
.v
.val_offset
);
6855 case dw_val_class_loc
:
6856 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
6857 loc_checksum_ordered (loc
, ctx
);
6860 case dw_val_class_fde_ref
:
6861 case dw_val_class_lbl_id
:
6862 case dw_val_class_lineptr
:
6863 case dw_val_class_macptr
:
6864 case dw_val_class_loclistsptr
:
6865 case dw_val_class_high_pc
:
6868 case dw_val_class_file
:
6869 case dw_val_class_file_implicit
:
6870 CHECKSUM_ULEB128 (DW_FORM_string
);
6871 CHECKSUM_STRING (AT_file (at
)->filename
);
6874 case dw_val_class_data8
:
6875 CHECKSUM (at
->dw_attr_val
.v
.val_data8
);
6883 struct checksum_attributes
6885 dw_attr_node
*at_name
;
6886 dw_attr_node
*at_type
;
6887 dw_attr_node
*at_friend
;
6888 dw_attr_node
*at_accessibility
;
6889 dw_attr_node
*at_address_class
;
6890 dw_attr_node
*at_alignment
;
6891 dw_attr_node
*at_allocated
;
6892 dw_attr_node
*at_artificial
;
6893 dw_attr_node
*at_associated
;
6894 dw_attr_node
*at_binary_scale
;
6895 dw_attr_node
*at_bit_offset
;
6896 dw_attr_node
*at_bit_size
;
6897 dw_attr_node
*at_bit_stride
;
6898 dw_attr_node
*at_byte_size
;
6899 dw_attr_node
*at_byte_stride
;
6900 dw_attr_node
*at_const_value
;
6901 dw_attr_node
*at_containing_type
;
6902 dw_attr_node
*at_count
;
6903 dw_attr_node
*at_data_location
;
6904 dw_attr_node
*at_data_member_location
;
6905 dw_attr_node
*at_decimal_scale
;
6906 dw_attr_node
*at_decimal_sign
;
6907 dw_attr_node
*at_default_value
;
6908 dw_attr_node
*at_digit_count
;
6909 dw_attr_node
*at_discr
;
6910 dw_attr_node
*at_discr_list
;
6911 dw_attr_node
*at_discr_value
;
6912 dw_attr_node
*at_encoding
;
6913 dw_attr_node
*at_endianity
;
6914 dw_attr_node
*at_explicit
;
6915 dw_attr_node
*at_is_optional
;
6916 dw_attr_node
*at_location
;
6917 dw_attr_node
*at_lower_bound
;
6918 dw_attr_node
*at_mutable
;
6919 dw_attr_node
*at_ordering
;
6920 dw_attr_node
*at_picture_string
;
6921 dw_attr_node
*at_prototyped
;
6922 dw_attr_node
*at_small
;
6923 dw_attr_node
*at_segment
;
6924 dw_attr_node
*at_string_length
;
6925 dw_attr_node
*at_string_length_bit_size
;
6926 dw_attr_node
*at_string_length_byte_size
;
6927 dw_attr_node
*at_threads_scaled
;
6928 dw_attr_node
*at_upper_bound
;
6929 dw_attr_node
*at_use_location
;
6930 dw_attr_node
*at_use_UTF8
;
6931 dw_attr_node
*at_variable_parameter
;
6932 dw_attr_node
*at_virtuality
;
6933 dw_attr_node
*at_visibility
;
6934 dw_attr_node
*at_vtable_elem_location
;
6937 /* Collect the attributes that we will want to use for the checksum. */
6940 collect_checksum_attributes (struct checksum_attributes
*attrs
, dw_die_ref die
)
6945 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
6956 attrs
->at_friend
= a
;
6958 case DW_AT_accessibility
:
6959 attrs
->at_accessibility
= a
;
6961 case DW_AT_address_class
:
6962 attrs
->at_address_class
= a
;
6964 case DW_AT_alignment
:
6965 attrs
->at_alignment
= a
;
6967 case DW_AT_allocated
:
6968 attrs
->at_allocated
= a
;
6970 case DW_AT_artificial
:
6971 attrs
->at_artificial
= a
;
6973 case DW_AT_associated
:
6974 attrs
->at_associated
= a
;
6976 case DW_AT_binary_scale
:
6977 attrs
->at_binary_scale
= a
;
6979 case DW_AT_bit_offset
:
6980 attrs
->at_bit_offset
= a
;
6982 case DW_AT_bit_size
:
6983 attrs
->at_bit_size
= a
;
6985 case DW_AT_bit_stride
:
6986 attrs
->at_bit_stride
= a
;
6988 case DW_AT_byte_size
:
6989 attrs
->at_byte_size
= a
;
6991 case DW_AT_byte_stride
:
6992 attrs
->at_byte_stride
= a
;
6994 case DW_AT_const_value
:
6995 attrs
->at_const_value
= a
;
6997 case DW_AT_containing_type
:
6998 attrs
->at_containing_type
= a
;
7001 attrs
->at_count
= a
;
7003 case DW_AT_data_location
:
7004 attrs
->at_data_location
= a
;
7006 case DW_AT_data_member_location
:
7007 attrs
->at_data_member_location
= a
;
7009 case DW_AT_decimal_scale
:
7010 attrs
->at_decimal_scale
= a
;
7012 case DW_AT_decimal_sign
:
7013 attrs
->at_decimal_sign
= a
;
7015 case DW_AT_default_value
:
7016 attrs
->at_default_value
= a
;
7018 case DW_AT_digit_count
:
7019 attrs
->at_digit_count
= a
;
7022 attrs
->at_discr
= a
;
7024 case DW_AT_discr_list
:
7025 attrs
->at_discr_list
= a
;
7027 case DW_AT_discr_value
:
7028 attrs
->at_discr_value
= a
;
7030 case DW_AT_encoding
:
7031 attrs
->at_encoding
= a
;
7033 case DW_AT_endianity
:
7034 attrs
->at_endianity
= a
;
7036 case DW_AT_explicit
:
7037 attrs
->at_explicit
= a
;
7039 case DW_AT_is_optional
:
7040 attrs
->at_is_optional
= a
;
7042 case DW_AT_location
:
7043 attrs
->at_location
= a
;
7045 case DW_AT_lower_bound
:
7046 attrs
->at_lower_bound
= a
;
7049 attrs
->at_mutable
= a
;
7051 case DW_AT_ordering
:
7052 attrs
->at_ordering
= a
;
7054 case DW_AT_picture_string
:
7055 attrs
->at_picture_string
= a
;
7057 case DW_AT_prototyped
:
7058 attrs
->at_prototyped
= a
;
7061 attrs
->at_small
= a
;
7064 attrs
->at_segment
= a
;
7066 case DW_AT_string_length
:
7067 attrs
->at_string_length
= a
;
7069 case DW_AT_string_length_bit_size
:
7070 attrs
->at_string_length_bit_size
= a
;
7072 case DW_AT_string_length_byte_size
:
7073 attrs
->at_string_length_byte_size
= a
;
7075 case DW_AT_threads_scaled
:
7076 attrs
->at_threads_scaled
= a
;
7078 case DW_AT_upper_bound
:
7079 attrs
->at_upper_bound
= a
;
7081 case DW_AT_use_location
:
7082 attrs
->at_use_location
= a
;
7084 case DW_AT_use_UTF8
:
7085 attrs
->at_use_UTF8
= a
;
7087 case DW_AT_variable_parameter
:
7088 attrs
->at_variable_parameter
= a
;
7090 case DW_AT_virtuality
:
7091 attrs
->at_virtuality
= a
;
7093 case DW_AT_visibility
:
7094 attrs
->at_visibility
= a
;
7096 case DW_AT_vtable_elem_location
:
7097 attrs
->at_vtable_elem_location
= a
;
7105 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
7108 die_checksum_ordered (dw_die_ref die
, struct md5_ctx
*ctx
, int *mark
)
7112 struct checksum_attributes attrs
;
7114 CHECKSUM_ULEB128 ('D');
7115 CHECKSUM_ULEB128 (die
->die_tag
);
7117 memset (&attrs
, 0, sizeof (attrs
));
7119 decl
= get_AT_ref (die
, DW_AT_specification
);
7121 collect_checksum_attributes (&attrs
, decl
);
7122 collect_checksum_attributes (&attrs
, die
);
7124 CHECKSUM_ATTR (attrs
.at_name
);
7125 CHECKSUM_ATTR (attrs
.at_accessibility
);
7126 CHECKSUM_ATTR (attrs
.at_address_class
);
7127 CHECKSUM_ATTR (attrs
.at_allocated
);
7128 CHECKSUM_ATTR (attrs
.at_artificial
);
7129 CHECKSUM_ATTR (attrs
.at_associated
);
7130 CHECKSUM_ATTR (attrs
.at_binary_scale
);
7131 CHECKSUM_ATTR (attrs
.at_bit_offset
);
7132 CHECKSUM_ATTR (attrs
.at_bit_size
);
7133 CHECKSUM_ATTR (attrs
.at_bit_stride
);
7134 CHECKSUM_ATTR (attrs
.at_byte_size
);
7135 CHECKSUM_ATTR (attrs
.at_byte_stride
);
7136 CHECKSUM_ATTR (attrs
.at_const_value
);
7137 CHECKSUM_ATTR (attrs
.at_containing_type
);
7138 CHECKSUM_ATTR (attrs
.at_count
);
7139 CHECKSUM_ATTR (attrs
.at_data_location
);
7140 CHECKSUM_ATTR (attrs
.at_data_member_location
);
7141 CHECKSUM_ATTR (attrs
.at_decimal_scale
);
7142 CHECKSUM_ATTR (attrs
.at_decimal_sign
);
7143 CHECKSUM_ATTR (attrs
.at_default_value
);
7144 CHECKSUM_ATTR (attrs
.at_digit_count
);
7145 CHECKSUM_ATTR (attrs
.at_discr
);
7146 CHECKSUM_ATTR (attrs
.at_discr_list
);
7147 CHECKSUM_ATTR (attrs
.at_discr_value
);
7148 CHECKSUM_ATTR (attrs
.at_encoding
);
7149 CHECKSUM_ATTR (attrs
.at_endianity
);
7150 CHECKSUM_ATTR (attrs
.at_explicit
);
7151 CHECKSUM_ATTR (attrs
.at_is_optional
);
7152 CHECKSUM_ATTR (attrs
.at_location
);
7153 CHECKSUM_ATTR (attrs
.at_lower_bound
);
7154 CHECKSUM_ATTR (attrs
.at_mutable
);
7155 CHECKSUM_ATTR (attrs
.at_ordering
);
7156 CHECKSUM_ATTR (attrs
.at_picture_string
);
7157 CHECKSUM_ATTR (attrs
.at_prototyped
);
7158 CHECKSUM_ATTR (attrs
.at_small
);
7159 CHECKSUM_ATTR (attrs
.at_segment
);
7160 CHECKSUM_ATTR (attrs
.at_string_length
);
7161 CHECKSUM_ATTR (attrs
.at_string_length_bit_size
);
7162 CHECKSUM_ATTR (attrs
.at_string_length_byte_size
);
7163 CHECKSUM_ATTR (attrs
.at_threads_scaled
);
7164 CHECKSUM_ATTR (attrs
.at_upper_bound
);
7165 CHECKSUM_ATTR (attrs
.at_use_location
);
7166 CHECKSUM_ATTR (attrs
.at_use_UTF8
);
7167 CHECKSUM_ATTR (attrs
.at_variable_parameter
);
7168 CHECKSUM_ATTR (attrs
.at_virtuality
);
7169 CHECKSUM_ATTR (attrs
.at_visibility
);
7170 CHECKSUM_ATTR (attrs
.at_vtable_elem_location
);
7171 CHECKSUM_ATTR (attrs
.at_type
);
7172 CHECKSUM_ATTR (attrs
.at_friend
);
7173 CHECKSUM_ATTR (attrs
.at_alignment
);
7175 /* Checksum the child DIEs. */
7178 dw_attr_node
*name_attr
;
7181 name_attr
= get_AT (c
, DW_AT_name
);
7182 if (is_template_instantiation (c
))
7184 /* Ignore instantiations of member type and function templates. */
7186 else if (name_attr
!= NULL
7187 && (is_type_die (c
) || c
->die_tag
== DW_TAG_subprogram
))
7189 /* Use a shallow checksum for named nested types and member
7191 CHECKSUM_ULEB128 ('S');
7192 CHECKSUM_ULEB128 (c
->die_tag
);
7193 CHECKSUM_STRING (AT_string (name_attr
));
7197 /* Use a deep checksum for other children. */
7198 /* Mark this DIE so it gets processed when unmarking. */
7199 if (c
->die_mark
== 0)
7201 die_checksum_ordered (c
, ctx
, mark
);
7203 } while (c
!= die
->die_child
);
7205 CHECKSUM_ULEB128 (0);
7208 /* Add a type name and tag to a hash. */
7210 die_odr_checksum (int tag
, const char *name
, md5_ctx
*ctx
)
7212 CHECKSUM_ULEB128 (tag
);
7213 CHECKSUM_STRING (name
);
7217 #undef CHECKSUM_STRING
7218 #undef CHECKSUM_ATTR
7219 #undef CHECKSUM_LEB128
7220 #undef CHECKSUM_ULEB128
7222 /* Generate the type signature for DIE. This is computed by generating an
7223 MD5 checksum over the DIE's tag, its relevant attributes, and its
7224 children. Attributes that are references to other DIEs are processed
7225 by recursion, using the MARK field to prevent infinite recursion.
7226 If the DIE is nested inside a namespace or another type, we also
7227 need to include that context in the signature. The lower 64 bits
7228 of the resulting MD5 checksum comprise the signature. */
7231 generate_type_signature (dw_die_ref die
, comdat_type_node
*type_node
)
7235 unsigned char checksum
[16];
7240 name
= get_AT_string (die
, DW_AT_name
);
7241 decl
= get_AT_ref (die
, DW_AT_specification
);
7242 parent
= get_die_parent (die
);
7244 /* First, compute a signature for just the type name (and its surrounding
7245 context, if any. This is stored in the type unit DIE for link-time
7246 ODR (one-definition rule) checking. */
7248 if (is_cxx () && name
!= NULL
)
7250 md5_init_ctx (&ctx
);
7252 /* Checksum the names of surrounding namespaces and structures. */
7254 checksum_die_context (parent
, &ctx
);
7256 /* Checksum the current DIE. */
7257 die_odr_checksum (die
->die_tag
, name
, &ctx
);
7258 md5_finish_ctx (&ctx
, checksum
);
7260 add_AT_data8 (type_node
->root_die
, DW_AT_GNU_odr_signature
, &checksum
[8]);
7263 /* Next, compute the complete type signature. */
7265 md5_init_ctx (&ctx
);
7267 die
->die_mark
= mark
;
7269 /* Checksum the names of surrounding namespaces and structures. */
7271 checksum_die_context (parent
, &ctx
);
7273 /* Checksum the DIE and its children. */
7274 die_checksum_ordered (die
, &ctx
, &mark
);
7275 unmark_all_dies (die
);
7276 md5_finish_ctx (&ctx
, checksum
);
7278 /* Store the signature in the type node and link the type DIE and the
7279 type node together. */
7280 memcpy (type_node
->signature
, &checksum
[16 - DWARF_TYPE_SIGNATURE_SIZE
],
7281 DWARF_TYPE_SIGNATURE_SIZE
);
7282 die
->comdat_type_p
= true;
7283 die
->die_id
.die_type_node
= type_node
;
7284 type_node
->type_die
= die
;
7286 /* If the DIE is a specification, link its declaration to the type node
7290 decl
->comdat_type_p
= true;
7291 decl
->die_id
.die_type_node
= type_node
;
7295 /* Do the location expressions look same? */
7297 same_loc_p (dw_loc_descr_ref loc1
, dw_loc_descr_ref loc2
, int *mark
)
7299 return loc1
->dw_loc_opc
== loc2
->dw_loc_opc
7300 && same_dw_val_p (&loc1
->dw_loc_oprnd1
, &loc2
->dw_loc_oprnd1
, mark
)
7301 && same_dw_val_p (&loc1
->dw_loc_oprnd2
, &loc2
->dw_loc_oprnd2
, mark
);
7304 /* Do the values look the same? */
7306 same_dw_val_p (const dw_val_node
*v1
, const dw_val_node
*v2
, int *mark
)
7308 dw_loc_descr_ref loc1
, loc2
;
7311 if (v1
->val_class
!= v2
->val_class
)
7314 switch (v1
->val_class
)
7316 case dw_val_class_const
:
7317 case dw_val_class_const_implicit
:
7318 return v1
->v
.val_int
== v2
->v
.val_int
;
7319 case dw_val_class_unsigned_const
:
7320 case dw_val_class_unsigned_const_implicit
:
7321 return v1
->v
.val_unsigned
== v2
->v
.val_unsigned
;
7322 case dw_val_class_const_double
:
7323 return v1
->v
.val_double
.high
== v2
->v
.val_double
.high
7324 && v1
->v
.val_double
.low
== v2
->v
.val_double
.low
;
7325 case dw_val_class_wide_int
:
7326 return *v1
->v
.val_wide
== *v2
->v
.val_wide
;
7327 case dw_val_class_vec
:
7328 if (v1
->v
.val_vec
.length
!= v2
->v
.val_vec
.length
7329 || v1
->v
.val_vec
.elt_size
!= v2
->v
.val_vec
.elt_size
)
7331 if (memcmp (v1
->v
.val_vec
.array
, v2
->v
.val_vec
.array
,
7332 v1
->v
.val_vec
.length
* v1
->v
.val_vec
.elt_size
))
7335 case dw_val_class_flag
:
7336 return v1
->v
.val_flag
== v2
->v
.val_flag
;
7337 case dw_val_class_str
:
7338 return !strcmp (v1
->v
.val_str
->str
, v2
->v
.val_str
->str
);
7340 case dw_val_class_addr
:
7341 r1
= v1
->v
.val_addr
;
7342 r2
= v2
->v
.val_addr
;
7343 if (GET_CODE (r1
) != GET_CODE (r2
))
7345 return !rtx_equal_p (r1
, r2
);
7347 case dw_val_class_offset
:
7348 return v1
->v
.val_offset
== v2
->v
.val_offset
;
7350 case dw_val_class_loc
:
7351 for (loc1
= v1
->v
.val_loc
, loc2
= v2
->v
.val_loc
;
7353 loc1
= loc1
->dw_loc_next
, loc2
= loc2
->dw_loc_next
)
7354 if (!same_loc_p (loc1
, loc2
, mark
))
7356 return !loc1
&& !loc2
;
7358 case dw_val_class_die_ref
:
7359 return same_die_p (v1
->v
.val_die_ref
.die
, v2
->v
.val_die_ref
.die
, mark
);
7361 case dw_val_class_fde_ref
:
7362 case dw_val_class_vms_delta
:
7363 case dw_val_class_lbl_id
:
7364 case dw_val_class_lineptr
:
7365 case dw_val_class_macptr
:
7366 case dw_val_class_loclistsptr
:
7367 case dw_val_class_high_pc
:
7370 case dw_val_class_file
:
7371 case dw_val_class_file_implicit
:
7372 return v1
->v
.val_file
== v2
->v
.val_file
;
7374 case dw_val_class_data8
:
7375 return !memcmp (v1
->v
.val_data8
, v2
->v
.val_data8
, 8);
7382 /* Do the attributes look the same? */
7385 same_attr_p (dw_attr_node
*at1
, dw_attr_node
*at2
, int *mark
)
7387 if (at1
->dw_attr
!= at2
->dw_attr
)
7390 /* We don't care that this was compiled with a different compiler
7391 snapshot; if the output is the same, that's what matters. */
7392 if (at1
->dw_attr
== DW_AT_producer
)
7395 return same_dw_val_p (&at1
->dw_attr_val
, &at2
->dw_attr_val
, mark
);
7398 /* Do the dies look the same? */
7401 same_die_p (dw_die_ref die1
, dw_die_ref die2
, int *mark
)
7407 /* To avoid infinite recursion. */
7409 return die1
->die_mark
== die2
->die_mark
;
7410 die1
->die_mark
= die2
->die_mark
= ++(*mark
);
7412 if (die1
->die_tag
!= die2
->die_tag
)
7415 if (vec_safe_length (die1
->die_attr
) != vec_safe_length (die2
->die_attr
))
7418 FOR_EACH_VEC_SAFE_ELT (die1
->die_attr
, ix
, a1
)
7419 if (!same_attr_p (a1
, &(*die2
->die_attr
)[ix
], mark
))
7422 c1
= die1
->die_child
;
7423 c2
= die2
->die_child
;
7432 if (!same_die_p (c1
, c2
, mark
))
7436 if (c1
== die1
->die_child
)
7438 if (c2
== die2
->die_child
)
7448 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
7449 children, and set die_symbol. */
7452 compute_comp_unit_symbol (dw_die_ref unit_die
)
7454 const char *die_name
= get_AT_string (unit_die
, DW_AT_name
);
7455 const char *base
= die_name
? lbasename (die_name
) : "anonymous";
7456 char *name
= XALLOCAVEC (char, strlen (base
) + 64);
7459 unsigned char checksum
[16];
7462 /* Compute the checksum of the DIE, then append part of it as hex digits to
7463 the name filename of the unit. */
7465 md5_init_ctx (&ctx
);
7467 die_checksum (unit_die
, &ctx
, &mark
);
7468 unmark_all_dies (unit_die
);
7469 md5_finish_ctx (&ctx
, checksum
);
7471 /* When we this for comp_unit_die () we have a DW_AT_name that might
7472 not start with a letter but with anything valid for filenames and
7473 clean_symbol_name doesn't fix that up. Prepend 'g' if the first
7474 character is not a letter. */
7475 sprintf (name
, "%s%s.", ISALPHA (*base
) ? "" : "g", base
);
7476 clean_symbol_name (name
);
7478 p
= name
+ strlen (name
);
7479 for (i
= 0; i
< 4; i
++)
7481 sprintf (p
, "%.2x", checksum
[i
]);
7485 unit_die
->die_id
.die_symbol
= xstrdup (name
);
7488 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
7491 is_type_die (dw_die_ref die
)
7493 switch (die
->die_tag
)
7495 case DW_TAG_array_type
:
7496 case DW_TAG_class_type
:
7497 case DW_TAG_interface_type
:
7498 case DW_TAG_enumeration_type
:
7499 case DW_TAG_pointer_type
:
7500 case DW_TAG_reference_type
:
7501 case DW_TAG_rvalue_reference_type
:
7502 case DW_TAG_string_type
:
7503 case DW_TAG_structure_type
:
7504 case DW_TAG_subroutine_type
:
7505 case DW_TAG_union_type
:
7506 case DW_TAG_ptr_to_member_type
:
7507 case DW_TAG_set_type
:
7508 case DW_TAG_subrange_type
:
7509 case DW_TAG_base_type
:
7510 case DW_TAG_const_type
:
7511 case DW_TAG_file_type
:
7512 case DW_TAG_packed_type
:
7513 case DW_TAG_volatile_type
:
7514 case DW_TAG_typedef
:
7521 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
7522 Basically, we want to choose the bits that are likely to be shared between
7523 compilations (types) and leave out the bits that are specific to individual
7524 compilations (functions). */
7527 is_comdat_die (dw_die_ref c
)
7529 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
7530 we do for stabs. The advantage is a greater likelihood of sharing between
7531 objects that don't include headers in the same order (and therefore would
7532 put the base types in a different comdat). jason 8/28/00 */
7534 if (c
->die_tag
== DW_TAG_base_type
)
7537 if (c
->die_tag
== DW_TAG_pointer_type
7538 || c
->die_tag
== DW_TAG_reference_type
7539 || c
->die_tag
== DW_TAG_rvalue_reference_type
7540 || c
->die_tag
== DW_TAG_const_type
7541 || c
->die_tag
== DW_TAG_volatile_type
)
7543 dw_die_ref t
= get_AT_ref (c
, DW_AT_type
);
7545 return t
? is_comdat_die (t
) : 0;
7548 return is_type_die (c
);
7551 /* Returns true iff C is a compile-unit DIE. */
7554 is_cu_die (dw_die_ref c
)
7556 return c
&& (c
->die_tag
== DW_TAG_compile_unit
7557 || c
->die_tag
== DW_TAG_skeleton_unit
);
7560 /* Returns true iff C is a unit DIE of some sort. */
7563 is_unit_die (dw_die_ref c
)
7565 return c
&& (c
->die_tag
== DW_TAG_compile_unit
7566 || c
->die_tag
== DW_TAG_partial_unit
7567 || c
->die_tag
== DW_TAG_type_unit
7568 || c
->die_tag
== DW_TAG_skeleton_unit
);
7571 /* Returns true iff C is a namespace DIE. */
7574 is_namespace_die (dw_die_ref c
)
7576 return c
&& c
->die_tag
== DW_TAG_namespace
;
7579 /* Returns true iff C is a class or structure DIE. */
7582 is_class_die (dw_die_ref c
)
7584 return c
&& (c
->die_tag
== DW_TAG_class_type
7585 || c
->die_tag
== DW_TAG_structure_type
);
7588 /* Return non-zero if this DIE is a template parameter. */
7591 is_template_parameter (dw_die_ref die
)
7593 switch (die
->die_tag
)
7595 case DW_TAG_template_type_param
:
7596 case DW_TAG_template_value_param
:
7597 case DW_TAG_GNU_template_template_param
:
7598 case DW_TAG_GNU_template_parameter_pack
:
7605 /* Return non-zero if this DIE represents a template instantiation. */
7608 is_template_instantiation (dw_die_ref die
)
7612 if (!is_type_die (die
) && die
->die_tag
!= DW_TAG_subprogram
)
7614 FOR_EACH_CHILD (die
, c
, if (is_template_parameter (c
)) return true);
7619 gen_internal_sym (const char *prefix
)
7621 char buf
[MAX_ARTIFICIAL_LABEL_BYTES
];
7623 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
7624 return xstrdup (buf
);
7627 /* Return non-zero if this DIE is a declaration. */
7630 is_declaration_die (dw_die_ref die
)
7635 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
7636 if (a
->dw_attr
== DW_AT_declaration
)
7642 /* Return non-zero if this DIE is nested inside a subprogram. */
7645 is_nested_in_subprogram (dw_die_ref die
)
7647 dw_die_ref decl
= get_AT_ref (die
, DW_AT_specification
);
7651 return local_scope_p (decl
);
7654 /* Return non-zero if this DIE contains a defining declaration of a
7658 contains_subprogram_definition (dw_die_ref die
)
7662 if (die
->die_tag
== DW_TAG_subprogram
&& ! is_declaration_die (die
))
7664 FOR_EACH_CHILD (die
, c
, if (contains_subprogram_definition (c
)) return 1);
7668 /* Return non-zero if this is a type DIE that should be moved to a
7669 COMDAT .debug_types section or .debug_info section with DW_UT_*type
7673 should_move_die_to_comdat (dw_die_ref die
)
7675 switch (die
->die_tag
)
7677 case DW_TAG_class_type
:
7678 case DW_TAG_structure_type
:
7679 case DW_TAG_enumeration_type
:
7680 case DW_TAG_union_type
:
7681 /* Don't move declarations, inlined instances, types nested in a
7682 subprogram, or types that contain subprogram definitions. */
7683 if (is_declaration_die (die
)
7684 || get_AT (die
, DW_AT_abstract_origin
)
7685 || is_nested_in_subprogram (die
)
7686 || contains_subprogram_definition (die
))
7689 case DW_TAG_array_type
:
7690 case DW_TAG_interface_type
:
7691 case DW_TAG_pointer_type
:
7692 case DW_TAG_reference_type
:
7693 case DW_TAG_rvalue_reference_type
:
7694 case DW_TAG_string_type
:
7695 case DW_TAG_subroutine_type
:
7696 case DW_TAG_ptr_to_member_type
:
7697 case DW_TAG_set_type
:
7698 case DW_TAG_subrange_type
:
7699 case DW_TAG_base_type
:
7700 case DW_TAG_const_type
:
7701 case DW_TAG_file_type
:
7702 case DW_TAG_packed_type
:
7703 case DW_TAG_volatile_type
:
7704 case DW_TAG_typedef
:
7710 /* Make a clone of DIE. */
7713 clone_die (dw_die_ref die
)
7719 clone
= ggc_cleared_alloc
<die_node
> ();
7720 clone
->die_tag
= die
->die_tag
;
7722 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
7723 add_dwarf_attr (clone
, a
);
7728 /* Make a clone of the tree rooted at DIE. */
7731 clone_tree (dw_die_ref die
)
7734 dw_die_ref clone
= clone_die (die
);
7736 FOR_EACH_CHILD (die
, c
, add_child_die (clone
, clone_tree (c
)));
7741 /* Make a clone of DIE as a declaration. */
7744 clone_as_declaration (dw_die_ref die
)
7751 /* If the DIE is already a declaration, just clone it. */
7752 if (is_declaration_die (die
))
7753 return clone_die (die
);
7755 /* If the DIE is a specification, just clone its declaration DIE. */
7756 decl
= get_AT_ref (die
, DW_AT_specification
);
7759 clone
= clone_die (decl
);
7760 if (die
->comdat_type_p
)
7761 add_AT_die_ref (clone
, DW_AT_signature
, die
);
7765 clone
= ggc_cleared_alloc
<die_node
> ();
7766 clone
->die_tag
= die
->die_tag
;
7768 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
7770 /* We don't want to copy over all attributes.
7771 For example we don't want DW_AT_byte_size because otherwise we will no
7772 longer have a declaration and GDB will treat it as a definition. */
7776 case DW_AT_abstract_origin
:
7777 case DW_AT_artificial
:
7778 case DW_AT_containing_type
:
7779 case DW_AT_external
:
7782 case DW_AT_virtuality
:
7783 case DW_AT_linkage_name
:
7784 case DW_AT_MIPS_linkage_name
:
7785 add_dwarf_attr (clone
, a
);
7787 case DW_AT_byte_size
:
7788 case DW_AT_alignment
:
7794 if (die
->comdat_type_p
)
7795 add_AT_die_ref (clone
, DW_AT_signature
, die
);
7797 add_AT_flag (clone
, DW_AT_declaration
, 1);
7802 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
7804 struct decl_table_entry
7810 /* Helpers to manipulate hash table of copied declarations. */
7812 /* Hashtable helpers. */
7814 struct decl_table_entry_hasher
: free_ptr_hash
<decl_table_entry
>
7816 typedef die_struct
*compare_type
;
7817 static inline hashval_t
hash (const decl_table_entry
*);
7818 static inline bool equal (const decl_table_entry
*, const die_struct
*);
7822 decl_table_entry_hasher::hash (const decl_table_entry
*entry
)
7824 return htab_hash_pointer (entry
->orig
);
7828 decl_table_entry_hasher::equal (const decl_table_entry
*entry1
,
7829 const die_struct
*entry2
)
7831 return entry1
->orig
== entry2
;
7834 typedef hash_table
<decl_table_entry_hasher
> decl_hash_type
;
7836 /* Copy DIE and its ancestors, up to, but not including, the compile unit
7837 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
7838 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
7839 to check if the ancestor has already been copied into UNIT. */
7842 copy_ancestor_tree (dw_die_ref unit
, dw_die_ref die
,
7843 decl_hash_type
*decl_table
)
7845 dw_die_ref parent
= die
->die_parent
;
7846 dw_die_ref new_parent
= unit
;
7848 decl_table_entry
**slot
= NULL
;
7849 struct decl_table_entry
*entry
= NULL
;
7853 /* Check if the entry has already been copied to UNIT. */
7854 slot
= decl_table
->find_slot_with_hash (die
, htab_hash_pointer (die
),
7856 if (*slot
!= HTAB_EMPTY_ENTRY
)
7862 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
7863 entry
= XCNEW (struct decl_table_entry
);
7871 dw_die_ref spec
= get_AT_ref (parent
, DW_AT_specification
);
7874 if (!is_unit_die (parent
))
7875 new_parent
= copy_ancestor_tree (unit
, parent
, decl_table
);
7878 copy
= clone_as_declaration (die
);
7879 add_child_die (new_parent
, copy
);
7883 /* Record the pointer to the copy. */
7889 /* Copy the declaration context to the new type unit DIE. This includes
7890 any surrounding namespace or type declarations. If the DIE has an
7891 AT_specification attribute, it also includes attributes and children
7892 attached to the specification, and returns a pointer to the original
7893 parent of the declaration DIE. Returns NULL otherwise. */
7896 copy_declaration_context (dw_die_ref unit
, dw_die_ref die
)
7899 dw_die_ref new_decl
;
7900 dw_die_ref orig_parent
= NULL
;
7902 decl
= get_AT_ref (die
, DW_AT_specification
);
7911 /* The original DIE will be changed to a declaration, and must
7912 be moved to be a child of the original declaration DIE. */
7913 orig_parent
= decl
->die_parent
;
7915 /* Copy the type node pointer from the new DIE to the original
7916 declaration DIE so we can forward references later. */
7917 decl
->comdat_type_p
= true;
7918 decl
->die_id
.die_type_node
= die
->die_id
.die_type_node
;
7920 remove_AT (die
, DW_AT_specification
);
7922 FOR_EACH_VEC_SAFE_ELT (decl
->die_attr
, ix
, a
)
7924 if (a
->dw_attr
!= DW_AT_name
7925 && a
->dw_attr
!= DW_AT_declaration
7926 && a
->dw_attr
!= DW_AT_external
)
7927 add_dwarf_attr (die
, a
);
7930 FOR_EACH_CHILD (decl
, c
, add_child_die (die
, clone_tree (c
)));
7933 if (decl
->die_parent
!= NULL
7934 && !is_unit_die (decl
->die_parent
))
7936 new_decl
= copy_ancestor_tree (unit
, decl
, NULL
);
7937 if (new_decl
!= NULL
)
7939 remove_AT (new_decl
, DW_AT_signature
);
7940 add_AT_specification (die
, new_decl
);
7947 /* Generate the skeleton ancestor tree for the given NODE, then clone
7948 the DIE and add the clone into the tree. */
7951 generate_skeleton_ancestor_tree (skeleton_chain_node
*node
)
7953 if (node
->new_die
!= NULL
)
7956 node
->new_die
= clone_as_declaration (node
->old_die
);
7958 if (node
->parent
!= NULL
)
7960 generate_skeleton_ancestor_tree (node
->parent
);
7961 add_child_die (node
->parent
->new_die
, node
->new_die
);
7965 /* Generate a skeleton tree of DIEs containing any declarations that are
7966 found in the original tree. We traverse the tree looking for declaration
7967 DIEs, and construct the skeleton from the bottom up whenever we find one. */
7970 generate_skeleton_bottom_up (skeleton_chain_node
*parent
)
7972 skeleton_chain_node node
;
7975 dw_die_ref prev
= NULL
;
7976 dw_die_ref next
= NULL
;
7978 node
.parent
= parent
;
7980 first
= c
= parent
->old_die
->die_child
;
7984 if (prev
== NULL
|| prev
->die_sib
== c
)
7987 next
= (c
== first
? NULL
: c
->die_sib
);
7989 node
.new_die
= NULL
;
7990 if (is_declaration_die (c
))
7992 if (is_template_instantiation (c
))
7994 /* Instantiated templates do not need to be cloned into the
7995 type unit. Just move the DIE and its children back to
7996 the skeleton tree (in the main CU). */
7997 remove_child_with_prev (c
, prev
);
7998 add_child_die (parent
->new_die
, c
);
8001 else if (c
->comdat_type_p
)
8003 /* This is the skeleton of earlier break_out_comdat_types
8004 type. Clone the existing DIE, but keep the children
8005 under the original (which is in the main CU). */
8006 dw_die_ref clone
= clone_die (c
);
8008 replace_child (c
, clone
, prev
);
8009 generate_skeleton_ancestor_tree (parent
);
8010 add_child_die (parent
->new_die
, c
);
8016 /* Clone the existing DIE, move the original to the skeleton
8017 tree (which is in the main CU), and put the clone, with
8018 all the original's children, where the original came from
8019 (which is about to be moved to the type unit). */
8020 dw_die_ref clone
= clone_die (c
);
8021 move_all_children (c
, clone
);
8023 /* If the original has a DW_AT_object_pointer attribute,
8024 it would now point to a child DIE just moved to the
8025 cloned tree, so we need to remove that attribute from
8027 remove_AT (c
, DW_AT_object_pointer
);
8029 replace_child (c
, clone
, prev
);
8030 generate_skeleton_ancestor_tree (parent
);
8031 add_child_die (parent
->new_die
, c
);
8032 node
.old_die
= clone
;
8037 generate_skeleton_bottom_up (&node
);
8038 } while (next
!= NULL
);
8041 /* Wrapper function for generate_skeleton_bottom_up. */
8044 generate_skeleton (dw_die_ref die
)
8046 skeleton_chain_node node
;
8049 node
.new_die
= NULL
;
8052 /* If this type definition is nested inside another type,
8053 and is not an instantiation of a template, always leave
8054 at least a declaration in its place. */
8055 if (die
->die_parent
!= NULL
8056 && is_type_die (die
->die_parent
)
8057 && !is_template_instantiation (die
))
8058 node
.new_die
= clone_as_declaration (die
);
8060 generate_skeleton_bottom_up (&node
);
8061 return node
.new_die
;
8064 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
8065 declaration. The original DIE is moved to a new compile unit so that
8066 existing references to it follow it to the new location. If any of the
8067 original DIE's descendants is a declaration, we need to replace the
8068 original DIE with a skeleton tree and move the declarations back into the
8072 remove_child_or_replace_with_skeleton (dw_die_ref unit
, dw_die_ref child
,
8075 dw_die_ref skeleton
, orig_parent
;
8077 /* Copy the declaration context to the type unit DIE. If the returned
8078 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
8080 orig_parent
= copy_declaration_context (unit
, child
);
8082 skeleton
= generate_skeleton (child
);
8083 if (skeleton
== NULL
)
8084 remove_child_with_prev (child
, prev
);
8087 skeleton
->comdat_type_p
= true;
8088 skeleton
->die_id
.die_type_node
= child
->die_id
.die_type_node
;
8090 /* If the original DIE was a specification, we need to put
8091 the skeleton under the parent DIE of the declaration.
8092 This leaves the original declaration in the tree, but
8093 it will be pruned later since there are no longer any
8094 references to it. */
8095 if (orig_parent
!= NULL
)
8097 remove_child_with_prev (child
, prev
);
8098 add_child_die (orig_parent
, skeleton
);
8101 replace_child (child
, skeleton
, prev
);
8108 copy_dwarf_procs_ref_in_attrs (dw_die_ref die
,
8109 comdat_type_node
*type_node
,
8110 hash_map
<dw_die_ref
, dw_die_ref
> &copied_dwarf_procs
);
8112 /* Helper for copy_dwarf_procs_ref_in_dies. Make a copy of the DIE DWARF
8113 procedure, put it under TYPE_NODE and return the copy. Continue looking for
8114 DWARF procedure references in the DW_AT_location attribute. */
8117 copy_dwarf_procedure (dw_die_ref die
,
8118 comdat_type_node
*type_node
,
8119 hash_map
<dw_die_ref
, dw_die_ref
> &copied_dwarf_procs
)
8121 gcc_assert (die
->die_tag
== DW_TAG_dwarf_procedure
);
8123 /* DWARF procedures are not supposed to have children... */
8124 gcc_assert (die
->die_child
== NULL
);
8126 /* ... and they are supposed to have only one attribute: DW_AT_location. */
8127 gcc_assert (vec_safe_length (die
->die_attr
) == 1
8128 && ((*die
->die_attr
)[0].dw_attr
== DW_AT_location
));
8130 /* Do not copy more than once DWARF procedures. */
8132 dw_die_ref
&die_copy
= copied_dwarf_procs
.get_or_insert (die
, &existed
);
8136 die_copy
= clone_die (die
);
8137 add_child_die (type_node
->root_die
, die_copy
);
8138 copy_dwarf_procs_ref_in_attrs (die_copy
, type_node
, copied_dwarf_procs
);
8142 /* Helper for copy_dwarf_procs_ref_in_dies. Look for references to DWARF
8143 procedures in DIE's attributes. */
8146 copy_dwarf_procs_ref_in_attrs (dw_die_ref die
,
8147 comdat_type_node
*type_node
,
8148 hash_map
<dw_die_ref
, dw_die_ref
> &copied_dwarf_procs
)
8153 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, i
, a
)
8155 dw_loc_descr_ref loc
;
8157 if (a
->dw_attr_val
.val_class
!= dw_val_class_loc
)
8160 for (loc
= a
->dw_attr_val
.v
.val_loc
; loc
!= NULL
; loc
= loc
->dw_loc_next
)
8162 switch (loc
->dw_loc_opc
)
8166 case DW_OP_call_ref
:
8167 gcc_assert (loc
->dw_loc_oprnd1
.val_class
8168 == dw_val_class_die_ref
);
8169 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
8170 = copy_dwarf_procedure (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
,
8172 copied_dwarf_procs
);
8181 /* Copy DWARF procedures that are referenced by the DIE tree to TREE_NODE and
8182 rewrite references to point to the copies.
8184 References are looked for in DIE's attributes and recursively in all its
8185 children attributes that are location descriptions. COPIED_DWARF_PROCS is a
8186 mapping from old DWARF procedures to their copy. It is used not to copy
8187 twice the same DWARF procedure under TYPE_NODE. */
8190 copy_dwarf_procs_ref_in_dies (dw_die_ref die
,
8191 comdat_type_node
*type_node
,
8192 hash_map
<dw_die_ref
, dw_die_ref
> &copied_dwarf_procs
)
8196 copy_dwarf_procs_ref_in_attrs (die
, type_node
, copied_dwarf_procs
);
8197 FOR_EACH_CHILD (die
, c
, copy_dwarf_procs_ref_in_dies (c
,
8199 copied_dwarf_procs
));
8202 /* Traverse the DIE and set up additional .debug_types or .debug_info
8203 DW_UT_*type sections for each type worthy of being placed in a COMDAT
8207 break_out_comdat_types (dw_die_ref die
)
8211 dw_die_ref prev
= NULL
;
8212 dw_die_ref next
= NULL
;
8213 dw_die_ref unit
= NULL
;
8215 first
= c
= die
->die_child
;
8219 if (prev
== NULL
|| prev
->die_sib
== c
)
8222 next
= (c
== first
? NULL
: c
->die_sib
);
8223 if (should_move_die_to_comdat (c
))
8225 dw_die_ref replacement
;
8226 comdat_type_node
*type_node
;
8228 /* Break out nested types into their own type units. */
8229 break_out_comdat_types (c
);
8231 /* Create a new type unit DIE as the root for the new tree, and
8232 add it to the list of comdat types. */
8233 unit
= new_die (DW_TAG_type_unit
, NULL
, NULL
);
8234 add_AT_unsigned (unit
, DW_AT_language
,
8235 get_AT_unsigned (comp_unit_die (), DW_AT_language
));
8236 type_node
= ggc_cleared_alloc
<comdat_type_node
> ();
8237 type_node
->root_die
= unit
;
8238 type_node
->next
= comdat_type_list
;
8239 comdat_type_list
= type_node
;
8241 /* Generate the type signature. */
8242 generate_type_signature (c
, type_node
);
8244 /* Copy the declaration context, attributes, and children of the
8245 declaration into the new type unit DIE, then remove this DIE
8246 from the main CU (or replace it with a skeleton if necessary). */
8247 replacement
= remove_child_or_replace_with_skeleton (unit
, c
, prev
);
8248 type_node
->skeleton_die
= replacement
;
8250 /* Add the DIE to the new compunit. */
8251 add_child_die (unit
, c
);
8253 /* Types can reference DWARF procedures for type size or data location
8254 expressions. Calls in DWARF expressions cannot target procedures
8255 that are not in the same section. So we must copy DWARF procedures
8256 along with this type and then rewrite references to them. */
8257 hash_map
<dw_die_ref
, dw_die_ref
> copied_dwarf_procs
;
8258 copy_dwarf_procs_ref_in_dies (c
, type_node
, copied_dwarf_procs
);
8260 if (replacement
!= NULL
)
8263 else if (c
->die_tag
== DW_TAG_namespace
8264 || c
->die_tag
== DW_TAG_class_type
8265 || c
->die_tag
== DW_TAG_structure_type
8266 || c
->die_tag
== DW_TAG_union_type
)
8268 /* Look for nested types that can be broken out. */
8269 break_out_comdat_types (c
);
8271 } while (next
!= NULL
);
8274 /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
8275 Enter all the cloned children into the hash table decl_table. */
8278 clone_tree_partial (dw_die_ref die
, decl_hash_type
*decl_table
)
8282 struct decl_table_entry
*entry
;
8283 decl_table_entry
**slot
;
8285 if (die
->die_tag
== DW_TAG_subprogram
)
8286 clone
= clone_as_declaration (die
);
8288 clone
= clone_die (die
);
8290 slot
= decl_table
->find_slot_with_hash (die
,
8291 htab_hash_pointer (die
), INSERT
);
8293 /* Assert that DIE isn't in the hash table yet. If it would be there
8294 before, the ancestors would be necessarily there as well, therefore
8295 clone_tree_partial wouldn't be called. */
8296 gcc_assert (*slot
== HTAB_EMPTY_ENTRY
);
8298 entry
= XCNEW (struct decl_table_entry
);
8300 entry
->copy
= clone
;
8303 if (die
->die_tag
!= DW_TAG_subprogram
)
8304 FOR_EACH_CHILD (die
, c
,
8305 add_child_die (clone
, clone_tree_partial (c
, decl_table
)));
8310 /* Walk the DIE and its children, looking for references to incomplete
8311 or trivial types that are unmarked (i.e., that are not in the current
8315 copy_decls_walk (dw_die_ref unit
, dw_die_ref die
, decl_hash_type
*decl_table
)
8321 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8323 if (AT_class (a
) == dw_val_class_die_ref
)
8325 dw_die_ref targ
= AT_ref (a
);
8326 decl_table_entry
**slot
;
8327 struct decl_table_entry
*entry
;
8329 if (targ
->die_mark
!= 0 || targ
->comdat_type_p
)
8332 slot
= decl_table
->find_slot_with_hash (targ
,
8333 htab_hash_pointer (targ
),
8336 if (*slot
!= HTAB_EMPTY_ENTRY
)
8338 /* TARG has already been copied, so we just need to
8339 modify the reference to point to the copy. */
8341 a
->dw_attr_val
.v
.val_die_ref
.die
= entry
->copy
;
8345 dw_die_ref parent
= unit
;
8346 dw_die_ref copy
= clone_die (targ
);
8348 /* Record in DECL_TABLE that TARG has been copied.
8349 Need to do this now, before the recursive call,
8350 because DECL_TABLE may be expanded and SLOT
8351 would no longer be a valid pointer. */
8352 entry
= XCNEW (struct decl_table_entry
);
8357 /* If TARG is not a declaration DIE, we need to copy its
8359 if (!is_declaration_die (targ
))
8363 add_child_die (copy
,
8364 clone_tree_partial (c
, decl_table
)));
8367 /* Make sure the cloned tree is marked as part of the
8371 /* If TARG has surrounding context, copy its ancestor tree
8372 into the new type unit. */
8373 if (targ
->die_parent
!= NULL
8374 && !is_unit_die (targ
->die_parent
))
8375 parent
= copy_ancestor_tree (unit
, targ
->die_parent
,
8378 add_child_die (parent
, copy
);
8379 a
->dw_attr_val
.v
.val_die_ref
.die
= copy
;
8381 /* Make sure the newly-copied DIE is walked. If it was
8382 installed in a previously-added context, it won't
8383 get visited otherwise. */
8386 /* Find the highest point of the newly-added tree,
8387 mark each node along the way, and walk from there. */
8388 parent
->die_mark
= 1;
8389 while (parent
->die_parent
8390 && parent
->die_parent
->die_mark
== 0)
8392 parent
= parent
->die_parent
;
8393 parent
->die_mark
= 1;
8395 copy_decls_walk (unit
, parent
, decl_table
);
8401 FOR_EACH_CHILD (die
, c
, copy_decls_walk (unit
, c
, decl_table
));
8404 /* Copy declarations for "unworthy" types into the new comdat section.
8405 Incomplete types, modified types, and certain other types aren't broken
8406 out into comdat sections of their own, so they don't have a signature,
8407 and we need to copy the declaration into the same section so that we
8408 don't have an external reference. */
8411 copy_decls_for_unworthy_types (dw_die_ref unit
)
8414 decl_hash_type
decl_table (10);
8415 copy_decls_walk (unit
, unit
, &decl_table
);
8419 /* Traverse the DIE and add a sibling attribute if it may have the
8420 effect of speeding up access to siblings. To save some space,
8421 avoid generating sibling attributes for DIE's without children. */
8424 add_sibling_attributes (dw_die_ref die
)
8428 if (! die
->die_child
)
8431 if (die
->die_parent
&& die
!= die
->die_parent
->die_child
)
8432 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
8434 FOR_EACH_CHILD (die
, c
, add_sibling_attributes (c
));
8437 /* Output all location lists for the DIE and its children. */
8440 output_location_lists (dw_die_ref die
)
8446 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8447 if (AT_class (a
) == dw_val_class_loc_list
)
8448 output_loc_list (AT_loc_list (a
));
8450 FOR_EACH_CHILD (die
, c
, output_location_lists (c
));
8453 /* During assign_location_list_indexes and output_loclists_offset the
8454 current index, after it the number of assigned indexes (i.e. how
8455 large the .debug_loclists* offset table should be). */
8456 static unsigned int loc_list_idx
;
8458 /* Output all location list offsets for the DIE and its children. */
8461 output_loclists_offsets (dw_die_ref die
)
8467 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8468 if (AT_class (a
) == dw_val_class_loc_list
)
8470 dw_loc_list_ref l
= AT_loc_list (a
);
8471 if (l
->offset_emitted
)
8473 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l
->ll_symbol
,
8474 loc_section_label
, NULL
);
8475 gcc_assert (l
->hash
== loc_list_idx
);
8477 l
->offset_emitted
= true;
8480 FOR_EACH_CHILD (die
, c
, output_loclists_offsets (c
));
8483 /* Recursively set indexes of location lists. */
8486 assign_location_list_indexes (dw_die_ref die
)
8492 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8493 if (AT_class (a
) == dw_val_class_loc_list
)
8495 dw_loc_list_ref list
= AT_loc_list (a
);
8496 if (!list
->num_assigned
)
8498 list
->num_assigned
= true;
8499 list
->hash
= loc_list_idx
++;
8503 FOR_EACH_CHILD (die
, c
, assign_location_list_indexes (c
));
8506 /* We want to limit the number of external references, because they are
8507 larger than local references: a relocation takes multiple words, and
8508 even a sig8 reference is always eight bytes, whereas a local reference
8509 can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
8510 So if we encounter multiple external references to the same type DIE, we
8511 make a local typedef stub for it and redirect all references there.
8513 This is the element of the hash table for keeping track of these
8523 /* Hashtable helpers. */
8525 struct external_ref_hasher
: free_ptr_hash
<external_ref
>
8527 static inline hashval_t
hash (const external_ref
*);
8528 static inline bool equal (const external_ref
*, const external_ref
*);
8532 external_ref_hasher::hash (const external_ref
*r
)
8534 dw_die_ref die
= r
->type
;
8537 /* We can't use the address of the DIE for hashing, because
8538 that will make the order of the stub DIEs non-deterministic. */
8539 if (! die
->comdat_type_p
)
8540 /* We have a symbol; use it to compute a hash. */
8541 h
= htab_hash_string (die
->die_id
.die_symbol
);
8544 /* We have a type signature; use a subset of the bits as the hash.
8545 The 8-byte signature is at least as large as hashval_t. */
8546 comdat_type_node
*type_node
= die
->die_id
.die_type_node
;
8547 memcpy (&h
, type_node
->signature
, sizeof (h
));
8553 external_ref_hasher::equal (const external_ref
*r1
, const external_ref
*r2
)
8555 return r1
->type
== r2
->type
;
8558 typedef hash_table
<external_ref_hasher
> external_ref_hash_type
;
8560 /* Return a pointer to the external_ref for references to DIE. */
8562 static struct external_ref
*
8563 lookup_external_ref (external_ref_hash_type
*map
, dw_die_ref die
)
8565 struct external_ref ref
, *ref_p
;
8566 external_ref
**slot
;
8569 slot
= map
->find_slot (&ref
, INSERT
);
8570 if (*slot
!= HTAB_EMPTY_ENTRY
)
8573 ref_p
= XCNEW (struct external_ref
);
8579 /* Subroutine of optimize_external_refs, below.
8581 If we see a type skeleton, record it as our stub. If we see external
8582 references, remember how many we've seen. */
8585 optimize_external_refs_1 (dw_die_ref die
, external_ref_hash_type
*map
)
8590 struct external_ref
*ref_p
;
8592 if (is_type_die (die
)
8593 && (c
= get_AT_ref (die
, DW_AT_signature
)))
8595 /* This is a local skeleton; use it for local references. */
8596 ref_p
= lookup_external_ref (map
, c
);
8600 /* Scan the DIE references, and remember any that refer to DIEs from
8601 other CUs (i.e. those which are not marked). */
8602 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8603 if (AT_class (a
) == dw_val_class_die_ref
8604 && (c
= AT_ref (a
))->die_mark
== 0
8607 ref_p
= lookup_external_ref (map
, c
);
8611 FOR_EACH_CHILD (die
, c
, optimize_external_refs_1 (c
, map
));
8614 /* htab_traverse callback function for optimize_external_refs, below. SLOT
8615 points to an external_ref, DATA is the CU we're processing. If we don't
8616 already have a local stub, and we have multiple refs, build a stub. */
8619 dwarf2_build_local_stub (external_ref
**slot
, dw_die_ref data
)
8621 struct external_ref
*ref_p
= *slot
;
8623 if (ref_p
->stub
== NULL
&& ref_p
->n_refs
> 1 && !dwarf_strict
)
8625 /* We have multiple references to this type, so build a small stub.
8626 Both of these forms are a bit dodgy from the perspective of the
8627 DWARF standard, since technically they should have names. */
8628 dw_die_ref cu
= data
;
8629 dw_die_ref type
= ref_p
->type
;
8630 dw_die_ref stub
= NULL
;
8632 if (type
->comdat_type_p
)
8634 /* If we refer to this type via sig8, use AT_signature. */
8635 stub
= new_die (type
->die_tag
, cu
, NULL_TREE
);
8636 add_AT_die_ref (stub
, DW_AT_signature
, type
);
8640 /* Otherwise, use a typedef with no name. */
8641 stub
= new_die (DW_TAG_typedef
, cu
, NULL_TREE
);
8642 add_AT_die_ref (stub
, DW_AT_type
, type
);
8651 /* DIE is a unit; look through all the DIE references to see if there are
8652 any external references to types, and if so, create local stubs for
8653 them which will be applied in build_abbrev_table. This is useful because
8654 references to local DIEs are smaller. */
8656 static external_ref_hash_type
*
8657 optimize_external_refs (dw_die_ref die
)
8659 external_ref_hash_type
*map
= new external_ref_hash_type (10);
8660 optimize_external_refs_1 (die
, map
);
8661 map
->traverse
<dw_die_ref
, dwarf2_build_local_stub
> (die
);
8665 /* The following 3 variables are temporaries that are computed only during the
8666 build_abbrev_table call and used and released during the following
8667 optimize_abbrev_table call. */
8669 /* First abbrev_id that can be optimized based on usage. */
8670 static unsigned int abbrev_opt_start
;
8672 /* Maximum abbrev_id of a base type plus one (we can't optimize DIEs with
8673 abbrev_id smaller than this, because they must be already sized
8674 during build_abbrev_table). */
8675 static unsigned int abbrev_opt_base_type_end
;
8677 /* Vector of usage counts during build_abbrev_table. Indexed by
8678 abbrev_id - abbrev_opt_start. */
8679 static vec
<unsigned int> abbrev_usage_count
;
8681 /* Vector of all DIEs added with die_abbrev >= abbrev_opt_start. */
8682 static vec
<dw_die_ref
> sorted_abbrev_dies
;
8684 /* The format of each DIE (and its attribute value pairs) is encoded in an
8685 abbreviation table. This routine builds the abbreviation table and assigns
8686 a unique abbreviation id for each abbreviation entry. The children of each
8687 die are visited recursively. */
8690 build_abbrev_table (dw_die_ref die
, external_ref_hash_type
*extern_map
)
8692 unsigned int abbrev_id
= 0;
8698 /* Scan the DIE references, and replace any that refer to
8699 DIEs from other CUs (i.e. those which are not marked) with
8700 the local stubs we built in optimize_external_refs. */
8701 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8702 if (AT_class (a
) == dw_val_class_die_ref
8703 && (c
= AT_ref (a
))->die_mark
== 0)
8705 struct external_ref
*ref_p
;
8706 gcc_assert (AT_ref (a
)->comdat_type_p
|| AT_ref (a
)->die_id
.die_symbol
);
8708 ref_p
= lookup_external_ref (extern_map
, c
);
8709 if (ref_p
->stub
&& ref_p
->stub
!= die
)
8710 change_AT_die_ref (a
, ref_p
->stub
);
8712 /* We aren't changing this reference, so mark it external. */
8713 set_AT_ref_external (a
, 1);
8716 FOR_EACH_VEC_SAFE_ELT (abbrev_die_table
, abbrev_id
, abbrev
)
8718 dw_attr_node
*die_a
, *abbrev_a
;
8724 if (abbrev
->die_tag
!= die
->die_tag
)
8726 if ((abbrev
->die_child
!= NULL
) != (die
->die_child
!= NULL
))
8729 if (vec_safe_length (abbrev
->die_attr
) != vec_safe_length (die
->die_attr
))
8732 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, die_a
)
8734 abbrev_a
= &(*abbrev
->die_attr
)[ix
];
8735 if ((abbrev_a
->dw_attr
!= die_a
->dw_attr
)
8736 || (value_format (abbrev_a
) != value_format (die_a
)))
8746 if (abbrev_id
>= vec_safe_length (abbrev_die_table
))
8748 vec_safe_push (abbrev_die_table
, die
);
8749 if (abbrev_opt_start
)
8750 abbrev_usage_count
.safe_push (0);
8752 if (abbrev_opt_start
&& abbrev_id
>= abbrev_opt_start
)
8754 abbrev_usage_count
[abbrev_id
- abbrev_opt_start
]++;
8755 sorted_abbrev_dies
.safe_push (die
);
8758 die
->die_abbrev
= abbrev_id
;
8759 FOR_EACH_CHILD (die
, c
, build_abbrev_table (c
, extern_map
));
8762 /* Callback function for sorted_abbrev_dies vector sorting. We sort
8763 by die_abbrev's usage count, from the most commonly used
8764 abbreviation to the least. */
8767 die_abbrev_cmp (const void *p1
, const void *p2
)
8769 dw_die_ref die1
= *(const dw_die_ref
*) p1
;
8770 dw_die_ref die2
= *(const dw_die_ref
*) p2
;
8772 gcc_checking_assert (die1
->die_abbrev
>= abbrev_opt_start
);
8773 gcc_checking_assert (die2
->die_abbrev
>= abbrev_opt_start
);
8775 if (die1
->die_abbrev
>= abbrev_opt_base_type_end
8776 && die2
->die_abbrev
>= abbrev_opt_base_type_end
)
8778 if (abbrev_usage_count
[die1
->die_abbrev
- abbrev_opt_start
]
8779 > abbrev_usage_count
[die2
->die_abbrev
- abbrev_opt_start
])
8781 if (abbrev_usage_count
[die1
->die_abbrev
- abbrev_opt_start
]
8782 < abbrev_usage_count
[die2
->die_abbrev
- abbrev_opt_start
])
8786 /* Stabilize the sort. */
8787 if (die1
->die_abbrev
< die2
->die_abbrev
)
8789 if (die1
->die_abbrev
> die2
->die_abbrev
)
8795 /* Convert dw_val_class_const and dw_val_class_unsigned_const class attributes
8796 of DIEs in between sorted_abbrev_dies[first_id] and abbrev_dies[end_id - 1]
8797 into dw_val_class_const_implicit or
8798 dw_val_class_unsigned_const_implicit. */
8801 optimize_implicit_const (unsigned int first_id
, unsigned int end
,
8802 vec
<bool> &implicit_consts
)
8804 /* It never makes sense if there is just one DIE using the abbreviation. */
8805 if (end
< first_id
+ 2)
8810 dw_die_ref die
= sorted_abbrev_dies
[first_id
];
8811 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8812 if (implicit_consts
[ix
])
8814 enum dw_val_class new_class
= dw_val_class_none
;
8815 switch (AT_class (a
))
8817 case dw_val_class_unsigned_const
:
8818 if ((HOST_WIDE_INT
) AT_unsigned (a
) < 0)
8821 /* The .debug_abbrev section will grow by
8822 size_of_sleb128 (AT_unsigned (a)) and we avoid the constants
8823 in all the DIEs using that abbreviation. */
8824 if (constant_size (AT_unsigned (a
)) * (end
- first_id
)
8825 <= (unsigned) size_of_sleb128 (AT_unsigned (a
)))
8828 new_class
= dw_val_class_unsigned_const_implicit
;
8831 case dw_val_class_const
:
8832 new_class
= dw_val_class_const_implicit
;
8835 case dw_val_class_file
:
8836 new_class
= dw_val_class_file_implicit
;
8842 for (i
= first_id
; i
< end
; i
++)
8843 (*sorted_abbrev_dies
[i
]->die_attr
)[ix
].dw_attr_val
.val_class
8848 /* Attempt to optimize abbreviation table from abbrev_opt_start
8849 abbreviation above. */
8852 optimize_abbrev_table (void)
8854 if (abbrev_opt_start
8855 && vec_safe_length (abbrev_die_table
) > abbrev_opt_start
8856 && (dwarf_version
>= 5 || vec_safe_length (abbrev_die_table
) > 127))
8858 auto_vec
<bool, 32> implicit_consts
;
8859 sorted_abbrev_dies
.qsort (die_abbrev_cmp
);
8861 unsigned int abbrev_id
= abbrev_opt_start
- 1;
8862 unsigned int first_id
= ~0U;
8863 unsigned int last_abbrev_id
= 0;
8866 if (abbrev_opt_base_type_end
> abbrev_opt_start
)
8867 abbrev_id
= abbrev_opt_base_type_end
- 1;
8868 /* Reassign abbreviation ids from abbrev_opt_start above, so that
8869 most commonly used abbreviations come first. */
8870 FOR_EACH_VEC_ELT (sorted_abbrev_dies
, i
, die
)
8875 /* If calc_base_type_die_sizes has been called, the CU and
8876 base types after it can't be optimized, because we've already
8877 calculated their DIE offsets. We've sorted them first. */
8878 if (die
->die_abbrev
< abbrev_opt_base_type_end
)
8880 if (die
->die_abbrev
!= last_abbrev_id
)
8882 last_abbrev_id
= die
->die_abbrev
;
8883 if (dwarf_version
>= 5 && first_id
!= ~0U)
8884 optimize_implicit_const (first_id
, i
, implicit_consts
);
8886 (*abbrev_die_table
)[abbrev_id
] = die
;
8887 if (dwarf_version
>= 5)
8890 implicit_consts
.truncate (0);
8892 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8893 switch (AT_class (a
))
8895 case dw_val_class_const
:
8896 case dw_val_class_unsigned_const
:
8897 case dw_val_class_file
:
8898 implicit_consts
.safe_push (true);
8901 implicit_consts
.safe_push (false);
8906 else if (dwarf_version
>= 5)
8908 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8909 if (!implicit_consts
[ix
])
8913 dw_attr_node
*other_a
8914 = &(*(*abbrev_die_table
)[abbrev_id
]->die_attr
)[ix
];
8915 if (!dw_val_equal_p (&a
->dw_attr_val
,
8916 &other_a
->dw_attr_val
))
8917 implicit_consts
[ix
] = false;
8920 die
->die_abbrev
= abbrev_id
;
8922 gcc_assert (abbrev_id
== vec_safe_length (abbrev_die_table
) - 1);
8923 if (dwarf_version
>= 5 && first_id
!= ~0U)
8924 optimize_implicit_const (first_id
, i
, implicit_consts
);
8927 abbrev_opt_start
= 0;
8928 abbrev_opt_base_type_end
= 0;
8929 abbrev_usage_count
.release ();
8930 sorted_abbrev_dies
.release ();
8933 /* Return the power-of-two number of bytes necessary to represent VALUE. */
8936 constant_size (unsigned HOST_WIDE_INT value
)
8943 log
= floor_log2 (value
);
8946 log
= 1 << (floor_log2 (log
) + 1);
8951 /* Return the size of a DIE as it is represented in the
8952 .debug_info section. */
8954 static unsigned long
8955 size_of_die (dw_die_ref die
)
8957 unsigned long size
= 0;
8960 enum dwarf_form form
;
8962 size
+= size_of_uleb128 (die
->die_abbrev
);
8963 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8965 switch (AT_class (a
))
8967 case dw_val_class_addr
:
8968 if (dwarf_split_debug_info
&& AT_index (a
) != NOT_INDEXED
)
8970 gcc_assert (AT_index (a
) != NO_INDEX_ASSIGNED
);
8971 size
+= size_of_uleb128 (AT_index (a
));
8974 size
+= DWARF2_ADDR_SIZE
;
8976 case dw_val_class_offset
:
8977 size
+= DWARF_OFFSET_SIZE
;
8979 case dw_val_class_loc
:
8981 unsigned long lsize
= size_of_locs (AT_loc (a
));
8984 if (dwarf_version
>= 4)
8985 size
+= size_of_uleb128 (lsize
);
8987 size
+= constant_size (lsize
);
8991 case dw_val_class_loc_list
:
8992 if (dwarf_split_debug_info
&& dwarf_version
>= 5)
8994 gcc_assert (AT_loc_list (a
)->num_assigned
);
8995 size
+= size_of_uleb128 (AT_loc_list (a
)->hash
);
8998 size
+= DWARF_OFFSET_SIZE
;
9000 case dw_val_class_range_list
:
9001 if (value_format (a
) == DW_FORM_rnglistx
)
9003 gcc_assert (rnglist_idx
);
9004 dw_ranges
*r
= &(*ranges_table
)[a
->dw_attr_val
.v
.val_offset
];
9005 size
+= size_of_uleb128 (r
->idx
);
9008 size
+= DWARF_OFFSET_SIZE
;
9010 case dw_val_class_const
:
9011 size
+= size_of_sleb128 (AT_int (a
));
9013 case dw_val_class_unsigned_const
:
9015 int csize
= constant_size (AT_unsigned (a
));
9016 if (dwarf_version
== 3
9017 && a
->dw_attr
== DW_AT_data_member_location
9019 size
+= size_of_uleb128 (AT_unsigned (a
));
9024 case dw_val_class_const_implicit
:
9025 case dw_val_class_unsigned_const_implicit
:
9026 case dw_val_class_file_implicit
:
9027 /* These occupy no size in the DIE, just an extra sleb128 in
9030 case dw_val_class_const_double
:
9031 size
+= HOST_BITS_PER_DOUBLE_INT
/ HOST_BITS_PER_CHAR
;
9032 if (HOST_BITS_PER_WIDE_INT
>= DWARF_LARGEST_DATA_FORM_BITS
)
9035 case dw_val_class_wide_int
:
9036 size
+= (get_full_len (*a
->dw_attr_val
.v
.val_wide
)
9037 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
9038 if (get_full_len (*a
->dw_attr_val
.v
.val_wide
)
9039 * HOST_BITS_PER_WIDE_INT
> DWARF_LARGEST_DATA_FORM_BITS
)
9042 case dw_val_class_vec
:
9043 size
+= constant_size (a
->dw_attr_val
.v
.val_vec
.length
9044 * a
->dw_attr_val
.v
.val_vec
.elt_size
)
9045 + a
->dw_attr_val
.v
.val_vec
.length
9046 * a
->dw_attr_val
.v
.val_vec
.elt_size
; /* block */
9048 case dw_val_class_flag
:
9049 if (dwarf_version
>= 4)
9050 /* Currently all add_AT_flag calls pass in 1 as last argument,
9051 so DW_FORM_flag_present can be used. If that ever changes,
9052 we'll need to use DW_FORM_flag and have some optimization
9053 in build_abbrev_table that will change those to
9054 DW_FORM_flag_present if it is set to 1 in all DIEs using
9055 the same abbrev entry. */
9056 gcc_assert (a
->dw_attr_val
.v
.val_flag
== 1);
9060 case dw_val_class_die_ref
:
9061 if (AT_ref_external (a
))
9063 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
9064 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
9065 is sized by target address length, whereas in DWARF3
9066 it's always sized as an offset. */
9067 if (use_debug_types
)
9068 size
+= DWARF_TYPE_SIGNATURE_SIZE
;
9069 else if (dwarf_version
== 2)
9070 size
+= DWARF2_ADDR_SIZE
;
9072 size
+= DWARF_OFFSET_SIZE
;
9075 size
+= DWARF_OFFSET_SIZE
;
9077 case dw_val_class_fde_ref
:
9078 size
+= DWARF_OFFSET_SIZE
;
9080 case dw_val_class_lbl_id
:
9081 if (dwarf_split_debug_info
&& AT_index (a
) != NOT_INDEXED
)
9083 gcc_assert (AT_index (a
) != NO_INDEX_ASSIGNED
);
9084 size
+= size_of_uleb128 (AT_index (a
));
9087 size
+= DWARF2_ADDR_SIZE
;
9089 case dw_val_class_lineptr
:
9090 case dw_val_class_macptr
:
9091 case dw_val_class_loclistsptr
:
9092 size
+= DWARF_OFFSET_SIZE
;
9094 case dw_val_class_str
:
9095 form
= AT_string_form (a
);
9096 if (form
== DW_FORM_strp
|| form
== DW_FORM_line_strp
)
9097 size
+= DWARF_OFFSET_SIZE
;
9098 else if (form
== DW_FORM_GNU_str_index
)
9099 size
+= size_of_uleb128 (AT_index (a
));
9101 size
+= strlen (a
->dw_attr_val
.v
.val_str
->str
) + 1;
9103 case dw_val_class_file
:
9104 size
+= constant_size (maybe_emit_file (a
->dw_attr_val
.v
.val_file
));
9106 case dw_val_class_data8
:
9109 case dw_val_class_vms_delta
:
9110 size
+= DWARF_OFFSET_SIZE
;
9112 case dw_val_class_high_pc
:
9113 size
+= DWARF2_ADDR_SIZE
;
9115 case dw_val_class_discr_value
:
9116 size
+= size_of_discr_value (&a
->dw_attr_val
.v
.val_discr_value
);
9118 case dw_val_class_discr_list
:
9120 unsigned block_size
= size_of_discr_list (AT_discr_list (a
));
9122 /* This is a block, so we have the block length and then its
9124 size
+= constant_size (block_size
) + block_size
;
9135 /* Size the debugging information associated with a given DIE. Visits the
9136 DIE's children recursively. Updates the global variable next_die_offset, on
9137 each time through. Uses the current value of next_die_offset to update the
9138 die_offset field in each DIE. */
9141 calc_die_sizes (dw_die_ref die
)
9145 gcc_assert (die
->die_offset
== 0
9146 || (unsigned long int) die
->die_offset
== next_die_offset
);
9147 die
->die_offset
= next_die_offset
;
9148 next_die_offset
+= size_of_die (die
);
9150 FOR_EACH_CHILD (die
, c
, calc_die_sizes (c
));
9152 if (die
->die_child
!= NULL
)
9153 /* Count the null byte used to terminate sibling lists. */
9154 next_die_offset
+= 1;
9157 /* Size just the base type children at the start of the CU.
9158 This is needed because build_abbrev needs to size locs
9159 and sizing of type based stack ops needs to know die_offset
9160 values for the base types. */
9163 calc_base_type_die_sizes (void)
9165 unsigned long die_offset
= (dwarf_split_debug_info
9166 ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
9167 : DWARF_COMPILE_UNIT_HEADER_SIZE
);
9169 dw_die_ref base_type
;
9170 #if ENABLE_ASSERT_CHECKING
9171 dw_die_ref prev
= comp_unit_die ()->die_child
;
9174 die_offset
+= size_of_die (comp_unit_die ());
9175 for (i
= 0; base_types
.iterate (i
, &base_type
); i
++)
9177 #if ENABLE_ASSERT_CHECKING
9178 gcc_assert (base_type
->die_offset
== 0
9179 && prev
->die_sib
== base_type
9180 && base_type
->die_child
== NULL
9181 && base_type
->die_abbrev
);
9184 if (abbrev_opt_start
9185 && base_type
->die_abbrev
>= abbrev_opt_base_type_end
)
9186 abbrev_opt_base_type_end
= base_type
->die_abbrev
+ 1;
9187 base_type
->die_offset
= die_offset
;
9188 die_offset
+= size_of_die (base_type
);
9192 /* Set the marks for a die and its children. We do this so
9193 that we know whether or not a reference needs to use FORM_ref_addr; only
9194 DIEs in the same CU will be marked. We used to clear out the offset
9195 and use that as the flag, but ran into ordering problems. */
9198 mark_dies (dw_die_ref die
)
9202 gcc_assert (!die
->die_mark
);
9205 FOR_EACH_CHILD (die
, c
, mark_dies (c
));
9208 /* Clear the marks for a die and its children. */
9211 unmark_dies (dw_die_ref die
)
9215 if (! use_debug_types
)
9216 gcc_assert (die
->die_mark
);
9219 FOR_EACH_CHILD (die
, c
, unmark_dies (c
));
9222 /* Clear the marks for a die, its children and referred dies. */
9225 unmark_all_dies (dw_die_ref die
)
9235 FOR_EACH_CHILD (die
, c
, unmark_all_dies (c
));
9237 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9238 if (AT_class (a
) == dw_val_class_die_ref
)
9239 unmark_all_dies (AT_ref (a
));
9242 /* Calculate if the entry should appear in the final output file. It may be
9243 from a pruned a type. */
9246 include_pubname_in_output (vec
<pubname_entry
, va_gc
> *table
, pubname_entry
*p
)
9248 /* By limiting gnu pubnames to definitions only, gold can generate a
9249 gdb index without entries for declarations, which don't include
9250 enough information to be useful. */
9251 if (debug_generate_pub_sections
== 2 && is_declaration_die (p
->die
))
9254 if (table
== pubname_table
)
9256 /* Enumerator names are part of the pubname table, but the
9257 parent DW_TAG_enumeration_type die may have been pruned.
9258 Don't output them if that is the case. */
9259 if (p
->die
->die_tag
== DW_TAG_enumerator
&&
9260 (p
->die
->die_parent
== NULL
9261 || !p
->die
->die_parent
->die_perennial_p
))
9264 /* Everything else in the pubname table is included. */
9268 /* The pubtypes table shouldn't include types that have been
9270 return (p
->die
->die_offset
!= 0
9271 || !flag_eliminate_unused_debug_types
);
9274 /* Return the size of the .debug_pubnames or .debug_pubtypes table
9275 generated for the compilation unit. */
9277 static unsigned long
9278 size_of_pubnames (vec
<pubname_entry
, va_gc
> *names
)
9283 int space_for_flags
= (debug_generate_pub_sections
== 2) ? 1 : 0;
9285 size
= DWARF_PUBNAMES_HEADER_SIZE
;
9286 FOR_EACH_VEC_ELT (*names
, i
, p
)
9287 if (include_pubname_in_output (names
, p
))
9288 size
+= strlen (p
->name
) + DWARF_OFFSET_SIZE
+ 1 + space_for_flags
;
9290 size
+= DWARF_OFFSET_SIZE
;
9294 /* Return the size of the information in the .debug_aranges section. */
9296 static unsigned long
9297 size_of_aranges (void)
9301 size
= DWARF_ARANGES_HEADER_SIZE
;
9303 /* Count the address/length pair for this compilation unit. */
9304 if (text_section_used
)
9305 size
+= 2 * DWARF2_ADDR_SIZE
;
9306 if (cold_text_section_used
)
9307 size
+= 2 * DWARF2_ADDR_SIZE
;
9308 if (have_multiple_function_sections
)
9313 FOR_EACH_VEC_ELT (*fde_vec
, fde_idx
, fde
)
9315 if (DECL_IGNORED_P (fde
->decl
))
9317 if (!fde
->in_std_section
)
9318 size
+= 2 * DWARF2_ADDR_SIZE
;
9319 if (fde
->dw_fde_second_begin
&& !fde
->second_in_std_section
)
9320 size
+= 2 * DWARF2_ADDR_SIZE
;
9324 /* Count the two zero words used to terminated the address range table. */
9325 size
+= 2 * DWARF2_ADDR_SIZE
;
9329 /* Select the encoding of an attribute value. */
9331 static enum dwarf_form
9332 value_format (dw_attr_node
*a
)
9334 switch (AT_class (a
))
9336 case dw_val_class_addr
:
9337 /* Only very few attributes allow DW_FORM_addr. */
9342 case DW_AT_entry_pc
:
9343 case DW_AT_trampoline
:
9344 return (AT_index (a
) == NOT_INDEXED
9345 ? DW_FORM_addr
: DW_FORM_GNU_addr_index
);
9349 switch (DWARF2_ADDR_SIZE
)
9352 return DW_FORM_data1
;
9354 return DW_FORM_data2
;
9356 return DW_FORM_data4
;
9358 return DW_FORM_data8
;
9362 case dw_val_class_loc_list
:
9363 if (dwarf_split_debug_info
9364 && dwarf_version
>= 5
9365 && AT_loc_list (a
)->num_assigned
)
9366 return DW_FORM_loclistx
;
9368 case dw_val_class_range_list
:
9369 /* For range lists in DWARF 5, use DW_FORM_rnglistx from .debug_info.dwo
9370 but in .debug_info use DW_FORM_sec_offset, which is shorter if we
9371 care about sizes of .debug* sections in shared libraries and
9372 executables and don't take into account relocations that affect just
9373 relocatable objects - for DW_FORM_rnglistx we'd have to emit offset
9374 table in the .debug_rnglists section. */
9375 if (dwarf_split_debug_info
9376 && dwarf_version
>= 5
9377 && AT_class (a
) == dw_val_class_range_list
9379 && a
->dw_attr_val
.val_entry
!= RELOCATED_OFFSET
)
9380 return DW_FORM_rnglistx
;
9381 if (dwarf_version
>= 4)
9382 return DW_FORM_sec_offset
;
9384 case dw_val_class_vms_delta
:
9385 case dw_val_class_offset
:
9386 switch (DWARF_OFFSET_SIZE
)
9389 return DW_FORM_data4
;
9391 return DW_FORM_data8
;
9395 case dw_val_class_loc
:
9396 if (dwarf_version
>= 4)
9397 return DW_FORM_exprloc
;
9398 switch (constant_size (size_of_locs (AT_loc (a
))))
9401 return DW_FORM_block1
;
9403 return DW_FORM_block2
;
9405 return DW_FORM_block4
;
9409 case dw_val_class_const
:
9410 return DW_FORM_sdata
;
9411 case dw_val_class_unsigned_const
:
9412 switch (constant_size (AT_unsigned (a
)))
9415 return DW_FORM_data1
;
9417 return DW_FORM_data2
;
9419 /* In DWARF3 DW_AT_data_member_location with
9420 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
9421 constant, so we need to use DW_FORM_udata if we need
9422 a large constant. */
9423 if (dwarf_version
== 3 && a
->dw_attr
== DW_AT_data_member_location
)
9424 return DW_FORM_udata
;
9425 return DW_FORM_data4
;
9427 if (dwarf_version
== 3 && a
->dw_attr
== DW_AT_data_member_location
)
9428 return DW_FORM_udata
;
9429 return DW_FORM_data8
;
9433 case dw_val_class_const_implicit
:
9434 case dw_val_class_unsigned_const_implicit
:
9435 case dw_val_class_file_implicit
:
9436 return DW_FORM_implicit_const
;
9437 case dw_val_class_const_double
:
9438 switch (HOST_BITS_PER_WIDE_INT
)
9441 return DW_FORM_data2
;
9443 return DW_FORM_data4
;
9445 return DW_FORM_data8
;
9447 if (dwarf_version
>= 5)
9448 return DW_FORM_data16
;
9451 return DW_FORM_block1
;
9453 case dw_val_class_wide_int
:
9454 switch (get_full_len (*a
->dw_attr_val
.v
.val_wide
) * HOST_BITS_PER_WIDE_INT
)
9457 return DW_FORM_data1
;
9459 return DW_FORM_data2
;
9461 return DW_FORM_data4
;
9463 return DW_FORM_data8
;
9465 if (dwarf_version
>= 5)
9466 return DW_FORM_data16
;
9469 return DW_FORM_block1
;
9471 case dw_val_class_vec
:
9472 switch (constant_size (a
->dw_attr_val
.v
.val_vec
.length
9473 * a
->dw_attr_val
.v
.val_vec
.elt_size
))
9476 return DW_FORM_block1
;
9478 return DW_FORM_block2
;
9480 return DW_FORM_block4
;
9484 case dw_val_class_flag
:
9485 if (dwarf_version
>= 4)
9487 /* Currently all add_AT_flag calls pass in 1 as last argument,
9488 so DW_FORM_flag_present can be used. If that ever changes,
9489 we'll need to use DW_FORM_flag and have some optimization
9490 in build_abbrev_table that will change those to
9491 DW_FORM_flag_present if it is set to 1 in all DIEs using
9492 the same abbrev entry. */
9493 gcc_assert (a
->dw_attr_val
.v
.val_flag
== 1);
9494 return DW_FORM_flag_present
;
9496 return DW_FORM_flag
;
9497 case dw_val_class_die_ref
:
9498 if (AT_ref_external (a
))
9499 return use_debug_types
? DW_FORM_ref_sig8
: DW_FORM_ref_addr
;
9502 case dw_val_class_fde_ref
:
9503 return DW_FORM_data
;
9504 case dw_val_class_lbl_id
:
9505 return (AT_index (a
) == NOT_INDEXED
9506 ? DW_FORM_addr
: DW_FORM_GNU_addr_index
);
9507 case dw_val_class_lineptr
:
9508 case dw_val_class_macptr
:
9509 case dw_val_class_loclistsptr
:
9510 return dwarf_version
>= 4 ? DW_FORM_sec_offset
: DW_FORM_data
;
9511 case dw_val_class_str
:
9512 return AT_string_form (a
);
9513 case dw_val_class_file
:
9514 switch (constant_size (maybe_emit_file (a
->dw_attr_val
.v
.val_file
)))
9517 return DW_FORM_data1
;
9519 return DW_FORM_data2
;
9521 return DW_FORM_data4
;
9526 case dw_val_class_data8
:
9527 return DW_FORM_data8
;
9529 case dw_val_class_high_pc
:
9530 switch (DWARF2_ADDR_SIZE
)
9533 return DW_FORM_data1
;
9535 return DW_FORM_data2
;
9537 return DW_FORM_data4
;
9539 return DW_FORM_data8
;
9544 case dw_val_class_discr_value
:
9545 return (a
->dw_attr_val
.v
.val_discr_value
.pos
9548 case dw_val_class_discr_list
:
9549 switch (constant_size (size_of_discr_list (AT_discr_list (a
))))
9552 return DW_FORM_block1
;
9554 return DW_FORM_block2
;
9556 return DW_FORM_block4
;
9566 /* Output the encoding of an attribute value. */
9569 output_value_format (dw_attr_node
*a
)
9571 enum dwarf_form form
= value_format (a
);
9573 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
9576 /* Given a die and id, produce the appropriate abbreviations. */
9579 output_die_abbrevs (unsigned long abbrev_id
, dw_die_ref abbrev
)
9582 dw_attr_node
*a_attr
;
9584 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
9585 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
9586 dwarf_tag_name (abbrev
->die_tag
));
9588 if (abbrev
->die_child
!= NULL
)
9589 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
9591 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
9593 for (ix
= 0; vec_safe_iterate (abbrev
->die_attr
, ix
, &a_attr
); ix
++)
9595 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
9596 dwarf_attr_name (a_attr
->dw_attr
));
9597 output_value_format (a_attr
);
9598 if (value_format (a_attr
) == DW_FORM_implicit_const
)
9600 if (AT_class (a_attr
) == dw_val_class_file_implicit
)
9602 int f
= maybe_emit_file (a_attr
->dw_attr_val
.v
.val_file
);
9603 const char *filename
= a_attr
->dw_attr_val
.v
.val_file
->filename
;
9604 dw2_asm_output_data_sleb128 (f
, "(%s)", filename
);
9607 dw2_asm_output_data_sleb128 (a_attr
->dw_attr_val
.v
.val_int
, NULL
);
9611 dw2_asm_output_data (1, 0, NULL
);
9612 dw2_asm_output_data (1, 0, NULL
);
9616 /* Output the .debug_abbrev section which defines the DIE abbreviation
9620 output_abbrev_section (void)
9622 unsigned int abbrev_id
;
9625 FOR_EACH_VEC_SAFE_ELT (abbrev_die_table
, abbrev_id
, abbrev
)
9627 output_die_abbrevs (abbrev_id
, abbrev
);
9629 /* Terminate the table. */
9630 dw2_asm_output_data (1, 0, NULL
);
9633 /* Return a new location list, given the begin and end range, and the
9636 static inline dw_loc_list_ref
9637 new_loc_list (dw_loc_descr_ref expr
, const char *begin
, const char *end
,
9638 const char *section
)
9640 dw_loc_list_ref retlist
= ggc_cleared_alloc
<dw_loc_list_node
> ();
9642 retlist
->begin
= begin
;
9643 retlist
->begin_entry
= NULL
;
9645 retlist
->expr
= expr
;
9646 retlist
->section
= section
;
9651 /* Generate a new internal symbol for this location list node, if it
9652 hasn't got one yet. */
9655 gen_llsym (dw_loc_list_ref list
)
9657 gcc_assert (!list
->ll_symbol
);
9658 list
->ll_symbol
= gen_internal_sym ("LLST");
9661 /* Output the location list given to us. */
9664 output_loc_list (dw_loc_list_ref list_head
)
9666 if (list_head
->emitted
)
9668 list_head
->emitted
= true;
9670 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
9672 dw_loc_list_ref curr
= list_head
;
9673 const char *last_section
= NULL
;
9674 const char *base_label
= NULL
;
9676 /* Walk the location list, and output each range + expression. */
9677 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
9680 /* Don't output an entry that starts and ends at the same address. */
9681 if (strcmp (curr
->begin
, curr
->end
) == 0 && !curr
->force
)
9683 size
= size_of_locs (curr
->expr
);
9684 /* If the expression is too large, drop it on the floor. We could
9685 perhaps put it into DW_TAG_dwarf_procedure and refer to that
9686 in the expression, but >= 64KB expressions for a single value
9687 in a single range are unlikely very useful. */
9688 if (dwarf_version
< 5 && size
> 0xffff)
9690 if (dwarf_version
>= 5)
9692 if (dwarf_split_debug_info
)
9694 /* For -gsplit-dwarf, emit DW_LLE_starx_length, which has
9695 uleb128 index into .debug_addr and uleb128 length. */
9696 dw2_asm_output_data (1, DW_LLE_startx_length
,
9697 "DW_LLE_startx_length (%s)",
9698 list_head
->ll_symbol
);
9699 dw2_asm_output_data_uleb128 (curr
->begin_entry
->index
,
9700 "Location list range start index "
9701 "(%s)", curr
->begin
);
9702 /* FIXME: This will ICE ifndef HAVE_AS_LEB128.
9703 For that case we probably need to emit DW_LLE_startx_endx,
9704 but we'd need 2 .debug_addr entries rather than just one. */
9705 dw2_asm_output_delta_uleb128 (curr
->end
, curr
->begin
,
9706 "Location list length (%s)",
9707 list_head
->ll_symbol
);
9709 else if (!have_multiple_function_sections
&& HAVE_AS_LEB128
)
9711 /* If all code is in .text section, the base address is
9712 already provided by the CU attributes. Use
9713 DW_LLE_offset_pair where both addresses are uleb128 encoded
9714 offsets against that base. */
9715 dw2_asm_output_data (1, DW_LLE_offset_pair
,
9716 "DW_LLE_offset_pair (%s)",
9717 list_head
->ll_symbol
);
9718 dw2_asm_output_delta_uleb128 (curr
->begin
, curr
->section
,
9719 "Location list begin address (%s)",
9720 list_head
->ll_symbol
);
9721 dw2_asm_output_delta_uleb128 (curr
->end
, curr
->section
,
9722 "Location list end address (%s)",
9723 list_head
->ll_symbol
);
9725 else if (HAVE_AS_LEB128
)
9727 /* Otherwise, find out how many consecutive entries could share
9728 the same base entry. If just one, emit DW_LLE_start_length,
9729 otherwise emit DW_LLE_base_address for the base address
9730 followed by a series of DW_LLE_offset_pair. */
9731 if (last_section
== NULL
|| curr
->section
!= last_section
)
9733 dw_loc_list_ref curr2
;
9734 for (curr2
= curr
->dw_loc_next
; curr2
!= NULL
;
9735 curr2
= curr2
->dw_loc_next
)
9737 if (strcmp (curr2
->begin
, curr2
->end
) == 0
9742 if (curr2
== NULL
|| curr
->section
!= curr2
->section
)
9743 last_section
= NULL
;
9746 last_section
= curr
->section
;
9747 base_label
= curr
->begin
;
9748 dw2_asm_output_data (1, DW_LLE_base_address
,
9749 "DW_LLE_base_address (%s)",
9750 list_head
->ll_symbol
);
9751 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, base_label
,
9752 "Base address (%s)",
9753 list_head
->ll_symbol
);
9756 /* Only one entry with the same base address. Use
9757 DW_LLE_start_length with absolute address and uleb128
9759 if (last_section
== NULL
)
9761 dw2_asm_output_data (1, DW_LLE_start_length
,
9762 "DW_LLE_start_length (%s)",
9763 list_head
->ll_symbol
);
9764 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
9765 "Location list begin address (%s)",
9766 list_head
->ll_symbol
);
9767 dw2_asm_output_delta_uleb128 (curr
->end
, curr
->begin
,
9768 "Location list length "
9769 "(%s)", list_head
->ll_symbol
);
9771 /* Otherwise emit DW_LLE_offset_pair, relative to above emitted
9772 DW_LLE_base_address. */
9775 dw2_asm_output_data (1, DW_LLE_offset_pair
,
9776 "DW_LLE_offset_pair (%s)",
9777 list_head
->ll_symbol
);
9778 dw2_asm_output_delta_uleb128 (curr
->begin
, base_label
,
9779 "Location list begin address "
9780 "(%s)", list_head
->ll_symbol
);
9781 dw2_asm_output_delta_uleb128 (curr
->end
, base_label
,
9782 "Location list end address "
9783 "(%s)", list_head
->ll_symbol
);
9786 /* The assembler does not support .uleb128 directive. Emit
9787 DW_LLE_start_end with a pair of absolute addresses. */
9790 dw2_asm_output_data (1, DW_LLE_start_end
,
9791 "DW_LLE_start_end (%s)",
9792 list_head
->ll_symbol
);
9793 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
9794 "Location list begin address (%s)",
9795 list_head
->ll_symbol
);
9796 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->end
,
9797 "Location list end address (%s)",
9798 list_head
->ll_symbol
);
9801 else if (dwarf_split_debug_info
)
9803 /* For -gsplit-dwarf -gdwarf-{2,3,4} emit index into .debug_addr
9804 and 4 byte length. */
9805 dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry
,
9806 "Location list start/length entry (%s)",
9807 list_head
->ll_symbol
);
9808 dw2_asm_output_data_uleb128 (curr
->begin_entry
->index
,
9809 "Location list range start index (%s)",
9811 /* The length field is 4 bytes. If we ever need to support
9812 an 8-byte length, we can add a new DW_LLE code or fall back
9813 to DW_LLE_GNU_start_end_entry. */
9814 dw2_asm_output_delta (4, curr
->end
, curr
->begin
,
9815 "Location list range length (%s)",
9816 list_head
->ll_symbol
);
9818 else if (!have_multiple_function_sections
)
9820 /* Pair of relative addresses against start of text section. */
9821 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
9822 "Location list begin address (%s)",
9823 list_head
->ll_symbol
);
9824 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
9825 "Location list end address (%s)",
9826 list_head
->ll_symbol
);
9830 /* Pair of absolute addresses. */
9831 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
9832 "Location list begin address (%s)",
9833 list_head
->ll_symbol
);
9834 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->end
,
9835 "Location list end address (%s)",
9836 list_head
->ll_symbol
);
9839 /* Output the block length for this list of location operations. */
9840 if (dwarf_version
>= 5)
9841 dw2_asm_output_data_uleb128 (size
, "Location expression size");
9844 gcc_assert (size
<= 0xffff);
9845 dw2_asm_output_data (2, size
, "Location expression size");
9848 output_loc_sequence (curr
->expr
, -1);
9851 /* And finally list termination. */
9852 if (dwarf_version
>= 5)
9853 dw2_asm_output_data (1, DW_LLE_end_of_list
,
9854 "DW_LLE_end_of_list (%s)", list_head
->ll_symbol
);
9855 else if (dwarf_split_debug_info
)
9856 dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry
,
9857 "Location list terminator (%s)",
9858 list_head
->ll_symbol
);
9861 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
9862 "Location list terminator begin (%s)",
9863 list_head
->ll_symbol
);
9864 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
9865 "Location list terminator end (%s)",
9866 list_head
->ll_symbol
);
9870 /* Output a range_list offset into the .debug_ranges or .debug_rnglists
9871 section. Emit a relocated reference if val_entry is NULL, otherwise,
9872 emit an indirect reference. */
9875 output_range_list_offset (dw_attr_node
*a
)
9877 const char *name
= dwarf_attr_name (a
->dw_attr
);
9879 if (a
->dw_attr_val
.val_entry
== RELOCATED_OFFSET
)
9881 if (dwarf_version
>= 5)
9883 dw_ranges
*r
= &(*ranges_table
)[a
->dw_attr_val
.v
.val_offset
];
9884 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, r
->label
,
9885 debug_ranges_section
, "%s", name
);
9889 char *p
= strchr (ranges_section_label
, '\0');
9890 sprintf (p
, "+" HOST_WIDE_INT_PRINT_HEX
,
9891 a
->dw_attr_val
.v
.val_offset
* 2 * DWARF2_ADDR_SIZE
);
9892 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, ranges_section_label
,
9893 debug_ranges_section
, "%s", name
);
9897 else if (dwarf_version
>= 5)
9899 dw_ranges
*r
= &(*ranges_table
)[a
->dw_attr_val
.v
.val_offset
];
9900 gcc_assert (rnglist_idx
);
9901 dw2_asm_output_data_uleb128 (r
->idx
, "%s", name
);
9904 dw2_asm_output_data (DWARF_OFFSET_SIZE
,
9905 a
->dw_attr_val
.v
.val_offset
* 2 * DWARF2_ADDR_SIZE
,
9906 "%s (offset from %s)", name
, ranges_section_label
);
9909 /* Output the offset into the debug_loc section. */
9912 output_loc_list_offset (dw_attr_node
*a
)
9914 char *sym
= AT_loc_list (a
)->ll_symbol
;
9917 if (!dwarf_split_debug_info
)
9918 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, sym
, debug_loc_section
,
9919 "%s", dwarf_attr_name (a
->dw_attr
));
9920 else if (dwarf_version
>= 5)
9922 gcc_assert (AT_loc_list (a
)->num_assigned
);
9923 dw2_asm_output_data_uleb128 (AT_loc_list (a
)->hash
, "%s (%s)",
9924 dwarf_attr_name (a
->dw_attr
),
9928 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, sym
, loc_section_label
,
9929 "%s", dwarf_attr_name (a
->dw_attr
));
9932 /* Output an attribute's index or value appropriately. */
9935 output_attr_index_or_value (dw_attr_node
*a
)
9937 const char *name
= dwarf_attr_name (a
->dw_attr
);
9939 if (dwarf_split_debug_info
&& AT_index (a
) != NOT_INDEXED
)
9941 dw2_asm_output_data_uleb128 (AT_index (a
), "%s", name
);
9944 switch (AT_class (a
))
9946 case dw_val_class_addr
:
9947 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
9949 case dw_val_class_high_pc
:
9950 case dw_val_class_lbl_id
:
9951 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
9958 /* Output a type signature. */
9961 output_signature (const char *sig
, const char *name
)
9965 for (i
= 0; i
< DWARF_TYPE_SIGNATURE_SIZE
; i
++)
9966 dw2_asm_output_data (1, sig
[i
], i
== 0 ? "%s" : NULL
, name
);
9969 /* Output a discriminant value. */
9972 output_discr_value (dw_discr_value
*discr_value
, const char *name
)
9974 if (discr_value
->pos
)
9975 dw2_asm_output_data_uleb128 (discr_value
->v
.uval
, "%s", name
);
9977 dw2_asm_output_data_sleb128 (discr_value
->v
.sval
, "%s", name
);
9980 /* Output the DIE and its attributes. Called recursively to generate
9981 the definitions of each child DIE. */
9984 output_die (dw_die_ref die
)
9991 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (%#lx) %s)",
9992 (unsigned long)die
->die_offset
,
9993 dwarf_tag_name (die
->die_tag
));
9995 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9997 const char *name
= dwarf_attr_name (a
->dw_attr
);
9999 switch (AT_class (a
))
10001 case dw_val_class_addr
:
10002 output_attr_index_or_value (a
);
10005 case dw_val_class_offset
:
10006 dw2_asm_output_data (DWARF_OFFSET_SIZE
, a
->dw_attr_val
.v
.val_offset
,
10010 case dw_val_class_range_list
:
10011 output_range_list_offset (a
);
10014 case dw_val_class_loc
:
10015 size
= size_of_locs (AT_loc (a
));
10017 /* Output the block length for this list of location operations. */
10018 if (dwarf_version
>= 4)
10019 dw2_asm_output_data_uleb128 (size
, "%s", name
);
10021 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
10023 output_loc_sequence (AT_loc (a
), -1);
10026 case dw_val_class_const
:
10027 /* ??? It would be slightly more efficient to use a scheme like is
10028 used for unsigned constants below, but gdb 4.x does not sign
10029 extend. Gdb 5.x does sign extend. */
10030 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
10033 case dw_val_class_unsigned_const
:
10035 int csize
= constant_size (AT_unsigned (a
));
10036 if (dwarf_version
== 3
10037 && a
->dw_attr
== DW_AT_data_member_location
10039 dw2_asm_output_data_uleb128 (AT_unsigned (a
), "%s", name
);
10041 dw2_asm_output_data (csize
, AT_unsigned (a
), "%s", name
);
10045 case dw_val_class_const_implicit
:
10046 if (flag_debug_asm
)
10047 fprintf (asm_out_file
, "\t\t\t%s %s ("
10048 HOST_WIDE_INT_PRINT_DEC
")\n",
10049 ASM_COMMENT_START
, name
, AT_int (a
));
10052 case dw_val_class_unsigned_const_implicit
:
10053 if (flag_debug_asm
)
10054 fprintf (asm_out_file
, "\t\t\t%s %s ("
10055 HOST_WIDE_INT_PRINT_HEX
")\n",
10056 ASM_COMMENT_START
, name
, AT_unsigned (a
));
10059 case dw_val_class_const_double
:
10061 unsigned HOST_WIDE_INT first
, second
;
10063 if (HOST_BITS_PER_WIDE_INT
>= DWARF_LARGEST_DATA_FORM_BITS
)
10064 dw2_asm_output_data (1,
10065 HOST_BITS_PER_DOUBLE_INT
10066 / HOST_BITS_PER_CHAR
,
10069 if (WORDS_BIG_ENDIAN
)
10071 first
= a
->dw_attr_val
.v
.val_double
.high
;
10072 second
= a
->dw_attr_val
.v
.val_double
.low
;
10076 first
= a
->dw_attr_val
.v
.val_double
.low
;
10077 second
= a
->dw_attr_val
.v
.val_double
.high
;
10080 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
10081 first
, "%s", name
);
10082 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
10087 case dw_val_class_wide_int
:
10090 int len
= get_full_len (*a
->dw_attr_val
.v
.val_wide
);
10091 int l
= HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
10092 if (len
* HOST_BITS_PER_WIDE_INT
> DWARF_LARGEST_DATA_FORM_BITS
)
10093 dw2_asm_output_data (1, get_full_len (*a
->dw_attr_val
.v
.val_wide
)
10096 if (WORDS_BIG_ENDIAN
)
10097 for (i
= len
- 1; i
>= 0; --i
)
10099 dw2_asm_output_data (l
, a
->dw_attr_val
.v
.val_wide
->elt (i
),
10104 for (i
= 0; i
< len
; ++i
)
10106 dw2_asm_output_data (l
, a
->dw_attr_val
.v
.val_wide
->elt (i
),
10113 case dw_val_class_vec
:
10115 unsigned int elt_size
= a
->dw_attr_val
.v
.val_vec
.elt_size
;
10116 unsigned int len
= a
->dw_attr_val
.v
.val_vec
.length
;
10120 dw2_asm_output_data (constant_size (len
* elt_size
),
10121 len
* elt_size
, "%s", name
);
10122 if (elt_size
> sizeof (HOST_WIDE_INT
))
10127 for (i
= 0, p
= (unsigned char *) a
->dw_attr_val
.v
.val_vec
.array
;
10129 i
++, p
+= elt_size
)
10130 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
10131 "fp or vector constant word %u", i
);
10135 case dw_val_class_flag
:
10136 if (dwarf_version
>= 4)
10138 /* Currently all add_AT_flag calls pass in 1 as last argument,
10139 so DW_FORM_flag_present can be used. If that ever changes,
10140 we'll need to use DW_FORM_flag and have some optimization
10141 in build_abbrev_table that will change those to
10142 DW_FORM_flag_present if it is set to 1 in all DIEs using
10143 the same abbrev entry. */
10144 gcc_assert (AT_flag (a
) == 1);
10145 if (flag_debug_asm
)
10146 fprintf (asm_out_file
, "\t\t\t%s %s\n",
10147 ASM_COMMENT_START
, name
);
10150 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
10153 case dw_val_class_loc_list
:
10154 output_loc_list_offset (a
);
10157 case dw_val_class_die_ref
:
10158 if (AT_ref_external (a
))
10160 if (AT_ref (a
)->comdat_type_p
)
10162 comdat_type_node
*type_node
10163 = AT_ref (a
)->die_id
.die_type_node
;
10165 gcc_assert (type_node
);
10166 output_signature (type_node
->signature
, name
);
10170 const char *sym
= AT_ref (a
)->die_id
.die_symbol
;
10174 /* In DWARF2, DW_FORM_ref_addr is sized by target address
10175 length, whereas in DWARF3 it's always sized as an
10177 if (dwarf_version
== 2)
10178 size
= DWARF2_ADDR_SIZE
;
10180 size
= DWARF_OFFSET_SIZE
;
10181 /* ??? We cannot unconditionally output die_offset if
10182 non-zero - others might create references to those
10184 And we do not clear its DIE offset after outputting it
10185 (and the label refers to the actual DIEs, not the
10186 DWARF CU unit header which is when using label + offset
10187 would be the correct thing to do).
10188 ??? This is the reason for the with_offset flag. */
10189 if (AT_ref (a
)->with_offset
)
10190 dw2_asm_output_offset (size
, sym
, AT_ref (a
)->die_offset
,
10191 debug_info_section
, "%s", name
);
10193 dw2_asm_output_offset (size
, sym
, debug_info_section
, "%s",
10199 gcc_assert (AT_ref (a
)->die_offset
);
10200 dw2_asm_output_data (DWARF_OFFSET_SIZE
, AT_ref (a
)->die_offset
,
10205 case dw_val_class_fde_ref
:
10207 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
];
10209 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
10210 a
->dw_attr_val
.v
.val_fde_index
* 2);
10211 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, l1
, debug_frame_section
,
10216 case dw_val_class_vms_delta
:
10217 #ifdef ASM_OUTPUT_DWARF_VMS_DELTA
10218 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE
,
10219 AT_vms_delta2 (a
), AT_vms_delta1 (a
),
10222 dw2_asm_output_delta (DWARF_OFFSET_SIZE
,
10223 AT_vms_delta2 (a
), AT_vms_delta1 (a
),
10228 case dw_val_class_lbl_id
:
10229 output_attr_index_or_value (a
);
10232 case dw_val_class_lineptr
:
10233 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
),
10234 debug_line_section
, "%s", name
);
10237 case dw_val_class_macptr
:
10238 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
),
10239 debug_macinfo_section
, "%s", name
);
10242 case dw_val_class_loclistsptr
:
10243 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
),
10244 debug_loc_section
, "%s", name
);
10247 case dw_val_class_str
:
10248 if (a
->dw_attr_val
.v
.val_str
->form
== DW_FORM_strp
)
10249 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
10250 a
->dw_attr_val
.v
.val_str
->label
,
10252 "%s: \"%s\"", name
, AT_string (a
));
10253 else if (a
->dw_attr_val
.v
.val_str
->form
== DW_FORM_line_strp
)
10254 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
10255 a
->dw_attr_val
.v
.val_str
->label
,
10256 debug_line_str_section
,
10257 "%s: \"%s\"", name
, AT_string (a
));
10258 else if (a
->dw_attr_val
.v
.val_str
->form
== DW_FORM_GNU_str_index
)
10259 dw2_asm_output_data_uleb128 (AT_index (a
),
10260 "%s: \"%s\"", name
, AT_string (a
));
10262 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
10265 case dw_val_class_file
:
10267 int f
= maybe_emit_file (a
->dw_attr_val
.v
.val_file
);
10269 dw2_asm_output_data (constant_size (f
), f
, "%s (%s)", name
,
10270 a
->dw_attr_val
.v
.val_file
->filename
);
10274 case dw_val_class_file_implicit
:
10275 if (flag_debug_asm
)
10276 fprintf (asm_out_file
, "\t\t\t%s %s (%d, %s)\n",
10277 ASM_COMMENT_START
, name
,
10278 maybe_emit_file (a
->dw_attr_val
.v
.val_file
),
10279 a
->dw_attr_val
.v
.val_file
->filename
);
10282 case dw_val_class_data8
:
10286 for (i
= 0; i
< 8; i
++)
10287 dw2_asm_output_data (1, a
->dw_attr_val
.v
.val_data8
[i
],
10288 i
== 0 ? "%s" : NULL
, name
);
10292 case dw_val_class_high_pc
:
10293 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, AT_lbl (a
),
10294 get_AT_low_pc (die
), "DW_AT_high_pc");
10297 case dw_val_class_discr_value
:
10298 output_discr_value (&a
->dw_attr_val
.v
.val_discr_value
, name
);
10301 case dw_val_class_discr_list
:
10303 dw_discr_list_ref list
= AT_discr_list (a
);
10304 const int size
= size_of_discr_list (list
);
10306 /* This is a block, so output its length first. */
10307 dw2_asm_output_data (constant_size (size
), size
,
10308 "%s: block size", name
);
10310 for (; list
!= NULL
; list
= list
->dw_discr_next
)
10312 /* One byte for the discriminant value descriptor, and then as
10313 many LEB128 numbers as required. */
10314 if (list
->dw_discr_range
)
10315 dw2_asm_output_data (1, DW_DSC_range
,
10316 "%s: DW_DSC_range", name
);
10318 dw2_asm_output_data (1, DW_DSC_label
,
10319 "%s: DW_DSC_label", name
);
10321 output_discr_value (&list
->dw_discr_lower_bound
, name
);
10322 if (list
->dw_discr_range
)
10323 output_discr_value (&list
->dw_discr_upper_bound
, name
);
10329 gcc_unreachable ();
10333 FOR_EACH_CHILD (die
, c
, output_die (c
));
10335 /* Add null byte to terminate sibling list. */
10336 if (die
->die_child
!= NULL
)
10337 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
10338 (unsigned long) die
->die_offset
);
10341 /* Output the compilation unit that appears at the beginning of the
10342 .debug_info section, and precedes the DIE descriptions. */
10345 output_compilation_unit_header (enum dwarf_unit_type ut
)
10347 if (!XCOFF_DEBUGGING_INFO
)
10349 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
10350 dw2_asm_output_data (4, 0xffffffff,
10351 "Initial length escape value indicating 64-bit DWARF extension");
10352 dw2_asm_output_data (DWARF_OFFSET_SIZE
,
10353 next_die_offset
- DWARF_INITIAL_LENGTH_SIZE
,
10354 "Length of Compilation Unit Info");
10357 dw2_asm_output_data (2, dwarf_version
, "DWARF version number");
10358 if (dwarf_version
>= 5)
10363 case DW_UT_compile
: name
= "DW_UT_compile"; break;
10364 case DW_UT_type
: name
= "DW_UT_type"; break;
10365 case DW_UT_split_compile
: name
= "DW_UT_split_compile"; break;
10366 case DW_UT_split_type
: name
= "DW_UT_split_type"; break;
10367 default: gcc_unreachable ();
10369 dw2_asm_output_data (1, ut
, "%s", name
);
10370 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
10372 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, abbrev_section_label
,
10373 debug_abbrev_section
,
10374 "Offset Into Abbrev. Section");
10375 if (dwarf_version
< 5)
10376 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
10379 /* Output the compilation unit DIE and its children. */
10382 output_comp_unit (dw_die_ref die
, int output_if_empty
,
10383 const unsigned char *dwo_id
)
10385 const char *secname
, *oldsym
;
10388 /* Unless we are outputting main CU, we may throw away empty ones. */
10389 if (!output_if_empty
&& die
->die_child
== NULL
)
10392 /* Even if there are no children of this DIE, we must output the information
10393 about the compilation unit. Otherwise, on an empty translation unit, we
10394 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
10395 will then complain when examining the file. First mark all the DIEs in
10396 this CU so we know which get local refs. */
10399 external_ref_hash_type
*extern_map
= optimize_external_refs (die
);
10401 /* For now, optimize only the main CU, in order to optimize the rest
10402 we'd need to see all of them earlier. Leave the rest for post-linking
10404 if (die
== comp_unit_die ())
10405 abbrev_opt_start
= vec_safe_length (abbrev_die_table
);
10407 build_abbrev_table (die
, extern_map
);
10409 optimize_abbrev_table ();
10413 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
10414 next_die_offset
= (dwo_id
10415 ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
10416 : DWARF_COMPILE_UNIT_HEADER_SIZE
);
10417 calc_die_sizes (die
);
10419 oldsym
= die
->die_id
.die_symbol
;
10420 if (oldsym
&& die
->comdat_type_p
)
10422 tmp
= XALLOCAVEC (char, strlen (oldsym
) + 24);
10424 sprintf (tmp
, ".gnu.linkonce.wi.%s", oldsym
);
10426 die
->die_id
.die_symbol
= NULL
;
10427 switch_to_section (get_section (secname
, SECTION_DEBUG
, NULL
));
10431 switch_to_section (debug_info_section
);
10432 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
10433 info_section_emitted
= true;
10436 /* For LTO cross unit DIE refs we want a symbol on the start of the
10437 debuginfo section, not on the CU DIE. */
10438 if ((flag_generate_lto
|| flag_generate_offload
) && oldsym
)
10440 /* ??? No way to get visibility assembled without a decl. */
10441 tree decl
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
,
10442 get_identifier (oldsym
), char_type_node
);
10443 TREE_PUBLIC (decl
) = true;
10444 TREE_STATIC (decl
) = true;
10445 DECL_ARTIFICIAL (decl
) = true;
10446 DECL_VISIBILITY (decl
) = VISIBILITY_HIDDEN
;
10447 DECL_VISIBILITY_SPECIFIED (decl
) = true;
10448 targetm
.asm_out
.assemble_visibility (decl
, VISIBILITY_HIDDEN
);
10449 #ifdef ASM_WEAKEN_LABEL
10450 /* We prefer a .weak because that handles duplicates from duplicate
10451 archive members in a graceful way. */
10452 ASM_WEAKEN_LABEL (asm_out_file
, oldsym
);
10454 targetm
.asm_out
.globalize_label (asm_out_file
, oldsym
);
10456 ASM_OUTPUT_LABEL (asm_out_file
, oldsym
);
10459 /* Output debugging information. */
10460 output_compilation_unit_header (dwo_id
10461 ? DW_UT_split_compile
: DW_UT_compile
);
10462 if (dwarf_version
>= 5)
10464 if (dwo_id
!= NULL
)
10465 for (int i
= 0; i
< 8; i
++)
10466 dw2_asm_output_data (1, dwo_id
[i
], i
== 0 ? "DWO id" : NULL
);
10470 /* Leave the marks on the main CU, so we can check them in
10471 output_pubnames. */
10475 die
->die_id
.die_symbol
= oldsym
;
10479 /* Whether to generate the DWARF accelerator tables in .debug_pubnames
10480 and .debug_pubtypes. This is configured per-target, but can be
10481 overridden by the -gpubnames or -gno-pubnames options. */
10484 want_pubnames (void)
10486 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
10488 if (debug_generate_pub_sections
!= -1)
10489 return debug_generate_pub_sections
;
10490 return targetm
.want_debug_pub_sections
;
10493 /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */
10496 add_AT_pubnames (dw_die_ref die
)
10498 if (want_pubnames ())
10499 add_AT_flag (die
, DW_AT_GNU_pubnames
, 1);
10502 /* Add a string attribute value to a skeleton DIE. */
10505 add_skeleton_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
,
10509 struct indirect_string_node
*node
;
10511 if (! skeleton_debug_str_hash
)
10512 skeleton_debug_str_hash
10513 = hash_table
<indirect_string_hasher
>::create_ggc (10);
10515 node
= find_AT_string_in_table (str
, skeleton_debug_str_hash
);
10516 find_string_form (node
);
10517 if (node
->form
== DW_FORM_GNU_str_index
)
10518 node
->form
= DW_FORM_strp
;
10520 attr
.dw_attr
= attr_kind
;
10521 attr
.dw_attr_val
.val_class
= dw_val_class_str
;
10522 attr
.dw_attr_val
.val_entry
= NULL
;
10523 attr
.dw_attr_val
.v
.val_str
= node
;
10524 add_dwarf_attr (die
, &attr
);
10527 /* Helper function to generate top-level dies for skeleton debug_info and
10531 add_top_level_skeleton_die_attrs (dw_die_ref die
)
10533 const char *dwo_file_name
= concat (aux_base_name
, ".dwo", NULL
);
10534 const char *comp_dir
= comp_dir_string ();
10536 add_skeleton_AT_string (die
, dwarf_AT (DW_AT_dwo_name
), dwo_file_name
);
10537 if (comp_dir
!= NULL
)
10538 add_skeleton_AT_string (die
, DW_AT_comp_dir
, comp_dir
);
10539 add_AT_pubnames (die
);
10540 add_AT_lineptr (die
, DW_AT_GNU_addr_base
, debug_addr_section_label
);
10543 /* Output skeleton debug sections that point to the dwo file. */
10546 output_skeleton_debug_sections (dw_die_ref comp_unit
,
10547 const unsigned char *dwo_id
)
10549 /* These attributes will be found in the full debug_info section. */
10550 remove_AT (comp_unit
, DW_AT_producer
);
10551 remove_AT (comp_unit
, DW_AT_language
);
10553 switch_to_section (debug_skeleton_info_section
);
10554 ASM_OUTPUT_LABEL (asm_out_file
, debug_skeleton_info_section_label
);
10556 /* Produce the skeleton compilation-unit header. This one differs enough from
10557 a normal CU header that it's better not to call output_compilation_unit
10559 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
10560 dw2_asm_output_data (4, 0xffffffff,
10561 "Initial length escape value indicating 64-bit "
10562 "DWARF extension");
10564 dw2_asm_output_data (DWARF_OFFSET_SIZE
,
10565 DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
10566 - DWARF_INITIAL_LENGTH_SIZE
10567 + size_of_die (comp_unit
),
10568 "Length of Compilation Unit Info");
10569 dw2_asm_output_data (2, dwarf_version
, "DWARF version number");
10570 if (dwarf_version
>= 5)
10572 dw2_asm_output_data (1, DW_UT_skeleton
, "DW_UT_skeleton");
10573 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
10575 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_skeleton_abbrev_section_label
,
10576 debug_skeleton_abbrev_section
,
10577 "Offset Into Abbrev. Section");
10578 if (dwarf_version
< 5)
10579 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
10581 for (int i
= 0; i
< 8; i
++)
10582 dw2_asm_output_data (1, dwo_id
[i
], i
== 0 ? "DWO id" : NULL
);
10584 comp_unit
->die_abbrev
= SKELETON_COMP_DIE_ABBREV
;
10585 output_die (comp_unit
);
10587 /* Build the skeleton debug_abbrev section. */
10588 switch_to_section (debug_skeleton_abbrev_section
);
10589 ASM_OUTPUT_LABEL (asm_out_file
, debug_skeleton_abbrev_section_label
);
10591 output_die_abbrevs (SKELETON_COMP_DIE_ABBREV
, comp_unit
);
10593 dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
10596 /* Output a comdat type unit DIE and its children. */
10599 output_comdat_type_unit (comdat_type_node
*node
)
10601 const char *secname
;
10604 #if defined (OBJECT_FORMAT_ELF)
10608 /* First mark all the DIEs in this CU so we know which get local refs. */
10609 mark_dies (node
->root_die
);
10611 external_ref_hash_type
*extern_map
= optimize_external_refs (node
->root_die
);
10613 build_abbrev_table (node
->root_die
, extern_map
);
10618 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
10619 next_die_offset
= DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE
;
10620 calc_die_sizes (node
->root_die
);
10622 #if defined (OBJECT_FORMAT_ELF)
10623 if (dwarf_version
>= 5)
10625 if (!dwarf_split_debug_info
)
10626 secname
= ".debug_info";
10628 secname
= ".debug_info.dwo";
10630 else if (!dwarf_split_debug_info
)
10631 secname
= ".debug_types";
10633 secname
= ".debug_types.dwo";
10635 tmp
= XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE
* 2);
10636 sprintf (tmp
, dwarf_version
>= 5 ? "wi." : "wt.");
10637 for (i
= 0; i
< DWARF_TYPE_SIGNATURE_SIZE
; i
++)
10638 sprintf (tmp
+ 3 + i
* 2, "%02x", node
->signature
[i
] & 0xff);
10639 comdat_key
= get_identifier (tmp
);
10640 targetm
.asm_out
.named_section (secname
,
10641 SECTION_DEBUG
| SECTION_LINKONCE
,
10644 tmp
= XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE
* 2);
10645 sprintf (tmp
, (dwarf_version
>= 5
10646 ? ".gnu.linkonce.wi." : ".gnu.linkonce.wt."));
10647 for (i
= 0; i
< DWARF_TYPE_SIGNATURE_SIZE
; i
++)
10648 sprintf (tmp
+ 17 + i
* 2, "%02x", node
->signature
[i
] & 0xff);
10650 switch_to_section (get_section (secname
, SECTION_DEBUG
, NULL
));
10653 /* Output debugging information. */
10654 output_compilation_unit_header (dwarf_split_debug_info
10655 ? DW_UT_split_type
: DW_UT_type
);
10656 output_signature (node
->signature
, "Type Signature");
10657 dw2_asm_output_data (DWARF_OFFSET_SIZE
, node
->type_die
->die_offset
,
10658 "Offset to Type DIE");
10659 output_die (node
->root_die
);
10661 unmark_dies (node
->root_die
);
10664 /* Return the DWARF2/3 pubname associated with a decl. */
10666 static const char *
10667 dwarf2_name (tree decl
, int scope
)
10669 if (DECL_NAMELESS (decl
))
10671 return lang_hooks
.dwarf_name (decl
, scope
? 1 : 0);
10674 /* Add a new entry to .debug_pubnames if appropriate. */
10677 add_pubname_string (const char *str
, dw_die_ref die
)
10682 e
.name
= xstrdup (str
);
10683 vec_safe_push (pubname_table
, e
);
10687 add_pubname (tree decl
, dw_die_ref die
)
10689 if (!want_pubnames ())
10692 /* Don't add items to the table when we expect that the consumer will have
10693 just read the enclosing die. For example, if the consumer is looking at a
10694 class_member, it will either be inside the class already, or will have just
10695 looked up the class to find the member. Either way, searching the class is
10696 faster than searching the index. */
10697 if ((TREE_PUBLIC (decl
) && !class_scope_p (die
->die_parent
))
10698 || is_cu_die (die
->die_parent
) || is_namespace_die (die
->die_parent
))
10700 const char *name
= dwarf2_name (decl
, 1);
10703 add_pubname_string (name
, die
);
10707 /* Add an enumerator to the pubnames section. */
10710 add_enumerator_pubname (const char *scope_name
, dw_die_ref die
)
10714 gcc_assert (scope_name
);
10715 e
.name
= concat (scope_name
, get_AT_string (die
, DW_AT_name
), NULL
);
10717 vec_safe_push (pubname_table
, e
);
10720 /* Add a new entry to .debug_pubtypes if appropriate. */
10723 add_pubtype (tree decl
, dw_die_ref die
)
10727 if (!want_pubnames ())
10730 if ((TREE_PUBLIC (decl
)
10731 || is_cu_die (die
->die_parent
) || is_namespace_die (die
->die_parent
))
10732 && (die
->die_tag
== DW_TAG_typedef
|| COMPLETE_TYPE_P (decl
)))
10735 const char *scope_name
= "";
10736 const char *sep
= is_cxx () ? "::" : ".";
10739 scope
= TYPE_P (decl
) ? TYPE_CONTEXT (decl
) : NULL
;
10740 if (scope
&& TREE_CODE (scope
) == NAMESPACE_DECL
)
10742 scope_name
= lang_hooks
.dwarf_name (scope
, 1);
10743 if (scope_name
!= NULL
&& scope_name
[0] != '\0')
10744 scope_name
= concat (scope_name
, sep
, NULL
);
10750 name
= type_tag (decl
);
10752 name
= lang_hooks
.dwarf_name (decl
, 1);
10754 /* If we don't have a name for the type, there's no point in adding
10755 it to the table. */
10756 if (name
!= NULL
&& name
[0] != '\0')
10759 e
.name
= concat (scope_name
, name
, NULL
);
10760 vec_safe_push (pubtype_table
, e
);
10763 /* Although it might be more consistent to add the pubinfo for the
10764 enumerators as their dies are created, they should only be added if the
10765 enum type meets the criteria above. So rather than re-check the parent
10766 enum type whenever an enumerator die is created, just output them all
10767 here. This isn't protected by the name conditional because anonymous
10768 enums don't have names. */
10769 if (die
->die_tag
== DW_TAG_enumeration_type
)
10773 FOR_EACH_CHILD (die
, c
, add_enumerator_pubname (scope_name
, c
));
10778 /* Output a single entry in the pubnames table. */
10781 output_pubname (dw_offset die_offset
, pubname_entry
*entry
)
10783 dw_die_ref die
= entry
->die
;
10784 int is_static
= get_AT_flag (die
, DW_AT_external
) ? 0 : 1;
10786 dw2_asm_output_data (DWARF_OFFSET_SIZE
, die_offset
, "DIE offset");
10788 if (debug_generate_pub_sections
== 2)
10790 /* This logic follows gdb's method for determining the value of the flag
10792 uint32_t flags
= GDB_INDEX_SYMBOL_KIND_NONE
;
10793 switch (die
->die_tag
)
10795 case DW_TAG_typedef
:
10796 case DW_TAG_base_type
:
10797 case DW_TAG_subrange_type
:
10798 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
, GDB_INDEX_SYMBOL_KIND_TYPE
);
10799 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, 1);
10801 case DW_TAG_enumerator
:
10802 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
,
10803 GDB_INDEX_SYMBOL_KIND_VARIABLE
);
10805 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, 1);
10807 case DW_TAG_subprogram
:
10808 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
,
10809 GDB_INDEX_SYMBOL_KIND_FUNCTION
);
10811 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, is_static
);
10813 case DW_TAG_constant
:
10814 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
,
10815 GDB_INDEX_SYMBOL_KIND_VARIABLE
);
10816 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, is_static
);
10818 case DW_TAG_variable
:
10819 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
,
10820 GDB_INDEX_SYMBOL_KIND_VARIABLE
);
10821 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, is_static
);
10823 case DW_TAG_namespace
:
10824 case DW_TAG_imported_declaration
:
10825 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
, GDB_INDEX_SYMBOL_KIND_TYPE
);
10827 case DW_TAG_class_type
:
10828 case DW_TAG_interface_type
:
10829 case DW_TAG_structure_type
:
10830 case DW_TAG_union_type
:
10831 case DW_TAG_enumeration_type
:
10832 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
, GDB_INDEX_SYMBOL_KIND_TYPE
);
10834 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, 1);
10837 /* An unusual tag. Leave the flag-byte empty. */
10840 dw2_asm_output_data (1, flags
>> GDB_INDEX_CU_BITSIZE
,
10841 "GDB-index flags");
10844 dw2_asm_output_nstring (entry
->name
, -1, "external name");
10848 /* Output the public names table used to speed up access to externally
10849 visible names; or the public types table used to find type definitions. */
10852 output_pubnames (vec
<pubname_entry
, va_gc
> *names
)
10855 unsigned long pubnames_length
= size_of_pubnames (names
);
10856 pubname_entry
*pub
;
10858 if (!XCOFF_DEBUGGING_INFO
)
10860 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
10861 dw2_asm_output_data (4, 0xffffffff,
10862 "Initial length escape value indicating 64-bit DWARF extension");
10863 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
10864 "Pub Info Length");
10867 /* Version number for pubnames/pubtypes is independent of dwarf version. */
10868 dw2_asm_output_data (2, 2, "DWARF Version");
10870 if (dwarf_split_debug_info
)
10871 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_skeleton_info_section_label
,
10872 debug_skeleton_info_section
,
10873 "Offset of Compilation Unit Info");
10875 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
10876 debug_info_section
,
10877 "Offset of Compilation Unit Info");
10878 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
,
10879 "Compilation Unit Length");
10881 FOR_EACH_VEC_ELT (*names
, i
, pub
)
10883 if (include_pubname_in_output (names
, pub
))
10885 dw_offset die_offset
= pub
->die
->die_offset
;
10887 /* We shouldn't see pubnames for DIEs outside of the main CU. */
10888 if (names
== pubname_table
&& pub
->die
->die_tag
!= DW_TAG_enumerator
)
10889 gcc_assert (pub
->die
->die_mark
);
10891 /* If we're putting types in their own .debug_types sections,
10892 the .debug_pubtypes table will still point to the compile
10893 unit (not the type unit), so we want to use the offset of
10894 the skeleton DIE (if there is one). */
10895 if (pub
->die
->comdat_type_p
&& names
== pubtype_table
)
10897 comdat_type_node
*type_node
= pub
->die
->die_id
.die_type_node
;
10899 if (type_node
!= NULL
)
10900 die_offset
= (type_node
->skeleton_die
!= NULL
10901 ? type_node
->skeleton_die
->die_offset
10902 : comp_unit_die ()->die_offset
);
10905 output_pubname (die_offset
, pub
);
10909 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0, NULL
);
10912 /* Output public names and types tables if necessary. */
10915 output_pubtables (void)
10917 if (!want_pubnames () || !info_section_emitted
)
10920 switch_to_section (debug_pubnames_section
);
10921 output_pubnames (pubname_table
);
10922 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
10923 It shouldn't hurt to emit it always, since pure DWARF2 consumers
10924 simply won't look for the section. */
10925 switch_to_section (debug_pubtypes_section
);
10926 output_pubnames (pubtype_table
);
10930 /* Output the information that goes into the .debug_aranges table.
10931 Namely, define the beginning and ending address range of the
10932 text section generated for this compilation unit. */
10935 output_aranges (void)
10938 unsigned long aranges_length
= size_of_aranges ();
10940 if (!XCOFF_DEBUGGING_INFO
)
10942 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
10943 dw2_asm_output_data (4, 0xffffffff,
10944 "Initial length escape value indicating 64-bit DWARF extension");
10945 dw2_asm_output_data (DWARF_OFFSET_SIZE
, aranges_length
,
10946 "Length of Address Ranges Info");
10949 /* Version number for aranges is still 2, even up to DWARF5. */
10950 dw2_asm_output_data (2, 2, "DWARF Version");
10951 if (dwarf_split_debug_info
)
10952 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_skeleton_info_section_label
,
10953 debug_skeleton_info_section
,
10954 "Offset of Compilation Unit Info");
10956 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
10957 debug_info_section
,
10958 "Offset of Compilation Unit Info");
10959 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
10960 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
10962 /* We need to align to twice the pointer size here. */
10963 if (DWARF_ARANGES_PAD_SIZE
)
10965 /* Pad using a 2 byte words so that padding is correct for any
10967 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
10968 2 * DWARF2_ADDR_SIZE
);
10969 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
10970 dw2_asm_output_data (2, 0, NULL
);
10973 /* It is necessary not to output these entries if the sections were
10974 not used; if the sections were not used, the length will be 0 and
10975 the address may end up as 0 if the section is discarded by ld
10976 --gc-sections, leaving an invalid (0, 0) entry that can be
10977 confused with the terminator. */
10978 if (text_section_used
)
10980 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_section_label
, "Address");
10981 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
10982 text_section_label
, "Length");
10984 if (cold_text_section_used
)
10986 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, cold_text_section_label
,
10988 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, cold_end_label
,
10989 cold_text_section_label
, "Length");
10992 if (have_multiple_function_sections
)
10997 FOR_EACH_VEC_ELT (*fde_vec
, fde_idx
, fde
)
10999 if (DECL_IGNORED_P (fde
->decl
))
11001 if (!fde
->in_std_section
)
11003 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
11005 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, fde
->dw_fde_end
,
11006 fde
->dw_fde_begin
, "Length");
11008 if (fde
->dw_fde_second_begin
&& !fde
->second_in_std_section
)
11010 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_second_begin
,
11012 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, fde
->dw_fde_second_end
,
11013 fde
->dw_fde_second_begin
, "Length");
11018 /* Output the terminator words. */
11019 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
11020 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
11023 /* Add a new entry to .debug_ranges. Return its index into
11024 ranges_table vector. */
11026 static unsigned int
11027 add_ranges_num (int num
, bool maybe_new_sec
)
11029 dw_ranges r
= { NULL
, num
, 0, maybe_new_sec
};
11030 vec_safe_push (ranges_table
, r
);
11031 return vec_safe_length (ranges_table
) - 1;
11034 /* Add a new entry to .debug_ranges corresponding to a block, or a
11035 range terminator if BLOCK is NULL. MAYBE_NEW_SEC is true if
11036 this entry might be in a different section from previous range. */
11038 static unsigned int
11039 add_ranges (const_tree block
, bool maybe_new_sec
)
11041 return add_ranges_num (block
? BLOCK_NUMBER (block
) : 0, maybe_new_sec
);
11044 /* Note that (*rnglist_table)[offset] is either a head of a rnglist
11045 chain, or middle entry of a chain that will be directly referred to. */
11048 note_rnglist_head (unsigned int offset
)
11050 if (dwarf_version
< 5 || (*ranges_table
)[offset
].label
)
11052 (*ranges_table
)[offset
].label
= gen_internal_sym ("LLRL");
11055 /* Add a new entry to .debug_ranges corresponding to a pair of labels.
11056 When using dwarf_split_debug_info, address attributes in dies destined
11057 for the final executable should be direct references--setting the
11058 parameter force_direct ensures this behavior. */
11061 add_ranges_by_labels (dw_die_ref die
, const char *begin
, const char *end
,
11062 bool *added
, bool force_direct
)
11064 unsigned int in_use
= vec_safe_length (ranges_by_label
);
11065 unsigned int offset
;
11066 dw_ranges_by_label rbl
= { begin
, end
};
11067 vec_safe_push (ranges_by_label
, rbl
);
11068 offset
= add_ranges_num (-(int)in_use
- 1, true);
11071 add_AT_range_list (die
, DW_AT_ranges
, offset
, force_direct
);
11073 note_rnglist_head (offset
);
11077 /* Emit .debug_ranges section. */
11080 output_ranges (void)
11083 static const char *const start_fmt
= "Offset %#x";
11084 const char *fmt
= start_fmt
;
11087 switch_to_section (debug_ranges_section
);
11088 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
11089 FOR_EACH_VEC_SAFE_ELT (ranges_table
, i
, r
)
11091 int block_num
= r
->num
;
11095 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
11096 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
11098 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
11099 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
11101 /* If all code is in the text section, then the compilation
11102 unit base address defaults to DW_AT_low_pc, which is the
11103 base of the text section. */
11104 if (!have_multiple_function_sections
)
11106 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
11107 text_section_label
,
11108 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
11109 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
11110 text_section_label
, NULL
);
11113 /* Otherwise, the compilation unit base address is zero,
11114 which allows us to use absolute addresses, and not worry
11115 about whether the target supports cross-section
11119 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
11120 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
11121 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
11127 /* Negative block_num stands for an index into ranges_by_label. */
11128 else if (block_num
< 0)
11130 int lab_idx
= - block_num
- 1;
11132 if (!have_multiple_function_sections
)
11134 gcc_unreachable ();
11136 /* If we ever use add_ranges_by_labels () for a single
11137 function section, all we have to do is to take out
11138 the #if 0 above. */
11139 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
11140 (*ranges_by_label
)[lab_idx
].begin
,
11141 text_section_label
,
11142 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
11143 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
11144 (*ranges_by_label
)[lab_idx
].end
,
11145 text_section_label
, NULL
);
11150 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
11151 (*ranges_by_label
)[lab_idx
].begin
,
11152 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
11153 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
11154 (*ranges_by_label
)[lab_idx
].end
,
11160 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
11161 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
11167 /* Non-zero if .debug_line_str should be used for .debug_line section
11168 strings or strings that are likely shareable with those. */
11169 #define DWARF5_USE_DEBUG_LINE_STR \
11170 (!DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET \
11171 && (DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) != 0 \
11172 /* FIXME: there is no .debug_line_str.dwo section, \
11173 for -gsplit-dwarf we should use DW_FORM_strx instead. */ \
11174 && !dwarf_split_debug_info)
11176 /* Assign .debug_rnglists indexes. */
11179 index_rnglists (void)
11184 FOR_EACH_VEC_SAFE_ELT (ranges_table
, i
, r
)
11186 r
->idx
= rnglist_idx
++;
11189 /* Emit .debug_rnglists section. */
11192 output_rnglists (void)
11196 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
];
11197 char l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
11198 char basebuf
[MAX_ARTIFICIAL_LABEL_BYTES
];
11200 switch_to_section (debug_ranges_section
);
11201 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
11202 ASM_GENERATE_INTERNAL_LABEL (l1
, DEBUG_RANGES_SECTION_LABEL
, 2);
11203 ASM_GENERATE_INTERNAL_LABEL (l2
, DEBUG_RANGES_SECTION_LABEL
, 3);
11204 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
11205 dw2_asm_output_data (4, 0xffffffff,
11206 "Initial length escape value indicating "
11207 "64-bit DWARF extension");
11208 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
11209 "Length of Range Lists");
11210 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
11211 dw2_asm_output_data (2, dwarf_version
, "DWARF Version");
11212 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Address Size");
11213 dw2_asm_output_data (1, 0, "Segment Size");
11214 /* Emit the offset table only for -gsplit-dwarf. If we don't care
11215 about relocation sizes and primarily care about the size of .debug*
11216 sections in linked shared libraries and executables, then
11217 the offset table plus corresponding DW_FORM_rnglistx uleb128 indexes
11218 into it are usually larger than just DW_FORM_sec_offset offsets
11219 into the .debug_rnglists section. */
11220 dw2_asm_output_data (4, dwarf_split_debug_info
? rnglist_idx
: 0,
11221 "Offset Entry Count");
11222 if (dwarf_split_debug_info
)
11224 ASM_OUTPUT_LABEL (asm_out_file
, ranges_base_label
);
11225 FOR_EACH_VEC_SAFE_ELT (ranges_table
, i
, r
)
11227 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, r
->label
,
11228 ranges_base_label
, NULL
);
11231 const char *lab
= "";
11232 unsigned int len
= vec_safe_length (ranges_table
);
11233 const char *base
= NULL
;
11234 FOR_EACH_VEC_SAFE_ELT (ranges_table
, i
, r
)
11236 int block_num
= r
->num
;
11240 ASM_OUTPUT_LABEL (asm_out_file
, r
->label
);
11243 if (HAVE_AS_LEB128
&& (r
->label
|| r
->maybe_new_sec
))
11247 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
11248 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
11250 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
11251 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
11253 if (HAVE_AS_LEB128
)
11255 /* If all code is in the text section, then the compilation
11256 unit base address defaults to DW_AT_low_pc, which is the
11257 base of the text section. */
11258 if (!have_multiple_function_sections
)
11260 dw2_asm_output_data (1, DW_RLE_offset_pair
,
11261 "DW_RLE_offset_pair (%s)", lab
);
11262 dw2_asm_output_delta_uleb128 (blabel
, text_section_label
,
11263 "Range begin address (%s)", lab
);
11264 dw2_asm_output_delta_uleb128 (elabel
, text_section_label
,
11265 "Range end address (%s)", lab
);
11270 dw_ranges
*r2
= NULL
;
11272 r2
= &(*ranges_table
)[i
+ 1];
11275 && r2
->label
== NULL
11276 && !r2
->maybe_new_sec
)
11278 dw2_asm_output_data (1, DW_RLE_base_address
,
11279 "DW_RLE_base_address (%s)", lab
);
11280 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
11281 "Base address (%s)", lab
);
11282 strcpy (basebuf
, blabel
);
11288 dw2_asm_output_data (1, DW_RLE_offset_pair
,
11289 "DW_RLE_offset_pair (%s)", lab
);
11290 dw2_asm_output_delta_uleb128 (blabel
, base
,
11291 "Range begin address (%s)", lab
);
11292 dw2_asm_output_delta_uleb128 (elabel
, base
,
11293 "Range end address (%s)", lab
);
11296 dw2_asm_output_data (1, DW_RLE_start_length
,
11297 "DW_RLE_start_length (%s)", lab
);
11298 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
11299 "Range begin address (%s)", lab
);
11300 dw2_asm_output_delta_uleb128 (elabel
, blabel
,
11301 "Range length (%s)", lab
);
11305 dw2_asm_output_data (1, DW_RLE_start_end
,
11306 "DW_RLE_start_end (%s)", lab
);
11307 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
11308 "Range begin address (%s)", lab
);
11309 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
,
11310 "Range end address (%s)", lab
);
11314 /* Negative block_num stands for an index into ranges_by_label. */
11315 else if (block_num
< 0)
11317 int lab_idx
= - block_num
- 1;
11318 const char *blabel
= (*ranges_by_label
)[lab_idx
].begin
;
11319 const char *elabel
= (*ranges_by_label
)[lab_idx
].end
;
11321 if (!have_multiple_function_sections
)
11322 gcc_unreachable ();
11323 if (HAVE_AS_LEB128
)
11325 dw2_asm_output_data (1, DW_RLE_start_length
,
11326 "DW_RLE_start_length (%s)", lab
);
11327 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
11328 "Range begin address (%s)", lab
);
11329 dw2_asm_output_delta_uleb128 (elabel
, blabel
,
11330 "Range length (%s)", lab
);
11334 dw2_asm_output_data (1, DW_RLE_start_end
,
11335 "DW_RLE_start_end (%s)", lab
);
11336 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
11337 "Range begin address (%s)", lab
);
11338 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
,
11339 "Range end address (%s)", lab
);
11343 dw2_asm_output_data (1, DW_RLE_end_of_list
,
11344 "DW_RLE_end_of_list (%s)", lab
);
11346 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
11349 /* Data structure containing information about input files. */
11352 const char *path
; /* Complete file name. */
11353 const char *fname
; /* File name part. */
11354 int length
; /* Length of entire string. */
11355 struct dwarf_file_data
* file_idx
; /* Index in input file table. */
11356 int dir_idx
; /* Index in directory table. */
11359 /* Data structure containing information about directories with source
11363 const char *path
; /* Path including directory name. */
11364 int length
; /* Path length. */
11365 int prefix
; /* Index of directory entry which is a prefix. */
11366 int count
; /* Number of files in this directory. */
11367 int dir_idx
; /* Index of directory used as base. */
11370 /* Callback function for file_info comparison. We sort by looking at
11371 the directories in the path. */
11374 file_info_cmp (const void *p1
, const void *p2
)
11376 const struct file_info
*const s1
= (const struct file_info
*) p1
;
11377 const struct file_info
*const s2
= (const struct file_info
*) p2
;
11378 const unsigned char *cp1
;
11379 const unsigned char *cp2
;
11381 /* Take care of file names without directories. We need to make sure that
11382 we return consistent values to qsort since some will get confused if
11383 we return the same value when identical operands are passed in opposite
11384 orders. So if neither has a directory, return 0 and otherwise return
11385 1 or -1 depending on which one has the directory. */
11386 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
11387 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
11389 cp1
= (const unsigned char *) s1
->path
;
11390 cp2
= (const unsigned char *) s2
->path
;
11396 /* Reached the end of the first path? If so, handle like above. */
11397 if ((cp1
== (const unsigned char *) s1
->fname
)
11398 || (cp2
== (const unsigned char *) s2
->fname
))
11399 return ((cp2
== (const unsigned char *) s2
->fname
)
11400 - (cp1
== (const unsigned char *) s1
->fname
));
11402 /* Character of current path component the same? */
11403 else if (*cp1
!= *cp2
)
11404 return *cp1
- *cp2
;
11408 struct file_name_acquire_data
11410 struct file_info
*files
;
11415 /* Traversal function for the hash table. */
11418 file_name_acquire (dwarf_file_data
**slot
, file_name_acquire_data
*fnad
)
11420 struct dwarf_file_data
*d
= *slot
;
11421 struct file_info
*fi
;
11424 gcc_assert (fnad
->max_files
>= d
->emitted_number
);
11426 if (! d
->emitted_number
)
11429 gcc_assert (fnad
->max_files
!= fnad
->used_files
);
11431 fi
= fnad
->files
+ fnad
->used_files
++;
11433 /* Skip all leading "./". */
11435 while (f
[0] == '.' && IS_DIR_SEPARATOR (f
[1]))
11438 /* Create a new array entry. */
11440 fi
->length
= strlen (f
);
11443 /* Search for the file name part. */
11444 f
= strrchr (f
, DIR_SEPARATOR
);
11445 #if defined (DIR_SEPARATOR_2)
11447 char *g
= strrchr (fi
->path
, DIR_SEPARATOR_2
);
11451 if (f
== NULL
|| f
< g
)
11457 fi
->fname
= f
== NULL
? fi
->path
: f
+ 1;
11461 /* Helper function for output_file_names. Emit a FORM encoded
11462 string STR, with assembly comment start ENTRY_KIND and
11466 output_line_string (enum dwarf_form form
, const char *str
,
11467 const char *entry_kind
, unsigned int idx
)
11471 case DW_FORM_string
:
11472 dw2_asm_output_nstring (str
, -1, "%s: %#x", entry_kind
, idx
);
11474 case DW_FORM_line_strp
:
11475 if (!debug_line_str_hash
)
11476 debug_line_str_hash
11477 = hash_table
<indirect_string_hasher
>::create_ggc (10);
11479 struct indirect_string_node
*node
;
11480 node
= find_AT_string_in_table (str
, debug_line_str_hash
);
11481 set_indirect_string (node
);
11483 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, node
->label
,
11484 debug_line_str_section
, "%s: %#x: \"%s\"",
11485 entry_kind
, 0, node
->str
);
11488 gcc_unreachable ();
11492 /* Output the directory table and the file name table. We try to minimize
11493 the total amount of memory needed. A heuristic is used to avoid large
11494 slowdowns with many input files. */
11497 output_file_names (void)
11499 struct file_name_acquire_data fnad
;
11501 struct file_info
*files
;
11502 struct dir_info
*dirs
;
11510 if (!last_emitted_file
)
11512 if (dwarf_version
>= 5)
11514 dw2_asm_output_data (1, 0, "Directory entry format count");
11515 dw2_asm_output_data_uleb128 (0, "Directories count");
11516 dw2_asm_output_data (1, 0, "File name entry format count");
11517 dw2_asm_output_data_uleb128 (0, "File names count");
11521 dw2_asm_output_data (1, 0, "End directory table");
11522 dw2_asm_output_data (1, 0, "End file name table");
11527 numfiles
= last_emitted_file
->emitted_number
;
11529 /* Allocate the various arrays we need. */
11530 files
= XALLOCAVEC (struct file_info
, numfiles
);
11531 dirs
= XALLOCAVEC (struct dir_info
, numfiles
);
11533 fnad
.files
= files
;
11534 fnad
.used_files
= 0;
11535 fnad
.max_files
= numfiles
;
11536 file_table
->traverse
<file_name_acquire_data
*, file_name_acquire
> (&fnad
);
11537 gcc_assert (fnad
.used_files
== fnad
.max_files
);
11539 qsort (files
, numfiles
, sizeof (files
[0]), file_info_cmp
);
11541 /* Find all the different directories used. */
11542 dirs
[0].path
= files
[0].path
;
11543 dirs
[0].length
= files
[0].fname
- files
[0].path
;
11544 dirs
[0].prefix
= -1;
11546 dirs
[0].dir_idx
= 0;
11547 files
[0].dir_idx
= 0;
11550 for (i
= 1; i
< numfiles
; i
++)
11551 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
11552 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
11553 dirs
[ndirs
- 1].length
) == 0)
11555 /* Same directory as last entry. */
11556 files
[i
].dir_idx
= ndirs
- 1;
11557 ++dirs
[ndirs
- 1].count
;
11563 /* This is a new directory. */
11564 dirs
[ndirs
].path
= files
[i
].path
;
11565 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
11566 dirs
[ndirs
].count
= 1;
11567 dirs
[ndirs
].dir_idx
= ndirs
;
11568 files
[i
].dir_idx
= ndirs
;
11570 /* Search for a prefix. */
11571 dirs
[ndirs
].prefix
= -1;
11572 for (j
= 0; j
< ndirs
; j
++)
11573 if (dirs
[j
].length
< dirs
[ndirs
].length
11574 && dirs
[j
].length
> 1
11575 && (dirs
[ndirs
].prefix
== -1
11576 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
11577 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
11578 dirs
[ndirs
].prefix
= j
;
11583 /* Now to the actual work. We have to find a subset of the directories which
11584 allow expressing the file name using references to the directory table
11585 with the least amount of characters. We do not do an exhaustive search
11586 where we would have to check out every combination of every single
11587 possible prefix. Instead we use a heuristic which provides nearly optimal
11588 results in most cases and never is much off. */
11589 saved
= XALLOCAVEC (int, ndirs
);
11590 savehere
= XALLOCAVEC (int, ndirs
);
11592 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
11593 for (i
= 0; i
< ndirs
; i
++)
11598 /* We can always save some space for the current directory. But this
11599 does not mean it will be enough to justify adding the directory. */
11600 savehere
[i
] = dirs
[i
].length
;
11601 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
11603 for (j
= i
+ 1; j
< ndirs
; j
++)
11606 if (saved
[j
] < dirs
[i
].length
)
11608 /* Determine whether the dirs[i] path is a prefix of the
11612 k
= dirs
[j
].prefix
;
11613 while (k
!= -1 && k
!= (int) i
)
11614 k
= dirs
[k
].prefix
;
11618 /* Yes it is. We can possibly save some memory by
11619 writing the filenames in dirs[j] relative to
11621 savehere
[j
] = dirs
[i
].length
;
11622 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
11627 /* Check whether we can save enough to justify adding the dirs[i]
11629 if (total
> dirs
[i
].length
+ 1)
11631 /* It's worthwhile adding. */
11632 for (j
= i
; j
< ndirs
; j
++)
11633 if (savehere
[j
] > 0)
11635 /* Remember how much we saved for this directory so far. */
11636 saved
[j
] = savehere
[j
];
11638 /* Remember the prefix directory. */
11639 dirs
[j
].dir_idx
= i
;
11644 /* Emit the directory name table. */
11645 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
11646 enum dwarf_form str_form
= DW_FORM_string
;
11647 enum dwarf_form idx_form
= DW_FORM_udata
;
11648 if (dwarf_version
>= 5)
11650 const char *comp_dir
= comp_dir_string ();
11651 if (comp_dir
== NULL
)
11653 dw2_asm_output_data (1, 1, "Directory entry format count");
11654 if (DWARF5_USE_DEBUG_LINE_STR
)
11655 str_form
= DW_FORM_line_strp
;
11656 dw2_asm_output_data_uleb128 (DW_LNCT_path
, "DW_LNCT_path");
11657 dw2_asm_output_data_uleb128 (str_form
, "%s",
11658 get_DW_FORM_name (str_form
));
11659 dw2_asm_output_data_uleb128 (ndirs
+ idx_offset
, "Directories count");
11660 if (str_form
== DW_FORM_string
)
11662 dw2_asm_output_nstring (comp_dir
, -1, "Directory Entry: %#x", 0);
11663 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
11664 dw2_asm_output_nstring (dirs
[i
].path
,
11666 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
,
11667 "Directory Entry: %#x", i
+ idx_offset
);
11671 output_line_string (str_form
, comp_dir
, "Directory Entry", 0);
11672 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
11675 = ggc_alloc_string (dirs
[i
].path
,
11677 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
);
11678 output_line_string (str_form
, str
, "Directory Entry",
11679 (unsigned) i
+ idx_offset
);
11685 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
11686 dw2_asm_output_nstring (dirs
[i
].path
,
11688 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
,
11689 "Directory Entry: %#x", i
+ idx_offset
);
11691 dw2_asm_output_data (1, 0, "End directory table");
11694 /* We have to emit them in the order of emitted_number since that's
11695 used in the debug info generation. To do this efficiently we
11696 generate a back-mapping of the indices first. */
11697 backmap
= XALLOCAVEC (int, numfiles
);
11698 for (i
= 0; i
< numfiles
; i
++)
11699 backmap
[files
[i
].file_idx
->emitted_number
- 1] = i
;
11701 if (dwarf_version
>= 5)
11703 const char *filename0
= get_AT_string (comp_unit_die (), DW_AT_name
);
11704 if (filename0
== NULL
)
11706 /* DW_LNCT_directory_index can use DW_FORM_udata, DW_FORM_data1 and
11707 DW_FORM_data2. Choose one based on the number of directories
11708 and how much space would they occupy in each encoding.
11709 If we have at most 256 directories, all indexes fit into
11710 a single byte, so DW_FORM_data1 is most compact (if there
11711 are at most 128 directories, DW_FORM_udata would be as
11712 compact as that, but not shorter and slower to decode). */
11713 if (ndirs
+ idx_offset
<= 256)
11714 idx_form
= DW_FORM_data1
;
11715 /* If there are more than 65536 directories, we have to use
11716 DW_FORM_udata, DW_FORM_data2 can't refer to them.
11717 Otherwise, compute what space would occupy if all the indexes
11718 used DW_FORM_udata - sum - and compare that to how large would
11719 be DW_FORM_data2 encoding, and pick the more efficient one. */
11720 else if (ndirs
+ idx_offset
<= 65536)
11722 unsigned HOST_WIDE_INT sum
= 1;
11723 for (i
= 0; i
< numfiles
; i
++)
11725 int file_idx
= backmap
[i
];
11726 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
11727 sum
+= size_of_uleb128 (dir_idx
);
11729 if (sum
>= HOST_WIDE_INT_UC (2) * (numfiles
+ 1))
11730 idx_form
= DW_FORM_data2
;
11732 #ifdef VMS_DEBUGGING_INFO
11733 dw2_asm_output_data (1, 4, "File name entry format count");
11735 dw2_asm_output_data (1, 2, "File name entry format count");
11737 dw2_asm_output_data_uleb128 (DW_LNCT_path
, "DW_LNCT_path");
11738 dw2_asm_output_data_uleb128 (str_form
, "%s",
11739 get_DW_FORM_name (str_form
));
11740 dw2_asm_output_data_uleb128 (DW_LNCT_directory_index
,
11741 "DW_LNCT_directory_index");
11742 dw2_asm_output_data_uleb128 (idx_form
, "%s",
11743 get_DW_FORM_name (idx_form
));
11744 #ifdef VMS_DEBUGGING_INFO
11745 dw2_asm_output_data_uleb128 (DW_LNCT_timestamp
, "DW_LNCT_timestamp");
11746 dw2_asm_output_data_uleb128 (DW_FORM_udata
, "DW_FORM_udata");
11747 dw2_asm_output_data_uleb128 (DW_LNCT_size
, "DW_LNCT_size");
11748 dw2_asm_output_data_uleb128 (DW_FORM_udata
, "DW_FORM_udata");
11750 dw2_asm_output_data_uleb128 (numfiles
+ 1, "File names count");
11752 output_line_string (str_form
, filename0
, "File Entry", 0);
11754 /* Include directory index. */
11755 if (idx_form
!= DW_FORM_udata
)
11756 dw2_asm_output_data (idx_form
== DW_FORM_data1
? 1 : 2,
11759 dw2_asm_output_data_uleb128 (0, NULL
);
11761 #ifdef VMS_DEBUGGING_INFO
11762 dw2_asm_output_data_uleb128 (0, NULL
);
11763 dw2_asm_output_data_uleb128 (0, NULL
);
11767 /* Now write all the file names. */
11768 for (i
= 0; i
< numfiles
; i
++)
11770 int file_idx
= backmap
[i
];
11771 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
11773 #ifdef VMS_DEBUGGING_INFO
11774 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
11776 /* Setting these fields can lead to debugger miscomparisons,
11777 but VMS Debug requires them to be set correctly. */
11782 int maxfilelen
= (strlen (files
[file_idx
].path
)
11783 + dirs
[dir_idx
].length
11784 + MAX_VMS_VERSION_LEN
+ 1);
11785 char *filebuf
= XALLOCAVEC (char, maxfilelen
);
11787 vms_file_stats_name (files
[file_idx
].path
, 0, 0, 0, &ver
);
11788 snprintf (filebuf
, maxfilelen
, "%s;%d",
11789 files
[file_idx
].path
+ dirs
[dir_idx
].length
, ver
);
11791 output_line_string (str_form
, filebuf
, "File Entry", (unsigned) i
+ 1);
11793 /* Include directory index. */
11794 if (dwarf_version
>= 5 && idx_form
!= DW_FORM_udata
)
11795 dw2_asm_output_data (idx_form
== DW_FORM_data1
? 1 : 2,
11796 dir_idx
+ idx_offset
, NULL
);
11798 dw2_asm_output_data_uleb128 (dir_idx
+ idx_offset
, NULL
);
11800 /* Modification time. */
11801 dw2_asm_output_data_uleb128 ((vms_file_stats_name (files
[file_idx
].path
,
11802 &cdt
, 0, 0, 0) == 0)
11805 /* File length in bytes. */
11806 dw2_asm_output_data_uleb128 ((vms_file_stats_name (files
[file_idx
].path
,
11807 0, &siz
, 0, 0) == 0)
11810 output_line_string (str_form
,
11811 files
[file_idx
].path
+ dirs
[dir_idx
].length
,
11812 "File Entry", (unsigned) i
+ 1);
11814 /* Include directory index. */
11815 if (dwarf_version
>= 5 && idx_form
!= DW_FORM_udata
)
11816 dw2_asm_output_data (idx_form
== DW_FORM_data1
? 1 : 2,
11817 dir_idx
+ idx_offset
, NULL
);
11819 dw2_asm_output_data_uleb128 (dir_idx
+ idx_offset
, NULL
);
11821 if (dwarf_version
>= 5)
11824 /* Modification time. */
11825 dw2_asm_output_data_uleb128 (0, NULL
);
11827 /* File length in bytes. */
11828 dw2_asm_output_data_uleb128 (0, NULL
);
11829 #endif /* VMS_DEBUGGING_INFO */
11832 if (dwarf_version
< 5)
11833 dw2_asm_output_data (1, 0, "End file name table");
11837 /* Output one line number table into the .debug_line section. */
11840 output_one_line_info_table (dw_line_info_table
*table
)
11842 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
11843 unsigned int current_line
= 1;
11844 bool current_is_stmt
= DWARF_LINE_DEFAULT_IS_STMT_START
;
11845 dw_line_info_entry
*ent
;
11848 FOR_EACH_VEC_SAFE_ELT (table
->entries
, i
, ent
)
11850 switch (ent
->opcode
)
11852 case LI_set_address
:
11853 /* ??? Unfortunately, we have little choice here currently, and
11854 must always use the most general form. GCC does not know the
11855 address delta itself, so we can't use DW_LNS_advance_pc. Many
11856 ports do have length attributes which will give an upper bound
11857 on the address range. We could perhaps use length attributes
11858 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
11859 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, ent
->val
);
11861 /* This can handle any delta. This takes
11862 4+DWARF2_ADDR_SIZE bytes. */
11863 dw2_asm_output_data (1, 0, "set address %s", line_label
);
11864 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
11865 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
11866 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
11870 if (ent
->val
== current_line
)
11872 /* We still need to start a new row, so output a copy insn. */
11873 dw2_asm_output_data (1, DW_LNS_copy
,
11874 "copy line %u", current_line
);
11878 int line_offset
= ent
->val
- current_line
;
11879 int line_delta
= line_offset
- DWARF_LINE_BASE
;
11881 current_line
= ent
->val
;
11882 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
11884 /* This can handle deltas from -10 to 234, using the current
11885 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
11886 This takes 1 byte. */
11887 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
11888 "line %u", current_line
);
11892 /* This can handle any delta. This takes at least 4 bytes,
11893 depending on the value being encoded. */
11894 dw2_asm_output_data (1, DW_LNS_advance_line
,
11895 "advance to line %u", current_line
);
11896 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
11897 dw2_asm_output_data (1, DW_LNS_copy
, NULL
);
11903 dw2_asm_output_data (1, DW_LNS_set_file
, "set file %u", ent
->val
);
11904 dw2_asm_output_data_uleb128 (ent
->val
, "%u", ent
->val
);
11907 case LI_set_column
:
11908 dw2_asm_output_data (1, DW_LNS_set_column
, "column %u", ent
->val
);
11909 dw2_asm_output_data_uleb128 (ent
->val
, "%u", ent
->val
);
11912 case LI_negate_stmt
:
11913 current_is_stmt
= !current_is_stmt
;
11914 dw2_asm_output_data (1, DW_LNS_negate_stmt
,
11915 "is_stmt %d", current_is_stmt
);
11918 case LI_set_prologue_end
:
11919 dw2_asm_output_data (1, DW_LNS_set_prologue_end
,
11920 "set prologue end");
11923 case LI_set_epilogue_begin
:
11924 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin
,
11925 "set epilogue begin");
11928 case LI_set_discriminator
:
11929 dw2_asm_output_data (1, 0, "discriminator %u", ent
->val
);
11930 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent
->val
), NULL
);
11931 dw2_asm_output_data (1, DW_LNE_set_discriminator
, NULL
);
11932 dw2_asm_output_data_uleb128 (ent
->val
, NULL
);
11937 /* Emit debug info for the address of the end of the table. */
11938 dw2_asm_output_data (1, 0, "set address %s", table
->end_label
);
11939 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
11940 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
11941 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, table
->end_label
, NULL
);
11943 dw2_asm_output_data (1, 0, "end sequence");
11944 dw2_asm_output_data_uleb128 (1, NULL
);
11945 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
11948 /* Output the source line number correspondence information. This
11949 information goes into the .debug_line section. */
11952 output_line_info (bool prologue_only
)
11954 static unsigned int generation
;
11955 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
], l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
11956 char p1
[MAX_ARTIFICIAL_LABEL_BYTES
], p2
[MAX_ARTIFICIAL_LABEL_BYTES
];
11957 bool saw_one
= false;
11960 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
, generation
);
11961 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
, generation
);
11962 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
, generation
);
11963 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
, generation
++);
11965 if (!XCOFF_DEBUGGING_INFO
)
11967 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
11968 dw2_asm_output_data (4, 0xffffffff,
11969 "Initial length escape value indicating 64-bit DWARF extension");
11970 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
11971 "Length of Source Line Info");
11974 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
11976 dw2_asm_output_data (2, dwarf_version
, "DWARF Version");
11977 if (dwarf_version
>= 5)
11979 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Address Size");
11980 dw2_asm_output_data (1, 0, "Segment Size");
11982 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, p2
, p1
, "Prolog Length");
11983 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
11985 /* Define the architecture-dependent minimum instruction length (in bytes).
11986 In this implementation of DWARF, this field is used for information
11987 purposes only. Since GCC generates assembly language, we have no
11988 a priori knowledge of how many instruction bytes are generated for each
11989 source line, and therefore can use only the DW_LNE_set_address and
11990 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
11991 this as '1', which is "correct enough" for all architectures,
11992 and don't let the target override. */
11993 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
11995 if (dwarf_version
>= 4)
11996 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
,
11997 "Maximum Operations Per Instruction");
11998 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
11999 "Default is_stmt_start flag");
12000 dw2_asm_output_data (1, DWARF_LINE_BASE
,
12001 "Line Base Value (Special Opcodes)");
12002 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
12003 "Line Range Value (Special Opcodes)");
12004 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
12005 "Special Opcode Base");
12007 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
12012 case DW_LNS_advance_pc
:
12013 case DW_LNS_advance_line
:
12014 case DW_LNS_set_file
:
12015 case DW_LNS_set_column
:
12016 case DW_LNS_fixed_advance_pc
:
12017 case DW_LNS_set_isa
:
12025 dw2_asm_output_data (1, n_op_args
, "opcode: %#x has %d args",
12029 /* Write out the information about the files we use. */
12030 output_file_names ();
12031 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
12034 /* Output the marker for the end of the line number info. */
12035 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
12039 if (separate_line_info
)
12041 dw_line_info_table
*table
;
12044 FOR_EACH_VEC_ELT (*separate_line_info
, i
, table
)
12047 output_one_line_info_table (table
);
12051 if (cold_text_section_line_info
&& cold_text_section_line_info
->in_use
)
12053 output_one_line_info_table (cold_text_section_line_info
);
12057 /* ??? Some Darwin linkers crash on a .debug_line section with no
12058 sequences. Further, merely a DW_LNE_end_sequence entry is not
12059 sufficient -- the address column must also be initialized.
12060 Make sure to output at least one set_address/end_sequence pair,
12061 choosing .text since that section is always present. */
12062 if (text_section_line_info
->in_use
|| !saw_one
)
12063 output_one_line_info_table (text_section_line_info
);
12065 /* Output the marker for the end of the line number info. */
12066 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
12069 /* Return true if DW_AT_endianity should be emitted according to REVERSE. */
12072 need_endianity_attribute_p (bool reverse
)
12074 return reverse
&& (dwarf_version
>= 3 || !dwarf_strict
);
12077 /* Given a pointer to a tree node for some base type, return a pointer to
12078 a DIE that describes the given type. REVERSE is true if the type is
12079 to be interpreted in the reverse storage order wrt the target order.
12081 This routine must only be called for GCC type nodes that correspond to
12082 Dwarf base (fundamental) types. */
12085 base_type_die (tree type
, bool reverse
)
12087 dw_die_ref base_type_result
;
12088 enum dwarf_type encoding
;
12089 bool fpt_used
= false;
12090 struct fixed_point_type_info fpt_info
;
12091 tree type_bias
= NULL_TREE
;
12093 if (TREE_CODE (type
) == ERROR_MARK
|| TREE_CODE (type
) == VOID_TYPE
)
12096 /* If this is a subtype that should not be emitted as a subrange type,
12097 use the base type. See subrange_type_for_debug_p. */
12098 if (TREE_CODE (type
) == INTEGER_TYPE
&& TREE_TYPE (type
) != NULL_TREE
)
12099 type
= TREE_TYPE (type
);
12101 switch (TREE_CODE (type
))
12104 if ((dwarf_version
>= 4 || !dwarf_strict
)
12105 && TYPE_NAME (type
)
12106 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
12107 && DECL_IS_BUILTIN (TYPE_NAME (type
))
12108 && DECL_NAME (TYPE_NAME (type
)))
12110 const char *name
= IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
12111 if (strcmp (name
, "char16_t") == 0
12112 || strcmp (name
, "char32_t") == 0)
12114 encoding
= DW_ATE_UTF
;
12118 if ((dwarf_version
>= 3 || !dwarf_strict
)
12119 && lang_hooks
.types
.get_fixed_point_type_info
)
12121 memset (&fpt_info
, 0, sizeof (fpt_info
));
12122 if (lang_hooks
.types
.get_fixed_point_type_info (type
, &fpt_info
))
12125 encoding
= ((TYPE_UNSIGNED (type
))
12126 ? DW_ATE_unsigned_fixed
12127 : DW_ATE_signed_fixed
);
12131 if (TYPE_STRING_FLAG (type
))
12133 if (TYPE_UNSIGNED (type
))
12134 encoding
= DW_ATE_unsigned_char
;
12136 encoding
= DW_ATE_signed_char
;
12138 else if (TYPE_UNSIGNED (type
))
12139 encoding
= DW_ATE_unsigned
;
12141 encoding
= DW_ATE_signed
;
12144 && lang_hooks
.types
.get_type_bias
)
12145 type_bias
= lang_hooks
.types
.get_type_bias (type
);
12149 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type
)))
12151 if (dwarf_version
>= 3 || !dwarf_strict
)
12152 encoding
= DW_ATE_decimal_float
;
12154 encoding
= DW_ATE_lo_user
;
12157 encoding
= DW_ATE_float
;
12160 case FIXED_POINT_TYPE
:
12161 if (!(dwarf_version
>= 3 || !dwarf_strict
))
12162 encoding
= DW_ATE_lo_user
;
12163 else if (TYPE_UNSIGNED (type
))
12164 encoding
= DW_ATE_unsigned_fixed
;
12166 encoding
= DW_ATE_signed_fixed
;
12169 /* Dwarf2 doesn't know anything about complex ints, so use
12170 a user defined type for it. */
12172 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
12173 encoding
= DW_ATE_complex_float
;
12175 encoding
= DW_ATE_lo_user
;
12179 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
12180 encoding
= DW_ATE_boolean
;
12184 /* No other TREE_CODEs are Dwarf fundamental types. */
12185 gcc_unreachable ();
12188 base_type_result
= new_die (DW_TAG_base_type
, comp_unit_die (), type
);
12190 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
12191 int_size_in_bytes (type
));
12192 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
12194 if (need_endianity_attribute_p (reverse
))
12195 add_AT_unsigned (base_type_result
, DW_AT_endianity
,
12196 BYTES_BIG_ENDIAN
? DW_END_little
: DW_END_big
);
12198 add_alignment_attribute (base_type_result
, type
);
12202 switch (fpt_info
.scale_factor_kind
)
12204 case fixed_point_scale_factor_binary
:
12205 add_AT_int (base_type_result
, DW_AT_binary_scale
,
12206 fpt_info
.scale_factor
.binary
);
12209 case fixed_point_scale_factor_decimal
:
12210 add_AT_int (base_type_result
, DW_AT_decimal_scale
,
12211 fpt_info
.scale_factor
.decimal
);
12214 case fixed_point_scale_factor_arbitrary
:
12215 /* Arbitrary scale factors cannot be described in standard DWARF,
12219 /* Describe the scale factor as a rational constant. */
12220 const dw_die_ref scale_factor
12221 = new_die (DW_TAG_constant
, comp_unit_die (), type
);
12223 add_AT_unsigned (scale_factor
, DW_AT_GNU_numerator
,
12224 fpt_info
.scale_factor
.arbitrary
.numerator
);
12225 add_AT_int (scale_factor
, DW_AT_GNU_denominator
,
12226 fpt_info
.scale_factor
.arbitrary
.denominator
);
12228 add_AT_die_ref (base_type_result
, DW_AT_small
, scale_factor
);
12233 gcc_unreachable ();
12238 add_scalar_info (base_type_result
, DW_AT_GNU_bias
, type_bias
,
12239 dw_scalar_form_constant
12240 | dw_scalar_form_exprloc
12241 | dw_scalar_form_reference
,
12244 add_pubtype (type
, base_type_result
);
12246 return base_type_result
;
12249 /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
12250 named 'auto' in its type: return true for it, false otherwise. */
12253 is_cxx_auto (tree type
)
12257 tree name
= TYPE_IDENTIFIER (type
);
12258 if (name
== get_identifier ("auto")
12259 || name
== get_identifier ("decltype(auto)"))
12265 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
12266 given input type is a Dwarf "fundamental" type. Otherwise return null. */
12269 is_base_type (tree type
)
12271 switch (TREE_CODE (type
))
12277 case FIXED_POINT_TYPE
:
12280 case POINTER_BOUNDS_TYPE
:
12286 case QUAL_UNION_TYPE
:
12287 case ENUMERAL_TYPE
:
12288 case FUNCTION_TYPE
:
12291 case REFERENCE_TYPE
:
12299 if (is_cxx_auto (type
))
12301 gcc_unreachable ();
12307 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
12308 node, return the size in bits for the type if it is a constant, or else
12309 return the alignment for the type if the type's size is not constant, or
12310 else return BITS_PER_WORD if the type actually turns out to be an
12311 ERROR_MARK node. */
12313 static inline unsigned HOST_WIDE_INT
12314 simple_type_size_in_bits (const_tree type
)
12316 if (TREE_CODE (type
) == ERROR_MARK
)
12317 return BITS_PER_WORD
;
12318 else if (TYPE_SIZE (type
) == NULL_TREE
)
12320 else if (tree_fits_uhwi_p (TYPE_SIZE (type
)))
12321 return tree_to_uhwi (TYPE_SIZE (type
));
12323 return TYPE_ALIGN (type
);
12326 /* Similarly, but return an offset_int instead of UHWI. */
12328 static inline offset_int
12329 offset_int_type_size_in_bits (const_tree type
)
12331 if (TREE_CODE (type
) == ERROR_MARK
)
12332 return BITS_PER_WORD
;
12333 else if (TYPE_SIZE (type
) == NULL_TREE
)
12335 else if (TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
)
12336 return wi::to_offset (TYPE_SIZE (type
));
12338 return TYPE_ALIGN (type
);
12341 /* Given a pointer to a tree node for a subrange type, return a pointer
12342 to a DIE that describes the given type. */
12345 subrange_type_die (tree type
, tree low
, tree high
, tree bias
,
12346 dw_die_ref context_die
)
12348 dw_die_ref subrange_die
;
12349 const HOST_WIDE_INT size_in_bytes
= int_size_in_bytes (type
);
12351 if (context_die
== NULL
)
12352 context_die
= comp_unit_die ();
12354 subrange_die
= new_die (DW_TAG_subrange_type
, context_die
, type
);
12356 if (int_size_in_bytes (TREE_TYPE (type
)) != size_in_bytes
)
12358 /* The size of the subrange type and its base type do not match,
12359 so we need to generate a size attribute for the subrange type. */
12360 add_AT_unsigned (subrange_die
, DW_AT_byte_size
, size_in_bytes
);
12363 add_alignment_attribute (subrange_die
, type
);
12366 add_bound_info (subrange_die
, DW_AT_lower_bound
, low
, NULL
);
12368 add_bound_info (subrange_die
, DW_AT_upper_bound
, high
, NULL
);
12369 if (bias
&& !dwarf_strict
)
12370 add_scalar_info (subrange_die
, DW_AT_GNU_bias
, bias
,
12371 dw_scalar_form_constant
12372 | dw_scalar_form_exprloc
12373 | dw_scalar_form_reference
,
12376 return subrange_die
;
12379 /* Returns the (const and/or volatile) cv_qualifiers associated with
12380 the decl node. This will normally be augmented with the
12381 cv_qualifiers of the underlying type in add_type_attribute. */
12384 decl_quals (const_tree decl
)
12386 return ((TREE_READONLY (decl
)
12387 /* The C++ front-end correctly marks reference-typed
12388 variables as readonly, but from a language (and debug
12389 info) standpoint they are not const-qualified. */
12390 && TREE_CODE (TREE_TYPE (decl
)) != REFERENCE_TYPE
12391 ? TYPE_QUAL_CONST
: TYPE_UNQUALIFIED
)
12392 | (TREE_THIS_VOLATILE (decl
)
12393 ? TYPE_QUAL_VOLATILE
: TYPE_UNQUALIFIED
));
12396 /* Determine the TYPE whose qualifiers match the largest strict subset
12397 of the given TYPE_QUALS, and return its qualifiers. Ignore all
12398 qualifiers outside QUAL_MASK. */
12401 get_nearest_type_subqualifiers (tree type
, int type_quals
, int qual_mask
)
12404 int best_rank
= 0, best_qual
= 0, max_rank
;
12406 type_quals
&= qual_mask
;
12407 max_rank
= popcount_hwi (type_quals
) - 1;
12409 for (t
= TYPE_MAIN_VARIANT (type
); t
&& best_rank
< max_rank
;
12410 t
= TYPE_NEXT_VARIANT (t
))
12412 int q
= TYPE_QUALS (t
) & qual_mask
;
12414 if ((q
& type_quals
) == q
&& q
!= type_quals
12415 && check_base_type (t
, type
))
12417 int rank
= popcount_hwi (q
);
12419 if (rank
> best_rank
)
12430 struct dwarf_qual_info_t
{ int q
; enum dwarf_tag t
; };
12431 static const dwarf_qual_info_t dwarf_qual_info
[] =
12433 { TYPE_QUAL_CONST
, DW_TAG_const_type
},
12434 { TYPE_QUAL_VOLATILE
, DW_TAG_volatile_type
},
12435 { TYPE_QUAL_RESTRICT
, DW_TAG_restrict_type
},
12436 { TYPE_QUAL_ATOMIC
, DW_TAG_atomic_type
}
12438 static const unsigned int dwarf_qual_info_size
12439 = sizeof (dwarf_qual_info
) / sizeof (dwarf_qual_info
[0]);
12441 /* If DIE is a qualified DIE of some base DIE with the same parent,
12442 return the base DIE, otherwise return NULL. Set MASK to the
12443 qualifiers added compared to the returned DIE. */
12446 qualified_die_p (dw_die_ref die
, int *mask
, unsigned int depth
)
12449 for (i
= 0; i
< dwarf_qual_info_size
; i
++)
12450 if (die
->die_tag
== dwarf_qual_info
[i
].t
)
12452 if (i
== dwarf_qual_info_size
)
12454 if (vec_safe_length (die
->die_attr
) != 1)
12456 dw_die_ref type
= get_AT_ref (die
, DW_AT_type
);
12457 if (type
== NULL
|| type
->die_parent
!= die
->die_parent
)
12459 *mask
|= dwarf_qual_info
[i
].q
;
12462 dw_die_ref ret
= qualified_die_p (type
, mask
, depth
- 1);
12469 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
12470 entry that chains the modifiers specified by CV_QUALS in front of the
12471 given type. REVERSE is true if the type is to be interpreted in the
12472 reverse storage order wrt the target order. */
12475 modified_type_die (tree type
, int cv_quals
, bool reverse
,
12476 dw_die_ref context_die
)
12478 enum tree_code code
= TREE_CODE (type
);
12479 dw_die_ref mod_type_die
;
12480 dw_die_ref sub_die
= NULL
;
12481 tree item_type
= NULL
;
12482 tree qualified_type
;
12483 tree name
, low
, high
;
12484 dw_die_ref mod_scope
;
12485 /* Only these cv-qualifiers are currently handled. */
12486 const int cv_qual_mask
= (TYPE_QUAL_CONST
| TYPE_QUAL_VOLATILE
12487 | TYPE_QUAL_RESTRICT
| TYPE_QUAL_ATOMIC
);
12489 if (code
== ERROR_MARK
)
12492 if (lang_hooks
.types
.get_debug_type
)
12494 tree debug_type
= lang_hooks
.types
.get_debug_type (type
);
12496 if (debug_type
!= NULL_TREE
&& debug_type
!= type
)
12497 return modified_type_die (debug_type
, cv_quals
, reverse
, context_die
);
12500 cv_quals
&= cv_qual_mask
;
12502 /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
12503 tag modifier (and not an attribute) old consumers won't be able
12505 if (dwarf_version
< 3)
12506 cv_quals
&= ~TYPE_QUAL_RESTRICT
;
12508 /* Likewise for DW_TAG_atomic_type for DWARFv5. */
12509 if (dwarf_version
< 5)
12510 cv_quals
&= ~TYPE_QUAL_ATOMIC
;
12512 /* See if we already have the appropriately qualified variant of
12514 qualified_type
= get_qualified_type (type
, cv_quals
);
12516 if (qualified_type
== sizetype
)
12518 /* Try not to expose the internal sizetype type's name. */
12519 if (TYPE_NAME (qualified_type
)
12520 && TREE_CODE (TYPE_NAME (qualified_type
)) == TYPE_DECL
)
12522 tree t
= TREE_TYPE (TYPE_NAME (qualified_type
));
12524 gcc_checking_assert (TREE_CODE (t
) == INTEGER_TYPE
12525 && (TYPE_PRECISION (t
)
12526 == TYPE_PRECISION (qualified_type
))
12527 && (TYPE_UNSIGNED (t
)
12528 == TYPE_UNSIGNED (qualified_type
)));
12529 qualified_type
= t
;
12531 else if (qualified_type
== sizetype
12532 && TREE_CODE (sizetype
) == TREE_CODE (size_type_node
)
12533 && TYPE_PRECISION (sizetype
) == TYPE_PRECISION (size_type_node
)
12534 && TYPE_UNSIGNED (sizetype
) == TYPE_UNSIGNED (size_type_node
))
12535 qualified_type
= size_type_node
;
12539 /* If we do, then we can just use its DIE, if it exists. */
12540 if (qualified_type
)
12542 mod_type_die
= lookup_type_die (qualified_type
);
12544 /* DW_AT_endianity doesn't come from a qualifier on the type. */
12546 && (!need_endianity_attribute_p (reverse
)
12547 || !is_base_type (type
)
12548 || get_AT_unsigned (mod_type_die
, DW_AT_endianity
)))
12549 return mod_type_die
;
12552 name
= qualified_type
? TYPE_NAME (qualified_type
) : NULL
;
12554 /* Handle C typedef types. */
12555 if (name
&& TREE_CODE (name
) == TYPE_DECL
&& DECL_ORIGINAL_TYPE (name
)
12556 && !DECL_ARTIFICIAL (name
))
12558 tree dtype
= TREE_TYPE (name
);
12560 if (qualified_type
== dtype
)
12562 tree origin
= decl_ultimate_origin (name
);
12564 /* Typedef variants that have an abstract origin don't get their own
12565 type DIE (see gen_typedef_die), so fall back on the ultimate
12566 abstract origin instead. */
12567 if (origin
!= NULL
&& origin
!= name
)
12568 return modified_type_die (TREE_TYPE (origin
), cv_quals
, reverse
,
12571 /* For a named type, use the typedef. */
12572 gen_type_die (qualified_type
, context_die
);
12573 return lookup_type_die (qualified_type
);
12577 int dquals
= TYPE_QUALS_NO_ADDR_SPACE (dtype
);
12578 dquals
&= cv_qual_mask
;
12579 if ((dquals
& ~cv_quals
) != TYPE_UNQUALIFIED
12580 || (cv_quals
== dquals
&& DECL_ORIGINAL_TYPE (name
) != type
))
12581 /* cv-unqualified version of named type. Just use
12582 the unnamed type to which it refers. */
12583 return modified_type_die (DECL_ORIGINAL_TYPE (name
), cv_quals
,
12584 reverse
, context_die
);
12585 /* Else cv-qualified version of named type; fall through. */
12589 mod_scope
= scope_die_for (type
, context_die
);
12593 int sub_quals
= 0, first_quals
= 0;
12595 dw_die_ref first
= NULL
, last
= NULL
;
12597 /* Determine a lesser qualified type that most closely matches
12598 this one. Then generate DW_TAG_* entries for the remaining
12600 sub_quals
= get_nearest_type_subqualifiers (type
, cv_quals
,
12602 if (sub_quals
&& use_debug_types
)
12604 bool needed
= false;
12605 /* If emitting type units, make sure the order of qualifiers
12606 is canonical. Thus, start from unqualified type if
12607 an earlier qualifier is missing in sub_quals, but some later
12608 one is present there. */
12609 for (i
= 0; i
< dwarf_qual_info_size
; i
++)
12610 if (dwarf_qual_info
[i
].q
& cv_quals
& ~sub_quals
)
12612 else if (needed
&& (dwarf_qual_info
[i
].q
& cv_quals
))
12618 mod_type_die
= modified_type_die (type
, sub_quals
, reverse
, context_die
);
12619 if (mod_scope
&& mod_type_die
&& mod_type_die
->die_parent
== mod_scope
)
12621 /* As not all intermediate qualified DIEs have corresponding
12622 tree types, ensure that qualified DIEs in the same scope
12623 as their DW_AT_type are emitted after their DW_AT_type,
12624 only with other qualified DIEs for the same type possibly
12625 in between them. Determine the range of such qualified
12626 DIEs now (first being the base type, last being corresponding
12627 last qualified DIE for it). */
12628 unsigned int count
= 0;
12629 first
= qualified_die_p (mod_type_die
, &first_quals
,
12630 dwarf_qual_info_size
);
12632 first
= mod_type_die
;
12633 gcc_assert ((first_quals
& ~sub_quals
) == 0);
12634 for (count
= 0, last
= first
;
12635 count
< (1U << dwarf_qual_info_size
);
12636 count
++, last
= last
->die_sib
)
12639 if (last
== mod_scope
->die_child
)
12641 if (qualified_die_p (last
->die_sib
, &quals
, dwarf_qual_info_size
)
12647 for (i
= 0; i
< dwarf_qual_info_size
; i
++)
12648 if (dwarf_qual_info
[i
].q
& cv_quals
& ~sub_quals
)
12651 if (first
&& first
!= last
)
12653 for (d
= first
->die_sib
; ; d
= d
->die_sib
)
12656 qualified_die_p (d
, &quals
, dwarf_qual_info_size
);
12657 if (quals
== (first_quals
| dwarf_qual_info
[i
].q
))
12673 d
= ggc_cleared_alloc
<die_node
> ();
12674 d
->die_tag
= dwarf_qual_info
[i
].t
;
12675 add_child_die_after (mod_scope
, d
, last
);
12679 d
= new_die (dwarf_qual_info
[i
].t
, mod_scope
, type
);
12681 add_AT_die_ref (d
, DW_AT_type
, mod_type_die
);
12683 first_quals
|= dwarf_qual_info
[i
].q
;
12686 else if (code
== POINTER_TYPE
|| code
== REFERENCE_TYPE
)
12688 dwarf_tag tag
= DW_TAG_pointer_type
;
12689 if (code
== REFERENCE_TYPE
)
12691 if (TYPE_REF_IS_RVALUE (type
) && dwarf_version
>= 4)
12692 tag
= DW_TAG_rvalue_reference_type
;
12694 tag
= DW_TAG_reference_type
;
12696 mod_type_die
= new_die (tag
, mod_scope
, type
);
12698 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
12699 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
12700 add_alignment_attribute (mod_type_die
, type
);
12701 item_type
= TREE_TYPE (type
);
12703 addr_space_t as
= TYPE_ADDR_SPACE (item_type
);
12704 if (!ADDR_SPACE_GENERIC_P (as
))
12706 int action
= targetm
.addr_space
.debug (as
);
12709 /* Positive values indicate an address_class. */
12710 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, action
);
12714 /* Negative values indicate an (inverted) segment base reg. */
12716 = one_reg_loc_descriptor (~action
, VAR_INIT_STATUS_INITIALIZED
);
12717 add_AT_loc (mod_type_die
, DW_AT_segment
, d
);
12721 else if (code
== INTEGER_TYPE
12722 && TREE_TYPE (type
) != NULL_TREE
12723 && subrange_type_for_debug_p (type
, &low
, &high
))
12725 tree bias
= NULL_TREE
;
12726 if (lang_hooks
.types
.get_type_bias
)
12727 bias
= lang_hooks
.types
.get_type_bias (type
);
12728 mod_type_die
= subrange_type_die (type
, low
, high
, bias
, context_die
);
12729 item_type
= TREE_TYPE (type
);
12731 else if (is_base_type (type
))
12732 mod_type_die
= base_type_die (type
, reverse
);
12735 gen_type_die (type
, context_die
);
12737 /* We have to get the type_main_variant here (and pass that to the
12738 `lookup_type_die' routine) because the ..._TYPE node we have
12739 might simply be a *copy* of some original type node (where the
12740 copy was created to help us keep track of typedef names) and
12741 that copy might have a different TYPE_UID from the original
12743 if (TREE_CODE (type
) == FUNCTION_TYPE
12744 || TREE_CODE (type
) == METHOD_TYPE
)
12746 /* For function/method types, can't just use type_main_variant here,
12747 because that can have different ref-qualifiers for C++,
12748 but try to canonicalize. */
12749 tree main
= TYPE_MAIN_VARIANT (type
);
12750 for (tree t
= main
; t
; t
= TYPE_NEXT_VARIANT (t
))
12751 if (TYPE_QUALS_NO_ADDR_SPACE (t
) == 0
12752 && check_base_type (t
, main
)
12753 && check_lang_type (t
, type
))
12754 return lookup_type_die (t
);
12755 return lookup_type_die (type
);
12757 else if (TREE_CODE (type
) != VECTOR_TYPE
12758 && TREE_CODE (type
) != ARRAY_TYPE
)
12759 return lookup_type_die (type_main_variant (type
));
12761 /* Vectors have the debugging information in the type,
12762 not the main variant. */
12763 return lookup_type_die (type
);
12766 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
12767 don't output a DW_TAG_typedef, since there isn't one in the
12768 user's program; just attach a DW_AT_name to the type.
12769 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
12770 if the base type already has the same name. */
12772 && ((TREE_CODE (name
) != TYPE_DECL
12773 && (qualified_type
== TYPE_MAIN_VARIANT (type
)
12774 || (cv_quals
== TYPE_UNQUALIFIED
)))
12775 || (TREE_CODE (name
) == TYPE_DECL
12776 && TREE_TYPE (name
) == qualified_type
12777 && DECL_NAME (name
))))
12779 if (TREE_CODE (name
) == TYPE_DECL
)
12780 /* Could just call add_name_and_src_coords_attributes here,
12781 but since this is a builtin type it doesn't have any
12782 useful source coordinates anyway. */
12783 name
= DECL_NAME (name
);
12784 add_name_attribute (mod_type_die
, IDENTIFIER_POINTER (name
));
12786 /* This probably indicates a bug. */
12787 else if (mod_type_die
&& mod_type_die
->die_tag
== DW_TAG_base_type
)
12789 name
= TYPE_IDENTIFIER (type
);
12790 add_name_attribute (mod_type_die
,
12791 name
? IDENTIFIER_POINTER (name
) : "__unknown__");
12794 if (qualified_type
)
12795 equate_type_number_to_die (qualified_type
, mod_type_die
);
12798 /* We must do this after the equate_type_number_to_die call, in case
12799 this is a recursive type. This ensures that the modified_type_die
12800 recursion will terminate even if the type is recursive. Recursive
12801 types are possible in Ada. */
12802 sub_die
= modified_type_die (item_type
,
12803 TYPE_QUALS_NO_ADDR_SPACE (item_type
),
12807 if (sub_die
!= NULL
)
12808 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
12810 add_gnat_descriptive_type_attribute (mod_type_die
, type
, context_die
);
12811 if (TYPE_ARTIFICIAL (type
))
12812 add_AT_flag (mod_type_die
, DW_AT_artificial
, 1);
12814 return mod_type_die
;
12817 /* Generate DIEs for the generic parameters of T.
12818 T must be either a generic type or a generic function.
12819 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
12822 gen_generic_params_dies (tree t
)
12826 dw_die_ref die
= NULL
;
12829 if (!t
|| (TYPE_P (t
) && !COMPLETE_TYPE_P (t
)))
12833 die
= lookup_type_die (t
);
12834 else if (DECL_P (t
))
12835 die
= lookup_decl_die (t
);
12839 parms
= lang_hooks
.get_innermost_generic_parms (t
);
12841 /* T has no generic parameter. It means T is neither a generic type
12842 or function. End of story. */
12845 parms_num
= TREE_VEC_LENGTH (parms
);
12846 args
= lang_hooks
.get_innermost_generic_args (t
);
12847 if (TREE_CHAIN (args
) && TREE_CODE (TREE_CHAIN (args
)) == INTEGER_CST
)
12848 non_default
= int_cst_value (TREE_CHAIN (args
));
12850 non_default
= TREE_VEC_LENGTH (args
);
12851 for (i
= 0; i
< parms_num
; i
++)
12853 tree parm
, arg
, arg_pack_elems
;
12854 dw_die_ref parm_die
;
12856 parm
= TREE_VEC_ELT (parms
, i
);
12857 arg
= TREE_VEC_ELT (args
, i
);
12858 arg_pack_elems
= lang_hooks
.types
.get_argument_pack_elems (arg
);
12859 gcc_assert (parm
&& TREE_VALUE (parm
) && arg
);
12861 if (parm
&& TREE_VALUE (parm
) && arg
)
12863 /* If PARM represents a template parameter pack,
12864 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
12865 by DW_TAG_template_*_parameter DIEs for the argument
12866 pack elements of ARG. Note that ARG would then be
12867 an argument pack. */
12868 if (arg_pack_elems
)
12869 parm_die
= template_parameter_pack_die (TREE_VALUE (parm
),
12873 parm_die
= generic_parameter_die (TREE_VALUE (parm
), arg
,
12874 true /* emit name */, die
);
12875 if (i
>= non_default
)
12876 add_AT_flag (parm_die
, DW_AT_default_value
, 1);
12881 /* Create and return a DIE for PARM which should be
12882 the representation of a generic type parameter.
12883 For instance, in the C++ front end, PARM would be a template parameter.
12884 ARG is the argument to PARM.
12885 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
12887 PARENT_DIE is the parent DIE which the new created DIE should be added to,
12888 as a child node. */
12891 generic_parameter_die (tree parm
, tree arg
,
12893 dw_die_ref parent_die
)
12895 dw_die_ref tmpl_die
= NULL
;
12896 const char *name
= NULL
;
12898 if (!parm
|| !DECL_NAME (parm
) || !arg
)
12901 /* We support non-type generic parameters and arguments,
12902 type generic parameters and arguments, as well as
12903 generic generic parameters (a.k.a. template template parameters in C++)
12905 if (TREE_CODE (parm
) == PARM_DECL
)
12906 /* PARM is a nontype generic parameter */
12907 tmpl_die
= new_die (DW_TAG_template_value_param
, parent_die
, parm
);
12908 else if (TREE_CODE (parm
) == TYPE_DECL
)
12909 /* PARM is a type generic parameter. */
12910 tmpl_die
= new_die (DW_TAG_template_type_param
, parent_die
, parm
);
12911 else if (lang_hooks
.decls
.generic_generic_parameter_decl_p (parm
))
12912 /* PARM is a generic generic parameter.
12913 Its DIE is a GNU extension. It shall have a
12914 DW_AT_name attribute to represent the name of the template template
12915 parameter, and a DW_AT_GNU_template_name attribute to represent the
12916 name of the template template argument. */
12917 tmpl_die
= new_die (DW_TAG_GNU_template_template_param
,
12920 gcc_unreachable ();
12926 /* If PARM is a generic parameter pack, it means we are
12927 emitting debug info for a template argument pack element.
12928 In other terms, ARG is a template argument pack element.
12929 In that case, we don't emit any DW_AT_name attribute for
12933 name
= IDENTIFIER_POINTER (DECL_NAME (parm
));
12935 add_AT_string (tmpl_die
, DW_AT_name
, name
);
12938 if (!lang_hooks
.decls
.generic_generic_parameter_decl_p (parm
))
12940 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
12941 TMPL_DIE should have a child DW_AT_type attribute that is set
12942 to the type of the argument to PARM, which is ARG.
12943 If PARM is a type generic parameter, TMPL_DIE should have a
12944 child DW_AT_type that is set to ARG. */
12945 tmpl_type
= TYPE_P (arg
) ? arg
: TREE_TYPE (arg
);
12946 add_type_attribute (tmpl_die
, tmpl_type
,
12947 (TREE_THIS_VOLATILE (tmpl_type
)
12948 ? TYPE_QUAL_VOLATILE
: TYPE_UNQUALIFIED
),
12949 false, parent_die
);
12953 /* So TMPL_DIE is a DIE representing a
12954 a generic generic template parameter, a.k.a template template
12955 parameter in C++ and arg is a template. */
12957 /* The DW_AT_GNU_template_name attribute of the DIE must be set
12958 to the name of the argument. */
12959 name
= dwarf2_name (TYPE_P (arg
) ? TYPE_NAME (arg
) : arg
, 1);
12961 add_AT_string (tmpl_die
, DW_AT_GNU_template_name
, name
);
12964 if (TREE_CODE (parm
) == PARM_DECL
)
12965 /* So PARM is a non-type generic parameter.
12966 DWARF3 5.6.8 says we must set a DW_AT_const_value child
12967 attribute of TMPL_DIE which value represents the value
12969 We must be careful here:
12970 The value of ARG might reference some function decls.
12971 We might currently be emitting debug info for a generic
12972 type and types are emitted before function decls, we don't
12973 know if the function decls referenced by ARG will actually be
12974 emitted after cgraph computations.
12975 So must defer the generation of the DW_AT_const_value to
12976 after cgraph is ready. */
12977 append_entry_to_tmpl_value_parm_die_table (tmpl_die
, arg
);
12983 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
12984 PARM_PACK must be a template parameter pack. The returned DIE
12985 will be child DIE of PARENT_DIE. */
12988 template_parameter_pack_die (tree parm_pack
,
12989 tree parm_pack_args
,
12990 dw_die_ref parent_die
)
12995 gcc_assert (parent_die
&& parm_pack
);
12997 die
= new_die (DW_TAG_GNU_template_parameter_pack
, parent_die
, parm_pack
);
12998 add_name_and_src_coords_attributes (die
, parm_pack
);
12999 for (j
= 0; j
< TREE_VEC_LENGTH (parm_pack_args
); j
++)
13000 generic_parameter_die (parm_pack
,
13001 TREE_VEC_ELT (parm_pack_args
, j
),
13002 false /* Don't emit DW_AT_name */,
13007 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
13008 an enumerated type. */
13011 type_is_enum (const_tree type
)
13013 return TREE_CODE (type
) == ENUMERAL_TYPE
;
13016 /* Return the DBX register number described by a given RTL node. */
13018 static unsigned int
13019 dbx_reg_number (const_rtx rtl
)
13021 unsigned regno
= REGNO (rtl
);
13023 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
13025 #ifdef LEAF_REG_REMAP
13026 if (crtl
->uses_only_leaf_regs
)
13028 int leaf_reg
= LEAF_REG_REMAP (regno
);
13029 if (leaf_reg
!= -1)
13030 regno
= (unsigned) leaf_reg
;
13034 regno
= DBX_REGISTER_NUMBER (regno
);
13035 gcc_assert (regno
!= INVALID_REGNUM
);
13039 /* Optionally add a DW_OP_piece term to a location description expression.
13040 DW_OP_piece is only added if the location description expression already
13041 doesn't end with DW_OP_piece. */
13044 add_loc_descr_op_piece (dw_loc_descr_ref
*list_head
, int size
)
13046 dw_loc_descr_ref loc
;
13048 if (*list_head
!= NULL
)
13050 /* Find the end of the chain. */
13051 for (loc
= *list_head
; loc
->dw_loc_next
!= NULL
; loc
= loc
->dw_loc_next
)
13054 if (loc
->dw_loc_opc
!= DW_OP_piece
)
13055 loc
->dw_loc_next
= new_loc_descr (DW_OP_piece
, size
, 0);
13059 /* Return a location descriptor that designates a machine register or
13060 zero if there is none. */
13062 static dw_loc_descr_ref
13063 reg_loc_descriptor (rtx rtl
, enum var_init_status initialized
)
13067 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
13070 /* We only use "frame base" when we're sure we're talking about the
13071 post-prologue local stack frame. We do this by *not* running
13072 register elimination until this point, and recognizing the special
13073 argument pointer and soft frame pointer rtx's.
13074 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
13075 if ((rtl
== arg_pointer_rtx
|| rtl
== frame_pointer_rtx
)
13076 && eliminate_regs (rtl
, VOIDmode
, NULL_RTX
) != rtl
)
13078 dw_loc_descr_ref result
= NULL
;
13080 if (dwarf_version
>= 4 || !dwarf_strict
)
13082 result
= mem_loc_descriptor (rtl
, GET_MODE (rtl
), VOIDmode
,
13085 add_loc_descr (&result
,
13086 new_loc_descr (DW_OP_stack_value
, 0, 0));
13091 regs
= targetm
.dwarf_register_span (rtl
);
13093 if (REG_NREGS (rtl
) > 1 || regs
)
13094 return multiple_reg_loc_descriptor (rtl
, regs
, initialized
);
13097 unsigned int dbx_regnum
= dbx_reg_number (rtl
);
13098 if (dbx_regnum
== IGNORED_DWARF_REGNUM
)
13100 return one_reg_loc_descriptor (dbx_regnum
, initialized
);
13104 /* Return a location descriptor that designates a machine register for
13105 a given hard register number. */
13107 static dw_loc_descr_ref
13108 one_reg_loc_descriptor (unsigned int regno
, enum var_init_status initialized
)
13110 dw_loc_descr_ref reg_loc_descr
;
13114 = new_loc_descr ((enum dwarf_location_atom
) (DW_OP_reg0
+ regno
), 0, 0);
13116 reg_loc_descr
= new_loc_descr (DW_OP_regx
, regno
, 0);
13118 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
13119 add_loc_descr (®_loc_descr
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
13121 return reg_loc_descr
;
13124 /* Given an RTL of a register, return a location descriptor that
13125 designates a value that spans more than one register. */
13127 static dw_loc_descr_ref
13128 multiple_reg_loc_descriptor (rtx rtl
, rtx regs
,
13129 enum var_init_status initialized
)
13132 dw_loc_descr_ref loc_result
= NULL
;
13134 /* Simple, contiguous registers. */
13135 if (regs
== NULL_RTX
)
13137 unsigned reg
= REGNO (rtl
);
13140 #ifdef LEAF_REG_REMAP
13141 if (crtl
->uses_only_leaf_regs
)
13143 int leaf_reg
= LEAF_REG_REMAP (reg
);
13144 if (leaf_reg
!= -1)
13145 reg
= (unsigned) leaf_reg
;
13149 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg
) == dbx_reg_number (rtl
));
13150 nregs
= REG_NREGS (rtl
);
13152 size
= GET_MODE_SIZE (GET_MODE (rtl
)) / nregs
;
13157 dw_loc_descr_ref t
;
13159 t
= one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg
),
13160 VAR_INIT_STATUS_INITIALIZED
);
13161 add_loc_descr (&loc_result
, t
);
13162 add_loc_descr_op_piece (&loc_result
, size
);
13168 /* Now onto stupid register sets in non contiguous locations. */
13170 gcc_assert (GET_CODE (regs
) == PARALLEL
);
13172 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
13175 for (i
= 0; i
< XVECLEN (regs
, 0); ++i
)
13177 dw_loc_descr_ref t
;
13179 t
= one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs
, 0, i
)),
13180 VAR_INIT_STATUS_INITIALIZED
);
13181 add_loc_descr (&loc_result
, t
);
13182 add_loc_descr_op_piece (&loc_result
, size
);
13185 if (loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
13186 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
13190 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT
);
13192 /* Return a location descriptor that designates a constant i,
13193 as a compound operation from constant (i >> shift), constant shift
13196 static dw_loc_descr_ref
13197 int_shift_loc_descriptor (HOST_WIDE_INT i
, int shift
)
13199 dw_loc_descr_ref ret
= int_loc_descriptor (i
>> shift
);
13200 add_loc_descr (&ret
, int_loc_descriptor (shift
));
13201 add_loc_descr (&ret
, new_loc_descr (DW_OP_shl
, 0, 0));
13205 /* Return a location descriptor that designates a constant. */
13207 static dw_loc_descr_ref
13208 int_loc_descriptor (HOST_WIDE_INT i
)
13210 enum dwarf_location_atom op
;
13212 /* Pick the smallest representation of a constant, rather than just
13213 defaulting to the LEB encoding. */
13216 int clz
= clz_hwi (i
);
13217 int ctz
= ctz_hwi (i
);
13219 op
= (enum dwarf_location_atom
) (DW_OP_lit0
+ i
);
13220 else if (i
<= 0xff)
13221 op
= DW_OP_const1u
;
13222 else if (i
<= 0xffff)
13223 op
= DW_OP_const2u
;
13224 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 5
13225 && clz
+ 5 + 255 >= HOST_BITS_PER_WIDE_INT
)
13226 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
13227 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
13228 while DW_OP_const4u is 5 bytes. */
13229 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 5);
13230 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 8
13231 && clz
+ 8 + 31 >= HOST_BITS_PER_WIDE_INT
)
13232 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
13233 while DW_OP_const4u is 5 bytes. */
13234 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 8);
13236 else if (DWARF2_ADDR_SIZE
== 4 && i
> 0x7fffffff
13237 && size_of_int_loc_descriptor ((HOST_WIDE_INT
) (int32_t) i
)
13240 /* As i >= 2**31, the double cast above will yield a negative number.
13241 Since wrapping is defined in DWARF expressions we can output big
13242 positive integers as small negative ones, regardless of the size
13245 Here, since the evaluator will handle 32-bit values and since i >=
13246 2**31, we know it's going to be interpreted as a negative literal:
13247 store it this way if we can do better than 5 bytes this way. */
13248 return int_loc_descriptor ((HOST_WIDE_INT
) (int32_t) i
);
13250 else if (HOST_BITS_PER_WIDE_INT
== 32 || i
<= 0xffffffff)
13251 op
= DW_OP_const4u
;
13253 /* Past this point, i >= 0x100000000 and thus DW_OP_constu will take at
13254 least 6 bytes: see if we can do better before falling back to it. */
13255 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 8
13256 && clz
+ 8 + 255 >= HOST_BITS_PER_WIDE_INT
)
13257 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes. */
13258 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 8);
13259 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 16
13260 && clz
+ 16 + (size_of_uleb128 (i
) > 5 ? 255 : 31)
13261 >= HOST_BITS_PER_WIDE_INT
)
13262 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
13263 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes. */
13264 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 16);
13265 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 32
13266 && clz
+ 32 + 31 >= HOST_BITS_PER_WIDE_INT
13267 && size_of_uleb128 (i
) > 6)
13268 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
13269 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 32);
13276 op
= DW_OP_const1s
;
13277 else if (i
>= -0x8000)
13278 op
= DW_OP_const2s
;
13279 else if (HOST_BITS_PER_WIDE_INT
== 32 || i
>= -0x80000000)
13281 if (size_of_int_loc_descriptor (i
) < 5)
13283 dw_loc_descr_ref ret
= int_loc_descriptor (-i
);
13284 add_loc_descr (&ret
, new_loc_descr (DW_OP_neg
, 0, 0));
13287 op
= DW_OP_const4s
;
13291 if (size_of_int_loc_descriptor (i
)
13292 < (unsigned long) 1 + size_of_sleb128 (i
))
13294 dw_loc_descr_ref ret
= int_loc_descriptor (-i
);
13295 add_loc_descr (&ret
, new_loc_descr (DW_OP_neg
, 0, 0));
13302 return new_loc_descr (op
, i
, 0);
13305 /* Likewise, for unsigned constants. */
13307 static dw_loc_descr_ref
13308 uint_loc_descriptor (unsigned HOST_WIDE_INT i
)
13310 const unsigned HOST_WIDE_INT max_int
= INTTYPE_MAXIMUM (HOST_WIDE_INT
);
13311 const unsigned HOST_WIDE_INT max_uint
13312 = INTTYPE_MAXIMUM (unsigned HOST_WIDE_INT
);
13314 /* If possible, use the clever signed constants handling. */
13316 return int_loc_descriptor ((HOST_WIDE_INT
) i
);
13318 /* Here, we are left with positive numbers that cannot be represented as
13319 HOST_WIDE_INT, i.e.:
13320 max (HOST_WIDE_INT) < i <= max (unsigned HOST_WIDE_INT)
13322 Using DW_OP_const4/8/./u operation to encode them consumes a lot of bytes
13323 whereas may be better to output a negative integer: thanks to integer
13324 wrapping, we know that:
13325 x = x - 2 ** DWARF2_ADDR_SIZE
13326 = x - 2 * (max (HOST_WIDE_INT) + 1)
13327 So numbers close to max (unsigned HOST_WIDE_INT) could be represented as
13328 small negative integers. Let's try that in cases it will clearly improve
13329 the encoding: there is no gain turning DW_OP_const4u into
13331 if (DWARF2_ADDR_SIZE
* 8 == HOST_BITS_PER_WIDE_INT
13332 && ((DWARF2_ADDR_SIZE
== 4 && i
> max_uint
- 0x8000)
13333 || (DWARF2_ADDR_SIZE
== 8 && i
> max_uint
- 0x80000000)))
13335 const unsigned HOST_WIDE_INT first_shift
= i
- max_int
- 1;
13337 /* Now, -1 < first_shift <= max (HOST_WIDE_INT)
13338 i.e. 0 <= first_shift <= max (HOST_WIDE_INT). */
13339 const HOST_WIDE_INT second_shift
13340 = (HOST_WIDE_INT
) first_shift
- (HOST_WIDE_INT
) max_int
- 1;
13342 /* So we finally have:
13343 -max (HOST_WIDE_INT) - 1 <= second_shift <= -1.
13344 i.e. min (HOST_WIDE_INT) <= second_shift < 0. */
13345 return int_loc_descriptor (second_shift
);
13348 /* Last chance: fallback to a simple constant operation. */
13349 return new_loc_descr
13350 ((HOST_BITS_PER_WIDE_INT
== 32 || i
<= 0xffffffff)
13356 /* Generate and return a location description that computes the unsigned
13357 comparison of the two stack top entries (a OP b where b is the top-most
13358 entry and a is the second one). The KIND of comparison can be LT_EXPR,
13359 LE_EXPR, GT_EXPR or GE_EXPR. */
13361 static dw_loc_descr_ref
13362 uint_comparison_loc_list (enum tree_code kind
)
13364 enum dwarf_location_atom op
, flip_op
;
13365 dw_loc_descr_ref ret
, bra_node
, jmp_node
, tmp
;
13382 gcc_unreachable ();
13385 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
13386 jmp_node
= new_loc_descr (DW_OP_skip
, 0, 0);
13388 /* Until DWARFv4, operations all work on signed integers. It is nevertheless
13389 possible to perform unsigned comparisons: we just have to distinguish
13392 1. when a and b have the same sign (as signed integers); then we should
13393 return: a OP(signed) b;
13395 2. when a is a negative signed integer while b is a positive one, then a
13396 is a greater unsigned integer than b; likewise when a and b's roles
13399 So first, compare the sign of the two operands. */
13400 ret
= new_loc_descr (DW_OP_over
, 0, 0);
13401 add_loc_descr (&ret
, new_loc_descr (DW_OP_over
, 0, 0));
13402 add_loc_descr (&ret
, new_loc_descr (DW_OP_xor
, 0, 0));
13403 /* If they have different signs (i.e. they have different sign bits), then
13404 the stack top value has now the sign bit set and thus it's smaller than
13406 add_loc_descr (&ret
, new_loc_descr (DW_OP_lit0
, 0, 0));
13407 add_loc_descr (&ret
, new_loc_descr (DW_OP_lt
, 0, 0));
13408 add_loc_descr (&ret
, bra_node
);
13410 /* We are in case 1. At this point, we know both operands have the same
13411 sign, to it's safe to use the built-in signed comparison. */
13412 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
13413 add_loc_descr (&ret
, jmp_node
);
13415 /* We are in case 2. Here, we know both operands do not have the same sign,
13416 so we have to flip the signed comparison. */
13417 flip_op
= (kind
== LT_EXPR
|| kind
== LE_EXPR
) ? DW_OP_gt
: DW_OP_lt
;
13418 tmp
= new_loc_descr (flip_op
, 0, 0);
13419 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
13420 bra_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
13421 add_loc_descr (&ret
, tmp
);
13423 /* This dummy operation is necessary to make the two branches join. */
13424 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
13425 jmp_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
13426 jmp_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
13427 add_loc_descr (&ret
, tmp
);
13432 /* Likewise, but takes the location description lists (might be destructive on
13433 them). Return NULL if either is NULL or if concatenation fails. */
13435 static dw_loc_list_ref
13436 loc_list_from_uint_comparison (dw_loc_list_ref left
, dw_loc_list_ref right
,
13437 enum tree_code kind
)
13439 if (left
== NULL
|| right
== NULL
)
13442 add_loc_list (&left
, right
);
13446 add_loc_descr_to_each (left
, uint_comparison_loc_list (kind
));
13450 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
13451 without actually allocating it. */
13453 static unsigned long
13454 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i
, int shift
)
13456 return size_of_int_loc_descriptor (i
>> shift
)
13457 + size_of_int_loc_descriptor (shift
)
13461 /* Return size_of_locs (int_loc_descriptor (i)) without
13462 actually allocating it. */
13464 static unsigned long
13465 size_of_int_loc_descriptor (HOST_WIDE_INT i
)
13474 else if (i
<= 0xff)
13476 else if (i
<= 0xffff)
13480 if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 5
13481 && clz
+ 5 + 255 >= HOST_BITS_PER_WIDE_INT
)
13482 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
13484 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 8
13485 && clz
+ 8 + 31 >= HOST_BITS_PER_WIDE_INT
)
13486 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
13488 else if (DWARF2_ADDR_SIZE
== 4 && i
> 0x7fffffff
13489 && size_of_int_loc_descriptor ((HOST_WIDE_INT
) (int32_t) i
)
13491 return size_of_int_loc_descriptor ((HOST_WIDE_INT
) (int32_t) i
);
13492 else if (HOST_BITS_PER_WIDE_INT
== 32 || i
<= 0xffffffff)
13494 s
= size_of_uleb128 ((unsigned HOST_WIDE_INT
) i
);
13495 if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 8
13496 && clz
+ 8 + 255 >= HOST_BITS_PER_WIDE_INT
)
13497 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
13499 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 16
13500 && clz
+ 16 + (s
> 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT
)
13501 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
13503 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 32
13504 && clz
+ 32 + 31 >= HOST_BITS_PER_WIDE_INT
13506 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
13515 else if (i
>= -0x8000)
13517 else if (HOST_BITS_PER_WIDE_INT
== 32 || i
>= -0x80000000)
13519 if (-(unsigned HOST_WIDE_INT
) i
!= (unsigned HOST_WIDE_INT
) i
)
13521 s
= size_of_int_loc_descriptor (-i
) + 1;
13529 unsigned long r
= 1 + size_of_sleb128 (i
);
13530 if (-(unsigned HOST_WIDE_INT
) i
!= (unsigned HOST_WIDE_INT
) i
)
13532 s
= size_of_int_loc_descriptor (-i
) + 1;
13541 /* Return loc description representing "address" of integer value.
13542 This can appear only as toplevel expression. */
13544 static dw_loc_descr_ref
13545 address_of_int_loc_descriptor (int size
, HOST_WIDE_INT i
)
13548 dw_loc_descr_ref loc_result
= NULL
;
13550 if (!(dwarf_version
>= 4 || !dwarf_strict
))
13553 litsize
= size_of_int_loc_descriptor (i
);
13554 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
13555 is more compact. For DW_OP_stack_value we need:
13556 litsize + 1 (DW_OP_stack_value)
13557 and for DW_OP_implicit_value:
13558 1 (DW_OP_implicit_value) + 1 (length) + size. */
13559 if ((int) DWARF2_ADDR_SIZE
>= size
&& litsize
+ 1 <= 1 + 1 + size
)
13561 loc_result
= int_loc_descriptor (i
);
13562 add_loc_descr (&loc_result
,
13563 new_loc_descr (DW_OP_stack_value
, 0, 0));
13567 loc_result
= new_loc_descr (DW_OP_implicit_value
,
13569 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_const
;
13570 loc_result
->dw_loc_oprnd2
.v
.val_int
= i
;
13574 /* Return a location descriptor that designates a base+offset location. */
13576 static dw_loc_descr_ref
13577 based_loc_descr (rtx reg
, HOST_WIDE_INT offset
,
13578 enum var_init_status initialized
)
13580 unsigned int regno
;
13581 dw_loc_descr_ref result
;
13582 dw_fde_ref fde
= cfun
->fde
;
13584 /* We only use "frame base" when we're sure we're talking about the
13585 post-prologue local stack frame. We do this by *not* running
13586 register elimination until this point, and recognizing the special
13587 argument pointer and soft frame pointer rtx's. */
13588 if (reg
== arg_pointer_rtx
|| reg
== frame_pointer_rtx
)
13590 rtx elim
= (ira_use_lra_p
13591 ? lra_eliminate_regs (reg
, VOIDmode
, NULL_RTX
)
13592 : eliminate_regs (reg
, VOIDmode
, NULL_RTX
));
13596 if (GET_CODE (elim
) == PLUS
)
13598 offset
+= INTVAL (XEXP (elim
, 1));
13599 elim
= XEXP (elim
, 0);
13601 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
13602 && (elim
== hard_frame_pointer_rtx
13603 || elim
== stack_pointer_rtx
))
13604 || elim
== (frame_pointer_needed
13605 ? hard_frame_pointer_rtx
13606 : stack_pointer_rtx
));
13608 /* If drap register is used to align stack, use frame
13609 pointer + offset to access stack variables. If stack
13610 is aligned without drap, use stack pointer + offset to
13611 access stack variables. */
13612 if (crtl
->stack_realign_tried
13613 && reg
== frame_pointer_rtx
)
13616 = DWARF_FRAME_REGNUM ((fde
&& fde
->drap_reg
!= INVALID_REGNUM
)
13617 ? HARD_FRAME_POINTER_REGNUM
13619 return new_reg_loc_descr (base_reg
, offset
);
13622 gcc_assert (frame_pointer_fb_offset_valid
);
13623 offset
+= frame_pointer_fb_offset
;
13624 return new_loc_descr (DW_OP_fbreg
, offset
, 0);
13628 regno
= REGNO (reg
);
13629 #ifdef LEAF_REG_REMAP
13630 if (crtl
->uses_only_leaf_regs
)
13632 int leaf_reg
= LEAF_REG_REMAP (regno
);
13633 if (leaf_reg
!= -1)
13634 regno
= (unsigned) leaf_reg
;
13637 regno
= DWARF_FRAME_REGNUM (regno
);
13639 if (!optimize
&& fde
13640 && (fde
->drap_reg
== regno
|| fde
->vdrap_reg
== regno
))
13642 /* Use cfa+offset to represent the location of arguments passed
13643 on the stack when drap is used to align stack.
13644 Only do this when not optimizing, for optimized code var-tracking
13645 is supposed to track where the arguments live and the register
13646 used as vdrap or drap in some spot might be used for something
13647 else in other part of the routine. */
13648 return new_loc_descr (DW_OP_fbreg
, offset
, 0);
13652 result
= new_loc_descr ((enum dwarf_location_atom
) (DW_OP_breg0
+ regno
),
13655 result
= new_loc_descr (DW_OP_bregx
, regno
, offset
);
13657 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
13658 add_loc_descr (&result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
13663 /* Return true if this RTL expression describes a base+offset calculation. */
13666 is_based_loc (const_rtx rtl
)
13668 return (GET_CODE (rtl
) == PLUS
13669 && ((REG_P (XEXP (rtl
, 0))
13670 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
13671 && CONST_INT_P (XEXP (rtl
, 1)))));
13674 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
13677 static dw_loc_descr_ref
13678 tls_mem_loc_descriptor (rtx mem
)
13681 dw_loc_descr_ref loc_result
;
13683 if (MEM_EXPR (mem
) == NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
13686 base
= get_base_address (MEM_EXPR (mem
));
13689 || !DECL_THREAD_LOCAL_P (base
))
13692 loc_result
= loc_descriptor_from_tree (MEM_EXPR (mem
), 1, NULL
);
13693 if (loc_result
== NULL
)
13696 if (MEM_OFFSET (mem
))
13697 loc_descr_plus_const (&loc_result
, MEM_OFFSET (mem
));
13702 /* Output debug info about reason why we failed to expand expression as dwarf
13706 expansion_failed (tree expr
, rtx rtl
, char const *reason
)
13708 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
13710 fprintf (dump_file
, "Failed to expand as dwarf: ");
13712 print_generic_expr (dump_file
, expr
, dump_flags
);
13715 fprintf (dump_file
, "\n");
13716 print_rtl (dump_file
, rtl
);
13718 fprintf (dump_file
, "\nReason: %s\n", reason
);
13722 /* Helper function for const_ok_for_output. */
13725 const_ok_for_output_1 (rtx rtl
)
13727 if (GET_CODE (rtl
) == UNSPEC
)
13729 /* If delegitimize_address couldn't do anything with the UNSPEC, assume
13730 we can't express it in the debug info. */
13731 /* Don't complain about TLS UNSPECs, those are just too hard to
13732 delegitimize. Note this could be a non-decl SYMBOL_REF such as
13733 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
13734 rather than DECL_THREAD_LOCAL_P is not just an optimization. */
13736 && (XVECLEN (rtl
, 0) == 0
13737 || GET_CODE (XVECEXP (rtl
, 0, 0)) != SYMBOL_REF
13738 || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl
, 0, 0)) == TLS_MODEL_NONE
))
13739 inform (current_function_decl
13740 ? DECL_SOURCE_LOCATION (current_function_decl
)
13741 : UNKNOWN_LOCATION
,
13742 #if NUM_UNSPEC_VALUES > 0
13743 "non-delegitimized UNSPEC %s (%d) found in variable location",
13744 ((XINT (rtl
, 1) >= 0 && XINT (rtl
, 1) < NUM_UNSPEC_VALUES
)
13745 ? unspec_strings
[XINT (rtl
, 1)] : "unknown"),
13748 "non-delegitimized UNSPEC %d found in variable location",
13751 expansion_failed (NULL_TREE
, rtl
,
13752 "UNSPEC hasn't been delegitimized.\n");
13756 if (targetm
.const_not_ok_for_debug_p (rtl
))
13758 expansion_failed (NULL_TREE
, rtl
,
13759 "Expression rejected for debug by the backend.\n");
13763 /* FIXME: Refer to PR60655. It is possible for simplification
13764 of rtl expressions in var tracking to produce such expressions.
13765 We should really identify / validate expressions
13766 enclosed in CONST that can be handled by assemblers on various
13767 targets and only handle legitimate cases here. */
13768 if (GET_CODE (rtl
) != SYMBOL_REF
)
13770 if (GET_CODE (rtl
) == NOT
)
13775 if (CONSTANT_POOL_ADDRESS_P (rtl
))
13778 get_pool_constant_mark (rtl
, &marked
);
13779 /* If all references to this pool constant were optimized away,
13780 it was not output and thus we can't represent it. */
13783 expansion_failed (NULL_TREE
, rtl
,
13784 "Constant was removed from constant pool.\n");
13789 if (SYMBOL_REF_TLS_MODEL (rtl
) != TLS_MODEL_NONE
)
13792 /* Avoid references to external symbols in debug info, on several targets
13793 the linker might even refuse to link when linking a shared library,
13794 and in many other cases the relocations for .debug_info/.debug_loc are
13795 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
13796 to be defined within the same shared library or executable are fine. */
13797 if (SYMBOL_REF_EXTERNAL_P (rtl
))
13799 tree decl
= SYMBOL_REF_DECL (rtl
);
13801 if (decl
== NULL
|| !targetm
.binds_local_p (decl
))
13803 expansion_failed (NULL_TREE
, rtl
,
13804 "Symbol not defined in current TU.\n");
13812 /* Return true if constant RTL can be emitted in DW_OP_addr or
13813 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
13814 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
13817 const_ok_for_output (rtx rtl
)
13819 if (GET_CODE (rtl
) == SYMBOL_REF
)
13820 return const_ok_for_output_1 (rtl
);
13822 if (GET_CODE (rtl
) == CONST
)
13824 subrtx_var_iterator::array_type array
;
13825 FOR_EACH_SUBRTX_VAR (iter
, array
, XEXP (rtl
, 0), ALL
)
13826 if (!const_ok_for_output_1 (*iter
))
13834 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
13835 if possible, NULL otherwise. */
13838 base_type_for_mode (machine_mode mode
, bool unsignedp
)
13840 dw_die_ref type_die
;
13841 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
13845 switch (TREE_CODE (type
))
13853 type_die
= lookup_type_die (type
);
13855 type_die
= modified_type_die (type
, TYPE_UNQUALIFIED
, false,
13857 if (type_die
== NULL
|| type_die
->die_tag
!= DW_TAG_base_type
)
13862 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
13863 type matching MODE, or, if MODE is narrower than or as wide as
13864 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
13867 static dw_loc_descr_ref
13868 convert_descriptor_to_mode (scalar_int_mode mode
, dw_loc_descr_ref op
)
13870 machine_mode outer_mode
= mode
;
13871 dw_die_ref type_die
;
13872 dw_loc_descr_ref cvt
;
13874 if (GET_MODE_SIZE (mode
) <= DWARF2_ADDR_SIZE
)
13876 add_loc_descr (&op
, new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0));
13879 type_die
= base_type_for_mode (outer_mode
, 1);
13880 if (type_die
== NULL
)
13882 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
13883 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
13884 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
13885 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
13886 add_loc_descr (&op
, cvt
);
13890 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
13892 static dw_loc_descr_ref
13893 compare_loc_descriptor (enum dwarf_location_atom op
, dw_loc_descr_ref op0
,
13894 dw_loc_descr_ref op1
)
13896 dw_loc_descr_ref ret
= op0
;
13897 add_loc_descr (&ret
, op1
);
13898 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
13899 if (STORE_FLAG_VALUE
!= 1)
13901 add_loc_descr (&ret
, int_loc_descriptor (STORE_FLAG_VALUE
));
13902 add_loc_descr (&ret
, new_loc_descr (DW_OP_mul
, 0, 0));
13907 /* Subroutine of scompare_loc_descriptor for the case in which we're
13908 comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
13909 and in which OP_MODE is bigger than DWARF2_ADDR_SIZE. */
13911 static dw_loc_descr_ref
13912 scompare_loc_descriptor_wide (enum dwarf_location_atom op
,
13913 scalar_int_mode op_mode
,
13914 dw_loc_descr_ref op0
, dw_loc_descr_ref op1
)
13916 dw_die_ref type_die
= base_type_for_mode (op_mode
, 0);
13917 dw_loc_descr_ref cvt
;
13919 if (type_die
== NULL
)
13921 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
13922 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
13923 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
13924 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
13925 add_loc_descr (&op0
, cvt
);
13926 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
13927 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
13928 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
13929 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
13930 add_loc_descr (&op1
, cvt
);
13931 return compare_loc_descriptor (op
, op0
, op1
);
13934 /* Subroutine of scompare_loc_descriptor for the case in which we're
13935 comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
13936 and in which OP_MODE is smaller than DWARF2_ADDR_SIZE. */
13938 static dw_loc_descr_ref
13939 scompare_loc_descriptor_narrow (enum dwarf_location_atom op
, rtx rtl
,
13940 scalar_int_mode op_mode
,
13941 dw_loc_descr_ref op0
, dw_loc_descr_ref op1
)
13943 int shift
= (DWARF2_ADDR_SIZE
- GET_MODE_SIZE (op_mode
)) * BITS_PER_UNIT
;
13944 /* For eq/ne, if the operands are known to be zero-extended,
13945 there is no need to do the fancy shifting up. */
13946 if (op
== DW_OP_eq
|| op
== DW_OP_ne
)
13948 dw_loc_descr_ref last0
, last1
;
13949 for (last0
= op0
; last0
->dw_loc_next
!= NULL
; last0
= last0
->dw_loc_next
)
13951 for (last1
= op1
; last1
->dw_loc_next
!= NULL
; last1
= last1
->dw_loc_next
)
13953 /* deref_size zero extends, and for constants we can check
13954 whether they are zero extended or not. */
13955 if (((last0
->dw_loc_opc
== DW_OP_deref_size
13956 && last0
->dw_loc_oprnd1
.v
.val_int
<= GET_MODE_SIZE (op_mode
))
13957 || (CONST_INT_P (XEXP (rtl
, 0))
13958 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (rtl
, 0))
13959 == (INTVAL (XEXP (rtl
, 0)) & GET_MODE_MASK (op_mode
))))
13960 && ((last1
->dw_loc_opc
== DW_OP_deref_size
13961 && last1
->dw_loc_oprnd1
.v
.val_int
<= GET_MODE_SIZE (op_mode
))
13962 || (CONST_INT_P (XEXP (rtl
, 1))
13963 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (rtl
, 1))
13964 == (INTVAL (XEXP (rtl
, 1)) & GET_MODE_MASK (op_mode
)))))
13965 return compare_loc_descriptor (op
, op0
, op1
);
13967 /* EQ/NE comparison against constant in narrower type than
13968 DWARF2_ADDR_SIZE can be performed either as
13969 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
13972 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
13973 DW_OP_{eq,ne}. Pick whatever is shorter. */
13974 if (CONST_INT_P (XEXP (rtl
, 1))
13975 && GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
13976 && (size_of_int_loc_descriptor (shift
) + 1
13977 + size_of_int_loc_descriptor (UINTVAL (XEXP (rtl
, 1)) << shift
)
13978 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode
)) + 1
13979 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl
, 1))
13980 & GET_MODE_MASK (op_mode
))))
13982 add_loc_descr (&op0
, int_loc_descriptor (GET_MODE_MASK (op_mode
)));
13983 add_loc_descr (&op0
, new_loc_descr (DW_OP_and
, 0, 0));
13984 op1
= int_loc_descriptor (INTVAL (XEXP (rtl
, 1))
13985 & GET_MODE_MASK (op_mode
));
13986 return compare_loc_descriptor (op
, op0
, op1
);
13989 add_loc_descr (&op0
, int_loc_descriptor (shift
));
13990 add_loc_descr (&op0
, new_loc_descr (DW_OP_shl
, 0, 0));
13991 if (CONST_INT_P (XEXP (rtl
, 1)))
13992 op1
= int_loc_descriptor (UINTVAL (XEXP (rtl
, 1)) << shift
);
13995 add_loc_descr (&op1
, int_loc_descriptor (shift
));
13996 add_loc_descr (&op1
, new_loc_descr (DW_OP_shl
, 0, 0));
13998 return compare_loc_descriptor (op
, op0
, op1
);
14001 /* Return location descriptor for unsigned comparison OP RTL. */
14003 static dw_loc_descr_ref
14004 scompare_loc_descriptor (enum dwarf_location_atom op
, rtx rtl
,
14005 machine_mode mem_mode
)
14007 machine_mode op_mode
= GET_MODE (XEXP (rtl
, 0));
14008 dw_loc_descr_ref op0
, op1
;
14010 if (op_mode
== VOIDmode
)
14011 op_mode
= GET_MODE (XEXP (rtl
, 1));
14012 if (op_mode
== VOIDmode
)
14015 scalar_int_mode int_op_mode
;
14017 && dwarf_version
< 5
14018 && (!is_a
<scalar_int_mode
> (op_mode
, &int_op_mode
)
14019 || GET_MODE_SIZE (int_op_mode
) > DWARF2_ADDR_SIZE
))
14022 op0
= mem_loc_descriptor (XEXP (rtl
, 0), op_mode
, mem_mode
,
14023 VAR_INIT_STATUS_INITIALIZED
);
14024 op1
= mem_loc_descriptor (XEXP (rtl
, 1), op_mode
, mem_mode
,
14025 VAR_INIT_STATUS_INITIALIZED
);
14027 if (op0
== NULL
|| op1
== NULL
)
14030 if (is_a
<scalar_int_mode
> (op_mode
, &int_op_mode
))
14032 if (GET_MODE_SIZE (int_op_mode
) < DWARF2_ADDR_SIZE
)
14033 return scompare_loc_descriptor_narrow (op
, rtl
, int_op_mode
, op0
, op1
);
14035 if (GET_MODE_SIZE (int_op_mode
) > DWARF2_ADDR_SIZE
)
14036 return scompare_loc_descriptor_wide (op
, int_op_mode
, op0
, op1
);
14038 return compare_loc_descriptor (op
, op0
, op1
);
14041 /* Return location descriptor for unsigned comparison OP RTL. */
14043 static dw_loc_descr_ref
14044 ucompare_loc_descriptor (enum dwarf_location_atom op
, rtx rtl
,
14045 machine_mode mem_mode
)
14047 dw_loc_descr_ref op0
, op1
;
14049 machine_mode test_op_mode
= GET_MODE (XEXP (rtl
, 0));
14050 if (test_op_mode
== VOIDmode
)
14051 test_op_mode
= GET_MODE (XEXP (rtl
, 1));
14053 scalar_int_mode op_mode
;
14054 if (!is_a
<scalar_int_mode
> (test_op_mode
, &op_mode
))
14058 && dwarf_version
< 5
14059 && GET_MODE_SIZE (op_mode
) > DWARF2_ADDR_SIZE
)
14062 op0
= mem_loc_descriptor (XEXP (rtl
, 0), op_mode
, mem_mode
,
14063 VAR_INIT_STATUS_INITIALIZED
);
14064 op1
= mem_loc_descriptor (XEXP (rtl
, 1), op_mode
, mem_mode
,
14065 VAR_INIT_STATUS_INITIALIZED
);
14067 if (op0
== NULL
|| op1
== NULL
)
14070 if (GET_MODE_SIZE (op_mode
) < DWARF2_ADDR_SIZE
)
14072 HOST_WIDE_INT mask
= GET_MODE_MASK (op_mode
);
14073 dw_loc_descr_ref last0
, last1
;
14074 for (last0
= op0
; last0
->dw_loc_next
!= NULL
; last0
= last0
->dw_loc_next
)
14076 for (last1
= op1
; last1
->dw_loc_next
!= NULL
; last1
= last1
->dw_loc_next
)
14078 if (CONST_INT_P (XEXP (rtl
, 0)))
14079 op0
= int_loc_descriptor (INTVAL (XEXP (rtl
, 0)) & mask
);
14080 /* deref_size zero extends, so no need to mask it again. */
14081 else if (last0
->dw_loc_opc
!= DW_OP_deref_size
14082 || last0
->dw_loc_oprnd1
.v
.val_int
> GET_MODE_SIZE (op_mode
))
14084 add_loc_descr (&op0
, int_loc_descriptor (mask
));
14085 add_loc_descr (&op0
, new_loc_descr (DW_OP_and
, 0, 0));
14087 if (CONST_INT_P (XEXP (rtl
, 1)))
14088 op1
= int_loc_descriptor (INTVAL (XEXP (rtl
, 1)) & mask
);
14089 /* deref_size zero extends, so no need to mask it again. */
14090 else if (last1
->dw_loc_opc
!= DW_OP_deref_size
14091 || last1
->dw_loc_oprnd1
.v
.val_int
> GET_MODE_SIZE (op_mode
))
14093 add_loc_descr (&op1
, int_loc_descriptor (mask
));
14094 add_loc_descr (&op1
, new_loc_descr (DW_OP_and
, 0, 0));
14097 else if (GET_MODE_SIZE (op_mode
) == DWARF2_ADDR_SIZE
)
14099 HOST_WIDE_INT bias
= 1;
14100 bias
<<= (DWARF2_ADDR_SIZE
* BITS_PER_UNIT
- 1);
14101 add_loc_descr (&op0
, new_loc_descr (DW_OP_plus_uconst
, bias
, 0));
14102 if (CONST_INT_P (XEXP (rtl
, 1)))
14103 op1
= int_loc_descriptor ((unsigned HOST_WIDE_INT
) bias
14104 + INTVAL (XEXP (rtl
, 1)));
14106 add_loc_descr (&op1
, new_loc_descr (DW_OP_plus_uconst
,
14109 return compare_loc_descriptor (op
, op0
, op1
);
14112 /* Return location descriptor for {U,S}{MIN,MAX}. */
14114 static dw_loc_descr_ref
14115 minmax_loc_descriptor (rtx rtl
, machine_mode mode
,
14116 machine_mode mem_mode
)
14118 enum dwarf_location_atom op
;
14119 dw_loc_descr_ref op0
, op1
, ret
;
14120 dw_loc_descr_ref bra_node
, drop_node
;
14122 scalar_int_mode int_mode
;
14124 && dwarf_version
< 5
14125 && (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
14126 || GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
))
14129 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
14130 VAR_INIT_STATUS_INITIALIZED
);
14131 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
14132 VAR_INIT_STATUS_INITIALIZED
);
14134 if (op0
== NULL
|| op1
== NULL
)
14137 add_loc_descr (&op0
, new_loc_descr (DW_OP_dup
, 0, 0));
14138 add_loc_descr (&op1
, new_loc_descr (DW_OP_swap
, 0, 0));
14139 add_loc_descr (&op1
, new_loc_descr (DW_OP_over
, 0, 0));
14140 if (GET_CODE (rtl
) == UMIN
|| GET_CODE (rtl
) == UMAX
)
14142 /* Checked by the caller. */
14143 int_mode
= as_a
<scalar_int_mode
> (mode
);
14144 if (GET_MODE_SIZE (int_mode
) < DWARF2_ADDR_SIZE
)
14146 HOST_WIDE_INT mask
= GET_MODE_MASK (int_mode
);
14147 add_loc_descr (&op0
, int_loc_descriptor (mask
));
14148 add_loc_descr (&op0
, new_loc_descr (DW_OP_and
, 0, 0));
14149 add_loc_descr (&op1
, int_loc_descriptor (mask
));
14150 add_loc_descr (&op1
, new_loc_descr (DW_OP_and
, 0, 0));
14152 else if (GET_MODE_SIZE (int_mode
) == DWARF2_ADDR_SIZE
)
14154 HOST_WIDE_INT bias
= 1;
14155 bias
<<= (DWARF2_ADDR_SIZE
* BITS_PER_UNIT
- 1);
14156 add_loc_descr (&op0
, new_loc_descr (DW_OP_plus_uconst
, bias
, 0));
14157 add_loc_descr (&op1
, new_loc_descr (DW_OP_plus_uconst
, bias
, 0));
14160 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
14161 && GET_MODE_SIZE (int_mode
) < DWARF2_ADDR_SIZE
)
14163 int shift
= (DWARF2_ADDR_SIZE
- GET_MODE_SIZE (int_mode
)) * BITS_PER_UNIT
;
14164 add_loc_descr (&op0
, int_loc_descriptor (shift
));
14165 add_loc_descr (&op0
, new_loc_descr (DW_OP_shl
, 0, 0));
14166 add_loc_descr (&op1
, int_loc_descriptor (shift
));
14167 add_loc_descr (&op1
, new_loc_descr (DW_OP_shl
, 0, 0));
14169 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
14170 && GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
14172 dw_die_ref type_die
= base_type_for_mode (int_mode
, 0);
14173 dw_loc_descr_ref cvt
;
14174 if (type_die
== NULL
)
14176 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
14177 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
14178 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
14179 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
14180 add_loc_descr (&op0
, cvt
);
14181 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
14182 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
14183 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
14184 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
14185 add_loc_descr (&op1
, cvt
);
14188 if (GET_CODE (rtl
) == SMIN
|| GET_CODE (rtl
) == UMIN
)
14193 add_loc_descr (&ret
, op1
);
14194 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
14195 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
14196 add_loc_descr (&ret
, bra_node
);
14197 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14198 drop_node
= new_loc_descr (DW_OP_drop
, 0, 0);
14199 add_loc_descr (&ret
, drop_node
);
14200 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14201 bra_node
->dw_loc_oprnd1
.v
.val_loc
= drop_node
;
14202 if ((GET_CODE (rtl
) == SMIN
|| GET_CODE (rtl
) == SMAX
)
14203 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
14204 && GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
14205 ret
= convert_descriptor_to_mode (int_mode
, ret
);
14209 /* Helper function for mem_loc_descriptor. Perform OP binary op,
14210 but after converting arguments to type_die, afterwards
14211 convert back to unsigned. */
14213 static dw_loc_descr_ref
14214 typed_binop (enum dwarf_location_atom op
, rtx rtl
, dw_die_ref type_die
,
14215 scalar_int_mode mode
, machine_mode mem_mode
)
14217 dw_loc_descr_ref cvt
, op0
, op1
;
14219 if (type_die
== NULL
)
14221 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
14222 VAR_INIT_STATUS_INITIALIZED
);
14223 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
14224 VAR_INIT_STATUS_INITIALIZED
);
14225 if (op0
== NULL
|| op1
== NULL
)
14227 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
14228 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
14229 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
14230 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
14231 add_loc_descr (&op0
, cvt
);
14232 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
14233 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
14234 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
14235 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
14236 add_loc_descr (&op1
, cvt
);
14237 add_loc_descr (&op0
, op1
);
14238 add_loc_descr (&op0
, new_loc_descr (op
, 0, 0));
14239 return convert_descriptor_to_mode (mode
, op0
);
14242 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
14243 const0 is DW_OP_lit0 or corresponding typed constant,
14244 const1 is DW_OP_lit1 or corresponding typed constant
14245 and constMSB is constant with just the MSB bit set
14247 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
14248 L1: const0 DW_OP_swap
14249 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
14250 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14255 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
14256 L1: const0 DW_OP_swap
14257 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
14258 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14263 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
14264 L1: const1 DW_OP_swap
14265 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
14266 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14270 static dw_loc_descr_ref
14271 clz_loc_descriptor (rtx rtl
, scalar_int_mode mode
,
14272 machine_mode mem_mode
)
14274 dw_loc_descr_ref op0
, ret
, tmp
;
14275 HOST_WIDE_INT valv
;
14276 dw_loc_descr_ref l1jump
, l1label
;
14277 dw_loc_descr_ref l2jump
, l2label
;
14278 dw_loc_descr_ref l3jump
, l3label
;
14279 dw_loc_descr_ref l4jump
, l4label
;
14282 if (GET_MODE (XEXP (rtl
, 0)) != mode
)
14285 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
14286 VAR_INIT_STATUS_INITIALIZED
);
14290 if (GET_CODE (rtl
) == CLZ
)
14292 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode
, valv
))
14293 valv
= GET_MODE_BITSIZE (mode
);
14295 else if (GET_CODE (rtl
) == FFS
)
14297 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode
, valv
))
14298 valv
= GET_MODE_BITSIZE (mode
);
14299 add_loc_descr (&ret
, new_loc_descr (DW_OP_dup
, 0, 0));
14300 l1jump
= new_loc_descr (DW_OP_bra
, 0, 0);
14301 add_loc_descr (&ret
, l1jump
);
14302 add_loc_descr (&ret
, new_loc_descr (DW_OP_drop
, 0, 0));
14303 tmp
= mem_loc_descriptor (GEN_INT (valv
), mode
, mem_mode
,
14304 VAR_INIT_STATUS_INITIALIZED
);
14307 add_loc_descr (&ret
, tmp
);
14308 l4jump
= new_loc_descr (DW_OP_skip
, 0, 0);
14309 add_loc_descr (&ret
, l4jump
);
14310 l1label
= mem_loc_descriptor (GET_CODE (rtl
) == FFS
14311 ? const1_rtx
: const0_rtx
,
14313 VAR_INIT_STATUS_INITIALIZED
);
14314 if (l1label
== NULL
)
14316 add_loc_descr (&ret
, l1label
);
14317 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14318 l2label
= new_loc_descr (DW_OP_dup
, 0, 0);
14319 add_loc_descr (&ret
, l2label
);
14320 if (GET_CODE (rtl
) != CLZ
)
14322 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
14323 msb
= GEN_INT (HOST_WIDE_INT_1U
14324 << (GET_MODE_BITSIZE (mode
) - 1));
14326 msb
= immed_wide_int_const
14327 (wi::set_bit_in_zero (GET_MODE_PRECISION (mode
) - 1,
14328 GET_MODE_PRECISION (mode
)), mode
);
14329 if (GET_CODE (msb
) == CONST_INT
&& INTVAL (msb
) < 0)
14330 tmp
= new_loc_descr (HOST_BITS_PER_WIDE_INT
== 32
14331 ? DW_OP_const4u
: HOST_BITS_PER_WIDE_INT
== 64
14332 ? DW_OP_const8u
: DW_OP_constu
, INTVAL (msb
), 0);
14334 tmp
= mem_loc_descriptor (msb
, mode
, mem_mode
,
14335 VAR_INIT_STATUS_INITIALIZED
);
14338 add_loc_descr (&ret
, tmp
);
14339 add_loc_descr (&ret
, new_loc_descr (DW_OP_and
, 0, 0));
14340 l3jump
= new_loc_descr (DW_OP_bra
, 0, 0);
14341 add_loc_descr (&ret
, l3jump
);
14342 tmp
= mem_loc_descriptor (const1_rtx
, mode
, mem_mode
,
14343 VAR_INIT_STATUS_INITIALIZED
);
14346 add_loc_descr (&ret
, tmp
);
14347 add_loc_descr (&ret
, new_loc_descr (GET_CODE (rtl
) == CLZ
14348 ? DW_OP_shl
: DW_OP_shr
, 0, 0));
14349 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14350 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, 1, 0));
14351 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14352 l2jump
= new_loc_descr (DW_OP_skip
, 0, 0);
14353 add_loc_descr (&ret
, l2jump
);
14354 l3label
= new_loc_descr (DW_OP_drop
, 0, 0);
14355 add_loc_descr (&ret
, l3label
);
14356 l4label
= new_loc_descr (DW_OP_nop
, 0, 0);
14357 add_loc_descr (&ret
, l4label
);
14358 l1jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14359 l1jump
->dw_loc_oprnd1
.v
.val_loc
= l1label
;
14360 l2jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14361 l2jump
->dw_loc_oprnd1
.v
.val_loc
= l2label
;
14362 l3jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14363 l3jump
->dw_loc_oprnd1
.v
.val_loc
= l3label
;
14364 l4jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14365 l4jump
->dw_loc_oprnd1
.v
.val_loc
= l4label
;
14369 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
14370 const1 is DW_OP_lit1 or corresponding typed constant):
14372 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
14373 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
14377 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
14378 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
14381 static dw_loc_descr_ref
14382 popcount_loc_descriptor (rtx rtl
, scalar_int_mode mode
,
14383 machine_mode mem_mode
)
14385 dw_loc_descr_ref op0
, ret
, tmp
;
14386 dw_loc_descr_ref l1jump
, l1label
;
14387 dw_loc_descr_ref l2jump
, l2label
;
14389 if (GET_MODE (XEXP (rtl
, 0)) != mode
)
14392 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
14393 VAR_INIT_STATUS_INITIALIZED
);
14397 tmp
= mem_loc_descriptor (const0_rtx
, mode
, mem_mode
,
14398 VAR_INIT_STATUS_INITIALIZED
);
14401 add_loc_descr (&ret
, tmp
);
14402 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14403 l1label
= new_loc_descr (DW_OP_dup
, 0, 0);
14404 add_loc_descr (&ret
, l1label
);
14405 l2jump
= new_loc_descr (DW_OP_bra
, 0, 0);
14406 add_loc_descr (&ret
, l2jump
);
14407 add_loc_descr (&ret
, new_loc_descr (DW_OP_dup
, 0, 0));
14408 add_loc_descr (&ret
, new_loc_descr (DW_OP_rot
, 0, 0));
14409 tmp
= mem_loc_descriptor (const1_rtx
, mode
, mem_mode
,
14410 VAR_INIT_STATUS_INITIALIZED
);
14413 add_loc_descr (&ret
, tmp
);
14414 add_loc_descr (&ret
, new_loc_descr (DW_OP_and
, 0, 0));
14415 add_loc_descr (&ret
, new_loc_descr (GET_CODE (rtl
) == POPCOUNT
14416 ? DW_OP_plus
: DW_OP_xor
, 0, 0));
14417 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14418 tmp
= mem_loc_descriptor (const1_rtx
, mode
, mem_mode
,
14419 VAR_INIT_STATUS_INITIALIZED
);
14420 add_loc_descr (&ret
, tmp
);
14421 add_loc_descr (&ret
, new_loc_descr (DW_OP_shr
, 0, 0));
14422 l1jump
= new_loc_descr (DW_OP_skip
, 0, 0);
14423 add_loc_descr (&ret
, l1jump
);
14424 l2label
= new_loc_descr (DW_OP_drop
, 0, 0);
14425 add_loc_descr (&ret
, l2label
);
14426 l1jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14427 l1jump
->dw_loc_oprnd1
.v
.val_loc
= l1label
;
14428 l2jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14429 l2jump
->dw_loc_oprnd1
.v
.val_loc
= l2label
;
14433 /* BSWAP (constS is initial shift count, either 56 or 24):
14435 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
14436 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
14437 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
14438 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
14439 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
14441 static dw_loc_descr_ref
14442 bswap_loc_descriptor (rtx rtl
, scalar_int_mode mode
,
14443 machine_mode mem_mode
)
14445 dw_loc_descr_ref op0
, ret
, tmp
;
14446 dw_loc_descr_ref l1jump
, l1label
;
14447 dw_loc_descr_ref l2jump
, l2label
;
14449 if (BITS_PER_UNIT
!= 8
14450 || (GET_MODE_BITSIZE (mode
) != 32
14451 && GET_MODE_BITSIZE (mode
) != 64))
14454 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
14455 VAR_INIT_STATUS_INITIALIZED
);
14460 tmp
= mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode
) - 8),
14462 VAR_INIT_STATUS_INITIALIZED
);
14465 add_loc_descr (&ret
, tmp
);
14466 tmp
= mem_loc_descriptor (const0_rtx
, mode
, mem_mode
,
14467 VAR_INIT_STATUS_INITIALIZED
);
14470 add_loc_descr (&ret
, tmp
);
14471 l1label
= new_loc_descr (DW_OP_pick
, 2, 0);
14472 add_loc_descr (&ret
, l1label
);
14473 tmp
= mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode
) - 8),
14475 VAR_INIT_STATUS_INITIALIZED
);
14476 add_loc_descr (&ret
, tmp
);
14477 add_loc_descr (&ret
, new_loc_descr (DW_OP_pick
, 3, 0));
14478 add_loc_descr (&ret
, new_loc_descr (DW_OP_minus
, 0, 0));
14479 add_loc_descr (&ret
, new_loc_descr (DW_OP_shr
, 0, 0));
14480 tmp
= mem_loc_descriptor (GEN_INT (255), mode
, mem_mode
,
14481 VAR_INIT_STATUS_INITIALIZED
);
14484 add_loc_descr (&ret
, tmp
);
14485 add_loc_descr (&ret
, new_loc_descr (DW_OP_and
, 0, 0));
14486 add_loc_descr (&ret
, new_loc_descr (DW_OP_pick
, 2, 0));
14487 add_loc_descr (&ret
, new_loc_descr (DW_OP_shl
, 0, 0));
14488 add_loc_descr (&ret
, new_loc_descr (DW_OP_or
, 0, 0));
14489 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14490 add_loc_descr (&ret
, new_loc_descr (DW_OP_dup
, 0, 0));
14491 tmp
= mem_loc_descriptor (const0_rtx
, mode
, mem_mode
,
14492 VAR_INIT_STATUS_INITIALIZED
);
14493 add_loc_descr (&ret
, tmp
);
14494 add_loc_descr (&ret
, new_loc_descr (DW_OP_eq
, 0, 0));
14495 l2jump
= new_loc_descr (DW_OP_bra
, 0, 0);
14496 add_loc_descr (&ret
, l2jump
);
14497 tmp
= mem_loc_descriptor (GEN_INT (8), mode
, mem_mode
,
14498 VAR_INIT_STATUS_INITIALIZED
);
14499 add_loc_descr (&ret
, tmp
);
14500 add_loc_descr (&ret
, new_loc_descr (DW_OP_minus
, 0, 0));
14501 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14502 l1jump
= new_loc_descr (DW_OP_skip
, 0, 0);
14503 add_loc_descr (&ret
, l1jump
);
14504 l2label
= new_loc_descr (DW_OP_drop
, 0, 0);
14505 add_loc_descr (&ret
, l2label
);
14506 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14507 add_loc_descr (&ret
, new_loc_descr (DW_OP_drop
, 0, 0));
14508 l1jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14509 l1jump
->dw_loc_oprnd1
.v
.val_loc
= l1label
;
14510 l2jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14511 l2jump
->dw_loc_oprnd1
.v
.val_loc
= l2label
;
14515 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
14516 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
14517 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
14518 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
14520 ROTATERT is similar:
14521 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
14522 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
14523 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
14525 static dw_loc_descr_ref
14526 rotate_loc_descriptor (rtx rtl
, scalar_int_mode mode
,
14527 machine_mode mem_mode
)
14529 rtx rtlop1
= XEXP (rtl
, 1);
14530 dw_loc_descr_ref op0
, op1
, ret
, mask
[2] = { NULL
, NULL
};
14533 if (GET_MODE (rtlop1
) != VOIDmode
14534 && GET_MODE_BITSIZE (GET_MODE (rtlop1
)) < GET_MODE_BITSIZE (mode
))
14535 rtlop1
= gen_rtx_ZERO_EXTEND (mode
, rtlop1
);
14536 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
14537 VAR_INIT_STATUS_INITIALIZED
);
14538 op1
= mem_loc_descriptor (rtlop1
, mode
, mem_mode
,
14539 VAR_INIT_STATUS_INITIALIZED
);
14540 if (op0
== NULL
|| op1
== NULL
)
14542 if (GET_MODE_SIZE (mode
) < DWARF2_ADDR_SIZE
)
14543 for (i
= 0; i
< 2; i
++)
14545 if (GET_MODE_BITSIZE (mode
) < HOST_BITS_PER_WIDE_INT
)
14546 mask
[i
] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode
)),
14548 VAR_INIT_STATUS_INITIALIZED
);
14549 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
14550 mask
[i
] = new_loc_descr (HOST_BITS_PER_WIDE_INT
== 32
14552 : HOST_BITS_PER_WIDE_INT
== 64
14553 ? DW_OP_const8u
: DW_OP_constu
,
14554 GET_MODE_MASK (mode
), 0);
14557 if (mask
[i
] == NULL
)
14559 add_loc_descr (&mask
[i
], new_loc_descr (DW_OP_and
, 0, 0));
14562 add_loc_descr (&ret
, op1
);
14563 add_loc_descr (&ret
, new_loc_descr (DW_OP_over
, 0, 0));
14564 add_loc_descr (&ret
, new_loc_descr (DW_OP_over
, 0, 0));
14565 if (GET_CODE (rtl
) == ROTATERT
)
14567 add_loc_descr (&ret
, new_loc_descr (DW_OP_neg
, 0, 0));
14568 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
,
14569 GET_MODE_BITSIZE (mode
), 0));
14571 add_loc_descr (&ret
, new_loc_descr (DW_OP_shl
, 0, 0));
14572 if (mask
[0] != NULL
)
14573 add_loc_descr (&ret
, mask
[0]);
14574 add_loc_descr (&ret
, new_loc_descr (DW_OP_rot
, 0, 0));
14575 if (mask
[1] != NULL
)
14577 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14578 add_loc_descr (&ret
, mask
[1]);
14579 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
14581 if (GET_CODE (rtl
) == ROTATE
)
14583 add_loc_descr (&ret
, new_loc_descr (DW_OP_neg
, 0, 0));
14584 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
,
14585 GET_MODE_BITSIZE (mode
), 0));
14587 add_loc_descr (&ret
, new_loc_descr (DW_OP_shr
, 0, 0));
14588 add_loc_descr (&ret
, new_loc_descr (DW_OP_or
, 0, 0));
14592 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
14593 for DEBUG_PARAMETER_REF RTL. */
14595 static dw_loc_descr_ref
14596 parameter_ref_descriptor (rtx rtl
)
14598 dw_loc_descr_ref ret
;
14603 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl
)) == PARM_DECL
);
14604 /* With LTO during LTRANS we get the late DIE that refers to the early
14605 DIE, thus we add another indirection here. This seems to confuse
14606 gdb enough to make gcc.dg/guality/pr68860-1.c FAIL with LTO. */
14607 ref
= lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl
));
14608 ret
= new_loc_descr (DW_OP_GNU_parameter_ref
, 0, 0);
14611 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
14612 ret
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
14613 ret
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
14617 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_decl_ref
;
14618 ret
->dw_loc_oprnd1
.v
.val_decl_ref
= DEBUG_PARAMETER_REF_DECL (rtl
);
14623 /* The following routine converts the RTL for a variable or parameter
14624 (resident in memory) into an equivalent Dwarf representation of a
14625 mechanism for getting the address of that same variable onto the top of a
14626 hypothetical "address evaluation" stack.
14628 When creating memory location descriptors, we are effectively transforming
14629 the RTL for a memory-resident object into its Dwarf postfix expression
14630 equivalent. This routine recursively descends an RTL tree, turning
14631 it into Dwarf postfix code as it goes.
14633 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
14635 MEM_MODE is the mode of the memory reference, needed to handle some
14636 autoincrement addressing modes.
14638 Return 0 if we can't represent the location. */
14641 mem_loc_descriptor (rtx rtl
, machine_mode mode
,
14642 machine_mode mem_mode
,
14643 enum var_init_status initialized
)
14645 dw_loc_descr_ref mem_loc_result
= NULL
;
14646 enum dwarf_location_atom op
;
14647 dw_loc_descr_ref op0
, op1
;
14648 rtx inner
= NULL_RTX
;
14650 if (mode
== VOIDmode
)
14651 mode
= GET_MODE (rtl
);
14653 /* Note that for a dynamically sized array, the location we will generate a
14654 description of here will be the lowest numbered location which is
14655 actually within the array. That's *not* necessarily the same as the
14656 zeroth element of the array. */
14658 rtl
= targetm
.delegitimize_address (rtl
);
14660 if (mode
!= GET_MODE (rtl
) && GET_MODE (rtl
) != VOIDmode
)
14663 scalar_int_mode int_mode
, inner_mode
, op1_mode
;
14664 switch (GET_CODE (rtl
))
14669 return mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
, initialized
);
14672 /* The case of a subreg may arise when we have a local (register)
14673 variable or a formal (register) parameter which doesn't quite fill
14674 up an entire register. For now, just assume that it is
14675 legitimate to make the Dwarf info refer to the whole register which
14676 contains the given subreg. */
14677 if (!subreg_lowpart_p (rtl
))
14679 inner
= SUBREG_REG (rtl
);
14682 if (inner
== NULL_RTX
)
14683 inner
= XEXP (rtl
, 0);
14684 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
14685 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
14686 && (GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
14687 #ifdef POINTERS_EXTEND_UNSIGNED
14688 || (int_mode
== Pmode
&& mem_mode
!= VOIDmode
)
14691 && GET_MODE_SIZE (inner_mode
) <= DWARF2_ADDR_SIZE
)
14693 mem_loc_result
= mem_loc_descriptor (inner
,
14695 mem_mode
, initialized
);
14698 if (dwarf_strict
&& dwarf_version
< 5)
14700 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
14701 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
14702 ? GET_MODE_SIZE (int_mode
) <= GET_MODE_SIZE (inner_mode
)
14703 : GET_MODE_SIZE (mode
) == GET_MODE_SIZE (GET_MODE (inner
)))
14705 dw_die_ref type_die
;
14706 dw_loc_descr_ref cvt
;
14708 mem_loc_result
= mem_loc_descriptor (inner
,
14710 mem_mode
, initialized
);
14711 if (mem_loc_result
== NULL
)
14713 type_die
= base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
14714 if (type_die
== NULL
)
14716 mem_loc_result
= NULL
;
14719 if (GET_MODE_SIZE (mode
)
14720 != GET_MODE_SIZE (GET_MODE (inner
)))
14721 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
14723 cvt
= new_loc_descr (dwarf_OP (DW_OP_reinterpret
), 0, 0);
14724 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
14725 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
14726 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
14727 add_loc_descr (&mem_loc_result
, cvt
);
14728 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
14729 && GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
)
14731 /* Convert it to untyped afterwards. */
14732 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
14733 add_loc_descr (&mem_loc_result
, cvt
);
14739 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
14740 || (GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
14741 && rtl
!= arg_pointer_rtx
14742 && rtl
!= frame_pointer_rtx
14743 #ifdef POINTERS_EXTEND_UNSIGNED
14744 && (int_mode
!= Pmode
|| mem_mode
== VOIDmode
)
14748 dw_die_ref type_die
;
14749 unsigned int dbx_regnum
;
14751 if (dwarf_strict
&& dwarf_version
< 5)
14753 if (REGNO (rtl
) > FIRST_PSEUDO_REGISTER
)
14755 type_die
= base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
14756 if (type_die
== NULL
)
14759 dbx_regnum
= dbx_reg_number (rtl
);
14760 if (dbx_regnum
== IGNORED_DWARF_REGNUM
)
14762 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_regval_type
),
14764 mem_loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_die_ref
;
14765 mem_loc_result
->dw_loc_oprnd2
.v
.val_die_ref
.die
= type_die
;
14766 mem_loc_result
->dw_loc_oprnd2
.v
.val_die_ref
.external
= 0;
14769 /* Whenever a register number forms a part of the description of the
14770 method for calculating the (dynamic) address of a memory resident
14771 object, DWARF rules require the register number be referred to as
14772 a "base register". This distinction is not based in any way upon
14773 what category of register the hardware believes the given register
14774 belongs to. This is strictly DWARF terminology we're dealing with
14775 here. Note that in cases where the location of a memory-resident
14776 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
14777 OP_CONST (0)) the actual DWARF location descriptor that we generate
14778 may just be OP_BASEREG (basereg). This may look deceptively like
14779 the object in question was allocated to a register (rather than in
14780 memory) so DWARF consumers need to be aware of the subtle
14781 distinction between OP_REG and OP_BASEREG. */
14782 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
14783 mem_loc_result
= based_loc_descr (rtl
, 0, VAR_INIT_STATUS_INITIALIZED
);
14784 else if (stack_realign_drap
14786 && crtl
->args
.internal_arg_pointer
== rtl
14787 && REGNO (crtl
->drap_reg
) < FIRST_PSEUDO_REGISTER
)
14789 /* If RTL is internal_arg_pointer, which has been optimized
14790 out, use DRAP instead. */
14791 mem_loc_result
= based_loc_descr (crtl
->drap_reg
, 0,
14792 VAR_INIT_STATUS_INITIALIZED
);
14798 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
14799 || !is_a
<scalar_int_mode
> (GET_MODE (XEXP (rtl
, 0)), &inner_mode
))
14801 op0
= mem_loc_descriptor (XEXP (rtl
, 0), inner_mode
,
14802 mem_mode
, VAR_INIT_STATUS_INITIALIZED
);
14805 else if (GET_CODE (rtl
) == ZERO_EXTEND
14806 && GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
14807 && GET_MODE_BITSIZE (inner_mode
) < HOST_BITS_PER_WIDE_INT
14808 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
14809 to expand zero extend as two shifts instead of
14811 && GET_MODE_SIZE (inner_mode
) <= 4)
14813 mem_loc_result
= op0
;
14814 add_loc_descr (&mem_loc_result
,
14815 int_loc_descriptor (GET_MODE_MASK (inner_mode
)));
14816 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_and
, 0, 0));
14818 else if (GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
)
14820 int shift
= DWARF2_ADDR_SIZE
- GET_MODE_SIZE (inner_mode
);
14821 shift
*= BITS_PER_UNIT
;
14822 if (GET_CODE (rtl
) == SIGN_EXTEND
)
14826 mem_loc_result
= op0
;
14827 add_loc_descr (&mem_loc_result
, int_loc_descriptor (shift
));
14828 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_shl
, 0, 0));
14829 add_loc_descr (&mem_loc_result
, int_loc_descriptor (shift
));
14830 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
14832 else if (!dwarf_strict
|| dwarf_version
>= 5)
14834 dw_die_ref type_die1
, type_die2
;
14835 dw_loc_descr_ref cvt
;
14837 type_die1
= base_type_for_mode (inner_mode
,
14838 GET_CODE (rtl
) == ZERO_EXTEND
);
14839 if (type_die1
== NULL
)
14841 type_die2
= base_type_for_mode (int_mode
, 1);
14842 if (type_die2
== NULL
)
14844 mem_loc_result
= op0
;
14845 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
14846 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
14847 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die1
;
14848 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
14849 add_loc_descr (&mem_loc_result
, cvt
);
14850 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
14851 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
14852 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die2
;
14853 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
14854 add_loc_descr (&mem_loc_result
, cvt
);
14860 rtx new_rtl
= avoid_constant_pool_reference (rtl
);
14861 if (new_rtl
!= rtl
)
14863 mem_loc_result
= mem_loc_descriptor (new_rtl
, mode
, mem_mode
,
14865 if (mem_loc_result
!= NULL
)
14866 return mem_loc_result
;
14869 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0),
14870 get_address_mode (rtl
), mode
,
14871 VAR_INIT_STATUS_INITIALIZED
);
14872 if (mem_loc_result
== NULL
)
14873 mem_loc_result
= tls_mem_loc_descriptor (rtl
);
14874 if (mem_loc_result
!= NULL
)
14876 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
14877 || GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
14879 dw_die_ref type_die
;
14880 dw_loc_descr_ref deref
;
14882 if (dwarf_strict
&& dwarf_version
< 5)
14885 = base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
14886 if (type_die
== NULL
)
14888 deref
= new_loc_descr (dwarf_OP (DW_OP_deref_type
),
14889 GET_MODE_SIZE (mode
), 0);
14890 deref
->dw_loc_oprnd2
.val_class
= dw_val_class_die_ref
;
14891 deref
->dw_loc_oprnd2
.v
.val_die_ref
.die
= type_die
;
14892 deref
->dw_loc_oprnd2
.v
.val_die_ref
.external
= 0;
14893 add_loc_descr (&mem_loc_result
, deref
);
14895 else if (GET_MODE_SIZE (int_mode
) == DWARF2_ADDR_SIZE
)
14896 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
14898 add_loc_descr (&mem_loc_result
,
14899 new_loc_descr (DW_OP_deref_size
,
14900 GET_MODE_SIZE (int_mode
), 0));
14905 return mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
, initialized
);
14908 /* Some ports can transform a symbol ref into a label ref, because
14909 the symbol ref is too far away and has to be dumped into a constant
14913 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
14914 || (GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
14915 #ifdef POINTERS_EXTEND_UNSIGNED
14916 && (int_mode
!= Pmode
|| mem_mode
== VOIDmode
)
14920 if (GET_CODE (rtl
) == SYMBOL_REF
14921 && SYMBOL_REF_TLS_MODEL (rtl
) != TLS_MODEL_NONE
)
14923 dw_loc_descr_ref temp
;
14925 /* If this is not defined, we have no way to emit the data. */
14926 if (!targetm
.have_tls
|| !targetm
.asm_out
.output_dwarf_dtprel
)
14929 temp
= new_addr_loc_descr (rtl
, dtprel_true
);
14931 /* We check for DWARF 5 here because gdb did not implement
14932 DW_OP_form_tls_address until after 7.12. */
14933 mem_loc_result
= new_loc_descr ((dwarf_version
>= 5
14934 ? DW_OP_form_tls_address
14935 : DW_OP_GNU_push_tls_address
),
14937 add_loc_descr (&mem_loc_result
, temp
);
14942 if (!const_ok_for_output (rtl
))
14944 if (GET_CODE (rtl
) == CONST
)
14945 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), int_mode
,
14946 mem_mode
, initialized
);
14951 mem_loc_result
= new_addr_loc_descr (rtl
, dtprel_false
);
14952 vec_safe_push (used_rtx_array
, rtl
);
14958 case DEBUG_IMPLICIT_PTR
:
14959 expansion_failed (NULL_TREE
, rtl
,
14960 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
14964 if (dwarf_strict
&& dwarf_version
< 5)
14966 if (REG_P (ENTRY_VALUE_EXP (rtl
)))
14968 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
14969 || GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
14970 op0
= mem_loc_descriptor (ENTRY_VALUE_EXP (rtl
), mode
,
14971 VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
14974 unsigned int dbx_regnum
= dbx_reg_number (ENTRY_VALUE_EXP (rtl
));
14975 if (dbx_regnum
== IGNORED_DWARF_REGNUM
)
14977 op0
= one_reg_loc_descriptor (dbx_regnum
,
14978 VAR_INIT_STATUS_INITIALIZED
);
14981 else if (MEM_P (ENTRY_VALUE_EXP (rtl
))
14982 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl
), 0)))
14984 op0
= mem_loc_descriptor (ENTRY_VALUE_EXP (rtl
), mode
,
14985 VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
14986 if (op0
&& op0
->dw_loc_opc
== DW_OP_fbreg
)
14990 gcc_unreachable ();
14993 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_entry_value
), 0, 0);
14994 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14995 mem_loc_result
->dw_loc_oprnd1
.v
.val_loc
= op0
;
14998 case DEBUG_PARAMETER_REF
:
14999 mem_loc_result
= parameter_ref_descriptor (rtl
);
15003 /* Extract the PLUS expression nested inside and fall into
15004 PLUS code below. */
15005 rtl
= XEXP (rtl
, 1);
15010 /* Turn these into a PLUS expression and fall into the PLUS code
15012 rtl
= gen_rtx_PLUS (mode
, XEXP (rtl
, 0),
15013 gen_int_mode (GET_CODE (rtl
) == PRE_INC
15014 ? GET_MODE_UNIT_SIZE (mem_mode
)
15015 : -GET_MODE_UNIT_SIZE (mem_mode
),
15022 if (is_based_loc (rtl
)
15023 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
15024 && (GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
15025 || XEXP (rtl
, 0) == arg_pointer_rtx
15026 || XEXP (rtl
, 0) == frame_pointer_rtx
))
15027 mem_loc_result
= based_loc_descr (XEXP (rtl
, 0),
15028 INTVAL (XEXP (rtl
, 1)),
15029 VAR_INIT_STATUS_INITIALIZED
);
15032 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15033 VAR_INIT_STATUS_INITIALIZED
);
15034 if (mem_loc_result
== 0)
15037 if (CONST_INT_P (XEXP (rtl
, 1))
15038 && (GET_MODE_SIZE (as_a
<scalar_int_mode
> (mode
))
15039 <= DWARF2_ADDR_SIZE
))
15040 loc_descr_plus_const (&mem_loc_result
, INTVAL (XEXP (rtl
, 1)));
15043 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
15044 VAR_INIT_STATUS_INITIALIZED
);
15047 add_loc_descr (&mem_loc_result
, op1
);
15048 add_loc_descr (&mem_loc_result
,
15049 new_loc_descr (DW_OP_plus
, 0, 0));
15054 /* If a pseudo-reg is optimized away, it is possible for it to
15055 be replaced with a MEM containing a multiply or shift. */
15065 if ((!dwarf_strict
|| dwarf_version
>= 5)
15066 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
15067 && GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
15069 mem_loc_result
= typed_binop (DW_OP_div
, rtl
,
15070 base_type_for_mode (mode
, 0),
15071 int_mode
, mem_mode
);
15094 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
15096 op0
= mem_loc_descriptor (XEXP (rtl
, 0), int_mode
, mem_mode
,
15097 VAR_INIT_STATUS_INITIALIZED
);
15099 rtx rtlop1
= XEXP (rtl
, 1);
15100 if (is_a
<scalar_int_mode
> (GET_MODE (rtlop1
), &op1_mode
)
15101 && GET_MODE_BITSIZE (op1_mode
) < GET_MODE_BITSIZE (int_mode
))
15102 rtlop1
= gen_rtx_ZERO_EXTEND (int_mode
, rtlop1
);
15103 op1
= mem_loc_descriptor (rtlop1
, int_mode
, mem_mode
,
15104 VAR_INIT_STATUS_INITIALIZED
);
15107 if (op0
== 0 || op1
== 0)
15110 mem_loc_result
= op0
;
15111 add_loc_descr (&mem_loc_result
, op1
);
15112 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
15128 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15129 VAR_INIT_STATUS_INITIALIZED
);
15130 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
15131 VAR_INIT_STATUS_INITIALIZED
);
15133 if (op0
== 0 || op1
== 0)
15136 mem_loc_result
= op0
;
15137 add_loc_descr (&mem_loc_result
, op1
);
15138 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
15142 if ((!dwarf_strict
|| dwarf_version
>= 5)
15143 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
15144 && GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
15146 mem_loc_result
= typed_binop (DW_OP_mod
, rtl
,
15147 base_type_for_mode (mode
, 0),
15148 int_mode
, mem_mode
);
15152 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15153 VAR_INIT_STATUS_INITIALIZED
);
15154 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
15155 VAR_INIT_STATUS_INITIALIZED
);
15157 if (op0
== 0 || op1
== 0)
15160 mem_loc_result
= op0
;
15161 add_loc_descr (&mem_loc_result
, op1
);
15162 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_over
, 0, 0));
15163 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_over
, 0, 0));
15164 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_div
, 0, 0));
15165 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_mul
, 0, 0));
15166 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_minus
, 0, 0));
15170 if ((!dwarf_strict
|| dwarf_version
>= 5)
15171 && is_a
<scalar_int_mode
> (mode
, &int_mode
))
15173 if (GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
15178 mem_loc_result
= typed_binop (DW_OP_div
, rtl
,
15179 base_type_for_mode (int_mode
, 1),
15180 int_mode
, mem_mode
);
15197 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15198 VAR_INIT_STATUS_INITIALIZED
);
15203 mem_loc_result
= op0
;
15204 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
15208 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
15209 || GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
15210 #ifdef POINTERS_EXTEND_UNSIGNED
15211 || (int_mode
== Pmode
15212 && mem_mode
!= VOIDmode
15213 && trunc_int_for_mode (INTVAL (rtl
), ptr_mode
) == INTVAL (rtl
))
15217 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
15220 if ((!dwarf_strict
|| dwarf_version
>= 5)
15221 && (GET_MODE_BITSIZE (int_mode
) == HOST_BITS_PER_WIDE_INT
15222 || GET_MODE_BITSIZE (int_mode
) == HOST_BITS_PER_DOUBLE_INT
))
15224 dw_die_ref type_die
= base_type_for_mode (int_mode
, 1);
15225 scalar_int_mode amode
;
15226 if (type_die
== NULL
)
15228 if (INTVAL (rtl
) >= 0
15229 && (int_mode_for_size (DWARF2_ADDR_SIZE
* BITS_PER_UNIT
, 0)
15231 && trunc_int_for_mode (INTVAL (rtl
), amode
) == INTVAL (rtl
)
15232 /* const DW_OP_convert <XXX> vs.
15233 DW_OP_const_type <XXX, 1, const>. */
15234 && size_of_int_loc_descriptor (INTVAL (rtl
)) + 1 + 1
15235 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (int_mode
))
15237 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
15238 op0
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15239 op0
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15240 op0
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15241 op0
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15242 add_loc_descr (&mem_loc_result
, op0
);
15243 return mem_loc_result
;
15245 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_const_type
), 0,
15247 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15248 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15249 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15250 if (GET_MODE_BITSIZE (int_mode
) == HOST_BITS_PER_WIDE_INT
)
15251 mem_loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_const
;
15254 mem_loc_result
->dw_loc_oprnd2
.val_class
15255 = dw_val_class_const_double
;
15256 mem_loc_result
->dw_loc_oprnd2
.v
.val_double
15257 = double_int::from_shwi (INTVAL (rtl
));
15263 if (!dwarf_strict
|| dwarf_version
>= 5)
15265 dw_die_ref type_die
;
15267 /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
15268 CONST_DOUBLE rtx could represent either a large integer
15269 or a floating-point constant. If TARGET_SUPPORTS_WIDE_INT != 0,
15270 the value is always a floating point constant.
15272 When it is an integer, a CONST_DOUBLE is used whenever
15273 the constant requires 2 HWIs to be adequately represented.
15274 We output CONST_DOUBLEs as blocks. */
15275 if (mode
== VOIDmode
15276 || (GET_MODE (rtl
) == VOIDmode
15277 && GET_MODE_BITSIZE (mode
) != HOST_BITS_PER_DOUBLE_INT
))
15279 type_die
= base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
15280 if (type_die
== NULL
)
15282 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_const_type
), 0, 0);
15283 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15284 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15285 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15286 #if TARGET_SUPPORTS_WIDE_INT == 0
15287 if (!SCALAR_FLOAT_MODE_P (mode
))
15289 mem_loc_result
->dw_loc_oprnd2
.val_class
15290 = dw_val_class_const_double
;
15291 mem_loc_result
->dw_loc_oprnd2
.v
.val_double
15292 = rtx_to_double_int (rtl
);
15297 scalar_float_mode float_mode
= as_a
<scalar_float_mode
> (mode
);
15298 unsigned int length
= GET_MODE_SIZE (float_mode
);
15299 unsigned char *array
= ggc_vec_alloc
<unsigned char> (length
);
15301 insert_float (rtl
, array
);
15302 mem_loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_vec
;
15303 mem_loc_result
->dw_loc_oprnd2
.v
.val_vec
.length
= length
/ 4;
15304 mem_loc_result
->dw_loc_oprnd2
.v
.val_vec
.elt_size
= 4;
15305 mem_loc_result
->dw_loc_oprnd2
.v
.val_vec
.array
= array
;
15310 case CONST_WIDE_INT
:
15311 if (!dwarf_strict
|| dwarf_version
>= 5)
15313 dw_die_ref type_die
;
15315 type_die
= base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
15316 if (type_die
== NULL
)
15318 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_const_type
), 0, 0);
15319 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15320 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15321 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15322 mem_loc_result
->dw_loc_oprnd2
.val_class
15323 = dw_val_class_wide_int
;
15324 mem_loc_result
->dw_loc_oprnd2
.v
.val_wide
= ggc_alloc
<wide_int
> ();
15325 *mem_loc_result
->dw_loc_oprnd2
.v
.val_wide
= rtx_mode_t (rtl
, mode
);
15330 mem_loc_result
= scompare_loc_descriptor (DW_OP_eq
, rtl
, mem_mode
);
15334 mem_loc_result
= scompare_loc_descriptor (DW_OP_ge
, rtl
, mem_mode
);
15338 mem_loc_result
= scompare_loc_descriptor (DW_OP_gt
, rtl
, mem_mode
);
15342 mem_loc_result
= scompare_loc_descriptor (DW_OP_le
, rtl
, mem_mode
);
15346 mem_loc_result
= scompare_loc_descriptor (DW_OP_lt
, rtl
, mem_mode
);
15350 mem_loc_result
= scompare_loc_descriptor (DW_OP_ne
, rtl
, mem_mode
);
15354 mem_loc_result
= ucompare_loc_descriptor (DW_OP_ge
, rtl
, mem_mode
);
15358 mem_loc_result
= ucompare_loc_descriptor (DW_OP_gt
, rtl
, mem_mode
);
15362 mem_loc_result
= ucompare_loc_descriptor (DW_OP_le
, rtl
, mem_mode
);
15366 mem_loc_result
= ucompare_loc_descriptor (DW_OP_lt
, rtl
, mem_mode
);
15371 if (!SCALAR_INT_MODE_P (mode
))
15376 mem_loc_result
= minmax_loc_descriptor (rtl
, mode
, mem_mode
);
15381 if (CONST_INT_P (XEXP (rtl
, 1))
15382 && CONST_INT_P (XEXP (rtl
, 2))
15383 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
15384 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (rtl
, 0)), &inner_mode
)
15385 && GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
15386 && GET_MODE_SIZE (inner_mode
) <= DWARF2_ADDR_SIZE
15387 && ((unsigned) INTVAL (XEXP (rtl
, 1))
15388 + (unsigned) INTVAL (XEXP (rtl
, 2))
15389 <= GET_MODE_BITSIZE (int_mode
)))
15392 op0
= mem_loc_descriptor (XEXP (rtl
, 0), inner_mode
,
15393 mem_mode
, VAR_INIT_STATUS_INITIALIZED
);
15396 if (GET_CODE (rtl
) == SIGN_EXTRACT
)
15400 mem_loc_result
= op0
;
15401 size
= INTVAL (XEXP (rtl
, 1));
15402 shift
= INTVAL (XEXP (rtl
, 2));
15403 if (BITS_BIG_ENDIAN
)
15404 shift
= GET_MODE_BITSIZE (inner_mode
) - shift
- size
;
15405 if (shift
+ size
!= (int) DWARF2_ADDR_SIZE
)
15407 add_loc_descr (&mem_loc_result
,
15408 int_loc_descriptor (DWARF2_ADDR_SIZE
15410 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_shl
, 0, 0));
15412 if (size
!= (int) DWARF2_ADDR_SIZE
)
15414 add_loc_descr (&mem_loc_result
,
15415 int_loc_descriptor (DWARF2_ADDR_SIZE
- size
));
15416 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
15423 dw_loc_descr_ref op2
, bra_node
, drop_node
;
15424 op0
= mem_loc_descriptor (XEXP (rtl
, 0),
15425 GET_MODE (XEXP (rtl
, 0)) == VOIDmode
15426 ? word_mode
: GET_MODE (XEXP (rtl
, 0)),
15427 mem_mode
, VAR_INIT_STATUS_INITIALIZED
);
15428 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
15429 VAR_INIT_STATUS_INITIALIZED
);
15430 op2
= mem_loc_descriptor (XEXP (rtl
, 2), mode
, mem_mode
,
15431 VAR_INIT_STATUS_INITIALIZED
);
15432 if (op0
== NULL
|| op1
== NULL
|| op2
== NULL
)
15435 mem_loc_result
= op1
;
15436 add_loc_descr (&mem_loc_result
, op2
);
15437 add_loc_descr (&mem_loc_result
, op0
);
15438 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
15439 add_loc_descr (&mem_loc_result
, bra_node
);
15440 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_swap
, 0, 0));
15441 drop_node
= new_loc_descr (DW_OP_drop
, 0, 0);
15442 add_loc_descr (&mem_loc_result
, drop_node
);
15443 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15444 bra_node
->dw_loc_oprnd1
.v
.val_loc
= drop_node
;
15449 case FLOAT_TRUNCATE
:
15451 case UNSIGNED_FLOAT
:
15454 if (!dwarf_strict
|| dwarf_version
>= 5)
15456 dw_die_ref type_die
;
15457 dw_loc_descr_ref cvt
;
15459 op0
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (XEXP (rtl
, 0)),
15460 mem_mode
, VAR_INIT_STATUS_INITIALIZED
);
15463 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (rtl
, 0)), &int_mode
)
15464 && (GET_CODE (rtl
) == FLOAT
15465 || GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
))
15467 type_die
= base_type_for_mode (int_mode
,
15468 GET_CODE (rtl
) == UNSIGNED_FLOAT
);
15469 if (type_die
== NULL
)
15471 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15472 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15473 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15474 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15475 add_loc_descr (&op0
, cvt
);
15477 type_die
= base_type_for_mode (mode
, GET_CODE (rtl
) == UNSIGNED_FIX
);
15478 if (type_die
== NULL
)
15480 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15481 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15482 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15483 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15484 add_loc_descr (&op0
, cvt
);
15485 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
15486 && (GET_CODE (rtl
) == FIX
15487 || GET_MODE_SIZE (int_mode
) < DWARF2_ADDR_SIZE
))
15489 op0
= convert_descriptor_to_mode (int_mode
, op0
);
15493 mem_loc_result
= op0
;
15500 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
15501 mem_loc_result
= clz_loc_descriptor (rtl
, int_mode
, mem_mode
);
15506 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
15507 mem_loc_result
= popcount_loc_descriptor (rtl
, int_mode
, mem_mode
);
15511 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
15512 mem_loc_result
= bswap_loc_descriptor (rtl
, int_mode
, mem_mode
);
15517 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
15518 mem_loc_result
= rotate_loc_descriptor (rtl
, int_mode
, mem_mode
);
15522 /* In theory, we could implement the above. */
15523 /* DWARF cannot represent the unsigned compare operations
15548 case FRACT_CONVERT
:
15549 case UNSIGNED_FRACT_CONVERT
:
15551 case UNSIGNED_SAT_FRACT
:
15557 case VEC_DUPLICATE
:
15561 case STRICT_LOW_PART
:
15566 /* If delegitimize_address couldn't do anything with the UNSPEC, we
15567 can't express it in the debug info. This can happen e.g. with some
15572 resolve_one_addr (&rtl
);
15575 /* RTL sequences inside PARALLEL record a series of DWARF operations for
15576 the expression. An UNSPEC rtx represents a raw DWARF operation,
15577 new_loc_descr is called for it to build the operation directly.
15578 Otherwise mem_loc_descriptor is called recursively. */
15582 dw_loc_descr_ref exp_result
= NULL
;
15584 for (; index
< XVECLEN (rtl
, 0); index
++)
15586 rtx elem
= XVECEXP (rtl
, 0, index
);
15587 if (GET_CODE (elem
) == UNSPEC
)
15589 /* Each DWARF operation UNSPEC contain two operands, if
15590 one operand is not used for the operation, const0_rtx is
15592 gcc_assert (XVECLEN (elem
, 0) == 2);
15594 HOST_WIDE_INT dw_op
= XINT (elem
, 1);
15595 HOST_WIDE_INT oprnd1
= INTVAL (XVECEXP (elem
, 0, 0));
15596 HOST_WIDE_INT oprnd2
= INTVAL (XVECEXP (elem
, 0, 1));
15598 = new_loc_descr ((enum dwarf_location_atom
) dw_op
, oprnd1
,
15603 = mem_loc_descriptor (elem
, mode
, mem_mode
,
15604 VAR_INIT_STATUS_INITIALIZED
);
15606 if (!mem_loc_result
)
15607 mem_loc_result
= exp_result
;
15609 add_loc_descr (&mem_loc_result
, exp_result
);
15618 print_rtl (stderr
, rtl
);
15619 gcc_unreachable ();
15624 if (mem_loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
15625 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
15627 return mem_loc_result
;
15630 /* Return a descriptor that describes the concatenation of two locations.
15631 This is typically a complex variable. */
15633 static dw_loc_descr_ref
15634 concat_loc_descriptor (rtx x0
, rtx x1
, enum var_init_status initialized
)
15636 dw_loc_descr_ref cc_loc_result
= NULL
;
15637 dw_loc_descr_ref x0_ref
15638 = loc_descriptor (x0
, VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
15639 dw_loc_descr_ref x1_ref
15640 = loc_descriptor (x1
, VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
15642 if (x0_ref
== 0 || x1_ref
== 0)
15645 cc_loc_result
= x0_ref
;
15646 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x0
)));
15648 add_loc_descr (&cc_loc_result
, x1_ref
);
15649 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x1
)));
15651 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
15652 add_loc_descr (&cc_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
15654 return cc_loc_result
;
15657 /* Return a descriptor that describes the concatenation of N
15660 static dw_loc_descr_ref
15661 concatn_loc_descriptor (rtx concatn
, enum var_init_status initialized
)
15664 dw_loc_descr_ref cc_loc_result
= NULL
;
15665 unsigned int n
= XVECLEN (concatn
, 0);
15667 for (i
= 0; i
< n
; ++i
)
15669 dw_loc_descr_ref ref
;
15670 rtx x
= XVECEXP (concatn
, 0, i
);
15672 ref
= loc_descriptor (x
, VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
15676 add_loc_descr (&cc_loc_result
, ref
);
15677 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x
)));
15680 if (cc_loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
15681 add_loc_descr (&cc_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
15683 return cc_loc_result
;
15686 /* Helper function for loc_descriptor. Return DW_OP_implicit_pointer
15687 for DEBUG_IMPLICIT_PTR RTL. */
15689 static dw_loc_descr_ref
15690 implicit_ptr_descriptor (rtx rtl
, HOST_WIDE_INT offset
)
15692 dw_loc_descr_ref ret
;
15695 if (dwarf_strict
&& dwarf_version
< 5)
15697 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl
)) == VAR_DECL
15698 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl
)) == PARM_DECL
15699 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl
)) == RESULT_DECL
);
15700 ref
= lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl
));
15701 ret
= new_loc_descr (dwarf_OP (DW_OP_implicit_pointer
), 0, offset
);
15702 ret
->dw_loc_oprnd2
.val_class
= dw_val_class_const
;
15705 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15706 ret
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
15707 ret
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15711 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_decl_ref
;
15712 ret
->dw_loc_oprnd1
.v
.val_decl_ref
= DEBUG_IMPLICIT_PTR_DECL (rtl
);
15717 /* Output a proper Dwarf location descriptor for a variable or parameter
15718 which is either allocated in a register or in a memory location. For a
15719 register, we just generate an OP_REG and the register number. For a
15720 memory location we provide a Dwarf postfix expression describing how to
15721 generate the (dynamic) address of the object onto the address stack.
15723 MODE is mode of the decl if this loc_descriptor is going to be used in
15724 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
15725 allowed, VOIDmode otherwise.
15727 If we don't know how to describe it, return 0. */
15729 static dw_loc_descr_ref
15730 loc_descriptor (rtx rtl
, machine_mode mode
,
15731 enum var_init_status initialized
)
15733 dw_loc_descr_ref loc_result
= NULL
;
15734 scalar_int_mode int_mode
;
15736 switch (GET_CODE (rtl
))
15739 /* The case of a subreg may arise when we have a local (register)
15740 variable or a formal (register) parameter which doesn't quite fill
15741 up an entire register. For now, just assume that it is
15742 legitimate to make the Dwarf info refer to the whole register which
15743 contains the given subreg. */
15744 if (REG_P (SUBREG_REG (rtl
)) && subreg_lowpart_p (rtl
))
15745 loc_result
= loc_descriptor (SUBREG_REG (rtl
),
15746 GET_MODE (SUBREG_REG (rtl
)), initialized
);
15752 loc_result
= reg_loc_descriptor (rtl
, initialized
);
15756 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), get_address_mode (rtl
),
15757 GET_MODE (rtl
), initialized
);
15758 if (loc_result
== NULL
)
15759 loc_result
= tls_mem_loc_descriptor (rtl
);
15760 if (loc_result
== NULL
)
15762 rtx new_rtl
= avoid_constant_pool_reference (rtl
);
15763 if (new_rtl
!= rtl
)
15764 loc_result
= loc_descriptor (new_rtl
, mode
, initialized
);
15769 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1),
15774 loc_result
= concatn_loc_descriptor (rtl
, initialized
);
15779 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl
)) != PARALLEL
)
15781 rtx loc
= PAT_VAR_LOCATION_LOC (rtl
);
15782 if (GET_CODE (loc
) == EXPR_LIST
)
15783 loc
= XEXP (loc
, 0);
15784 loc_result
= loc_descriptor (loc
, mode
, initialized
);
15788 rtl
= XEXP (rtl
, 1);
15793 rtvec par_elems
= XVEC (rtl
, 0);
15794 int num_elem
= GET_NUM_ELEM (par_elems
);
15798 /* Create the first one, so we have something to add to. */
15799 loc_result
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, 0), 0),
15800 VOIDmode
, initialized
);
15801 if (loc_result
== NULL
)
15803 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, 0), 0));
15804 add_loc_descr_op_piece (&loc_result
, GET_MODE_SIZE (mode
));
15805 for (i
= 1; i
< num_elem
; i
++)
15807 dw_loc_descr_ref temp
;
15809 temp
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, i
), 0),
15810 VOIDmode
, initialized
);
15813 add_loc_descr (&loc_result
, temp
);
15814 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, i
), 0));
15815 add_loc_descr_op_piece (&loc_result
, GET_MODE_SIZE (mode
));
15821 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
15823 int_mode
= as_a
<scalar_int_mode
> (mode
);
15824 loc_result
= address_of_int_loc_descriptor (GET_MODE_SIZE (int_mode
),
15830 if (mode
== VOIDmode
)
15831 mode
= GET_MODE (rtl
);
15833 if (mode
!= VOIDmode
&& (dwarf_version
>= 4 || !dwarf_strict
))
15835 gcc_assert (mode
== GET_MODE (rtl
) || VOIDmode
== GET_MODE (rtl
));
15837 /* Note that a CONST_DOUBLE rtx could represent either an integer
15838 or a floating-point constant. A CONST_DOUBLE is used whenever
15839 the constant requires more than one word in order to be
15840 adequately represented. We output CONST_DOUBLEs as blocks. */
15841 scalar_mode smode
= as_a
<scalar_mode
> (mode
);
15842 loc_result
= new_loc_descr (DW_OP_implicit_value
,
15843 GET_MODE_SIZE (smode
), 0);
15844 #if TARGET_SUPPORTS_WIDE_INT == 0
15845 if (!SCALAR_FLOAT_MODE_P (smode
))
15847 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_const_double
;
15848 loc_result
->dw_loc_oprnd2
.v
.val_double
15849 = rtx_to_double_int (rtl
);
15854 unsigned int length
= GET_MODE_SIZE (smode
);
15855 unsigned char *array
= ggc_vec_alloc
<unsigned char> (length
);
15857 insert_float (rtl
, array
);
15858 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_vec
;
15859 loc_result
->dw_loc_oprnd2
.v
.val_vec
.length
= length
/ 4;
15860 loc_result
->dw_loc_oprnd2
.v
.val_vec
.elt_size
= 4;
15861 loc_result
->dw_loc_oprnd2
.v
.val_vec
.array
= array
;
15866 case CONST_WIDE_INT
:
15867 if (mode
== VOIDmode
)
15868 mode
= GET_MODE (rtl
);
15870 if (mode
!= VOIDmode
&& (dwarf_version
>= 4 || !dwarf_strict
))
15872 int_mode
= as_a
<scalar_int_mode
> (mode
);
15873 loc_result
= new_loc_descr (DW_OP_implicit_value
,
15874 GET_MODE_SIZE (int_mode
), 0);
15875 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_wide_int
;
15876 loc_result
->dw_loc_oprnd2
.v
.val_wide
= ggc_alloc
<wide_int
> ();
15877 *loc_result
->dw_loc_oprnd2
.v
.val_wide
= rtx_mode_t (rtl
, int_mode
);
15882 if (mode
== VOIDmode
)
15883 mode
= GET_MODE (rtl
);
15885 if (mode
!= VOIDmode
&& (dwarf_version
>= 4 || !dwarf_strict
))
15887 unsigned int elt_size
= GET_MODE_UNIT_SIZE (GET_MODE (rtl
));
15888 unsigned int length
= CONST_VECTOR_NUNITS (rtl
);
15889 unsigned char *array
15890 = ggc_vec_alloc
<unsigned char> (length
* elt_size
);
15893 machine_mode imode
= GET_MODE_INNER (mode
);
15895 gcc_assert (mode
== GET_MODE (rtl
) || VOIDmode
== GET_MODE (rtl
));
15896 switch (GET_MODE_CLASS (mode
))
15898 case MODE_VECTOR_INT
:
15899 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
15901 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
15902 insert_wide_int (rtx_mode_t (elt
, imode
), p
, elt_size
);
15906 case MODE_VECTOR_FLOAT
:
15907 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
15909 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
15910 insert_float (elt
, p
);
15915 gcc_unreachable ();
15918 loc_result
= new_loc_descr (DW_OP_implicit_value
,
15919 length
* elt_size
, 0);
15920 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_vec
;
15921 loc_result
->dw_loc_oprnd2
.v
.val_vec
.length
= length
;
15922 loc_result
->dw_loc_oprnd2
.v
.val_vec
.elt_size
= elt_size
;
15923 loc_result
->dw_loc_oprnd2
.v
.val_vec
.array
= array
;
15928 if (mode
== VOIDmode
15929 || CONST_SCALAR_INT_P (XEXP (rtl
, 0))
15930 || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl
, 0))
15931 || GET_CODE (XEXP (rtl
, 0)) == CONST_VECTOR
)
15933 loc_result
= loc_descriptor (XEXP (rtl
, 0), mode
, initialized
);
15938 if (!const_ok_for_output (rtl
))
15942 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
15943 && GET_MODE_SIZE (int_mode
) == DWARF2_ADDR_SIZE
15944 && (dwarf_version
>= 4 || !dwarf_strict
))
15946 loc_result
= new_addr_loc_descr (rtl
, dtprel_false
);
15947 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_stack_value
, 0, 0));
15948 vec_safe_push (used_rtx_array
, rtl
);
15952 case DEBUG_IMPLICIT_PTR
:
15953 loc_result
= implicit_ptr_descriptor (rtl
, 0);
15957 if (GET_CODE (XEXP (rtl
, 0)) == DEBUG_IMPLICIT_PTR
15958 && CONST_INT_P (XEXP (rtl
, 1)))
15961 = implicit_ptr_descriptor (XEXP (rtl
, 0), INTVAL (XEXP (rtl
, 1)));
15967 if ((is_a
<scalar_int_mode
> (mode
, &int_mode
)
15968 && GET_MODE (rtl
) == int_mode
15969 && GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
15970 && dwarf_version
>= 4)
15971 || (!dwarf_strict
&& mode
!= VOIDmode
&& mode
!= BLKmode
))
15973 /* Value expression. */
15974 loc_result
= mem_loc_descriptor (rtl
, mode
, VOIDmode
, initialized
);
15976 add_loc_descr (&loc_result
,
15977 new_loc_descr (DW_OP_stack_value
, 0, 0));
15985 /* We need to figure out what section we should use as the base for the
15986 address ranges where a given location is valid.
15987 1. If this particular DECL has a section associated with it, use that.
15988 2. If this function has a section associated with it, use that.
15989 3. Otherwise, use the text section.
15990 XXX: If you split a variable across multiple sections, we won't notice. */
15992 static const char *
15993 secname_for_decl (const_tree decl
)
15995 const char *secname
;
15997 if (VAR_OR_FUNCTION_DECL_P (decl
)
15998 && (DECL_EXTERNAL (decl
) || TREE_PUBLIC (decl
) || TREE_STATIC (decl
))
15999 && DECL_SECTION_NAME (decl
))
16000 secname
= DECL_SECTION_NAME (decl
);
16001 else if (current_function_decl
&& DECL_SECTION_NAME (current_function_decl
))
16002 secname
= DECL_SECTION_NAME (current_function_decl
);
16003 else if (cfun
&& in_cold_section_p
)
16004 secname
= crtl
->subsections
.cold_section_label
;
16006 secname
= text_section_label
;
16011 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
16014 decl_by_reference_p (tree decl
)
16016 return ((TREE_CODE (decl
) == PARM_DECL
|| TREE_CODE (decl
) == RESULT_DECL
16018 && DECL_BY_REFERENCE (decl
));
16021 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
16024 static dw_loc_descr_ref
16025 dw_loc_list_1 (tree loc
, rtx varloc
, int want_address
,
16026 enum var_init_status initialized
)
16028 int have_address
= 0;
16029 dw_loc_descr_ref descr
;
16032 if (want_address
!= 2)
16034 gcc_assert (GET_CODE (varloc
) == VAR_LOCATION
);
16036 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc
)) != PARALLEL
)
16038 varloc
= PAT_VAR_LOCATION_LOC (varloc
);
16039 if (GET_CODE (varloc
) == EXPR_LIST
)
16040 varloc
= XEXP (varloc
, 0);
16041 mode
= GET_MODE (varloc
);
16042 if (MEM_P (varloc
))
16044 rtx addr
= XEXP (varloc
, 0);
16045 descr
= mem_loc_descriptor (addr
, get_address_mode (varloc
),
16046 mode
, initialized
);
16051 rtx x
= avoid_constant_pool_reference (varloc
);
16053 descr
= mem_loc_descriptor (x
, mode
, VOIDmode
,
16058 descr
= mem_loc_descriptor (varloc
, mode
, VOIDmode
, initialized
);
16065 if (GET_CODE (varloc
) == VAR_LOCATION
)
16066 mode
= DECL_MODE (PAT_VAR_LOCATION_DECL (varloc
));
16068 mode
= DECL_MODE (loc
);
16069 descr
= loc_descriptor (varloc
, mode
, initialized
);
16076 if (want_address
== 2 && !have_address
16077 && (dwarf_version
>= 4 || !dwarf_strict
))
16079 if (int_size_in_bytes (TREE_TYPE (loc
)) > DWARF2_ADDR_SIZE
)
16081 expansion_failed (loc
, NULL_RTX
,
16082 "DWARF address size mismatch");
16085 add_loc_descr (&descr
, new_loc_descr (DW_OP_stack_value
, 0, 0));
16088 /* Show if we can't fill the request for an address. */
16089 if (want_address
&& !have_address
)
16091 expansion_failed (loc
, NULL_RTX
,
16092 "Want address and only have value");
16096 /* If we've got an address and don't want one, dereference. */
16097 if (!want_address
&& have_address
)
16099 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
16100 enum dwarf_location_atom op
;
16102 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
16104 expansion_failed (loc
, NULL_RTX
,
16105 "DWARF address size mismatch");
16108 else if (size
== DWARF2_ADDR_SIZE
)
16111 op
= DW_OP_deref_size
;
16113 add_loc_descr (&descr
, new_loc_descr (op
, size
, 0));
16119 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
16120 if it is not possible. */
16122 static dw_loc_descr_ref
16123 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize
, HOST_WIDE_INT offset
)
16125 if ((bitsize
% BITS_PER_UNIT
) == 0 && offset
== 0)
16126 return new_loc_descr (DW_OP_piece
, bitsize
/ BITS_PER_UNIT
, 0);
16127 else if (dwarf_version
>= 3 || !dwarf_strict
)
16128 return new_loc_descr (DW_OP_bit_piece
, bitsize
, offset
);
16133 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
16134 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
16136 static dw_loc_descr_ref
16137 dw_sra_loc_expr (tree decl
, rtx loc
)
16140 unsigned HOST_WIDE_INT padsize
= 0;
16141 dw_loc_descr_ref descr
, *descr_tail
;
16142 unsigned HOST_WIDE_INT decl_size
;
16144 enum var_init_status initialized
;
16146 if (DECL_SIZE (decl
) == NULL
16147 || !tree_fits_uhwi_p (DECL_SIZE (decl
)))
16150 decl_size
= tree_to_uhwi (DECL_SIZE (decl
));
16152 descr_tail
= &descr
;
16154 for (p
= loc
; p
; p
= XEXP (p
, 1))
16156 unsigned HOST_WIDE_INT bitsize
= decl_piece_bitsize (p
);
16157 rtx loc_note
= *decl_piece_varloc_ptr (p
);
16158 dw_loc_descr_ref cur_descr
;
16159 dw_loc_descr_ref
*tail
, last
= NULL
;
16160 unsigned HOST_WIDE_INT opsize
= 0;
16162 if (loc_note
== NULL_RTX
16163 || NOTE_VAR_LOCATION_LOC (loc_note
) == NULL_RTX
)
16165 padsize
+= bitsize
;
16168 initialized
= NOTE_VAR_LOCATION_STATUS (loc_note
);
16169 varloc
= NOTE_VAR_LOCATION (loc_note
);
16170 cur_descr
= dw_loc_list_1 (decl
, varloc
, 2, initialized
);
16171 if (cur_descr
== NULL
)
16173 padsize
+= bitsize
;
16177 /* Check that cur_descr either doesn't use
16178 DW_OP_*piece operations, or their sum is equal
16179 to bitsize. Otherwise we can't embed it. */
16180 for (tail
= &cur_descr
; *tail
!= NULL
;
16181 tail
= &(*tail
)->dw_loc_next
)
16182 if ((*tail
)->dw_loc_opc
== DW_OP_piece
)
16184 opsize
+= (*tail
)->dw_loc_oprnd1
.v
.val_unsigned
16188 else if ((*tail
)->dw_loc_opc
== DW_OP_bit_piece
)
16190 opsize
+= (*tail
)->dw_loc_oprnd1
.v
.val_unsigned
;
16194 if (last
!= NULL
&& opsize
!= bitsize
)
16196 padsize
+= bitsize
;
16197 /* Discard the current piece of the descriptor and release any
16198 addr_table entries it uses. */
16199 remove_loc_list_addr_table_entries (cur_descr
);
16203 /* If there is a hole, add DW_OP_*piece after empty DWARF
16204 expression, which means that those bits are optimized out. */
16207 if (padsize
> decl_size
)
16209 remove_loc_list_addr_table_entries (cur_descr
);
16210 goto discard_descr
;
16212 decl_size
-= padsize
;
16213 *descr_tail
= new_loc_descr_op_bit_piece (padsize
, 0);
16214 if (*descr_tail
== NULL
)
16216 remove_loc_list_addr_table_entries (cur_descr
);
16217 goto discard_descr
;
16219 descr_tail
= &(*descr_tail
)->dw_loc_next
;
16222 *descr_tail
= cur_descr
;
16224 if (bitsize
> decl_size
)
16225 goto discard_descr
;
16226 decl_size
-= bitsize
;
16229 HOST_WIDE_INT offset
= 0;
16230 if (GET_CODE (varloc
) == VAR_LOCATION
16231 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc
)) != PARALLEL
)
16233 varloc
= PAT_VAR_LOCATION_LOC (varloc
);
16234 if (GET_CODE (varloc
) == EXPR_LIST
)
16235 varloc
= XEXP (varloc
, 0);
16239 if (GET_CODE (varloc
) == CONST
16240 || GET_CODE (varloc
) == SIGN_EXTEND
16241 || GET_CODE (varloc
) == ZERO_EXTEND
)
16242 varloc
= XEXP (varloc
, 0);
16243 else if (GET_CODE (varloc
) == SUBREG
)
16244 varloc
= SUBREG_REG (varloc
);
16249 /* DW_OP_bit_size offset should be zero for register
16250 or implicit location descriptions and empty location
16251 descriptions, but for memory addresses needs big endian
16253 if (MEM_P (varloc
))
16255 unsigned HOST_WIDE_INT memsize
16256 = MEM_SIZE (varloc
) * BITS_PER_UNIT
;
16257 if (memsize
!= bitsize
)
16259 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
16260 && (memsize
> BITS_PER_WORD
|| bitsize
> BITS_PER_WORD
))
16261 goto discard_descr
;
16262 if (memsize
< bitsize
)
16263 goto discard_descr
;
16264 if (BITS_BIG_ENDIAN
)
16265 offset
= memsize
- bitsize
;
16269 *descr_tail
= new_loc_descr_op_bit_piece (bitsize
, offset
);
16270 if (*descr_tail
== NULL
)
16271 goto discard_descr
;
16272 descr_tail
= &(*descr_tail
)->dw_loc_next
;
16276 /* If there were any non-empty expressions, add padding till the end of
16278 if (descr
!= NULL
&& decl_size
!= 0)
16280 *descr_tail
= new_loc_descr_op_bit_piece (decl_size
, 0);
16281 if (*descr_tail
== NULL
)
16282 goto discard_descr
;
16287 /* Discard the descriptor and release any addr_table entries it uses. */
16288 remove_loc_list_addr_table_entries (descr
);
16292 /* Return the dwarf representation of the location list LOC_LIST of
16293 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
16296 static dw_loc_list_ref
16297 dw_loc_list (var_loc_list
*loc_list
, tree decl
, int want_address
)
16299 const char *endname
, *secname
;
16301 enum var_init_status initialized
;
16302 struct var_loc_node
*node
;
16303 dw_loc_descr_ref descr
;
16304 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
16305 dw_loc_list_ref list
= NULL
;
16306 dw_loc_list_ref
*listp
= &list
;
16308 /* Now that we know what section we are using for a base,
16309 actually construct the list of locations.
16310 The first location information is what is passed to the
16311 function that creates the location list, and the remaining
16312 locations just get added on to that list.
16313 Note that we only know the start address for a location
16314 (IE location changes), so to build the range, we use
16315 the range [current location start, next location start].
16316 This means we have to special case the last node, and generate
16317 a range of [last location start, end of function label]. */
16319 secname
= secname_for_decl (decl
);
16321 for (node
= loc_list
->first
; node
; node
= node
->next
)
16322 if (GET_CODE (node
->loc
) == EXPR_LIST
16323 || NOTE_VAR_LOCATION_LOC (node
->loc
) != NULL_RTX
)
16325 if (GET_CODE (node
->loc
) == EXPR_LIST
)
16327 /* This requires DW_OP_{,bit_}piece, which is not usable
16328 inside DWARF expressions. */
16329 if (want_address
!= 2)
16331 descr
= dw_sra_loc_expr (decl
, node
->loc
);
16337 initialized
= NOTE_VAR_LOCATION_STATUS (node
->loc
);
16338 varloc
= NOTE_VAR_LOCATION (node
->loc
);
16339 descr
= dw_loc_list_1 (decl
, varloc
, want_address
, initialized
);
16343 bool range_across_switch
= false;
16344 /* If section switch happens in between node->label
16345 and node->next->label (or end of function) and
16346 we can't emit it as a single entry list,
16347 emit two ranges, first one ending at the end
16348 of first partition and second one starting at the
16349 beginning of second partition. */
16350 if (node
== loc_list
->last_before_switch
16351 && (node
!= loc_list
->first
|| loc_list
->first
->next
)
16352 && current_function_decl
)
16354 endname
= cfun
->fde
->dw_fde_end
;
16355 range_across_switch
= true;
16357 /* The variable has a location between NODE->LABEL and
16358 NODE->NEXT->LABEL. */
16359 else if (node
->next
)
16360 endname
= node
->next
->label
;
16361 /* If the variable has a location at the last label
16362 it keeps its location until the end of function. */
16363 else if (!current_function_decl
)
16364 endname
= text_end_label
;
16367 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
16368 current_function_funcdef_no
);
16369 endname
= ggc_strdup (label_id
);
16372 *listp
= new_loc_list (descr
, node
->label
, endname
, secname
);
16373 if (TREE_CODE (decl
) == PARM_DECL
16374 && node
== loc_list
->first
16375 && NOTE_P (node
->loc
)
16376 && strcmp (node
->label
, endname
) == 0)
16377 (*listp
)->force
= true;
16378 listp
= &(*listp
)->dw_loc_next
;
16380 if (range_across_switch
)
16382 if (GET_CODE (node
->loc
) == EXPR_LIST
)
16383 descr
= dw_sra_loc_expr (decl
, node
->loc
);
16386 initialized
= NOTE_VAR_LOCATION_STATUS (node
->loc
);
16387 varloc
= NOTE_VAR_LOCATION (node
->loc
);
16388 descr
= dw_loc_list_1 (decl
, varloc
, want_address
,
16391 gcc_assert (descr
);
16392 /* The variable has a location between NODE->LABEL and
16393 NODE->NEXT->LABEL. */
16395 endname
= node
->next
->label
;
16397 endname
= cfun
->fde
->dw_fde_second_end
;
16398 *listp
= new_loc_list (descr
,
16399 cfun
->fde
->dw_fde_second_begin
,
16401 listp
= &(*listp
)->dw_loc_next
;
16406 /* Try to avoid the overhead of a location list emitting a location
16407 expression instead, but only if we didn't have more than one
16408 location entry in the first place. If some entries were not
16409 representable, we don't want to pretend a single entry that was
16410 applies to the entire scope in which the variable is
16412 if (list
&& loc_list
->first
->next
)
16418 /* Return if the loc_list has only single element and thus can be represented
16419 as location description. */
16422 single_element_loc_list_p (dw_loc_list_ref list
)
16424 gcc_assert (!list
->dw_loc_next
|| list
->ll_symbol
);
16425 return !list
->ll_symbol
;
16428 /* Duplicate a single element of location list. */
16430 static inline dw_loc_descr_ref
16431 copy_loc_descr (dw_loc_descr_ref ref
)
16433 dw_loc_descr_ref copy
= ggc_alloc
<dw_loc_descr_node
> ();
16434 memcpy (copy
, ref
, sizeof (dw_loc_descr_node
));
16438 /* To each location in list LIST append loc descr REF. */
16441 add_loc_descr_to_each (dw_loc_list_ref list
, dw_loc_descr_ref ref
)
16443 dw_loc_descr_ref copy
;
16444 add_loc_descr (&list
->expr
, ref
);
16445 list
= list
->dw_loc_next
;
16448 copy
= copy_loc_descr (ref
);
16449 add_loc_descr (&list
->expr
, copy
);
16450 while (copy
->dw_loc_next
)
16451 copy
= copy
->dw_loc_next
= copy_loc_descr (copy
->dw_loc_next
);
16452 list
= list
->dw_loc_next
;
16456 /* To each location in list LIST prepend loc descr REF. */
16459 prepend_loc_descr_to_each (dw_loc_list_ref list
, dw_loc_descr_ref ref
)
16461 dw_loc_descr_ref copy
;
16462 dw_loc_descr_ref ref_end
= list
->expr
;
16463 add_loc_descr (&ref
, list
->expr
);
16465 list
= list
->dw_loc_next
;
16468 dw_loc_descr_ref end
= list
->expr
;
16469 list
->expr
= copy
= copy_loc_descr (ref
);
16470 while (copy
->dw_loc_next
!= ref_end
)
16471 copy
= copy
->dw_loc_next
= copy_loc_descr (copy
->dw_loc_next
);
16472 copy
->dw_loc_next
= end
;
16473 list
= list
->dw_loc_next
;
16477 /* Given two lists RET and LIST
16478 produce location list that is result of adding expression in LIST
16479 to expression in RET on each position in program.
16480 Might be destructive on both RET and LIST.
16482 TODO: We handle only simple cases of RET or LIST having at most one
16483 element. General case would involve sorting the lists in program order
16484 and merging them that will need some additional work.
16485 Adding that will improve quality of debug info especially for SRA-ed
16489 add_loc_list (dw_loc_list_ref
*ret
, dw_loc_list_ref list
)
16498 if (!list
->dw_loc_next
)
16500 add_loc_descr_to_each (*ret
, list
->expr
);
16503 if (!(*ret
)->dw_loc_next
)
16505 prepend_loc_descr_to_each (list
, (*ret
)->expr
);
16509 expansion_failed (NULL_TREE
, NULL_RTX
,
16510 "Don't know how to merge two non-trivial"
16511 " location lists.\n");
16516 /* LOC is constant expression. Try a luck, look it up in constant
16517 pool and return its loc_descr of its address. */
16519 static dw_loc_descr_ref
16520 cst_pool_loc_descr (tree loc
)
16522 /* Get an RTL for this, if something has been emitted. */
16523 rtx rtl
= lookup_constant_def (loc
);
16525 if (!rtl
|| !MEM_P (rtl
))
16530 gcc_assert (GET_CODE (XEXP (rtl
, 0)) == SYMBOL_REF
);
16532 /* TODO: We might get more coverage if we was actually delaying expansion
16533 of all expressions till end of compilation when constant pools are fully
16535 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl
, 0))))
16537 expansion_failed (loc
, NULL_RTX
,
16538 "CST value in contant pool but not marked.");
16541 return mem_loc_descriptor (XEXP (rtl
, 0), get_address_mode (rtl
),
16542 GET_MODE (rtl
), VAR_INIT_STATUS_INITIALIZED
);
16545 /* Return dw_loc_list representing address of addr_expr LOC
16546 by looking for inner INDIRECT_REF expression and turning
16547 it into simple arithmetics.
16549 See loc_list_from_tree for the meaning of CONTEXT. */
16551 static dw_loc_list_ref
16552 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc
, bool toplev
,
16553 loc_descr_context
*context
)
16556 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
16558 int unsignedp
, reversep
, volatilep
= 0;
16559 dw_loc_list_ref list_ret
= NULL
, list_ret1
= NULL
;
16561 obj
= get_inner_reference (TREE_OPERAND (loc
, 0),
16562 &bitsize
, &bitpos
, &offset
, &mode
,
16563 &unsignedp
, &reversep
, &volatilep
);
16565 if (bitpos
% BITS_PER_UNIT
)
16567 expansion_failed (loc
, NULL_RTX
, "bitfield access");
16570 if (!INDIRECT_REF_P (obj
))
16572 expansion_failed (obj
,
16573 NULL_RTX
, "no indirect ref in inner refrence");
16576 if (!offset
&& !bitpos
)
16577 list_ret
= loc_list_from_tree (TREE_OPERAND (obj
, 0), toplev
? 2 : 1,
16580 && int_size_in_bytes (TREE_TYPE (loc
)) <= DWARF2_ADDR_SIZE
16581 && (dwarf_version
>= 4 || !dwarf_strict
))
16583 list_ret
= loc_list_from_tree (TREE_OPERAND (obj
, 0), 0, context
);
16588 /* Variable offset. */
16589 list_ret1
= loc_list_from_tree (offset
, 0, context
);
16590 if (list_ret1
== 0)
16592 add_loc_list (&list_ret
, list_ret1
);
16595 add_loc_descr_to_each (list_ret
,
16596 new_loc_descr (DW_OP_plus
, 0, 0));
16598 bytepos
= bitpos
/ BITS_PER_UNIT
;
16600 add_loc_descr_to_each (list_ret
,
16601 new_loc_descr (DW_OP_plus_uconst
,
16603 else if (bytepos
< 0)
16604 loc_list_plus_const (list_ret
, bytepos
);
16605 add_loc_descr_to_each (list_ret
,
16606 new_loc_descr (DW_OP_stack_value
, 0, 0));
16611 /* Set LOC to the next operation that is not a DW_OP_nop operation. In the case
16612 all operations from LOC are nops, move to the last one. Insert in NOPS all
16613 operations that are skipped. */
16616 loc_descr_to_next_no_nop (dw_loc_descr_ref
&loc
,
16617 hash_set
<dw_loc_descr_ref
> &nops
)
16619 while (loc
->dw_loc_next
!= NULL
&& loc
->dw_loc_opc
== DW_OP_nop
)
16622 loc
= loc
->dw_loc_next
;
16626 /* Helper for loc_descr_without_nops: free the location description operation
16630 free_loc_descr (const dw_loc_descr_ref
&loc
, void *data ATTRIBUTE_UNUSED
)
16636 /* Remove all DW_OP_nop operations from LOC except, if it exists, the one that
16640 loc_descr_without_nops (dw_loc_descr_ref
&loc
)
16642 if (loc
->dw_loc_opc
== DW_OP_nop
&& loc
->dw_loc_next
== NULL
)
16645 /* Set of all DW_OP_nop operations we remove. */
16646 hash_set
<dw_loc_descr_ref
> nops
;
16648 /* First, strip all prefix NOP operations in order to keep the head of the
16649 operations list. */
16650 loc_descr_to_next_no_nop (loc
, nops
);
16652 for (dw_loc_descr_ref cur
= loc
; cur
!= NULL
;)
16654 /* For control flow operations: strip "prefix" nops in destination
16656 if (cur
->dw_loc_oprnd1
.val_class
== dw_val_class_loc
)
16657 loc_descr_to_next_no_nop (cur
->dw_loc_oprnd1
.v
.val_loc
, nops
);
16658 if (cur
->dw_loc_oprnd2
.val_class
== dw_val_class_loc
)
16659 loc_descr_to_next_no_nop (cur
->dw_loc_oprnd2
.v
.val_loc
, nops
);
16661 /* Do the same for the operations that follow, then move to the next
16663 if (cur
->dw_loc_next
!= NULL
)
16664 loc_descr_to_next_no_nop (cur
->dw_loc_next
, nops
);
16665 cur
= cur
->dw_loc_next
;
16668 nops
.traverse
<void *, free_loc_descr
> (NULL
);
16672 struct dwarf_procedure_info
;
16674 /* Helper structure for location descriptions generation. */
16675 struct loc_descr_context
16677 /* The type that is implicitly referenced by DW_OP_push_object_address, or
16678 NULL_TREE if DW_OP_push_object_address in invalid for this location
16679 description. This is used when processing PLACEHOLDER_EXPR nodes. */
16681 /* The ..._DECL node that should be translated as a
16682 DW_OP_push_object_address operation. */
16684 /* Information about the DWARF procedure we are currently generating. NULL if
16685 we are not generating a DWARF procedure. */
16686 struct dwarf_procedure_info
*dpi
;
16687 /* True if integral PLACEHOLDER_EXPR stands for the first argument passed
16688 by consumer. Used for DW_TAG_generic_subrange attributes. */
16689 bool placeholder_arg
;
16690 /* True if PLACEHOLDER_EXPR has been seen. */
16691 bool placeholder_seen
;
16694 /* DWARF procedures generation
16696 DWARF expressions (aka. location descriptions) are used to encode variable
16697 things such as sizes or offsets. Such computations can have redundant parts
16698 that can be factorized in order to reduce the size of the output debug
16699 information. This is the whole point of DWARF procedures.
16701 Thanks to stor-layout.c, size and offset expressions in GENERIC trees are
16702 already factorized into functions ("size functions") in order to handle very
16703 big and complex types. Such functions are quite simple: they have integral
16704 arguments, they return an integral result and their body contains only a
16705 return statement with arithmetic expressions. This is the only kind of
16706 function we are interested in translating into DWARF procedures, here.
16708 DWARF expressions and DWARF procedure are executed using a stack, so we have
16709 to define some calling convention for them to interact. Let's say that:
16711 - Before calling a DWARF procedure, DWARF expressions must push on the stack
16712 all arguments in reverse order (right-to-left) so that when the DWARF
16713 procedure execution starts, the first argument is the top of the stack.
16715 - Then, when returning, the DWARF procedure must have consumed all arguments
16716 on the stack, must have pushed the result and touched nothing else.
16718 - Each integral argument and the result are integral types can be hold in a
16721 - We call "frame offset" the number of stack slots that are "under DWARF
16722 procedure control": it includes the arguments slots, the temporaries and
16723 the result slot. Thus, it is equal to the number of arguments when the
16724 procedure execution starts and must be equal to one (the result) when it
16727 /* Helper structure used when generating operations for a DWARF procedure. */
16728 struct dwarf_procedure_info
16730 /* The FUNCTION_DECL node corresponding to the DWARF procedure that is
16731 currently translated. */
16733 /* The number of arguments FNDECL takes. */
16734 unsigned args_count
;
16737 /* Return a pointer to a newly created DIE node for a DWARF procedure. Add
16738 LOCATION as its DW_AT_location attribute. If FNDECL is not NULL_TREE,
16739 equate it to this DIE. */
16742 new_dwarf_proc_die (dw_loc_descr_ref location
, tree fndecl
,
16743 dw_die_ref parent_die
)
16745 dw_die_ref dwarf_proc_die
;
16747 if ((dwarf_version
< 3 && dwarf_strict
)
16748 || location
== NULL
)
16751 dwarf_proc_die
= new_die (DW_TAG_dwarf_procedure
, parent_die
, fndecl
);
16753 equate_decl_number_to_die (fndecl
, dwarf_proc_die
);
16754 add_AT_loc (dwarf_proc_die
, DW_AT_location
, location
);
16755 return dwarf_proc_die
;
16758 /* Return whether TYPE is a supported type as a DWARF procedure argument
16759 type or return type (we handle only scalar types and pointer types that
16760 aren't wider than the DWARF expression evaluation stack. */
16763 is_handled_procedure_type (tree type
)
16765 return ((INTEGRAL_TYPE_P (type
)
16766 || TREE_CODE (type
) == OFFSET_TYPE
16767 || TREE_CODE (type
) == POINTER_TYPE
)
16768 && int_size_in_bytes (type
) <= DWARF2_ADDR_SIZE
);
16771 /* Helper for resolve_args_picking: do the same but stop when coming across
16772 visited nodes. For each node we visit, register in FRAME_OFFSETS the frame
16773 offset *before* evaluating the corresponding operation. */
16776 resolve_args_picking_1 (dw_loc_descr_ref loc
, unsigned initial_frame_offset
,
16777 struct dwarf_procedure_info
*dpi
,
16778 hash_map
<dw_loc_descr_ref
, unsigned> &frame_offsets
)
16780 /* The "frame_offset" identifier is already used to name a macro... */
16781 unsigned frame_offset_
= initial_frame_offset
;
16782 dw_loc_descr_ref l
;
16784 for (l
= loc
; l
!= NULL
;)
16787 unsigned &l_frame_offset
= frame_offsets
.get_or_insert (l
, &existed
);
16789 /* If we already met this node, there is nothing to compute anymore. */
16792 /* Make sure that the stack size is consistent wherever the execution
16793 flow comes from. */
16794 gcc_assert ((unsigned) l_frame_offset
== frame_offset_
);
16797 l_frame_offset
= frame_offset_
;
16799 /* If needed, relocate the picking offset with respect to the frame
16801 if (l
->frame_offset_rel
)
16803 unsigned HOST_WIDE_INT off
;
16804 switch (l
->dw_loc_opc
)
16807 off
= l
->dw_loc_oprnd1
.v
.val_unsigned
;
16816 gcc_unreachable ();
16818 /* frame_offset_ is the size of the current stack frame, including
16819 incoming arguments. Besides, the arguments are pushed
16820 right-to-left. Thus, in order to access the Nth argument from
16821 this operation node, the picking has to skip temporaries *plus*
16822 one stack slot per argument (0 for the first one, 1 for the second
16825 The targetted argument number (N) is already set as the operand,
16826 and the number of temporaries can be computed with:
16827 frame_offsets_ - dpi->args_count */
16828 off
+= frame_offset_
- dpi
->args_count
;
16830 /* DW_OP_pick handles only offsets from 0 to 255 (inclusive)... */
16836 l
->dw_loc_opc
= DW_OP_dup
;
16837 l
->dw_loc_oprnd1
.v
.val_unsigned
= 0;
16841 l
->dw_loc_opc
= DW_OP_over
;
16842 l
->dw_loc_oprnd1
.v
.val_unsigned
= 0;
16846 l
->dw_loc_opc
= DW_OP_pick
;
16847 l
->dw_loc_oprnd1
.v
.val_unsigned
= off
;
16851 /* Update frame_offset according to the effect the current operation has
16853 switch (l
->dw_loc_opc
)
16861 case DW_OP_plus_uconst
:
16897 case DW_OP_deref_size
:
16899 case DW_OP_bit_piece
:
16900 case DW_OP_implicit_value
:
16901 case DW_OP_stack_value
:
16905 case DW_OP_const1u
:
16906 case DW_OP_const1s
:
16907 case DW_OP_const2u
:
16908 case DW_OP_const2s
:
16909 case DW_OP_const4u
:
16910 case DW_OP_const4s
:
16911 case DW_OP_const8u
:
16912 case DW_OP_const8s
:
16983 case DW_OP_push_object_address
:
16984 case DW_OP_call_frame_cfa
:
16985 case DW_OP_GNU_variable_value
:
17010 case DW_OP_xderef_size
:
17016 case DW_OP_call_ref
:
17018 dw_die_ref dwarf_proc
= l
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
17019 int *stack_usage
= dwarf_proc_stack_usage_map
->get (dwarf_proc
);
17021 if (stack_usage
== NULL
)
17023 frame_offset_
+= *stack_usage
;
17027 case DW_OP_implicit_pointer
:
17028 case DW_OP_entry_value
:
17029 case DW_OP_const_type
:
17030 case DW_OP_regval_type
:
17031 case DW_OP_deref_type
:
17032 case DW_OP_convert
:
17033 case DW_OP_reinterpret
:
17034 case DW_OP_form_tls_address
:
17035 case DW_OP_GNU_push_tls_address
:
17036 case DW_OP_GNU_uninit
:
17037 case DW_OP_GNU_encoded_addr
:
17038 case DW_OP_GNU_implicit_pointer
:
17039 case DW_OP_GNU_entry_value
:
17040 case DW_OP_GNU_const_type
:
17041 case DW_OP_GNU_regval_type
:
17042 case DW_OP_GNU_deref_type
:
17043 case DW_OP_GNU_convert
:
17044 case DW_OP_GNU_reinterpret
:
17045 case DW_OP_GNU_parameter_ref
:
17046 /* loc_list_from_tree will probably not output these operations for
17047 size functions, so assume they will not appear here. */
17048 /* Fall through... */
17051 gcc_unreachable ();
17054 /* Now, follow the control flow (except subroutine calls). */
17055 switch (l
->dw_loc_opc
)
17058 if (!resolve_args_picking_1 (l
->dw_loc_next
, frame_offset_
, dpi
,
17061 /* Fall through. */
17064 l
= l
->dw_loc_oprnd1
.v
.val_loc
;
17067 case DW_OP_stack_value
:
17071 l
= l
->dw_loc_next
;
17079 /* Make a DFS over operations reachable through LOC (i.e. follow branch
17080 operations) in order to resolve the operand of DW_OP_pick operations that
17081 target DWARF procedure arguments (DPI). INITIAL_FRAME_OFFSET is the frame
17082 offset *before* LOC is executed. Return if all relocations were
17086 resolve_args_picking (dw_loc_descr_ref loc
, unsigned initial_frame_offset
,
17087 struct dwarf_procedure_info
*dpi
)
17089 /* Associate to all visited operations the frame offset *before* evaluating
17091 hash_map
<dw_loc_descr_ref
, unsigned> frame_offsets
;
17093 return resolve_args_picking_1 (loc
, initial_frame_offset
, dpi
,
17097 /* Try to generate a DWARF procedure that computes the same result as FNDECL.
17098 Return NULL if it is not possible. */
17101 function_to_dwarf_procedure (tree fndecl
)
17103 struct loc_descr_context ctx
;
17104 struct dwarf_procedure_info dpi
;
17105 dw_die_ref dwarf_proc_die
;
17106 tree tree_body
= DECL_SAVED_TREE (fndecl
);
17107 dw_loc_descr_ref loc_body
, epilogue
;
17112 /* Do not generate multiple DWARF procedures for the same function
17114 dwarf_proc_die
= lookup_decl_die (fndecl
);
17115 if (dwarf_proc_die
!= NULL
)
17116 return dwarf_proc_die
;
17118 /* DWARF procedures are available starting with the DWARFv3 standard. */
17119 if (dwarf_version
< 3 && dwarf_strict
)
17122 /* We handle only functions for which we still have a body, that return a
17123 supported type and that takes arguments with supported types. Note that
17124 there is no point translating functions that return nothing. */
17125 if (tree_body
== NULL_TREE
17126 || DECL_RESULT (fndecl
) == NULL_TREE
17127 || !is_handled_procedure_type (TREE_TYPE (DECL_RESULT (fndecl
))))
17130 for (cursor
= DECL_ARGUMENTS (fndecl
);
17131 cursor
!= NULL_TREE
;
17132 cursor
= TREE_CHAIN (cursor
))
17133 if (!is_handled_procedure_type (TREE_TYPE (cursor
)))
17136 /* Match only "expr" in: RETURN_EXPR (MODIFY_EXPR (RESULT_DECL, expr)). */
17137 if (TREE_CODE (tree_body
) != RETURN_EXPR
)
17139 tree_body
= TREE_OPERAND (tree_body
, 0);
17140 if (TREE_CODE (tree_body
) != MODIFY_EXPR
17141 || TREE_OPERAND (tree_body
, 0) != DECL_RESULT (fndecl
))
17143 tree_body
= TREE_OPERAND (tree_body
, 1);
17145 /* Try to translate the body expression itself. Note that this will probably
17146 cause an infinite recursion if its call graph has a cycle. This is very
17147 unlikely for size functions, however, so don't bother with such things at
17149 ctx
.context_type
= NULL_TREE
;
17150 ctx
.base_decl
= NULL_TREE
;
17152 ctx
.placeholder_arg
= false;
17153 ctx
.placeholder_seen
= false;
17154 dpi
.fndecl
= fndecl
;
17155 dpi
.args_count
= list_length (DECL_ARGUMENTS (fndecl
));
17156 loc_body
= loc_descriptor_from_tree (tree_body
, 0, &ctx
);
17160 /* After evaluating all operands in "loc_body", we should still have on the
17161 stack all arguments plus the desired function result (top of the stack).
17162 Generate code in order to keep only the result in our stack frame. */
17164 for (i
= 0; i
< dpi
.args_count
; ++i
)
17166 dw_loc_descr_ref op_couple
= new_loc_descr (DW_OP_swap
, 0, 0);
17167 op_couple
->dw_loc_next
= new_loc_descr (DW_OP_drop
, 0, 0);
17168 op_couple
->dw_loc_next
->dw_loc_next
= epilogue
;
17169 epilogue
= op_couple
;
17171 add_loc_descr (&loc_body
, epilogue
);
17172 if (!resolve_args_picking (loc_body
, dpi
.args_count
, &dpi
))
17175 /* Trailing nops from loc_descriptor_from_tree (if any) cannot be removed
17176 because they are considered useful. Now there is an epilogue, they are
17177 not anymore, so give it another try. */
17178 loc_descr_without_nops (loc_body
);
17180 /* fndecl may be used both as a regular DW_TAG_subprogram DIE and as
17181 a DW_TAG_dwarf_procedure, so we may have a conflict, here. It's unlikely,
17182 though, given that size functions do not come from source, so they should
17183 not have a dedicated DW_TAG_subprogram DIE. */
17185 = new_dwarf_proc_die (loc_body
, fndecl
,
17186 get_context_die (DECL_CONTEXT (fndecl
)));
17188 /* The called DWARF procedure consumes one stack slot per argument and
17189 returns one stack slot. */
17190 dwarf_proc_stack_usage_map
->put (dwarf_proc_die
, 1 - dpi
.args_count
);
17192 return dwarf_proc_die
;
17196 /* Generate Dwarf location list representing LOC.
17197 If WANT_ADDRESS is false, expression computing LOC will be computed
17198 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
17199 if WANT_ADDRESS is 2, expression computing address useable in location
17200 will be returned (i.e. DW_OP_reg can be used
17201 to refer to register values).
17203 CONTEXT provides information to customize the location descriptions
17204 generation. Its context_type field specifies what type is implicitly
17205 referenced by DW_OP_push_object_address. If it is NULL_TREE, this operation
17206 will not be generated.
17208 Its DPI field determines whether we are generating a DWARF expression for a
17209 DWARF procedure, so PARM_DECL references are processed specifically.
17211 If CONTEXT is NULL, the behavior is the same as if context_type, base_decl
17212 and dpi fields were null. */
17214 static dw_loc_list_ref
17215 loc_list_from_tree_1 (tree loc
, int want_address
,
17216 struct loc_descr_context
*context
)
17218 dw_loc_descr_ref ret
= NULL
, ret1
= NULL
;
17219 dw_loc_list_ref list_ret
= NULL
, list_ret1
= NULL
;
17220 int have_address
= 0;
17221 enum dwarf_location_atom op
;
17223 /* ??? Most of the time we do not take proper care for sign/zero
17224 extending the values properly. Hopefully this won't be a real
17227 if (context
!= NULL
17228 && context
->base_decl
== loc
17229 && want_address
== 0)
17231 if (dwarf_version
>= 3 || !dwarf_strict
)
17232 return new_loc_list (new_loc_descr (DW_OP_push_object_address
, 0, 0),
17238 switch (TREE_CODE (loc
))
17241 expansion_failed (loc
, NULL_RTX
, "ERROR_MARK");
17244 case PLACEHOLDER_EXPR
:
17245 /* This case involves extracting fields from an object to determine the
17246 position of other fields. It is supposed to appear only as the first
17247 operand of COMPONENT_REF nodes and to reference precisely the type
17248 that the context allows. */
17249 if (context
!= NULL
17250 && TREE_TYPE (loc
) == context
->context_type
17251 && want_address
>= 1)
17253 if (dwarf_version
>= 3 || !dwarf_strict
)
17255 ret
= new_loc_descr (DW_OP_push_object_address
, 0, 0);
17262 /* For DW_TAG_generic_subrange attributes, PLACEHOLDER_EXPR stands for
17263 the single argument passed by consumer. */
17264 else if (context
!= NULL
17265 && context
->placeholder_arg
17266 && INTEGRAL_TYPE_P (TREE_TYPE (loc
))
17267 && want_address
== 0)
17269 ret
= new_loc_descr (DW_OP_pick
, 0, 0);
17270 ret
->frame_offset_rel
= 1;
17271 context
->placeholder_seen
= true;
17275 expansion_failed (loc
, NULL_RTX
,
17276 "PLACEHOLDER_EXPR for an unexpected type");
17281 const int nargs
= call_expr_nargs (loc
);
17282 tree callee
= get_callee_fndecl (loc
);
17284 dw_die_ref dwarf_proc
;
17286 if (callee
== NULL_TREE
)
17287 goto call_expansion_failed
;
17289 /* We handle only functions that return an integer. */
17290 if (!is_handled_procedure_type (TREE_TYPE (TREE_TYPE (callee
))))
17291 goto call_expansion_failed
;
17293 dwarf_proc
= function_to_dwarf_procedure (callee
);
17294 if (dwarf_proc
== NULL
)
17295 goto call_expansion_failed
;
17297 /* Evaluate arguments right-to-left so that the first argument will
17298 be the top-most one on the stack. */
17299 for (i
= nargs
- 1; i
>= 0; --i
)
17301 dw_loc_descr_ref loc_descr
17302 = loc_descriptor_from_tree (CALL_EXPR_ARG (loc
, i
), 0,
17305 if (loc_descr
== NULL
)
17306 goto call_expansion_failed
;
17308 add_loc_descr (&ret
, loc_descr
);
17311 ret1
= new_loc_descr (DW_OP_call4
, 0, 0);
17312 ret1
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
17313 ret1
->dw_loc_oprnd1
.v
.val_die_ref
.die
= dwarf_proc
;
17314 ret1
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
17315 add_loc_descr (&ret
, ret1
);
17318 call_expansion_failed
:
17319 expansion_failed (loc
, NULL_RTX
, "CALL_EXPR");
17320 /* There are no opcodes for these operations. */
17324 case PREINCREMENT_EXPR
:
17325 case PREDECREMENT_EXPR
:
17326 case POSTINCREMENT_EXPR
:
17327 case POSTDECREMENT_EXPR
:
17328 expansion_failed (loc
, NULL_RTX
, "PRE/POST INDCREMENT/DECREMENT");
17329 /* There are no opcodes for these operations. */
17333 /* If we already want an address, see if there is INDIRECT_REF inside
17334 e.g. for &this->field. */
17337 list_ret
= loc_list_for_address_of_addr_expr_of_indirect_ref
17338 (loc
, want_address
== 2, context
);
17341 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc
, 0))
17342 && (ret
= cst_pool_loc_descr (loc
)))
17345 /* Otherwise, process the argument and look for the address. */
17346 if (!list_ret
&& !ret
)
17347 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 1, context
);
17351 expansion_failed (loc
, NULL_RTX
, "need address of ADDR_EXPR");
17357 if (DECL_THREAD_LOCAL_P (loc
))
17360 enum dwarf_location_atom tls_op
;
17361 enum dtprel_bool dtprel
= dtprel_false
;
17363 if (targetm
.have_tls
)
17365 /* If this is not defined, we have no way to emit the
17367 if (!targetm
.asm_out
.output_dwarf_dtprel
)
17370 /* The way DW_OP_GNU_push_tls_address is specified, we
17371 can only look up addresses of objects in the current
17372 module. We used DW_OP_addr as first op, but that's
17373 wrong, because DW_OP_addr is relocated by the debug
17374 info consumer, while DW_OP_GNU_push_tls_address
17375 operand shouldn't be. */
17376 if (DECL_EXTERNAL (loc
) && !targetm
.binds_local_p (loc
))
17378 dtprel
= dtprel_true
;
17379 /* We check for DWARF 5 here because gdb did not implement
17380 DW_OP_form_tls_address until after 7.12. */
17381 tls_op
= (dwarf_version
>= 5 ? DW_OP_form_tls_address
17382 : DW_OP_GNU_push_tls_address
);
17386 if (!targetm
.emutls
.debug_form_tls_address
17387 || !(dwarf_version
>= 3 || !dwarf_strict
))
17389 /* We stuffed the control variable into the DECL_VALUE_EXPR
17390 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
17391 no longer appear in gimple code. We used the control
17392 variable in specific so that we could pick it up here. */
17393 loc
= DECL_VALUE_EXPR (loc
);
17394 tls_op
= DW_OP_form_tls_address
;
17397 rtl
= rtl_for_decl_location (loc
);
17398 if (rtl
== NULL_RTX
)
17403 rtl
= XEXP (rtl
, 0);
17404 if (! CONSTANT_P (rtl
))
17407 ret
= new_addr_loc_descr (rtl
, dtprel
);
17408 ret1
= new_loc_descr (tls_op
, 0, 0);
17409 add_loc_descr (&ret
, ret1
);
17417 if (context
!= NULL
&& context
->dpi
!= NULL
17418 && DECL_CONTEXT (loc
) == context
->dpi
->fndecl
)
17420 /* We are generating code for a DWARF procedure and we want to access
17421 one of its arguments: find the appropriate argument offset and let
17422 the resolve_args_picking pass compute the offset that complies
17423 with the stack frame size. */
17427 for (cursor
= DECL_ARGUMENTS (context
->dpi
->fndecl
);
17428 cursor
!= NULL_TREE
&& cursor
!= loc
;
17429 cursor
= TREE_CHAIN (cursor
), ++i
)
17431 /* If we are translating a DWARF procedure, all referenced parameters
17432 must belong to the current function. */
17433 gcc_assert (cursor
!= NULL_TREE
);
17435 ret
= new_loc_descr (DW_OP_pick
, i
, 0);
17436 ret
->frame_offset_rel
= 1;
17442 if (DECL_HAS_VALUE_EXPR_P (loc
))
17443 return loc_list_from_tree_1 (DECL_VALUE_EXPR (loc
),
17444 want_address
, context
);
17447 case FUNCTION_DECL
:
17450 var_loc_list
*loc_list
= lookup_decl_loc (loc
);
17452 if (loc_list
&& loc_list
->first
)
17454 list_ret
= dw_loc_list (loc_list
, loc
, want_address
);
17455 have_address
= want_address
!= 0;
17458 rtl
= rtl_for_decl_location (loc
);
17459 if (rtl
== NULL_RTX
)
17461 if (TREE_CODE (loc
) != FUNCTION_DECL
17463 && current_function_decl
17464 && want_address
!= 1
17465 && ! DECL_IGNORED_P (loc
)
17466 && (INTEGRAL_TYPE_P (TREE_TYPE (loc
))
17467 || POINTER_TYPE_P (TREE_TYPE (loc
)))
17468 && DECL_CONTEXT (loc
) == current_function_decl
17469 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (loc
)))
17470 <= DWARF2_ADDR_SIZE
))
17472 dw_die_ref ref
= lookup_decl_die (loc
);
17473 ret
= new_loc_descr (DW_OP_GNU_variable_value
, 0, 0);
17476 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
17477 ret
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
17478 ret
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
17482 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_decl_ref
;
17483 ret
->dw_loc_oprnd1
.v
.val_decl_ref
= loc
;
17487 expansion_failed (loc
, NULL_RTX
, "DECL has no RTL");
17490 else if (CONST_INT_P (rtl
))
17492 HOST_WIDE_INT val
= INTVAL (rtl
);
17493 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
17494 val
&= GET_MODE_MASK (DECL_MODE (loc
));
17495 ret
= int_loc_descriptor (val
);
17497 else if (GET_CODE (rtl
) == CONST_STRING
)
17499 expansion_failed (loc
, NULL_RTX
, "CONST_STRING");
17502 else if (CONSTANT_P (rtl
) && const_ok_for_output (rtl
))
17503 ret
= new_addr_loc_descr (rtl
, dtprel_false
);
17506 machine_mode mode
, mem_mode
;
17508 /* Certain constructs can only be represented at top-level. */
17509 if (want_address
== 2)
17511 ret
= loc_descriptor (rtl
, VOIDmode
,
17512 VAR_INIT_STATUS_INITIALIZED
);
17517 mode
= GET_MODE (rtl
);
17518 mem_mode
= VOIDmode
;
17522 mode
= get_address_mode (rtl
);
17523 rtl
= XEXP (rtl
, 0);
17526 ret
= mem_loc_descriptor (rtl
, mode
, mem_mode
,
17527 VAR_INIT_STATUS_INITIALIZED
);
17530 expansion_failed (loc
, rtl
,
17531 "failed to produce loc descriptor for rtl");
17537 if (!integer_zerop (TREE_OPERAND (loc
, 1)))
17544 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
17548 case TARGET_MEM_REF
:
17550 case DEBUG_EXPR_DECL
:
17553 case COMPOUND_EXPR
:
17554 return loc_list_from_tree_1 (TREE_OPERAND (loc
, 1), want_address
,
17558 case VIEW_CONVERT_EXPR
:
17561 case NON_LVALUE_EXPR
:
17562 return loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), want_address
,
17565 case COMPONENT_REF
:
17566 case BIT_FIELD_REF
:
17568 case ARRAY_RANGE_REF
:
17569 case REALPART_EXPR
:
17570 case IMAGPART_EXPR
:
17573 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
17575 int unsignedp
, reversep
, volatilep
= 0;
17577 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
17578 &unsignedp
, &reversep
, &volatilep
);
17580 gcc_assert (obj
!= loc
);
17582 list_ret
= loc_list_from_tree_1 (obj
,
17584 && !bitpos
&& !offset
? 2 : 1,
17586 /* TODO: We can extract value of the small expression via shifting even
17587 for nonzero bitpos. */
17590 if (bitpos
% BITS_PER_UNIT
!= 0 || bitsize
% BITS_PER_UNIT
!= 0)
17592 expansion_failed (loc
, NULL_RTX
,
17593 "bitfield access");
17597 if (offset
!= NULL_TREE
)
17599 /* Variable offset. */
17600 list_ret1
= loc_list_from_tree_1 (offset
, 0, context
);
17601 if (list_ret1
== 0)
17603 add_loc_list (&list_ret
, list_ret1
);
17606 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_plus
, 0, 0));
17609 bytepos
= bitpos
/ BITS_PER_UNIT
;
17611 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_plus_uconst
, bytepos
, 0));
17612 else if (bytepos
< 0)
17613 loc_list_plus_const (list_ret
, bytepos
);
17620 if ((want_address
|| !tree_fits_shwi_p (loc
))
17621 && (ret
= cst_pool_loc_descr (loc
)))
17623 else if (want_address
== 2
17624 && tree_fits_shwi_p (loc
)
17625 && (ret
= address_of_int_loc_descriptor
17626 (int_size_in_bytes (TREE_TYPE (loc
)),
17627 tree_to_shwi (loc
))))
17629 else if (tree_fits_shwi_p (loc
))
17630 ret
= int_loc_descriptor (tree_to_shwi (loc
));
17631 else if (tree_fits_uhwi_p (loc
))
17632 ret
= uint_loc_descriptor (tree_to_uhwi (loc
));
17635 expansion_failed (loc
, NULL_RTX
,
17636 "Integer operand is not host integer");
17645 if ((ret
= cst_pool_loc_descr (loc
)))
17647 else if (TREE_CODE (loc
) == CONSTRUCTOR
)
17649 tree type
= TREE_TYPE (loc
);
17650 unsigned HOST_WIDE_INT size
= int_size_in_bytes (type
);
17651 unsigned HOST_WIDE_INT offset
= 0;
17652 unsigned HOST_WIDE_INT cnt
;
17653 constructor_elt
*ce
;
17655 if (TREE_CODE (type
) == RECORD_TYPE
)
17657 /* This is very limited, but it's enough to output
17658 pointers to member functions, as long as the
17659 referenced function is defined in the current
17660 translation unit. */
17661 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (loc
), cnt
, ce
)
17663 tree val
= ce
->value
;
17665 tree field
= ce
->index
;
17670 if (!field
|| DECL_BIT_FIELD (field
))
17672 expansion_failed (loc
, NULL_RTX
,
17673 "bitfield in record type constructor");
17674 size
= offset
= (unsigned HOST_WIDE_INT
)-1;
17679 HOST_WIDE_INT fieldsize
= tree_to_shwi (DECL_SIZE_UNIT (field
));
17680 unsigned HOST_WIDE_INT pos
= int_byte_position (field
);
17681 gcc_assert (pos
+ fieldsize
<= size
);
17684 expansion_failed (loc
, NULL_RTX
,
17685 "out-of-order fields in record constructor");
17686 size
= offset
= (unsigned HOST_WIDE_INT
)-1;
17692 ret1
= new_loc_descr (DW_OP_piece
, pos
- offset
, 0);
17693 add_loc_descr (&ret
, ret1
);
17696 if (val
&& fieldsize
!= 0)
17698 ret1
= loc_descriptor_from_tree (val
, want_address
, context
);
17701 expansion_failed (loc
, NULL_RTX
,
17702 "unsupported expression in field");
17703 size
= offset
= (unsigned HOST_WIDE_INT
)-1;
17707 add_loc_descr (&ret
, ret1
);
17711 ret1
= new_loc_descr (DW_OP_piece
, fieldsize
, 0);
17712 add_loc_descr (&ret
, ret1
);
17713 offset
= pos
+ fieldsize
;
17717 if (offset
!= size
)
17719 ret1
= new_loc_descr (DW_OP_piece
, size
- offset
, 0);
17720 add_loc_descr (&ret
, ret1
);
17724 have_address
= !!want_address
;
17727 expansion_failed (loc
, NULL_RTX
,
17728 "constructor of non-record type");
17731 /* We can construct small constants here using int_loc_descriptor. */
17732 expansion_failed (loc
, NULL_RTX
,
17733 "constructor or constant not in constant pool");
17736 case TRUTH_AND_EXPR
:
17737 case TRUTH_ANDIF_EXPR
:
17742 case TRUTH_XOR_EXPR
:
17747 case TRUTH_OR_EXPR
:
17748 case TRUTH_ORIF_EXPR
:
17753 case FLOOR_DIV_EXPR
:
17754 case CEIL_DIV_EXPR
:
17755 case ROUND_DIV_EXPR
:
17756 case TRUNC_DIV_EXPR
:
17757 case EXACT_DIV_EXPR
:
17758 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
17767 case FLOOR_MOD_EXPR
:
17768 case CEIL_MOD_EXPR
:
17769 case ROUND_MOD_EXPR
:
17770 case TRUNC_MOD_EXPR
:
17771 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
17776 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
17777 list_ret1
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 1), 0, context
);
17778 if (list_ret
== 0 || list_ret1
== 0)
17781 add_loc_list (&list_ret
, list_ret1
);
17784 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_over
, 0, 0));
17785 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_over
, 0, 0));
17786 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_div
, 0, 0));
17787 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_mul
, 0, 0));
17788 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_minus
, 0, 0));
17800 op
= (TYPE_UNSIGNED (TREE_TYPE (loc
)) ? DW_OP_shr
: DW_OP_shra
);
17803 case POINTER_PLUS_EXPR
:
17806 if (tree_fits_shwi_p (TREE_OPERAND (loc
, 1)))
17808 /* Big unsigned numbers can fit in HOST_WIDE_INT but it may be
17809 smarter to encode their opposite. The DW_OP_plus_uconst operation
17810 takes 1 + X bytes, X being the size of the ULEB128 addend. On the
17811 other hand, a "<push literal>; DW_OP_minus" pattern takes 1 + Y
17812 bytes, Y being the size of the operation that pushes the opposite
17813 of the addend. So let's choose the smallest representation. */
17814 const tree tree_addend
= TREE_OPERAND (loc
, 1);
17815 offset_int wi_addend
;
17816 HOST_WIDE_INT shwi_addend
;
17817 dw_loc_descr_ref loc_naddend
;
17819 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
17823 /* Try to get the literal to push. It is the opposite of the addend,
17824 so as we rely on wrapping during DWARF evaluation, first decode
17825 the literal as a "DWARF-sized" signed number. */
17826 wi_addend
= wi::to_offset (tree_addend
);
17827 wi_addend
= wi::sext (wi_addend
, DWARF2_ADDR_SIZE
* 8);
17828 shwi_addend
= wi_addend
.to_shwi ();
17829 loc_naddend
= (shwi_addend
!= INTTYPE_MINIMUM (HOST_WIDE_INT
))
17830 ? int_loc_descriptor (-shwi_addend
)
17833 if (loc_naddend
!= NULL
17834 && ((unsigned) size_of_uleb128 (shwi_addend
)
17835 > size_of_loc_descr (loc_naddend
)))
17837 add_loc_descr_to_each (list_ret
, loc_naddend
);
17838 add_loc_descr_to_each (list_ret
,
17839 new_loc_descr (DW_OP_minus
, 0, 0));
17843 for (dw_loc_descr_ref loc_cur
= loc_naddend
; loc_cur
!= NULL
; )
17845 loc_naddend
= loc_cur
;
17846 loc_cur
= loc_cur
->dw_loc_next
;
17847 ggc_free (loc_naddend
);
17849 loc_list_plus_const (list_ret
, wi_addend
.to_shwi ());
17859 goto do_comp_binop
;
17863 goto do_comp_binop
;
17867 goto do_comp_binop
;
17871 goto do_comp_binop
;
17874 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
17876 list_ret
= loc_list_from_tree (TREE_OPERAND (loc
, 0), 0, context
);
17877 list_ret1
= loc_list_from_tree (TREE_OPERAND (loc
, 1), 0, context
);
17878 list_ret
= loc_list_from_uint_comparison (list_ret
, list_ret1
,
17894 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
17895 list_ret1
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 1), 0, context
);
17896 if (list_ret
== 0 || list_ret1
== 0)
17899 add_loc_list (&list_ret
, list_ret1
);
17902 add_loc_descr_to_each (list_ret
, new_loc_descr (op
, 0, 0));
17905 case TRUTH_NOT_EXPR
:
17919 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
17923 add_loc_descr_to_each (list_ret
, new_loc_descr (op
, 0, 0));
17929 const enum tree_code code
=
17930 TREE_CODE (loc
) == MIN_EXPR
? GT_EXPR
: LT_EXPR
;
17932 loc
= build3 (COND_EXPR
, TREE_TYPE (loc
),
17933 build2 (code
, integer_type_node
,
17934 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
17935 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
17942 dw_loc_descr_ref lhs
17943 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0, context
);
17944 dw_loc_list_ref rhs
17945 = loc_list_from_tree_1 (TREE_OPERAND (loc
, 2), 0, context
);
17946 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
17948 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
17949 if (list_ret
== 0 || lhs
== 0 || rhs
== 0)
17952 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
17953 add_loc_descr_to_each (list_ret
, bra_node
);
17955 add_loc_list (&list_ret
, rhs
);
17956 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
17957 add_loc_descr_to_each (list_ret
, jump_node
);
17959 add_loc_descr_to_each (list_ret
, lhs
);
17960 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
17961 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
17963 /* ??? Need a node to point the skip at. Use a nop. */
17964 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
17965 add_loc_descr_to_each (list_ret
, tmp
);
17966 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
17967 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
17971 case FIX_TRUNC_EXPR
:
17975 /* Leave front-end specific codes as simply unknown. This comes
17976 up, for instance, with the C STMT_EXPR. */
17977 if ((unsigned int) TREE_CODE (loc
)
17978 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
17980 expansion_failed (loc
, NULL_RTX
,
17981 "language specific tree node");
17985 /* Otherwise this is a generic code; we should just lists all of
17986 these explicitly. We forgot one. */
17988 gcc_unreachable ();
17990 /* In a release build, we want to degrade gracefully: better to
17991 generate incomplete debugging information than to crash. */
17995 if (!ret
&& !list_ret
)
17998 if (want_address
== 2 && !have_address
17999 && (dwarf_version
>= 4 || !dwarf_strict
))
18001 if (int_size_in_bytes (TREE_TYPE (loc
)) > DWARF2_ADDR_SIZE
)
18003 expansion_failed (loc
, NULL_RTX
,
18004 "DWARF address size mismatch");
18008 add_loc_descr (&ret
, new_loc_descr (DW_OP_stack_value
, 0, 0));
18010 add_loc_descr_to_each (list_ret
,
18011 new_loc_descr (DW_OP_stack_value
, 0, 0));
18014 /* Show if we can't fill the request for an address. */
18015 if (want_address
&& !have_address
)
18017 expansion_failed (loc
, NULL_RTX
,
18018 "Want address and only have value");
18022 gcc_assert (!ret
|| !list_ret
);
18024 /* If we've got an address and don't want one, dereference. */
18025 if (!want_address
&& have_address
)
18027 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
18029 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
18031 expansion_failed (loc
, NULL_RTX
,
18032 "DWARF address size mismatch");
18035 else if (size
== DWARF2_ADDR_SIZE
)
18038 op
= DW_OP_deref_size
;
18041 add_loc_descr (&ret
, new_loc_descr (op
, size
, 0));
18043 add_loc_descr_to_each (list_ret
, new_loc_descr (op
, size
, 0));
18046 list_ret
= new_loc_list (ret
, NULL
, NULL
, NULL
);
18051 /* Likewise, but strip useless DW_OP_nop operations in the resulting
18054 static dw_loc_list_ref
18055 loc_list_from_tree (tree loc
, int want_address
,
18056 struct loc_descr_context
*context
)
18058 dw_loc_list_ref result
= loc_list_from_tree_1 (loc
, want_address
, context
);
18060 for (dw_loc_list_ref loc_cur
= result
;
18061 loc_cur
!= NULL
; loc_cur
= loc_cur
->dw_loc_next
)
18062 loc_descr_without_nops (loc_cur
->expr
);
18066 /* Same as above but return only single location expression. */
18067 static dw_loc_descr_ref
18068 loc_descriptor_from_tree (tree loc
, int want_address
,
18069 struct loc_descr_context
*context
)
18071 dw_loc_list_ref ret
= loc_list_from_tree (loc
, want_address
, context
);
18074 if (ret
->dw_loc_next
)
18076 expansion_failed (loc
, NULL_RTX
,
18077 "Location list where only loc descriptor needed");
18083 /* Given a value, round it up to the lowest multiple of `boundary'
18084 which is not less than the value itself. */
18086 static inline HOST_WIDE_INT
18087 ceiling (HOST_WIDE_INT value
, unsigned int boundary
)
18089 return (((value
+ boundary
- 1) / boundary
) * boundary
);
18092 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
18093 pointer to the declared type for the relevant field variable, or return
18094 `integer_type_node' if the given node turns out to be an
18095 ERROR_MARK node. */
18098 field_type (const_tree decl
)
18102 if (TREE_CODE (decl
) == ERROR_MARK
)
18103 return integer_type_node
;
18105 type
= DECL_BIT_FIELD_TYPE (decl
);
18106 if (type
== NULL_TREE
)
18107 type
= TREE_TYPE (decl
);
18112 /* Given a pointer to a tree node, return the alignment in bits for
18113 it, or else return BITS_PER_WORD if the node actually turns out to
18114 be an ERROR_MARK node. */
18116 static inline unsigned
18117 simple_type_align_in_bits (const_tree type
)
18119 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
18122 static inline unsigned
18123 simple_decl_align_in_bits (const_tree decl
)
18125 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
18128 /* Return the result of rounding T up to ALIGN. */
18130 static inline offset_int
18131 round_up_to_align (const offset_int
&t
, unsigned int align
)
18133 return wi::udiv_trunc (t
+ align
- 1, align
) * align
;
18136 /* Compute the size of TYPE in bytes. If possible, return NULL and store the
18137 size as an integer constant in CST_SIZE. Otherwise, if possible, return a
18138 DWARF expression that computes the size. Return NULL and set CST_SIZE to -1
18139 if we fail to return the size in one of these two forms. */
18141 static dw_loc_descr_ref
18142 type_byte_size (const_tree type
, HOST_WIDE_INT
*cst_size
)
18145 struct loc_descr_context ctx
;
18147 /* Return a constant integer in priority, if possible. */
18148 *cst_size
= int_size_in_bytes (type
);
18149 if (*cst_size
!= -1)
18152 ctx
.context_type
= const_cast<tree
> (type
);
18153 ctx
.base_decl
= NULL_TREE
;
18155 ctx
.placeholder_arg
= false;
18156 ctx
.placeholder_seen
= false;
18158 type
= TYPE_MAIN_VARIANT (type
);
18159 tree_size
= TYPE_SIZE_UNIT (type
);
18160 return ((tree_size
!= NULL_TREE
)
18161 ? loc_descriptor_from_tree (tree_size
, 0, &ctx
)
18165 /* Helper structure for RECORD_TYPE processing. */
18168 /* Root RECORD_TYPE. It is needed to generate data member location
18169 descriptions in variable-length records (VLR), but also to cope with
18170 variants, which are composed of nested structures multiplexed with
18171 QUAL_UNION_TYPE nodes. Each time such a structure is passed to a
18172 function processing a FIELD_DECL, it is required to be non null. */
18174 /* When generating a variant part in a RECORD_TYPE (i.e. a nested
18175 QUAL_UNION_TYPE), this holds an expression that computes the offset for
18176 this variant part as part of the root record (in storage units). For
18177 regular records, it must be NULL_TREE. */
18178 tree variant_part_offset
;
18181 /* Given a pointer to a FIELD_DECL, compute the byte offset of the lowest
18182 addressed byte of the "containing object" for the given FIELD_DECL. If
18183 possible, return a native constant through CST_OFFSET (in which case NULL is
18184 returned); otherwise return a DWARF expression that computes the offset.
18186 Set *CST_OFFSET to 0 and return NULL if we are unable to determine what
18187 that offset is, either because the argument turns out to be a pointer to an
18188 ERROR_MARK node, or because the offset expression is too complex for us.
18190 CTX is required: see the comment for VLR_CONTEXT. */
18192 static dw_loc_descr_ref
18193 field_byte_offset (const_tree decl
, struct vlr_context
*ctx
,
18194 HOST_WIDE_INT
*cst_offset
)
18197 dw_loc_list_ref loc_result
;
18201 if (TREE_CODE (decl
) == ERROR_MARK
)
18204 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
);
18206 /* We cannot handle variable bit offsets at the moment, so abort if it's the
18208 if (TREE_CODE (DECL_FIELD_BIT_OFFSET (decl
)) != INTEGER_CST
)
18211 #ifdef PCC_BITFIELD_TYPE_MATTERS
18212 /* We used to handle only constant offsets in all cases. Now, we handle
18213 properly dynamic byte offsets only when PCC bitfield type doesn't
18215 if (PCC_BITFIELD_TYPE_MATTERS
18216 && TREE_CODE (DECL_FIELD_OFFSET (decl
)) == INTEGER_CST
)
18218 offset_int object_offset_in_bits
;
18219 offset_int object_offset_in_bytes
;
18220 offset_int bitpos_int
;
18222 tree field_size_tree
;
18223 offset_int deepest_bitpos
;
18224 offset_int field_size_in_bits
;
18225 unsigned int type_align_in_bits
;
18226 unsigned int decl_align_in_bits
;
18227 offset_int type_size_in_bits
;
18229 bitpos_int
= wi::to_offset (bit_position (decl
));
18230 type
= field_type (decl
);
18231 type_size_in_bits
= offset_int_type_size_in_bits (type
);
18232 type_align_in_bits
= simple_type_align_in_bits (type
);
18234 field_size_tree
= DECL_SIZE (decl
);
18236 /* The size could be unspecified if there was an error, or for
18237 a flexible array member. */
18238 if (!field_size_tree
)
18239 field_size_tree
= bitsize_zero_node
;
18241 /* If the size of the field is not constant, use the type size. */
18242 if (TREE_CODE (field_size_tree
) == INTEGER_CST
)
18243 field_size_in_bits
= wi::to_offset (field_size_tree
);
18245 field_size_in_bits
= type_size_in_bits
;
18247 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
18249 /* The GCC front-end doesn't make any attempt to keep track of the
18250 starting bit offset (relative to the start of the containing
18251 structure type) of the hypothetical "containing object" for a
18252 bit-field. Thus, when computing the byte offset value for the
18253 start of the "containing object" of a bit-field, we must deduce
18254 this information on our own. This can be rather tricky to do in
18255 some cases. For example, handling the following structure type
18256 definition when compiling for an i386/i486 target (which only
18257 aligns long long's to 32-bit boundaries) can be very tricky:
18259 struct S { int field1; long long field2:31; };
18261 Fortunately, there is a simple rule-of-thumb which can be used
18262 in such cases. When compiling for an i386/i486, GCC will
18263 allocate 8 bytes for the structure shown above. It decides to
18264 do this based upon one simple rule for bit-field allocation.
18265 GCC allocates each "containing object" for each bit-field at
18266 the first (i.e. lowest addressed) legitimate alignment boundary
18267 (based upon the required minimum alignment for the declared
18268 type of the field) which it can possibly use, subject to the
18269 condition that there is still enough available space remaining
18270 in the containing object (when allocated at the selected point)
18271 to fully accommodate all of the bits of the bit-field itself.
18273 This simple rule makes it obvious why GCC allocates 8 bytes for
18274 each object of the structure type shown above. When looking
18275 for a place to allocate the "containing object" for `field2',
18276 the compiler simply tries to allocate a 64-bit "containing
18277 object" at each successive 32-bit boundary (starting at zero)
18278 until it finds a place to allocate that 64- bit field such that
18279 at least 31 contiguous (and previously unallocated) bits remain
18280 within that selected 64 bit field. (As it turns out, for the
18281 example above, the compiler finds it is OK to allocate the
18282 "containing object" 64-bit field at bit-offset zero within the
18285 Here we attempt to work backwards from the limited set of facts
18286 we're given, and we try to deduce from those facts, where GCC
18287 must have believed that the containing object started (within
18288 the structure type). The value we deduce is then used (by the
18289 callers of this routine) to generate DW_AT_location and
18290 DW_AT_bit_offset attributes for fields (both bit-fields and, in
18291 the case of DW_AT_location, regular fields as well). */
18293 /* Figure out the bit-distance from the start of the structure to
18294 the "deepest" bit of the bit-field. */
18295 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
18297 /* This is the tricky part. Use some fancy footwork to deduce
18298 where the lowest addressed bit of the containing object must
18300 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
18302 /* Round up to type_align by default. This works best for
18304 object_offset_in_bits
18305 = round_up_to_align (object_offset_in_bits
, type_align_in_bits
);
18307 if (wi::gtu_p (object_offset_in_bits
, bitpos_int
))
18309 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
18311 /* Round up to decl_align instead. */
18312 object_offset_in_bits
18313 = round_up_to_align (object_offset_in_bits
, decl_align_in_bits
);
18316 object_offset_in_bytes
18317 = wi::lrshift (object_offset_in_bits
, LOG2_BITS_PER_UNIT
);
18318 if (ctx
->variant_part_offset
== NULL_TREE
)
18320 *cst_offset
= object_offset_in_bytes
.to_shwi ();
18323 tree_result
= wide_int_to_tree (sizetype
, object_offset_in_bytes
);
18326 #endif /* PCC_BITFIELD_TYPE_MATTERS */
18327 tree_result
= byte_position (decl
);
18329 if (ctx
->variant_part_offset
!= NULL_TREE
)
18330 tree_result
= fold_build2 (PLUS_EXPR
, TREE_TYPE (tree_result
),
18331 ctx
->variant_part_offset
, tree_result
);
18333 /* If the byte offset is a constant, it's simplier to handle a native
18334 constant rather than a DWARF expression. */
18335 if (TREE_CODE (tree_result
) == INTEGER_CST
)
18337 *cst_offset
= wi::to_offset (tree_result
).to_shwi ();
18340 struct loc_descr_context loc_ctx
= {
18341 ctx
->struct_type
, /* context_type */
18342 NULL_TREE
, /* base_decl */
18344 false, /* placeholder_arg */
18345 false /* placeholder_seen */
18347 loc_result
= loc_list_from_tree (tree_result
, 0, &loc_ctx
);
18349 /* We want a DWARF expression: abort if we only have a location list with
18350 multiple elements. */
18351 if (!loc_result
|| !single_element_loc_list_p (loc_result
))
18354 return loc_result
->expr
;
18357 /* The following routines define various Dwarf attributes and any data
18358 associated with them. */
18360 /* Add a location description attribute value to a DIE.
18362 This emits location attributes suitable for whole variables and
18363 whole parameters. Note that the location attributes for struct fields are
18364 generated by the routine `data_member_location_attribute' below. */
18367 add_AT_location_description (dw_die_ref die
, enum dwarf_attribute attr_kind
,
18368 dw_loc_list_ref descr
)
18372 if (single_element_loc_list_p (descr
))
18373 add_AT_loc (die
, attr_kind
, descr
->expr
);
18375 add_AT_loc_list (die
, attr_kind
, descr
);
18378 /* Add DW_AT_accessibility attribute to DIE if needed. */
18381 add_accessibility_attribute (dw_die_ref die
, tree decl
)
18383 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
18384 children, otherwise the default is DW_ACCESS_public. In DWARF2
18385 the default has always been DW_ACCESS_public. */
18386 if (TREE_PROTECTED (decl
))
18387 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
18388 else if (TREE_PRIVATE (decl
))
18390 if (dwarf_version
== 2
18391 || die
->die_parent
== NULL
18392 || die
->die_parent
->die_tag
!= DW_TAG_class_type
)
18393 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_private
);
18395 else if (dwarf_version
> 2
18397 && die
->die_parent
->die_tag
== DW_TAG_class_type
)
18398 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
18401 /* Attach the specialized form of location attribute used for data members of
18402 struct and union types. In the special case of a FIELD_DECL node which
18403 represents a bit-field, the "offset" part of this special location
18404 descriptor must indicate the distance in bytes from the lowest-addressed
18405 byte of the containing struct or union type to the lowest-addressed byte of
18406 the "containing object" for the bit-field. (See the `field_byte_offset'
18409 For any given bit-field, the "containing object" is a hypothetical object
18410 (of some integral or enum type) within which the given bit-field lives. The
18411 type of this hypothetical "containing object" is always the same as the
18412 declared type of the individual bit-field itself (for GCC anyway... the
18413 DWARF spec doesn't actually mandate this). Note that it is the size (in
18414 bytes) of the hypothetical "containing object" which will be given in the
18415 DW_AT_byte_size attribute for this bit-field. (See the
18416 `byte_size_attribute' function below.) It is also used when calculating the
18417 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
18420 CTX is required: see the comment for VLR_CONTEXT. */
18423 add_data_member_location_attribute (dw_die_ref die
,
18425 struct vlr_context
*ctx
)
18427 HOST_WIDE_INT offset
;
18428 dw_loc_descr_ref loc_descr
= 0;
18430 if (TREE_CODE (decl
) == TREE_BINFO
)
18432 /* We're working on the TAG_inheritance for a base class. */
18433 if (BINFO_VIRTUAL_P (decl
) && is_cxx ())
18435 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
18436 aren't at a fixed offset from all (sub)objects of the same
18437 type. We need to extract the appropriate offset from our
18438 vtable. The following dwarf expression means
18440 BaseAddr = ObAddr + *((*ObAddr) - Offset)
18442 This is specific to the V3 ABI, of course. */
18444 dw_loc_descr_ref tmp
;
18446 /* Make a copy of the object address. */
18447 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
18448 add_loc_descr (&loc_descr
, tmp
);
18450 /* Extract the vtable address. */
18451 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
18452 add_loc_descr (&loc_descr
, tmp
);
18454 /* Calculate the address of the offset. */
18455 offset
= tree_to_shwi (BINFO_VPTR_FIELD (decl
));
18456 gcc_assert (offset
< 0);
18458 tmp
= int_loc_descriptor (-offset
);
18459 add_loc_descr (&loc_descr
, tmp
);
18460 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
18461 add_loc_descr (&loc_descr
, tmp
);
18463 /* Extract the offset. */
18464 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
18465 add_loc_descr (&loc_descr
, tmp
);
18467 /* Add it to the object address. */
18468 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
18469 add_loc_descr (&loc_descr
, tmp
);
18472 offset
= tree_to_shwi (BINFO_OFFSET (decl
));
18476 loc_descr
= field_byte_offset (decl
, ctx
, &offset
);
18478 /* If loc_descr is available then we know the field offset is dynamic.
18479 However, GDB does not handle dynamic field offsets very well at the
18481 if (loc_descr
!= NULL
&& gnat_encodings
!= DWARF_GNAT_ENCODINGS_MINIMAL
)
18487 /* Data member location evalutation starts with the base address on the
18488 stack. Compute the field offset and add it to this base address. */
18489 else if (loc_descr
!= NULL
)
18490 add_loc_descr (&loc_descr
, new_loc_descr (DW_OP_plus
, 0, 0));
18495 /* While DW_AT_data_bit_offset has been added already in DWARF4,
18496 e.g. GDB only added support to it in November 2016. For DWARF5
18497 we need newer debug info consumers anyway. We might change this
18498 to dwarf_version >= 4 once most consumers catched up. */
18499 if (dwarf_version
>= 5
18500 && TREE_CODE (decl
) == FIELD_DECL
18501 && DECL_BIT_FIELD_TYPE (decl
))
18503 tree off
= bit_position (decl
);
18504 if (tree_fits_uhwi_p (off
) && get_AT (die
, DW_AT_bit_size
))
18506 remove_AT (die
, DW_AT_byte_size
);
18507 remove_AT (die
, DW_AT_bit_offset
);
18508 add_AT_unsigned (die
, DW_AT_data_bit_offset
, tree_to_uhwi (off
));
18512 if (dwarf_version
> 2)
18514 /* Don't need to output a location expression, just the constant. */
18516 add_AT_int (die
, DW_AT_data_member_location
, offset
);
18518 add_AT_unsigned (die
, DW_AT_data_member_location
, offset
);
18523 enum dwarf_location_atom op
;
18525 /* The DWARF2 standard says that we should assume that the structure
18526 address is already on the stack, so we can specify a structure
18527 field address by using DW_OP_plus_uconst. */
18528 op
= DW_OP_plus_uconst
;
18529 loc_descr
= new_loc_descr (op
, offset
, 0);
18533 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
18536 /* Writes integer values to dw_vec_const array. */
18539 insert_int (HOST_WIDE_INT val
, unsigned int size
, unsigned char *dest
)
18543 *dest
++ = val
& 0xff;
18549 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
18551 static HOST_WIDE_INT
18552 extract_int (const unsigned char *src
, unsigned int size
)
18554 HOST_WIDE_INT val
= 0;
18560 val
|= *--src
& 0xff;
18566 /* Writes wide_int values to dw_vec_const array. */
18569 insert_wide_int (const wide_int
&val
, unsigned char *dest
, int elt_size
)
18573 if (elt_size
<= HOST_BITS_PER_WIDE_INT
/BITS_PER_UNIT
)
18575 insert_int ((HOST_WIDE_INT
) val
.elt (0), elt_size
, dest
);
18579 /* We'd have to extend this code to support odd sizes. */
18580 gcc_assert (elt_size
% (HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
) == 0);
18582 int n
= elt_size
/ (HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
);
18584 if (WORDS_BIG_ENDIAN
)
18585 for (i
= n
- 1; i
>= 0; i
--)
18587 insert_int ((HOST_WIDE_INT
) val
.elt (i
), sizeof (HOST_WIDE_INT
), dest
);
18588 dest
+= sizeof (HOST_WIDE_INT
);
18591 for (i
= 0; i
< n
; i
++)
18593 insert_int ((HOST_WIDE_INT
) val
.elt (i
), sizeof (HOST_WIDE_INT
), dest
);
18594 dest
+= sizeof (HOST_WIDE_INT
);
18598 /* Writes floating point values to dw_vec_const array. */
18601 insert_float (const_rtx rtl
, unsigned char *array
)
18605 scalar_float_mode mode
= as_a
<scalar_float_mode
> (GET_MODE (rtl
));
18607 real_to_target (val
, CONST_DOUBLE_REAL_VALUE (rtl
), mode
);
18609 /* real_to_target puts 32-bit pieces in each long. Pack them. */
18610 for (i
= 0; i
< GET_MODE_SIZE (mode
) / 4; i
++)
18612 insert_int (val
[i
], 4, array
);
18617 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
18618 does not have a "location" either in memory or in a register. These
18619 things can arise in GNU C when a constant is passed as an actual parameter
18620 to an inlined function. They can also arise in C++ where declared
18621 constants do not necessarily get memory "homes". */
18624 add_const_value_attribute (dw_die_ref die
, rtx rtl
)
18626 switch (GET_CODE (rtl
))
18630 HOST_WIDE_INT val
= INTVAL (rtl
);
18633 add_AT_int (die
, DW_AT_const_value
, val
);
18635 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned HOST_WIDE_INT
) val
);
18639 case CONST_WIDE_INT
:
18641 wide_int w1
= rtx_mode_t (rtl
, MAX_MODE_INT
);
18642 unsigned int prec
= MIN (wi::min_precision (w1
, UNSIGNED
),
18643 (unsigned int)CONST_WIDE_INT_NUNITS (rtl
) * HOST_BITS_PER_WIDE_INT
);
18644 wide_int w
= wi::zext (w1
, prec
);
18645 add_AT_wide (die
, DW_AT_const_value
, w
);
18650 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
18651 floating-point constant. A CONST_DOUBLE is used whenever the
18652 constant requires more than one word in order to be adequately
18654 if (TARGET_SUPPORTS_WIDE_INT
== 0
18655 && !SCALAR_FLOAT_MODE_P (GET_MODE (rtl
)))
18656 add_AT_double (die
, DW_AT_const_value
,
18657 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
18660 scalar_float_mode mode
= as_a
<scalar_float_mode
> (GET_MODE (rtl
));
18661 unsigned int length
= GET_MODE_SIZE (mode
);
18662 unsigned char *array
= ggc_vec_alloc
<unsigned char> (length
);
18664 insert_float (rtl
, array
);
18665 add_AT_vec (die
, DW_AT_const_value
, length
/ 4, 4, array
);
18671 machine_mode mode
= GET_MODE (rtl
);
18672 unsigned int elt_size
= GET_MODE_UNIT_SIZE (mode
);
18673 unsigned int length
= CONST_VECTOR_NUNITS (rtl
);
18674 unsigned char *array
18675 = ggc_vec_alloc
<unsigned char> (length
* elt_size
);
18678 machine_mode imode
= GET_MODE_INNER (mode
);
18680 switch (GET_MODE_CLASS (mode
))
18682 case MODE_VECTOR_INT
:
18683 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
18685 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
18686 insert_wide_int (rtx_mode_t (elt
, imode
), p
, elt_size
);
18690 case MODE_VECTOR_FLOAT
:
18691 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
18693 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
18694 insert_float (elt
, p
);
18699 gcc_unreachable ();
18702 add_AT_vec (die
, DW_AT_const_value
, length
, elt_size
, array
);
18707 if (dwarf_version
>= 4 || !dwarf_strict
)
18709 dw_loc_descr_ref loc_result
;
18710 resolve_one_addr (&rtl
);
18712 loc_result
= new_addr_loc_descr (rtl
, dtprel_false
);
18713 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_stack_value
, 0, 0));
18714 add_AT_loc (die
, DW_AT_location
, loc_result
);
18715 vec_safe_push (used_rtx_array
, rtl
);
18721 if (CONSTANT_P (XEXP (rtl
, 0)))
18722 return add_const_value_attribute (die
, XEXP (rtl
, 0));
18725 if (!const_ok_for_output (rtl
))
18729 if (dwarf_version
>= 4 || !dwarf_strict
)
18734 /* In cases where an inlined instance of an inline function is passed
18735 the address of an `auto' variable (which is local to the caller) we
18736 can get a situation where the DECL_RTL of the artificial local
18737 variable (for the inlining) which acts as a stand-in for the
18738 corresponding formal parameter (of the inline function) will look
18739 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
18740 exactly a compile-time constant expression, but it isn't the address
18741 of the (artificial) local variable either. Rather, it represents the
18742 *value* which the artificial local variable always has during its
18743 lifetime. We currently have no way to represent such quasi-constant
18744 values in Dwarf, so for now we just punt and generate nothing. */
18752 if (GET_CODE (XEXP (rtl
, 0)) == CONST_STRING
18753 && MEM_READONLY_P (rtl
)
18754 && GET_MODE (rtl
) == BLKmode
)
18756 add_AT_string (die
, DW_AT_const_value
, XSTR (XEXP (rtl
, 0), 0));
18762 /* No other kinds of rtx should be possible here. */
18763 gcc_unreachable ();
18768 /* Determine whether the evaluation of EXPR references any variables
18769 or functions which aren't otherwise used (and therefore may not be
18772 reference_to_unused (tree
* tp
, int * walk_subtrees
,
18773 void * data ATTRIBUTE_UNUSED
)
18775 if (! EXPR_P (*tp
) && ! CONSTANT_CLASS_P (*tp
))
18776 *walk_subtrees
= 0;
18778 if (DECL_P (*tp
) && ! TREE_PUBLIC (*tp
) && ! TREE_USED (*tp
)
18779 && ! TREE_ASM_WRITTEN (*tp
))
18781 /* ??? The C++ FE emits debug information for using decls, so
18782 putting gcc_unreachable here falls over. See PR31899. For now
18783 be conservative. */
18784 else if (!symtab
->global_info_ready
&& VAR_OR_FUNCTION_DECL_P (*tp
))
18786 else if (VAR_P (*tp
))
18788 varpool_node
*node
= varpool_node::get (*tp
);
18789 if (!node
|| !node
->definition
)
18792 else if (TREE_CODE (*tp
) == FUNCTION_DECL
18793 && (!DECL_EXTERNAL (*tp
) || DECL_DECLARED_INLINE_P (*tp
)))
18795 /* The call graph machinery must have finished analyzing,
18796 optimizing and gimplifying the CU by now.
18797 So if *TP has no call graph node associated
18798 to it, it means *TP will not be emitted. */
18799 if (!cgraph_node::get (*tp
))
18802 else if (TREE_CODE (*tp
) == STRING_CST
&& !TREE_ASM_WRITTEN (*tp
))
18808 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
18809 for use in a later add_const_value_attribute call. */
18812 rtl_for_decl_init (tree init
, tree type
)
18814 rtx rtl
= NULL_RTX
;
18818 /* If a variable is initialized with a string constant without embedded
18819 zeros, build CONST_STRING. */
18820 if (TREE_CODE (init
) == STRING_CST
&& TREE_CODE (type
) == ARRAY_TYPE
)
18822 tree enttype
= TREE_TYPE (type
);
18823 tree domain
= TYPE_DOMAIN (type
);
18824 scalar_int_mode mode
;
18826 if (is_int_mode (TYPE_MODE (enttype
), &mode
)
18827 && GET_MODE_SIZE (mode
) == 1
18829 && integer_zerop (TYPE_MIN_VALUE (domain
))
18830 && compare_tree_int (TYPE_MAX_VALUE (domain
),
18831 TREE_STRING_LENGTH (init
) - 1) == 0
18832 && ((size_t) TREE_STRING_LENGTH (init
)
18833 == strlen (TREE_STRING_POINTER (init
)) + 1))
18835 rtl
= gen_rtx_CONST_STRING (VOIDmode
,
18836 ggc_strdup (TREE_STRING_POINTER (init
)));
18837 rtl
= gen_rtx_MEM (BLKmode
, rtl
);
18838 MEM_READONLY_P (rtl
) = 1;
18841 /* Other aggregates, and complex values, could be represented using
18843 else if (AGGREGATE_TYPE_P (type
)
18844 || (TREE_CODE (init
) == VIEW_CONVERT_EXPR
18845 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init
, 0))))
18846 || TREE_CODE (type
) == COMPLEX_TYPE
)
18848 /* Vectors only work if their mode is supported by the target.
18849 FIXME: generic vectors ought to work too. */
18850 else if (TREE_CODE (type
) == VECTOR_TYPE
18851 && !VECTOR_MODE_P (TYPE_MODE (type
)))
18853 /* If the initializer is something that we know will expand into an
18854 immediate RTL constant, expand it now. We must be careful not to
18855 reference variables which won't be output. */
18856 else if (initializer_constant_valid_p (init
, type
)
18857 && ! walk_tree (&init
, reference_to_unused
, NULL
, NULL
))
18859 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
18861 if (TREE_CODE (type
) == VECTOR_TYPE
)
18862 switch (TREE_CODE (init
))
18867 if (TREE_CONSTANT (init
))
18869 vec
<constructor_elt
, va_gc
> *elts
= CONSTRUCTOR_ELTS (init
);
18870 bool constant_p
= true;
18872 unsigned HOST_WIDE_INT ix
;
18874 /* Even when ctor is constant, it might contain non-*_CST
18875 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
18876 belong into VECTOR_CST nodes. */
18877 FOR_EACH_CONSTRUCTOR_VALUE (elts
, ix
, value
)
18878 if (!CONSTANT_CLASS_P (value
))
18880 constant_p
= false;
18886 init
= build_vector_from_ctor (type
, elts
);
18896 rtl
= expand_expr (init
, NULL_RTX
, VOIDmode
, EXPAND_INITIALIZER
);
18898 /* If expand_expr returns a MEM, it wasn't immediate. */
18899 gcc_assert (!rtl
|| !MEM_P (rtl
));
18905 /* Generate RTL for the variable DECL to represent its location. */
18908 rtl_for_decl_location (tree decl
)
18912 /* Here we have to decide where we are going to say the parameter "lives"
18913 (as far as the debugger is concerned). We only have a couple of
18914 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
18916 DECL_RTL normally indicates where the parameter lives during most of the
18917 activation of the function. If optimization is enabled however, this
18918 could be either NULL or else a pseudo-reg. Both of those cases indicate
18919 that the parameter doesn't really live anywhere (as far as the code
18920 generation parts of GCC are concerned) during most of the function's
18921 activation. That will happen (for example) if the parameter is never
18922 referenced within the function.
18924 We could just generate a location descriptor here for all non-NULL
18925 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
18926 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
18927 where DECL_RTL is NULL or is a pseudo-reg.
18929 Note however that we can only get away with using DECL_INCOMING_RTL as
18930 a backup substitute for DECL_RTL in certain limited cases. In cases
18931 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
18932 we can be sure that the parameter was passed using the same type as it is
18933 declared to have within the function, and that its DECL_INCOMING_RTL
18934 points us to a place where a value of that type is passed.
18936 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
18937 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
18938 because in these cases DECL_INCOMING_RTL points us to a value of some
18939 type which is *different* from the type of the parameter itself. Thus,
18940 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
18941 such cases, the debugger would end up (for example) trying to fetch a
18942 `float' from a place which actually contains the first part of a
18943 `double'. That would lead to really incorrect and confusing
18944 output at debug-time.
18946 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
18947 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
18948 are a couple of exceptions however. On little-endian machines we can
18949 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
18950 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
18951 an integral type that is smaller than TREE_TYPE (decl). These cases arise
18952 when (on a little-endian machine) a non-prototyped function has a
18953 parameter declared to be of type `short' or `char'. In such cases,
18954 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
18955 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
18956 passed `int' value. If the debugger then uses that address to fetch
18957 a `short' or a `char' (on a little-endian machine) the result will be
18958 the correct data, so we allow for such exceptional cases below.
18960 Note that our goal here is to describe the place where the given formal
18961 parameter lives during most of the function's activation (i.e. between the
18962 end of the prologue and the start of the epilogue). We'll do that as best
18963 as we can. Note however that if the given formal parameter is modified
18964 sometime during the execution of the function, then a stack backtrace (at
18965 debug-time) will show the function as having been called with the *new*
18966 value rather than the value which was originally passed in. This happens
18967 rarely enough that it is not a major problem, but it *is* a problem, and
18968 I'd like to fix it.
18970 A future version of dwarf2out.c may generate two additional attributes for
18971 any given DW_TAG_formal_parameter DIE which will describe the "passed
18972 type" and the "passed location" for the given formal parameter in addition
18973 to the attributes we now generate to indicate the "declared type" and the
18974 "active location" for each parameter. This additional set of attributes
18975 could be used by debuggers for stack backtraces. Separately, note that
18976 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
18977 This happens (for example) for inlined-instances of inline function formal
18978 parameters which are never referenced. This really shouldn't be
18979 happening. All PARM_DECL nodes should get valid non-NULL
18980 DECL_INCOMING_RTL values. FIXME. */
18982 /* Use DECL_RTL as the "location" unless we find something better. */
18983 rtl
= DECL_RTL_IF_SET (decl
);
18985 /* When generating abstract instances, ignore everything except
18986 constants, symbols living in memory, and symbols living in
18987 fixed registers. */
18988 if (! reload_completed
)
18991 && (CONSTANT_P (rtl
)
18993 && CONSTANT_P (XEXP (rtl
, 0)))
18996 && TREE_STATIC (decl
))))
18998 rtl
= targetm
.delegitimize_address (rtl
);
19003 else if (TREE_CODE (decl
) == PARM_DECL
)
19005 if (rtl
== NULL_RTX
19006 || is_pseudo_reg (rtl
)
19008 && is_pseudo_reg (XEXP (rtl
, 0))
19009 && DECL_INCOMING_RTL (decl
)
19010 && MEM_P (DECL_INCOMING_RTL (decl
))
19011 && GET_MODE (rtl
) == GET_MODE (DECL_INCOMING_RTL (decl
))))
19013 tree declared_type
= TREE_TYPE (decl
);
19014 tree passed_type
= DECL_ARG_TYPE (decl
);
19015 machine_mode dmode
= TYPE_MODE (declared_type
);
19016 machine_mode pmode
= TYPE_MODE (passed_type
);
19018 /* This decl represents a formal parameter which was optimized out.
19019 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
19020 all cases where (rtl == NULL_RTX) just below. */
19021 if (dmode
== pmode
)
19022 rtl
= DECL_INCOMING_RTL (decl
);
19023 else if ((rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
19024 && SCALAR_INT_MODE_P (dmode
)
19025 && GET_MODE_SIZE (dmode
) <= GET_MODE_SIZE (pmode
)
19026 && DECL_INCOMING_RTL (decl
))
19028 rtx inc
= DECL_INCOMING_RTL (decl
);
19031 else if (MEM_P (inc
))
19033 if (BYTES_BIG_ENDIAN
)
19034 rtl
= adjust_address_nv (inc
, dmode
,
19035 GET_MODE_SIZE (pmode
)
19036 - GET_MODE_SIZE (dmode
));
19043 /* If the parm was passed in registers, but lives on the stack, then
19044 make a big endian correction if the mode of the type of the
19045 parameter is not the same as the mode of the rtl. */
19046 /* ??? This is the same series of checks that are made in dbxout.c before
19047 we reach the big endian correction code there. It isn't clear if all
19048 of these checks are necessary here, but keeping them all is the safe
19050 else if (MEM_P (rtl
)
19051 && XEXP (rtl
, 0) != const0_rtx
19052 && ! CONSTANT_P (XEXP (rtl
, 0))
19053 /* Not passed in memory. */
19054 && !MEM_P (DECL_INCOMING_RTL (decl
))
19055 /* Not passed by invisible reference. */
19056 && (!REG_P (XEXP (rtl
, 0))
19057 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
19058 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
19059 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
19060 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
19063 /* Big endian correction check. */
19064 && BYTES_BIG_ENDIAN
19065 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
19066 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)))
19069 machine_mode addr_mode
= get_address_mode (rtl
);
19070 int offset
= (UNITS_PER_WORD
19071 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
19073 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
19074 plus_constant (addr_mode
, XEXP (rtl
, 0), offset
));
19077 else if (VAR_P (decl
)
19080 && GET_MODE (rtl
) != TYPE_MODE (TREE_TYPE (decl
))
19081 && BYTES_BIG_ENDIAN
)
19083 machine_mode addr_mode
= get_address_mode (rtl
);
19084 int rsize
= GET_MODE_SIZE (GET_MODE (rtl
));
19085 int dsize
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)));
19087 /* If a variable is declared "register" yet is smaller than
19088 a register, then if we store the variable to memory, it
19089 looks like we're storing a register-sized value, when in
19090 fact we are not. We need to adjust the offset of the
19091 storage location to reflect the actual value's bytes,
19092 else gdb will not be able to display it. */
19094 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
19095 plus_constant (addr_mode
, XEXP (rtl
, 0),
19099 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
19100 and will have been substituted directly into all expressions that use it.
19101 C does not have such a concept, but C++ and other languages do. */
19102 if (!rtl
&& VAR_P (decl
) && DECL_INITIAL (decl
))
19103 rtl
= rtl_for_decl_init (DECL_INITIAL (decl
), TREE_TYPE (decl
));
19106 rtl
= targetm
.delegitimize_address (rtl
);
19108 /* If we don't look past the constant pool, we risk emitting a
19109 reference to a constant pool entry that isn't referenced from
19110 code, and thus is not emitted. */
19112 rtl
= avoid_constant_pool_reference (rtl
);
19114 /* Try harder to get a rtl. If this symbol ends up not being emitted
19115 in the current CU, resolve_addr will remove the expression referencing
19117 if (rtl
== NULL_RTX
19119 && !DECL_EXTERNAL (decl
)
19120 && TREE_STATIC (decl
)
19121 && DECL_NAME (decl
)
19122 && !DECL_HARD_REGISTER (decl
)
19123 && DECL_MODE (decl
) != VOIDmode
)
19125 rtl
= make_decl_rtl_for_debug (decl
);
19127 || GET_CODE (XEXP (rtl
, 0)) != SYMBOL_REF
19128 || SYMBOL_REF_DECL (XEXP (rtl
, 0)) != decl
)
19135 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
19136 returned. If so, the decl for the COMMON block is returned, and the
19137 value is the offset into the common block for the symbol. */
19140 fortran_common (tree decl
, HOST_WIDE_INT
*value
)
19142 tree val_expr
, cvar
;
19144 HOST_WIDE_INT bitsize
, bitpos
;
19146 int unsignedp
, reversep
, volatilep
= 0;
19148 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
19149 it does not have a value (the offset into the common area), or if it
19150 is thread local (as opposed to global) then it isn't common, and shouldn't
19151 be handled as such. */
19153 || !TREE_STATIC (decl
)
19154 || !DECL_HAS_VALUE_EXPR_P (decl
)
19158 val_expr
= DECL_VALUE_EXPR (decl
);
19159 if (TREE_CODE (val_expr
) != COMPONENT_REF
)
19162 cvar
= get_inner_reference (val_expr
, &bitsize
, &bitpos
, &offset
, &mode
,
19163 &unsignedp
, &reversep
, &volatilep
);
19165 if (cvar
== NULL_TREE
19167 || DECL_ARTIFICIAL (cvar
)
19168 || !TREE_PUBLIC (cvar
))
19172 if (offset
!= NULL
)
19174 if (!tree_fits_shwi_p (offset
))
19176 *value
= tree_to_shwi (offset
);
19179 *value
+= bitpos
/ BITS_PER_UNIT
;
19184 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
19185 data attribute for a variable or a parameter. We generate the
19186 DW_AT_const_value attribute only in those cases where the given variable
19187 or parameter does not have a true "location" either in memory or in a
19188 register. This can happen (for example) when a constant is passed as an
19189 actual argument in a call to an inline function. (It's possible that
19190 these things can crop up in other ways also.) Note that one type of
19191 constant value which can be passed into an inlined function is a constant
19192 pointer. This can happen for example if an actual argument in an inlined
19193 function call evaluates to a compile-time constant address.
19195 CACHE_P is true if it is worth caching the location list for DECL,
19196 so that future calls can reuse it rather than regenerate it from scratch.
19197 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
19198 since we will need to refer to them each time the function is inlined. */
19201 add_location_or_const_value_attribute (dw_die_ref die
, tree decl
, bool cache_p
)
19204 dw_loc_list_ref list
;
19205 var_loc_list
*loc_list
;
19206 cached_dw_loc_list
*cache
;
19211 if (TREE_CODE (decl
) == ERROR_MARK
)
19214 if (get_AT (die
, DW_AT_location
)
19215 || get_AT (die
, DW_AT_const_value
))
19218 gcc_assert (VAR_P (decl
) || TREE_CODE (decl
) == PARM_DECL
19219 || TREE_CODE (decl
) == RESULT_DECL
);
19221 /* Try to get some constant RTL for this decl, and use that as the value of
19224 rtl
= rtl_for_decl_location (decl
);
19225 if (rtl
&& (CONSTANT_P (rtl
) || GET_CODE (rtl
) == CONST_STRING
)
19226 && add_const_value_attribute (die
, rtl
))
19229 /* See if we have single element location list that is equivalent to
19230 a constant value. That way we are better to use add_const_value_attribute
19231 rather than expanding constant value equivalent. */
19232 loc_list
= lookup_decl_loc (decl
);
19235 && loc_list
->first
->next
== NULL
19236 && NOTE_P (loc_list
->first
->loc
)
19237 && NOTE_VAR_LOCATION (loc_list
->first
->loc
)
19238 && NOTE_VAR_LOCATION_LOC (loc_list
->first
->loc
))
19240 struct var_loc_node
*node
;
19242 node
= loc_list
->first
;
19243 rtl
= NOTE_VAR_LOCATION_LOC (node
->loc
);
19244 if (GET_CODE (rtl
) == EXPR_LIST
)
19245 rtl
= XEXP (rtl
, 0);
19246 if ((CONSTANT_P (rtl
) || GET_CODE (rtl
) == CONST_STRING
)
19247 && add_const_value_attribute (die
, rtl
))
19250 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
19251 list several times. See if we've already cached the contents. */
19253 if (loc_list
== NULL
|| cached_dw_loc_list_table
== NULL
)
19257 cache
= cached_dw_loc_list_table
->find_with_hash (decl
, DECL_UID (decl
));
19259 list
= cache
->loc_list
;
19263 list
= loc_list_from_tree (decl
, decl_by_reference_p (decl
) ? 0 : 2,
19265 /* It is usually worth caching this result if the decl is from
19266 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
19267 if (cache_p
&& list
&& list
->dw_loc_next
)
19269 cached_dw_loc_list
**slot
19270 = cached_dw_loc_list_table
->find_slot_with_hash (decl
,
19273 cache
= ggc_cleared_alloc
<cached_dw_loc_list
> ();
19274 cache
->decl_id
= DECL_UID (decl
);
19275 cache
->loc_list
= list
;
19281 add_AT_location_description (die
, DW_AT_location
, list
);
19284 /* None of that worked, so it must not really have a location;
19285 try adding a constant value attribute from the DECL_INITIAL. */
19286 return tree_add_const_value_attribute_for_decl (die
, decl
);
19289 /* Helper function for tree_add_const_value_attribute. Natively encode
19290 initializer INIT into an array. Return true if successful. */
19293 native_encode_initializer (tree init
, unsigned char *array
, int size
)
19297 if (init
== NULL_TREE
)
19301 switch (TREE_CODE (init
))
19304 type
= TREE_TYPE (init
);
19305 if (TREE_CODE (type
) == ARRAY_TYPE
)
19307 tree enttype
= TREE_TYPE (type
);
19308 scalar_int_mode mode
;
19310 if (!is_int_mode (TYPE_MODE (enttype
), &mode
)
19311 || GET_MODE_SIZE (mode
) != 1)
19313 if (int_size_in_bytes (type
) != size
)
19315 if (size
> TREE_STRING_LENGTH (init
))
19317 memcpy (array
, TREE_STRING_POINTER (init
),
19318 TREE_STRING_LENGTH (init
));
19319 memset (array
+ TREE_STRING_LENGTH (init
),
19320 '\0', size
- TREE_STRING_LENGTH (init
));
19323 memcpy (array
, TREE_STRING_POINTER (init
), size
);
19328 type
= TREE_TYPE (init
);
19329 if (int_size_in_bytes (type
) != size
)
19331 if (TREE_CODE (type
) == ARRAY_TYPE
)
19333 HOST_WIDE_INT min_index
;
19334 unsigned HOST_WIDE_INT cnt
;
19335 int curpos
= 0, fieldsize
;
19336 constructor_elt
*ce
;
19338 if (TYPE_DOMAIN (type
) == NULL_TREE
19339 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type
))))
19342 fieldsize
= int_size_in_bytes (TREE_TYPE (type
));
19343 if (fieldsize
<= 0)
19346 min_index
= tree_to_shwi (TYPE_MIN_VALUE (TYPE_DOMAIN (type
)));
19347 memset (array
, '\0', size
);
19348 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init
), cnt
, ce
)
19350 tree val
= ce
->value
;
19351 tree index
= ce
->index
;
19353 if (index
&& TREE_CODE (index
) == RANGE_EXPR
)
19354 pos
= (tree_to_shwi (TREE_OPERAND (index
, 0)) - min_index
)
19357 pos
= (tree_to_shwi (index
) - min_index
) * fieldsize
;
19362 if (!native_encode_initializer (val
, array
+ pos
, fieldsize
))
19365 curpos
= pos
+ fieldsize
;
19366 if (index
&& TREE_CODE (index
) == RANGE_EXPR
)
19368 int count
= tree_to_shwi (TREE_OPERAND (index
, 1))
19369 - tree_to_shwi (TREE_OPERAND (index
, 0));
19370 while (count
-- > 0)
19373 memcpy (array
+ curpos
, array
+ pos
, fieldsize
);
19374 curpos
+= fieldsize
;
19377 gcc_assert (curpos
<= size
);
19381 else if (TREE_CODE (type
) == RECORD_TYPE
19382 || TREE_CODE (type
) == UNION_TYPE
)
19384 tree field
= NULL_TREE
;
19385 unsigned HOST_WIDE_INT cnt
;
19386 constructor_elt
*ce
;
19388 if (int_size_in_bytes (type
) != size
)
19391 if (TREE_CODE (type
) == RECORD_TYPE
)
19392 field
= TYPE_FIELDS (type
);
19394 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init
), cnt
, ce
)
19396 tree val
= ce
->value
;
19397 int pos
, fieldsize
;
19399 if (ce
->index
!= 0)
19405 if (field
== NULL_TREE
|| DECL_BIT_FIELD (field
))
19408 if (TREE_CODE (TREE_TYPE (field
)) == ARRAY_TYPE
19409 && TYPE_DOMAIN (TREE_TYPE (field
))
19410 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field
))))
19412 else if (DECL_SIZE_UNIT (field
) == NULL_TREE
19413 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field
)))
19415 fieldsize
= tree_to_shwi (DECL_SIZE_UNIT (field
));
19416 pos
= int_byte_position (field
);
19417 gcc_assert (pos
+ fieldsize
<= size
);
19418 if (val
&& fieldsize
!= 0
19419 && !native_encode_initializer (val
, array
+ pos
, fieldsize
))
19425 case VIEW_CONVERT_EXPR
:
19426 case NON_LVALUE_EXPR
:
19427 return native_encode_initializer (TREE_OPERAND (init
, 0), array
, size
);
19429 return native_encode_expr (init
, array
, size
) == size
;
19433 /* Attach a DW_AT_const_value attribute to DIE. The value of the
19434 attribute is the const value T. */
19437 tree_add_const_value_attribute (dw_die_ref die
, tree t
)
19440 tree type
= TREE_TYPE (t
);
19443 if (!t
|| !TREE_TYPE (t
) || TREE_TYPE (t
) == error_mark_node
)
19447 gcc_assert (!DECL_P (init
));
19451 rtl
= rtl_for_decl_init (init
, type
);
19453 return add_const_value_attribute (die
, rtl
);
19455 /* If the host and target are sane, try harder. */
19456 if (CHAR_BIT
== 8 && BITS_PER_UNIT
== 8
19457 && initializer_constant_valid_p (init
, type
))
19459 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (init
));
19460 if (size
> 0 && (int) size
== size
)
19462 unsigned char *array
= ggc_cleared_vec_alloc
<unsigned char> (size
);
19464 if (native_encode_initializer (init
, array
, size
))
19466 add_AT_vec (die
, DW_AT_const_value
, size
, 1, array
);
19475 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
19476 attribute is the const value of T, where T is an integral constant
19477 variable with static storage duration
19478 (so it can't be a PARM_DECL or a RESULT_DECL). */
19481 tree_add_const_value_attribute_for_decl (dw_die_ref var_die
, tree decl
)
19485 || (!VAR_P (decl
) && TREE_CODE (decl
) != CONST_DECL
)
19486 || (VAR_P (decl
) && !TREE_STATIC (decl
)))
19489 if (TREE_READONLY (decl
)
19490 && ! TREE_THIS_VOLATILE (decl
)
19491 && DECL_INITIAL (decl
))
19496 /* Don't add DW_AT_const_value if abstract origin already has one. */
19497 if (get_AT (var_die
, DW_AT_const_value
))
19500 return tree_add_const_value_attribute (var_die
, DECL_INITIAL (decl
));
19503 /* Convert the CFI instructions for the current function into a
19504 location list. This is used for DW_AT_frame_base when we targeting
19505 a dwarf2 consumer that does not support the dwarf3
19506 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
19509 static dw_loc_list_ref
19510 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset
)
19514 dw_loc_list_ref list
, *list_tail
;
19516 dw_cfa_location last_cfa
, next_cfa
;
19517 const char *start_label
, *last_label
, *section
;
19518 dw_cfa_location remember
;
19521 gcc_assert (fde
!= NULL
);
19523 section
= secname_for_decl (current_function_decl
);
19527 memset (&next_cfa
, 0, sizeof (next_cfa
));
19528 next_cfa
.reg
= INVALID_REGNUM
;
19529 remember
= next_cfa
;
19531 start_label
= fde
->dw_fde_begin
;
19533 /* ??? Bald assumption that the CIE opcode list does not contain
19534 advance opcodes. */
19535 FOR_EACH_VEC_ELT (*cie_cfi_vec
, ix
, cfi
)
19536 lookup_cfa_1 (cfi
, &next_cfa
, &remember
);
19538 last_cfa
= next_cfa
;
19539 last_label
= start_label
;
19541 if (fde
->dw_fde_second_begin
&& fde
->dw_fde_switch_cfi_index
== 0)
19543 /* If the first partition contained no CFI adjustments, the
19544 CIE opcodes apply to the whole first partition. */
19545 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
19546 fde
->dw_fde_begin
, fde
->dw_fde_end
, section
);
19547 list_tail
=&(*list_tail
)->dw_loc_next
;
19548 start_label
= last_label
= fde
->dw_fde_second_begin
;
19551 FOR_EACH_VEC_SAFE_ELT (fde
->dw_fde_cfi
, ix
, cfi
)
19553 switch (cfi
->dw_cfi_opc
)
19555 case DW_CFA_set_loc
:
19556 case DW_CFA_advance_loc1
:
19557 case DW_CFA_advance_loc2
:
19558 case DW_CFA_advance_loc4
:
19559 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
19561 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
19562 start_label
, last_label
, section
);
19564 list_tail
= &(*list_tail
)->dw_loc_next
;
19565 last_cfa
= next_cfa
;
19566 start_label
= last_label
;
19568 last_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
19571 case DW_CFA_advance_loc
:
19572 /* The encoding is complex enough that we should never emit this. */
19573 gcc_unreachable ();
19576 lookup_cfa_1 (cfi
, &next_cfa
, &remember
);
19579 if (ix
+ 1 == fde
->dw_fde_switch_cfi_index
)
19581 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
19583 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
19584 start_label
, last_label
, section
);
19586 list_tail
= &(*list_tail
)->dw_loc_next
;
19587 last_cfa
= next_cfa
;
19588 start_label
= last_label
;
19590 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
19591 start_label
, fde
->dw_fde_end
, section
);
19592 list_tail
= &(*list_tail
)->dw_loc_next
;
19593 start_label
= last_label
= fde
->dw_fde_second_begin
;
19597 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
19599 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
19600 start_label
, last_label
, section
);
19601 list_tail
= &(*list_tail
)->dw_loc_next
;
19602 start_label
= last_label
;
19605 *list_tail
= new_loc_list (build_cfa_loc (&next_cfa
, offset
),
19607 fde
->dw_fde_second_begin
19608 ? fde
->dw_fde_second_end
: fde
->dw_fde_end
,
19611 if (list
&& list
->dw_loc_next
)
19617 /* Compute a displacement from the "steady-state frame pointer" to the
19618 frame base (often the same as the CFA), and store it in
19619 frame_pointer_fb_offset. OFFSET is added to the displacement
19620 before the latter is negated. */
19623 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset
)
19627 #ifdef FRAME_POINTER_CFA_OFFSET
19628 reg
= frame_pointer_rtx
;
19629 offset
+= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
19631 reg
= arg_pointer_rtx
;
19632 offset
+= ARG_POINTER_CFA_OFFSET (current_function_decl
);
19635 elim
= (ira_use_lra_p
19636 ? lra_eliminate_regs (reg
, VOIDmode
, NULL_RTX
)
19637 : eliminate_regs (reg
, VOIDmode
, NULL_RTX
));
19638 if (GET_CODE (elim
) == PLUS
)
19640 offset
+= INTVAL (XEXP (elim
, 1));
19641 elim
= XEXP (elim
, 0);
19644 frame_pointer_fb_offset
= -offset
;
19646 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
19647 in which to eliminate. This is because it's stack pointer isn't
19648 directly accessible as a register within the ISA. To work around
19649 this, assume that while we cannot provide a proper value for
19650 frame_pointer_fb_offset, we won't need one either. */
19651 frame_pointer_fb_offset_valid
19652 = ((SUPPORTS_STACK_ALIGNMENT
19653 && (elim
== hard_frame_pointer_rtx
19654 || elim
== stack_pointer_rtx
))
19655 || elim
== (frame_pointer_needed
19656 ? hard_frame_pointer_rtx
19657 : stack_pointer_rtx
));
19660 /* Generate a DW_AT_name attribute given some string value to be included as
19661 the value of the attribute. */
19664 add_name_attribute (dw_die_ref die
, const char *name_string
)
19666 if (name_string
!= NULL
&& *name_string
!= 0)
19668 if (demangle_name_func
)
19669 name_string
= (*demangle_name_func
) (name_string
);
19671 add_AT_string (die
, DW_AT_name
, name_string
);
19675 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
19676 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
19677 of TYPE accordingly.
19679 ??? This is a temporary measure until after we're able to generate
19680 regular DWARF for the complex Ada type system. */
19683 add_gnat_descriptive_type_attribute (dw_die_ref die
, tree type
,
19684 dw_die_ref context_die
)
19687 dw_die_ref dtype_die
;
19689 if (!lang_hooks
.types
.descriptive_type
)
19692 dtype
= lang_hooks
.types
.descriptive_type (type
);
19696 dtype_die
= lookup_type_die (dtype
);
19699 gen_type_die (dtype
, context_die
);
19700 dtype_die
= lookup_type_die (dtype
);
19701 gcc_assert (dtype_die
);
19704 add_AT_die_ref (die
, DW_AT_GNAT_descriptive_type
, dtype_die
);
19707 /* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir. */
19709 static const char *
19710 comp_dir_string (void)
19714 static const char *cached_wd
= NULL
;
19716 if (cached_wd
!= NULL
)
19719 wd
= get_src_pwd ();
19723 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
)
19727 wdlen
= strlen (wd
);
19728 wd1
= ggc_vec_alloc
<char> (wdlen
+ 2);
19730 wd1
[wdlen
] = DIR_SEPARATOR
;
19731 wd1
[wdlen
+ 1] = 0;
19735 cached_wd
= remap_debug_filename (wd
);
19739 /* Generate a DW_AT_comp_dir attribute for DIE. */
19742 add_comp_dir_attribute (dw_die_ref die
)
19744 const char * wd
= comp_dir_string ();
19746 add_AT_string (die
, DW_AT_comp_dir
, wd
);
19749 /* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
19750 pointer computation, ...), output a representation for that bound according
19751 to the accepted FORMS (see enum dw_scalar_form) and add it to DIE. See
19752 loc_list_from_tree for the meaning of CONTEXT. */
19755 add_scalar_info (dw_die_ref die
, enum dwarf_attribute attr
, tree value
,
19756 int forms
, struct loc_descr_context
*context
)
19758 dw_die_ref context_die
, decl_die
;
19759 dw_loc_list_ref list
;
19760 bool strip_conversions
= true;
19761 bool placeholder_seen
= false;
19763 while (strip_conversions
)
19764 switch (TREE_CODE (value
))
19771 case VIEW_CONVERT_EXPR
:
19772 value
= TREE_OPERAND (value
, 0);
19776 strip_conversions
= false;
19780 /* If possible and permitted, output the attribute as a constant. */
19781 if ((forms
& dw_scalar_form_constant
) != 0
19782 && TREE_CODE (value
) == INTEGER_CST
)
19784 unsigned int prec
= simple_type_size_in_bits (TREE_TYPE (value
));
19786 /* If HOST_WIDE_INT is big enough then represent the bound as
19787 a constant value. We need to choose a form based on
19788 whether the type is signed or unsigned. We cannot just
19789 call add_AT_unsigned if the value itself is positive
19790 (add_AT_unsigned might add the unsigned value encoded as
19791 DW_FORM_data[1248]). Some DWARF consumers will lookup the
19792 bounds type and then sign extend any unsigned values found
19793 for signed types. This is needed only for
19794 DW_AT_{lower,upper}_bound, since for most other attributes,
19795 consumers will treat DW_FORM_data[1248] as unsigned values,
19796 regardless of the underlying type. */
19797 if (prec
<= HOST_BITS_PER_WIDE_INT
19798 || tree_fits_uhwi_p (value
))
19800 if (TYPE_UNSIGNED (TREE_TYPE (value
)))
19801 add_AT_unsigned (die
, attr
, TREE_INT_CST_LOW (value
));
19803 add_AT_int (die
, attr
, TREE_INT_CST_LOW (value
));
19806 /* Otherwise represent the bound as an unsigned value with
19807 the precision of its type. The precision and signedness
19808 of the type will be necessary to re-interpret it
19810 add_AT_wide (die
, attr
, value
);
19814 /* Otherwise, if it's possible and permitted too, output a reference to
19816 if ((forms
& dw_scalar_form_reference
) != 0)
19818 tree decl
= NULL_TREE
;
19820 /* Some type attributes reference an outer type. For instance, the upper
19821 bound of an array may reference an embedding record (this happens in
19823 if (TREE_CODE (value
) == COMPONENT_REF
19824 && TREE_CODE (TREE_OPERAND (value
, 0)) == PLACEHOLDER_EXPR
19825 && TREE_CODE (TREE_OPERAND (value
, 1)) == FIELD_DECL
)
19826 decl
= TREE_OPERAND (value
, 1);
19828 else if (VAR_P (value
)
19829 || TREE_CODE (value
) == PARM_DECL
19830 || TREE_CODE (value
) == RESULT_DECL
)
19833 if (decl
!= NULL_TREE
)
19835 dw_die_ref decl_die
= lookup_decl_die (decl
);
19837 /* ??? Can this happen, or should the variable have been bound
19838 first? Probably it can, since I imagine that we try to create
19839 the types of parameters in the order in which they exist in
19840 the list, and won't have created a forward reference to a
19841 later parameter. */
19842 if (decl_die
!= NULL
)
19844 add_AT_die_ref (die
, attr
, decl_die
);
19850 /* Last chance: try to create a stack operation procedure to evaluate the
19851 value. Do nothing if even that is not possible or permitted. */
19852 if ((forms
& dw_scalar_form_exprloc
) == 0)
19855 list
= loc_list_from_tree (value
, 2, context
);
19856 if (context
&& context
->placeholder_arg
)
19858 placeholder_seen
= context
->placeholder_seen
;
19859 context
->placeholder_seen
= false;
19861 if (list
== NULL
|| single_element_loc_list_p (list
))
19863 /* If this attribute is not a reference nor constant, it is
19864 a DWARF expression rather than location description. For that
19865 loc_list_from_tree (value, 0, &context) is needed. */
19866 dw_loc_list_ref list2
= loc_list_from_tree (value
, 0, context
);
19867 if (list2
&& single_element_loc_list_p (list2
))
19869 if (placeholder_seen
)
19871 struct dwarf_procedure_info dpi
;
19872 dpi
.fndecl
= NULL_TREE
;
19873 dpi
.args_count
= 1;
19874 if (!resolve_args_picking (list2
->expr
, 1, &dpi
))
19877 add_AT_loc (die
, attr
, list2
->expr
);
19882 /* If that failed to give a single element location list, fall back to
19883 outputting this as a reference... still if permitted. */
19885 || (forms
& dw_scalar_form_reference
) == 0
19886 || placeholder_seen
)
19889 if (current_function_decl
== 0)
19890 context_die
= comp_unit_die ();
19892 context_die
= lookup_decl_die (current_function_decl
);
19894 decl_die
= new_die (DW_TAG_variable
, context_die
, value
);
19895 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
19896 add_type_attribute (decl_die
, TREE_TYPE (value
), TYPE_QUAL_CONST
, false,
19898 add_AT_location_description (decl_die
, DW_AT_location
, list
);
19899 add_AT_die_ref (die
, attr
, decl_die
);
19902 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
19906 lower_bound_default (void)
19908 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language
))
19914 case DW_LANG_C_plus_plus
:
19915 case DW_LANG_C_plus_plus_11
:
19916 case DW_LANG_C_plus_plus_14
:
19918 case DW_LANG_ObjC_plus_plus
:
19920 case DW_LANG_Fortran77
:
19921 case DW_LANG_Fortran90
:
19922 case DW_LANG_Fortran95
:
19923 case DW_LANG_Fortran03
:
19924 case DW_LANG_Fortran08
:
19928 case DW_LANG_Python
:
19929 return dwarf_version
>= 4 ? 0 : -1;
19930 case DW_LANG_Ada95
:
19931 case DW_LANG_Ada83
:
19932 case DW_LANG_Cobol74
:
19933 case DW_LANG_Cobol85
:
19934 case DW_LANG_Modula2
:
19936 return dwarf_version
>= 4 ? 1 : -1;
19942 /* Given a tree node describing an array bound (either lower or upper) output
19943 a representation for that bound. */
19946 add_bound_info (dw_die_ref subrange_die
, enum dwarf_attribute bound_attr
,
19947 tree bound
, struct loc_descr_context
*context
)
19952 switch (TREE_CODE (bound
))
19954 /* Strip all conversions. */
19956 case VIEW_CONVERT_EXPR
:
19957 bound
= TREE_OPERAND (bound
, 0);
19960 /* All fixed-bounds are represented by INTEGER_CST nodes. Lower bounds
19961 are even omitted when they are the default. */
19963 /* If the value for this bound is the default one, we can even omit the
19965 if (bound_attr
== DW_AT_lower_bound
19966 && tree_fits_shwi_p (bound
)
19967 && (dflt
= lower_bound_default ()) != -1
19968 && tree_to_shwi (bound
) == dflt
)
19974 /* Because of the complex interaction there can be with other GNAT
19975 encodings, GDB isn't ready yet to handle proper DWARF description
19976 for self-referencial subrange bounds: let GNAT encodings do the
19977 magic in such a case. */
19979 && gnat_encodings
!= DWARF_GNAT_ENCODINGS_MINIMAL
19980 && contains_placeholder_p (bound
))
19983 add_scalar_info (subrange_die
, bound_attr
, bound
,
19984 dw_scalar_form_constant
19985 | dw_scalar_form_exprloc
19986 | dw_scalar_form_reference
,
19992 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
19993 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
19994 Note that the block of subscript information for an array type also
19995 includes information about the element type of the given array type.
19997 This function reuses previously set type and bound information if
20001 add_subscript_info (dw_die_ref type_die
, tree type
, bool collapse_p
)
20003 unsigned dimension_number
;
20005 dw_die_ref child
= type_die
->die_child
;
20007 for (dimension_number
= 0;
20008 TREE_CODE (type
) == ARRAY_TYPE
&& (dimension_number
== 0 || collapse_p
);
20009 type
= TREE_TYPE (type
), dimension_number
++)
20011 tree domain
= TYPE_DOMAIN (type
);
20013 if (TYPE_STRING_FLAG (type
) && is_fortran () && dimension_number
> 0)
20016 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
20017 and (in GNU C only) variable bounds. Handle all three forms
20020 /* Find and reuse a previously generated DW_TAG_subrange_type if
20023 For multi-dimensional arrays, as we iterate through the
20024 various dimensions in the enclosing for loop above, we also
20025 iterate through the DIE children and pick at each
20026 DW_TAG_subrange_type previously generated (if available).
20027 Each child DW_TAG_subrange_type DIE describes the range of
20028 the current dimension. At this point we should have as many
20029 DW_TAG_subrange_type's as we have dimensions in the
20031 dw_die_ref subrange_die
= NULL
;
20035 child
= child
->die_sib
;
20036 if (child
->die_tag
== DW_TAG_subrange_type
)
20037 subrange_die
= child
;
20038 if (child
== type_die
->die_child
)
20040 /* If we wrapped around, stop looking next time. */
20044 if (child
->die_tag
== DW_TAG_subrange_type
)
20048 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
20052 /* We have an array type with specified bounds. */
20053 lower
= TYPE_MIN_VALUE (domain
);
20054 upper
= TYPE_MAX_VALUE (domain
);
20056 /* Define the index type. */
20057 if (TREE_TYPE (domain
)
20058 && !get_AT (subrange_die
, DW_AT_type
))
20060 /* ??? This is probably an Ada unnamed subrange type. Ignore the
20061 TREE_TYPE field. We can't emit debug info for this
20062 because it is an unnamed integral type. */
20063 if (TREE_CODE (domain
) == INTEGER_TYPE
20064 && TYPE_NAME (domain
) == NULL_TREE
20065 && TREE_CODE (TREE_TYPE (domain
)) == INTEGER_TYPE
20066 && TYPE_NAME (TREE_TYPE (domain
)) == NULL_TREE
)
20069 add_type_attribute (subrange_die
, TREE_TYPE (domain
),
20070 TYPE_UNQUALIFIED
, false, type_die
);
20073 /* ??? If upper is NULL, the array has unspecified length,
20074 but it does have a lower bound. This happens with Fortran
20076 Since the debugger is definitely going to need to know N
20077 to produce useful results, go ahead and output the lower
20078 bound solo, and hope the debugger can cope. */
20080 if (!get_AT (subrange_die
, DW_AT_lower_bound
))
20081 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
, NULL
);
20082 if (upper
&& !get_AT (subrange_die
, DW_AT_upper_bound
))
20083 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
, NULL
);
20086 /* Otherwise we have an array type with an unspecified length. The
20087 DWARF-2 spec does not say how to handle this; let's just leave out the
20092 /* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size. */
20095 add_byte_size_attribute (dw_die_ref die
, tree tree_node
)
20097 dw_die_ref decl_die
;
20098 HOST_WIDE_INT size
;
20099 dw_loc_descr_ref size_expr
= NULL
;
20101 switch (TREE_CODE (tree_node
))
20106 case ENUMERAL_TYPE
:
20109 case QUAL_UNION_TYPE
:
20110 if (TREE_CODE (TYPE_SIZE_UNIT (tree_node
)) == VAR_DECL
20111 && (decl_die
= lookup_decl_die (TYPE_SIZE_UNIT (tree_node
))))
20113 add_AT_die_ref (die
, DW_AT_byte_size
, decl_die
);
20116 size_expr
= type_byte_size (tree_node
, &size
);
20119 /* For a data member of a struct or union, the DW_AT_byte_size is
20120 generally given as the number of bytes normally allocated for an
20121 object of the *declared* type of the member itself. This is true
20122 even for bit-fields. */
20123 size
= int_size_in_bytes (field_type (tree_node
));
20126 gcc_unreachable ();
20129 /* Support for dynamically-sized objects was introduced by DWARFv3.
20130 At the moment, GDB does not handle variable byte sizes very well,
20132 if ((dwarf_version
>= 3 || !dwarf_strict
)
20133 && gnat_encodings
== DWARF_GNAT_ENCODINGS_MINIMAL
20134 && size_expr
!= NULL
)
20135 add_AT_loc (die
, DW_AT_byte_size
, size_expr
);
20137 /* Note that `size' might be -1 when we get to this point. If it is, that
20138 indicates that the byte size of the entity in question is variable and
20139 that we could not generate a DWARF expression that computes it. */
20141 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
20144 /* Add a DW_AT_alignment attribute to DIE with TREE_NODE's non-default
20148 add_alignment_attribute (dw_die_ref die
, tree tree_node
)
20150 if (dwarf_version
< 5 && dwarf_strict
)
20155 if (DECL_P (tree_node
))
20157 if (!DECL_USER_ALIGN (tree_node
))
20160 align
= DECL_ALIGN_UNIT (tree_node
);
20162 else if (TYPE_P (tree_node
))
20164 if (!TYPE_USER_ALIGN (tree_node
))
20167 align
= TYPE_ALIGN_UNIT (tree_node
);
20170 gcc_unreachable ();
20172 add_AT_unsigned (die
, DW_AT_alignment
, align
);
20175 /* For a FIELD_DECL node which represents a bit-field, output an attribute
20176 which specifies the distance in bits from the highest order bit of the
20177 "containing object" for the bit-field to the highest order bit of the
20180 For any given bit-field, the "containing object" is a hypothetical object
20181 (of some integral or enum type) within which the given bit-field lives. The
20182 type of this hypothetical "containing object" is always the same as the
20183 declared type of the individual bit-field itself. The determination of the
20184 exact location of the "containing object" for a bit-field is rather
20185 complicated. It's handled by the `field_byte_offset' function (above).
20187 CTX is required: see the comment for VLR_CONTEXT.
20189 Note that it is the size (in bytes) of the hypothetical "containing object"
20190 which will be given in the DW_AT_byte_size attribute for this bit-field.
20191 (See `byte_size_attribute' above). */
20194 add_bit_offset_attribute (dw_die_ref die
, tree decl
, struct vlr_context
*ctx
)
20196 HOST_WIDE_INT object_offset_in_bytes
;
20197 tree original_type
= DECL_BIT_FIELD_TYPE (decl
);
20198 HOST_WIDE_INT bitpos_int
;
20199 HOST_WIDE_INT highest_order_object_bit_offset
;
20200 HOST_WIDE_INT highest_order_field_bit_offset
;
20201 HOST_WIDE_INT bit_offset
;
20203 field_byte_offset (decl
, ctx
, &object_offset_in_bytes
);
20205 /* Must be a field and a bit field. */
20206 gcc_assert (original_type
&& TREE_CODE (decl
) == FIELD_DECL
);
20208 /* We can't yet handle bit-fields whose offsets are variable, so if we
20209 encounter such things, just return without generating any attribute
20210 whatsoever. Likewise for variable or too large size. */
20211 if (! tree_fits_shwi_p (bit_position (decl
))
20212 || ! tree_fits_uhwi_p (DECL_SIZE (decl
)))
20215 bitpos_int
= int_bit_position (decl
);
20217 /* Note that the bit offset is always the distance (in bits) from the
20218 highest-order bit of the "containing object" to the highest-order bit of
20219 the bit-field itself. Since the "high-order end" of any object or field
20220 is different on big-endian and little-endian machines, the computation
20221 below must take account of these differences. */
20222 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
20223 highest_order_field_bit_offset
= bitpos_int
;
20225 if (! BYTES_BIG_ENDIAN
)
20227 highest_order_field_bit_offset
+= tree_to_shwi (DECL_SIZE (decl
));
20228 highest_order_object_bit_offset
+=
20229 simple_type_size_in_bits (original_type
);
20233 = (! BYTES_BIG_ENDIAN
20234 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
20235 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
20237 if (bit_offset
< 0)
20238 add_AT_int (die
, DW_AT_bit_offset
, bit_offset
);
20240 add_AT_unsigned (die
, DW_AT_bit_offset
, (unsigned HOST_WIDE_INT
) bit_offset
);
20243 /* For a FIELD_DECL node which represents a bit field, output an attribute
20244 which specifies the length in bits of the given field. */
20247 add_bit_size_attribute (dw_die_ref die
, tree decl
)
20249 /* Must be a field and a bit field. */
20250 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
20251 && DECL_BIT_FIELD_TYPE (decl
));
20253 if (tree_fits_uhwi_p (DECL_SIZE (decl
)))
20254 add_AT_unsigned (die
, DW_AT_bit_size
, tree_to_uhwi (DECL_SIZE (decl
)));
20257 /* If the compiled language is ANSI C, then add a 'prototyped'
20258 attribute, if arg types are given for the parameters of a function. */
20261 add_prototyped_attribute (dw_die_ref die
, tree func_type
)
20263 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language
))
20270 if (prototype_p (func_type
))
20271 add_AT_flag (die
, DW_AT_prototyped
, 1);
20278 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
20279 by looking in the type declaration, the object declaration equate table or
20280 the block mapping. */
20282 static inline dw_die_ref
20283 add_abstract_origin_attribute (dw_die_ref die
, tree origin
)
20285 dw_die_ref origin_die
= NULL
;
20287 if (DECL_P (origin
))
20290 origin_die
= lookup_decl_die (origin
);
20291 /* "Unwrap" the decls DIE which we put in the imported unit context.
20292 We are looking for the abstract copy here. */
20295 && (c
= get_AT_ref (origin_die
, DW_AT_abstract_origin
))
20296 /* ??? Identify this better. */
20300 else if (TYPE_P (origin
))
20301 origin_die
= lookup_type_die (origin
);
20302 else if (TREE_CODE (origin
) == BLOCK
)
20303 origin_die
= BLOCK_DIE (origin
);
20305 /* XXX: Functions that are never lowered don't always have correct block
20306 trees (in the case of java, they simply have no block tree, in some other
20307 languages). For these functions, there is nothing we can really do to
20308 output correct debug info for inlined functions in all cases. Rather
20309 than die, we'll just produce deficient debug info now, in that we will
20310 have variables without a proper abstract origin. In the future, when all
20311 functions are lowered, we should re-add a gcc_assert (origin_die)
20315 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
20319 /* We do not currently support the pure_virtual attribute. */
20322 add_pure_or_virtual_attribute (dw_die_ref die
, tree func_decl
)
20324 if (DECL_VINDEX (func_decl
))
20326 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
20328 if (tree_fits_shwi_p (DECL_VINDEX (func_decl
)))
20329 add_AT_loc (die
, DW_AT_vtable_elem_location
,
20330 new_loc_descr (DW_OP_constu
,
20331 tree_to_shwi (DECL_VINDEX (func_decl
)),
20334 /* GNU extension: Record what type this method came from originally. */
20335 if (debug_info_level
> DINFO_LEVEL_TERSE
20336 && DECL_CONTEXT (func_decl
))
20337 add_AT_die_ref (die
, DW_AT_containing_type
,
20338 lookup_type_die (DECL_CONTEXT (func_decl
)));
20342 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
20343 given decl. This used to be a vendor extension until after DWARF 4
20344 standardized it. */
20347 add_linkage_attr (dw_die_ref die
, tree decl
)
20349 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
20351 /* Mimic what assemble_name_raw does with a leading '*'. */
20352 if (name
[0] == '*')
20355 if (dwarf_version
>= 4)
20356 add_AT_string (die
, DW_AT_linkage_name
, name
);
20358 add_AT_string (die
, DW_AT_MIPS_linkage_name
, name
);
20361 /* Add source coordinate attributes for the given decl. */
20364 add_src_coords_attributes (dw_die_ref die
, tree decl
)
20366 expanded_location s
;
20368 if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl
)) == UNKNOWN_LOCATION
)
20370 s
= expand_location (DECL_SOURCE_LOCATION (decl
));
20371 add_AT_file (die
, DW_AT_decl_file
, lookup_filename (s
.file
));
20372 add_AT_unsigned (die
, DW_AT_decl_line
, s
.line
);
20373 if (debug_column_info
&& s
.column
)
20374 add_AT_unsigned (die
, DW_AT_decl_column
, s
.column
);
20377 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
20380 add_linkage_name_raw (dw_die_ref die
, tree decl
)
20382 /* Defer until we have an assembler name set. */
20383 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
20385 limbo_die_node
*asm_name
;
20387 asm_name
= ggc_cleared_alloc
<limbo_die_node
> ();
20388 asm_name
->die
= die
;
20389 asm_name
->created_for
= decl
;
20390 asm_name
->next
= deferred_asm_name
;
20391 deferred_asm_name
= asm_name
;
20393 else if (DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
))
20394 add_linkage_attr (die
, decl
);
20397 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl if desired. */
20400 add_linkage_name (dw_die_ref die
, tree decl
)
20402 if (debug_info_level
> DINFO_LEVEL_NONE
20403 && VAR_OR_FUNCTION_DECL_P (decl
)
20404 && TREE_PUBLIC (decl
)
20405 && !(VAR_P (decl
) && DECL_REGISTER (decl
))
20406 && die
->die_tag
!= DW_TAG_member
)
20407 add_linkage_name_raw (die
, decl
);
20410 /* Add a DW_AT_name attribute and source coordinate attribute for the
20411 given decl, but only if it actually has a name. */
20414 add_name_and_src_coords_attributes (dw_die_ref die
, tree decl
,
20415 bool no_linkage_name
)
20419 decl_name
= DECL_NAME (decl
);
20420 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
20422 const char *name
= dwarf2_name (decl
, 0);
20424 add_name_attribute (die
, name
);
20425 if (! DECL_ARTIFICIAL (decl
))
20426 add_src_coords_attributes (die
, decl
);
20428 if (!no_linkage_name
)
20429 add_linkage_name (die
, decl
);
20432 #ifdef VMS_DEBUGGING_INFO
20433 /* Get the function's name, as described by its RTL. This may be different
20434 from the DECL_NAME name used in the source file. */
20435 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
20437 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
20438 XEXP (DECL_RTL (decl
), 0), false);
20439 vec_safe_push (used_rtx_array
, XEXP (DECL_RTL (decl
), 0));
20441 #endif /* VMS_DEBUGGING_INFO */
20444 /* Add VALUE as a DW_AT_discr_value attribute to DIE. */
20447 add_discr_value (dw_die_ref die
, dw_discr_value
*value
)
20451 attr
.dw_attr
= DW_AT_discr_value
;
20452 attr
.dw_attr_val
.val_class
= dw_val_class_discr_value
;
20453 attr
.dw_attr_val
.val_entry
= NULL
;
20454 attr
.dw_attr_val
.v
.val_discr_value
.pos
= value
->pos
;
20456 attr
.dw_attr_val
.v
.val_discr_value
.v
.uval
= value
->v
.uval
;
20458 attr
.dw_attr_val
.v
.val_discr_value
.v
.sval
= value
->v
.sval
;
20459 add_dwarf_attr (die
, &attr
);
20462 /* Add DISCR_LIST as a DW_AT_discr_list to DIE. */
20465 add_discr_list (dw_die_ref die
, dw_discr_list_ref discr_list
)
20469 attr
.dw_attr
= DW_AT_discr_list
;
20470 attr
.dw_attr_val
.val_class
= dw_val_class_discr_list
;
20471 attr
.dw_attr_val
.val_entry
= NULL
;
20472 attr
.dw_attr_val
.v
.val_discr_list
= discr_list
;
20473 add_dwarf_attr (die
, &attr
);
20476 static inline dw_discr_list_ref
20477 AT_discr_list (dw_attr_node
*attr
)
20479 return attr
->dw_attr_val
.v
.val_discr_list
;
20482 #ifdef VMS_DEBUGGING_INFO
20483 /* Output the debug main pointer die for VMS */
20486 dwarf2out_vms_debug_main_pointer (void)
20488 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
20491 /* Allocate the VMS debug main subprogram die. */
20492 die
= ggc_cleared_alloc
<die_node
> ();
20493 die
->die_tag
= DW_TAG_subprogram
;
20494 add_name_attribute (die
, VMS_DEBUG_MAIN_POINTER
);
20495 ASM_GENERATE_INTERNAL_LABEL (label
, PROLOGUE_END_LABEL
,
20496 current_function_funcdef_no
);
20497 add_AT_lbl_id (die
, DW_AT_entry_pc
, label
);
20499 /* Make it the first child of comp_unit_die (). */
20500 die
->die_parent
= comp_unit_die ();
20501 if (comp_unit_die ()->die_child
)
20503 die
->die_sib
= comp_unit_die ()->die_child
->die_sib
;
20504 comp_unit_die ()->die_child
->die_sib
= die
;
20508 die
->die_sib
= die
;
20509 comp_unit_die ()->die_child
= die
;
20512 #endif /* VMS_DEBUGGING_INFO */
20514 /* Push a new declaration scope. */
20517 push_decl_scope (tree scope
)
20519 vec_safe_push (decl_scope_table
, scope
);
20522 /* Pop a declaration scope. */
20525 pop_decl_scope (void)
20527 decl_scope_table
->pop ();
20530 /* walk_tree helper function for uses_local_type, below. */
20533 uses_local_type_r (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
20536 *walk_subtrees
= 0;
20539 tree name
= TYPE_NAME (*tp
);
20540 if (name
&& DECL_P (name
) && decl_function_context (name
))
20546 /* If TYPE involves a function-local type (including a local typedef to a
20547 non-local type), returns that type; otherwise returns NULL_TREE. */
20550 uses_local_type (tree type
)
20552 tree used
= walk_tree_without_duplicates (&type
, uses_local_type_r
, NULL
);
20556 /* Return the DIE for the scope that immediately contains this type.
20557 Non-named types that do not involve a function-local type get global
20558 scope. Named types nested in namespaces or other types get their
20559 containing scope. All other types (i.e. function-local named types) get
20560 the current active scope. */
20563 scope_die_for (tree t
, dw_die_ref context_die
)
20565 dw_die_ref scope_die
= NULL
;
20566 tree containing_scope
;
20568 /* Non-types always go in the current scope. */
20569 gcc_assert (TYPE_P (t
));
20571 /* Use the scope of the typedef, rather than the scope of the type
20573 if (TYPE_NAME (t
) && DECL_P (TYPE_NAME (t
)))
20574 containing_scope
= DECL_CONTEXT (TYPE_NAME (t
));
20576 containing_scope
= TYPE_CONTEXT (t
);
20578 /* Use the containing namespace if there is one. */
20579 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
20581 if (context_die
== lookup_decl_die (containing_scope
))
20583 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
20584 context_die
= get_context_die (containing_scope
);
20586 containing_scope
= NULL_TREE
;
20589 /* Ignore function type "scopes" from the C frontend. They mean that
20590 a tagged type is local to a parmlist of a function declarator, but
20591 that isn't useful to DWARF. */
20592 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
20593 containing_scope
= NULL_TREE
;
20595 if (SCOPE_FILE_SCOPE_P (containing_scope
))
20597 /* If T uses a local type keep it local as well, to avoid references
20598 to function-local DIEs from outside the function. */
20599 if (current_function_decl
&& uses_local_type (t
))
20600 scope_die
= context_die
;
20602 scope_die
= comp_unit_die ();
20604 else if (TYPE_P (containing_scope
))
20606 /* For types, we can just look up the appropriate DIE. */
20607 if (debug_info_level
> DINFO_LEVEL_TERSE
)
20608 scope_die
= get_context_die (containing_scope
);
20611 scope_die
= lookup_type_die_strip_naming_typedef (containing_scope
);
20612 if (scope_die
== NULL
)
20613 scope_die
= comp_unit_die ();
20617 scope_die
= context_die
;
20622 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
20625 local_scope_p (dw_die_ref context_die
)
20627 for (; context_die
; context_die
= context_die
->die_parent
)
20628 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
20629 || context_die
->die_tag
== DW_TAG_subprogram
)
20635 /* Returns nonzero if CONTEXT_DIE is a class. */
20638 class_scope_p (dw_die_ref context_die
)
20640 return (context_die
20641 && (context_die
->die_tag
== DW_TAG_structure_type
20642 || context_die
->die_tag
== DW_TAG_class_type
20643 || context_die
->die_tag
== DW_TAG_interface_type
20644 || context_die
->die_tag
== DW_TAG_union_type
));
20647 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
20648 whether or not to treat a DIE in this context as a declaration. */
20651 class_or_namespace_scope_p (dw_die_ref context_die
)
20653 return (class_scope_p (context_die
)
20654 || (context_die
&& context_die
->die_tag
== DW_TAG_namespace
));
20657 /* Many forms of DIEs require a "type description" attribute. This
20658 routine locates the proper "type descriptor" die for the type given
20659 by 'type' plus any additional qualifiers given by 'cv_quals', and
20660 adds a DW_AT_type attribute below the given die. */
20663 add_type_attribute (dw_die_ref object_die
, tree type
, int cv_quals
,
20664 bool reverse
, dw_die_ref context_die
)
20666 enum tree_code code
= TREE_CODE (type
);
20667 dw_die_ref type_die
= NULL
;
20669 /* ??? If this type is an unnamed subrange type of an integral, floating-point
20670 or fixed-point type, use the inner type. This is because we have no
20671 support for unnamed types in base_type_die. This can happen if this is
20672 an Ada subrange type. Correct solution is emit a subrange type die. */
20673 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
|| code
== FIXED_POINT_TYPE
)
20674 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
20675 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
20677 if (code
== ERROR_MARK
20678 /* Handle a special case. For functions whose return type is void, we
20679 generate *no* type attribute. (Note that no object may have type
20680 `void', so this only applies to function return types). */
20681 || code
== VOID_TYPE
)
20684 type_die
= modified_type_die (type
,
20685 cv_quals
| TYPE_QUALS_NO_ADDR_SPACE (type
),
20689 if (type_die
!= NULL
)
20690 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
20693 /* Given an object die, add the calling convention attribute for the
20694 function call type. */
20696 add_calling_convention_attribute (dw_die_ref subr_die
, tree decl
)
20698 enum dwarf_calling_convention value
= DW_CC_normal
;
20700 value
= ((enum dwarf_calling_convention
)
20701 targetm
.dwarf_calling_convention (TREE_TYPE (decl
)));
20704 && id_equal (DECL_ASSEMBLER_NAME (decl
), "MAIN__"))
20706 /* DWARF 2 doesn't provide a way to identify a program's source-level
20707 entry point. DW_AT_calling_convention attributes are only meant
20708 to describe functions' calling conventions. However, lacking a
20709 better way to signal the Fortran main program, we used this for
20710 a long time, following existing custom. Now, DWARF 4 has
20711 DW_AT_main_subprogram, which we add below, but some tools still
20712 rely on the old way, which we thus keep. */
20713 value
= DW_CC_program
;
20715 if (dwarf_version
>= 4 || !dwarf_strict
)
20716 add_AT_flag (subr_die
, DW_AT_main_subprogram
, 1);
20719 /* Only add the attribute if the backend requests it, and
20720 is not DW_CC_normal. */
20721 if (value
&& (value
!= DW_CC_normal
))
20722 add_AT_unsigned (subr_die
, DW_AT_calling_convention
, value
);
20725 /* Given a tree pointer to a struct, class, union, or enum type node, return
20726 a pointer to the (string) tag name for the given type, or zero if the type
20727 was declared without a tag. */
20729 static const char *
20730 type_tag (const_tree type
)
20732 const char *name
= 0;
20734 if (TYPE_NAME (type
) != 0)
20738 /* Find the IDENTIFIER_NODE for the type name. */
20739 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
20740 && !TYPE_NAMELESS (type
))
20741 t
= TYPE_NAME (type
);
20743 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
20744 a TYPE_DECL node, regardless of whether or not a `typedef' was
20746 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
20747 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
20749 /* We want to be extra verbose. Don't call dwarf_name if
20750 DECL_NAME isn't set. The default hook for decl_printable_name
20751 doesn't like that, and in this context it's correct to return
20752 0, instead of "<anonymous>" or the like. */
20753 if (DECL_NAME (TYPE_NAME (type
))
20754 && !DECL_NAMELESS (TYPE_NAME (type
)))
20755 name
= lang_hooks
.dwarf_name (TYPE_NAME (type
), 2);
20758 /* Now get the name as a string, or invent one. */
20759 if (!name
&& t
!= 0)
20760 name
= IDENTIFIER_POINTER (t
);
20763 return (name
== 0 || *name
== '\0') ? 0 : name
;
20766 /* Return the type associated with a data member, make a special check
20767 for bit field types. */
20770 member_declared_type (const_tree member
)
20772 return (DECL_BIT_FIELD_TYPE (member
)
20773 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
20776 /* Get the decl's label, as described by its RTL. This may be different
20777 from the DECL_NAME name used in the source file. */
20780 static const char *
20781 decl_start_label (tree decl
)
20784 const char *fnname
;
20786 x
= DECL_RTL (decl
);
20787 gcc_assert (MEM_P (x
));
20790 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
20792 fnname
= XSTR (x
, 0);
20797 /* For variable-length arrays that have been previously generated, but
20798 may be incomplete due to missing subscript info, fill the subscript
20799 info. Return TRUE if this is one of those cases. */
20801 fill_variable_array_bounds (tree type
)
20803 if (TREE_ASM_WRITTEN (type
)
20804 && TREE_CODE (type
) == ARRAY_TYPE
20805 && variably_modified_type_p (type
, NULL
))
20807 dw_die_ref array_die
= lookup_type_die (type
);
20810 add_subscript_info (array_die
, type
, !is_ada ());
20816 /* These routines generate the internal representation of the DIE's for
20817 the compilation unit. Debugging information is collected by walking
20818 the declaration trees passed in from dwarf2out_decl(). */
20821 gen_array_type_die (tree type
, dw_die_ref context_die
)
20823 dw_die_ref array_die
;
20825 /* GNU compilers represent multidimensional array types as sequences of one
20826 dimensional array types whose element types are themselves array types.
20827 We sometimes squish that down to a single array_type DIE with multiple
20828 subscripts in the Dwarf debugging info. The draft Dwarf specification
20829 say that we are allowed to do this kind of compression in C, because
20830 there is no difference between an array of arrays and a multidimensional
20831 array. We don't do this for Ada to remain as close as possible to the
20832 actual representation, which is especially important against the language
20833 flexibilty wrt arrays of variable size. */
20835 bool collapse_nested_arrays
= !is_ada ();
20837 if (fill_variable_array_bounds (type
))
20840 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
20843 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
20844 DW_TAG_string_type doesn't have DW_AT_type attribute). */
20845 if (TYPE_STRING_FLAG (type
)
20846 && TREE_CODE (type
) == ARRAY_TYPE
20848 && TYPE_MODE (TREE_TYPE (type
)) == TYPE_MODE (char_type_node
))
20850 HOST_WIDE_INT size
;
20852 array_die
= new_die (DW_TAG_string_type
, scope_die
, type
);
20853 add_name_attribute (array_die
, type_tag (type
));
20854 equate_type_number_to_die (type
, array_die
);
20855 size
= int_size_in_bytes (type
);
20857 add_AT_unsigned (array_die
, DW_AT_byte_size
, size
);
20858 /* ??? We can't annotate types late, but for LTO we may not
20859 generate a location early either (gfortran.dg/save_6.f90). */
20860 else if (! (early_dwarf
&& (flag_generate_lto
|| flag_generate_offload
))
20861 && TYPE_DOMAIN (type
) != NULL_TREE
20862 && TYPE_MAX_VALUE (TYPE_DOMAIN (type
)) != NULL_TREE
)
20864 tree szdecl
= TYPE_MAX_VALUE (TYPE_DOMAIN (type
));
20865 tree rszdecl
= szdecl
;
20867 size
= int_size_in_bytes (TREE_TYPE (szdecl
));
20868 if (!DECL_P (szdecl
))
20870 if (TREE_CODE (szdecl
) == INDIRECT_REF
20871 && DECL_P (TREE_OPERAND (szdecl
, 0)))
20873 rszdecl
= TREE_OPERAND (szdecl
, 0);
20874 if (int_size_in_bytes (TREE_TYPE (rszdecl
))
20875 != DWARF2_ADDR_SIZE
)
20883 dw_loc_list_ref loc
20884 = loc_list_from_tree (rszdecl
, szdecl
== rszdecl
? 2 : 0,
20888 add_AT_location_description (array_die
, DW_AT_string_length
,
20890 if (size
!= DWARF2_ADDR_SIZE
)
20891 add_AT_unsigned (array_die
, dwarf_version
>= 5
20892 ? DW_AT_string_length_byte_size
20893 : DW_AT_byte_size
, size
);
20900 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
20901 add_name_attribute (array_die
, type_tag (type
));
20902 equate_type_number_to_die (type
, array_die
);
20904 if (TREE_CODE (type
) == VECTOR_TYPE
)
20905 add_AT_flag (array_die
, DW_AT_GNU_vector
, 1);
20907 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
20909 && TREE_CODE (type
) == ARRAY_TYPE
20910 && TREE_CODE (TREE_TYPE (type
)) == ARRAY_TYPE
20911 && !TYPE_STRING_FLAG (TREE_TYPE (type
)))
20912 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_col_major
);
20915 /* We default the array ordering. SDB will probably do
20916 the right things even if DW_AT_ordering is not present. It's not even
20917 an issue until we start to get into multidimensional arrays anyway. If
20918 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
20919 then we'll have to put the DW_AT_ordering attribute back in. (But if
20920 and when we find out that we need to put these in, we will only do so
20921 for multidimensional arrays. */
20922 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
20925 if (TREE_CODE (type
) == VECTOR_TYPE
)
20927 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
20928 dw_die_ref subrange_die
= new_die (DW_TAG_subrange_type
, array_die
, NULL
);
20929 add_bound_info (subrange_die
, DW_AT_lower_bound
, size_zero_node
, NULL
);
20930 add_bound_info (subrange_die
, DW_AT_upper_bound
,
20931 size_int (TYPE_VECTOR_SUBPARTS (type
) - 1), NULL
);
20934 add_subscript_info (array_die
, type
, collapse_nested_arrays
);
20936 /* Add representation of the type of the elements of this array type and
20937 emit the corresponding DIE if we haven't done it already. */
20938 element_type
= TREE_TYPE (type
);
20939 if (collapse_nested_arrays
)
20940 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
20942 if (TYPE_STRING_FLAG (element_type
) && is_fortran ())
20944 element_type
= TREE_TYPE (element_type
);
20947 add_type_attribute (array_die
, element_type
, TYPE_UNQUALIFIED
,
20948 TREE_CODE (type
) == ARRAY_TYPE
20949 && TYPE_REVERSE_STORAGE_ORDER (type
),
20952 add_gnat_descriptive_type_attribute (array_die
, type
, context_die
);
20953 if (TYPE_ARTIFICIAL (type
))
20954 add_AT_flag (array_die
, DW_AT_artificial
, 1);
20956 if (get_AT (array_die
, DW_AT_name
))
20957 add_pubtype (type
, array_die
);
20959 add_alignment_attribute (array_die
, type
);
20962 /* This routine generates DIE for array with hidden descriptor, details
20963 are filled into *info by a langhook. */
20966 gen_descr_array_type_die (tree type
, struct array_descr_info
*info
,
20967 dw_die_ref context_die
)
20969 const dw_die_ref scope_die
= scope_die_for (type
, context_die
);
20970 const dw_die_ref array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
20971 struct loc_descr_context context
= { type
, info
->base_decl
, NULL
,
20973 enum dwarf_tag subrange_tag
= DW_TAG_subrange_type
;
20976 add_name_attribute (array_die
, type_tag (type
));
20977 equate_type_number_to_die (type
, array_die
);
20979 if (info
->ndimensions
> 1)
20980 switch (info
->ordering
)
20982 case array_descr_ordering_row_major
:
20983 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
20985 case array_descr_ordering_column_major
:
20986 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_col_major
);
20992 if (dwarf_version
>= 3 || !dwarf_strict
)
20994 if (info
->data_location
)
20995 add_scalar_info (array_die
, DW_AT_data_location
, info
->data_location
,
20996 dw_scalar_form_exprloc
, &context
);
20997 if (info
->associated
)
20998 add_scalar_info (array_die
, DW_AT_associated
, info
->associated
,
20999 dw_scalar_form_constant
21000 | dw_scalar_form_exprloc
21001 | dw_scalar_form_reference
, &context
);
21002 if (info
->allocated
)
21003 add_scalar_info (array_die
, DW_AT_allocated
, info
->allocated
,
21004 dw_scalar_form_constant
21005 | dw_scalar_form_exprloc
21006 | dw_scalar_form_reference
, &context
);
21009 const enum dwarf_attribute attr
21010 = (info
->stride_in_bits
) ? DW_AT_bit_stride
: DW_AT_byte_stride
;
21012 = (info
->stride_in_bits
)
21013 ? dw_scalar_form_constant
21014 : (dw_scalar_form_constant
21015 | dw_scalar_form_exprloc
21016 | dw_scalar_form_reference
);
21018 add_scalar_info (array_die
, attr
, info
->stride
, forms
, &context
);
21021 if (dwarf_version
>= 5)
21025 add_scalar_info (array_die
, DW_AT_rank
, info
->rank
,
21026 dw_scalar_form_constant
21027 | dw_scalar_form_exprloc
, &context
);
21028 subrange_tag
= DW_TAG_generic_subrange
;
21029 context
.placeholder_arg
= true;
21033 add_gnat_descriptive_type_attribute (array_die
, type
, context_die
);
21035 for (dim
= 0; dim
< info
->ndimensions
; dim
++)
21037 dw_die_ref subrange_die
= new_die (subrange_tag
, array_die
, NULL
);
21039 if (info
->dimen
[dim
].bounds_type
)
21040 add_type_attribute (subrange_die
,
21041 info
->dimen
[dim
].bounds_type
, TYPE_UNQUALIFIED
,
21042 false, context_die
);
21043 if (info
->dimen
[dim
].lower_bound
)
21044 add_bound_info (subrange_die
, DW_AT_lower_bound
,
21045 info
->dimen
[dim
].lower_bound
, &context
);
21046 if (info
->dimen
[dim
].upper_bound
)
21047 add_bound_info (subrange_die
, DW_AT_upper_bound
,
21048 info
->dimen
[dim
].upper_bound
, &context
);
21049 if ((dwarf_version
>= 3 || !dwarf_strict
) && info
->dimen
[dim
].stride
)
21050 add_scalar_info (subrange_die
, DW_AT_byte_stride
,
21051 info
->dimen
[dim
].stride
,
21052 dw_scalar_form_constant
21053 | dw_scalar_form_exprloc
21054 | dw_scalar_form_reference
,
21058 gen_type_die (info
->element_type
, context_die
);
21059 add_type_attribute (array_die
, info
->element_type
, TYPE_UNQUALIFIED
,
21060 TREE_CODE (type
) == ARRAY_TYPE
21061 && TYPE_REVERSE_STORAGE_ORDER (type
),
21064 if (get_AT (array_die
, DW_AT_name
))
21065 add_pubtype (type
, array_die
);
21067 add_alignment_attribute (array_die
, type
);
21072 gen_entry_point_die (tree decl
, dw_die_ref context_die
)
21074 tree origin
= decl_ultimate_origin (decl
);
21075 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
21077 if (origin
!= NULL
)
21078 add_abstract_origin_attribute (decl_die
, origin
);
21081 add_name_and_src_coords_attributes (decl_die
, decl
);
21082 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
21083 TYPE_UNQUALIFIED
, false, context_die
);
21086 if (DECL_ABSTRACT_P (decl
))
21087 equate_decl_number_to_die (decl
, decl_die
);
21089 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
21093 /* Walk through the list of incomplete types again, trying once more to
21094 emit full debugging info for them. */
21097 retry_incomplete_types (void)
21102 for (i
= vec_safe_length (incomplete_types
) - 1; i
>= 0; i
--)
21103 if (should_emit_struct_debug ((*incomplete_types
)[i
], DINFO_USAGE_DIR_USE
))
21104 gen_type_die ((*incomplete_types
)[i
], comp_unit_die ());
21105 vec_safe_truncate (incomplete_types
, 0);
21108 /* Determine what tag to use for a record type. */
21110 static enum dwarf_tag
21111 record_type_tag (tree type
)
21113 if (! lang_hooks
.types
.classify_record
)
21114 return DW_TAG_structure_type
;
21116 switch (lang_hooks
.types
.classify_record (type
))
21118 case RECORD_IS_STRUCT
:
21119 return DW_TAG_structure_type
;
21121 case RECORD_IS_CLASS
:
21122 return DW_TAG_class_type
;
21124 case RECORD_IS_INTERFACE
:
21125 if (dwarf_version
>= 3 || !dwarf_strict
)
21126 return DW_TAG_interface_type
;
21127 return DW_TAG_structure_type
;
21130 gcc_unreachable ();
21134 /* Generate a DIE to represent an enumeration type. Note that these DIEs
21135 include all of the information about the enumeration values also. Each
21136 enumerated type name/value is listed as a child of the enumerated type
21140 gen_enumeration_type_die (tree type
, dw_die_ref context_die
)
21142 dw_die_ref type_die
= lookup_type_die (type
);
21144 if (type_die
== NULL
)
21146 type_die
= new_die (DW_TAG_enumeration_type
,
21147 scope_die_for (type
, context_die
), type
);
21148 equate_type_number_to_die (type
, type_die
);
21149 add_name_attribute (type_die
, type_tag (type
));
21150 if (dwarf_version
>= 4 || !dwarf_strict
)
21152 if (ENUM_IS_SCOPED (type
))
21153 add_AT_flag (type_die
, DW_AT_enum_class
, 1);
21154 if (ENUM_IS_OPAQUE (type
))
21155 add_AT_flag (type_die
, DW_AT_declaration
, 1);
21158 add_AT_unsigned (type_die
, DW_AT_encoding
,
21159 TYPE_UNSIGNED (type
)
21163 else if (! TYPE_SIZE (type
))
21166 remove_AT (type_die
, DW_AT_declaration
);
21168 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
21169 given enum type is incomplete, do not generate the DW_AT_byte_size
21170 attribute or the DW_AT_element_list attribute. */
21171 if (TYPE_SIZE (type
))
21175 TREE_ASM_WRITTEN (type
) = 1;
21176 add_byte_size_attribute (type_die
, type
);
21177 add_alignment_attribute (type_die
, type
);
21178 if (dwarf_version
>= 3 || !dwarf_strict
)
21180 tree underlying
= lang_hooks
.types
.enum_underlying_base_type (type
);
21181 add_type_attribute (type_die
, underlying
, TYPE_UNQUALIFIED
, false,
21184 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
21186 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
21187 add_accessibility_attribute (type_die
, TYPE_STUB_DECL (type
));
21190 /* If the first reference to this type was as the return type of an
21191 inline function, then it may not have a parent. Fix this now. */
21192 if (type_die
->die_parent
== NULL
)
21193 add_child_die (scope_die_for (type
, context_die
), type_die
);
21195 for (link
= TYPE_VALUES (type
);
21196 link
!= NULL
; link
= TREE_CHAIN (link
))
21198 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
21199 tree value
= TREE_VALUE (link
);
21201 add_name_attribute (enum_die
,
21202 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
21204 if (TREE_CODE (value
) == CONST_DECL
)
21205 value
= DECL_INITIAL (value
);
21207 if (simple_type_size_in_bits (TREE_TYPE (value
))
21208 <= HOST_BITS_PER_WIDE_INT
|| tree_fits_shwi_p (value
))
21210 /* For constant forms created by add_AT_unsigned DWARF
21211 consumers (GDB, elfutils, etc.) always zero extend
21212 the value. Only when the actual value is negative
21213 do we need to use add_AT_int to generate a constant
21214 form that can represent negative values. */
21215 HOST_WIDE_INT val
= TREE_INT_CST_LOW (value
);
21216 if (TYPE_UNSIGNED (TREE_TYPE (value
)) || val
>= 0)
21217 add_AT_unsigned (enum_die
, DW_AT_const_value
,
21218 (unsigned HOST_WIDE_INT
) val
);
21220 add_AT_int (enum_die
, DW_AT_const_value
, val
);
21223 /* Enumeration constants may be wider than HOST_WIDE_INT. Handle
21224 that here. TODO: This should be re-worked to use correct
21225 signed/unsigned double tags for all cases. */
21226 add_AT_wide (enum_die
, DW_AT_const_value
, value
);
21229 add_gnat_descriptive_type_attribute (type_die
, type
, context_die
);
21230 if (TYPE_ARTIFICIAL (type
))
21231 add_AT_flag (type_die
, DW_AT_artificial
, 1);
21234 add_AT_flag (type_die
, DW_AT_declaration
, 1);
21236 add_alignment_attribute (type_die
, type
);
21238 add_pubtype (type
, type_die
);
21243 /* Generate a DIE to represent either a real live formal parameter decl or to
21244 represent just the type of some formal parameter position in some function
21247 Note that this routine is a bit unusual because its argument may be a
21248 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
21249 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
21250 node. If it's the former then this function is being called to output a
21251 DIE to represent a formal parameter object (or some inlining thereof). If
21252 it's the latter, then this function is only being called to output a
21253 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
21254 argument type of some subprogram type.
21255 If EMIT_NAME_P is true, name and source coordinate attributes
21259 gen_formal_parameter_die (tree node
, tree origin
, bool emit_name_p
,
21260 dw_die_ref context_die
)
21262 tree node_or_origin
= node
? node
: origin
;
21263 tree ultimate_origin
;
21264 dw_die_ref parm_die
= NULL
;
21266 if (DECL_P (node_or_origin
))
21268 parm_die
= lookup_decl_die (node
);
21270 /* If the contexts differ, we may not be talking about the same
21272 ??? When in LTO the DIE parent is the "abstract" copy and the
21273 context_die is the specification "copy". But this whole block
21274 should eventually be no longer needed. */
21275 if (parm_die
&& parm_die
->die_parent
!= context_die
&& !in_lto_p
)
21277 if (!DECL_ABSTRACT_P (node
))
21279 /* This can happen when creating an inlined instance, in
21280 which case we need to create a new DIE that will get
21281 annotated with DW_AT_abstract_origin. */
21285 gcc_unreachable ();
21288 if (parm_die
&& parm_die
->die_parent
== NULL
)
21290 /* Check that parm_die already has the right attributes that
21291 we would have added below. If any attributes are
21292 missing, fall through to add them. */
21293 if (! DECL_ABSTRACT_P (node_or_origin
)
21294 && !get_AT (parm_die
, DW_AT_location
)
21295 && !get_AT (parm_die
, DW_AT_const_value
))
21296 /* We are missing location info, and are about to add it. */
21300 add_child_die (context_die
, parm_die
);
21306 /* If we have a previously generated DIE, use it, unless this is an
21307 concrete instance (origin != NULL), in which case we need a new
21308 DIE with a corresponding DW_AT_abstract_origin. */
21310 if (parm_die
&& origin
== NULL
)
21311 reusing_die
= true;
21314 parm_die
= new_die (DW_TAG_formal_parameter
, context_die
, node
);
21315 reusing_die
= false;
21318 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin
)))
21320 case tcc_declaration
:
21321 ultimate_origin
= decl_ultimate_origin (node_or_origin
);
21322 if (node
|| ultimate_origin
)
21323 origin
= ultimate_origin
;
21328 if (origin
!= NULL
)
21329 add_abstract_origin_attribute (parm_die
, origin
);
21330 else if (emit_name_p
)
21331 add_name_and_src_coords_attributes (parm_die
, node
);
21333 || (! DECL_ABSTRACT_P (node_or_origin
)
21334 && variably_modified_type_p (TREE_TYPE (node_or_origin
),
21335 decl_function_context
21336 (node_or_origin
))))
21338 tree type
= TREE_TYPE (node_or_origin
);
21339 if (decl_by_reference_p (node_or_origin
))
21340 add_type_attribute (parm_die
, TREE_TYPE (type
),
21342 false, context_die
);
21344 add_type_attribute (parm_die
, type
,
21345 decl_quals (node_or_origin
),
21346 false, context_die
);
21348 if (origin
== NULL
&& DECL_ARTIFICIAL (node
))
21349 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
21351 if (node
&& node
!= origin
)
21352 equate_decl_number_to_die (node
, parm_die
);
21353 if (! DECL_ABSTRACT_P (node_or_origin
))
21354 add_location_or_const_value_attribute (parm_die
, node_or_origin
,
21360 /* We were called with some kind of a ..._TYPE node. */
21361 add_type_attribute (parm_die
, node_or_origin
, TYPE_UNQUALIFIED
, false,
21366 gcc_unreachable ();
21372 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
21373 children DW_TAG_formal_parameter DIEs representing the arguments of the
21376 PARM_PACK must be a function parameter pack.
21377 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
21378 must point to the subsequent arguments of the function PACK_ARG belongs to.
21379 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
21380 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
21381 following the last one for which a DIE was generated. */
21384 gen_formal_parameter_pack_die (tree parm_pack
,
21386 dw_die_ref subr_die
,
21390 dw_die_ref parm_pack_die
;
21392 gcc_assert (parm_pack
21393 && lang_hooks
.function_parameter_pack_p (parm_pack
)
21396 parm_pack_die
= new_die (DW_TAG_GNU_formal_parameter_pack
, subr_die
, parm_pack
);
21397 add_src_coords_attributes (parm_pack_die
, parm_pack
);
21399 for (arg
= pack_arg
; arg
; arg
= DECL_CHAIN (arg
))
21401 if (! lang_hooks
.decls
.function_parm_expanded_from_pack_p (arg
,
21404 gen_formal_parameter_die (arg
, NULL
,
21405 false /* Don't emit name attribute. */,
21410 return parm_pack_die
;
21413 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
21414 at the end of an (ANSI prototyped) formal parameters list. */
21417 gen_unspecified_parameters_die (tree decl_or_type
, dw_die_ref context_die
)
21419 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
21422 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
21423 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
21424 parameters as specified in some function type specification (except for
21425 those which appear as part of a function *definition*). */
21428 gen_formal_types_die (tree function_or_method_type
, dw_die_ref context_die
)
21431 tree formal_type
= NULL
;
21432 tree first_parm_type
;
21435 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
21437 arg
= DECL_ARGUMENTS (function_or_method_type
);
21438 function_or_method_type
= TREE_TYPE (function_or_method_type
);
21443 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
21445 /* Make our first pass over the list of formal parameter types and output a
21446 DW_TAG_formal_parameter DIE for each one. */
21447 for (link
= first_parm_type
; link
; )
21449 dw_die_ref parm_die
;
21451 formal_type
= TREE_VALUE (link
);
21452 if (formal_type
== void_type_node
)
21455 /* Output a (nameless) DIE to represent the formal parameter itself. */
21456 if (!POINTER_BOUNDS_TYPE_P (formal_type
))
21458 parm_die
= gen_formal_parameter_die (formal_type
, NULL
,
21459 true /* Emit name attribute. */,
21461 if (TREE_CODE (function_or_method_type
) == METHOD_TYPE
21462 && link
== first_parm_type
)
21464 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
21465 if (dwarf_version
>= 3 || !dwarf_strict
)
21466 add_AT_die_ref (context_die
, DW_AT_object_pointer
, parm_die
);
21468 else if (arg
&& DECL_ARTIFICIAL (arg
))
21469 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
21472 link
= TREE_CHAIN (link
);
21474 arg
= DECL_CHAIN (arg
);
21477 /* If this function type has an ellipsis, add a
21478 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
21479 if (formal_type
!= void_type_node
)
21480 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
21482 /* Make our second (and final) pass over the list of formal parameter types
21483 and output DIEs to represent those types (as necessary). */
21484 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
21485 link
&& TREE_VALUE (link
);
21486 link
= TREE_CHAIN (link
))
21487 gen_type_die (TREE_VALUE (link
), context_die
);
21490 /* We want to generate the DIE for TYPE so that we can generate the
21491 die for MEMBER, which has been defined; we will need to refer back
21492 to the member declaration nested within TYPE. If we're trying to
21493 generate minimal debug info for TYPE, processing TYPE won't do the
21494 trick; we need to attach the member declaration by hand. */
21497 gen_type_die_for_member (tree type
, tree member
, dw_die_ref context_die
)
21499 gen_type_die (type
, context_die
);
21501 /* If we're trying to avoid duplicate debug info, we may not have
21502 emitted the member decl for this function. Emit it now. */
21503 if (TYPE_STUB_DECL (type
)
21504 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
21505 && ! lookup_decl_die (member
))
21507 dw_die_ref type_die
;
21508 gcc_assert (!decl_ultimate_origin (member
));
21510 push_decl_scope (type
);
21511 type_die
= lookup_type_die_strip_naming_typedef (type
);
21512 if (TREE_CODE (member
) == FUNCTION_DECL
)
21513 gen_subprogram_die (member
, type_die
);
21514 else if (TREE_CODE (member
) == FIELD_DECL
)
21516 /* Ignore the nameless fields that are used to skip bits but handle
21517 C++ anonymous unions and structs. */
21518 if (DECL_NAME (member
) != NULL_TREE
21519 || TREE_CODE (TREE_TYPE (member
)) == UNION_TYPE
21520 || TREE_CODE (TREE_TYPE (member
)) == RECORD_TYPE
)
21522 struct vlr_context vlr_ctx
= {
21523 DECL_CONTEXT (member
), /* struct_type */
21524 NULL_TREE
/* variant_part_offset */
21526 gen_type_die (member_declared_type (member
), type_die
);
21527 gen_field_die (member
, &vlr_ctx
, type_die
);
21531 gen_variable_die (member
, NULL_TREE
, type_die
);
21537 /* Forward declare these functions, because they are mutually recursive
21538 with their set_block_* pairing functions. */
21539 static void set_decl_origin_self (tree
);
21541 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
21542 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
21543 that it points to the node itself, thus indicating that the node is its
21544 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
21545 the given node is NULL, recursively descend the decl/block tree which
21546 it is the root of, and for each other ..._DECL or BLOCK node contained
21547 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
21548 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
21549 values to point to themselves. */
21552 set_block_origin_self (tree stmt
)
21554 if (BLOCK_ABSTRACT_ORIGIN (stmt
) == NULL_TREE
)
21556 BLOCK_ABSTRACT_ORIGIN (stmt
) = stmt
;
21561 for (local_decl
= BLOCK_VARS (stmt
);
21562 local_decl
!= NULL_TREE
;
21563 local_decl
= DECL_CHAIN (local_decl
))
21564 /* Do not recurse on nested functions since the inlining status
21565 of parent and child can be different as per the DWARF spec. */
21566 if (TREE_CODE (local_decl
) != FUNCTION_DECL
21567 && !DECL_EXTERNAL (local_decl
))
21568 set_decl_origin_self (local_decl
);
21574 for (subblock
= BLOCK_SUBBLOCKS (stmt
);
21575 subblock
!= NULL_TREE
;
21576 subblock
= BLOCK_CHAIN (subblock
))
21577 set_block_origin_self (subblock
); /* Recurse. */
21582 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
21583 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
21584 node to so that it points to the node itself, thus indicating that the
21585 node represents its own (abstract) origin. Additionally, if the
21586 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
21587 the decl/block tree of which the given node is the root of, and for
21588 each other ..._DECL or BLOCK node contained therein whose
21589 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
21590 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
21591 point to themselves. */
21594 set_decl_origin_self (tree decl
)
21596 if (DECL_ABSTRACT_ORIGIN (decl
) == NULL_TREE
)
21598 DECL_ABSTRACT_ORIGIN (decl
) = decl
;
21599 if (TREE_CODE (decl
) == FUNCTION_DECL
)
21603 for (arg
= DECL_ARGUMENTS (decl
); arg
; arg
= DECL_CHAIN (arg
))
21604 DECL_ABSTRACT_ORIGIN (arg
) = arg
;
21605 if (DECL_INITIAL (decl
) != NULL_TREE
21606 && DECL_INITIAL (decl
) != error_mark_node
)
21607 set_block_origin_self (DECL_INITIAL (decl
));
21612 /* Mark the early DIE for DECL as the abstract instance. */
21615 dwarf2out_abstract_function (tree decl
)
21617 dw_die_ref old_die
;
21619 /* Make sure we have the actual abstract inline, not a clone. */
21620 decl
= DECL_ORIGIN (decl
);
21622 if (DECL_IGNORED_P (decl
))
21625 old_die
= lookup_decl_die (decl
);
21626 /* With early debug we always have an old DIE unless we are in LTO
21627 and the user did not compile but only link with debug. */
21628 if (in_lto_p
&& ! old_die
)
21630 gcc_assert (old_die
!= NULL
);
21631 if (get_AT (old_die
, DW_AT_inline
)
21632 || get_AT (old_die
, DW_AT_abstract_origin
))
21633 /* We've already generated the abstract instance. */
21636 /* Go ahead and put DW_AT_inline on the DIE. */
21637 if (DECL_DECLARED_INLINE_P (decl
))
21639 if (cgraph_function_possibly_inlined_p (decl
))
21640 add_AT_unsigned (old_die
, DW_AT_inline
, DW_INL_declared_inlined
);
21642 add_AT_unsigned (old_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
21646 if (cgraph_function_possibly_inlined_p (decl
))
21647 add_AT_unsigned (old_die
, DW_AT_inline
, DW_INL_inlined
);
21649 add_AT_unsigned (old_die
, DW_AT_inline
, DW_INL_not_inlined
);
21652 if (DECL_DECLARED_INLINE_P (decl
)
21653 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl
)))
21654 add_AT_flag (old_die
, DW_AT_artificial
, 1);
21656 set_decl_origin_self (decl
);
21659 /* Helper function of premark_used_types() which gets called through
21662 Marks the DIE of a given type in *SLOT as perennial, so it never gets
21663 marked as unused by prune_unused_types. */
21666 premark_used_types_helper (tree
const &type
, void *)
21670 die
= lookup_type_die (type
);
21672 die
->die_perennial_p
= 1;
21676 /* Helper function of premark_types_used_by_global_vars which gets called
21677 through htab_traverse.
21679 Marks the DIE of a given type in *SLOT as perennial, so it never gets
21680 marked as unused by prune_unused_types. The DIE of the type is marked
21681 only if the global variable using the type will actually be emitted. */
21684 premark_types_used_by_global_vars_helper (types_used_by_vars_entry
**slot
,
21687 struct types_used_by_vars_entry
*entry
;
21690 entry
= (struct types_used_by_vars_entry
*) *slot
;
21691 gcc_assert (entry
->type
!= NULL
21692 && entry
->var_decl
!= NULL
);
21693 die
= lookup_type_die (entry
->type
);
21696 /* Ask cgraph if the global variable really is to be emitted.
21697 If yes, then we'll keep the DIE of ENTRY->TYPE. */
21698 varpool_node
*node
= varpool_node::get (entry
->var_decl
);
21699 if (node
&& node
->definition
)
21701 die
->die_perennial_p
= 1;
21702 /* Keep the parent DIEs as well. */
21703 while ((die
= die
->die_parent
) && die
->die_perennial_p
== 0)
21704 die
->die_perennial_p
= 1;
21710 /* Mark all members of used_types_hash as perennial. */
21713 premark_used_types (struct function
*fun
)
21715 if (fun
&& fun
->used_types_hash
)
21716 fun
->used_types_hash
->traverse
<void *, premark_used_types_helper
> (NULL
);
21719 /* Mark all members of types_used_by_vars_entry as perennial. */
21722 premark_types_used_by_global_vars (void)
21724 if (types_used_by_vars_hash
)
21725 types_used_by_vars_hash
21726 ->traverse
<void *, premark_types_used_by_global_vars_helper
> (NULL
);
21729 /* Generate a DW_TAG_call_site DIE in function DECL under SUBR_DIE
21730 for CA_LOC call arg loc node. */
21733 gen_call_site_die (tree decl
, dw_die_ref subr_die
,
21734 struct call_arg_loc_node
*ca_loc
)
21736 dw_die_ref stmt_die
= NULL
, die
;
21737 tree block
= ca_loc
->block
;
21740 && block
!= DECL_INITIAL (decl
)
21741 && TREE_CODE (block
) == BLOCK
)
21743 stmt_die
= BLOCK_DIE (block
);
21746 block
= BLOCK_SUPERCONTEXT (block
);
21748 if (stmt_die
== NULL
)
21749 stmt_die
= subr_die
;
21750 die
= new_die (dwarf_TAG (DW_TAG_call_site
), stmt_die
, NULL_TREE
);
21751 add_AT_lbl_id (die
, dwarf_AT (DW_AT_call_return_pc
), ca_loc
->label
);
21752 if (ca_loc
->tail_call_p
)
21753 add_AT_flag (die
, dwarf_AT (DW_AT_call_tail_call
), 1);
21754 if (ca_loc
->symbol_ref
)
21756 dw_die_ref tdie
= lookup_decl_die (SYMBOL_REF_DECL (ca_loc
->symbol_ref
));
21758 add_AT_die_ref (die
, dwarf_AT (DW_AT_call_origin
), tdie
);
21760 add_AT_addr (die
, dwarf_AT (DW_AT_call_origin
), ca_loc
->symbol_ref
,
21766 /* Generate a DIE to represent a declared function (either file-scope or
21770 gen_subprogram_die (tree decl
, dw_die_ref context_die
)
21772 tree origin
= decl_ultimate_origin (decl
);
21773 dw_die_ref subr_die
;
21774 dw_die_ref old_die
= lookup_decl_die (decl
);
21776 /* This function gets called multiple times for different stages of
21777 the debug process. For example, for func() in this code:
21781 void func() { ... }
21784 ...we get called 4 times. Twice in early debug and twice in
21790 1. Once while generating func() within the namespace. This is
21791 the declaration. The declaration bit below is set, as the
21792 context is the namespace.
21794 A new DIE will be generated with DW_AT_declaration set.
21796 2. Once for func() itself. This is the specification. The
21797 declaration bit below is clear as the context is the CU.
21799 We will use the cached DIE from (1) to create a new DIE with
21800 DW_AT_specification pointing to the declaration in (1).
21802 Late debug via rest_of_handle_final()
21803 -------------------------------------
21805 3. Once generating func() within the namespace. This is also the
21806 declaration, as in (1), but this time we will early exit below
21807 as we have a cached DIE and a declaration needs no additional
21808 annotations (no locations), as the source declaration line
21811 4. Once for func() itself. As in (2), this is the specification,
21812 but this time we will re-use the cached DIE, and just annotate
21813 it with the location information that should now be available.
21815 For something without namespaces, but with abstract instances, we
21816 are also called a multiple times:
21821 Base (); // constructor declaration (1)
21824 Base::Base () { } // constructor specification (2)
21829 1. Once for the Base() constructor by virtue of it being a
21830 member of the Base class. This is done via
21831 rest_of_type_compilation.
21833 This is a declaration, so a new DIE will be created with
21836 2. Once for the Base() constructor definition, but this time
21837 while generating the abstract instance of the base
21838 constructor (__base_ctor) which is being generated via early
21839 debug of reachable functions.
21841 Even though we have a cached version of the declaration (1),
21842 we will create a DW_AT_specification of the declaration DIE
21845 3. Once for the __base_ctor itself, but this time, we generate
21846 an DW_AT_abstract_origin version of the DW_AT_specification in
21849 Late debug via rest_of_handle_final
21850 -----------------------------------
21852 4. One final time for the __base_ctor (which will have a cached
21853 DIE with DW_AT_abstract_origin created in (3). This time,
21854 we will just annotate the location information now
21857 int declaration
= (current_function_decl
!= decl
21858 || class_or_namespace_scope_p (context_die
));
21860 /* Now that the C++ front end lazily declares artificial member fns, we
21861 might need to retrofit the declaration into its class. */
21862 if (!declaration
&& !origin
&& !old_die
21863 && DECL_CONTEXT (decl
) && TYPE_P (DECL_CONTEXT (decl
))
21864 && !class_or_namespace_scope_p (context_die
)
21865 && debug_info_level
> DINFO_LEVEL_TERSE
)
21866 old_die
= force_decl_die (decl
);
21868 /* A concrete instance, tag a new DIE with DW_AT_abstract_origin. */
21869 if (origin
!= NULL
)
21871 gcc_assert (!declaration
|| local_scope_p (context_die
));
21873 /* Fixup die_parent for the abstract instance of a nested
21874 inline function. */
21875 if (old_die
&& old_die
->die_parent
== NULL
)
21876 add_child_die (context_die
, old_die
);
21878 if (old_die
&& get_AT_ref (old_die
, DW_AT_abstract_origin
))
21880 /* If we have a DW_AT_abstract_origin we have a working
21882 subr_die
= old_die
;
21886 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
21887 add_abstract_origin_attribute (subr_die
, origin
);
21888 /* This is where the actual code for a cloned function is.
21889 Let's emit linkage name attribute for it. This helps
21890 debuggers to e.g, set breakpoints into
21891 constructors/destructors when the user asks "break
21893 add_linkage_name (subr_die
, decl
);
21896 /* A cached copy, possibly from early dwarf generation. Reuse as
21897 much as possible. */
21900 /* A declaration that has been previously dumped needs no
21901 additional information. */
21905 if (!get_AT_flag (old_die
, DW_AT_declaration
)
21906 /* We can have a normal definition following an inline one in the
21907 case of redefinition of GNU C extern inlines.
21908 It seems reasonable to use AT_specification in this case. */
21909 && !get_AT (old_die
, DW_AT_inline
))
21911 /* Detect and ignore this case, where we are trying to output
21912 something we have already output. */
21913 if (get_AT (old_die
, DW_AT_low_pc
)
21914 || get_AT (old_die
, DW_AT_ranges
))
21917 /* If we have no location information, this must be a
21918 partially generated DIE from early dwarf generation.
21919 Fall through and generate it. */
21922 /* If the definition comes from the same place as the declaration,
21923 maybe use the old DIE. We always want the DIE for this function
21924 that has the *_pc attributes to be under comp_unit_die so the
21925 debugger can find it. We also need to do this for abstract
21926 instances of inlines, since the spec requires the out-of-line copy
21927 to have the same parent. For local class methods, this doesn't
21928 apply; we just use the old DIE. */
21929 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
21930 struct dwarf_file_data
* file_index
= lookup_filename (s
.file
);
21931 if ((is_cu_die (old_die
->die_parent
)
21932 /* This condition fixes the inconsistency/ICE with the
21933 following Fortran test (or some derivative thereof) while
21934 building libgfortran:
21938 logical function funky (FLAG)
21943 || (old_die
->die_parent
21944 && old_die
->die_parent
->die_tag
== DW_TAG_module
)
21945 || context_die
== NULL
)
21946 && (DECL_ARTIFICIAL (decl
)
21947 /* The location attributes may be in the abstract origin
21948 which in the case of LTO might be not available to
21950 || get_AT (old_die
, DW_AT_abstract_origin
)
21951 || (get_AT_file (old_die
, DW_AT_decl_file
) == file_index
21952 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
21953 == (unsigned) s
.line
)
21954 && (!debug_column_info
21956 || (get_AT_unsigned (old_die
, DW_AT_decl_column
)
21957 == (unsigned) s
.column
)))))
21959 subr_die
= old_die
;
21961 /* Clear out the declaration attribute, but leave the
21962 parameters so they can be augmented with location
21963 information later. Unless this was a declaration, in
21964 which case, wipe out the nameless parameters and recreate
21965 them further down. */
21966 if (remove_AT (subr_die
, DW_AT_declaration
))
21969 remove_AT (subr_die
, DW_AT_object_pointer
);
21970 remove_child_TAG (subr_die
, DW_TAG_formal_parameter
);
21973 /* Make a specification pointing to the previously built
21977 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
21978 add_AT_specification (subr_die
, old_die
);
21979 add_pubname (decl
, subr_die
);
21980 if (get_AT_file (old_die
, DW_AT_decl_file
) != file_index
)
21981 add_AT_file (subr_die
, DW_AT_decl_file
, file_index
);
21982 if (get_AT_unsigned (old_die
, DW_AT_decl_line
) != (unsigned) s
.line
)
21983 add_AT_unsigned (subr_die
, DW_AT_decl_line
, s
.line
);
21984 if (debug_column_info
21986 && (get_AT_unsigned (old_die
, DW_AT_decl_column
)
21987 != (unsigned) s
.column
))
21988 add_AT_unsigned (subr_die
, DW_AT_decl_column
, s
.column
);
21990 /* If the prototype had an 'auto' or 'decltype(auto)' return type,
21991 emit the real type on the definition die. */
21992 if (is_cxx () && debug_info_level
> DINFO_LEVEL_TERSE
)
21994 dw_die_ref die
= get_AT_ref (old_die
, DW_AT_type
);
21995 if (die
== auto_die
|| die
== decltype_auto_die
)
21996 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
21997 TYPE_UNQUALIFIED
, false, context_die
);
22000 /* When we process the method declaration, we haven't seen
22001 the out-of-class defaulted definition yet, so we have to
22003 if ((dwarf_version
>= 5 || ! dwarf_strict
)
22004 && !get_AT (subr_die
, DW_AT_defaulted
))
22007 = lang_hooks
.decls
.decl_dwarf_attribute (decl
,
22009 if (defaulted
!= -1)
22011 /* Other values must have been handled before. */
22012 gcc_assert (defaulted
== DW_DEFAULTED_out_of_class
);
22013 add_AT_unsigned (subr_die
, DW_AT_defaulted
, defaulted
);
22018 /* Create a fresh DIE for anything else. */
22021 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
22023 if (TREE_PUBLIC (decl
))
22024 add_AT_flag (subr_die
, DW_AT_external
, 1);
22026 add_name_and_src_coords_attributes (subr_die
, decl
);
22027 add_pubname (decl
, subr_die
);
22028 if (debug_info_level
> DINFO_LEVEL_TERSE
)
22030 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
22031 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
22032 TYPE_UNQUALIFIED
, false, context_die
);
22035 add_pure_or_virtual_attribute (subr_die
, decl
);
22036 if (DECL_ARTIFICIAL (decl
))
22037 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
22039 if (TREE_THIS_VOLATILE (decl
) && (dwarf_version
>= 5 || !dwarf_strict
))
22040 add_AT_flag (subr_die
, DW_AT_noreturn
, 1);
22042 add_alignment_attribute (subr_die
, decl
);
22044 add_accessibility_attribute (subr_die
, decl
);
22047 /* Unless we have an existing non-declaration DIE, equate the new
22049 if (!old_die
|| is_declaration_die (old_die
))
22050 equate_decl_number_to_die (decl
, subr_die
);
22054 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
22056 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
22058 /* If this is an explicit function declaration then generate
22059 a DW_AT_explicit attribute. */
22060 if ((dwarf_version
>= 3 || !dwarf_strict
)
22061 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
22062 DW_AT_explicit
) == 1)
22063 add_AT_flag (subr_die
, DW_AT_explicit
, 1);
22065 /* If this is a C++11 deleted special function member then generate
22066 a DW_AT_deleted attribute. */
22067 if ((dwarf_version
>= 5 || !dwarf_strict
)
22068 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
22069 DW_AT_deleted
) == 1)
22070 add_AT_flag (subr_die
, DW_AT_deleted
, 1);
22072 /* If this is a C++11 defaulted special function member then
22073 generate a DW_AT_defaulted attribute. */
22074 if (dwarf_version
>= 5 || !dwarf_strict
)
22077 = lang_hooks
.decls
.decl_dwarf_attribute (decl
,
22079 if (defaulted
!= -1)
22080 add_AT_unsigned (subr_die
, DW_AT_defaulted
, defaulted
);
22083 /* If this is a C++11 non-static member function with & ref-qualifier
22084 then generate a DW_AT_reference attribute. */
22085 if ((dwarf_version
>= 5 || !dwarf_strict
)
22086 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
22087 DW_AT_reference
) == 1)
22088 add_AT_flag (subr_die
, DW_AT_reference
, 1);
22090 /* If this is a C++11 non-static member function with &&
22091 ref-qualifier then generate a DW_AT_reference attribute. */
22092 if ((dwarf_version
>= 5 || !dwarf_strict
)
22093 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
22094 DW_AT_rvalue_reference
)
22096 add_AT_flag (subr_die
, DW_AT_rvalue_reference
, 1);
22099 /* For non DECL_EXTERNALs, if range information is available, fill
22100 the DIE with it. */
22101 else if (!DECL_EXTERNAL (decl
) && !early_dwarf
)
22103 HOST_WIDE_INT cfa_fb_offset
;
22105 struct function
*fun
= DECL_STRUCT_FUNCTION (decl
);
22107 if (!crtl
->has_bb_partition
)
22109 dw_fde_ref fde
= fun
->fde
;
22110 if (fde
->dw_fde_begin
)
22112 /* We have already generated the labels. */
22113 add_AT_low_high_pc (subr_die
, fde
->dw_fde_begin
,
22114 fde
->dw_fde_end
, false);
22118 /* Create start/end labels and add the range. */
22119 char label_id_low
[MAX_ARTIFICIAL_LABEL_BYTES
];
22120 char label_id_high
[MAX_ARTIFICIAL_LABEL_BYTES
];
22121 ASM_GENERATE_INTERNAL_LABEL (label_id_low
, FUNC_BEGIN_LABEL
,
22122 current_function_funcdef_no
);
22123 ASM_GENERATE_INTERNAL_LABEL (label_id_high
, FUNC_END_LABEL
,
22124 current_function_funcdef_no
);
22125 add_AT_low_high_pc (subr_die
, label_id_low
, label_id_high
,
22129 #if VMS_DEBUGGING_INFO
22130 /* HP OpenVMS Industry Standard 64: DWARF Extensions
22131 Section 2.3 Prologue and Epilogue Attributes:
22132 When a breakpoint is set on entry to a function, it is generally
22133 desirable for execution to be suspended, not on the very first
22134 instruction of the function, but rather at a point after the
22135 function's frame has been set up, after any language defined local
22136 declaration processing has been completed, and before execution of
22137 the first statement of the function begins. Debuggers generally
22138 cannot properly determine where this point is. Similarly for a
22139 breakpoint set on exit from a function. The prologue and epilogue
22140 attributes allow a compiler to communicate the location(s) to use. */
22143 if (fde
->dw_fde_vms_end_prologue
)
22144 add_AT_vms_delta (subr_die
, DW_AT_HP_prologue
,
22145 fde
->dw_fde_begin
, fde
->dw_fde_vms_end_prologue
);
22147 if (fde
->dw_fde_vms_begin_epilogue
)
22148 add_AT_vms_delta (subr_die
, DW_AT_HP_epilogue
,
22149 fde
->dw_fde_begin
, fde
->dw_fde_vms_begin_epilogue
);
22156 /* Generate pubnames entries for the split function code ranges. */
22157 dw_fde_ref fde
= fun
->fde
;
22159 if (fde
->dw_fde_second_begin
)
22161 if (dwarf_version
>= 3 || !dwarf_strict
)
22163 /* We should use ranges for non-contiguous code section
22164 addresses. Use the actual code range for the initial
22165 section, since the HOT/COLD labels might precede an
22166 alignment offset. */
22167 bool range_list_added
= false;
22168 add_ranges_by_labels (subr_die
, fde
->dw_fde_begin
,
22169 fde
->dw_fde_end
, &range_list_added
,
22171 add_ranges_by_labels (subr_die
, fde
->dw_fde_second_begin
,
22172 fde
->dw_fde_second_end
,
22173 &range_list_added
, false);
22174 if (range_list_added
)
22179 /* There is no real support in DW2 for this .. so we make
22180 a work-around. First, emit the pub name for the segment
22181 containing the function label. Then make and emit a
22182 simplified subprogram DIE for the second segment with the
22183 name pre-fixed by __hot/cold_sect_of_. We use the same
22184 linkage name for the second die so that gdb will find both
22185 sections when given "b foo". */
22186 const char *name
= NULL
;
22187 tree decl_name
= DECL_NAME (decl
);
22188 dw_die_ref seg_die
;
22190 /* Do the 'primary' section. */
22191 add_AT_low_high_pc (subr_die
, fde
->dw_fde_begin
,
22192 fde
->dw_fde_end
, false);
22194 /* Build a minimal DIE for the secondary section. */
22195 seg_die
= new_die (DW_TAG_subprogram
,
22196 subr_die
->die_parent
, decl
);
22198 if (TREE_PUBLIC (decl
))
22199 add_AT_flag (seg_die
, DW_AT_external
, 1);
22201 if (decl_name
!= NULL
22202 && IDENTIFIER_POINTER (decl_name
) != NULL
)
22204 name
= dwarf2_name (decl
, 1);
22205 if (! DECL_ARTIFICIAL (decl
))
22206 add_src_coords_attributes (seg_die
, decl
);
22208 add_linkage_name (seg_die
, decl
);
22210 gcc_assert (name
!= NULL
);
22211 add_pure_or_virtual_attribute (seg_die
, decl
);
22212 if (DECL_ARTIFICIAL (decl
))
22213 add_AT_flag (seg_die
, DW_AT_artificial
, 1);
22215 name
= concat ("__second_sect_of_", name
, NULL
);
22216 add_AT_low_high_pc (seg_die
, fde
->dw_fde_second_begin
,
22217 fde
->dw_fde_second_end
, false);
22218 add_name_attribute (seg_die
, name
);
22219 if (want_pubnames ())
22220 add_pubname_string (name
, seg_die
);
22224 add_AT_low_high_pc (subr_die
, fde
->dw_fde_begin
, fde
->dw_fde_end
,
22228 cfa_fb_offset
= CFA_FRAME_BASE_OFFSET (decl
);
22230 /* We define the "frame base" as the function's CFA. This is more
22231 convenient for several reasons: (1) It's stable across the prologue
22232 and epilogue, which makes it better than just a frame pointer,
22233 (2) With dwarf3, there exists a one-byte encoding that allows us
22234 to reference the .debug_frame data by proxy, but failing that,
22235 (3) We can at least reuse the code inspection and interpretation
22236 code that determines the CFA position at various points in the
22238 if (dwarf_version
>= 3 && targetm
.debug_unwind_info () == UI_DWARF2
)
22240 dw_loc_descr_ref op
= new_loc_descr (DW_OP_call_frame_cfa
, 0, 0);
22241 add_AT_loc (subr_die
, DW_AT_frame_base
, op
);
22245 dw_loc_list_ref list
= convert_cfa_to_fb_loc_list (cfa_fb_offset
);
22246 if (list
->dw_loc_next
)
22247 add_AT_loc_list (subr_die
, DW_AT_frame_base
, list
);
22249 add_AT_loc (subr_die
, DW_AT_frame_base
, list
->expr
);
22252 /* Compute a displacement from the "steady-state frame pointer" to
22253 the CFA. The former is what all stack slots and argument slots
22254 will reference in the rtl; the latter is what we've told the
22255 debugger about. We'll need to adjust all frame_base references
22256 by this displacement. */
22257 compute_frame_pointer_to_fb_displacement (cfa_fb_offset
);
22259 if (fun
->static_chain_decl
)
22261 /* DWARF requires here a location expression that computes the
22262 address of the enclosing subprogram's frame base. The machinery
22263 in tree-nested.c is supposed to store this specific address in the
22264 last field of the FRAME record. */
22265 const tree frame_type
22266 = TREE_TYPE (TREE_TYPE (fun
->static_chain_decl
));
22267 const tree fb_decl
= tree_last (TYPE_FIELDS (frame_type
));
22270 = build1 (INDIRECT_REF
, frame_type
, fun
->static_chain_decl
);
22271 fb_expr
= build3 (COMPONENT_REF
, TREE_TYPE (fb_decl
),
22272 fb_expr
, fb_decl
, NULL_TREE
);
22274 add_AT_location_description (subr_die
, DW_AT_static_link
,
22275 loc_list_from_tree (fb_expr
, 0, NULL
));
22278 resolve_variable_values ();
22281 /* Generate child dies for template paramaters. */
22282 if (early_dwarf
&& debug_info_level
> DINFO_LEVEL_TERSE
)
22283 gen_generic_params_dies (decl
);
22285 /* Now output descriptions of the arguments for this function. This gets
22286 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
22287 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
22288 `...' at the end of the formal parameter list. In order to find out if
22289 there was a trailing ellipsis or not, we must instead look at the type
22290 associated with the FUNCTION_DECL. This will be a node of type
22291 FUNCTION_TYPE. If the chain of type nodes hanging off of this
22292 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
22293 an ellipsis at the end. */
22295 /* In the case where we are describing a mere function declaration, all we
22296 need to do here (and all we *can* do here) is to describe the *types* of
22297 its formal parameters. */
22298 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
22300 else if (declaration
)
22301 gen_formal_types_die (decl
, subr_die
);
22304 /* Generate DIEs to represent all known formal parameters. */
22305 tree parm
= DECL_ARGUMENTS (decl
);
22306 tree generic_decl
= early_dwarf
22307 ? lang_hooks
.decls
.get_generic_function_decl (decl
) : NULL
;
22308 tree generic_decl_parm
= generic_decl
22309 ? DECL_ARGUMENTS (generic_decl
)
22312 /* Now we want to walk the list of parameters of the function and
22313 emit their relevant DIEs.
22315 We consider the case of DECL being an instance of a generic function
22316 as well as it being a normal function.
22318 If DECL is an instance of a generic function we walk the
22319 parameters of the generic function declaration _and_ the parameters of
22320 DECL itself. This is useful because we want to emit specific DIEs for
22321 function parameter packs and those are declared as part of the
22322 generic function declaration. In that particular case,
22323 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
22324 That DIE has children DIEs representing the set of arguments
22325 of the pack. Note that the set of pack arguments can be empty.
22326 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
22329 Otherwise, we just consider the parameters of DECL. */
22330 while (generic_decl_parm
|| parm
)
22332 if (generic_decl_parm
22333 && lang_hooks
.function_parameter_pack_p (generic_decl_parm
))
22334 gen_formal_parameter_pack_die (generic_decl_parm
,
22337 else if (parm
&& !POINTER_BOUNDS_P (parm
))
22339 dw_die_ref parm_die
= gen_decl_die (parm
, NULL
, NULL
, subr_die
);
22342 && parm
== DECL_ARGUMENTS (decl
)
22343 && TREE_CODE (TREE_TYPE (decl
)) == METHOD_TYPE
22345 && (dwarf_version
>= 3 || !dwarf_strict
))
22346 add_AT_die_ref (subr_die
, DW_AT_object_pointer
, parm_die
);
22348 parm
= DECL_CHAIN (parm
);
22351 parm
= DECL_CHAIN (parm
);
22353 if (generic_decl_parm
)
22354 generic_decl_parm
= DECL_CHAIN (generic_decl_parm
);
22357 /* Decide whether we need an unspecified_parameters DIE at the end.
22358 There are 2 more cases to do this for: 1) the ansi ... declaration -
22359 this is detectable when the end of the arg list is not a
22360 void_type_node 2) an unprototyped function declaration (not a
22361 definition). This just means that we have no info about the
22362 parameters at all. */
22365 if (prototype_p (TREE_TYPE (decl
)))
22367 /* This is the prototyped case, check for.... */
22368 if (stdarg_p (TREE_TYPE (decl
)))
22369 gen_unspecified_parameters_die (decl
, subr_die
);
22371 else if (DECL_INITIAL (decl
) == NULL_TREE
)
22372 gen_unspecified_parameters_die (decl
, subr_die
);
22376 if (subr_die
!= old_die
)
22377 /* Add the calling convention attribute if requested. */
22378 add_calling_convention_attribute (subr_die
, decl
);
22380 /* Output Dwarf info for all of the stuff within the body of the function
22381 (if it has one - it may be just a declaration).
22383 OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
22384 a function. This BLOCK actually represents the outermost binding contour
22385 for the function, i.e. the contour in which the function's formal
22386 parameters and labels get declared. Curiously, it appears that the front
22387 end doesn't actually put the PARM_DECL nodes for the current function onto
22388 the BLOCK_VARS list for this outer scope, but are strung off of the
22389 DECL_ARGUMENTS list for the function instead.
22391 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
22392 the LABEL_DECL nodes for the function however, and we output DWARF info
22393 for those in decls_for_scope. Just within the `outer_scope' there will be
22394 a BLOCK node representing the function's outermost pair of curly braces,
22395 and any blocks used for the base and member initializers of a C++
22396 constructor function. */
22397 tree outer_scope
= DECL_INITIAL (decl
);
22398 if (! declaration
&& outer_scope
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
22400 int call_site_note_count
= 0;
22401 int tail_call_site_note_count
= 0;
22403 /* Emit a DW_TAG_variable DIE for a named return value. */
22404 if (DECL_NAME (DECL_RESULT (decl
)))
22405 gen_decl_die (DECL_RESULT (decl
), NULL
, NULL
, subr_die
);
22407 /* The first time through decls_for_scope we will generate the
22408 DIEs for the locals. The second time, we fill in the
22410 decls_for_scope (outer_scope
, subr_die
);
22412 if (call_arg_locations
&& (!dwarf_strict
|| dwarf_version
>= 5))
22414 struct call_arg_loc_node
*ca_loc
;
22415 for (ca_loc
= call_arg_locations
; ca_loc
; ca_loc
= ca_loc
->next
)
22417 dw_die_ref die
= NULL
;
22418 rtx tloc
= NULL_RTX
, tlocc
= NULL_RTX
;
22421 for (arg
= (ca_loc
->call_arg_loc_note
!= NULL_RTX
22422 ? NOTE_VAR_LOCATION (ca_loc
->call_arg_loc_note
)
22424 arg
; arg
= next_arg
)
22426 dw_loc_descr_ref reg
, val
;
22427 machine_mode mode
= GET_MODE (XEXP (XEXP (arg
, 0), 1));
22428 dw_die_ref cdie
, tdie
= NULL
;
22430 next_arg
= XEXP (arg
, 1);
22431 if (REG_P (XEXP (XEXP (arg
, 0), 0))
22433 && MEM_P (XEXP (XEXP (next_arg
, 0), 0))
22434 && REG_P (XEXP (XEXP (XEXP (next_arg
, 0), 0), 0))
22435 && REGNO (XEXP (XEXP (arg
, 0), 0))
22436 == REGNO (XEXP (XEXP (XEXP (next_arg
, 0), 0), 0)))
22437 next_arg
= XEXP (next_arg
, 1);
22438 if (mode
== VOIDmode
)
22440 mode
= GET_MODE (XEXP (XEXP (arg
, 0), 0));
22441 if (mode
== VOIDmode
)
22442 mode
= GET_MODE (XEXP (arg
, 0));
22444 if (mode
== VOIDmode
|| mode
== BLKmode
)
22446 /* Get dynamic information about call target only if we
22447 have no static information: we cannot generate both
22448 DW_AT_call_origin and DW_AT_call_target
22450 if (ca_loc
->symbol_ref
== NULL_RTX
)
22452 if (XEXP (XEXP (arg
, 0), 0) == pc_rtx
)
22454 tloc
= XEXP (XEXP (arg
, 0), 1);
22457 else if (GET_CODE (XEXP (XEXP (arg
, 0), 0)) == CLOBBER
22458 && XEXP (XEXP (XEXP (arg
, 0), 0), 0) == pc_rtx
)
22460 tlocc
= XEXP (XEXP (arg
, 0), 1);
22465 if (REG_P (XEXP (XEXP (arg
, 0), 0)))
22466 reg
= reg_loc_descriptor (XEXP (XEXP (arg
, 0), 0),
22467 VAR_INIT_STATUS_INITIALIZED
);
22468 else if (MEM_P (XEXP (XEXP (arg
, 0), 0)))
22470 rtx mem
= XEXP (XEXP (arg
, 0), 0);
22471 reg
= mem_loc_descriptor (XEXP (mem
, 0),
22472 get_address_mode (mem
),
22474 VAR_INIT_STATUS_INITIALIZED
);
22476 else if (GET_CODE (XEXP (XEXP (arg
, 0), 0))
22477 == DEBUG_PARAMETER_REF
)
22480 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg
, 0), 0));
22481 tdie
= lookup_decl_die (tdecl
);
22488 && GET_CODE (XEXP (XEXP (arg
, 0), 0))
22489 != DEBUG_PARAMETER_REF
)
22491 val
= mem_loc_descriptor (XEXP (XEXP (arg
, 0), 1), mode
,
22493 VAR_INIT_STATUS_INITIALIZED
);
22497 die
= gen_call_site_die (decl
, subr_die
, ca_loc
);
22498 cdie
= new_die (dwarf_TAG (DW_TAG_call_site_parameter
), die
,
22501 add_AT_loc (cdie
, DW_AT_location
, reg
);
22502 else if (tdie
!= NULL
)
22503 add_AT_die_ref (cdie
, dwarf_AT (DW_AT_call_parameter
),
22505 add_AT_loc (cdie
, dwarf_AT (DW_AT_call_value
), val
);
22506 if (next_arg
!= XEXP (arg
, 1))
22508 mode
= GET_MODE (XEXP (XEXP (XEXP (arg
, 1), 0), 1));
22509 if (mode
== VOIDmode
)
22510 mode
= GET_MODE (XEXP (XEXP (XEXP (arg
, 1), 0), 0));
22511 val
= mem_loc_descriptor (XEXP (XEXP (XEXP (arg
, 1),
22514 VAR_INIT_STATUS_INITIALIZED
);
22516 add_AT_loc (cdie
, dwarf_AT (DW_AT_call_data_value
),
22521 && (ca_loc
->symbol_ref
|| tloc
))
22522 die
= gen_call_site_die (decl
, subr_die
, ca_loc
);
22523 if (die
!= NULL
&& (tloc
!= NULL_RTX
|| tlocc
!= NULL_RTX
))
22525 dw_loc_descr_ref tval
= NULL
;
22527 if (tloc
!= NULL_RTX
)
22528 tval
= mem_loc_descriptor (tloc
,
22529 GET_MODE (tloc
) == VOIDmode
22530 ? Pmode
: GET_MODE (tloc
),
22532 VAR_INIT_STATUS_INITIALIZED
);
22534 add_AT_loc (die
, dwarf_AT (DW_AT_call_target
), tval
);
22535 else if (tlocc
!= NULL_RTX
)
22537 tval
= mem_loc_descriptor (tlocc
,
22538 GET_MODE (tlocc
) == VOIDmode
22539 ? Pmode
: GET_MODE (tlocc
),
22541 VAR_INIT_STATUS_INITIALIZED
);
22544 dwarf_AT (DW_AT_call_target_clobbered
),
22550 call_site_note_count
++;
22551 if (ca_loc
->tail_call_p
)
22552 tail_call_site_note_count
++;
22556 call_arg_locations
= NULL
;
22557 call_arg_loc_last
= NULL
;
22558 if (tail_call_site_count
>= 0
22559 && tail_call_site_count
== tail_call_site_note_count
22560 && (!dwarf_strict
|| dwarf_version
>= 5))
22562 if (call_site_count
>= 0
22563 && call_site_count
== call_site_note_count
)
22564 add_AT_flag (subr_die
, dwarf_AT (DW_AT_call_all_calls
), 1);
22566 add_AT_flag (subr_die
, dwarf_AT (DW_AT_call_all_tail_calls
), 1);
22568 call_site_count
= -1;
22569 tail_call_site_count
= -1;
22572 /* Mark used types after we have created DIEs for the functions scopes. */
22573 premark_used_types (DECL_STRUCT_FUNCTION (decl
));
22576 /* Returns a hash value for X (which really is a die_struct). */
22579 block_die_hasher::hash (die_struct
*d
)
22581 return (hashval_t
) d
->decl_id
^ htab_hash_pointer (d
->die_parent
);
22584 /* Return nonzero if decl_id and die_parent of die_struct X is the same
22585 as decl_id and die_parent of die_struct Y. */
22588 block_die_hasher::equal (die_struct
*x
, die_struct
*y
)
22590 return x
->decl_id
== y
->decl_id
&& x
->die_parent
== y
->die_parent
;
22593 /* Return TRUE if DECL, which may have been previously generated as
22594 OLD_DIE, is a candidate for a DW_AT_specification. DECLARATION is
22595 true if decl (or its origin) is either an extern declaration or a
22596 class/namespace scoped declaration.
22598 The declare_in_namespace support causes us to get two DIEs for one
22599 variable, both of which are declarations. We want to avoid
22600 considering one to be a specification, so we must test for
22601 DECLARATION and DW_AT_declaration. */
22603 decl_will_get_specification_p (dw_die_ref old_die
, tree decl
, bool declaration
)
22605 return (old_die
&& TREE_STATIC (decl
) && !declaration
22606 && get_AT_flag (old_die
, DW_AT_declaration
) == 1);
22609 /* Return true if DECL is a local static. */
22612 local_function_static (tree decl
)
22614 gcc_assert (VAR_P (decl
));
22615 return TREE_STATIC (decl
)
22616 && DECL_CONTEXT (decl
)
22617 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
;
22620 /* Generate a DIE to represent a declared data object.
22621 Either DECL or ORIGIN must be non-null. */
22624 gen_variable_die (tree decl
, tree origin
, dw_die_ref context_die
)
22626 HOST_WIDE_INT off
= 0;
22628 tree decl_or_origin
= decl
? decl
: origin
;
22629 tree ultimate_origin
;
22630 dw_die_ref var_die
;
22631 dw_die_ref old_die
= decl
? lookup_decl_die (decl
) : NULL
;
22632 bool declaration
= (DECL_EXTERNAL (decl_or_origin
)
22633 || class_or_namespace_scope_p (context_die
));
22634 bool specialization_p
= false;
22635 bool no_linkage_name
= false;
22637 /* While C++ inline static data members have definitions inside of the
22638 class, force the first DIE to be a declaration, then let gen_member_die
22639 reparent it to the class context and call gen_variable_die again
22640 to create the outside of the class DIE for the definition. */
22644 && DECL_CONTEXT (decl
)
22645 && TYPE_P (DECL_CONTEXT (decl
))
22646 && lang_hooks
.decls
.decl_dwarf_attribute (decl
, DW_AT_inline
) != -1)
22648 declaration
= true;
22649 if (dwarf_version
< 5)
22650 no_linkage_name
= true;
22653 ultimate_origin
= decl_ultimate_origin (decl_or_origin
);
22654 if (decl
|| ultimate_origin
)
22655 origin
= ultimate_origin
;
22656 com_decl
= fortran_common (decl_or_origin
, &off
);
22658 /* Symbol in common gets emitted as a child of the common block, in the form
22659 of a data member. */
22662 dw_die_ref com_die
;
22663 dw_loc_list_ref loc
= NULL
;
22664 die_node com_die_arg
;
22666 var_die
= lookup_decl_die (decl_or_origin
);
22669 if (! early_dwarf
&& get_AT (var_die
, DW_AT_location
) == NULL
)
22671 loc
= loc_list_from_tree (com_decl
, off
? 1 : 2, NULL
);
22676 /* Optimize the common case. */
22677 if (single_element_loc_list_p (loc
)
22678 && loc
->expr
->dw_loc_opc
== DW_OP_addr
22679 && loc
->expr
->dw_loc_next
== NULL
22680 && GET_CODE (loc
->expr
->dw_loc_oprnd1
.v
.val_addr
)
22683 rtx x
= loc
->expr
->dw_loc_oprnd1
.v
.val_addr
;
22684 loc
->expr
->dw_loc_oprnd1
.v
.val_addr
22685 = plus_constant (GET_MODE (x
), x
, off
);
22688 loc_list_plus_const (loc
, off
);
22690 add_AT_location_description (var_die
, DW_AT_location
, loc
);
22691 remove_AT (var_die
, DW_AT_declaration
);
22697 if (common_block_die_table
== NULL
)
22698 common_block_die_table
= hash_table
<block_die_hasher
>::create_ggc (10);
22700 com_die_arg
.decl_id
= DECL_UID (com_decl
);
22701 com_die_arg
.die_parent
= context_die
;
22702 com_die
= common_block_die_table
->find (&com_die_arg
);
22704 loc
= loc_list_from_tree (com_decl
, 2, NULL
);
22705 if (com_die
== NULL
)
22708 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl
));
22711 com_die
= new_die (DW_TAG_common_block
, context_die
, decl
);
22712 add_name_and_src_coords_attributes (com_die
, com_decl
);
22715 add_AT_location_description (com_die
, DW_AT_location
, loc
);
22716 /* Avoid sharing the same loc descriptor between
22717 DW_TAG_common_block and DW_TAG_variable. */
22718 loc
= loc_list_from_tree (com_decl
, 2, NULL
);
22720 else if (DECL_EXTERNAL (decl_or_origin
))
22721 add_AT_flag (com_die
, DW_AT_declaration
, 1);
22722 if (want_pubnames ())
22723 add_pubname_string (cnam
, com_die
); /* ??? needed? */
22724 com_die
->decl_id
= DECL_UID (com_decl
);
22725 slot
= common_block_die_table
->find_slot (com_die
, INSERT
);
22728 else if (get_AT (com_die
, DW_AT_location
) == NULL
&& loc
)
22730 add_AT_location_description (com_die
, DW_AT_location
, loc
);
22731 loc
= loc_list_from_tree (com_decl
, 2, NULL
);
22732 remove_AT (com_die
, DW_AT_declaration
);
22734 var_die
= new_die (DW_TAG_variable
, com_die
, decl
);
22735 add_name_and_src_coords_attributes (var_die
, decl_or_origin
);
22736 add_type_attribute (var_die
, TREE_TYPE (decl_or_origin
),
22737 decl_quals (decl_or_origin
), false,
22739 add_alignment_attribute (var_die
, decl
);
22740 add_AT_flag (var_die
, DW_AT_external
, 1);
22745 /* Optimize the common case. */
22746 if (single_element_loc_list_p (loc
)
22747 && loc
->expr
->dw_loc_opc
== DW_OP_addr
22748 && loc
->expr
->dw_loc_next
== NULL
22749 && GET_CODE (loc
->expr
->dw_loc_oprnd1
.v
.val_addr
) == SYMBOL_REF
)
22751 rtx x
= loc
->expr
->dw_loc_oprnd1
.v
.val_addr
;
22752 loc
->expr
->dw_loc_oprnd1
.v
.val_addr
22753 = plus_constant (GET_MODE (x
), x
, off
);
22756 loc_list_plus_const (loc
, off
);
22758 add_AT_location_description (var_die
, DW_AT_location
, loc
);
22760 else if (DECL_EXTERNAL (decl_or_origin
))
22761 add_AT_flag (var_die
, DW_AT_declaration
, 1);
22763 equate_decl_number_to_die (decl
, var_die
);
22771 /* A declaration that has been previously dumped, needs no
22772 further annotations, since it doesn't need location on
22773 the second pass. */
22776 else if (decl_will_get_specification_p (old_die
, decl
, declaration
)
22777 && !get_AT (old_die
, DW_AT_specification
))
22779 /* Fall-thru so we can make a new variable die along with a
22780 DW_AT_specification. */
22782 else if (origin
&& old_die
->die_parent
!= context_die
)
22784 /* If we will be creating an inlined instance, we need a
22785 new DIE that will get annotated with
22786 DW_AT_abstract_origin. Clear things so we can get a
22788 gcc_assert (!DECL_ABSTRACT_P (decl
));
22793 /* If a DIE was dumped early, it still needs location info.
22794 Skip to where we fill the location bits. */
22797 /* ??? In LTRANS we cannot annotate early created variably
22798 modified type DIEs without copying them and adjusting all
22799 references to them. Thus we dumped them again, also add a
22800 reference to them. */
22801 tree type
= TREE_TYPE (decl_or_origin
);
22803 && variably_modified_type_p
22804 (type
, decl_function_context (decl_or_origin
)))
22806 if (decl_by_reference_p (decl_or_origin
))
22807 add_type_attribute (var_die
, TREE_TYPE (type
),
22808 TYPE_UNQUALIFIED
, false, context_die
);
22810 add_type_attribute (var_die
, type
, decl_quals (decl_or_origin
),
22811 false, context_die
);
22814 goto gen_variable_die_location
;
22818 /* For static data members, the declaration in the class is supposed
22819 to have DW_TAG_member tag in DWARF{3,4} and we emit it for compatibility
22820 also in DWARF2; the specification should still be DW_TAG_variable
22821 referencing the DW_TAG_member DIE. */
22822 if (declaration
&& class_scope_p (context_die
) && dwarf_version
< 5)
22823 var_die
= new_die (DW_TAG_member
, context_die
, decl
);
22825 var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
22827 if (origin
!= NULL
)
22828 add_abstract_origin_attribute (var_die
, origin
);
22830 /* Loop unrolling can create multiple blocks that refer to the same
22831 static variable, so we must test for the DW_AT_declaration flag.
22833 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
22834 copy decls and set the DECL_ABSTRACT_P flag on them instead of
22837 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
22838 else if (decl_will_get_specification_p (old_die
, decl
, declaration
))
22840 /* This is a definition of a C++ class level static. */
22841 add_AT_specification (var_die
, old_die
);
22842 specialization_p
= true;
22843 if (DECL_NAME (decl
))
22845 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
22846 struct dwarf_file_data
* file_index
= lookup_filename (s
.file
);
22848 if (get_AT_file (old_die
, DW_AT_decl_file
) != file_index
)
22849 add_AT_file (var_die
, DW_AT_decl_file
, file_index
);
22851 if (get_AT_unsigned (old_die
, DW_AT_decl_line
) != (unsigned) s
.line
)
22852 add_AT_unsigned (var_die
, DW_AT_decl_line
, s
.line
);
22854 if (debug_column_info
22856 && (get_AT_unsigned (old_die
, DW_AT_decl_column
)
22857 != (unsigned) s
.column
))
22858 add_AT_unsigned (var_die
, DW_AT_decl_column
, s
.column
);
22860 if (old_die
->die_tag
== DW_TAG_member
)
22861 add_linkage_name (var_die
, decl
);
22865 add_name_and_src_coords_attributes (var_die
, decl
, no_linkage_name
);
22867 if ((origin
== NULL
&& !specialization_p
)
22869 && !DECL_ABSTRACT_P (decl_or_origin
)
22870 && variably_modified_type_p (TREE_TYPE (decl_or_origin
),
22871 decl_function_context
22872 (decl_or_origin
))))
22874 tree type
= TREE_TYPE (decl_or_origin
);
22876 if (decl_by_reference_p (decl_or_origin
))
22877 add_type_attribute (var_die
, TREE_TYPE (type
), TYPE_UNQUALIFIED
, false,
22880 add_type_attribute (var_die
, type
, decl_quals (decl_or_origin
), false,
22884 if (origin
== NULL
&& !specialization_p
)
22886 if (TREE_PUBLIC (decl
))
22887 add_AT_flag (var_die
, DW_AT_external
, 1);
22889 if (DECL_ARTIFICIAL (decl
))
22890 add_AT_flag (var_die
, DW_AT_artificial
, 1);
22892 add_alignment_attribute (var_die
, decl
);
22894 add_accessibility_attribute (var_die
, decl
);
22898 add_AT_flag (var_die
, DW_AT_declaration
, 1);
22900 if (decl
&& (DECL_ABSTRACT_P (decl
)
22901 || !old_die
|| is_declaration_die (old_die
)))
22902 equate_decl_number_to_die (decl
, var_die
);
22904 gen_variable_die_location
:
22906 && (! DECL_ABSTRACT_P (decl_or_origin
)
22907 /* Local static vars are shared between all clones/inlines,
22908 so emit DW_AT_location on the abstract DIE if DECL_RTL is
22910 || (VAR_P (decl_or_origin
)
22911 && TREE_STATIC (decl_or_origin
)
22912 && DECL_RTL_SET_P (decl_or_origin
))))
22915 add_pubname (decl_or_origin
, var_die
);
22917 add_location_or_const_value_attribute (var_die
, decl_or_origin
,
22921 tree_add_const_value_attribute_for_decl (var_die
, decl_or_origin
);
22923 if ((dwarf_version
>= 4 || !dwarf_strict
)
22924 && lang_hooks
.decls
.decl_dwarf_attribute (decl_or_origin
,
22925 DW_AT_const_expr
) == 1
22926 && !get_AT (var_die
, DW_AT_const_expr
)
22927 && !specialization_p
)
22928 add_AT_flag (var_die
, DW_AT_const_expr
, 1);
22932 int inl
= lang_hooks
.decls
.decl_dwarf_attribute (decl_or_origin
,
22935 && !get_AT (var_die
, DW_AT_inline
)
22936 && !specialization_p
)
22937 add_AT_unsigned (var_die
, DW_AT_inline
, inl
);
22941 /* Generate a DIE to represent a named constant. */
22944 gen_const_die (tree decl
, dw_die_ref context_die
)
22946 dw_die_ref const_die
;
22947 tree type
= TREE_TYPE (decl
);
22949 const_die
= lookup_decl_die (decl
);
22953 const_die
= new_die (DW_TAG_constant
, context_die
, decl
);
22954 equate_decl_number_to_die (decl
, const_die
);
22955 add_name_and_src_coords_attributes (const_die
, decl
);
22956 add_type_attribute (const_die
, type
, TYPE_QUAL_CONST
, false, context_die
);
22957 if (TREE_PUBLIC (decl
))
22958 add_AT_flag (const_die
, DW_AT_external
, 1);
22959 if (DECL_ARTIFICIAL (decl
))
22960 add_AT_flag (const_die
, DW_AT_artificial
, 1);
22961 tree_add_const_value_attribute_for_decl (const_die
, decl
);
22964 /* Generate a DIE to represent a label identifier. */
22967 gen_label_die (tree decl
, dw_die_ref context_die
)
22969 tree origin
= decl_ultimate_origin (decl
);
22970 dw_die_ref lbl_die
= lookup_decl_die (decl
);
22972 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
22976 lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
22977 equate_decl_number_to_die (decl
, lbl_die
);
22979 if (origin
!= NULL
)
22980 add_abstract_origin_attribute (lbl_die
, origin
);
22982 add_name_and_src_coords_attributes (lbl_die
, decl
);
22985 if (DECL_ABSTRACT_P (decl
))
22986 equate_decl_number_to_die (decl
, lbl_die
);
22987 else if (! early_dwarf
)
22989 insn
= DECL_RTL_IF_SET (decl
);
22991 /* Deleted labels are programmer specified labels which have been
22992 eliminated because of various optimizations. We still emit them
22993 here so that it is possible to put breakpoints on them. */
22997 && NOTE_KIND (insn
) == NOTE_INSN_DELETED_LABEL
))))
22999 /* When optimization is enabled (via -O) some parts of the compiler
23000 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
23001 represent source-level labels which were explicitly declared by
23002 the user. This really shouldn't be happening though, so catch
23003 it if it ever does happen. */
23004 gcc_assert (!as_a
<rtx_insn
*> (insn
)->deleted ());
23006 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
23007 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
23011 && NOTE_KIND (insn
) == NOTE_INSN_DELETED_DEBUG_LABEL
23012 && CODE_LABEL_NUMBER (insn
) != -1)
23014 ASM_GENERATE_INTERNAL_LABEL (label
, "LDL", CODE_LABEL_NUMBER (insn
));
23015 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
23020 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
23021 attributes to the DIE for a block STMT, to describe where the inlined
23022 function was called from. This is similar to add_src_coords_attributes. */
23025 add_call_src_coords_attributes (tree stmt
, dw_die_ref die
)
23027 expanded_location s
= expand_location (BLOCK_SOURCE_LOCATION (stmt
));
23029 if (dwarf_version
>= 3 || !dwarf_strict
)
23031 add_AT_file (die
, DW_AT_call_file
, lookup_filename (s
.file
));
23032 add_AT_unsigned (die
, DW_AT_call_line
, s
.line
);
23033 if (debug_column_info
&& s
.column
)
23034 add_AT_unsigned (die
, DW_AT_call_column
, s
.column
);
23039 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
23040 Add low_pc and high_pc attributes to the DIE for a block STMT. */
23043 add_high_low_attributes (tree stmt
, dw_die_ref die
)
23045 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
23047 if (BLOCK_FRAGMENT_CHAIN (stmt
)
23048 && (dwarf_version
>= 3 || !dwarf_strict
))
23050 tree chain
, superblock
= NULL_TREE
;
23052 dw_attr_node
*attr
= NULL
;
23054 if (inlined_function_outer_scope_p (stmt
))
23056 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
23057 BLOCK_NUMBER (stmt
));
23058 add_AT_lbl_id (die
, DW_AT_entry_pc
, label
);
23061 /* Optimize duplicate .debug_ranges lists or even tails of
23062 lists. If this BLOCK has same ranges as its supercontext,
23063 lookup DW_AT_ranges attribute in the supercontext (and
23064 recursively so), verify that the ranges_table contains the
23065 right values and use it instead of adding a new .debug_range. */
23066 for (chain
= stmt
, pdie
= die
;
23067 BLOCK_SAME_RANGE (chain
);
23068 chain
= BLOCK_SUPERCONTEXT (chain
))
23070 dw_attr_node
*new_attr
;
23072 pdie
= pdie
->die_parent
;
23075 if (BLOCK_SUPERCONTEXT (chain
) == NULL_TREE
)
23077 new_attr
= get_AT (pdie
, DW_AT_ranges
);
23078 if (new_attr
== NULL
23079 || new_attr
->dw_attr_val
.val_class
!= dw_val_class_range_list
)
23082 superblock
= BLOCK_SUPERCONTEXT (chain
);
23085 && ((*ranges_table
)[attr
->dw_attr_val
.v
.val_offset
].num
23086 == BLOCK_NUMBER (superblock
))
23087 && BLOCK_FRAGMENT_CHAIN (superblock
))
23089 unsigned long off
= attr
->dw_attr_val
.v
.val_offset
;
23090 unsigned long supercnt
= 0, thiscnt
= 0;
23091 for (chain
= BLOCK_FRAGMENT_CHAIN (superblock
);
23092 chain
; chain
= BLOCK_FRAGMENT_CHAIN (chain
))
23095 gcc_checking_assert ((*ranges_table
)[off
+ supercnt
].num
23096 == BLOCK_NUMBER (chain
));
23098 gcc_checking_assert ((*ranges_table
)[off
+ supercnt
+ 1].num
== 0);
23099 for (chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
23100 chain
; chain
= BLOCK_FRAGMENT_CHAIN (chain
))
23102 gcc_assert (supercnt
>= thiscnt
);
23103 add_AT_range_list (die
, DW_AT_ranges
, off
+ supercnt
- thiscnt
,
23105 note_rnglist_head (off
+ supercnt
- thiscnt
);
23109 unsigned int offset
= add_ranges (stmt
, true);
23110 add_AT_range_list (die
, DW_AT_ranges
, offset
, false);
23111 note_rnglist_head (offset
);
23113 bool prev_in_cold
= BLOCK_IN_COLD_SECTION_P (stmt
);
23114 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
23117 add_ranges (chain
, prev_in_cold
!= BLOCK_IN_COLD_SECTION_P (chain
));
23118 prev_in_cold
= BLOCK_IN_COLD_SECTION_P (chain
);
23119 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
23126 char label_high
[MAX_ARTIFICIAL_LABEL_BYTES
];
23127 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
23128 BLOCK_NUMBER (stmt
));
23129 ASM_GENERATE_INTERNAL_LABEL (label_high
, BLOCK_END_LABEL
,
23130 BLOCK_NUMBER (stmt
));
23131 add_AT_low_high_pc (die
, label
, label_high
, false);
23135 /* Generate a DIE for a lexical block. */
23138 gen_lexical_block_die (tree stmt
, dw_die_ref context_die
)
23140 dw_die_ref old_die
= BLOCK_DIE (stmt
);
23141 dw_die_ref stmt_die
= NULL
;
23144 stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
23145 BLOCK_DIE (stmt
) = stmt_die
;
23148 if (BLOCK_ABSTRACT (stmt
))
23152 /* This must have been generated early and it won't even
23153 need location information since it's a DW_AT_inline
23156 for (dw_die_ref c
= context_die
; c
; c
= c
->die_parent
)
23157 if (c
->die_tag
== DW_TAG_inlined_subroutine
23158 || c
->die_tag
== DW_TAG_subprogram
)
23160 gcc_assert (get_AT (c
, DW_AT_inline
));
23166 else if (BLOCK_ABSTRACT_ORIGIN (stmt
))
23168 /* If this is an inlined instance, create a new lexical die for
23169 anything below to attach DW_AT_abstract_origin to. */
23172 stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
23173 BLOCK_DIE (stmt
) = stmt_die
;
23177 tree origin
= block_ultimate_origin (stmt
);
23178 if (origin
!= NULL_TREE
&& origin
!= stmt
)
23179 add_abstract_origin_attribute (stmt_die
, origin
);
23183 stmt_die
= old_die
;
23185 /* A non abstract block whose blocks have already been reordered
23186 should have the instruction range for this block. If so, set the
23187 high/low attributes. */
23188 if (!early_dwarf
&& !BLOCK_ABSTRACT (stmt
) && TREE_ASM_WRITTEN (stmt
))
23190 gcc_assert (stmt_die
);
23191 add_high_low_attributes (stmt
, stmt_die
);
23194 decls_for_scope (stmt
, stmt_die
);
23197 /* Generate a DIE for an inlined subprogram. */
23200 gen_inlined_subroutine_die (tree stmt
, dw_die_ref context_die
)
23204 /* The instance of function that is effectively being inlined shall not
23206 gcc_assert (! BLOCK_ABSTRACT (stmt
));
23208 decl
= block_ultimate_origin (stmt
);
23210 /* Make sure any inlined functions are known to be inlineable. */
23211 gcc_checking_assert (DECL_ABSTRACT_P (decl
)
23212 || cgraph_function_possibly_inlined_p (decl
));
23214 if (! BLOCK_ABSTRACT (stmt
))
23216 dw_die_ref subr_die
23217 = new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
23219 if (call_arg_locations
)
23220 BLOCK_DIE (stmt
) = subr_die
;
23221 add_abstract_origin_attribute (subr_die
, decl
);
23222 if (TREE_ASM_WRITTEN (stmt
))
23223 add_high_low_attributes (stmt
, subr_die
);
23224 add_call_src_coords_attributes (stmt
, subr_die
);
23226 decls_for_scope (stmt
, subr_die
);
23230 /* Generate a DIE for a field in a record, or structure. CTX is required: see
23231 the comment for VLR_CONTEXT. */
23234 gen_field_die (tree decl
, struct vlr_context
*ctx
, dw_die_ref context_die
)
23236 dw_die_ref decl_die
;
23238 if (TREE_TYPE (decl
) == error_mark_node
)
23241 decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
23242 add_name_and_src_coords_attributes (decl_die
, decl
);
23243 add_type_attribute (decl_die
, member_declared_type (decl
), decl_quals (decl
),
23244 TYPE_REVERSE_STORAGE_ORDER (DECL_FIELD_CONTEXT (decl
)),
23247 if (DECL_BIT_FIELD_TYPE (decl
))
23249 add_byte_size_attribute (decl_die
, decl
);
23250 add_bit_size_attribute (decl_die
, decl
);
23251 add_bit_offset_attribute (decl_die
, decl
, ctx
);
23254 add_alignment_attribute (decl_die
, decl
);
23256 /* If we have a variant part offset, then we are supposed to process a member
23257 of a QUAL_UNION_TYPE, which is how we represent variant parts in
23259 gcc_assert (ctx
->variant_part_offset
== NULL_TREE
23260 || TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != QUAL_UNION_TYPE
);
23261 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
23262 add_data_member_location_attribute (decl_die
, decl
, ctx
);
23264 if (DECL_ARTIFICIAL (decl
))
23265 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
23267 add_accessibility_attribute (decl_die
, decl
);
23269 /* Equate decl number to die, so that we can look up this decl later on. */
23270 equate_decl_number_to_die (decl
, decl_die
);
23273 /* Generate a DIE for a pointer to a member type. TYPE can be an
23274 OFFSET_TYPE, for a pointer to data member, or a RECORD_TYPE, for a
23275 pointer to member function. */
23278 gen_ptr_to_mbr_type_die (tree type
, dw_die_ref context_die
)
23280 if (lookup_type_die (type
))
23283 dw_die_ref ptr_die
= new_die (DW_TAG_ptr_to_member_type
,
23284 scope_die_for (type
, context_die
), type
);
23286 equate_type_number_to_die (type
, ptr_die
);
23287 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
23288 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
23289 add_type_attribute (ptr_die
, TREE_TYPE (type
), TYPE_UNQUALIFIED
, false,
23291 add_alignment_attribute (ptr_die
, type
);
23293 if (TREE_CODE (TREE_TYPE (type
)) != FUNCTION_TYPE
23294 && TREE_CODE (TREE_TYPE (type
)) != METHOD_TYPE
)
23296 dw_loc_descr_ref op
= new_loc_descr (DW_OP_plus
, 0, 0);
23297 add_AT_loc (ptr_die
, DW_AT_use_location
, op
);
23301 static char *producer_string
;
23303 /* Return a heap allocated producer string including command line options
23304 if -grecord-gcc-switches. */
23307 gen_producer_string (void)
23310 auto_vec
<const char *> switches
;
23311 const char *language_string
= lang_hooks
.name
;
23312 char *producer
, *tail
;
23314 size_t len
= dwarf_record_gcc_switches
? 0 : 3;
23315 size_t plen
= strlen (language_string
) + 1 + strlen (version_string
);
23317 for (j
= 1; dwarf_record_gcc_switches
&& j
< save_decoded_options_count
; j
++)
23318 switch (save_decoded_options
[j
].opt_index
)
23325 case OPT_auxbase_strip
:
23334 case OPT_SPECIAL_unknown
:
23335 case OPT_SPECIAL_ignore
:
23336 case OPT_SPECIAL_program_name
:
23337 case OPT_SPECIAL_input_file
:
23338 case OPT_grecord_gcc_switches
:
23339 case OPT_gno_record_gcc_switches
:
23340 case OPT__output_pch_
:
23341 case OPT_fdiagnostics_show_location_
:
23342 case OPT_fdiagnostics_show_option
:
23343 case OPT_fdiagnostics_show_caret
:
23344 case OPT_fdiagnostics_color_
:
23345 case OPT_fverbose_asm
:
23347 case OPT__sysroot_
:
23349 case OPT_nostdinc__
:
23350 case OPT_fpreprocessed
:
23351 case OPT_fltrans_output_list_
:
23352 case OPT_fresolution_
:
23353 case OPT_fdebug_prefix_map_
:
23354 /* Ignore these. */
23357 if (cl_options
[save_decoded_options
[j
].opt_index
].flags
23358 & CL_NO_DWARF_RECORD
)
23360 gcc_checking_assert (save_decoded_options
[j
].canonical_option
[0][0]
23362 switch (save_decoded_options
[j
].canonical_option
[0][1])
23369 if (strncmp (save_decoded_options
[j
].canonical_option
[0] + 2,
23376 switches
.safe_push (save_decoded_options
[j
].orig_option_with_args_text
);
23377 len
+= strlen (save_decoded_options
[j
].orig_option_with_args_text
) + 1;
23381 producer
= XNEWVEC (char, plen
+ 1 + len
+ 1);
23383 sprintf (tail
, "%s %s", language_string
, version_string
);
23386 FOR_EACH_VEC_ELT (switches
, j
, p
)
23390 memcpy (tail
+ 1, p
, len
);
23398 /* Given a C and/or C++ language/version string return the "highest".
23399 C++ is assumed to be "higher" than C in this case. Used for merging
23400 LTO translation unit languages. */
23401 static const char *
23402 highest_c_language (const char *lang1
, const char *lang2
)
23404 if (strcmp ("GNU C++17", lang1
) == 0 || strcmp ("GNU C++17", lang2
) == 0)
23405 return "GNU C++17";
23406 if (strcmp ("GNU C++14", lang1
) == 0 || strcmp ("GNU C++14", lang2
) == 0)
23407 return "GNU C++14";
23408 if (strcmp ("GNU C++11", lang1
) == 0 || strcmp ("GNU C++11", lang2
) == 0)
23409 return "GNU C++11";
23410 if (strcmp ("GNU C++98", lang1
) == 0 || strcmp ("GNU C++98", lang2
) == 0)
23411 return "GNU C++98";
23413 if (strcmp ("GNU C11", lang1
) == 0 || strcmp ("GNU C11", lang2
) == 0)
23415 if (strcmp ("GNU C99", lang1
) == 0 || strcmp ("GNU C99", lang2
) == 0)
23417 if (strcmp ("GNU C89", lang1
) == 0 || strcmp ("GNU C89", lang2
) == 0)
23420 gcc_unreachable ();
23424 /* Generate the DIE for the compilation unit. */
23427 gen_compile_unit_die (const char *filename
)
23430 const char *language_string
= lang_hooks
.name
;
23433 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
23437 add_name_attribute (die
, filename
);
23438 /* Don't add cwd for <built-in>. */
23439 if (filename
[0] != '<')
23440 add_comp_dir_attribute (die
);
23443 add_AT_string (die
, DW_AT_producer
, producer_string
? producer_string
: "");
23445 /* If our producer is LTO try to figure out a common language to use
23446 from the global list of translation units. */
23447 if (strcmp (language_string
, "GNU GIMPLE") == 0)
23451 const char *common_lang
= NULL
;
23453 FOR_EACH_VEC_SAFE_ELT (all_translation_units
, i
, t
)
23455 if (!TRANSLATION_UNIT_LANGUAGE (t
))
23458 common_lang
= TRANSLATION_UNIT_LANGUAGE (t
);
23459 else if (strcmp (common_lang
, TRANSLATION_UNIT_LANGUAGE (t
)) == 0)
23461 else if (strncmp (common_lang
, "GNU C", 5) == 0
23462 && strncmp (TRANSLATION_UNIT_LANGUAGE (t
), "GNU C", 5) == 0)
23463 /* Mixing C and C++ is ok, use C++ in that case. */
23464 common_lang
= highest_c_language (common_lang
,
23465 TRANSLATION_UNIT_LANGUAGE (t
));
23468 /* Fall back to C. */
23469 common_lang
= NULL
;
23475 language_string
= common_lang
;
23478 language
= DW_LANG_C
;
23479 if (strncmp (language_string
, "GNU C", 5) == 0
23480 && ISDIGIT (language_string
[5]))
23482 language
= DW_LANG_C89
;
23483 if (dwarf_version
>= 3 || !dwarf_strict
)
23485 if (strcmp (language_string
, "GNU C89") != 0)
23486 language
= DW_LANG_C99
;
23488 if (dwarf_version
>= 5 /* || !dwarf_strict */)
23489 if (strcmp (language_string
, "GNU C11") == 0)
23490 language
= DW_LANG_C11
;
23493 else if (strncmp (language_string
, "GNU C++", 7) == 0)
23495 language
= DW_LANG_C_plus_plus
;
23496 if (dwarf_version
>= 5 /* || !dwarf_strict */)
23498 if (strcmp (language_string
, "GNU C++11") == 0)
23499 language
= DW_LANG_C_plus_plus_11
;
23500 else if (strcmp (language_string
, "GNU C++14") == 0)
23501 language
= DW_LANG_C_plus_plus_14
;
23502 else if (strcmp (language_string
, "GNU C++17") == 0)
23504 language
= DW_LANG_C_plus_plus_14
;
23507 else if (strcmp (language_string
, "GNU F77") == 0)
23508 language
= DW_LANG_Fortran77
;
23509 else if (dwarf_version
>= 3 || !dwarf_strict
)
23511 if (strcmp (language_string
, "GNU Ada") == 0)
23512 language
= DW_LANG_Ada95
;
23513 else if (strncmp (language_string
, "GNU Fortran", 11) == 0)
23515 language
= DW_LANG_Fortran95
;
23516 if (dwarf_version
>= 5 /* || !dwarf_strict */)
23518 if (strcmp (language_string
, "GNU Fortran2003") == 0)
23519 language
= DW_LANG_Fortran03
;
23520 else if (strcmp (language_string
, "GNU Fortran2008") == 0)
23521 language
= DW_LANG_Fortran08
;
23524 else if (strcmp (language_string
, "GNU Objective-C") == 0)
23525 language
= DW_LANG_ObjC
;
23526 else if (strcmp (language_string
, "GNU Objective-C++") == 0)
23527 language
= DW_LANG_ObjC_plus_plus
;
23528 else if (dwarf_version
>= 5 || !dwarf_strict
)
23530 if (strcmp (language_string
, "GNU Go") == 0)
23531 language
= DW_LANG_Go
;
23534 /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works. */
23535 else if (strncmp (language_string
, "GNU Fortran", 11) == 0)
23536 language
= DW_LANG_Fortran90
;
23538 add_AT_unsigned (die
, DW_AT_language
, language
);
23542 case DW_LANG_Fortran77
:
23543 case DW_LANG_Fortran90
:
23544 case DW_LANG_Fortran95
:
23545 case DW_LANG_Fortran03
:
23546 case DW_LANG_Fortran08
:
23547 /* Fortran has case insensitive identifiers and the front-end
23548 lowercases everything. */
23549 add_AT_unsigned (die
, DW_AT_identifier_case
, DW_ID_down_case
);
23552 /* The default DW_ID_case_sensitive doesn't need to be specified. */
23558 /* Generate the DIE for a base class. */
23561 gen_inheritance_die (tree binfo
, tree access
, tree type
,
23562 dw_die_ref context_die
)
23564 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
23565 struct vlr_context ctx
= { type
, NULL
};
23567 add_type_attribute (die
, BINFO_TYPE (binfo
), TYPE_UNQUALIFIED
, false,
23569 add_data_member_location_attribute (die
, binfo
, &ctx
);
23571 if (BINFO_VIRTUAL_P (binfo
))
23572 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
23574 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
23575 children, otherwise the default is DW_ACCESS_public. In DWARF2
23576 the default has always been DW_ACCESS_private. */
23577 if (access
== access_public_node
)
23579 if (dwarf_version
== 2
23580 || context_die
->die_tag
== DW_TAG_class_type
)
23581 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
23583 else if (access
== access_protected_node
)
23584 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
23585 else if (dwarf_version
> 2
23586 && context_die
->die_tag
!= DW_TAG_class_type
)
23587 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_private
);
23590 /* Return whether DECL is a FIELD_DECL that represents the variant part of a
23593 is_variant_part (tree decl
)
23595 return (TREE_CODE (decl
) == FIELD_DECL
23596 && TREE_CODE (TREE_TYPE (decl
)) == QUAL_UNION_TYPE
);
23599 /* Check that OPERAND is a reference to a field in STRUCT_TYPE. If it is,
23600 return the FIELD_DECL. Return NULL_TREE otherwise. */
23603 analyze_discr_in_predicate (tree operand
, tree struct_type
)
23605 bool continue_stripping
= true;
23606 while (continue_stripping
)
23607 switch (TREE_CODE (operand
))
23610 operand
= TREE_OPERAND (operand
, 0);
23613 continue_stripping
= false;
23617 /* Match field access to members of struct_type only. */
23618 if (TREE_CODE (operand
) == COMPONENT_REF
23619 && TREE_CODE (TREE_OPERAND (operand
, 0)) == PLACEHOLDER_EXPR
23620 && TREE_TYPE (TREE_OPERAND (operand
, 0)) == struct_type
23621 && TREE_CODE (TREE_OPERAND (operand
, 1)) == FIELD_DECL
)
23622 return TREE_OPERAND (operand
, 1);
23627 /* Check that SRC is a constant integer that can be represented as a native
23628 integer constant (either signed or unsigned). If so, store it into DEST and
23629 return true. Return false otherwise. */
23632 get_discr_value (tree src
, dw_discr_value
*dest
)
23634 tree discr_type
= TREE_TYPE (src
);
23636 if (lang_hooks
.types
.get_debug_type
)
23638 tree debug_type
= lang_hooks
.types
.get_debug_type (discr_type
);
23639 if (debug_type
!= NULL
)
23640 discr_type
= debug_type
;
23643 if (TREE_CODE (src
) != INTEGER_CST
|| !INTEGRAL_TYPE_P (discr_type
))
23646 /* Signedness can vary between the original type and the debug type. This
23647 can happen for character types in Ada for instance: the character type
23648 used for code generation can be signed, to be compatible with the C one,
23649 but from a debugger point of view, it must be unsigned. */
23650 bool is_orig_unsigned
= TYPE_UNSIGNED (TREE_TYPE (src
));
23651 bool is_debug_unsigned
= TYPE_UNSIGNED (discr_type
);
23653 if (is_orig_unsigned
!= is_debug_unsigned
)
23654 src
= fold_convert (discr_type
, src
);
23656 if (!(is_debug_unsigned
? tree_fits_uhwi_p (src
) : tree_fits_shwi_p (src
)))
23659 dest
->pos
= is_debug_unsigned
;
23660 if (is_debug_unsigned
)
23661 dest
->v
.uval
= tree_to_uhwi (src
);
23663 dest
->v
.sval
= tree_to_shwi (src
);
23668 /* Try to extract synthetic properties out of VARIANT_PART_DECL, which is a
23669 FIELD_DECL in STRUCT_TYPE that represents a variant part. If unsuccessful,
23670 store NULL_TREE in DISCR_DECL. Otherwise:
23672 - store the discriminant field in STRUCT_TYPE that controls the variant
23673 part to *DISCR_DECL
23675 - put in *DISCR_LISTS_P an array where for each variant, the item
23676 represents the corresponding matching list of discriminant values.
23678 - put in *DISCR_LISTS_LENGTH the number of variants, which is the size of
23681 Note that when the array is allocated (i.e. when the analysis is
23682 successful), it is up to the caller to free the array. */
23685 analyze_variants_discr (tree variant_part_decl
,
23688 dw_discr_list_ref
**discr_lists_p
,
23689 unsigned *discr_lists_length
)
23691 tree variant_part_type
= TREE_TYPE (variant_part_decl
);
23693 dw_discr_list_ref
*discr_lists
;
23696 /* Compute how many variants there are in this variant part. */
23697 *discr_lists_length
= 0;
23698 for (variant
= TYPE_FIELDS (variant_part_type
);
23699 variant
!= NULL_TREE
;
23700 variant
= DECL_CHAIN (variant
))
23701 ++*discr_lists_length
;
23703 *discr_decl
= NULL_TREE
;
23705 = (dw_discr_list_ref
*) xcalloc (*discr_lists_length
,
23706 sizeof (**discr_lists_p
));
23707 discr_lists
= *discr_lists_p
;
23709 /* And then analyze all variants to extract discriminant information for all
23710 of them. This analysis is conservative: as soon as we detect something we
23711 do not support, abort everything and pretend we found nothing. */
23712 for (variant
= TYPE_FIELDS (variant_part_type
), i
= 0;
23713 variant
!= NULL_TREE
;
23714 variant
= DECL_CHAIN (variant
), ++i
)
23716 tree match_expr
= DECL_QUALIFIER (variant
);
23718 /* Now, try to analyze the predicate and deduce a discriminant for
23720 if (match_expr
== boolean_true_node
)
23721 /* Typically happens for the default variant: it matches all cases that
23722 previous variants rejected. Don't output any matching value for
23726 /* The following loop tries to iterate over each discriminant
23727 possibility: single values or ranges. */
23728 while (match_expr
!= NULL_TREE
)
23730 tree next_round_match_expr
;
23731 tree candidate_discr
= NULL_TREE
;
23732 dw_discr_list_ref new_node
= NULL
;
23734 /* Possibilities are matched one after the other by nested
23735 TRUTH_ORIF_EXPR expressions. Process the current possibility and
23736 continue with the rest at next iteration. */
23737 if (TREE_CODE (match_expr
) == TRUTH_ORIF_EXPR
)
23739 next_round_match_expr
= TREE_OPERAND (match_expr
, 0);
23740 match_expr
= TREE_OPERAND (match_expr
, 1);
23743 next_round_match_expr
= NULL_TREE
;
23745 if (match_expr
== boolean_false_node
)
23746 /* This sub-expression matches nothing: just wait for the next
23750 else if (TREE_CODE (match_expr
) == EQ_EXPR
)
23752 /* We are matching: <discr_field> == <integer_cst>
23753 This sub-expression matches a single value. */
23754 tree integer_cst
= TREE_OPERAND (match_expr
, 1);
23757 = analyze_discr_in_predicate (TREE_OPERAND (match_expr
, 0),
23760 new_node
= ggc_cleared_alloc
<dw_discr_list_node
> ();
23761 if (!get_discr_value (integer_cst
,
23762 &new_node
->dw_discr_lower_bound
))
23764 new_node
->dw_discr_range
= false;
23767 else if (TREE_CODE (match_expr
) == TRUTH_ANDIF_EXPR
)
23769 /* We are matching:
23770 <discr_field> > <integer_cst>
23771 && <discr_field> < <integer_cst>.
23772 This sub-expression matches the range of values between the
23773 two matched integer constants. Note that comparisons can be
23774 inclusive or exclusive. */
23775 tree candidate_discr_1
, candidate_discr_2
;
23776 tree lower_cst
, upper_cst
;
23777 bool lower_cst_included
, upper_cst_included
;
23778 tree lower_op
= TREE_OPERAND (match_expr
, 0);
23779 tree upper_op
= TREE_OPERAND (match_expr
, 1);
23781 /* When the comparison is exclusive, the integer constant is not
23782 the discriminant range bound we are looking for: we will have
23783 to increment or decrement it. */
23784 if (TREE_CODE (lower_op
) == GE_EXPR
)
23785 lower_cst_included
= true;
23786 else if (TREE_CODE (lower_op
) == GT_EXPR
)
23787 lower_cst_included
= false;
23791 if (TREE_CODE (upper_op
) == LE_EXPR
)
23792 upper_cst_included
= true;
23793 else if (TREE_CODE (upper_op
) == LT_EXPR
)
23794 upper_cst_included
= false;
23798 /* Extract the discriminant from the first operand and check it
23799 is consistant with the same analysis in the second
23802 = analyze_discr_in_predicate (TREE_OPERAND (lower_op
, 0),
23805 = analyze_discr_in_predicate (TREE_OPERAND (upper_op
, 0),
23807 if (candidate_discr_1
== candidate_discr_2
)
23808 candidate_discr
= candidate_discr_1
;
23812 /* Extract bounds from both. */
23813 new_node
= ggc_cleared_alloc
<dw_discr_list_node
> ();
23814 lower_cst
= TREE_OPERAND (lower_op
, 1);
23815 upper_cst
= TREE_OPERAND (upper_op
, 1);
23817 if (!lower_cst_included
)
23819 = fold_build2 (PLUS_EXPR
, TREE_TYPE (lower_cst
), lower_cst
,
23820 build_int_cst (TREE_TYPE (lower_cst
), 1));
23821 if (!upper_cst_included
)
23823 = fold_build2 (MINUS_EXPR
, TREE_TYPE (upper_cst
), upper_cst
,
23824 build_int_cst (TREE_TYPE (upper_cst
), 1));
23826 if (!get_discr_value (lower_cst
,
23827 &new_node
->dw_discr_lower_bound
)
23828 || !get_discr_value (upper_cst
,
23829 &new_node
->dw_discr_upper_bound
))
23832 new_node
->dw_discr_range
= true;
23836 /* Unsupported sub-expression: we cannot determine the set of
23837 matching discriminant values. Abort everything. */
23840 /* If the discriminant info is not consistant with what we saw so
23841 far, consider the analysis failed and abort everything. */
23842 if (candidate_discr
== NULL_TREE
23843 || (*discr_decl
!= NULL_TREE
&& candidate_discr
!= *discr_decl
))
23846 *discr_decl
= candidate_discr
;
23848 if (new_node
!= NULL
)
23850 new_node
->dw_discr_next
= discr_lists
[i
];
23851 discr_lists
[i
] = new_node
;
23853 match_expr
= next_round_match_expr
;
23857 /* If we reach this point, we could match everything we were interested
23862 /* Clean all data structure and return no result. */
23863 free (*discr_lists_p
);
23864 *discr_lists_p
= NULL
;
23865 *discr_decl
= NULL_TREE
;
23868 /* Generate a DIE to represent VARIANT_PART_DECL, a variant part that is part
23869 of STRUCT_TYPE, a record type. This new DIE is emitted as the next child
23872 Variant parts are supposed to be implemented as a FIELD_DECL whose type is a
23873 QUAL_UNION_TYPE: this is the VARIANT_PART_DECL parameter. The members for
23874 this type, which are record types, represent the available variants and each
23875 has a DECL_QUALIFIER attribute. The discriminant and the discriminant
23876 values are inferred from these attributes.
23878 In trees, the offsets for the fields inside these sub-records are relative
23879 to the variant part itself, whereas the corresponding DIEs should have
23880 offset attributes that are relative to the embedding record base address.
23881 This is why the caller must provide a VARIANT_PART_OFFSET expression: it
23882 must be an expression that computes the offset of the variant part to
23883 describe in DWARF. */
23886 gen_variant_part (tree variant_part_decl
, struct vlr_context
*vlr_ctx
,
23887 dw_die_ref context_die
)
23889 const tree variant_part_type
= TREE_TYPE (variant_part_decl
);
23890 tree variant_part_offset
= vlr_ctx
->variant_part_offset
;
23891 struct loc_descr_context ctx
= {
23892 vlr_ctx
->struct_type
, /* context_type */
23893 NULL_TREE
, /* base_decl */
23895 false, /* placeholder_arg */
23896 false /* placeholder_seen */
23899 /* The FIELD_DECL node in STRUCT_TYPE that acts as the discriminant, or
23900 NULL_TREE if there is no such field. */
23901 tree discr_decl
= NULL_TREE
;
23902 dw_discr_list_ref
*discr_lists
;
23903 unsigned discr_lists_length
= 0;
23906 dw_die_ref dwarf_proc_die
= NULL
;
23907 dw_die_ref variant_part_die
23908 = new_die (DW_TAG_variant_part
, context_die
, variant_part_type
);
23910 equate_decl_number_to_die (variant_part_decl
, variant_part_die
);
23912 analyze_variants_discr (variant_part_decl
, vlr_ctx
->struct_type
,
23913 &discr_decl
, &discr_lists
, &discr_lists_length
);
23915 if (discr_decl
!= NULL_TREE
)
23917 dw_die_ref discr_die
= lookup_decl_die (discr_decl
);
23920 add_AT_die_ref (variant_part_die
, DW_AT_discr
, discr_die
);
23922 /* We have no DIE for the discriminant, so just discard all
23923 discrimimant information in the output. */
23924 discr_decl
= NULL_TREE
;
23927 /* If the offset for this variant part is more complex than a constant,
23928 create a DWARF procedure for it so that we will not have to generate DWARF
23929 expressions for it for each member. */
23930 if (TREE_CODE (variant_part_offset
) != INTEGER_CST
23931 && (dwarf_version
>= 3 || !dwarf_strict
))
23933 const tree dwarf_proc_fndecl
23934 = build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, NULL_TREE
,
23935 build_function_type (TREE_TYPE (variant_part_offset
),
23937 const tree dwarf_proc_call
= build_call_expr (dwarf_proc_fndecl
, 0);
23938 const dw_loc_descr_ref dwarf_proc_body
23939 = loc_descriptor_from_tree (variant_part_offset
, 0, &ctx
);
23941 dwarf_proc_die
= new_dwarf_proc_die (dwarf_proc_body
,
23942 dwarf_proc_fndecl
, context_die
);
23943 if (dwarf_proc_die
!= NULL
)
23944 variant_part_offset
= dwarf_proc_call
;
23947 /* Output DIEs for all variants. */
23949 for (tree variant
= TYPE_FIELDS (variant_part_type
);
23950 variant
!= NULL_TREE
;
23951 variant
= DECL_CHAIN (variant
), ++i
)
23953 tree variant_type
= TREE_TYPE (variant
);
23954 dw_die_ref variant_die
;
23956 /* All variants (i.e. members of a variant part) are supposed to be
23957 encoded as structures. Sub-variant parts are QUAL_UNION_TYPE fields
23958 under these records. */
23959 gcc_assert (TREE_CODE (variant_type
) == RECORD_TYPE
);
23961 variant_die
= new_die (DW_TAG_variant
, variant_part_die
, variant_type
);
23962 equate_decl_number_to_die (variant
, variant_die
);
23964 /* Output discriminant values this variant matches, if any. */
23965 if (discr_decl
== NULL
|| discr_lists
[i
] == NULL
)
23966 /* In the case we have discriminant information at all, this is
23967 probably the default variant: as the standard says, don't
23968 output any discriminant value/list attribute. */
23970 else if (discr_lists
[i
]->dw_discr_next
== NULL
23971 && !discr_lists
[i
]->dw_discr_range
)
23972 /* If there is only one accepted value, don't bother outputting a
23974 add_discr_value (variant_die
, &discr_lists
[i
]->dw_discr_lower_bound
);
23976 add_discr_list (variant_die
, discr_lists
[i
]);
23978 for (tree member
= TYPE_FIELDS (variant_type
);
23979 member
!= NULL_TREE
;
23980 member
= DECL_CHAIN (member
))
23982 struct vlr_context vlr_sub_ctx
= {
23983 vlr_ctx
->struct_type
, /* struct_type */
23984 NULL
/* variant_part_offset */
23986 if (is_variant_part (member
))
23988 /* All offsets for fields inside variant parts are relative to
23989 the top-level embedding RECORD_TYPE's base address. On the
23990 other hand, offsets in GCC's types are relative to the
23991 nested-most variant part. So we have to sum offsets each time
23994 vlr_sub_ctx
.variant_part_offset
23995 = fold_build2 (PLUS_EXPR
, TREE_TYPE (variant_part_offset
),
23996 variant_part_offset
, byte_position (member
));
23997 gen_variant_part (member
, &vlr_sub_ctx
, variant_die
);
24001 vlr_sub_ctx
.variant_part_offset
= variant_part_offset
;
24002 gen_decl_die (member
, NULL
, &vlr_sub_ctx
, variant_die
);
24007 free (discr_lists
);
24010 /* Generate a DIE for a class member. */
24013 gen_member_die (tree type
, dw_die_ref context_die
)
24016 tree binfo
= TYPE_BINFO (type
);
24018 gcc_assert (TYPE_MAIN_VARIANT (type
) == type
);
24020 /* If this is not an incomplete type, output descriptions of each of its
24021 members. Note that as we output the DIEs necessary to represent the
24022 members of this record or union type, we will also be trying to output
24023 DIEs to represent the *types* of those members. However the `type'
24024 function (above) will specifically avoid generating type DIEs for member
24025 types *within* the list of member DIEs for this (containing) type except
24026 for those types (of members) which are explicitly marked as also being
24027 members of this (containing) type themselves. The g++ front- end can
24028 force any given type to be treated as a member of some other (containing)
24029 type by setting the TYPE_CONTEXT of the given (member) type to point to
24030 the TREE node representing the appropriate (containing) type. */
24032 /* First output info about the base classes. */
24035 vec
<tree
, va_gc
> *accesses
= BINFO_BASE_ACCESSES (binfo
);
24039 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base
); i
++)
24040 gen_inheritance_die (base
,
24041 (accesses
? (*accesses
)[i
] : access_public_node
),
24046 /* Now output info about the data members and type members. */
24047 for (member
= TYPE_FIELDS (type
); member
; member
= DECL_CHAIN (member
))
24049 struct vlr_context vlr_ctx
= { type
, NULL_TREE
};
24050 bool static_inline_p
24051 = (TREE_STATIC (member
)
24052 && (lang_hooks
.decls
.decl_dwarf_attribute (member
, DW_AT_inline
)
24055 /* Ignore clones. */
24056 if (DECL_ABSTRACT_ORIGIN (member
))
24059 /* If we thought we were generating minimal debug info for TYPE
24060 and then changed our minds, some of the member declarations
24061 may have already been defined. Don't define them again, but
24062 do put them in the right order. */
24064 if (dw_die_ref child
= lookup_decl_die (member
))
24066 /* Handle inline static data members, which only have in-class
24068 dw_die_ref ref
= NULL
;
24069 if (child
->die_tag
== DW_TAG_variable
24070 && child
->die_parent
== comp_unit_die ())
24072 ref
= get_AT_ref (child
, DW_AT_specification
);
24073 /* For C++17 inline static data members followed by redundant
24074 out of class redeclaration, we might get here with
24075 child being the DIE created for the out of class
24076 redeclaration and with its DW_AT_specification being
24077 the DIE created for in-class definition. We want to
24078 reparent the latter, and don't want to create another
24079 DIE with DW_AT_specification in that case, because
24080 we already have one. */
24083 && ref
->die_tag
== DW_TAG_variable
24084 && ref
->die_parent
== comp_unit_die ()
24085 && get_AT (ref
, DW_AT_specification
) == NULL
)
24089 static_inline_p
= false;
24093 if (child
->die_tag
== DW_TAG_variable
24094 && child
->die_parent
== comp_unit_die ()
24097 reparent_child (child
, context_die
);
24098 if (dwarf_version
< 5)
24099 child
->die_tag
= DW_TAG_member
;
24102 splice_child_die (context_die
, child
);
24105 /* Do not generate standard DWARF for variant parts if we are generating
24106 the corresponding GNAT encodings: DIEs generated for both would
24107 conflict in our mappings. */
24108 else if (is_variant_part (member
)
24109 && gnat_encodings
== DWARF_GNAT_ENCODINGS_MINIMAL
)
24111 vlr_ctx
.variant_part_offset
= byte_position (member
);
24112 gen_variant_part (member
, &vlr_ctx
, context_die
);
24116 vlr_ctx
.variant_part_offset
= NULL_TREE
;
24117 gen_decl_die (member
, NULL
, &vlr_ctx
, context_die
);
24120 /* For C++ inline static data members emit immediately a DW_TAG_variable
24121 DIE that will refer to that DW_TAG_member/DW_TAG_variable through
24122 DW_AT_specification. */
24123 if (static_inline_p
)
24125 int old_extern
= DECL_EXTERNAL (member
);
24126 DECL_EXTERNAL (member
) = 0;
24127 gen_decl_die (member
, NULL
, NULL
, comp_unit_die ());
24128 DECL_EXTERNAL (member
) = old_extern
;
24133 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
24134 is set, we pretend that the type was never defined, so we only get the
24135 member DIEs needed by later specification DIEs. */
24138 gen_struct_or_union_type_die (tree type
, dw_die_ref context_die
,
24139 enum debug_info_usage usage
)
24141 if (TREE_ASM_WRITTEN (type
))
24143 /* Fill in the bound of variable-length fields in late dwarf if
24144 still incomplete. */
24145 if (!early_dwarf
&& variably_modified_type_p (type
, NULL
))
24146 for (tree member
= TYPE_FIELDS (type
);
24148 member
= DECL_CHAIN (member
))
24149 fill_variable_array_bounds (TREE_TYPE (member
));
24153 dw_die_ref type_die
= lookup_type_die (type
);
24154 dw_die_ref scope_die
= 0;
24156 int complete
= (TYPE_SIZE (type
)
24157 && (! TYPE_STUB_DECL (type
)
24158 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
24159 int ns_decl
= (context_die
&& context_die
->die_tag
== DW_TAG_namespace
);
24160 complete
= complete
&& should_emit_struct_debug (type
, usage
);
24162 if (type_die
&& ! complete
)
24165 if (TYPE_CONTEXT (type
) != NULL_TREE
24166 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
24167 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
))
24170 scope_die
= scope_die_for (type
, context_die
);
24172 /* Generate child dies for template paramaters. */
24173 if (!type_die
&& debug_info_level
> DINFO_LEVEL_TERSE
)
24174 schedule_generic_params_dies_gen (type
);
24176 if (! type_die
|| (nested
&& is_cu_die (scope_die
)))
24177 /* First occurrence of type or toplevel definition of nested class. */
24179 dw_die_ref old_die
= type_die
;
24181 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
24182 ? record_type_tag (type
) : DW_TAG_union_type
,
24184 equate_type_number_to_die (type
, type_die
);
24186 add_AT_specification (type_die
, old_die
);
24188 add_name_attribute (type_die
, type_tag (type
));
24191 remove_AT (type_die
, DW_AT_declaration
);
24193 /* If this type has been completed, then give it a byte_size attribute and
24194 then give a list of members. */
24195 if (complete
&& !ns_decl
)
24197 /* Prevent infinite recursion in cases where the type of some member of
24198 this type is expressed in terms of this type itself. */
24199 TREE_ASM_WRITTEN (type
) = 1;
24200 add_byte_size_attribute (type_die
, type
);
24201 add_alignment_attribute (type_die
, type
);
24202 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
24204 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
24205 add_accessibility_attribute (type_die
, TYPE_STUB_DECL (type
));
24208 /* If the first reference to this type was as the return type of an
24209 inline function, then it may not have a parent. Fix this now. */
24210 if (type_die
->die_parent
== NULL
)
24211 add_child_die (scope_die
, type_die
);
24213 push_decl_scope (type
);
24214 gen_member_die (type
, type_die
);
24217 add_gnat_descriptive_type_attribute (type_die
, type
, context_die
);
24218 if (TYPE_ARTIFICIAL (type
))
24219 add_AT_flag (type_die
, DW_AT_artificial
, 1);
24221 /* GNU extension: Record what type our vtable lives in. */
24222 if (TYPE_VFIELD (type
))
24224 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
24226 gen_type_die (vtype
, context_die
);
24227 add_AT_die_ref (type_die
, DW_AT_containing_type
,
24228 lookup_type_die (vtype
));
24233 add_AT_flag (type_die
, DW_AT_declaration
, 1);
24235 /* We don't need to do this for function-local types. */
24236 if (TYPE_STUB_DECL (type
)
24237 && ! decl_function_context (TYPE_STUB_DECL (type
)))
24238 vec_safe_push (incomplete_types
, type
);
24241 if (get_AT (type_die
, DW_AT_name
))
24242 add_pubtype (type
, type_die
);
24245 /* Generate a DIE for a subroutine _type_. */
24248 gen_subroutine_type_die (tree type
, dw_die_ref context_die
)
24250 tree return_type
= TREE_TYPE (type
);
24251 dw_die_ref subr_die
24252 = new_die (DW_TAG_subroutine_type
,
24253 scope_die_for (type
, context_die
), type
);
24255 equate_type_number_to_die (type
, subr_die
);
24256 add_prototyped_attribute (subr_die
, type
);
24257 add_type_attribute (subr_die
, return_type
, TYPE_UNQUALIFIED
, false,
24259 add_alignment_attribute (subr_die
, type
);
24260 gen_formal_types_die (type
, subr_die
);
24262 if (get_AT (subr_die
, DW_AT_name
))
24263 add_pubtype (type
, subr_die
);
24264 if ((dwarf_version
>= 5 || !dwarf_strict
)
24265 && lang_hooks
.types
.type_dwarf_attribute (type
, DW_AT_reference
) != -1)
24266 add_AT_flag (subr_die
, DW_AT_reference
, 1);
24267 if ((dwarf_version
>= 5 || !dwarf_strict
)
24268 && lang_hooks
.types
.type_dwarf_attribute (type
,
24269 DW_AT_rvalue_reference
) != -1)
24270 add_AT_flag (subr_die
, DW_AT_rvalue_reference
, 1);
24273 /* Generate a DIE for a type definition. */
24276 gen_typedef_die (tree decl
, dw_die_ref context_die
)
24278 dw_die_ref type_die
;
24281 if (TREE_ASM_WRITTEN (decl
))
24283 if (DECL_ORIGINAL_TYPE (decl
))
24284 fill_variable_array_bounds (DECL_ORIGINAL_TYPE (decl
));
24288 /* As we avoid creating DIEs for local typedefs (see decl_ultimate_origin
24289 checks in process_scope_var and modified_type_die), this should be called
24290 only for original types. */
24291 gcc_assert (decl_ultimate_origin (decl
) == NULL
24292 || decl_ultimate_origin (decl
) == decl
);
24294 TREE_ASM_WRITTEN (decl
) = 1;
24295 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
24297 add_name_and_src_coords_attributes (type_die
, decl
);
24298 if (DECL_ORIGINAL_TYPE (decl
))
24300 type
= DECL_ORIGINAL_TYPE (decl
);
24301 if (type
== error_mark_node
)
24304 gcc_assert (type
!= TREE_TYPE (decl
));
24305 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
24309 type
= TREE_TYPE (decl
);
24310 if (type
== error_mark_node
)
24313 if (is_naming_typedef_decl (TYPE_NAME (type
)))
24315 /* Here, we are in the case of decl being a typedef naming
24316 an anonymous type, e.g:
24317 typedef struct {...} foo;
24318 In that case TREE_TYPE (decl) is not a typedef variant
24319 type and TYPE_NAME of the anonymous type is set to the
24320 TYPE_DECL of the typedef. This construct is emitted by
24323 TYPE is the anonymous struct named by the typedef
24324 DECL. As we need the DW_AT_type attribute of the
24325 DW_TAG_typedef to point to the DIE of TYPE, let's
24326 generate that DIE right away. add_type_attribute
24327 called below will then pick (via lookup_type_die) that
24328 anonymous struct DIE. */
24329 if (!TREE_ASM_WRITTEN (type
))
24330 gen_tagged_type_die (type
, context_die
, DINFO_USAGE_DIR_USE
);
24332 /* This is a GNU Extension. We are adding a
24333 DW_AT_linkage_name attribute to the DIE of the
24334 anonymous struct TYPE. The value of that attribute
24335 is the name of the typedef decl naming the anonymous
24336 struct. This greatly eases the work of consumers of
24337 this debug info. */
24338 add_linkage_name_raw (lookup_type_die (type
), decl
);
24342 add_type_attribute (type_die
, type
, decl_quals (decl
), false,
24345 if (is_naming_typedef_decl (decl
))
24346 /* We want that all subsequent calls to lookup_type_die with
24347 TYPE in argument yield the DW_TAG_typedef we have just
24349 equate_type_number_to_die (type
, type_die
);
24351 add_alignment_attribute (type_die
, TREE_TYPE (decl
));
24353 add_accessibility_attribute (type_die
, decl
);
24355 if (DECL_ABSTRACT_P (decl
))
24356 equate_decl_number_to_die (decl
, type_die
);
24358 if (get_AT (type_die
, DW_AT_name
))
24359 add_pubtype (decl
, type_die
);
24362 /* Generate a DIE for a struct, class, enum or union type. */
24365 gen_tagged_type_die (tree type
,
24366 dw_die_ref context_die
,
24367 enum debug_info_usage usage
)
24371 if (type
== NULL_TREE
24372 || !is_tagged_type (type
))
24375 if (TREE_ASM_WRITTEN (type
))
24377 /* If this is a nested type whose containing class hasn't been written
24378 out yet, writing it out will cover this one, too. This does not apply
24379 to instantiations of member class templates; they need to be added to
24380 the containing class as they are generated. FIXME: This hurts the
24381 idea of combining type decls from multiple TUs, since we can't predict
24382 what set of template instantiations we'll get. */
24383 else if (TYPE_CONTEXT (type
)
24384 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
24385 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
24387 gen_type_die_with_usage (TYPE_CONTEXT (type
), context_die
, usage
);
24389 if (TREE_ASM_WRITTEN (type
))
24392 /* If that failed, attach ourselves to the stub. */
24393 push_decl_scope (TYPE_CONTEXT (type
));
24394 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
24397 else if (TYPE_CONTEXT (type
) != NULL_TREE
24398 && (TREE_CODE (TYPE_CONTEXT (type
)) == FUNCTION_DECL
))
24400 /* If this type is local to a function that hasn't been written
24401 out yet, use a NULL context for now; it will be fixed up in
24402 decls_for_scope. */
24403 context_die
= lookup_decl_die (TYPE_CONTEXT (type
));
24404 /* A declaration DIE doesn't count; nested types need to go in the
24406 if (context_die
&& is_declaration_die (context_die
))
24407 context_die
= NULL
;
24412 context_die
= declare_in_namespace (type
, context_die
);
24416 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
24418 /* This might have been written out by the call to
24419 declare_in_namespace. */
24420 if (!TREE_ASM_WRITTEN (type
))
24421 gen_enumeration_type_die (type
, context_die
);
24424 gen_struct_or_union_type_die (type
, context_die
, usage
);
24429 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
24430 it up if it is ever completed. gen_*_type_die will set it for us
24431 when appropriate. */
24434 /* Generate a type description DIE. */
24437 gen_type_die_with_usage (tree type
, dw_die_ref context_die
,
24438 enum debug_info_usage usage
)
24440 struct array_descr_info info
;
24442 if (type
== NULL_TREE
|| type
== error_mark_node
)
24445 if (flag_checking
&& type
)
24446 verify_type (type
);
24448 if (TYPE_NAME (type
) != NULL_TREE
24449 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
24450 && is_redundant_typedef (TYPE_NAME (type
))
24451 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
24452 /* The DECL of this type is a typedef we don't want to emit debug
24453 info for but we want debug info for its underlying typedef.
24454 This can happen for e.g, the injected-class-name of a C++
24456 type
= DECL_ORIGINAL_TYPE (TYPE_NAME (type
));
24458 /* If TYPE is a typedef type variant, let's generate debug info
24459 for the parent typedef which TYPE is a type of. */
24460 if (typedef_variant_p (type
))
24462 if (TREE_ASM_WRITTEN (type
))
24465 tree name
= TYPE_NAME (type
);
24466 tree origin
= decl_ultimate_origin (name
);
24467 if (origin
!= NULL
&& origin
!= name
)
24469 gen_decl_die (origin
, NULL
, NULL
, context_die
);
24473 /* Prevent broken recursion; we can't hand off to the same type. */
24474 gcc_assert (DECL_ORIGINAL_TYPE (name
) != type
);
24476 /* Give typedefs the right scope. */
24477 context_die
= scope_die_for (type
, context_die
);
24479 TREE_ASM_WRITTEN (type
) = 1;
24481 gen_decl_die (name
, NULL
, NULL
, context_die
);
24485 /* If type is an anonymous tagged type named by a typedef, let's
24486 generate debug info for the typedef. */
24487 if (is_naming_typedef_decl (TYPE_NAME (type
)))
24489 /* Use the DIE of the containing namespace as the parent DIE of
24490 the type description DIE we want to generate. */
24491 if (DECL_CONTEXT (TYPE_NAME (type
))
24492 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type
))) == NAMESPACE_DECL
)
24493 context_die
= get_context_die (DECL_CONTEXT (TYPE_NAME (type
)));
24495 gen_decl_die (TYPE_NAME (type
), NULL
, NULL
, context_die
);
24499 if (lang_hooks
.types
.get_debug_type
)
24501 tree debug_type
= lang_hooks
.types
.get_debug_type (type
);
24503 if (debug_type
!= NULL_TREE
&& debug_type
!= type
)
24505 gen_type_die_with_usage (debug_type
, context_die
, usage
);
24510 /* We are going to output a DIE to represent the unqualified version
24511 of this type (i.e. without any const or volatile qualifiers) so
24512 get the main variant (i.e. the unqualified version) of this type
24513 now. (Vectors and arrays are special because the debugging info is in the
24514 cloned type itself. Similarly function/method types can contain extra
24515 ref-qualification). */
24516 if (TREE_CODE (type
) == FUNCTION_TYPE
24517 || TREE_CODE (type
) == METHOD_TYPE
)
24519 /* For function/method types, can't use type_main_variant here,
24520 because that can have different ref-qualifiers for C++,
24521 but try to canonicalize. */
24522 tree main
= TYPE_MAIN_VARIANT (type
);
24523 for (tree t
= main
; t
; t
= TYPE_NEXT_VARIANT (t
))
24524 if (TYPE_QUALS_NO_ADDR_SPACE (t
) == 0
24525 && check_base_type (t
, main
)
24526 && check_lang_type (t
, type
))
24532 else if (TREE_CODE (type
) != VECTOR_TYPE
24533 && TREE_CODE (type
) != ARRAY_TYPE
)
24534 type
= type_main_variant (type
);
24536 /* If this is an array type with hidden descriptor, handle it first. */
24537 if (!TREE_ASM_WRITTEN (type
)
24538 && lang_hooks
.types
.get_array_descr_info
)
24540 memset (&info
, 0, sizeof (info
));
24541 if (lang_hooks
.types
.get_array_descr_info (type
, &info
))
24543 /* Fortran sometimes emits array types with no dimension. */
24544 gcc_assert (info
.ndimensions
>= 0
24545 && (info
.ndimensions
24546 <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN
));
24547 gen_descr_array_type_die (type
, &info
, context_die
);
24548 TREE_ASM_WRITTEN (type
) = 1;
24553 if (TREE_ASM_WRITTEN (type
))
24555 /* Variable-length types may be incomplete even if
24556 TREE_ASM_WRITTEN. For such types, fall through to
24557 gen_array_type_die() and possibly fill in
24558 DW_AT_{upper,lower}_bound attributes. */
24559 if ((TREE_CODE (type
) != ARRAY_TYPE
24560 && TREE_CODE (type
) != RECORD_TYPE
24561 && TREE_CODE (type
) != UNION_TYPE
24562 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
24563 || !variably_modified_type_p (type
, NULL
))
24567 switch (TREE_CODE (type
))
24573 case REFERENCE_TYPE
:
24574 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
24575 ensures that the gen_type_die recursion will terminate even if the
24576 type is recursive. Recursive types are possible in Ada. */
24577 /* ??? We could perhaps do this for all types before the switch
24579 TREE_ASM_WRITTEN (type
) = 1;
24581 /* For these types, all that is required is that we output a DIE (or a
24582 set of DIEs) to represent the "basis" type. */
24583 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
24584 DINFO_USAGE_IND_USE
);
24588 /* This code is used for C++ pointer-to-data-member types.
24589 Output a description of the relevant class type. */
24590 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type
), context_die
,
24591 DINFO_USAGE_IND_USE
);
24593 /* Output a description of the type of the object pointed to. */
24594 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
24595 DINFO_USAGE_IND_USE
);
24597 /* Now output a DIE to represent this pointer-to-data-member type
24599 gen_ptr_to_mbr_type_die (type
, context_die
);
24602 case FUNCTION_TYPE
:
24603 /* Force out return type (in case it wasn't forced out already). */
24604 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
24605 DINFO_USAGE_DIR_USE
);
24606 gen_subroutine_type_die (type
, context_die
);
24610 /* Force out return type (in case it wasn't forced out already). */
24611 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
24612 DINFO_USAGE_DIR_USE
);
24613 gen_subroutine_type_die (type
, context_die
);
24618 gen_array_type_die (type
, context_die
);
24621 case ENUMERAL_TYPE
:
24624 case QUAL_UNION_TYPE
:
24625 gen_tagged_type_die (type
, context_die
, usage
);
24631 case FIXED_POINT_TYPE
:
24634 case POINTER_BOUNDS_TYPE
:
24635 /* No DIEs needed for fundamental types. */
24640 /* Just use DW_TAG_unspecified_type. */
24642 dw_die_ref type_die
= lookup_type_die (type
);
24643 if (type_die
== NULL
)
24645 tree name
= TYPE_IDENTIFIER (type
);
24646 type_die
= new_die (DW_TAG_unspecified_type
, comp_unit_die (),
24648 add_name_attribute (type_die
, IDENTIFIER_POINTER (name
));
24649 equate_type_number_to_die (type
, type_die
);
24655 if (is_cxx_auto (type
))
24657 tree name
= TYPE_IDENTIFIER (type
);
24658 dw_die_ref
*die
= (name
== get_identifier ("auto")
24659 ? &auto_die
: &decltype_auto_die
);
24662 *die
= new_die (DW_TAG_unspecified_type
,
24663 comp_unit_die (), NULL_TREE
);
24664 add_name_attribute (*die
, IDENTIFIER_POINTER (name
));
24666 equate_type_number_to_die (type
, *die
);
24669 gcc_unreachable ();
24672 TREE_ASM_WRITTEN (type
) = 1;
24676 gen_type_die (tree type
, dw_die_ref context_die
)
24678 if (type
!= error_mark_node
)
24680 gen_type_die_with_usage (type
, context_die
, DINFO_USAGE_DIR_USE
);
24683 dw_die_ref die
= lookup_type_die (type
);
24690 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
24691 things which are local to the given block. */
24694 gen_block_die (tree stmt
, dw_die_ref context_die
)
24696 int must_output_die
= 0;
24699 /* Ignore blocks that are NULL. */
24700 if (stmt
== NULL_TREE
)
24703 inlined_func
= inlined_function_outer_scope_p (stmt
);
24705 /* If the block is one fragment of a non-contiguous block, do not
24706 process the variables, since they will have been done by the
24707 origin block. Do process subblocks. */
24708 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
24712 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
24713 gen_block_die (sub
, context_die
);
24718 /* Determine if we need to output any Dwarf DIEs at all to represent this
24721 /* The outer scopes for inlinings *must* always be represented. We
24722 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
24723 must_output_die
= 1;
24726 /* Determine if this block directly contains any "significant"
24727 local declarations which we will need to output DIEs for. */
24728 if (debug_info_level
> DINFO_LEVEL_TERSE
)
24729 /* We are not in terse mode so *any* local declaration counts
24730 as being a "significant" one. */
24731 must_output_die
= ((BLOCK_VARS (stmt
) != NULL
24732 || BLOCK_NUM_NONLOCALIZED_VARS (stmt
))
24733 && (TREE_USED (stmt
)
24734 || TREE_ASM_WRITTEN (stmt
)
24735 || BLOCK_ABSTRACT (stmt
)));
24736 else if ((TREE_USED (stmt
)
24737 || TREE_ASM_WRITTEN (stmt
)
24738 || BLOCK_ABSTRACT (stmt
))
24739 && !dwarf2out_ignore_block (stmt
))
24740 must_output_die
= 1;
24743 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
24744 DIE for any block which contains no significant local declarations at
24745 all. Rather, in such cases we just call `decls_for_scope' so that any
24746 needed Dwarf info for any sub-blocks will get properly generated. Note
24747 that in terse mode, our definition of what constitutes a "significant"
24748 local declaration gets restricted to include only inlined function
24749 instances and local (nested) function definitions. */
24750 if (must_output_die
)
24754 /* If STMT block is abstract, that means we have been called
24755 indirectly from dwarf2out_abstract_function.
24756 That function rightfully marks the descendent blocks (of
24757 the abstract function it is dealing with) as being abstract,
24758 precisely to prevent us from emitting any
24759 DW_TAG_inlined_subroutine DIE as a descendent
24760 of an abstract function instance. So in that case, we should
24761 not call gen_inlined_subroutine_die.
24763 Later though, when cgraph asks dwarf2out to emit info
24764 for the concrete instance of the function decl into which
24765 the concrete instance of STMT got inlined, the later will lead
24766 to the generation of a DW_TAG_inlined_subroutine DIE. */
24767 if (! BLOCK_ABSTRACT (stmt
))
24768 gen_inlined_subroutine_die (stmt
, context_die
);
24771 gen_lexical_block_die (stmt
, context_die
);
24774 decls_for_scope (stmt
, context_die
);
24777 /* Process variable DECL (or variable with origin ORIGIN) within
24778 block STMT and add it to CONTEXT_DIE. */
24780 process_scope_var (tree stmt
, tree decl
, tree origin
, dw_die_ref context_die
)
24783 tree decl_or_origin
= decl
? decl
: origin
;
24785 if (TREE_CODE (decl_or_origin
) == FUNCTION_DECL
)
24786 die
= lookup_decl_die (decl_or_origin
);
24787 else if (TREE_CODE (decl_or_origin
) == TYPE_DECL
)
24789 if (TYPE_DECL_IS_STUB (decl_or_origin
))
24790 die
= lookup_type_die (TREE_TYPE (decl_or_origin
));
24792 die
= lookup_decl_die (decl_or_origin
);
24793 /* Avoid re-creating the DIE late if it was optimized as unused early. */
24794 if (! die
&& ! early_dwarf
)
24800 /* Avoid creating DIEs for local typedefs and concrete static variables that
24801 will only be pruned later. */
24802 if ((origin
|| decl_ultimate_origin (decl
))
24803 && (TREE_CODE (decl_or_origin
) == TYPE_DECL
24804 || (VAR_P (decl_or_origin
) && TREE_STATIC (decl_or_origin
))))
24806 origin
= decl_ultimate_origin (decl_or_origin
);
24807 if (decl
&& VAR_P (decl
) && die
!= NULL
)
24809 die
= lookup_decl_die (origin
);
24811 equate_decl_number_to_die (decl
, die
);
24816 if (die
!= NULL
&& die
->die_parent
== NULL
)
24817 add_child_die (context_die
, die
);
24818 else if (TREE_CODE (decl_or_origin
) == IMPORTED_DECL
)
24821 dwarf2out_imported_module_or_decl_1 (decl_or_origin
, DECL_NAME (decl_or_origin
),
24822 stmt
, context_die
);
24826 if (decl
&& DECL_P (decl
))
24828 die
= lookup_decl_die (decl
);
24830 /* Early created DIEs do not have a parent as the decls refer
24831 to the function as DECL_CONTEXT rather than the BLOCK. */
24832 if (die
&& die
->die_parent
== NULL
)
24834 gcc_assert (in_lto_p
);
24835 add_child_die (context_die
, die
);
24839 gen_decl_die (decl
, origin
, NULL
, context_die
);
24843 /* Generate all of the decls declared within a given scope and (recursively)
24844 all of its sub-blocks. */
24847 decls_for_scope (tree stmt
, dw_die_ref context_die
)
24853 /* Ignore NULL blocks. */
24854 if (stmt
== NULL_TREE
)
24857 /* Output the DIEs to represent all of the data objects and typedefs
24858 declared directly within this block but not within any nested
24859 sub-blocks. Also, nested function and tag DIEs have been
24860 generated with a parent of NULL; fix that up now. We don't
24861 have to do this if we're at -g1. */
24862 if (debug_info_level
> DINFO_LEVEL_TERSE
)
24864 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= DECL_CHAIN (decl
))
24865 process_scope_var (stmt
, decl
, NULL_TREE
, context_die
);
24866 /* BLOCK_NONLOCALIZED_VARs simply generate DIE stubs with abstract
24867 origin - avoid doing this twice as we have no good way to see
24868 if we've done it once already. */
24870 for (i
= 0; i
< BLOCK_NUM_NONLOCALIZED_VARS (stmt
); i
++)
24872 decl
= BLOCK_NONLOCALIZED_VAR (stmt
, i
);
24873 if (decl
== current_function_decl
)
24874 /* Ignore declarations of the current function, while they
24875 are declarations, gen_subprogram_die would treat them
24876 as definitions again, because they are equal to
24877 current_function_decl and endlessly recurse. */;
24878 else if (TREE_CODE (decl
) == FUNCTION_DECL
)
24879 process_scope_var (stmt
, decl
, NULL_TREE
, context_die
);
24881 process_scope_var (stmt
, NULL_TREE
, decl
, context_die
);
24885 /* Even if we're at -g1, we need to process the subblocks in order to get
24886 inlined call information. */
24888 /* Output the DIEs to represent all sub-blocks (and the items declared
24889 therein) of this block. */
24890 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
24892 subblocks
= BLOCK_CHAIN (subblocks
))
24893 gen_block_die (subblocks
, context_die
);
24896 /* Is this a typedef we can avoid emitting? */
24899 is_redundant_typedef (const_tree decl
)
24901 if (TYPE_DECL_IS_STUB (decl
))
24904 if (DECL_ARTIFICIAL (decl
)
24905 && DECL_CONTEXT (decl
)
24906 && is_tagged_type (DECL_CONTEXT (decl
))
24907 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
24908 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
24909 /* Also ignore the artificial member typedef for the class name. */
24915 /* Return TRUE if TYPE is a typedef that names a type for linkage
24916 purposes. This kind of typedefs is produced by the C++ FE for
24919 typedef struct {...} foo;
24921 In that case, there is no typedef variant type produced for foo.
24922 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
24926 is_naming_typedef_decl (const_tree decl
)
24928 if (decl
== NULL_TREE
24929 || TREE_CODE (decl
) != TYPE_DECL
24930 || DECL_NAMELESS (decl
)
24931 || !is_tagged_type (TREE_TYPE (decl
))
24932 || DECL_IS_BUILTIN (decl
)
24933 || is_redundant_typedef (decl
)
24934 /* It looks like Ada produces TYPE_DECLs that are very similar
24935 to C++ naming typedefs but that have different
24936 semantics. Let's be specific to c++ for now. */
24940 return (DECL_ORIGINAL_TYPE (decl
) == NULL_TREE
24941 && TYPE_NAME (TREE_TYPE (decl
)) == decl
24942 && (TYPE_STUB_DECL (TREE_TYPE (decl
))
24943 != TYPE_NAME (TREE_TYPE (decl
))));
24946 /* Looks up the DIE for a context. */
24948 static inline dw_die_ref
24949 lookup_context_die (tree context
)
24953 /* Find die that represents this context. */
24954 if (TYPE_P (context
))
24956 context
= TYPE_MAIN_VARIANT (context
);
24957 dw_die_ref ctx
= lookup_type_die (context
);
24960 return strip_naming_typedef (context
, ctx
);
24963 return lookup_decl_die (context
);
24965 return comp_unit_die ();
24968 /* Returns the DIE for a context. */
24970 static inline dw_die_ref
24971 get_context_die (tree context
)
24975 /* Find die that represents this context. */
24976 if (TYPE_P (context
))
24978 context
= TYPE_MAIN_VARIANT (context
);
24979 return strip_naming_typedef (context
, force_type_die (context
));
24982 return force_decl_die (context
);
24984 return comp_unit_die ();
24987 /* Returns the DIE for decl. A DIE will always be returned. */
24990 force_decl_die (tree decl
)
24992 dw_die_ref decl_die
;
24993 unsigned saved_external_flag
;
24994 tree save_fn
= NULL_TREE
;
24995 decl_die
= lookup_decl_die (decl
);
24998 dw_die_ref context_die
= get_context_die (DECL_CONTEXT (decl
));
25000 decl_die
= lookup_decl_die (decl
);
25004 switch (TREE_CODE (decl
))
25006 case FUNCTION_DECL
:
25007 /* Clear current_function_decl, so that gen_subprogram_die thinks
25008 that this is a declaration. At this point, we just want to force
25009 declaration die. */
25010 save_fn
= current_function_decl
;
25011 current_function_decl
= NULL_TREE
;
25012 gen_subprogram_die (decl
, context_die
);
25013 current_function_decl
= save_fn
;
25017 /* Set external flag to force declaration die. Restore it after
25018 gen_decl_die() call. */
25019 saved_external_flag
= DECL_EXTERNAL (decl
);
25020 DECL_EXTERNAL (decl
) = 1;
25021 gen_decl_die (decl
, NULL
, NULL
, context_die
);
25022 DECL_EXTERNAL (decl
) = saved_external_flag
;
25025 case NAMESPACE_DECL
:
25026 if (dwarf_version
>= 3 || !dwarf_strict
)
25027 dwarf2out_decl (decl
);
25029 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
25030 decl_die
= comp_unit_die ();
25033 case TRANSLATION_UNIT_DECL
:
25034 decl_die
= comp_unit_die ();
25038 gcc_unreachable ();
25041 /* We should be able to find the DIE now. */
25043 decl_die
= lookup_decl_die (decl
);
25044 gcc_assert (decl_die
);
25050 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
25051 always returned. */
25054 force_type_die (tree type
)
25056 dw_die_ref type_die
;
25058 type_die
= lookup_type_die (type
);
25061 dw_die_ref context_die
= get_context_die (TYPE_CONTEXT (type
));
25063 type_die
= modified_type_die (type
, TYPE_QUALS_NO_ADDR_SPACE (type
),
25064 false, context_die
);
25065 gcc_assert (type_die
);
25070 /* Force out any required namespaces to be able to output DECL,
25071 and return the new context_die for it, if it's changed. */
25074 setup_namespace_context (tree thing
, dw_die_ref context_die
)
25076 tree context
= (DECL_P (thing
)
25077 ? DECL_CONTEXT (thing
) : TYPE_CONTEXT (thing
));
25078 if (context
&& TREE_CODE (context
) == NAMESPACE_DECL
)
25079 /* Force out the namespace. */
25080 context_die
= force_decl_die (context
);
25082 return context_die
;
25085 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
25086 type) within its namespace, if appropriate.
25088 For compatibility with older debuggers, namespace DIEs only contain
25089 declarations; all definitions are emitted at CU scope, with
25090 DW_AT_specification pointing to the declaration (like with class
25094 declare_in_namespace (tree thing
, dw_die_ref context_die
)
25096 dw_die_ref ns_context
;
25098 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25099 return context_die
;
25101 /* External declarations in the local scope only need to be emitted
25102 once, not once in the namespace and once in the scope.
25104 This avoids declaring the `extern' below in the
25105 namespace DIE as well as in the innermost scope:
25118 if (DECL_P (thing
) && DECL_EXTERNAL (thing
) && local_scope_p (context_die
))
25119 return context_die
;
25121 /* If this decl is from an inlined function, then don't try to emit it in its
25122 namespace, as we will get confused. It would have already been emitted
25123 when the abstract instance of the inline function was emitted anyways. */
25124 if (DECL_P (thing
) && DECL_ABSTRACT_ORIGIN (thing
))
25125 return context_die
;
25127 ns_context
= setup_namespace_context (thing
, context_die
);
25129 if (ns_context
!= context_die
)
25133 if (DECL_P (thing
))
25134 gen_decl_die (thing
, NULL
, NULL
, ns_context
);
25136 gen_type_die (thing
, ns_context
);
25138 return context_die
;
25141 /* Generate a DIE for a namespace or namespace alias. */
25144 gen_namespace_die (tree decl
, dw_die_ref context_die
)
25146 dw_die_ref namespace_die
;
25148 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
25149 they are an alias of. */
25150 if (DECL_ABSTRACT_ORIGIN (decl
) == NULL
)
25152 /* Output a real namespace or module. */
25153 context_die
= setup_namespace_context (decl
, comp_unit_die ());
25154 namespace_die
= new_die (is_fortran ()
25155 ? DW_TAG_module
: DW_TAG_namespace
,
25156 context_die
, decl
);
25157 /* For Fortran modules defined in different CU don't add src coords. */
25158 if (namespace_die
->die_tag
== DW_TAG_module
&& DECL_EXTERNAL (decl
))
25160 const char *name
= dwarf2_name (decl
, 0);
25162 add_name_attribute (namespace_die
, name
);
25165 add_name_and_src_coords_attributes (namespace_die
, decl
);
25166 if (DECL_EXTERNAL (decl
))
25167 add_AT_flag (namespace_die
, DW_AT_declaration
, 1);
25168 equate_decl_number_to_die (decl
, namespace_die
);
25172 /* Output a namespace alias. */
25174 /* Force out the namespace we are an alias of, if necessary. */
25175 dw_die_ref origin_die
25176 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl
));
25178 if (DECL_FILE_SCOPE_P (decl
)
25179 || TREE_CODE (DECL_CONTEXT (decl
)) == NAMESPACE_DECL
)
25180 context_die
= setup_namespace_context (decl
, comp_unit_die ());
25181 /* Now create the namespace alias DIE. */
25182 namespace_die
= new_die (DW_TAG_imported_declaration
, context_die
, decl
);
25183 add_name_and_src_coords_attributes (namespace_die
, decl
);
25184 add_AT_die_ref (namespace_die
, DW_AT_import
, origin_die
);
25185 equate_decl_number_to_die (decl
, namespace_die
);
25187 if ((dwarf_version
>= 5 || !dwarf_strict
)
25188 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
25189 DW_AT_export_symbols
) == 1)
25190 add_AT_flag (namespace_die
, DW_AT_export_symbols
, 1);
25192 /* Bypass dwarf2_name's check for DECL_NAMELESS. */
25193 if (want_pubnames ())
25194 add_pubname_string (lang_hooks
.dwarf_name (decl
, 1), namespace_die
);
25197 /* Generate Dwarf debug information for a decl described by DECL.
25198 The return value is currently only meaningful for PARM_DECLs,
25199 for all other decls it returns NULL.
25201 If DECL is a FIELD_DECL, CTX is required: see the comment for VLR_CONTEXT.
25202 It can be NULL otherwise. */
25205 gen_decl_die (tree decl
, tree origin
, struct vlr_context
*ctx
,
25206 dw_die_ref context_die
)
25208 tree decl_or_origin
= decl
? decl
: origin
;
25209 tree class_origin
= NULL
, ultimate_origin
;
25211 if (DECL_P (decl_or_origin
) && DECL_IGNORED_P (decl_or_origin
))
25214 /* Ignore pointer bounds decls. */
25215 if (DECL_P (decl_or_origin
)
25216 && TREE_TYPE (decl_or_origin
)
25217 && POINTER_BOUNDS_P (decl_or_origin
))
25220 switch (TREE_CODE (decl_or_origin
))
25226 if (!is_fortran () && !is_ada ())
25228 /* The individual enumerators of an enum type get output when we output
25229 the Dwarf representation of the relevant enum type itself. */
25233 /* Emit its type. */
25234 gen_type_die (TREE_TYPE (decl
), context_die
);
25236 /* And its containing namespace. */
25237 context_die
= declare_in_namespace (decl
, context_die
);
25239 gen_const_die (decl
, context_die
);
25242 case FUNCTION_DECL
:
25245 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
25246 on local redeclarations of global functions. That seems broken. */
25247 if (current_function_decl
!= decl
)
25248 /* This is only a declaration. */;
25251 /* We should have abstract copies already and should not generate
25252 stray type DIEs in late LTO dumping. */
25256 /* If we're emitting a clone, emit info for the abstract instance. */
25257 else if (origin
|| DECL_ORIGIN (decl
) != decl
)
25258 dwarf2out_abstract_function (origin
25259 ? DECL_ORIGIN (origin
)
25260 : DECL_ABSTRACT_ORIGIN (decl
));
25262 /* If we're emitting a possibly inlined function emit it as
25263 abstract instance. */
25264 else if (cgraph_function_possibly_inlined_p (decl
)
25265 && ! DECL_ABSTRACT_P (decl
)
25266 && ! class_or_namespace_scope_p (context_die
)
25267 /* dwarf2out_abstract_function won't emit a die if this is just
25268 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
25269 that case, because that works only if we have a die. */
25270 && DECL_INITIAL (decl
) != NULL_TREE
)
25271 dwarf2out_abstract_function (decl
);
25273 /* Otherwise we're emitting the primary DIE for this decl. */
25274 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
25276 /* Before we describe the FUNCTION_DECL itself, make sure that we
25277 have its containing type. */
25279 origin
= decl_class_context (decl
);
25280 if (origin
!= NULL_TREE
)
25281 gen_type_die (origin
, context_die
);
25283 /* And its return type. */
25284 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
25286 /* And its virtual context. */
25287 if (DECL_VINDEX (decl
) != NULL_TREE
)
25288 gen_type_die (DECL_CONTEXT (decl
), context_die
);
25290 /* Make sure we have a member DIE for decl. */
25291 if (origin
!= NULL_TREE
)
25292 gen_type_die_for_member (origin
, decl
, context_die
);
25294 /* And its containing namespace. */
25295 context_die
= declare_in_namespace (decl
, context_die
);
25298 /* Now output a DIE to represent the function itself. */
25300 gen_subprogram_die (decl
, context_die
);
25304 /* If we are in terse mode, don't generate any DIEs to represent any
25305 actual typedefs. */
25306 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25309 /* In the special case of a TYPE_DECL node representing the declaration
25310 of some type tag, if the given TYPE_DECL is marked as having been
25311 instantiated from some other (original) TYPE_DECL node (e.g. one which
25312 was generated within the original definition of an inline function) we
25313 used to generate a special (abbreviated) DW_TAG_structure_type,
25314 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
25315 should be actually referencing those DIEs, as variable DIEs with that
25316 type would be emitted already in the abstract origin, so it was always
25317 removed during unused type prunning. Don't add anything in this
25319 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
)
25322 if (is_redundant_typedef (decl
))
25323 gen_type_die (TREE_TYPE (decl
), context_die
);
25325 /* Output a DIE to represent the typedef itself. */
25326 gen_typedef_die (decl
, context_die
);
25330 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
25331 gen_label_die (decl
, context_die
);
25336 /* If we are in terse mode, don't generate any DIEs to represent any
25337 variable declarations or definitions. */
25338 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25341 /* Avoid generating stray type DIEs during late dwarf dumping.
25342 All types have been dumped early. */
25344 /* ??? But in LTRANS we cannot annotate early created variably
25345 modified type DIEs without copying them and adjusting all
25346 references to them. Dump them again as happens for inlining
25347 which copies both the decl and the types. */
25348 /* ??? And even non-LTO needs to re-visit type DIEs to fill
25349 in VLA bound information for example. */
25350 || (decl
&& variably_modified_type_p (TREE_TYPE (decl
),
25351 current_function_decl
)))
25353 /* Output any DIEs that are needed to specify the type of this data
25355 if (decl_by_reference_p (decl_or_origin
))
25356 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin
)), context_die
);
25358 gen_type_die (TREE_TYPE (decl_or_origin
), context_die
);
25363 /* And its containing type. */
25364 class_origin
= decl_class_context (decl_or_origin
);
25365 if (class_origin
!= NULL_TREE
)
25366 gen_type_die_for_member (class_origin
, decl_or_origin
, context_die
);
25368 /* And its containing namespace. */
25369 context_die
= declare_in_namespace (decl_or_origin
, context_die
);
25372 /* Now output the DIE to represent the data object itself. This gets
25373 complicated because of the possibility that the VAR_DECL really
25374 represents an inlined instance of a formal parameter for an inline
25376 ultimate_origin
= decl_ultimate_origin (decl_or_origin
);
25377 if (ultimate_origin
!= NULL_TREE
25378 && TREE_CODE (ultimate_origin
) == PARM_DECL
)
25379 gen_formal_parameter_die (decl
, origin
,
25380 true /* Emit name attribute. */,
25383 gen_variable_die (decl
, origin
, context_die
);
25387 gcc_assert (ctx
!= NULL
&& ctx
->struct_type
!= NULL
);
25388 /* Ignore the nameless fields that are used to skip bits but handle C++
25389 anonymous unions and structs. */
25390 if (DECL_NAME (decl
) != NULL_TREE
25391 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
25392 || TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
)
25394 gen_type_die (member_declared_type (decl
), context_die
);
25395 gen_field_die (decl
, ctx
, context_die
);
25400 /* Avoid generating stray type DIEs during late dwarf dumping.
25401 All types have been dumped early. */
25403 /* ??? But in LTRANS we cannot annotate early created variably
25404 modified type DIEs without copying them and adjusting all
25405 references to them. Dump them again as happens for inlining
25406 which copies both the decl and the types. */
25407 /* ??? And even non-LTO needs to re-visit type DIEs to fill
25408 in VLA bound information for example. */
25409 || (decl
&& variably_modified_type_p (TREE_TYPE (decl
),
25410 current_function_decl
)))
25412 if (DECL_BY_REFERENCE (decl_or_origin
))
25413 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin
)), context_die
);
25415 gen_type_die (TREE_TYPE (decl_or_origin
), context_die
);
25417 return gen_formal_parameter_die (decl
, origin
,
25418 true /* Emit name attribute. */,
25421 case NAMESPACE_DECL
:
25422 if (dwarf_version
>= 3 || !dwarf_strict
)
25423 gen_namespace_die (decl
, context_die
);
25426 case IMPORTED_DECL
:
25427 dwarf2out_imported_module_or_decl_1 (decl
, DECL_NAME (decl
),
25428 DECL_CONTEXT (decl
), context_die
);
25431 case NAMELIST_DECL
:
25432 gen_namelist_decl (DECL_NAME (decl
), context_die
,
25433 NAMELIST_DECL_ASSOCIATED_DECL (decl
));
25437 /* Probably some frontend-internal decl. Assume we don't care. */
25438 gcc_assert ((int)TREE_CODE (decl
) > NUM_TREE_CODES
);
25445 /* Output initial debug information for global DECL. Called at the
25446 end of the parsing process.
25448 This is the initial debug generation process. As such, the DIEs
25449 generated may be incomplete. A later debug generation pass
25450 (dwarf2out_late_global_decl) will augment the information generated
25451 in this pass (e.g., with complete location info). */
25454 dwarf2out_early_global_decl (tree decl
)
25458 /* gen_decl_die() will set DECL_ABSTRACT because
25459 cgraph_function_possibly_inlined_p() returns true. This is in
25460 turn will cause DW_AT_inline attributes to be set.
25462 This happens because at early dwarf generation, there is no
25463 cgraph information, causing cgraph_function_possibly_inlined_p()
25464 to return true. Trick cgraph_function_possibly_inlined_p()
25465 while we generate dwarf early. */
25466 bool save
= symtab
->global_info_ready
;
25467 symtab
->global_info_ready
= true;
25469 /* We don't handle TYPE_DECLs. If required, they'll be reached via
25470 other DECLs and they can point to template types or other things
25471 that dwarf2out can't handle when done via dwarf2out_decl. */
25472 if (TREE_CODE (decl
) != TYPE_DECL
25473 && TREE_CODE (decl
) != PARM_DECL
)
25475 if (TREE_CODE (decl
) == FUNCTION_DECL
)
25477 tree save_fndecl
= current_function_decl
;
25479 /* For nested functions, make sure we have DIEs for the parents first
25480 so that all nested DIEs are generated at the proper scope in the
25482 tree context
= decl_function_context (decl
);
25483 if (context
!= NULL
&& lookup_decl_die (context
) == NULL
)
25485 current_function_decl
= context
;
25486 dwarf2out_decl (context
);
25489 /* Emit an abstract origin of a function first. This happens
25490 with C++ constructor clones for example and makes
25491 dwarf2out_abstract_function happy which requires the early
25492 DIE of the abstract instance to be present. */
25493 tree origin
= DECL_ABSTRACT_ORIGIN (decl
);
25494 dw_die_ref origin_die
;
25496 /* Do not emit the DIE multiple times but make sure to
25497 process it fully here in case we just saw a declaration. */
25498 && ((origin_die
= lookup_decl_die (origin
)) == NULL
25499 || is_declaration_die (origin_die
)))
25501 current_function_decl
= origin
;
25502 dwarf2out_decl (origin
);
25505 /* Emit the DIE for decl but avoid doing that multiple times. */
25506 dw_die_ref old_die
;
25507 if ((old_die
= lookup_decl_die (decl
)) == NULL
25508 || is_declaration_die (old_die
))
25510 current_function_decl
= decl
;
25511 dwarf2out_decl (decl
);
25514 current_function_decl
= save_fndecl
;
25517 dwarf2out_decl (decl
);
25519 symtab
->global_info_ready
= save
;
25522 /* Output debug information for global decl DECL. Called from
25523 toplev.c after compilation proper has finished. */
25526 dwarf2out_late_global_decl (tree decl
)
25528 /* Fill-in any location information we were unable to determine
25529 on the first pass. */
25530 if (VAR_P (decl
) && !POINTER_BOUNDS_P (decl
))
25532 dw_die_ref die
= lookup_decl_die (decl
);
25534 /* We may have to generate early debug late for LTO in case debug
25535 was not enabled at compile-time or the target doesn't support
25536 the LTO early debug scheme. */
25537 if (! die
&& in_lto_p
)
25539 dwarf2out_decl (decl
);
25540 die
= lookup_decl_die (decl
);
25545 /* We get called via the symtab code invoking late_global_decl
25546 for symbols that are optimized out. Do not add locations
25547 for those, except if they have a DECL_VALUE_EXPR, in which case
25548 they are relevant for debuggers. */
25549 varpool_node
*node
= varpool_node::get (decl
);
25550 if ((! node
|| ! node
->definition
) && ! DECL_HAS_VALUE_EXPR_P (decl
))
25551 tree_add_const_value_attribute_for_decl (die
, decl
);
25553 add_location_or_const_value_attribute (die
, decl
, false);
25558 /* Output debug information for type decl DECL. Called from toplev.c
25559 and from language front ends (to record built-in types). */
25561 dwarf2out_type_decl (tree decl
, int local
)
25566 dwarf2out_decl (decl
);
25570 /* Output debug information for imported module or decl DECL.
25571 NAME is non-NULL name in the lexical block if the decl has been renamed.
25572 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
25573 that DECL belongs to.
25574 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
25576 dwarf2out_imported_module_or_decl_1 (tree decl
,
25578 tree lexical_block
,
25579 dw_die_ref lexical_block_die
)
25581 expanded_location xloc
;
25582 dw_die_ref imported_die
= NULL
;
25583 dw_die_ref at_import_die
;
25585 if (TREE_CODE (decl
) == IMPORTED_DECL
)
25587 xloc
= expand_location (DECL_SOURCE_LOCATION (decl
));
25588 decl
= IMPORTED_DECL_ASSOCIATED_DECL (decl
);
25592 xloc
= expand_location (input_location
);
25594 if (TREE_CODE (decl
) == TYPE_DECL
|| TREE_CODE (decl
) == CONST_DECL
)
25596 at_import_die
= force_type_die (TREE_TYPE (decl
));
25597 /* For namespace N { typedef void T; } using N::T; base_type_die
25598 returns NULL, but DW_TAG_imported_declaration requires
25599 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
25600 if (!at_import_die
)
25602 gcc_assert (TREE_CODE (decl
) == TYPE_DECL
);
25603 gen_typedef_die (decl
, get_context_die (DECL_CONTEXT (decl
)));
25604 at_import_die
= lookup_type_die (TREE_TYPE (decl
));
25605 gcc_assert (at_import_die
);
25610 at_import_die
= lookup_decl_die (decl
);
25611 if (!at_import_die
)
25613 /* If we're trying to avoid duplicate debug info, we may not have
25614 emitted the member decl for this field. Emit it now. */
25615 if (TREE_CODE (decl
) == FIELD_DECL
)
25617 tree type
= DECL_CONTEXT (decl
);
25619 if (TYPE_CONTEXT (type
)
25620 && TYPE_P (TYPE_CONTEXT (type
))
25621 && !should_emit_struct_debug (TYPE_CONTEXT (type
),
25622 DINFO_USAGE_DIR_USE
))
25624 gen_type_die_for_member (type
, decl
,
25625 get_context_die (TYPE_CONTEXT (type
)));
25627 if (TREE_CODE (decl
) == NAMELIST_DECL
)
25628 at_import_die
= gen_namelist_decl (DECL_NAME (decl
),
25629 get_context_die (DECL_CONTEXT (decl
)),
25632 at_import_die
= force_decl_die (decl
);
25636 if (TREE_CODE (decl
) == NAMESPACE_DECL
)
25638 if (dwarf_version
>= 3 || !dwarf_strict
)
25639 imported_die
= new_die (DW_TAG_imported_module
,
25646 imported_die
= new_die (DW_TAG_imported_declaration
,
25650 add_AT_file (imported_die
, DW_AT_decl_file
, lookup_filename (xloc
.file
));
25651 add_AT_unsigned (imported_die
, DW_AT_decl_line
, xloc
.line
);
25652 if (debug_column_info
&& xloc
.column
)
25653 add_AT_unsigned (imported_die
, DW_AT_decl_column
, xloc
.column
);
25655 add_AT_string (imported_die
, DW_AT_name
,
25656 IDENTIFIER_POINTER (name
));
25657 add_AT_die_ref (imported_die
, DW_AT_import
, at_import_die
);
25660 /* Output debug information for imported module or decl DECL.
25661 NAME is non-NULL name in context if the decl has been renamed.
25662 CHILD is true if decl is one of the renamed decls as part of
25663 importing whole module.
25664 IMPLICIT is set if this hook is called for an implicit import
25665 such as inline namespace. */
25668 dwarf2out_imported_module_or_decl (tree decl
, tree name
, tree context
,
25669 bool child
, bool implicit
)
25671 /* dw_die_ref at_import_die; */
25672 dw_die_ref scope_die
;
25674 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25679 /* For DWARF5, just DW_AT_export_symbols on the DW_TAG_namespace
25680 should be enough, for DWARF4 and older even if we emit as extension
25681 DW_AT_export_symbols add the implicit DW_TAG_imported_module anyway
25682 for the benefit of consumers unaware of DW_AT_export_symbols. */
25684 && dwarf_version
>= 5
25685 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
25686 DW_AT_export_symbols
) == 1)
25691 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
25692 We need decl DIE for reference and scope die. First, get DIE for the decl
25695 /* Get the scope die for decl context. Use comp_unit_die for global module
25696 or decl. If die is not found for non globals, force new die. */
25698 && TYPE_P (context
)
25699 && !should_emit_struct_debug (context
, DINFO_USAGE_DIR_USE
))
25702 scope_die
= get_context_die (context
);
25706 /* DW_TAG_imported_module was introduced in the DWARFv3 specification, so
25707 there is nothing we can do, here. */
25708 if (dwarf_version
< 3 && dwarf_strict
)
25711 gcc_assert (scope_die
->die_child
);
25712 gcc_assert (scope_die
->die_child
->die_tag
== DW_TAG_imported_module
);
25713 gcc_assert (TREE_CODE (decl
) != NAMESPACE_DECL
);
25714 scope_die
= scope_die
->die_child
;
25717 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
25718 dwarf2out_imported_module_or_decl_1 (decl
, name
, context
, scope_die
);
25721 /* Output debug information for namelists. */
25724 gen_namelist_decl (tree name
, dw_die_ref scope_die
, tree item_decls
)
25726 dw_die_ref nml_die
, nml_item_die
, nml_item_ref_die
;
25730 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25733 gcc_assert (scope_die
!= NULL
);
25734 nml_die
= new_die (DW_TAG_namelist
, scope_die
, NULL
);
25735 add_AT_string (nml_die
, DW_AT_name
, IDENTIFIER_POINTER (name
));
25737 /* If there are no item_decls, we have a nondefining namelist, e.g.
25738 with USE association; hence, set DW_AT_declaration. */
25739 if (item_decls
== NULL_TREE
)
25741 add_AT_flag (nml_die
, DW_AT_declaration
, 1);
25745 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls
), i
, value
)
25747 nml_item_ref_die
= lookup_decl_die (value
);
25748 if (!nml_item_ref_die
)
25749 nml_item_ref_die
= force_decl_die (value
);
25751 nml_item_die
= new_die (DW_TAG_namelist_item
, nml_die
, NULL
);
25752 add_AT_die_ref (nml_item_die
, DW_AT_namelist_items
, nml_item_ref_die
);
25758 /* Write the debugging output for DECL and return the DIE. */
25761 dwarf2out_decl (tree decl
)
25763 dw_die_ref context_die
= comp_unit_die ();
25765 switch (TREE_CODE (decl
))
25770 case FUNCTION_DECL
:
25771 /* If we're a nested function, initially use a parent of NULL; if we're
25772 a plain function, this will be fixed up in decls_for_scope. If
25773 we're a method, it will be ignored, since we already have a DIE. */
25774 if (decl_function_context (decl
)
25775 /* But if we're in terse mode, we don't care about scope. */
25776 && debug_info_level
> DINFO_LEVEL_TERSE
)
25777 context_die
= NULL
;
25781 /* For local statics lookup proper context die. */
25782 if (local_function_static (decl
))
25783 context_die
= lookup_decl_die (DECL_CONTEXT (decl
));
25785 /* If we are in terse mode, don't generate any DIEs to represent any
25786 variable declarations or definitions. */
25787 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25792 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25794 if (!is_fortran () && !is_ada ())
25796 if (TREE_STATIC (decl
) && decl_function_context (decl
))
25797 context_die
= lookup_decl_die (DECL_CONTEXT (decl
));
25800 case NAMESPACE_DECL
:
25801 case IMPORTED_DECL
:
25802 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25804 if (lookup_decl_die (decl
) != NULL
)
25809 /* Don't emit stubs for types unless they are needed by other DIEs. */
25810 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
25813 /* Don't bother trying to generate any DIEs to represent any of the
25814 normal built-in types for the language we are compiling. */
25815 if (DECL_IS_BUILTIN (decl
))
25818 /* If we are in terse mode, don't generate any DIEs for types. */
25819 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
25822 /* If we're a function-scope tag, initially use a parent of NULL;
25823 this will be fixed up in decls_for_scope. */
25824 if (decl_function_context (decl
))
25825 context_die
= NULL
;
25829 case NAMELIST_DECL
:
25836 gen_decl_die (decl
, NULL
, NULL
, context_die
);
25840 dw_die_ref die
= lookup_decl_die (decl
);
25846 /* Write the debugging output for DECL. */
25849 dwarf2out_function_decl (tree decl
)
25851 dwarf2out_decl (decl
);
25852 call_arg_locations
= NULL
;
25853 call_arg_loc_last
= NULL
;
25854 call_site_count
= -1;
25855 tail_call_site_count
= -1;
25856 decl_loc_table
->empty ();
25857 cached_dw_loc_list_table
->empty ();
25860 /* Output a marker (i.e. a label) for the beginning of the generated code for
25861 a lexical block. */
25864 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED
,
25865 unsigned int blocknum
)
25867 switch_to_section (current_function_section ());
25868 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
25871 /* Output a marker (i.e. a label) for the end of the generated code for a
25875 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED
, unsigned int blocknum
)
25877 switch_to_section (current_function_section ());
25878 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
25881 /* Returns nonzero if it is appropriate not to emit any debugging
25882 information for BLOCK, because it doesn't contain any instructions.
25884 Don't allow this for blocks with nested functions or local classes
25885 as we would end up with orphans, and in the presence of scheduling
25886 we may end up calling them anyway. */
25889 dwarf2out_ignore_block (const_tree block
)
25894 for (decl
= BLOCK_VARS (block
); decl
; decl
= DECL_CHAIN (decl
))
25895 if (TREE_CODE (decl
) == FUNCTION_DECL
25896 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
25898 for (i
= 0; i
< BLOCK_NUM_NONLOCALIZED_VARS (block
); i
++)
25900 decl
= BLOCK_NONLOCALIZED_VAR (block
, i
);
25901 if (TREE_CODE (decl
) == FUNCTION_DECL
25902 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
25909 /* Hash table routines for file_hash. */
25912 dwarf_file_hasher::equal (dwarf_file_data
*p1
, const char *p2
)
25914 return filename_cmp (p1
->filename
, p2
) == 0;
25918 dwarf_file_hasher::hash (dwarf_file_data
*p
)
25920 return htab_hash_string (p
->filename
);
25923 /* Lookup FILE_NAME (in the list of filenames that we know about here in
25924 dwarf2out.c) and return its "index". The index of each (known) filename is
25925 just a unique number which is associated with only that one filename. We
25926 need such numbers for the sake of generating labels (in the .debug_sfnames
25927 section) and references to those files numbers (in the .debug_srcinfo
25928 and .debug_macinfo sections). If the filename given as an argument is not
25929 found in our current list, add it to the list and assign it the next
25930 available unique index number. */
25932 static struct dwarf_file_data
*
25933 lookup_filename (const char *file_name
)
25935 struct dwarf_file_data
* created
;
25940 dwarf_file_data
**slot
25941 = file_table
->find_slot_with_hash (file_name
, htab_hash_string (file_name
),
25946 created
= ggc_alloc
<dwarf_file_data
> ();
25947 created
->filename
= file_name
;
25948 created
->emitted_number
= 0;
25953 /* If the assembler will construct the file table, then translate the compiler
25954 internal file table number into the assembler file table number, and emit
25955 a .file directive if we haven't already emitted one yet. The file table
25956 numbers are different because we prune debug info for unused variables and
25957 types, which may include filenames. */
25960 maybe_emit_file (struct dwarf_file_data
* fd
)
25962 if (! fd
->emitted_number
)
25964 if (last_emitted_file
)
25965 fd
->emitted_number
= last_emitted_file
->emitted_number
+ 1;
25967 fd
->emitted_number
= 1;
25968 last_emitted_file
= fd
;
25970 if (DWARF2_ASM_LINE_DEBUG_INFO
)
25972 fprintf (asm_out_file
, "\t.file %u ", fd
->emitted_number
);
25973 output_quoted_string (asm_out_file
,
25974 remap_debug_filename (fd
->filename
));
25975 fputc ('\n', asm_out_file
);
25979 return fd
->emitted_number
;
25982 /* Schedule generation of a DW_AT_const_value attribute to DIE.
25983 That generation should happen after function debug info has been
25984 generated. The value of the attribute is the constant value of ARG. */
25987 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die
, tree arg
)
25989 die_arg_entry entry
;
25994 gcc_assert (early_dwarf
);
25996 if (!tmpl_value_parm_die_table
)
25997 vec_alloc (tmpl_value_parm_die_table
, 32);
26001 vec_safe_push (tmpl_value_parm_die_table
, entry
);
26004 /* Return TRUE if T is an instance of generic type, FALSE
26008 generic_type_p (tree t
)
26010 if (t
== NULL_TREE
|| !TYPE_P (t
))
26012 return lang_hooks
.get_innermost_generic_parms (t
) != NULL_TREE
;
26015 /* Schedule the generation of the generic parameter dies for the
26016 instance of generic type T. The proper generation itself is later
26017 done by gen_scheduled_generic_parms_dies. */
26020 schedule_generic_params_dies_gen (tree t
)
26022 if (!generic_type_p (t
))
26025 gcc_assert (early_dwarf
);
26027 if (!generic_type_instances
)
26028 vec_alloc (generic_type_instances
, 256);
26030 vec_safe_push (generic_type_instances
, t
);
26033 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
26034 by append_entry_to_tmpl_value_parm_die_table. This function must
26035 be called after function DIEs have been generated. */
26038 gen_remaining_tmpl_value_param_die_attribute (void)
26040 if (tmpl_value_parm_die_table
)
26045 /* We do this in two phases - first get the cases we can
26046 handle during early-finish, preserving those we cannot
26047 (containing symbolic constants where we don't yet know
26048 whether we are going to output the referenced symbols).
26049 For those we try again at late-finish. */
26051 FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table
, i
, e
)
26053 if (!e
->die
->removed
26054 && !tree_add_const_value_attribute (e
->die
, e
->arg
))
26056 dw_loc_descr_ref loc
= NULL
;
26058 && (dwarf_version
>= 5 || !dwarf_strict
))
26059 loc
= loc_descriptor_from_tree (e
->arg
, 2, NULL
);
26061 add_AT_loc (e
->die
, DW_AT_location
, loc
);
26063 (*tmpl_value_parm_die_table
)[j
++] = *e
;
26066 tmpl_value_parm_die_table
->truncate (j
);
26070 /* Generate generic parameters DIEs for instances of generic types
26071 that have been previously scheduled by
26072 schedule_generic_params_dies_gen. This function must be called
26073 after all the types of the CU have been laid out. */
26076 gen_scheduled_generic_parms_dies (void)
26081 if (!generic_type_instances
)
26084 FOR_EACH_VEC_ELT (*generic_type_instances
, i
, t
)
26085 if (COMPLETE_TYPE_P (t
))
26086 gen_generic_params_dies (t
);
26088 generic_type_instances
= NULL
;
26092 /* Replace DW_AT_name for the decl with name. */
26095 dwarf2out_set_name (tree decl
, tree name
)
26098 dw_attr_node
*attr
;
26101 die
= TYPE_SYMTAB_DIE (decl
);
26105 dname
= dwarf2_name (name
, 0);
26109 attr
= get_AT (die
, DW_AT_name
);
26112 struct indirect_string_node
*node
;
26114 node
= find_AT_string (dname
);
26115 /* replace the string. */
26116 attr
->dw_attr_val
.v
.val_str
= node
;
26120 add_name_attribute (die
, dname
);
26123 /* True if before or during processing of the first function being emitted. */
26124 static bool in_first_function_p
= true;
26125 /* True if loc_note during dwarf2out_var_location call might still be
26126 before first real instruction at address equal to .Ltext0. */
26127 static bool maybe_at_text_label_p
= true;
26128 /* One above highest N where .LVLN label might be equal to .Ltext0 label. */
26129 static unsigned int first_loclabel_num_not_at_text_label
;
26131 /* Called by the final INSN scan whenever we see a var location. We
26132 use it to drop labels in the right places, and throw the location in
26133 our lookup table. */
26136 dwarf2out_var_location (rtx_insn
*loc_note
)
26138 char loclabel
[MAX_ARTIFICIAL_LABEL_BYTES
+ 2];
26139 struct var_loc_node
*newloc
;
26140 rtx_insn
*next_real
, *next_note
;
26141 rtx_insn
*call_insn
= NULL
;
26142 static const char *last_label
;
26143 static const char *last_postcall_label
;
26144 static bool last_in_cold_section_p
;
26145 static rtx_insn
*expected_next_loc_note
;
26149 if (!NOTE_P (loc_note
))
26151 if (CALL_P (loc_note
))
26154 if (SIBLING_CALL_P (loc_note
))
26155 tail_call_site_count
++;
26156 if (optimize
== 0 && !flag_var_tracking
)
26158 /* When the var-tracking pass is not running, there is no note
26159 for indirect calls whose target is compile-time known. In this
26160 case, process such calls specifically so that we generate call
26161 sites for them anyway. */
26162 rtx x
= PATTERN (loc_note
);
26163 if (GET_CODE (x
) == PARALLEL
)
26164 x
= XVECEXP (x
, 0, 0);
26165 if (GET_CODE (x
) == SET
)
26167 if (GET_CODE (x
) == CALL
)
26170 || GET_CODE (XEXP (x
, 0)) != SYMBOL_REF
26171 || !SYMBOL_REF_DECL (XEXP (x
, 0))
26172 || (TREE_CODE (SYMBOL_REF_DECL (XEXP (x
, 0)))
26175 call_insn
= loc_note
;
26179 next_real
= next_real_insn (call_insn
);
26181 cached_next_real_insn
= NULL
;
26189 var_loc_p
= NOTE_KIND (loc_note
) == NOTE_INSN_VAR_LOCATION
;
26190 if (var_loc_p
&& !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note
)))
26193 /* Optimize processing a large consecutive sequence of location
26194 notes so we don't spend too much time in next_real_insn. If the
26195 next insn is another location note, remember the next_real_insn
26196 calculation for next time. */
26197 next_real
= cached_next_real_insn
;
26200 if (expected_next_loc_note
!= loc_note
)
26204 next_note
= NEXT_INSN (loc_note
);
26206 || next_note
->deleted ()
26207 || ! NOTE_P (next_note
)
26208 || (NOTE_KIND (next_note
) != NOTE_INSN_VAR_LOCATION
26209 && NOTE_KIND (next_note
) != NOTE_INSN_CALL_ARG_LOCATION
))
26213 next_real
= next_real_insn (loc_note
);
26217 expected_next_loc_note
= next_note
;
26218 cached_next_real_insn
= next_real
;
26221 cached_next_real_insn
= NULL
;
26223 /* If there are no instructions which would be affected by this note,
26224 don't do anything. */
26226 && next_real
== NULL_RTX
26227 && !NOTE_DURING_CALL_P (loc_note
))
26232 if (next_real
== NULL_RTX
)
26233 next_real
= get_last_insn ();
26235 /* If there were any real insns between note we processed last time
26236 and this note (or if it is the first note), clear
26237 last_{,postcall_}label so that they are not reused this time. */
26238 if (last_var_location_insn
== NULL_RTX
26239 || last_var_location_insn
!= next_real
26240 || last_in_cold_section_p
!= in_cold_section_p
)
26243 last_postcall_label
= NULL
;
26248 decl
= NOTE_VAR_LOCATION_DECL (loc_note
);
26249 newloc
= add_var_loc_to_decl (decl
, loc_note
,
26250 NOTE_DURING_CALL_P (loc_note
)
26251 ? last_postcall_label
: last_label
);
26252 if (newloc
== NULL
)
26261 /* If there were no real insns between note we processed last time
26262 and this note, use the label we emitted last time. Otherwise
26263 create a new label and emit it. */
26264 if (last_label
== NULL
)
26266 ASM_GENERATE_INTERNAL_LABEL (loclabel
, "LVL", loclabel_num
);
26267 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LVL", loclabel_num
);
26269 last_label
= ggc_strdup (loclabel
);
26270 /* See if loclabel might be equal to .Ltext0. If yes,
26271 bump first_loclabel_num_not_at_text_label. */
26272 if (!have_multiple_function_sections
26273 && in_first_function_p
26274 && maybe_at_text_label_p
)
26276 static rtx_insn
*last_start
;
26278 for (insn
= loc_note
; insn
; insn
= previous_insn (insn
))
26279 if (insn
== last_start
)
26281 else if (!NONDEBUG_INSN_P (insn
))
26285 rtx body
= PATTERN (insn
);
26286 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
26288 /* Inline asm could occupy zero bytes. */
26289 else if (GET_CODE (body
) == ASM_INPUT
26290 || asm_noperands (body
) >= 0)
26292 #ifdef HAVE_attr_length
26293 else if (get_attr_min_length (insn
) == 0)
26298 /* Assume insn has non-zero length. */
26299 maybe_at_text_label_p
= false;
26303 if (maybe_at_text_label_p
)
26305 last_start
= loc_note
;
26306 first_loclabel_num_not_at_text_label
= loclabel_num
;
26311 gcc_assert ((loc_note
== NULL_RTX
&& call_insn
!= NULL_RTX
)
26312 || (loc_note
!= NULL_RTX
&& call_insn
== NULL_RTX
));
26316 struct call_arg_loc_node
*ca_loc
26317 = ggc_cleared_alloc
<call_arg_loc_node
> ();
26319 = loc_note
!= NULL_RTX
? prev_real_insn (loc_note
) : call_insn
;
26321 ca_loc
->call_arg_loc_note
= loc_note
;
26322 ca_loc
->next
= NULL
;
26323 ca_loc
->label
= last_label
;
26326 || (NONJUMP_INSN_P (prev
)
26327 && GET_CODE (PATTERN (prev
)) == SEQUENCE
26328 && CALL_P (XVECEXP (PATTERN (prev
), 0, 0)))));
26329 if (!CALL_P (prev
))
26330 prev
= as_a
<rtx_sequence
*> (PATTERN (prev
))->insn (0);
26331 ca_loc
->tail_call_p
= SIBLING_CALL_P (prev
);
26333 /* Look for a SYMBOL_REF in the "prev" instruction. */
26334 rtx x
= get_call_rtx_from (PATTERN (prev
));
26337 /* Try to get the call symbol, if any. */
26338 if (MEM_P (XEXP (x
, 0)))
26340 /* First, look for a memory access to a symbol_ref. */
26341 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
26342 && SYMBOL_REF_DECL (XEXP (x
, 0))
26343 && TREE_CODE (SYMBOL_REF_DECL (XEXP (x
, 0))) == FUNCTION_DECL
)
26344 ca_loc
->symbol_ref
= XEXP (x
, 0);
26345 /* Otherwise, look at a compile-time known user-level function
26349 && TREE_CODE (MEM_EXPR (x
)) == FUNCTION_DECL
)
26350 ca_loc
->symbol_ref
= XEXP (DECL_RTL (MEM_EXPR (x
)), 0);
26353 ca_loc
->block
= insn_scope (prev
);
26354 if (call_arg_locations
)
26355 call_arg_loc_last
->next
= ca_loc
;
26357 call_arg_locations
= ca_loc
;
26358 call_arg_loc_last
= ca_loc
;
26360 else if (loc_note
!= NULL_RTX
&& !NOTE_DURING_CALL_P (loc_note
))
26361 newloc
->label
= last_label
;
26364 if (!last_postcall_label
)
26366 sprintf (loclabel
, "%s-1", last_label
);
26367 last_postcall_label
= ggc_strdup (loclabel
);
26369 newloc
->label
= last_postcall_label
;
26372 last_var_location_insn
= next_real
;
26373 last_in_cold_section_p
= in_cold_section_p
;
26376 /* Called from finalize_size_functions for size functions so that their body
26377 can be encoded in the debug info to describe the layout of variable-length
26381 dwarf2out_size_function (tree decl
)
26383 function_to_dwarf_procedure (decl
);
26386 /* Note in one location list that text section has changed. */
26389 var_location_switch_text_section_1 (var_loc_list
**slot
, void *)
26391 var_loc_list
*list
= *slot
;
26393 list
->last_before_switch
26394 = list
->last
->next
? list
->last
->next
: list
->last
;
26398 /* Note in all location lists that text section has changed. */
26401 var_location_switch_text_section (void)
26403 if (decl_loc_table
== NULL
)
26406 decl_loc_table
->traverse
<void *, var_location_switch_text_section_1
> (NULL
);
26409 /* Create a new line number table. */
26411 static dw_line_info_table
*
26412 new_line_info_table (void)
26414 dw_line_info_table
*table
;
26416 table
= ggc_cleared_alloc
<dw_line_info_table
> ();
26417 table
->file_num
= 1;
26418 table
->line_num
= 1;
26419 table
->is_stmt
= DWARF_LINE_DEFAULT_IS_STMT_START
;
26424 /* Lookup the "current" table into which we emit line info, so
26425 that we don't have to do it for every source line. */
26428 set_cur_line_info_table (section
*sec
)
26430 dw_line_info_table
*table
;
26432 if (sec
== text_section
)
26433 table
= text_section_line_info
;
26434 else if (sec
== cold_text_section
)
26436 table
= cold_text_section_line_info
;
26439 cold_text_section_line_info
= table
= new_line_info_table ();
26440 table
->end_label
= cold_end_label
;
26445 const char *end_label
;
26447 if (crtl
->has_bb_partition
)
26449 if (in_cold_section_p
)
26450 end_label
= crtl
->subsections
.cold_section_end_label
;
26452 end_label
= crtl
->subsections
.hot_section_end_label
;
26456 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
26457 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
26458 current_function_funcdef_no
);
26459 end_label
= ggc_strdup (label
);
26462 table
= new_line_info_table ();
26463 table
->end_label
= end_label
;
26465 vec_safe_push (separate_line_info
, table
);
26468 if (DWARF2_ASM_LINE_DEBUG_INFO
)
26469 table
->is_stmt
= (cur_line_info_table
26470 ? cur_line_info_table
->is_stmt
26471 : DWARF_LINE_DEFAULT_IS_STMT_START
);
26472 cur_line_info_table
= table
;
26476 /* We need to reset the locations at the beginning of each
26477 function. We can't do this in the end_function hook, because the
26478 declarations that use the locations won't have been output when
26479 that hook is called. Also compute have_multiple_function_sections here. */
26482 dwarf2out_begin_function (tree fun
)
26484 section
*sec
= function_section (fun
);
26486 if (sec
!= text_section
)
26487 have_multiple_function_sections
= true;
26489 if (crtl
->has_bb_partition
&& !cold_text_section
)
26491 gcc_assert (current_function_decl
== fun
);
26492 cold_text_section
= unlikely_text_section ();
26493 switch_to_section (cold_text_section
);
26494 ASM_OUTPUT_LABEL (asm_out_file
, cold_text_section_label
);
26495 switch_to_section (sec
);
26498 dwarf2out_note_section_used ();
26499 call_site_count
= 0;
26500 tail_call_site_count
= 0;
26502 set_cur_line_info_table (sec
);
26505 /* Helper function of dwarf2out_end_function, called only after emitting
26506 the very first function into assembly. Check if some .debug_loc range
26507 might end with a .LVL* label that could be equal to .Ltext0.
26508 In that case we must force using absolute addresses in .debug_loc ranges,
26509 because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
26510 .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
26512 Set have_multiple_function_sections to true in that case and
26513 terminate htab traversal. */
26516 find_empty_loc_ranges_at_text_label (var_loc_list
**slot
, int)
26518 var_loc_list
*entry
= *slot
;
26519 struct var_loc_node
*node
;
26521 node
= entry
->first
;
26522 if (node
&& node
->next
&& node
->next
->label
)
26525 const char *label
= node
->next
->label
;
26526 char loclabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
26528 for (i
= 0; i
< first_loclabel_num_not_at_text_label
; i
++)
26530 ASM_GENERATE_INTERNAL_LABEL (loclabel
, "LVL", i
);
26531 if (strcmp (label
, loclabel
) == 0)
26533 have_multiple_function_sections
= true;
26541 /* Hook called after emitting a function into assembly.
26542 This does something only for the very first function emitted. */
26545 dwarf2out_end_function (unsigned int)
26547 if (in_first_function_p
26548 && !have_multiple_function_sections
26549 && first_loclabel_num_not_at_text_label
26551 decl_loc_table
->traverse
<int, find_empty_loc_ranges_at_text_label
> (0);
26552 in_first_function_p
= false;
26553 maybe_at_text_label_p
= false;
26556 /* Temporary holder for dwarf2out_register_main_translation_unit. Used to let
26557 front-ends register a translation unit even before dwarf2out_init is
26559 static tree main_translation_unit
= NULL_TREE
;
26561 /* Hook called by front-ends after they built their main translation unit.
26562 Associate comp_unit_die to UNIT. */
26565 dwarf2out_register_main_translation_unit (tree unit
)
26567 gcc_assert (TREE_CODE (unit
) == TRANSLATION_UNIT_DECL
26568 && main_translation_unit
== NULL_TREE
);
26569 main_translation_unit
= unit
;
26570 /* If dwarf2out_init has not been called yet, it will perform the association
26571 itself looking at main_translation_unit. */
26572 if (decl_die_table
!= NULL
)
26573 equate_decl_number_to_die (unit
, comp_unit_die ());
26576 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
26579 push_dw_line_info_entry (dw_line_info_table
*table
,
26580 enum dw_line_info_opcode opcode
, unsigned int val
)
26582 dw_line_info_entry e
;
26585 vec_safe_push (table
->entries
, e
);
26588 /* Output a label to mark the beginning of a source code line entry
26589 and record information relating to this source line, in
26590 'line_info_table' for later output of the .debug_line section. */
26591 /* ??? The discriminator parameter ought to be unsigned. */
26594 dwarf2out_source_line (unsigned int line
, unsigned int column
,
26595 const char *filename
,
26596 int discriminator
, bool is_stmt
)
26598 unsigned int file_num
;
26599 dw_line_info_table
*table
;
26601 if (debug_info_level
< DINFO_LEVEL_TERSE
|| line
== 0)
26604 /* The discriminator column was added in dwarf4. Simplify the below
26605 by simply removing it if we're not supposed to output it. */
26606 if (dwarf_version
< 4 && dwarf_strict
)
26609 if (!debug_column_info
)
26612 table
= cur_line_info_table
;
26613 file_num
= maybe_emit_file (lookup_filename (filename
));
26615 /* ??? TODO: Elide duplicate line number entries. Traditionally,
26616 the debugger has used the second (possibly duplicate) line number
26617 at the beginning of the function to mark the end of the prologue.
26618 We could eliminate any other duplicates within the function. For
26619 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
26620 that second line number entry. */
26621 /* Recall that this end-of-prologue indication is *not* the same thing
26622 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
26623 to which the hook corresponds, follows the last insn that was
26624 emitted by gen_prologue. What we need is to precede the first insn
26625 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
26626 insn that corresponds to something the user wrote. These may be
26627 very different locations once scheduling is enabled. */
26629 if (0 && file_num
== table
->file_num
26630 && line
== table
->line_num
26631 && column
== table
->column_num
26632 && discriminator
== table
->discrim_num
26633 && is_stmt
== table
->is_stmt
)
26636 switch_to_section (current_function_section ());
26638 /* If requested, emit something human-readable. */
26639 if (flag_debug_asm
)
26641 if (debug_column_info
)
26642 fprintf (asm_out_file
, "\t%s %s:%d:%d\n", ASM_COMMENT_START
,
26643 filename
, line
, column
);
26645 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
26649 if (DWARF2_ASM_LINE_DEBUG_INFO
)
26651 /* Emit the .loc directive understood by GNU as. */
26652 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
26653 file_num, line, is_stmt, discriminator */
26654 fputs ("\t.loc ", asm_out_file
);
26655 fprint_ul (asm_out_file
, file_num
);
26656 putc (' ', asm_out_file
);
26657 fprint_ul (asm_out_file
, line
);
26658 putc (' ', asm_out_file
);
26659 fprint_ul (asm_out_file
, column
);
26661 if (is_stmt
!= table
->is_stmt
)
26663 fputs (" is_stmt ", asm_out_file
);
26664 putc (is_stmt
? '1' : '0', asm_out_file
);
26666 if (SUPPORTS_DISCRIMINATOR
&& discriminator
!= 0)
26668 gcc_assert (discriminator
> 0);
26669 fputs (" discriminator ", asm_out_file
);
26670 fprint_ul (asm_out_file
, (unsigned long) discriminator
);
26672 putc ('\n', asm_out_file
);
26676 unsigned int label_num
= ++line_info_label_num
;
26678 targetm
.asm_out
.internal_label (asm_out_file
, LINE_CODE_LABEL
, label_num
);
26680 push_dw_line_info_entry (table
, LI_set_address
, label_num
);
26681 if (file_num
!= table
->file_num
)
26682 push_dw_line_info_entry (table
, LI_set_file
, file_num
);
26683 if (discriminator
!= table
->discrim_num
)
26684 push_dw_line_info_entry (table
, LI_set_discriminator
, discriminator
);
26685 if (is_stmt
!= table
->is_stmt
)
26686 push_dw_line_info_entry (table
, LI_negate_stmt
, 0);
26687 push_dw_line_info_entry (table
, LI_set_line
, line
);
26688 if (debug_column_info
)
26689 push_dw_line_info_entry (table
, LI_set_column
, column
);
26692 table
->file_num
= file_num
;
26693 table
->line_num
= line
;
26694 table
->column_num
= column
;
26695 table
->discrim_num
= discriminator
;
26696 table
->is_stmt
= is_stmt
;
26697 table
->in_use
= true;
26700 /* Record the beginning of a new source file. */
26703 dwarf2out_start_source_file (unsigned int lineno
, const char *filename
)
26705 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
26708 e
.code
= DW_MACINFO_start_file
;
26710 e
.info
= ggc_strdup (filename
);
26711 vec_safe_push (macinfo_table
, e
);
26715 /* Record the end of a source file. */
26718 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED
)
26720 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
26723 e
.code
= DW_MACINFO_end_file
;
26726 vec_safe_push (macinfo_table
, e
);
26730 /* Called from debug_define in toplev.c. The `buffer' parameter contains
26731 the tail part of the directive line, i.e. the part which is past the
26732 initial whitespace, #, whitespace, directive-name, whitespace part. */
26735 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED
,
26736 const char *buffer ATTRIBUTE_UNUSED
)
26738 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
26741 /* Insert a dummy first entry to be able to optimize the whole
26742 predefined macro block using DW_MACRO_import. */
26743 if (macinfo_table
->is_empty () && lineno
<= 1)
26748 vec_safe_push (macinfo_table
, e
);
26750 e
.code
= DW_MACINFO_define
;
26752 e
.info
= ggc_strdup (buffer
);
26753 vec_safe_push (macinfo_table
, e
);
26757 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
26758 the tail part of the directive line, i.e. the part which is past the
26759 initial whitespace, #, whitespace, directive-name, whitespace part. */
26762 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED
,
26763 const char *buffer ATTRIBUTE_UNUSED
)
26765 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
26768 /* Insert a dummy first entry to be able to optimize the whole
26769 predefined macro block using DW_MACRO_import. */
26770 if (macinfo_table
->is_empty () && lineno
<= 1)
26775 vec_safe_push (macinfo_table
, e
);
26777 e
.code
= DW_MACINFO_undef
;
26779 e
.info
= ggc_strdup (buffer
);
26780 vec_safe_push (macinfo_table
, e
);
26784 /* Helpers to manipulate hash table of CUs. */
26786 struct macinfo_entry_hasher
: nofree_ptr_hash
<macinfo_entry
>
26788 static inline hashval_t
hash (const macinfo_entry
*);
26789 static inline bool equal (const macinfo_entry
*, const macinfo_entry
*);
26793 macinfo_entry_hasher::hash (const macinfo_entry
*entry
)
26795 return htab_hash_string (entry
->info
);
26799 macinfo_entry_hasher::equal (const macinfo_entry
*entry1
,
26800 const macinfo_entry
*entry2
)
26802 return !strcmp (entry1
->info
, entry2
->info
);
26805 typedef hash_table
<macinfo_entry_hasher
> macinfo_hash_type
;
26807 /* Output a single .debug_macinfo entry. */
26810 output_macinfo_op (macinfo_entry
*ref
)
26814 struct indirect_string_node
*node
;
26815 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
26816 struct dwarf_file_data
*fd
;
26820 case DW_MACINFO_start_file
:
26821 fd
= lookup_filename (ref
->info
);
26822 file_num
= maybe_emit_file (fd
);
26823 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
26824 dw2_asm_output_data_uleb128 (ref
->lineno
,
26825 "Included from line number %lu",
26826 (unsigned long) ref
->lineno
);
26827 dw2_asm_output_data_uleb128 (file_num
, "file %s", ref
->info
);
26829 case DW_MACINFO_end_file
:
26830 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
26832 case DW_MACINFO_define
:
26833 case DW_MACINFO_undef
:
26834 len
= strlen (ref
->info
) + 1;
26836 && len
> DWARF_OFFSET_SIZE
26837 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
26838 && (debug_str_section
->common
.flags
& SECTION_MERGE
) != 0)
26840 ref
->code
= ref
->code
== DW_MACINFO_define
26841 ? DW_MACRO_define_strp
: DW_MACRO_undef_strp
;
26842 output_macinfo_op (ref
);
26845 dw2_asm_output_data (1, ref
->code
,
26846 ref
->code
== DW_MACINFO_define
26847 ? "Define macro" : "Undefine macro");
26848 dw2_asm_output_data_uleb128 (ref
->lineno
, "At line number %lu",
26849 (unsigned long) ref
->lineno
);
26850 dw2_asm_output_nstring (ref
->info
, -1, "The macro");
26852 case DW_MACRO_define_strp
:
26853 case DW_MACRO_undef_strp
:
26854 node
= find_AT_string (ref
->info
);
26856 && (node
->form
== DW_FORM_strp
26857 || node
->form
== DW_FORM_GNU_str_index
));
26858 dw2_asm_output_data (1, ref
->code
,
26859 ref
->code
== DW_MACRO_define_strp
26860 ? "Define macro strp"
26861 : "Undefine macro strp");
26862 dw2_asm_output_data_uleb128 (ref
->lineno
, "At line number %lu",
26863 (unsigned long) ref
->lineno
);
26864 if (node
->form
== DW_FORM_strp
)
26865 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, node
->label
,
26866 debug_str_section
, "The macro: \"%s\"",
26869 dw2_asm_output_data_uleb128 (node
->index
, "The macro: \"%s\"",
26872 case DW_MACRO_import
:
26873 dw2_asm_output_data (1, ref
->code
, "Import");
26874 ASM_GENERATE_INTERNAL_LABEL (label
,
26875 DEBUG_MACRO_SECTION_LABEL
,
26876 ref
->lineno
+ macinfo_label_base
);
26877 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, label
, NULL
, NULL
);
26880 fprintf (asm_out_file
, "%s unrecognized macinfo code %lu\n",
26881 ASM_COMMENT_START
, (unsigned long) ref
->code
);
26886 /* Attempt to make a sequence of define/undef macinfo ops shareable with
26887 other compilation unit .debug_macinfo sections. IDX is the first
26888 index of a define/undef, return the number of ops that should be
26889 emitted in a comdat .debug_macinfo section and emit
26890 a DW_MACRO_import entry referencing it.
26891 If the define/undef entry should be emitted normally, return 0. */
26894 optimize_macinfo_range (unsigned int idx
, vec
<macinfo_entry
, va_gc
> *files
,
26895 macinfo_hash_type
**macinfo_htab
)
26897 macinfo_entry
*first
, *second
, *cur
, *inc
;
26898 char linebuf
[sizeof (HOST_WIDE_INT
) * 3 + 1];
26899 unsigned char checksum
[16];
26900 struct md5_ctx ctx
;
26901 char *grp_name
, *tail
;
26903 unsigned int i
, count
, encoded_filename_len
, linebuf_len
;
26904 macinfo_entry
**slot
;
26906 first
= &(*macinfo_table
)[idx
];
26907 second
= &(*macinfo_table
)[idx
+ 1];
26909 /* Optimize only if there are at least two consecutive define/undef ops,
26910 and either all of them are before first DW_MACINFO_start_file
26911 with lineno {0,1} (i.e. predefined macro block), or all of them are
26912 in some included header file. */
26913 if (second
->code
!= DW_MACINFO_define
&& second
->code
!= DW_MACINFO_undef
)
26915 if (vec_safe_is_empty (files
))
26917 if (first
->lineno
> 1 || second
->lineno
> 1)
26920 else if (first
->lineno
== 0)
26923 /* Find the last define/undef entry that can be grouped together
26924 with first and at the same time compute md5 checksum of their
26925 codes, linenumbers and strings. */
26926 md5_init_ctx (&ctx
);
26927 for (i
= idx
; macinfo_table
->iterate (i
, &cur
); i
++)
26928 if (cur
->code
!= DW_MACINFO_define
&& cur
->code
!= DW_MACINFO_undef
)
26930 else if (vec_safe_is_empty (files
) && cur
->lineno
> 1)
26934 unsigned char code
= cur
->code
;
26935 md5_process_bytes (&code
, 1, &ctx
);
26936 checksum_uleb128 (cur
->lineno
, &ctx
);
26937 md5_process_bytes (cur
->info
, strlen (cur
->info
) + 1, &ctx
);
26939 md5_finish_ctx (&ctx
, checksum
);
26942 /* From the containing include filename (if any) pick up just
26943 usable characters from its basename. */
26944 if (vec_safe_is_empty (files
))
26947 base
= lbasename (files
->last ().info
);
26948 for (encoded_filename_len
= 0, i
= 0; base
[i
]; i
++)
26949 if (ISIDNUM (base
[i
]) || base
[i
] == '.')
26950 encoded_filename_len
++;
26951 /* Count . at the end. */
26952 if (encoded_filename_len
)
26953 encoded_filename_len
++;
26955 sprintf (linebuf
, HOST_WIDE_INT_PRINT_UNSIGNED
, first
->lineno
);
26956 linebuf_len
= strlen (linebuf
);
26958 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
26959 grp_name
= XALLOCAVEC (char, 4 + encoded_filename_len
+ linebuf_len
+ 1
26961 memcpy (grp_name
, DWARF_OFFSET_SIZE
== 4 ? "wm4." : "wm8.", 4);
26962 tail
= grp_name
+ 4;
26963 if (encoded_filename_len
)
26965 for (i
= 0; base
[i
]; i
++)
26966 if (ISIDNUM (base
[i
]) || base
[i
] == '.')
26970 memcpy (tail
, linebuf
, linebuf_len
);
26971 tail
+= linebuf_len
;
26973 for (i
= 0; i
< 16; i
++)
26974 sprintf (tail
+ i
* 2, "%02x", checksum
[i
] & 0xff);
26976 /* Construct a macinfo_entry for DW_MACRO_import
26977 in the empty vector entry before the first define/undef. */
26978 inc
= &(*macinfo_table
)[idx
- 1];
26979 inc
->code
= DW_MACRO_import
;
26981 inc
->info
= ggc_strdup (grp_name
);
26982 if (!*macinfo_htab
)
26983 *macinfo_htab
= new macinfo_hash_type (10);
26984 /* Avoid emitting duplicates. */
26985 slot
= (*macinfo_htab
)->find_slot (inc
, INSERT
);
26990 /* If such an entry has been used before, just emit
26991 a DW_MACRO_import op. */
26993 output_macinfo_op (inc
);
26994 /* And clear all macinfo_entry in the range to avoid emitting them
26995 in the second pass. */
26996 for (i
= idx
; macinfo_table
->iterate (i
, &cur
) && i
< idx
+ count
; i
++)
27005 inc
->lineno
= (*macinfo_htab
)->elements ();
27006 output_macinfo_op (inc
);
27011 /* Save any strings needed by the macinfo table in the debug str
27012 table. All strings must be collected into the table by the time
27013 index_string is called. */
27016 save_macinfo_strings (void)
27020 macinfo_entry
*ref
;
27022 for (i
= 0; macinfo_table
&& macinfo_table
->iterate (i
, &ref
); i
++)
27026 /* Match the logic in output_macinfo_op to decide on
27027 indirect strings. */
27028 case DW_MACINFO_define
:
27029 case DW_MACINFO_undef
:
27030 len
= strlen (ref
->info
) + 1;
27032 && len
> DWARF_OFFSET_SIZE
27033 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
27034 && (debug_str_section
->common
.flags
& SECTION_MERGE
) != 0)
27035 set_indirect_string (find_AT_string (ref
->info
));
27037 case DW_MACRO_define_strp
:
27038 case DW_MACRO_undef_strp
:
27039 set_indirect_string (find_AT_string (ref
->info
));
27047 /* Output macinfo section(s). */
27050 output_macinfo (const char *debug_line_label
, bool early_lto_debug
)
27053 unsigned long length
= vec_safe_length (macinfo_table
);
27054 macinfo_entry
*ref
;
27055 vec
<macinfo_entry
, va_gc
> *files
= NULL
;
27056 macinfo_hash_type
*macinfo_htab
= NULL
;
27057 char dl_section_ref
[MAX_ARTIFICIAL_LABEL_BYTES
];
27062 /* output_macinfo* uses these interchangeably. */
27063 gcc_assert ((int) DW_MACINFO_define
== (int) DW_MACRO_define
27064 && (int) DW_MACINFO_undef
== (int) DW_MACRO_undef
27065 && (int) DW_MACINFO_start_file
== (int) DW_MACRO_start_file
27066 && (int) DW_MACINFO_end_file
== (int) DW_MACRO_end_file
);
27068 /* AIX Assembler inserts the length, so adjust the reference to match the
27069 offset expected by debuggers. */
27070 strcpy (dl_section_ref
, debug_line_label
);
27071 if (XCOFF_DEBUGGING_INFO
)
27072 strcat (dl_section_ref
, DWARF_INITIAL_LENGTH_SIZE_STR
);
27074 /* For .debug_macro emit the section header. */
27075 if (!dwarf_strict
|| dwarf_version
>= 5)
27077 dw2_asm_output_data (2, dwarf_version
>= 5 ? 5 : 4,
27078 "DWARF macro version number");
27079 if (DWARF_OFFSET_SIZE
== 8)
27080 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
27082 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
27083 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_line_label
,
27084 debug_line_section
, NULL
);
27087 /* In the first loop, it emits the primary .debug_macinfo section
27088 and after each emitted op the macinfo_entry is cleared.
27089 If a longer range of define/undef ops can be optimized using
27090 DW_MACRO_import, the DW_MACRO_import op is emitted and kept in
27091 the vector before the first define/undef in the range and the
27092 whole range of define/undef ops is not emitted and kept. */
27093 for (i
= 0; macinfo_table
->iterate (i
, &ref
); i
++)
27097 case DW_MACINFO_start_file
:
27098 vec_safe_push (files
, *ref
);
27100 case DW_MACINFO_end_file
:
27101 if (!vec_safe_is_empty (files
))
27104 case DW_MACINFO_define
:
27105 case DW_MACINFO_undef
:
27106 if ((!dwarf_strict
|| dwarf_version
>= 5)
27107 && HAVE_COMDAT_GROUP
27108 && vec_safe_length (files
) != 1
27111 && (*macinfo_table
)[i
- 1].code
== 0)
27113 unsigned count
= optimize_macinfo_range (i
, files
, &macinfo_htab
);
27122 /* A dummy entry may be inserted at the beginning to be able
27123 to optimize the whole block of predefined macros. */
27129 output_macinfo_op (ref
);
27137 /* Save the number of transparent includes so we can adjust the
27138 label number for the fat LTO object DWARF. */
27139 unsigned macinfo_label_base_adj
= macinfo_htab
->elements ();
27141 delete macinfo_htab
;
27142 macinfo_htab
= NULL
;
27144 /* If any DW_MACRO_import were used, on those DW_MACRO_import entries
27145 terminate the current chain and switch to a new comdat .debug_macinfo
27146 section and emit the define/undef entries within it. */
27147 for (i
= 0; macinfo_table
->iterate (i
, &ref
); i
++)
27152 case DW_MACRO_import
:
27154 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
27155 tree comdat_key
= get_identifier (ref
->info
);
27156 /* Terminate the previous .debug_macinfo section. */
27157 dw2_asm_output_data (1, 0, "End compilation unit");
27158 targetm
.asm_out
.named_section (debug_macinfo_section_name
,
27162 ? SECTION_EXCLUDE
: 0),
27164 ASM_GENERATE_INTERNAL_LABEL (label
,
27165 DEBUG_MACRO_SECTION_LABEL
,
27166 ref
->lineno
+ macinfo_label_base
);
27167 ASM_OUTPUT_LABEL (asm_out_file
, label
);
27170 dw2_asm_output_data (2, dwarf_version
>= 5 ? 5 : 4,
27171 "DWARF macro version number");
27172 if (DWARF_OFFSET_SIZE
== 8)
27173 dw2_asm_output_data (1, 1, "Flags: 64-bit");
27175 dw2_asm_output_data (1, 0, "Flags: 32-bit");
27178 case DW_MACINFO_define
:
27179 case DW_MACINFO_undef
:
27180 output_macinfo_op (ref
);
27185 gcc_unreachable ();
27188 macinfo_label_base
+= macinfo_label_base_adj
;
27191 /* Initialize the various sections and labels for dwarf output and prefix
27192 them with PREFIX if non-NULL. */
27195 init_sections_and_labels (bool early_lto_debug
)
27197 /* As we may get called multiple times have a generation count for
27199 static unsigned generation
= 0;
27201 if (early_lto_debug
)
27203 if (!dwarf_split_debug_info
)
27205 debug_info_section
= get_section (DEBUG_LTO_INFO_SECTION
,
27206 SECTION_DEBUG
| SECTION_EXCLUDE
,
27208 debug_abbrev_section
= get_section (DEBUG_LTO_ABBREV_SECTION
,
27209 SECTION_DEBUG
| SECTION_EXCLUDE
,
27211 debug_macinfo_section_name
27212 = ((dwarf_strict
&& dwarf_version
< 5)
27213 ? DEBUG_LTO_MACINFO_SECTION
: DEBUG_LTO_MACRO_SECTION
);
27214 debug_macinfo_section
= get_section (debug_macinfo_section_name
,
27216 | SECTION_EXCLUDE
, NULL
);
27217 /* For macro info we have to refer to a debug_line section, so
27218 similar to split-dwarf emit a skeleton one for early debug. */
27219 debug_skeleton_line_section
27220 = get_section (DEBUG_LTO_LINE_SECTION
,
27221 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
27222 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label
,
27223 DEBUG_SKELETON_LINE_SECTION_LABEL
,
27228 /* ??? Which of the following do we need early? */
27229 debug_info_section
= get_section (DEBUG_LTO_DWO_INFO_SECTION
,
27230 SECTION_DEBUG
| SECTION_EXCLUDE
,
27232 debug_abbrev_section
= get_section (DEBUG_LTO_DWO_ABBREV_SECTION
,
27233 SECTION_DEBUG
| SECTION_EXCLUDE
,
27235 debug_skeleton_info_section
= get_section (DEBUG_LTO_INFO_SECTION
,
27237 | SECTION_EXCLUDE
, NULL
);
27238 debug_skeleton_abbrev_section
27239 = get_section (DEBUG_LTO_ABBREV_SECTION
,
27240 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
27241 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label
,
27242 DEBUG_SKELETON_ABBREV_SECTION_LABEL
,
27245 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
27246 stay in the main .o, but the skeleton_line goes into the split
27248 debug_skeleton_line_section
27249 = get_section (DEBUG_LTO_LINE_SECTION
,
27250 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
27251 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label
,
27252 DEBUG_SKELETON_LINE_SECTION_LABEL
,
27254 debug_str_offsets_section
27255 = get_section (DEBUG_LTO_DWO_STR_OFFSETS_SECTION
,
27256 SECTION_DEBUG
| SECTION_EXCLUDE
,
27258 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label
,
27259 DEBUG_SKELETON_INFO_SECTION_LABEL
,
27261 debug_str_dwo_section
= get_section (DEBUG_LTO_STR_DWO_SECTION
,
27262 DEBUG_STR_DWO_SECTION_FLAGS
,
27264 debug_macinfo_section_name
27265 = ((dwarf_strict
&& dwarf_version
< 5)
27266 ? DEBUG_LTO_DWO_MACINFO_SECTION
: DEBUG_LTO_DWO_MACRO_SECTION
);
27267 debug_macinfo_section
= get_section (debug_macinfo_section_name
,
27268 SECTION_DEBUG
| SECTION_EXCLUDE
,
27271 debug_str_section
= get_section (DEBUG_LTO_STR_SECTION
,
27272 DEBUG_STR_SECTION_FLAGS
27273 | SECTION_EXCLUDE
, NULL
);
27274 if (!dwarf_split_debug_info
&& !DWARF2_ASM_LINE_DEBUG_INFO
)
27275 debug_line_str_section
27276 = get_section (DEBUG_LTO_LINE_STR_SECTION
,
27277 DEBUG_STR_SECTION_FLAGS
| SECTION_EXCLUDE
, NULL
);
27281 if (!dwarf_split_debug_info
)
27283 debug_info_section
= get_section (DEBUG_INFO_SECTION
,
27284 SECTION_DEBUG
, NULL
);
27285 debug_abbrev_section
= get_section (DEBUG_ABBREV_SECTION
,
27286 SECTION_DEBUG
, NULL
);
27287 debug_loc_section
= get_section (dwarf_version
>= 5
27288 ? DEBUG_LOCLISTS_SECTION
27289 : DEBUG_LOC_SECTION
,
27290 SECTION_DEBUG
, NULL
);
27291 debug_macinfo_section_name
27292 = ((dwarf_strict
&& dwarf_version
< 5)
27293 ? DEBUG_MACINFO_SECTION
: DEBUG_MACRO_SECTION
);
27294 debug_macinfo_section
= get_section (debug_macinfo_section_name
,
27295 SECTION_DEBUG
, NULL
);
27299 debug_info_section
= get_section (DEBUG_DWO_INFO_SECTION
,
27300 SECTION_DEBUG
| SECTION_EXCLUDE
,
27302 debug_abbrev_section
= get_section (DEBUG_DWO_ABBREV_SECTION
,
27303 SECTION_DEBUG
| SECTION_EXCLUDE
,
27305 debug_addr_section
= get_section (DEBUG_ADDR_SECTION
,
27306 SECTION_DEBUG
, NULL
);
27307 debug_skeleton_info_section
= get_section (DEBUG_INFO_SECTION
,
27308 SECTION_DEBUG
, NULL
);
27309 debug_skeleton_abbrev_section
= get_section (DEBUG_ABBREV_SECTION
,
27310 SECTION_DEBUG
, NULL
);
27311 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label
,
27312 DEBUG_SKELETON_ABBREV_SECTION_LABEL
,
27315 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
27316 stay in the main .o, but the skeleton_line goes into the
27318 debug_skeleton_line_section
27319 = get_section (DEBUG_DWO_LINE_SECTION
,
27320 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
27321 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label
,
27322 DEBUG_SKELETON_LINE_SECTION_LABEL
,
27324 debug_str_offsets_section
27325 = get_section (DEBUG_DWO_STR_OFFSETS_SECTION
,
27326 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
27327 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label
,
27328 DEBUG_SKELETON_INFO_SECTION_LABEL
,
27330 debug_loc_section
= get_section (dwarf_version
>= 5
27331 ? DEBUG_DWO_LOCLISTS_SECTION
27332 : DEBUG_DWO_LOC_SECTION
,
27333 SECTION_DEBUG
| SECTION_EXCLUDE
,
27335 debug_str_dwo_section
= get_section (DEBUG_STR_DWO_SECTION
,
27336 DEBUG_STR_DWO_SECTION_FLAGS
,
27338 debug_macinfo_section_name
27339 = ((dwarf_strict
&& dwarf_version
< 5)
27340 ? DEBUG_DWO_MACINFO_SECTION
: DEBUG_DWO_MACRO_SECTION
);
27341 debug_macinfo_section
= get_section (debug_macinfo_section_name
,
27342 SECTION_DEBUG
| SECTION_EXCLUDE
,
27345 debug_aranges_section
= get_section (DEBUG_ARANGES_SECTION
,
27346 SECTION_DEBUG
, NULL
);
27347 debug_line_section
= get_section (DEBUG_LINE_SECTION
,
27348 SECTION_DEBUG
, NULL
);
27349 debug_pubnames_section
= get_section (DEBUG_PUBNAMES_SECTION
,
27350 SECTION_DEBUG
, NULL
);
27351 debug_pubtypes_section
= get_section (DEBUG_PUBTYPES_SECTION
,
27352 SECTION_DEBUG
, NULL
);
27353 debug_str_section
= get_section (DEBUG_STR_SECTION
,
27354 DEBUG_STR_SECTION_FLAGS
, NULL
);
27355 if (!dwarf_split_debug_info
&& !DWARF2_ASM_LINE_DEBUG_INFO
)
27356 debug_line_str_section
= get_section (DEBUG_LINE_STR_SECTION
,
27357 DEBUG_STR_SECTION_FLAGS
, NULL
);
27358 debug_ranges_section
= get_section (dwarf_version
>= 5
27359 ? DEBUG_RNGLISTS_SECTION
27360 : DEBUG_RANGES_SECTION
,
27361 SECTION_DEBUG
, NULL
);
27362 debug_frame_section
= get_section (DEBUG_FRAME_SECTION
,
27363 SECTION_DEBUG
, NULL
);
27366 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
27367 DEBUG_ABBREV_SECTION_LABEL
, generation
);
27368 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
27369 DEBUG_INFO_SECTION_LABEL
, generation
);
27370 info_section_emitted
= false;
27371 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
27372 DEBUG_LINE_SECTION_LABEL
, generation
);
27373 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
27374 DEBUG_RANGES_SECTION_LABEL
, generation
);
27375 if (dwarf_version
>= 5 && dwarf_split_debug_info
)
27376 ASM_GENERATE_INTERNAL_LABEL (ranges_base_label
,
27377 DEBUG_RANGES_SECTION_LABEL
, 2 + generation
);
27378 ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label
,
27379 DEBUG_ADDR_SECTION_LABEL
, generation
);
27380 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
27381 (dwarf_strict
&& dwarf_version
< 5)
27382 ? DEBUG_MACINFO_SECTION_LABEL
27383 : DEBUG_MACRO_SECTION_LABEL
, generation
);
27384 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
, DEBUG_LOC_SECTION_LABEL
,
27390 /* Set up for Dwarf output at the start of compilation. */
27393 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED
)
27395 /* Allocate the file_table. */
27396 file_table
= hash_table
<dwarf_file_hasher
>::create_ggc (50);
27398 #ifndef DWARF2_LINENO_DEBUGGING_INFO
27399 /* Allocate the decl_die_table. */
27400 decl_die_table
= hash_table
<decl_die_hasher
>::create_ggc (10);
27402 /* Allocate the decl_loc_table. */
27403 decl_loc_table
= hash_table
<decl_loc_hasher
>::create_ggc (10);
27405 /* Allocate the cached_dw_loc_list_table. */
27406 cached_dw_loc_list_table
= hash_table
<dw_loc_list_hasher
>::create_ggc (10);
27408 /* Allocate the initial hunk of the decl_scope_table. */
27409 vec_alloc (decl_scope_table
, 256);
27411 /* Allocate the initial hunk of the abbrev_die_table. */
27412 vec_alloc (abbrev_die_table
, 256);
27413 /* Zero-th entry is allocated, but unused. */
27414 abbrev_die_table
->quick_push (NULL
);
27416 /* Allocate the dwarf_proc_stack_usage_map. */
27417 dwarf_proc_stack_usage_map
= new hash_map
<dw_die_ref
, int>;
27419 /* Allocate the pubtypes and pubnames vectors. */
27420 vec_alloc (pubname_table
, 32);
27421 vec_alloc (pubtype_table
, 32);
27423 vec_alloc (incomplete_types
, 64);
27425 vec_alloc (used_rtx_array
, 32);
27427 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
27428 vec_alloc (macinfo_table
, 64);
27431 /* If front-ends already registered a main translation unit but we were not
27432 ready to perform the association, do this now. */
27433 if (main_translation_unit
!= NULL_TREE
)
27434 equate_decl_number_to_die (main_translation_unit
, comp_unit_die ());
27437 /* Called before compile () starts outputtting functions, variables
27438 and toplevel asms into assembly. */
27441 dwarf2out_assembly_start (void)
27443 #ifndef DWARF2_LINENO_DEBUGGING_INFO
27444 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
27445 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
27446 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label
,
27447 COLD_TEXT_SECTION_LABEL
, 0);
27448 ASM_GENERATE_INTERNAL_LABEL (cold_end_label
, COLD_END_LABEL
, 0);
27450 switch_to_section (text_section
);
27451 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
27454 /* Make sure the line number table for .text always exists. */
27455 text_section_line_info
= new_line_info_table ();
27456 text_section_line_info
->end_label
= text_end_label
;
27458 #ifdef DWARF2_LINENO_DEBUGGING_INFO
27459 cur_line_info_table
= text_section_line_info
;
27462 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
27463 && dwarf2out_do_cfi_asm ()
27464 && (!(flag_unwind_tables
|| flag_exceptions
)
27465 || targetm_common
.except_unwind_info (&global_options
) != UI_DWARF2
))
27466 fprintf (asm_out_file
, "\t.cfi_sections\t.debug_frame\n");
27469 /* A helper function for dwarf2out_finish called through
27470 htab_traverse. Assign a string its index. All strings must be
27471 collected into the table by the time index_string is called,
27472 because the indexing code relies on htab_traverse to traverse nodes
27473 in the same order for each run. */
27476 index_string (indirect_string_node
**h
, unsigned int *index
)
27478 indirect_string_node
*node
= *h
;
27480 find_string_form (node
);
27481 if (node
->form
== DW_FORM_GNU_str_index
&& node
->refcount
> 0)
27483 gcc_assert (node
->index
== NO_INDEX_ASSIGNED
);
27484 node
->index
= *index
;
27490 /* A helper function for output_indirect_strings called through
27491 htab_traverse. Output the offset to a string and update the
27495 output_index_string_offset (indirect_string_node
**h
, unsigned int *offset
)
27497 indirect_string_node
*node
= *h
;
27499 if (node
->form
== DW_FORM_GNU_str_index
&& node
->refcount
> 0)
27501 /* Assert that this node has been assigned an index. */
27502 gcc_assert (node
->index
!= NO_INDEX_ASSIGNED
27503 && node
->index
!= NOT_INDEXED
);
27504 dw2_asm_output_data (DWARF_OFFSET_SIZE
, *offset
,
27505 "indexed string 0x%x: %s", node
->index
, node
->str
);
27506 *offset
+= strlen (node
->str
) + 1;
27511 /* A helper function for dwarf2out_finish called through
27512 htab_traverse. Output the indexed string. */
27515 output_index_string (indirect_string_node
**h
, unsigned int *cur_idx
)
27517 struct indirect_string_node
*node
= *h
;
27519 if (node
->form
== DW_FORM_GNU_str_index
&& node
->refcount
> 0)
27521 /* Assert that the strings are output in the same order as their
27522 indexes were assigned. */
27523 gcc_assert (*cur_idx
== node
->index
);
27524 assemble_string (node
->str
, strlen (node
->str
) + 1);
27530 /* A helper function for dwarf2out_finish called through
27531 htab_traverse. Emit one queued .debug_str string. */
27534 output_indirect_string (indirect_string_node
**h
, enum dwarf_form form
)
27536 struct indirect_string_node
*node
= *h
;
27538 node
->form
= find_string_form (node
);
27539 if (node
->form
== form
&& node
->refcount
> 0)
27541 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
27542 assemble_string (node
->str
, strlen (node
->str
) + 1);
27548 /* Output the indexed string table. */
27551 output_indirect_strings (void)
27553 switch_to_section (debug_str_section
);
27554 if (!dwarf_split_debug_info
)
27555 debug_str_hash
->traverse
<enum dwarf_form
,
27556 output_indirect_string
> (DW_FORM_strp
);
27559 unsigned int offset
= 0;
27560 unsigned int cur_idx
= 0;
27562 skeleton_debug_str_hash
->traverse
<enum dwarf_form
,
27563 output_indirect_string
> (DW_FORM_strp
);
27565 switch_to_section (debug_str_offsets_section
);
27566 debug_str_hash
->traverse_noresize
27567 <unsigned int *, output_index_string_offset
> (&offset
);
27568 switch_to_section (debug_str_dwo_section
);
27569 debug_str_hash
->traverse_noresize
<unsigned int *, output_index_string
>
27574 /* Callback for htab_traverse to assign an index to an entry in the
27575 table, and to write that entry to the .debug_addr section. */
27578 output_addr_table_entry (addr_table_entry
**slot
, unsigned int *cur_index
)
27580 addr_table_entry
*entry
= *slot
;
27582 if (entry
->refcount
== 0)
27584 gcc_assert (entry
->index
== NO_INDEX_ASSIGNED
27585 || entry
->index
== NOT_INDEXED
);
27589 gcc_assert (entry
->index
== *cur_index
);
27592 switch (entry
->kind
)
27595 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, entry
->addr
.rtl
,
27596 "0x%x", entry
->index
);
27598 case ate_kind_rtx_dtprel
:
27599 gcc_assert (targetm
.asm_out
.output_dwarf_dtprel
);
27600 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
,
27603 fputc ('\n', asm_out_file
);
27605 case ate_kind_label
:
27606 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, entry
->addr
.label
,
27607 "0x%x", entry
->index
);
27610 gcc_unreachable ();
27615 /* Produce the .debug_addr section. */
27618 output_addr_table (void)
27620 unsigned int index
= 0;
27621 if (addr_index_table
== NULL
|| addr_index_table
->size () == 0)
27624 switch_to_section (debug_addr_section
);
27626 ->traverse_noresize
<unsigned int *, output_addr_table_entry
> (&index
);
27629 #if ENABLE_ASSERT_CHECKING
27630 /* Verify that all marks are clear. */
27633 verify_marks_clear (dw_die_ref die
)
27637 gcc_assert (! die
->die_mark
);
27638 FOR_EACH_CHILD (die
, c
, verify_marks_clear (c
));
27640 #endif /* ENABLE_ASSERT_CHECKING */
27642 /* Clear the marks for a die and its children.
27643 Be cool if the mark isn't set. */
27646 prune_unmark_dies (dw_die_ref die
)
27652 FOR_EACH_CHILD (die
, c
, prune_unmark_dies (c
));
27655 /* Given LOC that is referenced by a DIE we're marking as used, find all
27656 referenced DWARF procedures it references and mark them as used. */
27659 prune_unused_types_walk_loc_descr (dw_loc_descr_ref loc
)
27661 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
27662 switch (loc
->dw_loc_opc
)
27664 case DW_OP_implicit_pointer
:
27665 case DW_OP_convert
:
27666 case DW_OP_reinterpret
:
27667 case DW_OP_GNU_implicit_pointer
:
27668 case DW_OP_GNU_convert
:
27669 case DW_OP_GNU_reinterpret
:
27670 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_die_ref
)
27671 prune_unused_types_mark (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
, 1);
27673 case DW_OP_GNU_variable_value
:
27674 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_decl_ref
)
27677 = lookup_decl_die (loc
->dw_loc_oprnd1
.v
.val_decl_ref
);
27680 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
27681 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
27682 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
27687 case DW_OP_call_ref
:
27688 case DW_OP_const_type
:
27689 case DW_OP_GNU_const_type
:
27690 case DW_OP_GNU_parameter_ref
:
27691 gcc_assert (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_die_ref
);
27692 prune_unused_types_mark (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
, 1);
27694 case DW_OP_regval_type
:
27695 case DW_OP_deref_type
:
27696 case DW_OP_GNU_regval_type
:
27697 case DW_OP_GNU_deref_type
:
27698 gcc_assert (loc
->dw_loc_oprnd2
.val_class
== dw_val_class_die_ref
);
27699 prune_unused_types_mark (loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
, 1);
27701 case DW_OP_entry_value
:
27702 case DW_OP_GNU_entry_value
:
27703 gcc_assert (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_loc
);
27704 prune_unused_types_walk_loc_descr (loc
->dw_loc_oprnd1
.v
.val_loc
);
27711 /* Given DIE that we're marking as used, find any other dies
27712 it references as attributes and mark them as used. */
27715 prune_unused_types_walk_attribs (dw_die_ref die
)
27720 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
27722 switch (AT_class (a
))
27724 /* Make sure DWARF procedures referenced by location descriptions will
27726 case dw_val_class_loc
:
27727 prune_unused_types_walk_loc_descr (AT_loc (a
));
27729 case dw_val_class_loc_list
:
27730 for (dw_loc_list_ref list
= AT_loc_list (a
);
27732 list
= list
->dw_loc_next
)
27733 prune_unused_types_walk_loc_descr (list
->expr
);
27736 case dw_val_class_die_ref
:
27737 /* A reference to another DIE.
27738 Make sure that it will get emitted.
27739 If it was broken out into a comdat group, don't follow it. */
27740 if (! AT_ref (a
)->comdat_type_p
27741 || a
->dw_attr
== DW_AT_specification
)
27742 prune_unused_types_mark (a
->dw_attr_val
.v
.val_die_ref
.die
, 1);
27745 case dw_val_class_str
:
27746 /* Set the string's refcount to 0 so that prune_unused_types_mark
27747 accounts properly for it. */
27748 a
->dw_attr_val
.v
.val_str
->refcount
= 0;
27757 /* Mark the generic parameters and arguments children DIEs of DIE. */
27760 prune_unused_types_mark_generic_parms_dies (dw_die_ref die
)
27764 if (die
== NULL
|| die
->die_child
== NULL
)
27766 c
= die
->die_child
;
27769 if (is_template_parameter (c
))
27770 prune_unused_types_mark (c
, 1);
27772 } while (c
&& c
!= die
->die_child
);
27775 /* Mark DIE as being used. If DOKIDS is true, then walk down
27776 to DIE's children. */
27779 prune_unused_types_mark (dw_die_ref die
, int dokids
)
27783 if (die
->die_mark
== 0)
27785 /* We haven't done this node yet. Mark it as used. */
27787 /* If this is the DIE of a generic type instantiation,
27788 mark the children DIEs that describe its generic parms and
27790 prune_unused_types_mark_generic_parms_dies (die
);
27792 /* We also have to mark its parents as used.
27793 (But we don't want to mark our parent's kids due to this,
27794 unless it is a class.) */
27795 if (die
->die_parent
)
27796 prune_unused_types_mark (die
->die_parent
,
27797 class_scope_p (die
->die_parent
));
27799 /* Mark any referenced nodes. */
27800 prune_unused_types_walk_attribs (die
);
27802 /* If this node is a specification,
27803 also mark the definition, if it exists. */
27804 if (get_AT_flag (die
, DW_AT_declaration
) && die
->die_definition
)
27805 prune_unused_types_mark (die
->die_definition
, 1);
27808 if (dokids
&& die
->die_mark
!= 2)
27810 /* We need to walk the children, but haven't done so yet.
27811 Remember that we've walked the kids. */
27814 /* If this is an array type, we need to make sure our
27815 kids get marked, even if they're types. If we're
27816 breaking out types into comdat sections, do this
27817 for all type definitions. */
27818 if (die
->die_tag
== DW_TAG_array_type
27819 || (use_debug_types
27820 && is_type_die (die
) && ! is_declaration_die (die
)))
27821 FOR_EACH_CHILD (die
, c
, prune_unused_types_mark (c
, 1));
27823 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk (c
));
27827 /* For local classes, look if any static member functions were emitted
27828 and if so, mark them. */
27831 prune_unused_types_walk_local_classes (dw_die_ref die
)
27835 if (die
->die_mark
== 2)
27838 switch (die
->die_tag
)
27840 case DW_TAG_structure_type
:
27841 case DW_TAG_union_type
:
27842 case DW_TAG_class_type
:
27845 case DW_TAG_subprogram
:
27846 if (!get_AT_flag (die
, DW_AT_declaration
)
27847 || die
->die_definition
!= NULL
)
27848 prune_unused_types_mark (die
, 1);
27855 /* Mark children. */
27856 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk_local_classes (c
));
27859 /* Walk the tree DIE and mark types that we actually use. */
27862 prune_unused_types_walk (dw_die_ref die
)
27866 /* Don't do anything if this node is already marked and
27867 children have been marked as well. */
27868 if (die
->die_mark
== 2)
27871 switch (die
->die_tag
)
27873 case DW_TAG_structure_type
:
27874 case DW_TAG_union_type
:
27875 case DW_TAG_class_type
:
27876 if (die
->die_perennial_p
)
27879 for (c
= die
->die_parent
; c
; c
= c
->die_parent
)
27880 if (c
->die_tag
== DW_TAG_subprogram
)
27883 /* Finding used static member functions inside of classes
27884 is needed just for local classes, because for other classes
27885 static member function DIEs with DW_AT_specification
27886 are emitted outside of the DW_TAG_*_type. If we ever change
27887 it, we'd need to call this even for non-local classes. */
27889 prune_unused_types_walk_local_classes (die
);
27891 /* It's a type node --- don't mark it. */
27894 case DW_TAG_const_type
:
27895 case DW_TAG_packed_type
:
27896 case DW_TAG_pointer_type
:
27897 case DW_TAG_reference_type
:
27898 case DW_TAG_rvalue_reference_type
:
27899 case DW_TAG_volatile_type
:
27900 case DW_TAG_typedef
:
27901 case DW_TAG_array_type
:
27902 case DW_TAG_interface_type
:
27903 case DW_TAG_friend
:
27904 case DW_TAG_enumeration_type
:
27905 case DW_TAG_subroutine_type
:
27906 case DW_TAG_string_type
:
27907 case DW_TAG_set_type
:
27908 case DW_TAG_subrange_type
:
27909 case DW_TAG_ptr_to_member_type
:
27910 case DW_TAG_file_type
:
27911 /* Type nodes are useful only when other DIEs reference them --- don't
27915 case DW_TAG_dwarf_procedure
:
27916 /* Likewise for DWARF procedures. */
27918 if (die
->die_perennial_p
)
27924 /* Mark everything else. */
27928 if (die
->die_mark
== 0)
27932 /* Now, mark any dies referenced from here. */
27933 prune_unused_types_walk_attribs (die
);
27938 /* Mark children. */
27939 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk (c
));
27942 /* Increment the string counts on strings referred to from DIE's
27946 prune_unused_types_update_strings (dw_die_ref die
)
27951 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
27952 if (AT_class (a
) == dw_val_class_str
)
27954 struct indirect_string_node
*s
= a
->dw_attr_val
.v
.val_str
;
27956 /* Avoid unnecessarily putting strings that are used less than
27957 twice in the hash table. */
27959 == ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) ? 1 : 2))
27961 indirect_string_node
**slot
27962 = debug_str_hash
->find_slot_with_hash (s
->str
,
27963 htab_hash_string (s
->str
),
27965 gcc_assert (*slot
== NULL
);
27971 /* Mark DIE and its children as removed. */
27974 mark_removed (dw_die_ref die
)
27977 die
->removed
= true;
27978 FOR_EACH_CHILD (die
, c
, mark_removed (c
));
27981 /* Remove from the tree DIE any dies that aren't marked. */
27984 prune_unused_types_prune (dw_die_ref die
)
27988 gcc_assert (die
->die_mark
);
27989 prune_unused_types_update_strings (die
);
27991 if (! die
->die_child
)
27994 c
= die
->die_child
;
27996 dw_die_ref prev
= c
, next
;
27997 for (c
= c
->die_sib
; ! c
->die_mark
; c
= next
)
27998 if (c
== die
->die_child
)
28000 /* No marked children between 'prev' and the end of the list. */
28002 /* No marked children at all. */
28003 die
->die_child
= NULL
;
28006 prev
->die_sib
= c
->die_sib
;
28007 die
->die_child
= prev
;
28020 if (c
!= prev
->die_sib
)
28022 prune_unused_types_prune (c
);
28023 } while (c
!= die
->die_child
);
28026 /* Remove dies representing declarations that we never use. */
28029 prune_unused_types (void)
28032 limbo_die_node
*node
;
28033 comdat_type_node
*ctnode
;
28034 pubname_entry
*pub
;
28035 dw_die_ref base_type
;
28037 #if ENABLE_ASSERT_CHECKING
28038 /* All the marks should already be clear. */
28039 verify_marks_clear (comp_unit_die ());
28040 for (node
= limbo_die_list
; node
; node
= node
->next
)
28041 verify_marks_clear (node
->die
);
28042 for (ctnode
= comdat_type_list
; ctnode
; ctnode
= ctnode
->next
)
28043 verify_marks_clear (ctnode
->root_die
);
28044 #endif /* ENABLE_ASSERT_CHECKING */
28046 /* Mark types that are used in global variables. */
28047 premark_types_used_by_global_vars ();
28049 /* Set the mark on nodes that are actually used. */
28050 prune_unused_types_walk (comp_unit_die ());
28051 for (node
= limbo_die_list
; node
; node
= node
->next
)
28052 prune_unused_types_walk (node
->die
);
28053 for (ctnode
= comdat_type_list
; ctnode
; ctnode
= ctnode
->next
)
28055 prune_unused_types_walk (ctnode
->root_die
);
28056 prune_unused_types_mark (ctnode
->type_die
, 1);
28059 /* Also set the mark on nodes referenced from the pubname_table. Enumerators
28060 are unusual in that they are pubnames that are the children of pubtypes.
28061 They should only be marked via their parent DW_TAG_enumeration_type die,
28062 not as roots in themselves. */
28063 FOR_EACH_VEC_ELT (*pubname_table
, i
, pub
)
28064 if (pub
->die
->die_tag
!= DW_TAG_enumerator
)
28065 prune_unused_types_mark (pub
->die
, 1);
28066 for (i
= 0; base_types
.iterate (i
, &base_type
); i
++)
28067 prune_unused_types_mark (base_type
, 1);
28069 /* For -fvar-tracking-assignments, also set the mark on nodes that could be
28070 referenced by DW_TAG_call_site DW_AT_call_origin (i.e. direct call
28072 cgraph_node
*cnode
;
28073 FOR_EACH_FUNCTION (cnode
)
28074 if (cnode
->referred_to_p (false))
28076 dw_die_ref die
= lookup_decl_die (cnode
->decl
);
28077 if (die
== NULL
|| die
->die_mark
)
28079 for (cgraph_edge
*e
= cnode
->callers
; e
; e
= e
->next_caller
)
28080 if (e
->caller
!= cnode
28081 && opt_for_fn (e
->caller
->decl
, flag_var_tracking_assignments
))
28083 prune_unused_types_mark (die
, 1);
28088 if (debug_str_hash
)
28089 debug_str_hash
->empty ();
28090 if (skeleton_debug_str_hash
)
28091 skeleton_debug_str_hash
->empty ();
28092 prune_unused_types_prune (comp_unit_die ());
28093 for (limbo_die_node
**pnode
= &limbo_die_list
; *pnode
; )
28096 if (!node
->die
->die_mark
)
28097 *pnode
= node
->next
;
28100 prune_unused_types_prune (node
->die
);
28101 pnode
= &node
->next
;
28104 for (ctnode
= comdat_type_list
; ctnode
; ctnode
= ctnode
->next
)
28105 prune_unused_types_prune (ctnode
->root_die
);
28107 /* Leave the marks clear. */
28108 prune_unmark_dies (comp_unit_die ());
28109 for (node
= limbo_die_list
; node
; node
= node
->next
)
28110 prune_unmark_dies (node
->die
);
28111 for (ctnode
= comdat_type_list
; ctnode
; ctnode
= ctnode
->next
)
28112 prune_unmark_dies (ctnode
->root_die
);
28115 /* Helpers to manipulate hash table of comdat type units. */
28117 struct comdat_type_hasher
: nofree_ptr_hash
<comdat_type_node
>
28119 static inline hashval_t
hash (const comdat_type_node
*);
28120 static inline bool equal (const comdat_type_node
*, const comdat_type_node
*);
28124 comdat_type_hasher::hash (const comdat_type_node
*type_node
)
28127 memcpy (&h
, type_node
->signature
, sizeof (h
));
28132 comdat_type_hasher::equal (const comdat_type_node
*type_node_1
,
28133 const comdat_type_node
*type_node_2
)
28135 return (! memcmp (type_node_1
->signature
, type_node_2
->signature
,
28136 DWARF_TYPE_SIGNATURE_SIZE
));
28139 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
28140 to the location it would have been added, should we know its
28141 DECL_ASSEMBLER_NAME when we added other attributes. This will
28142 probably improve compactness of debug info, removing equivalent
28143 abbrevs, and hide any differences caused by deferring the
28144 computation of the assembler name, triggered by e.g. PCH. */
28147 move_linkage_attr (dw_die_ref die
)
28149 unsigned ix
= vec_safe_length (die
->die_attr
);
28150 dw_attr_node linkage
= (*die
->die_attr
)[ix
- 1];
28152 gcc_assert (linkage
.dw_attr
== DW_AT_linkage_name
28153 || linkage
.dw_attr
== DW_AT_MIPS_linkage_name
);
28157 dw_attr_node
*prev
= &(*die
->die_attr
)[ix
- 1];
28159 if (prev
->dw_attr
== DW_AT_decl_line
28160 || prev
->dw_attr
== DW_AT_decl_column
28161 || prev
->dw_attr
== DW_AT_name
)
28165 if (ix
!= vec_safe_length (die
->die_attr
) - 1)
28167 die
->die_attr
->pop ();
28168 die
->die_attr
->quick_insert (ix
, linkage
);
28172 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
28173 referenced from typed stack ops and count how often they are used. */
28176 mark_base_types (dw_loc_descr_ref loc
)
28178 dw_die_ref base_type
= NULL
;
28180 for (; loc
; loc
= loc
->dw_loc_next
)
28182 switch (loc
->dw_loc_opc
)
28184 case DW_OP_regval_type
:
28185 case DW_OP_deref_type
:
28186 case DW_OP_GNU_regval_type
:
28187 case DW_OP_GNU_deref_type
:
28188 base_type
= loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
;
28190 case DW_OP_convert
:
28191 case DW_OP_reinterpret
:
28192 case DW_OP_GNU_convert
:
28193 case DW_OP_GNU_reinterpret
:
28194 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_unsigned_const
)
28197 case DW_OP_const_type
:
28198 case DW_OP_GNU_const_type
:
28199 base_type
= loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
28201 case DW_OP_entry_value
:
28202 case DW_OP_GNU_entry_value
:
28203 mark_base_types (loc
->dw_loc_oprnd1
.v
.val_loc
);
28208 gcc_assert (base_type
->die_parent
== comp_unit_die ());
28209 if (base_type
->die_mark
)
28210 base_type
->die_mark
++;
28213 base_types
.safe_push (base_type
);
28214 base_type
->die_mark
= 1;
28219 /* Comparison function for sorting marked base types. */
28222 base_type_cmp (const void *x
, const void *y
)
28224 dw_die_ref dx
= *(const dw_die_ref
*) x
;
28225 dw_die_ref dy
= *(const dw_die_ref
*) y
;
28226 unsigned int byte_size1
, byte_size2
;
28227 unsigned int encoding1
, encoding2
;
28228 unsigned int align1
, align2
;
28229 if (dx
->die_mark
> dy
->die_mark
)
28231 if (dx
->die_mark
< dy
->die_mark
)
28233 byte_size1
= get_AT_unsigned (dx
, DW_AT_byte_size
);
28234 byte_size2
= get_AT_unsigned (dy
, DW_AT_byte_size
);
28235 if (byte_size1
< byte_size2
)
28237 if (byte_size1
> byte_size2
)
28239 encoding1
= get_AT_unsigned (dx
, DW_AT_encoding
);
28240 encoding2
= get_AT_unsigned (dy
, DW_AT_encoding
);
28241 if (encoding1
< encoding2
)
28243 if (encoding1
> encoding2
)
28245 align1
= get_AT_unsigned (dx
, DW_AT_alignment
);
28246 align2
= get_AT_unsigned (dy
, DW_AT_alignment
);
28247 if (align1
< align2
)
28249 if (align1
> align2
)
28254 /* Move base types marked by mark_base_types as early as possible
28255 in the CU, sorted by decreasing usage count both to make the
28256 uleb128 references as small as possible and to make sure they
28257 will have die_offset already computed by calc_die_sizes when
28258 sizes of typed stack loc ops is computed. */
28261 move_marked_base_types (void)
28264 dw_die_ref base_type
, die
, c
;
28266 if (base_types
.is_empty ())
28269 /* Sort by decreasing usage count, they will be added again in that
28271 base_types
.qsort (base_type_cmp
);
28272 die
= comp_unit_die ();
28273 c
= die
->die_child
;
28276 dw_die_ref prev
= c
;
28278 while (c
->die_mark
)
28280 remove_child_with_prev (c
, prev
);
28281 /* As base types got marked, there must be at least
28282 one node other than DW_TAG_base_type. */
28283 gcc_assert (die
->die_child
!= NULL
);
28287 while (c
!= die
->die_child
);
28288 gcc_assert (die
->die_child
);
28289 c
= die
->die_child
;
28290 for (i
= 0; base_types
.iterate (i
, &base_type
); i
++)
28292 base_type
->die_mark
= 0;
28293 base_type
->die_sib
= c
->die_sib
;
28294 c
->die_sib
= base_type
;
28299 /* Helper function for resolve_addr, attempt to resolve
28300 one CONST_STRING, return true if successful. Similarly verify that
28301 SYMBOL_REFs refer to variables emitted in the current CU. */
28304 resolve_one_addr (rtx
*addr
)
28308 if (GET_CODE (rtl
) == CONST_STRING
)
28310 size_t len
= strlen (XSTR (rtl
, 0)) + 1;
28311 tree t
= build_string (len
, XSTR (rtl
, 0));
28312 tree tlen
= size_int (len
- 1);
28314 = build_array_type (char_type_node
, build_index_type (tlen
));
28315 rtl
= lookup_constant_def (t
);
28316 if (!rtl
|| !MEM_P (rtl
))
28318 rtl
= XEXP (rtl
, 0);
28319 if (GET_CODE (rtl
) == SYMBOL_REF
28320 && SYMBOL_REF_DECL (rtl
)
28321 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl
)))
28323 vec_safe_push (used_rtx_array
, rtl
);
28328 if (GET_CODE (rtl
) == SYMBOL_REF
28329 && SYMBOL_REF_DECL (rtl
))
28331 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl
))
28333 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl
))))
28336 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl
)))
28340 if (GET_CODE (rtl
) == CONST
)
28342 subrtx_ptr_iterator::array_type array
;
28343 FOR_EACH_SUBRTX_PTR (iter
, array
, &XEXP (rtl
, 0), ALL
)
28344 if (!resolve_one_addr (*iter
))
28351 /* For STRING_CST, return SYMBOL_REF of its constant pool entry,
28352 if possible, and create DW_TAG_dwarf_procedure that can be referenced
28353 from DW_OP_implicit_pointer if the string hasn't been seen yet. */
28356 string_cst_pool_decl (tree t
)
28358 rtx rtl
= output_constant_def (t
, 1);
28359 unsigned char *array
;
28360 dw_loc_descr_ref l
;
28365 if (!rtl
|| !MEM_P (rtl
))
28367 rtl
= XEXP (rtl
, 0);
28368 if (GET_CODE (rtl
) != SYMBOL_REF
28369 || SYMBOL_REF_DECL (rtl
) == NULL_TREE
)
28372 decl
= SYMBOL_REF_DECL (rtl
);
28373 if (!lookup_decl_die (decl
))
28375 len
= TREE_STRING_LENGTH (t
);
28376 vec_safe_push (used_rtx_array
, rtl
);
28377 ref
= new_die (DW_TAG_dwarf_procedure
, comp_unit_die (), decl
);
28378 array
= ggc_vec_alloc
<unsigned char> (len
);
28379 memcpy (array
, TREE_STRING_POINTER (t
), len
);
28380 l
= new_loc_descr (DW_OP_implicit_value
, len
, 0);
28381 l
->dw_loc_oprnd2
.val_class
= dw_val_class_vec
;
28382 l
->dw_loc_oprnd2
.v
.val_vec
.length
= len
;
28383 l
->dw_loc_oprnd2
.v
.val_vec
.elt_size
= 1;
28384 l
->dw_loc_oprnd2
.v
.val_vec
.array
= array
;
28385 add_AT_loc (ref
, DW_AT_location
, l
);
28386 equate_decl_number_to_die (decl
, ref
);
28391 /* Helper function of resolve_addr_in_expr. LOC is
28392 a DW_OP_addr followed by DW_OP_stack_value, either at the start
28393 of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
28394 resolved. Replace it (both DW_OP_addr and DW_OP_stack_value)
28395 with DW_OP_implicit_pointer if possible
28396 and return true, if unsuccessful, return false. */
28399 optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc
)
28401 rtx rtl
= loc
->dw_loc_oprnd1
.v
.val_addr
;
28402 HOST_WIDE_INT offset
= 0;
28403 dw_die_ref ref
= NULL
;
28406 if (GET_CODE (rtl
) == CONST
28407 && GET_CODE (XEXP (rtl
, 0)) == PLUS
28408 && CONST_INT_P (XEXP (XEXP (rtl
, 0), 1)))
28410 offset
= INTVAL (XEXP (XEXP (rtl
, 0), 1));
28411 rtl
= XEXP (XEXP (rtl
, 0), 0);
28413 if (GET_CODE (rtl
) == CONST_STRING
)
28415 size_t len
= strlen (XSTR (rtl
, 0)) + 1;
28416 tree t
= build_string (len
, XSTR (rtl
, 0));
28417 tree tlen
= size_int (len
- 1);
28420 = build_array_type (char_type_node
, build_index_type (tlen
));
28421 rtl
= string_cst_pool_decl (t
);
28425 if (GET_CODE (rtl
) == SYMBOL_REF
&& SYMBOL_REF_DECL (rtl
))
28427 decl
= SYMBOL_REF_DECL (rtl
);
28428 if (VAR_P (decl
) && !DECL_EXTERNAL (decl
))
28430 ref
= lookup_decl_die (decl
);
28431 if (ref
&& (get_AT (ref
, DW_AT_location
)
28432 || get_AT (ref
, DW_AT_const_value
)))
28434 loc
->dw_loc_opc
= dwarf_OP (DW_OP_implicit_pointer
);
28435 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
28436 loc
->dw_loc_oprnd1
.val_entry
= NULL
;
28437 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
28438 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
28439 loc
->dw_loc_next
= loc
->dw_loc_next
->dw_loc_next
;
28440 loc
->dw_loc_oprnd2
.v
.val_int
= offset
;
28448 /* Helper function for resolve_addr, handle one location
28449 expression, return false if at least one CONST_STRING or SYMBOL_REF in
28450 the location list couldn't be resolved. */
28453 resolve_addr_in_expr (dw_attr_node
*a
, dw_loc_descr_ref loc
)
28455 dw_loc_descr_ref keep
= NULL
;
28456 for (dw_loc_descr_ref prev
= NULL
; loc
; prev
= loc
, loc
= loc
->dw_loc_next
)
28457 switch (loc
->dw_loc_opc
)
28460 if (!resolve_one_addr (&loc
->dw_loc_oprnd1
.v
.val_addr
))
28463 || prev
->dw_loc_opc
== DW_OP_piece
28464 || prev
->dw_loc_opc
== DW_OP_bit_piece
)
28465 && loc
->dw_loc_next
28466 && loc
->dw_loc_next
->dw_loc_opc
== DW_OP_stack_value
28467 && (!dwarf_strict
|| dwarf_version
>= 5)
28468 && optimize_one_addr_into_implicit_ptr (loc
))
28473 case DW_OP_GNU_addr_index
:
28474 case DW_OP_GNU_const_index
:
28475 if (loc
->dw_loc_opc
== DW_OP_GNU_addr_index
28476 || (loc
->dw_loc_opc
== DW_OP_GNU_const_index
&& loc
->dtprel
))
28478 rtx rtl
= loc
->dw_loc_oprnd1
.val_entry
->addr
.rtl
;
28479 if (!resolve_one_addr (&rtl
))
28481 remove_addr_table_entry (loc
->dw_loc_oprnd1
.val_entry
);
28482 loc
->dw_loc_oprnd1
.val_entry
28483 = add_addr_table_entry (rtl
, ate_kind_rtx
);
28486 case DW_OP_const4u
:
28487 case DW_OP_const8u
:
28489 && !resolve_one_addr (&loc
->dw_loc_oprnd1
.v
.val_addr
))
28492 case DW_OP_plus_uconst
:
28493 if (size_of_loc_descr (loc
)
28494 > size_of_int_loc_descriptor (loc
->dw_loc_oprnd1
.v
.val_unsigned
)
28496 && loc
->dw_loc_oprnd1
.v
.val_unsigned
> 0)
28498 dw_loc_descr_ref repl
28499 = int_loc_descriptor (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
28500 add_loc_descr (&repl
, new_loc_descr (DW_OP_plus
, 0, 0));
28501 add_loc_descr (&repl
, loc
->dw_loc_next
);
28505 case DW_OP_implicit_value
:
28506 if (loc
->dw_loc_oprnd2
.val_class
== dw_val_class_addr
28507 && !resolve_one_addr (&loc
->dw_loc_oprnd2
.v
.val_addr
))
28510 case DW_OP_implicit_pointer
:
28511 case DW_OP_GNU_implicit_pointer
:
28512 case DW_OP_GNU_parameter_ref
:
28513 case DW_OP_GNU_variable_value
:
28514 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_decl_ref
)
28517 = lookup_decl_die (loc
->dw_loc_oprnd1
.v
.val_decl_ref
);
28520 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
28521 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
28522 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
28524 if (loc
->dw_loc_opc
== DW_OP_GNU_variable_value
)
28527 && loc
->dw_loc_next
== NULL
28528 && AT_class (a
) == dw_val_class_loc
)
28529 switch (a
->dw_attr
)
28531 /* Following attributes allow both exprloc and reference,
28532 so if the whole expression is DW_OP_GNU_variable_value
28533 alone we could transform it into reference. */
28534 case DW_AT_byte_size
:
28535 case DW_AT_bit_size
:
28536 case DW_AT_lower_bound
:
28537 case DW_AT_upper_bound
:
28538 case DW_AT_bit_stride
:
28540 case DW_AT_allocated
:
28541 case DW_AT_associated
:
28542 case DW_AT_byte_stride
:
28543 a
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
28544 a
->dw_attr_val
.val_entry
= NULL
;
28545 a
->dw_attr_val
.v
.val_die_ref
.die
28546 = loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
28547 a
->dw_attr_val
.v
.val_die_ref
.external
= 0;
28556 case DW_OP_const_type
:
28557 case DW_OP_regval_type
:
28558 case DW_OP_deref_type
:
28559 case DW_OP_convert
:
28560 case DW_OP_reinterpret
:
28561 case DW_OP_GNU_const_type
:
28562 case DW_OP_GNU_regval_type
:
28563 case DW_OP_GNU_deref_type
:
28564 case DW_OP_GNU_convert
:
28565 case DW_OP_GNU_reinterpret
:
28566 while (loc
->dw_loc_next
28567 && (loc
->dw_loc_next
->dw_loc_opc
== DW_OP_convert
28568 || loc
->dw_loc_next
->dw_loc_opc
== DW_OP_GNU_convert
))
28570 dw_die_ref base1
, base2
;
28571 unsigned enc1
, enc2
, size1
, size2
;
28572 if (loc
->dw_loc_opc
== DW_OP_regval_type
28573 || loc
->dw_loc_opc
== DW_OP_deref_type
28574 || loc
->dw_loc_opc
== DW_OP_GNU_regval_type
28575 || loc
->dw_loc_opc
== DW_OP_GNU_deref_type
)
28576 base1
= loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
;
28577 else if (loc
->dw_loc_oprnd1
.val_class
28578 == dw_val_class_unsigned_const
)
28581 base1
= loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
28582 if (loc
->dw_loc_next
->dw_loc_oprnd1
.val_class
28583 == dw_val_class_unsigned_const
)
28585 base2
= loc
->dw_loc_next
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
28586 gcc_assert (base1
->die_tag
== DW_TAG_base_type
28587 && base2
->die_tag
== DW_TAG_base_type
);
28588 enc1
= get_AT_unsigned (base1
, DW_AT_encoding
);
28589 enc2
= get_AT_unsigned (base2
, DW_AT_encoding
);
28590 size1
= get_AT_unsigned (base1
, DW_AT_byte_size
);
28591 size2
= get_AT_unsigned (base2
, DW_AT_byte_size
);
28593 && (((enc1
== DW_ATE_unsigned
|| enc1
== DW_ATE_signed
)
28594 && (enc2
== DW_ATE_unsigned
|| enc2
== DW_ATE_signed
)
28598 /* Optimize away next DW_OP_convert after
28599 adjusting LOC's base type die reference. */
28600 if (loc
->dw_loc_opc
== DW_OP_regval_type
28601 || loc
->dw_loc_opc
== DW_OP_deref_type
28602 || loc
->dw_loc_opc
== DW_OP_GNU_regval_type
28603 || loc
->dw_loc_opc
== DW_OP_GNU_deref_type
)
28604 loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
= base2
;
28606 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= base2
;
28607 loc
->dw_loc_next
= loc
->dw_loc_next
->dw_loc_next
;
28610 /* Don't change integer DW_OP_convert after e.g. floating
28611 point typed stack entry. */
28612 else if (enc1
!= DW_ATE_unsigned
&& enc1
!= DW_ATE_signed
)
28613 keep
= loc
->dw_loc_next
;
28623 /* Helper function of resolve_addr. DIE had DW_AT_location of
28624 DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
28625 and DW_OP_addr couldn't be resolved. resolve_addr has already
28626 removed the DW_AT_location attribute. This function attempts to
28627 add a new DW_AT_location attribute with DW_OP_implicit_pointer
28628 to it or DW_AT_const_value attribute, if possible. */
28631 optimize_location_into_implicit_ptr (dw_die_ref die
, tree decl
)
28634 || lookup_decl_die (decl
) != die
28635 || DECL_EXTERNAL (decl
)
28636 || !TREE_STATIC (decl
)
28637 || DECL_INITIAL (decl
) == NULL_TREE
28638 || DECL_P (DECL_INITIAL (decl
))
28639 || get_AT (die
, DW_AT_const_value
))
28642 tree init
= DECL_INITIAL (decl
);
28643 HOST_WIDE_INT offset
= 0;
28644 /* For variables that have been optimized away and thus
28645 don't have a memory location, see if we can emit
28646 DW_AT_const_value instead. */
28647 if (tree_add_const_value_attribute (die
, init
))
28649 if (dwarf_strict
&& dwarf_version
< 5)
28651 /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
28652 and ADDR_EXPR refers to a decl that has DW_AT_location or
28653 DW_AT_const_value (but isn't addressable, otherwise
28654 resolving the original DW_OP_addr wouldn't fail), see if
28655 we can add DW_OP_implicit_pointer. */
28657 if (TREE_CODE (init
) == POINTER_PLUS_EXPR
28658 && tree_fits_shwi_p (TREE_OPERAND (init
, 1)))
28660 offset
= tree_to_shwi (TREE_OPERAND (init
, 1));
28661 init
= TREE_OPERAND (init
, 0);
28664 if (TREE_CODE (init
) != ADDR_EXPR
)
28666 if ((TREE_CODE (TREE_OPERAND (init
, 0)) == STRING_CST
28667 && !TREE_ASM_WRITTEN (TREE_OPERAND (init
, 0)))
28668 || (TREE_CODE (TREE_OPERAND (init
, 0)) == VAR_DECL
28669 && !DECL_EXTERNAL (TREE_OPERAND (init
, 0))
28670 && TREE_OPERAND (init
, 0) != decl
))
28673 dw_loc_descr_ref l
;
28675 if (TREE_CODE (TREE_OPERAND (init
, 0)) == STRING_CST
)
28677 rtx rtl
= string_cst_pool_decl (TREE_OPERAND (init
, 0));
28680 decl
= SYMBOL_REF_DECL (rtl
);
28683 decl
= TREE_OPERAND (init
, 0);
28684 ref
= lookup_decl_die (decl
);
28686 || (!get_AT (ref
, DW_AT_location
)
28687 && !get_AT (ref
, DW_AT_const_value
)))
28689 l
= new_loc_descr (dwarf_OP (DW_OP_implicit_pointer
), 0, offset
);
28690 l
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
28691 l
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
28692 l
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
28693 add_AT_loc (die
, DW_AT_location
, l
);
28697 /* Return NULL if l is a DWARF expression, or first op that is not
28698 valid DWARF expression. */
28700 static dw_loc_descr_ref
28701 non_dwarf_expression (dw_loc_descr_ref l
)
28705 if (l
->dw_loc_opc
>= DW_OP_reg0
&& l
->dw_loc_opc
<= DW_OP_reg31
)
28707 switch (l
->dw_loc_opc
)
28710 case DW_OP_implicit_value
:
28711 case DW_OP_stack_value
:
28712 case DW_OP_implicit_pointer
:
28713 case DW_OP_GNU_implicit_pointer
:
28714 case DW_OP_GNU_parameter_ref
:
28716 case DW_OP_bit_piece
:
28721 l
= l
->dw_loc_next
;
28726 /* Return adjusted copy of EXPR:
28727 If it is empty DWARF expression, return it.
28728 If it is valid non-empty DWARF expression,
28729 return copy of EXPR with DW_OP_deref appended to it.
28730 If it is DWARF expression followed by DW_OP_reg{N,x}, return
28731 copy of the DWARF expression with DW_OP_breg{N,x} <0> appended.
28732 If it is DWARF expression followed by DW_OP_stack_value, return
28733 copy of the DWARF expression without anything appended.
28734 Otherwise, return NULL. */
28736 static dw_loc_descr_ref
28737 copy_deref_exprloc (dw_loc_descr_ref expr
)
28739 dw_loc_descr_ref tail
= NULL
;
28744 dw_loc_descr_ref l
= non_dwarf_expression (expr
);
28745 if (l
&& l
->dw_loc_next
)
28750 if (l
->dw_loc_opc
>= DW_OP_reg0
&& l
->dw_loc_opc
<= DW_OP_reg31
)
28751 tail
= new_loc_descr ((enum dwarf_location_atom
)
28752 (DW_OP_breg0
+ (l
->dw_loc_opc
- DW_OP_reg0
)),
28755 switch (l
->dw_loc_opc
)
28758 tail
= new_loc_descr (DW_OP_bregx
,
28759 l
->dw_loc_oprnd1
.v
.val_unsigned
, 0);
28761 case DW_OP_stack_value
:
28768 tail
= new_loc_descr (DW_OP_deref
, 0, 0);
28770 dw_loc_descr_ref ret
= NULL
, *p
= &ret
;
28773 *p
= new_loc_descr (expr
->dw_loc_opc
, 0, 0);
28774 (*p
)->dw_loc_oprnd1
= expr
->dw_loc_oprnd1
;
28775 (*p
)->dw_loc_oprnd2
= expr
->dw_loc_oprnd2
;
28776 p
= &(*p
)->dw_loc_next
;
28777 expr
= expr
->dw_loc_next
;
28783 /* For DW_AT_string_length attribute with DW_OP_GNU_variable_value
28784 reference to a variable or argument, adjust it if needed and return:
28785 -1 if the DW_AT_string_length attribute and DW_AT_{string_length_,}byte_size
28786 attribute if present should be removed
28787 0 keep the attribute perhaps with minor modifications, no need to rescan
28788 1 if the attribute has been successfully adjusted. */
28791 optimize_string_length (dw_attr_node
*a
)
28793 dw_loc_descr_ref l
= AT_loc (a
), lv
;
28795 if (l
->dw_loc_oprnd1
.val_class
== dw_val_class_decl_ref
)
28797 tree decl
= l
->dw_loc_oprnd1
.v
.val_decl_ref
;
28798 die
= lookup_decl_die (decl
);
28801 l
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
28802 l
->dw_loc_oprnd1
.v
.val_die_ref
.die
= die
;
28803 l
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
28809 die
= l
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
28811 /* DWARF5 allows reference class, so we can then reference the DIE.
28812 Only do this for DW_OP_GNU_variable_value DW_OP_stack_value. */
28813 if (l
->dw_loc_next
!= NULL
&& dwarf_version
>= 5)
28815 a
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
28816 a
->dw_attr_val
.val_entry
= NULL
;
28817 a
->dw_attr_val
.v
.val_die_ref
.die
= die
;
28818 a
->dw_attr_val
.v
.val_die_ref
.external
= 0;
28822 dw_attr_node
*av
= get_AT (die
, DW_AT_location
);
28824 bool non_dwarf_expr
= false;
28827 return dwarf_strict
? -1 : 0;
28828 switch (AT_class (av
))
28830 case dw_val_class_loc_list
:
28831 for (d
= AT_loc_list (av
); d
!= NULL
; d
= d
->dw_loc_next
)
28832 if (d
->expr
&& non_dwarf_expression (d
->expr
))
28833 non_dwarf_expr
= true;
28835 case dw_val_class_loc
:
28838 return dwarf_strict
? -1 : 0;
28839 if (non_dwarf_expression (lv
))
28840 non_dwarf_expr
= true;
28843 return dwarf_strict
? -1 : 0;
28846 /* If it is safe to transform DW_OP_GNU_variable_value DW_OP_stack_value
28847 into DW_OP_call4 or DW_OP_GNU_variable_value into
28848 DW_OP_call4 DW_OP_deref, do so. */
28849 if (!non_dwarf_expr
28850 && (l
->dw_loc_next
!= NULL
|| AT_class (av
) == dw_val_class_loc
))
28852 l
->dw_loc_opc
= DW_OP_call4
;
28853 if (l
->dw_loc_next
)
28854 l
->dw_loc_next
= NULL
;
28856 l
->dw_loc_next
= new_loc_descr (DW_OP_deref
, 0, 0);
28860 /* For DW_OP_GNU_variable_value DW_OP_stack_value, we can just
28861 copy over the DW_AT_location attribute from die to a. */
28862 if (l
->dw_loc_next
!= NULL
)
28864 a
->dw_attr_val
= av
->dw_attr_val
;
28868 dw_loc_list_ref list
, *p
;
28869 switch (AT_class (av
))
28871 case dw_val_class_loc_list
:
28874 for (d
= AT_loc_list (av
); d
!= NULL
; d
= d
->dw_loc_next
)
28876 lv
= copy_deref_exprloc (d
->expr
);
28879 *p
= new_loc_list (lv
, d
->begin
, d
->end
, d
->section
);
28880 p
= &(*p
)->dw_loc_next
;
28882 else if (!dwarf_strict
&& d
->expr
)
28886 return dwarf_strict
? -1 : 0;
28887 a
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
28889 *AT_loc_list_ptr (a
) = list
;
28891 case dw_val_class_loc
:
28892 lv
= copy_deref_exprloc (AT_loc (av
));
28894 return dwarf_strict
? -1 : 0;
28895 a
->dw_attr_val
.v
.val_loc
= lv
;
28898 gcc_unreachable ();
28902 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
28903 an address in .rodata section if the string literal is emitted there,
28904 or remove the containing location list or replace DW_AT_const_value
28905 with DW_AT_location and empty location expression, if it isn't found
28906 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
28907 to something that has been emitted in the current CU. */
28910 resolve_addr (dw_die_ref die
)
28914 dw_loc_list_ref
*curr
, *start
, loc
;
28916 bool remove_AT_byte_size
= false;
28918 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
28919 switch (AT_class (a
))
28921 case dw_val_class_loc_list
:
28922 start
= curr
= AT_loc_list_ptr (a
);
28925 /* The same list can be referenced more than once. See if we have
28926 already recorded the result from a previous pass. */
28928 *curr
= loc
->dw_loc_next
;
28929 else if (!loc
->resolved_addr
)
28931 /* As things stand, we do not expect or allow one die to
28932 reference a suffix of another die's location list chain.
28933 References must be identical or completely separate.
28934 There is therefore no need to cache the result of this
28935 pass on any list other than the first; doing so
28936 would lead to unnecessary writes. */
28939 gcc_assert (!(*curr
)->replaced
&& !(*curr
)->resolved_addr
);
28940 if (!resolve_addr_in_expr (a
, (*curr
)->expr
))
28942 dw_loc_list_ref next
= (*curr
)->dw_loc_next
;
28943 dw_loc_descr_ref l
= (*curr
)->expr
;
28945 if (next
&& (*curr
)->ll_symbol
)
28947 gcc_assert (!next
->ll_symbol
);
28948 next
->ll_symbol
= (*curr
)->ll_symbol
;
28950 if (dwarf_split_debug_info
)
28951 remove_loc_list_addr_table_entries (l
);
28956 mark_base_types ((*curr
)->expr
);
28957 curr
= &(*curr
)->dw_loc_next
;
28961 loc
->resolved_addr
= 1;
28965 loc
->dw_loc_next
= *start
;
28970 remove_AT (die
, a
->dw_attr
);
28974 case dw_val_class_loc
:
28976 dw_loc_descr_ref l
= AT_loc (a
);
28977 /* DW_OP_GNU_variable_value DW_OP_stack_value or
28978 DW_OP_GNU_variable_value in DW_AT_string_length can be converted
28979 into DW_OP_call4 or DW_OP_call4 DW_OP_deref, which is standard
28980 DWARF4 unlike DW_OP_GNU_variable_value. Or for DWARF5
28981 DW_OP_GNU_variable_value DW_OP_stack_value can be replaced
28982 with DW_FORM_ref referencing the same DIE as
28983 DW_OP_GNU_variable_value used to reference. */
28984 if (a
->dw_attr
== DW_AT_string_length
28986 && l
->dw_loc_opc
== DW_OP_GNU_variable_value
28987 && (l
->dw_loc_next
== NULL
28988 || (l
->dw_loc_next
->dw_loc_next
== NULL
28989 && l
->dw_loc_next
->dw_loc_opc
== DW_OP_stack_value
)))
28991 switch (optimize_string_length (a
))
28994 remove_AT (die
, a
->dw_attr
);
28996 /* If we drop DW_AT_string_length, we need to drop also
28997 DW_AT_{string_length_,}byte_size. */
28998 remove_AT_byte_size
= true;
29003 /* Even if we keep the optimized DW_AT_string_length,
29004 it might have changed AT_class, so process it again. */
29009 /* For -gdwarf-2 don't attempt to optimize
29010 DW_AT_data_member_location containing
29011 DW_OP_plus_uconst - older consumers might
29012 rely on it being that op instead of a more complex,
29013 but shorter, location description. */
29014 if ((dwarf_version
> 2
29015 || a
->dw_attr
!= DW_AT_data_member_location
29017 || l
->dw_loc_opc
!= DW_OP_plus_uconst
29018 || l
->dw_loc_next
!= NULL
)
29019 && !resolve_addr_in_expr (a
, l
))
29021 if (dwarf_split_debug_info
)
29022 remove_loc_list_addr_table_entries (l
);
29024 && l
->dw_loc_next
== NULL
29025 && l
->dw_loc_opc
== DW_OP_addr
29026 && GET_CODE (l
->dw_loc_oprnd1
.v
.val_addr
) == SYMBOL_REF
29027 && SYMBOL_REF_DECL (l
->dw_loc_oprnd1
.v
.val_addr
)
29028 && a
->dw_attr
== DW_AT_location
)
29030 tree decl
= SYMBOL_REF_DECL (l
->dw_loc_oprnd1
.v
.val_addr
);
29031 remove_AT (die
, a
->dw_attr
);
29033 optimize_location_into_implicit_ptr (die
, decl
);
29036 if (a
->dw_attr
== DW_AT_string_length
)
29037 /* If we drop DW_AT_string_length, we need to drop also
29038 DW_AT_{string_length_,}byte_size. */
29039 remove_AT_byte_size
= true;
29040 remove_AT (die
, a
->dw_attr
);
29044 mark_base_types (l
);
29047 case dw_val_class_addr
:
29048 if (a
->dw_attr
== DW_AT_const_value
29049 && !resolve_one_addr (&a
->dw_attr_val
.v
.val_addr
))
29051 if (AT_index (a
) != NOT_INDEXED
)
29052 remove_addr_table_entry (a
->dw_attr_val
.val_entry
);
29053 remove_AT (die
, a
->dw_attr
);
29056 if ((die
->die_tag
== DW_TAG_call_site
29057 && a
->dw_attr
== DW_AT_call_origin
)
29058 || (die
->die_tag
== DW_TAG_GNU_call_site
29059 && a
->dw_attr
== DW_AT_abstract_origin
))
29061 tree tdecl
= SYMBOL_REF_DECL (a
->dw_attr_val
.v
.val_addr
);
29062 dw_die_ref tdie
= lookup_decl_die (tdecl
);
29065 && DECL_EXTERNAL (tdecl
)
29066 && DECL_ABSTRACT_ORIGIN (tdecl
) == NULL_TREE
29067 && (cdie
= lookup_context_die (DECL_CONTEXT (tdecl
))))
29069 dw_die_ref pdie
= cdie
;
29070 /* Make sure we don't add these DIEs into type units.
29071 We could emit skeleton DIEs for context (namespaces,
29072 outer structs/classes) and a skeleton DIE for the
29073 innermost context with DW_AT_signature pointing to the
29074 type unit. See PR78835. */
29075 while (pdie
&& pdie
->die_tag
!= DW_TAG_type_unit
)
29076 pdie
= pdie
->die_parent
;
29079 /* Creating a full DIE for tdecl is overly expensive and
29080 at this point even wrong when in the LTO phase
29081 as it can end up generating new type DIEs we didn't
29082 output and thus optimize_external_refs will crash. */
29083 tdie
= new_die (DW_TAG_subprogram
, cdie
, NULL_TREE
);
29084 add_AT_flag (tdie
, DW_AT_external
, 1);
29085 add_AT_flag (tdie
, DW_AT_declaration
, 1);
29086 add_linkage_attr (tdie
, tdecl
);
29087 add_name_and_src_coords_attributes (tdie
, tdecl
, true);
29088 equate_decl_number_to_die (tdecl
, tdie
);
29093 a
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
29094 a
->dw_attr_val
.v
.val_die_ref
.die
= tdie
;
29095 a
->dw_attr_val
.v
.val_die_ref
.external
= 0;
29099 if (AT_index (a
) != NOT_INDEXED
)
29100 remove_addr_table_entry (a
->dw_attr_val
.val_entry
);
29101 remove_AT (die
, a
->dw_attr
);
29110 if (remove_AT_byte_size
)
29111 remove_AT (die
, dwarf_version
>= 5
29112 ? DW_AT_string_length_byte_size
29113 : DW_AT_byte_size
);
29115 FOR_EACH_CHILD (die
, c
, resolve_addr (c
));
29118 /* Helper routines for optimize_location_lists.
29119 This pass tries to share identical local lists in .debug_loc
29122 /* Iteratively hash operands of LOC opcode into HSTATE. */
29125 hash_loc_operands (dw_loc_descr_ref loc
, inchash::hash
&hstate
)
29127 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
29128 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
29130 switch (loc
->dw_loc_opc
)
29132 case DW_OP_const4u
:
29133 case DW_OP_const8u
:
29137 case DW_OP_const1u
:
29138 case DW_OP_const1s
:
29139 case DW_OP_const2u
:
29140 case DW_OP_const2s
:
29141 case DW_OP_const4s
:
29142 case DW_OP_const8s
:
29146 case DW_OP_plus_uconst
:
29182 case DW_OP_deref_size
:
29183 case DW_OP_xderef_size
:
29184 hstate
.add_object (val1
->v
.val_int
);
29191 gcc_assert (val1
->val_class
== dw_val_class_loc
);
29192 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
29193 hstate
.add_object (offset
);
29196 case DW_OP_implicit_value
:
29197 hstate
.add_object (val1
->v
.val_unsigned
);
29198 switch (val2
->val_class
)
29200 case dw_val_class_const
:
29201 hstate
.add_object (val2
->v
.val_int
);
29203 case dw_val_class_vec
:
29205 unsigned int elt_size
= val2
->v
.val_vec
.elt_size
;
29206 unsigned int len
= val2
->v
.val_vec
.length
;
29208 hstate
.add_int (elt_size
);
29209 hstate
.add_int (len
);
29210 hstate
.add (val2
->v
.val_vec
.array
, len
* elt_size
);
29213 case dw_val_class_const_double
:
29214 hstate
.add_object (val2
->v
.val_double
.low
);
29215 hstate
.add_object (val2
->v
.val_double
.high
);
29217 case dw_val_class_wide_int
:
29218 hstate
.add (val2
->v
.val_wide
->get_val (),
29219 get_full_len (*val2
->v
.val_wide
)
29220 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
29222 case dw_val_class_addr
:
29223 inchash::add_rtx (val2
->v
.val_addr
, hstate
);
29226 gcc_unreachable ();
29230 case DW_OP_bit_piece
:
29231 hstate
.add_object (val1
->v
.val_int
);
29232 hstate
.add_object (val2
->v
.val_int
);
29238 unsigned char dtprel
= 0xd1;
29239 hstate
.add_object (dtprel
);
29241 inchash::add_rtx (val1
->v
.val_addr
, hstate
);
29243 case DW_OP_GNU_addr_index
:
29244 case DW_OP_GNU_const_index
:
29248 unsigned char dtprel
= 0xd1;
29249 hstate
.add_object (dtprel
);
29251 inchash::add_rtx (val1
->val_entry
->addr
.rtl
, hstate
);
29254 case DW_OP_implicit_pointer
:
29255 case DW_OP_GNU_implicit_pointer
:
29256 hstate
.add_int (val2
->v
.val_int
);
29258 case DW_OP_entry_value
:
29259 case DW_OP_GNU_entry_value
:
29260 hstate
.add_object (val1
->v
.val_loc
);
29262 case DW_OP_regval_type
:
29263 case DW_OP_deref_type
:
29264 case DW_OP_GNU_regval_type
:
29265 case DW_OP_GNU_deref_type
:
29267 unsigned int byte_size
29268 = get_AT_unsigned (val2
->v
.val_die_ref
.die
, DW_AT_byte_size
);
29269 unsigned int encoding
29270 = get_AT_unsigned (val2
->v
.val_die_ref
.die
, DW_AT_encoding
);
29271 hstate
.add_object (val1
->v
.val_int
);
29272 hstate
.add_object (byte_size
);
29273 hstate
.add_object (encoding
);
29276 case DW_OP_convert
:
29277 case DW_OP_reinterpret
:
29278 case DW_OP_GNU_convert
:
29279 case DW_OP_GNU_reinterpret
:
29280 if (val1
->val_class
== dw_val_class_unsigned_const
)
29282 hstate
.add_object (val1
->v
.val_unsigned
);
29286 case DW_OP_const_type
:
29287 case DW_OP_GNU_const_type
:
29289 unsigned int byte_size
29290 = get_AT_unsigned (val1
->v
.val_die_ref
.die
, DW_AT_byte_size
);
29291 unsigned int encoding
29292 = get_AT_unsigned (val1
->v
.val_die_ref
.die
, DW_AT_encoding
);
29293 hstate
.add_object (byte_size
);
29294 hstate
.add_object (encoding
);
29295 if (loc
->dw_loc_opc
!= DW_OP_const_type
29296 && loc
->dw_loc_opc
!= DW_OP_GNU_const_type
)
29298 hstate
.add_object (val2
->val_class
);
29299 switch (val2
->val_class
)
29301 case dw_val_class_const
:
29302 hstate
.add_object (val2
->v
.val_int
);
29304 case dw_val_class_vec
:
29306 unsigned int elt_size
= val2
->v
.val_vec
.elt_size
;
29307 unsigned int len
= val2
->v
.val_vec
.length
;
29309 hstate
.add_object (elt_size
);
29310 hstate
.add_object (len
);
29311 hstate
.add (val2
->v
.val_vec
.array
, len
* elt_size
);
29314 case dw_val_class_const_double
:
29315 hstate
.add_object (val2
->v
.val_double
.low
);
29316 hstate
.add_object (val2
->v
.val_double
.high
);
29318 case dw_val_class_wide_int
:
29319 hstate
.add (val2
->v
.val_wide
->get_val (),
29320 get_full_len (*val2
->v
.val_wide
)
29321 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
29324 gcc_unreachable ();
29330 /* Other codes have no operands. */
29335 /* Iteratively hash the whole DWARF location expression LOC into HSTATE. */
29338 hash_locs (dw_loc_descr_ref loc
, inchash::hash
&hstate
)
29340 dw_loc_descr_ref l
;
29341 bool sizes_computed
= false;
29342 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
29343 size_of_locs (loc
);
29345 for (l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
29347 enum dwarf_location_atom opc
= l
->dw_loc_opc
;
29348 hstate
.add_object (opc
);
29349 if ((opc
== DW_OP_skip
|| opc
== DW_OP_bra
) && !sizes_computed
)
29351 size_of_locs (loc
);
29352 sizes_computed
= true;
29354 hash_loc_operands (l
, hstate
);
29358 /* Compute hash of the whole location list LIST_HEAD. */
29361 hash_loc_list (dw_loc_list_ref list_head
)
29363 dw_loc_list_ref curr
= list_head
;
29364 inchash::hash hstate
;
29366 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
29368 hstate
.add (curr
->begin
, strlen (curr
->begin
) + 1);
29369 hstate
.add (curr
->end
, strlen (curr
->end
) + 1);
29371 hstate
.add (curr
->section
, strlen (curr
->section
) + 1);
29372 hash_locs (curr
->expr
, hstate
);
29374 list_head
->hash
= hstate
.end ();
29377 /* Return true if X and Y opcodes have the same operands. */
29380 compare_loc_operands (dw_loc_descr_ref x
, dw_loc_descr_ref y
)
29382 dw_val_ref valx1
= &x
->dw_loc_oprnd1
;
29383 dw_val_ref valx2
= &x
->dw_loc_oprnd2
;
29384 dw_val_ref valy1
= &y
->dw_loc_oprnd1
;
29385 dw_val_ref valy2
= &y
->dw_loc_oprnd2
;
29387 switch (x
->dw_loc_opc
)
29389 case DW_OP_const4u
:
29390 case DW_OP_const8u
:
29394 case DW_OP_const1u
:
29395 case DW_OP_const1s
:
29396 case DW_OP_const2u
:
29397 case DW_OP_const2s
:
29398 case DW_OP_const4s
:
29399 case DW_OP_const8s
:
29403 case DW_OP_plus_uconst
:
29439 case DW_OP_deref_size
:
29440 case DW_OP_xderef_size
:
29441 return valx1
->v
.val_int
== valy1
->v
.val_int
;
29444 /* If splitting debug info, the use of DW_OP_GNU_addr_index
29445 can cause irrelevant differences in dw_loc_addr. */
29446 gcc_assert (valx1
->val_class
== dw_val_class_loc
29447 && valy1
->val_class
== dw_val_class_loc
29448 && (dwarf_split_debug_info
29449 || x
->dw_loc_addr
== y
->dw_loc_addr
));
29450 return valx1
->v
.val_loc
->dw_loc_addr
== valy1
->v
.val_loc
->dw_loc_addr
;
29451 case DW_OP_implicit_value
:
29452 if (valx1
->v
.val_unsigned
!= valy1
->v
.val_unsigned
29453 || valx2
->val_class
!= valy2
->val_class
)
29455 switch (valx2
->val_class
)
29457 case dw_val_class_const
:
29458 return valx2
->v
.val_int
== valy2
->v
.val_int
;
29459 case dw_val_class_vec
:
29460 return valx2
->v
.val_vec
.elt_size
== valy2
->v
.val_vec
.elt_size
29461 && valx2
->v
.val_vec
.length
== valy2
->v
.val_vec
.length
29462 && memcmp (valx2
->v
.val_vec
.array
, valy2
->v
.val_vec
.array
,
29463 valx2
->v
.val_vec
.elt_size
29464 * valx2
->v
.val_vec
.length
) == 0;
29465 case dw_val_class_const_double
:
29466 return valx2
->v
.val_double
.low
== valy2
->v
.val_double
.low
29467 && valx2
->v
.val_double
.high
== valy2
->v
.val_double
.high
;
29468 case dw_val_class_wide_int
:
29469 return *valx2
->v
.val_wide
== *valy2
->v
.val_wide
;
29470 case dw_val_class_addr
:
29471 return rtx_equal_p (valx2
->v
.val_addr
, valy2
->v
.val_addr
);
29473 gcc_unreachable ();
29476 case DW_OP_bit_piece
:
29477 return valx1
->v
.val_int
== valy1
->v
.val_int
29478 && valx2
->v
.val_int
== valy2
->v
.val_int
;
29481 return rtx_equal_p (valx1
->v
.val_addr
, valy1
->v
.val_addr
);
29482 case DW_OP_GNU_addr_index
:
29483 case DW_OP_GNU_const_index
:
29485 rtx ax1
= valx1
->val_entry
->addr
.rtl
;
29486 rtx ay1
= valy1
->val_entry
->addr
.rtl
;
29487 return rtx_equal_p (ax1
, ay1
);
29489 case DW_OP_implicit_pointer
:
29490 case DW_OP_GNU_implicit_pointer
:
29491 return valx1
->val_class
== dw_val_class_die_ref
29492 && valx1
->val_class
== valy1
->val_class
29493 && valx1
->v
.val_die_ref
.die
== valy1
->v
.val_die_ref
.die
29494 && valx2
->v
.val_int
== valy2
->v
.val_int
;
29495 case DW_OP_entry_value
:
29496 case DW_OP_GNU_entry_value
:
29497 return compare_loc_operands (valx1
->v
.val_loc
, valy1
->v
.val_loc
);
29498 case DW_OP_const_type
:
29499 case DW_OP_GNU_const_type
:
29500 if (valx1
->v
.val_die_ref
.die
!= valy1
->v
.val_die_ref
.die
29501 || valx2
->val_class
!= valy2
->val_class
)
29503 switch (valx2
->val_class
)
29505 case dw_val_class_const
:
29506 return valx2
->v
.val_int
== valy2
->v
.val_int
;
29507 case dw_val_class_vec
:
29508 return valx2
->v
.val_vec
.elt_size
== valy2
->v
.val_vec
.elt_size
29509 && valx2
->v
.val_vec
.length
== valy2
->v
.val_vec
.length
29510 && memcmp (valx2
->v
.val_vec
.array
, valy2
->v
.val_vec
.array
,
29511 valx2
->v
.val_vec
.elt_size
29512 * valx2
->v
.val_vec
.length
) == 0;
29513 case dw_val_class_const_double
:
29514 return valx2
->v
.val_double
.low
== valy2
->v
.val_double
.low
29515 && valx2
->v
.val_double
.high
== valy2
->v
.val_double
.high
;
29516 case dw_val_class_wide_int
:
29517 return *valx2
->v
.val_wide
== *valy2
->v
.val_wide
;
29519 gcc_unreachable ();
29521 case DW_OP_regval_type
:
29522 case DW_OP_deref_type
:
29523 case DW_OP_GNU_regval_type
:
29524 case DW_OP_GNU_deref_type
:
29525 return valx1
->v
.val_int
== valy1
->v
.val_int
29526 && valx2
->v
.val_die_ref
.die
== valy2
->v
.val_die_ref
.die
;
29527 case DW_OP_convert
:
29528 case DW_OP_reinterpret
:
29529 case DW_OP_GNU_convert
:
29530 case DW_OP_GNU_reinterpret
:
29531 if (valx1
->val_class
!= valy1
->val_class
)
29533 if (valx1
->val_class
== dw_val_class_unsigned_const
)
29534 return valx1
->v
.val_unsigned
== valy1
->v
.val_unsigned
;
29535 return valx1
->v
.val_die_ref
.die
== valy1
->v
.val_die_ref
.die
;
29536 case DW_OP_GNU_parameter_ref
:
29537 return valx1
->val_class
== dw_val_class_die_ref
29538 && valx1
->val_class
== valy1
->val_class
29539 && valx1
->v
.val_die_ref
.die
== valy1
->v
.val_die_ref
.die
;
29541 /* Other codes have no operands. */
29546 /* Return true if DWARF location expressions X and Y are the same. */
29549 compare_locs (dw_loc_descr_ref x
, dw_loc_descr_ref y
)
29551 for (; x
!= NULL
&& y
!= NULL
; x
= x
->dw_loc_next
, y
= y
->dw_loc_next
)
29552 if (x
->dw_loc_opc
!= y
->dw_loc_opc
29553 || x
->dtprel
!= y
->dtprel
29554 || !compare_loc_operands (x
, y
))
29556 return x
== NULL
&& y
== NULL
;
29559 /* Hashtable helpers. */
29561 struct loc_list_hasher
: nofree_ptr_hash
<dw_loc_list_struct
>
29563 static inline hashval_t
hash (const dw_loc_list_struct
*);
29564 static inline bool equal (const dw_loc_list_struct
*,
29565 const dw_loc_list_struct
*);
29568 /* Return precomputed hash of location list X. */
29571 loc_list_hasher::hash (const dw_loc_list_struct
*x
)
29576 /* Return true if location lists A and B are the same. */
29579 loc_list_hasher::equal (const dw_loc_list_struct
*a
,
29580 const dw_loc_list_struct
*b
)
29584 if (a
->hash
!= b
->hash
)
29586 for (; a
!= NULL
&& b
!= NULL
; a
= a
->dw_loc_next
, b
= b
->dw_loc_next
)
29587 if (strcmp (a
->begin
, b
->begin
) != 0
29588 || strcmp (a
->end
, b
->end
) != 0
29589 || (a
->section
== NULL
) != (b
->section
== NULL
)
29590 || (a
->section
&& strcmp (a
->section
, b
->section
) != 0)
29591 || !compare_locs (a
->expr
, b
->expr
))
29593 return a
== NULL
&& b
== NULL
;
29596 typedef hash_table
<loc_list_hasher
> loc_list_hash_type
;
29599 /* Recursively optimize location lists referenced from DIE
29600 children and share them whenever possible. */
29603 optimize_location_lists_1 (dw_die_ref die
, loc_list_hash_type
*htab
)
29608 dw_loc_list_struct
**slot
;
29610 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
29611 if (AT_class (a
) == dw_val_class_loc_list
)
29613 dw_loc_list_ref list
= AT_loc_list (a
);
29614 /* TODO: perform some optimizations here, before hashing
29615 it and storing into the hash table. */
29616 hash_loc_list (list
);
29617 slot
= htab
->find_slot_with_hash (list
, list
->hash
, INSERT
);
29621 a
->dw_attr_val
.v
.val_loc_list
= *slot
;
29624 FOR_EACH_CHILD (die
, c
, optimize_location_lists_1 (c
, htab
));
29628 /* Recursively assign each location list a unique index into the debug_addr
29632 index_location_lists (dw_die_ref die
)
29638 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
29639 if (AT_class (a
) == dw_val_class_loc_list
)
29641 dw_loc_list_ref list
= AT_loc_list (a
);
29642 dw_loc_list_ref curr
;
29643 for (curr
= list
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
29645 /* Don't index an entry that has already been indexed
29646 or won't be output. */
29647 if (curr
->begin_entry
!= NULL
29648 || (strcmp (curr
->begin
, curr
->end
) == 0 && !curr
->force
))
29652 = add_addr_table_entry (xstrdup (curr
->begin
), ate_kind_label
);
29656 FOR_EACH_CHILD (die
, c
, index_location_lists (c
));
29659 /* Optimize location lists referenced from DIE
29660 children and share them whenever possible. */
29663 optimize_location_lists (dw_die_ref die
)
29665 loc_list_hash_type
htab (500);
29666 optimize_location_lists_1 (die
, &htab
);
29669 /* Traverse the limbo die list, and add parent/child links. The only
29670 dies without parents that should be here are concrete instances of
29671 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
29672 For concrete instances, we can get the parent die from the abstract
29676 flush_limbo_die_list (void)
29678 limbo_die_node
*node
;
29680 /* get_context_die calls force_decl_die, which can put new DIEs on the
29681 limbo list in LTO mode when nested functions are put in a different
29682 partition than that of their parent function. */
29683 while ((node
= limbo_die_list
))
29685 dw_die_ref die
= node
->die
;
29686 limbo_die_list
= node
->next
;
29688 if (die
->die_parent
== NULL
)
29690 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
29692 if (origin
&& origin
->die_parent
)
29693 add_child_die (origin
->die_parent
, die
);
29694 else if (is_cu_die (die
))
29696 else if (seen_error ())
29697 /* It's OK to be confused by errors in the input. */
29698 add_child_die (comp_unit_die (), die
);
29701 /* In certain situations, the lexical block containing a
29702 nested function can be optimized away, which results
29703 in the nested function die being orphaned. Likewise
29704 with the return type of that nested function. Force
29705 this to be a child of the containing function.
29707 It may happen that even the containing function got fully
29708 inlined and optimized out. In that case we are lost and
29709 assign the empty child. This should not be big issue as
29710 the function is likely unreachable too. */
29711 gcc_assert (node
->created_for
);
29713 if (DECL_P (node
->created_for
))
29714 origin
= get_context_die (DECL_CONTEXT (node
->created_for
));
29715 else if (TYPE_P (node
->created_for
))
29716 origin
= scope_die_for (node
->created_for
, comp_unit_die ());
29718 origin
= comp_unit_die ();
29720 add_child_die (origin
, die
);
29726 /* Reset DIEs so we can output them again. */
29729 reset_dies (dw_die_ref die
)
29733 /* Remove stuff we re-generate. */
29735 die
->die_offset
= 0;
29736 die
->die_abbrev
= 0;
29737 remove_AT (die
, DW_AT_sibling
);
29739 FOR_EACH_CHILD (die
, c
, reset_dies (c
));
29742 /* Output stuff that dwarf requires at the end of every file,
29743 and generate the DWARF-2 debugging info. */
29746 dwarf2out_finish (const char *)
29748 comdat_type_node
*ctnode
;
29749 dw_die_ref main_comp_unit_die
;
29750 unsigned char checksum
[16];
29751 char dl_section_ref
[MAX_ARTIFICIAL_LABEL_BYTES
];
29753 /* Flush out any latecomers to the limbo party. */
29754 flush_limbo_die_list ();
29758 verify_die (comp_unit_die ());
29759 for (limbo_die_node
*node
= cu_die_list
; node
; node
= node
->next
)
29760 verify_die (node
->die
);
29763 /* We shouldn't have any symbols with delayed asm names for
29764 DIEs generated after early finish. */
29765 gcc_assert (deferred_asm_name
== NULL
);
29767 gen_remaining_tmpl_value_param_die_attribute ();
29769 if (flag_generate_lto
|| flag_generate_offload
)
29771 gcc_assert (flag_fat_lto_objects
|| flag_generate_offload
);
29773 /* Prune stuff so that dwarf2out_finish runs successfully
29774 for the fat part of the object. */
29775 reset_dies (comp_unit_die ());
29776 for (limbo_die_node
*node
= cu_die_list
; node
; node
= node
->next
)
29777 reset_dies (node
->die
);
29779 hash_table
<comdat_type_hasher
> comdat_type_table (100);
29780 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
29782 comdat_type_node
**slot
29783 = comdat_type_table
.find_slot (ctnode
, INSERT
);
29785 /* Don't reset types twice. */
29786 if (*slot
!= HTAB_EMPTY_ENTRY
)
29789 /* Add a pointer to the line table for the main compilation unit
29790 so that the debugger can make sense of DW_AT_decl_file
29792 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
29793 reset_dies (ctnode
->root_die
);
29798 /* Reset die CU symbol so we don't output it twice. */
29799 comp_unit_die ()->die_id
.die_symbol
= NULL
;
29801 /* Remove DW_AT_macro from the early output. */
29803 remove_AT (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE
);
29805 /* Remove indirect string decisions. */
29806 debug_str_hash
->traverse
<void *, reset_indirect_string
> (NULL
);
29809 #if ENABLE_ASSERT_CHECKING
29811 dw_die_ref die
= comp_unit_die (), c
;
29812 FOR_EACH_CHILD (die
, c
, gcc_assert (! c
->die_mark
));
29815 resolve_addr (comp_unit_die ());
29816 move_marked_base_types ();
29818 /* Initialize sections and labels used for actual assembler output. */
29819 init_sections_and_labels (false);
29821 /* Traverse the DIE's and add sibling attributes to those DIE's that
29823 add_sibling_attributes (comp_unit_die ());
29824 limbo_die_node
*node
;
29825 for (node
= cu_die_list
; node
; node
= node
->next
)
29826 add_sibling_attributes (node
->die
);
29827 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
29828 add_sibling_attributes (ctnode
->root_die
);
29830 /* When splitting DWARF info, we put some attributes in the
29831 skeleton compile_unit DIE that remains in the .o, while
29832 most attributes go in the DWO compile_unit_die. */
29833 if (dwarf_split_debug_info
)
29835 limbo_die_node
*cu
;
29836 main_comp_unit_die
= gen_compile_unit_die (NULL
);
29837 if (dwarf_version
>= 5)
29838 main_comp_unit_die
->die_tag
= DW_TAG_skeleton_unit
;
29839 cu
= limbo_die_list
;
29840 gcc_assert (cu
->die
== main_comp_unit_die
);
29841 limbo_die_list
= limbo_die_list
->next
;
29842 cu
->next
= cu_die_list
;
29846 main_comp_unit_die
= comp_unit_die ();
29848 /* Output a terminator label for the .text section. */
29849 switch_to_section (text_section
);
29850 targetm
.asm_out
.internal_label (asm_out_file
, TEXT_END_LABEL
, 0);
29851 if (cold_text_section
)
29853 switch_to_section (cold_text_section
);
29854 targetm
.asm_out
.internal_label (asm_out_file
, COLD_END_LABEL
, 0);
29857 /* We can only use the low/high_pc attributes if all of the code was
29859 if (!have_multiple_function_sections
29860 || (dwarf_version
< 3 && dwarf_strict
))
29862 /* Don't add if the CU has no associated code. */
29863 if (text_section_used
)
29864 add_AT_low_high_pc (main_comp_unit_die
, text_section_label
,
29865 text_end_label
, true);
29871 bool range_list_added
= false;
29873 if (text_section_used
)
29874 add_ranges_by_labels (main_comp_unit_die
, text_section_label
,
29875 text_end_label
, &range_list_added
, true);
29876 if (cold_text_section_used
)
29877 add_ranges_by_labels (main_comp_unit_die
, cold_text_section_label
,
29878 cold_end_label
, &range_list_added
, true);
29880 FOR_EACH_VEC_ELT (*fde_vec
, fde_idx
, fde
)
29882 if (DECL_IGNORED_P (fde
->decl
))
29884 if (!fde
->in_std_section
)
29885 add_ranges_by_labels (main_comp_unit_die
, fde
->dw_fde_begin
,
29886 fde
->dw_fde_end
, &range_list_added
,
29888 if (fde
->dw_fde_second_begin
&& !fde
->second_in_std_section
)
29889 add_ranges_by_labels (main_comp_unit_die
, fde
->dw_fde_second_begin
,
29890 fde
->dw_fde_second_end
, &range_list_added
,
29894 if (range_list_added
)
29896 /* We need to give .debug_loc and .debug_ranges an appropriate
29897 "base address". Use zero so that these addresses become
29898 absolute. Historically, we've emitted the unexpected
29899 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
29900 Emit both to give time for other tools to adapt. */
29901 add_AT_addr (main_comp_unit_die
, DW_AT_low_pc
, const0_rtx
, true);
29902 if (! dwarf_strict
&& dwarf_version
< 4)
29903 add_AT_addr (main_comp_unit_die
, DW_AT_entry_pc
, const0_rtx
, true);
29909 /* AIX Assembler inserts the length, so adjust the reference to match the
29910 offset expected by debuggers. */
29911 strcpy (dl_section_ref
, debug_line_section_label
);
29912 if (XCOFF_DEBUGGING_INFO
)
29913 strcat (dl_section_ref
, DWARF_INITIAL_LENGTH_SIZE_STR
);
29915 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
29916 add_AT_lineptr (main_comp_unit_die
, DW_AT_stmt_list
,
29920 add_AT_macptr (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE
,
29921 macinfo_section_label
);
29923 if (dwarf_split_debug_info
)
29925 if (have_location_lists
)
29927 if (dwarf_version
>= 5)
29928 add_AT_loclistsptr (comp_unit_die (), DW_AT_loclists_base
,
29929 loc_section_label
);
29930 /* optimize_location_lists calculates the size of the lists,
29931 so index them first, and assign indices to the entries.
29932 Although optimize_location_lists will remove entries from
29933 the table, it only does so for duplicates, and therefore
29934 only reduces ref_counts to 1. */
29935 index_location_lists (comp_unit_die ());
29938 if (addr_index_table
!= NULL
)
29940 unsigned int index
= 0;
29942 ->traverse_noresize
<unsigned int *, index_addr_table_entry
>
29948 if (have_location_lists
)
29950 optimize_location_lists (comp_unit_die ());
29951 /* And finally assign indexes to the entries for -gsplit-dwarf. */
29952 if (dwarf_version
>= 5 && dwarf_split_debug_info
)
29953 assign_location_list_indexes (comp_unit_die ());
29956 save_macinfo_strings ();
29958 if (dwarf_split_debug_info
)
29960 unsigned int index
= 0;
29962 /* Add attributes common to skeleton compile_units and
29963 type_units. Because these attributes include strings, it
29964 must be done before freezing the string table. Top-level
29965 skeleton die attrs are added when the skeleton type unit is
29966 created, so ensure it is created by this point. */
29967 add_top_level_skeleton_die_attrs (main_comp_unit_die
);
29968 debug_str_hash
->traverse_noresize
<unsigned int *, index_string
> (&index
);
29971 /* Output all of the compilation units. We put the main one last so that
29972 the offsets are available to output_pubnames. */
29973 for (node
= cu_die_list
; node
; node
= node
->next
)
29974 output_comp_unit (node
->die
, 0, NULL
);
29976 hash_table
<comdat_type_hasher
> comdat_type_table (100);
29977 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
29979 comdat_type_node
**slot
= comdat_type_table
.find_slot (ctnode
, INSERT
);
29981 /* Don't output duplicate types. */
29982 if (*slot
!= HTAB_EMPTY_ENTRY
)
29985 /* Add a pointer to the line table for the main compilation unit
29986 so that the debugger can make sense of DW_AT_decl_file
29988 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
29989 add_AT_lineptr (ctnode
->root_die
, DW_AT_stmt_list
,
29990 (!dwarf_split_debug_info
29992 : debug_skeleton_line_section_label
));
29994 output_comdat_type_unit (ctnode
);
29998 if (dwarf_split_debug_info
)
30001 struct md5_ctx ctx
;
30003 if (dwarf_version
>= 5 && !vec_safe_is_empty (ranges_table
))
30006 /* Compute a checksum of the comp_unit to use as the dwo_id. */
30007 md5_init_ctx (&ctx
);
30009 die_checksum (comp_unit_die (), &ctx
, &mark
);
30010 unmark_all_dies (comp_unit_die ());
30011 md5_finish_ctx (&ctx
, checksum
);
30013 if (dwarf_version
< 5)
30015 /* Use the first 8 bytes of the checksum as the dwo_id,
30016 and add it to both comp-unit DIEs. */
30017 add_AT_data8 (main_comp_unit_die
, DW_AT_GNU_dwo_id
, checksum
);
30018 add_AT_data8 (comp_unit_die (), DW_AT_GNU_dwo_id
, checksum
);
30021 /* Add the base offset of the ranges table to the skeleton
30023 if (!vec_safe_is_empty (ranges_table
))
30025 if (dwarf_version
>= 5)
30026 add_AT_lineptr (main_comp_unit_die
, DW_AT_rnglists_base
,
30027 ranges_base_label
);
30029 add_AT_lineptr (main_comp_unit_die
, DW_AT_GNU_ranges_base
,
30030 ranges_section_label
);
30033 switch_to_section (debug_addr_section
);
30034 ASM_OUTPUT_LABEL (asm_out_file
, debug_addr_section_label
);
30035 output_addr_table ();
30038 /* Output the main compilation unit if non-empty or if .debug_macinfo
30039 or .debug_macro will be emitted. */
30040 output_comp_unit (comp_unit_die (), have_macinfo
,
30041 dwarf_split_debug_info
? checksum
: NULL
);
30043 if (dwarf_split_debug_info
&& info_section_emitted
)
30044 output_skeleton_debug_sections (main_comp_unit_die
, checksum
);
30046 /* Output the abbreviation table. */
30047 if (vec_safe_length (abbrev_die_table
) != 1)
30049 switch_to_section (debug_abbrev_section
);
30050 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
30051 output_abbrev_section ();
30054 /* Output location list section if necessary. */
30055 if (have_location_lists
)
30057 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
];
30058 char l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
30059 /* Output the location lists info. */
30060 switch_to_section (debug_loc_section
);
30061 if (dwarf_version
>= 5)
30063 ASM_GENERATE_INTERNAL_LABEL (l1
, DEBUG_LOC_SECTION_LABEL
, 1);
30064 ASM_GENERATE_INTERNAL_LABEL (l2
, DEBUG_LOC_SECTION_LABEL
, 2);
30065 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
30066 dw2_asm_output_data (4, 0xffffffff,
30067 "Initial length escape value indicating "
30068 "64-bit DWARF extension");
30069 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
30070 "Length of Location Lists");
30071 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
30072 dw2_asm_output_data (2, dwarf_version
, "DWARF Version");
30073 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Address Size");
30074 dw2_asm_output_data (1, 0, "Segment Size");
30075 dw2_asm_output_data (4, dwarf_split_debug_info
? loc_list_idx
: 0,
30076 "Offset Entry Count");
30078 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
30079 if (dwarf_version
>= 5 && dwarf_split_debug_info
)
30081 unsigned int save_loc_list_idx
= loc_list_idx
;
30083 output_loclists_offsets (comp_unit_die ());
30084 gcc_assert (save_loc_list_idx
== loc_list_idx
);
30086 output_location_lists (comp_unit_die ());
30087 if (dwarf_version
>= 5)
30088 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
30091 output_pubtables ();
30093 /* Output the address range information if a CU (.debug_info section)
30094 was emitted. We output an empty table even if we had no functions
30095 to put in it. This because the consumer has no way to tell the
30096 difference between an empty table that we omitted and failure to
30097 generate a table that would have contained data. */
30098 if (info_section_emitted
)
30100 switch_to_section (debug_aranges_section
);
30104 /* Output ranges section if necessary. */
30105 if (!vec_safe_is_empty (ranges_table
))
30107 if (dwarf_version
>= 5)
30108 output_rnglists ();
30113 /* Have to end the macro section. */
30116 switch_to_section (debug_macinfo_section
);
30117 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
30118 output_macinfo (!dwarf_split_debug_info
? debug_line_section_label
30119 : debug_skeleton_line_section_label
, false);
30120 dw2_asm_output_data (1, 0, "End compilation unit");
30123 /* Output the source line correspondence table. We must do this
30124 even if there is no line information. Otherwise, on an empty
30125 translation unit, we will generate a present, but empty,
30126 .debug_info section. IRIX 6.5 `nm' will then complain when
30127 examining the file. This is done late so that any filenames
30128 used by the debug_info section are marked as 'used'. */
30129 switch_to_section (debug_line_section
);
30130 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
30131 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
30132 output_line_info (false);
30134 if (dwarf_split_debug_info
&& info_section_emitted
)
30136 switch_to_section (debug_skeleton_line_section
);
30137 ASM_OUTPUT_LABEL (asm_out_file
, debug_skeleton_line_section_label
);
30138 output_line_info (true);
30141 /* If we emitted any indirect strings, output the string table too. */
30142 if (debug_str_hash
|| skeleton_debug_str_hash
)
30143 output_indirect_strings ();
30144 if (debug_line_str_hash
)
30146 switch_to_section (debug_line_str_section
);
30147 const enum dwarf_form form
= DW_FORM_line_strp
;
30148 debug_line_str_hash
->traverse
<enum dwarf_form
,
30149 output_indirect_string
> (form
);
30153 /* Returns a hash value for X (which really is a variable_value_struct). */
30156 variable_value_hasher::hash (variable_value_struct
*x
)
30158 return (hashval_t
) x
->decl_id
;
30161 /* Return nonzero if decl_id of variable_value_struct X is the same as
30165 variable_value_hasher::equal (variable_value_struct
*x
, tree y
)
30167 return x
->decl_id
== DECL_UID (y
);
30170 /* Helper function for resolve_variable_value, handle
30171 DW_OP_GNU_variable_value in one location expression.
30172 Return true if exprloc has been changed into loclist. */
30175 resolve_variable_value_in_expr (dw_attr_node
*a
, dw_loc_descr_ref loc
)
30177 dw_loc_descr_ref next
;
30178 for (dw_loc_descr_ref prev
= NULL
; loc
; prev
= loc
, loc
= next
)
30180 next
= loc
->dw_loc_next
;
30181 if (loc
->dw_loc_opc
!= DW_OP_GNU_variable_value
30182 || loc
->dw_loc_oprnd1
.val_class
!= dw_val_class_decl_ref
)
30185 tree decl
= loc
->dw_loc_oprnd1
.v
.val_decl_ref
;
30186 if (DECL_CONTEXT (decl
) != current_function_decl
)
30189 dw_die_ref ref
= lookup_decl_die (decl
);
30192 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
30193 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
30194 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
30197 dw_loc_list_ref l
= loc_list_from_tree (decl
, 0, NULL
);
30200 if (l
->dw_loc_next
)
30202 if (AT_class (a
) != dw_val_class_loc
)
30204 switch (a
->dw_attr
)
30206 /* Following attributes allow both exprloc and loclist
30207 classes, so we can change them into a loclist. */
30208 case DW_AT_location
:
30209 case DW_AT_string_length
:
30210 case DW_AT_return_addr
:
30211 case DW_AT_data_member_location
:
30212 case DW_AT_frame_base
:
30213 case DW_AT_segment
:
30214 case DW_AT_static_link
:
30215 case DW_AT_use_location
:
30216 case DW_AT_vtable_elem_location
:
30219 prev
->dw_loc_next
= NULL
;
30220 prepend_loc_descr_to_each (l
, AT_loc (a
));
30223 add_loc_descr_to_each (l
, next
);
30224 a
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
30225 a
->dw_attr_val
.val_entry
= NULL
;
30226 a
->dw_attr_val
.v
.val_loc_list
= l
;
30227 have_location_lists
= true;
30229 /* Following attributes allow both exprloc and reference,
30230 so if the whole expression is DW_OP_GNU_variable_value alone
30231 we could transform it into reference. */
30232 case DW_AT_byte_size
:
30233 case DW_AT_bit_size
:
30234 case DW_AT_lower_bound
:
30235 case DW_AT_upper_bound
:
30236 case DW_AT_bit_stride
:
30238 case DW_AT_allocated
:
30239 case DW_AT_associated
:
30240 case DW_AT_byte_stride
:
30241 if (prev
== NULL
&& next
== NULL
)
30249 /* Create DW_TAG_variable that we can refer to. */
30250 gen_decl_die (decl
, NULL_TREE
, NULL
,
30251 lookup_decl_die (current_function_decl
));
30252 ref
= lookup_decl_die (decl
);
30255 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
30256 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
30257 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
30263 prev
->dw_loc_next
= l
->expr
;
30264 add_loc_descr (&prev
->dw_loc_next
, next
);
30265 free_loc_descr (loc
, NULL
);
30266 next
= prev
->dw_loc_next
;
30270 memcpy (loc
, l
->expr
, sizeof (dw_loc_descr_node
));
30271 add_loc_descr (&loc
, next
);
30279 /* Attempt to resolve DW_OP_GNU_variable_value using loc_list_from_tree. */
30282 resolve_variable_value (dw_die_ref die
)
30285 dw_loc_list_ref loc
;
30288 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
30289 switch (AT_class (a
))
30291 case dw_val_class_loc
:
30292 if (!resolve_variable_value_in_expr (a
, AT_loc (a
)))
30295 case dw_val_class_loc_list
:
30296 loc
= AT_loc_list (a
);
30298 for (; loc
; loc
= loc
->dw_loc_next
)
30299 resolve_variable_value_in_expr (a
, loc
->expr
);
30306 /* Attempt to optimize DW_OP_GNU_variable_value refering to
30307 temporaries in the current function. */
30310 resolve_variable_values (void)
30312 if (!variable_value_hash
|| !current_function_decl
)
30315 struct variable_value_struct
*node
30316 = variable_value_hash
->find_with_hash (current_function_decl
,
30317 DECL_UID (current_function_decl
));
30324 FOR_EACH_VEC_SAFE_ELT (node
->dies
, i
, die
)
30325 resolve_variable_value (die
);
30328 /* Helper function for note_variable_value, handle one location
30332 note_variable_value_in_expr (dw_die_ref die
, dw_loc_descr_ref loc
)
30334 for (; loc
; loc
= loc
->dw_loc_next
)
30335 if (loc
->dw_loc_opc
== DW_OP_GNU_variable_value
30336 && loc
->dw_loc_oprnd1
.val_class
== dw_val_class_decl_ref
)
30338 tree decl
= loc
->dw_loc_oprnd1
.v
.val_decl_ref
;
30339 dw_die_ref ref
= lookup_decl_die (decl
);
30340 if (! ref
&& (flag_generate_lto
|| flag_generate_offload
))
30342 /* ??? This is somewhat a hack because we do not create DIEs
30343 for variables not in BLOCK trees early but when generating
30344 early LTO output we need the dw_val_class_decl_ref to be
30345 fully resolved. For fat LTO objects we'd also like to
30346 undo this after LTO dwarf output. */
30347 gcc_assert (DECL_CONTEXT (decl
));
30348 dw_die_ref ctx
= lookup_decl_die (DECL_CONTEXT (decl
));
30349 gcc_assert (ctx
!= NULL
);
30350 gen_decl_die (decl
, NULL_TREE
, NULL
, ctx
);
30351 ref
= lookup_decl_die (decl
);
30352 gcc_assert (ref
!= NULL
);
30356 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
30357 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
30358 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
30362 && DECL_CONTEXT (decl
)
30363 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
30364 && lookup_decl_die (DECL_CONTEXT (decl
)))
30366 if (!variable_value_hash
)
30367 variable_value_hash
30368 = hash_table
<variable_value_hasher
>::create_ggc (10);
30370 tree fndecl
= DECL_CONTEXT (decl
);
30371 struct variable_value_struct
*node
;
30372 struct variable_value_struct
**slot
30373 = variable_value_hash
->find_slot_with_hash (fndecl
,
30378 node
= ggc_cleared_alloc
<variable_value_struct
> ();
30379 node
->decl_id
= DECL_UID (fndecl
);
30385 vec_safe_push (node
->dies
, die
);
30390 /* Walk the tree DIE and note DIEs with DW_OP_GNU_variable_value still
30391 with dw_val_class_decl_ref operand. */
30394 note_variable_value (dw_die_ref die
)
30398 dw_loc_list_ref loc
;
30401 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
30402 switch (AT_class (a
))
30404 case dw_val_class_loc_list
:
30405 loc
= AT_loc_list (a
);
30407 if (!loc
->noted_variable_value
)
30409 loc
->noted_variable_value
= 1;
30410 for (; loc
; loc
= loc
->dw_loc_next
)
30411 note_variable_value_in_expr (die
, loc
->expr
);
30414 case dw_val_class_loc
:
30415 note_variable_value_in_expr (die
, AT_loc (a
));
30421 /* Mark children. */
30422 FOR_EACH_CHILD (die
, c
, note_variable_value (c
));
30425 /* Perform any cleanups needed after the early debug generation pass
30429 dwarf2out_early_finish (const char *filename
)
30433 /* PCH might result in DW_AT_producer string being restored from the
30434 header compilation, so always fill it with empty string initially
30435 and overwrite only here. */
30436 dw_attr_node
*producer
= get_AT (comp_unit_die (), DW_AT_producer
);
30437 producer_string
= gen_producer_string ();
30438 producer
->dw_attr_val
.v
.val_str
->refcount
--;
30439 producer
->dw_attr_val
.v
.val_str
= find_AT_string (producer_string
);
30441 /* Add the name for the main input file now. We delayed this from
30442 dwarf2out_init to avoid complications with PCH. */
30443 add_name_attribute (comp_unit_die (), remap_debug_filename (filename
));
30444 add_comp_dir_attribute (comp_unit_die ());
30446 /* When emitting DWARF5 .debug_line_str, move DW_AT_name and
30447 DW_AT_comp_dir into .debug_line_str section. */
30448 if (!DWARF2_ASM_LINE_DEBUG_INFO
30449 && dwarf_version
>= 5
30450 && DWARF5_USE_DEBUG_LINE_STR
)
30452 for (int i
= 0; i
< 2; i
++)
30454 dw_attr_node
*a
= get_AT (comp_unit_die (),
30455 i
? DW_AT_comp_dir
: DW_AT_name
);
30457 || AT_class (a
) != dw_val_class_str
30458 || strlen (AT_string (a
)) + 1 <= DWARF_OFFSET_SIZE
)
30461 if (! debug_line_str_hash
)
30462 debug_line_str_hash
30463 = hash_table
<indirect_string_hasher
>::create_ggc (10);
30465 struct indirect_string_node
*node
30466 = find_AT_string_in_table (AT_string (a
), debug_line_str_hash
);
30467 set_indirect_string (node
);
30468 node
->form
= DW_FORM_line_strp
;
30469 a
->dw_attr_val
.v
.val_str
->refcount
--;
30470 a
->dw_attr_val
.v
.val_str
= node
;
30474 /* With LTO early dwarf was really finished at compile-time, so make
30475 sure to adjust the phase after annotating the LTRANS CU DIE. */
30478 early_dwarf_finished
= true;
30482 /* Walk through the list of incomplete types again, trying once more to
30483 emit full debugging info for them. */
30484 retry_incomplete_types ();
30486 /* The point here is to flush out the limbo list so that it is empty
30487 and we don't need to stream it for LTO. */
30488 flush_limbo_die_list ();
30490 gen_scheduled_generic_parms_dies ();
30491 gen_remaining_tmpl_value_param_die_attribute ();
30493 /* Add DW_AT_linkage_name for all deferred DIEs. */
30494 for (limbo_die_node
*node
= deferred_asm_name
; node
; node
= node
->next
)
30496 tree decl
= node
->created_for
;
30497 if (DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
30498 /* A missing DECL_ASSEMBLER_NAME can be a constant DIE that
30499 ended up in deferred_asm_name before we knew it was
30500 constant and never written to disk. */
30501 && DECL_ASSEMBLER_NAME (decl
))
30503 add_linkage_attr (node
->die
, decl
);
30504 move_linkage_attr (node
->die
);
30507 deferred_asm_name
= NULL
;
30509 if (flag_eliminate_unused_debug_types
)
30510 prune_unused_types ();
30512 /* Generate separate COMDAT sections for type DIEs. */
30513 if (use_debug_types
)
30515 break_out_comdat_types (comp_unit_die ());
30517 /* Each new type_unit DIE was added to the limbo die list when created.
30518 Since these have all been added to comdat_type_list, clear the
30520 limbo_die_list
= NULL
;
30522 /* For each new comdat type unit, copy declarations for incomplete
30523 types to make the new unit self-contained (i.e., no direct
30524 references to the main compile unit). */
30525 for (comdat_type_node
*ctnode
= comdat_type_list
;
30526 ctnode
!= NULL
; ctnode
= ctnode
->next
)
30527 copy_decls_for_unworthy_types (ctnode
->root_die
);
30528 copy_decls_for_unworthy_types (comp_unit_die ());
30530 /* In the process of copying declarations from one unit to another,
30531 we may have left some declarations behind that are no longer
30532 referenced. Prune them. */
30533 prune_unused_types ();
30536 /* Traverse the DIE's and note DIEs with DW_OP_GNU_variable_value still
30537 with dw_val_class_decl_ref operand. */
30538 note_variable_value (comp_unit_die ());
30539 for (limbo_die_node
*node
= cu_die_list
; node
; node
= node
->next
)
30540 note_variable_value (node
->die
);
30541 for (comdat_type_node
*ctnode
= comdat_type_list
; ctnode
!= NULL
;
30542 ctnode
= ctnode
->next
)
30543 note_variable_value (ctnode
->root_die
);
30544 for (limbo_die_node
*node
= limbo_die_list
; node
; node
= node
->next
)
30545 note_variable_value (node
->die
);
30547 /* The AT_pubnames attribute needs to go in all skeleton dies, including
30548 both the main_cu and all skeleton TUs. Making this call unconditional
30549 would end up either adding a second copy of the AT_pubnames attribute, or
30550 requiring a special case in add_top_level_skeleton_die_attrs. */
30551 if (!dwarf_split_debug_info
)
30552 add_AT_pubnames (comp_unit_die ());
30554 /* The early debug phase is now finished. */
30555 early_dwarf_finished
= true;
30557 /* Do not generate DWARF assembler now when not producing LTO bytecode. */
30558 if (!flag_generate_lto
&& !flag_generate_offload
)
30561 /* Now as we are going to output for LTO initialize sections and labels
30562 to the LTO variants. We don't need a random-seed postfix as other
30563 LTO sections as linking the LTO debug sections into one in a partial
30565 init_sections_and_labels (true);
30567 /* The output below is modeled after dwarf2out_finish with all
30568 location related output removed and some LTO specific changes.
30569 Some refactoring might make both smaller and easier to match up. */
30571 /* Traverse the DIE's and add add sibling attributes to those DIE's
30572 that have children. */
30573 add_sibling_attributes (comp_unit_die ());
30574 for (limbo_die_node
*node
= limbo_die_list
; node
; node
= node
->next
)
30575 add_sibling_attributes (node
->die
);
30576 for (comdat_type_node
*ctnode
= comdat_type_list
;
30577 ctnode
!= NULL
; ctnode
= ctnode
->next
)
30578 add_sibling_attributes (ctnode
->root_die
);
30581 add_AT_macptr (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE
,
30582 macinfo_section_label
);
30584 save_macinfo_strings ();
30586 /* Output all of the compilation units. We put the main one last so that
30587 the offsets are available to output_pubnames. */
30588 for (limbo_die_node
*node
= limbo_die_list
; node
; node
= node
->next
)
30589 output_comp_unit (node
->die
, 0, NULL
);
30591 hash_table
<comdat_type_hasher
> comdat_type_table (100);
30592 for (comdat_type_node
*ctnode
= comdat_type_list
;
30593 ctnode
!= NULL
; ctnode
= ctnode
->next
)
30595 comdat_type_node
**slot
= comdat_type_table
.find_slot (ctnode
, INSERT
);
30597 /* Don't output duplicate types. */
30598 if (*slot
!= HTAB_EMPTY_ENTRY
)
30601 /* Add a pointer to the line table for the main compilation unit
30602 so that the debugger can make sense of DW_AT_decl_file
30604 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
30605 add_AT_lineptr (ctnode
->root_die
, DW_AT_stmt_list
,
30606 (!dwarf_split_debug_info
30607 ? debug_line_section_label
30608 : debug_skeleton_line_section_label
));
30610 output_comdat_type_unit (ctnode
);
30614 /* Stick a unique symbol to the main debuginfo section. */
30615 compute_comp_unit_symbol (comp_unit_die ());
30617 /* Output the main compilation unit. We always need it if only for
30619 output_comp_unit (comp_unit_die (), true, NULL
);
30621 /* Output the abbreviation table. */
30622 if (vec_safe_length (abbrev_die_table
) != 1)
30624 switch_to_section (debug_abbrev_section
);
30625 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
30626 output_abbrev_section ();
30629 /* Have to end the macro section. */
30632 /* We have to save macinfo state if we need to output it again
30633 for the FAT part of the object. */
30634 vec
<macinfo_entry
, va_gc
> *saved_macinfo_table
= macinfo_table
;
30635 if (flag_fat_lto_objects
)
30636 macinfo_table
= macinfo_table
->copy ();
30638 switch_to_section (debug_macinfo_section
);
30639 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
30640 output_macinfo (debug_skeleton_line_section_label
, true);
30641 dw2_asm_output_data (1, 0, "End compilation unit");
30643 /* Emit a skeleton debug_line section. */
30644 switch_to_section (debug_skeleton_line_section
);
30645 ASM_OUTPUT_LABEL (asm_out_file
, debug_skeleton_line_section_label
);
30646 output_line_info (true);
30648 if (flag_fat_lto_objects
)
30650 vec_free (macinfo_table
);
30651 macinfo_table
= saved_macinfo_table
;
30656 /* If we emitted any indirect strings, output the string table too. */
30657 if (debug_str_hash
|| skeleton_debug_str_hash
)
30658 output_indirect_strings ();
30660 /* Switch back to the text section. */
30661 switch_to_section (text_section
);
30664 /* Reset all state within dwarf2out.c so that we can rerun the compiler
30665 within the same process. For use by toplev::finalize. */
30668 dwarf2out_c_finalize (void)
30670 last_var_location_insn
= NULL
;
30671 cached_next_real_insn
= NULL
;
30672 used_rtx_array
= NULL
;
30673 incomplete_types
= NULL
;
30674 decl_scope_table
= NULL
;
30675 debug_info_section
= NULL
;
30676 debug_skeleton_info_section
= NULL
;
30677 debug_abbrev_section
= NULL
;
30678 debug_skeleton_abbrev_section
= NULL
;
30679 debug_aranges_section
= NULL
;
30680 debug_addr_section
= NULL
;
30681 debug_macinfo_section
= NULL
;
30682 debug_line_section
= NULL
;
30683 debug_skeleton_line_section
= NULL
;
30684 debug_loc_section
= NULL
;
30685 debug_pubnames_section
= NULL
;
30686 debug_pubtypes_section
= NULL
;
30687 debug_str_section
= NULL
;
30688 debug_line_str_section
= NULL
;
30689 debug_str_dwo_section
= NULL
;
30690 debug_str_offsets_section
= NULL
;
30691 debug_ranges_section
= NULL
;
30692 debug_frame_section
= NULL
;
30694 debug_str_hash
= NULL
;
30695 debug_line_str_hash
= NULL
;
30696 skeleton_debug_str_hash
= NULL
;
30697 dw2_string_counter
= 0;
30698 have_multiple_function_sections
= false;
30699 text_section_used
= false;
30700 cold_text_section_used
= false;
30701 cold_text_section
= NULL
;
30702 current_unit_personality
= NULL
;
30704 early_dwarf
= false;
30705 early_dwarf_finished
= false;
30707 next_die_offset
= 0;
30708 single_comp_unit_die
= NULL
;
30709 comdat_type_list
= NULL
;
30710 limbo_die_list
= NULL
;
30712 decl_die_table
= NULL
;
30713 common_block_die_table
= NULL
;
30714 decl_loc_table
= NULL
;
30715 call_arg_locations
= NULL
;
30716 call_arg_loc_last
= NULL
;
30717 call_site_count
= -1;
30718 tail_call_site_count
= -1;
30719 cached_dw_loc_list_table
= NULL
;
30720 abbrev_die_table
= NULL
;
30721 delete dwarf_proc_stack_usage_map
;
30722 dwarf_proc_stack_usage_map
= NULL
;
30723 line_info_label_num
= 0;
30724 cur_line_info_table
= NULL
;
30725 text_section_line_info
= NULL
;
30726 cold_text_section_line_info
= NULL
;
30727 separate_line_info
= NULL
;
30728 info_section_emitted
= false;
30729 pubname_table
= NULL
;
30730 pubtype_table
= NULL
;
30731 macinfo_table
= NULL
;
30732 ranges_table
= NULL
;
30733 ranges_by_label
= NULL
;
30735 have_location_lists
= false;
30738 last_emitted_file
= NULL
;
30740 tmpl_value_parm_die_table
= NULL
;
30741 generic_type_instances
= NULL
;
30742 frame_pointer_fb_offset
= 0;
30743 frame_pointer_fb_offset_valid
= false;
30744 base_types
.release ();
30745 XDELETEVEC (producer_string
);
30746 producer_string
= NULL
;
30749 #include "gt-dwarf2out.h"