1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
100 #include "insn-config.h"
102 #include "emit-rtl.h"
104 #include "diagnostic.h"
106 #include "stor-layout.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
118 #include "print-rtl.h"
120 typedef fibonacci_heap
<long, basic_block_def
> bb_heap_t
;
121 typedef fibonacci_node
<long, basic_block_def
> bb_heap_node_t
;
123 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
124 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
125 Currently the value is the same as IDENTIFIER_NODE, which has such
126 a property. If this compile time assertion ever fails, make sure that
127 the new tree code that equals (int) VALUE has the same property. */
128 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
130 /* Type of micro operation. */
131 enum micro_operation_type
133 MO_USE
, /* Use location (REG or MEM). */
134 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
135 or the variable is not trackable. */
136 MO_VAL_USE
, /* Use location which is associated with a value. */
137 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
138 MO_VAL_SET
, /* Set location associated with a value. */
139 MO_SET
, /* Set location. */
140 MO_COPY
, /* Copy the same portion of a variable from one
141 location to another. */
142 MO_CLOBBER
, /* Clobber location. */
143 MO_CALL
, /* Call insn. */
144 MO_ADJUST
/* Adjust stack pointer. */
148 static const char * const ATTRIBUTE_UNUSED
149 micro_operation_type_name
[] = {
162 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
163 Notes emitted as AFTER_CALL are to take effect during the call,
164 rather than after the call. */
167 EMIT_NOTE_BEFORE_INSN
,
168 EMIT_NOTE_AFTER_INSN
,
169 EMIT_NOTE_AFTER_CALL_INSN
172 /* Structure holding information about micro operation. */
173 struct micro_operation
175 /* Type of micro operation. */
176 enum micro_operation_type type
;
178 /* The instruction which the micro operation is in, for MO_USE,
179 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
180 instruction or note in the original flow (before any var-tracking
181 notes are inserted, to simplify emission of notes), for MO_SET
186 /* Location. For MO_SET and MO_COPY, this is the SET that
187 performs the assignment, if known, otherwise it is the target
188 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
189 CONCAT of the VALUE and the LOC associated with it. For
190 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
191 associated with it. */
194 /* Stack adjustment. */
195 HOST_WIDE_INT adjust
;
200 /* A declaration of a variable, or an RTL value being handled like a
202 typedef void *decl_or_value
;
204 /* Return true if a decl_or_value DV is a DECL or NULL. */
206 dv_is_decl_p (decl_or_value dv
)
208 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
211 /* Return true if a decl_or_value is a VALUE rtl. */
213 dv_is_value_p (decl_or_value dv
)
215 return dv
&& !dv_is_decl_p (dv
);
218 /* Return the decl in the decl_or_value. */
220 dv_as_decl (decl_or_value dv
)
222 gcc_checking_assert (dv_is_decl_p (dv
));
226 /* Return the value in the decl_or_value. */
228 dv_as_value (decl_or_value dv
)
230 gcc_checking_assert (dv_is_value_p (dv
));
234 /* Return the opaque pointer in the decl_or_value. */
236 dv_as_opaque (decl_or_value dv
)
242 /* Description of location of a part of a variable. The content of a physical
243 register is described by a chain of these structures.
244 The chains are pretty short (usually 1 or 2 elements) and thus
245 chain is the best data structure. */
248 /* Pointer to next member of the list. */
251 /* The rtx of register. */
254 /* The declaration corresponding to LOC. */
257 /* Offset from start of DECL. */
258 HOST_WIDE_INT offset
;
261 /* Structure for chaining the locations. */
262 struct location_chain
264 /* Next element in the chain. */
265 location_chain
*next
;
267 /* The location (REG, MEM or VALUE). */
270 /* The "value" stored in this location. */
274 enum var_init_status init
;
277 /* A vector of loc_exp_dep holds the active dependencies of a one-part
278 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
279 location of DV. Each entry is also part of VALUE' s linked-list of
280 backlinks back to DV. */
283 /* The dependent DV. */
285 /* The dependency VALUE or DECL_DEBUG. */
287 /* The next entry in VALUE's backlinks list. */
288 struct loc_exp_dep
*next
;
289 /* A pointer to the pointer to this entry (head or prev's next) in
290 the doubly-linked list. */
291 struct loc_exp_dep
**pprev
;
295 /* This data structure holds information about the depth of a variable
299 /* This measures the complexity of the expanded expression. It
300 grows by one for each level of expansion that adds more than one
303 /* This counts the number of ENTRY_VALUE expressions in an
304 expansion. We want to minimize their use. */
308 /* This data structure is allocated for one-part variables at the time
309 of emitting notes. */
312 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
313 computation used the expansion of this variable, and that ought
314 to be notified should this variable change. If the DV's cur_loc
315 expanded to NULL, all components of the loc list are regarded as
316 active, so that any changes in them give us a chance to get a
317 location. Otherwise, only components of the loc that expanded to
318 non-NULL are regarded as active dependencies. */
319 loc_exp_dep
*backlinks
;
320 /* This holds the LOC that was expanded into cur_loc. We need only
321 mark a one-part variable as changed if the FROM loc is removed,
322 or if it has no known location and a loc is added, or if it gets
323 a change notification from any of its active dependencies. */
325 /* The depth of the cur_loc expression. */
327 /* Dependencies actively used when expand FROM into cur_loc. */
328 vec
<loc_exp_dep
, va_heap
, vl_embed
> deps
;
331 /* Structure describing one part of variable. */
334 /* Chain of locations of the part. */
335 location_chain
*loc_chain
;
337 /* Location which was last emitted to location list. */
342 /* The offset in the variable, if !var->onepart. */
343 HOST_WIDE_INT offset
;
345 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
346 struct onepart_aux
*onepaux
;
350 /* Maximum number of location parts. */
351 #define MAX_VAR_PARTS 16
353 /* Enumeration type used to discriminate various types of one-part
357 /* Not a one-part variable. */
359 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
361 /* A DEBUG_EXPR_DECL. */
367 /* Structure describing where the variable is located. */
370 /* The declaration of the variable, or an RTL value being handled
371 like a declaration. */
374 /* Reference count. */
377 /* Number of variable parts. */
380 /* What type of DV this is, according to enum onepart_enum. */
381 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
383 /* True if this variable_def struct is currently in the
384 changed_variables hash table. */
385 bool in_changed_variables
;
387 /* The variable parts. */
388 variable_part var_part
[1];
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
394 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
396 static inline HOST_WIDE_INT
397 int_mem_offset (const_rtx mem
)
399 HOST_WIDE_INT offset
;
400 if (MEM_OFFSET_KNOWN_P (mem
) && MEM_OFFSET (mem
).is_constant (&offset
))
405 #if CHECKING_P && (GCC_VERSION >= 2007)
407 /* Access VAR's Ith part's offset, checking that it's not a one-part
409 #define VAR_PART_OFFSET(var, i) __extension__ \
410 (*({ variable *const __v = (var); \
411 gcc_checking_assert (!__v->onepart); \
412 &__v->var_part[(i)].aux.offset; }))
414 /* Access VAR's one-part auxiliary data, checking that it is a
415 one-part variable. */
416 #define VAR_LOC_1PAUX(var) __extension__ \
417 (*({ variable *const __v = (var); \
418 gcc_checking_assert (__v->onepart); \
419 &__v->var_part[0].aux.onepaux; }))
422 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
423 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
426 /* These are accessor macros for the one-part auxiliary data. When
427 convenient for users, they're guarded by tests that the data was
429 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
430 ? VAR_LOC_1PAUX (var)->backlinks \
432 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
433 ? &VAR_LOC_1PAUX (var)->backlinks \
435 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
436 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
437 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
438 ? &VAR_LOC_1PAUX (var)->deps \
443 typedef unsigned int dvuid
;
445 /* Return the uid of DV. */
448 dv_uid (decl_or_value dv
)
450 if (dv_is_value_p (dv
))
451 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
453 return DECL_UID (dv_as_decl (dv
));
456 /* Compute the hash from the uid. */
458 static inline hashval_t
459 dv_uid2hash (dvuid uid
)
464 /* The hash function for a mask table in a shared_htab chain. */
466 static inline hashval_t
467 dv_htab_hash (decl_or_value dv
)
469 return dv_uid2hash (dv_uid (dv
));
472 static void variable_htab_free (void *);
474 /* Variable hashtable helpers. */
476 struct variable_hasher
: pointer_hash
<variable
>
478 typedef void *compare_type
;
479 static inline hashval_t
hash (const variable
*);
480 static inline bool equal (const variable
*, const void *);
481 static inline void remove (variable
*);
484 /* The hash function for variable_htab, computes the hash value
485 from the declaration of variable X. */
488 variable_hasher::hash (const variable
*v
)
490 return dv_htab_hash (v
->dv
);
493 /* Compare the declaration of variable X with declaration Y. */
496 variable_hasher::equal (const variable
*v
, const void *y
)
498 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
500 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
503 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
506 variable_hasher::remove (variable
*var
)
508 variable_htab_free (var
);
511 typedef hash_table
<variable_hasher
> variable_table_type
;
512 typedef variable_table_type::iterator variable_iterator_type
;
514 /* Structure for passing some other parameters to function
515 emit_note_insn_var_location. */
516 struct emit_note_data
518 /* The instruction which the note will be emitted before/after. */
521 /* Where the note will be emitted (before/after insn)? */
522 enum emit_note_where where
;
524 /* The variables and values active at this point. */
525 variable_table_type
*vars
;
528 /* Structure holding a refcounted hash table. If refcount > 1,
529 it must be first unshared before modified. */
532 /* Reference count. */
535 /* Actual hash table. */
536 variable_table_type
*htab
;
539 /* Structure holding the IN or OUT set for a basic block. */
542 /* Adjustment of stack offset. */
543 HOST_WIDE_INT stack_adjust
;
545 /* Attributes for registers (lists of attrs). */
546 attrs
*regs
[FIRST_PSEUDO_REGISTER
];
548 /* Variable locations. */
551 /* Vars that is being traversed. */
552 shared_hash
*traversed_vars
;
555 /* The structure (one for each basic block) containing the information
556 needed for variable tracking. */
557 struct variable_tracking_info
559 /* The vector of micro operations. */
560 vec
<micro_operation
> mos
;
562 /* The IN and OUT set for dataflow analysis. */
566 /* The permanent-in dataflow set for this block. This is used to
567 hold values for which we had to compute entry values. ??? This
568 should probably be dynamically allocated, to avoid using more
569 memory in non-debug builds. */
572 /* Has the block been visited in DFS? */
575 /* Has the block been flooded in VTA? */
580 /* Alloc pool for struct attrs_def. */
581 object_allocator
<attrs
> attrs_pool ("attrs pool");
583 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
585 static pool_allocator var_pool
586 ("variable_def pool", sizeof (variable
) +
587 (MAX_VAR_PARTS
- 1) * sizeof (((variable
*)NULL
)->var_part
[0]));
589 /* Alloc pool for struct variable_def with a single var_part entry. */
590 static pool_allocator valvar_pool
591 ("small variable_def pool", sizeof (variable
));
593 /* Alloc pool for struct location_chain. */
594 static object_allocator
<location_chain
> location_chain_pool
595 ("location_chain pool");
597 /* Alloc pool for struct shared_hash. */
598 static object_allocator
<shared_hash
> shared_hash_pool ("shared_hash pool");
600 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
601 object_allocator
<loc_exp_dep
> loc_exp_dep_pool ("loc_exp_dep pool");
603 /* Changed variables, notes will be emitted for them. */
604 static variable_table_type
*changed_variables
;
606 /* Shall notes be emitted? */
607 static bool emit_notes
;
609 /* Values whose dynamic location lists have gone empty, but whose
610 cselib location lists are still usable. Use this to hold the
611 current location, the backlinks, etc, during emit_notes. */
612 static variable_table_type
*dropped_values
;
614 /* Empty shared hashtable. */
615 static shared_hash
*empty_shared_hash
;
617 /* Scratch register bitmap used by cselib_expand_value_rtx. */
618 static bitmap scratch_regs
= NULL
;
620 #ifdef HAVE_window_save
621 struct GTY(()) parm_reg
{
627 /* Vector of windowed parameter registers, if any. */
628 static vec
<parm_reg
, va_gc
> *windowed_parm_regs
= NULL
;
631 /* Variable used to tell whether cselib_process_insn called our hook. */
632 static bool cselib_hook_called
;
634 /* Local function prototypes. */
635 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
637 static void insn_stack_adjust_offset_pre_post (rtx_insn
*, HOST_WIDE_INT
*,
639 static bool vt_stack_adjustments (void);
641 static void init_attrs_list_set (attrs
**);
642 static void attrs_list_clear (attrs
**);
643 static attrs
*attrs_list_member (attrs
*, decl_or_value
, HOST_WIDE_INT
);
644 static void attrs_list_insert (attrs
**, decl_or_value
, HOST_WIDE_INT
, rtx
);
645 static void attrs_list_copy (attrs
**, attrs
*);
646 static void attrs_list_union (attrs
**, attrs
*);
648 static variable
**unshare_variable (dataflow_set
*set
, variable
**slot
,
649 variable
*var
, enum var_init_status
);
650 static void vars_copy (variable_table_type
*, variable_table_type
*);
651 static tree
var_debug_decl (tree
);
652 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
653 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
654 enum var_init_status
, rtx
);
655 static void var_reg_delete (dataflow_set
*, rtx
, bool);
656 static void var_regno_delete (dataflow_set
*, int);
657 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
658 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
659 enum var_init_status
, rtx
);
660 static void var_mem_delete (dataflow_set
*, rtx
, bool);
662 static void dataflow_set_init (dataflow_set
*);
663 static void dataflow_set_clear (dataflow_set
*);
664 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
665 static int variable_union_info_cmp_pos (const void *, const void *);
666 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
667 static location_chain
*find_loc_in_1pdv (rtx
, variable
*,
668 variable_table_type
*);
669 static bool canon_value_cmp (rtx
, rtx
);
670 static int loc_cmp (rtx
, rtx
);
671 static bool variable_part_different_p (variable_part
*, variable_part
*);
672 static bool onepart_variable_different_p (variable
*, variable
*);
673 static bool variable_different_p (variable
*, variable
*);
674 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
675 static void dataflow_set_destroy (dataflow_set
*);
677 static bool track_expr_p (tree
, bool);
678 static void add_uses_1 (rtx
*, void *);
679 static void add_stores (rtx
, const_rtx
, void *);
680 static bool compute_bb_dataflow (basic_block
);
681 static bool vt_find_locations (void);
683 static void dump_attrs_list (attrs
*);
684 static void dump_var (variable
*);
685 static void dump_vars (variable_table_type
*);
686 static void dump_dataflow_set (dataflow_set
*);
687 static void dump_dataflow_sets (void);
689 static void set_dv_changed (decl_or_value
, bool);
690 static void variable_was_changed (variable
*, dataflow_set
*);
691 static variable
**set_slot_part (dataflow_set
*, rtx
, variable
**,
692 decl_or_value
, HOST_WIDE_INT
,
693 enum var_init_status
, rtx
);
694 static void set_variable_part (dataflow_set
*, rtx
,
695 decl_or_value
, HOST_WIDE_INT
,
696 enum var_init_status
, rtx
, enum insert_option
);
697 static variable
**clobber_slot_part (dataflow_set
*, rtx
,
698 variable
**, HOST_WIDE_INT
, rtx
);
699 static void clobber_variable_part (dataflow_set
*, rtx
,
700 decl_or_value
, HOST_WIDE_INT
, rtx
);
701 static variable
**delete_slot_part (dataflow_set
*, rtx
, variable
**,
703 static void delete_variable_part (dataflow_set
*, rtx
,
704 decl_or_value
, HOST_WIDE_INT
);
705 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
706 static void vt_emit_notes (void);
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
715 stack_adjust_offset_pre_post_cb (rtx
, rtx op
, rtx dest
, rtx src
, rtx srcoff
,
718 if (dest
!= stack_pointer_rtx
)
721 switch (GET_CODE (op
))
725 ((HOST_WIDE_INT
*)arg
)[0] -= INTVAL (srcoff
);
729 ((HOST_WIDE_INT
*)arg
)[1] -= INTVAL (srcoff
);
733 /* We handle only adjustments by constant amount. */
734 gcc_assert (GET_CODE (src
) == PLUS
735 && CONST_INT_P (XEXP (src
, 1))
736 && XEXP (src
, 0) == stack_pointer_rtx
);
737 ((HOST_WIDE_INT
*)arg
)[GET_CODE (op
) == POST_MODIFY
]
738 -= INTVAL (XEXP (src
, 1));
745 /* Given a SET, calculate the amount of stack adjustment it contains
746 PRE- and POST-modifying stack pointer.
747 This function is similar to stack_adjust_offset. */
750 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
753 rtx src
= SET_SRC (pattern
);
754 rtx dest
= SET_DEST (pattern
);
757 if (dest
== stack_pointer_rtx
)
759 /* (set (reg sp) (plus (reg sp) (const_int))) */
760 code
= GET_CODE (src
);
761 if (! (code
== PLUS
|| code
== MINUS
)
762 || XEXP (src
, 0) != stack_pointer_rtx
763 || !CONST_INT_P (XEXP (src
, 1)))
767 *post
+= INTVAL (XEXP (src
, 1));
769 *post
-= INTVAL (XEXP (src
, 1));
772 HOST_WIDE_INT res
[2] = { 0, 0 };
773 for_each_inc_dec (pattern
, stack_adjust_offset_pre_post_cb
, res
);
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779 PRE- and POST-modifying stack pointer. */
782 insn_stack_adjust_offset_pre_post (rtx_insn
*insn
, HOST_WIDE_INT
*pre
,
790 pattern
= PATTERN (insn
);
791 if (RTX_FRAME_RELATED_P (insn
))
793 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
795 pattern
= XEXP (expr
, 0);
798 if (GET_CODE (pattern
) == SET
)
799 stack_adjust_offset_pre_post (pattern
, pre
, post
);
800 else if (GET_CODE (pattern
) == PARALLEL
801 || GET_CODE (pattern
) == SEQUENCE
)
805 /* There may be stack adjustments inside compound insns. Search
807 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
808 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
809 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814 Return true when the adjustments on all incoming edges are consistent.
815 Heavily borrowed from pre_and_rev_post_order_compute. */
818 vt_stack_adjustments (void)
820 edge_iterator
*stack
;
823 /* Initialize entry block. */
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
826 = INCOMING_FRAME_SP_OFFSET
;
827 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
828 = INCOMING_FRAME_SP_OFFSET
;
830 /* Allocate stack for back-tracking up CFG. */
831 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
834 /* Push the first edge on to the stack. */
835 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
843 /* Look at the edge on the top of the stack. */
845 src
= ei_edge (ei
)->src
;
846 dest
= ei_edge (ei
)->dest
;
848 /* Check if the edge destination has been visited yet. */
849 if (!VTI (dest
)->visited
)
852 HOST_WIDE_INT pre
, post
, offset
;
853 VTI (dest
)->visited
= true;
854 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
856 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
857 for (insn
= BB_HEAD (dest
);
858 insn
!= NEXT_INSN (BB_END (dest
));
859 insn
= NEXT_INSN (insn
))
862 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
863 offset
+= pre
+ post
;
866 VTI (dest
)->out
.stack_adjust
= offset
;
868 if (EDGE_COUNT (dest
->succs
) > 0)
869 /* Since the DEST node has been visited for the first
870 time, check its successors. */
871 stack
[sp
++] = ei_start (dest
->succs
);
875 /* We can end up with different stack adjustments for the exit block
876 of a shrink-wrapped function if stack_adjust_offset_pre_post
877 doesn't understand the rtx pattern used to restore the stack
878 pointer in the epilogue. For example, on s390(x), the stack
879 pointer is often restored via a load-multiple instruction
880 and so no stack_adjust offset is recorded for it. This means
881 that the stack offset at the end of the epilogue block is the
882 same as the offset before the epilogue, whereas other paths
883 to the exit block will have the correct stack_adjust.
885 It is safe to ignore these differences because (a) we never
886 use the stack_adjust for the exit block in this pass and
887 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 function are correct.
890 We must check whether the adjustments on other edges are
892 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
893 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
899 if (! ei_one_before_end_p (ei
))
900 /* Go to the next edge. */
901 ei_next (&stack
[sp
- 1]);
903 /* Return to previous level if there are no more edges. */
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913 hard_frame_pointer_rtx is being mapped to it and offset for it. */
914 static rtx cfa_base_rtx
;
915 static HOST_WIDE_INT cfa_base_offset
;
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918 or hard_frame_pointer_rtx. */
921 compute_cfa_pointer (poly_int64 adjustment
)
923 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927 or -1 if the replacement shouldn't be done. */
928 static poly_int64 hard_frame_pointer_adjustment
= -1;
930 /* Data for adjust_mems callback. */
932 class adjust_mem_data
936 machine_mode mem_mode
;
937 HOST_WIDE_INT stack_adjust
;
938 auto_vec
<rtx
> side_effects
;
941 /* Helper for adjust_mems. Return true if X is suitable for
942 transformation of wider mode arithmetics to narrower mode. */
945 use_narrower_mode_test (rtx x
, const_rtx subreg
)
947 subrtx_var_iterator::array_type array
;
948 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
952 iter
.skip_subrtxes ();
954 switch (GET_CODE (x
))
957 if (cselib_lookup (x
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
959 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (x
), x
,
960 subreg_lowpart_offset (GET_MODE (subreg
),
969 if (GET_MODE (XEXP (x
, 1)) != VOIDmode
)
971 enum machine_mode mode
= GET_MODE (subreg
);
972 rtx op1
= XEXP (x
, 1);
973 enum machine_mode op1_mode
= GET_MODE (op1
);
974 if (GET_MODE_PRECISION (as_a
<scalar_int_mode
> (mode
))
975 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (op1_mode
)))
977 poly_uint64 byte
= subreg_lowpart_offset (mode
, op1_mode
);
978 if (GET_CODE (op1
) == SUBREG
|| GET_CODE (op1
) == CONCAT
)
980 if (!simplify_subreg (mode
, op1
, op1_mode
, byte
))
983 else if (!validate_subreg (mode
, op1_mode
, op1
, byte
))
987 iter
.substitute (XEXP (x
, 0));
996 /* Transform X into narrower mode MODE from wider mode WMODE. */
999 use_narrower_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode wmode
)
1003 return lowpart_subreg (mode
, x
, wmode
);
1004 switch (GET_CODE (x
))
1007 return lowpart_subreg (mode
, x
, wmode
);
1011 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1012 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
1013 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
1015 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1017 /* Ensure shift amount is not wider than mode. */
1018 if (GET_MODE (op1
) == VOIDmode
)
1019 op1
= lowpart_subreg (mode
, op1
, wmode
);
1020 else if (GET_MODE_PRECISION (mode
)
1021 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (GET_MODE (op1
))))
1022 op1
= lowpart_subreg (mode
, op1
, GET_MODE (op1
));
1023 return simplify_gen_binary (ASHIFT
, mode
, op0
, op1
);
1029 /* Helper function for adjusting used MEMs. */
1032 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1034 class adjust_mem_data
*amd
= (class adjust_mem_data
*) data
;
1035 rtx mem
, addr
= loc
, tem
;
1036 machine_mode mem_mode_save
;
1038 scalar_int_mode tem_mode
, tem_subreg_mode
;
1040 switch (GET_CODE (loc
))
1043 /* Don't do any sp or fp replacements outside of MEM addresses
1045 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1047 if (loc
== stack_pointer_rtx
1048 && !frame_pointer_needed
1050 return compute_cfa_pointer (amd
->stack_adjust
);
1051 else if (loc
== hard_frame_pointer_rtx
1052 && frame_pointer_needed
1053 && maybe_ne (hard_frame_pointer_adjustment
, -1)
1055 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1056 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1062 mem
= targetm
.delegitimize_address (mem
);
1063 if (mem
!= loc
&& !MEM_P (mem
))
1064 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1067 addr
= XEXP (mem
, 0);
1068 mem_mode_save
= amd
->mem_mode
;
1069 amd
->mem_mode
= GET_MODE (mem
);
1070 store_save
= amd
->store
;
1072 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1073 amd
->store
= store_save
;
1074 amd
->mem_mode
= mem_mode_save
;
1076 addr
= targetm
.delegitimize_address (addr
);
1077 if (addr
!= XEXP (mem
, 0))
1078 mem
= replace_equiv_address_nv (mem
, addr
);
1080 mem
= avoid_constant_pool_reference (mem
);
1084 size
= GET_MODE_SIZE (amd
->mem_mode
);
1085 addr
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1086 GET_CODE (loc
) == PRE_INC
? size
: -size
);
1091 addr
= XEXP (loc
, 0);
1092 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1093 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1094 size
= GET_MODE_SIZE (amd
->mem_mode
);
1095 tem
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1096 (GET_CODE (loc
) == PRE_INC
1097 || GET_CODE (loc
) == POST_INC
) ? size
: -size
);
1098 store_save
= amd
->store
;
1100 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1101 amd
->store
= store_save
;
1102 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1105 addr
= XEXP (loc
, 1);
1109 addr
= XEXP (loc
, 0);
1110 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1111 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1112 store_save
= amd
->store
;
1114 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1116 amd
->store
= store_save
;
1117 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1120 /* First try without delegitimization of whole MEMs and
1121 avoid_constant_pool_reference, which is more likely to succeed. */
1122 store_save
= amd
->store
;
1124 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1126 amd
->store
= store_save
;
1127 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1128 if (mem
== SUBREG_REG (loc
))
1133 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1134 GET_MODE (SUBREG_REG (loc
)),
1138 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1139 GET_MODE (SUBREG_REG (loc
)),
1141 if (tem
== NULL_RTX
)
1142 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1144 if (MAY_HAVE_DEBUG_BIND_INSNS
1145 && GET_CODE (tem
) == SUBREG
1146 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1147 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1148 || GET_CODE (SUBREG_REG (tem
)) == MULT
1149 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1150 && is_a
<scalar_int_mode
> (GET_MODE (tem
), &tem_mode
)
1151 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (tem
)),
1153 && (GET_MODE_PRECISION (tem_mode
)
1154 < GET_MODE_PRECISION (tem_subreg_mode
))
1155 && subreg_lowpart_p (tem
)
1156 && use_narrower_mode_test (SUBREG_REG (tem
), tem
))
1157 return use_narrower_mode (SUBREG_REG (tem
), tem_mode
, tem_subreg_mode
);
1160 /* Don't do any replacements in second and following
1161 ASM_OPERANDS of inline-asm with multiple sets.
1162 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1163 and ASM_OPERANDS_LABEL_VEC need to be equal between
1164 all the ASM_OPERANDs in the insn and adjust_insn will
1166 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1175 /* Helper function for replacement of uses. */
1178 adjust_mem_uses (rtx
*x
, void *data
)
1180 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1182 validate_change (NULL_RTX
, x
, new_x
, true);
1185 /* Helper function for replacement of stores. */
1188 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1192 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1194 if (new_dest
!= SET_DEST (expr
))
1196 rtx xexpr
= CONST_CAST_RTX (expr
);
1197 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1202 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1203 replace them with their value in the insn and add the side-effects
1204 as other sets to the insn. */
1207 adjust_insn (basic_block bb
, rtx_insn
*insn
)
1211 #ifdef HAVE_window_save
1212 /* If the target machine has an explicit window save instruction, the
1213 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1214 if (RTX_FRAME_RELATED_P (insn
)
1215 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1217 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1218 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1221 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1223 XVECEXP (rtl
, 0, i
* 2)
1224 = gen_rtx_SET (p
->incoming
, p
->outgoing
);
1225 /* Do not clobber the attached DECL, but only the REG. */
1226 XVECEXP (rtl
, 0, i
* 2 + 1)
1227 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1228 gen_raw_REG (GET_MODE (p
->outgoing
),
1229 REGNO (p
->outgoing
)));
1232 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1237 adjust_mem_data amd
;
1238 amd
.mem_mode
= VOIDmode
;
1239 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1242 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
1245 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1246 && asm_noperands (PATTERN (insn
)) > 0
1247 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1252 /* inline-asm with multiple sets is tiny bit more complicated,
1253 because the 3 vectors in ASM_OPERANDS need to be shared between
1254 all ASM_OPERANDS in the instruction. adjust_mems will
1255 not touch ASM_OPERANDS other than the first one, asm_noperands
1256 test above needs to be called before that (otherwise it would fail)
1257 and afterwards this code fixes it up. */
1258 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1259 body
= PATTERN (insn
);
1260 set0
= XVECEXP (body
, 0, 0);
1261 gcc_checking_assert (GET_CODE (set0
) == SET
1262 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1263 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1264 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1265 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1269 set
= XVECEXP (body
, 0, i
);
1270 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1271 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1273 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1274 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1275 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1276 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1277 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1278 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1280 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1281 ASM_OPERANDS_INPUT_VEC (newsrc
)
1282 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1283 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1284 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1285 ASM_OPERANDS_LABEL_VEC (newsrc
)
1286 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1287 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1292 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1294 /* For read-only MEMs containing some constant, prefer those
1296 set
= single_set (insn
);
1297 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1299 rtx note
= find_reg_equal_equiv_note (insn
);
1301 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1302 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1305 if (!amd
.side_effects
.is_empty ())
1310 pat
= &PATTERN (insn
);
1311 if (GET_CODE (*pat
) == COND_EXEC
)
1312 pat
= &COND_EXEC_CODE (*pat
);
1313 if (GET_CODE (*pat
) == PARALLEL
)
1314 oldn
= XVECLEN (*pat
, 0);
1317 unsigned int newn
= amd
.side_effects
.length ();
1318 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1319 if (GET_CODE (*pat
) == PARALLEL
)
1320 for (i
= 0; i
< oldn
; i
++)
1321 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1323 XVECEXP (new_pat
, 0, 0) = *pat
;
1327 FOR_EACH_VEC_ELT_REVERSE (amd
.side_effects
, j
, effect
)
1328 XVECEXP (new_pat
, 0, j
+ oldn
) = effect
;
1329 validate_change (NULL_RTX
, pat
, new_pat
, true);
1333 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1335 dv_as_rtx (decl_or_value dv
)
1339 if (dv_is_value_p (dv
))
1340 return dv_as_value (dv
);
1342 decl
= dv_as_decl (dv
);
1344 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1345 return DECL_RTL_KNOWN_SET (decl
);
1348 /* Return nonzero if a decl_or_value must not have more than one
1349 variable part. The returned value discriminates among various
1350 kinds of one-part DVs ccording to enum onepart_enum. */
1351 static inline onepart_enum
1352 dv_onepart_p (decl_or_value dv
)
1356 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
1359 if (dv_is_value_p (dv
))
1360 return ONEPART_VALUE
;
1362 decl
= dv_as_decl (dv
);
1364 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1365 return ONEPART_DEXPR
;
1367 if (target_for_debug_bind (decl
) != NULL_TREE
)
1368 return ONEPART_VDECL
;
1373 /* Return the variable pool to be used for a dv of type ONEPART. */
1374 static inline pool_allocator
&
1375 onepart_pool (onepart_enum onepart
)
1377 return onepart
? valvar_pool
: var_pool
;
1380 /* Allocate a variable_def from the corresponding variable pool. */
1381 static inline variable
*
1382 onepart_pool_allocate (onepart_enum onepart
)
1384 return (variable
*) onepart_pool (onepart
).allocate ();
1387 /* Build a decl_or_value out of a decl. */
1388 static inline decl_or_value
1389 dv_from_decl (tree decl
)
1393 gcc_checking_assert (dv_is_decl_p (dv
));
1397 /* Build a decl_or_value out of a value. */
1398 static inline decl_or_value
1399 dv_from_value (rtx value
)
1403 gcc_checking_assert (dv_is_value_p (dv
));
1407 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1408 static inline decl_or_value
1413 switch (GET_CODE (x
))
1416 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1417 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1421 dv
= dv_from_value (x
);
1431 extern void debug_dv (decl_or_value dv
);
1434 debug_dv (decl_or_value dv
)
1436 if (dv_is_value_p (dv
))
1437 debug_rtx (dv_as_value (dv
));
1439 debug_generic_stmt (dv_as_decl (dv
));
1442 static void loc_exp_dep_clear (variable
*var
);
1444 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1447 variable_htab_free (void *elem
)
1450 variable
*var
= (variable
*) elem
;
1451 location_chain
*node
, *next
;
1453 gcc_checking_assert (var
->refcount
> 0);
1456 if (var
->refcount
> 0)
1459 for (i
= 0; i
< var
->n_var_parts
; i
++)
1461 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1466 var
->var_part
[i
].loc_chain
= NULL
;
1468 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1470 loc_exp_dep_clear (var
);
1471 if (VAR_LOC_DEP_LST (var
))
1472 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1473 XDELETE (VAR_LOC_1PAUX (var
));
1474 /* These may be reused across functions, so reset
1476 if (var
->onepart
== ONEPART_DEXPR
)
1477 set_dv_changed (var
->dv
, true);
1479 onepart_pool (var
->onepart
).remove (var
);
1482 /* Initialize the set (array) SET of attrs to empty lists. */
1485 init_attrs_list_set (attrs
**set
)
1489 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1493 /* Make the list *LISTP empty. */
1496 attrs_list_clear (attrs
**listp
)
1500 for (list
= *listp
; list
; list
= next
)
1508 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1511 attrs_list_member (attrs
*list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1513 for (; list
; list
= list
->next
)
1514 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1519 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1522 attrs_list_insert (attrs
**listp
, decl_or_value dv
,
1523 HOST_WIDE_INT offset
, rtx loc
)
1525 attrs
*list
= new attrs
;
1528 list
->offset
= offset
;
1529 list
->next
= *listp
;
1533 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1536 attrs_list_copy (attrs
**dstp
, attrs
*src
)
1538 attrs_list_clear (dstp
);
1539 for (; src
; src
= src
->next
)
1541 attrs
*n
= new attrs
;
1544 n
->offset
= src
->offset
;
1550 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1553 attrs_list_union (attrs
**dstp
, attrs
*src
)
1555 for (; src
; src
= src
->next
)
1557 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1558 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1562 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1566 attrs_list_mpdv_union (attrs
**dstp
, attrs
*src
, attrs
*src2
)
1568 gcc_assert (!*dstp
);
1569 for (; src
; src
= src
->next
)
1571 if (!dv_onepart_p (src
->dv
))
1572 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1574 for (src
= src2
; src
; src
= src
->next
)
1576 if (!dv_onepart_p (src
->dv
)
1577 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1578 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1582 /* Shared hashtable support. */
1584 /* Return true if VARS is shared. */
1587 shared_hash_shared (shared_hash
*vars
)
1589 return vars
->refcount
> 1;
1592 /* Return the hash table for VARS. */
1594 static inline variable_table_type
*
1595 shared_hash_htab (shared_hash
*vars
)
1600 /* Return true if VAR is shared, or maybe because VARS is shared. */
1603 shared_var_p (variable
*var
, shared_hash
*vars
)
1605 /* Don't count an entry in the changed_variables table as a duplicate. */
1606 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1607 || shared_hash_shared (vars
));
1610 /* Copy variables into a new hash table. */
1612 static shared_hash
*
1613 shared_hash_unshare (shared_hash
*vars
)
1615 shared_hash
*new_vars
= new shared_hash
;
1616 gcc_assert (vars
->refcount
> 1);
1617 new_vars
->refcount
= 1;
1618 new_vars
->htab
= new variable_table_type (vars
->htab
->elements () + 3);
1619 vars_copy (new_vars
->htab
, vars
->htab
);
1624 /* Increment reference counter on VARS and return it. */
1626 static inline shared_hash
*
1627 shared_hash_copy (shared_hash
*vars
)
1633 /* Decrement reference counter and destroy hash table if not shared
1637 shared_hash_destroy (shared_hash
*vars
)
1639 gcc_checking_assert (vars
->refcount
> 0);
1640 if (--vars
->refcount
== 0)
1647 /* Unshare *PVARS if shared and return slot for DV. If INS is
1648 INSERT, insert it if not already present. */
1650 static inline variable
**
1651 shared_hash_find_slot_unshare_1 (shared_hash
**pvars
, decl_or_value dv
,
1652 hashval_t dvhash
, enum insert_option ins
)
1654 if (shared_hash_shared (*pvars
))
1655 *pvars
= shared_hash_unshare (*pvars
);
1656 return shared_hash_htab (*pvars
)->find_slot_with_hash (dv
, dvhash
, ins
);
1659 static inline variable
**
1660 shared_hash_find_slot_unshare (shared_hash
**pvars
, decl_or_value dv
,
1661 enum insert_option ins
)
1663 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1666 /* Return slot for DV, if it is already present in the hash table.
1667 If it is not present, insert it only VARS is not shared, otherwise
1670 static inline variable
**
1671 shared_hash_find_slot_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1673 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
,
1674 shared_hash_shared (vars
)
1675 ? NO_INSERT
: INSERT
);
1678 static inline variable
**
1679 shared_hash_find_slot (shared_hash
*vars
, decl_or_value dv
)
1681 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1684 /* Return slot for DV only if it is already present in the hash table. */
1686 static inline variable
**
1687 shared_hash_find_slot_noinsert_1 (shared_hash
*vars
, decl_or_value dv
,
1690 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1693 static inline variable
**
1694 shared_hash_find_slot_noinsert (shared_hash
*vars
, decl_or_value dv
)
1696 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1699 /* Return variable for DV or NULL if not already present in the hash
1702 static inline variable
*
1703 shared_hash_find_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1705 return shared_hash_htab (vars
)->find_with_hash (dv
, dvhash
);
1708 static inline variable
*
1709 shared_hash_find (shared_hash
*vars
, decl_or_value dv
)
1711 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1714 /* Return true if TVAL is better than CVAL as a canonival value. We
1715 choose lowest-numbered VALUEs, using the RTX address as a
1716 tie-breaker. The idea is to arrange them into a star topology,
1717 such that all of them are at most one step away from the canonical
1718 value, and the canonical value has backlinks to all of them, in
1719 addition to all the actual locations. We don't enforce this
1720 topology throughout the entire dataflow analysis, though.
1724 canon_value_cmp (rtx tval
, rtx cval
)
1727 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1730 static bool dst_can_be_shared
;
1732 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1735 unshare_variable (dataflow_set
*set
, variable
**slot
, variable
*var
,
1736 enum var_init_status initialized
)
1741 new_var
= onepart_pool_allocate (var
->onepart
);
1742 new_var
->dv
= var
->dv
;
1743 new_var
->refcount
= 1;
1745 new_var
->n_var_parts
= var
->n_var_parts
;
1746 new_var
->onepart
= var
->onepart
;
1747 new_var
->in_changed_variables
= false;
1749 if (! flag_var_tracking_uninit
)
1750 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1752 for (i
= 0; i
< var
->n_var_parts
; i
++)
1754 location_chain
*node
;
1755 location_chain
**nextp
;
1757 if (i
== 0 && var
->onepart
)
1759 /* One-part auxiliary data is only used while emitting
1760 notes, so propagate it to the new variable in the active
1761 dataflow set. If we're not emitting notes, this will be
1763 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1764 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1765 VAR_LOC_1PAUX (var
) = NULL
;
1768 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1769 nextp
= &new_var
->var_part
[i
].loc_chain
;
1770 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1772 location_chain
*new_lc
;
1774 new_lc
= new location_chain
;
1775 new_lc
->next
= NULL
;
1776 if (node
->init
> initialized
)
1777 new_lc
->init
= node
->init
;
1779 new_lc
->init
= initialized
;
1780 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1781 new_lc
->set_src
= node
->set_src
;
1783 new_lc
->set_src
= NULL
;
1784 new_lc
->loc
= node
->loc
;
1787 nextp
= &new_lc
->next
;
1790 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1793 dst_can_be_shared
= false;
1794 if (shared_hash_shared (set
->vars
))
1795 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1796 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1797 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1799 if (var
->in_changed_variables
)
1802 = changed_variables
->find_slot_with_hash (var
->dv
,
1803 dv_htab_hash (var
->dv
),
1805 gcc_assert (*cslot
== (void *) var
);
1806 var
->in_changed_variables
= false;
1807 variable_htab_free (var
);
1809 new_var
->in_changed_variables
= true;
1814 /* Copy all variables from hash table SRC to hash table DST. */
1817 vars_copy (variable_table_type
*dst
, variable_table_type
*src
)
1819 variable_iterator_type hi
;
1822 FOR_EACH_HASH_TABLE_ELEMENT (*src
, var
, variable
, hi
)
1826 dstp
= dst
->find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
),
1832 /* Map a decl to its main debug decl. */
1835 var_debug_decl (tree decl
)
1837 if (decl
&& VAR_P (decl
) && DECL_HAS_DEBUG_EXPR_P (decl
))
1839 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1840 if (DECL_P (debugdecl
))
1847 /* Set the register LOC to contain DV, OFFSET. */
1850 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1851 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1852 enum insert_option iopt
)
1855 bool decl_p
= dv_is_decl_p (dv
);
1858 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1860 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1861 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1862 && node
->offset
== offset
)
1865 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1866 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1869 /* Return true if we should track a location that is OFFSET bytes from
1870 a variable. Store the constant offset in *OFFSET_OUT if so. */
1873 track_offset_p (poly_int64 offset
, HOST_WIDE_INT
*offset_out
)
1875 HOST_WIDE_INT const_offset
;
1876 if (!offset
.is_constant (&const_offset
)
1877 || !IN_RANGE (const_offset
, 0, MAX_VAR_PARTS
- 1))
1879 *offset_out
= const_offset
;
1883 /* Return the offset of a register that track_offset_p says we
1886 static HOST_WIDE_INT
1887 get_tracked_reg_offset (rtx loc
)
1889 HOST_WIDE_INT offset
;
1890 if (!track_offset_p (REG_OFFSET (loc
), &offset
))
1895 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1898 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1901 tree decl
= REG_EXPR (loc
);
1902 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1904 var_reg_decl_set (set
, loc
, initialized
,
1905 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1908 static enum var_init_status
1909 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1913 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1915 if (! flag_var_tracking_uninit
)
1916 return VAR_INIT_STATUS_INITIALIZED
;
1918 var
= shared_hash_find (set
->vars
, dv
);
1921 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1923 location_chain
*nextp
;
1924 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1925 if (rtx_equal_p (nextp
->loc
, loc
))
1927 ret_val
= nextp
->init
;
1936 /* Delete current content of register LOC in dataflow set SET and set
1937 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1938 MODIFY is true, any other live copies of the same variable part are
1939 also deleted from the dataflow set, otherwise the variable part is
1940 assumed to be copied from another location holding the same
1944 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1945 enum var_init_status initialized
, rtx set_src
)
1947 tree decl
= REG_EXPR (loc
);
1948 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1952 decl
= var_debug_decl (decl
);
1954 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1955 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1957 nextp
= &set
->regs
[REGNO (loc
)];
1958 for (node
= *nextp
; node
; node
= next
)
1961 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1963 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1970 nextp
= &node
->next
;
1974 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1975 var_reg_set (set
, loc
, initialized
, set_src
);
1978 /* Delete the association of register LOC in dataflow set SET with any
1979 variables that aren't onepart. If CLOBBER is true, also delete any
1980 other live copies of the same variable part, and delete the
1981 association with onepart dvs too. */
1984 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1986 attrs
**nextp
= &set
->regs
[REGNO (loc
)];
1989 HOST_WIDE_INT offset
;
1990 if (clobber
&& track_offset_p (REG_OFFSET (loc
), &offset
))
1992 tree decl
= REG_EXPR (loc
);
1994 decl
= var_debug_decl (decl
);
1996 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1999 for (node
= *nextp
; node
; node
= next
)
2002 if (clobber
|| !dv_onepart_p (node
->dv
))
2004 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2009 nextp
= &node
->next
;
2013 /* Delete content of register with number REGNO in dataflow set SET. */
2016 var_regno_delete (dataflow_set
*set
, int regno
)
2018 attrs
**reg
= &set
->regs
[regno
];
2021 for (node
= *reg
; node
; node
= next
)
2024 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2030 /* Return true if I is the negated value of a power of two. */
2032 negative_power_of_two_p (HOST_WIDE_INT i
)
2034 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
2035 return pow2_or_zerop (x
);
2038 /* Strip constant offsets and alignments off of LOC. Return the base
2042 vt_get_canonicalize_base (rtx loc
)
2044 while ((GET_CODE (loc
) == PLUS
2045 || GET_CODE (loc
) == AND
)
2046 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2047 && (GET_CODE (loc
) != AND
2048 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2049 loc
= XEXP (loc
, 0);
2054 /* This caches canonicalized addresses for VALUEs, computed using
2055 information in the global cselib table. */
2056 static hash_map
<rtx
, rtx
> *global_get_addr_cache
;
2058 /* This caches canonicalized addresses for VALUEs, computed using
2059 information from the global cache and information pertaining to a
2060 basic block being analyzed. */
2061 static hash_map
<rtx
, rtx
> *local_get_addr_cache
;
2063 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2065 /* Return the canonical address for LOC, that must be a VALUE, using a
2066 cached global equivalence or computing it and storing it in the
2070 get_addr_from_global_cache (rtx
const loc
)
2074 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2077 rtx
*slot
= &global_get_addr_cache
->get_or_insert (loc
, &existed
);
2081 x
= canon_rtx (get_addr (loc
));
2083 /* Tentative, avoiding infinite recursion. */
2088 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2091 /* The table may have moved during recursion, recompute
2093 *global_get_addr_cache
->get (loc
) = x
= nx
;
2100 /* Return the canonical address for LOC, that must be a VALUE, using a
2101 cached local equivalence or computing it and storing it in the
2105 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2112 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2115 rtx
*slot
= &local_get_addr_cache
->get_or_insert (loc
, &existed
);
2119 x
= get_addr_from_global_cache (loc
);
2121 /* Tentative, avoiding infinite recursion. */
2124 /* Recurse to cache local expansion of X, or if we need to search
2125 for a VALUE in the expansion. */
2128 rtx nx
= vt_canonicalize_addr (set
, x
);
2131 slot
= local_get_addr_cache
->get (loc
);
2137 dv
= dv_from_rtx (x
);
2138 var
= shared_hash_find (set
->vars
, dv
);
2142 /* Look for an improved equivalent expression. */
2143 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2145 rtx base
= vt_get_canonicalize_base (l
->loc
);
2146 if (GET_CODE (base
) == VALUE
2147 && canon_value_cmp (base
, loc
))
2149 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2152 slot
= local_get_addr_cache
->get (loc
);
2162 /* Canonicalize LOC using equivalences from SET in addition to those
2163 in the cselib static table. It expects a VALUE-based expression,
2164 and it will only substitute VALUEs with other VALUEs or
2165 function-global equivalences, so that, if two addresses have base
2166 VALUEs that are locally or globally related in ways that
2167 memrefs_conflict_p cares about, they will both canonicalize to
2168 expressions that have the same base VALUE.
2170 The use of VALUEs as canonical base addresses enables the canonical
2171 RTXs to remain unchanged globally, if they resolve to a constant,
2172 or throughout a basic block otherwise, so that they can be cached
2173 and the cache needs not be invalidated when REGs, MEMs or such
2177 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2179 poly_int64 ofst
= 0, term
;
2180 machine_mode mode
= GET_MODE (oloc
);
2187 while (GET_CODE (loc
) == PLUS
2188 && poly_int_rtx_p (XEXP (loc
, 1), &term
))
2191 loc
= XEXP (loc
, 0);
2194 /* Alignment operations can't normally be combined, so just
2195 canonicalize the base and we're done. We'll normally have
2196 only one stack alignment anyway. */
2197 if (GET_CODE (loc
) == AND
2198 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2199 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2201 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2202 if (x
!= XEXP (loc
, 0))
2203 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2207 if (GET_CODE (loc
) == VALUE
)
2210 loc
= get_addr_from_local_cache (set
, loc
);
2212 loc
= get_addr_from_global_cache (loc
);
2214 /* Consolidate plus_constants. */
2215 while (maybe_ne (ofst
, 0)
2216 && GET_CODE (loc
) == PLUS
2217 && poly_int_rtx_p (XEXP (loc
, 1), &term
))
2220 loc
= XEXP (loc
, 0);
2227 x
= canon_rtx (loc
);
2234 /* Add OFST back in. */
2235 if (maybe_ne (ofst
, 0))
2237 /* Don't build new RTL if we can help it. */
2238 if (strip_offset (oloc
, &term
) == loc
&& known_eq (term
, ofst
))
2241 loc
= plus_constant (mode
, loc
, ofst
);
2247 /* Return true iff there's a true dependence between MLOC and LOC.
2248 MADDR must be a canonicalized version of MLOC's address. */
2251 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2253 if (GET_CODE (loc
) != MEM
)
2256 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2257 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2263 /* Hold parameters for the hashtab traversal function
2264 drop_overlapping_mem_locs, see below. */
2266 struct overlapping_mems
2272 /* Remove all MEMs that overlap with COMS->LOC from the location list
2273 of a hash table entry for a onepart variable. COMS->ADDR must be a
2274 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2275 canonicalized itself. */
2278 drop_overlapping_mem_locs (variable
**slot
, overlapping_mems
*coms
)
2280 dataflow_set
*set
= coms
->set
;
2281 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2282 variable
*var
= *slot
;
2284 if (var
->onepart
!= NOT_ONEPART
)
2286 location_chain
*loc
, **locp
;
2287 bool changed
= false;
2290 gcc_assert (var
->n_var_parts
== 1);
2292 if (shared_var_p (var
, set
->vars
))
2294 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2295 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2301 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2303 gcc_assert (var
->n_var_parts
== 1);
2306 if (VAR_LOC_1PAUX (var
))
2307 cur_loc
= VAR_LOC_FROM (var
);
2309 cur_loc
= var
->var_part
[0].cur_loc
;
2311 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2314 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2321 /* If we have deleted the location which was last emitted
2322 we have to emit new location so add the variable to set
2323 of changed variables. */
2324 if (cur_loc
== loc
->loc
)
2327 var
->var_part
[0].cur_loc
= NULL
;
2328 if (VAR_LOC_1PAUX (var
))
2329 VAR_LOC_FROM (var
) = NULL
;
2334 if (!var
->var_part
[0].loc_chain
)
2340 variable_was_changed (var
, set
);
2346 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2349 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2351 struct overlapping_mems coms
;
2353 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2356 coms
.loc
= canon_rtx (loc
);
2357 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2359 set
->traversed_vars
= set
->vars
;
2360 shared_hash_htab (set
->vars
)
2361 ->traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2362 set
->traversed_vars
= NULL
;
2365 /* Set the location of DV, OFFSET as the MEM LOC. */
2368 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2369 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2370 enum insert_option iopt
)
2372 if (dv_is_decl_p (dv
))
2373 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2375 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2378 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2380 Adjust the address first if it is stack pointer based. */
2383 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2386 tree decl
= MEM_EXPR (loc
);
2387 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2389 var_mem_decl_set (set
, loc
, initialized
,
2390 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2393 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2394 dataflow set SET to LOC. If MODIFY is true, any other live copies
2395 of the same variable part are also deleted from the dataflow set,
2396 otherwise the variable part is assumed to be copied from another
2397 location holding the same part.
2398 Adjust the address first if it is stack pointer based. */
2401 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2402 enum var_init_status initialized
, rtx set_src
)
2404 tree decl
= MEM_EXPR (loc
);
2405 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2407 clobber_overlapping_mems (set
, loc
);
2408 decl
= var_debug_decl (decl
);
2410 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2411 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2414 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2415 var_mem_set (set
, loc
, initialized
, set_src
);
2418 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2419 true, also delete any other live copies of the same variable part.
2420 Adjust the address first if it is stack pointer based. */
2423 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2425 tree decl
= MEM_EXPR (loc
);
2426 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2428 clobber_overlapping_mems (set
, loc
);
2429 decl
= var_debug_decl (decl
);
2431 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2432 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2435 /* Return true if LOC should not be expanded for location expressions,
2439 unsuitable_loc (rtx loc
)
2441 switch (GET_CODE (loc
))
2455 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2459 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2464 var_regno_delete (set
, REGNO (loc
));
2465 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2466 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2468 else if (MEM_P (loc
))
2470 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2473 clobber_overlapping_mems (set
, loc
);
2475 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2476 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2478 /* If this MEM is a global constant, we don't need it in the
2479 dynamic tables. ??? We should test this before emitting the
2480 micro-op in the first place. */
2482 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2488 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2489 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2493 /* Other kinds of equivalences are necessarily static, at least
2494 so long as we do not perform substitutions while merging
2497 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2498 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2502 /* Bind a value to a location it was just stored in. If MODIFIED
2503 holds, assume the location was modified, detaching it from any
2504 values bound to it. */
2507 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
,
2510 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2512 gcc_assert (cselib_preserved_value_p (v
));
2516 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2517 print_inline_rtx (dump_file
, loc
, 0);
2518 fprintf (dump_file
, " evaluates to ");
2519 print_inline_rtx (dump_file
, val
, 0);
2522 struct elt_loc_list
*l
;
2523 for (l
= v
->locs
; l
; l
= l
->next
)
2525 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2526 print_inline_rtx (dump_file
, l
->loc
, 0);
2529 fprintf (dump_file
, "\n");
2532 gcc_checking_assert (!unsuitable_loc (loc
));
2534 val_bind (set
, val
, loc
, modified
);
2537 /* Clear (canonical address) slots that reference X. */
2540 local_get_addr_clear_given_value (rtx
const &, rtx
*slot
, rtx x
)
2542 if (vt_get_canonicalize_base (*slot
) == x
)
2547 /* Reset this node, detaching all its equivalences. Return the slot
2548 in the variable hash table that holds dv, if there is one. */
2551 val_reset (dataflow_set
*set
, decl_or_value dv
)
2553 variable
*var
= shared_hash_find (set
->vars
, dv
) ;
2554 location_chain
*node
;
2557 if (!var
|| !var
->n_var_parts
)
2560 gcc_assert (var
->n_var_parts
== 1);
2562 if (var
->onepart
== ONEPART_VALUE
)
2564 rtx x
= dv_as_value (dv
);
2566 /* Relationships in the global cache don't change, so reset the
2567 local cache entry only. */
2568 rtx
*slot
= local_get_addr_cache
->get (x
);
2571 /* If the value resolved back to itself, odds are that other
2572 values may have cached it too. These entries now refer
2573 to the old X, so detach them too. Entries that used the
2574 old X but resolved to something else remain ok as long as
2575 that something else isn't also reset. */
2577 local_get_addr_cache
2578 ->traverse
<rtx
, local_get_addr_clear_given_value
> (x
);
2584 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2585 if (GET_CODE (node
->loc
) == VALUE
2586 && canon_value_cmp (node
->loc
, cval
))
2589 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2590 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2592 /* Redirect the equivalence link to the new canonical
2593 value, or simply remove it if it would point at
2596 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2597 0, node
->init
, node
->set_src
, NO_INSERT
);
2598 delete_variable_part (set
, dv_as_value (dv
),
2599 dv_from_value (node
->loc
), 0);
2604 decl_or_value cdv
= dv_from_value (cval
);
2606 /* Keep the remaining values connected, accumulating links
2607 in the canonical value. */
2608 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2610 if (node
->loc
== cval
)
2612 else if (GET_CODE (node
->loc
) == REG
)
2613 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2614 node
->set_src
, NO_INSERT
);
2615 else if (GET_CODE (node
->loc
) == MEM
)
2616 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2617 node
->set_src
, NO_INSERT
);
2619 set_variable_part (set
, node
->loc
, cdv
, 0,
2620 node
->init
, node
->set_src
, NO_INSERT
);
2624 /* We remove this last, to make sure that the canonical value is not
2625 removed to the point of requiring reinsertion. */
2627 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2629 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2632 /* Find the values in a given location and map the val to another
2633 value, if it is unique, or add the location as one holding the
2637 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
)
2639 decl_or_value dv
= dv_from_value (val
);
2641 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2644 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2646 fprintf (dump_file
, "head: ");
2647 print_inline_rtx (dump_file
, val
, 0);
2648 fputs (" is at ", dump_file
);
2649 print_inline_rtx (dump_file
, loc
, 0);
2650 fputc ('\n', dump_file
);
2653 val_reset (set
, dv
);
2655 gcc_checking_assert (!unsuitable_loc (loc
));
2659 attrs
*node
, *found
= NULL
;
2661 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2662 if (dv_is_value_p (node
->dv
)
2663 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2667 /* Map incoming equivalences. ??? Wouldn't it be nice if
2668 we just started sharing the location lists? Maybe a
2669 circular list ending at the value itself or some
2671 set_variable_part (set
, dv_as_value (node
->dv
),
2672 dv_from_value (val
), node
->offset
,
2673 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2674 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2675 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2678 /* If we didn't find any equivalence, we need to remember that
2679 this value is held in the named register. */
2683 /* ??? Attempt to find and merge equivalent MEMs or other
2686 val_bind (set
, val
, loc
, false);
2689 /* Initialize dataflow set SET to be empty.
2690 VARS_SIZE is the initial size of hash table VARS. */
2693 dataflow_set_init (dataflow_set
*set
)
2695 init_attrs_list_set (set
->regs
);
2696 set
->vars
= shared_hash_copy (empty_shared_hash
);
2697 set
->stack_adjust
= 0;
2698 set
->traversed_vars
= NULL
;
2701 /* Delete the contents of dataflow set SET. */
2704 dataflow_set_clear (dataflow_set
*set
)
2708 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2709 attrs_list_clear (&set
->regs
[i
]);
2711 shared_hash_destroy (set
->vars
);
2712 set
->vars
= shared_hash_copy (empty_shared_hash
);
2715 /* Copy the contents of dataflow set SRC to DST. */
2718 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2722 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2723 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2725 shared_hash_destroy (dst
->vars
);
2726 dst
->vars
= shared_hash_copy (src
->vars
);
2727 dst
->stack_adjust
= src
->stack_adjust
;
2730 /* Information for merging lists of locations for a given offset of variable.
2732 struct variable_union_info
2734 /* Node of the location chain. */
2737 /* The sum of positions in the input chains. */
2740 /* The position in the chain of DST dataflow set. */
2744 /* Buffer for location list sorting and its allocated size. */
2745 static struct variable_union_info
*vui_vec
;
2746 static int vui_allocated
;
2748 /* Compare function for qsort, order the structures by POS element. */
2751 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2753 const struct variable_union_info
*const i1
=
2754 (const struct variable_union_info
*) n1
;
2755 const struct variable_union_info
*const i2
=
2756 ( const struct variable_union_info
*) n2
;
2758 if (i1
->pos
!= i2
->pos
)
2759 return i1
->pos
- i2
->pos
;
2761 return (i1
->pos_dst
- i2
->pos_dst
);
2764 /* Compute union of location parts of variable *SLOT and the same variable
2765 from hash table DATA. Compute "sorted" union of the location chains
2766 for common offsets, i.e. the locations of a variable part are sorted by
2767 a priority where the priority is the sum of the positions in the 2 chains
2768 (if a location is only in one list the position in the second list is
2769 defined to be larger than the length of the chains).
2770 When we are updating the location parts the newest location is in the
2771 beginning of the chain, so when we do the described "sorted" union
2772 we keep the newest locations in the beginning. */
2775 variable_union (variable
*src
, dataflow_set
*set
)
2781 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2782 if (!dstp
|| !*dstp
)
2786 dst_can_be_shared
= false;
2788 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2792 /* Continue traversing the hash table. */
2798 gcc_assert (src
->n_var_parts
);
2799 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2801 /* We can combine one-part variables very efficiently, because their
2802 entries are in canonical order. */
2805 location_chain
**nodep
, *dnode
, *snode
;
2807 gcc_assert (src
->n_var_parts
== 1
2808 && dst
->n_var_parts
== 1);
2810 snode
= src
->var_part
[0].loc_chain
;
2813 restart_onepart_unshared
:
2814 nodep
= &dst
->var_part
[0].loc_chain
;
2820 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2824 location_chain
*nnode
;
2826 if (shared_var_p (dst
, set
->vars
))
2828 dstp
= unshare_variable (set
, dstp
, dst
,
2829 VAR_INIT_STATUS_INITIALIZED
);
2831 goto restart_onepart_unshared
;
2834 *nodep
= nnode
= new location_chain
;
2835 nnode
->loc
= snode
->loc
;
2836 nnode
->init
= snode
->init
;
2837 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2838 nnode
->set_src
= NULL
;
2840 nnode
->set_src
= snode
->set_src
;
2841 nnode
->next
= dnode
;
2845 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2848 snode
= snode
->next
;
2850 nodep
= &dnode
->next
;
2857 gcc_checking_assert (!src
->onepart
);
2859 /* Count the number of location parts, result is K. */
2860 for (i
= 0, j
= 0, k
= 0;
2861 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2863 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2868 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2873 k
+= src
->n_var_parts
- i
;
2874 k
+= dst
->n_var_parts
- j
;
2876 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2877 thus there are at most MAX_VAR_PARTS different offsets. */
2878 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2880 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2882 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2886 i
= src
->n_var_parts
- 1;
2887 j
= dst
->n_var_parts
- 1;
2888 dst
->n_var_parts
= k
;
2890 for (k
--; k
>= 0; k
--)
2892 location_chain
*node
, *node2
;
2894 if (i
>= 0 && j
>= 0
2895 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2897 /* Compute the "sorted" union of the chains, i.e. the locations which
2898 are in both chains go first, they are sorted by the sum of
2899 positions in the chains. */
2902 struct variable_union_info
*vui
;
2904 /* If DST is shared compare the location chains.
2905 If they are different we will modify the chain in DST with
2906 high probability so make a copy of DST. */
2907 if (shared_var_p (dst
, set
->vars
))
2909 for (node
= src
->var_part
[i
].loc_chain
,
2910 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2911 node
= node
->next
, node2
= node2
->next
)
2913 if (!((REG_P (node2
->loc
)
2914 && REG_P (node
->loc
)
2915 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2916 || rtx_equal_p (node2
->loc
, node
->loc
)))
2918 if (node2
->init
< node
->init
)
2919 node2
->init
= node
->init
;
2925 dstp
= unshare_variable (set
, dstp
, dst
,
2926 VAR_INIT_STATUS_UNKNOWN
);
2927 dst
= (variable
*)*dstp
;
2932 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2935 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2940 /* The most common case, much simpler, no qsort is needed. */
2941 location_chain
*dstnode
= dst
->var_part
[j
].loc_chain
;
2942 dst
->var_part
[k
].loc_chain
= dstnode
;
2943 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2945 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2946 if (!((REG_P (dstnode
->loc
)
2947 && REG_P (node
->loc
)
2948 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2949 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2951 location_chain
*new_node
;
2953 /* Copy the location from SRC. */
2954 new_node
= new location_chain
;
2955 new_node
->loc
= node
->loc
;
2956 new_node
->init
= node
->init
;
2957 if (!node
->set_src
|| MEM_P (node
->set_src
))
2958 new_node
->set_src
= NULL
;
2960 new_node
->set_src
= node
->set_src
;
2961 node2
->next
= new_node
;
2968 if (src_l
+ dst_l
> vui_allocated
)
2970 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2971 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2976 /* Fill in the locations from DST. */
2977 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2978 node
= node
->next
, jj
++)
2981 vui
[jj
].pos_dst
= jj
;
2983 /* Pos plus value larger than a sum of 2 valid positions. */
2984 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2987 /* Fill in the locations from SRC. */
2989 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2990 node
= node
->next
, ii
++)
2992 /* Find location from NODE. */
2993 for (jj
= 0; jj
< dst_l
; jj
++)
2995 if ((REG_P (vui
[jj
].lc
->loc
)
2996 && REG_P (node
->loc
)
2997 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2998 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
3000 vui
[jj
].pos
= jj
+ ii
;
3004 if (jj
>= dst_l
) /* The location has not been found. */
3006 location_chain
*new_node
;
3008 /* Copy the location from SRC. */
3009 new_node
= new location_chain
;
3010 new_node
->loc
= node
->loc
;
3011 new_node
->init
= node
->init
;
3012 if (!node
->set_src
|| MEM_P (node
->set_src
))
3013 new_node
->set_src
= NULL
;
3015 new_node
->set_src
= node
->set_src
;
3016 vui
[n
].lc
= new_node
;
3017 vui
[n
].pos_dst
= src_l
+ dst_l
;
3018 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
3025 /* Special case still very common case. For dst_l == 2
3026 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3027 vui[i].pos == i + src_l + dst_l. */
3028 if (vui
[0].pos
> vui
[1].pos
)
3030 /* Order should be 1, 0, 2... */
3031 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
3032 vui
[1].lc
->next
= vui
[0].lc
;
3035 vui
[0].lc
->next
= vui
[2].lc
;
3036 vui
[n
- 1].lc
->next
= NULL
;
3039 vui
[0].lc
->next
= NULL
;
3044 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3045 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3047 /* Order should be 0, 2, 1, 3... */
3048 vui
[0].lc
->next
= vui
[2].lc
;
3049 vui
[2].lc
->next
= vui
[1].lc
;
3052 vui
[1].lc
->next
= vui
[3].lc
;
3053 vui
[n
- 1].lc
->next
= NULL
;
3056 vui
[1].lc
->next
= NULL
;
3061 /* Order should be 0, 1, 2... */
3063 vui
[n
- 1].lc
->next
= NULL
;
3066 for (; ii
< n
; ii
++)
3067 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3071 qsort (vui
, n
, sizeof (struct variable_union_info
),
3072 variable_union_info_cmp_pos
);
3074 /* Reconnect the nodes in sorted order. */
3075 for (ii
= 1; ii
< n
; ii
++)
3076 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3077 vui
[n
- 1].lc
->next
= NULL
;
3078 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3081 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3086 else if ((i
>= 0 && j
>= 0
3087 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3090 dst
->var_part
[k
] = dst
->var_part
[j
];
3093 else if ((i
>= 0 && j
>= 0
3094 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3097 location_chain
**nextp
;
3099 /* Copy the chain from SRC. */
3100 nextp
= &dst
->var_part
[k
].loc_chain
;
3101 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3103 location_chain
*new_lc
;
3105 new_lc
= new location_chain
;
3106 new_lc
->next
= NULL
;
3107 new_lc
->init
= node
->init
;
3108 if (!node
->set_src
|| MEM_P (node
->set_src
))
3109 new_lc
->set_src
= NULL
;
3111 new_lc
->set_src
= node
->set_src
;
3112 new_lc
->loc
= node
->loc
;
3115 nextp
= &new_lc
->next
;
3118 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3121 dst
->var_part
[k
].cur_loc
= NULL
;
3124 if (flag_var_tracking_uninit
)
3125 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3127 location_chain
*node
, *node2
;
3128 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3129 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3130 if (rtx_equal_p (node
->loc
, node2
->loc
))
3132 if (node
->init
> node2
->init
)
3133 node2
->init
= node
->init
;
3137 /* Continue traversing the hash table. */
3141 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3144 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3148 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3149 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3151 if (dst
->vars
== empty_shared_hash
)
3153 shared_hash_destroy (dst
->vars
);
3154 dst
->vars
= shared_hash_copy (src
->vars
);
3158 variable_iterator_type hi
;
3161 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src
->vars
),
3163 variable_union (var
, dst
);
3167 /* Whether the value is currently being expanded. */
3168 #define VALUE_RECURSED_INTO(x) \
3169 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3171 /* Whether no expansion was found, saving useless lookups.
3172 It must only be set when VALUE_CHANGED is clear. */
3173 #define NO_LOC_P(x) \
3174 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3176 /* Whether cur_loc in the value needs to be (re)computed. */
3177 #define VALUE_CHANGED(x) \
3178 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3179 /* Whether cur_loc in the decl needs to be (re)computed. */
3180 #define DECL_CHANGED(x) TREE_VISITED (x)
3182 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3183 user DECLs, this means they're in changed_variables. Values and
3184 debug exprs may be left with this flag set if no user variable
3185 requires them to be evaluated. */
3188 set_dv_changed (decl_or_value dv
, bool newv
)
3190 switch (dv_onepart_p (dv
))
3194 NO_LOC_P (dv_as_value (dv
)) = false;
3195 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3200 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3204 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3209 /* Return true if DV needs to have its cur_loc recomputed. */
3212 dv_changed_p (decl_or_value dv
)
3214 return (dv_is_value_p (dv
)
3215 ? VALUE_CHANGED (dv_as_value (dv
))
3216 : DECL_CHANGED (dv_as_decl (dv
)));
3219 /* Return a location list node whose loc is rtx_equal to LOC, in the
3220 location list of a one-part variable or value VAR, or in that of
3221 any values recursively mentioned in the location lists. VARS must
3222 be in star-canonical form. */
3224 static location_chain
*
3225 find_loc_in_1pdv (rtx loc
, variable
*var
, variable_table_type
*vars
)
3227 location_chain
*node
;
3228 enum rtx_code loc_code
;
3233 gcc_checking_assert (var
->onepart
);
3235 if (!var
->n_var_parts
)
3238 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
3240 loc_code
= GET_CODE (loc
);
3241 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3246 if (GET_CODE (node
->loc
) != loc_code
)
3248 if (GET_CODE (node
->loc
) != VALUE
)
3251 else if (loc
== node
->loc
)
3253 else if (loc_code
!= VALUE
)
3255 if (rtx_equal_p (loc
, node
->loc
))
3260 /* Since we're in star-canonical form, we don't need to visit
3261 non-canonical nodes: one-part variables and non-canonical
3262 values would only point back to the canonical node. */
3263 if (dv_is_value_p (var
->dv
)
3264 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3266 /* Skip all subsequent VALUEs. */
3267 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3270 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3271 dv_as_value (var
->dv
)));
3272 if (loc
== node
->loc
)
3278 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3279 gcc_checking_assert (!node
->next
);
3281 dv
= dv_from_value (node
->loc
);
3282 rvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
3283 return find_loc_in_1pdv (loc
, rvar
, vars
);
3286 /* ??? Gotta look in cselib_val locations too. */
3291 /* Hash table iteration argument passed to variable_merge. */
3294 /* The set in which the merge is to be inserted. */
3296 /* The set that we're iterating in. */
3298 /* The set that may contain the other dv we are to merge with. */
3300 /* Number of onepart dvs in src. */
3301 int src_onepart_cnt
;
3304 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3305 loc_cmp order, and it is maintained as such. */
3308 insert_into_intersection (location_chain
**nodep
, rtx loc
,
3309 enum var_init_status status
)
3311 location_chain
*node
;
3314 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3315 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3317 node
->init
= MIN (node
->init
, status
);
3323 node
= new location_chain
;
3326 node
->set_src
= NULL
;
3327 node
->init
= status
;
3328 node
->next
= *nodep
;
3332 /* Insert in DEST the intersection of the locations present in both
3333 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3334 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3338 intersect_loc_chains (rtx val
, location_chain
**dest
, struct dfset_merge
*dsm
,
3339 location_chain
*s1node
, variable
*s2var
)
3341 dataflow_set
*s1set
= dsm
->cur
;
3342 dataflow_set
*s2set
= dsm
->src
;
3343 location_chain
*found
;
3347 location_chain
*s2node
;
3349 gcc_checking_assert (s2var
->onepart
);
3351 if (s2var
->n_var_parts
)
3353 s2node
= s2var
->var_part
[0].loc_chain
;
3355 for (; s1node
&& s2node
;
3356 s1node
= s1node
->next
, s2node
= s2node
->next
)
3357 if (s1node
->loc
!= s2node
->loc
)
3359 else if (s1node
->loc
== val
)
3362 insert_into_intersection (dest
, s1node
->loc
,
3363 MIN (s1node
->init
, s2node
->init
));
3367 for (; s1node
; s1node
= s1node
->next
)
3369 if (s1node
->loc
== val
)
3372 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3373 shared_hash_htab (s2set
->vars
))))
3375 insert_into_intersection (dest
, s1node
->loc
,
3376 MIN (s1node
->init
, found
->init
));
3380 if (GET_CODE (s1node
->loc
) == VALUE
3381 && !VALUE_RECURSED_INTO (s1node
->loc
))
3383 decl_or_value dv
= dv_from_value (s1node
->loc
);
3384 variable
*svar
= shared_hash_find (s1set
->vars
, dv
);
3387 if (svar
->n_var_parts
== 1)
3389 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3390 intersect_loc_chains (val
, dest
, dsm
,
3391 svar
->var_part
[0].loc_chain
,
3393 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3398 /* ??? gotta look in cselib_val locations too. */
3400 /* ??? if the location is equivalent to any location in src,
3401 searched recursively
3403 add to dst the values needed to represent the equivalence
3405 telling whether locations S is equivalent to another dv's
3408 for each location D in the list
3410 if S and D satisfy rtx_equal_p, then it is present
3412 else if D is a value, recurse without cycles
3414 else if S and D have the same CODE and MODE
3416 for each operand oS and the corresponding oD
3418 if oS and oD are not equivalent, then S an D are not equivalent
3420 else if they are RTX vectors
3422 if any vector oS element is not equivalent to its respective oD,
3423 then S and D are not equivalent
3431 /* Return -1 if X should be before Y in a location list for a 1-part
3432 variable, 1 if Y should be before X, and 0 if they're equivalent
3433 and should not appear in the list. */
3436 loc_cmp (rtx x
, rtx y
)
3439 RTX_CODE code
= GET_CODE (x
);
3449 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3450 if (REGNO (x
) == REGNO (y
))
3452 else if (REGNO (x
) < REGNO (y
))
3465 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3466 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3472 if (GET_CODE (x
) == VALUE
)
3474 if (GET_CODE (y
) != VALUE
)
3476 /* Don't assert the modes are the same, that is true only
3477 when not recursing. (subreg:QI (value:SI 1:1) 0)
3478 and (subreg:QI (value:DI 2:2) 0) can be compared,
3479 even when the modes are different. */
3480 if (canon_value_cmp (x
, y
))
3486 if (GET_CODE (y
) == VALUE
)
3489 /* Entry value is the least preferable kind of expression. */
3490 if (GET_CODE (x
) == ENTRY_VALUE
)
3492 if (GET_CODE (y
) != ENTRY_VALUE
)
3494 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3495 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3498 if (GET_CODE (y
) == ENTRY_VALUE
)
3501 if (GET_CODE (x
) == GET_CODE (y
))
3502 /* Compare operands below. */;
3503 else if (GET_CODE (x
) < GET_CODE (y
))
3508 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3510 if (GET_CODE (x
) == DEBUG_EXPR
)
3512 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3513 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3515 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3516 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3520 fmt
= GET_RTX_FORMAT (code
);
3521 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3525 if (XWINT (x
, i
) == XWINT (y
, i
))
3527 else if (XWINT (x
, i
) < XWINT (y
, i
))
3534 if (XINT (x
, i
) == XINT (y
, i
))
3536 else if (XINT (x
, i
) < XINT (y
, i
))
3542 r
= compare_sizes_for_sort (SUBREG_BYTE (x
), SUBREG_BYTE (y
));
3549 /* Compare the vector length first. */
3550 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3551 /* Compare the vectors elements. */;
3552 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3557 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3558 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3559 XVECEXP (y
, i
, j
))))
3564 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3570 if (XSTR (x
, i
) == XSTR (y
, i
))
3576 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3584 /* These are just backpointers, so they don't matter. */
3591 /* It is believed that rtx's at this level will never
3592 contain anything but integers and other rtx's,
3593 except for within LABEL_REFs and SYMBOL_REFs. */
3597 if (CONST_WIDE_INT_P (x
))
3599 /* Compare the vector length first. */
3600 if (CONST_WIDE_INT_NUNITS (x
) >= CONST_WIDE_INT_NUNITS (y
))
3602 else if (CONST_WIDE_INT_NUNITS (x
) < CONST_WIDE_INT_NUNITS (y
))
3605 /* Compare the vectors elements. */;
3606 for (j
= CONST_WIDE_INT_NUNITS (x
) - 1; j
>= 0 ; j
--)
3608 if (CONST_WIDE_INT_ELT (x
, j
) < CONST_WIDE_INT_ELT (y
, j
))
3610 if (CONST_WIDE_INT_ELT (x
, j
) > CONST_WIDE_INT_ELT (y
, j
))
3618 /* Check the order of entries in one-part variables. */
3621 canonicalize_loc_order_check (variable
**slot
,
3622 dataflow_set
*data ATTRIBUTE_UNUSED
)
3624 variable
*var
= *slot
;
3625 location_chain
*node
, *next
;
3627 #ifdef ENABLE_RTL_CHECKING
3629 for (i
= 0; i
< var
->n_var_parts
; i
++)
3630 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3631 gcc_assert (!var
->in_changed_variables
);
3637 gcc_assert (var
->n_var_parts
== 1);
3638 node
= var
->var_part
[0].loc_chain
;
3641 while ((next
= node
->next
))
3643 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3650 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3651 more likely to be chosen as canonical for an equivalence set.
3652 Ensure less likely values can reach more likely neighbors, making
3653 the connections bidirectional. */
3656 canonicalize_values_mark (variable
**slot
, dataflow_set
*set
)
3658 variable
*var
= *slot
;
3659 decl_or_value dv
= var
->dv
;
3661 location_chain
*node
;
3663 if (!dv_is_value_p (dv
))
3666 gcc_checking_assert (var
->n_var_parts
== 1);
3668 val
= dv_as_value (dv
);
3670 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3671 if (GET_CODE (node
->loc
) == VALUE
)
3673 if (canon_value_cmp (node
->loc
, val
))
3674 VALUE_RECURSED_INTO (val
) = true;
3677 decl_or_value odv
= dv_from_value (node
->loc
);
3679 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3681 set_slot_part (set
, val
, oslot
, odv
, 0,
3682 node
->init
, NULL_RTX
);
3684 VALUE_RECURSED_INTO (node
->loc
) = true;
3691 /* Remove redundant entries from equivalence lists in onepart
3692 variables, canonicalizing equivalence sets into star shapes. */
3695 canonicalize_values_star (variable
**slot
, dataflow_set
*set
)
3697 variable
*var
= *slot
;
3698 decl_or_value dv
= var
->dv
;
3699 location_chain
*node
;
3709 gcc_checking_assert (var
->n_var_parts
== 1);
3711 if (dv_is_value_p (dv
))
3713 cval
= dv_as_value (dv
);
3714 if (!VALUE_RECURSED_INTO (cval
))
3716 VALUE_RECURSED_INTO (cval
) = false;
3726 gcc_assert (var
->n_var_parts
== 1);
3728 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3729 if (GET_CODE (node
->loc
) == VALUE
)
3732 if (VALUE_RECURSED_INTO (node
->loc
))
3734 if (canon_value_cmp (node
->loc
, cval
))
3743 if (!has_marks
|| dv_is_decl_p (dv
))
3746 /* Keep it marked so that we revisit it, either after visiting a
3747 child node, or after visiting a new parent that might be
3749 VALUE_RECURSED_INTO (val
) = true;
3751 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3752 if (GET_CODE (node
->loc
) == VALUE
3753 && VALUE_RECURSED_INTO (node
->loc
))
3757 VALUE_RECURSED_INTO (cval
) = false;
3758 dv
= dv_from_value (cval
);
3759 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3762 gcc_assert (dv_is_decl_p (var
->dv
));
3763 /* The canonical value was reset and dropped.
3765 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3769 gcc_assert (dv_is_value_p (var
->dv
));
3770 if (var
->n_var_parts
== 0)
3772 gcc_assert (var
->n_var_parts
== 1);
3776 VALUE_RECURSED_INTO (val
) = false;
3781 /* Push values to the canonical one. */
3782 cdv
= dv_from_value (cval
);
3783 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3785 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3786 if (node
->loc
!= cval
)
3788 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3789 node
->init
, NULL_RTX
);
3790 if (GET_CODE (node
->loc
) == VALUE
)
3792 decl_or_value ndv
= dv_from_value (node
->loc
);
3794 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3797 if (canon_value_cmp (node
->loc
, val
))
3799 /* If it could have been a local minimum, it's not any more,
3800 since it's now neighbor to cval, so it may have to push
3801 to it. Conversely, if it wouldn't have prevailed over
3802 val, then whatever mark it has is fine: if it was to
3803 push, it will now push to a more canonical node, but if
3804 it wasn't, then it has already pushed any values it might
3806 VALUE_RECURSED_INTO (node
->loc
) = true;
3807 /* Make sure we visit node->loc by ensuring we cval is
3809 VALUE_RECURSED_INTO (cval
) = true;
3811 else if (!VALUE_RECURSED_INTO (node
->loc
))
3812 /* If we have no need to "recurse" into this node, it's
3813 already "canonicalized", so drop the link to the old
3815 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3817 else if (GET_CODE (node
->loc
) == REG
)
3819 attrs
*list
= set
->regs
[REGNO (node
->loc
)], **listp
;
3821 /* Change an existing attribute referring to dv so that it
3822 refers to cdv, removing any duplicate this might
3823 introduce, and checking that no previous duplicates
3824 existed, all in a single pass. */
3828 if (list
->offset
== 0
3829 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3830 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3837 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3840 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3845 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3847 *listp
= list
->next
;
3853 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3856 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3858 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3863 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3865 *listp
= list
->next
;
3871 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3880 if (list
->offset
== 0
3881 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3882 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3891 set_slot_part (set
, val
, cslot
, cdv
, 0,
3892 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3894 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3896 /* Variable may have been unshared. */
3898 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3899 && var
->var_part
[0].loc_chain
->next
== NULL
);
3901 if (VALUE_RECURSED_INTO (cval
))
3902 goto restart_with_cval
;
3907 /* Bind one-part variables to the canonical value in an equivalence
3908 set. Not doing this causes dataflow convergence failure in rare
3909 circumstances, see PR42873. Unfortunately we can't do this
3910 efficiently as part of canonicalize_values_star, since we may not
3911 have determined or even seen the canonical value of a set when we
3912 get to a variable that references another member of the set. */
3915 canonicalize_vars_star (variable
**slot
, dataflow_set
*set
)
3917 variable
*var
= *slot
;
3918 decl_or_value dv
= var
->dv
;
3919 location_chain
*node
;
3924 location_chain
*cnode
;
3926 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3929 gcc_assert (var
->n_var_parts
== 1);
3931 node
= var
->var_part
[0].loc_chain
;
3933 if (GET_CODE (node
->loc
) != VALUE
)
3936 gcc_assert (!node
->next
);
3939 /* Push values to the canonical one. */
3940 cdv
= dv_from_value (cval
);
3941 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3945 gcc_assert (cvar
->n_var_parts
== 1);
3947 cnode
= cvar
->var_part
[0].loc_chain
;
3949 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3950 that are not “more canonical” than it. */
3951 if (GET_CODE (cnode
->loc
) != VALUE
3952 || !canon_value_cmp (cnode
->loc
, cval
))
3955 /* CVAL was found to be non-canonical. Change the variable to point
3956 to the canonical VALUE. */
3957 gcc_assert (!cnode
->next
);
3960 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3961 node
->init
, node
->set_src
);
3962 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3967 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3968 corresponding entry in DSM->src. Multi-part variables are combined
3969 with variable_union, whereas onepart dvs are combined with
3973 variable_merge_over_cur (variable
*s1var
, struct dfset_merge
*dsm
)
3975 dataflow_set
*dst
= dsm
->dst
;
3977 variable
*s2var
, *dvar
= NULL
;
3978 decl_or_value dv
= s1var
->dv
;
3979 onepart_enum onepart
= s1var
->onepart
;
3982 location_chain
*node
, **nodep
;
3984 /* If the incoming onepart variable has an empty location list, then
3985 the intersection will be just as empty. For other variables,
3986 it's always union. */
3987 gcc_checking_assert (s1var
->n_var_parts
3988 && s1var
->var_part
[0].loc_chain
);
3991 return variable_union (s1var
, dst
);
3993 gcc_checking_assert (s1var
->n_var_parts
== 1);
3995 dvhash
= dv_htab_hash (dv
);
3996 if (dv_is_value_p (dv
))
3997 val
= dv_as_value (dv
);
4001 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
4004 dst_can_be_shared
= false;
4008 dsm
->src_onepart_cnt
--;
4009 gcc_assert (s2var
->var_part
[0].loc_chain
4010 && s2var
->onepart
== onepart
4011 && s2var
->n_var_parts
== 1);
4013 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4017 gcc_assert (dvar
->refcount
== 1
4018 && dvar
->onepart
== onepart
4019 && dvar
->n_var_parts
== 1);
4020 nodep
= &dvar
->var_part
[0].loc_chain
;
4028 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
4030 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
4032 *dstslot
= dvar
= s2var
;
4037 dst_can_be_shared
= false;
4039 intersect_loc_chains (val
, nodep
, dsm
,
4040 s1var
->var_part
[0].loc_chain
, s2var
);
4046 dvar
= onepart_pool_allocate (onepart
);
4049 dvar
->n_var_parts
= 1;
4050 dvar
->onepart
= onepart
;
4051 dvar
->in_changed_variables
= false;
4052 dvar
->var_part
[0].loc_chain
= node
;
4053 dvar
->var_part
[0].cur_loc
= NULL
;
4055 VAR_LOC_1PAUX (dvar
) = NULL
;
4057 VAR_PART_OFFSET (dvar
, 0) = 0;
4060 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4062 gcc_assert (!*dstslot
);
4070 nodep
= &dvar
->var_part
[0].loc_chain
;
4071 while ((node
= *nodep
))
4073 location_chain
**nextp
= &node
->next
;
4075 if (GET_CODE (node
->loc
) == REG
)
4079 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4080 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4081 && dv_is_value_p (list
->dv
))
4085 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4087 /* If this value became canonical for another value that had
4088 this register, we want to leave it alone. */
4089 else if (dv_as_value (list
->dv
) != val
)
4091 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4093 node
->init
, NULL_RTX
);
4094 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4096 /* Since nextp points into the removed node, we can't
4097 use it. The pointer to the next node moved to nodep.
4098 However, if the variable we're walking is unshared
4099 during our walk, we'll keep walking the location list
4100 of the previously-shared variable, in which case the
4101 node won't have been removed, and we'll want to skip
4102 it. That's why we test *nodep here. */
4108 /* Canonicalization puts registers first, so we don't have to
4114 if (dvar
!= *dstslot
)
4116 nodep
= &dvar
->var_part
[0].loc_chain
;
4120 /* Mark all referenced nodes for canonicalization, and make sure
4121 we have mutual equivalence links. */
4122 VALUE_RECURSED_INTO (val
) = true;
4123 for (node
= *nodep
; node
; node
= node
->next
)
4124 if (GET_CODE (node
->loc
) == VALUE
)
4126 VALUE_RECURSED_INTO (node
->loc
) = true;
4127 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4128 node
->init
, NULL
, INSERT
);
4131 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4132 gcc_assert (*dstslot
== dvar
);
4133 canonicalize_values_star (dstslot
, dst
);
4134 gcc_checking_assert (dstslot
4135 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4141 bool has_value
= false, has_other
= false;
4143 /* If we have one value and anything else, we're going to
4144 canonicalize this, so make sure all values have an entry in
4145 the table and are marked for canonicalization. */
4146 for (node
= *nodep
; node
; node
= node
->next
)
4148 if (GET_CODE (node
->loc
) == VALUE
)
4150 /* If this was marked during register canonicalization,
4151 we know we have to canonicalize values. */
4166 if (has_value
&& has_other
)
4168 for (node
= *nodep
; node
; node
= node
->next
)
4170 if (GET_CODE (node
->loc
) == VALUE
)
4172 decl_or_value dv
= dv_from_value (node
->loc
);
4173 variable
**slot
= NULL
;
4175 if (shared_hash_shared (dst
->vars
))
4176 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4178 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4182 variable
*var
= onepart_pool_allocate (ONEPART_VALUE
);
4185 var
->n_var_parts
= 1;
4186 var
->onepart
= ONEPART_VALUE
;
4187 var
->in_changed_variables
= false;
4188 var
->var_part
[0].loc_chain
= NULL
;
4189 var
->var_part
[0].cur_loc
= NULL
;
4190 VAR_LOC_1PAUX (var
) = NULL
;
4194 VALUE_RECURSED_INTO (node
->loc
) = true;
4198 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4199 gcc_assert (*dstslot
== dvar
);
4200 canonicalize_values_star (dstslot
, dst
);
4201 gcc_checking_assert (dstslot
4202 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4208 if (!onepart_variable_different_p (dvar
, s2var
))
4210 variable_htab_free (dvar
);
4211 *dstslot
= dvar
= s2var
;
4214 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4216 variable_htab_free (dvar
);
4217 *dstslot
= dvar
= s1var
;
4219 dst_can_be_shared
= false;
4222 dst_can_be_shared
= false;
4227 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4228 multi-part variable. Unions of multi-part variables and
4229 intersections of one-part ones will be handled in
4230 variable_merge_over_cur(). */
4233 variable_merge_over_src (variable
*s2var
, struct dfset_merge
*dsm
)
4235 dataflow_set
*dst
= dsm
->dst
;
4236 decl_or_value dv
= s2var
->dv
;
4238 if (!s2var
->onepart
)
4240 variable
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4246 dsm
->src_onepart_cnt
++;
4250 /* Combine dataflow set information from SRC2 into DST, using PDST
4251 to carry over information across passes. */
4254 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4256 dataflow_set cur
= *dst
;
4257 dataflow_set
*src1
= &cur
;
4258 struct dfset_merge dsm
;
4260 size_t src1_elems
, src2_elems
;
4261 variable_iterator_type hi
;
4264 src1_elems
= shared_hash_htab (src1
->vars
)->elements ();
4265 src2_elems
= shared_hash_htab (src2
->vars
)->elements ();
4266 dataflow_set_init (dst
);
4267 dst
->stack_adjust
= cur
.stack_adjust
;
4268 shared_hash_destroy (dst
->vars
);
4269 dst
->vars
= new shared_hash
;
4270 dst
->vars
->refcount
= 1;
4271 dst
->vars
->htab
= new variable_table_type (MAX (src1_elems
, src2_elems
));
4273 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4274 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4279 dsm
.src_onepart_cnt
= 0;
4281 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.src
->vars
),
4283 variable_merge_over_src (var
, &dsm
);
4284 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.cur
->vars
),
4286 variable_merge_over_cur (var
, &dsm
);
4288 if (dsm
.src_onepart_cnt
)
4289 dst_can_be_shared
= false;
4291 dataflow_set_destroy (src1
);
4294 /* Mark register equivalences. */
4297 dataflow_set_equiv_regs (dataflow_set
*set
)
4300 attrs
*list
, **listp
;
4302 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4304 rtx canon
[NUM_MACHINE_MODES
];
4306 /* If the list is empty or one entry, no need to canonicalize
4308 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4311 memset (canon
, 0, sizeof (canon
));
4313 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4314 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4316 rtx val
= dv_as_value (list
->dv
);
4317 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4320 if (canon_value_cmp (val
, cval
))
4324 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4325 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4327 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4332 if (dv_is_value_p (list
->dv
))
4334 rtx val
= dv_as_value (list
->dv
);
4339 VALUE_RECURSED_INTO (val
) = true;
4340 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4341 VAR_INIT_STATUS_INITIALIZED
,
4345 VALUE_RECURSED_INTO (cval
) = true;
4346 set_variable_part (set
, cval
, list
->dv
, 0,
4347 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4350 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4351 listp
= list
? &list
->next
: listp
)
4352 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4354 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4360 if (dv_is_value_p (list
->dv
))
4362 rtx val
= dv_as_value (list
->dv
);
4363 if (!VALUE_RECURSED_INTO (val
))
4367 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4368 canonicalize_values_star (slot
, set
);
4375 /* Remove any redundant values in the location list of VAR, which must
4376 be unshared and 1-part. */
4379 remove_duplicate_values (variable
*var
)
4381 location_chain
*node
, **nodep
;
4383 gcc_assert (var
->onepart
);
4384 gcc_assert (var
->n_var_parts
== 1);
4385 gcc_assert (var
->refcount
== 1);
4387 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4389 if (GET_CODE (node
->loc
) == VALUE
)
4391 if (VALUE_RECURSED_INTO (node
->loc
))
4393 /* Remove duplicate value node. */
4394 *nodep
= node
->next
;
4399 VALUE_RECURSED_INTO (node
->loc
) = true;
4401 nodep
= &node
->next
;
4404 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4405 if (GET_CODE (node
->loc
) == VALUE
)
4407 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4408 VALUE_RECURSED_INTO (node
->loc
) = false;
4413 /* Hash table iteration argument passed to variable_post_merge. */
4414 struct dfset_post_merge
4416 /* The new input set for the current block. */
4418 /* Pointer to the permanent input set for the current block, or
4420 dataflow_set
**permp
;
4423 /* Create values for incoming expressions associated with one-part
4424 variables that don't have value numbers for them. */
4427 variable_post_merge_new_vals (variable
**slot
, dfset_post_merge
*dfpm
)
4429 dataflow_set
*set
= dfpm
->set
;
4430 variable
*var
= *slot
;
4431 location_chain
*node
;
4433 if (!var
->onepart
|| !var
->n_var_parts
)
4436 gcc_assert (var
->n_var_parts
== 1);
4438 if (dv_is_decl_p (var
->dv
))
4440 bool check_dupes
= false;
4443 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4445 if (GET_CODE (node
->loc
) == VALUE
)
4446 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4447 else if (GET_CODE (node
->loc
) == REG
)
4449 attrs
*att
, **attp
, **curp
= NULL
;
4451 if (var
->refcount
!= 1)
4453 slot
= unshare_variable (set
, slot
, var
,
4454 VAR_INIT_STATUS_INITIALIZED
);
4459 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4461 if (att
->offset
== 0
4462 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4464 if (dv_is_value_p (att
->dv
))
4466 rtx cval
= dv_as_value (att
->dv
);
4471 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
4479 if ((*curp
)->offset
== 0
4480 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4481 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
4484 curp
= &(*curp
)->next
;
4495 *dfpm
->permp
= XNEW (dataflow_set
);
4496 dataflow_set_init (*dfpm
->permp
);
4499 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4500 att
; att
= att
->next
)
4501 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4503 gcc_assert (att
->offset
== 0
4504 && dv_is_value_p (att
->dv
));
4505 val_reset (set
, att
->dv
);
4512 cval
= dv_as_value (cdv
);
4516 /* Create a unique value to hold this register,
4517 that ought to be found and reused in
4518 subsequent rounds. */
4520 gcc_assert (!cselib_lookup (node
->loc
,
4521 GET_MODE (node
->loc
), 0,
4523 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4525 cselib_preserve_value (v
);
4526 cselib_invalidate_rtx (node
->loc
);
4528 cdv
= dv_from_value (cval
);
4531 "Created new value %u:%u for reg %i\n",
4532 v
->uid
, v
->hash
, REGNO (node
->loc
));
4535 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4536 VAR_INIT_STATUS_INITIALIZED
,
4537 cdv
, 0, NULL
, INSERT
);
4543 /* Remove attribute referring to the decl, which now
4544 uses the value for the register, already existing or
4545 to be added when we bring perm in. */
4553 remove_duplicate_values (var
);
4559 /* Reset values in the permanent set that are not associated with the
4560 chosen expression. */
4563 variable_post_merge_perm_vals (variable
**pslot
, dfset_post_merge
*dfpm
)
4565 dataflow_set
*set
= dfpm
->set
;
4566 variable
*pvar
= *pslot
, *var
;
4567 location_chain
*pnode
;
4571 gcc_assert (dv_is_value_p (pvar
->dv
)
4572 && pvar
->n_var_parts
== 1);
4573 pnode
= pvar
->var_part
[0].loc_chain
;
4576 && REG_P (pnode
->loc
));
4580 var
= shared_hash_find (set
->vars
, dv
);
4583 /* Although variable_post_merge_new_vals may have made decls
4584 non-star-canonical, values that pre-existed in canonical form
4585 remain canonical, and newly-created values reference a single
4586 REG, so they are canonical as well. Since VAR has the
4587 location list for a VALUE, using find_loc_in_1pdv for it is
4588 fine, since VALUEs don't map back to DECLs. */
4589 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4591 val_reset (set
, dv
);
4594 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4595 if (att
->offset
== 0
4596 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4597 && dv_is_value_p (att
->dv
))
4600 /* If there is a value associated with this register already, create
4602 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4604 rtx cval
= dv_as_value (att
->dv
);
4605 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4606 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4611 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4613 variable_union (pvar
, set
);
4619 /* Just checking stuff and registering register attributes for
4623 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4625 struct dfset_post_merge dfpm
;
4630 shared_hash_htab (set
->vars
)
4631 ->traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4633 shared_hash_htab ((*permp
)->vars
)
4634 ->traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4635 shared_hash_htab (set
->vars
)
4636 ->traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4637 shared_hash_htab (set
->vars
)
4638 ->traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4641 /* Return a node whose loc is a MEM that refers to EXPR in the
4642 location list of a one-part variable or value VAR, or in that of
4643 any values recursively mentioned in the location lists. */
4645 static location_chain
*
4646 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type
*vars
)
4648 location_chain
*node
;
4651 location_chain
*where
= NULL
;
4656 gcc_assert (GET_CODE (val
) == VALUE
4657 && !VALUE_RECURSED_INTO (val
));
4659 dv
= dv_from_value (val
);
4660 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
4665 gcc_assert (var
->onepart
);
4667 if (!var
->n_var_parts
)
4670 VALUE_RECURSED_INTO (val
) = true;
4672 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4673 if (MEM_P (node
->loc
)
4674 && MEM_EXPR (node
->loc
) == expr
4675 && int_mem_offset (node
->loc
) == 0)
4680 else if (GET_CODE (node
->loc
) == VALUE
4681 && !VALUE_RECURSED_INTO (node
->loc
)
4682 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4685 VALUE_RECURSED_INTO (val
) = false;
4690 /* Return TRUE if the value of MEM may vary across a call. */
4693 mem_dies_at_call (rtx mem
)
4695 tree expr
= MEM_EXPR (mem
);
4701 decl
= get_base_address (expr
);
4709 return (may_be_aliased (decl
)
4710 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4713 /* Remove all MEMs from the location list of a hash table entry for a
4714 one-part variable, except those whose MEM attributes map back to
4715 the variable itself, directly or within a VALUE. */
4718 dataflow_set_preserve_mem_locs (variable
**slot
, dataflow_set
*set
)
4720 variable
*var
= *slot
;
4722 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4724 tree decl
= dv_as_decl (var
->dv
);
4725 location_chain
*loc
, **locp
;
4726 bool changed
= false;
4728 if (!var
->n_var_parts
)
4731 gcc_assert (var
->n_var_parts
== 1);
4733 if (shared_var_p (var
, set
->vars
))
4735 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4737 /* We want to remove dying MEMs that don't refer to DECL. */
4738 if (GET_CODE (loc
->loc
) == MEM
4739 && (MEM_EXPR (loc
->loc
) != decl
4740 || int_mem_offset (loc
->loc
) != 0)
4741 && mem_dies_at_call (loc
->loc
))
4743 /* We want to move here MEMs that do refer to DECL. */
4744 else if (GET_CODE (loc
->loc
) == VALUE
4745 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4746 shared_hash_htab (set
->vars
)))
4753 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4755 gcc_assert (var
->n_var_parts
== 1);
4758 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4761 rtx old_loc
= loc
->loc
;
4762 if (GET_CODE (old_loc
) == VALUE
)
4764 location_chain
*mem_node
4765 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4766 shared_hash_htab (set
->vars
));
4768 /* ??? This picks up only one out of multiple MEMs that
4769 refer to the same variable. Do we ever need to be
4770 concerned about dealing with more than one, or, given
4771 that they should all map to the same variable
4772 location, their addresses will have been merged and
4773 they will be regarded as equivalent? */
4776 loc
->loc
= mem_node
->loc
;
4777 loc
->set_src
= mem_node
->set_src
;
4778 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4782 if (GET_CODE (loc
->loc
) != MEM
4783 || (MEM_EXPR (loc
->loc
) == decl
4784 && int_mem_offset (loc
->loc
) == 0)
4785 || !mem_dies_at_call (loc
->loc
))
4787 if (old_loc
!= loc
->loc
&& emit_notes
)
4789 if (old_loc
== var
->var_part
[0].cur_loc
)
4792 var
->var_part
[0].cur_loc
= NULL
;
4801 if (old_loc
== var
->var_part
[0].cur_loc
)
4804 var
->var_part
[0].cur_loc
= NULL
;
4811 if (!var
->var_part
[0].loc_chain
)
4817 variable_was_changed (var
, set
);
4823 /* Remove all MEMs from the location list of a hash table entry for a
4824 onepart variable. */
4827 dataflow_set_remove_mem_locs (variable
**slot
, dataflow_set
*set
)
4829 variable
*var
= *slot
;
4831 if (var
->onepart
!= NOT_ONEPART
)
4833 location_chain
*loc
, **locp
;
4834 bool changed
= false;
4837 gcc_assert (var
->n_var_parts
== 1);
4839 if (shared_var_p (var
, set
->vars
))
4841 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4842 if (GET_CODE (loc
->loc
) == MEM
4843 && mem_dies_at_call (loc
->loc
))
4849 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4851 gcc_assert (var
->n_var_parts
== 1);
4854 if (VAR_LOC_1PAUX (var
))
4855 cur_loc
= VAR_LOC_FROM (var
);
4857 cur_loc
= var
->var_part
[0].cur_loc
;
4859 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4862 if (GET_CODE (loc
->loc
) != MEM
4863 || !mem_dies_at_call (loc
->loc
))
4870 /* If we have deleted the location which was last emitted
4871 we have to emit new location so add the variable to set
4872 of changed variables. */
4873 if (cur_loc
== loc
->loc
)
4876 var
->var_part
[0].cur_loc
= NULL
;
4877 if (VAR_LOC_1PAUX (var
))
4878 VAR_LOC_FROM (var
) = NULL
;
4883 if (!var
->var_part
[0].loc_chain
)
4889 variable_was_changed (var
, set
);
4895 /* Remove all variable-location information about call-clobbered
4896 registers, as well as associations between MEMs and VALUEs. */
4899 dataflow_set_clear_at_call (dataflow_set
*set
, rtx_insn
*call_insn
)
4902 hard_reg_set_iterator hrsi
;
4903 HARD_REG_SET invalidated_regs
;
4905 get_call_reg_set_usage (call_insn
, &invalidated_regs
,
4906 regs_invalidated_by_call
);
4908 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs
, 0, r
, hrsi
)
4909 var_regno_delete (set
, r
);
4911 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4913 set
->traversed_vars
= set
->vars
;
4914 shared_hash_htab (set
->vars
)
4915 ->traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4916 set
->traversed_vars
= set
->vars
;
4917 shared_hash_htab (set
->vars
)
4918 ->traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4919 set
->traversed_vars
= NULL
;
4924 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4926 location_chain
*lc1
, *lc2
;
4928 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4930 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4932 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4934 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4937 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4946 /* Return true if one-part variables VAR1 and VAR2 are different.
4947 They must be in canonical order. */
4950 onepart_variable_different_p (variable
*var1
, variable
*var2
)
4952 location_chain
*lc1
, *lc2
;
4957 gcc_assert (var1
->n_var_parts
== 1
4958 && var2
->n_var_parts
== 1);
4960 lc1
= var1
->var_part
[0].loc_chain
;
4961 lc2
= var2
->var_part
[0].loc_chain
;
4963 gcc_assert (lc1
&& lc2
);
4967 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4976 /* Return true if one-part variables VAR1 and VAR2 are different.
4977 They must be in canonical order. */
4980 dump_onepart_variable_differences (variable
*var1
, variable
*var2
)
4982 location_chain
*lc1
, *lc2
;
4984 gcc_assert (var1
!= var2
);
4985 gcc_assert (dump_file
);
4986 gcc_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
));
4987 gcc_assert (var1
->n_var_parts
== 1
4988 && var2
->n_var_parts
== 1);
4990 lc1
= var1
->var_part
[0].loc_chain
;
4991 lc2
= var2
->var_part
[0].loc_chain
;
4993 gcc_assert (lc1
&& lc2
);
4997 switch (loc_cmp (lc1
->loc
, lc2
->loc
))
5000 fprintf (dump_file
, "removed: ");
5001 print_rtl_single (dump_file
, lc1
->loc
);
5007 fprintf (dump_file
, "added: ");
5008 print_rtl_single (dump_file
, lc2
->loc
);
5020 fprintf (dump_file
, "removed: ");
5021 print_rtl_single (dump_file
, lc1
->loc
);
5027 fprintf (dump_file
, "added: ");
5028 print_rtl_single (dump_file
, lc2
->loc
);
5033 /* Return true if variables VAR1 and VAR2 are different. */
5036 variable_different_p (variable
*var1
, variable
*var2
)
5043 if (var1
->onepart
!= var2
->onepart
)
5046 if (var1
->n_var_parts
!= var2
->n_var_parts
)
5049 if (var1
->onepart
&& var1
->n_var_parts
)
5051 gcc_checking_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
)
5052 && var1
->n_var_parts
== 1);
5053 /* One-part values have locations in a canonical order. */
5054 return onepart_variable_different_p (var1
, var2
);
5057 for (i
= 0; i
< var1
->n_var_parts
; i
++)
5059 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
5061 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
5063 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
5069 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5072 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
5074 variable_iterator_type hi
;
5076 bool diffound
= false;
5077 bool details
= (dump_file
&& (dump_flags
& TDF_DETAILS
));
5089 if (old_set
->vars
== new_set
->vars
)
5092 if (shared_hash_htab (old_set
->vars
)->elements ()
5093 != shared_hash_htab (new_set
->vars
)->elements ())
5096 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set
->vars
),
5099 variable_table_type
*htab
= shared_hash_htab (new_set
->vars
);
5100 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5104 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5106 fprintf (dump_file
, "dataflow difference found: removal of:\n");
5111 else if (variable_different_p (var1
, var2
))
5115 fprintf (dump_file
, "dataflow difference found: "
5116 "old and new follow:\n");
5118 if (dv_onepart_p (var1
->dv
))
5119 dump_onepart_variable_differences (var1
, var2
);
5126 /* There's no need to traverse the second hashtab unless we want to
5127 print the details. If both have the same number of elements and
5128 the second one had all entries found in the first one, then the
5129 second can't have any extra entries. */
5133 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set
->vars
),
5136 variable_table_type
*htab
= shared_hash_htab (old_set
->vars
);
5137 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5142 fprintf (dump_file
, "dataflow difference found: addition of:\n");
5154 /* Free the contents of dataflow set SET. */
5157 dataflow_set_destroy (dataflow_set
*set
)
5161 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5162 attrs_list_clear (&set
->regs
[i
]);
5164 shared_hash_destroy (set
->vars
);
5168 /* Return true if T is a tracked parameter with non-degenerate record type. */
5171 tracked_record_parameter_p (tree t
)
5173 if (TREE_CODE (t
) != PARM_DECL
)
5176 if (DECL_MODE (t
) == BLKmode
)
5179 tree type
= TREE_TYPE (t
);
5180 if (TREE_CODE (type
) != RECORD_TYPE
)
5183 if (TYPE_FIELDS (type
) == NULL_TREE
5184 || DECL_CHAIN (TYPE_FIELDS (type
)) == NULL_TREE
)
5190 /* Shall EXPR be tracked? */
5193 track_expr_p (tree expr
, bool need_rtl
)
5198 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5199 return DECL_RTL_SET_P (expr
);
5201 /* If EXPR is not a parameter or a variable do not track it. */
5202 if (!VAR_P (expr
) && TREE_CODE (expr
) != PARM_DECL
)
5205 /* It also must have a name... */
5206 if (!DECL_NAME (expr
) && need_rtl
)
5209 /* ... and a RTL assigned to it. */
5210 decl_rtl
= DECL_RTL_IF_SET (expr
);
5211 if (!decl_rtl
&& need_rtl
)
5214 /* If this expression is really a debug alias of some other declaration, we
5215 don't need to track this expression if the ultimate declaration is
5218 if (VAR_P (realdecl
) && DECL_HAS_DEBUG_EXPR_P (realdecl
))
5220 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5221 if (!DECL_P (realdecl
))
5223 if (handled_component_p (realdecl
)
5224 || (TREE_CODE (realdecl
) == MEM_REF
5225 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5227 HOST_WIDE_INT bitsize
, bitpos
;
5230 = get_ref_base_and_extent_hwi (realdecl
, &bitpos
,
5231 &bitsize
, &reverse
);
5233 || !DECL_P (innerdecl
)
5234 || DECL_IGNORED_P (innerdecl
)
5235 /* Do not track declarations for parts of tracked record
5236 parameters since we want to track them as a whole. */
5237 || tracked_record_parameter_p (innerdecl
)
5238 || TREE_STATIC (innerdecl
)
5240 || bitpos
+ bitsize
> 256)
5250 /* Do not track EXPR if REALDECL it should be ignored for debugging
5252 if (DECL_IGNORED_P (realdecl
))
5255 /* Do not track global variables until we are able to emit correct location
5257 if (TREE_STATIC (realdecl
))
5260 /* When the EXPR is a DECL for alias of some variable (see example)
5261 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5262 DECL_RTL contains SYMBOL_REF.
5265 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5268 if (decl_rtl
&& MEM_P (decl_rtl
)
5269 && contains_symbol_ref_p (XEXP (decl_rtl
, 0)))
5272 /* If RTX is a memory it should not be very large (because it would be
5273 an array or struct). */
5274 if (decl_rtl
&& MEM_P (decl_rtl
))
5276 /* Do not track structures and arrays. */
5277 if ((GET_MODE (decl_rtl
) == BLKmode
5278 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5279 && !tracked_record_parameter_p (realdecl
))
5281 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5282 && maybe_gt (MEM_SIZE (decl_rtl
), MAX_VAR_PARTS
))
5286 DECL_CHANGED (expr
) = 0;
5287 DECL_CHANGED (realdecl
) = 0;
5291 /* Determine whether a given LOC refers to the same variable part as
5295 same_variable_part_p (rtx loc
, tree expr
, poly_int64 offset
)
5300 if (! DECL_P (expr
))
5305 expr2
= REG_EXPR (loc
);
5306 offset2
= REG_OFFSET (loc
);
5308 else if (MEM_P (loc
))
5310 expr2
= MEM_EXPR (loc
);
5311 offset2
= int_mem_offset (loc
);
5316 if (! expr2
|| ! DECL_P (expr2
))
5319 expr
= var_debug_decl (expr
);
5320 expr2
= var_debug_decl (expr2
);
5322 return (expr
== expr2
&& known_eq (offset
, offset2
));
5325 /* LOC is a REG or MEM that we would like to track if possible.
5326 If EXPR is null, we don't know what expression LOC refers to,
5327 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5328 LOC is an lvalue register.
5330 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5331 is something we can track. When returning true, store the mode of
5332 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5333 from EXPR in *OFFSET_OUT (if nonnull). */
5336 track_loc_p (rtx loc
, tree expr
, poly_int64 offset
, bool store_reg_p
,
5337 machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5341 if (expr
== NULL
|| !track_expr_p (expr
, true))
5344 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5345 whole subreg, but only the old inner part is really relevant. */
5346 mode
= GET_MODE (loc
);
5347 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5349 machine_mode pseudo_mode
;
5351 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5352 if (paradoxical_subreg_p (mode
, pseudo_mode
))
5354 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5359 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5360 Do the same if we are storing to a register and EXPR occupies
5361 the whole of register LOC; in that case, the whole of EXPR is
5362 being changed. We exclude complex modes from the second case
5363 because the real and imaginary parts are represented as separate
5364 pseudo registers, even if the whole complex value fits into one
5366 if ((paradoxical_subreg_p (mode
, DECL_MODE (expr
))
5368 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5369 && hard_regno_nregs (REGNO (loc
), DECL_MODE (expr
)) == 1))
5370 && known_eq (offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
), 0))
5372 mode
= DECL_MODE (expr
);
5376 HOST_WIDE_INT const_offset
;
5377 if (!track_offset_p (offset
, &const_offset
))
5383 *offset_out
= const_offset
;
5387 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5388 want to track. When returning nonnull, make sure that the attributes
5389 on the returned value are updated. */
5392 var_lowpart (machine_mode mode
, rtx loc
)
5396 if (GET_MODE (loc
) == mode
)
5399 if (!REG_P (loc
) && !MEM_P (loc
))
5402 poly_uint64 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5405 return adjust_address_nv (loc
, mode
, offset
);
5407 poly_uint64 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5408 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5410 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5413 /* Carry information about uses and stores while walking rtx. */
5415 struct count_use_info
5417 /* The insn where the RTX is. */
5420 /* The basic block where insn is. */
5423 /* The array of n_sets sets in the insn, as determined by cselib. */
5424 struct cselib_set
*sets
;
5427 /* True if we're counting stores, false otherwise. */
5431 /* Find a VALUE corresponding to X. */
5433 static inline cselib_val
*
5434 find_use_val (rtx x
, machine_mode mode
, struct count_use_info
*cui
)
5440 /* This is called after uses are set up and before stores are
5441 processed by cselib, so it's safe to look up srcs, but not
5442 dsts. So we look up expressions that appear in srcs or in
5443 dest expressions, but we search the sets array for dests of
5447 /* Some targets represent memset and memcpy patterns
5448 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5449 (set (mem:BLK ...) (const_int ...)) or
5450 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5451 in that case, otherwise we end up with mode mismatches. */
5452 if (mode
== BLKmode
&& MEM_P (x
))
5454 for (i
= 0; i
< cui
->n_sets
; i
++)
5455 if (cui
->sets
[i
].dest
== x
)
5456 return cui
->sets
[i
].src_elt
;
5459 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5465 /* Replace all registers and addresses in an expression with VALUE
5466 expressions that map back to them, unless the expression is a
5467 register. If no mapping is or can be performed, returns NULL. */
5470 replace_expr_with_values (rtx loc
)
5472 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5474 else if (MEM_P (loc
))
5476 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5477 get_address_mode (loc
), 0,
5480 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5485 return cselib_subst_to_values (loc
, VOIDmode
);
5488 /* Return true if X contains a DEBUG_EXPR. */
5491 rtx_debug_expr_p (const_rtx x
)
5493 subrtx_iterator::array_type array
;
5494 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5495 if (GET_CODE (*iter
) == DEBUG_EXPR
)
5500 /* Determine what kind of micro operation to choose for a USE. Return
5501 MO_CLOBBER if no micro operation is to be generated. */
5503 static enum micro_operation_type
5504 use_type (rtx loc
, struct count_use_info
*cui
, machine_mode
*modep
)
5508 if (cui
&& cui
->sets
)
5510 if (GET_CODE (loc
) == VAR_LOCATION
)
5512 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5514 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5515 if (! VAR_LOC_UNKNOWN_P (ploc
))
5517 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5520 /* ??? flag_float_store and volatile mems are never
5521 given values, but we could in theory use them for
5523 gcc_assert (val
|| 1);
5531 if (REG_P (loc
) || MEM_P (loc
))
5534 *modep
= GET_MODE (loc
);
5538 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5539 && cselib_lookup (XEXP (loc
, 0),
5540 get_address_mode (loc
), 0,
5546 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5548 if (val
&& !cselib_preserved_value_p (val
))
5556 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5558 if (loc
== cfa_base_rtx
)
5560 expr
= REG_EXPR (loc
);
5563 return MO_USE_NO_VAR
;
5564 else if (target_for_debug_bind (var_debug_decl (expr
)))
5566 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5567 false, modep
, NULL
))
5570 return MO_USE_NO_VAR
;
5572 else if (MEM_P (loc
))
5574 expr
= MEM_EXPR (loc
);
5578 else if (target_for_debug_bind (var_debug_decl (expr
)))
5580 else if (track_loc_p (loc
, expr
, int_mem_offset (loc
),
5582 /* Multi-part variables shouldn't refer to one-part
5583 variable names such as VALUEs (never happens) or
5584 DEBUG_EXPRs (only happens in the presence of debug
5586 && (!MAY_HAVE_DEBUG_BIND_INSNS
5587 || !rtx_debug_expr_p (XEXP (loc
, 0))))
5596 /* Log to OUT information about micro-operation MOPT involving X in
5600 log_op_type (rtx x
, basic_block bb
, rtx_insn
*insn
,
5601 enum micro_operation_type mopt
, FILE *out
)
5603 fprintf (out
, "bb %i op %i insn %i %s ",
5604 bb
->index
, VTI (bb
)->mos
.length (),
5605 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5606 print_inline_rtx (out
, x
, 2);
5610 /* Tell whether the CONCAT used to holds a VALUE and its location
5611 needs value resolution, i.e., an attempt of mapping the location
5612 back to other incoming values. */
5613 #define VAL_NEEDS_RESOLUTION(x) \
5614 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5615 /* Whether the location in the CONCAT is a tracked expression, that
5616 should also be handled like a MO_USE. */
5617 #define VAL_HOLDS_TRACK_EXPR(x) \
5618 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5619 /* Whether the location in the CONCAT should be handled like a MO_COPY
5621 #define VAL_EXPR_IS_COPIED(x) \
5622 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5623 /* Whether the location in the CONCAT should be handled like a
5624 MO_CLOBBER as well. */
5625 #define VAL_EXPR_IS_CLOBBERED(x) \
5626 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5628 /* All preserved VALUEs. */
5629 static vec
<rtx
> preserved_values
;
5631 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5634 preserve_value (cselib_val
*val
)
5636 cselib_preserve_value (val
);
5637 preserved_values
.safe_push (val
->val_rtx
);
5640 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5641 any rtxes not suitable for CONST use not replaced by VALUEs
5645 non_suitable_const (const_rtx x
)
5647 subrtx_iterator::array_type array
;
5648 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5650 const_rtx x
= *iter
;
5651 switch (GET_CODE (x
))
5662 if (!MEM_READONLY_P (x
))
5672 /* Add uses (register and memory references) LOC which will be tracked
5673 to VTI (bb)->mos. */
5676 add_uses (rtx loc
, struct count_use_info
*cui
)
5678 machine_mode mode
= VOIDmode
;
5679 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5681 if (type
!= MO_CLOBBER
)
5683 basic_block bb
= cui
->bb
;
5687 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5688 mo
.insn
= cui
->insn
;
5690 if (type
== MO_VAL_LOC
)
5693 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5696 gcc_assert (cui
->sets
);
5699 && !REG_P (XEXP (vloc
, 0))
5700 && !MEM_P (XEXP (vloc
, 0)))
5703 machine_mode address_mode
= get_address_mode (mloc
);
5705 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5708 if (val
&& !cselib_preserved_value_p (val
))
5709 preserve_value (val
);
5712 if (CONSTANT_P (vloc
)
5713 && (GET_CODE (vloc
) != CONST
|| non_suitable_const (vloc
)))
5714 /* For constants don't look up any value. */;
5715 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5716 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5719 enum micro_operation_type type2
;
5721 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5724 nloc
= replace_expr_with_values (vloc
);
5728 oloc
= shallow_copy_rtx (oloc
);
5729 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5732 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5734 type2
= use_type (vloc
, 0, &mode2
);
5736 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5737 || type2
== MO_CLOBBER
);
5739 if (type2
== MO_CLOBBER
5740 && !cselib_preserved_value_p (val
))
5742 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5743 preserve_value (val
);
5746 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5748 oloc
= shallow_copy_rtx (oloc
);
5749 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5754 else if (type
== MO_VAL_USE
)
5756 machine_mode mode2
= VOIDmode
;
5757 enum micro_operation_type type2
;
5758 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5759 rtx vloc
, oloc
= loc
, nloc
;
5761 gcc_assert (cui
->sets
);
5764 && !REG_P (XEXP (oloc
, 0))
5765 && !MEM_P (XEXP (oloc
, 0)))
5768 machine_mode address_mode
= get_address_mode (mloc
);
5770 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5773 if (val
&& !cselib_preserved_value_p (val
))
5774 preserve_value (val
);
5777 type2
= use_type (loc
, 0, &mode2
);
5779 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5780 || type2
== MO_CLOBBER
);
5782 if (type2
== MO_USE
)
5783 vloc
= var_lowpart (mode2
, loc
);
5787 /* The loc of a MO_VAL_USE may have two forms:
5789 (concat val src): val is at src, a value-based
5792 (concat (concat val use) src): same as above, with use as
5793 the MO_USE tracked value, if it differs from src.
5797 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5798 nloc
= replace_expr_with_values (loc
);
5803 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5805 oloc
= val
->val_rtx
;
5807 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5809 if (type2
== MO_USE
)
5810 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5811 if (!cselib_preserved_value_p (val
))
5813 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5814 preserve_value (val
);
5818 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5820 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5821 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5822 VTI (bb
)->mos
.safe_push (mo
);
5826 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5829 add_uses_1 (rtx
*x
, void *cui
)
5831 subrtx_var_iterator::array_type array
;
5832 FOR_EACH_SUBRTX_VAR (iter
, array
, *x
, NONCONST
)
5833 add_uses (*iter
, (struct count_use_info
*) cui
);
5836 /* This is the value used during expansion of locations. We want it
5837 to be unbounded, so that variables expanded deep in a recursion
5838 nest are fully evaluated, so that their values are cached
5839 correctly. We avoid recursion cycles through other means, and we
5840 don't unshare RTL, so excess complexity is not a problem. */
5841 #define EXPR_DEPTH (INT_MAX)
5842 /* We use this to keep too-complex expressions from being emitted as
5843 location notes, and then to debug information. Users can trade
5844 compile time for ridiculously complex expressions, although they're
5845 seldom useful, and they may often have to be discarded as not
5846 representable anyway. */
5847 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5849 /* Attempt to reverse the EXPR operation in the debug info and record
5850 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5851 no longer live we can express its value as VAL - 6. */
5854 reverse_op (rtx val
, const_rtx expr
, rtx_insn
*insn
)
5858 struct elt_loc_list
*l
;
5862 if (GET_CODE (expr
) != SET
)
5865 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5868 src
= SET_SRC (expr
);
5869 switch (GET_CODE (src
))
5876 if (!REG_P (XEXP (src
, 0)))
5881 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5888 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5891 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5892 if (!v
|| !cselib_preserved_value_p (v
))
5895 /* Use canonical V to avoid creating multiple redundant expressions
5896 for different VALUES equivalent to V. */
5897 v
= canonical_cselib_val (v
);
5899 /* Adding a reverse op isn't useful if V already has an always valid
5900 location. Ignore ENTRY_VALUE, while it is always constant, we should
5901 prefer non-ENTRY_VALUE locations whenever possible. */
5902 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5903 if (CONSTANT_P (l
->loc
)
5904 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5906 /* Avoid creating too large locs lists. */
5907 else if (count
== PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE
))
5910 switch (GET_CODE (src
))
5914 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5916 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5920 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5932 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5934 arg
= XEXP (src
, 1);
5935 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5937 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5938 if (arg
== NULL_RTX
)
5940 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5943 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5949 cselib_add_permanent_equiv (v
, ret
, insn
);
5952 /* Add stores (register and memory references) LOC which will be tracked
5953 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5954 CUIP->insn is instruction which the LOC is part of. */
5957 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5959 machine_mode mode
= VOIDmode
, mode2
;
5960 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5961 basic_block bb
= cui
->bb
;
5963 rtx oloc
= loc
, nloc
, src
= NULL
;
5964 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5965 bool track_p
= false;
5967 bool resolve
, preserve
;
5969 if (type
== MO_CLOBBER
)
5976 gcc_assert (loc
!= cfa_base_rtx
);
5977 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5978 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5979 || GET_CODE (expr
) == CLOBBER
)
5981 mo
.type
= MO_CLOBBER
;
5983 if (GET_CODE (expr
) == SET
5984 && (SET_DEST (expr
) == loc
5985 || (GET_CODE (SET_DEST (expr
)) == STRICT_LOW_PART
5986 && XEXP (SET_DEST (expr
), 0) == loc
))
5987 && !unsuitable_loc (SET_SRC (expr
))
5988 && find_use_val (loc
, mode
, cui
))
5990 gcc_checking_assert (type
== MO_VAL_SET
);
5991 mo
.u
.loc
= gen_rtx_SET (loc
, SET_SRC (expr
));
5996 if (GET_CODE (expr
) == SET
5997 && SET_DEST (expr
) == loc
5998 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5999 src
= var_lowpart (mode2
, SET_SRC (expr
));
6000 loc
= var_lowpart (mode2
, loc
);
6009 rtx xexpr
= gen_rtx_SET (loc
, src
);
6010 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
6012 /* If this is an instruction copying (part of) a parameter
6013 passed by invisible reference to its register location,
6014 pretend it's a SET so that the initial memory location
6015 is discarded, as the parameter register can be reused
6016 for other purposes and we do not track locations based
6017 on generic registers. */
6020 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
6021 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
6022 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
6023 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
6034 mo
.insn
= cui
->insn
;
6036 else if (MEM_P (loc
)
6037 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
6040 if (MEM_P (loc
) && type
== MO_VAL_SET
6041 && !REG_P (XEXP (loc
, 0))
6042 && !MEM_P (XEXP (loc
, 0)))
6045 machine_mode address_mode
= get_address_mode (mloc
);
6046 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
6050 if (val
&& !cselib_preserved_value_p (val
))
6051 preserve_value (val
);
6054 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
6056 mo
.type
= MO_CLOBBER
;
6057 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
6061 if (GET_CODE (expr
) == SET
6062 && SET_DEST (expr
) == loc
6063 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
6064 src
= var_lowpart (mode2
, SET_SRC (expr
));
6065 loc
= var_lowpart (mode2
, loc
);
6074 rtx xexpr
= gen_rtx_SET (loc
, src
);
6075 if (same_variable_part_p (SET_SRC (xexpr
),
6077 int_mem_offset (loc
)))
6084 mo
.insn
= cui
->insn
;
6089 if (type
!= MO_VAL_SET
)
6090 goto log_and_return
;
6092 v
= find_use_val (oloc
, mode
, cui
);
6095 goto log_and_return
;
6097 resolve
= preserve
= !cselib_preserved_value_p (v
);
6099 /* We cannot track values for multiple-part variables, so we track only
6100 locations for tracked record parameters. */
6104 && tracked_record_parameter_p (REG_EXPR (loc
)))
6106 /* Although we don't use the value here, it could be used later by the
6107 mere virtue of its existence as the operand of the reverse operation
6108 that gave rise to it (typically extension/truncation). Make sure it
6109 is preserved as required by vt_expand_var_loc_chain. */
6112 goto log_and_return
;
6115 if (loc
== stack_pointer_rtx
6116 && maybe_ne (hard_frame_pointer_adjustment
, -1)
6118 cselib_set_value_sp_based (v
);
6120 nloc
= replace_expr_with_values (oloc
);
6124 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
6126 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6130 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6132 if (oval
&& !cselib_preserved_value_p (oval
))
6134 micro_operation moa
;
6136 preserve_value (oval
);
6138 moa
.type
= MO_VAL_USE
;
6139 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6140 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6141 moa
.insn
= cui
->insn
;
6143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6144 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6145 moa
.type
, dump_file
);
6146 VTI (bb
)->mos
.safe_push (moa
);
6151 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6153 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6154 nloc
= replace_expr_with_values (SET_SRC (expr
));
6158 /* Avoid the mode mismatch between oexpr and expr. */
6159 if (!nloc
&& mode
!= mode2
)
6161 nloc
= SET_SRC (expr
);
6162 gcc_assert (oloc
== SET_DEST (expr
));
6165 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6166 oloc
= gen_rtx_SET (oloc
, nloc
);
6169 if (oloc
== SET_DEST (mo
.u
.loc
))
6170 /* No point in duplicating. */
6172 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6178 if (GET_CODE (mo
.u
.loc
) == SET
6179 && oloc
== SET_DEST (mo
.u
.loc
))
6180 /* No point in duplicating. */
6186 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6188 if (mo
.u
.loc
!= oloc
)
6189 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6191 /* The loc of a MO_VAL_SET may have various forms:
6193 (concat val dst): dst now holds val
6195 (concat val (set dst src)): dst now holds val, copied from src
6197 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6198 after replacing mems and non-top-level regs with values.
6200 (concat (concat val dstv) (set dst src)): dst now holds val,
6201 copied from src. dstv is a value-based representation of dst, if
6202 it differs from dst. If resolution is needed, src is a REG, and
6203 its mode is the same as that of val.
6205 (concat (concat val (set dstv srcv)) (set dst src)): src
6206 copied to dst, holding val. dstv and srcv are value-based
6207 representations of dst and src, respectively.
6211 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6212 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6217 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6220 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6223 if (mo
.type
== MO_CLOBBER
)
6224 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6225 if (mo
.type
== MO_COPY
)
6226 VAL_EXPR_IS_COPIED (loc
) = 1;
6228 mo
.type
= MO_VAL_SET
;
6231 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6232 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6233 VTI (bb
)->mos
.safe_push (mo
);
6236 /* Arguments to the call. */
6237 static rtx call_arguments
;
6239 /* Compute call_arguments. */
6242 prepare_call_arguments (basic_block bb
, rtx_insn
*insn
)
6245 rtx prev
, cur
, next
;
6246 rtx this_arg
= NULL_RTX
;
6247 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6248 tree obj_type_ref
= NULL_TREE
;
6249 CUMULATIVE_ARGS args_so_far_v
;
6250 cumulative_args_t args_so_far
;
6252 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6253 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6254 call
= get_call_rtx_from (insn
);
6257 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6259 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6260 if (SYMBOL_REF_DECL (symbol
))
6261 fndecl
= SYMBOL_REF_DECL (symbol
);
6263 if (fndecl
== NULL_TREE
)
6264 fndecl
= MEM_EXPR (XEXP (call
, 0));
6266 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6267 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6269 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6270 type
= TREE_TYPE (fndecl
);
6271 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6273 if (TREE_CODE (fndecl
) == INDIRECT_REF
6274 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6275 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6280 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6282 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6283 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6285 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6289 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6290 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6291 #ifndef PCC_STATIC_STRUCT_RETURN
6292 if (aggregate_value_p (TREE_TYPE (type
), type
)
6293 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6295 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6296 machine_mode mode
= TYPE_MODE (struct_addr
);
6298 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6300 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6302 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6304 if (reg
== NULL_RTX
)
6306 for (; link
; link
= XEXP (link
, 1))
6307 if (GET_CODE (XEXP (link
, 0)) == USE
6308 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6310 link
= XEXP (link
, 1);
6317 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6319 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6322 t
= TYPE_ARG_TYPES (type
);
6323 mode
= TYPE_MODE (TREE_VALUE (t
));
6324 this_arg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6325 TREE_VALUE (t
), true);
6326 if (this_arg
&& !REG_P (this_arg
))
6327 this_arg
= NULL_RTX
;
6328 else if (this_arg
== NULL_RTX
)
6330 for (; link
; link
= XEXP (link
, 1))
6331 if (GET_CODE (XEXP (link
, 0)) == USE
6332 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6334 this_arg
= XEXP (XEXP (link
, 0), 0);
6342 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6344 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6345 if (GET_CODE (XEXP (link
, 0)) == USE
)
6347 rtx item
= NULL_RTX
;
6348 x
= XEXP (XEXP (link
, 0), 0);
6349 if (GET_MODE (link
) == VOIDmode
6350 || GET_MODE (link
) == BLKmode
6351 || (GET_MODE (link
) != GET_MODE (x
)
6352 && ((GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6353 && GET_MODE_CLASS (GET_MODE (link
)) != MODE_PARTIAL_INT
)
6354 || (GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
6355 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_PARTIAL_INT
))))
6356 /* Can't do anything for these, if the original type mode
6357 isn't known or can't be converted. */;
6360 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6361 scalar_int_mode mode
;
6362 if (val
&& cselib_preserved_value_p (val
))
6363 item
= val
->val_rtx
;
6364 else if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
6366 opt_scalar_int_mode mode_iter
;
6367 FOR_EACH_WIDER_MODE (mode_iter
, mode
)
6369 mode
= mode_iter
.require ();
6370 if (GET_MODE_BITSIZE (mode
) > BITS_PER_WORD
)
6373 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6374 if (reg
== NULL_RTX
|| !REG_P (reg
))
6376 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6377 if (val
&& cselib_preserved_value_p (val
))
6379 item
= val
->val_rtx
;
6390 if (!frame_pointer_needed
)
6392 class adjust_mem_data amd
;
6393 amd
.mem_mode
= VOIDmode
;
6394 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6396 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6398 gcc_assert (amd
.side_effects
.is_empty ());
6400 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6401 if (val
&& cselib_preserved_value_p (val
))
6402 item
= val
->val_rtx
;
6403 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
6404 && GET_MODE_CLASS (GET_MODE (mem
)) != MODE_PARTIAL_INT
)
6406 /* For non-integer stack argument see also if they weren't
6407 initialized by integers. */
6408 scalar_int_mode imode
;
6409 if (int_mode_for_mode (GET_MODE (mem
)).exists (&imode
)
6410 && imode
!= GET_MODE (mem
))
6412 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6413 imode
, 0, VOIDmode
);
6414 if (val
&& cselib_preserved_value_p (val
))
6415 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6423 if (GET_MODE (item
) != GET_MODE (link
))
6424 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6425 if (GET_MODE (x2
) != GET_MODE (link
))
6426 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6427 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6429 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6431 if (t
&& t
!= void_list_node
)
6433 tree argtype
= TREE_VALUE (t
);
6434 machine_mode mode
= TYPE_MODE (argtype
);
6436 if (pass_by_reference (&args_so_far_v
, mode
, argtype
, true))
6438 argtype
= build_pointer_type (argtype
);
6439 mode
= TYPE_MODE (argtype
);
6441 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6443 if (TREE_CODE (argtype
) == REFERENCE_TYPE
6444 && INTEGRAL_TYPE_P (TREE_TYPE (argtype
))
6447 && GET_MODE (reg
) == mode
6448 && (GET_MODE_CLASS (mode
) == MODE_INT
6449 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
6451 && REGNO (x
) == REGNO (reg
)
6452 && GET_MODE (x
) == mode
6455 machine_mode indmode
6456 = TYPE_MODE (TREE_TYPE (argtype
));
6457 rtx mem
= gen_rtx_MEM (indmode
, x
);
6458 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6459 if (val
&& cselib_preserved_value_p (val
))
6461 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6462 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6467 struct elt_loc_list
*l
;
6470 /* Try harder, when passing address of a constant
6471 pool integer it can be easily read back. */
6472 item
= XEXP (item
, 1);
6473 if (GET_CODE (item
) == SUBREG
)
6474 item
= SUBREG_REG (item
);
6475 gcc_assert (GET_CODE (item
) == VALUE
);
6476 val
= CSELIB_VAL_PTR (item
);
6477 for (l
= val
->locs
; l
; l
= l
->next
)
6478 if (GET_CODE (l
->loc
) == SYMBOL_REF
6479 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6480 && SYMBOL_REF_DECL (l
->loc
)
6481 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6483 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6484 if (tree_fits_shwi_p (initial
))
6486 item
= GEN_INT (tree_to_shwi (initial
));
6487 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6489 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6496 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6502 /* Add debug arguments. */
6504 && TREE_CODE (fndecl
) == FUNCTION_DECL
6505 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6507 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6512 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6515 tree dtemp
= (**debug_args
)[ix
+ 1];
6516 machine_mode mode
= DECL_MODE (dtemp
);
6517 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6518 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6519 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6525 /* Reverse call_arguments chain. */
6527 for (cur
= call_arguments
; cur
; cur
= next
)
6529 next
= XEXP (cur
, 1);
6530 XEXP (cur
, 1) = prev
;
6533 call_arguments
= prev
;
6535 x
= get_call_rtx_from (insn
);
6538 x
= XEXP (XEXP (x
, 0), 0);
6539 if (GET_CODE (x
) == SYMBOL_REF
)
6540 /* Don't record anything. */;
6541 else if (CONSTANT_P (x
))
6543 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6546 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6550 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6551 if (val
&& cselib_preserved_value_p (val
))
6553 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6555 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6562 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6563 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6565 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6567 clobbered
= plus_constant (mode
, clobbered
,
6568 token
* GET_MODE_SIZE (mode
));
6569 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6570 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6572 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6576 /* Callback for cselib_record_sets_hook, that records as micro
6577 operations uses and stores in an insn after cselib_record_sets has
6578 analyzed the sets in an insn, but before it modifies the stored
6579 values in the internal tables, unless cselib_record_sets doesn't
6580 call it directly (perhaps because we're not doing cselib in the
6581 first place, in which case sets and n_sets will be 0). */
6584 add_with_sets (rtx_insn
*insn
, struct cselib_set
*sets
, int n_sets
)
6586 basic_block bb
= BLOCK_FOR_INSN (insn
);
6588 struct count_use_info cui
;
6589 micro_operation
*mos
;
6591 cselib_hook_called
= true;
6596 cui
.n_sets
= n_sets
;
6598 n1
= VTI (bb
)->mos
.length ();
6599 cui
.store_p
= false;
6600 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6601 n2
= VTI (bb
)->mos
.length () - 1;
6602 mos
= VTI (bb
)->mos
.address ();
6604 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6608 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6610 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6613 std::swap (mos
[n1
], mos
[n2
]);
6616 n2
= VTI (bb
)->mos
.length () - 1;
6619 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6621 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6624 std::swap (mos
[n1
], mos
[n2
]);
6633 mo
.u
.loc
= call_arguments
;
6634 call_arguments
= NULL_RTX
;
6636 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6637 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6638 VTI (bb
)->mos
.safe_push (mo
);
6641 n1
= VTI (bb
)->mos
.length ();
6642 /* This will record NEXT_INSN (insn), such that we can
6643 insert notes before it without worrying about any
6644 notes that MO_USEs might emit after the insn. */
6646 note_stores (PATTERN (insn
), add_stores
, &cui
);
6647 n2
= VTI (bb
)->mos
.length () - 1;
6648 mos
= VTI (bb
)->mos
.address ();
6650 /* Order the MO_VAL_USEs first (note_stores does nothing
6651 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6652 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6655 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6657 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6660 std::swap (mos
[n1
], mos
[n2
]);
6663 n2
= VTI (bb
)->mos
.length () - 1;
6666 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6668 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6671 std::swap (mos
[n1
], mos
[n2
]);
6675 static enum var_init_status
6676 find_src_status (dataflow_set
*in
, rtx src
)
6678 tree decl
= NULL_TREE
;
6679 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6681 if (! flag_var_tracking_uninit
)
6682 status
= VAR_INIT_STATUS_INITIALIZED
;
6684 if (src
&& REG_P (src
))
6685 decl
= var_debug_decl (REG_EXPR (src
));
6686 else if (src
&& MEM_P (src
))
6687 decl
= var_debug_decl (MEM_EXPR (src
));
6690 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6695 /* SRC is the source of an assignment. Use SET to try to find what
6696 was ultimately assigned to SRC. Return that value if known,
6697 otherwise return SRC itself. */
6700 find_src_set_src (dataflow_set
*set
, rtx src
)
6702 tree decl
= NULL_TREE
; /* The variable being copied around. */
6703 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6705 location_chain
*nextp
;
6709 if (src
&& REG_P (src
))
6710 decl
= var_debug_decl (REG_EXPR (src
));
6711 else if (src
&& MEM_P (src
))
6712 decl
= var_debug_decl (MEM_EXPR (src
));
6716 decl_or_value dv
= dv_from_decl (decl
);
6718 var
= shared_hash_find (set
->vars
, dv
);
6722 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6723 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6724 nextp
= nextp
->next
)
6725 if (rtx_equal_p (nextp
->loc
, src
))
6727 set_src
= nextp
->set_src
;
6737 /* Compute the changes of variable locations in the basic block BB. */
6740 compute_bb_dataflow (basic_block bb
)
6743 micro_operation
*mo
;
6745 dataflow_set old_out
;
6746 dataflow_set
*in
= &VTI (bb
)->in
;
6747 dataflow_set
*out
= &VTI (bb
)->out
;
6749 dataflow_set_init (&old_out
);
6750 dataflow_set_copy (&old_out
, out
);
6751 dataflow_set_copy (out
, in
);
6753 if (MAY_HAVE_DEBUG_BIND_INSNS
)
6754 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
6756 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6758 rtx_insn
*insn
= mo
->insn
;
6763 dataflow_set_clear_at_call (out
, insn
);
6768 rtx loc
= mo
->u
.loc
;
6771 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6772 else if (MEM_P (loc
))
6773 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6779 rtx loc
= mo
->u
.loc
;
6783 if (GET_CODE (loc
) == CONCAT
)
6785 val
= XEXP (loc
, 0);
6786 vloc
= XEXP (loc
, 1);
6794 var
= PAT_VAR_LOCATION_DECL (vloc
);
6796 clobber_variable_part (out
, NULL_RTX
,
6797 dv_from_decl (var
), 0, NULL_RTX
);
6800 if (VAL_NEEDS_RESOLUTION (loc
))
6801 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6802 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6803 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6806 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6807 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6808 dv_from_decl (var
), 0,
6809 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6816 rtx loc
= mo
->u
.loc
;
6817 rtx val
, vloc
, uloc
;
6819 vloc
= uloc
= XEXP (loc
, 1);
6820 val
= XEXP (loc
, 0);
6822 if (GET_CODE (val
) == CONCAT
)
6824 uloc
= XEXP (val
, 1);
6825 val
= XEXP (val
, 0);
6828 if (VAL_NEEDS_RESOLUTION (loc
))
6829 val_resolve (out
, val
, vloc
, insn
);
6831 val_store (out
, val
, uloc
, insn
, false);
6833 if (VAL_HOLDS_TRACK_EXPR (loc
))
6835 if (GET_CODE (uloc
) == REG
)
6836 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6838 else if (GET_CODE (uloc
) == MEM
)
6839 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6847 rtx loc
= mo
->u
.loc
;
6848 rtx val
, vloc
, uloc
;
6852 uloc
= XEXP (vloc
, 1);
6853 val
= XEXP (vloc
, 0);
6856 if (GET_CODE (uloc
) == SET
)
6858 dstv
= SET_DEST (uloc
);
6859 srcv
= SET_SRC (uloc
);
6867 if (GET_CODE (val
) == CONCAT
)
6869 dstv
= vloc
= XEXP (val
, 1);
6870 val
= XEXP (val
, 0);
6873 if (GET_CODE (vloc
) == SET
)
6875 srcv
= SET_SRC (vloc
);
6877 gcc_assert (val
!= srcv
);
6878 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6880 dstv
= vloc
= SET_DEST (vloc
);
6882 if (VAL_NEEDS_RESOLUTION (loc
))
6883 val_resolve (out
, val
, srcv
, insn
);
6885 else if (VAL_NEEDS_RESOLUTION (loc
))
6887 gcc_assert (GET_CODE (uloc
) == SET
6888 && GET_CODE (SET_SRC (uloc
)) == REG
);
6889 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6892 if (VAL_HOLDS_TRACK_EXPR (loc
))
6894 if (VAL_EXPR_IS_CLOBBERED (loc
))
6897 var_reg_delete (out
, uloc
, true);
6898 else if (MEM_P (uloc
))
6900 gcc_assert (MEM_P (dstv
));
6901 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6902 var_mem_delete (out
, dstv
, true);
6907 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6908 rtx src
= NULL
, dst
= uloc
;
6909 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6911 if (GET_CODE (uloc
) == SET
)
6913 src
= SET_SRC (uloc
);
6914 dst
= SET_DEST (uloc
);
6919 if (flag_var_tracking_uninit
)
6921 status
= find_src_status (in
, src
);
6923 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6924 status
= find_src_status (out
, src
);
6927 src
= find_src_set_src (in
, src
);
6931 var_reg_delete_and_set (out
, dst
, !copied_p
,
6933 else if (MEM_P (dst
))
6935 gcc_assert (MEM_P (dstv
));
6936 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6937 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6942 else if (REG_P (uloc
))
6943 var_regno_delete (out
, REGNO (uloc
));
6944 else if (MEM_P (uloc
))
6946 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6947 gcc_checking_assert (dstv
== vloc
);
6949 clobber_overlapping_mems (out
, vloc
);
6952 val_store (out
, val
, dstv
, insn
, true);
6958 rtx loc
= mo
->u
.loc
;
6961 if (GET_CODE (loc
) == SET
)
6963 set_src
= SET_SRC (loc
);
6964 loc
= SET_DEST (loc
);
6968 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6970 else if (MEM_P (loc
))
6971 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6978 rtx loc
= mo
->u
.loc
;
6979 enum var_init_status src_status
;
6982 if (GET_CODE (loc
) == SET
)
6984 set_src
= SET_SRC (loc
);
6985 loc
= SET_DEST (loc
);
6988 if (! flag_var_tracking_uninit
)
6989 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6992 src_status
= find_src_status (in
, set_src
);
6994 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6995 src_status
= find_src_status (out
, set_src
);
6998 set_src
= find_src_set_src (in
, set_src
);
7001 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
7002 else if (MEM_P (loc
))
7003 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
7009 rtx loc
= mo
->u
.loc
;
7012 var_reg_delete (out
, loc
, false);
7013 else if (MEM_P (loc
))
7014 var_mem_delete (out
, loc
, false);
7020 rtx loc
= mo
->u
.loc
;
7023 var_reg_delete (out
, loc
, true);
7024 else if (MEM_P (loc
))
7025 var_mem_delete (out
, loc
, true);
7030 out
->stack_adjust
+= mo
->u
.adjust
;
7035 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7037 delete local_get_addr_cache
;
7038 local_get_addr_cache
= NULL
;
7040 dataflow_set_equiv_regs (out
);
7041 shared_hash_htab (out
->vars
)
7042 ->traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
7043 shared_hash_htab (out
->vars
)
7044 ->traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
7046 shared_hash_htab (out
->vars
)
7047 ->traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
7049 changed
= dataflow_set_different (&old_out
, out
);
7050 dataflow_set_destroy (&old_out
);
7054 /* Find the locations of variables in the whole function. */
7057 vt_find_locations (void)
7059 bb_heap_t
*worklist
= new bb_heap_t (LONG_MIN
);
7060 bb_heap_t
*pending
= new bb_heap_t (LONG_MIN
);
7061 sbitmap in_worklist
, in_pending
;
7068 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
7069 bool success
= true;
7071 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
7072 /* Compute reverse completion order of depth first search of the CFG
7073 so that the data-flow runs faster. */
7074 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
7075 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
7076 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
7077 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
7078 bb_order
[rc_order
[i
]] = i
;
7081 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
7082 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7083 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7084 bitmap_clear (in_worklist
);
7086 FOR_EACH_BB_FN (bb
, cfun
)
7087 pending
->insert (bb_order
[bb
->index
], bb
);
7088 bitmap_ones (in_pending
);
7090 while (success
&& !pending
->empty ())
7092 std::swap (worklist
, pending
);
7093 std::swap (in_worklist
, in_pending
);
7095 bitmap_clear (visited
);
7097 while (!worklist
->empty ())
7099 bb
= worklist
->extract_min ();
7100 bitmap_clear_bit (in_worklist
, bb
->index
);
7101 gcc_assert (!bitmap_bit_p (visited
, bb
->index
));
7102 if (!bitmap_bit_p (visited
, bb
->index
))
7106 int oldinsz
, oldoutsz
;
7108 bitmap_set_bit (visited
, bb
->index
);
7110 if (VTI (bb
)->in
.vars
)
7113 -= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7114 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7115 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
)->elements ();
7117 = shared_hash_htab (VTI (bb
)->out
.vars
)->elements ();
7120 oldinsz
= oldoutsz
= 0;
7122 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7124 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7125 bool first
= true, adjust
= false;
7127 /* Calculate the IN set as the intersection of
7128 predecessor OUT sets. */
7130 dataflow_set_clear (in
);
7131 dst_can_be_shared
= true;
7133 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7134 if (!VTI (e
->src
)->flooded
)
7135 gcc_assert (bb_order
[bb
->index
]
7136 <= bb_order
[e
->src
->index
]);
7139 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7140 first_out
= &VTI (e
->src
)->out
;
7145 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7151 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7154 /* Merge and merge_adjust should keep entries in
7156 shared_hash_htab (in
->vars
)
7157 ->traverse
<dataflow_set
*,
7158 canonicalize_loc_order_check
> (in
);
7160 if (dst_can_be_shared
)
7162 shared_hash_destroy (in
->vars
);
7163 in
->vars
= shared_hash_copy (first_out
->vars
);
7167 VTI (bb
)->flooded
= true;
7171 /* Calculate the IN set as union of predecessor OUT sets. */
7172 dataflow_set_clear (&VTI (bb
)->in
);
7173 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7174 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7177 changed
= compute_bb_dataflow (bb
);
7178 htabsz
+= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7179 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7181 if (htabmax
&& htabsz
> htabmax
)
7183 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7184 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7185 "variable tracking size limit exceeded with "
7186 "%<-fvar-tracking-assignments%>, retrying without");
7188 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7189 "variable tracking size limit exceeded");
7196 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7198 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7201 if (bitmap_bit_p (visited
, e
->dest
->index
))
7203 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7205 /* Send E->DEST to next round. */
7206 bitmap_set_bit (in_pending
, e
->dest
->index
);
7207 pending
->insert (bb_order
[e
->dest
->index
],
7211 else if (!bitmap_bit_p (in_worklist
, e
->dest
->index
))
7213 /* Add E->DEST to current round. */
7214 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7215 worklist
->insert (bb_order
[e
->dest
->index
],
7223 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7225 (int)shared_hash_htab (VTI (bb
)->in
.vars
)->size (),
7227 (int)shared_hash_htab (VTI (bb
)->out
.vars
)->size (),
7229 (int)worklist
->nodes (), (int)pending
->nodes (),
7232 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7234 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7235 dump_dataflow_set (&VTI (bb
)->in
);
7236 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7237 dump_dataflow_set (&VTI (bb
)->out
);
7243 if (success
&& MAY_HAVE_DEBUG_BIND_INSNS
)
7244 FOR_EACH_BB_FN (bb
, cfun
)
7245 gcc_assert (VTI (bb
)->flooded
);
7250 sbitmap_free (in_worklist
);
7251 sbitmap_free (in_pending
);
7253 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7257 /* Print the content of the LIST to dump file. */
7260 dump_attrs_list (attrs
*list
)
7262 for (; list
; list
= list
->next
)
7264 if (dv_is_decl_p (list
->dv
))
7265 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7267 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7268 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7270 fprintf (dump_file
, "\n");
7273 /* Print the information about variable *SLOT to dump file. */
7276 dump_var_tracking_slot (variable
**slot
, void *data ATTRIBUTE_UNUSED
)
7278 variable
*var
= *slot
;
7282 /* Continue traversing the hash table. */
7286 /* Print the information about variable VAR to dump file. */
7289 dump_var (variable
*var
)
7292 location_chain
*node
;
7294 if (dv_is_decl_p (var
->dv
))
7296 const_tree decl
= dv_as_decl (var
->dv
);
7298 if (DECL_NAME (decl
))
7300 fprintf (dump_file
, " name: %s",
7301 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7302 if (dump_flags
& TDF_UID
)
7303 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7305 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7306 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7308 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7309 fprintf (dump_file
, "\n");
7313 fputc (' ', dump_file
);
7314 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7317 for (i
= 0; i
< var
->n_var_parts
; i
++)
7319 fprintf (dump_file
, " offset %ld\n",
7320 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7321 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7323 fprintf (dump_file
, " ");
7324 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7325 fprintf (dump_file
, "[uninit]");
7326 print_rtl_single (dump_file
, node
->loc
);
7331 /* Print the information about variables from hash table VARS to dump file. */
7334 dump_vars (variable_table_type
*vars
)
7336 if (!vars
->is_empty ())
7338 fprintf (dump_file
, "Variables:\n");
7339 vars
->traverse
<void *, dump_var_tracking_slot
> (NULL
);
7343 /* Print the dataflow set SET to dump file. */
7346 dump_dataflow_set (dataflow_set
*set
)
7350 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7352 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7356 fprintf (dump_file
, "Reg %d:", i
);
7357 dump_attrs_list (set
->regs
[i
]);
7360 dump_vars (shared_hash_htab (set
->vars
));
7361 fprintf (dump_file
, "\n");
7364 /* Print the IN and OUT sets for each basic block to dump file. */
7367 dump_dataflow_sets (void)
7371 FOR_EACH_BB_FN (bb
, cfun
)
7373 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7374 fprintf (dump_file
, "IN:\n");
7375 dump_dataflow_set (&VTI (bb
)->in
);
7376 fprintf (dump_file
, "OUT:\n");
7377 dump_dataflow_set (&VTI (bb
)->out
);
7381 /* Return the variable for DV in dropped_values, inserting one if
7382 requested with INSERT. */
7384 static inline variable
*
7385 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7388 variable
*empty_var
;
7389 onepart_enum onepart
;
7391 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7399 gcc_checking_assert (insert
== INSERT
);
7401 onepart
= dv_onepart_p (dv
);
7403 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7405 empty_var
= onepart_pool_allocate (onepart
);
7407 empty_var
->refcount
= 1;
7408 empty_var
->n_var_parts
= 0;
7409 empty_var
->onepart
= onepart
;
7410 empty_var
->in_changed_variables
= false;
7411 empty_var
->var_part
[0].loc_chain
= NULL
;
7412 empty_var
->var_part
[0].cur_loc
= NULL
;
7413 VAR_LOC_1PAUX (empty_var
) = NULL
;
7414 set_dv_changed (dv
, true);
7421 /* Recover the one-part aux from dropped_values. */
7423 static struct onepart_aux
*
7424 recover_dropped_1paux (variable
*var
)
7428 gcc_checking_assert (var
->onepart
);
7430 if (VAR_LOC_1PAUX (var
))
7431 return VAR_LOC_1PAUX (var
);
7433 if (var
->onepart
== ONEPART_VDECL
)
7436 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7441 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7442 VAR_LOC_1PAUX (dvar
) = NULL
;
7444 return VAR_LOC_1PAUX (var
);
7447 /* Add variable VAR to the hash table of changed variables and
7448 if it has no locations delete it from SET's hash table. */
7451 variable_was_changed (variable
*var
, dataflow_set
*set
)
7453 hashval_t hash
= dv_htab_hash (var
->dv
);
7459 /* Remember this decl or VALUE has been added to changed_variables. */
7460 set_dv_changed (var
->dv
, true);
7462 slot
= changed_variables
->find_slot_with_hash (var
->dv
, hash
, INSERT
);
7466 variable
*old_var
= *slot
;
7467 gcc_assert (old_var
->in_changed_variables
);
7468 old_var
->in_changed_variables
= false;
7469 if (var
!= old_var
&& var
->onepart
)
7471 /* Restore the auxiliary info from an empty variable
7472 previously created for changed_variables, so it is
7474 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7475 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7476 VAR_LOC_1PAUX (old_var
) = NULL
;
7478 variable_htab_free (*slot
);
7481 if (set
&& var
->n_var_parts
== 0)
7483 onepart_enum onepart
= var
->onepart
;
7484 variable
*empty_var
= NULL
;
7485 variable
**dslot
= NULL
;
7487 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7489 dslot
= dropped_values
->find_slot_with_hash (var
->dv
,
7490 dv_htab_hash (var
->dv
),
7496 gcc_checking_assert (!empty_var
->in_changed_variables
);
7497 if (!VAR_LOC_1PAUX (var
))
7499 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7500 VAR_LOC_1PAUX (empty_var
) = NULL
;
7503 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7509 empty_var
= onepart_pool_allocate (onepart
);
7510 empty_var
->dv
= var
->dv
;
7511 empty_var
->refcount
= 1;
7512 empty_var
->n_var_parts
= 0;
7513 empty_var
->onepart
= onepart
;
7516 empty_var
->refcount
++;
7521 empty_var
->refcount
++;
7522 empty_var
->in_changed_variables
= true;
7526 empty_var
->var_part
[0].loc_chain
= NULL
;
7527 empty_var
->var_part
[0].cur_loc
= NULL
;
7528 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7529 VAR_LOC_1PAUX (var
) = NULL
;
7535 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7536 recover_dropped_1paux (var
);
7538 var
->in_changed_variables
= true;
7545 if (var
->n_var_parts
== 0)
7550 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7553 if (shared_hash_shared (set
->vars
))
7554 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7556 shared_hash_htab (set
->vars
)->clear_slot (slot
);
7562 /* Look for the index in VAR->var_part corresponding to OFFSET.
7563 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7564 referenced int will be set to the index that the part has or should
7565 have, if it should be inserted. */
7568 find_variable_location_part (variable
*var
, HOST_WIDE_INT offset
,
7569 int *insertion_point
)
7578 if (insertion_point
)
7579 *insertion_point
= 0;
7581 return var
->n_var_parts
- 1;
7584 /* Find the location part. */
7586 high
= var
->n_var_parts
;
7589 pos
= (low
+ high
) / 2;
7590 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7597 if (insertion_point
)
7598 *insertion_point
= pos
;
7600 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7607 set_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7608 decl_or_value dv
, HOST_WIDE_INT offset
,
7609 enum var_init_status initialized
, rtx set_src
)
7612 location_chain
*node
, *next
;
7613 location_chain
**nextp
;
7615 onepart_enum onepart
;
7620 onepart
= var
->onepart
;
7622 onepart
= dv_onepart_p (dv
);
7624 gcc_checking_assert (offset
== 0 || !onepart
);
7625 gcc_checking_assert (loc
!= dv_as_opaque (dv
));
7627 if (! flag_var_tracking_uninit
)
7628 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7632 /* Create new variable information. */
7633 var
= onepart_pool_allocate (onepart
);
7636 var
->n_var_parts
= 1;
7637 var
->onepart
= onepart
;
7638 var
->in_changed_variables
= false;
7640 VAR_LOC_1PAUX (var
) = NULL
;
7642 VAR_PART_OFFSET (var
, 0) = offset
;
7643 var
->var_part
[0].loc_chain
= NULL
;
7644 var
->var_part
[0].cur_loc
= NULL
;
7647 nextp
= &var
->var_part
[0].loc_chain
;
7653 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
7657 if (GET_CODE (loc
) == VALUE
)
7659 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7660 nextp
= &node
->next
)
7661 if (GET_CODE (node
->loc
) == VALUE
)
7663 if (node
->loc
== loc
)
7668 if (canon_value_cmp (node
->loc
, loc
))
7676 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7684 else if (REG_P (loc
))
7686 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7687 nextp
= &node
->next
)
7688 if (REG_P (node
->loc
))
7690 if (REGNO (node
->loc
) < REGNO (loc
))
7694 if (REGNO (node
->loc
) == REGNO (loc
))
7707 else if (MEM_P (loc
))
7709 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7710 nextp
= &node
->next
)
7711 if (REG_P (node
->loc
))
7713 else if (MEM_P (node
->loc
))
7715 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7727 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7728 nextp
= &node
->next
)
7729 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7737 if (shared_var_p (var
, set
->vars
))
7739 slot
= unshare_variable (set
, slot
, var
, initialized
);
7741 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7742 nextp
= &(*nextp
)->next
)
7744 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7751 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7753 pos
= find_variable_location_part (var
, offset
, &inspos
);
7757 node
= var
->var_part
[pos
].loc_chain
;
7760 && ((REG_P (node
->loc
) && REG_P (loc
)
7761 && REGNO (node
->loc
) == REGNO (loc
))
7762 || rtx_equal_p (node
->loc
, loc
)))
7764 /* LOC is in the beginning of the chain so we have nothing
7766 if (node
->init
< initialized
)
7767 node
->init
= initialized
;
7768 if (set_src
!= NULL
)
7769 node
->set_src
= set_src
;
7775 /* We have to make a copy of a shared variable. */
7776 if (shared_var_p (var
, set
->vars
))
7778 slot
= unshare_variable (set
, slot
, var
, initialized
);
7785 /* We have not found the location part, new one will be created. */
7787 /* We have to make a copy of the shared variable. */
7788 if (shared_var_p (var
, set
->vars
))
7790 slot
= unshare_variable (set
, slot
, var
, initialized
);
7794 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7795 thus there are at most MAX_VAR_PARTS different offsets. */
7796 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7797 && (!var
->n_var_parts
|| !onepart
));
7799 /* We have to move the elements of array starting at index
7800 inspos to the next position. */
7801 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7802 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7805 gcc_checking_assert (!onepart
);
7806 VAR_PART_OFFSET (var
, pos
) = offset
;
7807 var
->var_part
[pos
].loc_chain
= NULL
;
7808 var
->var_part
[pos
].cur_loc
= NULL
;
7811 /* Delete the location from the list. */
7812 nextp
= &var
->var_part
[pos
].loc_chain
;
7813 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7816 if ((REG_P (node
->loc
) && REG_P (loc
)
7817 && REGNO (node
->loc
) == REGNO (loc
))
7818 || rtx_equal_p (node
->loc
, loc
))
7820 /* Save these values, to assign to the new node, before
7821 deleting this one. */
7822 if (node
->init
> initialized
)
7823 initialized
= node
->init
;
7824 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7825 set_src
= node
->set_src
;
7826 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7827 var
->var_part
[pos
].cur_loc
= NULL
;
7833 nextp
= &node
->next
;
7836 nextp
= &var
->var_part
[pos
].loc_chain
;
7839 /* Add the location to the beginning. */
7840 node
= new location_chain
;
7842 node
->init
= initialized
;
7843 node
->set_src
= set_src
;
7844 node
->next
= *nextp
;
7847 /* If no location was emitted do so. */
7848 if (var
->var_part
[pos
].cur_loc
== NULL
)
7849 variable_was_changed (var
, set
);
7854 /* Set the part of variable's location in the dataflow set SET. The
7855 variable part is specified by variable's declaration in DV and
7856 offset OFFSET and the part's location by LOC. IOPT should be
7857 NO_INSERT if the variable is known to be in SET already and the
7858 variable hash table must not be resized, and INSERT otherwise. */
7861 set_variable_part (dataflow_set
*set
, rtx loc
,
7862 decl_or_value dv
, HOST_WIDE_INT offset
,
7863 enum var_init_status initialized
, rtx set_src
,
7864 enum insert_option iopt
)
7868 if (iopt
== NO_INSERT
)
7869 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7872 slot
= shared_hash_find_slot (set
->vars
, dv
);
7874 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7876 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7879 /* Remove all recorded register locations for the given variable part
7880 from dataflow set SET, except for those that are identical to loc.
7881 The variable part is specified by variable's declaration or value
7882 DV and offset OFFSET. */
7885 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7886 HOST_WIDE_INT offset
, rtx set_src
)
7888 variable
*var
= *slot
;
7889 int pos
= find_variable_location_part (var
, offset
, NULL
);
7893 location_chain
*node
, *next
;
7895 /* Remove the register locations from the dataflow set. */
7896 next
= var
->var_part
[pos
].loc_chain
;
7897 for (node
= next
; node
; node
= next
)
7900 if (node
->loc
!= loc
7901 && (!flag_var_tracking_uninit
7904 || !rtx_equal_p (set_src
, node
->set_src
)))
7906 if (REG_P (node
->loc
))
7908 attrs
*anode
, *anext
;
7911 /* Remove the variable part from the register's
7912 list, but preserve any other variable parts
7913 that might be regarded as live in that same
7915 anextp
= &set
->regs
[REGNO (node
->loc
)];
7916 for (anode
= *anextp
; anode
; anode
= anext
)
7918 anext
= anode
->next
;
7919 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
7920 && anode
->offset
== offset
)
7926 anextp
= &anode
->next
;
7930 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7938 /* Remove all recorded register locations for the given variable part
7939 from dataflow set SET, except for those that are identical to loc.
7940 The variable part is specified by variable's declaration or value
7941 DV and offset OFFSET. */
7944 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7945 HOST_WIDE_INT offset
, rtx set_src
)
7949 if (!dv_as_opaque (dv
)
7950 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7953 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7957 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7960 /* Delete the part of variable's location from dataflow set SET. The
7961 variable part is specified by its SET->vars slot SLOT and offset
7962 OFFSET and the part's location by LOC. */
7965 delete_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7966 HOST_WIDE_INT offset
)
7968 variable
*var
= *slot
;
7969 int pos
= find_variable_location_part (var
, offset
, NULL
);
7973 location_chain
*node
, *next
;
7974 location_chain
**nextp
;
7978 if (shared_var_p (var
, set
->vars
))
7980 /* If the variable contains the location part we have to
7981 make a copy of the variable. */
7982 for (node
= var
->var_part
[pos
].loc_chain
; node
;
7985 if ((REG_P (node
->loc
) && REG_P (loc
)
7986 && REGNO (node
->loc
) == REGNO (loc
))
7987 || rtx_equal_p (node
->loc
, loc
))
7989 slot
= unshare_variable (set
, slot
, var
,
7990 VAR_INIT_STATUS_UNKNOWN
);
7997 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7998 cur_loc
= VAR_LOC_FROM (var
);
8000 cur_loc
= var
->var_part
[pos
].cur_loc
;
8002 /* Delete the location part. */
8004 nextp
= &var
->var_part
[pos
].loc_chain
;
8005 for (node
= *nextp
; node
; node
= next
)
8008 if ((REG_P (node
->loc
) && REG_P (loc
)
8009 && REGNO (node
->loc
) == REGNO (loc
))
8010 || rtx_equal_p (node
->loc
, loc
))
8012 /* If we have deleted the location which was last emitted
8013 we have to emit new location so add the variable to set
8014 of changed variables. */
8015 if (cur_loc
== node
->loc
)
8018 var
->var_part
[pos
].cur_loc
= NULL
;
8019 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
8020 VAR_LOC_FROM (var
) = NULL
;
8027 nextp
= &node
->next
;
8030 if (var
->var_part
[pos
].loc_chain
== NULL
)
8034 while (pos
< var
->n_var_parts
)
8036 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
8041 variable_was_changed (var
, set
);
8047 /* Delete the part of variable's location from dataflow set SET. The
8048 variable part is specified by variable's declaration or value DV
8049 and offset OFFSET and the part's location by LOC. */
8052 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
8053 HOST_WIDE_INT offset
)
8055 variable
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
8059 delete_slot_part (set
, loc
, slot
, offset
);
8063 /* Structure for passing some other parameters to function
8064 vt_expand_loc_callback. */
8065 class expand_loc_callback_data
8068 /* The variables and values active at this point. */
8069 variable_table_type
*vars
;
8071 /* Stack of values and debug_exprs under expansion, and their
8073 auto_vec
<rtx
, 4> expanding
;
8075 /* Stack of values and debug_exprs whose expansion hit recursion
8076 cycles. They will have VALUE_RECURSED_INTO marked when added to
8077 this list. This flag will be cleared if any of its dependencies
8078 resolves to a valid location. So, if the flag remains set at the
8079 end of the search, we know no valid location for this one can
8081 auto_vec
<rtx
, 4> pending
;
8083 /* The maximum depth among the sub-expressions under expansion.
8084 Zero indicates no expansion so far. */
8088 /* Allocate the one-part auxiliary data structure for VAR, with enough
8089 room for COUNT dependencies. */
8092 loc_exp_dep_alloc (variable
*var
, int count
)
8096 gcc_checking_assert (var
->onepart
);
8098 /* We can be called with COUNT == 0 to allocate the data structure
8099 without any dependencies, e.g. for the backlinks only. However,
8100 if we are specifying a COUNT, then the dependency list must have
8101 been emptied before. It would be possible to adjust pointers or
8102 force it empty here, but this is better done at an earlier point
8103 in the algorithm, so we instead leave an assertion to catch
8105 gcc_checking_assert (!count
8106 || VAR_LOC_DEP_VEC (var
) == NULL
8107 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8109 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8112 allocsize
= offsetof (struct onepart_aux
, deps
)
8113 + vec
<loc_exp_dep
, va_heap
, vl_embed
>::embedded_size (count
);
8115 if (VAR_LOC_1PAUX (var
))
8117 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8118 VAR_LOC_1PAUX (var
), allocsize
);
8119 /* If the reallocation moves the onepaux structure, the
8120 back-pointer to BACKLINKS in the first list member will still
8121 point to its old location. Adjust it. */
8122 if (VAR_LOC_DEP_LST (var
))
8123 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8127 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8128 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8129 VAR_LOC_FROM (var
) = NULL
;
8130 VAR_LOC_DEPTH (var
).complexity
= 0;
8131 VAR_LOC_DEPTH (var
).entryvals
= 0;
8133 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8136 /* Remove all entries from the vector of active dependencies of VAR,
8137 removing them from the back-links lists too. */
8140 loc_exp_dep_clear (variable
*var
)
8142 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8144 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8146 led
->next
->pprev
= led
->pprev
;
8148 *led
->pprev
= led
->next
;
8149 VAR_LOC_DEP_VEC (var
)->pop ();
8153 /* Insert an active dependency from VAR on X to the vector of
8154 dependencies, and add the corresponding back-link to X's list of
8155 back-links in VARS. */
8158 loc_exp_insert_dep (variable
*var
, rtx x
, variable_table_type
*vars
)
8164 dv
= dv_from_rtx (x
);
8166 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8167 an additional look up? */
8168 xvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8172 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8173 gcc_checking_assert (xvar
);
8176 /* No point in adding the same backlink more than once. This may
8177 arise if say the same value appears in two complex expressions in
8178 the same loc_list, or even more than once in a single
8180 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8183 if (var
->onepart
== NOT_ONEPART
)
8184 led
= new loc_exp_dep
;
8188 memset (&empty
, 0, sizeof (empty
));
8189 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8190 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8195 loc_exp_dep_alloc (xvar
, 0);
8196 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8197 led
->next
= *led
->pprev
;
8199 led
->next
->pprev
= &led
->next
;
8203 /* Create active dependencies of VAR on COUNT values starting at
8204 VALUE, and corresponding back-links to the entries in VARS. Return
8205 true if we found any pending-recursion results. */
8208 loc_exp_dep_set (variable
*var
, rtx result
, rtx
*value
, int count
,
8209 variable_table_type
*vars
)
8211 bool pending_recursion
= false;
8213 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8214 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8216 /* Set up all dependencies from last_child (as set up at the end of
8217 the loop above) to the end. */
8218 loc_exp_dep_alloc (var
, count
);
8224 if (!pending_recursion
)
8225 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8227 loc_exp_insert_dep (var
, x
, vars
);
8230 return pending_recursion
;
8233 /* Notify the back-links of IVAR that are pending recursion that we
8234 have found a non-NIL value for it, so they are cleared for another
8235 attempt to compute a current location. */
8238 notify_dependents_of_resolved_value (variable
*ivar
, variable_table_type
*vars
)
8240 loc_exp_dep
*led
, *next
;
8242 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8244 decl_or_value dv
= led
->dv
;
8249 if (dv_is_value_p (dv
))
8251 rtx value
= dv_as_value (dv
);
8253 /* If we have already resolved it, leave it alone. */
8254 if (!VALUE_RECURSED_INTO (value
))
8257 /* Check that VALUE_RECURSED_INTO, true from the test above,
8258 implies NO_LOC_P. */
8259 gcc_checking_assert (NO_LOC_P (value
));
8261 /* We won't notify variables that are being expanded,
8262 because their dependency list is cleared before
8264 NO_LOC_P (value
) = false;
8265 VALUE_RECURSED_INTO (value
) = false;
8267 gcc_checking_assert (dv_changed_p (dv
));
8271 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8272 if (!dv_changed_p (dv
))
8276 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8279 var
= variable_from_dropped (dv
, NO_INSERT
);
8282 notify_dependents_of_resolved_value (var
, vars
);
8285 next
->pprev
= led
->pprev
;
8293 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8294 int max_depth
, void *data
);
8296 /* Return the combined depth, when one sub-expression evaluated to
8297 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8299 static inline expand_depth
8300 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8302 /* If we didn't find anything, stick with what we had. */
8303 if (!best_depth
.complexity
)
8306 /* If we found hadn't found anything, use the depth of the current
8307 expression. Do NOT add one extra level, we want to compute the
8308 maximum depth among sub-expressions. We'll increment it later,
8310 if (!saved_depth
.complexity
)
8313 /* Combine the entryval count so that regardless of which one we
8314 return, the entryval count is accurate. */
8315 best_depth
.entryvals
= saved_depth
.entryvals
8316 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8318 if (saved_depth
.complexity
< best_depth
.complexity
)
8324 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8325 DATA for cselib expand callback. If PENDRECP is given, indicate in
8326 it whether any sub-expression couldn't be fully evaluated because
8327 it is pending recursion resolution. */
8330 vt_expand_var_loc_chain (variable
*var
, bitmap regs
, void *data
,
8333 class expand_loc_callback_data
*elcd
8334 = (class expand_loc_callback_data
*) data
;
8335 location_chain
*loc
, *next
;
8337 int first_child
, result_first_child
, last_child
;
8338 bool pending_recursion
;
8339 rtx loc_from
= NULL
;
8340 struct elt_loc_list
*cloc
= NULL
;
8341 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8342 int wanted_entryvals
, found_entryvals
= 0;
8344 /* Clear all backlinks pointing at this, so that we're not notified
8345 while we're active. */
8346 loc_exp_dep_clear (var
);
8349 if (var
->onepart
== ONEPART_VALUE
)
8351 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8353 gcc_checking_assert (cselib_preserved_value_p (val
));
8358 first_child
= result_first_child
= last_child
8359 = elcd
->expanding
.length ();
8361 wanted_entryvals
= found_entryvals
;
8363 /* Attempt to expand each available location in turn. */
8364 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8365 loc
|| cloc
; loc
= next
)
8367 result_first_child
= last_child
;
8371 loc_from
= cloc
->loc
;
8374 if (unsuitable_loc (loc_from
))
8379 loc_from
= loc
->loc
;
8383 gcc_checking_assert (!unsuitable_loc (loc_from
));
8385 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8386 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8387 vt_expand_loc_callback
, data
);
8388 last_child
= elcd
->expanding
.length ();
8392 depth
= elcd
->depth
;
8394 gcc_checking_assert (depth
.complexity
8395 || result_first_child
== last_child
);
8397 if (last_child
- result_first_child
!= 1)
8399 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8404 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8406 if (depth
.entryvals
<= wanted_entryvals
)
8408 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8409 found_entryvals
= depth
.entryvals
;
8415 /* Set it up in case we leave the loop. */
8416 depth
.complexity
= depth
.entryvals
= 0;
8418 result_first_child
= first_child
;
8421 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8423 /* We found entries with ENTRY_VALUEs and skipped them. Since
8424 we could not find any expansions without ENTRY_VALUEs, but we
8425 found at least one with them, go back and get an entry with
8426 the minimum number ENTRY_VALUE count that we found. We could
8427 avoid looping, but since each sub-loc is already resolved,
8428 the re-expansion should be trivial. ??? Should we record all
8429 attempted locs as dependencies, so that we retry the
8430 expansion should any of them change, in the hope it can give
8431 us a new entry without an ENTRY_VALUE? */
8432 elcd
->expanding
.truncate (first_child
);
8436 /* Register all encountered dependencies as active. */
8437 pending_recursion
= loc_exp_dep_set
8438 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8439 last_child
- result_first_child
, elcd
->vars
);
8441 elcd
->expanding
.truncate (first_child
);
8443 /* Record where the expansion came from. */
8444 gcc_checking_assert (!result
|| !pending_recursion
);
8445 VAR_LOC_FROM (var
) = loc_from
;
8446 VAR_LOC_DEPTH (var
) = depth
;
8448 gcc_checking_assert (!depth
.complexity
== !result
);
8450 elcd
->depth
= update_depth (saved_depth
, depth
);
8452 /* Indicate whether any of the dependencies are pending recursion
8455 *pendrecp
= pending_recursion
;
8457 if (!pendrecp
|| !pending_recursion
)
8458 var
->var_part
[0].cur_loc
= result
;
8463 /* Callback for cselib_expand_value, that looks for expressions
8464 holding the value in the var-tracking hash tables. Return X for
8465 standard processing, anything else is to be used as-is. */
8468 vt_expand_loc_callback (rtx x
, bitmap regs
,
8469 int max_depth ATTRIBUTE_UNUSED
,
8472 class expand_loc_callback_data
*elcd
8473 = (class expand_loc_callback_data
*) data
;
8477 bool pending_recursion
= false;
8478 bool from_empty
= false;
8480 switch (GET_CODE (x
))
8483 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8485 vt_expand_loc_callback
, data
);
8490 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8491 GET_MODE (SUBREG_REG (x
)),
8494 /* Invalid SUBREGs are ok in debug info. ??? We could try
8495 alternate expansions for the VALUE as well. */
8496 if (!result
&& GET_MODE (subreg
) != VOIDmode
)
8497 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8503 dv
= dv_from_rtx (x
);
8510 elcd
->expanding
.safe_push (x
);
8512 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8513 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8517 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8521 var
= elcd
->vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8526 var
= variable_from_dropped (dv
, INSERT
);
8529 gcc_checking_assert (var
);
8531 if (!dv_changed_p (dv
))
8533 gcc_checking_assert (!NO_LOC_P (x
));
8534 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8535 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8536 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8538 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8540 return var
->var_part
[0].cur_loc
;
8543 VALUE_RECURSED_INTO (x
) = true;
8544 /* This is tentative, but it makes some tests simpler. */
8545 NO_LOC_P (x
) = true;
8547 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8549 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8551 if (pending_recursion
)
8553 gcc_checking_assert (!result
);
8554 elcd
->pending
.safe_push (x
);
8558 NO_LOC_P (x
) = !result
;
8559 VALUE_RECURSED_INTO (x
) = false;
8560 set_dv_changed (dv
, false);
8563 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8569 /* While expanding variables, we may encounter recursion cycles
8570 because of mutual (possibly indirect) dependencies between two
8571 particular variables (or values), say A and B. If we're trying to
8572 expand A when we get to B, which in turn attempts to expand A, if
8573 we can't find any other expansion for B, we'll add B to this
8574 pending-recursion stack, and tentatively return NULL for its
8575 location. This tentative value will be used for any other
8576 occurrences of B, unless A gets some other location, in which case
8577 it will notify B that it is worth another try at computing a
8578 location for it, and it will use the location computed for A then.
8579 At the end of the expansion, the tentative NULL locations become
8580 final for all members of PENDING that didn't get a notification.
8581 This function performs this finalization of NULL locations. */
8584 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8586 while (!pending
->is_empty ())
8588 rtx x
= pending
->pop ();
8591 if (!VALUE_RECURSED_INTO (x
))
8594 gcc_checking_assert (NO_LOC_P (x
));
8595 VALUE_RECURSED_INTO (x
) = false;
8596 dv
= dv_from_rtx (x
);
8597 gcc_checking_assert (dv_changed_p (dv
));
8598 set_dv_changed (dv
, false);
8602 /* Initialize expand_loc_callback_data D with variable hash table V.
8603 It must be a macro because of alloca (vec stack). */
8604 #define INIT_ELCD(d, v) \
8608 (d).depth.complexity = (d).depth.entryvals = 0; \
8611 /* Finalize expand_loc_callback_data D, resolved to location L. */
8612 #define FINI_ELCD(d, l) \
8615 resolve_expansions_pending_recursion (&(d).pending); \
8616 (d).pending.release (); \
8617 (d).expanding.release (); \
8619 if ((l) && MEM_P (l)) \
8620 (l) = targetm.delegitimize_address (l); \
8624 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8625 equivalences in VARS, updating their CUR_LOCs in the process. */
8628 vt_expand_loc (rtx loc
, variable_table_type
*vars
)
8630 class expand_loc_callback_data data
;
8633 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
8636 INIT_ELCD (data
, vars
);
8638 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8639 vt_expand_loc_callback
, &data
);
8641 FINI_ELCD (data
, result
);
8646 /* Expand the one-part VARiable to a location, using the equivalences
8647 in VARS, updating their CUR_LOCs in the process. */
8650 vt_expand_1pvar (variable
*var
, variable_table_type
*vars
)
8652 class expand_loc_callback_data data
;
8655 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8657 if (!dv_changed_p (var
->dv
))
8658 return var
->var_part
[0].cur_loc
;
8660 INIT_ELCD (data
, vars
);
8662 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8664 gcc_checking_assert (data
.expanding
.is_empty ());
8666 FINI_ELCD (data
, loc
);
8671 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8672 additional parameters: WHERE specifies whether the note shall be emitted
8673 before or after instruction INSN. */
8676 emit_note_insn_var_location (variable
**varp
, emit_note_data
*data
)
8678 variable
*var
= *varp
;
8679 rtx_insn
*insn
= data
->insn
;
8680 enum emit_note_where where
= data
->where
;
8681 variable_table_type
*vars
= data
->vars
;
8684 int i
, j
, n_var_parts
;
8686 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8687 HOST_WIDE_INT last_limit
;
8688 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8689 rtx loc
[MAX_VAR_PARTS
];
8693 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8694 || var
->onepart
== ONEPART_VDECL
);
8696 decl
= dv_as_decl (var
->dv
);
8702 for (i
= 0; i
< var
->n_var_parts
; i
++)
8703 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8704 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8705 for (i
= 0; i
< var
->n_var_parts
; i
++)
8707 machine_mode mode
, wider_mode
;
8709 HOST_WIDE_INT offset
, size
, wider_size
;
8711 if (i
== 0 && var
->onepart
)
8713 gcc_checking_assert (var
->n_var_parts
== 1);
8715 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8716 loc2
= vt_expand_1pvar (var
, vars
);
8720 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8725 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8727 offset
= VAR_PART_OFFSET (var
, i
);
8728 loc2
= var
->var_part
[i
].cur_loc
;
8729 if (loc2
&& GET_CODE (loc2
) == MEM
8730 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8732 rtx depval
= XEXP (loc2
, 0);
8734 loc2
= vt_expand_loc (loc2
, vars
);
8737 loc_exp_insert_dep (var
, depval
, vars
);
8744 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8745 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8746 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8748 initialized
= lc
->init
;
8754 offsets
[n_var_parts
] = offset
;
8760 loc
[n_var_parts
] = loc2
;
8761 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8762 if (mode
== VOIDmode
&& var
->onepart
)
8763 mode
= DECL_MODE (decl
);
8764 /* We ony track subparts of constant-sized objects, since at present
8765 there's no representation for polynomial pieces. */
8766 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
8771 last_limit
= offsets
[n_var_parts
] + size
;
8773 /* Attempt to merge adjacent registers or memory. */
8774 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8775 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8777 if (j
< var
->n_var_parts
8778 && GET_MODE_WIDER_MODE (mode
).exists (&wider_mode
)
8779 && GET_MODE_SIZE (wider_mode
).is_constant (&wider_size
)
8780 && var
->var_part
[j
].cur_loc
8781 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8782 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8783 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8784 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8785 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8790 if (REG_P (loc
[n_var_parts
])
8791 && hard_regno_nregs (REGNO (loc
[n_var_parts
]), mode
) * 2
8792 == hard_regno_nregs (REGNO (loc
[n_var_parts
]), wider_mode
)
8793 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8796 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8797 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8799 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8800 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8803 if (!REG_P (new_loc
)
8804 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8807 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8810 else if (MEM_P (loc
[n_var_parts
])
8811 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8812 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8813 && poly_int_rtx_p (XEXP (XEXP (loc2
, 0), 1), &offset2
))
8815 poly_int64 end1
= size
;
8816 rtx base1
= strip_offset_and_add (XEXP (loc
[n_var_parts
], 0),
8818 if (rtx_equal_p (base1
, XEXP (XEXP (loc2
, 0), 0))
8819 && known_eq (end1
, offset2
))
8820 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8826 loc
[n_var_parts
] = new_loc
;
8828 last_limit
= offsets
[n_var_parts
] + wider_size
;
8834 poly_uint64 type_size_unit
8835 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl
)));
8836 if (maybe_lt (poly_uint64 (last_limit
), type_size_unit
))
8839 if (! flag_var_tracking_uninit
)
8840 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8844 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
, initialized
);
8845 else if (n_var_parts
== 1)
8849 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8850 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8854 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
, initialized
);
8856 else if (n_var_parts
)
8860 for (i
= 0; i
< n_var_parts
; i
++)
8862 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8864 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8865 gen_rtvec_v (n_var_parts
, loc
));
8866 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8867 parallel
, initialized
);
8870 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8872 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8873 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8874 NOTE_DURING_CALL_P (note
) = true;
8878 /* Make sure that the call related notes come first. */
8879 while (NEXT_INSN (insn
)
8881 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8882 && NOTE_DURING_CALL_P (insn
))
8883 insn
= NEXT_INSN (insn
);
8885 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8886 && NOTE_DURING_CALL_P (insn
))
8887 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8889 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8891 NOTE_VAR_LOCATION (note
) = note_vl
;
8893 set_dv_changed (var
->dv
, false);
8894 gcc_assert (var
->in_changed_variables
);
8895 var
->in_changed_variables
= false;
8896 changed_variables
->clear_slot (varp
);
8898 /* Continue traversing the hash table. */
8902 /* While traversing changed_variables, push onto DATA (a stack of RTX
8903 values) entries that aren't user variables. */
8906 var_track_values_to_stack (variable
**slot
,
8907 vec
<rtx
, va_heap
> *changed_values_stack
)
8909 variable
*var
= *slot
;
8911 if (var
->onepart
== ONEPART_VALUE
)
8912 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8913 else if (var
->onepart
== ONEPART_DEXPR
)
8914 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8919 /* Remove from changed_variables the entry whose DV corresponds to
8920 value or debug_expr VAL. */
8922 remove_value_from_changed_variables (rtx val
)
8924 decl_or_value dv
= dv_from_rtx (val
);
8928 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8931 var
->in_changed_variables
= false;
8932 changed_variables
->clear_slot (slot
);
8935 /* If VAL (a value or debug_expr) has backlinks to variables actively
8936 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8937 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8938 have dependencies of their own to notify. */
8941 notify_dependents_of_changed_value (rtx val
, variable_table_type
*htab
,
8942 vec
<rtx
, va_heap
> *changed_values_stack
)
8947 decl_or_value dv
= dv_from_rtx (val
);
8949 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8952 slot
= htab
->find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8954 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8958 while ((led
= VAR_LOC_DEP_LST (var
)))
8960 decl_or_value ldv
= led
->dv
;
8963 /* Deactivate and remove the backlink, as it was “used up”. It
8964 makes no sense to attempt to notify the same entity again:
8965 either it will be recomputed and re-register an active
8966 dependency, or it will still have the changed mark. */
8968 led
->next
->pprev
= led
->pprev
;
8970 *led
->pprev
= led
->next
;
8974 if (dv_changed_p (ldv
))
8977 switch (dv_onepart_p (ldv
))
8981 set_dv_changed (ldv
, true);
8982 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
8986 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8987 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
8988 variable_was_changed (ivar
, NULL
);
8993 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8996 int i
= ivar
->n_var_parts
;
8999 rtx loc
= ivar
->var_part
[i
].cur_loc
;
9001 if (loc
&& GET_CODE (loc
) == MEM
9002 && XEXP (loc
, 0) == val
)
9004 variable_was_changed (ivar
, NULL
);
9017 /* Take out of changed_variables any entries that don't refer to use
9018 variables. Back-propagate change notifications from values and
9019 debug_exprs to their active dependencies in HTAB or in
9020 CHANGED_VARIABLES. */
9023 process_changed_values (variable_table_type
*htab
)
9027 auto_vec
<rtx
, 20> changed_values_stack
;
9029 /* Move values from changed_variables to changed_values_stack. */
9031 ->traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
9032 (&changed_values_stack
);
9034 /* Back-propagate change notifications in values while popping
9035 them from the stack. */
9036 for (n
= i
= changed_values_stack
.length ();
9037 i
> 0; i
= changed_values_stack
.length ())
9039 val
= changed_values_stack
.pop ();
9040 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
9042 /* This condition will hold when visiting each of the entries
9043 originally in changed_variables. We can't remove them
9044 earlier because this could drop the backlinks before we got a
9045 chance to use them. */
9048 remove_value_from_changed_variables (val
);
9054 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9055 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9056 the notes shall be emitted before of after instruction INSN. */
9059 emit_notes_for_changes (rtx_insn
*insn
, enum emit_note_where where
,
9062 emit_note_data data
;
9063 variable_table_type
*htab
= shared_hash_htab (vars
);
9065 if (changed_variables
->is_empty ())
9068 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9069 process_changed_values (htab
);
9076 ->traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
9079 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9080 same variable in hash table DATA or is not there at all. */
9083 emit_notes_for_differences_1 (variable
**slot
, variable_table_type
*new_vars
)
9085 variable
*old_var
, *new_var
;
9088 new_var
= new_vars
->find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
9092 /* Variable has disappeared. */
9093 variable
*empty_var
= NULL
;
9095 if (old_var
->onepart
== ONEPART_VALUE
9096 || old_var
->onepart
== ONEPART_DEXPR
)
9098 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
9101 gcc_checking_assert (!empty_var
->in_changed_variables
);
9102 if (!VAR_LOC_1PAUX (old_var
))
9104 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
9105 VAR_LOC_1PAUX (empty_var
) = NULL
;
9108 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9114 empty_var
= onepart_pool_allocate (old_var
->onepart
);
9115 empty_var
->dv
= old_var
->dv
;
9116 empty_var
->refcount
= 0;
9117 empty_var
->n_var_parts
= 0;
9118 empty_var
->onepart
= old_var
->onepart
;
9119 empty_var
->in_changed_variables
= false;
9122 if (empty_var
->onepart
)
9124 /* Propagate the auxiliary data to (ultimately)
9125 changed_variables. */
9126 empty_var
->var_part
[0].loc_chain
= NULL
;
9127 empty_var
->var_part
[0].cur_loc
= NULL
;
9128 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9129 VAR_LOC_1PAUX (old_var
) = NULL
;
9131 variable_was_changed (empty_var
, NULL
);
9132 /* Continue traversing the hash table. */
9135 /* Update cur_loc and one-part auxiliary data, before new_var goes
9136 through variable_was_changed. */
9137 if (old_var
!= new_var
&& new_var
->onepart
)
9139 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9140 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9141 VAR_LOC_1PAUX (old_var
) = NULL
;
9142 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9144 if (variable_different_p (old_var
, new_var
))
9145 variable_was_changed (new_var
, NULL
);
9147 /* Continue traversing the hash table. */
9151 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9155 emit_notes_for_differences_2 (variable
**slot
, variable_table_type
*old_vars
)
9157 variable
*old_var
, *new_var
;
9160 old_var
= old_vars
->find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9164 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9165 new_var
->var_part
[i
].cur_loc
= NULL
;
9166 variable_was_changed (new_var
, NULL
);
9169 /* Continue traversing the hash table. */
9173 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9177 emit_notes_for_differences (rtx_insn
*insn
, dataflow_set
*old_set
,
9178 dataflow_set
*new_set
)
9180 shared_hash_htab (old_set
->vars
)
9181 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9182 (shared_hash_htab (new_set
->vars
));
9183 shared_hash_htab (new_set
->vars
)
9184 ->traverse
<variable_table_type
*, emit_notes_for_differences_2
>
9185 (shared_hash_htab (old_set
->vars
));
9186 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9189 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9192 next_non_note_insn_var_location (rtx_insn
*insn
)
9196 insn
= NEXT_INSN (insn
);
9199 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9206 /* Emit the notes for changes of location parts in the basic block BB. */
9209 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9212 micro_operation
*mo
;
9214 dataflow_set_clear (set
);
9215 dataflow_set_copy (set
, &VTI (bb
)->in
);
9217 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9219 rtx_insn
*insn
= mo
->insn
;
9220 rtx_insn
*next_insn
= next_non_note_insn_var_location (insn
);
9225 dataflow_set_clear_at_call (set
, insn
);
9226 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9228 rtx arguments
= mo
->u
.loc
, *p
= &arguments
;
9231 XEXP (XEXP (*p
, 0), 1)
9232 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9233 shared_hash_htab (set
->vars
));
9234 /* If expansion is successful, keep it in the list. */
9235 if (XEXP (XEXP (*p
, 0), 1))
9237 XEXP (XEXP (*p
, 0), 1)
9238 = copy_rtx_if_shared (XEXP (XEXP (*p
, 0), 1));
9241 /* Otherwise, if the following item is data_value for it,
9243 else if (XEXP (*p
, 1)
9244 && REG_P (XEXP (XEXP (*p
, 0), 0))
9245 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9246 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9248 && REGNO (XEXP (XEXP (*p
, 0), 0))
9249 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9251 *p
= XEXP (XEXP (*p
, 1), 1);
9252 /* Just drop this item. */
9256 add_reg_note (insn
, REG_CALL_ARG_LOCATION
, arguments
);
9262 rtx loc
= mo
->u
.loc
;
9265 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9267 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9269 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9275 rtx loc
= mo
->u
.loc
;
9279 if (GET_CODE (loc
) == CONCAT
)
9281 val
= XEXP (loc
, 0);
9282 vloc
= XEXP (loc
, 1);
9290 var
= PAT_VAR_LOCATION_DECL (vloc
);
9292 clobber_variable_part (set
, NULL_RTX
,
9293 dv_from_decl (var
), 0, NULL_RTX
);
9296 if (VAL_NEEDS_RESOLUTION (loc
))
9297 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9298 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9299 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9302 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9303 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9304 dv_from_decl (var
), 0,
9305 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9308 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9314 rtx loc
= mo
->u
.loc
;
9315 rtx val
, vloc
, uloc
;
9317 vloc
= uloc
= XEXP (loc
, 1);
9318 val
= XEXP (loc
, 0);
9320 if (GET_CODE (val
) == CONCAT
)
9322 uloc
= XEXP (val
, 1);
9323 val
= XEXP (val
, 0);
9326 if (VAL_NEEDS_RESOLUTION (loc
))
9327 val_resolve (set
, val
, vloc
, insn
);
9329 val_store (set
, val
, uloc
, insn
, false);
9331 if (VAL_HOLDS_TRACK_EXPR (loc
))
9333 if (GET_CODE (uloc
) == REG
)
9334 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9336 else if (GET_CODE (uloc
) == MEM
)
9337 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9341 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9347 rtx loc
= mo
->u
.loc
;
9348 rtx val
, vloc
, uloc
;
9352 uloc
= XEXP (vloc
, 1);
9353 val
= XEXP (vloc
, 0);
9356 if (GET_CODE (uloc
) == SET
)
9358 dstv
= SET_DEST (uloc
);
9359 srcv
= SET_SRC (uloc
);
9367 if (GET_CODE (val
) == CONCAT
)
9369 dstv
= vloc
= XEXP (val
, 1);
9370 val
= XEXP (val
, 0);
9373 if (GET_CODE (vloc
) == SET
)
9375 srcv
= SET_SRC (vloc
);
9377 gcc_assert (val
!= srcv
);
9378 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9380 dstv
= vloc
= SET_DEST (vloc
);
9382 if (VAL_NEEDS_RESOLUTION (loc
))
9383 val_resolve (set
, val
, srcv
, insn
);
9385 else if (VAL_NEEDS_RESOLUTION (loc
))
9387 gcc_assert (GET_CODE (uloc
) == SET
9388 && GET_CODE (SET_SRC (uloc
)) == REG
);
9389 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9392 if (VAL_HOLDS_TRACK_EXPR (loc
))
9394 if (VAL_EXPR_IS_CLOBBERED (loc
))
9397 var_reg_delete (set
, uloc
, true);
9398 else if (MEM_P (uloc
))
9400 gcc_assert (MEM_P (dstv
));
9401 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9402 var_mem_delete (set
, dstv
, true);
9407 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9408 rtx src
= NULL
, dst
= uloc
;
9409 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9411 if (GET_CODE (uloc
) == SET
)
9413 src
= SET_SRC (uloc
);
9414 dst
= SET_DEST (uloc
);
9419 status
= find_src_status (set
, src
);
9421 src
= find_src_set_src (set
, src
);
9425 var_reg_delete_and_set (set
, dst
, !copied_p
,
9427 else if (MEM_P (dst
))
9429 gcc_assert (MEM_P (dstv
));
9430 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9431 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9436 else if (REG_P (uloc
))
9437 var_regno_delete (set
, REGNO (uloc
));
9438 else if (MEM_P (uloc
))
9440 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9441 gcc_checking_assert (vloc
== dstv
);
9443 clobber_overlapping_mems (set
, vloc
);
9446 val_store (set
, val
, dstv
, insn
, true);
9448 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9455 rtx loc
= mo
->u
.loc
;
9458 if (GET_CODE (loc
) == SET
)
9460 set_src
= SET_SRC (loc
);
9461 loc
= SET_DEST (loc
);
9465 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9468 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9471 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9478 rtx loc
= mo
->u
.loc
;
9479 enum var_init_status src_status
;
9482 if (GET_CODE (loc
) == SET
)
9484 set_src
= SET_SRC (loc
);
9485 loc
= SET_DEST (loc
);
9488 src_status
= find_src_status (set
, set_src
);
9489 set_src
= find_src_set_src (set
, set_src
);
9492 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9494 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9496 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9503 rtx loc
= mo
->u
.loc
;
9506 var_reg_delete (set
, loc
, false);
9508 var_mem_delete (set
, loc
, false);
9510 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9516 rtx loc
= mo
->u
.loc
;
9519 var_reg_delete (set
, loc
, true);
9521 var_mem_delete (set
, loc
, true);
9523 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9529 set
->stack_adjust
+= mo
->u
.adjust
;
9535 /* Emit notes for the whole function. */
9538 vt_emit_notes (void)
9543 gcc_assert (changed_variables
->is_empty ());
9545 /* Free memory occupied by the out hash tables, as they aren't used
9547 FOR_EACH_BB_FN (bb
, cfun
)
9548 dataflow_set_clear (&VTI (bb
)->out
);
9550 /* Enable emitting notes by functions (mainly by set_variable_part and
9551 delete_variable_part). */
9554 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9555 dropped_values
= new variable_table_type (cselib_get_next_uid () * 2);
9557 dataflow_set_init (&cur
);
9559 FOR_EACH_BB_FN (bb
, cfun
)
9561 /* Emit the notes for changes of variable locations between two
9562 subsequent basic blocks. */
9563 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9565 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9566 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9568 /* Emit the notes for the changes in the basic block itself. */
9569 emit_notes_in_bb (bb
, &cur
);
9571 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9572 delete local_get_addr_cache
;
9573 local_get_addr_cache
= NULL
;
9575 /* Free memory occupied by the in hash table, we won't need it
9577 dataflow_set_clear (&VTI (bb
)->in
);
9581 shared_hash_htab (cur
.vars
)
9582 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9583 (shared_hash_htab (empty_shared_hash
));
9585 dataflow_set_destroy (&cur
);
9587 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9588 delete dropped_values
;
9589 dropped_values
= NULL
;
9594 /* If there is a declaration and offset associated with register/memory RTL
9595 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9598 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, poly_int64
*offsetp
)
9602 if (REG_ATTRS (rtl
))
9604 *declp
= REG_EXPR (rtl
);
9605 *offsetp
= REG_OFFSET (rtl
);
9609 else if (GET_CODE (rtl
) == PARALLEL
)
9611 tree decl
= NULL_TREE
;
9612 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9613 int len
= XVECLEN (rtl
, 0), i
;
9615 for (i
= 0; i
< len
; i
++)
9617 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9618 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9621 decl
= REG_EXPR (reg
);
9622 if (REG_EXPR (reg
) != decl
)
9624 HOST_WIDE_INT this_offset
;
9625 if (!track_offset_p (REG_OFFSET (reg
), &this_offset
))
9627 offset
= MIN (offset
, this_offset
);
9637 else if (MEM_P (rtl
))
9639 if (MEM_ATTRS (rtl
))
9641 *declp
= MEM_EXPR (rtl
);
9642 *offsetp
= int_mem_offset (rtl
);
9649 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9653 record_entry_value (cselib_val
*val
, rtx rtl
)
9655 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9657 ENTRY_VALUE_EXP (ev
) = rtl
;
9659 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9662 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9665 vt_add_function_parameter (tree parm
)
9667 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9668 rtx incoming
= DECL_INCOMING_RTL (parm
);
9674 bool incoming_ok
= true;
9676 if (TREE_CODE (parm
) != PARM_DECL
)
9679 if (!decl_rtl
|| !incoming
)
9682 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9685 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9686 rewrite the incoming location of parameters passed on the stack
9687 into MEMs based on the argument pointer, so that incoming doesn't
9688 depend on a pseudo. */
9689 poly_int64 incoming_offset
= 0;
9690 if (MEM_P (incoming
)
9691 && (strip_offset (XEXP (incoming
, 0), &incoming_offset
)
9692 == crtl
->args
.internal_arg_pointer
))
9694 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9696 = replace_equiv_address_nv (incoming
,
9697 plus_constant (Pmode
,
9699 off
+ incoming_offset
));
9702 #ifdef HAVE_window_save
9703 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9704 If the target machine has an explicit window save instruction, the
9705 actual entry value is the corresponding OUTGOING_REGNO instead. */
9706 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9708 if (REG_P (incoming
)
9709 && HARD_REGISTER_P (incoming
)
9710 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9713 p
.incoming
= incoming
;
9715 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9716 OUTGOING_REGNO (REGNO (incoming
)), 0);
9717 p
.outgoing
= incoming
;
9718 vec_safe_push (windowed_parm_regs
, p
);
9720 else if (GET_CODE (incoming
) == PARALLEL
)
9723 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9726 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9728 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9731 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9732 OUTGOING_REGNO (REGNO (reg
)), 0);
9734 XVECEXP (outgoing
, 0, i
)
9735 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9736 XEXP (XVECEXP (incoming
, 0, i
), 1));
9737 vec_safe_push (windowed_parm_regs
, p
);
9740 incoming
= outgoing
;
9742 else if (MEM_P (incoming
)
9743 && REG_P (XEXP (incoming
, 0))
9744 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9746 rtx reg
= XEXP (incoming
, 0);
9747 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9751 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9753 vec_safe_push (windowed_parm_regs
, p
);
9754 incoming
= replace_equiv_address_nv (incoming
, reg
);
9760 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9762 incoming_ok
= false;
9763 if (MEM_P (incoming
))
9765 /* This means argument is passed by invisible reference. */
9771 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9773 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9774 GET_MODE (decl_rtl
));
9783 /* If that DECL_RTL wasn't a pseudo that got spilled to
9784 memory, bail out. Otherwise, the spill slot sharing code
9785 will force the memory to reference spill_slot_decl (%sfp),
9786 so we don't match above. That's ok, the pseudo must have
9787 referenced the entire parameter, so just reset OFFSET. */
9788 if (decl
!= get_spill_slot_decl (false))
9793 HOST_WIDE_INT const_offset
;
9794 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &const_offset
))
9797 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9799 dv
= dv_from_decl (parm
);
9801 if (target_for_debug_bind (parm
)
9802 /* We can't deal with these right now, because this kind of
9803 variable is single-part. ??? We could handle parallels
9804 that describe multiple locations for the same single
9805 value, but ATM we don't. */
9806 && GET_CODE (incoming
) != PARALLEL
)
9811 /* ??? We shouldn't ever hit this, but it may happen because
9812 arguments passed by invisible reference aren't dealt with
9813 above: incoming-rtl will have Pmode rather than the
9814 expected mode for the type. */
9818 lowpart
= var_lowpart (mode
, incoming
);
9822 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9823 VOIDmode
, get_insns ());
9825 /* ??? Float-typed values in memory are not handled by
9829 preserve_value (val
);
9830 set_variable_part (out
, val
->val_rtx
, dv
, const_offset
,
9831 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9832 dv
= dv_from_value (val
->val_rtx
);
9835 if (MEM_P (incoming
))
9837 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9838 VOIDmode
, get_insns ());
9841 preserve_value (val
);
9842 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9847 if (REG_P (incoming
))
9849 incoming
= var_lowpart (mode
, incoming
);
9850 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9851 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, const_offset
,
9853 set_variable_part (out
, incoming
, dv
, const_offset
,
9854 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9855 if (dv_is_value_p (dv
))
9857 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9858 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9859 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9861 machine_mode indmode
9862 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9863 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9864 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9869 preserve_value (val
);
9870 record_entry_value (val
, mem
);
9871 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9872 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9877 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9881 /* The following code relies on vt_get_decl_and_offset returning true for
9882 incoming, which might not be always the case. */
9885 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9887 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9888 /* vt_get_decl_and_offset has already checked that the offset
9889 is a valid variable part. */
9890 const_offset
= get_tracked_reg_offset (reg
);
9891 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9892 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, const_offset
, reg
);
9893 set_variable_part (out
, reg
, dv
, const_offset
,
9894 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9897 else if (MEM_P (incoming
))
9899 incoming
= var_lowpart (mode
, incoming
);
9900 set_variable_part (out
, incoming
, dv
, const_offset
,
9901 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9905 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9908 vt_add_function_parameters (void)
9912 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9913 parm
; parm
= DECL_CHAIN (parm
))
9914 vt_add_function_parameter (parm
);
9916 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9918 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9920 if (TREE_CODE (vexpr
) == INDIRECT_REF
)
9921 vexpr
= TREE_OPERAND (vexpr
, 0);
9923 if (TREE_CODE (vexpr
) == PARM_DECL
9924 && DECL_ARTIFICIAL (vexpr
)
9925 && !DECL_IGNORED_P (vexpr
)
9926 && DECL_NAMELESS (vexpr
))
9927 vt_add_function_parameter (vexpr
);
9931 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9932 ensure it isn't flushed during cselib_reset_table.
9933 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9934 has been eliminated. */
9937 vt_init_cfa_base (void)
9941 #ifdef FRAME_POINTER_CFA_OFFSET
9942 cfa_base_rtx
= frame_pointer_rtx
;
9943 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9945 cfa_base_rtx
= arg_pointer_rtx
;
9946 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9948 if (cfa_base_rtx
== hard_frame_pointer_rtx
9949 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9951 cfa_base_rtx
= NULL_RTX
;
9954 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
9957 /* Tell alias analysis that cfa_base_rtx should share
9958 find_base_term value with stack pointer or hard frame pointer. */
9959 if (!frame_pointer_needed
)
9960 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9961 else if (!crtl
->stack_realign_tried
)
9962 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9964 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9965 VOIDmode
, get_insns ());
9966 preserve_value (val
);
9967 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
9970 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9973 reemit_marker_as_note (rtx_insn
*insn
)
9975 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn
));
9977 enum insn_note kind
= INSN_DEBUG_MARKER_KIND (insn
);
9981 case NOTE_INSN_BEGIN_STMT
:
9982 case NOTE_INSN_INLINE_ENTRY
:
9984 rtx_insn
*note
= NULL
;
9985 if (cfun
->debug_nonbind_markers
)
9987 note
= emit_note_before (kind
, insn
);
9988 NOTE_MARKER_LOCATION (note
) = INSN_LOCATION (insn
);
9999 /* Allocate and initialize the data structures for variable tracking
10000 and parse the RTL to get the micro operations. */
10003 vt_initialize (void)
10006 poly_int64 fp_cfa_offset
= -1;
10008 alloc_aux_for_blocks (sizeof (variable_tracking_info
));
10010 empty_shared_hash
= shared_hash_pool
.allocate ();
10011 empty_shared_hash
->refcount
= 1;
10012 empty_shared_hash
->htab
= new variable_table_type (1);
10013 changed_variables
= new variable_table_type (10);
10015 /* Init the IN and OUT sets. */
10016 FOR_ALL_BB_FN (bb
, cfun
)
10018 VTI (bb
)->visited
= false;
10019 VTI (bb
)->flooded
= false;
10020 dataflow_set_init (&VTI (bb
)->in
);
10021 dataflow_set_init (&VTI (bb
)->out
);
10022 VTI (bb
)->permp
= NULL
;
10025 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10027 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
10028 scratch_regs
= BITMAP_ALLOC (NULL
);
10029 preserved_values
.create (256);
10030 global_get_addr_cache
= new hash_map
<rtx
, rtx
>;
10034 scratch_regs
= NULL
;
10035 global_get_addr_cache
= NULL
;
10038 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10044 #ifdef FRAME_POINTER_CFA_OFFSET
10045 reg
= frame_pointer_rtx
;
10046 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10048 reg
= arg_pointer_rtx
;
10049 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10052 ofst
-= INCOMING_FRAME_SP_OFFSET
;
10054 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
10055 VOIDmode
, get_insns ());
10056 preserve_value (val
);
10057 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
10058 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
10059 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
10060 stack_pointer_rtx
, -ofst
);
10061 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10065 val
= cselib_lookup_from_insn (stack_pointer_rtx
,
10066 GET_MODE (stack_pointer_rtx
), 1,
10067 VOIDmode
, get_insns ());
10068 preserve_value (val
);
10069 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
10070 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10074 /* In order to factor out the adjustments made to the stack pointer or to
10075 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10076 instead of individual location lists, we're going to rewrite MEMs based
10077 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10078 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10079 resp. arg_pointer_rtx. We can do this either when there is no frame
10080 pointer in the function and stack adjustments are consistent for all
10081 basic blocks or when there is a frame pointer and no stack realignment.
10082 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10083 has been eliminated. */
10084 if (!frame_pointer_needed
)
10088 if (!vt_stack_adjustments ())
10091 #ifdef FRAME_POINTER_CFA_OFFSET
10092 reg
= frame_pointer_rtx
;
10094 reg
= arg_pointer_rtx
;
10096 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10099 if (GET_CODE (elim
) == PLUS
)
10100 elim
= XEXP (elim
, 0);
10101 if (elim
== stack_pointer_rtx
)
10102 vt_init_cfa_base ();
10105 else if (!crtl
->stack_realign_tried
)
10109 #ifdef FRAME_POINTER_CFA_OFFSET
10110 reg
= frame_pointer_rtx
;
10111 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10113 reg
= arg_pointer_rtx
;
10114 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10116 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10119 if (GET_CODE (elim
) == PLUS
)
10121 fp_cfa_offset
-= rtx_to_poly_int64 (XEXP (elim
, 1));
10122 elim
= XEXP (elim
, 0);
10124 if (elim
!= hard_frame_pointer_rtx
)
10125 fp_cfa_offset
= -1;
10128 fp_cfa_offset
= -1;
10131 /* If the stack is realigned and a DRAP register is used, we're going to
10132 rewrite MEMs based on it representing incoming locations of parameters
10133 passed on the stack into MEMs based on the argument pointer. Although
10134 we aren't going to rewrite other MEMs, we still need to initialize the
10135 virtual CFA pointer in order to ensure that the argument pointer will
10136 be seen as a constant throughout the function.
10138 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10139 else if (stack_realign_drap
)
10143 #ifdef FRAME_POINTER_CFA_OFFSET
10144 reg
= frame_pointer_rtx
;
10146 reg
= arg_pointer_rtx
;
10148 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10151 if (GET_CODE (elim
) == PLUS
)
10152 elim
= XEXP (elim
, 0);
10153 if (elim
== hard_frame_pointer_rtx
)
10154 vt_init_cfa_base ();
10158 hard_frame_pointer_adjustment
= -1;
10160 vt_add_function_parameters ();
10162 FOR_EACH_BB_FN (bb
, cfun
)
10165 HOST_WIDE_INT pre
, post
= 0;
10166 basic_block first_bb
, last_bb
;
10168 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10170 cselib_record_sets_hook
= add_with_sets
;
10171 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10172 fprintf (dump_file
, "first value: %i\n",
10173 cselib_get_next_uid ());
10180 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10181 || ! single_pred_p (bb
->next_bb
))
10183 e
= find_edge (bb
, bb
->next_bb
);
10184 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10190 /* Add the micro-operations to the vector. */
10191 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10193 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10194 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10197 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10201 if (!frame_pointer_needed
)
10203 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10206 micro_operation mo
;
10207 mo
.type
= MO_ADJUST
;
10210 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10211 log_op_type (PATTERN (insn
), bb
, insn
,
10212 MO_ADJUST
, dump_file
);
10213 VTI (bb
)->mos
.safe_push (mo
);
10217 cselib_hook_called
= false;
10218 adjust_insn (bb
, insn
);
10220 if (!frame_pointer_needed
&& pre
)
10221 VTI (bb
)->out
.stack_adjust
+= pre
;
10223 if (DEBUG_MARKER_INSN_P (insn
))
10225 reemit_marker_as_note (insn
);
10229 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10232 prepare_call_arguments (bb
, insn
);
10233 cselib_process_insn (insn
);
10234 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10236 if (dump_flags
& TDF_SLIM
)
10237 dump_insn_slim (dump_file
, insn
);
10239 print_rtl_single (dump_file
, insn
);
10240 dump_cselib_table (dump_file
);
10243 if (!cselib_hook_called
)
10244 add_with_sets (insn
, 0, 0);
10245 cancel_changes (0);
10247 if (!frame_pointer_needed
&& post
)
10249 micro_operation mo
;
10250 mo
.type
= MO_ADJUST
;
10251 mo
.u
.adjust
= post
;
10253 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10254 log_op_type (PATTERN (insn
), bb
, insn
,
10255 MO_ADJUST
, dump_file
);
10256 VTI (bb
)->mos
.safe_push (mo
);
10257 VTI (bb
)->out
.stack_adjust
+= post
;
10260 if (maybe_ne (fp_cfa_offset
, -1)
10261 && known_eq (hard_frame_pointer_adjustment
, -1)
10262 && fp_setter_insn (insn
))
10264 vt_init_cfa_base ();
10265 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10266 /* Disassociate sp from fp now. */
10267 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10270 cselib_invalidate_rtx (stack_pointer_rtx
);
10271 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10273 if (v
&& !cselib_preserved_value_p (v
))
10275 cselib_set_value_sp_based (v
);
10276 preserve_value (v
);
10282 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10287 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10289 cselib_preserve_only_values ();
10290 cselib_reset_table (cselib_get_next_uid ());
10291 cselib_record_sets_hook
= NULL
;
10295 hard_frame_pointer_adjustment
= -1;
10296 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10297 cfa_base_rtx
= NULL_RTX
;
10301 /* This is *not* reset after each function. It gives each
10302 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10303 a unique label number. */
10305 static int debug_label_num
= 1;
10307 /* Remove from the insn stream a single debug insn used for
10308 variable tracking at assignments. */
10311 delete_vta_debug_insn (rtx_insn
*insn
)
10313 if (DEBUG_MARKER_INSN_P (insn
))
10315 reemit_marker_as_note (insn
);
10319 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10320 if (TREE_CODE (decl
) == LABEL_DECL
10321 && DECL_NAME (decl
)
10322 && !DECL_RTL_SET_P (decl
))
10324 PUT_CODE (insn
, NOTE
);
10325 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10326 NOTE_DELETED_LABEL_NAME (insn
)
10327 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10328 SET_DECL_RTL (decl
, insn
);
10329 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10332 delete_insn (insn
);
10335 /* Remove from the insn stream all debug insns used for variable
10336 tracking at assignments. USE_CFG should be false if the cfg is no
10340 delete_vta_debug_insns (bool use_cfg
)
10343 rtx_insn
*insn
, *next
;
10345 if (!MAY_HAVE_DEBUG_INSNS
)
10349 FOR_EACH_BB_FN (bb
, cfun
)
10351 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10352 if (DEBUG_INSN_P (insn
))
10353 delete_vta_debug_insn (insn
);
10356 for (insn
= get_insns (); insn
; insn
= next
)
10358 next
= NEXT_INSN (insn
);
10359 if (DEBUG_INSN_P (insn
))
10360 delete_vta_debug_insn (insn
);
10364 /* Run a fast, BB-local only version of var tracking, to take care of
10365 information that we don't do global analysis on, such that not all
10366 information is lost. If SKIPPED holds, we're skipping the global
10367 pass entirely, so we should try to use information it would have
10368 handled as well.. */
10371 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10373 /* ??? Just skip it all for now. */
10374 delete_vta_debug_insns (true);
10377 /* Free the data structures needed for variable tracking. */
10384 FOR_EACH_BB_FN (bb
, cfun
)
10386 VTI (bb
)->mos
.release ();
10389 FOR_ALL_BB_FN (bb
, cfun
)
10391 dataflow_set_destroy (&VTI (bb
)->in
);
10392 dataflow_set_destroy (&VTI (bb
)->out
);
10393 if (VTI (bb
)->permp
)
10395 dataflow_set_destroy (VTI (bb
)->permp
);
10396 XDELETE (VTI (bb
)->permp
);
10399 free_aux_for_blocks ();
10400 delete empty_shared_hash
->htab
;
10401 empty_shared_hash
->htab
= NULL
;
10402 delete changed_variables
;
10403 changed_variables
= NULL
;
10404 attrs_pool
.release ();
10405 var_pool
.release ();
10406 location_chain_pool
.release ();
10407 shared_hash_pool
.release ();
10409 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10411 if (global_get_addr_cache
)
10412 delete global_get_addr_cache
;
10413 global_get_addr_cache
= NULL
;
10414 loc_exp_dep_pool
.release ();
10415 valvar_pool
.release ();
10416 preserved_values
.release ();
10418 BITMAP_FREE (scratch_regs
);
10419 scratch_regs
= NULL
;
10422 #ifdef HAVE_window_save
10423 vec_free (windowed_parm_regs
);
10427 XDELETEVEC (vui_vec
);
10432 /* The entry point to variable tracking pass. */
10434 static inline unsigned int
10435 variable_tracking_main_1 (void)
10439 /* We won't be called as a separate pass if flag_var_tracking is not
10440 set, but final may call us to turn debug markers into notes. */
10441 if ((!flag_var_tracking
&& MAY_HAVE_DEBUG_INSNS
)
10442 || flag_var_tracking_assignments
< 0
10443 /* Var-tracking right now assumes the IR doesn't contain
10444 any pseudos at this point. */
10445 || targetm
.no_register_allocation
)
10447 delete_vta_debug_insns (true);
10451 if (!flag_var_tracking
)
10454 if (n_basic_blocks_for_fn (cfun
) > 500
10455 && n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10457 vt_debug_insns_local (true);
10461 mark_dfs_back_edges ();
10462 if (!vt_initialize ())
10465 vt_debug_insns_local (true);
10469 success
= vt_find_locations ();
10471 if (!success
&& flag_var_tracking_assignments
> 0)
10475 delete_vta_debug_insns (true);
10477 /* This is later restored by our caller. */
10478 flag_var_tracking_assignments
= 0;
10480 success
= vt_initialize ();
10481 gcc_assert (success
);
10483 success
= vt_find_locations ();
10489 vt_debug_insns_local (false);
10493 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10495 dump_dataflow_sets ();
10496 dump_reg_info (dump_file
);
10497 dump_flow_info (dump_file
, dump_flags
);
10500 timevar_push (TV_VAR_TRACKING_EMIT
);
10502 timevar_pop (TV_VAR_TRACKING_EMIT
);
10505 vt_debug_insns_local (false);
10510 variable_tracking_main (void)
10513 int save
= flag_var_tracking_assignments
;
10515 ret
= variable_tracking_main_1 ();
10517 flag_var_tracking_assignments
= save
;
10524 const pass_data pass_data_variable_tracking
=
10526 RTL_PASS
, /* type */
10527 "vartrack", /* name */
10528 OPTGROUP_NONE
, /* optinfo_flags */
10529 TV_VAR_TRACKING
, /* tv_id */
10530 0, /* properties_required */
10531 0, /* properties_provided */
10532 0, /* properties_destroyed */
10533 0, /* todo_flags_start */
10534 0, /* todo_flags_finish */
10537 class pass_variable_tracking
: public rtl_opt_pass
10540 pass_variable_tracking (gcc::context
*ctxt
)
10541 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10544 /* opt_pass methods: */
10545 virtual bool gate (function
*)
10547 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10550 virtual unsigned int execute (function
*)
10552 return variable_tracking_main ();
10555 }; // class pass_variable_tracking
10557 } // anon namespace
10560 make_pass_variable_tracking (gcc::context
*ctxt
)
10562 return new pass_variable_tracking (ctxt
);