[Ada] New aspect/pragma No_Caching for analysis of volatile data
[official-gcc.git] / gcc / rtlanal.c
blob268a38799d63c8c5a193b49d7fe7738e50894d41
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
40 /* Forward declarations */
41 static void set_of_1 (rtx, const_rtx, void *);
42 static bool covers_regno_p (const_rtx, unsigned int);
43 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
44 static int computed_jump_p_1 (const_rtx);
45 static void parms_set (rtx, const_rtx, void *);
47 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
48 const_rtx, machine_mode,
49 unsigned HOST_WIDE_INT);
50 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
51 const_rtx, machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
54 const_rtx, machine_mode,
55 unsigned int);
56 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
57 const_rtx, machine_mode,
58 unsigned int);
60 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
61 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
63 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
64 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
65 SIGN_EXTEND then while narrowing we also have to enforce the
66 representation and sign-extend the value to mode DESTINATION_REP.
68 If the value is already sign-extended to DESTINATION_REP mode we
69 can just switch to DESTINATION mode on it. For each pair of
70 integral modes SOURCE and DESTINATION, when truncating from SOURCE
71 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
72 contains the number of high-order bits in SOURCE that have to be
73 copies of the sign-bit so that we can do this mode-switch to
74 DESTINATION. */
76 static unsigned int
77 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
79 /* Store X into index I of ARRAY. ARRAY is known to have at least I
80 elements. Return the new base of ARRAY. */
82 template <typename T>
83 typename T::value_type *
84 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
85 value_type *base,
86 size_t i, value_type x)
88 if (base == array.stack)
90 if (i < LOCAL_ELEMS)
92 base[i] = x;
93 return base;
95 gcc_checking_assert (i == LOCAL_ELEMS);
96 /* A previous iteration might also have moved from the stack to the
97 heap, in which case the heap array will already be big enough. */
98 if (vec_safe_length (array.heap) <= i)
99 vec_safe_grow (array.heap, i + 1);
100 base = array.heap->address ();
101 memcpy (base, array.stack, sizeof (array.stack));
102 base[LOCAL_ELEMS] = x;
103 return base;
105 unsigned int length = array.heap->length ();
106 if (length > i)
108 gcc_checking_assert (base == array.heap->address ());
109 base[i] = x;
110 return base;
112 else
114 gcc_checking_assert (i == length);
115 vec_safe_push (array.heap, x);
116 return array.heap->address ();
120 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
121 number of elements added to the worklist. */
123 template <typename T>
124 size_t
125 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
126 value_type *base,
127 size_t end, rtx_type x)
129 enum rtx_code code = GET_CODE (x);
130 const char *format = GET_RTX_FORMAT (code);
131 size_t orig_end = end;
132 if (__builtin_expect (INSN_P (x), false))
134 /* Put the pattern at the top of the queue, since that's what
135 we're likely to want most. It also allows for the SEQUENCE
136 code below. */
137 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
138 if (format[i] == 'e')
140 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
141 if (__builtin_expect (end < LOCAL_ELEMS, true))
142 base[end++] = subx;
143 else
144 base = add_single_to_queue (array, base, end++, subx);
147 else
148 for (int i = 0; format[i]; ++i)
149 if (format[i] == 'e')
151 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
152 if (__builtin_expect (end < LOCAL_ELEMS, true))
153 base[end++] = subx;
154 else
155 base = add_single_to_queue (array, base, end++, subx);
157 else if (format[i] == 'E')
159 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
160 rtx *vec = x->u.fld[i].rt_rtvec->elem;
161 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
162 for (unsigned int j = 0; j < length; j++)
163 base[end++] = T::get_value (vec[j]);
164 else
165 for (unsigned int j = 0; j < length; j++)
166 base = add_single_to_queue (array, base, end++,
167 T::get_value (vec[j]));
168 if (code == SEQUENCE && end == length)
169 /* If the subrtxes of the sequence fill the entire array then
170 we know that no other parts of a containing insn are queued.
171 The caller is therefore iterating over the sequence as a
172 PATTERN (...), so we also want the patterns of the
173 subinstructions. */
174 for (unsigned int j = 0; j < length; j++)
176 typename T::rtx_type x = T::get_rtx (base[j]);
177 if (INSN_P (x))
178 base[j] = T::get_value (PATTERN (x));
181 return end - orig_end;
184 template <typename T>
185 void
186 generic_subrtx_iterator <T>::free_array (array_type &array)
188 vec_free (array.heap);
191 template <typename T>
192 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
194 template class generic_subrtx_iterator <const_rtx_accessor>;
195 template class generic_subrtx_iterator <rtx_var_accessor>;
196 template class generic_subrtx_iterator <rtx_ptr_accessor>;
198 /* Return 1 if the value of X is unstable
199 (would be different at a different point in the program).
200 The frame pointer, arg pointer, etc. are considered stable
201 (within one function) and so is anything marked `unchanging'. */
204 rtx_unstable_p (const_rtx x)
206 const RTX_CODE code = GET_CODE (x);
207 int i;
208 const char *fmt;
210 switch (code)
212 case MEM:
213 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
215 case CONST:
216 CASE_CONST_ANY:
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return 0;
221 case REG:
222 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
223 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
224 /* The arg pointer varies if it is not a fixed register. */
225 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
226 return 0;
227 /* ??? When call-clobbered, the value is stable modulo the restore
228 that must happen after a call. This currently screws up local-alloc
229 into believing that the restore is not needed. */
230 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
231 return 0;
232 return 1;
234 case ASM_OPERANDS:
235 if (MEM_VOLATILE_P (x))
236 return 1;
238 /* Fall through. */
240 default:
241 break;
244 fmt = GET_RTX_FORMAT (code);
245 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246 if (fmt[i] == 'e')
248 if (rtx_unstable_p (XEXP (x, i)))
249 return 1;
251 else if (fmt[i] == 'E')
253 int j;
254 for (j = 0; j < XVECLEN (x, i); j++)
255 if (rtx_unstable_p (XVECEXP (x, i, j)))
256 return 1;
259 return 0;
262 /* Return 1 if X has a value that can vary even between two
263 executions of the program. 0 means X can be compared reliably
264 against certain constants or near-constants.
265 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
266 zero, we are slightly more conservative.
267 The frame pointer and the arg pointer are considered constant. */
269 bool
270 rtx_varies_p (const_rtx x, bool for_alias)
272 RTX_CODE code;
273 int i;
274 const char *fmt;
276 if (!x)
277 return 0;
279 code = GET_CODE (x);
280 switch (code)
282 case MEM:
283 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
285 case CONST:
286 CASE_CONST_ANY:
287 case SYMBOL_REF:
288 case LABEL_REF:
289 return 0;
291 case REG:
292 /* Note that we have to test for the actual rtx used for the frame
293 and arg pointers and not just the register number in case we have
294 eliminated the frame and/or arg pointer and are using it
295 for pseudos. */
296 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
297 /* The arg pointer varies if it is not a fixed register. */
298 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
299 return 0;
300 if (x == pic_offset_table_rtx
301 /* ??? When call-clobbered, the value is stable modulo the restore
302 that must happen after a call. This currently screws up
303 local-alloc into believing that the restore is not needed, so we
304 must return 0 only if we are called from alias analysis. */
305 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
306 return 0;
307 return 1;
309 case LO_SUM:
310 /* The operand 0 of a LO_SUM is considered constant
311 (in fact it is related specifically to operand 1)
312 during alias analysis. */
313 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
314 || rtx_varies_p (XEXP (x, 1), for_alias);
316 case ASM_OPERANDS:
317 if (MEM_VOLATILE_P (x))
318 return 1;
320 /* Fall through. */
322 default:
323 break;
326 fmt = GET_RTX_FORMAT (code);
327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328 if (fmt[i] == 'e')
330 if (rtx_varies_p (XEXP (x, i), for_alias))
331 return 1;
333 else if (fmt[i] == 'E')
335 int j;
336 for (j = 0; j < XVECLEN (x, i); j++)
337 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
338 return 1;
341 return 0;
344 /* Compute an approximation for the offset between the register
345 FROM and TO for the current function, as it was at the start
346 of the routine. */
348 static poly_int64
349 get_initial_register_offset (int from, int to)
351 static const struct elim_table_t
353 const int from;
354 const int to;
355 } table[] = ELIMINABLE_REGS;
356 poly_int64 offset1, offset2;
357 unsigned int i, j;
359 if (to == from)
360 return 0;
362 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
363 is completed, but we need to give at least an estimate for the stack
364 pointer based on the frame size. */
365 if (!epilogue_completed)
367 offset1 = crtl->outgoing_args_size + get_frame_size ();
368 #if !STACK_GROWS_DOWNWARD
369 offset1 = - offset1;
370 #endif
371 if (to == STACK_POINTER_REGNUM)
372 return offset1;
373 else if (from == STACK_POINTER_REGNUM)
374 return - offset1;
375 else
376 return 0;
379 for (i = 0; i < ARRAY_SIZE (table); i++)
380 if (table[i].from == from)
382 if (table[i].to == to)
384 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
385 offset1);
386 return offset1;
388 for (j = 0; j < ARRAY_SIZE (table); j++)
390 if (table[j].to == to
391 && table[j].from == table[i].to)
393 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
394 offset1);
395 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
396 offset2);
397 return offset1 + offset2;
399 if (table[j].from == to
400 && table[j].to == table[i].to)
402 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
403 offset1);
404 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
405 offset2);
406 return offset1 - offset2;
410 else if (table[i].to == from)
412 if (table[i].from == to)
414 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
415 offset1);
416 return - offset1;
418 for (j = 0; j < ARRAY_SIZE (table); j++)
420 if (table[j].to == to
421 && table[j].from == table[i].from)
423 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
424 offset1);
425 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
426 offset2);
427 return - offset1 + offset2;
429 if (table[j].from == to
430 && table[j].to == table[i].from)
432 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
433 offset1);
434 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
435 offset2);
436 return - offset1 - offset2;
441 /* If the requested register combination was not found,
442 try a different more simple combination. */
443 if (from == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
445 else if (to == ARG_POINTER_REGNUM)
446 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
447 else if (from == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
449 else if (to == HARD_FRAME_POINTER_REGNUM)
450 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
451 else
452 return 0;
455 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
456 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
457 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
458 references on strict alignment machines. */
460 static int
461 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
462 machine_mode mode, bool unaligned_mems)
464 enum rtx_code code = GET_CODE (x);
465 gcc_checking_assert (mode == BLKmode || known_size_p (size));
466 poly_int64 const_x1;
468 /* The offset must be a multiple of the mode size if we are considering
469 unaligned memory references on strict alignment machines. */
470 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
472 poly_int64 actual_offset = offset;
474 #ifdef SPARC_STACK_BOUNDARY_HACK
475 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
476 the real alignment of %sp. However, when it does this, the
477 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
478 if (SPARC_STACK_BOUNDARY_HACK
479 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
480 actual_offset -= STACK_POINTER_OFFSET;
481 #endif
483 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
484 return 1;
487 switch (code)
489 case SYMBOL_REF:
490 if (SYMBOL_REF_WEAK (x))
491 return 1;
492 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
494 tree decl;
495 poly_int64 decl_size;
497 if (maybe_lt (offset, 0))
498 return 1;
499 if (!known_size_p (size))
500 return maybe_ne (offset, 0);
502 /* If the size of the access or of the symbol is unknown,
503 assume the worst. */
504 decl = SYMBOL_REF_DECL (x);
506 /* Else check that the access is in bounds. TODO: restructure
507 expr_size/tree_expr_size/int_expr_size and just use the latter. */
508 if (!decl)
509 decl_size = -1;
510 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
512 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
513 decl_size = -1;
515 else if (TREE_CODE (decl) == STRING_CST)
516 decl_size = TREE_STRING_LENGTH (decl);
517 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
518 decl_size = int_size_in_bytes (TREE_TYPE (decl));
519 else
520 decl_size = -1;
522 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
523 ? maybe_ne (offset, 0)
524 : !known_subrange_p (offset, size, 0, decl_size));
527 return 0;
529 case LABEL_REF:
530 return 0;
532 case REG:
533 /* Stack references are assumed not to trap, but we need to deal with
534 nonsensical offsets. */
535 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
536 || x == stack_pointer_rtx
537 /* The arg pointer varies if it is not a fixed register. */
538 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
540 #ifdef RED_ZONE_SIZE
541 poly_int64 red_zone_size = RED_ZONE_SIZE;
542 #else
543 poly_int64 red_zone_size = 0;
544 #endif
545 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
546 poly_int64 low_bound, high_bound;
548 if (!known_size_p (size))
549 return 1;
551 if (x == frame_pointer_rtx)
553 if (FRAME_GROWS_DOWNWARD)
555 high_bound = targetm.starting_frame_offset ();
556 low_bound = high_bound - get_frame_size ();
558 else
560 low_bound = targetm.starting_frame_offset ();
561 high_bound = low_bound + get_frame_size ();
564 else if (x == hard_frame_pointer_rtx)
566 poly_int64 sp_offset
567 = get_initial_register_offset (STACK_POINTER_REGNUM,
568 HARD_FRAME_POINTER_REGNUM);
569 poly_int64 ap_offset
570 = get_initial_register_offset (ARG_POINTER_REGNUM,
571 HARD_FRAME_POINTER_REGNUM);
573 #if STACK_GROWS_DOWNWARD
574 low_bound = sp_offset - red_zone_size - stack_boundary;
575 high_bound = ap_offset
576 + FIRST_PARM_OFFSET (current_function_decl)
577 #if !ARGS_GROW_DOWNWARD
578 + crtl->args.size
579 #endif
580 + stack_boundary;
581 #else
582 high_bound = sp_offset + red_zone_size + stack_boundary;
583 low_bound = ap_offset
584 + FIRST_PARM_OFFSET (current_function_decl)
585 #if ARGS_GROW_DOWNWARD
586 - crtl->args.size
587 #endif
588 - stack_boundary;
589 #endif
591 else if (x == stack_pointer_rtx)
593 poly_int64 ap_offset
594 = get_initial_register_offset (ARG_POINTER_REGNUM,
595 STACK_POINTER_REGNUM);
597 #if STACK_GROWS_DOWNWARD
598 low_bound = - red_zone_size - stack_boundary;
599 high_bound = ap_offset
600 + FIRST_PARM_OFFSET (current_function_decl)
601 #if !ARGS_GROW_DOWNWARD
602 + crtl->args.size
603 #endif
604 + stack_boundary;
605 #else
606 high_bound = red_zone_size + stack_boundary;
607 low_bound = ap_offset
608 + FIRST_PARM_OFFSET (current_function_decl)
609 #if ARGS_GROW_DOWNWARD
610 - crtl->args.size
611 #endif
612 - stack_boundary;
613 #endif
615 else
617 /* We assume that accesses are safe to at least the
618 next stack boundary.
619 Examples are varargs and __builtin_return_address. */
620 #if ARGS_GROW_DOWNWARD
621 high_bound = FIRST_PARM_OFFSET (current_function_decl)
622 + stack_boundary;
623 low_bound = FIRST_PARM_OFFSET (current_function_decl)
624 - crtl->args.size - stack_boundary;
625 #else
626 low_bound = FIRST_PARM_OFFSET (current_function_decl)
627 - stack_boundary;
628 high_bound = FIRST_PARM_OFFSET (current_function_decl)
629 + crtl->args.size + stack_boundary;
630 #endif
633 if (known_ge (offset, low_bound)
634 && known_le (offset, high_bound - size))
635 return 0;
636 return 1;
638 /* All of the virtual frame registers are stack references. */
639 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
640 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
641 return 0;
642 return 1;
644 case CONST:
645 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
646 mode, unaligned_mems);
648 case PLUS:
649 /* An address is assumed not to trap if:
650 - it is the pic register plus a const unspec without offset. */
651 if (XEXP (x, 0) == pic_offset_table_rtx
652 && GET_CODE (XEXP (x, 1)) == CONST
653 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
654 && known_eq (offset, 0))
655 return 0;
657 /* - or it is an address that can't trap plus a constant integer. */
658 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
659 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
660 size, mode, unaligned_mems))
661 return 0;
663 return 1;
665 case LO_SUM:
666 case PRE_MODIFY:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
668 mode, unaligned_mems);
670 case PRE_DEC:
671 case PRE_INC:
672 case POST_DEC:
673 case POST_INC:
674 case POST_MODIFY:
675 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
676 mode, unaligned_mems);
678 default:
679 break;
682 /* If it isn't one of the case above, it can cause a trap. */
683 return 1;
686 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
689 rtx_addr_can_trap_p (const_rtx x)
691 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
694 /* Return true if X contains a MEM subrtx. */
696 bool
697 contains_mem_rtx_p (rtx x)
699 subrtx_iterator::array_type array;
700 FOR_EACH_SUBRTX (iter, array, x, ALL)
701 if (MEM_P (*iter))
702 return true;
704 return false;
707 /* Return true if X is an address that is known to not be zero. */
709 bool
710 nonzero_address_p (const_rtx x)
712 const enum rtx_code code = GET_CODE (x);
714 switch (code)
716 case SYMBOL_REF:
717 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
719 case LABEL_REF:
720 return true;
722 case REG:
723 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
724 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
725 || x == stack_pointer_rtx
726 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
727 return true;
728 /* All of the virtual frame registers are stack references. */
729 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
730 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
731 return true;
732 return false;
734 case CONST:
735 return nonzero_address_p (XEXP (x, 0));
737 case PLUS:
738 /* Handle PIC references. */
739 if (XEXP (x, 0) == pic_offset_table_rtx
740 && CONSTANT_P (XEXP (x, 1)))
741 return true;
742 return false;
744 case PRE_MODIFY:
745 /* Similar to the above; allow positive offsets. Further, since
746 auto-inc is only allowed in memories, the register must be a
747 pointer. */
748 if (CONST_INT_P (XEXP (x, 1))
749 && INTVAL (XEXP (x, 1)) > 0)
750 return true;
751 return nonzero_address_p (XEXP (x, 0));
753 case PRE_INC:
754 /* Similarly. Further, the offset is always positive. */
755 return true;
757 case PRE_DEC:
758 case POST_DEC:
759 case POST_INC:
760 case POST_MODIFY:
761 return nonzero_address_p (XEXP (x, 0));
763 case LO_SUM:
764 return nonzero_address_p (XEXP (x, 1));
766 default:
767 break;
770 /* If it isn't one of the case above, might be zero. */
771 return false;
774 /* Return 1 if X refers to a memory location whose address
775 cannot be compared reliably with constant addresses,
776 or if X refers to a BLKmode memory object.
777 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
778 zero, we are slightly more conservative. */
780 bool
781 rtx_addr_varies_p (const_rtx x, bool for_alias)
783 enum rtx_code code;
784 int i;
785 const char *fmt;
787 if (x == 0)
788 return 0;
790 code = GET_CODE (x);
791 if (code == MEM)
792 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
794 fmt = GET_RTX_FORMAT (code);
795 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
796 if (fmt[i] == 'e')
798 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
799 return 1;
801 else if (fmt[i] == 'E')
803 int j;
804 for (j = 0; j < XVECLEN (x, i); j++)
805 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
806 return 1;
808 return 0;
811 /* Return the CALL in X if there is one. */
814 get_call_rtx_from (rtx x)
816 if (INSN_P (x))
817 x = PATTERN (x);
818 if (GET_CODE (x) == PARALLEL)
819 x = XVECEXP (x, 0, 0);
820 if (GET_CODE (x) == SET)
821 x = SET_SRC (x);
822 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
823 return x;
824 return NULL_RTX;
827 /* Return the value of the integer term in X, if one is apparent;
828 otherwise return 0.
829 Only obvious integer terms are detected.
830 This is used in cse.c with the `related_value' field. */
832 HOST_WIDE_INT
833 get_integer_term (const_rtx x)
835 if (GET_CODE (x) == CONST)
836 x = XEXP (x, 0);
838 if (GET_CODE (x) == MINUS
839 && CONST_INT_P (XEXP (x, 1)))
840 return - INTVAL (XEXP (x, 1));
841 if (GET_CODE (x) == PLUS
842 && CONST_INT_P (XEXP (x, 1)))
843 return INTVAL (XEXP (x, 1));
844 return 0;
847 /* If X is a constant, return the value sans apparent integer term;
848 otherwise return 0.
849 Only obvious integer terms are detected. */
852 get_related_value (const_rtx x)
854 if (GET_CODE (x) != CONST)
855 return 0;
856 x = XEXP (x, 0);
857 if (GET_CODE (x) == PLUS
858 && CONST_INT_P (XEXP (x, 1)))
859 return XEXP (x, 0);
860 else if (GET_CODE (x) == MINUS
861 && CONST_INT_P (XEXP (x, 1)))
862 return XEXP (x, 0);
863 return 0;
866 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
867 to somewhere in the same object or object_block as SYMBOL. */
869 bool
870 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
872 tree decl;
874 if (GET_CODE (symbol) != SYMBOL_REF)
875 return false;
877 if (offset == 0)
878 return true;
880 if (offset > 0)
882 if (CONSTANT_POOL_ADDRESS_P (symbol)
883 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
884 return true;
886 decl = SYMBOL_REF_DECL (symbol);
887 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
888 return true;
891 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
892 && SYMBOL_REF_BLOCK (symbol)
893 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
894 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
895 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
896 return true;
898 return false;
901 /* Split X into a base and a constant offset, storing them in *BASE_OUT
902 and *OFFSET_OUT respectively. */
904 void
905 split_const (rtx x, rtx *base_out, rtx *offset_out)
907 if (GET_CODE (x) == CONST)
909 x = XEXP (x, 0);
910 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
912 *base_out = XEXP (x, 0);
913 *offset_out = XEXP (x, 1);
914 return;
917 *base_out = x;
918 *offset_out = const0_rtx;
921 /* Express integer value X as some value Y plus a polynomial offset,
922 where Y is either const0_rtx, X or something within X (as opposed
923 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
926 strip_offset (rtx x, poly_int64_pod *offset_out)
928 rtx base = const0_rtx;
929 rtx test = x;
930 if (GET_CODE (test) == CONST)
931 test = XEXP (test, 0);
932 if (GET_CODE (test) == PLUS)
934 base = XEXP (test, 0);
935 test = XEXP (test, 1);
937 if (poly_int_rtx_p (test, offset_out))
938 return base;
939 *offset_out = 0;
940 return x;
943 /* Return the argument size in REG_ARGS_SIZE note X. */
945 poly_int64
946 get_args_size (const_rtx x)
948 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
949 return rtx_to_poly_int64 (XEXP (x, 0));
952 /* Return the number of places FIND appears within X. If COUNT_DEST is
953 zero, we do not count occurrences inside the destination of a SET. */
956 count_occurrences (const_rtx x, const_rtx find, int count_dest)
958 int i, j;
959 enum rtx_code code;
960 const char *format_ptr;
961 int count;
963 if (x == find)
964 return 1;
966 code = GET_CODE (x);
968 switch (code)
970 case REG:
971 CASE_CONST_ANY:
972 case SYMBOL_REF:
973 case CODE_LABEL:
974 case PC:
975 case CC0:
976 return 0;
978 case EXPR_LIST:
979 count = count_occurrences (XEXP (x, 0), find, count_dest);
980 if (XEXP (x, 1))
981 count += count_occurrences (XEXP (x, 1), find, count_dest);
982 return count;
984 case MEM:
985 if (MEM_P (find) && rtx_equal_p (x, find))
986 return 1;
987 break;
989 case SET:
990 if (SET_DEST (x) == find && ! count_dest)
991 return count_occurrences (SET_SRC (x), find, count_dest);
992 break;
994 default:
995 break;
998 format_ptr = GET_RTX_FORMAT (code);
999 count = 0;
1001 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1003 switch (*format_ptr++)
1005 case 'e':
1006 count += count_occurrences (XEXP (x, i), find, count_dest);
1007 break;
1009 case 'E':
1010 for (j = 0; j < XVECLEN (x, i); j++)
1011 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1012 break;
1015 return count;
1019 /* Return TRUE if OP is a register or subreg of a register that
1020 holds an unsigned quantity. Otherwise, return FALSE. */
1022 bool
1023 unsigned_reg_p (rtx op)
1025 if (REG_P (op)
1026 && REG_EXPR (op)
1027 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1028 return true;
1030 if (GET_CODE (op) == SUBREG
1031 && SUBREG_PROMOTED_SIGN (op))
1032 return true;
1034 return false;
1038 /* Nonzero if register REG appears somewhere within IN.
1039 Also works if REG is not a register; in this case it checks
1040 for a subexpression of IN that is Lisp "equal" to REG. */
1043 reg_mentioned_p (const_rtx reg, const_rtx in)
1045 const char *fmt;
1046 int i;
1047 enum rtx_code code;
1049 if (in == 0)
1050 return 0;
1052 if (reg == in)
1053 return 1;
1055 if (GET_CODE (in) == LABEL_REF)
1056 return reg == label_ref_label (in);
1058 code = GET_CODE (in);
1060 switch (code)
1062 /* Compare registers by number. */
1063 case REG:
1064 return REG_P (reg) && REGNO (in) == REGNO (reg);
1066 /* These codes have no constituent expressions
1067 and are unique. */
1068 case SCRATCH:
1069 case CC0:
1070 case PC:
1071 return 0;
1073 CASE_CONST_ANY:
1074 /* These are kept unique for a given value. */
1075 return 0;
1077 default:
1078 break;
1081 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1082 return 1;
1084 fmt = GET_RTX_FORMAT (code);
1086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1088 if (fmt[i] == 'E')
1090 int j;
1091 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1092 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1093 return 1;
1095 else if (fmt[i] == 'e'
1096 && reg_mentioned_p (reg, XEXP (in, i)))
1097 return 1;
1099 return 0;
1102 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1103 no CODE_LABEL insn. */
1106 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1108 rtx_insn *p;
1109 if (beg == end)
1110 return 0;
1111 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1112 if (LABEL_P (p))
1113 return 0;
1114 return 1;
1117 /* Nonzero if register REG is used in an insn between
1118 FROM_INSN and TO_INSN (exclusive of those two). */
1121 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1122 const rtx_insn *to_insn)
1124 rtx_insn *insn;
1126 if (from_insn == to_insn)
1127 return 0;
1129 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1130 if (NONDEBUG_INSN_P (insn)
1131 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1132 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1133 return 1;
1134 return 0;
1137 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1138 is entirely replaced by a new value and the only use is as a SET_DEST,
1139 we do not consider it a reference. */
1142 reg_referenced_p (const_rtx x, const_rtx body)
1144 int i;
1146 switch (GET_CODE (body))
1148 case SET:
1149 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1150 return 1;
1152 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1153 of a REG that occupies all of the REG, the insn references X if
1154 it is mentioned in the destination. */
1155 if (GET_CODE (SET_DEST (body)) != CC0
1156 && GET_CODE (SET_DEST (body)) != PC
1157 && !REG_P (SET_DEST (body))
1158 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1159 && REG_P (SUBREG_REG (SET_DEST (body)))
1160 && !read_modify_subreg_p (SET_DEST (body)))
1161 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1162 return 1;
1163 return 0;
1165 case ASM_OPERANDS:
1166 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1167 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1168 return 1;
1169 return 0;
1171 case CALL:
1172 case USE:
1173 case IF_THEN_ELSE:
1174 return reg_overlap_mentioned_p (x, body);
1176 case TRAP_IF:
1177 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1179 case PREFETCH:
1180 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1182 case UNSPEC:
1183 case UNSPEC_VOLATILE:
1184 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1185 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1186 return 1;
1187 return 0;
1189 case PARALLEL:
1190 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1191 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1192 return 1;
1193 return 0;
1195 case CLOBBER:
1196 if (MEM_P (XEXP (body, 0)))
1197 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1198 return 1;
1199 return 0;
1201 case CLOBBER_HIGH:
1202 gcc_assert (REG_P (XEXP (body, 0)));
1203 return 0;
1205 case COND_EXEC:
1206 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1207 return 1;
1208 return reg_referenced_p (x, COND_EXEC_CODE (body));
1210 default:
1211 return 0;
1215 /* Nonzero if register REG is set or clobbered in an insn between
1216 FROM_INSN and TO_INSN (exclusive of those two). */
1219 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1220 const rtx_insn *to_insn)
1222 const rtx_insn *insn;
1224 if (from_insn == to_insn)
1225 return 0;
1227 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1228 if (INSN_P (insn) && reg_set_p (reg, insn))
1229 return 1;
1230 return 0;
1233 /* Return true if REG is set or clobbered inside INSN. */
1236 reg_set_p (const_rtx reg, const_rtx insn)
1238 /* After delay slot handling, call and branch insns might be in a
1239 sequence. Check all the elements there. */
1240 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1242 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1243 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1244 return true;
1246 return false;
1249 /* We can be passed an insn or part of one. If we are passed an insn,
1250 check if a side-effect of the insn clobbers REG. */
1251 if (INSN_P (insn)
1252 && (FIND_REG_INC_NOTE (insn, reg)
1253 || (CALL_P (insn)
1254 && ((REG_P (reg)
1255 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1256 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1257 GET_MODE (reg), REGNO (reg)))
1258 || MEM_P (reg)
1259 || find_reg_fusage (insn, CLOBBER, reg)))))
1260 return true;
1262 /* There are no REG_INC notes for SP autoinc. */
1263 if (reg == stack_pointer_rtx && INSN_P (insn))
1265 subrtx_var_iterator::array_type array;
1266 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1268 rtx mem = *iter;
1269 if (mem
1270 && MEM_P (mem)
1271 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1273 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1274 return true;
1275 iter.skip_subrtxes ();
1280 return set_of (reg, insn) != NULL_RTX;
1283 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1284 only if none of them are modified between START and END. Return 1 if
1285 X contains a MEM; this routine does use memory aliasing. */
1288 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1290 const enum rtx_code code = GET_CODE (x);
1291 const char *fmt;
1292 int i, j;
1293 rtx_insn *insn;
1295 if (start == end)
1296 return 0;
1298 switch (code)
1300 CASE_CONST_ANY:
1301 case CONST:
1302 case SYMBOL_REF:
1303 case LABEL_REF:
1304 return 0;
1306 case PC:
1307 case CC0:
1308 return 1;
1310 case MEM:
1311 if (modified_between_p (XEXP (x, 0), start, end))
1312 return 1;
1313 if (MEM_READONLY_P (x))
1314 return 0;
1315 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1316 if (memory_modified_in_insn_p (x, insn))
1317 return 1;
1318 return 0;
1320 case REG:
1321 return reg_set_between_p (x, start, end);
1323 default:
1324 break;
1327 fmt = GET_RTX_FORMAT (code);
1328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1330 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1331 return 1;
1333 else if (fmt[i] == 'E')
1334 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1335 if (modified_between_p (XVECEXP (x, i, j), start, end))
1336 return 1;
1339 return 0;
1342 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1343 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1344 does use memory aliasing. */
1347 modified_in_p (const_rtx x, const_rtx insn)
1349 const enum rtx_code code = GET_CODE (x);
1350 const char *fmt;
1351 int i, j;
1353 switch (code)
1355 CASE_CONST_ANY:
1356 case CONST:
1357 case SYMBOL_REF:
1358 case LABEL_REF:
1359 return 0;
1361 case PC:
1362 case CC0:
1363 return 1;
1365 case MEM:
1366 if (modified_in_p (XEXP (x, 0), insn))
1367 return 1;
1368 if (MEM_READONLY_P (x))
1369 return 0;
1370 if (memory_modified_in_insn_p (x, insn))
1371 return 1;
1372 return 0;
1374 case REG:
1375 return reg_set_p (x, insn);
1377 default:
1378 break;
1381 fmt = GET_RTX_FORMAT (code);
1382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1384 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1385 return 1;
1387 else if (fmt[i] == 'E')
1388 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1389 if (modified_in_p (XVECEXP (x, i, j), insn))
1390 return 1;
1393 return 0;
1396 /* Return true if X is a SUBREG and if storing a value to X would
1397 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1398 target, using a SUBREG to store to one half of a DImode REG would
1399 preserve the other half. */
1401 bool
1402 read_modify_subreg_p (const_rtx x)
1404 if (GET_CODE (x) != SUBREG)
1405 return false;
1406 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1407 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1408 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1409 /* The inner and outer modes of a subreg must be ordered, so that we
1410 can tell whether they're paradoxical or partial. */
1411 gcc_checking_assert (ordered_p (isize, osize));
1412 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1415 /* Helper function for set_of. */
1416 struct set_of_data
1418 const_rtx found;
1419 const_rtx pat;
1422 static void
1423 set_of_1 (rtx x, const_rtx pat, void *data1)
1425 struct set_of_data *const data = (struct set_of_data *) (data1);
1426 if (rtx_equal_p (x, data->pat)
1427 || (GET_CODE (pat) == CLOBBER_HIGH
1428 && REGNO(data->pat) == REGNO(XEXP (pat, 0))
1429 && reg_is_clobbered_by_clobber_high (data->pat, XEXP (pat, 0)))
1430 || (GET_CODE (pat) != CLOBBER_HIGH && !MEM_P (x)
1431 && reg_overlap_mentioned_p (data->pat, x)))
1432 data->found = pat;
1435 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1436 (either directly or via STRICT_LOW_PART and similar modifiers). */
1437 const_rtx
1438 set_of (const_rtx pat, const_rtx insn)
1440 struct set_of_data data;
1441 data.found = NULL_RTX;
1442 data.pat = pat;
1443 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1444 return data.found;
1447 /* Add all hard register in X to *PSET. */
1448 void
1449 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1451 subrtx_iterator::array_type array;
1452 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1454 const_rtx x = *iter;
1455 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1456 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1460 /* This function, called through note_stores, collects sets and
1461 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1462 by DATA. */
1463 void
1464 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1466 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1467 if (REG_P (x) && HARD_REGISTER_P (x))
1468 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1471 /* Examine INSN, and compute the set of hard registers written by it.
1472 Store it in *PSET. Should only be called after reload. */
1473 void
1474 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1476 rtx link;
1478 CLEAR_HARD_REG_SET (*pset);
1479 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1480 if (CALL_P (insn))
1482 if (implicit)
1483 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1485 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1486 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1488 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1489 if (REG_NOTE_KIND (link) == REG_INC)
1490 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1493 /* Like record_hard_reg_sets, but called through note_uses. */
1494 void
1495 record_hard_reg_uses (rtx *px, void *data)
1497 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1500 /* Given an INSN, return a SET expression if this insn has only a single SET.
1501 It may also have CLOBBERs, USEs, or SET whose output
1502 will not be used, which we ignore. */
1505 single_set_2 (const rtx_insn *insn, const_rtx pat)
1507 rtx set = NULL;
1508 int set_verified = 1;
1509 int i;
1511 if (GET_CODE (pat) == PARALLEL)
1513 for (i = 0; i < XVECLEN (pat, 0); i++)
1515 rtx sub = XVECEXP (pat, 0, i);
1516 switch (GET_CODE (sub))
1518 case USE:
1519 case CLOBBER:
1520 case CLOBBER_HIGH:
1521 break;
1523 case SET:
1524 /* We can consider insns having multiple sets, where all
1525 but one are dead as single set insns. In common case
1526 only single set is present in the pattern so we want
1527 to avoid checking for REG_UNUSED notes unless necessary.
1529 When we reach set first time, we just expect this is
1530 the single set we are looking for and only when more
1531 sets are found in the insn, we check them. */
1532 if (!set_verified)
1534 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1535 && !side_effects_p (set))
1536 set = NULL;
1537 else
1538 set_verified = 1;
1540 if (!set)
1541 set = sub, set_verified = 0;
1542 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1543 || side_effects_p (sub))
1544 return NULL_RTX;
1545 break;
1547 default:
1548 return NULL_RTX;
1552 return set;
1555 /* Given an INSN, return nonzero if it has more than one SET, else return
1556 zero. */
1559 multiple_sets (const_rtx insn)
1561 int found;
1562 int i;
1564 /* INSN must be an insn. */
1565 if (! INSN_P (insn))
1566 return 0;
1568 /* Only a PARALLEL can have multiple SETs. */
1569 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1571 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1572 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1574 /* If we have already found a SET, then return now. */
1575 if (found)
1576 return 1;
1577 else
1578 found = 1;
1582 /* Either zero or one SET. */
1583 return 0;
1586 /* Return nonzero if the destination of SET equals the source
1587 and there are no side effects. */
1590 set_noop_p (const_rtx set)
1592 rtx src = SET_SRC (set);
1593 rtx dst = SET_DEST (set);
1595 if (dst == pc_rtx && src == pc_rtx)
1596 return 1;
1598 if (MEM_P (dst) && MEM_P (src))
1599 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1601 if (GET_CODE (dst) == ZERO_EXTRACT)
1602 return rtx_equal_p (XEXP (dst, 0), src)
1603 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1604 && !side_effects_p (src);
1606 if (GET_CODE (dst) == STRICT_LOW_PART)
1607 dst = XEXP (dst, 0);
1609 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1611 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1612 return 0;
1613 src = SUBREG_REG (src);
1614 dst = SUBREG_REG (dst);
1617 /* It is a NOOP if destination overlaps with selected src vector
1618 elements. */
1619 if (GET_CODE (src) == VEC_SELECT
1620 && REG_P (XEXP (src, 0)) && REG_P (dst)
1621 && HARD_REGISTER_P (XEXP (src, 0))
1622 && HARD_REGISTER_P (dst))
1624 int i;
1625 rtx par = XEXP (src, 1);
1626 rtx src0 = XEXP (src, 0);
1627 poly_int64 c0 = rtx_to_poly_int64 (XVECEXP (par, 0, 0));
1628 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1630 for (i = 1; i < XVECLEN (par, 0); i++)
1631 if (maybe_ne (rtx_to_poly_int64 (XVECEXP (par, 0, i)), c0 + i))
1632 return 0;
1633 return
1634 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1635 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1636 offset, GET_MODE (dst)) == (int) REGNO (dst);
1639 return (REG_P (src) && REG_P (dst)
1640 && REGNO (src) == REGNO (dst));
1643 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1644 value to itself. */
1647 noop_move_p (const rtx_insn *insn)
1649 rtx pat = PATTERN (insn);
1651 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1652 return 1;
1654 /* Insns carrying these notes are useful later on. */
1655 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1656 return 0;
1658 /* Check the code to be executed for COND_EXEC. */
1659 if (GET_CODE (pat) == COND_EXEC)
1660 pat = COND_EXEC_CODE (pat);
1662 if (GET_CODE (pat) == SET && set_noop_p (pat))
1663 return 1;
1665 if (GET_CODE (pat) == PARALLEL)
1667 int i;
1668 /* If nothing but SETs of registers to themselves,
1669 this insn can also be deleted. */
1670 for (i = 0; i < XVECLEN (pat, 0); i++)
1672 rtx tem = XVECEXP (pat, 0, i);
1674 if (GET_CODE (tem) == USE
1675 || GET_CODE (tem) == CLOBBER
1676 || GET_CODE (tem) == CLOBBER_HIGH)
1677 continue;
1679 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1680 return 0;
1683 return 1;
1685 return 0;
1689 /* Return nonzero if register in range [REGNO, ENDREGNO)
1690 appears either explicitly or implicitly in X
1691 other than being stored into.
1693 References contained within the substructure at LOC do not count.
1694 LOC may be zero, meaning don't ignore anything. */
1696 bool
1697 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1698 rtx *loc)
1700 int i;
1701 unsigned int x_regno;
1702 RTX_CODE code;
1703 const char *fmt;
1705 repeat:
1706 /* The contents of a REG_NONNEG note is always zero, so we must come here
1707 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1708 if (x == 0)
1709 return false;
1711 code = GET_CODE (x);
1713 switch (code)
1715 case REG:
1716 x_regno = REGNO (x);
1718 /* If we modifying the stack, frame, or argument pointer, it will
1719 clobber a virtual register. In fact, we could be more precise,
1720 but it isn't worth it. */
1721 if ((x_regno == STACK_POINTER_REGNUM
1722 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1723 && x_regno == ARG_POINTER_REGNUM)
1724 || x_regno == FRAME_POINTER_REGNUM)
1725 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1726 return true;
1728 return endregno > x_regno && regno < END_REGNO (x);
1730 case SUBREG:
1731 /* If this is a SUBREG of a hard reg, we can see exactly which
1732 registers are being modified. Otherwise, handle normally. */
1733 if (REG_P (SUBREG_REG (x))
1734 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1736 unsigned int inner_regno = subreg_regno (x);
1737 unsigned int inner_endregno
1738 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1739 ? subreg_nregs (x) : 1);
1741 return endregno > inner_regno && regno < inner_endregno;
1743 break;
1745 case CLOBBER:
1746 case SET:
1747 if (&SET_DEST (x) != loc
1748 /* Note setting a SUBREG counts as referring to the REG it is in for
1749 a pseudo but not for hard registers since we can
1750 treat each word individually. */
1751 && ((GET_CODE (SET_DEST (x)) == SUBREG
1752 && loc != &SUBREG_REG (SET_DEST (x))
1753 && REG_P (SUBREG_REG (SET_DEST (x)))
1754 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1755 && refers_to_regno_p (regno, endregno,
1756 SUBREG_REG (SET_DEST (x)), loc))
1757 || (!REG_P (SET_DEST (x))
1758 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1759 return true;
1761 if (code == CLOBBER || loc == &SET_SRC (x))
1762 return false;
1763 x = SET_SRC (x);
1764 goto repeat;
1766 default:
1767 break;
1770 /* X does not match, so try its subexpressions. */
1772 fmt = GET_RTX_FORMAT (code);
1773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1775 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1777 if (i == 0)
1779 x = XEXP (x, 0);
1780 goto repeat;
1782 else
1783 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1784 return true;
1786 else if (fmt[i] == 'E')
1788 int j;
1789 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1790 if (loc != &XVECEXP (x, i, j)
1791 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1792 return true;
1795 return false;
1798 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1799 we check if any register number in X conflicts with the relevant register
1800 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1801 contains a MEM (we don't bother checking for memory addresses that can't
1802 conflict because we expect this to be a rare case. */
1805 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1807 unsigned int regno, endregno;
1809 /* If either argument is a constant, then modifying X cannot
1810 affect IN. Here we look at IN, we can profitably combine
1811 CONSTANT_P (x) with the switch statement below. */
1812 if (CONSTANT_P (in))
1813 return 0;
1815 recurse:
1816 switch (GET_CODE (x))
1818 case CLOBBER:
1819 case STRICT_LOW_PART:
1820 case ZERO_EXTRACT:
1821 case SIGN_EXTRACT:
1822 /* Overly conservative. */
1823 x = XEXP (x, 0);
1824 goto recurse;
1826 case SUBREG:
1827 regno = REGNO (SUBREG_REG (x));
1828 if (regno < FIRST_PSEUDO_REGISTER)
1829 regno = subreg_regno (x);
1830 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1831 ? subreg_nregs (x) : 1);
1832 goto do_reg;
1834 case REG:
1835 regno = REGNO (x);
1836 endregno = END_REGNO (x);
1837 do_reg:
1838 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1840 case MEM:
1842 const char *fmt;
1843 int i;
1845 if (MEM_P (in))
1846 return 1;
1848 fmt = GET_RTX_FORMAT (GET_CODE (in));
1849 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1850 if (fmt[i] == 'e')
1852 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1853 return 1;
1855 else if (fmt[i] == 'E')
1857 int j;
1858 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1859 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1860 return 1;
1863 return 0;
1866 case SCRATCH:
1867 case PC:
1868 case CC0:
1869 return reg_mentioned_p (x, in);
1871 case PARALLEL:
1873 int i;
1875 /* If any register in here refers to it we return true. */
1876 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1877 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1878 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1879 return 1;
1880 return 0;
1883 default:
1884 gcc_assert (CONSTANT_P (x));
1885 return 0;
1889 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1890 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1891 ignored by note_stores, but passed to FUN.
1893 FUN receives three arguments:
1894 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1895 2. the SET or CLOBBER rtx that does the store,
1896 3. the pointer DATA provided to note_stores.
1898 If the item being stored in or clobbered is a SUBREG of a hard register,
1899 the SUBREG will be passed. */
1901 void
1902 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1904 int i;
1906 if (GET_CODE (x) == COND_EXEC)
1907 x = COND_EXEC_CODE (x);
1909 if (GET_CODE (x) == SET
1910 || GET_CODE (x) == CLOBBER
1911 || GET_CODE (x) == CLOBBER_HIGH)
1913 rtx dest = SET_DEST (x);
1915 while ((GET_CODE (dest) == SUBREG
1916 && (!REG_P (SUBREG_REG (dest))
1917 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1918 || GET_CODE (dest) == ZERO_EXTRACT
1919 || GET_CODE (dest) == STRICT_LOW_PART)
1920 dest = XEXP (dest, 0);
1922 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1923 each of whose first operand is a register. */
1924 if (GET_CODE (dest) == PARALLEL)
1926 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1927 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1928 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1930 else
1931 (*fun) (dest, x, data);
1934 else if (GET_CODE (x) == PARALLEL)
1935 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1936 note_stores (XVECEXP (x, 0, i), fun, data);
1939 /* Like notes_stores, but call FUN for each expression that is being
1940 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1941 FUN for each expression, not any interior subexpressions. FUN receives a
1942 pointer to the expression and the DATA passed to this function.
1944 Note that this is not quite the same test as that done in reg_referenced_p
1945 since that considers something as being referenced if it is being
1946 partially set, while we do not. */
1948 void
1949 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1951 rtx body = *pbody;
1952 int i;
1954 switch (GET_CODE (body))
1956 case COND_EXEC:
1957 (*fun) (&COND_EXEC_TEST (body), data);
1958 note_uses (&COND_EXEC_CODE (body), fun, data);
1959 return;
1961 case PARALLEL:
1962 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1963 note_uses (&XVECEXP (body, 0, i), fun, data);
1964 return;
1966 case SEQUENCE:
1967 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1968 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1969 return;
1971 case USE:
1972 (*fun) (&XEXP (body, 0), data);
1973 return;
1975 case ASM_OPERANDS:
1976 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1977 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1978 return;
1980 case TRAP_IF:
1981 (*fun) (&TRAP_CONDITION (body), data);
1982 return;
1984 case PREFETCH:
1985 (*fun) (&XEXP (body, 0), data);
1986 return;
1988 case UNSPEC:
1989 case UNSPEC_VOLATILE:
1990 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1991 (*fun) (&XVECEXP (body, 0, i), data);
1992 return;
1994 case CLOBBER:
1995 if (MEM_P (XEXP (body, 0)))
1996 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1997 return;
1999 case SET:
2001 rtx dest = SET_DEST (body);
2003 /* For sets we replace everything in source plus registers in memory
2004 expression in store and operands of a ZERO_EXTRACT. */
2005 (*fun) (&SET_SRC (body), data);
2007 if (GET_CODE (dest) == ZERO_EXTRACT)
2009 (*fun) (&XEXP (dest, 1), data);
2010 (*fun) (&XEXP (dest, 2), data);
2013 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2014 dest = XEXP (dest, 0);
2016 if (MEM_P (dest))
2017 (*fun) (&XEXP (dest, 0), data);
2019 return;
2021 default:
2022 /* All the other possibilities never store. */
2023 (*fun) (pbody, data);
2024 return;
2028 /* Return nonzero if X's old contents don't survive after INSN.
2029 This will be true if X is (cc0) or if X is a register and
2030 X dies in INSN or because INSN entirely sets X.
2032 "Entirely set" means set directly and not through a SUBREG, or
2033 ZERO_EXTRACT, so no trace of the old contents remains.
2034 Likewise, REG_INC does not count.
2036 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2037 but for this use that makes no difference, since regs don't overlap
2038 during their lifetimes. Therefore, this function may be used
2039 at any time after deaths have been computed.
2041 If REG is a hard reg that occupies multiple machine registers, this
2042 function will only return 1 if each of those registers will be replaced
2043 by INSN. */
2046 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2048 unsigned int regno, end_regno;
2049 unsigned int i;
2051 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2052 if (GET_CODE (x) == CC0)
2053 return 1;
2055 gcc_assert (REG_P (x));
2057 regno = REGNO (x);
2058 end_regno = END_REGNO (x);
2059 for (i = regno; i < end_regno; i++)
2060 if (! dead_or_set_regno_p (insn, i))
2061 return 0;
2063 return 1;
2066 /* Return TRUE iff DEST is a register or subreg of a register, is a
2067 complete rather than read-modify-write destination, and contains
2068 register TEST_REGNO. */
2070 static bool
2071 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2073 unsigned int regno, endregno;
2075 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2076 dest = SUBREG_REG (dest);
2078 if (!REG_P (dest))
2079 return false;
2081 regno = REGNO (dest);
2082 endregno = END_REGNO (dest);
2083 return (test_regno >= regno && test_regno < endregno);
2086 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2087 any member matches the covers_regno_no_parallel_p criteria. */
2089 static bool
2090 covers_regno_p (const_rtx dest, unsigned int test_regno)
2092 if (GET_CODE (dest) == PARALLEL)
2094 /* Some targets place small structures in registers for return
2095 values of functions, and those registers are wrapped in
2096 PARALLELs that we may see as the destination of a SET. */
2097 int i;
2099 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2101 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2102 if (inner != NULL_RTX
2103 && covers_regno_no_parallel_p (inner, test_regno))
2104 return true;
2107 return false;
2109 else
2110 return covers_regno_no_parallel_p (dest, test_regno);
2113 /* Utility function for dead_or_set_p to check an individual register. */
2116 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2118 const_rtx pattern;
2120 /* See if there is a death note for something that includes TEST_REGNO. */
2121 if (find_regno_note (insn, REG_DEAD, test_regno))
2122 return 1;
2124 if (CALL_P (insn)
2125 && find_regno_fusage (insn, CLOBBER, test_regno))
2126 return 1;
2128 pattern = PATTERN (insn);
2130 /* If a COND_EXEC is not executed, the value survives. */
2131 if (GET_CODE (pattern) == COND_EXEC)
2132 return 0;
2134 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2135 return covers_regno_p (SET_DEST (pattern), test_regno);
2136 else if (GET_CODE (pattern) == PARALLEL)
2138 int i;
2140 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2142 rtx body = XVECEXP (pattern, 0, i);
2144 if (GET_CODE (body) == COND_EXEC)
2145 body = COND_EXEC_CODE (body);
2147 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2148 && covers_regno_p (SET_DEST (body), test_regno))
2149 return 1;
2153 return 0;
2156 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2157 If DATUM is nonzero, look for one whose datum is DATUM. */
2160 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2162 rtx link;
2164 gcc_checking_assert (insn);
2166 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2167 if (! INSN_P (insn))
2168 return 0;
2169 if (datum == 0)
2171 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2172 if (REG_NOTE_KIND (link) == kind)
2173 return link;
2174 return 0;
2177 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2178 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2179 return link;
2180 return 0;
2183 /* Return the reg-note of kind KIND in insn INSN which applies to register
2184 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2185 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2186 it might be the case that the note overlaps REGNO. */
2189 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2191 rtx link;
2193 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2194 if (! INSN_P (insn))
2195 return 0;
2197 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2198 if (REG_NOTE_KIND (link) == kind
2199 /* Verify that it is a register, so that scratch and MEM won't cause a
2200 problem here. */
2201 && REG_P (XEXP (link, 0))
2202 && REGNO (XEXP (link, 0)) <= regno
2203 && END_REGNO (XEXP (link, 0)) > regno)
2204 return link;
2205 return 0;
2208 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2209 has such a note. */
2212 find_reg_equal_equiv_note (const_rtx insn)
2214 rtx link;
2216 if (!INSN_P (insn))
2217 return 0;
2219 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2220 if (REG_NOTE_KIND (link) == REG_EQUAL
2221 || REG_NOTE_KIND (link) == REG_EQUIV)
2223 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2224 insns that have multiple sets. Checking single_set to
2225 make sure of this is not the proper check, as explained
2226 in the comment in set_unique_reg_note.
2228 This should be changed into an assert. */
2229 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2230 return 0;
2231 return link;
2233 return NULL;
2236 /* Check whether INSN is a single_set whose source is known to be
2237 equivalent to a constant. Return that constant if so, otherwise
2238 return null. */
2241 find_constant_src (const rtx_insn *insn)
2243 rtx note, set, x;
2245 set = single_set (insn);
2246 if (set)
2248 x = avoid_constant_pool_reference (SET_SRC (set));
2249 if (CONSTANT_P (x))
2250 return x;
2253 note = find_reg_equal_equiv_note (insn);
2254 if (note && CONSTANT_P (XEXP (note, 0)))
2255 return XEXP (note, 0);
2257 return NULL_RTX;
2260 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2261 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2264 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2266 /* If it's not a CALL_INSN, it can't possibly have a
2267 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2268 if (!CALL_P (insn))
2269 return 0;
2271 gcc_assert (datum);
2273 if (!REG_P (datum))
2275 rtx link;
2277 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2278 link;
2279 link = XEXP (link, 1))
2280 if (GET_CODE (XEXP (link, 0)) == code
2281 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2282 return 1;
2284 else
2286 unsigned int regno = REGNO (datum);
2288 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2289 to pseudo registers, so don't bother checking. */
2291 if (regno < FIRST_PSEUDO_REGISTER)
2293 unsigned int end_regno = END_REGNO (datum);
2294 unsigned int i;
2296 for (i = regno; i < end_regno; i++)
2297 if (find_regno_fusage (insn, code, i))
2298 return 1;
2302 return 0;
2305 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2306 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2309 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2311 rtx link;
2313 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2314 to pseudo registers, so don't bother checking. */
2316 if (regno >= FIRST_PSEUDO_REGISTER
2317 || !CALL_P (insn) )
2318 return 0;
2320 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2322 rtx op, reg;
2324 if (GET_CODE (op = XEXP (link, 0)) == code
2325 && REG_P (reg = XEXP (op, 0))
2326 && REGNO (reg) <= regno
2327 && END_REGNO (reg) > regno)
2328 return 1;
2331 return 0;
2335 /* Return true if KIND is an integer REG_NOTE. */
2337 static bool
2338 int_reg_note_p (enum reg_note kind)
2340 return kind == REG_BR_PROB;
2343 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2344 stored as the pointer to the next register note. */
2347 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2349 rtx note;
2351 gcc_checking_assert (!int_reg_note_p (kind));
2352 switch (kind)
2354 case REG_CC_SETTER:
2355 case REG_CC_USER:
2356 case REG_LABEL_TARGET:
2357 case REG_LABEL_OPERAND:
2358 case REG_TM:
2359 /* These types of register notes use an INSN_LIST rather than an
2360 EXPR_LIST, so that copying is done right and dumps look
2361 better. */
2362 note = alloc_INSN_LIST (datum, list);
2363 PUT_REG_NOTE_KIND (note, kind);
2364 break;
2366 default:
2367 note = alloc_EXPR_LIST (kind, datum, list);
2368 break;
2371 return note;
2374 /* Add register note with kind KIND and datum DATUM to INSN. */
2376 void
2377 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2379 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2382 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2384 void
2385 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2387 gcc_checking_assert (int_reg_note_p (kind));
2388 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2389 datum, REG_NOTES (insn));
2392 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2394 void
2395 add_args_size_note (rtx_insn *insn, poly_int64 value)
2397 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2398 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2401 /* Add a register note like NOTE to INSN. */
2403 void
2404 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2406 if (GET_CODE (note) == INT_LIST)
2407 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2408 else
2409 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2412 /* Duplicate NOTE and return the copy. */
2414 duplicate_reg_note (rtx note)
2416 reg_note kind = REG_NOTE_KIND (note);
2418 if (GET_CODE (note) == INT_LIST)
2419 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2420 else if (GET_CODE (note) == EXPR_LIST)
2421 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2422 else
2423 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2426 /* Remove register note NOTE from the REG_NOTES of INSN. */
2428 void
2429 remove_note (rtx_insn *insn, const_rtx note)
2431 rtx link;
2433 if (note == NULL_RTX)
2434 return;
2436 if (REG_NOTES (insn) == note)
2437 REG_NOTES (insn) = XEXP (note, 1);
2438 else
2439 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2440 if (XEXP (link, 1) == note)
2442 XEXP (link, 1) = XEXP (note, 1);
2443 break;
2446 switch (REG_NOTE_KIND (note))
2448 case REG_EQUAL:
2449 case REG_EQUIV:
2450 df_notes_rescan (insn);
2451 break;
2452 default:
2453 break;
2457 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2458 Return true if any note has been removed. */
2460 bool
2461 remove_reg_equal_equiv_notes (rtx_insn *insn)
2463 rtx *loc;
2464 bool ret = false;
2466 loc = &REG_NOTES (insn);
2467 while (*loc)
2469 enum reg_note kind = REG_NOTE_KIND (*loc);
2470 if (kind == REG_EQUAL || kind == REG_EQUIV)
2472 *loc = XEXP (*loc, 1);
2473 ret = true;
2475 else
2476 loc = &XEXP (*loc, 1);
2478 return ret;
2481 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2483 void
2484 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2486 df_ref eq_use;
2488 if (!df)
2489 return;
2491 /* This loop is a little tricky. We cannot just go down the chain because
2492 it is being modified by some actions in the loop. So we just iterate
2493 over the head. We plan to drain the list anyway. */
2494 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2496 rtx_insn *insn = DF_REF_INSN (eq_use);
2497 rtx note = find_reg_equal_equiv_note (insn);
2499 /* This assert is generally triggered when someone deletes a REG_EQUAL
2500 or REG_EQUIV note by hacking the list manually rather than calling
2501 remove_note. */
2502 gcc_assert (note);
2504 remove_note (insn, note);
2508 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2509 return 1 if it is found. A simple equality test is used to determine if
2510 NODE matches. */
2512 bool
2513 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2515 const_rtx x;
2517 for (x = listp; x; x = XEXP (x, 1))
2518 if (node == XEXP (x, 0))
2519 return true;
2521 return false;
2524 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2525 remove that entry from the list if it is found.
2527 A simple equality test is used to determine if NODE matches. */
2529 void
2530 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2532 rtx_expr_list *temp = *listp;
2533 rtx_expr_list *prev = NULL;
2535 while (temp)
2537 if (node == temp->element ())
2539 /* Splice the node out of the list. */
2540 if (prev)
2541 XEXP (prev, 1) = temp->next ();
2542 else
2543 *listp = temp->next ();
2545 return;
2548 prev = temp;
2549 temp = temp->next ();
2553 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2554 remove that entry from the list if it is found.
2556 A simple equality test is used to determine if NODE matches. */
2558 void
2559 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2561 rtx_insn_list *temp = *listp;
2562 rtx_insn_list *prev = NULL;
2564 while (temp)
2566 if (node == temp->insn ())
2568 /* Splice the node out of the list. */
2569 if (prev)
2570 XEXP (prev, 1) = temp->next ();
2571 else
2572 *listp = temp->next ();
2574 return;
2577 prev = temp;
2578 temp = temp->next ();
2582 /* Nonzero if X contains any volatile instructions. These are instructions
2583 which may cause unpredictable machine state instructions, and thus no
2584 instructions or register uses should be moved or combined across them.
2585 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2588 volatile_insn_p (const_rtx x)
2590 const RTX_CODE code = GET_CODE (x);
2591 switch (code)
2593 case LABEL_REF:
2594 case SYMBOL_REF:
2595 case CONST:
2596 CASE_CONST_ANY:
2597 case CC0:
2598 case PC:
2599 case REG:
2600 case SCRATCH:
2601 case CLOBBER:
2602 case ADDR_VEC:
2603 case ADDR_DIFF_VEC:
2604 case CALL:
2605 case MEM:
2606 return 0;
2608 case UNSPEC_VOLATILE:
2609 return 1;
2611 case ASM_INPUT:
2612 case ASM_OPERANDS:
2613 if (MEM_VOLATILE_P (x))
2614 return 1;
2616 default:
2617 break;
2620 /* Recursively scan the operands of this expression. */
2623 const char *const fmt = GET_RTX_FORMAT (code);
2624 int i;
2626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2628 if (fmt[i] == 'e')
2630 if (volatile_insn_p (XEXP (x, i)))
2631 return 1;
2633 else if (fmt[i] == 'E')
2635 int j;
2636 for (j = 0; j < XVECLEN (x, i); j++)
2637 if (volatile_insn_p (XVECEXP (x, i, j)))
2638 return 1;
2642 return 0;
2645 /* Nonzero if X contains any volatile memory references
2646 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2649 volatile_refs_p (const_rtx x)
2651 const RTX_CODE code = GET_CODE (x);
2652 switch (code)
2654 case LABEL_REF:
2655 case SYMBOL_REF:
2656 case CONST:
2657 CASE_CONST_ANY:
2658 case CC0:
2659 case PC:
2660 case REG:
2661 case SCRATCH:
2662 case CLOBBER:
2663 case ADDR_VEC:
2664 case ADDR_DIFF_VEC:
2665 return 0;
2667 case UNSPEC_VOLATILE:
2668 return 1;
2670 case MEM:
2671 case ASM_INPUT:
2672 case ASM_OPERANDS:
2673 if (MEM_VOLATILE_P (x))
2674 return 1;
2676 default:
2677 break;
2680 /* Recursively scan the operands of this expression. */
2683 const char *const fmt = GET_RTX_FORMAT (code);
2684 int i;
2686 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2688 if (fmt[i] == 'e')
2690 if (volatile_refs_p (XEXP (x, i)))
2691 return 1;
2693 else if (fmt[i] == 'E')
2695 int j;
2696 for (j = 0; j < XVECLEN (x, i); j++)
2697 if (volatile_refs_p (XVECEXP (x, i, j)))
2698 return 1;
2702 return 0;
2705 /* Similar to above, except that it also rejects register pre- and post-
2706 incrementing. */
2709 side_effects_p (const_rtx x)
2711 const RTX_CODE code = GET_CODE (x);
2712 switch (code)
2714 case LABEL_REF:
2715 case SYMBOL_REF:
2716 case CONST:
2717 CASE_CONST_ANY:
2718 case CC0:
2719 case PC:
2720 case REG:
2721 case SCRATCH:
2722 case ADDR_VEC:
2723 case ADDR_DIFF_VEC:
2724 case VAR_LOCATION:
2725 return 0;
2727 case CLOBBER:
2728 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2729 when some combination can't be done. If we see one, don't think
2730 that we can simplify the expression. */
2731 return (GET_MODE (x) != VOIDmode);
2733 case PRE_INC:
2734 case PRE_DEC:
2735 case POST_INC:
2736 case POST_DEC:
2737 case PRE_MODIFY:
2738 case POST_MODIFY:
2739 case CALL:
2740 case UNSPEC_VOLATILE:
2741 return 1;
2743 case MEM:
2744 case ASM_INPUT:
2745 case ASM_OPERANDS:
2746 if (MEM_VOLATILE_P (x))
2747 return 1;
2749 default:
2750 break;
2753 /* Recursively scan the operands of this expression. */
2756 const char *fmt = GET_RTX_FORMAT (code);
2757 int i;
2759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2761 if (fmt[i] == 'e')
2763 if (side_effects_p (XEXP (x, i)))
2764 return 1;
2766 else if (fmt[i] == 'E')
2768 int j;
2769 for (j = 0; j < XVECLEN (x, i); j++)
2770 if (side_effects_p (XVECEXP (x, i, j)))
2771 return 1;
2775 return 0;
2778 /* Return nonzero if evaluating rtx X might cause a trap.
2779 FLAGS controls how to consider MEMs. A nonzero means the context
2780 of the access may have changed from the original, such that the
2781 address may have become invalid. */
2784 may_trap_p_1 (const_rtx x, unsigned flags)
2786 int i;
2787 enum rtx_code code;
2788 const char *fmt;
2790 /* We make no distinction currently, but this function is part of
2791 the internal target-hooks ABI so we keep the parameter as
2792 "unsigned flags". */
2793 bool code_changed = flags != 0;
2795 if (x == 0)
2796 return 0;
2797 code = GET_CODE (x);
2798 switch (code)
2800 /* Handle these cases quickly. */
2801 CASE_CONST_ANY:
2802 case SYMBOL_REF:
2803 case LABEL_REF:
2804 case CONST:
2805 case PC:
2806 case CC0:
2807 case REG:
2808 case SCRATCH:
2809 return 0;
2811 case UNSPEC:
2812 return targetm.unspec_may_trap_p (x, flags);
2814 case UNSPEC_VOLATILE:
2815 case ASM_INPUT:
2816 case TRAP_IF:
2817 return 1;
2819 case ASM_OPERANDS:
2820 return MEM_VOLATILE_P (x);
2822 /* Memory ref can trap unless it's a static var or a stack slot. */
2823 case MEM:
2824 /* Recognize specific pattern of stack checking probes. */
2825 if (flag_stack_check
2826 && MEM_VOLATILE_P (x)
2827 && XEXP (x, 0) == stack_pointer_rtx)
2828 return 1;
2829 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2830 reference; moving it out of context such as when moving code
2831 when optimizing, might cause its address to become invalid. */
2832 code_changed
2833 || !MEM_NOTRAP_P (x))
2835 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2836 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2837 GET_MODE (x), code_changed);
2840 return 0;
2842 /* Division by a non-constant might trap. */
2843 case DIV:
2844 case MOD:
2845 case UDIV:
2846 case UMOD:
2847 if (HONOR_SNANS (x))
2848 return 1;
2849 if (FLOAT_MODE_P (GET_MODE (x)))
2850 return flag_trapping_math;
2851 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2852 return 1;
2853 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
2855 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
2856 unsigned int n_elts;
2857 rtx op = XEXP (x, 1);
2858 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
2860 if (!CONST_VECTOR_DUPLICATE_P (op))
2861 return 1;
2862 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
2863 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
2864 return 1;
2866 else
2867 for (unsigned i = 0; i < n_elts; i++)
2868 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
2869 return 1;
2871 break;
2873 case EXPR_LIST:
2874 /* An EXPR_LIST is used to represent a function call. This
2875 certainly may trap. */
2876 return 1;
2878 case GE:
2879 case GT:
2880 case LE:
2881 case LT:
2882 case LTGT:
2883 case COMPARE:
2884 /* Some floating point comparisons may trap. */
2885 if (!flag_trapping_math)
2886 break;
2887 /* ??? There is no machine independent way to check for tests that trap
2888 when COMPARE is used, though many targets do make this distinction.
2889 For instance, sparc uses CCFPE for compares which generate exceptions
2890 and CCFP for compares which do not generate exceptions. */
2891 if (HONOR_NANS (x))
2892 return 1;
2893 /* But often the compare has some CC mode, so check operand
2894 modes as well. */
2895 if (HONOR_NANS (XEXP (x, 0))
2896 || HONOR_NANS (XEXP (x, 1)))
2897 return 1;
2898 break;
2900 case EQ:
2901 case NE:
2902 if (HONOR_SNANS (x))
2903 return 1;
2904 /* Often comparison is CC mode, so check operand modes. */
2905 if (HONOR_SNANS (XEXP (x, 0))
2906 || HONOR_SNANS (XEXP (x, 1)))
2907 return 1;
2908 break;
2910 case FIX:
2911 /* Conversion of floating point might trap. */
2912 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2913 return 1;
2914 break;
2916 case NEG:
2917 case ABS:
2918 case SUBREG:
2919 case VEC_MERGE:
2920 case VEC_SELECT:
2921 case VEC_CONCAT:
2922 case VEC_DUPLICATE:
2923 /* These operations don't trap even with floating point. */
2924 break;
2926 default:
2927 /* Any floating arithmetic may trap. */
2928 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2929 return 1;
2932 fmt = GET_RTX_FORMAT (code);
2933 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2935 if (fmt[i] == 'e')
2937 if (may_trap_p_1 (XEXP (x, i), flags))
2938 return 1;
2940 else if (fmt[i] == 'E')
2942 int j;
2943 for (j = 0; j < XVECLEN (x, i); j++)
2944 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2945 return 1;
2948 return 0;
2951 /* Return nonzero if evaluating rtx X might cause a trap. */
2954 may_trap_p (const_rtx x)
2956 return may_trap_p_1 (x, 0);
2959 /* Same as above, but additionally return nonzero if evaluating rtx X might
2960 cause a fault. We define a fault for the purpose of this function as a
2961 erroneous execution condition that cannot be encountered during the normal
2962 execution of a valid program; the typical example is an unaligned memory
2963 access on a strict alignment machine. The compiler guarantees that it
2964 doesn't generate code that will fault from a valid program, but this
2965 guarantee doesn't mean anything for individual instructions. Consider
2966 the following example:
2968 struct S { int d; union { char *cp; int *ip; }; };
2970 int foo(struct S *s)
2972 if (s->d == 1)
2973 return *s->ip;
2974 else
2975 return *s->cp;
2978 on a strict alignment machine. In a valid program, foo will never be
2979 invoked on a structure for which d is equal to 1 and the underlying
2980 unique field of the union not aligned on a 4-byte boundary, but the
2981 expression *s->ip might cause a fault if considered individually.
2983 At the RTL level, potentially problematic expressions will almost always
2984 verify may_trap_p; for example, the above dereference can be emitted as
2985 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2986 However, suppose that foo is inlined in a caller that causes s->cp to
2987 point to a local character variable and guarantees that s->d is not set
2988 to 1; foo may have been effectively translated into pseudo-RTL as:
2990 if ((reg:SI) == 1)
2991 (set (reg:SI) (mem:SI (%fp - 7)))
2992 else
2993 (set (reg:QI) (mem:QI (%fp - 7)))
2995 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2996 memory reference to a stack slot, but it will certainly cause a fault
2997 on a strict alignment machine. */
3000 may_trap_or_fault_p (const_rtx x)
3002 return may_trap_p_1 (x, 1);
3005 /* Return nonzero if X contains a comparison that is not either EQ or NE,
3006 i.e., an inequality. */
3009 inequality_comparisons_p (const_rtx x)
3011 const char *fmt;
3012 int len, i;
3013 const enum rtx_code code = GET_CODE (x);
3015 switch (code)
3017 case REG:
3018 case SCRATCH:
3019 case PC:
3020 case CC0:
3021 CASE_CONST_ANY:
3022 case CONST:
3023 case LABEL_REF:
3024 case SYMBOL_REF:
3025 return 0;
3027 case LT:
3028 case LTU:
3029 case GT:
3030 case GTU:
3031 case LE:
3032 case LEU:
3033 case GE:
3034 case GEU:
3035 return 1;
3037 default:
3038 break;
3041 len = GET_RTX_LENGTH (code);
3042 fmt = GET_RTX_FORMAT (code);
3044 for (i = 0; i < len; i++)
3046 if (fmt[i] == 'e')
3048 if (inequality_comparisons_p (XEXP (x, i)))
3049 return 1;
3051 else if (fmt[i] == 'E')
3053 int j;
3054 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3055 if (inequality_comparisons_p (XVECEXP (x, i, j)))
3056 return 1;
3060 return 0;
3063 /* Replace any occurrence of FROM in X with TO. The function does
3064 not enter into CONST_DOUBLE for the replace.
3066 Note that copying is not done so X must not be shared unless all copies
3067 are to be modified.
3069 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3070 those pointer-equal ones. */
3073 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3075 int i, j;
3076 const char *fmt;
3078 if (x == from)
3079 return to;
3081 /* Allow this function to make replacements in EXPR_LISTs. */
3082 if (x == 0)
3083 return 0;
3085 if (all_regs
3086 && REG_P (x)
3087 && REG_P (from)
3088 && REGNO (x) == REGNO (from))
3090 gcc_assert (GET_MODE (x) == GET_MODE (from));
3091 return to;
3093 else if (GET_CODE (x) == SUBREG)
3095 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3097 if (CONST_INT_P (new_rtx))
3099 x = simplify_subreg (GET_MODE (x), new_rtx,
3100 GET_MODE (SUBREG_REG (x)),
3101 SUBREG_BYTE (x));
3102 gcc_assert (x);
3104 else
3105 SUBREG_REG (x) = new_rtx;
3107 return x;
3109 else if (GET_CODE (x) == ZERO_EXTEND)
3111 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3113 if (CONST_INT_P (new_rtx))
3115 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3116 new_rtx, GET_MODE (XEXP (x, 0)));
3117 gcc_assert (x);
3119 else
3120 XEXP (x, 0) = new_rtx;
3122 return x;
3125 fmt = GET_RTX_FORMAT (GET_CODE (x));
3126 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3128 if (fmt[i] == 'e')
3129 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3130 else if (fmt[i] == 'E')
3131 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3132 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3133 from, to, all_regs);
3136 return x;
3139 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3140 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3142 void
3143 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3145 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3146 rtx x = *loc;
3147 if (JUMP_TABLE_DATA_P (x))
3149 x = PATTERN (x);
3150 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3151 int len = GET_NUM_ELEM (vec);
3152 for (int i = 0; i < len; ++i)
3154 rtx ref = RTVEC_ELT (vec, i);
3155 if (XEXP (ref, 0) == old_label)
3157 XEXP (ref, 0) = new_label;
3158 if (update_label_nuses)
3160 ++LABEL_NUSES (new_label);
3161 --LABEL_NUSES (old_label);
3165 return;
3168 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3169 field. This is not handled by the iterator because it doesn't
3170 handle unprinted ('0') fields. */
3171 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3172 JUMP_LABEL (x) = new_label;
3174 subrtx_ptr_iterator::array_type array;
3175 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3177 rtx *loc = *iter;
3178 if (rtx x = *loc)
3180 if (GET_CODE (x) == SYMBOL_REF
3181 && CONSTANT_POOL_ADDRESS_P (x))
3183 rtx c = get_pool_constant (x);
3184 if (rtx_referenced_p (old_label, c))
3186 /* Create a copy of constant C; replace the label inside
3187 but do not update LABEL_NUSES because uses in constant pool
3188 are not counted. */
3189 rtx new_c = copy_rtx (c);
3190 replace_label (&new_c, old_label, new_label, false);
3192 /* Add the new constant NEW_C to constant pool and replace
3193 the old reference to constant by new reference. */
3194 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3195 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3199 if ((GET_CODE (x) == LABEL_REF
3200 || GET_CODE (x) == INSN_LIST)
3201 && XEXP (x, 0) == old_label)
3203 XEXP (x, 0) = new_label;
3204 if (update_label_nuses)
3206 ++LABEL_NUSES (new_label);
3207 --LABEL_NUSES (old_label);
3214 void
3215 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3216 rtx_insn *new_label, bool update_label_nuses)
3218 rtx insn_as_rtx = insn;
3219 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3220 gcc_checking_assert (insn_as_rtx == insn);
3223 /* Return true if X is referenced in BODY. */
3225 bool
3226 rtx_referenced_p (const_rtx x, const_rtx body)
3228 subrtx_iterator::array_type array;
3229 FOR_EACH_SUBRTX (iter, array, body, ALL)
3230 if (const_rtx y = *iter)
3232 /* Check if a label_ref Y refers to label X. */
3233 if (GET_CODE (y) == LABEL_REF
3234 && LABEL_P (x)
3235 && label_ref_label (y) == x)
3236 return true;
3238 if (rtx_equal_p (x, y))
3239 return true;
3241 /* If Y is a reference to pool constant traverse the constant. */
3242 if (GET_CODE (y) == SYMBOL_REF
3243 && CONSTANT_POOL_ADDRESS_P (y))
3244 iter.substitute (get_pool_constant (y));
3246 return false;
3249 /* If INSN is a tablejump return true and store the label (before jump table) to
3250 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3252 bool
3253 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3254 rtx_jump_table_data **tablep)
3256 if (!JUMP_P (insn))
3257 return false;
3259 rtx target = JUMP_LABEL (insn);
3260 if (target == NULL_RTX || ANY_RETURN_P (target))
3261 return false;
3263 rtx_insn *label = as_a<rtx_insn *> (target);
3264 rtx_insn *table = next_insn (label);
3265 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3266 return false;
3268 if (labelp)
3269 *labelp = label;
3270 if (tablep)
3271 *tablep = as_a <rtx_jump_table_data *> (table);
3272 return true;
3275 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3276 constant that is not in the constant pool and not in the condition
3277 of an IF_THEN_ELSE. */
3279 static int
3280 computed_jump_p_1 (const_rtx x)
3282 const enum rtx_code code = GET_CODE (x);
3283 int i, j;
3284 const char *fmt;
3286 switch (code)
3288 case LABEL_REF:
3289 case PC:
3290 return 0;
3292 case CONST:
3293 CASE_CONST_ANY:
3294 case SYMBOL_REF:
3295 case REG:
3296 return 1;
3298 case MEM:
3299 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3300 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3302 case IF_THEN_ELSE:
3303 return (computed_jump_p_1 (XEXP (x, 1))
3304 || computed_jump_p_1 (XEXP (x, 2)));
3306 default:
3307 break;
3310 fmt = GET_RTX_FORMAT (code);
3311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3313 if (fmt[i] == 'e'
3314 && computed_jump_p_1 (XEXP (x, i)))
3315 return 1;
3317 else if (fmt[i] == 'E')
3318 for (j = 0; j < XVECLEN (x, i); j++)
3319 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3320 return 1;
3323 return 0;
3326 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3328 Tablejumps and casesi insns are not considered indirect jumps;
3329 we can recognize them by a (use (label_ref)). */
3332 computed_jump_p (const rtx_insn *insn)
3334 int i;
3335 if (JUMP_P (insn))
3337 rtx pat = PATTERN (insn);
3339 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3340 if (JUMP_LABEL (insn) != NULL)
3341 return 0;
3343 if (GET_CODE (pat) == PARALLEL)
3345 int len = XVECLEN (pat, 0);
3346 int has_use_labelref = 0;
3348 for (i = len - 1; i >= 0; i--)
3349 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3350 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3351 == LABEL_REF))
3353 has_use_labelref = 1;
3354 break;
3357 if (! has_use_labelref)
3358 for (i = len - 1; i >= 0; i--)
3359 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3360 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3361 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3362 return 1;
3364 else if (GET_CODE (pat) == SET
3365 && SET_DEST (pat) == pc_rtx
3366 && computed_jump_p_1 (SET_SRC (pat)))
3367 return 1;
3369 return 0;
3374 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3375 the equivalent add insn and pass the result to FN, using DATA as the
3376 final argument. */
3378 static int
3379 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3381 rtx x = XEXP (mem, 0);
3382 switch (GET_CODE (x))
3384 case PRE_INC:
3385 case POST_INC:
3387 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3388 rtx r1 = XEXP (x, 0);
3389 rtx c = gen_int_mode (size, GET_MODE (r1));
3390 return fn (mem, x, r1, r1, c, data);
3393 case PRE_DEC:
3394 case POST_DEC:
3396 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3397 rtx r1 = XEXP (x, 0);
3398 rtx c = gen_int_mode (-size, GET_MODE (r1));
3399 return fn (mem, x, r1, r1, c, data);
3402 case PRE_MODIFY:
3403 case POST_MODIFY:
3405 rtx r1 = XEXP (x, 0);
3406 rtx add = XEXP (x, 1);
3407 return fn (mem, x, r1, add, NULL, data);
3410 default:
3411 gcc_unreachable ();
3415 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3416 For each such autoinc operation found, call FN, passing it
3417 the innermost enclosing MEM, the operation itself, the RTX modified
3418 by the operation, two RTXs (the second may be NULL) that, once
3419 added, represent the value to be held by the modified RTX
3420 afterwards, and DATA. FN is to return 0 to continue the
3421 traversal or any other value to have it returned to the caller of
3422 for_each_inc_dec. */
3425 for_each_inc_dec (rtx x,
3426 for_each_inc_dec_fn fn,
3427 void *data)
3429 subrtx_var_iterator::array_type array;
3430 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3432 rtx mem = *iter;
3433 if (mem
3434 && MEM_P (mem)
3435 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3437 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3438 if (res != 0)
3439 return res;
3440 iter.skip_subrtxes ();
3443 return 0;
3447 /* Searches X for any reference to REGNO, returning the rtx of the
3448 reference found if any. Otherwise, returns NULL_RTX. */
3451 regno_use_in (unsigned int regno, rtx x)
3453 const char *fmt;
3454 int i, j;
3455 rtx tem;
3457 if (REG_P (x) && REGNO (x) == regno)
3458 return x;
3460 fmt = GET_RTX_FORMAT (GET_CODE (x));
3461 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3463 if (fmt[i] == 'e')
3465 if ((tem = regno_use_in (regno, XEXP (x, i))))
3466 return tem;
3468 else if (fmt[i] == 'E')
3469 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3470 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3471 return tem;
3474 return NULL_RTX;
3477 /* Return a value indicating whether OP, an operand of a commutative
3478 operation, is preferred as the first or second operand. The more
3479 positive the value, the stronger the preference for being the first
3480 operand. */
3483 commutative_operand_precedence (rtx op)
3485 enum rtx_code code = GET_CODE (op);
3487 /* Constants always become the second operand. Prefer "nice" constants. */
3488 if (code == CONST_INT)
3489 return -10;
3490 if (code == CONST_WIDE_INT)
3491 return -9;
3492 if (code == CONST_POLY_INT)
3493 return -8;
3494 if (code == CONST_DOUBLE)
3495 return -8;
3496 if (code == CONST_FIXED)
3497 return -8;
3498 op = avoid_constant_pool_reference (op);
3499 code = GET_CODE (op);
3501 switch (GET_RTX_CLASS (code))
3503 case RTX_CONST_OBJ:
3504 if (code == CONST_INT)
3505 return -7;
3506 if (code == CONST_WIDE_INT)
3507 return -6;
3508 if (code == CONST_POLY_INT)
3509 return -5;
3510 if (code == CONST_DOUBLE)
3511 return -5;
3512 if (code == CONST_FIXED)
3513 return -5;
3514 return -4;
3516 case RTX_EXTRA:
3517 /* SUBREGs of objects should come second. */
3518 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3519 return -3;
3520 return 0;
3522 case RTX_OBJ:
3523 /* Complex expressions should be the first, so decrease priority
3524 of objects. Prefer pointer objects over non pointer objects. */
3525 if ((REG_P (op) && REG_POINTER (op))
3526 || (MEM_P (op) && MEM_POINTER (op)))
3527 return -1;
3528 return -2;
3530 case RTX_COMM_ARITH:
3531 /* Prefer operands that are themselves commutative to be first.
3532 This helps to make things linear. In particular,
3533 (and (and (reg) (reg)) (not (reg))) is canonical. */
3534 return 4;
3536 case RTX_BIN_ARITH:
3537 /* If only one operand is a binary expression, it will be the first
3538 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3539 is canonical, although it will usually be further simplified. */
3540 return 2;
3542 case RTX_UNARY:
3543 /* Then prefer NEG and NOT. */
3544 if (code == NEG || code == NOT)
3545 return 1;
3546 /* FALLTHRU */
3548 default:
3549 return 0;
3553 /* Return 1 iff it is necessary to swap operands of commutative operation
3554 in order to canonicalize expression. */
3556 bool
3557 swap_commutative_operands_p (rtx x, rtx y)
3559 return (commutative_operand_precedence (x)
3560 < commutative_operand_precedence (y));
3563 /* Return 1 if X is an autoincrement side effect and the register is
3564 not the stack pointer. */
3566 auto_inc_p (const_rtx x)
3568 switch (GET_CODE (x))
3570 case PRE_INC:
3571 case POST_INC:
3572 case PRE_DEC:
3573 case POST_DEC:
3574 case PRE_MODIFY:
3575 case POST_MODIFY:
3576 /* There are no REG_INC notes for SP. */
3577 if (XEXP (x, 0) != stack_pointer_rtx)
3578 return 1;
3579 default:
3580 break;
3582 return 0;
3585 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3587 loc_mentioned_in_p (rtx *loc, const_rtx in)
3589 enum rtx_code code;
3590 const char *fmt;
3591 int i, j;
3593 if (!in)
3594 return 0;
3596 code = GET_CODE (in);
3597 fmt = GET_RTX_FORMAT (code);
3598 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3600 if (fmt[i] == 'e')
3602 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3603 return 1;
3605 else if (fmt[i] == 'E')
3606 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3607 if (loc == &XVECEXP (in, i, j)
3608 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3609 return 1;
3611 return 0;
3614 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3615 and SUBREG_BYTE, return the bit offset where the subreg begins
3616 (counting from the least significant bit of the operand). */
3618 poly_uint64
3619 subreg_lsb_1 (machine_mode outer_mode,
3620 machine_mode inner_mode,
3621 poly_uint64 subreg_byte)
3623 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3625 /* A paradoxical subreg begins at bit position 0. */
3626 if (paradoxical_subreg_p (outer_mode, inner_mode))
3627 return 0;
3629 subreg_end = subreg_byte + GET_MODE_SIZE (outer_mode);
3630 trailing_bytes = GET_MODE_SIZE (inner_mode) - subreg_end;
3631 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3632 byte_pos = trailing_bytes;
3633 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3634 byte_pos = subreg_byte;
3635 else
3637 /* When bytes and words have opposite endianness, we must be able
3638 to split offsets into words and bytes at compile time. */
3639 poly_uint64 leading_word_part
3640 = force_align_down (subreg_byte, UNITS_PER_WORD);
3641 poly_uint64 trailing_word_part
3642 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3643 /* If the subreg crosses a word boundary ensure that
3644 it also begins and ends on a word boundary. */
3645 gcc_assert (known_le (subreg_end - leading_word_part,
3646 (unsigned int) UNITS_PER_WORD)
3647 || (known_eq (leading_word_part, subreg_byte)
3648 && known_eq (trailing_word_part, trailing_bytes)));
3649 if (WORDS_BIG_ENDIAN)
3650 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3651 else
3652 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3655 return byte_pos * BITS_PER_UNIT;
3658 /* Given a subreg X, return the bit offset where the subreg begins
3659 (counting from the least significant bit of the reg). */
3661 poly_uint64
3662 subreg_lsb (const_rtx x)
3664 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3665 SUBREG_BYTE (x));
3668 /* Return the subreg byte offset for a subreg whose outer value has
3669 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3670 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3671 lsb of the inner value. This is the inverse of the calculation
3672 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3674 poly_uint64
3675 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3676 poly_uint64 lsb_shift)
3678 /* A paradoxical subreg begins at bit position 0. */
3679 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3680 if (maybe_gt (outer_bytes, inner_bytes))
3682 gcc_checking_assert (known_eq (lsb_shift, 0U));
3683 return 0;
3686 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3687 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3688 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3689 return upper_bytes;
3690 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3691 return lower_bytes;
3692 else
3694 /* When bytes and words have opposite endianness, we must be able
3695 to split offsets into words and bytes at compile time. */
3696 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3697 UNITS_PER_WORD);
3698 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3699 UNITS_PER_WORD);
3700 if (WORDS_BIG_ENDIAN)
3701 return upper_word_part + (lower_bytes - lower_word_part);
3702 else
3703 return lower_word_part + (upper_bytes - upper_word_part);
3707 /* Fill in information about a subreg of a hard register.
3708 xregno - A regno of an inner hard subreg_reg (or what will become one).
3709 xmode - The mode of xregno.
3710 offset - The byte offset.
3711 ymode - The mode of a top level SUBREG (or what may become one).
3712 info - Pointer to structure to fill in.
3714 Rather than considering one particular inner register (and thus one
3715 particular "outer" register) in isolation, this function really uses
3716 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3717 function does not check whether adding INFO->offset to XREGNO gives
3718 a valid hard register; even if INFO->offset + XREGNO is out of range,
3719 there might be another register of the same type that is in range.
3720 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3721 the new register, since that can depend on things like whether the final
3722 register number is even or odd. Callers that want to check whether
3723 this particular subreg can be replaced by a simple (reg ...) should
3724 use simplify_subreg_regno. */
3726 void
3727 subreg_get_info (unsigned int xregno, machine_mode xmode,
3728 poly_uint64 offset, machine_mode ymode,
3729 struct subreg_info *info)
3731 unsigned int nregs_xmode, nregs_ymode;
3733 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3735 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3736 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3738 bool rknown = false;
3740 /* If the register representation of a non-scalar mode has holes in it,
3741 we expect the scalar units to be concatenated together, with the holes
3742 distributed evenly among the scalar units. Each scalar unit must occupy
3743 at least one register. */
3744 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3746 /* As a consequence, we must be dealing with a constant number of
3747 scalars, and thus a constant offset and number of units. */
3748 HOST_WIDE_INT coffset = offset.to_constant ();
3749 HOST_WIDE_INT cysize = ysize.to_constant ();
3750 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3751 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3752 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3753 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3754 gcc_assert (nregs_xmode
3755 == (nunits
3756 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3757 gcc_assert (hard_regno_nregs (xregno, xmode)
3758 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3760 /* You can only ask for a SUBREG of a value with holes in the middle
3761 if you don't cross the holes. (Such a SUBREG should be done by
3762 picking a different register class, or doing it in memory if
3763 necessary.) An example of a value with holes is XCmode on 32-bit
3764 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3765 3 for each part, but in memory it's two 128-bit parts.
3766 Padding is assumed to be at the end (not necessarily the 'high part')
3767 of each unit. */
3768 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3769 && (coffset / GET_MODE_SIZE (xmode_unit)
3770 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3772 info->representable_p = false;
3773 rknown = true;
3776 else
3777 nregs_xmode = hard_regno_nregs (xregno, xmode);
3779 nregs_ymode = hard_regno_nregs (xregno, ymode);
3781 /* Subreg sizes must be ordered, so that we can tell whether they are
3782 partial, paradoxical or complete. */
3783 gcc_checking_assert (ordered_p (xsize, ysize));
3785 /* Paradoxical subregs are otherwise valid. */
3786 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3788 info->representable_p = true;
3789 /* If this is a big endian paradoxical subreg, which uses more
3790 actual hard registers than the original register, we must
3791 return a negative offset so that we find the proper highpart
3792 of the register.
3794 We assume that the ordering of registers within a multi-register
3795 value has a consistent endianness: if bytes and register words
3796 have different endianness, the hard registers that make up a
3797 multi-register value must be at least word-sized. */
3798 if (REG_WORDS_BIG_ENDIAN)
3799 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3800 else
3801 info->offset = 0;
3802 info->nregs = nregs_ymode;
3803 return;
3806 /* If registers store different numbers of bits in the different
3807 modes, we cannot generally form this subreg. */
3808 poly_uint64 regsize_xmode, regsize_ymode;
3809 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3810 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3811 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3812 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3814 if (!rknown
3815 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3816 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3818 info->representable_p = false;
3819 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3820 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3821 /* Checked by validate_subreg. We must know at compile time
3822 which inner registers are being accessed. */
3823 gcc_unreachable ();
3824 return;
3826 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3827 would go outside of XMODE. */
3828 if (!rknown && maybe_gt (ysize + offset, xsize))
3830 info->representable_p = false;
3831 info->nregs = nregs_ymode;
3832 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3833 /* Checked by validate_subreg. We must know at compile time
3834 which inner registers are being accessed. */
3835 gcc_unreachable ();
3836 return;
3838 /* Quick exit for the simple and common case of extracting whole
3839 subregisters from a multiregister value. */
3840 /* ??? It would be better to integrate this into the code below,
3841 if we can generalize the concept enough and figure out how
3842 odd-sized modes can coexist with the other weird cases we support. */
3843 HOST_WIDE_INT count;
3844 if (!rknown
3845 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3846 && known_eq (regsize_xmode, regsize_ymode)
3847 && constant_multiple_p (offset, regsize_ymode, &count))
3849 info->representable_p = true;
3850 info->nregs = nregs_ymode;
3851 info->offset = count;
3852 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3853 return;
3857 /* Lowpart subregs are otherwise valid. */
3858 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3860 info->representable_p = true;
3861 rknown = true;
3863 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3865 info->offset = 0;
3866 info->nregs = nregs_ymode;
3867 return;
3871 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3872 values there are in (reg:XMODE XREGNO). We can view the register
3873 as consisting of this number of independent "blocks", where each
3874 block occupies NREGS_YMODE registers and contains exactly one
3875 representable YMODE value. */
3876 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3877 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3879 /* Calculate the number of bytes in each block. This must always
3880 be exact, otherwise we don't know how to verify the constraint.
3881 These conditions may be relaxed but subreg_regno_offset would
3882 need to be redesigned. */
3883 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3885 /* Get the number of the first block that contains the subreg and the byte
3886 offset of the subreg from the start of that block. */
3887 unsigned int block_number;
3888 poly_uint64 subblock_offset;
3889 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3890 &subblock_offset))
3891 /* Checked by validate_subreg. We must know at compile time which
3892 inner registers are being accessed. */
3893 gcc_unreachable ();
3895 if (!rknown)
3897 /* Only the lowpart of each block is representable. */
3898 info->representable_p
3899 = known_eq (subblock_offset,
3900 subreg_size_lowpart_offset (ysize, bytes_per_block));
3901 rknown = true;
3904 /* We assume that the ordering of registers within a multi-register
3905 value has a consistent endianness: if bytes and register words
3906 have different endianness, the hard registers that make up a
3907 multi-register value must be at least word-sized. */
3908 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3909 /* The block number we calculated above followed memory endianness.
3910 Convert it to register endianness by counting back from the end.
3911 (Note that, because of the assumption above, each block must be
3912 at least word-sized.) */
3913 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3914 else
3915 info->offset = block_number * nregs_ymode;
3916 info->nregs = nregs_ymode;
3919 /* This function returns the regno offset of a subreg expression.
3920 xregno - A regno of an inner hard subreg_reg (or what will become one).
3921 xmode - The mode of xregno.
3922 offset - The byte offset.
3923 ymode - The mode of a top level SUBREG (or what may become one).
3924 RETURN - The regno offset which would be used. */
3925 unsigned int
3926 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3927 poly_uint64 offset, machine_mode ymode)
3929 struct subreg_info info;
3930 subreg_get_info (xregno, xmode, offset, ymode, &info);
3931 return info.offset;
3934 /* This function returns true when the offset is representable via
3935 subreg_offset in the given regno.
3936 xregno - A regno of an inner hard subreg_reg (or what will become one).
3937 xmode - The mode of xregno.
3938 offset - The byte offset.
3939 ymode - The mode of a top level SUBREG (or what may become one).
3940 RETURN - Whether the offset is representable. */
3941 bool
3942 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3943 poly_uint64 offset, machine_mode ymode)
3945 struct subreg_info info;
3946 subreg_get_info (xregno, xmode, offset, ymode, &info);
3947 return info.representable_p;
3950 /* Return the number of a YMODE register to which
3952 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3954 can be simplified. Return -1 if the subreg can't be simplified.
3956 XREGNO is a hard register number. */
3959 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3960 poly_uint64 offset, machine_mode ymode)
3962 struct subreg_info info;
3963 unsigned int yregno;
3965 /* Give the backend a chance to disallow the mode change. */
3966 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3967 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3968 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3969 /* We can use mode change in LRA for some transformations. */
3970 && ! lra_in_progress)
3971 return -1;
3973 /* We shouldn't simplify stack-related registers. */
3974 if ((!reload_completed || frame_pointer_needed)
3975 && xregno == FRAME_POINTER_REGNUM)
3976 return -1;
3978 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3979 && xregno == ARG_POINTER_REGNUM)
3980 return -1;
3982 if (xregno == STACK_POINTER_REGNUM
3983 /* We should convert hard stack register in LRA if it is
3984 possible. */
3985 && ! lra_in_progress)
3986 return -1;
3988 /* Try to get the register offset. */
3989 subreg_get_info (xregno, xmode, offset, ymode, &info);
3990 if (!info.representable_p)
3991 return -1;
3993 /* Make sure that the offsetted register value is in range. */
3994 yregno = xregno + info.offset;
3995 if (!HARD_REGISTER_NUM_P (yregno))
3996 return -1;
3998 /* See whether (reg:YMODE YREGNO) is valid.
4000 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
4001 This is a kludge to work around how complex FP arguments are passed
4002 on IA-64 and should be fixed. See PR target/49226. */
4003 if (!targetm.hard_regno_mode_ok (yregno, ymode)
4004 && targetm.hard_regno_mode_ok (xregno, xmode))
4005 return -1;
4007 return (int) yregno;
4010 /* Return the final regno that a subreg expression refers to. */
4011 unsigned int
4012 subreg_regno (const_rtx x)
4014 unsigned int ret;
4015 rtx subreg = SUBREG_REG (x);
4016 int regno = REGNO (subreg);
4018 ret = regno + subreg_regno_offset (regno,
4019 GET_MODE (subreg),
4020 SUBREG_BYTE (x),
4021 GET_MODE (x));
4022 return ret;
4026 /* Return the number of registers that a subreg expression refers
4027 to. */
4028 unsigned int
4029 subreg_nregs (const_rtx x)
4031 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4034 /* Return the number of registers that a subreg REG with REGNO
4035 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4036 changed so that the regno can be passed in. */
4038 unsigned int
4039 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4041 struct subreg_info info;
4042 rtx subreg = SUBREG_REG (x);
4044 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4045 &info);
4046 return info.nregs;
4049 struct parms_set_data
4051 int nregs;
4052 HARD_REG_SET regs;
4055 /* Helper function for noticing stores to parameter registers. */
4056 static void
4057 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4059 struct parms_set_data *const d = (struct parms_set_data *) data;
4060 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4061 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4063 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4064 d->nregs--;
4068 /* Look backward for first parameter to be loaded.
4069 Note that loads of all parameters will not necessarily be
4070 found if CSE has eliminated some of them (e.g., an argument
4071 to the outer function is passed down as a parameter).
4072 Do not skip BOUNDARY. */
4073 rtx_insn *
4074 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4076 struct parms_set_data parm;
4077 rtx p;
4078 rtx_insn *before, *first_set;
4080 /* Since different machines initialize their parameter registers
4081 in different orders, assume nothing. Collect the set of all
4082 parameter registers. */
4083 CLEAR_HARD_REG_SET (parm.regs);
4084 parm.nregs = 0;
4085 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4086 if (GET_CODE (XEXP (p, 0)) == USE
4087 && REG_P (XEXP (XEXP (p, 0), 0))
4088 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4090 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4092 /* We only care about registers which can hold function
4093 arguments. */
4094 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4095 continue;
4097 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4098 parm.nregs++;
4100 before = call_insn;
4101 first_set = call_insn;
4103 /* Search backward for the first set of a register in this set. */
4104 while (parm.nregs && before != boundary)
4106 before = PREV_INSN (before);
4108 /* It is possible that some loads got CSEed from one call to
4109 another. Stop in that case. */
4110 if (CALL_P (before))
4111 break;
4113 /* Our caller needs either ensure that we will find all sets
4114 (in case code has not been optimized yet), or take care
4115 for possible labels in a way by setting boundary to preceding
4116 CODE_LABEL. */
4117 if (LABEL_P (before))
4119 gcc_assert (before == boundary);
4120 break;
4123 if (INSN_P (before))
4125 int nregs_old = parm.nregs;
4126 note_stores (PATTERN (before), parms_set, &parm);
4127 /* If we found something that did not set a parameter reg,
4128 we're done. Do not keep going, as that might result
4129 in hoisting an insn before the setting of a pseudo
4130 that is used by the hoisted insn. */
4131 if (nregs_old != parm.nregs)
4132 first_set = before;
4133 else
4134 break;
4137 return first_set;
4140 /* Return true if we should avoid inserting code between INSN and preceding
4141 call instruction. */
4143 bool
4144 keep_with_call_p (const rtx_insn *insn)
4146 rtx set;
4148 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4150 if (REG_P (SET_DEST (set))
4151 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4152 && fixed_regs[REGNO (SET_DEST (set))]
4153 && general_operand (SET_SRC (set), VOIDmode))
4154 return true;
4155 if (REG_P (SET_SRC (set))
4156 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4157 && REG_P (SET_DEST (set))
4158 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4159 return true;
4160 /* There may be a stack pop just after the call and before the store
4161 of the return register. Search for the actual store when deciding
4162 if we can break or not. */
4163 if (SET_DEST (set) == stack_pointer_rtx)
4165 /* This CONST_CAST is okay because next_nonnote_insn just
4166 returns its argument and we assign it to a const_rtx
4167 variable. */
4168 const rtx_insn *i2
4169 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4170 if (i2 && keep_with_call_p (i2))
4171 return true;
4174 return false;
4177 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4178 to non-complex jumps. That is, direct unconditional, conditional,
4179 and tablejumps, but not computed jumps or returns. It also does
4180 not apply to the fallthru case of a conditional jump. */
4182 bool
4183 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4185 rtx tmp = JUMP_LABEL (jump_insn);
4186 rtx_jump_table_data *table;
4188 if (label == tmp)
4189 return true;
4191 if (tablejump_p (jump_insn, NULL, &table))
4193 rtvec vec = table->get_labels ();
4194 int i, veclen = GET_NUM_ELEM (vec);
4196 for (i = 0; i < veclen; ++i)
4197 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4198 return true;
4201 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4202 return true;
4204 return false;
4208 /* Return an estimate of the cost of computing rtx X.
4209 One use is in cse, to decide which expression to keep in the hash table.
4210 Another is in rtl generation, to pick the cheapest way to multiply.
4211 Other uses like the latter are expected in the future.
4213 X appears as operand OPNO in an expression with code OUTER_CODE.
4214 SPEED specifies whether costs optimized for speed or size should
4215 be returned. */
4218 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4219 int opno, bool speed)
4221 int i, j;
4222 enum rtx_code code;
4223 const char *fmt;
4224 int total;
4225 int factor;
4227 if (x == 0)
4228 return 0;
4230 if (GET_MODE (x) != VOIDmode)
4231 mode = GET_MODE (x);
4233 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4234 many insns, taking N times as long. */
4235 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4236 if (factor == 0)
4237 factor = 1;
4239 /* Compute the default costs of certain things.
4240 Note that targetm.rtx_costs can override the defaults. */
4242 code = GET_CODE (x);
4243 switch (code)
4245 case MULT:
4246 /* Multiplication has time-complexity O(N*N), where N is the
4247 number of units (translated from digits) when using
4248 schoolbook long multiplication. */
4249 total = factor * factor * COSTS_N_INSNS (5);
4250 break;
4251 case DIV:
4252 case UDIV:
4253 case MOD:
4254 case UMOD:
4255 /* Similarly, complexity for schoolbook long division. */
4256 total = factor * factor * COSTS_N_INSNS (7);
4257 break;
4258 case USE:
4259 /* Used in combine.c as a marker. */
4260 total = 0;
4261 break;
4262 case SET:
4263 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4264 the mode for the factor. */
4265 mode = GET_MODE (SET_DEST (x));
4266 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4267 if (factor == 0)
4268 factor = 1;
4269 /* FALLTHRU */
4270 default:
4271 total = factor * COSTS_N_INSNS (1);
4274 switch (code)
4276 case REG:
4277 return 0;
4279 case SUBREG:
4280 total = 0;
4281 /* If we can't tie these modes, make this expensive. The larger
4282 the mode, the more expensive it is. */
4283 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4284 return COSTS_N_INSNS (2 + factor);
4285 break;
4287 case TRUNCATE:
4288 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4290 total = 0;
4291 break;
4293 /* FALLTHRU */
4294 default:
4295 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4296 return total;
4297 break;
4300 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4301 which is already in total. */
4303 fmt = GET_RTX_FORMAT (code);
4304 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4305 if (fmt[i] == 'e')
4306 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4307 else if (fmt[i] == 'E')
4308 for (j = 0; j < XVECLEN (x, i); j++)
4309 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4311 return total;
4314 /* Fill in the structure C with information about both speed and size rtx
4315 costs for X, which is operand OPNO in an expression with code OUTER. */
4317 void
4318 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4319 struct full_rtx_costs *c)
4321 c->speed = rtx_cost (x, mode, outer, opno, true);
4322 c->size = rtx_cost (x, mode, outer, opno, false);
4326 /* Return cost of address expression X.
4327 Expect that X is properly formed address reference.
4329 SPEED parameter specify whether costs optimized for speed or size should
4330 be returned. */
4333 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4335 /* We may be asked for cost of various unusual addresses, such as operands
4336 of push instruction. It is not worthwhile to complicate writing
4337 of the target hook by such cases. */
4339 if (!memory_address_addr_space_p (mode, x, as))
4340 return 1000;
4342 return targetm.address_cost (x, mode, as, speed);
4345 /* If the target doesn't override, compute the cost as with arithmetic. */
4348 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4350 return rtx_cost (x, Pmode, MEM, 0, speed);
4354 unsigned HOST_WIDE_INT
4355 nonzero_bits (const_rtx x, machine_mode mode)
4357 if (mode == VOIDmode)
4358 mode = GET_MODE (x);
4359 scalar_int_mode int_mode;
4360 if (!is_a <scalar_int_mode> (mode, &int_mode))
4361 return GET_MODE_MASK (mode);
4362 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4365 unsigned int
4366 num_sign_bit_copies (const_rtx x, machine_mode mode)
4368 if (mode == VOIDmode)
4369 mode = GET_MODE (x);
4370 scalar_int_mode int_mode;
4371 if (!is_a <scalar_int_mode> (mode, &int_mode))
4372 return 1;
4373 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4376 /* Return true if nonzero_bits1 might recurse into both operands
4377 of X. */
4379 static inline bool
4380 nonzero_bits_binary_arith_p (const_rtx x)
4382 if (!ARITHMETIC_P (x))
4383 return false;
4384 switch (GET_CODE (x))
4386 case AND:
4387 case XOR:
4388 case IOR:
4389 case UMIN:
4390 case UMAX:
4391 case SMIN:
4392 case SMAX:
4393 case PLUS:
4394 case MINUS:
4395 case MULT:
4396 case DIV:
4397 case UDIV:
4398 case MOD:
4399 case UMOD:
4400 return true;
4401 default:
4402 return false;
4406 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4407 It avoids exponential behavior in nonzero_bits1 when X has
4408 identical subexpressions on the first or the second level. */
4410 static unsigned HOST_WIDE_INT
4411 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4412 machine_mode known_mode,
4413 unsigned HOST_WIDE_INT known_ret)
4415 if (x == known_x && mode == known_mode)
4416 return known_ret;
4418 /* Try to find identical subexpressions. If found call
4419 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4420 precomputed value for the subexpression as KNOWN_RET. */
4422 if (nonzero_bits_binary_arith_p (x))
4424 rtx x0 = XEXP (x, 0);
4425 rtx x1 = XEXP (x, 1);
4427 /* Check the first level. */
4428 if (x0 == x1)
4429 return nonzero_bits1 (x, mode, x0, mode,
4430 cached_nonzero_bits (x0, mode, known_x,
4431 known_mode, known_ret));
4433 /* Check the second level. */
4434 if (nonzero_bits_binary_arith_p (x0)
4435 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4436 return nonzero_bits1 (x, mode, x1, mode,
4437 cached_nonzero_bits (x1, mode, known_x,
4438 known_mode, known_ret));
4440 if (nonzero_bits_binary_arith_p (x1)
4441 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4442 return nonzero_bits1 (x, mode, x0, mode,
4443 cached_nonzero_bits (x0, mode, known_x,
4444 known_mode, known_ret));
4447 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4450 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4451 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4452 is less useful. We can't allow both, because that results in exponential
4453 run time recursion. There is a nullstone testcase that triggered
4454 this. This macro avoids accidental uses of num_sign_bit_copies. */
4455 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4457 /* Given an expression, X, compute which bits in X can be nonzero.
4458 We don't care about bits outside of those defined in MODE.
4460 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4461 an arithmetic operation, we can do better. */
4463 static unsigned HOST_WIDE_INT
4464 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4465 machine_mode known_mode,
4466 unsigned HOST_WIDE_INT known_ret)
4468 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4469 unsigned HOST_WIDE_INT inner_nz;
4470 enum rtx_code code = GET_CODE (x);
4471 machine_mode inner_mode;
4472 unsigned int inner_width;
4473 scalar_int_mode xmode;
4475 unsigned int mode_width = GET_MODE_PRECISION (mode);
4477 if (CONST_INT_P (x))
4479 if (SHORT_IMMEDIATES_SIGN_EXTEND
4480 && INTVAL (x) > 0
4481 && mode_width < BITS_PER_WORD
4482 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4483 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4485 return UINTVAL (x);
4488 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4489 return nonzero;
4490 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4492 /* If X is wider than MODE, use its mode instead. */
4493 if (xmode_width > mode_width)
4495 mode = xmode;
4496 nonzero = GET_MODE_MASK (mode);
4497 mode_width = xmode_width;
4500 if (mode_width > HOST_BITS_PER_WIDE_INT)
4501 /* Our only callers in this case look for single bit values. So
4502 just return the mode mask. Those tests will then be false. */
4503 return nonzero;
4505 /* If MODE is wider than X, but both are a single word for both the host
4506 and target machines, we can compute this from which bits of the object
4507 might be nonzero in its own mode, taking into account the fact that, on
4508 CISC machines, accessing an object in a wider mode generally causes the
4509 high-order bits to become undefined, so they are not known to be zero.
4510 We extend this reasoning to RISC machines for operations that might not
4511 operate on the full registers. */
4512 if (mode_width > xmode_width
4513 && xmode_width <= BITS_PER_WORD
4514 && xmode_width <= HOST_BITS_PER_WIDE_INT
4515 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4517 nonzero &= cached_nonzero_bits (x, xmode,
4518 known_x, known_mode, known_ret);
4519 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4520 return nonzero;
4523 /* Please keep nonzero_bits_binary_arith_p above in sync with
4524 the code in the switch below. */
4525 switch (code)
4527 case REG:
4528 #if defined(POINTERS_EXTEND_UNSIGNED)
4529 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4530 all the bits above ptr_mode are known to be zero. */
4531 /* As we do not know which address space the pointer is referring to,
4532 we can do this only if the target does not support different pointer
4533 or address modes depending on the address space. */
4534 if (target_default_pointer_address_modes_p ()
4535 && POINTERS_EXTEND_UNSIGNED
4536 && xmode == Pmode
4537 && REG_POINTER (x)
4538 && !targetm.have_ptr_extend ())
4539 nonzero &= GET_MODE_MASK (ptr_mode);
4540 #endif
4542 /* Include declared information about alignment of pointers. */
4543 /* ??? We don't properly preserve REG_POINTER changes across
4544 pointer-to-integer casts, so we can't trust it except for
4545 things that we know must be pointers. See execute/960116-1.c. */
4546 if ((x == stack_pointer_rtx
4547 || x == frame_pointer_rtx
4548 || x == arg_pointer_rtx)
4549 && REGNO_POINTER_ALIGN (REGNO (x)))
4551 unsigned HOST_WIDE_INT alignment
4552 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4554 #ifdef PUSH_ROUNDING
4555 /* If PUSH_ROUNDING is defined, it is possible for the
4556 stack to be momentarily aligned only to that amount,
4557 so we pick the least alignment. */
4558 if (x == stack_pointer_rtx && PUSH_ARGS)
4560 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4561 alignment = MIN (known_alignment (rounded_1), alignment);
4563 #endif
4565 nonzero &= ~(alignment - 1);
4569 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4570 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4571 &nonzero_for_hook);
4573 if (new_rtx)
4574 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4575 known_mode, known_ret);
4577 return nonzero_for_hook;
4580 case MEM:
4581 /* In many, if not most, RISC machines, reading a byte from memory
4582 zeros the rest of the register. Noticing that fact saves a lot
4583 of extra zero-extends. */
4584 if (load_extend_op (xmode) == ZERO_EXTEND)
4585 nonzero &= GET_MODE_MASK (xmode);
4586 break;
4588 case EQ: case NE:
4589 case UNEQ: case LTGT:
4590 case GT: case GTU: case UNGT:
4591 case LT: case LTU: case UNLT:
4592 case GE: case GEU: case UNGE:
4593 case LE: case LEU: case UNLE:
4594 case UNORDERED: case ORDERED:
4595 /* If this produces an integer result, we know which bits are set.
4596 Code here used to clear bits outside the mode of X, but that is
4597 now done above. */
4598 /* Mind that MODE is the mode the caller wants to look at this
4599 operation in, and not the actual operation mode. We can wind
4600 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4601 that describes the results of a vector compare. */
4602 if (GET_MODE_CLASS (xmode) == MODE_INT
4603 && mode_width <= HOST_BITS_PER_WIDE_INT)
4604 nonzero = STORE_FLAG_VALUE;
4605 break;
4607 case NEG:
4608 #if 0
4609 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4610 and num_sign_bit_copies. */
4611 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4612 nonzero = 1;
4613 #endif
4615 if (xmode_width < mode_width)
4616 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4617 break;
4619 case ABS:
4620 #if 0
4621 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4622 and num_sign_bit_copies. */
4623 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4624 nonzero = 1;
4625 #endif
4626 break;
4628 case TRUNCATE:
4629 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4630 known_x, known_mode, known_ret)
4631 & GET_MODE_MASK (mode));
4632 break;
4634 case ZERO_EXTEND:
4635 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4636 known_x, known_mode, known_ret);
4637 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4638 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4639 break;
4641 case SIGN_EXTEND:
4642 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4643 Otherwise, show all the bits in the outer mode but not the inner
4644 may be nonzero. */
4645 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4646 known_x, known_mode, known_ret);
4647 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4649 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4650 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4651 inner_nz |= (GET_MODE_MASK (mode)
4652 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4655 nonzero &= inner_nz;
4656 break;
4658 case AND:
4659 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4660 known_x, known_mode, known_ret)
4661 & cached_nonzero_bits (XEXP (x, 1), mode,
4662 known_x, known_mode, known_ret);
4663 break;
4665 case XOR: case IOR:
4666 case UMIN: case UMAX: case SMIN: case SMAX:
4668 unsigned HOST_WIDE_INT nonzero0
4669 = cached_nonzero_bits (XEXP (x, 0), mode,
4670 known_x, known_mode, known_ret);
4672 /* Don't call nonzero_bits for the second time if it cannot change
4673 anything. */
4674 if ((nonzero & nonzero0) != nonzero)
4675 nonzero &= nonzero0
4676 | cached_nonzero_bits (XEXP (x, 1), mode,
4677 known_x, known_mode, known_ret);
4679 break;
4681 case PLUS: case MINUS:
4682 case MULT:
4683 case DIV: case UDIV:
4684 case MOD: case UMOD:
4685 /* We can apply the rules of arithmetic to compute the number of
4686 high- and low-order zero bits of these operations. We start by
4687 computing the width (position of the highest-order nonzero bit)
4688 and the number of low-order zero bits for each value. */
4690 unsigned HOST_WIDE_INT nz0
4691 = cached_nonzero_bits (XEXP (x, 0), mode,
4692 known_x, known_mode, known_ret);
4693 unsigned HOST_WIDE_INT nz1
4694 = cached_nonzero_bits (XEXP (x, 1), mode,
4695 known_x, known_mode, known_ret);
4696 int sign_index = xmode_width - 1;
4697 int width0 = floor_log2 (nz0) + 1;
4698 int width1 = floor_log2 (nz1) + 1;
4699 int low0 = ctz_or_zero (nz0);
4700 int low1 = ctz_or_zero (nz1);
4701 unsigned HOST_WIDE_INT op0_maybe_minusp
4702 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4703 unsigned HOST_WIDE_INT op1_maybe_minusp
4704 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4705 unsigned int result_width = mode_width;
4706 int result_low = 0;
4708 switch (code)
4710 case PLUS:
4711 result_width = MAX (width0, width1) + 1;
4712 result_low = MIN (low0, low1);
4713 break;
4714 case MINUS:
4715 result_low = MIN (low0, low1);
4716 break;
4717 case MULT:
4718 result_width = width0 + width1;
4719 result_low = low0 + low1;
4720 break;
4721 case DIV:
4722 if (width1 == 0)
4723 break;
4724 if (!op0_maybe_minusp && !op1_maybe_minusp)
4725 result_width = width0;
4726 break;
4727 case UDIV:
4728 if (width1 == 0)
4729 break;
4730 result_width = width0;
4731 break;
4732 case MOD:
4733 if (width1 == 0)
4734 break;
4735 if (!op0_maybe_minusp && !op1_maybe_minusp)
4736 result_width = MIN (width0, width1);
4737 result_low = MIN (low0, low1);
4738 break;
4739 case UMOD:
4740 if (width1 == 0)
4741 break;
4742 result_width = MIN (width0, width1);
4743 result_low = MIN (low0, low1);
4744 break;
4745 default:
4746 gcc_unreachable ();
4749 if (result_width < mode_width)
4750 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4752 if (result_low > 0)
4753 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4755 break;
4757 case ZERO_EXTRACT:
4758 if (CONST_INT_P (XEXP (x, 1))
4759 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4760 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4761 break;
4763 case SUBREG:
4764 /* If this is a SUBREG formed for a promoted variable that has
4765 been zero-extended, we know that at least the high-order bits
4766 are zero, though others might be too. */
4767 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4768 nonzero = GET_MODE_MASK (xmode)
4769 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4770 known_x, known_mode, known_ret);
4772 /* If the inner mode is a single word for both the host and target
4773 machines, we can compute this from which bits of the inner
4774 object might be nonzero. */
4775 inner_mode = GET_MODE (SUBREG_REG (x));
4776 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4777 && inner_width <= BITS_PER_WORD
4778 && inner_width <= HOST_BITS_PER_WIDE_INT)
4780 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4781 known_x, known_mode, known_ret);
4783 /* On a typical CISC machine, accessing an object in a wider mode
4784 causes the high-order bits to become undefined. So they are
4785 not known to be zero.
4787 On a typical RISC machine, we only have to worry about the way
4788 loads are extended. Otherwise, if we get a reload for the inner
4789 part, it may be loaded from the stack, and then we may lose all
4790 the zero bits that existed before the store to the stack. */
4791 rtx_code extend_op;
4792 if ((!WORD_REGISTER_OPERATIONS
4793 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4794 ? val_signbit_known_set_p (inner_mode, nonzero)
4795 : extend_op != ZERO_EXTEND)
4796 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4797 && xmode_width > inner_width)
4798 nonzero
4799 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4801 break;
4803 case ASHIFT:
4804 case ASHIFTRT:
4805 case LSHIFTRT:
4806 case ROTATE:
4807 case ROTATERT:
4808 /* The nonzero bits are in two classes: any bits within MODE
4809 that aren't in xmode are always significant. The rest of the
4810 nonzero bits are those that are significant in the operand of
4811 the shift when shifted the appropriate number of bits. This
4812 shows that high-order bits are cleared by the right shift and
4813 low-order bits by left shifts. */
4814 if (CONST_INT_P (XEXP (x, 1))
4815 && INTVAL (XEXP (x, 1)) >= 0
4816 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4817 && INTVAL (XEXP (x, 1)) < xmode_width)
4819 int count = INTVAL (XEXP (x, 1));
4820 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4821 unsigned HOST_WIDE_INT op_nonzero
4822 = cached_nonzero_bits (XEXP (x, 0), mode,
4823 known_x, known_mode, known_ret);
4824 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4825 unsigned HOST_WIDE_INT outer = 0;
4827 if (mode_width > xmode_width)
4828 outer = (op_nonzero & nonzero & ~mode_mask);
4830 switch (code)
4832 case ASHIFT:
4833 inner <<= count;
4834 break;
4836 case LSHIFTRT:
4837 inner >>= count;
4838 break;
4840 case ASHIFTRT:
4841 inner >>= count;
4843 /* If the sign bit may have been nonzero before the shift, we
4844 need to mark all the places it could have been copied to
4845 by the shift as possibly nonzero. */
4846 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4847 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4848 << (xmode_width - count));
4849 break;
4851 case ROTATE:
4852 inner = (inner << (count % xmode_width)
4853 | (inner >> (xmode_width - (count % xmode_width))))
4854 & mode_mask;
4855 break;
4857 case ROTATERT:
4858 inner = (inner >> (count % xmode_width)
4859 | (inner << (xmode_width - (count % xmode_width))))
4860 & mode_mask;
4861 break;
4863 default:
4864 gcc_unreachable ();
4867 nonzero &= (outer | inner);
4869 break;
4871 case FFS:
4872 case POPCOUNT:
4873 /* This is at most the number of bits in the mode. */
4874 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4875 break;
4877 case CLZ:
4878 /* If CLZ has a known value at zero, then the nonzero bits are
4879 that value, plus the number of bits in the mode minus one. */
4880 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4881 nonzero
4882 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4883 else
4884 nonzero = -1;
4885 break;
4887 case CTZ:
4888 /* If CTZ has a known value at zero, then the nonzero bits are
4889 that value, plus the number of bits in the mode minus one. */
4890 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4891 nonzero
4892 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4893 else
4894 nonzero = -1;
4895 break;
4897 case CLRSB:
4898 /* This is at most the number of bits in the mode minus 1. */
4899 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4900 break;
4902 case PARITY:
4903 nonzero = 1;
4904 break;
4906 case IF_THEN_ELSE:
4908 unsigned HOST_WIDE_INT nonzero_true
4909 = cached_nonzero_bits (XEXP (x, 1), mode,
4910 known_x, known_mode, known_ret);
4912 /* Don't call nonzero_bits for the second time if it cannot change
4913 anything. */
4914 if ((nonzero & nonzero_true) != nonzero)
4915 nonzero &= nonzero_true
4916 | cached_nonzero_bits (XEXP (x, 2), mode,
4917 known_x, known_mode, known_ret);
4919 break;
4921 default:
4922 break;
4925 return nonzero;
4928 /* See the macro definition above. */
4929 #undef cached_num_sign_bit_copies
4932 /* Return true if num_sign_bit_copies1 might recurse into both operands
4933 of X. */
4935 static inline bool
4936 num_sign_bit_copies_binary_arith_p (const_rtx x)
4938 if (!ARITHMETIC_P (x))
4939 return false;
4940 switch (GET_CODE (x))
4942 case IOR:
4943 case AND:
4944 case XOR:
4945 case SMIN:
4946 case SMAX:
4947 case UMIN:
4948 case UMAX:
4949 case PLUS:
4950 case MINUS:
4951 case MULT:
4952 return true;
4953 default:
4954 return false;
4958 /* The function cached_num_sign_bit_copies is a wrapper around
4959 num_sign_bit_copies1. It avoids exponential behavior in
4960 num_sign_bit_copies1 when X has identical subexpressions on the
4961 first or the second level. */
4963 static unsigned int
4964 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4965 const_rtx known_x, machine_mode known_mode,
4966 unsigned int known_ret)
4968 if (x == known_x && mode == known_mode)
4969 return known_ret;
4971 /* Try to find identical subexpressions. If found call
4972 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4973 the precomputed value for the subexpression as KNOWN_RET. */
4975 if (num_sign_bit_copies_binary_arith_p (x))
4977 rtx x0 = XEXP (x, 0);
4978 rtx x1 = XEXP (x, 1);
4980 /* Check the first level. */
4981 if (x0 == x1)
4982 return
4983 num_sign_bit_copies1 (x, mode, x0, mode,
4984 cached_num_sign_bit_copies (x0, mode, known_x,
4985 known_mode,
4986 known_ret));
4988 /* Check the second level. */
4989 if (num_sign_bit_copies_binary_arith_p (x0)
4990 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4991 return
4992 num_sign_bit_copies1 (x, mode, x1, mode,
4993 cached_num_sign_bit_copies (x1, mode, known_x,
4994 known_mode,
4995 known_ret));
4997 if (num_sign_bit_copies_binary_arith_p (x1)
4998 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4999 return
5000 num_sign_bit_copies1 (x, mode, x0, mode,
5001 cached_num_sign_bit_copies (x0, mode, known_x,
5002 known_mode,
5003 known_ret));
5006 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
5009 /* Return the number of bits at the high-order end of X that are known to
5010 be equal to the sign bit. X will be used in mode MODE. The returned
5011 value will always be between 1 and the number of bits in MODE. */
5013 static unsigned int
5014 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5015 machine_mode known_mode,
5016 unsigned int known_ret)
5018 enum rtx_code code = GET_CODE (x);
5019 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5020 int num0, num1, result;
5021 unsigned HOST_WIDE_INT nonzero;
5023 if (CONST_INT_P (x))
5025 /* If the constant is negative, take its 1's complement and remask.
5026 Then see how many zero bits we have. */
5027 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5028 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5029 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5030 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5032 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5035 scalar_int_mode xmode, inner_mode;
5036 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5037 return 1;
5039 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5041 /* For a smaller mode, just ignore the high bits. */
5042 if (bitwidth < xmode_width)
5044 num0 = cached_num_sign_bit_copies (x, xmode,
5045 known_x, known_mode, known_ret);
5046 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5049 if (bitwidth > xmode_width)
5051 /* If this machine does not do all register operations on the entire
5052 register and MODE is wider than the mode of X, we can say nothing
5053 at all about the high-order bits. We extend this reasoning to RISC
5054 machines for operations that might not operate on full registers. */
5055 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5056 return 1;
5058 /* Likewise on machines that do, if the mode of the object is smaller
5059 than a word and loads of that size don't sign extend, we can say
5060 nothing about the high order bits. */
5061 if (xmode_width < BITS_PER_WORD
5062 && load_extend_op (xmode) != SIGN_EXTEND)
5063 return 1;
5066 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5067 the code in the switch below. */
5068 switch (code)
5070 case REG:
5072 #if defined(POINTERS_EXTEND_UNSIGNED)
5073 /* If pointers extend signed and this is a pointer in Pmode, say that
5074 all the bits above ptr_mode are known to be sign bit copies. */
5075 /* As we do not know which address space the pointer is referring to,
5076 we can do this only if the target does not support different pointer
5077 or address modes depending on the address space. */
5078 if (target_default_pointer_address_modes_p ()
5079 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5080 && mode == Pmode && REG_POINTER (x)
5081 && !targetm.have_ptr_extend ())
5082 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5083 #endif
5086 unsigned int copies_for_hook = 1, copies = 1;
5087 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5088 &copies_for_hook);
5090 if (new_rtx)
5091 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5092 known_mode, known_ret);
5094 if (copies > 1 || copies_for_hook > 1)
5095 return MAX (copies, copies_for_hook);
5097 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5099 break;
5101 case MEM:
5102 /* Some RISC machines sign-extend all loads of smaller than a word. */
5103 if (load_extend_op (xmode) == SIGN_EXTEND)
5104 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5105 break;
5107 case SUBREG:
5108 /* If this is a SUBREG for a promoted object that is sign-extended
5109 and we are looking at it in a wider mode, we know that at least the
5110 high-order bits are known to be sign bit copies. */
5112 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5114 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5115 known_x, known_mode, known_ret);
5116 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5119 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5121 /* For a smaller object, just ignore the high bits. */
5122 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5124 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5125 known_x, known_mode,
5126 known_ret);
5127 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5128 - bitwidth));
5131 /* For paradoxical SUBREGs on machines where all register operations
5132 affect the entire register, just look inside. Note that we are
5133 passing MODE to the recursive call, so the number of sign bit
5134 copies will remain relative to that mode, not the inner mode.
5136 This works only if loads sign extend. Otherwise, if we get a
5137 reload for the inner part, it may be loaded from the stack, and
5138 then we lose all sign bit copies that existed before the store
5139 to the stack. */
5140 if (WORD_REGISTER_OPERATIONS
5141 && load_extend_op (inner_mode) == SIGN_EXTEND
5142 && paradoxical_subreg_p (x)
5143 && MEM_P (SUBREG_REG (x)))
5144 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5145 known_x, known_mode, known_ret);
5147 break;
5149 case SIGN_EXTRACT:
5150 if (CONST_INT_P (XEXP (x, 1)))
5151 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5152 break;
5154 case SIGN_EXTEND:
5155 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5156 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5157 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5158 known_x, known_mode, known_ret));
5159 break;
5161 case TRUNCATE:
5162 /* For a smaller object, just ignore the high bits. */
5163 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5164 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5165 known_x, known_mode, known_ret);
5166 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5167 - bitwidth)));
5169 case NOT:
5170 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5171 known_x, known_mode, known_ret);
5173 case ROTATE: case ROTATERT:
5174 /* If we are rotating left by a number of bits less than the number
5175 of sign bit copies, we can just subtract that amount from the
5176 number. */
5177 if (CONST_INT_P (XEXP (x, 1))
5178 && INTVAL (XEXP (x, 1)) >= 0
5179 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5181 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5182 known_x, known_mode, known_ret);
5183 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5184 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5186 break;
5188 case NEG:
5189 /* In general, this subtracts one sign bit copy. But if the value
5190 is known to be positive, the number of sign bit copies is the
5191 same as that of the input. Finally, if the input has just one bit
5192 that might be nonzero, all the bits are copies of the sign bit. */
5193 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5194 known_x, known_mode, known_ret);
5195 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5196 return num0 > 1 ? num0 - 1 : 1;
5198 nonzero = nonzero_bits (XEXP (x, 0), mode);
5199 if (nonzero == 1)
5200 return bitwidth;
5202 if (num0 > 1
5203 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5204 num0--;
5206 return num0;
5208 case IOR: case AND: case XOR:
5209 case SMIN: case SMAX: case UMIN: case UMAX:
5210 /* Logical operations will preserve the number of sign-bit copies.
5211 MIN and MAX operations always return one of the operands. */
5212 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5213 known_x, known_mode, known_ret);
5214 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5215 known_x, known_mode, known_ret);
5217 /* If num1 is clearing some of the top bits then regardless of
5218 the other term, we are guaranteed to have at least that many
5219 high-order zero bits. */
5220 if (code == AND
5221 && num1 > 1
5222 && bitwidth <= HOST_BITS_PER_WIDE_INT
5223 && CONST_INT_P (XEXP (x, 1))
5224 && (UINTVAL (XEXP (x, 1))
5225 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5226 return num1;
5228 /* Similarly for IOR when setting high-order bits. */
5229 if (code == IOR
5230 && num1 > 1
5231 && bitwidth <= HOST_BITS_PER_WIDE_INT
5232 && CONST_INT_P (XEXP (x, 1))
5233 && (UINTVAL (XEXP (x, 1))
5234 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5235 return num1;
5237 return MIN (num0, num1);
5239 case PLUS: case MINUS:
5240 /* For addition and subtraction, we can have a 1-bit carry. However,
5241 if we are subtracting 1 from a positive number, there will not
5242 be such a carry. Furthermore, if the positive number is known to
5243 be 0 or 1, we know the result is either -1 or 0. */
5245 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5246 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5248 nonzero = nonzero_bits (XEXP (x, 0), mode);
5249 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5250 return (nonzero == 1 || nonzero == 0 ? bitwidth
5251 : bitwidth - floor_log2 (nonzero) - 1);
5254 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5255 known_x, known_mode, known_ret);
5256 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5257 known_x, known_mode, known_ret);
5258 result = MAX (1, MIN (num0, num1) - 1);
5260 return result;
5262 case MULT:
5263 /* The number of bits of the product is the sum of the number of
5264 bits of both terms. However, unless one of the terms if known
5265 to be positive, we must allow for an additional bit since negating
5266 a negative number can remove one sign bit copy. */
5268 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5269 known_x, known_mode, known_ret);
5270 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5271 known_x, known_mode, known_ret);
5273 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5274 if (result > 0
5275 && (bitwidth > HOST_BITS_PER_WIDE_INT
5276 || (((nonzero_bits (XEXP (x, 0), mode)
5277 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5278 && ((nonzero_bits (XEXP (x, 1), mode)
5279 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5280 != 0))))
5281 result--;
5283 return MAX (1, result);
5285 case UDIV:
5286 /* The result must be <= the first operand. If the first operand
5287 has the high bit set, we know nothing about the number of sign
5288 bit copies. */
5289 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5290 return 1;
5291 else if ((nonzero_bits (XEXP (x, 0), mode)
5292 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5293 return 1;
5294 else
5295 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5296 known_x, known_mode, known_ret);
5298 case UMOD:
5299 /* The result must be <= the second operand. If the second operand
5300 has (or just might have) the high bit set, we know nothing about
5301 the number of sign bit copies. */
5302 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5303 return 1;
5304 else if ((nonzero_bits (XEXP (x, 1), mode)
5305 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5306 return 1;
5307 else
5308 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5309 known_x, known_mode, known_ret);
5311 case DIV:
5312 /* Similar to unsigned division, except that we have to worry about
5313 the case where the divisor is negative, in which case we have
5314 to add 1. */
5315 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5316 known_x, known_mode, known_ret);
5317 if (result > 1
5318 && (bitwidth > HOST_BITS_PER_WIDE_INT
5319 || (nonzero_bits (XEXP (x, 1), mode)
5320 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5321 result--;
5323 return result;
5325 case MOD:
5326 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5327 known_x, known_mode, known_ret);
5328 if (result > 1
5329 && (bitwidth > HOST_BITS_PER_WIDE_INT
5330 || (nonzero_bits (XEXP (x, 1), mode)
5331 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5332 result--;
5334 return result;
5336 case ASHIFTRT:
5337 /* Shifts by a constant add to the number of bits equal to the
5338 sign bit. */
5339 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5340 known_x, known_mode, known_ret);
5341 if (CONST_INT_P (XEXP (x, 1))
5342 && INTVAL (XEXP (x, 1)) > 0
5343 && INTVAL (XEXP (x, 1)) < xmode_width)
5344 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5346 return num0;
5348 case ASHIFT:
5349 /* Left shifts destroy copies. */
5350 if (!CONST_INT_P (XEXP (x, 1))
5351 || INTVAL (XEXP (x, 1)) < 0
5352 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5353 || INTVAL (XEXP (x, 1)) >= xmode_width)
5354 return 1;
5356 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5357 known_x, known_mode, known_ret);
5358 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5360 case IF_THEN_ELSE:
5361 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5362 known_x, known_mode, known_ret);
5363 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5364 known_x, known_mode, known_ret);
5365 return MIN (num0, num1);
5367 case EQ: case NE: case GE: case GT: case LE: case LT:
5368 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5369 case GEU: case GTU: case LEU: case LTU:
5370 case UNORDERED: case ORDERED:
5371 /* If the constant is negative, take its 1's complement and remask.
5372 Then see how many zero bits we have. */
5373 nonzero = STORE_FLAG_VALUE;
5374 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5375 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5376 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5378 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5380 default:
5381 break;
5384 /* If we haven't been able to figure it out by one of the above rules,
5385 see if some of the high-order bits are known to be zero. If so,
5386 count those bits and return one less than that amount. If we can't
5387 safely compute the mask for this mode, always return BITWIDTH. */
5389 bitwidth = GET_MODE_PRECISION (mode);
5390 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5391 return 1;
5393 nonzero = nonzero_bits (x, mode);
5394 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5395 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5398 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5399 zero indicates an instruction pattern without a known cost. */
5402 pattern_cost (rtx pat, bool speed)
5404 int i, cost;
5405 rtx set;
5407 /* Extract the single set rtx from the instruction pattern. We
5408 can't use single_set since we only have the pattern. We also
5409 consider PARALLELs of a normal set and a single comparison. In
5410 that case we use the cost of the non-comparison SET operation,
5411 which is most-likely to be the real cost of this operation. */
5412 if (GET_CODE (pat) == SET)
5413 set = pat;
5414 else if (GET_CODE (pat) == PARALLEL)
5416 set = NULL_RTX;
5417 rtx comparison = NULL_RTX;
5419 for (i = 0; i < XVECLEN (pat, 0); i++)
5421 rtx x = XVECEXP (pat, 0, i);
5422 if (GET_CODE (x) == SET)
5424 if (GET_CODE (SET_SRC (x)) == COMPARE)
5426 if (comparison)
5427 return 0;
5428 comparison = x;
5430 else
5432 if (set)
5433 return 0;
5434 set = x;
5439 if (!set && comparison)
5440 set = comparison;
5442 if (!set)
5443 return 0;
5445 else
5446 return 0;
5448 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5449 return cost > 0 ? cost : COSTS_N_INSNS (1);
5452 /* Calculate the cost of a single instruction. A return value of zero
5453 indicates an instruction pattern without a known cost. */
5456 insn_cost (rtx_insn *insn, bool speed)
5458 if (targetm.insn_cost)
5459 return targetm.insn_cost (insn, speed);
5461 return pattern_cost (PATTERN (insn), speed);
5464 /* Returns estimate on cost of computing SEQ. */
5466 unsigned
5467 seq_cost (const rtx_insn *seq, bool speed)
5469 unsigned cost = 0;
5470 rtx set;
5472 for (; seq; seq = NEXT_INSN (seq))
5474 set = single_set (seq);
5475 if (set)
5476 cost += set_rtx_cost (set, speed);
5477 else if (NONDEBUG_INSN_P (seq))
5479 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5480 if (this_cost > 0)
5481 cost += this_cost;
5482 else
5483 cost++;
5487 return cost;
5490 /* Given an insn INSN and condition COND, return the condition in a
5491 canonical form to simplify testing by callers. Specifically:
5493 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5494 (2) Both operands will be machine operands; (cc0) will have been replaced.
5495 (3) If an operand is a constant, it will be the second operand.
5496 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5497 for GE, GEU, and LEU.
5499 If the condition cannot be understood, or is an inequality floating-point
5500 comparison which needs to be reversed, 0 will be returned.
5502 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5504 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5505 insn used in locating the condition was found. If a replacement test
5506 of the condition is desired, it should be placed in front of that
5507 insn and we will be sure that the inputs are still valid.
5509 If WANT_REG is nonzero, we wish the condition to be relative to that
5510 register, if possible. Therefore, do not canonicalize the condition
5511 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5512 to be a compare to a CC mode register.
5514 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5515 and at INSN. */
5518 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5519 rtx_insn **earliest,
5520 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5522 enum rtx_code code;
5523 rtx_insn *prev = insn;
5524 const_rtx set;
5525 rtx tem;
5526 rtx op0, op1;
5527 int reverse_code = 0;
5528 machine_mode mode;
5529 basic_block bb = BLOCK_FOR_INSN (insn);
5531 code = GET_CODE (cond);
5532 mode = GET_MODE (cond);
5533 op0 = XEXP (cond, 0);
5534 op1 = XEXP (cond, 1);
5536 if (reverse)
5537 code = reversed_comparison_code (cond, insn);
5538 if (code == UNKNOWN)
5539 return 0;
5541 if (earliest)
5542 *earliest = insn;
5544 /* If we are comparing a register with zero, see if the register is set
5545 in the previous insn to a COMPARE or a comparison operation. Perform
5546 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5547 in cse.c */
5549 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5550 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5551 && op1 == CONST0_RTX (GET_MODE (op0))
5552 && op0 != want_reg)
5554 /* Set nonzero when we find something of interest. */
5555 rtx x = 0;
5557 /* If comparison with cc0, import actual comparison from compare
5558 insn. */
5559 if (op0 == cc0_rtx)
5561 if ((prev = prev_nonnote_insn (prev)) == 0
5562 || !NONJUMP_INSN_P (prev)
5563 || (set = single_set (prev)) == 0
5564 || SET_DEST (set) != cc0_rtx)
5565 return 0;
5567 op0 = SET_SRC (set);
5568 op1 = CONST0_RTX (GET_MODE (op0));
5569 if (earliest)
5570 *earliest = prev;
5573 /* If this is a COMPARE, pick up the two things being compared. */
5574 if (GET_CODE (op0) == COMPARE)
5576 op1 = XEXP (op0, 1);
5577 op0 = XEXP (op0, 0);
5578 continue;
5580 else if (!REG_P (op0))
5581 break;
5583 /* Go back to the previous insn. Stop if it is not an INSN. We also
5584 stop if it isn't a single set or if it has a REG_INC note because
5585 we don't want to bother dealing with it. */
5587 prev = prev_nonnote_nondebug_insn (prev);
5589 if (prev == 0
5590 || !NONJUMP_INSN_P (prev)
5591 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5592 /* In cfglayout mode, there do not have to be labels at the
5593 beginning of a block, or jumps at the end, so the previous
5594 conditions would not stop us when we reach bb boundary. */
5595 || BLOCK_FOR_INSN (prev) != bb)
5596 break;
5598 set = set_of (op0, prev);
5600 if (set
5601 && (GET_CODE (set) != SET
5602 || !rtx_equal_p (SET_DEST (set), op0)))
5603 break;
5605 /* If this is setting OP0, get what it sets it to if it looks
5606 relevant. */
5607 if (set)
5609 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5610 #ifdef FLOAT_STORE_FLAG_VALUE
5611 REAL_VALUE_TYPE fsfv;
5612 #endif
5614 /* ??? We may not combine comparisons done in a CCmode with
5615 comparisons not done in a CCmode. This is to aid targets
5616 like Alpha that have an IEEE compliant EQ instruction, and
5617 a non-IEEE compliant BEQ instruction. The use of CCmode is
5618 actually artificial, simply to prevent the combination, but
5619 should not affect other platforms.
5621 However, we must allow VOIDmode comparisons to match either
5622 CCmode or non-CCmode comparison, because some ports have
5623 modeless comparisons inside branch patterns.
5625 ??? This mode check should perhaps look more like the mode check
5626 in simplify_comparison in combine. */
5627 if (((GET_MODE_CLASS (mode) == MODE_CC)
5628 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5629 && mode != VOIDmode
5630 && inner_mode != VOIDmode)
5631 break;
5632 if (GET_CODE (SET_SRC (set)) == COMPARE
5633 || (((code == NE
5634 || (code == LT
5635 && val_signbit_known_set_p (inner_mode,
5636 STORE_FLAG_VALUE))
5637 #ifdef FLOAT_STORE_FLAG_VALUE
5638 || (code == LT
5639 && SCALAR_FLOAT_MODE_P (inner_mode)
5640 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5641 REAL_VALUE_NEGATIVE (fsfv)))
5642 #endif
5644 && COMPARISON_P (SET_SRC (set))))
5645 x = SET_SRC (set);
5646 else if (((code == EQ
5647 || (code == GE
5648 && val_signbit_known_set_p (inner_mode,
5649 STORE_FLAG_VALUE))
5650 #ifdef FLOAT_STORE_FLAG_VALUE
5651 || (code == GE
5652 && SCALAR_FLOAT_MODE_P (inner_mode)
5653 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5654 REAL_VALUE_NEGATIVE (fsfv)))
5655 #endif
5657 && COMPARISON_P (SET_SRC (set)))
5659 reverse_code = 1;
5660 x = SET_SRC (set);
5662 else if ((code == EQ || code == NE)
5663 && GET_CODE (SET_SRC (set)) == XOR)
5664 /* Handle sequences like:
5666 (set op0 (xor X Y))
5667 ...(eq|ne op0 (const_int 0))...
5669 in which case:
5671 (eq op0 (const_int 0)) reduces to (eq X Y)
5672 (ne op0 (const_int 0)) reduces to (ne X Y)
5674 This is the form used by MIPS16, for example. */
5675 x = SET_SRC (set);
5676 else
5677 break;
5680 else if (reg_set_p (op0, prev))
5681 /* If this sets OP0, but not directly, we have to give up. */
5682 break;
5684 if (x)
5686 /* If the caller is expecting the condition to be valid at INSN,
5687 make sure X doesn't change before INSN. */
5688 if (valid_at_insn_p)
5689 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5690 break;
5691 if (COMPARISON_P (x))
5692 code = GET_CODE (x);
5693 if (reverse_code)
5695 code = reversed_comparison_code (x, prev);
5696 if (code == UNKNOWN)
5697 return 0;
5698 reverse_code = 0;
5701 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5702 if (earliest)
5703 *earliest = prev;
5707 /* If constant is first, put it last. */
5708 if (CONSTANT_P (op0))
5709 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5711 /* If OP0 is the result of a comparison, we weren't able to find what
5712 was really being compared, so fail. */
5713 if (!allow_cc_mode
5714 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5715 return 0;
5717 /* Canonicalize any ordered comparison with integers involving equality
5718 if we can do computations in the relevant mode and we do not
5719 overflow. */
5721 scalar_int_mode op0_mode;
5722 if (CONST_INT_P (op1)
5723 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5724 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5726 HOST_WIDE_INT const_val = INTVAL (op1);
5727 unsigned HOST_WIDE_INT uconst_val = const_val;
5728 unsigned HOST_WIDE_INT max_val
5729 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5731 switch (code)
5733 case LE:
5734 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5735 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5736 break;
5738 /* When cross-compiling, const_val might be sign-extended from
5739 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5740 case GE:
5741 if ((const_val & max_val)
5742 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5743 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5744 break;
5746 case LEU:
5747 if (uconst_val < max_val)
5748 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5749 break;
5751 case GEU:
5752 if (uconst_val != 0)
5753 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5754 break;
5756 default:
5757 break;
5761 /* Never return CC0; return zero instead. */
5762 if (CC0_P (op0))
5763 return 0;
5765 /* We promised to return a comparison. */
5766 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5767 if (COMPARISON_P (ret))
5768 return ret;
5769 return 0;
5772 /* Given a jump insn JUMP, return the condition that will cause it to branch
5773 to its JUMP_LABEL. If the condition cannot be understood, or is an
5774 inequality floating-point comparison which needs to be reversed, 0 will
5775 be returned.
5777 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5778 insn used in locating the condition was found. If a replacement test
5779 of the condition is desired, it should be placed in front of that
5780 insn and we will be sure that the inputs are still valid. If EARLIEST
5781 is null, the returned condition will be valid at INSN.
5783 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5784 compare CC mode register.
5786 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5789 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5790 int valid_at_insn_p)
5792 rtx cond;
5793 int reverse;
5794 rtx set;
5796 /* If this is not a standard conditional jump, we can't parse it. */
5797 if (!JUMP_P (jump)
5798 || ! any_condjump_p (jump))
5799 return 0;
5800 set = pc_set (jump);
5802 cond = XEXP (SET_SRC (set), 0);
5804 /* If this branches to JUMP_LABEL when the condition is false, reverse
5805 the condition. */
5806 reverse
5807 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5808 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5810 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5811 allow_cc_mode, valid_at_insn_p);
5814 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5815 TARGET_MODE_REP_EXTENDED.
5817 Note that we assume that the property of
5818 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5819 narrower than mode B. I.e., if A is a mode narrower than B then in
5820 order to be able to operate on it in mode B, mode A needs to
5821 satisfy the requirements set by the representation of mode B. */
5823 static void
5824 init_num_sign_bit_copies_in_rep (void)
5826 opt_scalar_int_mode in_mode_iter;
5827 scalar_int_mode mode;
5829 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5830 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5832 scalar_int_mode in_mode = in_mode_iter.require ();
5833 scalar_int_mode i;
5835 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5836 extends to the next widest mode. */
5837 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5838 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5840 /* We are in in_mode. Count how many bits outside of mode
5841 have to be copies of the sign-bit. */
5842 FOR_EACH_MODE (i, mode, in_mode)
5844 /* This must always exist (for the last iteration it will be
5845 IN_MODE). */
5846 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5848 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5849 /* We can only check sign-bit copies starting from the
5850 top-bit. In order to be able to check the bits we
5851 have already seen we pretend that subsequent bits
5852 have to be sign-bit copies too. */
5853 || num_sign_bit_copies_in_rep [in_mode][mode])
5854 num_sign_bit_copies_in_rep [in_mode][mode]
5855 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5860 /* Suppose that truncation from the machine mode of X to MODE is not a
5861 no-op. See if there is anything special about X so that we can
5862 assume it already contains a truncated value of MODE. */
5864 bool
5865 truncated_to_mode (machine_mode mode, const_rtx x)
5867 /* This register has already been used in MODE without explicit
5868 truncation. */
5869 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5870 return true;
5872 /* See if we already satisfy the requirements of MODE. If yes we
5873 can just switch to MODE. */
5874 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5875 && (num_sign_bit_copies (x, GET_MODE (x))
5876 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5877 return true;
5879 return false;
5882 /* Return true if RTX code CODE has a single sequence of zero or more
5883 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5884 entry in that case. */
5886 static bool
5887 setup_reg_subrtx_bounds (unsigned int code)
5889 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5890 unsigned int i = 0;
5891 for (; format[i] != 'e'; ++i)
5893 if (!format[i])
5894 /* No subrtxes. Leave start and count as 0. */
5895 return true;
5896 if (format[i] == 'E' || format[i] == 'V')
5897 return false;
5900 /* Record the sequence of 'e's. */
5901 rtx_all_subrtx_bounds[code].start = i;
5903 ++i;
5904 while (format[i] == 'e');
5905 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5906 /* rtl-iter.h relies on this. */
5907 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5909 for (; format[i]; ++i)
5910 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5911 return false;
5913 return true;
5916 /* Initialize rtx_all_subrtx_bounds. */
5917 void
5918 init_rtlanal (void)
5920 int i;
5921 for (i = 0; i < NUM_RTX_CODE; i++)
5923 if (!setup_reg_subrtx_bounds (i))
5924 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5925 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5926 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5929 init_num_sign_bit_copies_in_rep ();
5932 /* Check whether this is a constant pool constant. */
5933 bool
5934 constant_pool_constant_p (rtx x)
5936 x = avoid_constant_pool_reference (x);
5937 return CONST_DOUBLE_P (x);
5940 /* If M is a bitmask that selects a field of low-order bits within an item but
5941 not the entire word, return the length of the field. Return -1 otherwise.
5942 M is used in machine mode MODE. */
5945 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5947 if (mode != VOIDmode)
5949 if (!HWI_COMPUTABLE_MODE_P (mode))
5950 return -1;
5951 m &= GET_MODE_MASK (mode);
5954 return exact_log2 (m + 1);
5957 /* Return the mode of MEM's address. */
5959 scalar_int_mode
5960 get_address_mode (rtx mem)
5962 machine_mode mode;
5964 gcc_assert (MEM_P (mem));
5965 mode = GET_MODE (XEXP (mem, 0));
5966 if (mode != VOIDmode)
5967 return as_a <scalar_int_mode> (mode);
5968 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5971 /* Split up a CONST_DOUBLE or integer constant rtx
5972 into two rtx's for single words,
5973 storing in *FIRST the word that comes first in memory in the target
5974 and in *SECOND the other.
5976 TODO: This function needs to be rewritten to work on any size
5977 integer. */
5979 void
5980 split_double (rtx value, rtx *first, rtx *second)
5982 if (CONST_INT_P (value))
5984 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5986 /* In this case the CONST_INT holds both target words.
5987 Extract the bits from it into two word-sized pieces.
5988 Sign extend each half to HOST_WIDE_INT. */
5989 unsigned HOST_WIDE_INT low, high;
5990 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5991 unsigned bits_per_word = BITS_PER_WORD;
5993 /* Set sign_bit to the most significant bit of a word. */
5994 sign_bit = 1;
5995 sign_bit <<= bits_per_word - 1;
5997 /* Set mask so that all bits of the word are set. We could
5998 have used 1 << BITS_PER_WORD instead of basing the
5999 calculation on sign_bit. However, on machines where
6000 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
6001 compiler warning, even though the code would never be
6002 executed. */
6003 mask = sign_bit << 1;
6004 mask--;
6006 /* Set sign_extend as any remaining bits. */
6007 sign_extend = ~mask;
6009 /* Pick the lower word and sign-extend it. */
6010 low = INTVAL (value);
6011 low &= mask;
6012 if (low & sign_bit)
6013 low |= sign_extend;
6015 /* Pick the higher word, shifted to the least significant
6016 bits, and sign-extend it. */
6017 high = INTVAL (value);
6018 high >>= bits_per_word - 1;
6019 high >>= 1;
6020 high &= mask;
6021 if (high & sign_bit)
6022 high |= sign_extend;
6024 /* Store the words in the target machine order. */
6025 if (WORDS_BIG_ENDIAN)
6027 *first = GEN_INT (high);
6028 *second = GEN_INT (low);
6030 else
6032 *first = GEN_INT (low);
6033 *second = GEN_INT (high);
6036 else
6038 /* The rule for using CONST_INT for a wider mode
6039 is that we regard the value as signed.
6040 So sign-extend it. */
6041 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6042 if (WORDS_BIG_ENDIAN)
6044 *first = high;
6045 *second = value;
6047 else
6049 *first = value;
6050 *second = high;
6054 else if (GET_CODE (value) == CONST_WIDE_INT)
6056 /* All of this is scary code and needs to be converted to
6057 properly work with any size integer. */
6058 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6059 if (WORDS_BIG_ENDIAN)
6061 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6062 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6064 else
6066 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6067 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6070 else if (!CONST_DOUBLE_P (value))
6072 if (WORDS_BIG_ENDIAN)
6074 *first = const0_rtx;
6075 *second = value;
6077 else
6079 *first = value;
6080 *second = const0_rtx;
6083 else if (GET_MODE (value) == VOIDmode
6084 /* This is the old way we did CONST_DOUBLE integers. */
6085 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6087 /* In an integer, the words are defined as most and least significant.
6088 So order them by the target's convention. */
6089 if (WORDS_BIG_ENDIAN)
6091 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6092 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6094 else
6096 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6097 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6100 else
6102 long l[2];
6104 /* Note, this converts the REAL_VALUE_TYPE to the target's
6105 format, splits up the floating point double and outputs
6106 exactly 32 bits of it into each of l[0] and l[1] --
6107 not necessarily BITS_PER_WORD bits. */
6108 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6110 /* If 32 bits is an entire word for the target, but not for the host,
6111 then sign-extend on the host so that the number will look the same
6112 way on the host that it would on the target. See for instance
6113 simplify_unary_operation. The #if is needed to avoid compiler
6114 warnings. */
6116 #if HOST_BITS_PER_LONG > 32
6117 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6119 if (l[0] & ((long) 1 << 31))
6120 l[0] |= ((unsigned long) (-1) << 32);
6121 if (l[1] & ((long) 1 << 31))
6122 l[1] |= ((unsigned long) (-1) << 32);
6124 #endif
6126 *first = GEN_INT (l[0]);
6127 *second = GEN_INT (l[1]);
6131 /* Return true if X is a sign_extract or zero_extract from the least
6132 significant bit. */
6134 static bool
6135 lsb_bitfield_op_p (rtx x)
6137 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6139 machine_mode mode = GET_MODE (XEXP (x, 0));
6140 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6141 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6142 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6144 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6146 return false;
6149 /* Strip outer address "mutations" from LOC and return a pointer to the
6150 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6151 stripped expression there.
6153 "Mutations" either convert between modes or apply some kind of
6154 extension, truncation or alignment. */
6156 rtx *
6157 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6159 for (;;)
6161 enum rtx_code code = GET_CODE (*loc);
6162 if (GET_RTX_CLASS (code) == RTX_UNARY)
6163 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6164 used to convert between pointer sizes. */
6165 loc = &XEXP (*loc, 0);
6166 else if (lsb_bitfield_op_p (*loc))
6167 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6168 acts as a combined truncation and extension. */
6169 loc = &XEXP (*loc, 0);
6170 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6171 /* (and ... (const_int -X)) is used to align to X bytes. */
6172 loc = &XEXP (*loc, 0);
6173 else if (code == SUBREG
6174 && !OBJECT_P (SUBREG_REG (*loc))
6175 && subreg_lowpart_p (*loc))
6176 /* (subreg (operator ...) ...) inside and is used for mode
6177 conversion too. */
6178 loc = &SUBREG_REG (*loc);
6179 else
6180 return loc;
6181 if (outer_code)
6182 *outer_code = code;
6186 /* Return true if CODE applies some kind of scale. The scaled value is
6187 is the first operand and the scale is the second. */
6189 static bool
6190 binary_scale_code_p (enum rtx_code code)
6192 return (code == MULT
6193 || code == ASHIFT
6194 /* Needed by ARM targets. */
6195 || code == ASHIFTRT
6196 || code == LSHIFTRT
6197 || code == ROTATE
6198 || code == ROTATERT);
6201 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6202 (see address_info). Return null otherwise. */
6204 static rtx *
6205 get_base_term (rtx *inner)
6207 if (GET_CODE (*inner) == LO_SUM)
6208 inner = strip_address_mutations (&XEXP (*inner, 0));
6209 if (REG_P (*inner)
6210 || MEM_P (*inner)
6211 || GET_CODE (*inner) == SUBREG
6212 || GET_CODE (*inner) == SCRATCH)
6213 return inner;
6214 return 0;
6217 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6218 (see address_info). Return null otherwise. */
6220 static rtx *
6221 get_index_term (rtx *inner)
6223 /* At present, only constant scales are allowed. */
6224 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6225 inner = strip_address_mutations (&XEXP (*inner, 0));
6226 if (REG_P (*inner)
6227 || MEM_P (*inner)
6228 || GET_CODE (*inner) == SUBREG
6229 || GET_CODE (*inner) == SCRATCH)
6230 return inner;
6231 return 0;
6234 /* Set the segment part of address INFO to LOC, given that INNER is the
6235 unmutated value. */
6237 static void
6238 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6240 gcc_assert (!info->segment);
6241 info->segment = loc;
6242 info->segment_term = inner;
6245 /* Set the base part of address INFO to LOC, given that INNER is the
6246 unmutated value. */
6248 static void
6249 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6251 gcc_assert (!info->base);
6252 info->base = loc;
6253 info->base_term = inner;
6256 /* Set the index part of address INFO to LOC, given that INNER is the
6257 unmutated value. */
6259 static void
6260 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6262 gcc_assert (!info->index);
6263 info->index = loc;
6264 info->index_term = inner;
6267 /* Set the displacement part of address INFO to LOC, given that INNER
6268 is the constant term. */
6270 static void
6271 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6273 gcc_assert (!info->disp);
6274 info->disp = loc;
6275 info->disp_term = inner;
6278 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6279 rest of INFO accordingly. */
6281 static void
6282 decompose_incdec_address (struct address_info *info)
6284 info->autoinc_p = true;
6286 rtx *base = &XEXP (*info->inner, 0);
6287 set_address_base (info, base, base);
6288 gcc_checking_assert (info->base == info->base_term);
6290 /* These addresses are only valid when the size of the addressed
6291 value is known. */
6292 gcc_checking_assert (info->mode != VOIDmode);
6295 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6296 of INFO accordingly. */
6298 static void
6299 decompose_automod_address (struct address_info *info)
6301 info->autoinc_p = true;
6303 rtx *base = &XEXP (*info->inner, 0);
6304 set_address_base (info, base, base);
6305 gcc_checking_assert (info->base == info->base_term);
6307 rtx plus = XEXP (*info->inner, 1);
6308 gcc_assert (GET_CODE (plus) == PLUS);
6310 info->base_term2 = &XEXP (plus, 0);
6311 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6313 rtx *step = &XEXP (plus, 1);
6314 rtx *inner_step = strip_address_mutations (step);
6315 if (CONSTANT_P (*inner_step))
6316 set_address_disp (info, step, inner_step);
6317 else
6318 set_address_index (info, step, inner_step);
6321 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6322 values in [PTR, END). Return a pointer to the end of the used array. */
6324 static rtx **
6325 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6327 rtx x = *loc;
6328 if (GET_CODE (x) == PLUS)
6330 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6331 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6333 else
6335 gcc_assert (ptr != end);
6336 *ptr++ = loc;
6338 return ptr;
6341 /* Evaluate the likelihood of X being a base or index value, returning
6342 positive if it is likely to be a base, negative if it is likely to be
6343 an index, and 0 if we can't tell. Make the magnitude of the return
6344 value reflect the amount of confidence we have in the answer.
6346 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6348 static int
6349 baseness (rtx x, machine_mode mode, addr_space_t as,
6350 enum rtx_code outer_code, enum rtx_code index_code)
6352 /* Believe *_POINTER unless the address shape requires otherwise. */
6353 if (REG_P (x) && REG_POINTER (x))
6354 return 2;
6355 if (MEM_P (x) && MEM_POINTER (x))
6356 return 2;
6358 if (REG_P (x) && HARD_REGISTER_P (x))
6360 /* X is a hard register. If it only fits one of the base
6361 or index classes, choose that interpretation. */
6362 int regno = REGNO (x);
6363 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6364 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6365 if (base_p != index_p)
6366 return base_p ? 1 : -1;
6368 return 0;
6371 /* INFO->INNER describes a normal, non-automodified address.
6372 Fill in the rest of INFO accordingly. */
6374 static void
6375 decompose_normal_address (struct address_info *info)
6377 /* Treat the address as the sum of up to four values. */
6378 rtx *ops[4];
6379 size_t n_ops = extract_plus_operands (info->inner, ops,
6380 ops + ARRAY_SIZE (ops)) - ops;
6382 /* If there is more than one component, any base component is in a PLUS. */
6383 if (n_ops > 1)
6384 info->base_outer_code = PLUS;
6386 /* Try to classify each sum operand now. Leave those that could be
6387 either a base or an index in OPS. */
6388 rtx *inner_ops[4];
6389 size_t out = 0;
6390 for (size_t in = 0; in < n_ops; ++in)
6392 rtx *loc = ops[in];
6393 rtx *inner = strip_address_mutations (loc);
6394 if (CONSTANT_P (*inner))
6395 set_address_disp (info, loc, inner);
6396 else if (GET_CODE (*inner) == UNSPEC)
6397 set_address_segment (info, loc, inner);
6398 else
6400 /* The only other possibilities are a base or an index. */
6401 rtx *base_term = get_base_term (inner);
6402 rtx *index_term = get_index_term (inner);
6403 gcc_assert (base_term || index_term);
6404 if (!base_term)
6405 set_address_index (info, loc, index_term);
6406 else if (!index_term)
6407 set_address_base (info, loc, base_term);
6408 else
6410 gcc_assert (base_term == index_term);
6411 ops[out] = loc;
6412 inner_ops[out] = base_term;
6413 ++out;
6418 /* Classify the remaining OPS members as bases and indexes. */
6419 if (out == 1)
6421 /* If we haven't seen a base or an index yet, assume that this is
6422 the base. If we were confident that another term was the base
6423 or index, treat the remaining operand as the other kind. */
6424 if (!info->base)
6425 set_address_base (info, ops[0], inner_ops[0]);
6426 else
6427 set_address_index (info, ops[0], inner_ops[0]);
6429 else if (out == 2)
6431 /* In the event of a tie, assume the base comes first. */
6432 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6433 GET_CODE (*ops[1]))
6434 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6435 GET_CODE (*ops[0])))
6437 set_address_base (info, ops[0], inner_ops[0]);
6438 set_address_index (info, ops[1], inner_ops[1]);
6440 else
6442 set_address_base (info, ops[1], inner_ops[1]);
6443 set_address_index (info, ops[0], inner_ops[0]);
6446 else
6447 gcc_assert (out == 0);
6450 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6451 or VOIDmode if not known. AS is the address space associated with LOC.
6452 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6454 void
6455 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6456 addr_space_t as, enum rtx_code outer_code)
6458 memset (info, 0, sizeof (*info));
6459 info->mode = mode;
6460 info->as = as;
6461 info->addr_outer_code = outer_code;
6462 info->outer = loc;
6463 info->inner = strip_address_mutations (loc, &outer_code);
6464 info->base_outer_code = outer_code;
6465 switch (GET_CODE (*info->inner))
6467 case PRE_DEC:
6468 case PRE_INC:
6469 case POST_DEC:
6470 case POST_INC:
6471 decompose_incdec_address (info);
6472 break;
6474 case PRE_MODIFY:
6475 case POST_MODIFY:
6476 decompose_automod_address (info);
6477 break;
6479 default:
6480 decompose_normal_address (info);
6481 break;
6485 /* Describe address operand LOC in INFO. */
6487 void
6488 decompose_lea_address (struct address_info *info, rtx *loc)
6490 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6493 /* Describe the address of MEM X in INFO. */
6495 void
6496 decompose_mem_address (struct address_info *info, rtx x)
6498 gcc_assert (MEM_P (x));
6499 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6500 MEM_ADDR_SPACE (x), MEM);
6503 /* Update INFO after a change to the address it describes. */
6505 void
6506 update_address (struct address_info *info)
6508 decompose_address (info, info->outer, info->mode, info->as,
6509 info->addr_outer_code);
6512 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6513 more complicated than that. */
6515 HOST_WIDE_INT
6516 get_index_scale (const struct address_info *info)
6518 rtx index = *info->index;
6519 if (GET_CODE (index) == MULT
6520 && CONST_INT_P (XEXP (index, 1))
6521 && info->index_term == &XEXP (index, 0))
6522 return INTVAL (XEXP (index, 1));
6524 if (GET_CODE (index) == ASHIFT
6525 && CONST_INT_P (XEXP (index, 1))
6526 && info->index_term == &XEXP (index, 0))
6527 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6529 if (info->index == info->index_term)
6530 return 1;
6532 return 0;
6535 /* Return the "index code" of INFO, in the form required by
6536 ok_for_base_p_1. */
6538 enum rtx_code
6539 get_index_code (const struct address_info *info)
6541 if (info->index)
6542 return GET_CODE (*info->index);
6544 if (info->disp)
6545 return GET_CODE (*info->disp);
6547 return SCRATCH;
6550 /* Return true if RTL X contains a SYMBOL_REF. */
6552 bool
6553 contains_symbol_ref_p (const_rtx x)
6555 subrtx_iterator::array_type array;
6556 FOR_EACH_SUBRTX (iter, array, x, ALL)
6557 if (SYMBOL_REF_P (*iter))
6558 return true;
6560 return false;
6563 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6565 bool
6566 contains_symbolic_reference_p (const_rtx x)
6568 subrtx_iterator::array_type array;
6569 FOR_EACH_SUBRTX (iter, array, x, ALL)
6570 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6571 return true;
6573 return false;
6576 /* Return true if RTL X contains a constant pool address. */
6578 bool
6579 contains_constant_pool_address_p (const_rtx x)
6581 subrtx_iterator::array_type array;
6582 FOR_EACH_SUBRTX (iter, array, x, ALL)
6583 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6584 return true;
6586 return false;
6590 /* Return true if X contains a thread-local symbol. */
6592 bool
6593 tls_referenced_p (const_rtx x)
6595 if (!targetm.have_tls)
6596 return false;
6598 subrtx_iterator::array_type array;
6599 FOR_EACH_SUBRTX (iter, array, x, ALL)
6600 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6601 return true;
6602 return false;
6605 /* Return true if reg REGNO with mode REG_MODE would be clobbered by the
6606 clobber_high operand in CLOBBER_HIGH_OP. */
6608 bool
6609 reg_is_clobbered_by_clobber_high (unsigned int regno, machine_mode reg_mode,
6610 const_rtx clobber_high_op)
6612 unsigned int clobber_regno = REGNO (clobber_high_op);
6613 machine_mode clobber_mode = GET_MODE (clobber_high_op);
6614 unsigned char regno_nregs = hard_regno_nregs (regno, reg_mode);
6616 /* Clobber high should always span exactly one register. */
6617 gcc_assert (REG_NREGS (clobber_high_op) == 1);
6619 /* Clobber high needs to match with one of the registers in X. */
6620 if (clobber_regno < regno || clobber_regno >= regno + regno_nregs)
6621 return false;
6623 gcc_assert (reg_mode != BLKmode && clobber_mode != BLKmode);
6625 if (reg_mode == VOIDmode)
6626 return clobber_mode != VOIDmode;
6628 /* Clobber high will clobber if its size might be greater than the size of
6629 register regno. */
6630 return maybe_gt (exact_div (GET_MODE_SIZE (reg_mode), regno_nregs),
6631 GET_MODE_SIZE (clobber_mode));