[Ada] New aspect/pragma No_Caching for analysis of volatile data
[official-gcc.git] / gcc / optabs.c
blob06bcaab1f550f0d6a8c67a106d66b23bd21897f7
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "predict.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "rtx-vector-builder.h"
38 /* Include insn-config.h before expr.h so that HAVE_conditional_move
39 is properly defined. */
40 #include "stor-layout.h"
41 #include "except.h"
42 #include "dojump.h"
43 #include "explow.h"
44 #include "expr.h"
45 #include "optabs-tree.h"
46 #include "libfuncs.h"
48 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
49 machine_mode *);
50 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
51 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
53 /* Debug facility for use in GDB. */
54 void debug_optab_libfuncs (void);
56 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
57 the result of operation CODE applied to OP0 (and OP1 if it is a binary
58 operation). OP0_MODE is OP0's mode.
60 If the last insn does not set TARGET, don't do anything, but return 1.
62 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
63 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
64 try again, ensuring that TARGET is not one of the operands. */
66 static int
67 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0,
68 rtx op1, machine_mode op0_mode)
70 rtx_insn *last_insn;
71 rtx set;
72 rtx note;
74 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
76 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
77 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
78 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
79 && GET_RTX_CLASS (code) != RTX_COMPARE
80 && GET_RTX_CLASS (code) != RTX_UNARY)
81 return 1;
83 if (GET_CODE (target) == ZERO_EXTRACT)
84 return 1;
86 for (last_insn = insns;
87 NEXT_INSN (last_insn) != NULL_RTX;
88 last_insn = NEXT_INSN (last_insn))
91 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
92 a value changing in the insn, so the note would be invalid for CSE. */
93 if (reg_overlap_mentioned_p (target, op0)
94 || (op1 && reg_overlap_mentioned_p (target, op1)))
96 if (MEM_P (target)
97 && (rtx_equal_p (target, op0)
98 || (op1 && rtx_equal_p (target, op1))))
100 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
101 over expanding it as temp = MEM op X, MEM = temp. If the target
102 supports MEM = MEM op X instructions, it is sometimes too hard
103 to reconstruct that form later, especially if X is also a memory,
104 and due to multiple occurrences of addresses the address might
105 be forced into register unnecessarily.
106 Note that not emitting the REG_EQUIV note might inhibit
107 CSE in some cases. */
108 set = single_set (last_insn);
109 if (set
110 && GET_CODE (SET_SRC (set)) == code
111 && MEM_P (SET_DEST (set))
112 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
113 || (op1 && rtx_equal_p (SET_DEST (set),
114 XEXP (SET_SRC (set), 1)))))
115 return 1;
117 return 0;
120 set = set_for_reg_notes (last_insn);
121 if (set == NULL_RTX)
122 return 1;
124 if (! rtx_equal_p (SET_DEST (set), target)
125 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
126 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
127 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
128 return 1;
130 if (GET_RTX_CLASS (code) == RTX_UNARY)
131 switch (code)
133 case FFS:
134 case CLZ:
135 case CTZ:
136 case CLRSB:
137 case POPCOUNT:
138 case PARITY:
139 case BSWAP:
140 if (op0_mode != VOIDmode && GET_MODE (target) != op0_mode)
142 note = gen_rtx_fmt_e (code, op0_mode, copy_rtx (op0));
143 if (GET_MODE_UNIT_SIZE (op0_mode)
144 > GET_MODE_UNIT_SIZE (GET_MODE (target)))
145 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
146 note, op0_mode);
147 else
148 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
149 note, op0_mode);
150 break;
152 /* FALLTHRU */
153 default:
154 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
155 break;
157 else
158 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
160 set_unique_reg_note (last_insn, REG_EQUAL, note);
162 return 1;
165 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
166 for a widening operation would be. In most cases this would be OP0, but if
167 that's a constant it'll be VOIDmode, which isn't useful. */
169 static machine_mode
170 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
172 machine_mode m0 = GET_MODE (op0);
173 machine_mode m1 = GET_MODE (op1);
174 machine_mode result;
176 if (m0 == VOIDmode && m1 == VOIDmode)
177 return to_mode;
178 else if (m0 == VOIDmode || GET_MODE_UNIT_SIZE (m0) < GET_MODE_UNIT_SIZE (m1))
179 result = m1;
180 else
181 result = m0;
183 if (GET_MODE_UNIT_SIZE (result) > GET_MODE_UNIT_SIZE (to_mode))
184 return to_mode;
186 return result;
189 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
190 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
191 not actually do a sign-extend or zero-extend, but can leave the
192 higher-order bits of the result rtx undefined, for example, in the case
193 of logical operations, but not right shifts. */
195 static rtx
196 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
197 int unsignedp, int no_extend)
199 rtx result;
200 scalar_int_mode int_mode;
202 /* If we don't have to extend and this is a constant, return it. */
203 if (no_extend && GET_MODE (op) == VOIDmode)
204 return op;
206 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
207 extend since it will be more efficient to do so unless the signedness of
208 a promoted object differs from our extension. */
209 if (! no_extend
210 || !is_a <scalar_int_mode> (mode, &int_mode)
211 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
212 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
213 return convert_modes (mode, oldmode, op, unsignedp);
215 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
216 SUBREG. */
217 if (GET_MODE_SIZE (int_mode) <= UNITS_PER_WORD)
218 return gen_lowpart (int_mode, force_reg (GET_MODE (op), op));
220 /* Otherwise, get an object of MODE, clobber it, and set the low-order
221 part to OP. */
223 result = gen_reg_rtx (int_mode);
224 emit_clobber (result);
225 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
226 return result;
229 /* Expand vector widening operations.
231 There are two different classes of operations handled here:
232 1) Operations whose result is wider than all the arguments to the operation.
233 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
234 In this case OP0 and optionally OP1 would be initialized,
235 but WIDE_OP wouldn't (not relevant for this case).
236 2) Operations whose result is of the same size as the last argument to the
237 operation, but wider than all the other arguments to the operation.
238 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
239 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
241 E.g, when called to expand the following operations, this is how
242 the arguments will be initialized:
243 nops OP0 OP1 WIDE_OP
244 widening-sum 2 oprnd0 - oprnd1
245 widening-dot-product 3 oprnd0 oprnd1 oprnd2
246 widening-mult 2 oprnd0 oprnd1 -
247 type-promotion (vec-unpack) 1 oprnd0 - - */
250 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
251 rtx target, int unsignedp)
253 class expand_operand eops[4];
254 tree oprnd0, oprnd1, oprnd2;
255 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
256 optab widen_pattern_optab;
257 enum insn_code icode;
258 int nops = TREE_CODE_LENGTH (ops->code);
259 int op;
260 bool sbool = false;
262 oprnd0 = ops->op0;
263 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
264 if (ops->code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
265 || ops->code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
266 /* The sign is from the result type rather than operand's type
267 for these ops. */
268 widen_pattern_optab
269 = optab_for_tree_code (ops->code, ops->type, optab_default);
270 else if ((ops->code == VEC_UNPACK_HI_EXPR
271 || ops->code == VEC_UNPACK_LO_EXPR)
272 && VECTOR_BOOLEAN_TYPE_P (ops->type)
273 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (oprnd0))
274 && TYPE_MODE (ops->type) == TYPE_MODE (TREE_TYPE (oprnd0))
275 && SCALAR_INT_MODE_P (TYPE_MODE (ops->type)))
277 /* For VEC_UNPACK_{LO,HI}_EXPR if the mode of op0 and result is
278 the same scalar mode for VECTOR_BOOLEAN_TYPE_P vectors, use
279 vec_unpacks_sbool_{lo,hi}_optab, so that we can pass in
280 the pattern number of elements in the wider vector. */
281 widen_pattern_optab
282 = (ops->code == VEC_UNPACK_HI_EXPR
283 ? vec_unpacks_sbool_hi_optab : vec_unpacks_sbool_lo_optab);
284 sbool = true;
286 else
287 widen_pattern_optab
288 = optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
289 if (ops->code == WIDEN_MULT_PLUS_EXPR
290 || ops->code == WIDEN_MULT_MINUS_EXPR)
291 icode = find_widening_optab_handler (widen_pattern_optab,
292 TYPE_MODE (TREE_TYPE (ops->op2)),
293 tmode0);
294 else
295 icode = optab_handler (widen_pattern_optab, tmode0);
296 gcc_assert (icode != CODE_FOR_nothing);
298 if (nops >= 2)
300 oprnd1 = ops->op1;
301 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
303 else if (sbool)
305 nops = 2;
306 op1 = GEN_INT (TYPE_VECTOR_SUBPARTS (TREE_TYPE (oprnd0)).to_constant ());
307 tmode1 = tmode0;
310 /* The last operand is of a wider mode than the rest of the operands. */
311 if (nops == 2)
312 wmode = tmode1;
313 else if (nops == 3)
315 gcc_assert (tmode1 == tmode0);
316 gcc_assert (op1);
317 oprnd2 = ops->op2;
318 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
321 op = 0;
322 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
323 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
324 if (op1)
325 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
326 if (wide_op)
327 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
328 expand_insn (icode, op, eops);
329 return eops[0].value;
332 /* Generate code to perform an operation specified by TERNARY_OPTAB
333 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
335 UNSIGNEDP is for the case where we have to widen the operands
336 to perform the operation. It says to use zero-extension.
338 If TARGET is nonzero, the value
339 is generated there, if it is convenient to do so.
340 In all cases an rtx is returned for the locus of the value;
341 this may or may not be TARGET. */
344 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
345 rtx op1, rtx op2, rtx target, int unsignedp)
347 class expand_operand ops[4];
348 enum insn_code icode = optab_handler (ternary_optab, mode);
350 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
352 create_output_operand (&ops[0], target, mode);
353 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
354 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
355 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
356 expand_insn (icode, 4, ops);
357 return ops[0].value;
361 /* Like expand_binop, but return a constant rtx if the result can be
362 calculated at compile time. The arguments and return value are
363 otherwise the same as for expand_binop. */
366 simplify_expand_binop (machine_mode mode, optab binoptab,
367 rtx op0, rtx op1, rtx target, int unsignedp,
368 enum optab_methods methods)
370 if (CONSTANT_P (op0) && CONSTANT_P (op1))
372 rtx x = simplify_binary_operation (optab_to_code (binoptab),
373 mode, op0, op1);
374 if (x)
375 return x;
378 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
381 /* Like simplify_expand_binop, but always put the result in TARGET.
382 Return true if the expansion succeeded. */
384 bool
385 force_expand_binop (machine_mode mode, optab binoptab,
386 rtx op0, rtx op1, rtx target, int unsignedp,
387 enum optab_methods methods)
389 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
390 target, unsignedp, methods);
391 if (x == 0)
392 return false;
393 if (x != target)
394 emit_move_insn (target, x);
395 return true;
398 /* Create a new vector value in VMODE with all elements set to OP. The
399 mode of OP must be the element mode of VMODE. If OP is a constant,
400 then the return value will be a constant. */
403 expand_vector_broadcast (machine_mode vmode, rtx op)
405 int n;
406 rtvec vec;
408 gcc_checking_assert (VECTOR_MODE_P (vmode));
410 if (valid_for_const_vector_p (vmode, op))
411 return gen_const_vec_duplicate (vmode, op);
413 insn_code icode = optab_handler (vec_duplicate_optab, vmode);
414 if (icode != CODE_FOR_nothing)
416 class expand_operand ops[2];
417 create_output_operand (&ops[0], NULL_RTX, vmode);
418 create_input_operand (&ops[1], op, GET_MODE (op));
419 expand_insn (icode, 2, ops);
420 return ops[0].value;
423 if (!GET_MODE_NUNITS (vmode).is_constant (&n))
424 return NULL;
426 /* ??? If the target doesn't have a vec_init, then we have no easy way
427 of performing this operation. Most of this sort of generic support
428 is hidden away in the vector lowering support in gimple. */
429 icode = convert_optab_handler (vec_init_optab, vmode,
430 GET_MODE_INNER (vmode));
431 if (icode == CODE_FOR_nothing)
432 return NULL;
434 vec = rtvec_alloc (n);
435 for (int i = 0; i < n; ++i)
436 RTVEC_ELT (vec, i) = op;
437 rtx ret = gen_reg_rtx (vmode);
438 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
440 return ret;
443 /* This subroutine of expand_doubleword_shift handles the cases in which
444 the effective shift value is >= BITS_PER_WORD. The arguments and return
445 value are the same as for the parent routine, except that SUPERWORD_OP1
446 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
447 INTO_TARGET may be null if the caller has decided to calculate it. */
449 static bool
450 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
451 rtx outof_target, rtx into_target,
452 int unsignedp, enum optab_methods methods)
454 if (into_target != 0)
455 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
456 into_target, unsignedp, methods))
457 return false;
459 if (outof_target != 0)
461 /* For a signed right shift, we must fill OUTOF_TARGET with copies
462 of the sign bit, otherwise we must fill it with zeros. */
463 if (binoptab != ashr_optab)
464 emit_move_insn (outof_target, CONST0_RTX (word_mode));
465 else
466 if (!force_expand_binop (word_mode, binoptab, outof_input,
467 gen_int_shift_amount (word_mode,
468 BITS_PER_WORD - 1),
469 outof_target, unsignedp, methods))
470 return false;
472 return true;
475 /* This subroutine of expand_doubleword_shift handles the cases in which
476 the effective shift value is < BITS_PER_WORD. The arguments and return
477 value are the same as for the parent routine. */
479 static bool
480 expand_subword_shift (scalar_int_mode op1_mode, optab binoptab,
481 rtx outof_input, rtx into_input, rtx op1,
482 rtx outof_target, rtx into_target,
483 int unsignedp, enum optab_methods methods,
484 unsigned HOST_WIDE_INT shift_mask)
486 optab reverse_unsigned_shift, unsigned_shift;
487 rtx tmp, carries;
489 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
490 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
492 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
493 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
494 the opposite direction to BINOPTAB. */
495 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
497 carries = outof_input;
498 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
499 op1_mode), op1_mode);
500 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
501 0, true, methods);
503 else
505 /* We must avoid shifting by BITS_PER_WORD bits since that is either
506 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
507 has unknown behavior. Do a single shift first, then shift by the
508 remainder. It's OK to use ~OP1 as the remainder if shift counts
509 are truncated to the mode size. */
510 carries = expand_binop (word_mode, reverse_unsigned_shift,
511 outof_input, const1_rtx, 0, unsignedp, methods);
512 if (shift_mask == BITS_PER_WORD - 1)
514 tmp = immed_wide_int_const
515 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
516 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
517 0, true, methods);
519 else
521 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
522 op1_mode), op1_mode);
523 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
524 0, true, methods);
527 if (tmp == 0 || carries == 0)
528 return false;
529 carries = expand_binop (word_mode, reverse_unsigned_shift,
530 carries, tmp, 0, unsignedp, methods);
531 if (carries == 0)
532 return false;
534 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
535 so the result can go directly into INTO_TARGET if convenient. */
536 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
537 into_target, unsignedp, methods);
538 if (tmp == 0)
539 return false;
541 /* Now OR in the bits carried over from OUTOF_INPUT. */
542 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
543 into_target, unsignedp, methods))
544 return false;
546 /* Use a standard word_mode shift for the out-of half. */
547 if (outof_target != 0)
548 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
549 outof_target, unsignedp, methods))
550 return false;
552 return true;
556 /* Try implementing expand_doubleword_shift using conditional moves.
557 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
558 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
559 are the shift counts to use in the former and latter case. All other
560 arguments are the same as the parent routine. */
562 static bool
563 expand_doubleword_shift_condmove (scalar_int_mode op1_mode, optab binoptab,
564 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
565 rtx outof_input, rtx into_input,
566 rtx subword_op1, rtx superword_op1,
567 rtx outof_target, rtx into_target,
568 int unsignedp, enum optab_methods methods,
569 unsigned HOST_WIDE_INT shift_mask)
571 rtx outof_superword, into_superword;
573 /* Put the superword version of the output into OUTOF_SUPERWORD and
574 INTO_SUPERWORD. */
575 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
576 if (outof_target != 0 && subword_op1 == superword_op1)
578 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
579 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
580 into_superword = outof_target;
581 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
582 outof_superword, 0, unsignedp, methods))
583 return false;
585 else
587 into_superword = gen_reg_rtx (word_mode);
588 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
589 outof_superword, into_superword,
590 unsignedp, methods))
591 return false;
594 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
595 if (!expand_subword_shift (op1_mode, binoptab,
596 outof_input, into_input, subword_op1,
597 outof_target, into_target,
598 unsignedp, methods, shift_mask))
599 return false;
601 /* Select between them. Do the INTO half first because INTO_SUPERWORD
602 might be the current value of OUTOF_TARGET. */
603 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
604 into_target, into_superword, word_mode, false))
605 return false;
607 if (outof_target != 0)
608 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
609 outof_target, outof_superword,
610 word_mode, false))
611 return false;
613 return true;
616 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
617 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
618 input operand; the shift moves bits in the direction OUTOF_INPUT->
619 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
620 of the target. OP1 is the shift count and OP1_MODE is its mode.
621 If OP1 is constant, it will have been truncated as appropriate
622 and is known to be nonzero.
624 If SHIFT_MASK is zero, the result of word shifts is undefined when the
625 shift count is outside the range [0, BITS_PER_WORD). This routine must
626 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
628 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
629 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
630 fill with zeros or sign bits as appropriate.
632 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
633 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
634 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
635 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
636 are undefined.
638 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
639 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
640 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
641 function wants to calculate it itself.
643 Return true if the shift could be successfully synthesized. */
645 static bool
646 expand_doubleword_shift (scalar_int_mode op1_mode, optab binoptab,
647 rtx outof_input, rtx into_input, rtx op1,
648 rtx outof_target, rtx into_target,
649 int unsignedp, enum optab_methods methods,
650 unsigned HOST_WIDE_INT shift_mask)
652 rtx superword_op1, tmp, cmp1, cmp2;
653 enum rtx_code cmp_code;
655 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
656 fill the result with sign or zero bits as appropriate. If so, the value
657 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
658 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
659 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
661 This isn't worthwhile for constant shifts since the optimizers will
662 cope better with in-range shift counts. */
663 if (shift_mask >= BITS_PER_WORD
664 && outof_target != 0
665 && !CONSTANT_P (op1))
667 if (!expand_doubleword_shift (op1_mode, binoptab,
668 outof_input, into_input, op1,
669 0, into_target,
670 unsignedp, methods, shift_mask))
671 return false;
672 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
673 outof_target, unsignedp, methods))
674 return false;
675 return true;
678 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
679 is true when the effective shift value is less than BITS_PER_WORD.
680 Set SUPERWORD_OP1 to the shift count that should be used to shift
681 OUTOF_INPUT into INTO_TARGET when the condition is false. */
682 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
683 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
685 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
686 is a subword shift count. */
687 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
688 0, true, methods);
689 cmp2 = CONST0_RTX (op1_mode);
690 cmp_code = EQ;
691 superword_op1 = op1;
693 else
695 /* Set CMP1 to OP1 - BITS_PER_WORD. */
696 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
697 0, true, methods);
698 cmp2 = CONST0_RTX (op1_mode);
699 cmp_code = LT;
700 superword_op1 = cmp1;
702 if (cmp1 == 0)
703 return false;
705 /* If we can compute the condition at compile time, pick the
706 appropriate subroutine. */
707 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
708 if (tmp != 0 && CONST_INT_P (tmp))
710 if (tmp == const0_rtx)
711 return expand_superword_shift (binoptab, outof_input, superword_op1,
712 outof_target, into_target,
713 unsignedp, methods);
714 else
715 return expand_subword_shift (op1_mode, binoptab,
716 outof_input, into_input, op1,
717 outof_target, into_target,
718 unsignedp, methods, shift_mask);
721 /* Try using conditional moves to generate straight-line code. */
722 if (HAVE_conditional_move)
724 rtx_insn *start = get_last_insn ();
725 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
726 cmp_code, cmp1, cmp2,
727 outof_input, into_input,
728 op1, superword_op1,
729 outof_target, into_target,
730 unsignedp, methods, shift_mask))
731 return true;
732 delete_insns_since (start);
735 /* As a last resort, use branches to select the correct alternative. */
736 rtx_code_label *subword_label = gen_label_rtx ();
737 rtx_code_label *done_label = gen_label_rtx ();
739 NO_DEFER_POP;
740 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
741 0, 0, subword_label,
742 profile_probability::uninitialized ());
743 OK_DEFER_POP;
745 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
746 outof_target, into_target,
747 unsignedp, methods))
748 return false;
750 emit_jump_insn (targetm.gen_jump (done_label));
751 emit_barrier ();
752 emit_label (subword_label);
754 if (!expand_subword_shift (op1_mode, binoptab,
755 outof_input, into_input, op1,
756 outof_target, into_target,
757 unsignedp, methods, shift_mask))
758 return false;
760 emit_label (done_label);
761 return true;
764 /* Subroutine of expand_binop. Perform a double word multiplication of
765 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
766 as the target's word_mode. This function return NULL_RTX if anything
767 goes wrong, in which case it may have already emitted instructions
768 which need to be deleted.
770 If we want to multiply two two-word values and have normal and widening
771 multiplies of single-word values, we can do this with three smaller
772 multiplications.
774 The multiplication proceeds as follows:
775 _______________________
776 [__op0_high_|__op0_low__]
777 _______________________
778 * [__op1_high_|__op1_low__]
779 _______________________________________________
780 _______________________
781 (1) [__op0_low__*__op1_low__]
782 _______________________
783 (2a) [__op0_low__*__op1_high_]
784 _______________________
785 (2b) [__op0_high_*__op1_low__]
786 _______________________
787 (3) [__op0_high_*__op1_high_]
790 This gives a 4-word result. Since we are only interested in the
791 lower 2 words, partial result (3) and the upper words of (2a) and
792 (2b) don't need to be calculated. Hence (2a) and (2b) can be
793 calculated using non-widening multiplication.
795 (1), however, needs to be calculated with an unsigned widening
796 multiplication. If this operation is not directly supported we
797 try using a signed widening multiplication and adjust the result.
798 This adjustment works as follows:
800 If both operands are positive then no adjustment is needed.
802 If the operands have different signs, for example op0_low < 0 and
803 op1_low >= 0, the instruction treats the most significant bit of
804 op0_low as a sign bit instead of a bit with significance
805 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
806 with 2**BITS_PER_WORD - op0_low, and two's complements the
807 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
808 the result.
810 Similarly, if both operands are negative, we need to add
811 (op0_low + op1_low) * 2**BITS_PER_WORD.
813 We use a trick to adjust quickly. We logically shift op0_low right
814 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
815 op0_high (op1_high) before it is used to calculate 2b (2a). If no
816 logical shift exists, we do an arithmetic right shift and subtract
817 the 0 or -1. */
819 static rtx
820 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
821 bool umulp, enum optab_methods methods)
823 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
824 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
825 rtx wordm1 = (umulp ? NULL_RTX
826 : gen_int_shift_amount (word_mode, BITS_PER_WORD - 1));
827 rtx product, adjust, product_high, temp;
829 rtx op0_high = operand_subword_force (op0, high, mode);
830 rtx op0_low = operand_subword_force (op0, low, mode);
831 rtx op1_high = operand_subword_force (op1, high, mode);
832 rtx op1_low = operand_subword_force (op1, low, mode);
834 /* If we're using an unsigned multiply to directly compute the product
835 of the low-order words of the operands and perform any required
836 adjustments of the operands, we begin by trying two more multiplications
837 and then computing the appropriate sum.
839 We have checked above that the required addition is provided.
840 Full-word addition will normally always succeed, especially if
841 it is provided at all, so we don't worry about its failure. The
842 multiplication may well fail, however, so we do handle that. */
844 if (!umulp)
846 /* ??? This could be done with emit_store_flag where available. */
847 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
848 NULL_RTX, 1, methods);
849 if (temp)
850 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
851 NULL_RTX, 0, OPTAB_DIRECT);
852 else
854 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
855 NULL_RTX, 0, methods);
856 if (!temp)
857 return NULL_RTX;
858 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
859 NULL_RTX, 0, OPTAB_DIRECT);
862 if (!op0_high)
863 return NULL_RTX;
866 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
867 NULL_RTX, 0, OPTAB_DIRECT);
868 if (!adjust)
869 return NULL_RTX;
871 /* OP0_HIGH should now be dead. */
873 if (!umulp)
875 /* ??? This could be done with emit_store_flag where available. */
876 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
877 NULL_RTX, 1, methods);
878 if (temp)
879 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
880 NULL_RTX, 0, OPTAB_DIRECT);
881 else
883 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
884 NULL_RTX, 0, methods);
885 if (!temp)
886 return NULL_RTX;
887 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
888 NULL_RTX, 0, OPTAB_DIRECT);
891 if (!op1_high)
892 return NULL_RTX;
895 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
896 NULL_RTX, 0, OPTAB_DIRECT);
897 if (!temp)
898 return NULL_RTX;
900 /* OP1_HIGH should now be dead. */
902 adjust = expand_binop (word_mode, add_optab, adjust, temp,
903 NULL_RTX, 0, OPTAB_DIRECT);
905 if (target && !REG_P (target))
906 target = NULL_RTX;
908 /* *_widen_optab needs to determine operand mode, make sure at least
909 one operand has non-VOID mode. */
910 if (GET_MODE (op0_low) == VOIDmode && GET_MODE (op1_low) == VOIDmode)
911 op0_low = force_reg (word_mode, op0_low);
913 if (umulp)
914 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
915 target, 1, OPTAB_DIRECT);
916 else
917 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
918 target, 1, OPTAB_DIRECT);
920 if (!product)
921 return NULL_RTX;
923 product_high = operand_subword (product, high, 1, mode);
924 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
925 NULL_RTX, 0, OPTAB_DIRECT);
926 emit_move_insn (product_high, adjust);
927 return product;
930 /* Wrapper around expand_binop which takes an rtx code to specify
931 the operation to perform, not an optab pointer. All other
932 arguments are the same. */
934 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
935 rtx op1, rtx target, int unsignedp,
936 enum optab_methods methods)
938 optab binop = code_to_optab (code);
939 gcc_assert (binop);
941 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
944 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
945 binop. Order them according to commutative_operand_precedence and, if
946 possible, try to put TARGET or a pseudo first. */
947 static bool
948 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
950 int op0_prec = commutative_operand_precedence (op0);
951 int op1_prec = commutative_operand_precedence (op1);
953 if (op0_prec < op1_prec)
954 return true;
956 if (op0_prec > op1_prec)
957 return false;
959 /* With equal precedence, both orders are ok, but it is better if the
960 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
961 if (target == 0 || REG_P (target))
962 return (REG_P (op1) && !REG_P (op0)) || target == op1;
963 else
964 return rtx_equal_p (op1, target);
967 /* Return true if BINOPTAB implements a shift operation. */
969 static bool
970 shift_optab_p (optab binoptab)
972 switch (optab_to_code (binoptab))
974 case ASHIFT:
975 case SS_ASHIFT:
976 case US_ASHIFT:
977 case ASHIFTRT:
978 case LSHIFTRT:
979 case ROTATE:
980 case ROTATERT:
981 return true;
983 default:
984 return false;
988 /* Return true if BINOPTAB implements a commutative binary operation. */
990 static bool
991 commutative_optab_p (optab binoptab)
993 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
994 || binoptab == smul_widen_optab
995 || binoptab == umul_widen_optab
996 || binoptab == smul_highpart_optab
997 || binoptab == umul_highpart_optab);
1000 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1001 optimizing, and if the operand is a constant that costs more than
1002 1 instruction, force the constant into a register and return that
1003 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1005 static rtx
1006 avoid_expensive_constant (machine_mode mode, optab binoptab,
1007 int opn, rtx x, bool unsignedp)
1009 bool speed = optimize_insn_for_speed_p ();
1011 if (mode != VOIDmode
1012 && optimize
1013 && CONSTANT_P (x)
1014 && (rtx_cost (x, mode, optab_to_code (binoptab), opn, speed)
1015 > set_src_cost (x, mode, speed)))
1017 if (CONST_INT_P (x))
1019 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1020 if (intval != INTVAL (x))
1021 x = GEN_INT (intval);
1023 else
1024 x = convert_modes (mode, VOIDmode, x, unsignedp);
1025 x = force_reg (mode, x);
1027 return x;
1030 /* Helper function for expand_binop: handle the case where there
1031 is an insn ICODE that directly implements the indicated operation.
1032 Returns null if this is not possible. */
1033 static rtx
1034 expand_binop_directly (enum insn_code icode, machine_mode mode, optab binoptab,
1035 rtx op0, rtx op1,
1036 rtx target, int unsignedp, enum optab_methods methods,
1037 rtx_insn *last)
1039 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1040 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1041 machine_mode mode0, mode1, tmp_mode;
1042 class expand_operand ops[3];
1043 bool commutative_p;
1044 rtx_insn *pat;
1045 rtx xop0 = op0, xop1 = op1;
1046 bool canonicalize_op1 = false;
1048 /* If it is a commutative operator and the modes would match
1049 if we would swap the operands, we can save the conversions. */
1050 commutative_p = commutative_optab_p (binoptab);
1051 if (commutative_p
1052 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1053 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1054 std::swap (xop0, xop1);
1056 /* If we are optimizing, force expensive constants into a register. */
1057 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1058 if (!shift_optab_p (binoptab))
1059 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1060 else
1061 /* Shifts and rotates often use a different mode for op1 from op0;
1062 for VOIDmode constants we don't know the mode, so force it
1063 to be canonicalized using convert_modes. */
1064 canonicalize_op1 = true;
1066 /* In case the insn wants input operands in modes different from
1067 those of the actual operands, convert the operands. It would
1068 seem that we don't need to convert CONST_INTs, but we do, so
1069 that they're properly zero-extended, sign-extended or truncated
1070 for their mode. */
1072 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1073 if (xmode0 != VOIDmode && xmode0 != mode0)
1075 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1076 mode0 = xmode0;
1079 mode1 = ((GET_MODE (xop1) != VOIDmode || canonicalize_op1)
1080 ? GET_MODE (xop1) : mode);
1081 if (xmode1 != VOIDmode && xmode1 != mode1)
1083 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1084 mode1 = xmode1;
1087 /* If operation is commutative,
1088 try to make the first operand a register.
1089 Even better, try to make it the same as the target.
1090 Also try to make the last operand a constant. */
1091 if (commutative_p
1092 && swap_commutative_operands_with_target (target, xop0, xop1))
1093 std::swap (xop0, xop1);
1095 /* Now, if insn's predicates don't allow our operands, put them into
1096 pseudo regs. */
1098 if (binoptab == vec_pack_trunc_optab
1099 || binoptab == vec_pack_usat_optab
1100 || binoptab == vec_pack_ssat_optab
1101 || binoptab == vec_pack_ufix_trunc_optab
1102 || binoptab == vec_pack_sfix_trunc_optab
1103 || binoptab == vec_packu_float_optab
1104 || binoptab == vec_packs_float_optab)
1106 /* The mode of the result is different then the mode of the
1107 arguments. */
1108 tmp_mode = insn_data[(int) icode].operand[0].mode;
1109 if (VECTOR_MODE_P (mode)
1110 && maybe_ne (GET_MODE_NUNITS (tmp_mode), 2 * GET_MODE_NUNITS (mode)))
1112 delete_insns_since (last);
1113 return NULL_RTX;
1116 else
1117 tmp_mode = mode;
1119 create_output_operand (&ops[0], target, tmp_mode);
1120 create_input_operand (&ops[1], xop0, mode0);
1121 create_input_operand (&ops[2], xop1, mode1);
1122 pat = maybe_gen_insn (icode, 3, ops);
1123 if (pat)
1125 /* If PAT is composed of more than one insn, try to add an appropriate
1126 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1127 operand, call expand_binop again, this time without a target. */
1128 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1129 && ! add_equal_note (pat, ops[0].value,
1130 optab_to_code (binoptab),
1131 ops[1].value, ops[2].value, mode0))
1133 delete_insns_since (last);
1134 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1135 unsignedp, methods);
1138 emit_insn (pat);
1139 return ops[0].value;
1141 delete_insns_since (last);
1142 return NULL_RTX;
1145 /* Generate code to perform an operation specified by BINOPTAB
1146 on operands OP0 and OP1, with result having machine-mode MODE.
1148 UNSIGNEDP is for the case where we have to widen the operands
1149 to perform the operation. It says to use zero-extension.
1151 If TARGET is nonzero, the value
1152 is generated there, if it is convenient to do so.
1153 In all cases an rtx is returned for the locus of the value;
1154 this may or may not be TARGET. */
1157 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1158 rtx target, int unsignedp, enum optab_methods methods)
1160 enum optab_methods next_methods
1161 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1162 ? OPTAB_WIDEN : methods);
1163 enum mode_class mclass;
1164 enum insn_code icode;
1165 machine_mode wider_mode;
1166 scalar_int_mode int_mode;
1167 rtx libfunc;
1168 rtx temp;
1169 rtx_insn *entry_last = get_last_insn ();
1170 rtx_insn *last;
1172 mclass = GET_MODE_CLASS (mode);
1174 /* If subtracting an integer constant, convert this into an addition of
1175 the negated constant. */
1177 if (binoptab == sub_optab && CONST_INT_P (op1))
1179 op1 = negate_rtx (mode, op1);
1180 binoptab = add_optab;
1182 /* For shifts, constant invalid op1 might be expanded from different
1183 mode than MODE. As those are invalid, force them to a register
1184 to avoid further problems during expansion. */
1185 else if (CONST_INT_P (op1)
1186 && shift_optab_p (binoptab)
1187 && UINTVAL (op1) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode)))
1189 op1 = gen_int_mode (INTVAL (op1), GET_MODE_INNER (mode));
1190 op1 = force_reg (GET_MODE_INNER (mode), op1);
1193 /* Record where to delete back to if we backtrack. */
1194 last = get_last_insn ();
1196 /* If we can do it with a three-operand insn, do so. */
1198 if (methods != OPTAB_MUST_WIDEN)
1200 if (convert_optab_p (binoptab))
1202 machine_mode from_mode = widened_mode (mode, op0, op1);
1203 icode = find_widening_optab_handler (binoptab, mode, from_mode);
1205 else
1206 icode = optab_handler (binoptab, mode);
1207 if (icode != CODE_FOR_nothing)
1209 temp = expand_binop_directly (icode, mode, binoptab, op0, op1,
1210 target, unsignedp, methods, last);
1211 if (temp)
1212 return temp;
1216 /* If we were trying to rotate, and that didn't work, try rotating
1217 the other direction before falling back to shifts and bitwise-or. */
1218 if (((binoptab == rotl_optab
1219 && (icode = optab_handler (rotr_optab, mode)) != CODE_FOR_nothing)
1220 || (binoptab == rotr_optab
1221 && (icode = optab_handler (rotl_optab, mode)) != CODE_FOR_nothing))
1222 && is_int_mode (mode, &int_mode))
1224 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1225 rtx newop1;
1226 unsigned int bits = GET_MODE_PRECISION (int_mode);
1228 if (CONST_INT_P (op1))
1229 newop1 = gen_int_shift_amount (int_mode, bits - INTVAL (op1));
1230 else if (targetm.shift_truncation_mask (int_mode) == bits - 1)
1231 newop1 = negate_rtx (GET_MODE (op1), op1);
1232 else
1233 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1234 gen_int_mode (bits, GET_MODE (op1)), op1,
1235 NULL_RTX, unsignedp, OPTAB_DIRECT);
1237 temp = expand_binop_directly (icode, int_mode, otheroptab, op0, newop1,
1238 target, unsignedp, methods, last);
1239 if (temp)
1240 return temp;
1243 /* If this is a multiply, see if we can do a widening operation that
1244 takes operands of this mode and makes a wider mode. */
1246 if (binoptab == smul_optab
1247 && GET_MODE_2XWIDER_MODE (mode).exists (&wider_mode)
1248 && (convert_optab_handler ((unsignedp
1249 ? umul_widen_optab
1250 : smul_widen_optab),
1251 wider_mode, mode) != CODE_FOR_nothing))
1253 /* *_widen_optab needs to determine operand mode, make sure at least
1254 one operand has non-VOID mode. */
1255 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
1256 op0 = force_reg (mode, op0);
1257 temp = expand_binop (wider_mode,
1258 unsignedp ? umul_widen_optab : smul_widen_optab,
1259 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1261 if (temp != 0)
1263 if (GET_MODE_CLASS (mode) == MODE_INT
1264 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1265 return gen_lowpart (mode, temp);
1266 else
1267 return convert_to_mode (mode, temp, unsignedp);
1271 /* If this is a vector shift by a scalar, see if we can do a vector
1272 shift by a vector. If so, broadcast the scalar into a vector. */
1273 if (mclass == MODE_VECTOR_INT)
1275 optab otheroptab = unknown_optab;
1277 if (binoptab == ashl_optab)
1278 otheroptab = vashl_optab;
1279 else if (binoptab == ashr_optab)
1280 otheroptab = vashr_optab;
1281 else if (binoptab == lshr_optab)
1282 otheroptab = vlshr_optab;
1283 else if (binoptab == rotl_optab)
1284 otheroptab = vrotl_optab;
1285 else if (binoptab == rotr_optab)
1286 otheroptab = vrotr_optab;
1288 if (otheroptab
1289 && (icode = optab_handler (otheroptab, mode)) != CODE_FOR_nothing)
1291 /* The scalar may have been extended to be too wide. Truncate
1292 it back to the proper size to fit in the broadcast vector. */
1293 scalar_mode inner_mode = GET_MODE_INNER (mode);
1294 if (!CONST_INT_P (op1)
1295 && (GET_MODE_BITSIZE (as_a <scalar_int_mode> (GET_MODE (op1)))
1296 > GET_MODE_BITSIZE (inner_mode)))
1297 op1 = force_reg (inner_mode,
1298 simplify_gen_unary (TRUNCATE, inner_mode, op1,
1299 GET_MODE (op1)));
1300 rtx vop1 = expand_vector_broadcast (mode, op1);
1301 if (vop1)
1303 temp = expand_binop_directly (icode, mode, otheroptab, op0, vop1,
1304 target, unsignedp, methods, last);
1305 if (temp)
1306 return temp;
1311 /* Look for a wider mode of the same class for which we think we
1312 can open-code the operation. Check for a widening multiply at the
1313 wider mode as well. */
1315 if (CLASS_HAS_WIDER_MODES_P (mclass)
1316 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1317 FOR_EACH_WIDER_MODE (wider_mode, mode)
1319 machine_mode next_mode;
1320 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1321 || (binoptab == smul_optab
1322 && GET_MODE_WIDER_MODE (wider_mode).exists (&next_mode)
1323 && (find_widening_optab_handler ((unsignedp
1324 ? umul_widen_optab
1325 : smul_widen_optab),
1326 next_mode, mode)
1327 != CODE_FOR_nothing)))
1329 rtx xop0 = op0, xop1 = op1;
1330 int no_extend = 0;
1332 /* For certain integer operations, we need not actually extend
1333 the narrow operands, as long as we will truncate
1334 the results to the same narrowness. */
1336 if ((binoptab == ior_optab || binoptab == and_optab
1337 || binoptab == xor_optab
1338 || binoptab == add_optab || binoptab == sub_optab
1339 || binoptab == smul_optab || binoptab == ashl_optab)
1340 && mclass == MODE_INT)
1342 no_extend = 1;
1343 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1344 xop0, unsignedp);
1345 if (binoptab != ashl_optab)
1346 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1347 xop1, unsignedp);
1350 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1352 /* The second operand of a shift must always be extended. */
1353 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1354 no_extend && binoptab != ashl_optab);
1356 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1357 unsignedp, OPTAB_DIRECT);
1358 if (temp)
1360 if (mclass != MODE_INT
1361 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1363 if (target == 0)
1364 target = gen_reg_rtx (mode);
1365 convert_move (target, temp, 0);
1366 return target;
1368 else
1369 return gen_lowpart (mode, temp);
1371 else
1372 delete_insns_since (last);
1376 /* If operation is commutative,
1377 try to make the first operand a register.
1378 Even better, try to make it the same as the target.
1379 Also try to make the last operand a constant. */
1380 if (commutative_optab_p (binoptab)
1381 && swap_commutative_operands_with_target (target, op0, op1))
1382 std::swap (op0, op1);
1384 /* These can be done a word at a time. */
1385 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1386 && is_int_mode (mode, &int_mode)
1387 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD
1388 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1390 int i;
1391 rtx_insn *insns;
1393 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1394 won't be accurate, so use a new target. */
1395 if (target == 0
1396 || target == op0
1397 || target == op1
1398 || !valid_multiword_target_p (target))
1399 target = gen_reg_rtx (int_mode);
1401 start_sequence ();
1403 /* Do the actual arithmetic. */
1404 machine_mode op0_mode = GET_MODE (op0);
1405 machine_mode op1_mode = GET_MODE (op1);
1406 if (op0_mode == VOIDmode)
1407 op0_mode = int_mode;
1408 if (op1_mode == VOIDmode)
1409 op1_mode = int_mode;
1410 for (i = 0; i < GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD; i++)
1412 rtx target_piece = operand_subword (target, i, 1, int_mode);
1413 rtx x = expand_binop (word_mode, binoptab,
1414 operand_subword_force (op0, i, op0_mode),
1415 operand_subword_force (op1, i, op1_mode),
1416 target_piece, unsignedp, next_methods);
1418 if (x == 0)
1419 break;
1421 if (target_piece != x)
1422 emit_move_insn (target_piece, x);
1425 insns = get_insns ();
1426 end_sequence ();
1428 if (i == GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD)
1430 emit_insn (insns);
1431 return target;
1435 /* Synthesize double word shifts from single word shifts. */
1436 if ((binoptab == lshr_optab || binoptab == ashl_optab
1437 || binoptab == ashr_optab)
1438 && is_int_mode (mode, &int_mode)
1439 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1440 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
1441 && GET_MODE_PRECISION (int_mode) == GET_MODE_BITSIZE (int_mode)
1442 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1443 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1444 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1446 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1447 scalar_int_mode op1_mode;
1449 double_shift_mask = targetm.shift_truncation_mask (int_mode);
1450 shift_mask = targetm.shift_truncation_mask (word_mode);
1451 op1_mode = (GET_MODE (op1) != VOIDmode
1452 ? as_a <scalar_int_mode> (GET_MODE (op1))
1453 : word_mode);
1455 /* Apply the truncation to constant shifts. */
1456 if (double_shift_mask > 0 && CONST_INT_P (op1))
1457 op1 = gen_int_mode (INTVAL (op1) & double_shift_mask, op1_mode);
1459 if (op1 == CONST0_RTX (op1_mode))
1460 return op0;
1462 /* Make sure that this is a combination that expand_doubleword_shift
1463 can handle. See the comments there for details. */
1464 if (double_shift_mask == 0
1465 || (shift_mask == BITS_PER_WORD - 1
1466 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1468 rtx_insn *insns;
1469 rtx into_target, outof_target;
1470 rtx into_input, outof_input;
1471 int left_shift, outof_word;
1473 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1474 won't be accurate, so use a new target. */
1475 if (target == 0
1476 || target == op0
1477 || target == op1
1478 || !valid_multiword_target_p (target))
1479 target = gen_reg_rtx (int_mode);
1481 start_sequence ();
1483 /* OUTOF_* is the word we are shifting bits away from, and
1484 INTO_* is the word that we are shifting bits towards, thus
1485 they differ depending on the direction of the shift and
1486 WORDS_BIG_ENDIAN. */
1488 left_shift = binoptab == ashl_optab;
1489 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1491 outof_target = operand_subword (target, outof_word, 1, int_mode);
1492 into_target = operand_subword (target, 1 - outof_word, 1, int_mode);
1494 outof_input = operand_subword_force (op0, outof_word, int_mode);
1495 into_input = operand_subword_force (op0, 1 - outof_word, int_mode);
1497 if (expand_doubleword_shift (op1_mode, binoptab,
1498 outof_input, into_input, op1,
1499 outof_target, into_target,
1500 unsignedp, next_methods, shift_mask))
1502 insns = get_insns ();
1503 end_sequence ();
1505 emit_insn (insns);
1506 return target;
1508 end_sequence ();
1512 /* Synthesize double word rotates from single word shifts. */
1513 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1514 && is_int_mode (mode, &int_mode)
1515 && CONST_INT_P (op1)
1516 && GET_MODE_PRECISION (int_mode) == 2 * BITS_PER_WORD
1517 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1518 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1520 rtx_insn *insns;
1521 rtx into_target, outof_target;
1522 rtx into_input, outof_input;
1523 rtx inter;
1524 int shift_count, left_shift, outof_word;
1526 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1527 won't be accurate, so use a new target. Do this also if target is not
1528 a REG, first because having a register instead may open optimization
1529 opportunities, and second because if target and op0 happen to be MEMs
1530 designating the same location, we would risk clobbering it too early
1531 in the code sequence we generate below. */
1532 if (target == 0
1533 || target == op0
1534 || target == op1
1535 || !REG_P (target)
1536 || !valid_multiword_target_p (target))
1537 target = gen_reg_rtx (int_mode);
1539 start_sequence ();
1541 shift_count = INTVAL (op1);
1543 /* OUTOF_* is the word we are shifting bits away from, and
1544 INTO_* is the word that we are shifting bits towards, thus
1545 they differ depending on the direction of the shift and
1546 WORDS_BIG_ENDIAN. */
1548 left_shift = (binoptab == rotl_optab);
1549 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1551 outof_target = operand_subword (target, outof_word, 1, int_mode);
1552 into_target = operand_subword (target, 1 - outof_word, 1, int_mode);
1554 outof_input = operand_subword_force (op0, outof_word, int_mode);
1555 into_input = operand_subword_force (op0, 1 - outof_word, int_mode);
1557 if (shift_count == BITS_PER_WORD)
1559 /* This is just a word swap. */
1560 emit_move_insn (outof_target, into_input);
1561 emit_move_insn (into_target, outof_input);
1562 inter = const0_rtx;
1564 else
1566 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1567 HOST_WIDE_INT first_shift_count, second_shift_count;
1568 optab reverse_unsigned_shift, unsigned_shift;
1570 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1571 ? lshr_optab : ashl_optab);
1573 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1574 ? ashl_optab : lshr_optab);
1576 if (shift_count > BITS_PER_WORD)
1578 first_shift_count = shift_count - BITS_PER_WORD;
1579 second_shift_count = 2 * BITS_PER_WORD - shift_count;
1581 else
1583 first_shift_count = BITS_PER_WORD - shift_count;
1584 second_shift_count = shift_count;
1586 rtx first_shift_count_rtx
1587 = gen_int_shift_amount (word_mode, first_shift_count);
1588 rtx second_shift_count_rtx
1589 = gen_int_shift_amount (word_mode, second_shift_count);
1591 into_temp1 = expand_binop (word_mode, unsigned_shift,
1592 outof_input, first_shift_count_rtx,
1593 NULL_RTX, unsignedp, next_methods);
1594 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1595 into_input, second_shift_count_rtx,
1596 NULL_RTX, unsignedp, next_methods);
1598 if (into_temp1 != 0 && into_temp2 != 0)
1599 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1600 into_target, unsignedp, next_methods);
1601 else
1602 inter = 0;
1604 if (inter != 0 && inter != into_target)
1605 emit_move_insn (into_target, inter);
1607 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1608 into_input, first_shift_count_rtx,
1609 NULL_RTX, unsignedp, next_methods);
1610 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1611 outof_input, second_shift_count_rtx,
1612 NULL_RTX, unsignedp, next_methods);
1614 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1615 inter = expand_binop (word_mode, ior_optab,
1616 outof_temp1, outof_temp2,
1617 outof_target, unsignedp, next_methods);
1619 if (inter != 0 && inter != outof_target)
1620 emit_move_insn (outof_target, inter);
1623 insns = get_insns ();
1624 end_sequence ();
1626 if (inter != 0)
1628 emit_insn (insns);
1629 return target;
1633 /* These can be done a word at a time by propagating carries. */
1634 if ((binoptab == add_optab || binoptab == sub_optab)
1635 && is_int_mode (mode, &int_mode)
1636 && GET_MODE_SIZE (int_mode) >= 2 * UNITS_PER_WORD
1637 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1639 unsigned int i;
1640 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1641 const unsigned int nwords = GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD;
1642 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1643 rtx xop0, xop1, xtarget;
1645 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1646 value is one of those, use it. Otherwise, use 1 since it is the
1647 one easiest to get. */
1648 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1649 int normalizep = STORE_FLAG_VALUE;
1650 #else
1651 int normalizep = 1;
1652 #endif
1654 /* Prepare the operands. */
1655 xop0 = force_reg (int_mode, op0);
1656 xop1 = force_reg (int_mode, op1);
1658 xtarget = gen_reg_rtx (int_mode);
1660 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1661 target = xtarget;
1663 /* Indicate for flow that the entire target reg is being set. */
1664 if (REG_P (target))
1665 emit_clobber (xtarget);
1667 /* Do the actual arithmetic. */
1668 for (i = 0; i < nwords; i++)
1670 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1671 rtx target_piece = operand_subword (xtarget, index, 1, int_mode);
1672 rtx op0_piece = operand_subword_force (xop0, index, int_mode);
1673 rtx op1_piece = operand_subword_force (xop1, index, int_mode);
1674 rtx x;
1676 /* Main add/subtract of the input operands. */
1677 x = expand_binop (word_mode, binoptab,
1678 op0_piece, op1_piece,
1679 target_piece, unsignedp, next_methods);
1680 if (x == 0)
1681 break;
1683 if (i + 1 < nwords)
1685 /* Store carry from main add/subtract. */
1686 carry_out = gen_reg_rtx (word_mode);
1687 carry_out = emit_store_flag_force (carry_out,
1688 (binoptab == add_optab
1689 ? LT : GT),
1690 x, op0_piece,
1691 word_mode, 1, normalizep);
1694 if (i > 0)
1696 rtx newx;
1698 /* Add/subtract previous carry to main result. */
1699 newx = expand_binop (word_mode,
1700 normalizep == 1 ? binoptab : otheroptab,
1701 x, carry_in,
1702 NULL_RTX, 1, next_methods);
1704 if (i + 1 < nwords)
1706 /* Get out carry from adding/subtracting carry in. */
1707 rtx carry_tmp = gen_reg_rtx (word_mode);
1708 carry_tmp = emit_store_flag_force (carry_tmp,
1709 (binoptab == add_optab
1710 ? LT : GT),
1711 newx, x,
1712 word_mode, 1, normalizep);
1714 /* Logical-ior the two poss. carry together. */
1715 carry_out = expand_binop (word_mode, ior_optab,
1716 carry_out, carry_tmp,
1717 carry_out, 0, next_methods);
1718 if (carry_out == 0)
1719 break;
1721 emit_move_insn (target_piece, newx);
1723 else
1725 if (x != target_piece)
1726 emit_move_insn (target_piece, x);
1729 carry_in = carry_out;
1732 if (i == GET_MODE_BITSIZE (int_mode) / (unsigned) BITS_PER_WORD)
1734 if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing
1735 || ! rtx_equal_p (target, xtarget))
1737 rtx_insn *temp = emit_move_insn (target, xtarget);
1739 set_dst_reg_note (temp, REG_EQUAL,
1740 gen_rtx_fmt_ee (optab_to_code (binoptab),
1741 int_mode, copy_rtx (xop0),
1742 copy_rtx (xop1)),
1743 target);
1745 else
1746 target = xtarget;
1748 return target;
1751 else
1752 delete_insns_since (last);
1755 /* Attempt to synthesize double word multiplies using a sequence of word
1756 mode multiplications. We first attempt to generate a sequence using a
1757 more efficient unsigned widening multiply, and if that fails we then
1758 try using a signed widening multiply. */
1760 if (binoptab == smul_optab
1761 && is_int_mode (mode, &int_mode)
1762 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
1763 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
1764 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
1766 rtx product = NULL_RTX;
1767 if (convert_optab_handler (umul_widen_optab, int_mode, word_mode)
1768 != CODE_FOR_nothing)
1770 product = expand_doubleword_mult (int_mode, op0, op1, target,
1771 true, methods);
1772 if (!product)
1773 delete_insns_since (last);
1776 if (product == NULL_RTX
1777 && (convert_optab_handler (smul_widen_optab, int_mode, word_mode)
1778 != CODE_FOR_nothing))
1780 product = expand_doubleword_mult (int_mode, op0, op1, target,
1781 false, methods);
1782 if (!product)
1783 delete_insns_since (last);
1786 if (product != NULL_RTX)
1788 if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing)
1790 rtx_insn *move = emit_move_insn (target ? target : product,
1791 product);
1792 set_dst_reg_note (move,
1793 REG_EQUAL,
1794 gen_rtx_fmt_ee (MULT, int_mode,
1795 copy_rtx (op0),
1796 copy_rtx (op1)),
1797 target ? target : product);
1799 return product;
1803 /* It can't be open-coded in this mode.
1804 Use a library call if one is available and caller says that's ok. */
1806 libfunc = optab_libfunc (binoptab, mode);
1807 if (libfunc
1808 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1810 rtx_insn *insns;
1811 rtx op1x = op1;
1812 machine_mode op1_mode = mode;
1813 rtx value;
1815 start_sequence ();
1817 if (shift_optab_p (binoptab))
1819 op1_mode = targetm.libgcc_shift_count_mode ();
1820 /* Specify unsigned here,
1821 since negative shift counts are meaningless. */
1822 op1x = convert_to_mode (op1_mode, op1, 1);
1825 if (GET_MODE (op0) != VOIDmode
1826 && GET_MODE (op0) != mode)
1827 op0 = convert_to_mode (mode, op0, unsignedp);
1829 /* Pass 1 for NO_QUEUE so we don't lose any increments
1830 if the libcall is cse'd or moved. */
1831 value = emit_library_call_value (libfunc,
1832 NULL_RTX, LCT_CONST, mode,
1833 op0, mode, op1x, op1_mode);
1835 insns = get_insns ();
1836 end_sequence ();
1838 bool trapv = trapv_binoptab_p (binoptab);
1839 target = gen_reg_rtx (mode);
1840 emit_libcall_block_1 (insns, target, value,
1841 trapv ? NULL_RTX
1842 : gen_rtx_fmt_ee (optab_to_code (binoptab),
1843 mode, op0, op1), trapv);
1845 return target;
1848 delete_insns_since (last);
1850 /* It can't be done in this mode. Can we do it in a wider mode? */
1852 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1853 || methods == OPTAB_MUST_WIDEN))
1855 /* Caller says, don't even try. */
1856 delete_insns_since (entry_last);
1857 return 0;
1860 /* Compute the value of METHODS to pass to recursive calls.
1861 Don't allow widening to be tried recursively. */
1863 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1865 /* Look for a wider mode of the same class for which it appears we can do
1866 the operation. */
1868 if (CLASS_HAS_WIDER_MODES_P (mclass))
1870 /* This code doesn't make sense for conversion optabs, since we
1871 wouldn't then want to extend the operands to be the same size
1872 as the result. */
1873 gcc_assert (!convert_optab_p (binoptab));
1874 FOR_EACH_WIDER_MODE (wider_mode, mode)
1876 if (optab_handler (binoptab, wider_mode)
1877 || (methods == OPTAB_LIB
1878 && optab_libfunc (binoptab, wider_mode)))
1880 rtx xop0 = op0, xop1 = op1;
1881 int no_extend = 0;
1883 /* For certain integer operations, we need not actually extend
1884 the narrow operands, as long as we will truncate
1885 the results to the same narrowness. */
1887 if ((binoptab == ior_optab || binoptab == and_optab
1888 || binoptab == xor_optab
1889 || binoptab == add_optab || binoptab == sub_optab
1890 || binoptab == smul_optab || binoptab == ashl_optab)
1891 && mclass == MODE_INT)
1892 no_extend = 1;
1894 xop0 = widen_operand (xop0, wider_mode, mode,
1895 unsignedp, no_extend);
1897 /* The second operand of a shift must always be extended. */
1898 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1899 no_extend && binoptab != ashl_optab);
1901 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1902 unsignedp, methods);
1903 if (temp)
1905 if (mclass != MODE_INT
1906 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1908 if (target == 0)
1909 target = gen_reg_rtx (mode);
1910 convert_move (target, temp, 0);
1911 return target;
1913 else
1914 return gen_lowpart (mode, temp);
1916 else
1917 delete_insns_since (last);
1922 delete_insns_since (entry_last);
1923 return 0;
1926 /* Expand a binary operator which has both signed and unsigned forms.
1927 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1928 signed operations.
1930 If we widen unsigned operands, we may use a signed wider operation instead
1931 of an unsigned wider operation, since the result would be the same. */
1934 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
1935 rtx op0, rtx op1, rtx target, int unsignedp,
1936 enum optab_methods methods)
1938 rtx temp;
1939 optab direct_optab = unsignedp ? uoptab : soptab;
1940 bool save_enable;
1942 /* Do it without widening, if possible. */
1943 temp = expand_binop (mode, direct_optab, op0, op1, target,
1944 unsignedp, OPTAB_DIRECT);
1945 if (temp || methods == OPTAB_DIRECT)
1946 return temp;
1948 /* Try widening to a signed int. Disable any direct use of any
1949 signed insn in the current mode. */
1950 save_enable = swap_optab_enable (soptab, mode, false);
1952 temp = expand_binop (mode, soptab, op0, op1, target,
1953 unsignedp, OPTAB_WIDEN);
1955 /* For unsigned operands, try widening to an unsigned int. */
1956 if (!temp && unsignedp)
1957 temp = expand_binop (mode, uoptab, op0, op1, target,
1958 unsignedp, OPTAB_WIDEN);
1959 if (temp || methods == OPTAB_WIDEN)
1960 goto egress;
1962 /* Use the right width libcall if that exists. */
1963 temp = expand_binop (mode, direct_optab, op0, op1, target,
1964 unsignedp, OPTAB_LIB);
1965 if (temp || methods == OPTAB_LIB)
1966 goto egress;
1968 /* Must widen and use a libcall, use either signed or unsigned. */
1969 temp = expand_binop (mode, soptab, op0, op1, target,
1970 unsignedp, methods);
1971 if (!temp && unsignedp)
1972 temp = expand_binop (mode, uoptab, op0, op1, target,
1973 unsignedp, methods);
1975 egress:
1976 /* Undo the fiddling above. */
1977 if (save_enable)
1978 swap_optab_enable (soptab, mode, true);
1979 return temp;
1982 /* Generate code to perform an operation specified by UNOPPTAB
1983 on operand OP0, with two results to TARG0 and TARG1.
1984 We assume that the order of the operands for the instruction
1985 is TARG0, TARG1, OP0.
1987 Either TARG0 or TARG1 may be zero, but what that means is that
1988 the result is not actually wanted. We will generate it into
1989 a dummy pseudo-reg and discard it. They may not both be zero.
1991 Returns 1 if this operation can be performed; 0 if not. */
1994 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
1995 int unsignedp)
1997 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1998 enum mode_class mclass;
1999 machine_mode wider_mode;
2000 rtx_insn *entry_last = get_last_insn ();
2001 rtx_insn *last;
2003 mclass = GET_MODE_CLASS (mode);
2005 if (!targ0)
2006 targ0 = gen_reg_rtx (mode);
2007 if (!targ1)
2008 targ1 = gen_reg_rtx (mode);
2010 /* Record where to go back to if we fail. */
2011 last = get_last_insn ();
2013 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2015 class expand_operand ops[3];
2016 enum insn_code icode = optab_handler (unoptab, mode);
2018 create_fixed_operand (&ops[0], targ0);
2019 create_fixed_operand (&ops[1], targ1);
2020 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2021 if (maybe_expand_insn (icode, 3, ops))
2022 return 1;
2025 /* It can't be done in this mode. Can we do it in a wider mode? */
2027 if (CLASS_HAS_WIDER_MODES_P (mclass))
2029 FOR_EACH_WIDER_MODE (wider_mode, mode)
2031 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2033 rtx t0 = gen_reg_rtx (wider_mode);
2034 rtx t1 = gen_reg_rtx (wider_mode);
2035 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2037 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2039 convert_move (targ0, t0, unsignedp);
2040 convert_move (targ1, t1, unsignedp);
2041 return 1;
2043 else
2044 delete_insns_since (last);
2049 delete_insns_since (entry_last);
2050 return 0;
2053 /* Generate code to perform an operation specified by BINOPTAB
2054 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2055 We assume that the order of the operands for the instruction
2056 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2057 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2059 Either TARG0 or TARG1 may be zero, but what that means is that
2060 the result is not actually wanted. We will generate it into
2061 a dummy pseudo-reg and discard it. They may not both be zero.
2063 Returns 1 if this operation can be performed; 0 if not. */
2066 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2067 int unsignedp)
2069 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2070 enum mode_class mclass;
2071 machine_mode wider_mode;
2072 rtx_insn *entry_last = get_last_insn ();
2073 rtx_insn *last;
2075 mclass = GET_MODE_CLASS (mode);
2077 if (!targ0)
2078 targ0 = gen_reg_rtx (mode);
2079 if (!targ1)
2080 targ1 = gen_reg_rtx (mode);
2082 /* Record where to go back to if we fail. */
2083 last = get_last_insn ();
2085 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2087 class expand_operand ops[4];
2088 enum insn_code icode = optab_handler (binoptab, mode);
2089 machine_mode mode0 = insn_data[icode].operand[1].mode;
2090 machine_mode mode1 = insn_data[icode].operand[2].mode;
2091 rtx xop0 = op0, xop1 = op1;
2093 /* If we are optimizing, force expensive constants into a register. */
2094 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2095 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2097 create_fixed_operand (&ops[0], targ0);
2098 create_convert_operand_from (&ops[1], xop0, mode, unsignedp);
2099 create_convert_operand_from (&ops[2], xop1, mode, unsignedp);
2100 create_fixed_operand (&ops[3], targ1);
2101 if (maybe_expand_insn (icode, 4, ops))
2102 return 1;
2103 delete_insns_since (last);
2106 /* It can't be done in this mode. Can we do it in a wider mode? */
2108 if (CLASS_HAS_WIDER_MODES_P (mclass))
2110 FOR_EACH_WIDER_MODE (wider_mode, mode)
2112 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2114 rtx t0 = gen_reg_rtx (wider_mode);
2115 rtx t1 = gen_reg_rtx (wider_mode);
2116 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2117 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2119 if (expand_twoval_binop (binoptab, cop0, cop1,
2120 t0, t1, unsignedp))
2122 convert_move (targ0, t0, unsignedp);
2123 convert_move (targ1, t1, unsignedp);
2124 return 1;
2126 else
2127 delete_insns_since (last);
2132 delete_insns_since (entry_last);
2133 return 0;
2136 /* Expand the two-valued library call indicated by BINOPTAB, but
2137 preserve only one of the values. If TARG0 is non-NULL, the first
2138 value is placed into TARG0; otherwise the second value is placed
2139 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2140 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2141 This routine assumes that the value returned by the library call is
2142 as if the return value was of an integral mode twice as wide as the
2143 mode of OP0. Returns 1 if the call was successful. */
2145 bool
2146 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2147 rtx targ0, rtx targ1, enum rtx_code code)
2149 machine_mode mode;
2150 machine_mode libval_mode;
2151 rtx libval;
2152 rtx_insn *insns;
2153 rtx libfunc;
2155 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2156 gcc_assert (!targ0 != !targ1);
2158 mode = GET_MODE (op0);
2159 libfunc = optab_libfunc (binoptab, mode);
2160 if (!libfunc)
2161 return false;
2163 /* The value returned by the library function will have twice as
2164 many bits as the nominal MODE. */
2165 libval_mode = smallest_int_mode_for_size (2 * GET_MODE_BITSIZE (mode));
2166 start_sequence ();
2167 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2168 libval_mode,
2169 op0, mode,
2170 op1, mode);
2171 /* Get the part of VAL containing the value that we want. */
2172 libval = simplify_gen_subreg (mode, libval, libval_mode,
2173 targ0 ? 0 : GET_MODE_SIZE (mode));
2174 insns = get_insns ();
2175 end_sequence ();
2176 /* Move the into the desired location. */
2177 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2178 gen_rtx_fmt_ee (code, mode, op0, op1));
2180 return true;
2184 /* Wrapper around expand_unop which takes an rtx code to specify
2185 the operation to perform, not an optab pointer. All other
2186 arguments are the same. */
2188 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2189 rtx target, int unsignedp)
2191 optab unop = code_to_optab (code);
2192 gcc_assert (unop);
2194 return expand_unop (mode, unop, op0, target, unsignedp);
2197 /* Try calculating
2198 (clz:narrow x)
2200 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2202 A similar operation can be used for clrsb. UNOPTAB says which operation
2203 we are trying to expand. */
2204 static rtx
2205 widen_leading (scalar_int_mode mode, rtx op0, rtx target, optab unoptab)
2207 opt_scalar_int_mode wider_mode_iter;
2208 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2210 scalar_int_mode wider_mode = wider_mode_iter.require ();
2211 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2213 rtx xop0, temp;
2214 rtx_insn *last;
2216 last = get_last_insn ();
2218 if (target == 0)
2219 target = gen_reg_rtx (mode);
2220 xop0 = widen_operand (op0, wider_mode, mode,
2221 unoptab != clrsb_optab, false);
2222 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2223 unoptab != clrsb_optab);
2224 if (temp != 0)
2225 temp = expand_binop
2226 (wider_mode, sub_optab, temp,
2227 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2228 - GET_MODE_PRECISION (mode),
2229 wider_mode),
2230 target, true, OPTAB_DIRECT);
2231 if (temp == 0)
2232 delete_insns_since (last);
2234 return temp;
2237 return 0;
2240 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2241 quantities, choosing which based on whether the high word is nonzero. */
2242 static rtx
2243 expand_doubleword_clz (scalar_int_mode mode, rtx op0, rtx target)
2245 rtx xop0 = force_reg (mode, op0);
2246 rtx subhi = gen_highpart (word_mode, xop0);
2247 rtx sublo = gen_lowpart (word_mode, xop0);
2248 rtx_code_label *hi0_label = gen_label_rtx ();
2249 rtx_code_label *after_label = gen_label_rtx ();
2250 rtx_insn *seq;
2251 rtx temp, result;
2253 /* If we were not given a target, use a word_mode register, not a
2254 'mode' register. The result will fit, and nobody is expecting
2255 anything bigger (the return type of __builtin_clz* is int). */
2256 if (!target)
2257 target = gen_reg_rtx (word_mode);
2259 /* In any case, write to a word_mode scratch in both branches of the
2260 conditional, so we can ensure there is a single move insn setting
2261 'target' to tag a REG_EQUAL note on. */
2262 result = gen_reg_rtx (word_mode);
2264 start_sequence ();
2266 /* If the high word is not equal to zero,
2267 then clz of the full value is clz of the high word. */
2268 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2269 word_mode, true, hi0_label);
2271 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2272 if (!temp)
2273 goto fail;
2275 if (temp != result)
2276 convert_move (result, temp, true);
2278 emit_jump_insn (targetm.gen_jump (after_label));
2279 emit_barrier ();
2281 /* Else clz of the full value is clz of the low word plus the number
2282 of bits in the high word. */
2283 emit_label (hi0_label);
2285 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2286 if (!temp)
2287 goto fail;
2288 temp = expand_binop (word_mode, add_optab, temp,
2289 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2290 result, true, OPTAB_DIRECT);
2291 if (!temp)
2292 goto fail;
2293 if (temp != result)
2294 convert_move (result, temp, true);
2296 emit_label (after_label);
2297 convert_move (target, result, true);
2299 seq = get_insns ();
2300 end_sequence ();
2302 add_equal_note (seq, target, CLZ, xop0, NULL_RTX, mode);
2303 emit_insn (seq);
2304 return target;
2306 fail:
2307 end_sequence ();
2308 return 0;
2311 /* Try calculating popcount of a double-word quantity as two popcount's of
2312 word-sized quantities and summing up the results. */
2313 static rtx
2314 expand_doubleword_popcount (scalar_int_mode mode, rtx op0, rtx target)
2316 rtx t0, t1, t;
2317 rtx_insn *seq;
2319 start_sequence ();
2321 t0 = expand_unop_direct (word_mode, popcount_optab,
2322 operand_subword_force (op0, 0, mode), NULL_RTX,
2323 true);
2324 t1 = expand_unop_direct (word_mode, popcount_optab,
2325 operand_subword_force (op0, 1, mode), NULL_RTX,
2326 true);
2327 if (!t0 || !t1)
2329 end_sequence ();
2330 return NULL_RTX;
2333 /* If we were not given a target, use a word_mode register, not a
2334 'mode' register. The result will fit, and nobody is expecting
2335 anything bigger (the return type of __builtin_popcount* is int). */
2336 if (!target)
2337 target = gen_reg_rtx (word_mode);
2339 t = expand_binop (word_mode, add_optab, t0, t1, target, 0, OPTAB_DIRECT);
2341 seq = get_insns ();
2342 end_sequence ();
2344 add_equal_note (seq, t, POPCOUNT, op0, NULL_RTX, mode);
2345 emit_insn (seq);
2346 return t;
2349 /* Try calculating
2350 (parity:wide x)
2352 (parity:narrow (low (x) ^ high (x))) */
2353 static rtx
2354 expand_doubleword_parity (scalar_int_mode mode, rtx op0, rtx target)
2356 rtx t = expand_binop (word_mode, xor_optab,
2357 operand_subword_force (op0, 0, mode),
2358 operand_subword_force (op0, 1, mode),
2359 NULL_RTX, 0, OPTAB_DIRECT);
2360 return expand_unop (word_mode, parity_optab, t, target, true);
2363 /* Try calculating
2364 (bswap:narrow x)
2366 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2367 static rtx
2368 widen_bswap (scalar_int_mode mode, rtx op0, rtx target)
2370 rtx x;
2371 rtx_insn *last;
2372 opt_scalar_int_mode wider_mode_iter;
2374 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2375 if (optab_handler (bswap_optab, wider_mode_iter.require ())
2376 != CODE_FOR_nothing)
2377 break;
2379 if (!wider_mode_iter.exists ())
2380 return NULL_RTX;
2382 scalar_int_mode wider_mode = wider_mode_iter.require ();
2383 last = get_last_insn ();
2385 x = widen_operand (op0, wider_mode, mode, true, true);
2386 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2388 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2389 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2390 if (x != 0)
2391 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2392 GET_MODE_BITSIZE (wider_mode)
2393 - GET_MODE_BITSIZE (mode),
2394 NULL_RTX, true);
2396 if (x != 0)
2398 if (target == 0)
2399 target = gen_reg_rtx (mode);
2400 emit_move_insn (target, gen_lowpart (mode, x));
2402 else
2403 delete_insns_since (last);
2405 return target;
2408 /* Try calculating bswap as two bswaps of two word-sized operands. */
2410 static rtx
2411 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2413 rtx t0, t1;
2415 t1 = expand_unop (word_mode, bswap_optab,
2416 operand_subword_force (op, 0, mode), NULL_RTX, true);
2417 t0 = expand_unop (word_mode, bswap_optab,
2418 operand_subword_force (op, 1, mode), NULL_RTX, true);
2420 if (target == 0 || !valid_multiword_target_p (target))
2421 target = gen_reg_rtx (mode);
2422 if (REG_P (target))
2423 emit_clobber (target);
2424 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2425 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2427 return target;
2430 /* Try calculating (parity x) as (and (popcount x) 1), where
2431 popcount can also be done in a wider mode. */
2432 static rtx
2433 expand_parity (scalar_int_mode mode, rtx op0, rtx target)
2435 enum mode_class mclass = GET_MODE_CLASS (mode);
2436 opt_scalar_int_mode wider_mode_iter;
2437 FOR_EACH_MODE_FROM (wider_mode_iter, mode)
2439 scalar_int_mode wider_mode = wider_mode_iter.require ();
2440 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2442 rtx xop0, temp;
2443 rtx_insn *last;
2445 last = get_last_insn ();
2447 if (target == 0 || GET_MODE (target) != wider_mode)
2448 target = gen_reg_rtx (wider_mode);
2450 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2451 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2452 true);
2453 if (temp != 0)
2454 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2455 target, true, OPTAB_DIRECT);
2457 if (temp)
2459 if (mclass != MODE_INT
2460 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2461 return convert_to_mode (mode, temp, 0);
2462 else
2463 return gen_lowpart (mode, temp);
2465 else
2466 delete_insns_since (last);
2469 return 0;
2472 /* Try calculating ctz(x) as K - clz(x & -x) ,
2473 where K is GET_MODE_PRECISION(mode) - 1.
2475 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2476 don't have to worry about what the hardware does in that case. (If
2477 the clz instruction produces the usual value at 0, which is K, the
2478 result of this code sequence will be -1; expand_ffs, below, relies
2479 on this. It might be nice to have it be K instead, for consistency
2480 with the (very few) processors that provide a ctz with a defined
2481 value, but that would take one more instruction, and it would be
2482 less convenient for expand_ffs anyway. */
2484 static rtx
2485 expand_ctz (scalar_int_mode mode, rtx op0, rtx target)
2487 rtx_insn *seq;
2488 rtx temp;
2490 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2491 return 0;
2493 start_sequence ();
2495 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2496 if (temp)
2497 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2498 true, OPTAB_DIRECT);
2499 if (temp)
2500 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2501 if (temp)
2502 temp = expand_binop (mode, sub_optab,
2503 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2504 temp, target,
2505 true, OPTAB_DIRECT);
2506 if (temp == 0)
2508 end_sequence ();
2509 return 0;
2512 seq = get_insns ();
2513 end_sequence ();
2515 add_equal_note (seq, temp, CTZ, op0, NULL_RTX, mode);
2516 emit_insn (seq);
2517 return temp;
2521 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2522 else with the sequence used by expand_clz.
2524 The ffs builtin promises to return zero for a zero value and ctz/clz
2525 may have an undefined value in that case. If they do not give us a
2526 convenient value, we have to generate a test and branch. */
2527 static rtx
2528 expand_ffs (scalar_int_mode mode, rtx op0, rtx target)
2530 HOST_WIDE_INT val = 0;
2531 bool defined_at_zero = false;
2532 rtx temp;
2533 rtx_insn *seq;
2535 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2537 start_sequence ();
2539 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2540 if (!temp)
2541 goto fail;
2543 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2545 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2547 start_sequence ();
2548 temp = expand_ctz (mode, op0, 0);
2549 if (!temp)
2550 goto fail;
2552 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2554 defined_at_zero = true;
2555 val = (GET_MODE_PRECISION (mode) - 1) - val;
2558 else
2559 return 0;
2561 if (defined_at_zero && val == -1)
2562 /* No correction needed at zero. */;
2563 else
2565 /* We don't try to do anything clever with the situation found
2566 on some processors (eg Alpha) where ctz(0:mode) ==
2567 bitsize(mode). If someone can think of a way to send N to -1
2568 and leave alone all values in the range 0..N-1 (where N is a
2569 power of two), cheaper than this test-and-branch, please add it.
2571 The test-and-branch is done after the operation itself, in case
2572 the operation sets condition codes that can be recycled for this.
2573 (This is true on i386, for instance.) */
2575 rtx_code_label *nonzero_label = gen_label_rtx ();
2576 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2577 mode, true, nonzero_label);
2579 convert_move (temp, GEN_INT (-1), false);
2580 emit_label (nonzero_label);
2583 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2584 to produce a value in the range 0..bitsize. */
2585 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2586 target, false, OPTAB_DIRECT);
2587 if (!temp)
2588 goto fail;
2590 seq = get_insns ();
2591 end_sequence ();
2593 add_equal_note (seq, temp, FFS, op0, NULL_RTX, mode);
2594 emit_insn (seq);
2595 return temp;
2597 fail:
2598 end_sequence ();
2599 return 0;
2602 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2603 conditions, VAL may already be a SUBREG against which we cannot generate
2604 a further SUBREG. In this case, we expect forcing the value into a
2605 register will work around the situation. */
2607 static rtx
2608 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2609 machine_mode imode)
2611 rtx ret;
2612 ret = lowpart_subreg (omode, val, imode);
2613 if (ret == NULL)
2615 val = force_reg (imode, val);
2616 ret = lowpart_subreg (omode, val, imode);
2617 gcc_assert (ret != NULL);
2619 return ret;
2622 /* Expand a floating point absolute value or negation operation via a
2623 logical operation on the sign bit. */
2625 static rtx
2626 expand_absneg_bit (enum rtx_code code, scalar_float_mode mode,
2627 rtx op0, rtx target)
2629 const struct real_format *fmt;
2630 int bitpos, word, nwords, i;
2631 scalar_int_mode imode;
2632 rtx temp;
2633 rtx_insn *insns;
2635 /* The format has to have a simple sign bit. */
2636 fmt = REAL_MODE_FORMAT (mode);
2637 if (fmt == NULL)
2638 return NULL_RTX;
2640 bitpos = fmt->signbit_rw;
2641 if (bitpos < 0)
2642 return NULL_RTX;
2644 /* Don't create negative zeros if the format doesn't support them. */
2645 if (code == NEG && !fmt->has_signed_zero)
2646 return NULL_RTX;
2648 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2650 if (!int_mode_for_mode (mode).exists (&imode))
2651 return NULL_RTX;
2652 word = 0;
2653 nwords = 1;
2655 else
2657 imode = word_mode;
2659 if (FLOAT_WORDS_BIG_ENDIAN)
2660 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2661 else
2662 word = bitpos / BITS_PER_WORD;
2663 bitpos = bitpos % BITS_PER_WORD;
2664 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2667 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2668 if (code == ABS)
2669 mask = ~mask;
2671 if (target == 0
2672 || target == op0
2673 || (nwords > 1 && !valid_multiword_target_p (target)))
2674 target = gen_reg_rtx (mode);
2676 if (nwords > 1)
2678 start_sequence ();
2680 for (i = 0; i < nwords; ++i)
2682 rtx targ_piece = operand_subword (target, i, 1, mode);
2683 rtx op0_piece = operand_subword_force (op0, i, mode);
2685 if (i == word)
2687 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2688 op0_piece,
2689 immed_wide_int_const (mask, imode),
2690 targ_piece, 1, OPTAB_LIB_WIDEN);
2691 if (temp != targ_piece)
2692 emit_move_insn (targ_piece, temp);
2694 else
2695 emit_move_insn (targ_piece, op0_piece);
2698 insns = get_insns ();
2699 end_sequence ();
2701 emit_insn (insns);
2703 else
2705 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2706 gen_lowpart (imode, op0),
2707 immed_wide_int_const (mask, imode),
2708 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2709 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2711 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2712 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2713 target);
2716 return target;
2719 /* As expand_unop, but will fail rather than attempt the operation in a
2720 different mode or with a libcall. */
2721 static rtx
2722 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2723 int unsignedp)
2725 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2727 class expand_operand ops[2];
2728 enum insn_code icode = optab_handler (unoptab, mode);
2729 rtx_insn *last = get_last_insn ();
2730 rtx_insn *pat;
2732 create_output_operand (&ops[0], target, mode);
2733 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2734 pat = maybe_gen_insn (icode, 2, ops);
2735 if (pat)
2737 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2738 && ! add_equal_note (pat, ops[0].value,
2739 optab_to_code (unoptab),
2740 ops[1].value, NULL_RTX, mode))
2742 delete_insns_since (last);
2743 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2746 emit_insn (pat);
2748 return ops[0].value;
2751 return 0;
2754 /* Generate code to perform an operation specified by UNOPTAB
2755 on operand OP0, with result having machine-mode MODE.
2757 UNSIGNEDP is for the case where we have to widen the operands
2758 to perform the operation. It says to use zero-extension.
2760 If TARGET is nonzero, the value
2761 is generated there, if it is convenient to do so.
2762 In all cases an rtx is returned for the locus of the value;
2763 this may or may not be TARGET. */
2766 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
2767 int unsignedp)
2769 enum mode_class mclass = GET_MODE_CLASS (mode);
2770 machine_mode wider_mode;
2771 scalar_int_mode int_mode;
2772 scalar_float_mode float_mode;
2773 rtx temp;
2774 rtx libfunc;
2776 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
2777 if (temp)
2778 return temp;
2780 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2782 /* Widening (or narrowing) clz needs special treatment. */
2783 if (unoptab == clz_optab)
2785 if (is_a <scalar_int_mode> (mode, &int_mode))
2787 temp = widen_leading (int_mode, op0, target, unoptab);
2788 if (temp)
2789 return temp;
2791 if (GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2792 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2794 temp = expand_doubleword_clz (int_mode, op0, target);
2795 if (temp)
2796 return temp;
2800 goto try_libcall;
2803 if (unoptab == clrsb_optab)
2805 if (is_a <scalar_int_mode> (mode, &int_mode))
2807 temp = widen_leading (int_mode, op0, target, unoptab);
2808 if (temp)
2809 return temp;
2811 goto try_libcall;
2814 if (unoptab == popcount_optab
2815 && is_a <scalar_int_mode> (mode, &int_mode)
2816 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2817 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2818 && optimize_insn_for_speed_p ())
2820 temp = expand_doubleword_popcount (int_mode, op0, target);
2821 if (temp)
2822 return temp;
2825 if (unoptab == parity_optab
2826 && is_a <scalar_int_mode> (mode, &int_mode)
2827 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2828 && (optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2829 || optab_handler (popcount_optab, word_mode) != CODE_FOR_nothing)
2830 && optimize_insn_for_speed_p ())
2832 temp = expand_doubleword_parity (int_mode, op0, target);
2833 if (temp)
2834 return temp;
2837 /* Widening (or narrowing) bswap needs special treatment. */
2838 if (unoptab == bswap_optab)
2840 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2841 or ROTATERT. First try these directly; if this fails, then try the
2842 obvious pair of shifts with allowed widening, as this will probably
2843 be always more efficient than the other fallback methods. */
2844 if (mode == HImode)
2846 rtx_insn *last;
2847 rtx temp1, temp2;
2849 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
2851 temp = expand_binop (mode, rotl_optab, op0,
2852 gen_int_shift_amount (mode, 8),
2853 target, unsignedp, OPTAB_DIRECT);
2854 if (temp)
2855 return temp;
2858 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
2860 temp = expand_binop (mode, rotr_optab, op0,
2861 gen_int_shift_amount (mode, 8),
2862 target, unsignedp, OPTAB_DIRECT);
2863 if (temp)
2864 return temp;
2867 last = get_last_insn ();
2869 temp1 = expand_binop (mode, ashl_optab, op0,
2870 gen_int_shift_amount (mode, 8), NULL_RTX,
2871 unsignedp, OPTAB_WIDEN);
2872 temp2 = expand_binop (mode, lshr_optab, op0,
2873 gen_int_shift_amount (mode, 8), NULL_RTX,
2874 unsignedp, OPTAB_WIDEN);
2875 if (temp1 && temp2)
2877 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
2878 unsignedp, OPTAB_WIDEN);
2879 if (temp)
2880 return temp;
2883 delete_insns_since (last);
2886 if (is_a <scalar_int_mode> (mode, &int_mode))
2888 temp = widen_bswap (int_mode, op0, target);
2889 if (temp)
2890 return temp;
2892 if (GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2893 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2895 temp = expand_doubleword_bswap (mode, op0, target);
2896 if (temp)
2897 return temp;
2901 goto try_libcall;
2904 if (CLASS_HAS_WIDER_MODES_P (mclass))
2905 FOR_EACH_WIDER_MODE (wider_mode, mode)
2907 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2909 rtx xop0 = op0;
2910 rtx_insn *last = get_last_insn ();
2912 /* For certain operations, we need not actually extend
2913 the narrow operand, as long as we will truncate the
2914 results to the same narrowness. */
2916 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2917 (unoptab == neg_optab
2918 || unoptab == one_cmpl_optab)
2919 && mclass == MODE_INT);
2921 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2922 unsignedp);
2924 if (temp)
2926 if (mclass != MODE_INT
2927 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2929 if (target == 0)
2930 target = gen_reg_rtx (mode);
2931 convert_move (target, temp, 0);
2932 return target;
2934 else
2935 return gen_lowpart (mode, temp);
2937 else
2938 delete_insns_since (last);
2942 /* These can be done a word at a time. */
2943 if (unoptab == one_cmpl_optab
2944 && is_int_mode (mode, &int_mode)
2945 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD
2946 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2948 int i;
2949 rtx_insn *insns;
2951 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
2952 target = gen_reg_rtx (int_mode);
2954 start_sequence ();
2956 /* Do the actual arithmetic. */
2957 for (i = 0; i < GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD; i++)
2959 rtx target_piece = operand_subword (target, i, 1, int_mode);
2960 rtx x = expand_unop (word_mode, unoptab,
2961 operand_subword_force (op0, i, int_mode),
2962 target_piece, unsignedp);
2964 if (target_piece != x)
2965 emit_move_insn (target_piece, x);
2968 insns = get_insns ();
2969 end_sequence ();
2971 emit_insn (insns);
2972 return target;
2975 /* Emit ~op0 as op0 ^ -1. */
2976 if (unoptab == one_cmpl_optab
2977 && (SCALAR_INT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
2978 && optab_handler (xor_optab, mode) != CODE_FOR_nothing)
2980 temp = expand_binop (mode, xor_optab, op0, CONSTM1_RTX (mode),
2981 target, unsignedp, OPTAB_DIRECT);
2982 if (temp)
2983 return temp;
2986 if (optab_to_code (unoptab) == NEG)
2988 /* Try negating floating point values by flipping the sign bit. */
2989 if (is_a <scalar_float_mode> (mode, &float_mode))
2991 temp = expand_absneg_bit (NEG, float_mode, op0, target);
2992 if (temp)
2993 return temp;
2996 /* If there is no negation pattern, and we have no negative zero,
2997 try subtracting from zero. */
2998 if (!HONOR_SIGNED_ZEROS (mode))
3000 temp = expand_binop (mode, (unoptab == negv_optab
3001 ? subv_optab : sub_optab),
3002 CONST0_RTX (mode), op0, target,
3003 unsignedp, OPTAB_DIRECT);
3004 if (temp)
3005 return temp;
3009 /* Try calculating parity (x) as popcount (x) % 2. */
3010 if (unoptab == parity_optab && is_a <scalar_int_mode> (mode, &int_mode))
3012 temp = expand_parity (int_mode, op0, target);
3013 if (temp)
3014 return temp;
3017 /* Try implementing ffs (x) in terms of clz (x). */
3018 if (unoptab == ffs_optab && is_a <scalar_int_mode> (mode, &int_mode))
3020 temp = expand_ffs (int_mode, op0, target);
3021 if (temp)
3022 return temp;
3025 /* Try implementing ctz (x) in terms of clz (x). */
3026 if (unoptab == ctz_optab && is_a <scalar_int_mode> (mode, &int_mode))
3028 temp = expand_ctz (int_mode, op0, target);
3029 if (temp)
3030 return temp;
3033 try_libcall:
3034 /* Now try a library call in this mode. */
3035 libfunc = optab_libfunc (unoptab, mode);
3036 if (libfunc)
3038 rtx_insn *insns;
3039 rtx value;
3040 rtx eq_value;
3041 machine_mode outmode = mode;
3043 /* All of these functions return small values. Thus we choose to
3044 have them return something that isn't a double-word. */
3045 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3046 || unoptab == clrsb_optab || unoptab == popcount_optab
3047 || unoptab == parity_optab)
3048 outmode
3049 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3050 optab_libfunc (unoptab, mode)));
3052 start_sequence ();
3054 /* Pass 1 for NO_QUEUE so we don't lose any increments
3055 if the libcall is cse'd or moved. */
3056 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3057 op0, mode);
3058 insns = get_insns ();
3059 end_sequence ();
3061 target = gen_reg_rtx (outmode);
3062 bool trapv = trapv_unoptab_p (unoptab);
3063 if (trapv)
3064 eq_value = NULL_RTX;
3065 else
3067 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3068 if (GET_MODE_UNIT_SIZE (outmode) < GET_MODE_UNIT_SIZE (mode))
3069 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3070 else if (GET_MODE_UNIT_SIZE (outmode) > GET_MODE_UNIT_SIZE (mode))
3071 eq_value = simplify_gen_unary (ZERO_EXTEND,
3072 outmode, eq_value, mode);
3074 emit_libcall_block_1 (insns, target, value, eq_value, trapv);
3076 return target;
3079 /* It can't be done in this mode. Can we do it in a wider mode? */
3081 if (CLASS_HAS_WIDER_MODES_P (mclass))
3083 FOR_EACH_WIDER_MODE (wider_mode, mode)
3085 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3086 || optab_libfunc (unoptab, wider_mode))
3088 rtx xop0 = op0;
3089 rtx_insn *last = get_last_insn ();
3091 /* For certain operations, we need not actually extend
3092 the narrow operand, as long as we will truncate the
3093 results to the same narrowness. */
3094 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3095 (unoptab == neg_optab
3096 || unoptab == one_cmpl_optab
3097 || unoptab == bswap_optab)
3098 && mclass == MODE_INT);
3100 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3101 unsignedp);
3103 /* If we are generating clz using wider mode, adjust the
3104 result. Similarly for clrsb. */
3105 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3106 && temp != 0)
3108 scalar_int_mode wider_int_mode
3109 = as_a <scalar_int_mode> (wider_mode);
3110 int_mode = as_a <scalar_int_mode> (mode);
3111 temp = expand_binop
3112 (wider_mode, sub_optab, temp,
3113 gen_int_mode (GET_MODE_PRECISION (wider_int_mode)
3114 - GET_MODE_PRECISION (int_mode),
3115 wider_int_mode),
3116 target, true, OPTAB_DIRECT);
3119 /* Likewise for bswap. */
3120 if (unoptab == bswap_optab && temp != 0)
3122 scalar_int_mode wider_int_mode
3123 = as_a <scalar_int_mode> (wider_mode);
3124 int_mode = as_a <scalar_int_mode> (mode);
3125 gcc_assert (GET_MODE_PRECISION (wider_int_mode)
3126 == GET_MODE_BITSIZE (wider_int_mode)
3127 && GET_MODE_PRECISION (int_mode)
3128 == GET_MODE_BITSIZE (int_mode));
3130 temp = expand_shift (RSHIFT_EXPR, wider_int_mode, temp,
3131 GET_MODE_BITSIZE (wider_int_mode)
3132 - GET_MODE_BITSIZE (int_mode),
3133 NULL_RTX, true);
3136 if (temp)
3138 if (mclass != MODE_INT)
3140 if (target == 0)
3141 target = gen_reg_rtx (mode);
3142 convert_move (target, temp, 0);
3143 return target;
3145 else
3146 return gen_lowpart (mode, temp);
3148 else
3149 delete_insns_since (last);
3154 /* One final attempt at implementing negation via subtraction,
3155 this time allowing widening of the operand. */
3156 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3158 rtx temp;
3159 temp = expand_binop (mode,
3160 unoptab == negv_optab ? subv_optab : sub_optab,
3161 CONST0_RTX (mode), op0,
3162 target, unsignedp, OPTAB_LIB_WIDEN);
3163 if (temp)
3164 return temp;
3167 return 0;
3170 /* Emit code to compute the absolute value of OP0, with result to
3171 TARGET if convenient. (TARGET may be 0.) The return value says
3172 where the result actually is to be found.
3174 MODE is the mode of the operand; the mode of the result is
3175 different but can be deduced from MODE.
3180 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3181 int result_unsignedp)
3183 rtx temp;
3185 if (GET_MODE_CLASS (mode) != MODE_INT
3186 || ! flag_trapv)
3187 result_unsignedp = 1;
3189 /* First try to do it with a special abs instruction. */
3190 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3191 op0, target, 0);
3192 if (temp != 0)
3193 return temp;
3195 /* For floating point modes, try clearing the sign bit. */
3196 scalar_float_mode float_mode;
3197 if (is_a <scalar_float_mode> (mode, &float_mode))
3199 temp = expand_absneg_bit (ABS, float_mode, op0, target);
3200 if (temp)
3201 return temp;
3204 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3205 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3206 && !HONOR_SIGNED_ZEROS (mode))
3208 rtx_insn *last = get_last_insn ();
3210 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3211 op0, NULL_RTX, 0);
3212 if (temp != 0)
3213 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3214 OPTAB_WIDEN);
3216 if (temp != 0)
3217 return temp;
3219 delete_insns_since (last);
3222 /* If this machine has expensive jumps, we can do integer absolute
3223 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3224 where W is the width of MODE. */
3226 scalar_int_mode int_mode;
3227 if (is_int_mode (mode, &int_mode)
3228 && BRANCH_COST (optimize_insn_for_speed_p (),
3229 false) >= 2)
3231 rtx extended = expand_shift (RSHIFT_EXPR, int_mode, op0,
3232 GET_MODE_PRECISION (int_mode) - 1,
3233 NULL_RTX, 0);
3235 temp = expand_binop (int_mode, xor_optab, extended, op0, target, 0,
3236 OPTAB_LIB_WIDEN);
3237 if (temp != 0)
3238 temp = expand_binop (int_mode,
3239 result_unsignedp ? sub_optab : subv_optab,
3240 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3242 if (temp != 0)
3243 return temp;
3246 return NULL_RTX;
3250 expand_abs (machine_mode mode, rtx op0, rtx target,
3251 int result_unsignedp, int safe)
3253 rtx temp;
3254 rtx_code_label *op1;
3256 if (GET_MODE_CLASS (mode) != MODE_INT
3257 || ! flag_trapv)
3258 result_unsignedp = 1;
3260 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3261 if (temp != 0)
3262 return temp;
3264 /* If that does not win, use conditional jump and negate. */
3266 /* It is safe to use the target if it is the same
3267 as the source if this is also a pseudo register */
3268 if (op0 == target && REG_P (op0)
3269 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3270 safe = 1;
3272 op1 = gen_label_rtx ();
3273 if (target == 0 || ! safe
3274 || GET_MODE (target) != mode
3275 || (MEM_P (target) && MEM_VOLATILE_P (target))
3276 || (REG_P (target)
3277 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3278 target = gen_reg_rtx (mode);
3280 emit_move_insn (target, op0);
3281 NO_DEFER_POP;
3283 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3284 NULL_RTX, NULL, op1,
3285 profile_probability::uninitialized ());
3287 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3288 target, target, 0);
3289 if (op0 != target)
3290 emit_move_insn (target, op0);
3291 emit_label (op1);
3292 OK_DEFER_POP;
3293 return target;
3296 /* Emit code to compute the one's complement absolute value of OP0
3297 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3298 (TARGET may be NULL_RTX.) The return value says where the result
3299 actually is to be found.
3301 MODE is the mode of the operand; the mode of the result is
3302 different but can be deduced from MODE. */
3305 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3307 rtx temp;
3309 /* Not applicable for floating point modes. */
3310 if (FLOAT_MODE_P (mode))
3311 return NULL_RTX;
3313 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3314 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3316 rtx_insn *last = get_last_insn ();
3318 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3319 if (temp != 0)
3320 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3321 OPTAB_WIDEN);
3323 if (temp != 0)
3324 return temp;
3326 delete_insns_since (last);
3329 /* If this machine has expensive jumps, we can do one's complement
3330 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3332 scalar_int_mode int_mode;
3333 if (is_int_mode (mode, &int_mode)
3334 && BRANCH_COST (optimize_insn_for_speed_p (),
3335 false) >= 2)
3337 rtx extended = expand_shift (RSHIFT_EXPR, int_mode, op0,
3338 GET_MODE_PRECISION (int_mode) - 1,
3339 NULL_RTX, 0);
3341 temp = expand_binop (int_mode, xor_optab, extended, op0, target, 0,
3342 OPTAB_LIB_WIDEN);
3344 if (temp != 0)
3345 return temp;
3348 return NULL_RTX;
3351 /* A subroutine of expand_copysign, perform the copysign operation using the
3352 abs and neg primitives advertised to exist on the target. The assumption
3353 is that we have a split register file, and leaving op0 in fp registers,
3354 and not playing with subregs so much, will help the register allocator. */
3356 static rtx
3357 expand_copysign_absneg (scalar_float_mode mode, rtx op0, rtx op1, rtx target,
3358 int bitpos, bool op0_is_abs)
3360 scalar_int_mode imode;
3361 enum insn_code icode;
3362 rtx sign;
3363 rtx_code_label *label;
3365 if (target == op1)
3366 target = NULL_RTX;
3368 /* Check if the back end provides an insn that handles signbit for the
3369 argument's mode. */
3370 icode = optab_handler (signbit_optab, mode);
3371 if (icode != CODE_FOR_nothing)
3373 imode = as_a <scalar_int_mode> (insn_data[(int) icode].operand[0].mode);
3374 sign = gen_reg_rtx (imode);
3375 emit_unop_insn (icode, sign, op1, UNKNOWN);
3377 else
3379 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3381 if (!int_mode_for_mode (mode).exists (&imode))
3382 return NULL_RTX;
3383 op1 = gen_lowpart (imode, op1);
3385 else
3387 int word;
3389 imode = word_mode;
3390 if (FLOAT_WORDS_BIG_ENDIAN)
3391 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3392 else
3393 word = bitpos / BITS_PER_WORD;
3394 bitpos = bitpos % BITS_PER_WORD;
3395 op1 = operand_subword_force (op1, word, mode);
3398 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3399 sign = expand_binop (imode, and_optab, op1,
3400 immed_wide_int_const (mask, imode),
3401 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3404 if (!op0_is_abs)
3406 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3407 if (op0 == NULL)
3408 return NULL_RTX;
3409 target = op0;
3411 else
3413 if (target == NULL_RTX)
3414 target = copy_to_reg (op0);
3415 else
3416 emit_move_insn (target, op0);
3419 label = gen_label_rtx ();
3420 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3422 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3423 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3424 else
3425 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3426 if (op0 != target)
3427 emit_move_insn (target, op0);
3429 emit_label (label);
3431 return target;
3435 /* A subroutine of expand_copysign, perform the entire copysign operation
3436 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3437 is true if op0 is known to have its sign bit clear. */
3439 static rtx
3440 expand_copysign_bit (scalar_float_mode mode, rtx op0, rtx op1, rtx target,
3441 int bitpos, bool op0_is_abs)
3443 scalar_int_mode imode;
3444 int word, nwords, i;
3445 rtx temp;
3446 rtx_insn *insns;
3448 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3450 if (!int_mode_for_mode (mode).exists (&imode))
3451 return NULL_RTX;
3452 word = 0;
3453 nwords = 1;
3455 else
3457 imode = word_mode;
3459 if (FLOAT_WORDS_BIG_ENDIAN)
3460 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3461 else
3462 word = bitpos / BITS_PER_WORD;
3463 bitpos = bitpos % BITS_PER_WORD;
3464 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3467 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3469 if (target == 0
3470 || target == op0
3471 || target == op1
3472 || (nwords > 1 && !valid_multiword_target_p (target)))
3473 target = gen_reg_rtx (mode);
3475 if (nwords > 1)
3477 start_sequence ();
3479 for (i = 0; i < nwords; ++i)
3481 rtx targ_piece = operand_subword (target, i, 1, mode);
3482 rtx op0_piece = operand_subword_force (op0, i, mode);
3484 if (i == word)
3486 if (!op0_is_abs)
3487 op0_piece
3488 = expand_binop (imode, and_optab, op0_piece,
3489 immed_wide_int_const (~mask, imode),
3490 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3491 op1 = expand_binop (imode, and_optab,
3492 operand_subword_force (op1, i, mode),
3493 immed_wide_int_const (mask, imode),
3494 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3496 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3497 targ_piece, 1, OPTAB_LIB_WIDEN);
3498 if (temp != targ_piece)
3499 emit_move_insn (targ_piece, temp);
3501 else
3502 emit_move_insn (targ_piece, op0_piece);
3505 insns = get_insns ();
3506 end_sequence ();
3508 emit_insn (insns);
3510 else
3512 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3513 immed_wide_int_const (mask, imode),
3514 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3516 op0 = gen_lowpart (imode, op0);
3517 if (!op0_is_abs)
3518 op0 = expand_binop (imode, and_optab, op0,
3519 immed_wide_int_const (~mask, imode),
3520 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3522 temp = expand_binop (imode, ior_optab, op0, op1,
3523 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3524 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3527 return target;
3530 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3531 scalar floating point mode. Return NULL if we do not know how to
3532 expand the operation inline. */
3535 expand_copysign (rtx op0, rtx op1, rtx target)
3537 scalar_float_mode mode;
3538 const struct real_format *fmt;
3539 bool op0_is_abs;
3540 rtx temp;
3542 mode = as_a <scalar_float_mode> (GET_MODE (op0));
3543 gcc_assert (GET_MODE (op1) == mode);
3545 /* First try to do it with a special instruction. */
3546 temp = expand_binop (mode, copysign_optab, op0, op1,
3547 target, 0, OPTAB_DIRECT);
3548 if (temp)
3549 return temp;
3551 fmt = REAL_MODE_FORMAT (mode);
3552 if (fmt == NULL || !fmt->has_signed_zero)
3553 return NULL_RTX;
3555 op0_is_abs = false;
3556 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3558 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3559 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3560 op0_is_abs = true;
3563 if (fmt->signbit_ro >= 0
3564 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3565 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3566 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3568 temp = expand_copysign_absneg (mode, op0, op1, target,
3569 fmt->signbit_ro, op0_is_abs);
3570 if (temp)
3571 return temp;
3574 if (fmt->signbit_rw < 0)
3575 return NULL_RTX;
3576 return expand_copysign_bit (mode, op0, op1, target,
3577 fmt->signbit_rw, op0_is_abs);
3580 /* Generate an instruction whose insn-code is INSN_CODE,
3581 with two operands: an output TARGET and an input OP0.
3582 TARGET *must* be nonzero, and the output is always stored there.
3583 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3584 the value that is stored into TARGET.
3586 Return false if expansion failed. */
3588 bool
3589 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3590 enum rtx_code code)
3592 class expand_operand ops[2];
3593 rtx_insn *pat;
3595 create_output_operand (&ops[0], target, GET_MODE (target));
3596 create_input_operand (&ops[1], op0, GET_MODE (op0));
3597 pat = maybe_gen_insn (icode, 2, ops);
3598 if (!pat)
3599 return false;
3601 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3602 && code != UNKNOWN)
3603 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX,
3604 GET_MODE (op0));
3606 emit_insn (pat);
3608 if (ops[0].value != target)
3609 emit_move_insn (target, ops[0].value);
3610 return true;
3612 /* Generate an instruction whose insn-code is INSN_CODE,
3613 with two operands: an output TARGET and an input OP0.
3614 TARGET *must* be nonzero, and the output is always stored there.
3615 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3616 the value that is stored into TARGET. */
3618 void
3619 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3621 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3622 gcc_assert (ok);
3625 struct no_conflict_data
3627 rtx target;
3628 rtx_insn *first, *insn;
3629 bool must_stay;
3632 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3633 the currently examined clobber / store has to stay in the list of
3634 insns that constitute the actual libcall block. */
3635 static void
3636 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3638 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3640 /* If this inns directly contributes to setting the target, it must stay. */
3641 if (reg_overlap_mentioned_p (p->target, dest))
3642 p->must_stay = true;
3643 /* If we haven't committed to keeping any other insns in the list yet,
3644 there is nothing more to check. */
3645 else if (p->insn == p->first)
3646 return;
3647 /* If this insn sets / clobbers a register that feeds one of the insns
3648 already in the list, this insn has to stay too. */
3649 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3650 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3651 || reg_used_between_p (dest, p->first, p->insn)
3652 /* Likewise if this insn depends on a register set by a previous
3653 insn in the list, or if it sets a result (presumably a hard
3654 register) that is set or clobbered by a previous insn.
3655 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3656 SET_DEST perform the former check on the address, and the latter
3657 check on the MEM. */
3658 || (GET_CODE (set) == SET
3659 && (modified_in_p (SET_SRC (set), p->first)
3660 || modified_in_p (SET_DEST (set), p->first)
3661 || modified_between_p (SET_SRC (set), p->first, p->insn)
3662 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3663 p->must_stay = true;
3667 /* Emit code to make a call to a constant function or a library call.
3669 INSNS is a list containing all insns emitted in the call.
3670 These insns leave the result in RESULT. Our block is to copy RESULT
3671 to TARGET, which is logically equivalent to EQUIV.
3673 We first emit any insns that set a pseudo on the assumption that these are
3674 loading constants into registers; doing so allows them to be safely cse'ed
3675 between blocks. Then we emit all the other insns in the block, followed by
3676 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3677 note with an operand of EQUIV. */
3679 static void
3680 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3681 bool equiv_may_trap)
3683 rtx final_dest = target;
3684 rtx_insn *next, *last, *insn;
3686 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3687 into a MEM later. Protect the libcall block from this change. */
3688 if (! REG_P (target) || REG_USERVAR_P (target))
3689 target = gen_reg_rtx (GET_MODE (target));
3691 /* If we're using non-call exceptions, a libcall corresponding to an
3692 operation that may trap may also trap. */
3693 /* ??? See the comment in front of make_reg_eh_region_note. */
3694 if (cfun->can_throw_non_call_exceptions
3695 && (equiv_may_trap || may_trap_p (equiv)))
3697 for (insn = insns; insn; insn = NEXT_INSN (insn))
3698 if (CALL_P (insn))
3700 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3701 if (note)
3703 int lp_nr = INTVAL (XEXP (note, 0));
3704 if (lp_nr == 0 || lp_nr == INT_MIN)
3705 remove_note (insn, note);
3709 else
3711 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3712 reg note to indicate that this call cannot throw or execute a nonlocal
3713 goto (unless there is already a REG_EH_REGION note, in which case
3714 we update it). */
3715 for (insn = insns; insn; insn = NEXT_INSN (insn))
3716 if (CALL_P (insn))
3717 make_reg_eh_region_note_nothrow_nononlocal (insn);
3720 /* First emit all insns that set pseudos. Remove them from the list as
3721 we go. Avoid insns that set pseudos which were referenced in previous
3722 insns. These can be generated by move_by_pieces, for example,
3723 to update an address. Similarly, avoid insns that reference things
3724 set in previous insns. */
3726 for (insn = insns; insn; insn = next)
3728 rtx set = single_set (insn);
3730 next = NEXT_INSN (insn);
3732 if (set != 0 && REG_P (SET_DEST (set))
3733 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3735 struct no_conflict_data data;
3737 data.target = const0_rtx;
3738 data.first = insns;
3739 data.insn = insn;
3740 data.must_stay = 0;
3741 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3742 if (! data.must_stay)
3744 if (PREV_INSN (insn))
3745 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3746 else
3747 insns = next;
3749 if (next)
3750 SET_PREV_INSN (next) = PREV_INSN (insn);
3752 add_insn (insn);
3756 /* Some ports use a loop to copy large arguments onto the stack.
3757 Don't move anything outside such a loop. */
3758 if (LABEL_P (insn))
3759 break;
3762 /* Write the remaining insns followed by the final copy. */
3763 for (insn = insns; insn; insn = next)
3765 next = NEXT_INSN (insn);
3767 add_insn (insn);
3770 last = emit_move_insn (target, result);
3771 if (equiv)
3772 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3774 if (final_dest != target)
3775 emit_move_insn (final_dest, target);
3778 void
3779 emit_libcall_block (rtx_insn *insns, rtx target, rtx result, rtx equiv)
3781 emit_libcall_block_1 (insns, target, result, equiv, false);
3784 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3785 PURPOSE describes how this comparison will be used. CODE is the rtx
3786 comparison code we will be using.
3788 ??? Actually, CODE is slightly weaker than that. A target is still
3789 required to implement all of the normal bcc operations, but not
3790 required to implement all (or any) of the unordered bcc operations. */
3793 can_compare_p (enum rtx_code code, machine_mode mode,
3794 enum can_compare_purpose purpose)
3796 rtx test;
3797 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3800 enum insn_code icode;
3802 if (purpose == ccp_jump
3803 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3804 && insn_operand_matches (icode, 0, test))
3805 return 1;
3806 if (purpose == ccp_store_flag
3807 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3808 && insn_operand_matches (icode, 1, test))
3809 return 1;
3810 if (purpose == ccp_cmov
3811 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3812 return 1;
3814 mode = GET_MODE_WIDER_MODE (mode).else_void ();
3815 PUT_MODE (test, mode);
3817 while (mode != VOIDmode);
3819 return 0;
3822 /* This function is called when we are going to emit a compare instruction that
3823 compares the values found in X and Y, using the rtl operator COMPARISON.
3825 If they have mode BLKmode, then SIZE specifies the size of both operands.
3827 UNSIGNEDP nonzero says that the operands are unsigned;
3828 this matters if they need to be widened (as given by METHODS).
3830 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
3831 if we failed to produce one.
3833 *PMODE is the mode of the inputs (in case they are const_int).
3835 This function performs all the setup necessary so that the caller only has
3836 to emit a single comparison insn. This setup can involve doing a BLKmode
3837 comparison or emitting a library call to perform the comparison if no insn
3838 is available to handle it.
3839 The values which are passed in through pointers can be modified; the caller
3840 should perform the comparison on the modified values. Constant
3841 comparisons must have already been folded. */
3843 static void
3844 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3845 int unsignedp, enum optab_methods methods,
3846 rtx *ptest, machine_mode *pmode)
3848 machine_mode mode = *pmode;
3849 rtx libfunc, test;
3850 machine_mode cmp_mode;
3851 enum mode_class mclass;
3853 /* The other methods are not needed. */
3854 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
3855 || methods == OPTAB_LIB_WIDEN);
3857 if (CONST_SCALAR_INT_P (y))
3858 canonicalize_comparison (mode, &comparison, &y);
3860 /* If we are optimizing, force expensive constants into a register. */
3861 if (CONSTANT_P (x) && optimize
3862 && (rtx_cost (x, mode, COMPARE, 0, optimize_insn_for_speed_p ())
3863 > COSTS_N_INSNS (1)))
3864 x = force_reg (mode, x);
3866 if (CONSTANT_P (y) && optimize
3867 && (rtx_cost (y, mode, COMPARE, 1, optimize_insn_for_speed_p ())
3868 > COSTS_N_INSNS (1)))
3869 y = force_reg (mode, y);
3871 #if HAVE_cc0
3872 /* Make sure if we have a canonical comparison. The RTL
3873 documentation states that canonical comparisons are required only
3874 for targets which have cc0. */
3875 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
3876 #endif
3878 /* Don't let both operands fail to indicate the mode. */
3879 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3880 x = force_reg (mode, x);
3881 if (mode == VOIDmode)
3882 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
3884 /* Handle all BLKmode compares. */
3886 if (mode == BLKmode)
3888 machine_mode result_mode;
3889 enum insn_code cmp_code;
3890 rtx result;
3891 rtx opalign
3892 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3894 gcc_assert (size);
3896 /* Try to use a memory block compare insn - either cmpstr
3897 or cmpmem will do. */
3898 opt_scalar_int_mode cmp_mode_iter;
3899 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
3901 scalar_int_mode cmp_mode = cmp_mode_iter.require ();
3902 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
3903 if (cmp_code == CODE_FOR_nothing)
3904 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
3905 if (cmp_code == CODE_FOR_nothing)
3906 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
3907 if (cmp_code == CODE_FOR_nothing)
3908 continue;
3910 /* Must make sure the size fits the insn's mode. */
3911 if (CONST_INT_P (size)
3912 ? UINTVAL (size) > GET_MODE_MASK (cmp_mode)
3913 : (GET_MODE_BITSIZE (as_a <scalar_int_mode> (GET_MODE (size)))
3914 > GET_MODE_BITSIZE (cmp_mode)))
3915 continue;
3917 result_mode = insn_data[cmp_code].operand[0].mode;
3918 result = gen_reg_rtx (result_mode);
3919 size = convert_to_mode (cmp_mode, size, 1);
3920 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3922 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
3923 *pmode = result_mode;
3924 return;
3927 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
3928 goto fail;
3930 /* Otherwise call a library function. */
3931 result = emit_block_comp_via_libcall (x, y, size);
3933 x = result;
3934 y = const0_rtx;
3935 mode = TYPE_MODE (integer_type_node);
3936 methods = OPTAB_LIB_WIDEN;
3937 unsignedp = false;
3940 /* Don't allow operands to the compare to trap, as that can put the
3941 compare and branch in different basic blocks. */
3942 if (cfun->can_throw_non_call_exceptions)
3944 if (may_trap_p (x))
3945 x = copy_to_reg (x);
3946 if (may_trap_p (y))
3947 y = copy_to_reg (y);
3950 if (GET_MODE_CLASS (mode) == MODE_CC)
3952 enum insn_code icode = optab_handler (cbranch_optab, CCmode);
3953 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3954 gcc_assert (icode != CODE_FOR_nothing
3955 && insn_operand_matches (icode, 0, test));
3956 *ptest = test;
3957 return;
3960 mclass = GET_MODE_CLASS (mode);
3961 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3962 FOR_EACH_MODE_FROM (cmp_mode, mode)
3964 enum insn_code icode;
3965 icode = optab_handler (cbranch_optab, cmp_mode);
3966 if (icode != CODE_FOR_nothing
3967 && insn_operand_matches (icode, 0, test))
3969 rtx_insn *last = get_last_insn ();
3970 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
3971 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
3972 if (op0 && op1
3973 && insn_operand_matches (icode, 1, op0)
3974 && insn_operand_matches (icode, 2, op1))
3976 XEXP (test, 0) = op0;
3977 XEXP (test, 1) = op1;
3978 *ptest = test;
3979 *pmode = cmp_mode;
3980 return;
3982 delete_insns_since (last);
3985 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
3986 break;
3989 if (methods != OPTAB_LIB_WIDEN)
3990 goto fail;
3992 if (SCALAR_FLOAT_MODE_P (mode))
3994 /* Small trick if UNORDERED isn't implemented by the hardware. */
3995 if (comparison == UNORDERED && rtx_equal_p (x, y))
3997 prepare_cmp_insn (x, y, UNLT, NULL_RTX, unsignedp, OPTAB_WIDEN,
3998 ptest, pmode);
3999 if (*ptest)
4000 return;
4003 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4005 else
4007 rtx result;
4008 machine_mode ret_mode;
4010 /* Handle a libcall just for the mode we are using. */
4011 libfunc = optab_libfunc (cmp_optab, mode);
4012 gcc_assert (libfunc);
4014 /* If we want unsigned, and this mode has a distinct unsigned
4015 comparison routine, use that. */
4016 if (unsignedp)
4018 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4019 if (ulibfunc)
4020 libfunc = ulibfunc;
4023 ret_mode = targetm.libgcc_cmp_return_mode ();
4024 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4025 ret_mode, x, mode, y, mode);
4027 /* There are two kinds of comparison routines. Biased routines
4028 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4029 of gcc expect that the comparison operation is equivalent
4030 to the modified comparison. For signed comparisons compare the
4031 result against 1 in the biased case, and zero in the unbiased
4032 case. For unsigned comparisons always compare against 1 after
4033 biasing the unbiased result by adding 1. This gives us a way to
4034 represent LTU.
4035 The comparisons in the fixed-point helper library are always
4036 biased. */
4037 x = result;
4038 y = const1_rtx;
4040 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4042 if (unsignedp)
4043 x = plus_constant (ret_mode, result, 1);
4044 else
4045 y = const0_rtx;
4048 *pmode = ret_mode;
4049 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4050 ptest, pmode);
4053 return;
4055 fail:
4056 *ptest = NULL_RTX;
4059 /* Before emitting an insn with code ICODE, make sure that X, which is going
4060 to be used for operand OPNUM of the insn, is converted from mode MODE to
4061 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4062 that it is accepted by the operand predicate. Return the new value. */
4065 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
4066 machine_mode wider_mode, int unsignedp)
4068 if (mode != wider_mode)
4069 x = convert_modes (wider_mode, mode, x, unsignedp);
4071 if (!insn_operand_matches (icode, opnum, x))
4073 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
4074 if (reload_completed)
4075 return NULL_RTX;
4076 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
4077 return NULL_RTX;
4078 x = copy_to_mode_reg (op_mode, x);
4081 return x;
4084 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4085 we can do the branch. */
4087 static void
4088 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label,
4089 profile_probability prob)
4091 machine_mode optab_mode;
4092 enum mode_class mclass;
4093 enum insn_code icode;
4094 rtx_insn *insn;
4096 mclass = GET_MODE_CLASS (mode);
4097 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4098 icode = optab_handler (cbranch_optab, optab_mode);
4100 gcc_assert (icode != CODE_FOR_nothing);
4101 gcc_assert (insn_operand_matches (icode, 0, test));
4102 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4103 XEXP (test, 1), label));
4104 if (prob.initialized_p ()
4105 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4106 && insn
4107 && JUMP_P (insn)
4108 && any_condjump_p (insn)
4109 && !find_reg_note (insn, REG_BR_PROB, 0))
4110 add_reg_br_prob_note (insn, prob);
4113 /* Generate code to compare X with Y so that the condition codes are
4114 set and to jump to LABEL if the condition is true. If X is a
4115 constant and Y is not a constant, then the comparison is swapped to
4116 ensure that the comparison RTL has the canonical form.
4118 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4119 need to be widened. UNSIGNEDP is also used to select the proper
4120 branch condition code.
4122 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4124 MODE is the mode of the inputs (in case they are const_int).
4126 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4127 It will be potentially converted into an unsigned variant based on
4128 UNSIGNEDP to select a proper jump instruction.
4130 PROB is the probability of jumping to LABEL. */
4132 void
4133 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4134 machine_mode mode, int unsignedp, rtx label,
4135 profile_probability prob)
4137 rtx op0 = x, op1 = y;
4138 rtx test;
4140 /* Swap operands and condition to ensure canonical RTL. */
4141 if (swap_commutative_operands_p (x, y)
4142 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4144 op0 = y, op1 = x;
4145 comparison = swap_condition (comparison);
4148 /* If OP0 is still a constant, then both X and Y must be constants
4149 or the opposite comparison is not supported. Force X into a register
4150 to create canonical RTL. */
4151 if (CONSTANT_P (op0))
4152 op0 = force_reg (mode, op0);
4154 if (unsignedp)
4155 comparison = unsigned_condition (comparison);
4157 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4158 &test, &mode);
4159 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4163 /* Emit a library call comparison between floating point X and Y.
4164 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4166 static void
4167 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4168 rtx *ptest, machine_mode *pmode)
4170 enum rtx_code swapped = swap_condition (comparison);
4171 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4172 machine_mode orig_mode = GET_MODE (x);
4173 machine_mode mode;
4174 rtx true_rtx, false_rtx;
4175 rtx value, target, equiv;
4176 rtx_insn *insns;
4177 rtx libfunc = 0;
4178 bool reversed_p = false;
4179 scalar_int_mode cmp_mode = targetm.libgcc_cmp_return_mode ();
4181 FOR_EACH_MODE_FROM (mode, orig_mode)
4183 if (code_to_optab (comparison)
4184 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4185 break;
4187 if (code_to_optab (swapped)
4188 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4190 std::swap (x, y);
4191 comparison = swapped;
4192 break;
4195 if (code_to_optab (reversed)
4196 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4198 comparison = reversed;
4199 reversed_p = true;
4200 break;
4204 gcc_assert (mode != VOIDmode);
4206 if (mode != orig_mode)
4208 x = convert_to_mode (mode, x, 0);
4209 y = convert_to_mode (mode, y, 0);
4212 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4213 the RTL. The allows the RTL optimizers to delete the libcall if the
4214 condition can be determined at compile-time. */
4215 if (comparison == UNORDERED
4216 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4218 true_rtx = const_true_rtx;
4219 false_rtx = const0_rtx;
4221 else
4223 switch (comparison)
4225 case EQ:
4226 true_rtx = const0_rtx;
4227 false_rtx = const_true_rtx;
4228 break;
4230 case NE:
4231 true_rtx = const_true_rtx;
4232 false_rtx = const0_rtx;
4233 break;
4235 case GT:
4236 true_rtx = const1_rtx;
4237 false_rtx = const0_rtx;
4238 break;
4240 case GE:
4241 true_rtx = const0_rtx;
4242 false_rtx = constm1_rtx;
4243 break;
4245 case LT:
4246 true_rtx = constm1_rtx;
4247 false_rtx = const0_rtx;
4248 break;
4250 case LE:
4251 true_rtx = const0_rtx;
4252 false_rtx = const1_rtx;
4253 break;
4255 default:
4256 gcc_unreachable ();
4260 if (comparison == UNORDERED)
4262 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4263 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4264 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4265 temp, const_true_rtx, equiv);
4267 else
4269 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4270 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4271 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4272 equiv, true_rtx, false_rtx);
4275 start_sequence ();
4276 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4277 cmp_mode, x, mode, y, mode);
4278 insns = get_insns ();
4279 end_sequence ();
4281 target = gen_reg_rtx (cmp_mode);
4282 emit_libcall_block (insns, target, value, equiv);
4284 if (comparison == UNORDERED
4285 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4286 || reversed_p)
4287 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4288 else
4289 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4291 *pmode = cmp_mode;
4294 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4296 void
4297 emit_indirect_jump (rtx loc)
4299 if (!targetm.have_indirect_jump ())
4300 sorry ("indirect jumps are not available on this target");
4301 else
4303 class expand_operand ops[1];
4304 create_address_operand (&ops[0], loc);
4305 expand_jump_insn (targetm.code_for_indirect_jump, 1, ops);
4306 emit_barrier ();
4311 /* Emit a conditional move instruction if the machine supports one for that
4312 condition and machine mode.
4314 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4315 the mode to use should they be constants. If it is VOIDmode, they cannot
4316 both be constants.
4318 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4319 should be stored there. MODE is the mode to use should they be constants.
4320 If it is VOIDmode, they cannot both be constants.
4322 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4323 is not supported. */
4326 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4327 machine_mode cmode, rtx op2, rtx op3,
4328 machine_mode mode, int unsignedp)
4330 rtx comparison;
4331 rtx_insn *last;
4332 enum insn_code icode;
4333 enum rtx_code reversed;
4335 /* If the two source operands are identical, that's just a move. */
4337 if (rtx_equal_p (op2, op3))
4339 if (!target)
4340 target = gen_reg_rtx (mode);
4342 emit_move_insn (target, op3);
4343 return target;
4346 /* If one operand is constant, make it the second one. Only do this
4347 if the other operand is not constant as well. */
4349 if (swap_commutative_operands_p (op0, op1))
4351 std::swap (op0, op1);
4352 code = swap_condition (code);
4355 /* get_condition will prefer to generate LT and GT even if the old
4356 comparison was against zero, so undo that canonicalization here since
4357 comparisons against zero are cheaper. */
4358 if (code == LT && op1 == const1_rtx)
4359 code = LE, op1 = const0_rtx;
4360 else if (code == GT && op1 == constm1_rtx)
4361 code = GE, op1 = const0_rtx;
4363 if (cmode == VOIDmode)
4364 cmode = GET_MODE (op0);
4366 enum rtx_code orig_code = code;
4367 bool swapped = false;
4368 if (swap_commutative_operands_p (op2, op3)
4369 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4370 != UNKNOWN))
4372 std::swap (op2, op3);
4373 code = reversed;
4374 swapped = true;
4377 if (mode == VOIDmode)
4378 mode = GET_MODE (op2);
4380 icode = direct_optab_handler (movcc_optab, mode);
4382 if (icode == CODE_FOR_nothing)
4383 return NULL_RTX;
4385 if (!target)
4386 target = gen_reg_rtx (mode);
4388 for (int pass = 0; ; pass++)
4390 code = unsignedp ? unsigned_condition (code) : code;
4391 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4393 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4394 punt and let the caller figure out how best to deal with this
4395 situation. */
4396 if (COMPARISON_P (comparison))
4398 saved_pending_stack_adjust save;
4399 save_pending_stack_adjust (&save);
4400 last = get_last_insn ();
4401 do_pending_stack_adjust ();
4402 machine_mode cmpmode = cmode;
4403 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4404 GET_CODE (comparison), NULL_RTX, unsignedp,
4405 OPTAB_WIDEN, &comparison, &cmpmode);
4406 if (comparison)
4408 class expand_operand ops[4];
4410 create_output_operand (&ops[0], target, mode);
4411 create_fixed_operand (&ops[1], comparison);
4412 create_input_operand (&ops[2], op2, mode);
4413 create_input_operand (&ops[3], op3, mode);
4414 if (maybe_expand_insn (icode, 4, ops))
4416 if (ops[0].value != target)
4417 convert_move (target, ops[0].value, false);
4418 return target;
4421 delete_insns_since (last);
4422 restore_pending_stack_adjust (&save);
4425 if (pass == 1)
4426 return NULL_RTX;
4428 /* If the preferred op2/op3 order is not usable, retry with other
4429 operand order, perhaps it will expand successfully. */
4430 if (swapped)
4431 code = orig_code;
4432 else if ((reversed = reversed_comparison_code_parts (orig_code, op0, op1,
4433 NULL))
4434 != UNKNOWN)
4435 code = reversed;
4436 else
4437 return NULL_RTX;
4438 std::swap (op2, op3);
4443 /* Emit a conditional negate or bitwise complement using the
4444 negcc or notcc optabs if available. Return NULL_RTX if such operations
4445 are not available. Otherwise return the RTX holding the result.
4446 TARGET is the desired destination of the result. COMP is the comparison
4447 on which to negate. If COND is true move into TARGET the negation
4448 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4449 CODE is either NEG or NOT. MODE is the machine mode in which the
4450 operation is performed. */
4453 emit_conditional_neg_or_complement (rtx target, rtx_code code,
4454 machine_mode mode, rtx cond, rtx op1,
4455 rtx op2)
4457 optab op = unknown_optab;
4458 if (code == NEG)
4459 op = negcc_optab;
4460 else if (code == NOT)
4461 op = notcc_optab;
4462 else
4463 gcc_unreachable ();
4465 insn_code icode = direct_optab_handler (op, mode);
4467 if (icode == CODE_FOR_nothing)
4468 return NULL_RTX;
4470 if (!target)
4471 target = gen_reg_rtx (mode);
4473 rtx_insn *last = get_last_insn ();
4474 class expand_operand ops[4];
4476 create_output_operand (&ops[0], target, mode);
4477 create_fixed_operand (&ops[1], cond);
4478 create_input_operand (&ops[2], op1, mode);
4479 create_input_operand (&ops[3], op2, mode);
4481 if (maybe_expand_insn (icode, 4, ops))
4483 if (ops[0].value != target)
4484 convert_move (target, ops[0].value, false);
4486 return target;
4488 delete_insns_since (last);
4489 return NULL_RTX;
4492 /* Emit a conditional addition instruction if the machine supports one for that
4493 condition and machine mode.
4495 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4496 the mode to use should they be constants. If it is VOIDmode, they cannot
4497 both be constants.
4499 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4500 should be stored there. MODE is the mode to use should they be constants.
4501 If it is VOIDmode, they cannot both be constants.
4503 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4504 is not supported. */
4507 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4508 machine_mode cmode, rtx op2, rtx op3,
4509 machine_mode mode, int unsignedp)
4511 rtx comparison;
4512 rtx_insn *last;
4513 enum insn_code icode;
4515 /* If one operand is constant, make it the second one. Only do this
4516 if the other operand is not constant as well. */
4518 if (swap_commutative_operands_p (op0, op1))
4520 std::swap (op0, op1);
4521 code = swap_condition (code);
4524 /* get_condition will prefer to generate LT and GT even if the old
4525 comparison was against zero, so undo that canonicalization here since
4526 comparisons against zero are cheaper. */
4527 if (code == LT && op1 == const1_rtx)
4528 code = LE, op1 = const0_rtx;
4529 else if (code == GT && op1 == constm1_rtx)
4530 code = GE, op1 = const0_rtx;
4532 if (cmode == VOIDmode)
4533 cmode = GET_MODE (op0);
4535 if (mode == VOIDmode)
4536 mode = GET_MODE (op2);
4538 icode = optab_handler (addcc_optab, mode);
4540 if (icode == CODE_FOR_nothing)
4541 return 0;
4543 if (!target)
4544 target = gen_reg_rtx (mode);
4546 code = unsignedp ? unsigned_condition (code) : code;
4547 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4549 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4550 return NULL and let the caller figure out how best to deal with this
4551 situation. */
4552 if (!COMPARISON_P (comparison))
4553 return NULL_RTX;
4555 do_pending_stack_adjust ();
4556 last = get_last_insn ();
4557 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4558 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4559 &comparison, &cmode);
4560 if (comparison)
4562 class expand_operand ops[4];
4564 create_output_operand (&ops[0], target, mode);
4565 create_fixed_operand (&ops[1], comparison);
4566 create_input_operand (&ops[2], op2, mode);
4567 create_input_operand (&ops[3], op3, mode);
4568 if (maybe_expand_insn (icode, 4, ops))
4570 if (ops[0].value != target)
4571 convert_move (target, ops[0].value, false);
4572 return target;
4575 delete_insns_since (last);
4576 return NULL_RTX;
4579 /* These functions attempt to generate an insn body, rather than
4580 emitting the insn, but if the gen function already emits them, we
4581 make no attempt to turn them back into naked patterns. */
4583 /* Generate and return an insn body to add Y to X. */
4585 rtx_insn *
4586 gen_add2_insn (rtx x, rtx y)
4588 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4590 gcc_assert (insn_operand_matches (icode, 0, x));
4591 gcc_assert (insn_operand_matches (icode, 1, x));
4592 gcc_assert (insn_operand_matches (icode, 2, y));
4594 return GEN_FCN (icode) (x, x, y);
4597 /* Generate and return an insn body to add r1 and c,
4598 storing the result in r0. */
4600 rtx_insn *
4601 gen_add3_insn (rtx r0, rtx r1, rtx c)
4603 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4605 if (icode == CODE_FOR_nothing
4606 || !insn_operand_matches (icode, 0, r0)
4607 || !insn_operand_matches (icode, 1, r1)
4608 || !insn_operand_matches (icode, 2, c))
4609 return NULL;
4611 return GEN_FCN (icode) (r0, r1, c);
4615 have_add2_insn (rtx x, rtx y)
4617 enum insn_code icode;
4619 gcc_assert (GET_MODE (x) != VOIDmode);
4621 icode = optab_handler (add_optab, GET_MODE (x));
4623 if (icode == CODE_FOR_nothing)
4624 return 0;
4626 if (!insn_operand_matches (icode, 0, x)
4627 || !insn_operand_matches (icode, 1, x)
4628 || !insn_operand_matches (icode, 2, y))
4629 return 0;
4631 return 1;
4634 /* Generate and return an insn body to add Y to X. */
4636 rtx_insn *
4637 gen_addptr3_insn (rtx x, rtx y, rtx z)
4639 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4641 gcc_assert (insn_operand_matches (icode, 0, x));
4642 gcc_assert (insn_operand_matches (icode, 1, y));
4643 gcc_assert (insn_operand_matches (icode, 2, z));
4645 return GEN_FCN (icode) (x, y, z);
4648 /* Return true if the target implements an addptr pattern and X, Y,
4649 and Z are valid for the pattern predicates. */
4652 have_addptr3_insn (rtx x, rtx y, rtx z)
4654 enum insn_code icode;
4656 gcc_assert (GET_MODE (x) != VOIDmode);
4658 icode = optab_handler (addptr3_optab, GET_MODE (x));
4660 if (icode == CODE_FOR_nothing)
4661 return 0;
4663 if (!insn_operand_matches (icode, 0, x)
4664 || !insn_operand_matches (icode, 1, y)
4665 || !insn_operand_matches (icode, 2, z))
4666 return 0;
4668 return 1;
4671 /* Generate and return an insn body to subtract Y from X. */
4673 rtx_insn *
4674 gen_sub2_insn (rtx x, rtx y)
4676 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4678 gcc_assert (insn_operand_matches (icode, 0, x));
4679 gcc_assert (insn_operand_matches (icode, 1, x));
4680 gcc_assert (insn_operand_matches (icode, 2, y));
4682 return GEN_FCN (icode) (x, x, y);
4685 /* Generate and return an insn body to subtract r1 and c,
4686 storing the result in r0. */
4688 rtx_insn *
4689 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4691 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4693 if (icode == CODE_FOR_nothing
4694 || !insn_operand_matches (icode, 0, r0)
4695 || !insn_operand_matches (icode, 1, r1)
4696 || !insn_operand_matches (icode, 2, c))
4697 return NULL;
4699 return GEN_FCN (icode) (r0, r1, c);
4703 have_sub2_insn (rtx x, rtx y)
4705 enum insn_code icode;
4707 gcc_assert (GET_MODE (x) != VOIDmode);
4709 icode = optab_handler (sub_optab, GET_MODE (x));
4711 if (icode == CODE_FOR_nothing)
4712 return 0;
4714 if (!insn_operand_matches (icode, 0, x)
4715 || !insn_operand_matches (icode, 1, x)
4716 || !insn_operand_matches (icode, 2, y))
4717 return 0;
4719 return 1;
4722 /* Generate the body of an insn to extend Y (with mode MFROM)
4723 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4725 rtx_insn *
4726 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4727 machine_mode mfrom, int unsignedp)
4729 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4730 return GEN_FCN (icode) (x, y);
4733 /* Generate code to convert FROM to floating point
4734 and store in TO. FROM must be fixed point and not VOIDmode.
4735 UNSIGNEDP nonzero means regard FROM as unsigned.
4736 Normally this is done by correcting the final value
4737 if it is negative. */
4739 void
4740 expand_float (rtx to, rtx from, int unsignedp)
4742 enum insn_code icode;
4743 rtx target = to;
4744 scalar_mode from_mode, to_mode;
4745 machine_mode fmode, imode;
4746 bool can_do_signed = false;
4748 /* Crash now, because we won't be able to decide which mode to use. */
4749 gcc_assert (GET_MODE (from) != VOIDmode);
4751 /* Look for an insn to do the conversion. Do it in the specified
4752 modes if possible; otherwise convert either input, output or both to
4753 wider mode. If the integer mode is wider than the mode of FROM,
4754 we can do the conversion signed even if the input is unsigned. */
4756 FOR_EACH_MODE_FROM (fmode, GET_MODE (to))
4757 FOR_EACH_MODE_FROM (imode, GET_MODE (from))
4759 int doing_unsigned = unsignedp;
4761 if (fmode != GET_MODE (to)
4762 && (significand_size (fmode)
4763 < GET_MODE_UNIT_PRECISION (GET_MODE (from))))
4764 continue;
4766 icode = can_float_p (fmode, imode, unsignedp);
4767 if (icode == CODE_FOR_nothing && unsignedp)
4769 enum insn_code scode = can_float_p (fmode, imode, 0);
4770 if (scode != CODE_FOR_nothing)
4771 can_do_signed = true;
4772 if (imode != GET_MODE (from))
4773 icode = scode, doing_unsigned = 0;
4776 if (icode != CODE_FOR_nothing)
4778 if (imode != GET_MODE (from))
4779 from = convert_to_mode (imode, from, unsignedp);
4781 if (fmode != GET_MODE (to))
4782 target = gen_reg_rtx (fmode);
4784 emit_unop_insn (icode, target, from,
4785 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4787 if (target != to)
4788 convert_move (to, target, 0);
4789 return;
4793 /* Unsigned integer, and no way to convert directly. Convert as signed,
4794 then unconditionally adjust the result. */
4795 if (unsignedp
4796 && can_do_signed
4797 && is_a <scalar_mode> (GET_MODE (to), &to_mode)
4798 && is_a <scalar_mode> (GET_MODE (from), &from_mode))
4800 opt_scalar_mode fmode_iter;
4801 rtx_code_label *label = gen_label_rtx ();
4802 rtx temp;
4803 REAL_VALUE_TYPE offset;
4805 /* Look for a usable floating mode FMODE wider than the source and at
4806 least as wide as the target. Using FMODE will avoid rounding woes
4807 with unsigned values greater than the signed maximum value. */
4809 FOR_EACH_MODE_FROM (fmode_iter, to_mode)
4811 scalar_mode fmode = fmode_iter.require ();
4812 if (GET_MODE_PRECISION (from_mode) < GET_MODE_BITSIZE (fmode)
4813 && can_float_p (fmode, from_mode, 0) != CODE_FOR_nothing)
4814 break;
4817 if (!fmode_iter.exists (&fmode))
4819 /* There is no such mode. Pretend the target is wide enough. */
4820 fmode = to_mode;
4822 /* Avoid double-rounding when TO is narrower than FROM. */
4823 if ((significand_size (fmode) + 1)
4824 < GET_MODE_PRECISION (from_mode))
4826 rtx temp1;
4827 rtx_code_label *neglabel = gen_label_rtx ();
4829 /* Don't use TARGET if it isn't a register, is a hard register,
4830 or is the wrong mode. */
4831 if (!REG_P (target)
4832 || REGNO (target) < FIRST_PSEUDO_REGISTER
4833 || GET_MODE (target) != fmode)
4834 target = gen_reg_rtx (fmode);
4836 imode = from_mode;
4837 do_pending_stack_adjust ();
4839 /* Test whether the sign bit is set. */
4840 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4841 0, neglabel);
4843 /* The sign bit is not set. Convert as signed. */
4844 expand_float (target, from, 0);
4845 emit_jump_insn (targetm.gen_jump (label));
4846 emit_barrier ();
4848 /* The sign bit is set.
4849 Convert to a usable (positive signed) value by shifting right
4850 one bit, while remembering if a nonzero bit was shifted
4851 out; i.e., compute (from & 1) | (from >> 1). */
4853 emit_label (neglabel);
4854 temp = expand_binop (imode, and_optab, from, const1_rtx,
4855 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4856 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
4857 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4858 OPTAB_LIB_WIDEN);
4859 expand_float (target, temp, 0);
4861 /* Multiply by 2 to undo the shift above. */
4862 temp = expand_binop (fmode, add_optab, target, target,
4863 target, 0, OPTAB_LIB_WIDEN);
4864 if (temp != target)
4865 emit_move_insn (target, temp);
4867 do_pending_stack_adjust ();
4868 emit_label (label);
4869 goto done;
4873 /* If we are about to do some arithmetic to correct for an
4874 unsigned operand, do it in a pseudo-register. */
4876 if (to_mode != fmode
4877 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4878 target = gen_reg_rtx (fmode);
4880 /* Convert as signed integer to floating. */
4881 expand_float (target, from, 0);
4883 /* If FROM is negative (and therefore TO is negative),
4884 correct its value by 2**bitwidth. */
4886 do_pending_stack_adjust ();
4887 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, from_mode,
4888 0, label);
4891 real_2expN (&offset, GET_MODE_PRECISION (from_mode), fmode);
4892 temp = expand_binop (fmode, add_optab, target,
4893 const_double_from_real_value (offset, fmode),
4894 target, 0, OPTAB_LIB_WIDEN);
4895 if (temp != target)
4896 emit_move_insn (target, temp);
4898 do_pending_stack_adjust ();
4899 emit_label (label);
4900 goto done;
4903 /* No hardware instruction available; call a library routine. */
4905 rtx libfunc;
4906 rtx_insn *insns;
4907 rtx value;
4908 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4910 if (is_narrower_int_mode (GET_MODE (from), SImode))
4911 from = convert_to_mode (SImode, from, unsignedp);
4913 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4914 gcc_assert (libfunc);
4916 start_sequence ();
4918 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4919 GET_MODE (to), from, GET_MODE (from));
4920 insns = get_insns ();
4921 end_sequence ();
4923 emit_libcall_block (insns, target, value,
4924 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
4925 GET_MODE (to), from));
4928 done:
4930 /* Copy result to requested destination
4931 if we have been computing in a temp location. */
4933 if (target != to)
4935 if (GET_MODE (target) == GET_MODE (to))
4936 emit_move_insn (to, target);
4937 else
4938 convert_move (to, target, 0);
4942 /* Generate code to convert FROM to fixed point and store in TO. FROM
4943 must be floating point. */
4945 void
4946 expand_fix (rtx to, rtx from, int unsignedp)
4948 enum insn_code icode;
4949 rtx target = to;
4950 machine_mode fmode, imode;
4951 opt_scalar_mode fmode_iter;
4952 bool must_trunc = false;
4954 /* We first try to find a pair of modes, one real and one integer, at
4955 least as wide as FROM and TO, respectively, in which we can open-code
4956 this conversion. If the integer mode is wider than the mode of TO,
4957 we can do the conversion either signed or unsigned. */
4959 FOR_EACH_MODE_FROM (fmode, GET_MODE (from))
4960 FOR_EACH_MODE_FROM (imode, GET_MODE (to))
4962 int doing_unsigned = unsignedp;
4964 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4965 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4966 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4968 if (icode != CODE_FOR_nothing)
4970 rtx_insn *last = get_last_insn ();
4971 if (fmode != GET_MODE (from))
4972 from = convert_to_mode (fmode, from, 0);
4974 if (must_trunc)
4976 rtx temp = gen_reg_rtx (GET_MODE (from));
4977 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4978 temp, 0);
4981 if (imode != GET_MODE (to))
4982 target = gen_reg_rtx (imode);
4984 if (maybe_emit_unop_insn (icode, target, from,
4985 doing_unsigned ? UNSIGNED_FIX : FIX))
4987 if (target != to)
4988 convert_move (to, target, unsignedp);
4989 return;
4991 delete_insns_since (last);
4995 /* For an unsigned conversion, there is one more way to do it.
4996 If we have a signed conversion, we generate code that compares
4997 the real value to the largest representable positive number. If if
4998 is smaller, the conversion is done normally. Otherwise, subtract
4999 one plus the highest signed number, convert, and add it back.
5001 We only need to check all real modes, since we know we didn't find
5002 anything with a wider integer mode.
5004 This code used to extend FP value into mode wider than the destination.
5005 This is needed for decimal float modes which cannot accurately
5006 represent one plus the highest signed number of the same size, but
5007 not for binary modes. Consider, for instance conversion from SFmode
5008 into DImode.
5010 The hot path through the code is dealing with inputs smaller than 2^63
5011 and doing just the conversion, so there is no bits to lose.
5013 In the other path we know the value is positive in the range 2^63..2^64-1
5014 inclusive. (as for other input overflow happens and result is undefined)
5015 So we know that the most important bit set in mantissa corresponds to
5016 2^63. The subtraction of 2^63 should not generate any rounding as it
5017 simply clears out that bit. The rest is trivial. */
5019 scalar_int_mode to_mode;
5020 if (unsignedp
5021 && is_a <scalar_int_mode> (GET_MODE (to), &to_mode)
5022 && HWI_COMPUTABLE_MODE_P (to_mode))
5023 FOR_EACH_MODE_FROM (fmode_iter, as_a <scalar_mode> (GET_MODE (from)))
5025 scalar_mode fmode = fmode_iter.require ();
5026 if (CODE_FOR_nothing != can_fix_p (to_mode, fmode,
5027 0, &must_trunc)
5028 && (!DECIMAL_FLOAT_MODE_P (fmode)
5029 || (GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (to_mode))))
5031 int bitsize;
5032 REAL_VALUE_TYPE offset;
5033 rtx limit;
5034 rtx_code_label *lab1, *lab2;
5035 rtx_insn *insn;
5037 bitsize = GET_MODE_PRECISION (to_mode);
5038 real_2expN (&offset, bitsize - 1, fmode);
5039 limit = const_double_from_real_value (offset, fmode);
5040 lab1 = gen_label_rtx ();
5041 lab2 = gen_label_rtx ();
5043 if (fmode != GET_MODE (from))
5044 from = convert_to_mode (fmode, from, 0);
5046 /* See if we need to do the subtraction. */
5047 do_pending_stack_adjust ();
5048 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX,
5049 GET_MODE (from), 0, lab1);
5051 /* If not, do the signed "fix" and branch around fixup code. */
5052 expand_fix (to, from, 0);
5053 emit_jump_insn (targetm.gen_jump (lab2));
5054 emit_barrier ();
5056 /* Otherwise, subtract 2**(N-1), convert to signed number,
5057 then add 2**(N-1). Do the addition using XOR since this
5058 will often generate better code. */
5059 emit_label (lab1);
5060 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5061 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5062 expand_fix (to, target, 0);
5063 target = expand_binop (to_mode, xor_optab, to,
5064 gen_int_mode
5065 (HOST_WIDE_INT_1 << (bitsize - 1),
5066 to_mode),
5067 to, 1, OPTAB_LIB_WIDEN);
5069 if (target != to)
5070 emit_move_insn (to, target);
5072 emit_label (lab2);
5074 if (optab_handler (mov_optab, to_mode) != CODE_FOR_nothing)
5076 /* Make a place for a REG_NOTE and add it. */
5077 insn = emit_move_insn (to, to);
5078 set_dst_reg_note (insn, REG_EQUAL,
5079 gen_rtx_fmt_e (UNSIGNED_FIX, to_mode,
5080 copy_rtx (from)),
5081 to);
5084 return;
5088 /* We can't do it with an insn, so use a library call. But first ensure
5089 that the mode of TO is at least as wide as SImode, since those are the
5090 only library calls we know about. */
5092 if (is_narrower_int_mode (GET_MODE (to), SImode))
5094 target = gen_reg_rtx (SImode);
5096 expand_fix (target, from, unsignedp);
5098 else
5100 rtx_insn *insns;
5101 rtx value;
5102 rtx libfunc;
5104 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5105 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5106 gcc_assert (libfunc);
5108 start_sequence ();
5110 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5111 GET_MODE (to), from, GET_MODE (from));
5112 insns = get_insns ();
5113 end_sequence ();
5115 emit_libcall_block (insns, target, value,
5116 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5117 GET_MODE (to), from));
5120 if (target != to)
5122 if (GET_MODE (to) == GET_MODE (target))
5123 emit_move_insn (to, target);
5124 else
5125 convert_move (to, target, 0);
5130 /* Promote integer arguments for a libcall if necessary.
5131 emit_library_call_value cannot do the promotion because it does not
5132 know if it should do a signed or unsigned promotion. This is because
5133 there are no tree types defined for libcalls. */
5135 static rtx
5136 prepare_libcall_arg (rtx arg, int uintp)
5138 scalar_int_mode mode;
5139 machine_mode arg_mode;
5140 if (is_a <scalar_int_mode> (GET_MODE (arg), &mode))
5142 /* If we need to promote the integer function argument we need to do
5143 it here instead of inside emit_library_call_value because in
5144 emit_library_call_value we don't know if we should do a signed or
5145 unsigned promotion. */
5147 int unsigned_p = 0;
5148 arg_mode = promote_function_mode (NULL_TREE, mode,
5149 &unsigned_p, NULL_TREE, 0);
5150 if (arg_mode != mode)
5151 return convert_to_mode (arg_mode, arg, uintp);
5153 return arg;
5156 /* Generate code to convert FROM or TO a fixed-point.
5157 If UINTP is true, either TO or FROM is an unsigned integer.
5158 If SATP is true, we need to saturate the result. */
5160 void
5161 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5163 machine_mode to_mode = GET_MODE (to);
5164 machine_mode from_mode = GET_MODE (from);
5165 convert_optab tab;
5166 enum rtx_code this_code;
5167 enum insn_code code;
5168 rtx_insn *insns;
5169 rtx value;
5170 rtx libfunc;
5172 if (to_mode == from_mode)
5174 emit_move_insn (to, from);
5175 return;
5178 if (uintp)
5180 tab = satp ? satfractuns_optab : fractuns_optab;
5181 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5183 else
5185 tab = satp ? satfract_optab : fract_optab;
5186 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5188 code = convert_optab_handler (tab, to_mode, from_mode);
5189 if (code != CODE_FOR_nothing)
5191 emit_unop_insn (code, to, from, this_code);
5192 return;
5195 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5196 gcc_assert (libfunc);
5198 from = prepare_libcall_arg (from, uintp);
5199 from_mode = GET_MODE (from);
5201 start_sequence ();
5202 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5203 from, from_mode);
5204 insns = get_insns ();
5205 end_sequence ();
5207 emit_libcall_block (insns, to, value,
5208 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5211 /* Generate code to convert FROM to fixed point and store in TO. FROM
5212 must be floating point, TO must be signed. Use the conversion optab
5213 TAB to do the conversion. */
5215 bool
5216 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5218 enum insn_code icode;
5219 rtx target = to;
5220 machine_mode fmode, imode;
5222 /* We first try to find a pair of modes, one real and one integer, at
5223 least as wide as FROM and TO, respectively, in which we can open-code
5224 this conversion. If the integer mode is wider than the mode of TO,
5225 we can do the conversion either signed or unsigned. */
5227 FOR_EACH_MODE_FROM (fmode, GET_MODE (from))
5228 FOR_EACH_MODE_FROM (imode, GET_MODE (to))
5230 icode = convert_optab_handler (tab, imode, fmode);
5231 if (icode != CODE_FOR_nothing)
5233 rtx_insn *last = get_last_insn ();
5234 if (fmode != GET_MODE (from))
5235 from = convert_to_mode (fmode, from, 0);
5237 if (imode != GET_MODE (to))
5238 target = gen_reg_rtx (imode);
5240 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5242 delete_insns_since (last);
5243 continue;
5245 if (target != to)
5246 convert_move (to, target, 0);
5247 return true;
5251 return false;
5254 /* Report whether we have an instruction to perform the operation
5255 specified by CODE on operands of mode MODE. */
5257 have_insn_for (enum rtx_code code, machine_mode mode)
5259 return (code_to_optab (code)
5260 && (optab_handler (code_to_optab (code), mode)
5261 != CODE_FOR_nothing));
5264 /* Print information about the current contents of the optabs on
5265 STDERR. */
5267 DEBUG_FUNCTION void
5268 debug_optab_libfuncs (void)
5270 int i, j, k;
5272 /* Dump the arithmetic optabs. */
5273 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
5274 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5276 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
5277 if (l)
5279 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5280 fprintf (stderr, "%s\t%s:\t%s\n",
5281 GET_RTX_NAME (optab_to_code ((optab) i)),
5282 GET_MODE_NAME (j),
5283 XSTR (l, 0));
5287 /* Dump the conversion optabs. */
5288 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
5289 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5290 for (k = 0; k < NUM_MACHINE_MODES; ++k)
5292 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
5293 (machine_mode) k);
5294 if (l)
5296 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5297 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
5298 GET_RTX_NAME (optab_to_code ((optab) i)),
5299 GET_MODE_NAME (j),
5300 GET_MODE_NAME (k),
5301 XSTR (l, 0));
5306 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5307 CODE. Return 0 on failure. */
5309 rtx_insn *
5310 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
5312 machine_mode mode = GET_MODE (op1);
5313 enum insn_code icode;
5314 rtx_insn *insn;
5315 rtx trap_rtx;
5317 if (mode == VOIDmode)
5318 return 0;
5320 icode = optab_handler (ctrap_optab, mode);
5321 if (icode == CODE_FOR_nothing)
5322 return 0;
5324 /* Some targets only accept a zero trap code. */
5325 if (!insn_operand_matches (icode, 3, tcode))
5326 return 0;
5328 do_pending_stack_adjust ();
5329 start_sequence ();
5330 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
5331 &trap_rtx, &mode);
5332 if (!trap_rtx)
5333 insn = NULL;
5334 else
5335 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
5336 tcode);
5338 /* If that failed, then give up. */
5339 if (insn == 0)
5341 end_sequence ();
5342 return 0;
5345 emit_insn (insn);
5346 insn = get_insns ();
5347 end_sequence ();
5348 return insn;
5351 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5352 or unsigned operation code. */
5354 enum rtx_code
5355 get_rtx_code (enum tree_code tcode, bool unsignedp)
5357 enum rtx_code code;
5358 switch (tcode)
5360 case EQ_EXPR:
5361 code = EQ;
5362 break;
5363 case NE_EXPR:
5364 code = NE;
5365 break;
5366 case LT_EXPR:
5367 code = unsignedp ? LTU : LT;
5368 break;
5369 case LE_EXPR:
5370 code = unsignedp ? LEU : LE;
5371 break;
5372 case GT_EXPR:
5373 code = unsignedp ? GTU : GT;
5374 break;
5375 case GE_EXPR:
5376 code = unsignedp ? GEU : GE;
5377 break;
5379 case UNORDERED_EXPR:
5380 code = UNORDERED;
5381 break;
5382 case ORDERED_EXPR:
5383 code = ORDERED;
5384 break;
5385 case UNLT_EXPR:
5386 code = UNLT;
5387 break;
5388 case UNLE_EXPR:
5389 code = UNLE;
5390 break;
5391 case UNGT_EXPR:
5392 code = UNGT;
5393 break;
5394 case UNGE_EXPR:
5395 code = UNGE;
5396 break;
5397 case UNEQ_EXPR:
5398 code = UNEQ;
5399 break;
5400 case LTGT_EXPR:
5401 code = LTGT;
5402 break;
5404 case BIT_AND_EXPR:
5405 code = AND;
5406 break;
5408 case BIT_IOR_EXPR:
5409 code = IOR;
5410 break;
5412 default:
5413 gcc_unreachable ();
5415 return code;
5418 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
5419 select signed or unsigned operators. OPNO holds the index of the
5420 first comparison operand for insn ICODE. Do not generate the
5421 compare instruction itself. */
5423 static rtx
5424 vector_compare_rtx (machine_mode cmp_mode, enum tree_code tcode,
5425 tree t_op0, tree t_op1, bool unsignedp,
5426 enum insn_code icode, unsigned int opno)
5428 class expand_operand ops[2];
5429 rtx rtx_op0, rtx_op1;
5430 machine_mode m0, m1;
5431 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
5433 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
5435 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5436 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5437 cases, use the original mode. */
5438 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
5439 EXPAND_STACK_PARM);
5440 m0 = GET_MODE (rtx_op0);
5441 if (m0 == VOIDmode)
5442 m0 = TYPE_MODE (TREE_TYPE (t_op0));
5444 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
5445 EXPAND_STACK_PARM);
5446 m1 = GET_MODE (rtx_op1);
5447 if (m1 == VOIDmode)
5448 m1 = TYPE_MODE (TREE_TYPE (t_op1));
5450 create_input_operand (&ops[0], rtx_op0, m0);
5451 create_input_operand (&ops[1], rtx_op1, m1);
5452 if (!maybe_legitimize_operands (icode, opno, 2, ops))
5453 gcc_unreachable ();
5454 return gen_rtx_fmt_ee (rcode, cmp_mode, ops[0].value, ops[1].value);
5457 /* Check if vec_perm mask SEL is a constant equivalent to a shift of
5458 the first vec_perm operand, assuming the second operand (for left shift
5459 first operand) is a constant vector of zeros. Return the shift distance
5460 in bits if so, or NULL_RTX if the vec_perm is not a shift. MODE is the
5461 mode of the value being shifted. SHIFT_OPTAB is vec_shr_optab for right
5462 shift or vec_shl_optab for left shift. */
5463 static rtx
5464 shift_amt_for_vec_perm_mask (machine_mode mode, const vec_perm_indices &sel,
5465 optab shift_optab)
5467 unsigned int bitsize = GET_MODE_UNIT_BITSIZE (mode);
5468 poly_int64 first = sel[0];
5469 if (maybe_ge (sel[0], GET_MODE_NUNITS (mode)))
5470 return NULL_RTX;
5472 if (shift_optab == vec_shl_optab)
5474 unsigned int nelt;
5475 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5476 return NULL_RTX;
5477 unsigned firstidx = 0;
5478 for (unsigned int i = 0; i < nelt; i++)
5480 if (known_eq (sel[i], nelt))
5482 if (i == 0 || firstidx)
5483 return NULL_RTX;
5484 firstidx = i;
5486 else if (firstidx
5487 ? maybe_ne (sel[i], nelt + i - firstidx)
5488 : maybe_ge (sel[i], nelt))
5489 return NULL_RTX;
5492 if (firstidx == 0)
5493 return NULL_RTX;
5494 first = firstidx;
5496 else if (!sel.series_p (0, 1, first, 1))
5498 unsigned int nelt;
5499 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5500 return NULL_RTX;
5501 for (unsigned int i = 1; i < nelt; i++)
5503 poly_int64 expected = i + first;
5504 /* Indices into the second vector are all equivalent. */
5505 if (maybe_lt (sel[i], nelt)
5506 ? maybe_ne (sel[i], expected)
5507 : maybe_lt (expected, nelt))
5508 return NULL_RTX;
5512 return gen_int_shift_amount (mode, first * bitsize);
5515 /* A subroutine of expand_vec_perm_var for expanding one vec_perm insn. */
5517 static rtx
5518 expand_vec_perm_1 (enum insn_code icode, rtx target,
5519 rtx v0, rtx v1, rtx sel)
5521 machine_mode tmode = GET_MODE (target);
5522 machine_mode smode = GET_MODE (sel);
5523 class expand_operand ops[4];
5525 gcc_assert (GET_MODE_CLASS (smode) == MODE_VECTOR_INT
5526 || mode_for_int_vector (tmode).require () == smode);
5527 create_output_operand (&ops[0], target, tmode);
5528 create_input_operand (&ops[3], sel, smode);
5530 /* Make an effort to preserve v0 == v1. The target expander is able to
5531 rely on this to determine if we're permuting a single input operand. */
5532 if (rtx_equal_p (v0, v1))
5534 if (!insn_operand_matches (icode, 1, v0))
5535 v0 = force_reg (tmode, v0);
5536 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
5537 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
5539 create_fixed_operand (&ops[1], v0);
5540 create_fixed_operand (&ops[2], v0);
5542 else
5544 create_input_operand (&ops[1], v0, tmode);
5545 create_input_operand (&ops[2], v1, tmode);
5548 if (maybe_expand_insn (icode, 4, ops))
5549 return ops[0].value;
5550 return NULL_RTX;
5553 /* Implement a permutation of vectors v0 and v1 using the permutation
5554 vector in SEL and return the result. Use TARGET to hold the result
5555 if nonnull and convenient.
5557 MODE is the mode of the vectors being permuted (V0 and V1). SEL_MODE
5558 is the TYPE_MODE associated with SEL, or BLKmode if SEL isn't known
5559 to have a particular mode. */
5562 expand_vec_perm_const (machine_mode mode, rtx v0, rtx v1,
5563 const vec_perm_builder &sel, machine_mode sel_mode,
5564 rtx target)
5566 if (!target || !register_operand (target, mode))
5567 target = gen_reg_rtx (mode);
5569 /* Set QIMODE to a different vector mode with byte elements.
5570 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5571 machine_mode qimode;
5572 if (!qimode_for_vec_perm (mode).exists (&qimode))
5573 qimode = VOIDmode;
5575 rtx_insn *last = get_last_insn ();
5577 bool single_arg_p = rtx_equal_p (v0, v1);
5578 /* Always specify two input vectors here and leave the target to handle
5579 cases in which the inputs are equal. Not all backends can cope with
5580 the single-input representation when testing for a double-input
5581 target instruction. */
5582 vec_perm_indices indices (sel, 2, GET_MODE_NUNITS (mode));
5584 /* See if this can be handled with a vec_shr or vec_shl. We only do this
5585 if the second (for vec_shr) or first (for vec_shl) vector is all
5586 zeroes. */
5587 insn_code shift_code = CODE_FOR_nothing;
5588 insn_code shift_code_qi = CODE_FOR_nothing;
5589 optab shift_optab = unknown_optab;
5590 rtx v2 = v0;
5591 if (v1 == CONST0_RTX (GET_MODE (v1)))
5592 shift_optab = vec_shr_optab;
5593 else if (v0 == CONST0_RTX (GET_MODE (v0)))
5595 shift_optab = vec_shl_optab;
5596 v2 = v1;
5598 if (shift_optab != unknown_optab)
5600 shift_code = optab_handler (shift_optab, mode);
5601 shift_code_qi = ((qimode != VOIDmode && qimode != mode)
5602 ? optab_handler (shift_optab, qimode)
5603 : CODE_FOR_nothing);
5605 if (shift_code != CODE_FOR_nothing || shift_code_qi != CODE_FOR_nothing)
5607 rtx shift_amt = shift_amt_for_vec_perm_mask (mode, indices, shift_optab);
5608 if (shift_amt)
5610 class expand_operand ops[3];
5611 if (shift_code != CODE_FOR_nothing)
5613 create_output_operand (&ops[0], target, mode);
5614 create_input_operand (&ops[1], v2, mode);
5615 create_convert_operand_from_type (&ops[2], shift_amt, sizetype);
5616 if (maybe_expand_insn (shift_code, 3, ops))
5617 return ops[0].value;
5619 if (shift_code_qi != CODE_FOR_nothing)
5621 rtx tmp = gen_reg_rtx (qimode);
5622 create_output_operand (&ops[0], tmp, qimode);
5623 create_input_operand (&ops[1], gen_lowpart (qimode, v2), qimode);
5624 create_convert_operand_from_type (&ops[2], shift_amt, sizetype);
5625 if (maybe_expand_insn (shift_code_qi, 3, ops))
5626 return gen_lowpart (mode, ops[0].value);
5631 if (targetm.vectorize.vec_perm_const != NULL)
5633 v0 = force_reg (mode, v0);
5634 if (single_arg_p)
5635 v1 = v0;
5636 else
5637 v1 = force_reg (mode, v1);
5639 if (targetm.vectorize.vec_perm_const (mode, target, v0, v1, indices))
5640 return target;
5643 /* Fall back to a constant byte-based permutation. */
5644 vec_perm_indices qimode_indices;
5645 rtx target_qi = NULL_RTX, v0_qi = NULL_RTX, v1_qi = NULL_RTX;
5646 if (qimode != VOIDmode)
5648 qimode_indices.new_expanded_vector (indices, GET_MODE_UNIT_SIZE (mode));
5649 target_qi = gen_reg_rtx (qimode);
5650 v0_qi = gen_lowpart (qimode, v0);
5651 v1_qi = gen_lowpart (qimode, v1);
5652 if (targetm.vectorize.vec_perm_const != NULL
5653 && targetm.vectorize.vec_perm_const (qimode, target_qi, v0_qi,
5654 v1_qi, qimode_indices))
5655 return gen_lowpart (mode, target_qi);
5658 /* Otherwise expand as a fully variable permuation. */
5660 /* The optabs are only defined for selectors with the same width
5661 as the values being permuted. */
5662 machine_mode required_sel_mode;
5663 if (!mode_for_int_vector (mode).exists (&required_sel_mode)
5664 || !VECTOR_MODE_P (required_sel_mode))
5666 delete_insns_since (last);
5667 return NULL_RTX;
5670 /* We know that it is semantically valid to treat SEL as having SEL_MODE.
5671 If that isn't the mode we want then we need to prove that using
5672 REQUIRED_SEL_MODE is OK. */
5673 if (sel_mode != required_sel_mode)
5675 if (!selector_fits_mode_p (required_sel_mode, indices))
5677 delete_insns_since (last);
5678 return NULL_RTX;
5680 sel_mode = required_sel_mode;
5683 insn_code icode = direct_optab_handler (vec_perm_optab, mode);
5684 if (icode != CODE_FOR_nothing)
5686 rtx sel_rtx = vec_perm_indices_to_rtx (sel_mode, indices);
5687 rtx tmp = expand_vec_perm_1 (icode, target, v0, v1, sel_rtx);
5688 if (tmp)
5689 return tmp;
5692 if (qimode != VOIDmode
5693 && selector_fits_mode_p (qimode, qimode_indices))
5695 icode = direct_optab_handler (vec_perm_optab, qimode);
5696 if (icode != CODE_FOR_nothing)
5698 rtx sel_qi = vec_perm_indices_to_rtx (qimode, qimode_indices);
5699 rtx tmp = expand_vec_perm_1 (icode, target_qi, v0_qi, v1_qi, sel_qi);
5700 if (tmp)
5701 return gen_lowpart (mode, tmp);
5705 delete_insns_since (last);
5706 return NULL_RTX;
5709 /* Implement a permutation of vectors v0 and v1 using the permutation
5710 vector in SEL and return the result. Use TARGET to hold the result
5711 if nonnull and convenient.
5713 MODE is the mode of the vectors being permuted (V0 and V1).
5714 SEL must have the integer equivalent of MODE and is known to be
5715 unsuitable for permutes with a constant permutation vector. */
5718 expand_vec_perm_var (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
5720 enum insn_code icode;
5721 unsigned int i, u;
5722 rtx tmp, sel_qi;
5724 u = GET_MODE_UNIT_SIZE (mode);
5726 if (!target || GET_MODE (target) != mode)
5727 target = gen_reg_rtx (mode);
5729 icode = direct_optab_handler (vec_perm_optab, mode);
5730 if (icode != CODE_FOR_nothing)
5732 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
5733 if (tmp)
5734 return tmp;
5737 /* As a special case to aid several targets, lower the element-based
5738 permutation to a byte-based permutation and try again. */
5739 machine_mode qimode;
5740 if (!qimode_for_vec_perm (mode).exists (&qimode)
5741 || maybe_gt (GET_MODE_NUNITS (qimode), GET_MODE_MASK (QImode) + 1))
5742 return NULL_RTX;
5743 icode = direct_optab_handler (vec_perm_optab, qimode);
5744 if (icode == CODE_FOR_nothing)
5745 return NULL_RTX;
5747 /* Multiply each element by its byte size. */
5748 machine_mode selmode = GET_MODE (sel);
5749 if (u == 2)
5750 sel = expand_simple_binop (selmode, PLUS, sel, sel,
5751 NULL, 0, OPTAB_DIRECT);
5752 else
5753 sel = expand_simple_binop (selmode, ASHIFT, sel,
5754 gen_int_shift_amount (selmode, exact_log2 (u)),
5755 NULL, 0, OPTAB_DIRECT);
5756 gcc_assert (sel != NULL);
5758 /* Broadcast the low byte each element into each of its bytes.
5759 The encoding has U interleaved stepped patterns, one for each
5760 byte of an element. */
5761 vec_perm_builder const_sel (GET_MODE_SIZE (mode), u, 3);
5762 unsigned int low_byte_in_u = BYTES_BIG_ENDIAN ? u - 1 : 0;
5763 for (i = 0; i < 3; ++i)
5764 for (unsigned int j = 0; j < u; ++j)
5765 const_sel.quick_push (i * u + low_byte_in_u);
5766 sel = gen_lowpart (qimode, sel);
5767 sel = expand_vec_perm_const (qimode, sel, sel, const_sel, qimode, NULL);
5768 gcc_assert (sel != NULL);
5770 /* Add the byte offset to each byte element. */
5771 /* Note that the definition of the indicies here is memory ordering,
5772 so there should be no difference between big and little endian. */
5773 rtx_vector_builder byte_indices (qimode, u, 1);
5774 for (i = 0; i < u; ++i)
5775 byte_indices.quick_push (GEN_INT (i));
5776 tmp = byte_indices.build ();
5777 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
5778 sel, 0, OPTAB_DIRECT);
5779 gcc_assert (sel_qi != NULL);
5781 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
5782 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
5783 gen_lowpart (qimode, v1), sel_qi);
5784 if (tmp)
5785 tmp = gen_lowpart (mode, tmp);
5786 return tmp;
5789 /* Generate insns for a VEC_COND_EXPR with mask, given its TYPE and its
5790 three operands. */
5793 expand_vec_cond_mask_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
5794 rtx target)
5796 class expand_operand ops[4];
5797 machine_mode mode = TYPE_MODE (vec_cond_type);
5798 machine_mode mask_mode = TYPE_MODE (TREE_TYPE (op0));
5799 enum insn_code icode = get_vcond_mask_icode (mode, mask_mode);
5800 rtx mask, rtx_op1, rtx_op2;
5802 if (icode == CODE_FOR_nothing)
5803 return 0;
5805 mask = expand_normal (op0);
5806 rtx_op1 = expand_normal (op1);
5807 rtx_op2 = expand_normal (op2);
5809 mask = force_reg (mask_mode, mask);
5810 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
5812 create_output_operand (&ops[0], target, mode);
5813 create_input_operand (&ops[1], rtx_op1, mode);
5814 create_input_operand (&ops[2], rtx_op2, mode);
5815 create_input_operand (&ops[3], mask, mask_mode);
5816 expand_insn (icode, 4, ops);
5818 return ops[0].value;
5821 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
5822 three operands. */
5825 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
5826 rtx target)
5828 class expand_operand ops[6];
5829 enum insn_code icode;
5830 rtx comparison, rtx_op1, rtx_op2;
5831 machine_mode mode = TYPE_MODE (vec_cond_type);
5832 machine_mode cmp_op_mode;
5833 bool unsignedp;
5834 tree op0a, op0b;
5835 enum tree_code tcode;
5837 if (COMPARISON_CLASS_P (op0))
5839 op0a = TREE_OPERAND (op0, 0);
5840 op0b = TREE_OPERAND (op0, 1);
5841 tcode = TREE_CODE (op0);
5843 else
5845 gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (op0)));
5846 if (get_vcond_mask_icode (mode, TYPE_MODE (TREE_TYPE (op0)))
5847 != CODE_FOR_nothing)
5848 return expand_vec_cond_mask_expr (vec_cond_type, op0, op1,
5849 op2, target);
5850 /* Fake op0 < 0. */
5851 else
5853 gcc_assert (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (op0)))
5854 == MODE_VECTOR_INT);
5855 op0a = op0;
5856 op0b = build_zero_cst (TREE_TYPE (op0));
5857 tcode = LT_EXPR;
5860 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
5861 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5864 gcc_assert (known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (cmp_op_mode))
5865 && known_eq (GET_MODE_NUNITS (mode),
5866 GET_MODE_NUNITS (cmp_op_mode)));
5868 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
5869 if (icode == CODE_FOR_nothing)
5871 if (tcode == EQ_EXPR || tcode == NE_EXPR)
5872 icode = get_vcond_eq_icode (mode, cmp_op_mode);
5873 if (icode == CODE_FOR_nothing)
5874 return 0;
5877 comparison = vector_compare_rtx (VOIDmode, tcode, op0a, op0b, unsignedp,
5878 icode, 4);
5879 rtx_op1 = expand_normal (op1);
5880 rtx_op2 = expand_normal (op2);
5882 create_output_operand (&ops[0], target, mode);
5883 create_input_operand (&ops[1], rtx_op1, mode);
5884 create_input_operand (&ops[2], rtx_op2, mode);
5885 create_fixed_operand (&ops[3], comparison);
5886 create_fixed_operand (&ops[4], XEXP (comparison, 0));
5887 create_fixed_operand (&ops[5], XEXP (comparison, 1));
5888 expand_insn (icode, 6, ops);
5889 return ops[0].value;
5892 /* Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
5893 Use TARGET for the result if nonnull and convenient. */
5896 expand_vec_series_expr (machine_mode vmode, rtx op0, rtx op1, rtx target)
5898 class expand_operand ops[3];
5899 enum insn_code icode;
5900 machine_mode emode = GET_MODE_INNER (vmode);
5902 icode = direct_optab_handler (vec_series_optab, vmode);
5903 gcc_assert (icode != CODE_FOR_nothing);
5905 create_output_operand (&ops[0], target, vmode);
5906 create_input_operand (&ops[1], op0, emode);
5907 create_input_operand (&ops[2], op1, emode);
5909 expand_insn (icode, 3, ops);
5910 return ops[0].value;
5913 /* Generate insns for a vector comparison into a mask. */
5916 expand_vec_cmp_expr (tree type, tree exp, rtx target)
5918 class expand_operand ops[4];
5919 enum insn_code icode;
5920 rtx comparison;
5921 machine_mode mask_mode = TYPE_MODE (type);
5922 machine_mode vmode;
5923 bool unsignedp;
5924 tree op0a, op0b;
5925 enum tree_code tcode;
5927 op0a = TREE_OPERAND (exp, 0);
5928 op0b = TREE_OPERAND (exp, 1);
5929 tcode = TREE_CODE (exp);
5931 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5932 vmode = TYPE_MODE (TREE_TYPE (op0a));
5934 icode = get_vec_cmp_icode (vmode, mask_mode, unsignedp);
5935 if (icode == CODE_FOR_nothing)
5937 if (tcode == EQ_EXPR || tcode == NE_EXPR)
5938 icode = get_vec_cmp_eq_icode (vmode, mask_mode);
5939 if (icode == CODE_FOR_nothing)
5940 return 0;
5943 comparison = vector_compare_rtx (mask_mode, tcode, op0a, op0b,
5944 unsignedp, icode, 2);
5945 create_output_operand (&ops[0], target, mask_mode);
5946 create_fixed_operand (&ops[1], comparison);
5947 create_fixed_operand (&ops[2], XEXP (comparison, 0));
5948 create_fixed_operand (&ops[3], XEXP (comparison, 1));
5949 expand_insn (icode, 4, ops);
5950 return ops[0].value;
5953 /* Expand a highpart multiply. */
5956 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
5957 rtx target, bool uns_p)
5959 class expand_operand eops[3];
5960 enum insn_code icode;
5961 int method, i;
5962 machine_mode wmode;
5963 rtx m1, m2;
5964 optab tab1, tab2;
5966 method = can_mult_highpart_p (mode, uns_p);
5967 switch (method)
5969 case 0:
5970 return NULL_RTX;
5971 case 1:
5972 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
5973 return expand_binop (mode, tab1, op0, op1, target, uns_p,
5974 OPTAB_LIB_WIDEN);
5975 case 2:
5976 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
5977 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
5978 break;
5979 case 3:
5980 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
5981 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
5982 if (BYTES_BIG_ENDIAN)
5983 std::swap (tab1, tab2);
5984 break;
5985 default:
5986 gcc_unreachable ();
5989 icode = optab_handler (tab1, mode);
5990 wmode = insn_data[icode].operand[0].mode;
5991 gcc_checking_assert (known_eq (2 * GET_MODE_NUNITS (wmode),
5992 GET_MODE_NUNITS (mode)));
5993 gcc_checking_assert (known_eq (GET_MODE_SIZE (wmode), GET_MODE_SIZE (mode)));
5995 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5996 create_input_operand (&eops[1], op0, mode);
5997 create_input_operand (&eops[2], op1, mode);
5998 expand_insn (icode, 3, eops);
5999 m1 = gen_lowpart (mode, eops[0].value);
6001 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6002 create_input_operand (&eops[1], op0, mode);
6003 create_input_operand (&eops[2], op1, mode);
6004 expand_insn (optab_handler (tab2, mode), 3, eops);
6005 m2 = gen_lowpart (mode, eops[0].value);
6007 vec_perm_builder sel;
6008 if (method == 2)
6010 /* The encoding has 2 interleaved stepped patterns. */
6011 sel.new_vector (GET_MODE_NUNITS (mode), 2, 3);
6012 for (i = 0; i < 6; ++i)
6013 sel.quick_push (!BYTES_BIG_ENDIAN + (i & ~1)
6014 + ((i & 1) ? GET_MODE_NUNITS (mode) : 0));
6016 else
6018 /* The encoding has a single interleaved stepped pattern. */
6019 sel.new_vector (GET_MODE_NUNITS (mode), 1, 3);
6020 for (i = 0; i < 3; ++i)
6021 sel.quick_push (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6024 return expand_vec_perm_const (mode, m1, m2, sel, BLKmode, target);
6027 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6028 pattern. */
6030 static void
6031 find_cc_set (rtx x, const_rtx pat, void *data)
6033 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6034 && GET_CODE (pat) == SET)
6036 rtx *p_cc_reg = (rtx *) data;
6037 gcc_assert (!*p_cc_reg);
6038 *p_cc_reg = x;
6042 /* This is a helper function for the other atomic operations. This function
6043 emits a loop that contains SEQ that iterates until a compare-and-swap
6044 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6045 a set of instructions that takes a value from OLD_REG as an input and
6046 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6047 set to the current contents of MEM. After SEQ, a compare-and-swap will
6048 attempt to update MEM with NEW_REG. The function returns true when the
6049 loop was generated successfully. */
6051 static bool
6052 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6054 machine_mode mode = GET_MODE (mem);
6055 rtx_code_label *label;
6056 rtx cmp_reg, success, oldval;
6058 /* The loop we want to generate looks like
6060 cmp_reg = mem;
6061 label:
6062 old_reg = cmp_reg;
6063 seq;
6064 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6065 if (success)
6066 goto label;
6068 Note that we only do the plain load from memory once. Subsequent
6069 iterations use the value loaded by the compare-and-swap pattern. */
6071 label = gen_label_rtx ();
6072 cmp_reg = gen_reg_rtx (mode);
6074 emit_move_insn (cmp_reg, mem);
6075 emit_label (label);
6076 emit_move_insn (old_reg, cmp_reg);
6077 if (seq)
6078 emit_insn (seq);
6080 success = NULL_RTX;
6081 oldval = cmp_reg;
6082 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
6083 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
6084 MEMMODEL_RELAXED))
6085 return false;
6087 if (oldval != cmp_reg)
6088 emit_move_insn (cmp_reg, oldval);
6090 /* Mark this jump predicted not taken. */
6091 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
6092 GET_MODE (success), 1, label,
6093 profile_probability::guessed_never ());
6094 return true;
6098 /* This function tries to emit an atomic_exchange intruction. VAL is written
6099 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6100 using TARGET if possible. */
6102 static rtx
6103 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6105 machine_mode mode = GET_MODE (mem);
6106 enum insn_code icode;
6108 /* If the target supports the exchange directly, great. */
6109 icode = direct_optab_handler (atomic_exchange_optab, mode);
6110 if (icode != CODE_FOR_nothing)
6112 class expand_operand ops[4];
6114 create_output_operand (&ops[0], target, mode);
6115 create_fixed_operand (&ops[1], mem);
6116 create_input_operand (&ops[2], val, mode);
6117 create_integer_operand (&ops[3], model);
6118 if (maybe_expand_insn (icode, 4, ops))
6119 return ops[0].value;
6122 return NULL_RTX;
6125 /* This function tries to implement an atomic exchange operation using
6126 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6127 The previous contents of *MEM are returned, using TARGET if possible.
6128 Since this instructionn is an acquire barrier only, stronger memory
6129 models may require additional barriers to be emitted. */
6131 static rtx
6132 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
6133 enum memmodel model)
6135 machine_mode mode = GET_MODE (mem);
6136 enum insn_code icode;
6137 rtx_insn *last_insn = get_last_insn ();
6139 icode = optab_handler (sync_lock_test_and_set_optab, mode);
6141 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6142 exists, and the memory model is stronger than acquire, add a release
6143 barrier before the instruction. */
6145 if (is_mm_seq_cst (model) || is_mm_release (model) || is_mm_acq_rel (model))
6146 expand_mem_thread_fence (model);
6148 if (icode != CODE_FOR_nothing)
6150 class expand_operand ops[3];
6151 create_output_operand (&ops[0], target, mode);
6152 create_fixed_operand (&ops[1], mem);
6153 create_input_operand (&ops[2], val, mode);
6154 if (maybe_expand_insn (icode, 3, ops))
6155 return ops[0].value;
6158 /* If an external test-and-set libcall is provided, use that instead of
6159 any external compare-and-swap that we might get from the compare-and-
6160 swap-loop expansion later. */
6161 if (!can_compare_and_swap_p (mode, false))
6163 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
6164 if (libfunc != NULL)
6166 rtx addr;
6168 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6169 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6170 mode, addr, ptr_mode,
6171 val, mode);
6175 /* If the test_and_set can't be emitted, eliminate any barrier that might
6176 have been emitted. */
6177 delete_insns_since (last_insn);
6178 return NULL_RTX;
6181 /* This function tries to implement an atomic exchange operation using a
6182 compare_and_swap loop. VAL is written to *MEM. The previous contents of
6183 *MEM are returned, using TARGET if possible. No memory model is required
6184 since a compare_and_swap loop is seq-cst. */
6186 static rtx
6187 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
6189 machine_mode mode = GET_MODE (mem);
6191 if (can_compare_and_swap_p (mode, true))
6193 if (!target || !register_operand (target, mode))
6194 target = gen_reg_rtx (mode);
6195 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
6196 return target;
6199 return NULL_RTX;
6202 /* This function tries to implement an atomic test-and-set operation
6203 using the atomic_test_and_set instruction pattern. A boolean value
6204 is returned from the operation, using TARGET if possible. */
6206 static rtx
6207 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6209 machine_mode pat_bool_mode;
6210 class expand_operand ops[3];
6212 if (!targetm.have_atomic_test_and_set ())
6213 return NULL_RTX;
6215 /* While we always get QImode from __atomic_test_and_set, we get
6216 other memory modes from __sync_lock_test_and_set. Note that we
6217 use no endian adjustment here. This matches the 4.6 behavior
6218 in the Sparc backend. */
6219 enum insn_code icode = targetm.code_for_atomic_test_and_set;
6220 gcc_checking_assert (insn_data[icode].operand[1].mode == QImode);
6221 if (GET_MODE (mem) != QImode)
6222 mem = adjust_address_nv (mem, QImode, 0);
6224 pat_bool_mode = insn_data[icode].operand[0].mode;
6225 create_output_operand (&ops[0], target, pat_bool_mode);
6226 create_fixed_operand (&ops[1], mem);
6227 create_integer_operand (&ops[2], model);
6229 if (maybe_expand_insn (icode, 3, ops))
6230 return ops[0].value;
6231 return NULL_RTX;
6234 /* This function expands the legacy _sync_lock test_and_set operation which is
6235 generally an atomic exchange. Some limited targets only allow the
6236 constant 1 to be stored. This is an ACQUIRE operation.
6238 TARGET is an optional place to stick the return value.
6239 MEM is where VAL is stored. */
6242 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
6244 rtx ret;
6246 /* Try an atomic_exchange first. */
6247 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_SYNC_ACQUIRE);
6248 if (ret)
6249 return ret;
6251 ret = maybe_emit_sync_lock_test_and_set (target, mem, val,
6252 MEMMODEL_SYNC_ACQUIRE);
6253 if (ret)
6254 return ret;
6256 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6257 if (ret)
6258 return ret;
6260 /* If there are no other options, try atomic_test_and_set if the value
6261 being stored is 1. */
6262 if (val == const1_rtx)
6263 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_SYNC_ACQUIRE);
6265 return ret;
6268 /* This function expands the atomic test_and_set operation:
6269 atomically store a boolean TRUE into MEM and return the previous value.
6271 MEMMODEL is the memory model variant to use.
6272 TARGET is an optional place to stick the return value. */
6275 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6277 machine_mode mode = GET_MODE (mem);
6278 rtx ret, trueval, subtarget;
6280 ret = maybe_emit_atomic_test_and_set (target, mem, model);
6281 if (ret)
6282 return ret;
6284 /* Be binary compatible with non-default settings of trueval, and different
6285 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6286 another only has atomic-exchange. */
6287 if (targetm.atomic_test_and_set_trueval == 1)
6289 trueval = const1_rtx;
6290 subtarget = target ? target : gen_reg_rtx (mode);
6292 else
6294 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
6295 subtarget = gen_reg_rtx (mode);
6298 /* Try the atomic-exchange optab... */
6299 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
6301 /* ... then an atomic-compare-and-swap loop ... */
6302 if (!ret)
6303 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
6305 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6306 if (!ret)
6307 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
6309 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6310 things with the value 1. Thus we try again without trueval. */
6311 if (!ret && targetm.atomic_test_and_set_trueval != 1)
6312 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
6314 /* Failing all else, assume a single threaded environment and simply
6315 perform the operation. */
6316 if (!ret)
6318 /* If the result is ignored skip the move to target. */
6319 if (subtarget != const0_rtx)
6320 emit_move_insn (subtarget, mem);
6322 emit_move_insn (mem, trueval);
6323 ret = subtarget;
6326 /* Recall that have to return a boolean value; rectify if trueval
6327 is not exactly one. */
6328 if (targetm.atomic_test_and_set_trueval != 1)
6329 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
6331 return ret;
6334 /* This function expands the atomic exchange operation:
6335 atomically store VAL in MEM and return the previous value in MEM.
6337 MEMMODEL is the memory model variant to use.
6338 TARGET is an optional place to stick the return value. */
6341 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6343 machine_mode mode = GET_MODE (mem);
6344 rtx ret;
6346 /* If loads are not atomic for the required size and we are not called to
6347 provide a __sync builtin, do not do anything so that we stay consistent
6348 with atomic loads of the same size. */
6349 if (!can_atomic_load_p (mode) && !is_mm_sync (model))
6350 return NULL_RTX;
6352 ret = maybe_emit_atomic_exchange (target, mem, val, model);
6354 /* Next try a compare-and-swap loop for the exchange. */
6355 if (!ret)
6356 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6358 return ret;
6361 /* This function expands the atomic compare exchange operation:
6363 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6364 *PTARGET_OVAL is an optional place to store the old value from memory.
6365 Both target parameters may be NULL or const0_rtx to indicate that we do
6366 not care about that return value. Both target parameters are updated on
6367 success to the actual location of the corresponding result.
6369 MEMMODEL is the memory model variant to use.
6371 The return value of the function is true for success. */
6373 bool
6374 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
6375 rtx mem, rtx expected, rtx desired,
6376 bool is_weak, enum memmodel succ_model,
6377 enum memmodel fail_model)
6379 machine_mode mode = GET_MODE (mem);
6380 class expand_operand ops[8];
6381 enum insn_code icode;
6382 rtx target_oval, target_bool = NULL_RTX;
6383 rtx libfunc;
6385 /* If loads are not atomic for the required size and we are not called to
6386 provide a __sync builtin, do not do anything so that we stay consistent
6387 with atomic loads of the same size. */
6388 if (!can_atomic_load_p (mode) && !is_mm_sync (succ_model))
6389 return false;
6391 /* Load expected into a register for the compare and swap. */
6392 if (MEM_P (expected))
6393 expected = copy_to_reg (expected);
6395 /* Make sure we always have some place to put the return oldval.
6396 Further, make sure that place is distinct from the input expected,
6397 just in case we need that path down below. */
6398 if (ptarget_oval && *ptarget_oval == const0_rtx)
6399 ptarget_oval = NULL;
6401 if (ptarget_oval == NULL
6402 || (target_oval = *ptarget_oval) == NULL
6403 || reg_overlap_mentioned_p (expected, target_oval))
6404 target_oval = gen_reg_rtx (mode);
6406 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6407 if (icode != CODE_FOR_nothing)
6409 machine_mode bool_mode = insn_data[icode].operand[0].mode;
6411 if (ptarget_bool && *ptarget_bool == const0_rtx)
6412 ptarget_bool = NULL;
6414 /* Make sure we always have a place for the bool operand. */
6415 if (ptarget_bool == NULL
6416 || (target_bool = *ptarget_bool) == NULL
6417 || GET_MODE (target_bool) != bool_mode)
6418 target_bool = gen_reg_rtx (bool_mode);
6420 /* Emit the compare_and_swap. */
6421 create_output_operand (&ops[0], target_bool, bool_mode);
6422 create_output_operand (&ops[1], target_oval, mode);
6423 create_fixed_operand (&ops[2], mem);
6424 create_input_operand (&ops[3], expected, mode);
6425 create_input_operand (&ops[4], desired, mode);
6426 create_integer_operand (&ops[5], is_weak);
6427 create_integer_operand (&ops[6], succ_model);
6428 create_integer_operand (&ops[7], fail_model);
6429 if (maybe_expand_insn (icode, 8, ops))
6431 /* Return success/failure. */
6432 target_bool = ops[0].value;
6433 target_oval = ops[1].value;
6434 goto success;
6438 /* Otherwise fall back to the original __sync_val_compare_and_swap
6439 which is always seq-cst. */
6440 icode = optab_handler (sync_compare_and_swap_optab, mode);
6441 if (icode != CODE_FOR_nothing)
6443 rtx cc_reg;
6445 create_output_operand (&ops[0], target_oval, mode);
6446 create_fixed_operand (&ops[1], mem);
6447 create_input_operand (&ops[2], expected, mode);
6448 create_input_operand (&ops[3], desired, mode);
6449 if (!maybe_expand_insn (icode, 4, ops))
6450 return false;
6452 target_oval = ops[0].value;
6454 /* If the caller isn't interested in the boolean return value,
6455 skip the computation of it. */
6456 if (ptarget_bool == NULL)
6457 goto success;
6459 /* Otherwise, work out if the compare-and-swap succeeded. */
6460 cc_reg = NULL_RTX;
6461 if (have_insn_for (COMPARE, CCmode))
6462 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
6463 if (cc_reg)
6465 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
6466 const0_rtx, VOIDmode, 0, 1);
6467 goto success;
6469 goto success_bool_from_val;
6472 /* Also check for library support for __sync_val_compare_and_swap. */
6473 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
6474 if (libfunc != NULL)
6476 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6477 rtx target = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6478 mode, addr, ptr_mode,
6479 expected, mode, desired, mode);
6480 emit_move_insn (target_oval, target);
6482 /* Compute the boolean return value only if requested. */
6483 if (ptarget_bool)
6484 goto success_bool_from_val;
6485 else
6486 goto success;
6489 /* Failure. */
6490 return false;
6492 success_bool_from_val:
6493 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
6494 expected, VOIDmode, 1, 1);
6495 success:
6496 /* Make sure that the oval output winds up where the caller asked. */
6497 if (ptarget_oval)
6498 *ptarget_oval = target_oval;
6499 if (ptarget_bool)
6500 *ptarget_bool = target_bool;
6501 return true;
6504 /* Generate asm volatile("" : : : "memory") as the memory blockage. */
6506 static void
6507 expand_asm_memory_blockage (void)
6509 rtx asm_op, clob;
6511 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, "", "", 0,
6512 rtvec_alloc (0), rtvec_alloc (0),
6513 rtvec_alloc (0), UNKNOWN_LOCATION);
6514 MEM_VOLATILE_P (asm_op) = 1;
6516 clob = gen_rtx_SCRATCH (VOIDmode);
6517 clob = gen_rtx_MEM (BLKmode, clob);
6518 clob = gen_rtx_CLOBBER (VOIDmode, clob);
6520 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
6523 /* Do not propagate memory accesses across this point. */
6525 static void
6526 expand_memory_blockage (void)
6528 if (targetm.have_memory_blockage ())
6529 emit_insn (targetm.gen_memory_blockage ());
6530 else
6531 expand_asm_memory_blockage ();
6534 /* This routine will either emit the mem_thread_fence pattern or issue a
6535 sync_synchronize to generate a fence for memory model MEMMODEL. */
6537 void
6538 expand_mem_thread_fence (enum memmodel model)
6540 if (is_mm_relaxed (model))
6541 return;
6542 if (targetm.have_mem_thread_fence ())
6544 emit_insn (targetm.gen_mem_thread_fence (GEN_INT (model)));
6545 expand_memory_blockage ();
6547 else if (targetm.have_memory_barrier ())
6548 emit_insn (targetm.gen_memory_barrier ());
6549 else if (synchronize_libfunc != NULL_RTX)
6550 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode);
6551 else
6552 expand_memory_blockage ();
6555 /* Emit a signal fence with given memory model. */
6557 void
6558 expand_mem_signal_fence (enum memmodel model)
6560 /* No machine barrier is required to implement a signal fence, but
6561 a compiler memory barrier must be issued, except for relaxed MM. */
6562 if (!is_mm_relaxed (model))
6563 expand_memory_blockage ();
6566 /* This function expands the atomic load operation:
6567 return the atomically loaded value in MEM.
6569 MEMMODEL is the memory model variant to use.
6570 TARGET is an option place to stick the return value. */
6573 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
6575 machine_mode mode = GET_MODE (mem);
6576 enum insn_code icode;
6578 /* If the target supports the load directly, great. */
6579 icode = direct_optab_handler (atomic_load_optab, mode);
6580 if (icode != CODE_FOR_nothing)
6582 class expand_operand ops[3];
6583 rtx_insn *last = get_last_insn ();
6584 if (is_mm_seq_cst (model))
6585 expand_memory_blockage ();
6587 create_output_operand (&ops[0], target, mode);
6588 create_fixed_operand (&ops[1], mem);
6589 create_integer_operand (&ops[2], model);
6590 if (maybe_expand_insn (icode, 3, ops))
6592 if (!is_mm_relaxed (model))
6593 expand_memory_blockage ();
6594 return ops[0].value;
6596 delete_insns_since (last);
6599 /* If the size of the object is greater than word size on this target,
6600 then we assume that a load will not be atomic. We could try to
6601 emulate a load with a compare-and-swap operation, but the store that
6602 doing this could result in would be incorrect if this is a volatile
6603 atomic load or targetting read-only-mapped memory. */
6604 if (maybe_gt (GET_MODE_PRECISION (mode), BITS_PER_WORD))
6605 /* If there is no atomic load, leave the library call. */
6606 return NULL_RTX;
6608 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6609 if (!target || target == const0_rtx)
6610 target = gen_reg_rtx (mode);
6612 /* For SEQ_CST, emit a barrier before the load. */
6613 if (is_mm_seq_cst (model))
6614 expand_mem_thread_fence (model);
6616 emit_move_insn (target, mem);
6618 /* Emit the appropriate barrier after the load. */
6619 expand_mem_thread_fence (model);
6621 return target;
6624 /* This function expands the atomic store operation:
6625 Atomically store VAL in MEM.
6626 MEMMODEL is the memory model variant to use.
6627 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6628 function returns const0_rtx if a pattern was emitted. */
6631 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
6633 machine_mode mode = GET_MODE (mem);
6634 enum insn_code icode;
6635 class expand_operand ops[3];
6637 /* If the target supports the store directly, great. */
6638 icode = direct_optab_handler (atomic_store_optab, mode);
6639 if (icode != CODE_FOR_nothing)
6641 rtx_insn *last = get_last_insn ();
6642 if (!is_mm_relaxed (model))
6643 expand_memory_blockage ();
6644 create_fixed_operand (&ops[0], mem);
6645 create_input_operand (&ops[1], val, mode);
6646 create_integer_operand (&ops[2], model);
6647 if (maybe_expand_insn (icode, 3, ops))
6649 if (is_mm_seq_cst (model))
6650 expand_memory_blockage ();
6651 return const0_rtx;
6653 delete_insns_since (last);
6656 /* If using __sync_lock_release is a viable alternative, try it.
6657 Note that this will not be set to true if we are expanding a generic
6658 __atomic_store_n. */
6659 if (use_release)
6661 icode = direct_optab_handler (sync_lock_release_optab, mode);
6662 if (icode != CODE_FOR_nothing)
6664 create_fixed_operand (&ops[0], mem);
6665 create_input_operand (&ops[1], const0_rtx, mode);
6666 if (maybe_expand_insn (icode, 2, ops))
6668 /* lock_release is only a release barrier. */
6669 if (is_mm_seq_cst (model))
6670 expand_mem_thread_fence (model);
6671 return const0_rtx;
6676 /* If the size of the object is greater than word size on this target,
6677 a default store will not be atomic. */
6678 if (maybe_gt (GET_MODE_PRECISION (mode), BITS_PER_WORD))
6680 /* If loads are atomic or we are called to provide a __sync builtin,
6681 we can try a atomic_exchange and throw away the result. Otherwise,
6682 don't do anything so that we do not create an inconsistency between
6683 loads and stores. */
6684 if (can_atomic_load_p (mode) || is_mm_sync (model))
6686 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
6687 if (!target)
6688 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem,
6689 val);
6690 if (target)
6691 return const0_rtx;
6693 return NULL_RTX;
6696 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6697 expand_mem_thread_fence (model);
6699 emit_move_insn (mem, val);
6701 /* For SEQ_CST, also emit a barrier after the store. */
6702 if (is_mm_seq_cst (model))
6703 expand_mem_thread_fence (model);
6705 return const0_rtx;
6709 /* Structure containing the pointers and values required to process the
6710 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6712 struct atomic_op_functions
6714 direct_optab mem_fetch_before;
6715 direct_optab mem_fetch_after;
6716 direct_optab mem_no_result;
6717 optab fetch_before;
6718 optab fetch_after;
6719 direct_optab no_result;
6720 enum rtx_code reverse_code;
6724 /* Fill in structure pointed to by OP with the various optab entries for an
6725 operation of type CODE. */
6727 static void
6728 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
6730 gcc_assert (op!= NULL);
6732 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6733 in the source code during compilation, and the optab entries are not
6734 computable until runtime. Fill in the values at runtime. */
6735 switch (code)
6737 case PLUS:
6738 op->mem_fetch_before = atomic_fetch_add_optab;
6739 op->mem_fetch_after = atomic_add_fetch_optab;
6740 op->mem_no_result = atomic_add_optab;
6741 op->fetch_before = sync_old_add_optab;
6742 op->fetch_after = sync_new_add_optab;
6743 op->no_result = sync_add_optab;
6744 op->reverse_code = MINUS;
6745 break;
6746 case MINUS:
6747 op->mem_fetch_before = atomic_fetch_sub_optab;
6748 op->mem_fetch_after = atomic_sub_fetch_optab;
6749 op->mem_no_result = atomic_sub_optab;
6750 op->fetch_before = sync_old_sub_optab;
6751 op->fetch_after = sync_new_sub_optab;
6752 op->no_result = sync_sub_optab;
6753 op->reverse_code = PLUS;
6754 break;
6755 case XOR:
6756 op->mem_fetch_before = atomic_fetch_xor_optab;
6757 op->mem_fetch_after = atomic_xor_fetch_optab;
6758 op->mem_no_result = atomic_xor_optab;
6759 op->fetch_before = sync_old_xor_optab;
6760 op->fetch_after = sync_new_xor_optab;
6761 op->no_result = sync_xor_optab;
6762 op->reverse_code = XOR;
6763 break;
6764 case AND:
6765 op->mem_fetch_before = atomic_fetch_and_optab;
6766 op->mem_fetch_after = atomic_and_fetch_optab;
6767 op->mem_no_result = atomic_and_optab;
6768 op->fetch_before = sync_old_and_optab;
6769 op->fetch_after = sync_new_and_optab;
6770 op->no_result = sync_and_optab;
6771 op->reverse_code = UNKNOWN;
6772 break;
6773 case IOR:
6774 op->mem_fetch_before = atomic_fetch_or_optab;
6775 op->mem_fetch_after = atomic_or_fetch_optab;
6776 op->mem_no_result = atomic_or_optab;
6777 op->fetch_before = sync_old_ior_optab;
6778 op->fetch_after = sync_new_ior_optab;
6779 op->no_result = sync_ior_optab;
6780 op->reverse_code = UNKNOWN;
6781 break;
6782 case NOT:
6783 op->mem_fetch_before = atomic_fetch_nand_optab;
6784 op->mem_fetch_after = atomic_nand_fetch_optab;
6785 op->mem_no_result = atomic_nand_optab;
6786 op->fetch_before = sync_old_nand_optab;
6787 op->fetch_after = sync_new_nand_optab;
6788 op->no_result = sync_nand_optab;
6789 op->reverse_code = UNKNOWN;
6790 break;
6791 default:
6792 gcc_unreachable ();
6796 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6797 using memory order MODEL. If AFTER is true the operation needs to return
6798 the value of *MEM after the operation, otherwise the previous value.
6799 TARGET is an optional place to place the result. The result is unused if
6800 it is const0_rtx.
6801 Return the result if there is a better sequence, otherwise NULL_RTX. */
6803 static rtx
6804 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6805 enum memmodel model, bool after)
6807 /* If the value is prefetched, or not used, it may be possible to replace
6808 the sequence with a native exchange operation. */
6809 if (!after || target == const0_rtx)
6811 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6812 if (code == AND && val == const0_rtx)
6814 if (target == const0_rtx)
6815 target = gen_reg_rtx (GET_MODE (mem));
6816 return maybe_emit_atomic_exchange (target, mem, val, model);
6819 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6820 if (code == IOR && val == constm1_rtx)
6822 if (target == const0_rtx)
6823 target = gen_reg_rtx (GET_MODE (mem));
6824 return maybe_emit_atomic_exchange (target, mem, val, model);
6828 return NULL_RTX;
6831 /* Try to emit an instruction for a specific operation varaition.
6832 OPTAB contains the OP functions.
6833 TARGET is an optional place to return the result. const0_rtx means unused.
6834 MEM is the memory location to operate on.
6835 VAL is the value to use in the operation.
6836 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6837 MODEL is the memory model, if used.
6838 AFTER is true if the returned result is the value after the operation. */
6840 static rtx
6841 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
6842 rtx val, bool use_memmodel, enum memmodel model, bool after)
6844 machine_mode mode = GET_MODE (mem);
6845 class expand_operand ops[4];
6846 enum insn_code icode;
6847 int op_counter = 0;
6848 int num_ops;
6850 /* Check to see if there is a result returned. */
6851 if (target == const0_rtx)
6853 if (use_memmodel)
6855 icode = direct_optab_handler (optab->mem_no_result, mode);
6856 create_integer_operand (&ops[2], model);
6857 num_ops = 3;
6859 else
6861 icode = direct_optab_handler (optab->no_result, mode);
6862 num_ops = 2;
6865 /* Otherwise, we need to generate a result. */
6866 else
6868 if (use_memmodel)
6870 icode = direct_optab_handler (after ? optab->mem_fetch_after
6871 : optab->mem_fetch_before, mode);
6872 create_integer_operand (&ops[3], model);
6873 num_ops = 4;
6875 else
6877 icode = optab_handler (after ? optab->fetch_after
6878 : optab->fetch_before, mode);
6879 num_ops = 3;
6881 create_output_operand (&ops[op_counter++], target, mode);
6883 if (icode == CODE_FOR_nothing)
6884 return NULL_RTX;
6886 create_fixed_operand (&ops[op_counter++], mem);
6887 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6888 create_convert_operand_to (&ops[op_counter++], val, mode, true);
6890 if (maybe_expand_insn (icode, num_ops, ops))
6891 return (target == const0_rtx ? const0_rtx : ops[0].value);
6893 return NULL_RTX;
6897 /* This function expands an atomic fetch_OP or OP_fetch operation:
6898 TARGET is an option place to stick the return value. const0_rtx indicates
6899 the result is unused.
6900 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6901 CODE is the operation being performed (OP)
6902 MEMMODEL is the memory model variant to use.
6903 AFTER is true to return the result of the operation (OP_fetch).
6904 AFTER is false to return the value before the operation (fetch_OP).
6906 This function will *only* generate instructions if there is a direct
6907 optab. No compare and swap loops or libcalls will be generated. */
6909 static rtx
6910 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
6911 enum rtx_code code, enum memmodel model,
6912 bool after)
6914 machine_mode mode = GET_MODE (mem);
6915 struct atomic_op_functions optab;
6916 rtx result;
6917 bool unused_result = (target == const0_rtx);
6919 get_atomic_op_for_code (&optab, code);
6921 /* Check to see if there are any better instructions. */
6922 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
6923 if (result)
6924 return result;
6926 /* Check for the case where the result isn't used and try those patterns. */
6927 if (unused_result)
6929 /* Try the memory model variant first. */
6930 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
6931 if (result)
6932 return result;
6934 /* Next try the old style withuot a memory model. */
6935 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
6936 if (result)
6937 return result;
6939 /* There is no no-result pattern, so try patterns with a result. */
6940 target = NULL_RTX;
6943 /* Try the __atomic version. */
6944 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
6945 if (result)
6946 return result;
6948 /* Try the older __sync version. */
6949 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
6950 if (result)
6951 return result;
6953 /* If the fetch value can be calculated from the other variation of fetch,
6954 try that operation. */
6955 if (after || unused_result || optab.reverse_code != UNKNOWN)
6957 /* Try the __atomic version, then the older __sync version. */
6958 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
6959 if (!result)
6960 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
6962 if (result)
6964 /* If the result isn't used, no need to do compensation code. */
6965 if (unused_result)
6966 return result;
6968 /* Issue compensation code. Fetch_after == fetch_before OP val.
6969 Fetch_before == after REVERSE_OP val. */
6970 if (!after)
6971 code = optab.reverse_code;
6972 if (code == NOT)
6974 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
6975 true, OPTAB_LIB_WIDEN);
6976 result = expand_simple_unop (mode, NOT, result, target, true);
6978 else
6979 result = expand_simple_binop (mode, code, result, val, target,
6980 true, OPTAB_LIB_WIDEN);
6981 return result;
6985 /* No direct opcode can be generated. */
6986 return NULL_RTX;
6991 /* This function expands an atomic fetch_OP or OP_fetch operation:
6992 TARGET is an option place to stick the return value. const0_rtx indicates
6993 the result is unused.
6994 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6995 CODE is the operation being performed (OP)
6996 MEMMODEL is the memory model variant to use.
6997 AFTER is true to return the result of the operation (OP_fetch).
6998 AFTER is false to return the value before the operation (fetch_OP). */
7000 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7001 enum memmodel model, bool after)
7003 machine_mode mode = GET_MODE (mem);
7004 rtx result;
7005 bool unused_result = (target == const0_rtx);
7007 /* If loads are not atomic for the required size and we are not called to
7008 provide a __sync builtin, do not do anything so that we stay consistent
7009 with atomic loads of the same size. */
7010 if (!can_atomic_load_p (mode) && !is_mm_sync (model))
7011 return NULL_RTX;
7013 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7014 after);
7016 if (result)
7017 return result;
7019 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7020 if (code == PLUS || code == MINUS)
7022 rtx tmp;
7023 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7025 start_sequence ();
7026 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7027 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7028 model, after);
7029 if (result)
7031 /* PLUS worked so emit the insns and return. */
7032 tmp = get_insns ();
7033 end_sequence ();
7034 emit_insn (tmp);
7035 return result;
7038 /* PLUS did not work, so throw away the negation code and continue. */
7039 end_sequence ();
7042 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7043 if (!can_compare_and_swap_p (mode, false))
7045 rtx libfunc;
7046 bool fixup = false;
7047 enum rtx_code orig_code = code;
7048 struct atomic_op_functions optab;
7050 get_atomic_op_for_code (&optab, code);
7051 libfunc = optab_libfunc (after ? optab.fetch_after
7052 : optab.fetch_before, mode);
7053 if (libfunc == NULL
7054 && (after || unused_result || optab.reverse_code != UNKNOWN))
7056 fixup = true;
7057 if (!after)
7058 code = optab.reverse_code;
7059 libfunc = optab_libfunc (after ? optab.fetch_before
7060 : optab.fetch_after, mode);
7062 if (libfunc != NULL)
7064 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7065 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7066 addr, ptr_mode, val, mode);
7068 if (!unused_result && fixup)
7069 result = expand_simple_binop (mode, code, result, val, target,
7070 true, OPTAB_LIB_WIDEN);
7071 return result;
7074 /* We need the original code for any further attempts. */
7075 code = orig_code;
7078 /* If nothing else has succeeded, default to a compare and swap loop. */
7079 if (can_compare_and_swap_p (mode, true))
7081 rtx_insn *insn;
7082 rtx t0 = gen_reg_rtx (mode), t1;
7084 start_sequence ();
7086 /* If the result is used, get a register for it. */
7087 if (!unused_result)
7089 if (!target || !register_operand (target, mode))
7090 target = gen_reg_rtx (mode);
7091 /* If fetch_before, copy the value now. */
7092 if (!after)
7093 emit_move_insn (target, t0);
7095 else
7096 target = const0_rtx;
7098 t1 = t0;
7099 if (code == NOT)
7101 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7102 true, OPTAB_LIB_WIDEN);
7103 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7105 else
7106 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
7107 OPTAB_LIB_WIDEN);
7109 /* For after, copy the value now. */
7110 if (!unused_result && after)
7111 emit_move_insn (target, t1);
7112 insn = get_insns ();
7113 end_sequence ();
7115 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7116 return target;
7119 return NULL_RTX;
7122 /* Return true if OPERAND is suitable for operand number OPNO of
7123 instruction ICODE. */
7125 bool
7126 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
7128 return (!insn_data[(int) icode].operand[opno].predicate
7129 || (insn_data[(int) icode].operand[opno].predicate
7130 (operand, insn_data[(int) icode].operand[opno].mode)));
7133 /* TARGET is a target of a multiword operation that we are going to
7134 implement as a series of word-mode operations. Return true if
7135 TARGET is suitable for this purpose. */
7137 bool
7138 valid_multiword_target_p (rtx target)
7140 machine_mode mode;
7141 int i, size;
7143 mode = GET_MODE (target);
7144 if (!GET_MODE_SIZE (mode).is_constant (&size))
7145 return false;
7146 for (i = 0; i < size; i += UNITS_PER_WORD)
7147 if (!validate_subreg (word_mode, mode, target, i))
7148 return false;
7149 return true;
7152 /* Make OP describe an input operand that has value INTVAL and that has
7153 no inherent mode. This function should only be used for operands that
7154 are always expand-time constants. The backend may request that INTVAL
7155 be copied into a different kind of rtx, but it must specify the mode
7156 of that rtx if so. */
7158 void
7159 create_integer_operand (class expand_operand *op, poly_int64 intval)
7161 create_expand_operand (op, EXPAND_INTEGER,
7162 gen_int_mode (intval, MAX_MODE_INT),
7163 VOIDmode, false, intval);
7166 /* Like maybe_legitimize_operand, but do not change the code of the
7167 current rtx value. */
7169 static bool
7170 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
7171 class expand_operand *op)
7173 /* See if the operand matches in its current form. */
7174 if (insn_operand_matches (icode, opno, op->value))
7175 return true;
7177 /* If the operand is a memory whose address has no side effects,
7178 try forcing the address into a non-virtual pseudo register.
7179 The check for side effects is important because copy_to_mode_reg
7180 cannot handle things like auto-modified addresses. */
7181 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
7183 rtx addr, mem;
7185 mem = op->value;
7186 addr = XEXP (mem, 0);
7187 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
7188 && !side_effects_p (addr))
7190 rtx_insn *last;
7191 machine_mode mode;
7193 last = get_last_insn ();
7194 mode = get_address_mode (mem);
7195 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
7196 if (insn_operand_matches (icode, opno, mem))
7198 op->value = mem;
7199 return true;
7201 delete_insns_since (last);
7205 return false;
7208 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7209 on success, storing the new operand value back in OP. */
7211 static bool
7212 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
7213 class expand_operand *op)
7215 machine_mode mode, imode;
7217 mode = op->mode;
7218 switch (op->type)
7220 case EXPAND_FIXED:
7222 temporary_volatile_ok v (true);
7223 return maybe_legitimize_operand_same_code (icode, opno, op);
7226 case EXPAND_OUTPUT:
7227 gcc_assert (mode != VOIDmode);
7228 if (op->value
7229 && op->value != const0_rtx
7230 && GET_MODE (op->value) == mode
7231 && maybe_legitimize_operand_same_code (icode, opno, op))
7232 return true;
7234 op->value = gen_reg_rtx (mode);
7235 op->target = 0;
7236 break;
7238 case EXPAND_INPUT:
7239 input:
7240 gcc_assert (mode != VOIDmode);
7241 gcc_assert (GET_MODE (op->value) == VOIDmode
7242 || GET_MODE (op->value) == mode);
7243 if (maybe_legitimize_operand_same_code (icode, opno, op))
7244 return true;
7246 op->value = copy_to_mode_reg (mode, op->value);
7247 break;
7249 case EXPAND_CONVERT_TO:
7250 gcc_assert (mode != VOIDmode);
7251 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
7252 goto input;
7254 case EXPAND_CONVERT_FROM:
7255 if (GET_MODE (op->value) != VOIDmode)
7256 mode = GET_MODE (op->value);
7257 else
7258 /* The caller must tell us what mode this value has. */
7259 gcc_assert (mode != VOIDmode);
7261 imode = insn_data[(int) icode].operand[opno].mode;
7262 if (imode != VOIDmode && imode != mode)
7264 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
7265 mode = imode;
7267 goto input;
7269 case EXPAND_ADDRESS:
7270 op->value = convert_memory_address (as_a <scalar_int_mode> (mode),
7271 op->value);
7272 goto input;
7274 case EXPAND_INTEGER:
7275 mode = insn_data[(int) icode].operand[opno].mode;
7276 if (mode != VOIDmode
7277 && known_eq (trunc_int_for_mode (op->int_value, mode),
7278 op->int_value))
7280 op->value = gen_int_mode (op->int_value, mode);
7281 goto input;
7283 break;
7285 return insn_operand_matches (icode, opno, op->value);
7288 /* Make OP describe an input operand that should have the same value
7289 as VALUE, after any mode conversion that the target might request.
7290 TYPE is the type of VALUE. */
7292 void
7293 create_convert_operand_from_type (class expand_operand *op,
7294 rtx value, tree type)
7296 create_convert_operand_from (op, value, TYPE_MODE (type),
7297 TYPE_UNSIGNED (type));
7300 /* Return true if the requirements on operands OP1 and OP2 of instruction
7301 ICODE are similar enough for the result of legitimizing OP1 to be
7302 reusable for OP2. OPNO1 and OPNO2 are the operand numbers associated
7303 with OP1 and OP2 respectively. */
7305 static inline bool
7306 can_reuse_operands_p (enum insn_code icode,
7307 unsigned int opno1, unsigned int opno2,
7308 const class expand_operand *op1,
7309 const class expand_operand *op2)
7311 /* Check requirements that are common to all types. */
7312 if (op1->type != op2->type
7313 || op1->mode != op2->mode
7314 || (insn_data[(int) icode].operand[opno1].mode
7315 != insn_data[(int) icode].operand[opno2].mode))
7316 return false;
7318 /* Check the requirements for specific types. */
7319 switch (op1->type)
7321 case EXPAND_OUTPUT:
7322 /* Outputs must remain distinct. */
7323 return false;
7325 case EXPAND_FIXED:
7326 case EXPAND_INPUT:
7327 case EXPAND_ADDRESS:
7328 case EXPAND_INTEGER:
7329 return true;
7331 case EXPAND_CONVERT_TO:
7332 case EXPAND_CONVERT_FROM:
7333 return op1->unsigned_p == op2->unsigned_p;
7335 gcc_unreachable ();
7338 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7339 of instruction ICODE. Return true on success, leaving the new operand
7340 values in the OPS themselves. Emit no code on failure. */
7342 bool
7343 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
7344 unsigned int nops, class expand_operand *ops)
7346 rtx_insn *last = get_last_insn ();
7347 rtx *orig_values = XALLOCAVEC (rtx, nops);
7348 for (unsigned int i = 0; i < nops; i++)
7350 orig_values[i] = ops[i].value;
7352 /* First try reusing the result of an earlier legitimization.
7353 This avoids duplicate rtl and ensures that tied operands
7354 remain tied.
7356 This search is linear, but NOPS is bounded at compile time
7357 to a small number (current a single digit). */
7358 unsigned int j = 0;
7359 for (; j < i; ++j)
7360 if (can_reuse_operands_p (icode, opno + j, opno + i, &ops[j], &ops[i])
7361 && rtx_equal_p (orig_values[j], orig_values[i])
7362 && ops[j].value
7363 && insn_operand_matches (icode, opno + i, ops[j].value))
7365 ops[i].value = copy_rtx (ops[j].value);
7366 break;
7369 /* Otherwise try legitimizing the operand on its own. */
7370 if (j == i && !maybe_legitimize_operand (icode, opno + i, &ops[i]))
7372 delete_insns_since (last);
7373 return false;
7376 return true;
7379 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7380 as its operands. Return the instruction pattern on success,
7381 and emit any necessary set-up code. Return null and emit no
7382 code on failure. */
7384 rtx_insn *
7385 maybe_gen_insn (enum insn_code icode, unsigned int nops,
7386 class expand_operand *ops)
7388 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
7389 if (!maybe_legitimize_operands (icode, 0, nops, ops))
7390 return NULL;
7392 switch (nops)
7394 case 1:
7395 return GEN_FCN (icode) (ops[0].value);
7396 case 2:
7397 return GEN_FCN (icode) (ops[0].value, ops[1].value);
7398 case 3:
7399 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
7400 case 4:
7401 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7402 ops[3].value);
7403 case 5:
7404 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7405 ops[3].value, ops[4].value);
7406 case 6:
7407 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7408 ops[3].value, ops[4].value, ops[5].value);
7409 case 7:
7410 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7411 ops[3].value, ops[4].value, ops[5].value,
7412 ops[6].value);
7413 case 8:
7414 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7415 ops[3].value, ops[4].value, ops[5].value,
7416 ops[6].value, ops[7].value);
7417 case 9:
7418 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7419 ops[3].value, ops[4].value, ops[5].value,
7420 ops[6].value, ops[7].value, ops[8].value);
7422 gcc_unreachable ();
7425 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7426 as its operands. Return true on success and emit no code on failure. */
7428 bool
7429 maybe_expand_insn (enum insn_code icode, unsigned int nops,
7430 class expand_operand *ops)
7432 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7433 if (pat)
7435 emit_insn (pat);
7436 return true;
7438 return false;
7441 /* Like maybe_expand_insn, but for jumps. */
7443 bool
7444 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
7445 class expand_operand *ops)
7447 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7448 if (pat)
7450 emit_jump_insn (pat);
7451 return true;
7453 return false;
7456 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7457 as its operands. */
7459 void
7460 expand_insn (enum insn_code icode, unsigned int nops,
7461 class expand_operand *ops)
7463 if (!maybe_expand_insn (icode, nops, ops))
7464 gcc_unreachable ();
7467 /* Like expand_insn, but for jumps. */
7469 void
7470 expand_jump_insn (enum insn_code icode, unsigned int nops,
7471 class expand_operand *ops)
7473 if (!maybe_expand_jump_insn (icode, nops, ops))
7474 gcc_unreachable ();