[Ada] New aspect/pragma No_Caching for analysis of volatile data
[official-gcc.git] / gcc / dwarf2cfi.c
blobd6aed358484594fd2f741d97e7c3447f9ee7655a
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "target.h"
24 #include "function.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tree-pass.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "stor-layout.h"
32 #include "cfgbuild.h"
33 #include "dwarf2out.h"
34 #include "dwarf2asm.h"
35 #include "common/common-target.h"
37 #include "except.h" /* expand_builtin_dwarf_sp_column */
38 #include "profile-count.h" /* For expr.h */
39 #include "expr.h" /* init_return_column_size */
40 #include "output.h" /* asm_out_file */
41 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
44 /* ??? Poison these here until it can be done generically. They've been
45 totally replaced in this file; make sure it stays that way. */
46 #undef DWARF2_UNWIND_INFO
47 #undef DWARF2_FRAME_INFO
48 #if (GCC_VERSION >= 3000)
49 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
50 #endif
52 #ifndef INCOMING_RETURN_ADDR_RTX
53 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
54 #endif
56 #ifndef DEFAULT_INCOMING_FRAME_SP_OFFSET
57 #define DEFAULT_INCOMING_FRAME_SP_OFFSET INCOMING_FRAME_SP_OFFSET
58 #endif
60 /* A collected description of an entire row of the abstract CFI table. */
61 struct GTY(()) dw_cfi_row
63 /* The expression that computes the CFA, expressed in two different ways.
64 The CFA member for the simple cases, and the full CFI expression for
65 the complex cases. The later will be a DW_CFA_cfa_expression. */
66 dw_cfa_location cfa;
67 dw_cfi_ref cfa_cfi;
69 /* The expressions for any register column that is saved. */
70 cfi_vec reg_save;
72 /* True if the register window is saved. */
73 bool window_save;
76 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
77 struct GTY(()) reg_saved_in_data {
78 rtx orig_reg;
79 rtx saved_in_reg;
83 /* Since we no longer have a proper CFG, we're going to create a facsimile
84 of one on the fly while processing the frame-related insns.
86 We create dw_trace_info structures for each extended basic block beginning
87 and ending at a "save point". Save points are labels, barriers, certain
88 notes, and of course the beginning and end of the function.
90 As we encounter control transfer insns, we propagate the "current"
91 row state across the edges to the starts of traces. When checking is
92 enabled, we validate that we propagate the same data from all sources.
94 All traces are members of the TRACE_INFO array, in the order in which
95 they appear in the instruction stream.
97 All save points are present in the TRACE_INDEX hash, mapping the insn
98 starting a trace to the dw_trace_info describing the trace. */
100 struct dw_trace_info
102 /* The insn that begins the trace. */
103 rtx_insn *head;
105 /* The row state at the beginning and end of the trace. */
106 dw_cfi_row *beg_row, *end_row;
108 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
109 while scanning insns. However, the args_size value is irrelevant at
110 any point except can_throw_internal_p insns. Therefore the "delay"
111 sizes the values that must actually be emitted for this trace. */
112 poly_int64_pod beg_true_args_size, end_true_args_size;
113 poly_int64_pod beg_delay_args_size, end_delay_args_size;
115 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
116 rtx_insn *eh_head;
118 /* The following variables contain data used in interpreting frame related
119 expressions. These are not part of the "real" row state as defined by
120 Dwarf, but it seems like they need to be propagated into a trace in case
121 frame related expressions have been sunk. */
122 /* ??? This seems fragile. These variables are fragments of a larger
123 expression. If we do not keep the entire expression together, we risk
124 not being able to put it together properly. Consider forcing targets
125 to generate self-contained expressions and dropping all of the magic
126 interpretation code in this file. Or at least refusing to shrink wrap
127 any frame related insn that doesn't contain a complete expression. */
129 /* The register used for saving registers to the stack, and its offset
130 from the CFA. */
131 dw_cfa_location cfa_store;
133 /* A temporary register holding an integral value used in adjusting SP
134 or setting up the store_reg. The "offset" field holds the integer
135 value, not an offset. */
136 dw_cfa_location cfa_temp;
138 /* A set of registers saved in other registers. This is the inverse of
139 the row->reg_save info, if the entry is a DW_CFA_register. This is
140 implemented as a flat array because it normally contains zero or 1
141 entry, depending on the target. IA-64 is the big spender here, using
142 a maximum of 5 entries. */
143 vec<reg_saved_in_data> regs_saved_in_regs;
145 /* An identifier for this trace. Used only for debugging dumps. */
146 unsigned id;
148 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
149 bool switch_sections;
151 /* True if we've seen different values incoming to beg_true_args_size. */
152 bool args_size_undefined;
154 /* True if we've seen an insn with a REG_ARGS_SIZE note before EH_HEAD. */
155 bool args_size_defined_for_eh;
159 /* Hashtable helpers. */
161 struct trace_info_hasher : nofree_ptr_hash <dw_trace_info>
163 static inline hashval_t hash (const dw_trace_info *);
164 static inline bool equal (const dw_trace_info *, const dw_trace_info *);
167 inline hashval_t
168 trace_info_hasher::hash (const dw_trace_info *ti)
170 return INSN_UID (ti->head);
173 inline bool
174 trace_info_hasher::equal (const dw_trace_info *a, const dw_trace_info *b)
176 return a->head == b->head;
180 /* The variables making up the pseudo-cfg, as described above. */
181 static vec<dw_trace_info> trace_info;
182 static vec<dw_trace_info *> trace_work_list;
183 static hash_table<trace_info_hasher> *trace_index;
185 /* A vector of call frame insns for the CIE. */
186 cfi_vec cie_cfi_vec;
188 /* The state of the first row of the FDE table, which includes the
189 state provided by the CIE. */
190 static GTY(()) dw_cfi_row *cie_cfi_row;
192 static GTY(()) reg_saved_in_data *cie_return_save;
194 static GTY(()) unsigned long dwarf2out_cfi_label_num;
196 /* The insn after which a new CFI note should be emitted. */
197 static rtx_insn *add_cfi_insn;
199 /* When non-null, add_cfi will add the CFI to this vector. */
200 static cfi_vec *add_cfi_vec;
202 /* The current instruction trace. */
203 static dw_trace_info *cur_trace;
205 /* The current, i.e. most recently generated, row of the CFI table. */
206 static dw_cfi_row *cur_row;
208 /* A copy of the current CFA, for use during the processing of a
209 single insn. */
210 static dw_cfa_location *cur_cfa;
212 /* We delay emitting a register save until either (a) we reach the end
213 of the prologue or (b) the register is clobbered. This clusters
214 register saves so that there are fewer pc advances. */
216 struct queued_reg_save {
217 rtx reg;
218 rtx saved_reg;
219 poly_int64_pod cfa_offset;
223 static vec<queued_reg_save> queued_reg_saves;
225 /* True if any CFI directives were emitted at the current insn. */
226 static bool any_cfis_emitted;
228 /* Short-hand for commonly used register numbers. */
229 static unsigned dw_stack_pointer_regnum;
230 static unsigned dw_frame_pointer_regnum;
232 /* Hook used by __throw. */
235 expand_builtin_dwarf_sp_column (void)
237 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
238 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
241 /* MEM is a memory reference for the register size table, each element of
242 which has mode MODE. Initialize column C as a return address column. */
244 static void
245 init_return_column_size (scalar_int_mode mode, rtx mem, unsigned int c)
247 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
248 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
249 emit_move_insn (adjust_address (mem, mode, offset),
250 gen_int_mode (size, mode));
253 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
254 init_one_dwarf_reg_size to communicate on what has been done by the
255 latter. */
257 struct init_one_dwarf_reg_state
259 /* Whether the dwarf return column was initialized. */
260 bool wrote_return_column;
262 /* For each hard register REGNO, whether init_one_dwarf_reg_size
263 was given REGNO to process already. */
264 bool processed_regno [FIRST_PSEUDO_REGISTER];
268 /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
269 initialize the dwarf register size table entry corresponding to register
270 REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
271 use for the size entry to initialize, and INIT_STATE is the communication
272 datastructure conveying what we're doing to our caller. */
274 static
275 void init_one_dwarf_reg_size (int regno, machine_mode regmode,
276 rtx table, machine_mode slotmode,
277 init_one_dwarf_reg_state *init_state)
279 const unsigned int dnum = DWARF_FRAME_REGNUM (regno);
280 const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
281 const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum);
283 poly_int64 slotoffset = dcol * GET_MODE_SIZE (slotmode);
284 poly_int64 regsize = GET_MODE_SIZE (regmode);
286 init_state->processed_regno[regno] = true;
288 if (rnum >= DWARF_FRAME_REGISTERS)
289 return;
291 if (dnum == DWARF_FRAME_RETURN_COLUMN)
293 if (regmode == VOIDmode)
294 return;
295 init_state->wrote_return_column = true;
298 /* ??? When is this true? Should it be a test based on DCOL instead? */
299 if (maybe_lt (slotoffset, 0))
300 return;
302 emit_move_insn (adjust_address (table, slotmode, slotoffset),
303 gen_int_mode (regsize, slotmode));
306 /* Generate code to initialize the dwarf register size table located
307 at the provided ADDRESS. */
309 void
310 expand_builtin_init_dwarf_reg_sizes (tree address)
312 unsigned int i;
313 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (char_type_node);
314 rtx addr = expand_normal (address);
315 rtx mem = gen_rtx_MEM (BLKmode, addr);
317 init_one_dwarf_reg_state init_state;
319 memset ((char *)&init_state, 0, sizeof (init_state));
321 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
323 machine_mode save_mode;
324 rtx span;
326 /* No point in processing a register multiple times. This could happen
327 with register spans, e.g. when a reg is first processed as a piece of
328 a span, then as a register on its own later on. */
330 if (init_state.processed_regno[i])
331 continue;
333 save_mode = targetm.dwarf_frame_reg_mode (i);
334 span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i));
336 if (!span)
337 init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state);
338 else
340 for (int si = 0; si < XVECLEN (span, 0); si++)
342 rtx reg = XVECEXP (span, 0, si);
344 init_one_dwarf_reg_size
345 (REGNO (reg), GET_MODE (reg), mem, mode, &init_state);
350 if (!init_state.wrote_return_column)
351 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
353 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
354 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
355 #endif
357 targetm.init_dwarf_reg_sizes_extra (address);
361 static dw_trace_info *
362 get_trace_info (rtx_insn *insn)
364 dw_trace_info dummy;
365 dummy.head = insn;
366 return trace_index->find_with_hash (&dummy, INSN_UID (insn));
369 static bool
370 save_point_p (rtx_insn *insn)
372 /* Labels, except those that are really jump tables. */
373 if (LABEL_P (insn))
374 return inside_basic_block_p (insn);
376 /* We split traces at the prologue/epilogue notes because those
377 are points at which the unwind info is usually stable. This
378 makes it easier to find spots with identical unwind info so
379 that we can use remember/restore_state opcodes. */
380 if (NOTE_P (insn))
381 switch (NOTE_KIND (insn))
383 case NOTE_INSN_PROLOGUE_END:
384 case NOTE_INSN_EPILOGUE_BEG:
385 return true;
388 return false;
391 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
393 static inline HOST_WIDE_INT
394 div_data_align (HOST_WIDE_INT off)
396 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
397 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
398 return r;
401 /* Return true if we need a signed version of a given opcode
402 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
404 static inline bool
405 need_data_align_sf_opcode (HOST_WIDE_INT off)
407 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
410 /* Return a pointer to a newly allocated Call Frame Instruction. */
412 static inline dw_cfi_ref
413 new_cfi (void)
415 dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
417 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
418 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
420 return cfi;
423 /* Return a newly allocated CFI row, with no defined data. */
425 static dw_cfi_row *
426 new_cfi_row (void)
428 dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
430 row->cfa.reg = INVALID_REGNUM;
432 return row;
435 /* Return a copy of an existing CFI row. */
437 static dw_cfi_row *
438 copy_cfi_row (dw_cfi_row *src)
440 dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
442 *dst = *src;
443 dst->reg_save = vec_safe_copy (src->reg_save);
445 return dst;
448 /* Return a copy of an existing CFA location. */
450 static dw_cfa_location *
451 copy_cfa (dw_cfa_location *src)
453 dw_cfa_location *dst = ggc_alloc<dw_cfa_location> ();
454 *dst = *src;
455 return dst;
458 /* Generate a new label for the CFI info to refer to. */
460 static char *
461 dwarf2out_cfi_label (void)
463 int num = dwarf2out_cfi_label_num++;
464 char label[20];
466 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
468 return xstrdup (label);
471 /* Add CFI either to the current insn stream or to a vector, or both. */
473 static void
474 add_cfi (dw_cfi_ref cfi)
476 any_cfis_emitted = true;
478 if (add_cfi_insn != NULL)
480 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
481 NOTE_CFI (add_cfi_insn) = cfi;
484 if (add_cfi_vec != NULL)
485 vec_safe_push (*add_cfi_vec, cfi);
488 static void
489 add_cfi_args_size (poly_int64 size)
491 /* We don't yet have a representation for polynomial sizes. */
492 HOST_WIDE_INT const_size = size.to_constant ();
494 dw_cfi_ref cfi = new_cfi ();
496 /* While we can occasionally have args_size < 0 internally, this state
497 should not persist at a point we actually need an opcode. */
498 gcc_assert (const_size >= 0);
500 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
501 cfi->dw_cfi_oprnd1.dw_cfi_offset = const_size;
503 add_cfi (cfi);
506 static void
507 add_cfi_restore (unsigned reg)
509 dw_cfi_ref cfi = new_cfi ();
511 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
512 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
514 add_cfi (cfi);
517 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
518 that the register column is no longer saved. */
520 static void
521 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
523 if (vec_safe_length (row->reg_save) <= column)
524 vec_safe_grow_cleared (row->reg_save, column + 1);
525 (*row->reg_save)[column] = cfi;
528 /* This function fills in aa dw_cfa_location structure from a dwarf location
529 descriptor sequence. */
531 static void
532 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
534 struct dw_loc_descr_node *ptr;
535 cfa->offset = 0;
536 cfa->base_offset = 0;
537 cfa->indirect = 0;
538 cfa->reg = -1;
540 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
542 enum dwarf_location_atom op = ptr->dw_loc_opc;
544 switch (op)
546 case DW_OP_reg0:
547 case DW_OP_reg1:
548 case DW_OP_reg2:
549 case DW_OP_reg3:
550 case DW_OP_reg4:
551 case DW_OP_reg5:
552 case DW_OP_reg6:
553 case DW_OP_reg7:
554 case DW_OP_reg8:
555 case DW_OP_reg9:
556 case DW_OP_reg10:
557 case DW_OP_reg11:
558 case DW_OP_reg12:
559 case DW_OP_reg13:
560 case DW_OP_reg14:
561 case DW_OP_reg15:
562 case DW_OP_reg16:
563 case DW_OP_reg17:
564 case DW_OP_reg18:
565 case DW_OP_reg19:
566 case DW_OP_reg20:
567 case DW_OP_reg21:
568 case DW_OP_reg22:
569 case DW_OP_reg23:
570 case DW_OP_reg24:
571 case DW_OP_reg25:
572 case DW_OP_reg26:
573 case DW_OP_reg27:
574 case DW_OP_reg28:
575 case DW_OP_reg29:
576 case DW_OP_reg30:
577 case DW_OP_reg31:
578 cfa->reg = op - DW_OP_reg0;
579 break;
580 case DW_OP_regx:
581 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
582 break;
583 case DW_OP_breg0:
584 case DW_OP_breg1:
585 case DW_OP_breg2:
586 case DW_OP_breg3:
587 case DW_OP_breg4:
588 case DW_OP_breg5:
589 case DW_OP_breg6:
590 case DW_OP_breg7:
591 case DW_OP_breg8:
592 case DW_OP_breg9:
593 case DW_OP_breg10:
594 case DW_OP_breg11:
595 case DW_OP_breg12:
596 case DW_OP_breg13:
597 case DW_OP_breg14:
598 case DW_OP_breg15:
599 case DW_OP_breg16:
600 case DW_OP_breg17:
601 case DW_OP_breg18:
602 case DW_OP_breg19:
603 case DW_OP_breg20:
604 case DW_OP_breg21:
605 case DW_OP_breg22:
606 case DW_OP_breg23:
607 case DW_OP_breg24:
608 case DW_OP_breg25:
609 case DW_OP_breg26:
610 case DW_OP_breg27:
611 case DW_OP_breg28:
612 case DW_OP_breg29:
613 case DW_OP_breg30:
614 case DW_OP_breg31:
615 cfa->reg = op - DW_OP_breg0;
616 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
617 break;
618 case DW_OP_bregx:
619 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
620 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
621 break;
622 case DW_OP_deref:
623 cfa->indirect = 1;
624 break;
625 case DW_OP_plus_uconst:
626 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
627 break;
628 default:
629 gcc_unreachable ();
634 /* Find the previous value for the CFA, iteratively. CFI is the opcode
635 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
636 one level of remember/restore state processing. */
638 void
639 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
641 switch (cfi->dw_cfi_opc)
643 case DW_CFA_def_cfa_offset:
644 case DW_CFA_def_cfa_offset_sf:
645 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
646 break;
647 case DW_CFA_def_cfa_register:
648 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
649 break;
650 case DW_CFA_def_cfa:
651 case DW_CFA_def_cfa_sf:
652 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
653 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
654 break;
655 case DW_CFA_def_cfa_expression:
656 if (cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc)
657 *loc = *cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc;
658 else
659 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
660 break;
662 case DW_CFA_remember_state:
663 gcc_assert (!remember->in_use);
664 *remember = *loc;
665 remember->in_use = 1;
666 break;
667 case DW_CFA_restore_state:
668 gcc_assert (remember->in_use);
669 *loc = *remember;
670 remember->in_use = 0;
671 break;
673 default:
674 break;
678 /* Determine if two dw_cfa_location structures define the same data. */
680 bool
681 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
683 return (loc1->reg == loc2->reg
684 && known_eq (loc1->offset, loc2->offset)
685 && loc1->indirect == loc2->indirect
686 && (loc1->indirect == 0
687 || known_eq (loc1->base_offset, loc2->base_offset)));
690 /* Determine if two CFI operands are identical. */
692 static bool
693 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
695 switch (t)
697 case dw_cfi_oprnd_unused:
698 return true;
699 case dw_cfi_oprnd_reg_num:
700 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
701 case dw_cfi_oprnd_offset:
702 return a->dw_cfi_offset == b->dw_cfi_offset;
703 case dw_cfi_oprnd_addr:
704 return (a->dw_cfi_addr == b->dw_cfi_addr
705 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
706 case dw_cfi_oprnd_loc:
707 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
708 case dw_cfi_oprnd_cfa_loc:
709 return cfa_equal_p (a->dw_cfi_cfa_loc, b->dw_cfi_cfa_loc);
711 gcc_unreachable ();
714 /* Determine if two CFI entries are identical. */
716 static bool
717 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
719 enum dwarf_call_frame_info opc;
721 /* Make things easier for our callers, including missing operands. */
722 if (a == b)
723 return true;
724 if (a == NULL || b == NULL)
725 return false;
727 /* Obviously, the opcodes must match. */
728 opc = a->dw_cfi_opc;
729 if (opc != b->dw_cfi_opc)
730 return false;
732 /* Compare the two operands, re-using the type of the operands as
733 already exposed elsewhere. */
734 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
735 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
736 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
737 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
740 /* Determine if two CFI_ROW structures are identical. */
742 static bool
743 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
745 size_t i, n_a, n_b, n_max;
747 if (a->cfa_cfi)
749 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
750 return false;
752 else if (!cfa_equal_p (&a->cfa, &b->cfa))
753 return false;
755 n_a = vec_safe_length (a->reg_save);
756 n_b = vec_safe_length (b->reg_save);
757 n_max = MAX (n_a, n_b);
759 for (i = 0; i < n_max; ++i)
761 dw_cfi_ref r_a = NULL, r_b = NULL;
763 if (i < n_a)
764 r_a = (*a->reg_save)[i];
765 if (i < n_b)
766 r_b = (*b->reg_save)[i];
768 if (!cfi_equal_p (r_a, r_b))
769 return false;
772 if (a->window_save != b->window_save)
773 return false;
775 return true;
778 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
779 what opcode to emit. Returns the CFI opcode to effect the change, or
780 NULL if NEW_CFA == OLD_CFA. */
782 static dw_cfi_ref
783 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
785 dw_cfi_ref cfi;
787 /* If nothing changed, no need to issue any call frame instructions. */
788 if (cfa_equal_p (old_cfa, new_cfa))
789 return NULL;
791 cfi = new_cfi ();
793 HOST_WIDE_INT const_offset;
794 if (new_cfa->reg == old_cfa->reg
795 && !new_cfa->indirect
796 && !old_cfa->indirect
797 && new_cfa->offset.is_constant (&const_offset))
799 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
800 the CFA register did not change but the offset did. The data
801 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
802 in the assembler via the .cfi_def_cfa_offset directive. */
803 if (const_offset < 0)
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
805 else
806 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
807 cfi->dw_cfi_oprnd1.dw_cfi_offset = const_offset;
809 else if (new_cfa->offset.is_constant ()
810 && known_eq (new_cfa->offset, old_cfa->offset)
811 && old_cfa->reg != INVALID_REGNUM
812 && !new_cfa->indirect
813 && !old_cfa->indirect)
815 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
816 indicating the CFA register has changed to <register> but the
817 offset has not changed. This requires the old CFA to have
818 been set as a register plus offset rather than a general
819 DW_CFA_def_cfa_expression. */
820 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
821 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
823 else if (new_cfa->indirect == 0
824 && new_cfa->offset.is_constant (&const_offset))
826 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
827 indicating the CFA register has changed to <register> with
828 the specified offset. The data factoring for DW_CFA_def_cfa_sf
829 happens in output_cfi, or in the assembler via the .cfi_def_cfa
830 directive. */
831 if (const_offset < 0)
832 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
833 else
834 cfi->dw_cfi_opc = DW_CFA_def_cfa;
835 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
836 cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
838 else
840 /* Construct a DW_CFA_def_cfa_expression instruction to
841 calculate the CFA using a full location expression since no
842 register-offset pair is available. */
843 struct dw_loc_descr_node *loc_list;
845 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
846 loc_list = build_cfa_loc (new_cfa, 0);
847 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
848 if (!new_cfa->offset.is_constant ()
849 || !new_cfa->base_offset.is_constant ())
850 /* It's hard to reconstruct the CFA location for a polynomial
851 expression, so just cache it instead. */
852 cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = copy_cfa (new_cfa);
853 else
854 cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = NULL;
857 return cfi;
860 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
862 static void
863 def_cfa_1 (dw_cfa_location *new_cfa)
865 dw_cfi_ref cfi;
867 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
868 cur_trace->cfa_store.offset = new_cfa->offset;
870 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
871 if (cfi)
873 cur_row->cfa = *new_cfa;
874 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
875 ? cfi : NULL);
877 add_cfi (cfi);
881 /* Add the CFI for saving a register. REG is the CFA column number.
882 If SREG is -1, the register is saved at OFFSET from the CFA;
883 otherwise it is saved in SREG. */
885 static void
886 reg_save (unsigned int reg, unsigned int sreg, poly_int64 offset)
888 dw_fde_ref fde = cfun ? cfun->fde : NULL;
889 dw_cfi_ref cfi = new_cfi ();
891 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
893 if (sreg == INVALID_REGNUM)
895 HOST_WIDE_INT const_offset;
896 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
897 if (fde && fde->stack_realign)
899 cfi->dw_cfi_opc = DW_CFA_expression;
900 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
901 cfi->dw_cfi_oprnd2.dw_cfi_loc
902 = build_cfa_aligned_loc (&cur_row->cfa, offset,
903 fde->stack_realignment);
905 else if (offset.is_constant (&const_offset))
907 if (need_data_align_sf_opcode (const_offset))
908 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
909 else if (reg & ~0x3f)
910 cfi->dw_cfi_opc = DW_CFA_offset_extended;
911 else
912 cfi->dw_cfi_opc = DW_CFA_offset;
913 cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
915 else
917 cfi->dw_cfi_opc = DW_CFA_expression;
918 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
919 cfi->dw_cfi_oprnd2.dw_cfi_loc
920 = build_cfa_loc (&cur_row->cfa, offset);
923 else if (sreg == reg)
925 /* While we could emit something like DW_CFA_same_value or
926 DW_CFA_restore, we never expect to see something like that
927 in a prologue. This is more likely to be a bug. A backend
928 can always bypass this by using REG_CFA_RESTORE directly. */
929 gcc_unreachable ();
931 else
933 cfi->dw_cfi_opc = DW_CFA_register;
934 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
937 add_cfi (cfi);
938 update_row_reg_save (cur_row, reg, cfi);
941 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
942 and adjust data structures to match. */
944 static void
945 notice_args_size (rtx_insn *insn)
947 poly_int64 args_size, delta;
948 rtx note;
950 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
951 if (note == NULL)
952 return;
954 if (!cur_trace->eh_head)
955 cur_trace->args_size_defined_for_eh = true;
957 args_size = get_args_size (note);
958 delta = args_size - cur_trace->end_true_args_size;
959 if (known_eq (delta, 0))
960 return;
962 cur_trace->end_true_args_size = args_size;
964 /* If the CFA is computed off the stack pointer, then we must adjust
965 the computation of the CFA as well. */
966 if (cur_cfa->reg == dw_stack_pointer_regnum)
968 gcc_assert (!cur_cfa->indirect);
970 /* Convert a change in args_size (always a positive in the
971 direction of stack growth) to a change in stack pointer. */
972 if (!STACK_GROWS_DOWNWARD)
973 delta = -delta;
975 cur_cfa->offset += delta;
979 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
980 data within the trace related to EH insns and args_size. */
982 static void
983 notice_eh_throw (rtx_insn *insn)
985 poly_int64 args_size = cur_trace->end_true_args_size;
986 if (cur_trace->eh_head == NULL)
988 cur_trace->eh_head = insn;
989 cur_trace->beg_delay_args_size = args_size;
990 cur_trace->end_delay_args_size = args_size;
992 else if (maybe_ne (cur_trace->end_delay_args_size, args_size))
994 cur_trace->end_delay_args_size = args_size;
996 /* ??? If the CFA is the stack pointer, search backward for the last
997 CFI note and insert there. Given that the stack changed for the
998 args_size change, there *must* be such a note in between here and
999 the last eh insn. */
1000 add_cfi_args_size (args_size);
1004 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
1005 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
1006 used in places where rtl is prohibited. */
1008 static inline unsigned
1009 dwf_regno (const_rtx reg)
1011 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
1012 return DWARF_FRAME_REGNUM (REGNO (reg));
1015 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
1017 static bool
1018 compare_reg_or_pc (rtx x, rtx y)
1020 if (REG_P (x) && REG_P (y))
1021 return REGNO (x) == REGNO (y);
1022 return x == y;
1025 /* Record SRC as being saved in DEST. DEST may be null to delete an
1026 existing entry. SRC may be a register or PC_RTX. */
1028 static void
1029 record_reg_saved_in_reg (rtx dest, rtx src)
1031 reg_saved_in_data *elt;
1032 size_t i;
1034 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
1035 if (compare_reg_or_pc (elt->orig_reg, src))
1037 if (dest == NULL)
1038 cur_trace->regs_saved_in_regs.unordered_remove (i);
1039 else
1040 elt->saved_in_reg = dest;
1041 return;
1044 if (dest == NULL)
1045 return;
1047 reg_saved_in_data e = {src, dest};
1048 cur_trace->regs_saved_in_regs.safe_push (e);
1051 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1052 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1054 static void
1055 queue_reg_save (rtx reg, rtx sreg, poly_int64 offset)
1057 queued_reg_save *q;
1058 queued_reg_save e = {reg, sreg, offset};
1059 size_t i;
1061 /* Duplicates waste space, but it's also necessary to remove them
1062 for correctness, since the queue gets output in reverse order. */
1063 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1064 if (compare_reg_or_pc (q->reg, reg))
1066 *q = e;
1067 return;
1070 queued_reg_saves.safe_push (e);
1073 /* Output all the entries in QUEUED_REG_SAVES. */
1075 static void
1076 dwarf2out_flush_queued_reg_saves (void)
1078 queued_reg_save *q;
1079 size_t i;
1081 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1083 unsigned int reg, sreg;
1085 record_reg_saved_in_reg (q->saved_reg, q->reg);
1087 if (q->reg == pc_rtx)
1088 reg = DWARF_FRAME_RETURN_COLUMN;
1089 else
1090 reg = dwf_regno (q->reg);
1091 if (q->saved_reg)
1092 sreg = dwf_regno (q->saved_reg);
1093 else
1094 sreg = INVALID_REGNUM;
1095 reg_save (reg, sreg, q->cfa_offset);
1098 queued_reg_saves.truncate (0);
1101 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1102 location for? Or, does it clobber a register which we've previously
1103 said that some other register is saved in, and for which we now
1104 have a new location for? */
1106 static bool
1107 clobbers_queued_reg_save (const_rtx insn)
1109 queued_reg_save *q;
1110 size_t iq;
1112 FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
1114 size_t ir;
1115 reg_saved_in_data *rir;
1117 if (modified_in_p (q->reg, insn))
1118 return true;
1120 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
1121 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1122 && modified_in_p (rir->saved_in_reg, insn))
1123 return true;
1126 return false;
1129 /* What register, if any, is currently saved in REG? */
1131 static rtx
1132 reg_saved_in (rtx reg)
1134 unsigned int regn = REGNO (reg);
1135 queued_reg_save *q;
1136 reg_saved_in_data *rir;
1137 size_t i;
1139 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1140 if (q->saved_reg && regn == REGNO (q->saved_reg))
1141 return q->reg;
1143 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
1144 if (regn == REGNO (rir->saved_in_reg))
1145 return rir->orig_reg;
1147 return NULL_RTX;
1150 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1152 static void
1153 dwarf2out_frame_debug_def_cfa (rtx pat)
1155 memset (cur_cfa, 0, sizeof (*cur_cfa));
1157 pat = strip_offset (pat, &cur_cfa->offset);
1158 if (MEM_P (pat))
1160 cur_cfa->indirect = 1;
1161 pat = strip_offset (XEXP (pat, 0), &cur_cfa->base_offset);
1163 /* ??? If this fails, we could be calling into the _loc functions to
1164 define a full expression. So far no port does that. */
1165 gcc_assert (REG_P (pat));
1166 cur_cfa->reg = dwf_regno (pat);
1169 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1171 static void
1172 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1174 rtx src, dest;
1176 gcc_assert (GET_CODE (pat) == SET);
1177 dest = XEXP (pat, 0);
1178 src = XEXP (pat, 1);
1180 switch (GET_CODE (src))
1182 case PLUS:
1183 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1184 cur_cfa->offset -= rtx_to_poly_int64 (XEXP (src, 1));
1185 break;
1187 case REG:
1188 break;
1190 default:
1191 gcc_unreachable ();
1194 cur_cfa->reg = dwf_regno (dest);
1195 gcc_assert (cur_cfa->indirect == 0);
1198 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1200 static void
1201 dwarf2out_frame_debug_cfa_offset (rtx set)
1203 poly_int64 offset;
1204 rtx src, addr, span;
1205 unsigned int sregno;
1207 src = XEXP (set, 1);
1208 addr = XEXP (set, 0);
1209 gcc_assert (MEM_P (addr));
1210 addr = XEXP (addr, 0);
1212 /* As documented, only consider extremely simple addresses. */
1213 switch (GET_CODE (addr))
1215 case REG:
1216 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1217 offset = -cur_cfa->offset;
1218 break;
1219 case PLUS:
1220 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1221 offset = rtx_to_poly_int64 (XEXP (addr, 1)) - cur_cfa->offset;
1222 break;
1223 default:
1224 gcc_unreachable ();
1227 if (src == pc_rtx)
1229 span = NULL;
1230 sregno = DWARF_FRAME_RETURN_COLUMN;
1232 else
1234 span = targetm.dwarf_register_span (src);
1235 sregno = dwf_regno (src);
1238 /* ??? We'd like to use queue_reg_save, but we need to come up with
1239 a different flushing heuristic for epilogues. */
1240 if (!span)
1241 reg_save (sregno, INVALID_REGNUM, offset);
1242 else
1244 /* We have a PARALLEL describing where the contents of SRC live.
1245 Adjust the offset for each piece of the PARALLEL. */
1246 poly_int64 span_offset = offset;
1248 gcc_assert (GET_CODE (span) == PARALLEL);
1250 const int par_len = XVECLEN (span, 0);
1251 for (int par_index = 0; par_index < par_len; par_index++)
1253 rtx elem = XVECEXP (span, 0, par_index);
1254 sregno = dwf_regno (src);
1255 reg_save (sregno, INVALID_REGNUM, span_offset);
1256 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1261 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1263 static void
1264 dwarf2out_frame_debug_cfa_register (rtx set)
1266 rtx src, dest;
1267 unsigned sregno, dregno;
1269 src = XEXP (set, 1);
1270 dest = XEXP (set, 0);
1272 record_reg_saved_in_reg (dest, src);
1273 if (src == pc_rtx)
1274 sregno = DWARF_FRAME_RETURN_COLUMN;
1275 else
1276 sregno = dwf_regno (src);
1278 dregno = dwf_regno (dest);
1280 /* ??? We'd like to use queue_reg_save, but we need to come up with
1281 a different flushing heuristic for epilogues. */
1282 reg_save (sregno, dregno, 0);
1285 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1287 static void
1288 dwarf2out_frame_debug_cfa_expression (rtx set)
1290 rtx src, dest, span;
1291 dw_cfi_ref cfi = new_cfi ();
1292 unsigned regno;
1294 dest = SET_DEST (set);
1295 src = SET_SRC (set);
1297 gcc_assert (REG_P (src));
1298 gcc_assert (MEM_P (dest));
1300 span = targetm.dwarf_register_span (src);
1301 gcc_assert (!span);
1303 regno = dwf_regno (src);
1305 cfi->dw_cfi_opc = DW_CFA_expression;
1306 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1307 cfi->dw_cfi_oprnd2.dw_cfi_loc
1308 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1309 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1311 /* ??? We'd like to use queue_reg_save, were the interface different,
1312 and, as above, we could manage flushing for epilogues. */
1313 add_cfi (cfi);
1314 update_row_reg_save (cur_row, regno, cfi);
1317 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION
1318 note. */
1320 static void
1321 dwarf2out_frame_debug_cfa_val_expression (rtx set)
1323 rtx dest = SET_DEST (set);
1324 gcc_assert (REG_P (dest));
1326 rtx span = targetm.dwarf_register_span (dest);
1327 gcc_assert (!span);
1329 rtx src = SET_SRC (set);
1330 dw_cfi_ref cfi = new_cfi ();
1331 cfi->dw_cfi_opc = DW_CFA_val_expression;
1332 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = dwf_regno (dest);
1333 cfi->dw_cfi_oprnd2.dw_cfi_loc
1334 = mem_loc_descriptor (src, GET_MODE (src),
1335 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1336 add_cfi (cfi);
1337 update_row_reg_save (cur_row, dwf_regno (dest), cfi);
1340 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1342 static void
1343 dwarf2out_frame_debug_cfa_restore (rtx reg)
1345 gcc_assert (REG_P (reg));
1347 rtx span = targetm.dwarf_register_span (reg);
1348 if (!span)
1350 unsigned int regno = dwf_regno (reg);
1351 add_cfi_restore (regno);
1352 update_row_reg_save (cur_row, regno, NULL);
1354 else
1356 /* We have a PARALLEL describing where the contents of REG live.
1357 Restore the register for each piece of the PARALLEL. */
1358 gcc_assert (GET_CODE (span) == PARALLEL);
1360 const int par_len = XVECLEN (span, 0);
1361 for (int par_index = 0; par_index < par_len; par_index++)
1363 reg = XVECEXP (span, 0, par_index);
1364 gcc_assert (REG_P (reg));
1365 unsigned int regno = dwf_regno (reg);
1366 add_cfi_restore (regno);
1367 update_row_reg_save (cur_row, regno, NULL);
1372 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1373 FAKE is true if this is not really a window save but something else.
1375 ??? Perhaps we should note in the CIE where windows are saved (instead
1376 of assuming 0(cfa)) and what registers are in the window. */
1378 static void
1379 dwarf2out_frame_debug_cfa_window_save (bool fake)
1381 dw_cfi_ref cfi = new_cfi ();
1383 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1384 add_cfi (cfi);
1385 if (!fake)
1386 cur_row->window_save = true;
1389 /* Record call frame debugging information for an expression EXPR,
1390 which either sets SP or FP (adjusting how we calculate the frame
1391 address) or saves a register to the stack or another register.
1392 LABEL indicates the address of EXPR.
1394 This function encodes a state machine mapping rtxes to actions on
1395 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1396 users need not read the source code.
1398 The High-Level Picture
1400 Changes in the register we use to calculate the CFA: Currently we
1401 assume that if you copy the CFA register into another register, we
1402 should take the other one as the new CFA register; this seems to
1403 work pretty well. If it's wrong for some target, it's simple
1404 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1406 Changes in the register we use for saving registers to the stack:
1407 This is usually SP, but not always. Again, we deduce that if you
1408 copy SP into another register (and SP is not the CFA register),
1409 then the new register is the one we will be using for register
1410 saves. This also seems to work.
1412 Register saves: There's not much guesswork about this one; if
1413 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1414 register save, and the register used to calculate the destination
1415 had better be the one we think we're using for this purpose.
1416 It's also assumed that a copy from a call-saved register to another
1417 register is saving that register if RTX_FRAME_RELATED_P is set on
1418 that instruction. If the copy is from a call-saved register to
1419 the *same* register, that means that the register is now the same
1420 value as in the caller.
1422 Except: If the register being saved is the CFA register, and the
1423 offset is nonzero, we are saving the CFA, so we assume we have to
1424 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1425 the intent is to save the value of SP from the previous frame.
1427 In addition, if a register has previously been saved to a different
1428 register,
1430 Invariants / Summaries of Rules
1432 cfa current rule for calculating the CFA. It usually
1433 consists of a register and an offset. This is
1434 actually stored in *cur_cfa, but abbreviated
1435 for the purposes of this documentation.
1436 cfa_store register used by prologue code to save things to the stack
1437 cfa_store.offset is the offset from the value of
1438 cfa_store.reg to the actual CFA
1439 cfa_temp register holding an integral value. cfa_temp.offset
1440 stores the value, which will be used to adjust the
1441 stack pointer. cfa_temp is also used like cfa_store,
1442 to track stores to the stack via fp or a temp reg.
1444 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1445 with cfa.reg as the first operand changes the cfa.reg and its
1446 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1447 cfa_temp.offset.
1449 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1450 expression yielding a constant. This sets cfa_temp.reg
1451 and cfa_temp.offset.
1453 Rule 5: Create a new register cfa_store used to save items to the
1454 stack.
1456 Rules 10-14: Save a register to the stack. Define offset as the
1457 difference of the original location and cfa_store's
1458 location (or cfa_temp's location if cfa_temp is used).
1460 Rules 16-20: If AND operation happens on sp in prologue, we assume
1461 stack is realigned. We will use a group of DW_OP_XXX
1462 expressions to represent the location of the stored
1463 register instead of CFA+offset.
1465 The Rules
1467 "{a,b}" indicates a choice of a xor b.
1468 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1470 Rule 1:
1471 (set <reg1> <reg2>:cfa.reg)
1472 effects: cfa.reg = <reg1>
1473 cfa.offset unchanged
1474 cfa_temp.reg = <reg1>
1475 cfa_temp.offset = cfa.offset
1477 Rule 2:
1478 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1479 {<const_int>,<reg>:cfa_temp.reg}))
1480 effects: cfa.reg = sp if fp used
1481 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1482 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1483 if cfa_store.reg==sp
1485 Rule 3:
1486 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1487 effects: cfa.reg = fp
1488 cfa_offset += +/- <const_int>
1490 Rule 4:
1491 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1492 constraints: <reg1> != fp
1493 <reg1> != sp
1494 effects: cfa.reg = <reg1>
1495 cfa_temp.reg = <reg1>
1496 cfa_temp.offset = cfa.offset
1498 Rule 5:
1499 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1500 constraints: <reg1> != fp
1501 <reg1> != sp
1502 effects: cfa_store.reg = <reg1>
1503 cfa_store.offset = cfa.offset - cfa_temp.offset
1505 Rule 6:
1506 (set <reg> <const_int>)
1507 effects: cfa_temp.reg = <reg>
1508 cfa_temp.offset = <const_int>
1510 Rule 7:
1511 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1512 effects: cfa_temp.reg = <reg1>
1513 cfa_temp.offset |= <const_int>
1515 Rule 8:
1516 (set <reg> (high <exp>))
1517 effects: none
1519 Rule 9:
1520 (set <reg> (lo_sum <exp> <const_int>))
1521 effects: cfa_temp.reg = <reg>
1522 cfa_temp.offset = <const_int>
1524 Rule 10:
1525 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1526 effects: cfa_store.offset -= <const_int>
1527 cfa.offset = cfa_store.offset if cfa.reg == sp
1528 cfa.reg = sp
1529 cfa.base_offset = -cfa_store.offset
1531 Rule 11:
1532 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1533 effects: cfa_store.offset += -/+ mode_size(mem)
1534 cfa.offset = cfa_store.offset if cfa.reg == sp
1535 cfa.reg = sp
1536 cfa.base_offset = -cfa_store.offset
1538 Rule 12:
1539 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1541 <reg2>)
1542 effects: cfa.reg = <reg1>
1543 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1545 Rule 13:
1546 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1547 effects: cfa.reg = <reg1>
1548 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1550 Rule 14:
1551 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1552 effects: cfa.reg = <reg1>
1553 cfa.base_offset = -cfa_temp.offset
1554 cfa_temp.offset -= mode_size(mem)
1556 Rule 15:
1557 (set <reg> {unspec, unspec_volatile})
1558 effects: target-dependent
1560 Rule 16:
1561 (set sp (and: sp <const_int>))
1562 constraints: cfa_store.reg == sp
1563 effects: cfun->fde.stack_realign = 1
1564 cfa_store.offset = 0
1565 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1567 Rule 17:
1568 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1569 effects: cfa_store.offset += -/+ mode_size(mem)
1571 Rule 18:
1572 (set (mem ({pre_inc, pre_dec} sp)) fp)
1573 constraints: fde->stack_realign == 1
1574 effects: cfa_store.offset = 0
1575 cfa.reg != HARD_FRAME_POINTER_REGNUM
1577 Rule 19:
1578 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1579 constraints: fde->stack_realign == 1
1580 && cfa.offset == 0
1581 && cfa.indirect == 0
1582 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1583 effects: Use DW_CFA_def_cfa_expression to define cfa
1584 cfa.reg == fde->drap_reg */
1586 static void
1587 dwarf2out_frame_debug_expr (rtx expr)
1589 rtx src, dest, span;
1590 poly_int64 offset;
1591 dw_fde_ref fde;
1593 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1594 the PARALLEL independently. The first element is always processed if
1595 it is a SET. This is for backward compatibility. Other elements
1596 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1597 flag is set in them. */
1598 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1600 int par_index;
1601 int limit = XVECLEN (expr, 0);
1602 rtx elem;
1604 /* PARALLELs have strict read-modify-write semantics, so we
1605 ought to evaluate every rvalue before changing any lvalue.
1606 It's cumbersome to do that in general, but there's an
1607 easy approximation that is enough for all current users:
1608 handle register saves before register assignments. */
1609 if (GET_CODE (expr) == PARALLEL)
1610 for (par_index = 0; par_index < limit; par_index++)
1612 elem = XVECEXP (expr, 0, par_index);
1613 if (GET_CODE (elem) == SET
1614 && MEM_P (SET_DEST (elem))
1615 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1616 dwarf2out_frame_debug_expr (elem);
1619 for (par_index = 0; par_index < limit; par_index++)
1621 elem = XVECEXP (expr, 0, par_index);
1622 if (GET_CODE (elem) == SET
1623 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1624 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1625 dwarf2out_frame_debug_expr (elem);
1627 return;
1630 gcc_assert (GET_CODE (expr) == SET);
1632 src = SET_SRC (expr);
1633 dest = SET_DEST (expr);
1635 if (REG_P (src))
1637 rtx rsi = reg_saved_in (src);
1638 if (rsi)
1639 src = rsi;
1642 fde = cfun->fde;
1644 switch (GET_CODE (dest))
1646 case REG:
1647 switch (GET_CODE (src))
1649 /* Setting FP from SP. */
1650 case REG:
1651 if (cur_cfa->reg == dwf_regno (src))
1653 /* Rule 1 */
1654 /* Update the CFA rule wrt SP or FP. Make sure src is
1655 relative to the current CFA register.
1657 We used to require that dest be either SP or FP, but the
1658 ARM copies SP to a temporary register, and from there to
1659 FP. So we just rely on the backends to only set
1660 RTX_FRAME_RELATED_P on appropriate insns. */
1661 cur_cfa->reg = dwf_regno (dest);
1662 cur_trace->cfa_temp.reg = cur_cfa->reg;
1663 cur_trace->cfa_temp.offset = cur_cfa->offset;
1665 else
1667 /* Saving a register in a register. */
1668 gcc_assert (!fixed_regs [REGNO (dest)]
1669 /* For the SPARC and its register window. */
1670 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1672 /* After stack is aligned, we can only save SP in FP
1673 if drap register is used. In this case, we have
1674 to restore stack pointer with the CFA value and we
1675 don't generate this DWARF information. */
1676 if (fde
1677 && fde->stack_realign
1678 && REGNO (src) == STACK_POINTER_REGNUM)
1679 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1680 && fde->drap_reg != INVALID_REGNUM
1681 && cur_cfa->reg != dwf_regno (src));
1682 else
1683 queue_reg_save (src, dest, 0);
1685 break;
1687 case PLUS:
1688 case MINUS:
1689 case LO_SUM:
1690 if (dest == stack_pointer_rtx)
1692 /* Rule 2 */
1693 /* Adjusting SP. */
1694 if (REG_P (XEXP (src, 1)))
1696 gcc_assert (dwf_regno (XEXP (src, 1))
1697 == cur_trace->cfa_temp.reg);
1698 offset = cur_trace->cfa_temp.offset;
1700 else if (!poly_int_rtx_p (XEXP (src, 1), &offset))
1701 gcc_unreachable ();
1703 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1705 /* Restoring SP from FP in the epilogue. */
1706 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1707 cur_cfa->reg = dw_stack_pointer_regnum;
1709 else if (GET_CODE (src) == LO_SUM)
1710 /* Assume we've set the source reg of the LO_SUM from sp. */
1712 else
1713 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1715 if (GET_CODE (src) != MINUS)
1716 offset = -offset;
1717 if (cur_cfa->reg == dw_stack_pointer_regnum)
1718 cur_cfa->offset += offset;
1719 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1720 cur_trace->cfa_store.offset += offset;
1722 else if (dest == hard_frame_pointer_rtx)
1724 /* Rule 3 */
1725 /* Either setting the FP from an offset of the SP,
1726 or adjusting the FP */
1727 gcc_assert (frame_pointer_needed);
1729 gcc_assert (REG_P (XEXP (src, 0))
1730 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1731 offset = rtx_to_poly_int64 (XEXP (src, 1));
1732 if (GET_CODE (src) != MINUS)
1733 offset = -offset;
1734 cur_cfa->offset += offset;
1735 cur_cfa->reg = dw_frame_pointer_regnum;
1737 else
1739 gcc_assert (GET_CODE (src) != MINUS);
1741 /* Rule 4 */
1742 if (REG_P (XEXP (src, 0))
1743 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1744 && poly_int_rtx_p (XEXP (src, 1), &offset))
1746 /* Setting a temporary CFA register that will be copied
1747 into the FP later on. */
1748 offset = -offset;
1749 cur_cfa->offset += offset;
1750 cur_cfa->reg = dwf_regno (dest);
1751 /* Or used to save regs to the stack. */
1752 cur_trace->cfa_temp.reg = cur_cfa->reg;
1753 cur_trace->cfa_temp.offset = cur_cfa->offset;
1756 /* Rule 5 */
1757 else if (REG_P (XEXP (src, 0))
1758 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1759 && XEXP (src, 1) == stack_pointer_rtx)
1761 /* Setting a scratch register that we will use instead
1762 of SP for saving registers to the stack. */
1763 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1764 cur_trace->cfa_store.reg = dwf_regno (dest);
1765 cur_trace->cfa_store.offset
1766 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1769 /* Rule 9 */
1770 else if (GET_CODE (src) == LO_SUM
1771 && poly_int_rtx_p (XEXP (src, 1),
1772 &cur_trace->cfa_temp.offset))
1773 cur_trace->cfa_temp.reg = dwf_regno (dest);
1774 else
1775 gcc_unreachable ();
1777 break;
1779 /* Rule 6 */
1780 case CONST_INT:
1781 case CONST_POLY_INT:
1782 cur_trace->cfa_temp.reg = dwf_regno (dest);
1783 cur_trace->cfa_temp.offset = rtx_to_poly_int64 (src);
1784 break;
1786 /* Rule 7 */
1787 case IOR:
1788 gcc_assert (REG_P (XEXP (src, 0))
1789 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1790 && CONST_INT_P (XEXP (src, 1)));
1792 cur_trace->cfa_temp.reg = dwf_regno (dest);
1793 if (!can_ior_p (cur_trace->cfa_temp.offset, INTVAL (XEXP (src, 1)),
1794 &cur_trace->cfa_temp.offset))
1795 /* The target shouldn't generate this kind of CFI note if we
1796 can't represent it. */
1797 gcc_unreachable ();
1798 break;
1800 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1801 which will fill in all of the bits. */
1802 /* Rule 8 */
1803 case HIGH:
1804 break;
1806 /* Rule 15 */
1807 case UNSPEC:
1808 case UNSPEC_VOLATILE:
1809 /* All unspecs should be represented by REG_CFA_* notes. */
1810 gcc_unreachable ();
1811 return;
1813 /* Rule 16 */
1814 case AND:
1815 /* If this AND operation happens on stack pointer in prologue,
1816 we assume the stack is realigned and we extract the
1817 alignment. */
1818 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1820 /* We interpret reg_save differently with stack_realign set.
1821 Thus we must flush whatever we have queued first. */
1822 dwarf2out_flush_queued_reg_saves ();
1824 gcc_assert (cur_trace->cfa_store.reg
1825 == dwf_regno (XEXP (src, 0)));
1826 fde->stack_realign = 1;
1827 fde->stack_realignment = INTVAL (XEXP (src, 1));
1828 cur_trace->cfa_store.offset = 0;
1830 if (cur_cfa->reg != dw_stack_pointer_regnum
1831 && cur_cfa->reg != dw_frame_pointer_regnum)
1832 fde->drap_reg = cur_cfa->reg;
1834 return;
1836 default:
1837 gcc_unreachable ();
1839 break;
1841 case MEM:
1843 /* Saving a register to the stack. Make sure dest is relative to the
1844 CFA register. */
1845 switch (GET_CODE (XEXP (dest, 0)))
1847 /* Rule 10 */
1848 /* With a push. */
1849 case PRE_MODIFY:
1850 case POST_MODIFY:
1851 /* We can't handle variable size modifications. */
1852 offset = -rtx_to_poly_int64 (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1854 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1855 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1857 cur_trace->cfa_store.offset += offset;
1858 if (cur_cfa->reg == dw_stack_pointer_regnum)
1859 cur_cfa->offset = cur_trace->cfa_store.offset;
1861 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1862 offset -= cur_trace->cfa_store.offset;
1863 else
1864 offset = -cur_trace->cfa_store.offset;
1865 break;
1867 /* Rule 11 */
1868 case PRE_INC:
1869 case PRE_DEC:
1870 case POST_DEC:
1871 offset = GET_MODE_SIZE (GET_MODE (dest));
1872 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1873 offset = -offset;
1875 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1876 == STACK_POINTER_REGNUM)
1877 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1879 cur_trace->cfa_store.offset += offset;
1881 /* Rule 18: If stack is aligned, we will use FP as a
1882 reference to represent the address of the stored
1883 regiser. */
1884 if (fde
1885 && fde->stack_realign
1886 && REG_P (src)
1887 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1889 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1890 cur_trace->cfa_store.offset = 0;
1893 if (cur_cfa->reg == dw_stack_pointer_regnum)
1894 cur_cfa->offset = cur_trace->cfa_store.offset;
1896 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1897 offset += -cur_trace->cfa_store.offset;
1898 else
1899 offset = -cur_trace->cfa_store.offset;
1900 break;
1902 /* Rule 12 */
1903 /* With an offset. */
1904 case PLUS:
1905 case MINUS:
1906 case LO_SUM:
1908 unsigned int regno;
1910 gcc_assert (REG_P (XEXP (XEXP (dest, 0), 0)));
1911 offset = rtx_to_poly_int64 (XEXP (XEXP (dest, 0), 1));
1912 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1913 offset = -offset;
1915 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1917 if (cur_cfa->reg == regno)
1918 offset -= cur_cfa->offset;
1919 else if (cur_trace->cfa_store.reg == regno)
1920 offset -= cur_trace->cfa_store.offset;
1921 else
1923 gcc_assert (cur_trace->cfa_temp.reg == regno);
1924 offset -= cur_trace->cfa_temp.offset;
1927 break;
1929 /* Rule 13 */
1930 /* Without an offset. */
1931 case REG:
1933 unsigned int regno = dwf_regno (XEXP (dest, 0));
1935 if (cur_cfa->reg == regno)
1936 offset = -cur_cfa->offset;
1937 else if (cur_trace->cfa_store.reg == regno)
1938 offset = -cur_trace->cfa_store.offset;
1939 else
1941 gcc_assert (cur_trace->cfa_temp.reg == regno);
1942 offset = -cur_trace->cfa_temp.offset;
1945 break;
1947 /* Rule 14 */
1948 case POST_INC:
1949 gcc_assert (cur_trace->cfa_temp.reg
1950 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1951 offset = -cur_trace->cfa_temp.offset;
1952 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1953 break;
1955 default:
1956 gcc_unreachable ();
1959 /* Rule 17 */
1960 /* If the source operand of this MEM operation is a memory,
1961 we only care how much stack grew. */
1962 if (MEM_P (src))
1963 break;
1965 if (REG_P (src)
1966 && REGNO (src) != STACK_POINTER_REGNUM
1967 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1968 && dwf_regno (src) == cur_cfa->reg)
1970 /* We're storing the current CFA reg into the stack. */
1972 if (known_eq (cur_cfa->offset, 0))
1974 /* Rule 19 */
1975 /* If stack is aligned, putting CFA reg into stack means
1976 we can no longer use reg + offset to represent CFA.
1977 Here we use DW_CFA_def_cfa_expression instead. The
1978 result of this expression equals to the original CFA
1979 value. */
1980 if (fde
1981 && fde->stack_realign
1982 && cur_cfa->indirect == 0
1983 && cur_cfa->reg != dw_frame_pointer_regnum)
1985 gcc_assert (fde->drap_reg == cur_cfa->reg);
1987 cur_cfa->indirect = 1;
1988 cur_cfa->reg = dw_frame_pointer_regnum;
1989 cur_cfa->base_offset = offset;
1990 cur_cfa->offset = 0;
1992 fde->drap_reg_saved = 1;
1993 break;
1996 /* If the source register is exactly the CFA, assume
1997 we're saving SP like any other register; this happens
1998 on the ARM. */
1999 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
2000 break;
2002 else
2004 /* Otherwise, we'll need to look in the stack to
2005 calculate the CFA. */
2006 rtx x = XEXP (dest, 0);
2008 if (!REG_P (x))
2009 x = XEXP (x, 0);
2010 gcc_assert (REG_P (x));
2012 cur_cfa->reg = dwf_regno (x);
2013 cur_cfa->base_offset = offset;
2014 cur_cfa->indirect = 1;
2015 break;
2019 if (REG_P (src))
2020 span = targetm.dwarf_register_span (src);
2021 else
2022 span = NULL;
2024 if (!span)
2025 queue_reg_save (src, NULL_RTX, offset);
2026 else
2028 /* We have a PARALLEL describing where the contents of SRC live.
2029 Queue register saves for each piece of the PARALLEL. */
2030 poly_int64 span_offset = offset;
2032 gcc_assert (GET_CODE (span) == PARALLEL);
2034 const int par_len = XVECLEN (span, 0);
2035 for (int par_index = 0; par_index < par_len; par_index++)
2037 rtx elem = XVECEXP (span, 0, par_index);
2038 queue_reg_save (elem, NULL_RTX, span_offset);
2039 span_offset += GET_MODE_SIZE (GET_MODE (elem));
2042 break;
2044 default:
2045 gcc_unreachable ();
2049 /* Record call frame debugging information for INSN, which either sets
2050 SP or FP (adjusting how we calculate the frame address) or saves a
2051 register to the stack. */
2053 static void
2054 dwarf2out_frame_debug (rtx_insn *insn)
2056 rtx note, n, pat;
2057 bool handled_one = false;
2059 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2060 switch (REG_NOTE_KIND (note))
2062 case REG_FRAME_RELATED_EXPR:
2063 pat = XEXP (note, 0);
2064 goto do_frame_expr;
2066 case REG_CFA_DEF_CFA:
2067 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
2068 handled_one = true;
2069 break;
2071 case REG_CFA_ADJUST_CFA:
2072 n = XEXP (note, 0);
2073 if (n == NULL)
2075 n = PATTERN (insn);
2076 if (GET_CODE (n) == PARALLEL)
2077 n = XVECEXP (n, 0, 0);
2079 dwarf2out_frame_debug_adjust_cfa (n);
2080 handled_one = true;
2081 break;
2083 case REG_CFA_OFFSET:
2084 n = XEXP (note, 0);
2085 if (n == NULL)
2086 n = single_set (insn);
2087 dwarf2out_frame_debug_cfa_offset (n);
2088 handled_one = true;
2089 break;
2091 case REG_CFA_REGISTER:
2092 n = XEXP (note, 0);
2093 if (n == NULL)
2095 n = PATTERN (insn);
2096 if (GET_CODE (n) == PARALLEL)
2097 n = XVECEXP (n, 0, 0);
2099 dwarf2out_frame_debug_cfa_register (n);
2100 handled_one = true;
2101 break;
2103 case REG_CFA_EXPRESSION:
2104 case REG_CFA_VAL_EXPRESSION:
2105 n = XEXP (note, 0);
2106 if (n == NULL)
2107 n = single_set (insn);
2109 if (REG_NOTE_KIND (note) == REG_CFA_EXPRESSION)
2110 dwarf2out_frame_debug_cfa_expression (n);
2111 else
2112 dwarf2out_frame_debug_cfa_val_expression (n);
2114 handled_one = true;
2115 break;
2117 case REG_CFA_RESTORE:
2118 n = XEXP (note, 0);
2119 if (n == NULL)
2121 n = PATTERN (insn);
2122 if (GET_CODE (n) == PARALLEL)
2123 n = XVECEXP (n, 0, 0);
2124 n = XEXP (n, 0);
2126 dwarf2out_frame_debug_cfa_restore (n);
2127 handled_one = true;
2128 break;
2130 case REG_CFA_SET_VDRAP:
2131 n = XEXP (note, 0);
2132 if (REG_P (n))
2134 dw_fde_ref fde = cfun->fde;
2135 if (fde)
2137 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2138 if (REG_P (n))
2139 fde->vdrap_reg = dwf_regno (n);
2142 handled_one = true;
2143 break;
2145 case REG_CFA_TOGGLE_RA_MANGLE:
2146 /* This uses the same DWARF opcode as the next operation. */
2147 dwarf2out_frame_debug_cfa_window_save (true);
2148 handled_one = true;
2149 break;
2151 case REG_CFA_WINDOW_SAVE:
2152 dwarf2out_frame_debug_cfa_window_save (false);
2153 handled_one = true;
2154 break;
2156 case REG_CFA_FLUSH_QUEUE:
2157 /* The actual flush happens elsewhere. */
2158 handled_one = true;
2159 break;
2161 default:
2162 break;
2165 if (!handled_one)
2167 pat = PATTERN (insn);
2168 do_frame_expr:
2169 dwarf2out_frame_debug_expr (pat);
2171 /* Check again. A parallel can save and update the same register.
2172 We could probably check just once, here, but this is safer than
2173 removing the check at the start of the function. */
2174 if (clobbers_queued_reg_save (pat))
2175 dwarf2out_flush_queued_reg_saves ();
2179 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2181 static void
2182 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2184 size_t i, n_old, n_new, n_max;
2185 dw_cfi_ref cfi;
2187 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2188 add_cfi (new_row->cfa_cfi);
2189 else
2191 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2192 if (cfi)
2193 add_cfi (cfi);
2196 n_old = vec_safe_length (old_row->reg_save);
2197 n_new = vec_safe_length (new_row->reg_save);
2198 n_max = MAX (n_old, n_new);
2200 for (i = 0; i < n_max; ++i)
2202 dw_cfi_ref r_old = NULL, r_new = NULL;
2204 if (i < n_old)
2205 r_old = (*old_row->reg_save)[i];
2206 if (i < n_new)
2207 r_new = (*new_row->reg_save)[i];
2209 if (r_old == r_new)
2211 else if (r_new == NULL)
2212 add_cfi_restore (i);
2213 else if (!cfi_equal_p (r_old, r_new))
2214 add_cfi (r_new);
2217 if (!old_row->window_save && new_row->window_save)
2219 dw_cfi_ref cfi = new_cfi ();
2221 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
2222 add_cfi (cfi);
2226 /* Examine CFI and return true if a cfi label and set_loc is needed
2227 beforehand. Even when generating CFI assembler instructions, we
2228 still have to add the cfi to the list so that lookup_cfa_1 works
2229 later on. When -g2 and above we even need to force emitting of
2230 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2231 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2232 and so don't use convert_cfa_to_fb_loc_list. */
2234 static bool
2235 cfi_label_required_p (dw_cfi_ref cfi)
2237 if (!dwarf2out_do_cfi_asm ())
2238 return true;
2240 if (dwarf_version == 2
2241 && debug_info_level > DINFO_LEVEL_TERSE
2242 && (write_symbols == DWARF2_DEBUG
2243 || write_symbols == VMS_AND_DWARF2_DEBUG))
2245 switch (cfi->dw_cfi_opc)
2247 case DW_CFA_def_cfa_offset:
2248 case DW_CFA_def_cfa_offset_sf:
2249 case DW_CFA_def_cfa_register:
2250 case DW_CFA_def_cfa:
2251 case DW_CFA_def_cfa_sf:
2252 case DW_CFA_def_cfa_expression:
2253 case DW_CFA_restore_state:
2254 return true;
2255 default:
2256 return false;
2259 return false;
2262 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2263 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2264 necessary. */
2265 static void
2266 add_cfis_to_fde (void)
2268 dw_fde_ref fde = cfun->fde;
2269 rtx_insn *insn, *next;
2271 for (insn = get_insns (); insn; insn = next)
2273 next = NEXT_INSN (insn);
2275 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2276 fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
2278 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2280 bool required = cfi_label_required_p (NOTE_CFI (insn));
2281 while (next)
2282 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2284 required |= cfi_label_required_p (NOTE_CFI (next));
2285 next = NEXT_INSN (next);
2287 else if (active_insn_p (next)
2288 || (NOTE_P (next) && (NOTE_KIND (next)
2289 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2290 break;
2291 else
2292 next = NEXT_INSN (next);
2293 if (required)
2295 int num = dwarf2out_cfi_label_num;
2296 const char *label = dwarf2out_cfi_label ();
2297 dw_cfi_ref xcfi;
2299 /* Set the location counter to the new label. */
2300 xcfi = new_cfi ();
2301 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
2302 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2303 vec_safe_push (fde->dw_fde_cfi, xcfi);
2305 rtx_note *tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2306 NOTE_LABEL_NUMBER (tmp) = num;
2311 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2312 vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
2313 insn = NEXT_INSN (insn);
2315 while (insn != next);
2320 static void dump_cfi_row (FILE *f, dw_cfi_row *row);
2322 /* If LABEL is the start of a trace, then initialize the state of that
2323 trace from CUR_TRACE and CUR_ROW. */
2325 static void
2326 maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
2328 dw_trace_info *ti;
2330 ti = get_trace_info (start);
2331 gcc_assert (ti != NULL);
2333 if (dump_file)
2335 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2336 cur_trace->id, ti->id,
2337 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2338 (origin ? INSN_UID (origin) : 0));
2341 poly_int64 args_size = cur_trace->end_true_args_size;
2342 if (ti->beg_row == NULL)
2344 /* This is the first time we've encountered this trace. Propagate
2345 state across the edge and push the trace onto the work list. */
2346 ti->beg_row = copy_cfi_row (cur_row);
2347 ti->beg_true_args_size = args_size;
2349 ti->cfa_store = cur_trace->cfa_store;
2350 ti->cfa_temp = cur_trace->cfa_temp;
2351 ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
2353 trace_work_list.safe_push (ti);
2355 if (dump_file)
2356 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2358 else
2361 /* We ought to have the same state incoming to a given trace no
2362 matter how we arrive at the trace. Anything else means we've
2363 got some kind of optimization error. */
2364 #if CHECKING_P
2365 if (!cfi_row_equal_p (cur_row, ti->beg_row))
2367 if (dump_file)
2369 fprintf (dump_file, "Inconsistent CFI state!\n");
2370 fprintf (dump_file, "SHOULD have:\n");
2371 dump_cfi_row (dump_file, ti->beg_row);
2372 fprintf (dump_file, "DO have:\n");
2373 dump_cfi_row (dump_file, cur_row);
2376 gcc_unreachable ();
2378 #endif
2380 /* The args_size is allowed to conflict if it isn't actually used. */
2381 if (maybe_ne (ti->beg_true_args_size, args_size))
2382 ti->args_size_undefined = true;
2386 /* Similarly, but handle the args_size and CFA reset across EH
2387 and non-local goto edges. */
2389 static void
2390 maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
2392 poly_int64 save_args_size, delta;
2393 dw_cfa_location save_cfa;
2395 save_args_size = cur_trace->end_true_args_size;
2396 if (known_eq (save_args_size, 0))
2398 maybe_record_trace_start (start, origin);
2399 return;
2402 delta = -save_args_size;
2403 cur_trace->end_true_args_size = 0;
2405 save_cfa = cur_row->cfa;
2406 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2408 /* Convert a change in args_size (always a positive in the
2409 direction of stack growth) to a change in stack pointer. */
2410 if (!STACK_GROWS_DOWNWARD)
2411 delta = -delta;
2413 cur_row->cfa.offset += delta;
2416 maybe_record_trace_start (start, origin);
2418 cur_trace->end_true_args_size = save_args_size;
2419 cur_row->cfa = save_cfa;
2422 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2423 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2425 static void
2426 create_trace_edges (rtx_insn *insn)
2428 rtx tmp;
2429 int i, n;
2431 if (JUMP_P (insn))
2433 rtx_jump_table_data *table;
2435 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2436 return;
2438 if (tablejump_p (insn, NULL, &table))
2440 rtvec vec = table->get_labels ();
2442 n = GET_NUM_ELEM (vec);
2443 for (i = 0; i < n; ++i)
2445 rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
2446 maybe_record_trace_start (lab, insn);
2449 else if (computed_jump_p (insn))
2451 rtx_insn *temp;
2452 unsigned int i;
2453 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, temp)
2454 maybe_record_trace_start (temp, insn);
2456 else if (returnjump_p (insn))
2458 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2460 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2461 for (i = 0; i < n; ++i)
2463 rtx_insn *lab =
2464 as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
2465 maybe_record_trace_start (lab, insn);
2468 else
2470 rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
2471 gcc_assert (lab != NULL);
2472 maybe_record_trace_start (lab, insn);
2475 else if (CALL_P (insn))
2477 /* Sibling calls don't have edges inside this function. */
2478 if (SIBLING_CALL_P (insn))
2479 return;
2481 /* Process non-local goto edges. */
2482 if (can_nonlocal_goto (insn))
2483 for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2484 lab;
2485 lab = lab->next ())
2486 maybe_record_trace_start_abnormal (lab->insn (), insn);
2488 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2490 int i, n = seq->len ();
2491 for (i = 0; i < n; ++i)
2492 create_trace_edges (seq->insn (i));
2493 return;
2496 /* Process EH edges. */
2497 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2499 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2500 if (lp)
2501 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2505 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2507 static void
2508 scan_insn_after (rtx_insn *insn)
2510 if (RTX_FRAME_RELATED_P (insn))
2511 dwarf2out_frame_debug (insn);
2512 notice_args_size (insn);
2515 /* Scan the trace beginning at INSN and create the CFI notes for the
2516 instructions therein. */
2518 static void
2519 scan_trace (dw_trace_info *trace, bool entry)
2521 rtx_insn *prev, *insn = trace->head;
2522 dw_cfa_location this_cfa;
2524 if (dump_file)
2525 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2526 trace->id, rtx_name[(int) GET_CODE (insn)],
2527 INSN_UID (insn));
2529 trace->end_row = copy_cfi_row (trace->beg_row);
2530 trace->end_true_args_size = trace->beg_true_args_size;
2532 cur_trace = trace;
2533 cur_row = trace->end_row;
2535 this_cfa = cur_row->cfa;
2536 cur_cfa = &this_cfa;
2538 /* If the current function starts with a non-standard incoming frame
2539 sp offset, emit a note before the first instruction. */
2540 if (entry
2541 && DEFAULT_INCOMING_FRAME_SP_OFFSET != INCOMING_FRAME_SP_OFFSET)
2543 add_cfi_insn = insn;
2544 gcc_assert (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED);
2545 this_cfa.offset = INCOMING_FRAME_SP_OFFSET;
2546 def_cfa_1 (&this_cfa);
2549 for (prev = insn, insn = NEXT_INSN (insn);
2550 insn;
2551 prev = insn, insn = NEXT_INSN (insn))
2553 rtx_insn *control;
2555 /* Do everything that happens "before" the insn. */
2556 add_cfi_insn = prev;
2558 /* Notice the end of a trace. */
2559 if (BARRIER_P (insn))
2561 /* Don't bother saving the unneeded queued registers at all. */
2562 queued_reg_saves.truncate (0);
2563 break;
2565 if (save_point_p (insn))
2567 /* Propagate across fallthru edges. */
2568 dwarf2out_flush_queued_reg_saves ();
2569 maybe_record_trace_start (insn, NULL);
2570 break;
2573 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2574 continue;
2576 /* Handle all changes to the row state. Sequences require special
2577 handling for the positioning of the notes. */
2578 if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2580 rtx_insn *elt;
2581 int i, n = pat->len ();
2583 control = pat->insn (0);
2584 if (can_throw_internal (control))
2585 notice_eh_throw (control);
2586 dwarf2out_flush_queued_reg_saves ();
2588 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2590 /* ??? Hopefully multiple delay slots are not annulled. */
2591 gcc_assert (n == 2);
2592 gcc_assert (!RTX_FRAME_RELATED_P (control));
2593 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2595 elt = pat->insn (1);
2597 if (INSN_FROM_TARGET_P (elt))
2599 cfi_vec save_row_reg_save;
2601 /* If ELT is an instruction from target of an annulled
2602 branch, the effects are for the target only and so
2603 the args_size and CFA along the current path
2604 shouldn't change. */
2605 add_cfi_insn = NULL;
2606 poly_int64 restore_args_size = cur_trace->end_true_args_size;
2607 cur_cfa = &cur_row->cfa;
2608 save_row_reg_save = vec_safe_copy (cur_row->reg_save);
2610 scan_insn_after (elt);
2612 /* ??? Should we instead save the entire row state? */
2613 gcc_assert (!queued_reg_saves.length ());
2615 create_trace_edges (control);
2617 cur_trace->end_true_args_size = restore_args_size;
2618 cur_row->cfa = this_cfa;
2619 cur_row->reg_save = save_row_reg_save;
2620 cur_cfa = &this_cfa;
2622 else
2624 /* If ELT is a annulled branch-taken instruction (i.e.
2625 executed only when branch is not taken), the args_size
2626 and CFA should not change through the jump. */
2627 create_trace_edges (control);
2629 /* Update and continue with the trace. */
2630 add_cfi_insn = insn;
2631 scan_insn_after (elt);
2632 def_cfa_1 (&this_cfa);
2634 continue;
2637 /* The insns in the delay slot should all be considered to happen
2638 "before" a call insn. Consider a call with a stack pointer
2639 adjustment in the delay slot. The backtrace from the callee
2640 should include the sp adjustment. Unfortunately, that leaves
2641 us with an unavoidable unwinding error exactly at the call insn
2642 itself. For jump insns we'd prefer to avoid this error by
2643 placing the notes after the sequence. */
2644 if (JUMP_P (control))
2645 add_cfi_insn = insn;
2647 for (i = 1; i < n; ++i)
2649 elt = pat->insn (i);
2650 scan_insn_after (elt);
2653 /* Make sure any register saves are visible at the jump target. */
2654 dwarf2out_flush_queued_reg_saves ();
2655 any_cfis_emitted = false;
2657 /* However, if there is some adjustment on the call itself, e.g.
2658 a call_pop, that action should be considered to happen after
2659 the call returns. */
2660 add_cfi_insn = insn;
2661 scan_insn_after (control);
2663 else
2665 /* Flush data before calls and jumps, and of course if necessary. */
2666 if (can_throw_internal (insn))
2668 notice_eh_throw (insn);
2669 dwarf2out_flush_queued_reg_saves ();
2671 else if (!NONJUMP_INSN_P (insn)
2672 || clobbers_queued_reg_save (insn)
2673 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2674 dwarf2out_flush_queued_reg_saves ();
2675 any_cfis_emitted = false;
2677 add_cfi_insn = insn;
2678 scan_insn_after (insn);
2679 control = insn;
2682 /* Between frame-related-p and args_size we might have otherwise
2683 emitted two cfa adjustments. Do it now. */
2684 def_cfa_1 (&this_cfa);
2686 /* Minimize the number of advances by emitting the entire queue
2687 once anything is emitted. */
2688 if (any_cfis_emitted
2689 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2690 dwarf2out_flush_queued_reg_saves ();
2692 /* Note that a test for control_flow_insn_p does exactly the
2693 same tests as are done to actually create the edges. So
2694 always call the routine and let it not create edges for
2695 non-control-flow insns. */
2696 create_trace_edges (control);
2699 add_cfi_insn = NULL;
2700 cur_row = NULL;
2701 cur_trace = NULL;
2702 cur_cfa = NULL;
2705 /* Scan the function and create the initial set of CFI notes. */
2707 static void
2708 create_cfi_notes (void)
2710 dw_trace_info *ti;
2712 gcc_checking_assert (!queued_reg_saves.exists ());
2713 gcc_checking_assert (!trace_work_list.exists ());
2715 /* Always begin at the entry trace. */
2716 ti = &trace_info[0];
2717 scan_trace (ti, true);
2719 while (!trace_work_list.is_empty ())
2721 ti = trace_work_list.pop ();
2722 scan_trace (ti, false);
2725 queued_reg_saves.release ();
2726 trace_work_list.release ();
2729 /* Return the insn before the first NOTE_INSN_CFI after START. */
2731 static rtx_insn *
2732 before_next_cfi_note (rtx_insn *start)
2734 rtx_insn *prev = start;
2735 while (start)
2737 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2738 return prev;
2739 prev = start;
2740 start = NEXT_INSN (start);
2742 gcc_unreachable ();
2745 /* Insert CFI notes between traces to properly change state between them. */
2747 static void
2748 connect_traces (void)
2750 unsigned i, n;
2751 dw_trace_info *prev_ti, *ti;
2753 /* ??? Ideally, we should have both queued and processed every trace.
2754 However the current representation of constant pools on various targets
2755 is indistinguishable from unreachable code. Assume for the moment that
2756 we can simply skip over such traces. */
2757 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2758 these are not "real" instructions, and should not be considered.
2759 This could be generically useful for tablejump data as well. */
2760 /* Remove all unprocessed traces from the list. */
2761 unsigned ix, ix2;
2762 VEC_ORDERED_REMOVE_IF_FROM_TO (trace_info, ix, ix2, ti, 1,
2763 trace_info.length (), ti->beg_row == NULL);
2764 FOR_EACH_VEC_ELT (trace_info, ix, ti)
2765 gcc_assert (ti->end_row != NULL);
2767 /* Work from the end back to the beginning. This lets us easily insert
2768 remember/restore_state notes in the correct order wrt other notes. */
2769 n = trace_info.length ();
2770 prev_ti = &trace_info[n - 1];
2771 for (i = n - 1; i > 0; --i)
2773 dw_cfi_row *old_row;
2775 ti = prev_ti;
2776 prev_ti = &trace_info[i - 1];
2778 add_cfi_insn = ti->head;
2780 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2781 for the portion of the function in the alternate text
2782 section. The row state at the very beginning of that
2783 new FDE will be exactly the row state from the CIE. */
2784 if (ti->switch_sections)
2785 old_row = cie_cfi_row;
2786 else
2788 old_row = prev_ti->end_row;
2789 /* If there's no change from the previous end state, fine. */
2790 if (cfi_row_equal_p (old_row, ti->beg_row))
2792 /* Otherwise check for the common case of sharing state with
2793 the beginning of an epilogue, but not the end. Insert
2794 remember/restore opcodes in that case. */
2795 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2797 dw_cfi_ref cfi;
2799 /* Note that if we blindly insert the remember at the
2800 start of the trace, we can wind up increasing the
2801 size of the unwind info due to extra advance opcodes.
2802 Instead, put the remember immediately before the next
2803 state change. We know there must be one, because the
2804 state at the beginning and head of the trace differ. */
2805 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2806 cfi = new_cfi ();
2807 cfi->dw_cfi_opc = DW_CFA_remember_state;
2808 add_cfi (cfi);
2810 add_cfi_insn = ti->head;
2811 cfi = new_cfi ();
2812 cfi->dw_cfi_opc = DW_CFA_restore_state;
2813 add_cfi (cfi);
2815 old_row = prev_ti->beg_row;
2817 /* Otherwise, we'll simply change state from the previous end. */
2820 change_cfi_row (old_row, ti->beg_row);
2822 if (dump_file && add_cfi_insn != ti->head)
2824 rtx_insn *note;
2826 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2827 prev_ti->id, ti->id);
2829 note = ti->head;
2832 note = NEXT_INSN (note);
2833 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2834 output_cfi_directive (dump_file, NOTE_CFI (note));
2836 while (note != add_cfi_insn);
2840 /* Connect args_size between traces that have can_throw_internal insns. */
2841 if (cfun->eh->lp_array)
2843 poly_int64 prev_args_size = 0;
2845 for (i = 0; i < n; ++i)
2847 ti = &trace_info[i];
2849 if (ti->switch_sections)
2850 prev_args_size = 0;
2852 if (ti->eh_head == NULL)
2853 continue;
2855 /* We require either the incoming args_size values to match or the
2856 presence of an insn setting it before the first EH insn. */
2857 gcc_assert (!ti->args_size_undefined || ti->args_size_defined_for_eh);
2859 /* In the latter case, we force the creation of a CFI note. */
2860 if (ti->args_size_undefined
2861 || maybe_ne (ti->beg_delay_args_size, prev_args_size))
2863 /* ??? Search back to previous CFI note. */
2864 add_cfi_insn = PREV_INSN (ti->eh_head);
2865 add_cfi_args_size (ti->beg_delay_args_size);
2868 prev_args_size = ti->end_delay_args_size;
2873 /* Set up the pseudo-cfg of instruction traces, as described at the
2874 block comment at the top of the file. */
2876 static void
2877 create_pseudo_cfg (void)
2879 bool saw_barrier, switch_sections;
2880 dw_trace_info ti;
2881 rtx_insn *insn;
2882 unsigned i;
2884 /* The first trace begins at the start of the function,
2885 and begins with the CIE row state. */
2886 trace_info.create (16);
2887 memset (&ti, 0, sizeof (ti));
2888 ti.head = get_insns ();
2889 ti.beg_row = cie_cfi_row;
2890 ti.cfa_store = cie_cfi_row->cfa;
2891 ti.cfa_temp.reg = INVALID_REGNUM;
2892 trace_info.quick_push (ti);
2894 if (cie_return_save)
2895 ti.regs_saved_in_regs.safe_push (*cie_return_save);
2897 /* Walk all the insns, collecting start of trace locations. */
2898 saw_barrier = false;
2899 switch_sections = false;
2900 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2902 if (BARRIER_P (insn))
2903 saw_barrier = true;
2904 else if (NOTE_P (insn)
2905 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2907 /* We should have just seen a barrier. */
2908 gcc_assert (saw_barrier);
2909 switch_sections = true;
2911 /* Watch out for save_point notes between basic blocks.
2912 In particular, a note after a barrier. Do not record these,
2913 delaying trace creation until the label. */
2914 else if (save_point_p (insn)
2915 && (LABEL_P (insn) || !saw_barrier))
2917 memset (&ti, 0, sizeof (ti));
2918 ti.head = insn;
2919 ti.switch_sections = switch_sections;
2920 ti.id = trace_info.length ();
2921 trace_info.safe_push (ti);
2923 saw_barrier = false;
2924 switch_sections = false;
2928 /* Create the trace index after we've finished building trace_info,
2929 avoiding stale pointer problems due to reallocation. */
2930 trace_index
2931 = new hash_table<trace_info_hasher> (trace_info.length ());
2932 dw_trace_info *tp;
2933 FOR_EACH_VEC_ELT (trace_info, i, tp)
2935 dw_trace_info **slot;
2937 if (dump_file)
2938 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id,
2939 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2940 tp->switch_sections ? " (section switch)" : "");
2942 slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
2943 gcc_assert (*slot == NULL);
2944 *slot = tp;
2948 /* Record the initial position of the return address. RTL is
2949 INCOMING_RETURN_ADDR_RTX. */
2951 static void
2952 initial_return_save (rtx rtl)
2954 unsigned int reg = INVALID_REGNUM;
2955 poly_int64 offset = 0;
2957 switch (GET_CODE (rtl))
2959 case REG:
2960 /* RA is in a register. */
2961 reg = dwf_regno (rtl);
2962 break;
2964 case MEM:
2965 /* RA is on the stack. */
2966 rtl = XEXP (rtl, 0);
2967 switch (GET_CODE (rtl))
2969 case REG:
2970 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2971 offset = 0;
2972 break;
2974 case PLUS:
2975 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2976 offset = rtx_to_poly_int64 (XEXP (rtl, 1));
2977 break;
2979 case MINUS:
2980 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2981 offset = -rtx_to_poly_int64 (XEXP (rtl, 1));
2982 break;
2984 default:
2985 gcc_unreachable ();
2988 break;
2990 case PLUS:
2991 /* The return address is at some offset from any value we can
2992 actually load. For instance, on the SPARC it is in %i7+8. Just
2993 ignore the offset for now; it doesn't matter for unwinding frames. */
2994 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2995 initial_return_save (XEXP (rtl, 0));
2996 return;
2998 default:
2999 gcc_unreachable ();
3002 if (reg != DWARF_FRAME_RETURN_COLUMN)
3004 if (reg != INVALID_REGNUM)
3005 record_reg_saved_in_reg (rtl, pc_rtx);
3006 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
3010 static void
3011 create_cie_data (void)
3013 dw_cfa_location loc;
3014 dw_trace_info cie_trace;
3016 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
3018 memset (&cie_trace, 0, sizeof (cie_trace));
3019 cur_trace = &cie_trace;
3021 add_cfi_vec = &cie_cfi_vec;
3022 cie_cfi_row = cur_row = new_cfi_row ();
3024 /* On entry, the Canonical Frame Address is at SP. */
3025 memset (&loc, 0, sizeof (loc));
3026 loc.reg = dw_stack_pointer_regnum;
3027 /* create_cie_data is called just once per TU, and when using .cfi_startproc
3028 is even done by the assembler rather than the compiler. If the target
3029 has different incoming frame sp offsets depending on what kind of
3030 function it is, use a single constant offset for the target and
3031 if needed, adjust before the first instruction in insn stream. */
3032 loc.offset = DEFAULT_INCOMING_FRAME_SP_OFFSET;
3033 def_cfa_1 (&loc);
3035 if (targetm.debug_unwind_info () == UI_DWARF2
3036 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3038 initial_return_save (INCOMING_RETURN_ADDR_RTX);
3040 /* For a few targets, we have the return address incoming into a
3041 register, but choose a different return column. This will result
3042 in a DW_CFA_register for the return, and an entry in
3043 regs_saved_in_regs to match. If the target later stores that
3044 return address register to the stack, we want to be able to emit
3045 the DW_CFA_offset against the return column, not the intermediate
3046 save register. Save the contents of regs_saved_in_regs so that
3047 we can re-initialize it at the start of each function. */
3048 switch (cie_trace.regs_saved_in_regs.length ())
3050 case 0:
3051 break;
3052 case 1:
3053 cie_return_save = ggc_alloc<reg_saved_in_data> ();
3054 *cie_return_save = cie_trace.regs_saved_in_regs[0];
3055 cie_trace.regs_saved_in_regs.release ();
3056 break;
3057 default:
3058 gcc_unreachable ();
3062 add_cfi_vec = NULL;
3063 cur_row = NULL;
3064 cur_trace = NULL;
3067 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
3068 state at each location within the function. These notes will be
3069 emitted during pass_final. */
3071 static unsigned int
3072 execute_dwarf2_frame (void)
3074 /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */
3075 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
3077 /* The first time we're called, compute the incoming frame state. */
3078 if (cie_cfi_vec == NULL)
3079 create_cie_data ();
3081 dwarf2out_alloc_current_fde ();
3083 create_pseudo_cfg ();
3085 /* Do the work. */
3086 create_cfi_notes ();
3087 connect_traces ();
3088 add_cfis_to_fde ();
3090 /* Free all the data we allocated. */
3092 size_t i;
3093 dw_trace_info *ti;
3095 FOR_EACH_VEC_ELT (trace_info, i, ti)
3096 ti->regs_saved_in_regs.release ();
3098 trace_info.release ();
3100 delete trace_index;
3101 trace_index = NULL;
3103 return 0;
3106 /* Convert a DWARF call frame info. operation to its string name */
3108 static const char *
3109 dwarf_cfi_name (unsigned int cfi_opc)
3111 const char *name = get_DW_CFA_name (cfi_opc);
3113 if (name != NULL)
3114 return name;
3116 return "DW_CFA_<unknown>";
3119 /* This routine will generate the correct assembly data for a location
3120 description based on a cfi entry with a complex address. */
3122 static void
3123 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3125 dw_loc_descr_ref loc;
3126 unsigned long size;
3128 if (cfi->dw_cfi_opc == DW_CFA_expression
3129 || cfi->dw_cfi_opc == DW_CFA_val_expression)
3131 unsigned r =
3132 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3133 dw2_asm_output_data (1, r, NULL);
3134 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3136 else
3137 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3139 /* Output the size of the block. */
3140 size = size_of_locs (loc);
3141 dw2_asm_output_data_uleb128 (size, NULL);
3143 /* Now output the operations themselves. */
3144 output_loc_sequence (loc, for_eh);
3147 /* Similar, but used for .cfi_escape. */
3149 static void
3150 output_cfa_loc_raw (dw_cfi_ref cfi)
3152 dw_loc_descr_ref loc;
3153 unsigned long size;
3155 if (cfi->dw_cfi_opc == DW_CFA_expression
3156 || cfi->dw_cfi_opc == DW_CFA_val_expression)
3158 unsigned r =
3159 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3160 fprintf (asm_out_file, "%#x,", r);
3161 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3163 else
3164 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3166 /* Output the size of the block. */
3167 size = size_of_locs (loc);
3168 dw2_asm_output_data_uleb128_raw (size);
3169 fputc (',', asm_out_file);
3171 /* Now output the operations themselves. */
3172 output_loc_sequence_raw (loc);
3175 /* Output a Call Frame Information opcode and its operand(s). */
3177 void
3178 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3180 unsigned long r;
3181 HOST_WIDE_INT off;
3183 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3184 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3185 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3186 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3187 ((unsigned HOST_WIDE_INT)
3188 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3189 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3191 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3192 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3193 "DW_CFA_offset, column %#lx", r);
3194 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3195 dw2_asm_output_data_uleb128 (off, NULL);
3197 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3199 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3200 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3201 "DW_CFA_restore, column %#lx", r);
3203 else
3205 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3206 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3208 switch (cfi->dw_cfi_opc)
3210 case DW_CFA_set_loc:
3211 if (for_eh)
3212 dw2_asm_output_encoded_addr_rtx (
3213 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3214 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3215 false, NULL);
3216 else
3217 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3218 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3219 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3220 break;
3222 case DW_CFA_advance_loc1:
3223 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3224 fde->dw_fde_current_label, NULL);
3225 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3226 break;
3228 case DW_CFA_advance_loc2:
3229 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3230 fde->dw_fde_current_label, NULL);
3231 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3232 break;
3234 case DW_CFA_advance_loc4:
3235 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3236 fde->dw_fde_current_label, NULL);
3237 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3238 break;
3240 case DW_CFA_MIPS_advance_loc8:
3241 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3242 fde->dw_fde_current_label, NULL);
3243 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3244 break;
3246 case DW_CFA_offset_extended:
3247 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3248 dw2_asm_output_data_uleb128 (r, NULL);
3249 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3250 dw2_asm_output_data_uleb128 (off, NULL);
3251 break;
3253 case DW_CFA_def_cfa:
3254 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3255 dw2_asm_output_data_uleb128 (r, NULL);
3256 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3257 break;
3259 case DW_CFA_offset_extended_sf:
3260 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3261 dw2_asm_output_data_uleb128 (r, NULL);
3262 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3263 dw2_asm_output_data_sleb128 (off, NULL);
3264 break;
3266 case DW_CFA_def_cfa_sf:
3267 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3268 dw2_asm_output_data_uleb128 (r, NULL);
3269 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3270 dw2_asm_output_data_sleb128 (off, NULL);
3271 break;
3273 case DW_CFA_restore_extended:
3274 case DW_CFA_undefined:
3275 case DW_CFA_same_value:
3276 case DW_CFA_def_cfa_register:
3277 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3278 dw2_asm_output_data_uleb128 (r, NULL);
3279 break;
3281 case DW_CFA_register:
3282 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3283 dw2_asm_output_data_uleb128 (r, NULL);
3284 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3285 dw2_asm_output_data_uleb128 (r, NULL);
3286 break;
3288 case DW_CFA_def_cfa_offset:
3289 case DW_CFA_GNU_args_size:
3290 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3291 break;
3293 case DW_CFA_def_cfa_offset_sf:
3294 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3295 dw2_asm_output_data_sleb128 (off, NULL);
3296 break;
3298 case DW_CFA_GNU_window_save:
3299 break;
3301 case DW_CFA_def_cfa_expression:
3302 case DW_CFA_expression:
3303 case DW_CFA_val_expression:
3304 output_cfa_loc (cfi, for_eh);
3305 break;
3307 case DW_CFA_GNU_negative_offset_extended:
3308 /* Obsoleted by DW_CFA_offset_extended_sf. */
3309 gcc_unreachable ();
3311 default:
3312 break;
3317 /* Similar, but do it via assembler directives instead. */
3319 void
3320 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3322 unsigned long r, r2;
3324 switch (cfi->dw_cfi_opc)
3326 case DW_CFA_advance_loc:
3327 case DW_CFA_advance_loc1:
3328 case DW_CFA_advance_loc2:
3329 case DW_CFA_advance_loc4:
3330 case DW_CFA_MIPS_advance_loc8:
3331 case DW_CFA_set_loc:
3332 /* Should only be created in a code path not followed when emitting
3333 via directives. The assembler is going to take care of this for
3334 us. But this routines is also used for debugging dumps, so
3335 print something. */
3336 gcc_assert (f != asm_out_file);
3337 fprintf (f, "\t.cfi_advance_loc\n");
3338 break;
3340 case DW_CFA_offset:
3341 case DW_CFA_offset_extended:
3342 case DW_CFA_offset_extended_sf:
3343 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3344 fprintf (f, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
3345 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3346 break;
3348 case DW_CFA_restore:
3349 case DW_CFA_restore_extended:
3350 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3351 fprintf (f, "\t.cfi_restore %lu\n", r);
3352 break;
3354 case DW_CFA_undefined:
3355 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3356 fprintf (f, "\t.cfi_undefined %lu\n", r);
3357 break;
3359 case DW_CFA_same_value:
3360 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3361 fprintf (f, "\t.cfi_same_value %lu\n", r);
3362 break;
3364 case DW_CFA_def_cfa:
3365 case DW_CFA_def_cfa_sf:
3366 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3367 fprintf (f, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
3368 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3369 break;
3371 case DW_CFA_def_cfa_register:
3372 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3373 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3374 break;
3376 case DW_CFA_register:
3377 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3378 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3379 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3380 break;
3382 case DW_CFA_def_cfa_offset:
3383 case DW_CFA_def_cfa_offset_sf:
3384 fprintf (f, "\t.cfi_def_cfa_offset "
3385 HOST_WIDE_INT_PRINT_DEC"\n",
3386 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3387 break;
3389 case DW_CFA_remember_state:
3390 fprintf (f, "\t.cfi_remember_state\n");
3391 break;
3392 case DW_CFA_restore_state:
3393 fprintf (f, "\t.cfi_restore_state\n");
3394 break;
3396 case DW_CFA_GNU_args_size:
3397 if (f == asm_out_file)
3399 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3400 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3401 if (flag_debug_asm)
3402 fprintf (f, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC,
3403 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3404 fputc ('\n', f);
3406 else
3408 fprintf (f, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC "\n",
3409 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3411 break;
3413 case DW_CFA_GNU_window_save:
3414 fprintf (f, "\t.cfi_window_save\n");
3415 break;
3417 case DW_CFA_def_cfa_expression:
3418 case DW_CFA_expression:
3419 case DW_CFA_val_expression:
3420 if (f != asm_out_file)
3422 fprintf (f, "\t.cfi_%scfa_%sexpression ...\n",
3423 cfi->dw_cfi_opc == DW_CFA_def_cfa_expression ? "def_" : "",
3424 cfi->dw_cfi_opc == DW_CFA_val_expression ? "val_" : "");
3425 break;
3427 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3428 output_cfa_loc_raw (cfi);
3429 fputc ('\n', f);
3430 break;
3432 default:
3433 gcc_unreachable ();
3437 void
3438 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3440 if (dwarf2out_do_cfi_asm ())
3441 output_cfi_directive (asm_out_file, cfi);
3444 static void
3445 dump_cfi_row (FILE *f, dw_cfi_row *row)
3447 dw_cfi_ref cfi;
3448 unsigned i;
3450 cfi = row->cfa_cfi;
3451 if (!cfi)
3453 dw_cfa_location dummy;
3454 memset (&dummy, 0, sizeof (dummy));
3455 dummy.reg = INVALID_REGNUM;
3456 cfi = def_cfa_0 (&dummy, &row->cfa);
3458 output_cfi_directive (f, cfi);
3460 FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
3461 if (cfi)
3462 output_cfi_directive (f, cfi);
3465 void debug_cfi_row (dw_cfi_row *row);
3467 void
3468 debug_cfi_row (dw_cfi_row *row)
3470 dump_cfi_row (stderr, row);
3474 /* Save the result of dwarf2out_do_frame across PCH.
3475 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3476 static GTY(()) signed char saved_do_cfi_asm = 0;
3478 /* Decide whether to emit EH frame unwind information for the current
3479 translation unit. */
3481 bool
3482 dwarf2out_do_eh_frame (void)
3484 return
3485 (flag_unwind_tables || flag_exceptions)
3486 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2;
3489 /* Decide whether we want to emit frame unwind information for the current
3490 translation unit. */
3492 bool
3493 dwarf2out_do_frame (void)
3495 /* We want to emit correct CFA location expressions or lists, so we
3496 have to return true if we're going to output debug info, even if
3497 we're not going to output frame or unwind info. */
3498 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3499 return true;
3501 if (saved_do_cfi_asm > 0)
3502 return true;
3504 if (targetm.debug_unwind_info () == UI_DWARF2)
3505 return true;
3507 if (dwarf2out_do_eh_frame ())
3508 return true;
3510 return false;
3513 /* Decide whether to emit frame unwind via assembler directives. */
3515 bool
3516 dwarf2out_do_cfi_asm (void)
3518 int enc;
3520 if (saved_do_cfi_asm != 0)
3521 return saved_do_cfi_asm > 0;
3523 /* Assume failure for a moment. */
3524 saved_do_cfi_asm = -1;
3526 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3527 return false;
3528 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3529 return false;
3531 /* Make sure the personality encoding is one the assembler can support.
3532 In particular, aligned addresses can't be handled. */
3533 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3534 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3535 return false;
3536 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3537 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3538 return false;
3540 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3541 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3542 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE && !dwarf2out_do_eh_frame ())
3543 return false;
3545 /* Success! */
3546 saved_do_cfi_asm = 1;
3547 return true;
3550 namespace {
3552 const pass_data pass_data_dwarf2_frame =
3554 RTL_PASS, /* type */
3555 "dwarf2", /* name */
3556 OPTGROUP_NONE, /* optinfo_flags */
3557 TV_FINAL, /* tv_id */
3558 0, /* properties_required */
3559 0, /* properties_provided */
3560 0, /* properties_destroyed */
3561 0, /* todo_flags_start */
3562 0, /* todo_flags_finish */
3565 class pass_dwarf2_frame : public rtl_opt_pass
3567 public:
3568 pass_dwarf2_frame (gcc::context *ctxt)
3569 : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
3572 /* opt_pass methods: */
3573 virtual bool gate (function *);
3574 virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
3576 }; // class pass_dwarf2_frame
3578 bool
3579 pass_dwarf2_frame::gate (function *)
3581 /* Targets which still implement the prologue in assembler text
3582 cannot use the generic dwarf2 unwinding. */
3583 if (!targetm.have_prologue ())
3584 return false;
3586 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3587 from the optimized shrink-wrapping annotations that we will compute.
3588 For now, only produce the CFI notes for dwarf2. */
3589 return dwarf2out_do_frame ();
3592 } // anon namespace
3594 rtl_opt_pass *
3595 make_pass_dwarf2_frame (gcc::context *ctxt)
3597 return new pass_dwarf2_frame (ctxt);
3600 #include "gt-dwarf2cfi.h"