* m4/mtype.m4 (upcase, hasmathfunc, mathfunc_macro): New macros.
[official-gcc.git] / gcc / dominance.c
blobb0b97c6b6ec740438f3d45f213391c89acae24a4
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Michael Matz (matz@ifh.de).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "diagnostic-core.h"
45 #include "toplev.h"
46 #include "et-forest.h"
47 #include "timevar.h"
48 #include "vecprim.h"
49 #include "pointer-set.h"
50 #include "graphds.h"
51 #include "bitmap.h"
53 /* We name our nodes with integers, beginning with 1. Zero is reserved for
54 'undefined' or 'end of list'. The name of each node is given by the dfs
55 number of the corresponding basic block. Please note, that we include the
56 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
57 support multiple entry points. Its dfs number is of course 1. */
59 /* Type of Basic Block aka. TBB */
60 typedef unsigned int TBB;
62 /* We work in a poor-mans object oriented fashion, and carry an instance of
63 this structure through all our 'methods'. It holds various arrays
64 reflecting the (sub)structure of the flowgraph. Most of them are of type
65 TBB and are also indexed by TBB. */
67 struct dom_info
69 /* The parent of a node in the DFS tree. */
70 TBB *dfs_parent;
71 /* For a node x key[x] is roughly the node nearest to the root from which
72 exists a way to x only over nodes behind x. Such a node is also called
73 semidominator. */
74 TBB *key;
75 /* The value in path_min[x] is the node y on the path from x to the root of
76 the tree x is in with the smallest key[y]. */
77 TBB *path_min;
78 /* bucket[x] points to the first node of the set of nodes having x as key. */
79 TBB *bucket;
80 /* And next_bucket[x] points to the next node. */
81 TBB *next_bucket;
82 /* After the algorithm is done, dom[x] contains the immediate dominator
83 of x. */
84 TBB *dom;
86 /* The following few fields implement the structures needed for disjoint
87 sets. */
88 /* set_chain[x] is the next node on the path from x to the representative
89 of the set containing x. If set_chain[x]==0 then x is a root. */
90 TBB *set_chain;
91 /* set_size[x] is the number of elements in the set named by x. */
92 unsigned int *set_size;
93 /* set_child[x] is used for balancing the tree representing a set. It can
94 be understood as the next sibling of x. */
95 TBB *set_child;
97 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
98 number of that node in DFS order counted from 1. This is an index
99 into most of the other arrays in this structure. */
100 TBB *dfs_order;
101 /* If x is the DFS-index of a node which corresponds with a basic block,
102 dfs_to_bb[x] is that basic block. Note, that in our structure there are
103 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
104 is true for every basic block bb, but not the opposite. */
105 basic_block *dfs_to_bb;
107 /* This is the next free DFS number when creating the DFS tree. */
108 unsigned int dfsnum;
109 /* The number of nodes in the DFS tree (==dfsnum-1). */
110 unsigned int nodes;
112 /* Blocks with bits set here have a fake edge to EXIT. These are used
113 to turn a DFS forest into a proper tree. */
114 bitmap fake_exit_edge;
117 static void init_dom_info (struct dom_info *, enum cdi_direction);
118 static void free_dom_info (struct dom_info *);
119 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
120 static void calc_dfs_tree (struct dom_info *, bool);
121 static void compress (struct dom_info *, TBB);
122 static TBB eval (struct dom_info *, TBB);
123 static void link_roots (struct dom_info *, TBB, TBB);
124 static void calc_idoms (struct dom_info *, bool);
125 void debug_dominance_info (enum cdi_direction);
126 void debug_dominance_tree (enum cdi_direction, basic_block);
128 /* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130 #define init_ar(var, type, num, content) \
131 do \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
135 (var) = XCNEWVEC (type, num); \
136 else \
138 (var) = XNEWVEC (type, (num)); \
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
143 while (0)
145 /* Allocate all needed memory in a pessimistic fashion (so we round up).
146 This initializes the contents of DI, which already must be allocated. */
148 static void
149 init_dom_info (struct dom_info *di, enum cdi_direction dir)
151 /* We need memory for n_basic_blocks nodes. */
152 unsigned int num = n_basic_blocks;
153 init_ar (di->dfs_parent, TBB, num, 0);
154 init_ar (di->path_min, TBB, num, i);
155 init_ar (di->key, TBB, num, i);
156 init_ar (di->dom, TBB, num, 0);
158 init_ar (di->bucket, TBB, num, 0);
159 init_ar (di->next_bucket, TBB, num, 0);
161 init_ar (di->set_chain, TBB, num, 0);
162 init_ar (di->set_size, unsigned int, num, 1);
163 init_ar (di->set_child, TBB, num, 0);
165 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
166 init_ar (di->dfs_to_bb, basic_block, num, 0);
168 di->dfsnum = 1;
169 di->nodes = 0;
171 switch (dir)
173 case CDI_DOMINATORS:
174 di->fake_exit_edge = NULL;
175 break;
176 case CDI_POST_DOMINATORS:
177 di->fake_exit_edge = BITMAP_ALLOC (NULL);
178 break;
179 default:
180 gcc_unreachable ();
181 break;
185 #undef init_ar
187 /* Map dominance calculation type to array index used for various
188 dominance information arrays. This version is simple -- it will need
189 to be modified, obviously, if additional values are added to
190 cdi_direction. */
192 static unsigned int
193 dom_convert_dir_to_idx (enum cdi_direction dir)
195 gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
196 return dir - 1;
199 /* Free all allocated memory in DI, but not DI itself. */
201 static void
202 free_dom_info (struct dom_info *di)
204 free (di->dfs_parent);
205 free (di->path_min);
206 free (di->key);
207 free (di->dom);
208 free (di->bucket);
209 free (di->next_bucket);
210 free (di->set_chain);
211 free (di->set_size);
212 free (di->set_child);
213 free (di->dfs_order);
214 free (di->dfs_to_bb);
215 BITMAP_FREE (di->fake_exit_edge);
218 /* The nonrecursive variant of creating a DFS tree. DI is our working
219 structure, BB the starting basic block for this tree and REVERSE
220 is true, if predecessors should be visited instead of successors of a
221 node. After this is done all nodes reachable from BB were visited, have
222 assigned their dfs number and are linked together to form a tree. */
224 static void
225 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
227 /* We call this _only_ if bb is not already visited. */
228 edge e;
229 TBB child_i, my_i = 0;
230 edge_iterator *stack;
231 edge_iterator ei, einext;
232 int sp;
233 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
234 problem). */
235 basic_block en_block;
236 /* Ending block. */
237 basic_block ex_block;
239 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
240 sp = 0;
242 /* Initialize our border blocks, and the first edge. */
243 if (reverse)
245 ei = ei_start (bb->preds);
246 en_block = EXIT_BLOCK_PTR;
247 ex_block = ENTRY_BLOCK_PTR;
249 else
251 ei = ei_start (bb->succs);
252 en_block = ENTRY_BLOCK_PTR;
253 ex_block = EXIT_BLOCK_PTR;
256 /* When the stack is empty we break out of this loop. */
257 while (1)
259 basic_block bn;
261 /* This loop traverses edges e in depth first manner, and fills the
262 stack. */
263 while (!ei_end_p (ei))
265 e = ei_edge (ei);
267 /* Deduce from E the current and the next block (BB and BN), and the
268 next edge. */
269 if (reverse)
271 bn = e->src;
273 /* If the next node BN is either already visited or a border
274 block the current edge is useless, and simply overwritten
275 with the next edge out of the current node. */
276 if (bn == ex_block || di->dfs_order[bn->index])
278 ei_next (&ei);
279 continue;
281 bb = e->dest;
282 einext = ei_start (bn->preds);
284 else
286 bn = e->dest;
287 if (bn == ex_block || di->dfs_order[bn->index])
289 ei_next (&ei);
290 continue;
292 bb = e->src;
293 einext = ei_start (bn->succs);
296 gcc_assert (bn != en_block);
298 /* Fill the DFS tree info calculatable _before_ recursing. */
299 if (bb != en_block)
300 my_i = di->dfs_order[bb->index];
301 else
302 my_i = di->dfs_order[last_basic_block];
303 child_i = di->dfs_order[bn->index] = di->dfsnum++;
304 di->dfs_to_bb[child_i] = bn;
305 di->dfs_parent[child_i] = my_i;
307 /* Save the current point in the CFG on the stack, and recurse. */
308 stack[sp++] = ei;
309 ei = einext;
312 if (!sp)
313 break;
314 ei = stack[--sp];
316 /* OK. The edge-list was exhausted, meaning normally we would
317 end the recursion. After returning from the recursive call,
318 there were (may be) other statements which were run after a
319 child node was completely considered by DFS. Here is the
320 point to do it in the non-recursive variant.
321 E.g. The block just completed is in e->dest for forward DFS,
322 the block not yet completed (the parent of the one above)
323 in e->src. This could be used e.g. for computing the number of
324 descendants or the tree depth. */
325 ei_next (&ei);
327 free (stack);
330 /* The main entry for calculating the DFS tree or forest. DI is our working
331 structure and REVERSE is true, if we are interested in the reverse flow
332 graph. In that case the result is not necessarily a tree but a forest,
333 because there may be nodes from which the EXIT_BLOCK is unreachable. */
335 static void
336 calc_dfs_tree (struct dom_info *di, bool reverse)
338 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
339 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
340 di->dfs_order[last_basic_block] = di->dfsnum;
341 di->dfs_to_bb[di->dfsnum] = begin;
342 di->dfsnum++;
344 calc_dfs_tree_nonrec (di, begin, reverse);
346 if (reverse)
348 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
349 They are reverse-unreachable. In the dom-case we disallow such
350 nodes, but in post-dom we have to deal with them.
352 There are two situations in which this occurs. First, noreturn
353 functions. Second, infinite loops. In the first case we need to
354 pretend that there is an edge to the exit block. In the second
355 case, we wind up with a forest. We need to process all noreturn
356 blocks before we know if we've got any infinite loops. */
358 basic_block b;
359 bool saw_unconnected = false;
361 FOR_EACH_BB_REVERSE (b)
363 if (EDGE_COUNT (b->succs) > 0)
365 if (di->dfs_order[b->index] == 0)
366 saw_unconnected = true;
367 continue;
369 bitmap_set_bit (di->fake_exit_edge, b->index);
370 di->dfs_order[b->index] = di->dfsnum;
371 di->dfs_to_bb[di->dfsnum] = b;
372 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
373 di->dfsnum++;
374 calc_dfs_tree_nonrec (di, b, reverse);
377 if (saw_unconnected)
379 FOR_EACH_BB_REVERSE (b)
381 if (di->dfs_order[b->index])
382 continue;
383 bitmap_set_bit (di->fake_exit_edge, b->index);
384 di->dfs_order[b->index] = di->dfsnum;
385 di->dfs_to_bb[di->dfsnum] = b;
386 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
387 di->dfsnum++;
388 calc_dfs_tree_nonrec (di, b, reverse);
393 di->nodes = di->dfsnum - 1;
395 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
396 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
399 /* Compress the path from V to the root of its set and update path_min at the
400 same time. After compress(di, V) set_chain[V] is the root of the set V is
401 in and path_min[V] is the node with the smallest key[] value on the path
402 from V to that root. */
404 static void
405 compress (struct dom_info *di, TBB v)
407 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
408 greater than 5 even for huge graphs (I've not seen call depth > 4).
409 Also performance wise compress() ranges _far_ behind eval(). */
410 TBB parent = di->set_chain[v];
411 if (di->set_chain[parent])
413 compress (di, parent);
414 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
415 di->path_min[v] = di->path_min[parent];
416 di->set_chain[v] = di->set_chain[parent];
420 /* Compress the path from V to the set root of V if needed (when the root has
421 changed since the last call). Returns the node with the smallest key[]
422 value on the path from V to the root. */
424 static inline TBB
425 eval (struct dom_info *di, TBB v)
427 /* The representative of the set V is in, also called root (as the set
428 representation is a tree). */
429 TBB rep = di->set_chain[v];
431 /* V itself is the root. */
432 if (!rep)
433 return di->path_min[v];
435 /* Compress only if necessary. */
436 if (di->set_chain[rep])
438 compress (di, v);
439 rep = di->set_chain[v];
442 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
443 return di->path_min[v];
444 else
445 return di->path_min[rep];
448 /* This essentially merges the two sets of V and W, giving a single set with
449 the new root V. The internal representation of these disjoint sets is a
450 balanced tree. Currently link(V,W) is only used with V being the parent
451 of W. */
453 static void
454 link_roots (struct dom_info *di, TBB v, TBB w)
456 TBB s = w;
458 /* Rebalance the tree. */
459 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
461 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
462 >= 2 * di->set_size[di->set_child[s]])
464 di->set_chain[di->set_child[s]] = s;
465 di->set_child[s] = di->set_child[di->set_child[s]];
467 else
469 di->set_size[di->set_child[s]] = di->set_size[s];
470 s = di->set_chain[s] = di->set_child[s];
474 di->path_min[s] = di->path_min[w];
475 di->set_size[v] += di->set_size[w];
476 if (di->set_size[v] < 2 * di->set_size[w])
478 TBB tmp = s;
479 s = di->set_child[v];
480 di->set_child[v] = tmp;
483 /* Merge all subtrees. */
484 while (s)
486 di->set_chain[s] = v;
487 s = di->set_child[s];
491 /* This calculates the immediate dominators (or post-dominators if REVERSE is
492 true). DI is our working structure and should hold the DFS forest.
493 On return the immediate dominator to node V is in di->dom[V]. */
495 static void
496 calc_idoms (struct dom_info *di, bool reverse)
498 TBB v, w, k, par;
499 basic_block en_block;
500 edge_iterator ei, einext;
502 if (reverse)
503 en_block = EXIT_BLOCK_PTR;
504 else
505 en_block = ENTRY_BLOCK_PTR;
507 /* Go backwards in DFS order, to first look at the leafs. */
508 v = di->nodes;
509 while (v > 1)
511 basic_block bb = di->dfs_to_bb[v];
512 edge e;
514 par = di->dfs_parent[v];
515 k = v;
517 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
519 if (reverse)
521 /* If this block has a fake edge to exit, process that first. */
522 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
524 einext = ei;
525 einext.index = 0;
526 goto do_fake_exit_edge;
530 /* Search all direct predecessors for the smallest node with a path
531 to them. That way we have the smallest node with also a path to
532 us only over nodes behind us. In effect we search for our
533 semidominator. */
534 while (!ei_end_p (ei))
536 TBB k1;
537 basic_block b;
539 e = ei_edge (ei);
540 b = (reverse) ? e->dest : e->src;
541 einext = ei;
542 ei_next (&einext);
544 if (b == en_block)
546 do_fake_exit_edge:
547 k1 = di->dfs_order[last_basic_block];
549 else
550 k1 = di->dfs_order[b->index];
552 /* Call eval() only if really needed. If k1 is above V in DFS tree,
553 then we know, that eval(k1) == k1 and key[k1] == k1. */
554 if (k1 > v)
555 k1 = di->key[eval (di, k1)];
556 if (k1 < k)
557 k = k1;
559 ei = einext;
562 di->key[v] = k;
563 link_roots (di, par, v);
564 di->next_bucket[v] = di->bucket[k];
565 di->bucket[k] = v;
567 /* Transform semidominators into dominators. */
568 for (w = di->bucket[par]; w; w = di->next_bucket[w])
570 k = eval (di, w);
571 if (di->key[k] < di->key[w])
572 di->dom[w] = k;
573 else
574 di->dom[w] = par;
576 /* We don't need to cleanup next_bucket[]. */
577 di->bucket[par] = 0;
578 v--;
581 /* Explicitly define the dominators. */
582 di->dom[1] = 0;
583 for (v = 2; v <= di->nodes; v++)
584 if (di->dom[v] != di->key[v])
585 di->dom[v] = di->dom[di->dom[v]];
588 /* Assign dfs numbers starting from NUM to NODE and its sons. */
590 static void
591 assign_dfs_numbers (struct et_node *node, int *num)
593 struct et_node *son;
595 node->dfs_num_in = (*num)++;
597 if (node->son)
599 assign_dfs_numbers (node->son, num);
600 for (son = node->son->right; son != node->son; son = son->right)
601 assign_dfs_numbers (son, num);
604 node->dfs_num_out = (*num)++;
607 /* Compute the data necessary for fast resolving of dominator queries in a
608 static dominator tree. */
610 static void
611 compute_dom_fast_query (enum cdi_direction dir)
613 int num = 0;
614 basic_block bb;
615 unsigned int dir_index = dom_convert_dir_to_idx (dir);
617 gcc_assert (dom_info_available_p (dir));
619 if (dom_computed[dir_index] == DOM_OK)
620 return;
622 FOR_ALL_BB (bb)
624 if (!bb->dom[dir_index]->father)
625 assign_dfs_numbers (bb->dom[dir_index], &num);
628 dom_computed[dir_index] = DOM_OK;
631 /* The main entry point into this module. DIR is set depending on whether
632 we want to compute dominators or postdominators. */
634 void
635 calculate_dominance_info (enum cdi_direction dir)
637 struct dom_info di;
638 basic_block b;
639 unsigned int dir_index = dom_convert_dir_to_idx (dir);
640 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
642 if (dom_computed[dir_index] == DOM_OK)
643 return;
645 timevar_push (TV_DOMINANCE);
646 if (!dom_info_available_p (dir))
648 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
650 FOR_ALL_BB (b)
652 b->dom[dir_index] = et_new_tree (b);
654 n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
656 init_dom_info (&di, dir);
657 calc_dfs_tree (&di, reverse);
658 calc_idoms (&di, reverse);
660 FOR_EACH_BB (b)
662 TBB d = di.dom[di.dfs_order[b->index]];
664 if (di.dfs_to_bb[d])
665 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
668 free_dom_info (&di);
669 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
672 compute_dom_fast_query (dir);
674 timevar_pop (TV_DOMINANCE);
677 /* Free dominance information for direction DIR. */
678 void
679 free_dominance_info (enum cdi_direction dir)
681 basic_block bb;
682 unsigned int dir_index = dom_convert_dir_to_idx (dir);
684 if (!dom_info_available_p (dir))
685 return;
687 FOR_ALL_BB (bb)
689 et_free_tree_force (bb->dom[dir_index]);
690 bb->dom[dir_index] = NULL;
692 et_free_pools ();
694 n_bbs_in_dom_tree[dir_index] = 0;
696 dom_computed[dir_index] = DOM_NONE;
699 /* Return the immediate dominator of basic block BB. */
700 basic_block
701 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
703 unsigned int dir_index = dom_convert_dir_to_idx (dir);
704 struct et_node *node = bb->dom[dir_index];
706 gcc_assert (dom_computed[dir_index]);
708 if (!node->father)
709 return NULL;
711 return (basic_block) node->father->data;
714 /* Set the immediate dominator of the block possibly removing
715 existing edge. NULL can be used to remove any edge. */
716 void
717 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
718 basic_block dominated_by)
720 unsigned int dir_index = dom_convert_dir_to_idx (dir);
721 struct et_node *node = bb->dom[dir_index];
723 gcc_assert (dom_computed[dir_index]);
725 if (node->father)
727 if (node->father->data == dominated_by)
728 return;
729 et_split (node);
732 if (dominated_by)
733 et_set_father (node, dominated_by->dom[dir_index]);
735 if (dom_computed[dir_index] == DOM_OK)
736 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
739 /* Returns the list of basic blocks immediately dominated by BB, in the
740 direction DIR. */
741 VEC (basic_block, heap) *
742 get_dominated_by (enum cdi_direction dir, basic_block bb)
744 unsigned int dir_index = dom_convert_dir_to_idx (dir);
745 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
746 VEC (basic_block, heap) *bbs = NULL;
748 gcc_assert (dom_computed[dir_index]);
750 if (!son)
751 return NULL;
753 VEC_safe_push (basic_block, heap, bbs, (basic_block) son->data);
754 for (ason = son->right; ason != son; ason = ason->right)
755 VEC_safe_push (basic_block, heap, bbs, (basic_block) ason->data);
757 return bbs;
760 /* Returns the list of basic blocks that are immediately dominated (in
761 direction DIR) by some block between N_REGION ones stored in REGION,
762 except for blocks in the REGION itself. */
764 VEC (basic_block, heap) *
765 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
766 unsigned n_region)
768 unsigned i;
769 basic_block dom;
770 VEC (basic_block, heap) *doms = NULL;
772 for (i = 0; i < n_region; i++)
773 region[i]->flags |= BB_DUPLICATED;
774 for (i = 0; i < n_region; i++)
775 for (dom = first_dom_son (dir, region[i]);
776 dom;
777 dom = next_dom_son (dir, dom))
778 if (!(dom->flags & BB_DUPLICATED))
779 VEC_safe_push (basic_block, heap, doms, dom);
780 for (i = 0; i < n_region; i++)
781 region[i]->flags &= ~BB_DUPLICATED;
783 return doms;
786 /* Returns the list of basic blocks including BB dominated by BB, in the
787 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
788 produce a vector containing all dominated blocks. The vector will be sorted
789 in preorder. */
791 VEC (basic_block, heap) *
792 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
794 VEC(basic_block, heap) *bbs = NULL;
795 unsigned i;
796 unsigned next_level_start;
798 i = 0;
799 VEC_safe_push (basic_block, heap, bbs, bb);
800 next_level_start = 1; /* = VEC_length (basic_block, bbs); */
804 basic_block son;
806 bb = VEC_index (basic_block, bbs, i++);
807 for (son = first_dom_son (dir, bb);
808 son;
809 son = next_dom_son (dir, son))
810 VEC_safe_push (basic_block, heap, bbs, son);
812 if (i == next_level_start && --depth)
813 next_level_start = VEC_length (basic_block, bbs);
815 while (i < next_level_start);
817 return bbs;
820 /* Returns the list of basic blocks including BB dominated by BB, in the
821 direction DIR. The vector will be sorted in preorder. */
823 VEC (basic_block, heap) *
824 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
826 return get_dominated_to_depth (dir, bb, 0);
829 /* Redirect all edges pointing to BB to TO. */
830 void
831 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
832 basic_block to)
834 unsigned int dir_index = dom_convert_dir_to_idx (dir);
835 struct et_node *bb_node, *to_node, *son;
837 bb_node = bb->dom[dir_index];
838 to_node = to->dom[dir_index];
840 gcc_assert (dom_computed[dir_index]);
842 if (!bb_node->son)
843 return;
845 while (bb_node->son)
847 son = bb_node->son;
849 et_split (son);
850 et_set_father (son, to_node);
853 if (dom_computed[dir_index] == DOM_OK)
854 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
857 /* Find first basic block in the tree dominating both BB1 and BB2. */
858 basic_block
859 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
861 unsigned int dir_index = dom_convert_dir_to_idx (dir);
863 gcc_assert (dom_computed[dir_index]);
865 if (!bb1)
866 return bb2;
867 if (!bb2)
868 return bb1;
870 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
874 /* Find the nearest common dominator for the basic blocks in BLOCKS,
875 using dominance direction DIR. */
877 basic_block
878 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
880 unsigned i, first;
881 bitmap_iterator bi;
882 basic_block dom;
884 first = bitmap_first_set_bit (blocks);
885 dom = BASIC_BLOCK (first);
886 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
887 if (dom != BASIC_BLOCK (i))
888 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
890 return dom;
893 /* Given a dominator tree, we can determine whether one thing
894 dominates another in constant time by using two DFS numbers:
896 1. The number for when we visit a node on the way down the tree
897 2. The number for when we visit a node on the way back up the tree
899 You can view these as bounds for the range of dfs numbers the
900 nodes in the subtree of the dominator tree rooted at that node
901 will contain.
903 The dominator tree is always a simple acyclic tree, so there are
904 only three possible relations two nodes in the dominator tree have
905 to each other:
907 1. Node A is above Node B (and thus, Node A dominates node B)
916 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
917 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
918 because we must hit A in the dominator tree *before* B on the walk
919 down, and we will hit A *after* B on the walk back up
921 2. Node A is below node B (and thus, node B dominates node A)
930 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
931 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
933 This is because we must hit A in the dominator tree *after* B on
934 the walk down, and we will hit A *before* B on the walk back up
936 3. Node A and B are siblings (and thus, neither dominates the other)
944 In the above case, DFS_Number_In of A will *always* be <=
945 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
946 DFS_Number_Out of B. This is because we will always finish the dfs
947 walk of one of the subtrees before the other, and thus, the dfs
948 numbers for one subtree can't intersect with the range of dfs
949 numbers for the other subtree. If you swap A and B's position in
950 the dominator tree, the comparison changes direction, but the point
951 is that both comparisons will always go the same way if there is no
952 dominance relationship.
954 Thus, it is sufficient to write
956 A_Dominates_B (node A, node B)
958 return DFS_Number_In(A) <= DFS_Number_In(B)
959 && DFS_Number_Out (A) >= DFS_Number_Out(B);
962 A_Dominated_by_B (node A, node B)
964 return DFS_Number_In(A) >= DFS_Number_In(A)
965 && DFS_Number_Out (A) <= DFS_Number_Out(B);
966 } */
968 /* Return TRUE in case BB1 is dominated by BB2. */
969 bool
970 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
972 unsigned int dir_index = dom_convert_dir_to_idx (dir);
973 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
975 gcc_assert (dom_computed[dir_index]);
977 if (dom_computed[dir_index] == DOM_OK)
978 return (n1->dfs_num_in >= n2->dfs_num_in
979 && n1->dfs_num_out <= n2->dfs_num_out);
981 return et_below (n1, n2);
984 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
986 unsigned
987 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
989 unsigned int dir_index = dom_convert_dir_to_idx (dir);
990 struct et_node *n = bb->dom[dir_index];
992 gcc_assert (dom_computed[dir_index] == DOM_OK);
993 return n->dfs_num_in;
996 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
998 unsigned
999 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1001 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1002 struct et_node *n = bb->dom[dir_index];
1004 gcc_assert (dom_computed[dir_index] == DOM_OK);
1005 return n->dfs_num_out;
1008 /* Verify invariants of dominator structure. */
1009 DEBUG_FUNCTION void
1010 verify_dominators (enum cdi_direction dir)
1012 int err = 0;
1013 basic_block bb, imm_bb, imm_bb_correct;
1014 struct dom_info di;
1015 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
1017 gcc_assert (dom_info_available_p (dir));
1019 init_dom_info (&di, dir);
1020 calc_dfs_tree (&di, reverse);
1021 calc_idoms (&di, reverse);
1023 FOR_EACH_BB (bb)
1025 imm_bb = get_immediate_dominator (dir, bb);
1026 if (!imm_bb)
1028 error ("dominator of %d status unknown", bb->index);
1029 err = 1;
1032 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1033 if (imm_bb != imm_bb_correct)
1035 error ("dominator of %d should be %d, not %d",
1036 bb->index, imm_bb_correct->index, imm_bb->index);
1037 err = 1;
1041 free_dom_info (&di);
1042 gcc_assert (!err);
1045 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1046 assuming that dominators of other blocks are correct. We also use it to
1047 recompute the dominators in a restricted area, by iterating it until it
1048 reaches a fixed point. */
1050 basic_block
1051 recompute_dominator (enum cdi_direction dir, basic_block bb)
1053 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1054 basic_block dom_bb = NULL;
1055 edge e;
1056 edge_iterator ei;
1058 gcc_assert (dom_computed[dir_index]);
1060 if (dir == CDI_DOMINATORS)
1062 FOR_EACH_EDGE (e, ei, bb->preds)
1064 if (!dominated_by_p (dir, e->src, bb))
1065 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1068 else
1070 FOR_EACH_EDGE (e, ei, bb->succs)
1072 if (!dominated_by_p (dir, e->dest, bb))
1073 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1077 return dom_bb;
1080 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1081 of BBS. We assume that all the immediate dominators except for those of the
1082 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1083 currently recorded immediate dominators of blocks in BBS really dominate the
1084 blocks. The basic blocks for that we determine the dominator are removed
1085 from BBS. */
1087 static void
1088 prune_bbs_to_update_dominators (VEC (basic_block, heap) *bbs,
1089 bool conservative)
1091 unsigned i;
1092 bool single;
1093 basic_block bb, dom = NULL;
1094 edge_iterator ei;
1095 edge e;
1097 for (i = 0; VEC_iterate (basic_block, bbs, i, bb);)
1099 if (bb == ENTRY_BLOCK_PTR)
1100 goto succeed;
1102 if (single_pred_p (bb))
1104 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1105 goto succeed;
1108 if (!conservative)
1109 goto fail;
1111 single = true;
1112 dom = NULL;
1113 FOR_EACH_EDGE (e, ei, bb->preds)
1115 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1116 continue;
1118 if (!dom)
1119 dom = e->src;
1120 else
1122 single = false;
1123 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1127 gcc_assert (dom != NULL);
1128 if (single
1129 || find_edge (dom, bb))
1131 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1132 goto succeed;
1135 fail:
1136 i++;
1137 continue;
1139 succeed:
1140 VEC_unordered_remove (basic_block, bbs, i);
1144 /* Returns root of the dominance tree in the direction DIR that contains
1145 BB. */
1147 static basic_block
1148 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1150 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1153 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1154 for the sons of Y, found using the SON and BROTHER arrays representing
1155 the dominance tree of graph G. BBS maps the vertices of G to the basic
1156 blocks. */
1158 static void
1159 determine_dominators_for_sons (struct graph *g, VEC (basic_block, heap) *bbs,
1160 int y, int *son, int *brother)
1162 bitmap gprime;
1163 int i, a, nc;
1164 VEC (int, heap) **sccs;
1165 basic_block bb, dom, ybb;
1166 unsigned si;
1167 edge e;
1168 edge_iterator ei;
1170 if (son[y] == -1)
1171 return;
1172 if (y == (int) VEC_length (basic_block, bbs))
1173 ybb = ENTRY_BLOCK_PTR;
1174 else
1175 ybb = VEC_index (basic_block, bbs, y);
1177 if (brother[son[y]] == -1)
1179 /* Handle the common case Y has just one son specially. */
1180 bb = VEC_index (basic_block, bbs, son[y]);
1181 set_immediate_dominator (CDI_DOMINATORS, bb,
1182 recompute_dominator (CDI_DOMINATORS, bb));
1183 identify_vertices (g, y, son[y]);
1184 return;
1187 gprime = BITMAP_ALLOC (NULL);
1188 for (a = son[y]; a != -1; a = brother[a])
1189 bitmap_set_bit (gprime, a);
1191 nc = graphds_scc (g, gprime);
1192 BITMAP_FREE (gprime);
1194 sccs = XCNEWVEC (VEC (int, heap) *, nc);
1195 for (a = son[y]; a != -1; a = brother[a])
1196 VEC_safe_push (int, heap, sccs[g->vertices[a].component], a);
1198 for (i = nc - 1; i >= 0; i--)
1200 dom = NULL;
1201 FOR_EACH_VEC_ELT (int, sccs[i], si, a)
1203 bb = VEC_index (basic_block, bbs, a);
1204 FOR_EACH_EDGE (e, ei, bb->preds)
1206 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1207 continue;
1209 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1213 gcc_assert (dom != NULL);
1214 FOR_EACH_VEC_ELT (int, sccs[i], si, a)
1216 bb = VEC_index (basic_block, bbs, a);
1217 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1221 for (i = 0; i < nc; i++)
1222 VEC_free (int, heap, sccs[i]);
1223 free (sccs);
1225 for (a = son[y]; a != -1; a = brother[a])
1226 identify_vertices (g, y, a);
1229 /* Recompute dominance information for basic blocks in the set BBS. The
1230 function assumes that the immediate dominators of all the other blocks
1231 in CFG are correct, and that there are no unreachable blocks.
1233 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1234 a block of BBS in the current dominance tree dominate it. */
1236 void
1237 iterate_fix_dominators (enum cdi_direction dir, VEC (basic_block, heap) *bbs,
1238 bool conservative)
1240 unsigned i;
1241 basic_block bb, dom;
1242 struct graph *g;
1243 int n, y;
1244 size_t dom_i;
1245 edge e;
1246 edge_iterator ei;
1247 struct pointer_map_t *map;
1248 int *parent, *son, *brother;
1249 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1251 /* We only support updating dominators. There are some problems with
1252 updating postdominators (need to add fake edges from infinite loops
1253 and noreturn functions), and since we do not currently use
1254 iterate_fix_dominators for postdominators, any attempt to handle these
1255 problems would be unused, untested, and almost surely buggy. We keep
1256 the DIR argument for consistency with the rest of the dominator analysis
1257 interface. */
1258 gcc_assert (dir == CDI_DOMINATORS);
1259 gcc_assert (dom_computed[dir_index]);
1261 /* The algorithm we use takes inspiration from the following papers, although
1262 the details are quite different from any of them:
1264 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1265 Dominator Tree of a Reducible Flowgraph
1266 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1267 dominator trees
1268 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1269 Algorithm
1271 First, we use the following heuristics to decrease the size of the BBS
1272 set:
1273 a) if BB has a single predecessor, then its immediate dominator is this
1274 predecessor
1275 additionally, if CONSERVATIVE is true:
1276 b) if all the predecessors of BB except for one (X) are dominated by BB,
1277 then X is the immediate dominator of BB
1278 c) if the nearest common ancestor of the predecessors of BB is X and
1279 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1281 Then, we need to establish the dominance relation among the basic blocks
1282 in BBS. We split the dominance tree by removing the immediate dominator
1283 edges from BBS, creating a forest F. We form a graph G whose vertices
1284 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1285 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1286 whose root is X. We then determine dominance tree of G. Note that
1287 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1288 In this step, we can use arbitrary algorithm to determine dominators.
1289 We decided to prefer the algorithm [3] to the algorithm of
1290 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1291 10 during gcc bootstrap), and [3] should perform better in this case.
1293 Finally, we need to determine the immediate dominators for the basic
1294 blocks of BBS. If the immediate dominator of X in G is Y, then
1295 the immediate dominator of X in CFG belongs to the tree of F rooted in
1296 Y. We process the dominator tree T of G recursively, starting from leaves.
1297 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1298 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1299 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1300 the following observations:
1301 (i) the immediate dominator of all blocks in a strongly connected
1302 component of G' is the same
1303 (ii) if X has no predecessors in G', then the immediate dominator of X
1304 is the nearest common ancestor of the predecessors of X in the
1305 subtree of F rooted in Y
1306 Therefore, it suffices to find the topological ordering of G', and
1307 process the nodes X_i in this order using the rules (i) and (ii).
1308 Then, we contract all the nodes X_i with Y in G, so that the further
1309 steps work correctly. */
1311 if (!conservative)
1313 /* Split the tree now. If the idoms of blocks in BBS are not
1314 conservatively correct, setting the dominators using the
1315 heuristics in prune_bbs_to_update_dominators could
1316 create cycles in the dominance "tree", and cause ICE. */
1317 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
1318 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1321 prune_bbs_to_update_dominators (bbs, conservative);
1322 n = VEC_length (basic_block, bbs);
1324 if (n == 0)
1325 return;
1327 if (n == 1)
1329 bb = VEC_index (basic_block, bbs, 0);
1330 set_immediate_dominator (CDI_DOMINATORS, bb,
1331 recompute_dominator (CDI_DOMINATORS, bb));
1332 return;
1335 /* Construct the graph G. */
1336 map = pointer_map_create ();
1337 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
1339 /* If the dominance tree is conservatively correct, split it now. */
1340 if (conservative)
1341 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1342 *pointer_map_insert (map, bb) = (void *) (size_t) i;
1344 *pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n;
1346 g = new_graph (n + 1);
1347 for (y = 0; y < g->n_vertices; y++)
1348 g->vertices[y].data = BITMAP_ALLOC (NULL);
1349 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
1351 FOR_EACH_EDGE (e, ei, bb->preds)
1353 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1354 if (dom == bb)
1355 continue;
1357 dom_i = (size_t) *pointer_map_contains (map, dom);
1359 /* Do not include parallel edges to G. */
1360 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1361 continue;
1363 add_edge (g, dom_i, i);
1366 for (y = 0; y < g->n_vertices; y++)
1367 BITMAP_FREE (g->vertices[y].data);
1368 pointer_map_destroy (map);
1370 /* Find the dominator tree of G. */
1371 son = XNEWVEC (int, n + 1);
1372 brother = XNEWVEC (int, n + 1);
1373 parent = XNEWVEC (int, n + 1);
1374 graphds_domtree (g, n, parent, son, brother);
1376 /* Finally, traverse the tree and find the immediate dominators. */
1377 for (y = n; son[y] != -1; y = son[y])
1378 continue;
1379 while (y != -1)
1381 determine_dominators_for_sons (g, bbs, y, son, brother);
1383 if (brother[y] != -1)
1385 y = brother[y];
1386 while (son[y] != -1)
1387 y = son[y];
1389 else
1390 y = parent[y];
1393 free (son);
1394 free (brother);
1395 free (parent);
1397 free_graph (g);
1400 void
1401 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1403 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1405 gcc_assert (dom_computed[dir_index]);
1406 gcc_assert (!bb->dom[dir_index]);
1408 n_bbs_in_dom_tree[dir_index]++;
1410 bb->dom[dir_index] = et_new_tree (bb);
1412 if (dom_computed[dir_index] == DOM_OK)
1413 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1416 void
1417 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1419 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1421 gcc_assert (dom_computed[dir_index]);
1423 et_free_tree (bb->dom[dir_index]);
1424 bb->dom[dir_index] = NULL;
1425 n_bbs_in_dom_tree[dir_index]--;
1427 if (dom_computed[dir_index] == DOM_OK)
1428 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1431 /* Returns the first son of BB in the dominator or postdominator tree
1432 as determined by DIR. */
1434 basic_block
1435 first_dom_son (enum cdi_direction dir, basic_block bb)
1437 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1438 struct et_node *son = bb->dom[dir_index]->son;
1440 return (basic_block) (son ? son->data : NULL);
1443 /* Returns the next dominance son after BB in the dominator or postdominator
1444 tree as determined by DIR, or NULL if it was the last one. */
1446 basic_block
1447 next_dom_son (enum cdi_direction dir, basic_block bb)
1449 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1450 struct et_node *next = bb->dom[dir_index]->right;
1452 return (basic_block) (next->father->son == next ? NULL : next->data);
1455 /* Return dominance availability for dominance info DIR. */
1457 enum dom_state
1458 dom_info_state (enum cdi_direction dir)
1460 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1462 return dom_computed[dir_index];
1465 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1467 void
1468 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1470 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1472 dom_computed[dir_index] = new_state;
1475 /* Returns true if dominance information for direction DIR is available. */
1477 bool
1478 dom_info_available_p (enum cdi_direction dir)
1480 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1482 return dom_computed[dir_index] != DOM_NONE;
1485 DEBUG_FUNCTION void
1486 debug_dominance_info (enum cdi_direction dir)
1488 basic_block bb, bb2;
1489 FOR_EACH_BB (bb)
1490 if ((bb2 = get_immediate_dominator (dir, bb)))
1491 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1494 /* Prints to stderr representation of the dominance tree (for direction DIR)
1495 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1496 the first line of the output is not indented. */
1498 static void
1499 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1500 unsigned indent, bool indent_first)
1502 basic_block son;
1503 unsigned i;
1504 bool first = true;
1506 if (indent_first)
1507 for (i = 0; i < indent; i++)
1508 fprintf (stderr, "\t");
1509 fprintf (stderr, "%d\t", root->index);
1511 for (son = first_dom_son (dir, root);
1512 son;
1513 son = next_dom_son (dir, son))
1515 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1516 first = false;
1519 if (first)
1520 fprintf (stderr, "\n");
1523 /* Prints to stderr representation of the dominance tree (for direction DIR)
1524 rooted in ROOT. */
1526 DEBUG_FUNCTION void
1527 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1529 debug_dominance_tree_1 (dir, root, 0, false);