poly_int: omp_max_vf
[official-gcc.git] / gcc / vec.h
blobf55a41f53dda23052af8ed7b2b63889e251bc778
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
34 /* Templated vector type and associated interfaces.
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
76 Four allocation strategies are supported:
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
81 - GC: allocation is done using ggc_alloc/ggc_free.
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
90 Two physical layouts are supported:
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
106 The type, allocation and layout are specified when the vector is
107 declared.
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
114 Notes on the different layout strategies
116 * Embeddable vectors (vec<T, A, vl_embed>)
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
133 Properties of embeddable vectors:
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
145 * Space efficient vector (vec<T, A, vl_ptr>)
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
157 Properties:
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
167 An example of their use would be,
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
174 struct my_struct *s;
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
191 struct vec_prefix
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
235 template<typename, typename, typename> struct vec;
237 /* Valid vector layouts
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
246 /* Types of supported allocations
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
253 /* Allocator type for heap vectors. */
254 struct va_heap
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
279 unsigned alloc
280 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
281 gcc_checking_assert (alloc);
283 if (GATHER_STATISTICS && v)
284 v->m_vecpfx.release_overhead (v, v->allocated (), false);
286 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
287 unsigned nelem = v ? v->length () : 0;
288 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
289 v->embedded_init (alloc, nelem);
291 if (GATHER_STATISTICS)
292 v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT);
296 /* Free the heap space allocated for vector V. */
298 template<typename T>
299 void
300 va_heap::release (vec<T, va_heap, vl_embed> *&v)
302 if (v == NULL)
303 return;
305 if (GATHER_STATISTICS)
306 v->m_vecpfx.release_overhead (v, v->allocated (), true);
307 ::free (v);
308 v = NULL;
312 /* Allocator type for GC vectors. Notice that we need the structure
313 declaration even if GC is not enabled. */
315 struct va_gc
317 /* Use vl_embed as the default layout for GC vectors. Due to GTY
318 limitations, GC vectors must always be pointers, so it is more
319 efficient to use a pointer to the vl_embed layout, rather than
320 using a pointer to a pointer as would be the case with vl_ptr. */
321 typedef vl_embed default_layout;
323 template<typename T, typename A>
324 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
325 CXX_MEM_STAT_INFO);
327 template<typename T, typename A>
328 static void release (vec<T, A, vl_embed> *&v);
332 /* Free GC memory used by V and reset V to NULL. */
334 template<typename T, typename A>
335 inline void
336 va_gc::release (vec<T, A, vl_embed> *&v)
338 if (v)
339 ::ggc_free (v);
340 v = NULL;
344 /* Allocator for GC memory. Ensure there are at least RESERVE free
345 slots in V. If EXACT is true, grow exactly, else grow
346 exponentially. As a special case, if the vector had not been
347 allocated and RESERVE is 0, no vector will be created. */
349 template<typename T, typename A>
350 void
351 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
352 MEM_STAT_DECL)
354 unsigned alloc
355 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
356 if (!alloc)
358 ::ggc_free (v);
359 v = NULL;
360 return;
363 /* Calculate the amount of space we want. */
364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
366 /* Ask the allocator how much space it will really give us. */
367 size = ::ggc_round_alloc_size (size);
369 /* Adjust the number of slots accordingly. */
370 size_t vec_offset = sizeof (vec_prefix);
371 size_t elt_size = sizeof (T);
372 alloc = (size - vec_offset) / elt_size;
374 /* And finally, recalculate the amount of space we ask for. */
375 size = vec_offset + alloc * elt_size;
377 unsigned nelem = v ? v->length () : 0;
378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
379 PASS_MEM_STAT));
380 v->embedded_init (alloc, nelem);
384 /* Allocator type for GC vectors. This is for vectors of types
385 atomics w.r.t. collection, so allocation and deallocation is
386 completely inherited from va_gc. */
387 struct va_gc_atomic : va_gc
392 /* Generic vector template. Default values for A and L indicate the
393 most commonly used strategies.
395 FIXME - Ideally, they would all be vl_ptr to encourage using regular
396 instances for vectors, but the existing GTY machinery is limited
397 in that it can only deal with GC objects that are pointers
398 themselves.
400 This means that vector operations that need to deal with
401 potentially NULL pointers, must be provided as free
402 functions (see the vec_safe_* functions above). */
403 template<typename T,
404 typename A = va_heap,
405 typename L = typename A::default_layout>
406 struct GTY((user)) vec
410 /* Generic vec<> debug helpers.
412 These need to be instantiated for each vec<TYPE> used throughout
413 the compiler like this:
415 DEFINE_DEBUG_VEC (TYPE)
417 The reason we have a debug_helper() is because GDB can't
418 disambiguate a plain call to debug(some_vec), and it must be called
419 like debug<TYPE>(some_vec). */
421 template<typename T>
422 void
423 debug_helper (vec<T> &ref)
425 unsigned i;
426 for (i = 0; i < ref.length (); ++i)
428 fprintf (stderr, "[%d] = ", i);
429 debug_slim (ref[i]);
430 fputc ('\n', stderr);
434 /* We need a separate va_gc variant here because default template
435 argument for functions cannot be used in c++-98. Once this
436 restriction is removed, those variant should be folded with the
437 above debug_helper. */
439 template<typename T>
440 void
441 debug_helper (vec<T, va_gc> &ref)
443 unsigned i;
444 for (i = 0; i < ref.length (); ++i)
446 fprintf (stderr, "[%d] = ", i);
447 debug_slim (ref[i]);
448 fputc ('\n', stderr);
452 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
453 functions for a type T. */
455 #define DEFINE_DEBUG_VEC(T) \
456 template void debug_helper (vec<T> &); \
457 template void debug_helper (vec<T, va_gc> &); \
458 /* Define the vec<T> debug functions. */ \
459 DEBUG_FUNCTION void \
460 debug (vec<T> &ref) \
462 debug_helper <T> (ref); \
464 DEBUG_FUNCTION void \
465 debug (vec<T> *ptr) \
467 if (ptr) \
468 debug (*ptr); \
469 else \
470 fprintf (stderr, "<nil>\n"); \
472 /* Define the vec<T, va_gc> debug functions. */ \
473 DEBUG_FUNCTION void \
474 debug (vec<T, va_gc> &ref) \
476 debug_helper <T> (ref); \
478 DEBUG_FUNCTION void \
479 debug (vec<T, va_gc> *ptr) \
481 if (ptr) \
482 debug (*ptr); \
483 else \
484 fprintf (stderr, "<nil>\n"); \
487 /* Default-construct N elements in DST. */
489 template <typename T>
490 inline void
491 vec_default_construct (T *dst, unsigned n)
493 for ( ; n; ++dst, --n)
494 ::new (static_cast<void*>(dst)) T ();
497 /* Copy-construct N elements in DST from *SRC. */
499 template <typename T>
500 inline void
501 vec_copy_construct (T *dst, const T *src, unsigned n)
503 for ( ; n; ++dst, ++src, --n)
504 ::new (static_cast<void*>(dst)) T (*src);
507 /* Type to provide NULL values for vec<T, A, L>. This is used to
508 provide nil initializers for vec instances. Since vec must be
509 a POD, we cannot have proper ctor/dtor for it. To initialize
510 a vec instance, you can assign it the value vNULL. This isn't
511 needed for file-scope and function-local static vectors, which
512 are zero-initialized by default. */
513 struct vnull
515 template <typename T, typename A, typename L>
516 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
518 extern vnull vNULL;
521 /* Embeddable vector. These vectors are suitable to be embedded
522 in other data structures so that they can be pre-allocated in a
523 contiguous memory block.
525 Embeddable vectors are implemented using the trailing array idiom,
526 thus they are not resizeable without changing the address of the
527 vector object itself. This means you cannot have variables or
528 fields of embeddable vector type -- always use a pointer to a
529 vector. The one exception is the final field of a structure, which
530 could be a vector type.
532 You will have to use the embedded_size & embedded_init calls to
533 create such objects, and they will not be resizeable (so the 'safe'
534 allocation variants are not available).
536 Properties:
538 - The whole vector and control data are allocated in a single
539 contiguous block. It uses the trailing-vector idiom, so
540 allocation must reserve enough space for all the elements
541 in the vector plus its control data.
542 - The vector cannot be re-allocated.
543 - The vector cannot grow nor shrink.
544 - No indirections needed for access/manipulation.
545 - It requires 2 words of storage (prior to vector allocation). */
547 template<typename T, typename A>
548 struct GTY((user)) vec<T, A, vl_embed>
550 public:
551 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
552 unsigned length (void) const { return m_vecpfx.m_num; }
553 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
554 T *address (void) { return m_vecdata; }
555 const T *address (void) const { return m_vecdata; }
556 T *begin () { return address (); }
557 const T *begin () const { return address (); }
558 T *end () { return address () + length (); }
559 const T *end () const { return address () + length (); }
560 const T &operator[] (unsigned) const;
561 T &operator[] (unsigned);
562 T &last (void);
563 bool space (unsigned) const;
564 bool iterate (unsigned, T *) const;
565 bool iterate (unsigned, T **) const;
566 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
567 void splice (const vec &);
568 void splice (const vec *src);
569 T *quick_push (const T &);
570 T &pop (void);
571 void truncate (unsigned);
572 void quick_insert (unsigned, const T &);
573 void ordered_remove (unsigned);
574 void unordered_remove (unsigned);
575 void block_remove (unsigned, unsigned);
576 void qsort (int (*) (const void *, const void *));
577 T *bsearch (const void *key, int (*compar)(const void *, const void *));
578 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
579 bool contains (const T &search) const;
580 static size_t embedded_size (unsigned);
581 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
582 void quick_grow (unsigned len);
583 void quick_grow_cleared (unsigned len);
585 /* vec class can access our internal data and functions. */
586 template <typename, typename, typename> friend struct vec;
588 /* The allocator types also need access to our internals. */
589 friend struct va_gc;
590 friend struct va_gc_atomic;
591 friend struct va_heap;
593 /* FIXME - These fields should be private, but we need to cater to
594 compilers that have stricter notions of PODness for types. */
595 vec_prefix m_vecpfx;
596 T m_vecdata[1];
600 /* Convenience wrapper functions to use when dealing with pointers to
601 embedded vectors. Some functionality for these vectors must be
602 provided via free functions for these reasons:
604 1- The pointer may be NULL (e.g., before initial allocation).
606 2- When the vector needs to grow, it must be reallocated, so
607 the pointer will change its value.
609 Because of limitations with the current GC machinery, all vectors
610 in GC memory *must* be pointers. */
613 /* If V contains no room for NELEMS elements, return false. Otherwise,
614 return true. */
615 template<typename T, typename A>
616 inline bool
617 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
619 return v ? v->space (nelems) : nelems == 0;
623 /* If V is NULL, return 0. Otherwise, return V->length(). */
624 template<typename T, typename A>
625 inline unsigned
626 vec_safe_length (const vec<T, A, vl_embed> *v)
628 return v ? v->length () : 0;
632 /* If V is NULL, return NULL. Otherwise, return V->address(). */
633 template<typename T, typename A>
634 inline T *
635 vec_safe_address (vec<T, A, vl_embed> *v)
637 return v ? v->address () : NULL;
641 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
642 template<typename T, typename A>
643 inline bool
644 vec_safe_is_empty (vec<T, A, vl_embed> *v)
646 return v ? v->is_empty () : true;
649 /* If V does not have space for NELEMS elements, call
650 V->reserve(NELEMS, EXACT). */
651 template<typename T, typename A>
652 inline bool
653 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
654 CXX_MEM_STAT_INFO)
656 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
657 if (extend)
658 A::reserve (v, nelems, exact PASS_MEM_STAT);
659 return extend;
662 template<typename T, typename A>
663 inline bool
664 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
665 CXX_MEM_STAT_INFO)
667 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
671 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
672 is 0, V is initialized to NULL. */
674 template<typename T, typename A>
675 inline void
676 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
678 v = NULL;
679 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
683 /* Free the GC memory allocated by vector V and set it to NULL. */
685 template<typename T, typename A>
686 inline void
687 vec_free (vec<T, A, vl_embed> *&v)
689 A::release (v);
693 /* Grow V to length LEN. Allocate it, if necessary. */
694 template<typename T, typename A>
695 inline void
696 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
698 unsigned oldlen = vec_safe_length (v);
699 gcc_checking_assert (len >= oldlen);
700 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
701 v->quick_grow (len);
705 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
706 template<typename T, typename A>
707 inline void
708 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
710 unsigned oldlen = vec_safe_length (v);
711 vec_safe_grow (v, len PASS_MEM_STAT);
712 vec_default_construct (v->address () + oldlen, len - oldlen);
716 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
717 template<typename T, typename A>
718 inline bool
719 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
721 if (v)
722 return v->iterate (ix, ptr);
723 else
725 *ptr = 0;
726 return false;
730 template<typename T, typename A>
731 inline bool
732 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
734 if (v)
735 return v->iterate (ix, ptr);
736 else
738 *ptr = 0;
739 return false;
744 /* If V has no room for one more element, reallocate it. Then call
745 V->quick_push(OBJ). */
746 template<typename T, typename A>
747 inline T *
748 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
750 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
751 return v->quick_push (obj);
755 /* if V has no room for one more element, reallocate it. Then call
756 V->quick_insert(IX, OBJ). */
757 template<typename T, typename A>
758 inline void
759 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
760 CXX_MEM_STAT_INFO)
762 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
763 v->quick_insert (ix, obj);
767 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
768 template<typename T, typename A>
769 inline void
770 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
772 if (v)
773 v->truncate (size);
777 /* If SRC is not NULL, return a pointer to a copy of it. */
778 template<typename T, typename A>
779 inline vec<T, A, vl_embed> *
780 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
782 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
785 /* Copy the elements from SRC to the end of DST as if by memcpy.
786 Reallocate DST, if necessary. */
787 template<typename T, typename A>
788 inline void
789 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
790 CXX_MEM_STAT_INFO)
792 unsigned src_len = vec_safe_length (src);
793 if (src_len)
795 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
796 PASS_MEM_STAT);
797 dst->splice (*src);
801 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
802 size of the vector and so should be used with care. */
804 template<typename T, typename A>
805 inline bool
806 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
808 return v ? v->contains (search) : false;
811 /* Index into vector. Return the IX'th element. IX must be in the
812 domain of the vector. */
814 template<typename T, typename A>
815 inline const T &
816 vec<T, A, vl_embed>::operator[] (unsigned ix) const
818 gcc_checking_assert (ix < m_vecpfx.m_num);
819 return m_vecdata[ix];
822 template<typename T, typename A>
823 inline T &
824 vec<T, A, vl_embed>::operator[] (unsigned ix)
826 gcc_checking_assert (ix < m_vecpfx.m_num);
827 return m_vecdata[ix];
831 /* Get the final element of the vector, which must not be empty. */
833 template<typename T, typename A>
834 inline T &
835 vec<T, A, vl_embed>::last (void)
837 gcc_checking_assert (m_vecpfx.m_num > 0);
838 return (*this)[m_vecpfx.m_num - 1];
842 /* If this vector has space for NELEMS additional entries, return
843 true. You usually only need to use this if you are doing your
844 own vector reallocation, for instance on an embedded vector. This
845 returns true in exactly the same circumstances that vec::reserve
846 will. */
848 template<typename T, typename A>
849 inline bool
850 vec<T, A, vl_embed>::space (unsigned nelems) const
852 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
856 /* Return iteration condition and update PTR to point to the IX'th
857 element of this vector. Use this to iterate over the elements of a
858 vector as follows,
860 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
861 continue; */
863 template<typename T, typename A>
864 inline bool
865 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
867 if (ix < m_vecpfx.m_num)
869 *ptr = m_vecdata[ix];
870 return true;
872 else
874 *ptr = 0;
875 return false;
880 /* Return iteration condition and update *PTR to point to the
881 IX'th element of this vector. Use this to iterate over the
882 elements of a vector as follows,
884 for (ix = 0; v->iterate (ix, &ptr); ix++)
885 continue;
887 This variant is for vectors of objects. */
889 template<typename T, typename A>
890 inline bool
891 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
893 if (ix < m_vecpfx.m_num)
895 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
896 return true;
898 else
900 *ptr = 0;
901 return false;
906 /* Return a pointer to a copy of this vector. */
908 template<typename T, typename A>
909 inline vec<T, A, vl_embed> *
910 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
912 vec<T, A, vl_embed> *new_vec = NULL;
913 unsigned len = length ();
914 if (len)
916 vec_alloc (new_vec, len PASS_MEM_STAT);
917 new_vec->embedded_init (len, len);
918 vec_copy_construct (new_vec->address (), m_vecdata, len);
920 return new_vec;
924 /* Copy the elements from SRC to the end of this vector as if by memcpy.
925 The vector must have sufficient headroom available. */
927 template<typename T, typename A>
928 inline void
929 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
931 unsigned len = src.length ();
932 if (len)
934 gcc_checking_assert (space (len));
935 vec_copy_construct (end (), src.address (), len);
936 m_vecpfx.m_num += len;
940 template<typename T, typename A>
941 inline void
942 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
944 if (src)
945 splice (*src);
949 /* Push OBJ (a new element) onto the end of the vector. There must be
950 sufficient space in the vector. Return a pointer to the slot
951 where OBJ was inserted. */
953 template<typename T, typename A>
954 inline T *
955 vec<T, A, vl_embed>::quick_push (const T &obj)
957 gcc_checking_assert (space (1));
958 T *slot = &m_vecdata[m_vecpfx.m_num++];
959 *slot = obj;
960 return slot;
964 /* Pop and return the last element off the end of the vector. */
966 template<typename T, typename A>
967 inline T &
968 vec<T, A, vl_embed>::pop (void)
970 gcc_checking_assert (length () > 0);
971 return m_vecdata[--m_vecpfx.m_num];
975 /* Set the length of the vector to SIZE. The new length must be less
976 than or equal to the current length. This is an O(1) operation. */
978 template<typename T, typename A>
979 inline void
980 vec<T, A, vl_embed>::truncate (unsigned size)
982 gcc_checking_assert (length () >= size);
983 m_vecpfx.m_num = size;
987 /* Insert an element, OBJ, at the IXth position of this vector. There
988 must be sufficient space. */
990 template<typename T, typename A>
991 inline void
992 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
994 gcc_checking_assert (length () < allocated ());
995 gcc_checking_assert (ix <= length ());
996 T *slot = &m_vecdata[ix];
997 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
998 *slot = obj;
1002 /* Remove an element from the IXth position of this vector. Ordering of
1003 remaining elements is preserved. This is an O(N) operation due to
1004 memmove. */
1006 template<typename T, typename A>
1007 inline void
1008 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1010 gcc_checking_assert (ix < length ());
1011 T *slot = &m_vecdata[ix];
1012 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1016 /* Remove an element from the IXth position of this vector. Ordering of
1017 remaining elements is destroyed. This is an O(1) operation. */
1019 template<typename T, typename A>
1020 inline void
1021 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1023 gcc_checking_assert (ix < length ());
1024 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1028 /* Remove LEN elements starting at the IXth. Ordering is retained.
1029 This is an O(N) operation due to memmove. */
1031 template<typename T, typename A>
1032 inline void
1033 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1035 gcc_checking_assert (ix + len <= length ());
1036 T *slot = &m_vecdata[ix];
1037 m_vecpfx.m_num -= len;
1038 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1042 /* Sort the contents of this vector with qsort. CMP is the comparison
1043 function to pass to qsort. */
1045 template<typename T, typename A>
1046 inline void
1047 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1049 if (length () > 1)
1050 ::qsort (address (), length (), sizeof (T), cmp);
1054 /* Search the contents of the sorted vector with a binary search.
1055 CMP is the comparison function to pass to bsearch. */
1057 template<typename T, typename A>
1058 inline T *
1059 vec<T, A, vl_embed>::bsearch (const void *key,
1060 int (*compar) (const void *, const void *))
1062 const void *base = this->address ();
1063 size_t nmemb = this->length ();
1064 size_t size = sizeof (T);
1065 /* The following is a copy of glibc stdlib-bsearch.h. */
1066 size_t l, u, idx;
1067 const void *p;
1068 int comparison;
1070 l = 0;
1071 u = nmemb;
1072 while (l < u)
1074 idx = (l + u) / 2;
1075 p = (const void *) (((const char *) base) + (idx * size));
1076 comparison = (*compar) (key, p);
1077 if (comparison < 0)
1078 u = idx;
1079 else if (comparison > 0)
1080 l = idx + 1;
1081 else
1082 return (T *)const_cast<void *>(p);
1085 return NULL;
1088 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1089 size of the vector and so should be used with care. */
1091 template<typename T, typename A>
1092 inline bool
1093 vec<T, A, vl_embed>::contains (const T &search) const
1095 unsigned int len = length ();
1096 for (unsigned int i = 0; i < len; i++)
1097 if ((*this)[i] == search)
1098 return true;
1100 return false;
1103 /* Find and return the first position in which OBJ could be inserted
1104 without changing the ordering of this vector. LESSTHAN is a
1105 function that returns true if the first argument is strictly less
1106 than the second. */
1108 template<typename T, typename A>
1109 unsigned
1110 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1111 const
1113 unsigned int len = length ();
1114 unsigned int half, middle;
1115 unsigned int first = 0;
1116 while (len > 0)
1118 half = len / 2;
1119 middle = first;
1120 middle += half;
1121 T middle_elem = (*this)[middle];
1122 if (lessthan (middle_elem, obj))
1124 first = middle;
1125 ++first;
1126 len = len - half - 1;
1128 else
1129 len = half;
1131 return first;
1135 /* Return the number of bytes needed to embed an instance of an
1136 embeddable vec inside another data structure.
1138 Use these methods to determine the required size and initialization
1139 of a vector V of type T embedded within another structure (as the
1140 final member):
1142 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1143 void v->embedded_init (unsigned alloc, unsigned num);
1145 These allow the caller to perform the memory allocation. */
1147 template<typename T, typename A>
1148 inline size_t
1149 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1151 typedef vec<T, A, vl_embed> vec_embedded;
1152 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1156 /* Initialize the vector to contain room for ALLOC elements and
1157 NUM active elements. */
1159 template<typename T, typename A>
1160 inline void
1161 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1163 m_vecpfx.m_alloc = alloc;
1164 m_vecpfx.m_using_auto_storage = aut;
1165 m_vecpfx.m_num = num;
1169 /* Grow the vector to a specific length. LEN must be as long or longer than
1170 the current length. The new elements are uninitialized. */
1172 template<typename T, typename A>
1173 inline void
1174 vec<T, A, vl_embed>::quick_grow (unsigned len)
1176 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1177 m_vecpfx.m_num = len;
1181 /* Grow the vector to a specific length. LEN must be as long or longer than
1182 the current length. The new elements are initialized to zero. */
1184 template<typename T, typename A>
1185 inline void
1186 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1188 unsigned oldlen = length ();
1189 size_t growby = len - oldlen;
1190 quick_grow (len);
1191 if (growby != 0)
1192 vec_default_construct (address () + oldlen, growby);
1195 /* Garbage collection support for vec<T, A, vl_embed>. */
1197 template<typename T>
1198 void
1199 gt_ggc_mx (vec<T, va_gc> *v)
1201 extern void gt_ggc_mx (T &);
1202 for (unsigned i = 0; i < v->length (); i++)
1203 gt_ggc_mx ((*v)[i]);
1206 template<typename T>
1207 void
1208 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1210 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1211 be traversed. */
1215 /* PCH support for vec<T, A, vl_embed>. */
1217 template<typename T, typename A>
1218 void
1219 gt_pch_nx (vec<T, A, vl_embed> *v)
1221 extern void gt_pch_nx (T &);
1222 for (unsigned i = 0; i < v->length (); i++)
1223 gt_pch_nx ((*v)[i]);
1226 template<typename T, typename A>
1227 void
1228 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1230 for (unsigned i = 0; i < v->length (); i++)
1231 op (&((*v)[i]), cookie);
1234 template<typename T, typename A>
1235 void
1236 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1238 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1239 for (unsigned i = 0; i < v->length (); i++)
1240 gt_pch_nx (&((*v)[i]), op, cookie);
1244 /* Space efficient vector. These vectors can grow dynamically and are
1245 allocated together with their control data. They are suited to be
1246 included in data structures. Prior to initial allocation, they
1247 only take a single word of storage.
1249 These vectors are implemented as a pointer to an embeddable vector.
1250 The semantics allow for this pointer to be NULL to represent empty
1251 vectors. This way, empty vectors occupy minimal space in the
1252 structure containing them.
1254 Properties:
1256 - The whole vector and control data are allocated in a single
1257 contiguous block.
1258 - The whole vector may be re-allocated.
1259 - Vector data may grow and shrink.
1260 - Access and manipulation requires a pointer test and
1261 indirection.
1262 - It requires 1 word of storage (prior to vector allocation).
1265 Limitations:
1267 These vectors must be PODs because they are stored in unions.
1268 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1269 As long as we use C++03, we cannot have constructors nor
1270 destructors in classes that are stored in unions. */
1272 template<typename T>
1273 struct vec<T, va_heap, vl_ptr>
1275 public:
1276 /* Memory allocation and deallocation for the embedded vector.
1277 Needed because we cannot have proper ctors/dtors defined. */
1278 void create (unsigned nelems CXX_MEM_STAT_INFO);
1279 void release (void);
1281 /* Vector operations. */
1282 bool exists (void) const
1283 { return m_vec != NULL; }
1285 bool is_empty (void) const
1286 { return m_vec ? m_vec->is_empty () : true; }
1288 unsigned length (void) const
1289 { return m_vec ? m_vec->length () : 0; }
1291 T *address (void)
1292 { return m_vec ? m_vec->m_vecdata : NULL; }
1294 const T *address (void) const
1295 { return m_vec ? m_vec->m_vecdata : NULL; }
1297 T *begin () { return address (); }
1298 const T *begin () const { return address (); }
1299 T *end () { return begin () + length (); }
1300 const T *end () const { return begin () + length (); }
1301 const T &operator[] (unsigned ix) const
1302 { return (*m_vec)[ix]; }
1304 bool operator!=(const vec &other) const
1305 { return !(*this == other); }
1307 bool operator==(const vec &other) const
1308 { return address () == other.address (); }
1310 T &operator[] (unsigned ix)
1311 { return (*m_vec)[ix]; }
1313 T &last (void)
1314 { return m_vec->last (); }
1316 bool space (int nelems) const
1317 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1319 bool iterate (unsigned ix, T *p) const;
1320 bool iterate (unsigned ix, T **p) const;
1321 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1322 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1323 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1324 void splice (const vec &);
1325 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1326 T *quick_push (const T &);
1327 T *safe_push (const T &CXX_MEM_STAT_INFO);
1328 T &pop (void);
1329 void truncate (unsigned);
1330 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1331 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1332 void quick_grow (unsigned);
1333 void quick_grow_cleared (unsigned);
1334 void quick_insert (unsigned, const T &);
1335 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1336 void ordered_remove (unsigned);
1337 void unordered_remove (unsigned);
1338 void block_remove (unsigned, unsigned);
1339 void qsort (int (*) (const void *, const void *));
1340 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1341 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1342 bool contains (const T &search) const;
1344 bool using_auto_storage () const;
1346 /* FIXME - This field should be private, but we need to cater to
1347 compilers that have stricter notions of PODness for types. */
1348 vec<T, va_heap, vl_embed> *m_vec;
1352 /* auto_vec is a subclass of vec that automatically manages creating and
1353 releasing the internal vector. If N is non zero then it has N elements of
1354 internal storage. The default is no internal storage, and you probably only
1355 want to ask for internal storage for vectors on the stack because if the
1356 size of the vector is larger than the internal storage that space is wasted.
1358 template<typename T, size_t N = 0>
1359 class auto_vec : public vec<T, va_heap>
1361 public:
1362 auto_vec ()
1364 m_auto.embedded_init (MAX (N, 2), 0, 1);
1365 this->m_vec = &m_auto;
1368 auto_vec (size_t s)
1370 if (s > N)
1372 this->create (s);
1373 return;
1376 m_auto.embedded_init (MAX (N, 2), 0, 1);
1377 this->m_vec = &m_auto;
1380 ~auto_vec ()
1382 this->release ();
1385 private:
1386 vec<T, va_heap, vl_embed> m_auto;
1387 T m_data[MAX (N - 1, 1)];
1390 /* auto_vec is a sub class of vec whose storage is released when it is
1391 destroyed. */
1392 template<typename T>
1393 class auto_vec<T, 0> : public vec<T, va_heap>
1395 public:
1396 auto_vec () { this->m_vec = NULL; }
1397 auto_vec (size_t n) { this->create (n); }
1398 ~auto_vec () { this->release (); }
1402 /* Allocate heap memory for pointer V and create the internal vector
1403 with space for NELEMS elements. If NELEMS is 0, the internal
1404 vector is initialized to empty. */
1406 template<typename T>
1407 inline void
1408 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1410 v = new vec<T>;
1411 v->create (nelems PASS_MEM_STAT);
1415 /* Conditionally allocate heap memory for VEC and its internal vector. */
1417 template<typename T>
1418 inline void
1419 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1421 if (!vec)
1422 vec_alloc (vec, nelems PASS_MEM_STAT);
1426 /* Free the heap memory allocated by vector V and set it to NULL. */
1428 template<typename T>
1429 inline void
1430 vec_free (vec<T> *&v)
1432 if (v == NULL)
1433 return;
1435 v->release ();
1436 delete v;
1437 v = NULL;
1441 /* Return iteration condition and update PTR to point to the IX'th
1442 element of this vector. Use this to iterate over the elements of a
1443 vector as follows,
1445 for (ix = 0; v.iterate (ix, &ptr); ix++)
1446 continue; */
1448 template<typename T>
1449 inline bool
1450 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1452 if (m_vec)
1453 return m_vec->iterate (ix, ptr);
1454 else
1456 *ptr = 0;
1457 return false;
1462 /* Return iteration condition and update *PTR to point to the
1463 IX'th element of this vector. Use this to iterate over the
1464 elements of a vector as follows,
1466 for (ix = 0; v->iterate (ix, &ptr); ix++)
1467 continue;
1469 This variant is for vectors of objects. */
1471 template<typename T>
1472 inline bool
1473 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1475 if (m_vec)
1476 return m_vec->iterate (ix, ptr);
1477 else
1479 *ptr = 0;
1480 return false;
1485 /* Convenience macro for forward iteration. */
1486 #define FOR_EACH_VEC_ELT(V, I, P) \
1487 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1489 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1490 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1492 /* Likewise, but start from FROM rather than 0. */
1493 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1494 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1496 /* Convenience macro for reverse iteration. */
1497 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1498 for (I = (V).length () - 1; \
1499 (V).iterate ((I), &(P)); \
1500 (I)--)
1502 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1503 for (I = vec_safe_length (V) - 1; \
1504 vec_safe_iterate ((V), (I), &(P)); \
1505 (I)--)
1508 /* Return a copy of this vector. */
1510 template<typename T>
1511 inline vec<T, va_heap, vl_ptr>
1512 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1514 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1515 if (length ())
1516 new_vec.m_vec = m_vec->copy ();
1517 return new_vec;
1521 /* Ensure that the vector has at least RESERVE slots available (if
1522 EXACT is false), or exactly RESERVE slots available (if EXACT is
1523 true).
1525 This may create additional headroom if EXACT is false.
1527 Note that this can cause the embedded vector to be reallocated.
1528 Returns true iff reallocation actually occurred. */
1530 template<typename T>
1531 inline bool
1532 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1534 if (space (nelems))
1535 return false;
1537 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1538 this is necessary because it doesn't have enough information to know the
1539 embedded vector is in auto storage, and so should not be freed. */
1540 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1541 unsigned int oldsize = 0;
1542 bool handle_auto_vec = m_vec && using_auto_storage ();
1543 if (handle_auto_vec)
1545 m_vec = NULL;
1546 oldsize = oldvec->length ();
1547 nelems += oldsize;
1550 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1551 if (handle_auto_vec)
1553 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1554 m_vec->m_vecpfx.m_num = oldsize;
1557 return true;
1561 /* Ensure that this vector has exactly NELEMS slots available. This
1562 will not create additional headroom. Note this can cause the
1563 embedded vector to be reallocated. Returns true iff reallocation
1564 actually occurred. */
1566 template<typename T>
1567 inline bool
1568 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1570 return reserve (nelems, true PASS_MEM_STAT);
1574 /* Create the internal vector and reserve NELEMS for it. This is
1575 exactly like vec::reserve, but the internal vector is
1576 unconditionally allocated from scratch. The old one, if it
1577 existed, is lost. */
1579 template<typename T>
1580 inline void
1581 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1583 m_vec = NULL;
1584 if (nelems > 0)
1585 reserve_exact (nelems PASS_MEM_STAT);
1589 /* Free the memory occupied by the embedded vector. */
1591 template<typename T>
1592 inline void
1593 vec<T, va_heap, vl_ptr>::release (void)
1595 if (!m_vec)
1596 return;
1598 if (using_auto_storage ())
1600 m_vec->m_vecpfx.m_num = 0;
1601 return;
1604 va_heap::release (m_vec);
1607 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1608 SRC and this vector must be allocated with the same memory
1609 allocation mechanism. This vector is assumed to have sufficient
1610 headroom available. */
1612 template<typename T>
1613 inline void
1614 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1616 if (src.m_vec)
1617 m_vec->splice (*(src.m_vec));
1621 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1622 SRC and this vector must be allocated with the same mechanism.
1623 If there is not enough headroom in this vector, it will be reallocated
1624 as needed. */
1626 template<typename T>
1627 inline void
1628 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1629 MEM_STAT_DECL)
1631 if (src.length ())
1633 reserve_exact (src.length ());
1634 splice (src);
1639 /* Push OBJ (a new element) onto the end of the vector. There must be
1640 sufficient space in the vector. Return a pointer to the slot
1641 where OBJ was inserted. */
1643 template<typename T>
1644 inline T *
1645 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1647 return m_vec->quick_push (obj);
1651 /* Push a new element OBJ onto the end of this vector. Reallocates
1652 the embedded vector, if needed. Return a pointer to the slot where
1653 OBJ was inserted. */
1655 template<typename T>
1656 inline T *
1657 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1659 reserve (1, false PASS_MEM_STAT);
1660 return quick_push (obj);
1664 /* Pop and return the last element off the end of the vector. */
1666 template<typename T>
1667 inline T &
1668 vec<T, va_heap, vl_ptr>::pop (void)
1670 return m_vec->pop ();
1674 /* Set the length of the vector to LEN. The new length must be less
1675 than or equal to the current length. This is an O(1) operation. */
1677 template<typename T>
1678 inline void
1679 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1681 if (m_vec)
1682 m_vec->truncate (size);
1683 else
1684 gcc_checking_assert (size == 0);
1688 /* Grow the vector to a specific length. LEN must be as long or
1689 longer than the current length. The new elements are
1690 uninitialized. Reallocate the internal vector, if needed. */
1692 template<typename T>
1693 inline void
1694 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1696 unsigned oldlen = length ();
1697 gcc_checking_assert (oldlen <= len);
1698 reserve_exact (len - oldlen PASS_MEM_STAT);
1699 if (m_vec)
1700 m_vec->quick_grow (len);
1701 else
1702 gcc_checking_assert (len == 0);
1706 /* Grow the embedded vector to a specific length. LEN must be as
1707 long or longer than the current length. The new elements are
1708 initialized to zero. Reallocate the internal vector, if needed. */
1710 template<typename T>
1711 inline void
1712 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1714 unsigned oldlen = length ();
1715 size_t growby = len - oldlen;
1716 safe_grow (len PASS_MEM_STAT);
1717 if (growby != 0)
1718 vec_default_construct (address () + oldlen, growby);
1722 /* Same as vec::safe_grow but without reallocation of the internal vector.
1723 If the vector cannot be extended, a runtime assertion will be triggered. */
1725 template<typename T>
1726 inline void
1727 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1729 gcc_checking_assert (m_vec);
1730 m_vec->quick_grow (len);
1734 /* Same as vec::quick_grow_cleared but without reallocation of the
1735 internal vector. If the vector cannot be extended, a runtime
1736 assertion will be triggered. */
1738 template<typename T>
1739 inline void
1740 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1742 gcc_checking_assert (m_vec);
1743 m_vec->quick_grow_cleared (len);
1747 /* Insert an element, OBJ, at the IXth position of this vector. There
1748 must be sufficient space. */
1750 template<typename T>
1751 inline void
1752 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1754 m_vec->quick_insert (ix, obj);
1758 /* Insert an element, OBJ, at the IXth position of the vector.
1759 Reallocate the embedded vector, if necessary. */
1761 template<typename T>
1762 inline void
1763 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1765 reserve (1, false PASS_MEM_STAT);
1766 quick_insert (ix, obj);
1770 /* Remove an element from the IXth position of this vector. Ordering of
1771 remaining elements is preserved. This is an O(N) operation due to
1772 a memmove. */
1774 template<typename T>
1775 inline void
1776 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1778 m_vec->ordered_remove (ix);
1782 /* Remove an element from the IXth position of this vector. Ordering
1783 of remaining elements is destroyed. This is an O(1) operation. */
1785 template<typename T>
1786 inline void
1787 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1789 m_vec->unordered_remove (ix);
1793 /* Remove LEN elements starting at the IXth. Ordering is retained.
1794 This is an O(N) operation due to memmove. */
1796 template<typename T>
1797 inline void
1798 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1800 m_vec->block_remove (ix, len);
1804 /* Sort the contents of this vector with qsort. CMP is the comparison
1805 function to pass to qsort. */
1807 template<typename T>
1808 inline void
1809 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1811 if (m_vec)
1812 m_vec->qsort (cmp);
1816 /* Search the contents of the sorted vector with a binary search.
1817 CMP is the comparison function to pass to bsearch. */
1819 template<typename T>
1820 inline T *
1821 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1822 int (*cmp) (const void *, const void *))
1824 if (m_vec)
1825 return m_vec->bsearch (key, cmp);
1826 return NULL;
1830 /* Find and return the first position in which OBJ could be inserted
1831 without changing the ordering of this vector. LESSTHAN is a
1832 function that returns true if the first argument is strictly less
1833 than the second. */
1835 template<typename T>
1836 inline unsigned
1837 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1838 bool (*lessthan)(const T &, const T &))
1839 const
1841 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1844 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1845 size of the vector and so should be used with care. */
1847 template<typename T>
1848 inline bool
1849 vec<T, va_heap, vl_ptr>::contains (const T &search) const
1851 return m_vec ? m_vec->contains (search) : false;
1854 template<typename T>
1855 inline bool
1856 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1858 return m_vec->m_vecpfx.m_using_auto_storage;
1861 /* Release VEC and call release of all element vectors. */
1863 template<typename T>
1864 inline void
1865 release_vec_vec (vec<vec<T> > &vec)
1867 for (unsigned i = 0; i < vec.length (); i++)
1868 vec[i].release ();
1870 vec.release ();
1873 #if (GCC_VERSION >= 3000)
1874 # pragma GCC poison m_vec m_vecpfx m_vecdata
1875 #endif
1877 #endif // GCC_VEC_H