2015-05-22 Eric Botcazou <ebotcazou@adacore.com>
[official-gcc.git] / gcc / ada / set_targ.adb
blob4dbd735e97f9bd268688fca047afabe218892149
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E T _ T A R G --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2013-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Debug; use Debug;
27 with Get_Targ; use Get_Targ;
28 with Opt; use Opt;
29 with Output; use Output;
31 with System; use System;
32 with System.OS_Lib; use System.OS_Lib;
34 with Unchecked_Conversion;
36 package body Set_Targ is
38 --------------------------------------------------------
39 -- Data Used to Read/Write Target Dependent Info File --
40 --------------------------------------------------------
42 -- Table of string names written to file
44 subtype Str is String;
46 S_Bits_BE : constant Str := "Bits_BE";
47 S_Bits_Per_Unit : constant Str := "Bits_Per_Unit";
48 S_Bits_Per_Word : constant Str := "Bits_Per_Word";
49 S_Bytes_BE : constant Str := "Bytes_BE";
50 S_Char_Size : constant Str := "Char_Size";
51 S_Double_Float_Alignment : constant Str := "Double_Float_Alignment";
52 S_Double_Scalar_Alignment : constant Str := "Double_Scalar_Alignment";
53 S_Double_Size : constant Str := "Double_Size";
54 S_Float_Size : constant Str := "Float_Size";
55 S_Float_Words_BE : constant Str := "Float_Words_BE";
56 S_Int_Size : constant Str := "Int_Size";
57 S_Long_Double_Size : constant Str := "Long_Double_Size";
58 S_Long_Long_Size : constant Str := "Long_Long_Size";
59 S_Long_Size : constant Str := "Long_Size";
60 S_Maximum_Alignment : constant Str := "Maximum_Alignment";
61 S_Max_Unaligned_Field : constant Str := "Max_Unaligned_Field";
62 S_Pointer_Size : constant Str := "Pointer_Size";
63 S_Short_Enums : constant Str := "Short_Enums";
64 S_Short_Size : constant Str := "Short_Size";
65 S_Strict_Alignment : constant Str := "Strict_Alignment";
66 S_System_Allocator_Alignment : constant Str := "System_Allocator_Alignment";
67 S_Wchar_T_Size : constant Str := "Wchar_T_Size";
68 S_Words_BE : constant Str := "Words_BE";
70 -- Table of names
72 type AStr is access all String;
74 DTN : constant array (Nat range <>) of AStr := (
75 S_Bits_BE 'Unrestricted_Access,
76 S_Bits_Per_Unit 'Unrestricted_Access,
77 S_Bits_Per_Word 'Unrestricted_Access,
78 S_Bytes_BE 'Unrestricted_Access,
79 S_Char_Size 'Unrestricted_Access,
80 S_Double_Float_Alignment 'Unrestricted_Access,
81 S_Double_Scalar_Alignment 'Unrestricted_Access,
82 S_Double_Size 'Unrestricted_Access,
83 S_Float_Size 'Unrestricted_Access,
84 S_Float_Words_BE 'Unrestricted_Access,
85 S_Int_Size 'Unrestricted_Access,
86 S_Long_Double_Size 'Unrestricted_Access,
87 S_Long_Long_Size 'Unrestricted_Access,
88 S_Long_Size 'Unrestricted_Access,
89 S_Maximum_Alignment 'Unrestricted_Access,
90 S_Max_Unaligned_Field 'Unrestricted_Access,
91 S_Pointer_Size 'Unrestricted_Access,
92 S_Short_Enums 'Unrestricted_Access,
93 S_Short_Size 'Unrestricted_Access,
94 S_Strict_Alignment 'Unrestricted_Access,
95 S_System_Allocator_Alignment 'Unrestricted_Access,
96 S_Wchar_T_Size 'Unrestricted_Access,
97 S_Words_BE 'Unrestricted_Access);
99 -- Table of corresponding value pointers
101 DTV : constant array (Nat range <>) of System.Address := (
102 Bits_BE 'Address,
103 Bits_Per_Unit 'Address,
104 Bits_Per_Word 'Address,
105 Bytes_BE 'Address,
106 Char_Size 'Address,
107 Double_Float_Alignment 'Address,
108 Double_Scalar_Alignment 'Address,
109 Double_Size 'Address,
110 Float_Size 'Address,
111 Float_Words_BE 'Address,
112 Int_Size 'Address,
113 Long_Double_Size 'Address,
114 Long_Long_Size 'Address,
115 Long_Size 'Address,
116 Maximum_Alignment 'Address,
117 Max_Unaligned_Field 'Address,
118 Pointer_Size 'Address,
119 Short_Enums 'Address,
120 Short_Size 'Address,
121 Strict_Alignment 'Address,
122 System_Allocator_Alignment 'Address,
123 Wchar_T_Size 'Address,
124 Words_BE 'Address);
126 DTR : array (Nat range DTV'Range) of Boolean := (others => False);
127 -- Table of flags used to validate that all values are present in file
129 -----------------------
130 -- Local Subprograms --
131 -----------------------
133 procedure Read_Target_Dependent_Values (File_Name : String);
134 -- Read target dependent values from File_Name, and set the target
135 -- dependent values (global variables) declared in this package.
137 procedure Fail (E : String);
138 pragma No_Return (Fail);
139 -- Terminate program with fatal error message passed as parameter
141 procedure Register_Float_Type
142 (Name : C_String;
143 Digs : Natural;
144 Complex : Boolean;
145 Count : Natural;
146 Float_Rep : Float_Rep_Kind;
147 Precision : Positive;
148 Size : Positive;
149 Alignment : Natural);
150 pragma Convention (C, Register_Float_Type);
151 -- Call back to allow the back end to register available types. This call
152 -- back makes entries in the FPT_Mode_Table for any floating point types
153 -- reported by the back end. Name is the name of the type as a normal
154 -- format Null-terminated string. Digs is the number of digits, where 0
155 -- means it is not a fpt type (ignored during registration). Complex is
156 -- non-zero if the type has real and imaginary parts (also ignored during
157 -- registration). Count is the number of elements in a vector type (zero =
158 -- not a vector, registration ignores vectors). Float_Rep shows the kind of
159 -- floating-point type, and Precision, Size and Alignment are the precision
160 -- size and alignment in bits.
162 -- The only types that are actually registered have Digs non-zero, Complex
163 -- zero (false), and Count zero (not a vector). The Long_Double_Index
164 -- variable below is updated to indicate the index at which a "long double"
165 -- type can be found if it gets registered at all.
167 Long_Double_Index : Integer := -1;
168 -- Once all the floating point types have been registered, the index in
169 -- FPT_Mode_Table at which "long double" can be found, if anywhere. A
170 -- negative value means that no "long double" has been registered. This
171 -- is useful to know whether we have a "long double" available at all and
172 -- get at it's characteristics without having to search the FPT_Mode_Table
173 -- when we need to decide which C type should be used as the basis for
174 -- Long_Long_Float in Ada.
176 function FPT_Mode_Index_For (Name : String) return Natural;
177 -- Return the index in FPT_Mode_Table that designates the entry
178 -- corresponding to the C type named Name. Raise Program_Error if
179 -- there is no such entry.
181 function FPT_Mode_Index_For (T : S_Float_Types) return Natural;
182 -- Return the index in FPT_Mode_Table that designates the entry for
183 -- a back-end type suitable as a basis to construct the standard Ada
184 -- floating point type identified by T.
186 ----------------
187 -- C_Type_For --
188 ----------------
190 function C_Type_For (T : S_Float_Types) return String is
192 -- ??? For now, we don't have a good way to tell the widest float
193 -- type with hardware support. Basically, GCC knows the size of that
194 -- type, but on x86-64 there often are two or three 128-bit types,
195 -- one double extended that has 18 decimal digits, a 128-bit quad
196 -- precision type with 33 digits and possibly a 128-bit decimal float
197 -- type with 34 digits. As a workaround, we define Long_Long_Float as
198 -- C's "long double" if that type exists and has at most 18 digits,
199 -- or otherwise the same as Long_Float.
201 Max_HW_Digs : constant := 18;
202 -- Maximum hardware digits supported
204 begin
205 case T is
206 when S_Short_Float | S_Float =>
207 return "float";
208 when S_Long_Float =>
209 return "double";
210 when S_Long_Long_Float =>
211 if Long_Double_Index >= 0
212 and then FPT_Mode_Table (Long_Double_Index).DIGS <= Max_HW_Digs
213 then
214 return "long double";
215 else
216 return "double";
217 end if;
218 end case;
219 end C_Type_For;
221 ----------
222 -- Fail --
223 ----------
225 procedure Fail (E : String) is
226 E_Fatal : constant := 4;
227 -- Code for fatal error
229 begin
230 Write_Str (E);
231 Write_Eol;
232 OS_Exit (E_Fatal);
233 end Fail;
235 ------------------------
236 -- FPT_Mode_Index_For --
237 ------------------------
239 function FPT_Mode_Index_For (Name : String) return Natural is
240 begin
241 for J in FPT_Mode_Table'First .. Num_FPT_Modes loop
242 if FPT_Mode_Table (J).NAME.all = Name then
243 return J;
244 end if;
245 end loop;
247 raise Program_Error;
248 end FPT_Mode_Index_For;
250 function FPT_Mode_Index_For (T : S_Float_Types) return Natural is
251 begin
252 return FPT_Mode_Index_For (C_Type_For (T));
253 end FPT_Mode_Index_For;
255 -------------------------
256 -- Register_Float_Type --
257 -------------------------
259 procedure Register_Float_Type
260 (Name : C_String;
261 Digs : Natural;
262 Complex : Boolean;
263 Count : Natural;
264 Float_Rep : Float_Rep_Kind;
265 Precision : Positive;
266 Size : Positive;
267 Alignment : Natural)
269 T : String (1 .. Name'Length);
270 Last : Natural := 0;
272 procedure Dump;
273 -- Dump information given by the back end for the type to register
275 ----------
276 -- Dump --
277 ----------
279 procedure Dump is
280 begin
281 Write_Str ("type " & T (1 .. Last) & " is ");
283 if Count > 0 then
284 Write_Str ("array (1 .. ");
285 Write_Int (Int (Count));
287 if Complex then
288 Write_Str (", 1 .. 2");
289 end if;
291 Write_Str (") of ");
293 elsif Complex then
294 Write_Str ("array (1 .. 2) of ");
295 end if;
297 if Digs > 0 then
298 Write_Str ("digits ");
299 Write_Int (Int (Digs));
300 Write_Line (";");
302 Write_Str ("pragma Float_Representation (");
304 case Float_Rep is
305 when IEEE_Binary => Write_Str ("IEEE");
306 when AAMP => Write_Str ("AAMP");
307 end case;
309 Write_Line (", " & T (1 .. Last) & ");");
311 else
312 Write_Str ("mod 2**");
313 Write_Int (Int (Precision / Positive'Max (1, Count)));
314 Write_Line (";");
315 end if;
317 if Precision = Size then
318 Write_Str ("for " & T (1 .. Last) & "'Size use ");
319 Write_Int (Int (Size));
320 Write_Line (";");
322 else
323 Write_Str ("for " & T (1 .. Last) & "'Value_Size use ");
324 Write_Int (Int (Precision));
325 Write_Line (";");
327 Write_Str ("for " & T (1 .. Last) & "'Object_Size use ");
328 Write_Int (Int (Size));
329 Write_Line (";");
330 end if;
332 Write_Str ("for " & T (1 .. Last) & "'Alignment use ");
333 Write_Int (Int (Alignment / 8));
334 Write_Line (";");
335 Write_Eol;
336 end Dump;
338 -- Start of processing for Register_Float_Type
340 begin
341 -- Acquire name
343 for J in T'Range loop
344 T (J) := Name (Name'First + J - 1);
346 if T (J) = ASCII.NUL then
347 Last := J - 1;
348 exit;
349 end if;
350 end loop;
352 -- Dump info if debug flag set
354 if Debug_Flag_Dot_B then
355 Dump;
356 end if;
358 -- Acquire entry if non-vector non-complex fpt type (digits non-zero)
360 if Digs > 0 and then not Complex and then Count = 0 then
362 declare
363 This_Name : constant String := T (1 .. Last);
364 begin
365 Num_FPT_Modes := Num_FPT_Modes + 1;
366 FPT_Mode_Table (Num_FPT_Modes) :=
367 (NAME => new String'(This_Name),
368 DIGS => Digs,
369 FLOAT_REP => Float_Rep,
370 PRECISION => Precision,
371 SIZE => Size,
372 ALIGNMENT => Alignment);
374 if Long_Double_Index < 0 and then This_Name = "long double" then
375 Long_Double_Index := Num_FPT_Modes;
376 end if;
377 end;
378 end if;
379 end Register_Float_Type;
381 -----------------------------------
382 -- Write_Target_Dependent_Values --
383 -----------------------------------
385 -- We do this at the System.Os_Lib level, since we have to do the read at
386 -- that level anyway, so it is easier and more consistent to follow the
387 -- same path for the write.
389 procedure Write_Target_Dependent_Values is
390 Fdesc : File_Descriptor;
391 OK : Boolean;
393 Buffer : String (1 .. 80);
394 Buflen : Natural;
395 -- Buffer used to build line one of file
397 type ANat is access all Natural;
398 -- Pointer to Nat or Pos value (it is harmless to treat Pos values and
399 -- Nat values as Natural via Unchecked_Conversion).
401 function To_ANat is new Unchecked_Conversion (Address, ANat);
403 procedure AddC (C : Character);
404 -- Add one character to buffer
406 procedure AddN (N : Natural);
407 -- Add representation of integer N to Buffer, updating Buflen. N
408 -- must be less than 1000, and output is 3 characters with leading
409 -- spaces as needed.
411 procedure Write_Line;
412 -- Output contents of Buffer (1 .. Buflen) followed by a New_Line,
413 -- and set Buflen back to zero, ready to write next line.
415 ----------
416 -- AddC --
417 ----------
419 procedure AddC (C : Character) is
420 begin
421 Buflen := Buflen + 1;
422 Buffer (Buflen) := C;
423 end AddC;
425 ----------
426 -- AddN --
427 ----------
429 procedure AddN (N : Natural) is
430 begin
431 if N > 999 then
432 raise Program_Error;
433 end if;
435 if N > 99 then
436 AddC (Character'Val (48 + N / 100));
437 else
438 AddC (' ');
439 end if;
441 if N > 9 then
442 AddC (Character'Val (48 + N / 10 mod 10));
443 else
444 AddC (' ');
445 end if;
447 AddC (Character'Val (48 + N mod 10));
448 end AddN;
450 ----------------
451 -- Write_Line --
452 ----------------
454 procedure Write_Line is
455 begin
456 AddC (ASCII.LF);
458 if Buflen /= Write (Fdesc, Buffer'Address, Buflen) then
459 Delete_File (Target_Dependent_Info_Write_Name.all, OK);
460 Fail ("disk full writing file "
461 & Target_Dependent_Info_Write_Name.all);
462 end if;
464 Buflen := 0;
465 end Write_Line;
467 -- Start of processing for Write_Target_Dependent_Values
469 begin
470 Fdesc :=
471 Create_File (Target_Dependent_Info_Write_Name.all, Text);
473 if Fdesc = Invalid_FD then
474 Fail ("cannot create file " & Target_Dependent_Info_Write_Name.all);
475 end if;
477 -- Loop through values
479 for J in DTN'Range loop
481 -- Output name
483 Buflen := DTN (J)'Length;
484 Buffer (1 .. Buflen) := DTN (J).all;
486 -- Line up values
488 while Buflen < 26 loop
489 AddC (' ');
490 end loop;
492 AddC (' ');
493 AddC (' ');
495 -- Output value and write line
497 AddN (To_ANat (DTV (J)).all);
498 Write_Line;
499 end loop;
501 -- Blank line to separate sections
503 Write_Line;
505 -- Write lines for registered FPT types
507 for J in 1 .. Num_FPT_Modes loop
508 declare
509 E : FPT_Mode_Entry renames FPT_Mode_Table (J);
510 begin
511 Buflen := E.NAME'Last;
512 Buffer (1 .. Buflen) := E.NAME.all;
514 -- Pad out to line up values
516 while Buflen < 11 loop
517 AddC (' ');
518 end loop;
520 AddC (' ');
521 AddC (' ');
523 AddN (E.DIGS);
524 AddC (' ');
525 AddC (' ');
527 case E.FLOAT_REP is
528 when IEEE_Binary =>
529 AddC ('I');
530 when AAMP =>
531 AddC ('A');
532 end case;
534 AddC (' ');
536 AddN (E.PRECISION);
537 AddC (' ');
539 AddN (E.ALIGNMENT);
540 Write_Line;
541 end;
542 end loop;
544 -- Close file
546 Close (Fdesc, OK);
548 if not OK then
549 Fail ("disk full writing file "
550 & Target_Dependent_Info_Write_Name.all);
551 end if;
552 end Write_Target_Dependent_Values;
554 ----------------------------------
555 -- Read_Target_Dependent_Values --
556 ----------------------------------
558 procedure Read_Target_Dependent_Values (File_Name : String) is
559 File_Desc : File_Descriptor;
560 N : Natural;
562 type ANat is access all Natural;
563 -- Pointer to Nat or Pos value (it is harmless to treat Pos values
564 -- as Nat via Unchecked_Conversion).
566 function To_ANat is new Unchecked_Conversion (Address, ANat);
568 VP : ANat;
570 Buffer : String (1 .. 2000);
571 Buflen : Natural;
572 -- File information and length (2000 easily enough)
574 Nam_Buf : String (1 .. 40);
575 Nam_Len : Natural;
577 procedure Check_Spaces;
578 -- Checks that we have one or more spaces and skips them
580 procedure FailN (S : String);
581 -- Calls Fail adding " name in file xxx", where name is the currently
582 -- gathered name in Nam_Buf, surrounded by quotes, and xxx is the
583 -- name of the file.
585 procedure Get_Name;
586 -- Scan out name, leaving it in Nam_Buf with Nam_Len set. Calls
587 -- Skip_Spaces to skip any following spaces. Note that the name is
588 -- terminated by a sequence of at least two spaces.
590 function Get_Nat return Natural;
591 -- N on entry points to decimal integer, scan out decimal integer
592 -- and return it, leaving N pointing to following space or LF.
594 procedure Skip_Spaces;
595 -- Skip past spaces
597 ------------------
598 -- Check_Spaces --
599 ------------------
601 procedure Check_Spaces is
602 begin
603 if N > Buflen or else Buffer (N) /= ' ' then
604 FailN ("missing space for");
605 end if;
607 Skip_Spaces;
608 return;
609 end Check_Spaces;
611 -----------
612 -- FailN --
613 -----------
615 procedure FailN (S : String) is
616 begin
617 Fail (S & " """ & Nam_Buf (1 .. Nam_Len) & """ in file "
618 & File_Name);
619 end FailN;
621 --------------
622 -- Get_Name --
623 --------------
625 procedure Get_Name is
626 begin
627 Nam_Len := 0;
629 -- Scan out name and put it in Nam_Buf
631 loop
632 if N > Buflen or else Buffer (N) = ASCII.LF then
633 FailN ("incorrectly formatted line for");
634 end if;
636 -- Name is terminated by two blanks
638 exit when N < Buflen and then Buffer (N .. N + 1) = " ";
640 Nam_Len := Nam_Len + 1;
642 if Nam_Len > Nam_Buf'Last then
643 Fail ("name too long");
644 end if;
646 Nam_Buf (Nam_Len) := Buffer (N);
647 N := N + 1;
648 end loop;
650 Check_Spaces;
651 end Get_Name;
653 -------------
654 -- Get_Nat --
655 -------------
657 function Get_Nat return Natural is
658 Result : Natural := 0;
660 begin
661 loop
662 if N > Buflen
663 or else Buffer (N) not in '0' .. '9'
664 or else Result > 999
665 then
666 FailN ("bad value for");
667 end if;
669 Result := Result * 10 + (Character'Pos (Buffer (N)) - 48);
670 N := N + 1;
672 exit when N <= Buflen
673 and then (Buffer (N) = ASCII.LF or else Buffer (N) = ' ');
674 end loop;
676 return Result;
677 end Get_Nat;
679 -----------------
680 -- Skip_Spaces --
681 -----------------
683 procedure Skip_Spaces is
684 begin
685 while N <= Buflen and Buffer (N) = ' ' loop
686 N := N + 1;
687 end loop;
688 end Skip_Spaces;
690 -- Start of processing for Read_Target_Dependent_Values
692 begin
693 File_Desc := Open_Read (File_Name, Text);
695 if File_Desc = Invalid_FD then
696 Fail ("cannot read file " & File_Name);
697 end if;
699 Buflen := Read (File_Desc, Buffer'Address, Buffer'Length);
701 if Buflen = Buffer'Length then
702 Fail ("file is too long: " & File_Name);
703 end if;
705 -- Scan through file for properly formatted entries in first section
707 N := 1;
708 while N <= Buflen and then Buffer (N) /= ASCII.LF loop
709 Get_Name;
711 -- Validate name and get corresponding value pointer
713 VP := null;
715 for J in DTN'Range loop
716 if DTN (J).all = Nam_Buf (1 .. Nam_Len) then
717 VP := To_ANat (DTV (J));
718 DTR (J) := True;
719 exit;
720 end if;
721 end loop;
723 if VP = null then
724 FailN ("unrecognized name");
725 end if;
727 -- Scan out value
729 VP.all := Get_Nat;
731 if N > Buflen or else Buffer (N) /= ASCII.LF then
732 FailN ("misformatted line for");
733 end if;
735 N := N + 1; -- skip LF
736 end loop;
738 -- Fall through this loop when all lines in first section read.
739 -- Check that values have been supplied for all entries.
741 for J in DTR'Range loop
742 if not DTR (J) then
743 Fail ("missing entry for " & DTN (J).all & " in file "
744 & File_Name);
745 end if;
746 end loop;
748 -- Now acquire FPT entries
750 if N >= Buflen then
751 Fail ("missing entries for FPT modes in file " & File_Name);
752 end if;
754 if Buffer (N) = ASCII.LF then
755 N := N + 1;
756 else
757 Fail ("missing blank line in file " & File_Name);
758 end if;
760 Num_FPT_Modes := 0;
761 while N <= Buflen loop
762 Get_Name;
764 Num_FPT_Modes := Num_FPT_Modes + 1;
766 declare
767 E : FPT_Mode_Entry renames FPT_Mode_Table (Num_FPT_Modes);
769 begin
770 E.NAME := new String'(Nam_Buf (1 .. Nam_Len));
772 if Long_Double_Index < 0 and then E.NAME.all = "long double" then
773 Long_Double_Index := Num_FPT_Modes;
774 end if;
776 E.DIGS := Get_Nat;
777 Check_Spaces;
779 case Buffer (N) is
780 when 'I' =>
781 E.FLOAT_REP := IEEE_Binary;
782 when 'A' =>
783 E.FLOAT_REP := AAMP;
784 when others =>
785 FailN ("bad float rep field for");
786 end case;
788 N := N + 1;
789 Check_Spaces;
791 E.PRECISION := Get_Nat;
792 Check_Spaces;
794 E.ALIGNMENT := Get_Nat;
796 if Buffer (N) /= ASCII.LF then
797 FailN ("junk at end of line for");
798 end if;
800 -- ??? We do not read E.SIZE, see Write_Target_Dependent_Values
802 E.SIZE :=
803 (E.PRECISION + E.ALIGNMENT - 1) / E.ALIGNMENT * E.ALIGNMENT;
805 N := N + 1;
806 end;
807 end loop;
808 end Read_Target_Dependent_Values;
810 -- Package Initialization, set target dependent values. This must be done
811 -- early on, before we start accessing various compiler packages, since
812 -- these values are used all over the place.
814 begin
815 -- First step: see if the -gnateT switch is present. As we have noted,
816 -- this has to be done very early, so can not depend on the normal circuit
817 -- for reading switches and setting switches in Opt. The following code
818 -- will set Opt.Target_Dependent_Info_Read_Name if the switch -gnateT=name
819 -- is present in the options string.
821 declare
822 type Arg_Array is array (Nat) of Big_String_Ptr;
823 type Arg_Array_Ptr is access Arg_Array;
824 -- Types to access compiler arguments
826 save_argc : Nat;
827 pragma Import (C, save_argc);
828 -- Saved value of argc (number of arguments), imported from misc.c
830 save_argv : Arg_Array_Ptr;
831 pragma Import (C, save_argv);
832 -- Saved value of argv (argument pointers), imported from misc.c
834 gnat_argc : Nat;
835 gnat_argv : Arg_Array_Ptr;
836 pragma Import (C, gnat_argc);
837 pragma Import (C, gnat_argv);
838 -- If save_argv is not set, default to gnat_argc/argv
840 argc : Nat;
841 argv : Arg_Array_Ptr;
843 function Len_Arg (Arg : Big_String_Ptr) return Nat;
844 -- Determine length of argument Arg (a nul terminated C string).
846 -------------
847 -- Len_Arg --
848 -------------
850 function Len_Arg (Arg : Big_String_Ptr) return Nat is
851 begin
852 for J in 1 .. Nat'Last loop
853 if Arg (Natural (J)) = ASCII.NUL then
854 return J - 1;
855 end if;
856 end loop;
858 raise Program_Error;
859 end Len_Arg;
861 begin
862 if save_argv /= null then
863 argv := save_argv;
864 argc := save_argc;
865 else
866 -- Case of a non gcc compiler, e.g. gnat2why or gnat2scil
867 argv := gnat_argv;
868 argc := gnat_argc;
869 end if;
871 -- Loop through arguments looking for -gnateT, also look for -gnatd.b
873 for Arg in 1 .. argc - 1 loop
874 declare
875 Argv_Ptr : constant Big_String_Ptr := argv (Arg);
876 Argv_Len : constant Nat := Len_Arg (Argv_Ptr);
878 begin
879 if Argv_Len > 8
880 and then Argv_Ptr (1 .. 8) = "-gnateT="
881 then
882 Opt.Target_Dependent_Info_Read_Name :=
883 new String'(Argv_Ptr (9 .. Natural (Argv_Len)));
885 elsif Argv_Len >= 8
886 and then Argv_Ptr (1 .. 8) = "-gnatd.b"
887 then
888 Debug_Flag_Dot_B := True;
889 end if;
890 end;
891 end loop;
892 end;
894 -- Case of reading the target dependent values from file
896 -- This is bit more complex than might be expected, because it has to be
897 -- done very early. All kinds of packages depend on these values, and we
898 -- can't wait till the normal processing of reading command line switches
899 -- etc to read the file. We do this at the System.OS_Lib level since it is
900 -- too early to be using Osint directly.
902 if Opt.Target_Dependent_Info_Read_Name /= null then
903 Read_Target_Dependent_Values (Target_Dependent_Info_Read_Name.all);
904 else
905 -- If the back-end comes with a target config file, then use it
906 -- to set the values
908 declare
909 Back_End_Config_File : constant String_Ptr :=
910 Get_Back_End_Config_File;
911 begin
912 if Back_End_Config_File /= null then
913 Read_Target_Dependent_Values (Back_End_Config_File.all);
915 -- Otherwise we get all values from the back end directly
917 else
918 Bits_BE := Get_Bits_BE;
919 Bits_Per_Unit := Get_Bits_Per_Unit;
920 Bits_Per_Word := Get_Bits_Per_Word;
921 Bytes_BE := Get_Bytes_BE;
922 Char_Size := Get_Char_Size;
923 Double_Float_Alignment := Get_Double_Float_Alignment;
924 Double_Scalar_Alignment := Get_Double_Scalar_Alignment;
925 Float_Words_BE := Get_Float_Words_BE;
926 Int_Size := Get_Int_Size;
927 Long_Long_Size := Get_Long_Long_Size;
928 Long_Size := Get_Long_Size;
929 Maximum_Alignment := Get_Maximum_Alignment;
930 Max_Unaligned_Field := Get_Max_Unaligned_Field;
931 Pointer_Size := Get_Pointer_Size;
932 Short_Enums := Get_Short_Enums;
933 Short_Size := Get_Short_Size;
934 Strict_Alignment := Get_Strict_Alignment;
935 System_Allocator_Alignment := Get_System_Allocator_Alignment;
936 Wchar_T_Size := Get_Wchar_T_Size;
937 Words_BE := Get_Words_BE;
939 -- Let the back-end register its floating point types and compute
940 -- the sizes of our standard types from there:
942 Num_FPT_Modes := 0;
943 Register_Back_End_Types (Register_Float_Type'Access);
945 declare
946 T : FPT_Mode_Entry renames
947 FPT_Mode_Table (FPT_Mode_Index_For (S_Float));
948 begin
949 Float_Size := Int (T.SIZE);
950 end;
952 declare
953 T : FPT_Mode_Entry renames
954 FPT_Mode_Table (FPT_Mode_Index_For (S_Long_Float));
955 begin
956 Double_Size := Int (T.SIZE);
957 end;
959 declare
960 T : FPT_Mode_Entry renames
961 FPT_Mode_Table (FPT_Mode_Index_For (S_Long_Long_Float));
962 begin
963 Long_Double_Size := Int (T.SIZE);
964 end;
966 end if;
967 end;
968 end if;
969 end Set_Targ;