2015-05-22 Eric Botcazou <ebotcazou@adacore.com>
[official-gcc.git] / gcc / ada / sem_res.adb
blobb838e25b4cbadc1b71aa87df7d7521d2bbefa4d0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Inline; use Inline;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Nlists; use Nlists;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Aggr; use Sem_Aggr;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elim; use Sem_Elim;
67 with Sem_Elab; use Sem_Elab;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for arithmetic unary operators
237 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
238 -- If an operator node resolves to a call to a user-defined operator,
239 -- rewrite the node as a function call.
241 procedure Make_Call_Into_Operator
242 (N : Node_Id;
243 Typ : Entity_Id;
244 Op_Id : Entity_Id);
245 -- Inverse transformation: if an operator is given in functional notation,
246 -- then after resolving the node, transform into an operator node, so that
247 -- operands are resolved properly. Recall that predefined operators do not
248 -- have a full signature and special resolution rules apply.
250 procedure Rewrite_Renamed_Operator
251 (N : Node_Id;
252 Op : Entity_Id;
253 Typ : Entity_Id);
254 -- An operator can rename another, e.g. in an instantiation. In that
255 -- case, the proper operator node must be constructed and resolved.
257 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
258 -- The String_Literal_Subtype is built for all strings that are not
259 -- operands of a static concatenation operation. If the argument is not
260 -- a N_String_Literal node, then the call has no effect.
262 procedure Set_Slice_Subtype (N : Node_Id);
263 -- Build subtype of array type, with the range specified by the slice
265 procedure Simplify_Type_Conversion (N : Node_Id);
266 -- Called after N has been resolved and evaluated, but before range checks
267 -- have been applied. Currently simplifies a combination of floating-point
268 -- to integer conversion and Rounding or Truncation attribute.
270 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
271 -- A universal_fixed expression in an universal context is unambiguous if
272 -- there is only one applicable fixed point type. Determining whether there
273 -- is only one requires a search over all visible entities, and happens
274 -- only in very pathological cases (see 6115-006).
276 -------------------------
277 -- Ambiguous_Character --
278 -------------------------
280 procedure Ambiguous_Character (C : Node_Id) is
281 E : Entity_Id;
283 begin
284 if Nkind (C) = N_Character_Literal then
285 Error_Msg_N ("ambiguous character literal", C);
287 -- First the ones in Standard
289 Error_Msg_N ("\\possible interpretation: Character!", C);
290 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292 -- Include Wide_Wide_Character in Ada 2005 mode
294 if Ada_Version >= Ada_2005 then
295 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
296 end if;
298 -- Now any other types that match
300 E := Current_Entity (C);
301 while Present (E) loop
302 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
303 E := Homonym (E);
304 end loop;
305 end if;
306 end Ambiguous_Character;
308 -------------------------
309 -- Analyze_And_Resolve --
310 -------------------------
312 procedure Analyze_And_Resolve (N : Node_Id) is
313 begin
314 Analyze (N);
315 Resolve (N);
316 end Analyze_And_Resolve;
318 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
319 begin
320 Analyze (N);
321 Resolve (N, Typ);
322 end Analyze_And_Resolve;
324 -- Versions with check(s) suppressed
326 procedure Analyze_And_Resolve
327 (N : Node_Id;
328 Typ : Entity_Id;
329 Suppress : Check_Id)
331 Scop : constant Entity_Id := Current_Scope;
333 begin
334 if Suppress = All_Checks then
335 declare
336 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
337 begin
338 Scope_Suppress.Suppress := (others => True);
339 Analyze_And_Resolve (N, Typ);
340 Scope_Suppress.Suppress := Sva;
341 end;
343 else
344 declare
345 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
346 begin
347 Scope_Suppress.Suppress (Suppress) := True;
348 Analyze_And_Resolve (N, Typ);
349 Scope_Suppress.Suppress (Suppress) := Svg;
350 end;
351 end if;
353 if Current_Scope /= Scop
354 and then Scope_Is_Transient
355 then
356 -- This can only happen if a transient scope was created for an inner
357 -- expression, which will be removed upon completion of the analysis
358 -- of an enclosing construct. The transient scope must have the
359 -- suppress status of the enclosing environment, not of this Analyze
360 -- call.
362 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
363 Scope_Suppress;
364 end if;
365 end Analyze_And_Resolve;
367 procedure Analyze_And_Resolve
368 (N : Node_Id;
369 Suppress : Check_Id)
371 Scop : constant Entity_Id := Current_Scope;
373 begin
374 if Suppress = All_Checks then
375 declare
376 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
377 begin
378 Scope_Suppress.Suppress := (others => True);
379 Analyze_And_Resolve (N);
380 Scope_Suppress.Suppress := Sva;
381 end;
383 else
384 declare
385 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
386 begin
387 Scope_Suppress.Suppress (Suppress) := True;
388 Analyze_And_Resolve (N);
389 Scope_Suppress.Suppress (Suppress) := Svg;
390 end;
391 end if;
393 if Current_Scope /= Scop and then Scope_Is_Transient then
394 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
395 Scope_Suppress;
396 end if;
397 end Analyze_And_Resolve;
399 ----------------------------
400 -- Check_Discriminant_Use --
401 ----------------------------
403 procedure Check_Discriminant_Use (N : Node_Id) is
404 PN : constant Node_Id := Parent (N);
405 Disc : constant Entity_Id := Entity (N);
406 P : Node_Id;
407 D : Node_Id;
409 begin
410 -- Any use in a spec-expression is legal
412 if In_Spec_Expression then
413 null;
415 elsif Nkind (PN) = N_Range then
417 -- Discriminant cannot be used to constrain a scalar type
419 P := Parent (PN);
421 if Nkind (P) = N_Range_Constraint
422 and then Nkind (Parent (P)) = N_Subtype_Indication
423 and then Nkind (Parent (Parent (P))) = N_Component_Definition
424 then
425 Error_Msg_N ("discriminant cannot constrain scalar type", N);
427 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
429 -- The following check catches the unusual case where a
430 -- discriminant appears within an index constraint that is part
431 -- of a larger expression within a constraint on a component,
432 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
433 -- check case of record components, and note that a similar check
434 -- should also apply in the case of discriminant constraints
435 -- below. ???
437 -- Note that the check for N_Subtype_Declaration below is to
438 -- detect the valid use of discriminants in the constraints of a
439 -- subtype declaration when this subtype declaration appears
440 -- inside the scope of a record type (which is syntactically
441 -- illegal, but which may be created as part of derived type
442 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
443 -- for more info.
445 if Ekind (Current_Scope) = E_Record_Type
446 and then Scope (Disc) = Current_Scope
447 and then not
448 (Nkind (Parent (P)) = N_Subtype_Indication
449 and then
450 Nkind_In (Parent (Parent (P)), N_Component_Definition,
451 N_Subtype_Declaration)
452 and then Paren_Count (N) = 0)
453 then
454 Error_Msg_N
455 ("discriminant must appear alone in component constraint", N);
456 return;
457 end if;
459 -- Detect a common error:
461 -- type R (D : Positive := 100) is record
462 -- Name : String (1 .. D);
463 -- end record;
465 -- The default value causes an object of type R to be allocated
466 -- with room for Positive'Last characters. The RM does not mandate
467 -- the allocation of the maximum size, but that is what GNAT does
468 -- so we should warn the programmer that there is a problem.
470 Check_Large : declare
471 SI : Node_Id;
472 T : Entity_Id;
473 TB : Node_Id;
474 CB : Entity_Id;
476 function Large_Storage_Type (T : Entity_Id) return Boolean;
477 -- Return True if type T has a large enough range that any
478 -- array whose index type covered the whole range of the type
479 -- would likely raise Storage_Error.
481 ------------------------
482 -- Large_Storage_Type --
483 ------------------------
485 function Large_Storage_Type (T : Entity_Id) return Boolean is
486 begin
487 -- The type is considered large if its bounds are known at
488 -- compile time and if it requires at least as many bits as
489 -- a Positive to store the possible values.
491 return Compile_Time_Known_Value (Type_Low_Bound (T))
492 and then Compile_Time_Known_Value (Type_High_Bound (T))
493 and then
494 Minimum_Size (T, Biased => True) >=
495 RM_Size (Standard_Positive);
496 end Large_Storage_Type;
498 -- Start of processing for Check_Large
500 begin
501 -- Check that the Disc has a large range
503 if not Large_Storage_Type (Etype (Disc)) then
504 goto No_Danger;
505 end if;
507 -- If the enclosing type is limited, we allocate only the
508 -- default value, not the maximum, and there is no need for
509 -- a warning.
511 if Is_Limited_Type (Scope (Disc)) then
512 goto No_Danger;
513 end if;
515 -- Check that it is the high bound
517 if N /= High_Bound (PN)
518 or else No (Discriminant_Default_Value (Disc))
519 then
520 goto No_Danger;
521 end if;
523 -- Check the array allows a large range at this bound. First
524 -- find the array
526 SI := Parent (P);
528 if Nkind (SI) /= N_Subtype_Indication then
529 goto No_Danger;
530 end if;
532 T := Entity (Subtype_Mark (SI));
534 if not Is_Array_Type (T) then
535 goto No_Danger;
536 end if;
538 -- Next, find the dimension
540 TB := First_Index (T);
541 CB := First (Constraints (P));
542 while True
543 and then Present (TB)
544 and then Present (CB)
545 and then CB /= PN
546 loop
547 Next_Index (TB);
548 Next (CB);
549 end loop;
551 if CB /= PN then
552 goto No_Danger;
553 end if;
555 -- Now, check the dimension has a large range
557 if not Large_Storage_Type (Etype (TB)) then
558 goto No_Danger;
559 end if;
561 -- Warn about the danger
563 Error_Msg_N
564 ("??creation of & object may raise Storage_Error!",
565 Scope (Disc));
567 <<No_Danger>>
568 null;
570 end Check_Large;
571 end if;
573 -- Legal case is in index or discriminant constraint
575 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
576 N_Discriminant_Association)
577 then
578 if Paren_Count (N) > 0 then
579 Error_Msg_N
580 ("discriminant in constraint must appear alone", N);
582 elsif Nkind (N) = N_Expanded_Name
583 and then Comes_From_Source (N)
584 then
585 Error_Msg_N
586 ("discriminant must appear alone as a direct name", N);
587 end if;
589 return;
591 -- Otherwise, context is an expression. It should not be within (i.e. a
592 -- subexpression of) a constraint for a component.
594 else
595 D := PN;
596 P := Parent (PN);
597 while not Nkind_In (P, N_Component_Declaration,
598 N_Subtype_Indication,
599 N_Entry_Declaration)
600 loop
601 D := P;
602 P := Parent (P);
603 exit when No (P);
604 end loop;
606 -- If the discriminant is used in an expression that is a bound of a
607 -- scalar type, an Itype is created and the bounds are attached to
608 -- its range, not to the original subtype indication. Such use is of
609 -- course a double fault.
611 if (Nkind (P) = N_Subtype_Indication
612 and then Nkind_In (Parent (P), N_Component_Definition,
613 N_Derived_Type_Definition)
614 and then D = Constraint (P))
616 -- The constraint itself may be given by a subtype indication,
617 -- rather than by a more common discrete range.
619 or else (Nkind (P) = N_Subtype_Indication
620 and then
621 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
622 or else Nkind (P) = N_Entry_Declaration
623 or else Nkind (D) = N_Defining_Identifier
624 then
625 Error_Msg_N
626 ("discriminant in constraint must appear alone", N);
627 end if;
628 end if;
629 end Check_Discriminant_Use;
631 --------------------------------
632 -- Check_For_Visible_Operator --
633 --------------------------------
635 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
636 begin
637 if Is_Invisible_Operator (N, T) then
638 Error_Msg_NE -- CODEFIX
639 ("operator for} is not directly visible!", N, First_Subtype (T));
640 Error_Msg_N -- CODEFIX
641 ("use clause would make operation legal!", N);
642 end if;
643 end Check_For_Visible_Operator;
645 ----------------------------------
646 -- Check_Fully_Declared_Prefix --
647 ----------------------------------
649 procedure Check_Fully_Declared_Prefix
650 (Typ : Entity_Id;
651 Pref : Node_Id)
653 begin
654 -- Check that the designated type of the prefix of a dereference is
655 -- not an incomplete type. This cannot be done unconditionally, because
656 -- dereferences of private types are legal in default expressions. This
657 -- case is taken care of in Check_Fully_Declared, called below. There
658 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
660 -- This consideration also applies to similar checks for allocators,
661 -- qualified expressions, and type conversions.
663 -- An additional exception concerns other per-object expressions that
664 -- are not directly related to component declarations, in particular
665 -- representation pragmas for tasks. These will be per-object
666 -- expressions if they depend on discriminants or some global entity.
667 -- If the task has access discriminants, the designated type may be
668 -- incomplete at the point the expression is resolved. This resolution
669 -- takes place within the body of the initialization procedure, where
670 -- the discriminant is replaced by its discriminal.
672 if Is_Entity_Name (Pref)
673 and then Ekind (Entity (Pref)) = E_In_Parameter
674 then
675 null;
677 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
678 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
679 -- Analyze_Object_Renaming, and Freeze_Entity.
681 elsif Ada_Version >= Ada_2005
682 and then Is_Entity_Name (Pref)
683 and then Is_Access_Type (Etype (Pref))
684 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
685 E_Incomplete_Type
686 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
687 then
688 null;
689 else
690 Check_Fully_Declared (Typ, Parent (Pref));
691 end if;
692 end Check_Fully_Declared_Prefix;
694 ------------------------------
695 -- Check_Infinite_Recursion --
696 ------------------------------
698 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
699 P : Node_Id;
700 C : Node_Id;
702 function Same_Argument_List return Boolean;
703 -- Check whether list of actuals is identical to list of formals of
704 -- called function (which is also the enclosing scope).
706 ------------------------
707 -- Same_Argument_List --
708 ------------------------
710 function Same_Argument_List return Boolean is
711 A : Node_Id;
712 F : Entity_Id;
713 Subp : Entity_Id;
715 begin
716 if not Is_Entity_Name (Name (N)) then
717 return False;
718 else
719 Subp := Entity (Name (N));
720 end if;
722 F := First_Formal (Subp);
723 A := First_Actual (N);
724 while Present (F) and then Present (A) loop
725 if not Is_Entity_Name (A) or else Entity (A) /= F then
726 return False;
727 end if;
729 Next_Actual (A);
730 Next_Formal (F);
731 end loop;
733 return True;
734 end Same_Argument_List;
736 -- Start of processing for Check_Infinite_Recursion
738 begin
739 -- Special case, if this is a procedure call and is a call to the
740 -- current procedure with the same argument list, then this is for
741 -- sure an infinite recursion and we insert a call to raise SE.
743 if Is_List_Member (N)
744 and then List_Length (List_Containing (N)) = 1
745 and then Same_Argument_List
746 then
747 declare
748 P : constant Node_Id := Parent (N);
749 begin
750 if Nkind (P) = N_Handled_Sequence_Of_Statements
751 and then Nkind (Parent (P)) = N_Subprogram_Body
752 and then Is_Empty_List (Declarations (Parent (P)))
753 then
754 Error_Msg_Warn := SPARK_Mode /= On;
755 Error_Msg_N ("!infinite recursion<<", N);
756 Error_Msg_N ("\!Storage_Error [<<", N);
757 Insert_Action (N,
758 Make_Raise_Storage_Error (Sloc (N),
759 Reason => SE_Infinite_Recursion));
760 return True;
761 end if;
762 end;
763 end if;
765 -- If not that special case, search up tree, quitting if we reach a
766 -- construct (e.g. a conditional) that tells us that this is not a
767 -- case for an infinite recursion warning.
769 C := N;
770 loop
771 P := Parent (C);
773 -- If no parent, then we were not inside a subprogram, this can for
774 -- example happen when processing certain pragmas in a spec. Just
775 -- return False in this case.
777 if No (P) then
778 return False;
779 end if;
781 -- Done if we get to subprogram body, this is definitely an infinite
782 -- recursion case if we did not find anything to stop us.
784 exit when Nkind (P) = N_Subprogram_Body;
786 -- If appearing in conditional, result is false
788 if Nkind_In (P, N_Or_Else,
789 N_And_Then,
790 N_Case_Expression,
791 N_Case_Statement,
792 N_If_Expression,
793 N_If_Statement)
794 then
795 return False;
797 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
798 and then C /= First (Statements (P))
799 then
800 -- If the call is the expression of a return statement and the
801 -- actuals are identical to the formals, it's worth a warning.
802 -- However, we skip this if there is an immediately preceding
803 -- raise statement, since the call is never executed.
805 -- Furthermore, this corresponds to a common idiom:
807 -- function F (L : Thing) return Boolean is
808 -- begin
809 -- raise Program_Error;
810 -- return F (L);
811 -- end F;
813 -- for generating a stub function
815 if Nkind (Parent (N)) = N_Simple_Return_Statement
816 and then Same_Argument_List
817 then
818 exit when not Is_List_Member (Parent (N));
820 -- OK, return statement is in a statement list, look for raise
822 declare
823 Nod : Node_Id;
825 begin
826 -- Skip past N_Freeze_Entity nodes generated by expansion
828 Nod := Prev (Parent (N));
829 while Present (Nod)
830 and then Nkind (Nod) = N_Freeze_Entity
831 loop
832 Prev (Nod);
833 end loop;
835 -- If no raise statement, give warning. We look at the
836 -- original node, because in the case of "raise ... with
837 -- ...", the node has been transformed into a call.
839 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
840 and then
841 (Nkind (Nod) not in N_Raise_xxx_Error
842 or else Present (Condition (Nod)));
843 end;
844 end if;
846 return False;
848 else
849 C := P;
850 end if;
851 end loop;
853 Error_Msg_Warn := SPARK_Mode /= On;
854 Error_Msg_N ("!possible infinite recursion<<", N);
855 Error_Msg_N ("\!??Storage_Error ]<<", N);
857 return True;
858 end Check_Infinite_Recursion;
860 -------------------------------
861 -- Check_Initialization_Call --
862 -------------------------------
864 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
865 Typ : constant Entity_Id := Etype (First_Formal (Nam));
867 function Uses_SS (T : Entity_Id) return Boolean;
868 -- Check whether the creation of an object of the type will involve
869 -- use of the secondary stack. If T is a record type, this is true
870 -- if the expression for some component uses the secondary stack, e.g.
871 -- through a call to a function that returns an unconstrained value.
872 -- False if T is controlled, because cleanups occur elsewhere.
874 -------------
875 -- Uses_SS --
876 -------------
878 function Uses_SS (T : Entity_Id) return Boolean is
879 Comp : Entity_Id;
880 Expr : Node_Id;
881 Full_Type : Entity_Id := Underlying_Type (T);
883 begin
884 -- Normally we want to use the underlying type, but if it's not set
885 -- then continue with T.
887 if not Present (Full_Type) then
888 Full_Type := T;
889 end if;
891 if Is_Controlled (Full_Type) then
892 return False;
894 elsif Is_Array_Type (Full_Type) then
895 return Uses_SS (Component_Type (Full_Type));
897 elsif Is_Record_Type (Full_Type) then
898 Comp := First_Component (Full_Type);
899 while Present (Comp) loop
900 if Ekind (Comp) = E_Component
901 and then Nkind (Parent (Comp)) = N_Component_Declaration
902 then
903 -- The expression for a dynamic component may be rewritten
904 -- as a dereference, so retrieve original node.
906 Expr := Original_Node (Expression (Parent (Comp)));
908 -- Return True if the expression is a call to a function
909 -- (including an attribute function such as Image, or a
910 -- user-defined operator) with a result that requires a
911 -- transient scope.
913 if (Nkind (Expr) = N_Function_Call
914 or else Nkind (Expr) in N_Op
915 or else (Nkind (Expr) = N_Attribute_Reference
916 and then Present (Expressions (Expr))))
917 and then Requires_Transient_Scope (Etype (Expr))
918 then
919 return True;
921 elsif Uses_SS (Etype (Comp)) then
922 return True;
923 end if;
924 end if;
926 Next_Component (Comp);
927 end loop;
929 return False;
931 else
932 return False;
933 end if;
934 end Uses_SS;
936 -- Start of processing for Check_Initialization_Call
938 begin
939 -- Establish a transient scope if the type needs it
941 if Uses_SS (Typ) then
942 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
943 end if;
944 end Check_Initialization_Call;
946 ---------------------------------------
947 -- Check_No_Direct_Boolean_Operators --
948 ---------------------------------------
950 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
951 begin
952 if Scope (Entity (N)) = Standard_Standard
953 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
954 then
955 -- Restriction only applies to original source code
957 if Comes_From_Source (N) then
958 Check_Restriction (No_Direct_Boolean_Operators, N);
959 end if;
960 end if;
962 -- Do style check (but skip if in instance, error is on template)
964 if Style_Check then
965 if not In_Instance then
966 Check_Boolean_Operator (N);
967 end if;
968 end if;
969 end Check_No_Direct_Boolean_Operators;
971 ------------------------------
972 -- Check_Parameterless_Call --
973 ------------------------------
975 procedure Check_Parameterless_Call (N : Node_Id) is
976 Nam : Node_Id;
978 function Prefix_Is_Access_Subp return Boolean;
979 -- If the prefix is of an access_to_subprogram type, the node must be
980 -- rewritten as a call. Ditto if the prefix is overloaded and all its
981 -- interpretations are access to subprograms.
983 ---------------------------
984 -- Prefix_Is_Access_Subp --
985 ---------------------------
987 function Prefix_Is_Access_Subp return Boolean is
988 I : Interp_Index;
989 It : Interp;
991 begin
992 -- If the context is an attribute reference that can apply to
993 -- functions, this is never a parameterless call (RM 4.1.4(6)).
995 if Nkind (Parent (N)) = N_Attribute_Reference
996 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
997 Name_Code_Address,
998 Name_Access)
999 then
1000 return False;
1001 end if;
1003 if not Is_Overloaded (N) then
1004 return
1005 Ekind (Etype (N)) = E_Subprogram_Type
1006 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1007 else
1008 Get_First_Interp (N, I, It);
1009 while Present (It.Typ) loop
1010 if Ekind (It.Typ) /= E_Subprogram_Type
1011 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1012 then
1013 return False;
1014 end if;
1016 Get_Next_Interp (I, It);
1017 end loop;
1019 return True;
1020 end if;
1021 end Prefix_Is_Access_Subp;
1023 -- Start of processing for Check_Parameterless_Call
1025 begin
1026 -- Defend against junk stuff if errors already detected
1028 if Total_Errors_Detected /= 0 then
1029 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1030 return;
1031 elsif Nkind (N) in N_Has_Chars
1032 and then Chars (N) in Error_Name_Or_No_Name
1033 then
1034 return;
1035 end if;
1037 Require_Entity (N);
1038 end if;
1040 -- If the context expects a value, and the name is a procedure, this is
1041 -- most likely a missing 'Access. Don't try to resolve the parameterless
1042 -- call, error will be caught when the outer call is analyzed.
1044 if Is_Entity_Name (N)
1045 and then Ekind (Entity (N)) = E_Procedure
1046 and then not Is_Overloaded (N)
1047 and then
1048 Nkind_In (Parent (N), N_Parameter_Association,
1049 N_Function_Call,
1050 N_Procedure_Call_Statement)
1051 then
1052 return;
1053 end if;
1055 -- Rewrite as call if overloadable entity that is (or could be, in the
1056 -- overloaded case) a function call. If we know for sure that the entity
1057 -- is an enumeration literal, we do not rewrite it.
1059 -- If the entity is the name of an operator, it cannot be a call because
1060 -- operators cannot have default parameters. In this case, this must be
1061 -- a string whose contents coincide with an operator name. Set the kind
1062 -- of the node appropriately.
1064 if (Is_Entity_Name (N)
1065 and then Nkind (N) /= N_Operator_Symbol
1066 and then Is_Overloadable (Entity (N))
1067 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1068 or else Is_Overloaded (N)))
1070 -- Rewrite as call if it is an explicit dereference of an expression of
1071 -- a subprogram access type, and the subprogram type is not that of a
1072 -- procedure or entry.
1074 or else
1075 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1077 -- Rewrite as call if it is a selected component which is a function,
1078 -- this is the case of a call to a protected function (which may be
1079 -- overloaded with other protected operations).
1081 or else
1082 (Nkind (N) = N_Selected_Component
1083 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1084 or else
1085 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1086 E_Procedure)
1087 and then Is_Overloaded (Selector_Name (N)))))
1089 -- If one of the above three conditions is met, rewrite as call. Apply
1090 -- the rewriting only once.
1092 then
1093 if Nkind (Parent (N)) /= N_Function_Call
1094 or else N /= Name (Parent (N))
1095 then
1097 -- This may be a prefixed call that was not fully analyzed, e.g.
1098 -- an actual in an instance.
1100 if Ada_Version >= Ada_2005
1101 and then Nkind (N) = N_Selected_Component
1102 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1103 then
1104 Analyze_Selected_Component (N);
1106 if Nkind (N) /= N_Selected_Component then
1107 return;
1108 end if;
1109 end if;
1111 -- The node is the name of the parameterless call. Preserve its
1112 -- descendants, which may be complex expressions.
1114 Nam := Relocate_Node (N);
1116 -- If overloaded, overload set belongs to new copy
1118 Save_Interps (N, Nam);
1120 -- Change node to parameterless function call (note that the
1121 -- Parameter_Associations associations field is left set to Empty,
1122 -- its normal default value since there are no parameters)
1124 Change_Node (N, N_Function_Call);
1125 Set_Name (N, Nam);
1126 Set_Sloc (N, Sloc (Nam));
1127 Analyze_Call (N);
1128 end if;
1130 elsif Nkind (N) = N_Parameter_Association then
1131 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1133 elsif Nkind (N) = N_Operator_Symbol then
1134 Change_Operator_Symbol_To_String_Literal (N);
1135 Set_Is_Overloaded (N, False);
1136 Set_Etype (N, Any_String);
1137 end if;
1138 end Check_Parameterless_Call;
1140 --------------------------------
1141 -- Is_Atomic_Ref_With_Address --
1142 --------------------------------
1144 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1145 Pref : constant Node_Id := Prefix (N);
1147 begin
1148 if not Is_Entity_Name (Pref) then
1149 return False;
1151 else
1152 declare
1153 Pent : constant Entity_Id := Entity (Pref);
1154 Ptyp : constant Entity_Id := Etype (Pent);
1155 begin
1156 return not Is_Access_Type (Ptyp)
1157 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1158 and then Present (Address_Clause (Pent));
1159 end;
1160 end if;
1161 end Is_Atomic_Ref_With_Address;
1163 -----------------------------
1164 -- Is_Definite_Access_Type --
1165 -----------------------------
1167 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1168 Btyp : constant Entity_Id := Base_Type (E);
1169 begin
1170 return Ekind (Btyp) = E_Access_Type
1171 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1172 and then Comes_From_Source (Btyp));
1173 end Is_Definite_Access_Type;
1175 ----------------------
1176 -- Is_Predefined_Op --
1177 ----------------------
1179 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1180 begin
1181 -- Predefined operators are intrinsic subprograms
1183 if not Is_Intrinsic_Subprogram (Nam) then
1184 return False;
1185 end if;
1187 -- A call to a back-end builtin is never a predefined operator
1189 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1190 return False;
1191 end if;
1193 return not Is_Generic_Instance (Nam)
1194 and then Chars (Nam) in Any_Operator_Name
1195 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1196 end Is_Predefined_Op;
1198 -----------------------------
1199 -- Make_Call_Into_Operator --
1200 -----------------------------
1202 procedure Make_Call_Into_Operator
1203 (N : Node_Id;
1204 Typ : Entity_Id;
1205 Op_Id : Entity_Id)
1207 Op_Name : constant Name_Id := Chars (Op_Id);
1208 Act1 : Node_Id := First_Actual (N);
1209 Act2 : Node_Id := Next_Actual (Act1);
1210 Error : Boolean := False;
1211 Func : constant Entity_Id := Entity (Name (N));
1212 Is_Binary : constant Boolean := Present (Act2);
1213 Op_Node : Node_Id;
1214 Opnd_Type : Entity_Id;
1215 Orig_Type : Entity_Id := Empty;
1216 Pack : Entity_Id;
1218 type Kind_Test is access function (E : Entity_Id) return Boolean;
1220 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1221 -- If the operand is not universal, and the operator is given by an
1222 -- expanded name, verify that the operand has an interpretation with a
1223 -- type defined in the given scope of the operator.
1225 function Type_In_P (Test : Kind_Test) return Entity_Id;
1226 -- Find a type of the given class in package Pack that contains the
1227 -- operator.
1229 ---------------------------
1230 -- Operand_Type_In_Scope --
1231 ---------------------------
1233 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1234 Nod : constant Node_Id := Right_Opnd (Op_Node);
1235 I : Interp_Index;
1236 It : Interp;
1238 begin
1239 if not Is_Overloaded (Nod) then
1240 return Scope (Base_Type (Etype (Nod))) = S;
1242 else
1243 Get_First_Interp (Nod, I, It);
1244 while Present (It.Typ) loop
1245 if Scope (Base_Type (It.Typ)) = S then
1246 return True;
1247 end if;
1249 Get_Next_Interp (I, It);
1250 end loop;
1252 return False;
1253 end if;
1254 end Operand_Type_In_Scope;
1256 ---------------
1257 -- Type_In_P --
1258 ---------------
1260 function Type_In_P (Test : Kind_Test) return Entity_Id is
1261 E : Entity_Id;
1263 function In_Decl return Boolean;
1264 -- Verify that node is not part of the type declaration for the
1265 -- candidate type, which would otherwise be invisible.
1267 -------------
1268 -- In_Decl --
1269 -------------
1271 function In_Decl return Boolean is
1272 Decl_Node : constant Node_Id := Parent (E);
1273 N2 : Node_Id;
1275 begin
1276 N2 := N;
1278 if Etype (E) = Any_Type then
1279 return True;
1281 elsif No (Decl_Node) then
1282 return False;
1284 else
1285 while Present (N2)
1286 and then Nkind (N2) /= N_Compilation_Unit
1287 loop
1288 if N2 = Decl_Node then
1289 return True;
1290 else
1291 N2 := Parent (N2);
1292 end if;
1293 end loop;
1295 return False;
1296 end if;
1297 end In_Decl;
1299 -- Start of processing for Type_In_P
1301 begin
1302 -- If the context type is declared in the prefix package, this is the
1303 -- desired base type.
1305 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1306 return Base_Type (Typ);
1308 else
1309 E := First_Entity (Pack);
1310 while Present (E) loop
1311 if Test (E) and then not In_Decl then
1312 return E;
1313 end if;
1315 Next_Entity (E);
1316 end loop;
1318 return Empty;
1319 end if;
1320 end Type_In_P;
1322 -- Start of processing for Make_Call_Into_Operator
1324 begin
1325 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1327 -- Binary operator
1329 if Is_Binary then
1330 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1331 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1332 Save_Interps (Act1, Left_Opnd (Op_Node));
1333 Save_Interps (Act2, Right_Opnd (Op_Node));
1334 Act1 := Left_Opnd (Op_Node);
1335 Act2 := Right_Opnd (Op_Node);
1337 -- Unary operator
1339 else
1340 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1341 Save_Interps (Act1, Right_Opnd (Op_Node));
1342 Act1 := Right_Opnd (Op_Node);
1343 end if;
1345 -- If the operator is denoted by an expanded name, and the prefix is
1346 -- not Standard, but the operator is a predefined one whose scope is
1347 -- Standard, then this is an implicit_operator, inserted as an
1348 -- interpretation by the procedure of the same name. This procedure
1349 -- overestimates the presence of implicit operators, because it does
1350 -- not examine the type of the operands. Verify now that the operand
1351 -- type appears in the given scope. If right operand is universal,
1352 -- check the other operand. In the case of concatenation, either
1353 -- argument can be the component type, so check the type of the result.
1354 -- If both arguments are literals, look for a type of the right kind
1355 -- defined in the given scope. This elaborate nonsense is brought to
1356 -- you courtesy of b33302a. The type itself must be frozen, so we must
1357 -- find the type of the proper class in the given scope.
1359 -- A final wrinkle is the multiplication operator for fixed point types,
1360 -- which is defined in Standard only, and not in the scope of the
1361 -- fixed point type itself.
1363 if Nkind (Name (N)) = N_Expanded_Name then
1364 Pack := Entity (Prefix (Name (N)));
1366 -- If this is a package renaming, get renamed entity, which will be
1367 -- the scope of the operands if operaton is type-correct.
1369 if Present (Renamed_Entity (Pack)) then
1370 Pack := Renamed_Entity (Pack);
1371 end if;
1373 -- If the entity being called is defined in the given package, it is
1374 -- a renaming of a predefined operator, and known to be legal.
1376 if Scope (Entity (Name (N))) = Pack
1377 and then Pack /= Standard_Standard
1378 then
1379 null;
1381 -- Visibility does not need to be checked in an instance: if the
1382 -- operator was not visible in the generic it has been diagnosed
1383 -- already, else there is an implicit copy of it in the instance.
1385 elsif In_Instance then
1386 null;
1388 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1389 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1390 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1391 then
1392 if Pack /= Standard_Standard then
1393 Error := True;
1394 end if;
1396 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1397 -- available.
1399 elsif Ada_Version >= Ada_2005
1400 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1401 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1402 then
1403 null;
1405 else
1406 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1408 if Op_Name = Name_Op_Concat then
1409 Opnd_Type := Base_Type (Typ);
1411 elsif (Scope (Opnd_Type) = Standard_Standard
1412 and then Is_Binary)
1413 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1414 and then Is_Binary
1415 and then not Comes_From_Source (Opnd_Type))
1416 then
1417 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1418 end if;
1420 if Scope (Opnd_Type) = Standard_Standard then
1422 -- Verify that the scope contains a type that corresponds to
1423 -- the given literal. Optimize the case where Pack is Standard.
1425 if Pack /= Standard_Standard then
1427 if Opnd_Type = Universal_Integer then
1428 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1430 elsif Opnd_Type = Universal_Real then
1431 Orig_Type := Type_In_P (Is_Real_Type'Access);
1433 elsif Opnd_Type = Any_String then
1434 Orig_Type := Type_In_P (Is_String_Type'Access);
1436 elsif Opnd_Type = Any_Access then
1437 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1439 elsif Opnd_Type = Any_Composite then
1440 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1442 if Present (Orig_Type) then
1443 if Has_Private_Component (Orig_Type) then
1444 Orig_Type := Empty;
1445 else
1446 Set_Etype (Act1, Orig_Type);
1448 if Is_Binary then
1449 Set_Etype (Act2, Orig_Type);
1450 end if;
1451 end if;
1452 end if;
1454 else
1455 Orig_Type := Empty;
1456 end if;
1458 Error := No (Orig_Type);
1459 end if;
1461 elsif Ekind (Opnd_Type) = E_Allocator_Type
1462 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1463 then
1464 Error := True;
1466 -- If the type is defined elsewhere, and the operator is not
1467 -- defined in the given scope (by a renaming declaration, e.g.)
1468 -- then this is an error as well. If an extension of System is
1469 -- present, and the type may be defined there, Pack must be
1470 -- System itself.
1472 elsif Scope (Opnd_Type) /= Pack
1473 and then Scope (Op_Id) /= Pack
1474 and then (No (System_Aux_Id)
1475 or else Scope (Opnd_Type) /= System_Aux_Id
1476 or else Pack /= Scope (System_Aux_Id))
1477 then
1478 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1479 Error := True;
1480 else
1481 Error := not Operand_Type_In_Scope (Pack);
1482 end if;
1484 elsif Pack = Standard_Standard
1485 and then not Operand_Type_In_Scope (Standard_Standard)
1486 then
1487 Error := True;
1488 end if;
1489 end if;
1491 if Error then
1492 Error_Msg_Node_2 := Pack;
1493 Error_Msg_NE
1494 ("& not declared in&", N, Selector_Name (Name (N)));
1495 Set_Etype (N, Any_Type);
1496 return;
1498 -- Detect a mismatch between the context type and the result type
1499 -- in the named package, which is otherwise not detected if the
1500 -- operands are universal. Check is only needed if source entity is
1501 -- an operator, not a function that renames an operator.
1503 elsif Nkind (Parent (N)) /= N_Type_Conversion
1504 and then Ekind (Entity (Name (N))) = E_Operator
1505 and then Is_Numeric_Type (Typ)
1506 and then not Is_Universal_Numeric_Type (Typ)
1507 and then Scope (Base_Type (Typ)) /= Pack
1508 and then not In_Instance
1509 then
1510 if Is_Fixed_Point_Type (Typ)
1511 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1512 then
1513 -- Already checked above
1515 null;
1517 -- Operator may be defined in an extension of System
1519 elsif Present (System_Aux_Id)
1520 and then Scope (Opnd_Type) = System_Aux_Id
1521 then
1522 null;
1524 else
1525 -- Could we use Wrong_Type here??? (this would require setting
1526 -- Etype (N) to the actual type found where Typ was expected).
1528 Error_Msg_NE ("expect }", N, Typ);
1529 end if;
1530 end if;
1531 end if;
1533 Set_Chars (Op_Node, Op_Name);
1535 if not Is_Private_Type (Etype (N)) then
1536 Set_Etype (Op_Node, Base_Type (Etype (N)));
1537 else
1538 Set_Etype (Op_Node, Etype (N));
1539 end if;
1541 -- If this is a call to a function that renames a predefined equality,
1542 -- the renaming declaration provides a type that must be used to
1543 -- resolve the operands. This must be done now because resolution of
1544 -- the equality node will not resolve any remaining ambiguity, and it
1545 -- assumes that the first operand is not overloaded.
1547 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1548 and then Ekind (Func) = E_Function
1549 and then Is_Overloaded (Act1)
1550 then
1551 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1552 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1553 end if;
1555 Set_Entity (Op_Node, Op_Id);
1556 Generate_Reference (Op_Id, N, ' ');
1558 -- Do rewrite setting Comes_From_Source on the result if the original
1559 -- call came from source. Although it is not strictly the case that the
1560 -- operator as such comes from the source, logically it corresponds
1561 -- exactly to the function call in the source, so it should be marked
1562 -- this way (e.g. to make sure that validity checks work fine).
1564 declare
1565 CS : constant Boolean := Comes_From_Source (N);
1566 begin
1567 Rewrite (N, Op_Node);
1568 Set_Comes_From_Source (N, CS);
1569 end;
1571 -- If this is an arithmetic operator and the result type is private,
1572 -- the operands and the result must be wrapped in conversion to
1573 -- expose the underlying numeric type and expand the proper checks,
1574 -- e.g. on division.
1576 if Is_Private_Type (Typ) then
1577 case Nkind (N) is
1578 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1579 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1580 Resolve_Intrinsic_Operator (N, Typ);
1582 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1583 Resolve_Intrinsic_Unary_Operator (N, Typ);
1585 when others =>
1586 Resolve (N, Typ);
1587 end case;
1588 else
1589 Resolve (N, Typ);
1590 end if;
1592 -- If in ASIS_Mode, propagate operand types to original actuals of
1593 -- function call, which would otherwise not be fully resolved. If
1594 -- the call has already been constant-folded, nothing to do. We
1595 -- relocate the operand nodes rather than copy them, to preserve
1596 -- original_node pointers, given that the operands themselves may
1597 -- have been rewritten. If the call was itself a rewriting of an
1598 -- operator node, nothing to do.
1600 if ASIS_Mode
1601 and then Nkind (N) in N_Op
1602 and then Nkind (Original_Node (N)) = N_Function_Call
1603 then
1604 declare
1605 L : Node_Id;
1606 R : constant Node_Id := Right_Opnd (N);
1608 Old_First : constant Node_Id :=
1609 First (Parameter_Associations (Original_Node (N)));
1610 Old_Sec : Node_Id;
1612 begin
1613 if Is_Binary then
1614 L := Left_Opnd (N);
1615 Old_Sec := Next (Old_First);
1617 -- If the original call has named associations, replace the
1618 -- explicit actual parameter in the association with the proper
1619 -- resolved operand.
1621 if Nkind (Old_First) = N_Parameter_Association then
1622 if Chars (Selector_Name (Old_First)) =
1623 Chars (First_Entity (Op_Id))
1624 then
1625 Rewrite (Explicit_Actual_Parameter (Old_First),
1626 Relocate_Node (L));
1627 else
1628 Rewrite (Explicit_Actual_Parameter (Old_First),
1629 Relocate_Node (R));
1630 end if;
1632 else
1633 Rewrite (Old_First, Relocate_Node (L));
1634 end if;
1636 if Nkind (Old_Sec) = N_Parameter_Association then
1637 if Chars (Selector_Name (Old_Sec)) =
1638 Chars (First_Entity (Op_Id))
1639 then
1640 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1641 Relocate_Node (L));
1642 else
1643 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1644 Relocate_Node (R));
1645 end if;
1647 else
1648 Rewrite (Old_Sec, Relocate_Node (R));
1649 end if;
1651 else
1652 if Nkind (Old_First) = N_Parameter_Association then
1653 Rewrite (Explicit_Actual_Parameter (Old_First),
1654 Relocate_Node (R));
1655 else
1656 Rewrite (Old_First, Relocate_Node (R));
1657 end if;
1658 end if;
1659 end;
1661 Set_Parent (Original_Node (N), Parent (N));
1662 end if;
1663 end Make_Call_Into_Operator;
1665 -------------------
1666 -- Operator_Kind --
1667 -------------------
1669 function Operator_Kind
1670 (Op_Name : Name_Id;
1671 Is_Binary : Boolean) return Node_Kind
1673 Kind : Node_Kind;
1675 begin
1676 -- Use CASE statement or array???
1678 if Is_Binary then
1679 if Op_Name = Name_Op_And then
1680 Kind := N_Op_And;
1681 elsif Op_Name = Name_Op_Or then
1682 Kind := N_Op_Or;
1683 elsif Op_Name = Name_Op_Xor then
1684 Kind := N_Op_Xor;
1685 elsif Op_Name = Name_Op_Eq then
1686 Kind := N_Op_Eq;
1687 elsif Op_Name = Name_Op_Ne then
1688 Kind := N_Op_Ne;
1689 elsif Op_Name = Name_Op_Lt then
1690 Kind := N_Op_Lt;
1691 elsif Op_Name = Name_Op_Le then
1692 Kind := N_Op_Le;
1693 elsif Op_Name = Name_Op_Gt then
1694 Kind := N_Op_Gt;
1695 elsif Op_Name = Name_Op_Ge then
1696 Kind := N_Op_Ge;
1697 elsif Op_Name = Name_Op_Add then
1698 Kind := N_Op_Add;
1699 elsif Op_Name = Name_Op_Subtract then
1700 Kind := N_Op_Subtract;
1701 elsif Op_Name = Name_Op_Concat then
1702 Kind := N_Op_Concat;
1703 elsif Op_Name = Name_Op_Multiply then
1704 Kind := N_Op_Multiply;
1705 elsif Op_Name = Name_Op_Divide then
1706 Kind := N_Op_Divide;
1707 elsif Op_Name = Name_Op_Mod then
1708 Kind := N_Op_Mod;
1709 elsif Op_Name = Name_Op_Rem then
1710 Kind := N_Op_Rem;
1711 elsif Op_Name = Name_Op_Expon then
1712 Kind := N_Op_Expon;
1713 else
1714 raise Program_Error;
1715 end if;
1717 -- Unary operators
1719 else
1720 if Op_Name = Name_Op_Add then
1721 Kind := N_Op_Plus;
1722 elsif Op_Name = Name_Op_Subtract then
1723 Kind := N_Op_Minus;
1724 elsif Op_Name = Name_Op_Abs then
1725 Kind := N_Op_Abs;
1726 elsif Op_Name = Name_Op_Not then
1727 Kind := N_Op_Not;
1728 else
1729 raise Program_Error;
1730 end if;
1731 end if;
1733 return Kind;
1734 end Operator_Kind;
1736 ----------------------------
1737 -- Preanalyze_And_Resolve --
1738 ----------------------------
1740 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1741 Save_Full_Analysis : constant Boolean := Full_Analysis;
1743 begin
1744 Full_Analysis := False;
1745 Expander_Mode_Save_And_Set (False);
1747 -- Normally, we suppress all checks for this preanalysis. There is no
1748 -- point in processing them now, since they will be applied properly
1749 -- and in the proper location when the default expressions reanalyzed
1750 -- and reexpanded later on. We will also have more information at that
1751 -- point for possible suppression of individual checks.
1753 -- However, in SPARK mode, most expansion is suppressed, and this
1754 -- later reanalysis and reexpansion may not occur. SPARK mode does
1755 -- require the setting of checking flags for proof purposes, so we
1756 -- do the SPARK preanalysis without suppressing checks.
1758 -- This special handling for SPARK mode is required for example in the
1759 -- case of Ada 2012 constructs such as quantified expressions, which are
1760 -- expanded in two separate steps.
1762 if GNATprove_Mode then
1763 Analyze_And_Resolve (N, T);
1764 else
1765 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1766 end if;
1768 Expander_Mode_Restore;
1769 Full_Analysis := Save_Full_Analysis;
1770 end Preanalyze_And_Resolve;
1772 -- Version without context type
1774 procedure Preanalyze_And_Resolve (N : Node_Id) is
1775 Save_Full_Analysis : constant Boolean := Full_Analysis;
1777 begin
1778 Full_Analysis := False;
1779 Expander_Mode_Save_And_Set (False);
1781 Analyze (N);
1782 Resolve (N, Etype (N), Suppress => All_Checks);
1784 Expander_Mode_Restore;
1785 Full_Analysis := Save_Full_Analysis;
1786 end Preanalyze_And_Resolve;
1788 ----------------------------------
1789 -- Replace_Actual_Discriminants --
1790 ----------------------------------
1792 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1793 Loc : constant Source_Ptr := Sloc (N);
1794 Tsk : Node_Id := Empty;
1796 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1797 -- Comment needed???
1799 -------------------
1800 -- Process_Discr --
1801 -------------------
1803 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1804 Ent : Entity_Id;
1806 begin
1807 if Nkind (Nod) = N_Identifier then
1808 Ent := Entity (Nod);
1810 if Present (Ent)
1811 and then Ekind (Ent) = E_Discriminant
1812 then
1813 Rewrite (Nod,
1814 Make_Selected_Component (Loc,
1815 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1816 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1818 Set_Etype (Nod, Etype (Ent));
1819 end if;
1821 end if;
1823 return OK;
1824 end Process_Discr;
1826 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1828 -- Start of processing for Replace_Actual_Discriminants
1830 begin
1831 if not Expander_Active then
1832 return;
1833 end if;
1835 if Nkind (Name (N)) = N_Selected_Component then
1836 Tsk := Prefix (Name (N));
1838 elsif Nkind (Name (N)) = N_Indexed_Component then
1839 Tsk := Prefix (Prefix (Name (N)));
1840 end if;
1842 if No (Tsk) then
1843 return;
1844 else
1845 Replace_Discrs (Default);
1846 end if;
1847 end Replace_Actual_Discriminants;
1849 -------------
1850 -- Resolve --
1851 -------------
1853 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1854 Ambiguous : Boolean := False;
1855 Ctx_Type : Entity_Id := Typ;
1856 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1857 Err_Type : Entity_Id := Empty;
1858 Found : Boolean := False;
1859 From_Lib : Boolean;
1860 I : Interp_Index;
1861 I1 : Interp_Index := 0; -- prevent junk warning
1862 It : Interp;
1863 It1 : Interp;
1864 Seen : Entity_Id := Empty; -- prevent junk warning
1866 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1867 -- Determine whether a node comes from a predefined library unit or
1868 -- Standard.
1870 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1871 -- Try and fix up a literal so that it matches its expected type. New
1872 -- literals are manufactured if necessary to avoid cascaded errors.
1874 procedure Report_Ambiguous_Argument;
1875 -- Additional diagnostics when an ambiguous call has an ambiguous
1876 -- argument (typically a controlling actual).
1878 procedure Resolution_Failed;
1879 -- Called when attempt at resolving current expression fails
1881 ------------------------------------
1882 -- Comes_From_Predefined_Lib_Unit --
1883 -------------------------------------
1885 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1886 begin
1887 return
1888 Sloc (Nod) = Standard_Location
1889 or else Is_Predefined_File_Name
1890 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1891 end Comes_From_Predefined_Lib_Unit;
1893 --------------------
1894 -- Patch_Up_Value --
1895 --------------------
1897 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1898 begin
1899 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1900 Rewrite (N,
1901 Make_Real_Literal (Sloc (N),
1902 Realval => UR_From_Uint (Intval (N))));
1903 Set_Etype (N, Universal_Real);
1904 Set_Is_Static_Expression (N);
1906 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1907 Rewrite (N,
1908 Make_Integer_Literal (Sloc (N),
1909 Intval => UR_To_Uint (Realval (N))));
1910 Set_Etype (N, Universal_Integer);
1911 Set_Is_Static_Expression (N);
1913 elsif Nkind (N) = N_String_Literal
1914 and then Is_Character_Type (Typ)
1915 then
1916 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1917 Rewrite (N,
1918 Make_Character_Literal (Sloc (N),
1919 Chars => Name_Find,
1920 Char_Literal_Value =>
1921 UI_From_Int (Character'Pos ('A'))));
1922 Set_Etype (N, Any_Character);
1923 Set_Is_Static_Expression (N);
1925 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1926 Rewrite (N,
1927 Make_String_Literal (Sloc (N),
1928 Strval => End_String));
1930 elsif Nkind (N) = N_Range then
1931 Patch_Up_Value (Low_Bound (N), Typ);
1932 Patch_Up_Value (High_Bound (N), Typ);
1933 end if;
1934 end Patch_Up_Value;
1936 -------------------------------
1937 -- Report_Ambiguous_Argument --
1938 -------------------------------
1940 procedure Report_Ambiguous_Argument is
1941 Arg : constant Node_Id := First (Parameter_Associations (N));
1942 I : Interp_Index;
1943 It : Interp;
1945 begin
1946 if Nkind (Arg) = N_Function_Call
1947 and then Is_Entity_Name (Name (Arg))
1948 and then Is_Overloaded (Name (Arg))
1949 then
1950 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1952 -- Could use comments on what is going on here???
1954 Get_First_Interp (Name (Arg), I, It);
1955 while Present (It.Nam) loop
1956 Error_Msg_Sloc := Sloc (It.Nam);
1958 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1959 Error_Msg_N ("interpretation (inherited) #!", Arg);
1960 else
1961 Error_Msg_N ("interpretation #!", Arg);
1962 end if;
1964 Get_Next_Interp (I, It);
1965 end loop;
1966 end if;
1967 end Report_Ambiguous_Argument;
1969 -----------------------
1970 -- Resolution_Failed --
1971 -----------------------
1973 procedure Resolution_Failed is
1974 begin
1975 Patch_Up_Value (N, Typ);
1976 Set_Etype (N, Typ);
1977 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1978 Set_Is_Overloaded (N, False);
1980 -- The caller will return without calling the expander, so we need
1981 -- to set the analyzed flag. Note that it is fine to set Analyzed
1982 -- to True even if we are in the middle of a shallow analysis,
1983 -- (see the spec of sem for more details) since this is an error
1984 -- situation anyway, and there is no point in repeating the
1985 -- analysis later (indeed it won't work to repeat it later, since
1986 -- we haven't got a clear resolution of which entity is being
1987 -- referenced.)
1989 Set_Analyzed (N, True);
1990 return;
1991 end Resolution_Failed;
1993 -- Start of processing for Resolve
1995 begin
1996 if N = Error then
1997 return;
1998 end if;
2000 -- Access attribute on remote subprogram cannot be used for a non-remote
2001 -- access-to-subprogram type.
2003 if Nkind (N) = N_Attribute_Reference
2004 and then Nam_In (Attribute_Name (N), Name_Access,
2005 Name_Unrestricted_Access,
2006 Name_Unchecked_Access)
2007 and then Comes_From_Source (N)
2008 and then Is_Entity_Name (Prefix (N))
2009 and then Is_Subprogram (Entity (Prefix (N)))
2010 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2011 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2012 then
2013 Error_Msg_N
2014 ("prefix must statically denote a non-remote subprogram", N);
2015 end if;
2017 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2019 -- If the context is a Remote_Access_To_Subprogram, access attributes
2020 -- must be resolved with the corresponding fat pointer. There is no need
2021 -- to check for the attribute name since the return type of an
2022 -- attribute is never a remote type.
2024 if Nkind (N) = N_Attribute_Reference
2025 and then Comes_From_Source (N)
2026 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2027 then
2028 declare
2029 Attr : constant Attribute_Id :=
2030 Get_Attribute_Id (Attribute_Name (N));
2031 Pref : constant Node_Id := Prefix (N);
2032 Decl : Node_Id;
2033 Spec : Node_Id;
2034 Is_Remote : Boolean := True;
2036 begin
2037 -- Check that Typ is a remote access-to-subprogram type
2039 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2041 -- Prefix (N) must statically denote a remote subprogram
2042 -- declared in a package specification.
2044 if Attr = Attribute_Access or else
2045 Attr = Attribute_Unchecked_Access or else
2046 Attr = Attribute_Unrestricted_Access
2047 then
2048 Decl := Unit_Declaration_Node (Entity (Pref));
2050 if Nkind (Decl) = N_Subprogram_Body then
2051 Spec := Corresponding_Spec (Decl);
2053 if Present (Spec) then
2054 Decl := Unit_Declaration_Node (Spec);
2055 end if;
2056 end if;
2058 Spec := Parent (Decl);
2060 if not Is_Entity_Name (Prefix (N))
2061 or else Nkind (Spec) /= N_Package_Specification
2062 or else
2063 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2064 then
2065 Is_Remote := False;
2066 Error_Msg_N
2067 ("prefix must statically denote a remote subprogram ",
2069 end if;
2071 -- If we are generating code in distributed mode, perform
2072 -- semantic checks against corresponding remote entities.
2074 if Expander_Active
2075 and then Get_PCS_Name /= Name_No_DSA
2076 then
2077 Check_Subtype_Conformant
2078 (New_Id => Entity (Prefix (N)),
2079 Old_Id => Designated_Type
2080 (Corresponding_Remote_Type (Typ)),
2081 Err_Loc => N);
2083 if Is_Remote then
2084 Process_Remote_AST_Attribute (N, Typ);
2085 end if;
2086 end if;
2087 end if;
2088 end if;
2089 end;
2090 end if;
2092 Debug_A_Entry ("resolving ", N);
2094 if Debug_Flag_V then
2095 Write_Overloads (N);
2096 end if;
2098 if Comes_From_Source (N) then
2099 if Is_Fixed_Point_Type (Typ) then
2100 Check_Restriction (No_Fixed_Point, N);
2102 elsif Is_Floating_Point_Type (Typ)
2103 and then Typ /= Universal_Real
2104 and then Typ /= Any_Real
2105 then
2106 Check_Restriction (No_Floating_Point, N);
2107 end if;
2108 end if;
2110 -- Return if already analyzed
2112 if Analyzed (N) then
2113 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2114 Analyze_Dimension (N);
2115 return;
2117 -- Any case of Any_Type as the Etype value means that we had a
2118 -- previous error.
2120 elsif Etype (N) = Any_Type then
2121 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2122 return;
2123 end if;
2125 Check_Parameterless_Call (N);
2127 -- The resolution of an Expression_With_Actions is determined by
2128 -- its Expression.
2130 if Nkind (N) = N_Expression_With_Actions then
2131 Resolve (Expression (N), Typ);
2133 Found := True;
2134 Expr_Type := Etype (Expression (N));
2136 -- If not overloaded, then we know the type, and all that needs doing
2137 -- is to check that this type is compatible with the context.
2139 elsif not Is_Overloaded (N) then
2140 Found := Covers (Typ, Etype (N));
2141 Expr_Type := Etype (N);
2143 -- In the overloaded case, we must select the interpretation that
2144 -- is compatible with the context (i.e. the type passed to Resolve)
2146 else
2147 -- Loop through possible interpretations
2149 Get_First_Interp (N, I, It);
2150 Interp_Loop : while Present (It.Typ) loop
2151 if Debug_Flag_V then
2152 Write_Str ("Interp: ");
2153 Write_Interp (It);
2154 end if;
2156 -- We are only interested in interpretations that are compatible
2157 -- with the expected type, any other interpretations are ignored.
2159 if not Covers (Typ, It.Typ) then
2160 if Debug_Flag_V then
2161 Write_Str (" interpretation incompatible with context");
2162 Write_Eol;
2163 end if;
2165 else
2166 -- Skip the current interpretation if it is disabled by an
2167 -- abstract operator. This action is performed only when the
2168 -- type against which we are resolving is the same as the
2169 -- type of the interpretation.
2171 if Ada_Version >= Ada_2005
2172 and then It.Typ = Typ
2173 and then Typ /= Universal_Integer
2174 and then Typ /= Universal_Real
2175 and then Present (It.Abstract_Op)
2176 then
2177 if Debug_Flag_V then
2178 Write_Line ("Skip.");
2179 end if;
2181 goto Continue;
2182 end if;
2184 -- First matching interpretation
2186 if not Found then
2187 Found := True;
2188 I1 := I;
2189 Seen := It.Nam;
2190 Expr_Type := It.Typ;
2192 -- Matching interpretation that is not the first, maybe an
2193 -- error, but there are some cases where preference rules are
2194 -- used to choose between the two possibilities. These and
2195 -- some more obscure cases are handled in Disambiguate.
2197 else
2198 -- If the current statement is part of a predefined library
2199 -- unit, then all interpretations which come from user level
2200 -- packages should not be considered. Check previous and
2201 -- current one.
2203 if From_Lib then
2204 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2205 goto Continue;
2207 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2209 -- Previous interpretation must be discarded
2211 I1 := I;
2212 Seen := It.Nam;
2213 Expr_Type := It.Typ;
2214 Set_Entity (N, Seen);
2215 goto Continue;
2216 end if;
2217 end if;
2219 -- Otherwise apply further disambiguation steps
2221 Error_Msg_Sloc := Sloc (Seen);
2222 It1 := Disambiguate (N, I1, I, Typ);
2224 -- Disambiguation has succeeded. Skip the remaining
2225 -- interpretations.
2227 if It1 /= No_Interp then
2228 Seen := It1.Nam;
2229 Expr_Type := It1.Typ;
2231 while Present (It.Typ) loop
2232 Get_Next_Interp (I, It);
2233 end loop;
2235 else
2236 -- Before we issue an ambiguity complaint, check for
2237 -- the case of a subprogram call where at least one
2238 -- of the arguments is Any_Type, and if so, suppress
2239 -- the message, since it is a cascaded error.
2241 if Nkind (N) in N_Subprogram_Call then
2242 declare
2243 A : Node_Id;
2244 E : Node_Id;
2246 begin
2247 A := First_Actual (N);
2248 while Present (A) loop
2249 E := A;
2251 if Nkind (E) = N_Parameter_Association then
2252 E := Explicit_Actual_Parameter (E);
2253 end if;
2255 if Etype (E) = Any_Type then
2256 if Debug_Flag_V then
2257 Write_Str ("Any_Type in call");
2258 Write_Eol;
2259 end if;
2261 exit Interp_Loop;
2262 end if;
2264 Next_Actual (A);
2265 end loop;
2266 end;
2268 elsif Nkind (N) in N_Binary_Op
2269 and then (Etype (Left_Opnd (N)) = Any_Type
2270 or else Etype (Right_Opnd (N)) = Any_Type)
2271 then
2272 exit Interp_Loop;
2274 elsif Nkind (N) in N_Unary_Op
2275 and then Etype (Right_Opnd (N)) = Any_Type
2276 then
2277 exit Interp_Loop;
2278 end if;
2280 -- Not that special case, so issue message using the
2281 -- flag Ambiguous to control printing of the header
2282 -- message only at the start of an ambiguous set.
2284 if not Ambiguous then
2285 if Nkind (N) = N_Function_Call
2286 and then Nkind (Name (N)) = N_Explicit_Dereference
2287 then
2288 Error_Msg_N
2289 ("ambiguous expression "
2290 & "(cannot resolve indirect call)!", N);
2291 else
2292 Error_Msg_NE -- CODEFIX
2293 ("ambiguous expression (cannot resolve&)!",
2294 N, It.Nam);
2295 end if;
2297 Ambiguous := True;
2299 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2300 Error_Msg_N
2301 ("\\possible interpretation (inherited)#!", N);
2302 else
2303 Error_Msg_N -- CODEFIX
2304 ("\\possible interpretation#!", N);
2305 end if;
2307 if Nkind (N) in N_Subprogram_Call
2308 and then Present (Parameter_Associations (N))
2309 then
2310 Report_Ambiguous_Argument;
2311 end if;
2312 end if;
2314 Error_Msg_Sloc := Sloc (It.Nam);
2316 -- By default, the error message refers to the candidate
2317 -- interpretation. But if it is a predefined operator, it
2318 -- is implicitly declared at the declaration of the type
2319 -- of the operand. Recover the sloc of that declaration
2320 -- for the error message.
2322 if Nkind (N) in N_Op
2323 and then Scope (It.Nam) = Standard_Standard
2324 and then not Is_Overloaded (Right_Opnd (N))
2325 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2326 Standard_Standard
2327 then
2328 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2330 if Comes_From_Source (Err_Type)
2331 and then Present (Parent (Err_Type))
2332 then
2333 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2334 end if;
2336 elsif Nkind (N) in N_Binary_Op
2337 and then Scope (It.Nam) = Standard_Standard
2338 and then not Is_Overloaded (Left_Opnd (N))
2339 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2340 Standard_Standard
2341 then
2342 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2344 if Comes_From_Source (Err_Type)
2345 and then Present (Parent (Err_Type))
2346 then
2347 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2348 end if;
2350 -- If this is an indirect call, use the subprogram_type
2351 -- in the message, to have a meaningful location. Also
2352 -- indicate if this is an inherited operation, created
2353 -- by a type declaration.
2355 elsif Nkind (N) = N_Function_Call
2356 and then Nkind (Name (N)) = N_Explicit_Dereference
2357 and then Is_Type (It.Nam)
2358 then
2359 Err_Type := It.Nam;
2360 Error_Msg_Sloc :=
2361 Sloc (Associated_Node_For_Itype (Err_Type));
2362 else
2363 Err_Type := Empty;
2364 end if;
2366 if Nkind (N) in N_Op
2367 and then Scope (It.Nam) = Standard_Standard
2368 and then Present (Err_Type)
2369 then
2370 -- Special-case the message for universal_fixed
2371 -- operators, which are not declared with the type
2372 -- of the operand, but appear forever in Standard.
2374 if It.Typ = Universal_Fixed
2375 and then Scope (It.Nam) = Standard_Standard
2376 then
2377 Error_Msg_N
2378 ("\\possible interpretation as universal_fixed "
2379 & "operation (RM 4.5.5 (19))", N);
2380 else
2381 Error_Msg_N
2382 ("\\possible interpretation (predefined)#!", N);
2383 end if;
2385 elsif
2386 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2387 then
2388 Error_Msg_N
2389 ("\\possible interpretation (inherited)#!", N);
2390 else
2391 Error_Msg_N -- CODEFIX
2392 ("\\possible interpretation#!", N);
2393 end if;
2395 end if;
2396 end if;
2398 -- We have a matching interpretation, Expr_Type is the type
2399 -- from this interpretation, and Seen is the entity.
2401 -- For an operator, just set the entity name. The type will be
2402 -- set by the specific operator resolution routine.
2404 if Nkind (N) in N_Op then
2405 Set_Entity (N, Seen);
2406 Generate_Reference (Seen, N);
2408 elsif Nkind (N) = N_Case_Expression then
2409 Set_Etype (N, Expr_Type);
2411 elsif Nkind (N) = N_Character_Literal then
2412 Set_Etype (N, Expr_Type);
2414 elsif Nkind (N) = N_If_Expression then
2415 Set_Etype (N, Expr_Type);
2417 -- AI05-0139-2: Expression is overloaded because type has
2418 -- implicit dereference. If type matches context, no implicit
2419 -- dereference is involved.
2421 elsif Has_Implicit_Dereference (Expr_Type) then
2422 Set_Etype (N, Expr_Type);
2423 Set_Is_Overloaded (N, False);
2424 exit Interp_Loop;
2426 elsif Is_Overloaded (N)
2427 and then Present (It.Nam)
2428 and then Ekind (It.Nam) = E_Discriminant
2429 and then Has_Implicit_Dereference (It.Nam)
2430 then
2431 -- If the node is a general indexing, the dereference is
2432 -- is inserted when resolving the rewritten form, else
2433 -- insert it now.
2435 if Nkind (N) /= N_Indexed_Component
2436 or else No (Generalized_Indexing (N))
2437 then
2438 Build_Explicit_Dereference (N, It.Nam);
2439 end if;
2441 -- For an explicit dereference, attribute reference, range,
2442 -- short-circuit form (which is not an operator node), or call
2443 -- with a name that is an explicit dereference, there is
2444 -- nothing to be done at this point.
2446 elsif Nkind_In (N, N_Explicit_Dereference,
2447 N_Attribute_Reference,
2448 N_And_Then,
2449 N_Indexed_Component,
2450 N_Or_Else,
2451 N_Range,
2452 N_Selected_Component,
2453 N_Slice)
2454 or else Nkind (Name (N)) = N_Explicit_Dereference
2455 then
2456 null;
2458 -- For procedure or function calls, set the type of the name,
2459 -- and also the entity pointer for the prefix.
2461 elsif Nkind (N) in N_Subprogram_Call
2462 and then Is_Entity_Name (Name (N))
2463 then
2464 Set_Etype (Name (N), Expr_Type);
2465 Set_Entity (Name (N), Seen);
2466 Generate_Reference (Seen, Name (N));
2468 elsif Nkind (N) = N_Function_Call
2469 and then Nkind (Name (N)) = N_Selected_Component
2470 then
2471 Set_Etype (Name (N), Expr_Type);
2472 Set_Entity (Selector_Name (Name (N)), Seen);
2473 Generate_Reference (Seen, Selector_Name (Name (N)));
2475 -- For all other cases, just set the type of the Name
2477 else
2478 Set_Etype (Name (N), Expr_Type);
2479 end if;
2481 end if;
2483 <<Continue>>
2485 -- Move to next interpretation
2487 exit Interp_Loop when No (It.Typ);
2489 Get_Next_Interp (I, It);
2490 end loop Interp_Loop;
2491 end if;
2493 -- At this stage Found indicates whether or not an acceptable
2494 -- interpretation exists. If not, then we have an error, except that if
2495 -- the context is Any_Type as a result of some other error, then we
2496 -- suppress the error report.
2498 if not Found then
2499 if Typ /= Any_Type then
2501 -- If type we are looking for is Void, then this is the procedure
2502 -- call case, and the error is simply that what we gave is not a
2503 -- procedure name (we think of procedure calls as expressions with
2504 -- types internally, but the user doesn't think of them this way).
2506 if Typ = Standard_Void_Type then
2508 -- Special case message if function used as a procedure
2510 if Nkind (N) = N_Procedure_Call_Statement
2511 and then Is_Entity_Name (Name (N))
2512 and then Ekind (Entity (Name (N))) = E_Function
2513 then
2514 Error_Msg_NE
2515 ("cannot use function & in a procedure call",
2516 Name (N), Entity (Name (N)));
2518 -- Otherwise give general message (not clear what cases this
2519 -- covers, but no harm in providing for them).
2521 else
2522 Error_Msg_N ("expect procedure name in procedure call", N);
2523 end if;
2525 Found := True;
2527 -- Otherwise we do have a subexpression with the wrong type
2529 -- Check for the case of an allocator which uses an access type
2530 -- instead of the designated type. This is a common error and we
2531 -- specialize the message, posting an error on the operand of the
2532 -- allocator, complaining that we expected the designated type of
2533 -- the allocator.
2535 elsif Nkind (N) = N_Allocator
2536 and then Is_Access_Type (Typ)
2537 and then Is_Access_Type (Etype (N))
2538 and then Designated_Type (Etype (N)) = Typ
2539 then
2540 Wrong_Type (Expression (N), Designated_Type (Typ));
2541 Found := True;
2543 -- Check for view mismatch on Null in instances, for which the
2544 -- view-swapping mechanism has no identifier.
2546 elsif (In_Instance or else In_Inlined_Body)
2547 and then (Nkind (N) = N_Null)
2548 and then Is_Private_Type (Typ)
2549 and then Is_Access_Type (Full_View (Typ))
2550 then
2551 Resolve (N, Full_View (Typ));
2552 Set_Etype (N, Typ);
2553 return;
2555 -- Check for an aggregate. Sometimes we can get bogus aggregates
2556 -- from misuse of parentheses, and we are about to complain about
2557 -- the aggregate without even looking inside it.
2559 -- Instead, if we have an aggregate of type Any_Composite, then
2560 -- analyze and resolve the component fields, and then only issue
2561 -- another message if we get no errors doing this (otherwise
2562 -- assume that the errors in the aggregate caused the problem).
2564 elsif Nkind (N) = N_Aggregate
2565 and then Etype (N) = Any_Composite
2566 then
2567 -- Disable expansion in any case. If there is a type mismatch
2568 -- it may be fatal to try to expand the aggregate. The flag
2569 -- would otherwise be set to false when the error is posted.
2571 Expander_Active := False;
2573 declare
2574 procedure Check_Aggr (Aggr : Node_Id);
2575 -- Check one aggregate, and set Found to True if we have a
2576 -- definite error in any of its elements
2578 procedure Check_Elmt (Aelmt : Node_Id);
2579 -- Check one element of aggregate and set Found to True if
2580 -- we definitely have an error in the element.
2582 ----------------
2583 -- Check_Aggr --
2584 ----------------
2586 procedure Check_Aggr (Aggr : Node_Id) is
2587 Elmt : Node_Id;
2589 begin
2590 if Present (Expressions (Aggr)) then
2591 Elmt := First (Expressions (Aggr));
2592 while Present (Elmt) loop
2593 Check_Elmt (Elmt);
2594 Next (Elmt);
2595 end loop;
2596 end if;
2598 if Present (Component_Associations (Aggr)) then
2599 Elmt := First (Component_Associations (Aggr));
2600 while Present (Elmt) loop
2602 -- If this is a default-initialized component, then
2603 -- there is nothing to check. The box will be
2604 -- replaced by the appropriate call during late
2605 -- expansion.
2607 if not Box_Present (Elmt) then
2608 Check_Elmt (Expression (Elmt));
2609 end if;
2611 Next (Elmt);
2612 end loop;
2613 end if;
2614 end Check_Aggr;
2616 ----------------
2617 -- Check_Elmt --
2618 ----------------
2620 procedure Check_Elmt (Aelmt : Node_Id) is
2621 begin
2622 -- If we have a nested aggregate, go inside it (to
2623 -- attempt a naked analyze-resolve of the aggregate can
2624 -- cause undesirable cascaded errors). Do not resolve
2625 -- expression if it needs a type from context, as for
2626 -- integer * fixed expression.
2628 if Nkind (Aelmt) = N_Aggregate then
2629 Check_Aggr (Aelmt);
2631 else
2632 Analyze (Aelmt);
2634 if not Is_Overloaded (Aelmt)
2635 and then Etype (Aelmt) /= Any_Fixed
2636 then
2637 Resolve (Aelmt);
2638 end if;
2640 if Etype (Aelmt) = Any_Type then
2641 Found := True;
2642 end if;
2643 end if;
2644 end Check_Elmt;
2646 begin
2647 Check_Aggr (N);
2648 end;
2649 end if;
2651 -- Looks like we have a type error, but check for special case
2652 -- of Address wanted, integer found, with the configuration pragma
2653 -- Allow_Integer_Address active. If we have this case, introduce
2654 -- an unchecked conversion to allow the integer expression to be
2655 -- treated as an Address. The reverse case of integer wanted,
2656 -- Address found, is treated in an analogous manner.
2658 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2659 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2660 Analyze_And_Resolve (N, Typ);
2661 return;
2662 end if;
2664 -- That special Allow_Integer_Address check did not appply, so we
2665 -- have a real type error. If an error message was issued already,
2666 -- Found got reset to True, so if it's still False, issue standard
2667 -- Wrong_Type message.
2669 if not Found then
2670 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2671 declare
2672 Subp_Name : Node_Id;
2674 begin
2675 if Is_Entity_Name (Name (N)) then
2676 Subp_Name := Name (N);
2678 elsif Nkind (Name (N)) = N_Selected_Component then
2680 -- Protected operation: retrieve operation name
2682 Subp_Name := Selector_Name (Name (N));
2684 else
2685 raise Program_Error;
2686 end if;
2688 Error_Msg_Node_2 := Typ;
2689 Error_Msg_NE
2690 ("no visible interpretation of& "
2691 & "matches expected type&", N, Subp_Name);
2692 end;
2694 if All_Errors_Mode then
2695 declare
2696 Index : Interp_Index;
2697 It : Interp;
2699 begin
2700 Error_Msg_N ("\\possible interpretations:", N);
2702 Get_First_Interp (Name (N), Index, It);
2703 while Present (It.Nam) loop
2704 Error_Msg_Sloc := Sloc (It.Nam);
2705 Error_Msg_Node_2 := It.Nam;
2706 Error_Msg_NE
2707 ("\\ type& for & declared#", N, It.Typ);
2708 Get_Next_Interp (Index, It);
2709 end loop;
2710 end;
2712 else
2713 Error_Msg_N ("\use -gnatf for details", N);
2714 end if;
2716 else
2717 Wrong_Type (N, Typ);
2718 end if;
2719 end if;
2720 end if;
2722 Resolution_Failed;
2723 return;
2725 -- Test if we have more than one interpretation for the context
2727 elsif Ambiguous then
2728 Resolution_Failed;
2729 return;
2731 -- Only one intepretation
2733 else
2734 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2735 -- the "+" on T is abstract, and the operands are of universal type,
2736 -- the above code will have (incorrectly) resolved the "+" to the
2737 -- universal one in Standard. Therefore check for this case and give
2738 -- an error. We can't do this earlier, because it would cause legal
2739 -- cases to get errors (when some other type has an abstract "+").
2741 if Ada_Version >= Ada_2005
2742 and then Nkind (N) in N_Op
2743 and then Is_Overloaded (N)
2744 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2745 then
2746 Get_First_Interp (N, I, It);
2747 while Present (It.Typ) loop
2748 if Present (It.Abstract_Op) and then
2749 Etype (It.Abstract_Op) = Typ
2750 then
2751 Error_Msg_NE
2752 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2753 return;
2754 end if;
2756 Get_Next_Interp (I, It);
2757 end loop;
2758 end if;
2760 -- Here we have an acceptable interpretation for the context
2762 -- Propagate type information and normalize tree for various
2763 -- predefined operations. If the context only imposes a class of
2764 -- types, rather than a specific type, propagate the actual type
2765 -- downward.
2767 if Typ = Any_Integer or else
2768 Typ = Any_Boolean or else
2769 Typ = Any_Modular or else
2770 Typ = Any_Real or else
2771 Typ = Any_Discrete
2772 then
2773 Ctx_Type := Expr_Type;
2775 -- Any_Fixed is legal in a real context only if a specific fixed-
2776 -- point type is imposed. If Norman Cohen can be confused by this,
2777 -- it deserves a separate message.
2779 if Typ = Any_Real
2780 and then Expr_Type = Any_Fixed
2781 then
2782 Error_Msg_N ("illegal context for mixed mode operation", N);
2783 Set_Etype (N, Universal_Real);
2784 Ctx_Type := Universal_Real;
2785 end if;
2786 end if;
2788 -- A user-defined operator is transformed into a function call at
2789 -- this point, so that further processing knows that operators are
2790 -- really operators (i.e. are predefined operators). User-defined
2791 -- operators that are intrinsic are just renamings of the predefined
2792 -- ones, and need not be turned into calls either, but if they rename
2793 -- a different operator, we must transform the node accordingly.
2794 -- Instantiations of Unchecked_Conversion are intrinsic but are
2795 -- treated as functions, even if given an operator designator.
2797 if Nkind (N) in N_Op
2798 and then Present (Entity (N))
2799 and then Ekind (Entity (N)) /= E_Operator
2800 then
2802 if not Is_Predefined_Op (Entity (N)) then
2803 Rewrite_Operator_As_Call (N, Entity (N));
2805 elsif Present (Alias (Entity (N)))
2806 and then
2807 Nkind (Parent (Parent (Entity (N)))) =
2808 N_Subprogram_Renaming_Declaration
2809 then
2810 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2812 -- If the node is rewritten, it will be fully resolved in
2813 -- Rewrite_Renamed_Operator.
2815 if Analyzed (N) then
2816 return;
2817 end if;
2818 end if;
2819 end if;
2821 case N_Subexpr'(Nkind (N)) is
2823 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2825 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2827 when N_Short_Circuit
2828 => Resolve_Short_Circuit (N, Ctx_Type);
2830 when N_Attribute_Reference
2831 => Resolve_Attribute (N, Ctx_Type);
2833 when N_Case_Expression
2834 => Resolve_Case_Expression (N, Ctx_Type);
2836 when N_Character_Literal
2837 => Resolve_Character_Literal (N, Ctx_Type);
2839 when N_Expanded_Name
2840 => Resolve_Entity_Name (N, Ctx_Type);
2842 when N_Explicit_Dereference
2843 => Resolve_Explicit_Dereference (N, Ctx_Type);
2845 when N_Expression_With_Actions
2846 => Resolve_Expression_With_Actions (N, Ctx_Type);
2848 when N_Extension_Aggregate
2849 => Resolve_Extension_Aggregate (N, Ctx_Type);
2851 when N_Function_Call
2852 => Resolve_Call (N, Ctx_Type);
2854 when N_Identifier
2855 => Resolve_Entity_Name (N, Ctx_Type);
2857 when N_If_Expression
2858 => Resolve_If_Expression (N, Ctx_Type);
2860 when N_Indexed_Component
2861 => Resolve_Indexed_Component (N, Ctx_Type);
2863 when N_Integer_Literal
2864 => Resolve_Integer_Literal (N, Ctx_Type);
2866 when N_Membership_Test
2867 => Resolve_Membership_Op (N, Ctx_Type);
2869 when N_Null => Resolve_Null (N, Ctx_Type);
2871 when N_Op_And | N_Op_Or | N_Op_Xor
2872 => Resolve_Logical_Op (N, Ctx_Type);
2874 when N_Op_Eq | N_Op_Ne
2875 => Resolve_Equality_Op (N, Ctx_Type);
2877 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2878 => Resolve_Comparison_Op (N, Ctx_Type);
2880 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2882 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2883 N_Op_Divide | N_Op_Mod | N_Op_Rem
2885 => Resolve_Arithmetic_Op (N, Ctx_Type);
2887 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2889 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2891 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2892 => Resolve_Unary_Op (N, Ctx_Type);
2894 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2896 when N_Procedure_Call_Statement
2897 => Resolve_Call (N, Ctx_Type);
2899 when N_Operator_Symbol
2900 => Resolve_Operator_Symbol (N, Ctx_Type);
2902 when N_Qualified_Expression
2903 => Resolve_Qualified_Expression (N, Ctx_Type);
2905 -- Why is the following null, needs a comment ???
2907 when N_Quantified_Expression
2908 => null;
2910 when N_Raise_Expression
2911 => Resolve_Raise_Expression (N, Ctx_Type);
2913 when N_Raise_xxx_Error
2914 => Set_Etype (N, Ctx_Type);
2916 when N_Range => Resolve_Range (N, Ctx_Type);
2918 when N_Real_Literal
2919 => Resolve_Real_Literal (N, Ctx_Type);
2921 when N_Reference => Resolve_Reference (N, Ctx_Type);
2923 when N_Selected_Component
2924 => Resolve_Selected_Component (N, Ctx_Type);
2926 when N_Slice => Resolve_Slice (N, Ctx_Type);
2928 when N_String_Literal
2929 => Resolve_String_Literal (N, Ctx_Type);
2931 when N_Type_Conversion
2932 => Resolve_Type_Conversion (N, Ctx_Type);
2934 when N_Unchecked_Expression =>
2935 Resolve_Unchecked_Expression (N, Ctx_Type);
2937 when N_Unchecked_Type_Conversion =>
2938 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2939 end case;
2941 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2942 -- expression of an anonymous access type that occurs in the context
2943 -- of a named general access type, except when the expression is that
2944 -- of a membership test. This ensures proper legality checking in
2945 -- terms of allowed conversions (expressions that would be illegal to
2946 -- convert implicitly are allowed in membership tests).
2948 if Ada_Version >= Ada_2012
2949 and then Ekind (Ctx_Type) = E_General_Access_Type
2950 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2951 and then Nkind (Parent (N)) not in N_Membership_Test
2952 then
2953 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2954 Analyze_And_Resolve (N, Ctx_Type);
2955 end if;
2957 -- If the subexpression was replaced by a non-subexpression, then
2958 -- all we do is to expand it. The only legitimate case we know of
2959 -- is converting procedure call statement to entry call statements,
2960 -- but there may be others, so we are making this test general.
2962 if Nkind (N) not in N_Subexpr then
2963 Debug_A_Exit ("resolving ", N, " (done)");
2964 Expand (N);
2965 return;
2966 end if;
2968 -- The expression is definitely NOT overloaded at this point, so
2969 -- we reset the Is_Overloaded flag to avoid any confusion when
2970 -- reanalyzing the node.
2972 Set_Is_Overloaded (N, False);
2974 -- Freeze expression type, entity if it is a name, and designated
2975 -- type if it is an allocator (RM 13.14(10,11,13)).
2977 -- Now that the resolution of the type of the node is complete, and
2978 -- we did not detect an error, we can expand this node. We skip the
2979 -- expand call if we are in a default expression, see section
2980 -- "Handling of Default Expressions" in Sem spec.
2982 Debug_A_Exit ("resolving ", N, " (done)");
2984 -- We unconditionally freeze the expression, even if we are in
2985 -- default expression mode (the Freeze_Expression routine tests this
2986 -- flag and only freezes static types if it is set).
2988 -- Ada 2012 (AI05-177): The declaration of an expression function
2989 -- does not cause freezing, but we never reach here in that case.
2990 -- Here we are resolving the corresponding expanded body, so we do
2991 -- need to perform normal freezing.
2993 Freeze_Expression (N);
2995 -- Now we can do the expansion
2997 Expand (N);
2998 end if;
2999 end Resolve;
3001 -------------
3002 -- Resolve --
3003 -------------
3005 -- Version with check(s) suppressed
3007 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3008 begin
3009 if Suppress = All_Checks then
3010 declare
3011 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3012 begin
3013 Scope_Suppress.Suppress := (others => True);
3014 Resolve (N, Typ);
3015 Scope_Suppress.Suppress := Sva;
3016 end;
3018 else
3019 declare
3020 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3021 begin
3022 Scope_Suppress.Suppress (Suppress) := True;
3023 Resolve (N, Typ);
3024 Scope_Suppress.Suppress (Suppress) := Svg;
3025 end;
3026 end if;
3027 end Resolve;
3029 -------------
3030 -- Resolve --
3031 -------------
3033 -- Version with implicit type
3035 procedure Resolve (N : Node_Id) is
3036 begin
3037 Resolve (N, Etype (N));
3038 end Resolve;
3040 ---------------------
3041 -- Resolve_Actuals --
3042 ---------------------
3044 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3045 Loc : constant Source_Ptr := Sloc (N);
3046 A : Node_Id;
3047 A_Id : Entity_Id;
3048 A_Typ : Entity_Id;
3049 F : Entity_Id;
3050 F_Typ : Entity_Id;
3051 Prev : Node_Id := Empty;
3052 Orig_A : Node_Id;
3054 procedure Check_Aliased_Parameter;
3055 -- Check rules on aliased parameters and related accessibility rules
3056 -- in (RM 3.10.2 (10.2-10.4)).
3058 procedure Check_Argument_Order;
3059 -- Performs a check for the case where the actuals are all simple
3060 -- identifiers that correspond to the formal names, but in the wrong
3061 -- order, which is considered suspicious and cause for a warning.
3063 procedure Check_Prefixed_Call;
3064 -- If the original node is an overloaded call in prefix notation,
3065 -- insert an 'Access or a dereference as needed over the first actual.
3066 -- Try_Object_Operation has already verified that there is a valid
3067 -- interpretation, but the form of the actual can only be determined
3068 -- once the primitive operation is identified.
3070 procedure Insert_Default;
3071 -- If the actual is missing in a call, insert in the actuals list
3072 -- an instance of the default expression. The insertion is always
3073 -- a named association.
3075 procedure Property_Error
3076 (Var : Node_Id;
3077 Var_Id : Entity_Id;
3078 Prop_Nam : Name_Id);
3079 -- Emit an error concerning variable Var with entity Var_Id that has
3080 -- enabled property Prop_Nam when it acts as an actual parameter in a
3081 -- call and the corresponding formal parameter is of mode IN.
3083 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3084 -- Check whether T1 and T2, or their full views, are derived from a
3085 -- common type. Used to enforce the restrictions on array conversions
3086 -- of AI95-00246.
3088 function Static_Concatenation (N : Node_Id) return Boolean;
3089 -- Predicate to determine whether an actual that is a concatenation
3090 -- will be evaluated statically and does not need a transient scope.
3091 -- This must be determined before the actual is resolved and expanded
3092 -- because if needed the transient scope must be introduced earlier.
3094 -----------------------------
3095 -- Check_Aliased_Parameter --
3096 -----------------------------
3098 procedure Check_Aliased_Parameter is
3099 Nominal_Subt : Entity_Id;
3101 begin
3102 if Is_Aliased (F) then
3103 if Is_Tagged_Type (A_Typ) then
3104 null;
3106 elsif Is_Aliased_View (A) then
3107 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3108 Nominal_Subt := Base_Type (A_Typ);
3109 else
3110 Nominal_Subt := A_Typ;
3111 end if;
3113 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3114 null;
3116 -- In a generic body assume the worst for generic formals:
3117 -- they can have a constrained partial view (AI05-041).
3119 elsif Has_Discriminants (F_Typ)
3120 and then not Is_Constrained (F_Typ)
3121 and then not Has_Constrained_Partial_View (F_Typ)
3122 and then not Is_Generic_Type (F_Typ)
3123 then
3124 null;
3126 else
3127 Error_Msg_NE ("untagged actual does not match "
3128 & "aliased formal&", A, F);
3129 end if;
3131 else
3132 Error_Msg_NE ("actual for aliased formal& must be "
3133 & "aliased object", A, F);
3134 end if;
3136 if Ekind (Nam) = E_Procedure then
3137 null;
3139 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3140 if Nkind (Parent (N)) = N_Type_Conversion
3141 and then Type_Access_Level (Etype (Parent (N))) <
3142 Object_Access_Level (A)
3143 then
3144 Error_Msg_N ("aliased actual has wrong accessibility", A);
3145 end if;
3147 elsif Nkind (Parent (N)) = N_Qualified_Expression
3148 and then Nkind (Parent (Parent (N))) = N_Allocator
3149 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3150 Object_Access_Level (A)
3151 then
3152 Error_Msg_N
3153 ("aliased actual in allocator has wrong accessibility", A);
3154 end if;
3155 end if;
3156 end Check_Aliased_Parameter;
3158 --------------------------
3159 -- Check_Argument_Order --
3160 --------------------------
3162 procedure Check_Argument_Order is
3163 begin
3164 -- Nothing to do if no parameters, or original node is neither a
3165 -- function call nor a procedure call statement (happens in the
3166 -- operator-transformed-to-function call case), or the call does
3167 -- not come from source, or this warning is off.
3169 if not Warn_On_Parameter_Order
3170 or else No (Parameter_Associations (N))
3171 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3172 or else not Comes_From_Source (N)
3173 then
3174 return;
3175 end if;
3177 declare
3178 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3180 begin
3181 -- Nothing to do if only one parameter
3183 if Nargs < 2 then
3184 return;
3185 end if;
3187 -- Here if at least two arguments
3189 declare
3190 Actuals : array (1 .. Nargs) of Node_Id;
3191 Actual : Node_Id;
3192 Formal : Node_Id;
3194 Wrong_Order : Boolean := False;
3195 -- Set True if an out of order case is found
3197 begin
3198 -- Collect identifier names of actuals, fail if any actual is
3199 -- not a simple identifier, and record max length of name.
3201 Actual := First (Parameter_Associations (N));
3202 for J in Actuals'Range loop
3203 if Nkind (Actual) /= N_Identifier then
3204 return;
3205 else
3206 Actuals (J) := Actual;
3207 Next (Actual);
3208 end if;
3209 end loop;
3211 -- If we got this far, all actuals are identifiers and the list
3212 -- of their names is stored in the Actuals array.
3214 Formal := First_Formal (Nam);
3215 for J in Actuals'Range loop
3217 -- If we ran out of formals, that's odd, probably an error
3218 -- which will be detected elsewhere, but abandon the search.
3220 if No (Formal) then
3221 return;
3222 end if;
3224 -- If name matches and is in order OK
3226 if Chars (Formal) = Chars (Actuals (J)) then
3227 null;
3229 else
3230 -- If no match, see if it is elsewhere in list and if so
3231 -- flag potential wrong order if type is compatible.
3233 for K in Actuals'Range loop
3234 if Chars (Formal) = Chars (Actuals (K))
3235 and then
3236 Has_Compatible_Type (Actuals (K), Etype (Formal))
3237 then
3238 Wrong_Order := True;
3239 goto Continue;
3240 end if;
3241 end loop;
3243 -- No match
3245 return;
3246 end if;
3248 <<Continue>> Next_Formal (Formal);
3249 end loop;
3251 -- If Formals left over, also probably an error, skip warning
3253 if Present (Formal) then
3254 return;
3255 end if;
3257 -- Here we give the warning if something was out of order
3259 if Wrong_Order then
3260 Error_Msg_N
3261 ("?P?actuals for this call may be in wrong order", N);
3262 end if;
3263 end;
3264 end;
3265 end Check_Argument_Order;
3267 -------------------------
3268 -- Check_Prefixed_Call --
3269 -------------------------
3271 procedure Check_Prefixed_Call is
3272 Act : constant Node_Id := First_Actual (N);
3273 A_Type : constant Entity_Id := Etype (Act);
3274 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3275 Orig : constant Node_Id := Original_Node (N);
3276 New_A : Node_Id;
3278 begin
3279 -- Check whether the call is a prefixed call, with or without
3280 -- additional actuals.
3282 if Nkind (Orig) = N_Selected_Component
3283 or else
3284 (Nkind (Orig) = N_Indexed_Component
3285 and then Nkind (Prefix (Orig)) = N_Selected_Component
3286 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3287 and then Is_Entity_Name (Act)
3288 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3289 then
3290 if Is_Access_Type (A_Type)
3291 and then not Is_Access_Type (F_Type)
3292 then
3293 -- Introduce dereference on object in prefix
3295 New_A :=
3296 Make_Explicit_Dereference (Sloc (Act),
3297 Prefix => Relocate_Node (Act));
3298 Rewrite (Act, New_A);
3299 Analyze (Act);
3301 elsif Is_Access_Type (F_Type)
3302 and then not Is_Access_Type (A_Type)
3303 then
3304 -- Introduce an implicit 'Access in prefix
3306 if not Is_Aliased_View (Act) then
3307 Error_Msg_NE
3308 ("object in prefixed call to& must be aliased "
3309 & "(RM 4.1.3 (13 1/2))",
3310 Prefix (Act), Nam);
3311 end if;
3313 Rewrite (Act,
3314 Make_Attribute_Reference (Loc,
3315 Attribute_Name => Name_Access,
3316 Prefix => Relocate_Node (Act)));
3317 end if;
3319 Analyze (Act);
3320 end if;
3321 end Check_Prefixed_Call;
3323 --------------------
3324 -- Insert_Default --
3325 --------------------
3327 procedure Insert_Default is
3328 Actval : Node_Id;
3329 Assoc : Node_Id;
3331 begin
3332 -- Missing argument in call, nothing to insert
3334 if No (Default_Value (F)) then
3335 return;
3337 else
3338 -- Note that we do a full New_Copy_Tree, so that any associated
3339 -- Itypes are properly copied. This may not be needed any more,
3340 -- but it does no harm as a safety measure. Defaults of a generic
3341 -- formal may be out of bounds of the corresponding actual (see
3342 -- cc1311b) and an additional check may be required.
3344 Actval :=
3345 New_Copy_Tree
3346 (Default_Value (F),
3347 New_Scope => Current_Scope,
3348 New_Sloc => Loc);
3350 if Is_Concurrent_Type (Scope (Nam))
3351 and then Has_Discriminants (Scope (Nam))
3352 then
3353 Replace_Actual_Discriminants (N, Actval);
3354 end if;
3356 if Is_Overloadable (Nam)
3357 and then Present (Alias (Nam))
3358 then
3359 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3360 and then not Is_Tagged_Type (Etype (F))
3361 then
3362 -- If default is a real literal, do not introduce a
3363 -- conversion whose effect may depend on the run-time
3364 -- size of universal real.
3366 if Nkind (Actval) = N_Real_Literal then
3367 Set_Etype (Actval, Base_Type (Etype (F)));
3368 else
3369 Actval := Unchecked_Convert_To (Etype (F), Actval);
3370 end if;
3371 end if;
3373 if Is_Scalar_Type (Etype (F)) then
3374 Enable_Range_Check (Actval);
3375 end if;
3377 Set_Parent (Actval, N);
3379 -- Resolve aggregates with their base type, to avoid scope
3380 -- anomalies: the subtype was first built in the subprogram
3381 -- declaration, and the current call may be nested.
3383 if Nkind (Actval) = N_Aggregate then
3384 Analyze_And_Resolve (Actval, Etype (F));
3385 else
3386 Analyze_And_Resolve (Actval, Etype (Actval));
3387 end if;
3389 else
3390 Set_Parent (Actval, N);
3392 -- See note above concerning aggregates
3394 if Nkind (Actval) = N_Aggregate
3395 and then Has_Discriminants (Etype (Actval))
3396 then
3397 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3399 -- Resolve entities with their own type, which may differ from
3400 -- the type of a reference in a generic context (the view
3401 -- swapping mechanism did not anticipate the re-analysis of
3402 -- default values in calls).
3404 elsif Is_Entity_Name (Actval) then
3405 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3407 else
3408 Analyze_And_Resolve (Actval, Etype (Actval));
3409 end if;
3410 end if;
3412 -- If default is a tag indeterminate function call, propagate tag
3413 -- to obtain proper dispatching.
3415 if Is_Controlling_Formal (F)
3416 and then Nkind (Default_Value (F)) = N_Function_Call
3417 then
3418 Set_Is_Controlling_Actual (Actval);
3419 end if;
3421 end if;
3423 -- If the default expression raises constraint error, then just
3424 -- silently replace it with an N_Raise_Constraint_Error node, since
3425 -- we already gave the warning on the subprogram spec. If node is
3426 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3427 -- the warnings removal machinery.
3429 if Raises_Constraint_Error (Actval)
3430 and then Nkind (Actval) /= N_Raise_Constraint_Error
3431 then
3432 Rewrite (Actval,
3433 Make_Raise_Constraint_Error (Loc,
3434 Reason => CE_Range_Check_Failed));
3435 Set_Raises_Constraint_Error (Actval);
3436 Set_Etype (Actval, Etype (F));
3437 end if;
3439 Assoc :=
3440 Make_Parameter_Association (Loc,
3441 Explicit_Actual_Parameter => Actval,
3442 Selector_Name => Make_Identifier (Loc, Chars (F)));
3444 -- Case of insertion is first named actual
3446 if No (Prev) or else
3447 Nkind (Parent (Prev)) /= N_Parameter_Association
3448 then
3449 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3450 Set_First_Named_Actual (N, Actval);
3452 if No (Prev) then
3453 if No (Parameter_Associations (N)) then
3454 Set_Parameter_Associations (N, New_List (Assoc));
3455 else
3456 Append (Assoc, Parameter_Associations (N));
3457 end if;
3459 else
3460 Insert_After (Prev, Assoc);
3461 end if;
3463 -- Case of insertion is not first named actual
3465 else
3466 Set_Next_Named_Actual
3467 (Assoc, Next_Named_Actual (Parent (Prev)));
3468 Set_Next_Named_Actual (Parent (Prev), Actval);
3469 Append (Assoc, Parameter_Associations (N));
3470 end if;
3472 Mark_Rewrite_Insertion (Assoc);
3473 Mark_Rewrite_Insertion (Actval);
3475 Prev := Actval;
3476 end Insert_Default;
3478 --------------------
3479 -- Property_Error --
3480 --------------------
3482 procedure Property_Error
3483 (Var : Node_Id;
3484 Var_Id : Entity_Id;
3485 Prop_Nam : Name_Id)
3487 begin
3488 Error_Msg_Name_1 := Prop_Nam;
3489 Error_Msg_NE
3490 ("external variable & with enabled property % cannot appear as "
3491 & "actual in procedure call (SPARK RM 7.1.3(11))", Var, Var_Id);
3492 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3493 end Property_Error;
3495 -------------------
3496 -- Same_Ancestor --
3497 -------------------
3499 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3500 FT1 : Entity_Id := T1;
3501 FT2 : Entity_Id := T2;
3503 begin
3504 if Is_Private_Type (T1)
3505 and then Present (Full_View (T1))
3506 then
3507 FT1 := Full_View (T1);
3508 end if;
3510 if Is_Private_Type (T2)
3511 and then Present (Full_View (T2))
3512 then
3513 FT2 := Full_View (T2);
3514 end if;
3516 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3517 end Same_Ancestor;
3519 --------------------------
3520 -- Static_Concatenation --
3521 --------------------------
3523 function Static_Concatenation (N : Node_Id) return Boolean is
3524 begin
3525 case Nkind (N) is
3526 when N_String_Literal =>
3527 return True;
3529 when N_Op_Concat =>
3531 -- Concatenation is static when both operands are static and
3532 -- the concatenation operator is a predefined one.
3534 return Scope (Entity (N)) = Standard_Standard
3535 and then
3536 Static_Concatenation (Left_Opnd (N))
3537 and then
3538 Static_Concatenation (Right_Opnd (N));
3540 when others =>
3541 if Is_Entity_Name (N) then
3542 declare
3543 Ent : constant Entity_Id := Entity (N);
3544 begin
3545 return Ekind (Ent) = E_Constant
3546 and then Present (Constant_Value (Ent))
3547 and then
3548 Is_OK_Static_Expression (Constant_Value (Ent));
3549 end;
3551 else
3552 return False;
3553 end if;
3554 end case;
3555 end Static_Concatenation;
3557 -- Start of processing for Resolve_Actuals
3559 begin
3560 Check_Argument_Order;
3561 Check_Function_Writable_Actuals (N);
3563 if Present (First_Actual (N)) then
3564 Check_Prefixed_Call;
3565 end if;
3567 A := First_Actual (N);
3568 F := First_Formal (Nam);
3569 while Present (F) loop
3570 if No (A) and then Needs_No_Actuals (Nam) then
3571 null;
3573 -- If we have an error in any actual or formal, indicated by a type
3574 -- of Any_Type, then abandon resolution attempt, and set result type
3575 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3576 -- type is imposed from context.
3578 elsif (Present (A) and then Etype (A) = Any_Type)
3579 or else Etype (F) = Any_Type
3580 then
3581 if Nkind (A) /= N_Raise_Expression then
3582 Set_Etype (N, Any_Type);
3583 return;
3584 end if;
3585 end if;
3587 -- Case where actual is present
3589 -- If the actual is an entity, generate a reference to it now. We
3590 -- do this before the actual is resolved, because a formal of some
3591 -- protected subprogram, or a task discriminant, will be rewritten
3592 -- during expansion, and the source entity reference may be lost.
3594 if Present (A)
3595 and then Is_Entity_Name (A)
3596 and then Comes_From_Source (N)
3597 then
3598 Orig_A := Entity (A);
3600 if Present (Orig_A) then
3601 if Is_Formal (Orig_A)
3602 and then Ekind (F) /= E_In_Parameter
3603 then
3604 Generate_Reference (Orig_A, A, 'm');
3606 elsif not Is_Overloaded (A) then
3607 if Ekind (F) /= E_Out_Parameter then
3608 Generate_Reference (Orig_A, A);
3610 -- RM 6.4.1(12): For an out parameter that is passed by
3611 -- copy, the formal parameter object is created, and:
3613 -- * For an access type, the formal parameter is initialized
3614 -- from the value of the actual, without checking that the
3615 -- value satisfies any constraint, any predicate, or any
3616 -- exclusion of the null value.
3618 -- * For a scalar type that has the Default_Value aspect
3619 -- specified, the formal parameter is initialized from the
3620 -- value of the actual, without checking that the value
3621 -- satisfies any constraint or any predicate.
3622 -- I do not understand why this case is included??? this is
3623 -- not a case where an OUT parameter is treated as IN OUT.
3625 -- * For a composite type with discriminants or that has
3626 -- implicit initial values for any subcomponents, the
3627 -- behavior is as for an in out parameter passed by copy.
3629 -- Hence for these cases we generate the read reference now
3630 -- (the write reference will be generated later by
3631 -- Note_Possible_Modification).
3633 elsif Is_By_Copy_Type (Etype (F))
3634 and then
3635 (Is_Access_Type (Etype (F))
3636 or else
3637 (Is_Scalar_Type (Etype (F))
3638 and then
3639 Present (Default_Aspect_Value (Etype (F))))
3640 or else
3641 (Is_Composite_Type (Etype (F))
3642 and then (Has_Discriminants (Etype (F))
3643 or else Is_Partially_Initialized_Type
3644 (Etype (F)))))
3645 then
3646 Generate_Reference (Orig_A, A);
3647 end if;
3648 end if;
3649 end if;
3650 end if;
3652 if Present (A)
3653 and then (Nkind (Parent (A)) /= N_Parameter_Association
3654 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3655 then
3656 -- If style checking mode on, check match of formal name
3658 if Style_Check then
3659 if Nkind (Parent (A)) = N_Parameter_Association then
3660 Check_Identifier (Selector_Name (Parent (A)), F);
3661 end if;
3662 end if;
3664 -- If the formal is Out or In_Out, do not resolve and expand the
3665 -- conversion, because it is subsequently expanded into explicit
3666 -- temporaries and assignments. However, the object of the
3667 -- conversion can be resolved. An exception is the case of tagged
3668 -- type conversion with a class-wide actual. In that case we want
3669 -- the tag check to occur and no temporary will be needed (no
3670 -- representation change can occur) and the parameter is passed by
3671 -- reference, so we go ahead and resolve the type conversion.
3672 -- Another exception is the case of reference to component or
3673 -- subcomponent of a bit-packed array, in which case we want to
3674 -- defer expansion to the point the in and out assignments are
3675 -- performed.
3677 if Ekind (F) /= E_In_Parameter
3678 and then Nkind (A) = N_Type_Conversion
3679 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3680 then
3681 if Ekind (F) = E_In_Out_Parameter
3682 and then Is_Array_Type (Etype (F))
3683 then
3684 -- In a view conversion, the conversion must be legal in
3685 -- both directions, and thus both component types must be
3686 -- aliased, or neither (4.6 (8)).
3688 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3689 -- the privacy requirement should not apply to generic
3690 -- types, and should be checked in an instance. ARG query
3691 -- is in order ???
3693 if Has_Aliased_Components (Etype (Expression (A))) /=
3694 Has_Aliased_Components (Etype (F))
3695 then
3696 Error_Msg_N
3697 ("both component types in a view conversion must be"
3698 & " aliased, or neither", A);
3700 -- Comment here??? what set of cases???
3702 elsif
3703 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3704 then
3705 -- Check view conv between unrelated by ref array types
3707 if Is_By_Reference_Type (Etype (F))
3708 or else Is_By_Reference_Type (Etype (Expression (A)))
3709 then
3710 Error_Msg_N
3711 ("view conversion between unrelated by reference "
3712 & "array types not allowed (\'A'I-00246)", A);
3714 -- In Ada 2005 mode, check view conversion component
3715 -- type cannot be private, tagged, or volatile. Note
3716 -- that we only apply this to source conversions. The
3717 -- generated code can contain conversions which are
3718 -- not subject to this test, and we cannot extract the
3719 -- component type in such cases since it is not present.
3721 elsif Comes_From_Source (A)
3722 and then Ada_Version >= Ada_2005
3723 then
3724 declare
3725 Comp_Type : constant Entity_Id :=
3726 Component_Type
3727 (Etype (Expression (A)));
3728 begin
3729 if (Is_Private_Type (Comp_Type)
3730 and then not Is_Generic_Type (Comp_Type))
3731 or else Is_Tagged_Type (Comp_Type)
3732 or else Is_Volatile (Comp_Type)
3733 then
3734 Error_Msg_N
3735 ("component type of a view conversion cannot"
3736 & " be private, tagged, or volatile"
3737 & " (RM 4.6 (24))",
3738 Expression (A));
3739 end if;
3740 end;
3741 end if;
3742 end if;
3743 end if;
3745 -- Resolve expression if conversion is all OK
3747 if (Conversion_OK (A)
3748 or else Valid_Conversion (A, Etype (A), Expression (A)))
3749 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3750 then
3751 Resolve (Expression (A));
3752 end if;
3754 -- If the actual is a function call that returns a limited
3755 -- unconstrained object that needs finalization, create a
3756 -- transient scope for it, so that it can receive the proper
3757 -- finalization list.
3759 elsif Nkind (A) = N_Function_Call
3760 and then Is_Limited_Record (Etype (F))
3761 and then not Is_Constrained (Etype (F))
3762 and then Expander_Active
3763 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3764 then
3765 Establish_Transient_Scope (A, Sec_Stack => False);
3766 Resolve (A, Etype (F));
3768 -- A small optimization: if one of the actuals is a concatenation
3769 -- create a block around a procedure call to recover stack space.
3770 -- This alleviates stack usage when several procedure calls in
3771 -- the same statement list use concatenation. We do not perform
3772 -- this wrapping for code statements, where the argument is a
3773 -- static string, and we want to preserve warnings involving
3774 -- sequences of such statements.
3776 elsif Nkind (A) = N_Op_Concat
3777 and then Nkind (N) = N_Procedure_Call_Statement
3778 and then Expander_Active
3779 and then
3780 not (Is_Intrinsic_Subprogram (Nam)
3781 and then Chars (Nam) = Name_Asm)
3782 and then not Static_Concatenation (A)
3783 then
3784 Establish_Transient_Scope (A, Sec_Stack => False);
3785 Resolve (A, Etype (F));
3787 else
3788 if Nkind (A) = N_Type_Conversion
3789 and then Is_Array_Type (Etype (F))
3790 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3791 and then
3792 (Is_Limited_Type (Etype (F))
3793 or else Is_Limited_Type (Etype (Expression (A))))
3794 then
3795 Error_Msg_N
3796 ("conversion between unrelated limited array types "
3797 & "not allowed ('A'I-00246)", A);
3799 if Is_Limited_Type (Etype (F)) then
3800 Explain_Limited_Type (Etype (F), A);
3801 end if;
3803 if Is_Limited_Type (Etype (Expression (A))) then
3804 Explain_Limited_Type (Etype (Expression (A)), A);
3805 end if;
3806 end if;
3808 -- (Ada 2005: AI-251): If the actual is an allocator whose
3809 -- directly designated type is a class-wide interface, we build
3810 -- an anonymous access type to use it as the type of the
3811 -- allocator. Later, when the subprogram call is expanded, if
3812 -- the interface has a secondary dispatch table the expander
3813 -- will add a type conversion to force the correct displacement
3814 -- of the pointer.
3816 if Nkind (A) = N_Allocator then
3817 declare
3818 DDT : constant Entity_Id :=
3819 Directly_Designated_Type (Base_Type (Etype (F)));
3821 New_Itype : Entity_Id;
3823 begin
3824 if Is_Class_Wide_Type (DDT)
3825 and then Is_Interface (DDT)
3826 then
3827 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3828 Set_Etype (New_Itype, Etype (A));
3829 Set_Directly_Designated_Type
3830 (New_Itype, Directly_Designated_Type (Etype (A)));
3831 Set_Etype (A, New_Itype);
3832 end if;
3834 -- Ada 2005, AI-162:If the actual is an allocator, the
3835 -- innermost enclosing statement is the master of the
3836 -- created object. This needs to be done with expansion
3837 -- enabled only, otherwise the transient scope will not
3838 -- be removed in the expansion of the wrapped construct.
3840 if (Is_Controlled (DDT) or else Has_Task (DDT))
3841 and then Expander_Active
3842 then
3843 Establish_Transient_Scope (A, Sec_Stack => False);
3844 end if;
3845 end;
3847 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3848 Check_Restriction (No_Access_Parameter_Allocators, A);
3849 end if;
3850 end if;
3852 -- (Ada 2005): The call may be to a primitive operation of a
3853 -- tagged synchronized type, declared outside of the type. In
3854 -- this case the controlling actual must be converted to its
3855 -- corresponding record type, which is the formal type. The
3856 -- actual may be a subtype, either because of a constraint or
3857 -- because it is a generic actual, so use base type to locate
3858 -- concurrent type.
3860 F_Typ := Base_Type (Etype (F));
3862 if Is_Tagged_Type (F_Typ)
3863 and then (Is_Concurrent_Type (F_Typ)
3864 or else Is_Concurrent_Record_Type (F_Typ))
3865 then
3866 -- If the actual is overloaded, look for an interpretation
3867 -- that has a synchronized type.
3869 if not Is_Overloaded (A) then
3870 A_Typ := Base_Type (Etype (A));
3872 else
3873 declare
3874 Index : Interp_Index;
3875 It : Interp;
3877 begin
3878 Get_First_Interp (A, Index, It);
3879 while Present (It.Typ) loop
3880 if Is_Concurrent_Type (It.Typ)
3881 or else Is_Concurrent_Record_Type (It.Typ)
3882 then
3883 A_Typ := Base_Type (It.Typ);
3884 exit;
3885 end if;
3887 Get_Next_Interp (Index, It);
3888 end loop;
3889 end;
3890 end if;
3892 declare
3893 Full_A_Typ : Entity_Id;
3895 begin
3896 if Present (Full_View (A_Typ)) then
3897 Full_A_Typ := Base_Type (Full_View (A_Typ));
3898 else
3899 Full_A_Typ := A_Typ;
3900 end if;
3902 -- Tagged synchronized type (case 1): the actual is a
3903 -- concurrent type.
3905 if Is_Concurrent_Type (A_Typ)
3906 and then Corresponding_Record_Type (A_Typ) = F_Typ
3907 then
3908 Rewrite (A,
3909 Unchecked_Convert_To
3910 (Corresponding_Record_Type (A_Typ), A));
3911 Resolve (A, Etype (F));
3913 -- Tagged synchronized type (case 2): the formal is a
3914 -- concurrent type.
3916 elsif Ekind (Full_A_Typ) = E_Record_Type
3917 and then Present
3918 (Corresponding_Concurrent_Type (Full_A_Typ))
3919 and then Is_Concurrent_Type (F_Typ)
3920 and then Present (Corresponding_Record_Type (F_Typ))
3921 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3922 then
3923 Resolve (A, Corresponding_Record_Type (F_Typ));
3925 -- Common case
3927 else
3928 Resolve (A, Etype (F));
3929 end if;
3930 end;
3932 -- Not a synchronized operation
3934 else
3935 Resolve (A, Etype (F));
3936 end if;
3937 end if;
3939 A_Typ := Etype (A);
3940 F_Typ := Etype (F);
3942 -- An actual cannot be an untagged formal incomplete type
3944 if Ekind (A_Typ) = E_Incomplete_Type
3945 and then not Is_Tagged_Type (A_Typ)
3946 and then Is_Generic_Type (A_Typ)
3947 then
3948 Error_Msg_N
3949 ("invalid use of untagged formal incomplete type", A);
3950 end if;
3952 if Comes_From_Source (Original_Node (N))
3953 and then Nkind_In (Original_Node (N), N_Function_Call,
3954 N_Procedure_Call_Statement)
3955 then
3956 -- In formal mode, check that actual parameters matching
3957 -- formals of tagged types are objects (or ancestor type
3958 -- conversions of objects), not general expressions.
3960 if Is_Actual_Tagged_Parameter (A) then
3961 if Is_SPARK_05_Object_Reference (A) then
3962 null;
3964 elsif Nkind (A) = N_Type_Conversion then
3965 declare
3966 Operand : constant Node_Id := Expression (A);
3967 Operand_Typ : constant Entity_Id := Etype (Operand);
3968 Target_Typ : constant Entity_Id := A_Typ;
3970 begin
3971 if not Is_SPARK_05_Object_Reference (Operand) then
3972 Check_SPARK_05_Restriction
3973 ("object required", Operand);
3975 -- In formal mode, the only view conversions are those
3976 -- involving ancestor conversion of an extended type.
3978 elsif not
3979 (Is_Tagged_Type (Target_Typ)
3980 and then not Is_Class_Wide_Type (Target_Typ)
3981 and then Is_Tagged_Type (Operand_Typ)
3982 and then not Is_Class_Wide_Type (Operand_Typ)
3983 and then Is_Ancestor (Target_Typ, Operand_Typ))
3984 then
3985 if Ekind_In
3986 (F, E_Out_Parameter, E_In_Out_Parameter)
3987 then
3988 Check_SPARK_05_Restriction
3989 ("ancestor conversion is the only permitted "
3990 & "view conversion", A);
3991 else
3992 Check_SPARK_05_Restriction
3993 ("ancestor conversion required", A);
3994 end if;
3996 else
3997 null;
3998 end if;
3999 end;
4001 else
4002 Check_SPARK_05_Restriction ("object required", A);
4003 end if;
4005 -- In formal mode, the only view conversions are those
4006 -- involving ancestor conversion of an extended type.
4008 elsif Nkind (A) = N_Type_Conversion
4009 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4010 then
4011 Check_SPARK_05_Restriction
4012 ("ancestor conversion is the only permitted view "
4013 & "conversion", A);
4014 end if;
4015 end if;
4017 -- has warnings suppressed, then we reset Never_Set_In_Source for
4018 -- the calling entity. The reason for this is to catch cases like
4019 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4020 -- uses trickery to modify an IN parameter.
4022 if Ekind (F) = E_In_Parameter
4023 and then Is_Entity_Name (A)
4024 and then Present (Entity (A))
4025 and then Ekind (Entity (A)) = E_Variable
4026 and then Has_Warnings_Off (F_Typ)
4027 then
4028 Set_Never_Set_In_Source (Entity (A), False);
4029 end if;
4031 -- Perform error checks for IN and IN OUT parameters
4033 if Ekind (F) /= E_Out_Parameter then
4035 -- Check unset reference. For scalar parameters, it is clearly
4036 -- wrong to pass an uninitialized value as either an IN or
4037 -- IN-OUT parameter. For composites, it is also clearly an
4038 -- error to pass a completely uninitialized value as an IN
4039 -- parameter, but the case of IN OUT is trickier. We prefer
4040 -- not to give a warning here. For example, suppose there is
4041 -- a routine that sets some component of a record to False.
4042 -- It is perfectly reasonable to make this IN-OUT and allow
4043 -- either initialized or uninitialized records to be passed
4044 -- in this case.
4046 -- For partially initialized composite values, we also avoid
4047 -- warnings, since it is quite likely that we are passing a
4048 -- partially initialized value and only the initialized fields
4049 -- will in fact be read in the subprogram.
4051 if Is_Scalar_Type (A_Typ)
4052 or else (Ekind (F) = E_In_Parameter
4053 and then not Is_Partially_Initialized_Type (A_Typ))
4054 then
4055 Check_Unset_Reference (A);
4056 end if;
4058 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4059 -- actual to a nested call, since this constitutes a reading of
4060 -- the parameter, which is not allowed.
4062 if Is_Entity_Name (A)
4063 and then Ekind (Entity (A)) = E_Out_Parameter
4064 then
4065 if Ada_Version = Ada_83 then
4066 Error_Msg_N
4067 ("(Ada 83) illegal reading of out parameter", A);
4069 -- An effectively volatile OUT parameter cannot act as IN or
4070 -- IN OUT actual in a call (SPARK RM 7.1.3(11)).
4072 elsif SPARK_Mode = On
4073 and then Is_Effectively_Volatile (Entity (A))
4074 then
4075 Error_Msg_N
4076 ("illegal reading of volatile OUT parameter", A);
4077 end if;
4078 end if;
4079 end if;
4081 -- Case of OUT or IN OUT parameter
4083 if Ekind (F) /= E_In_Parameter then
4085 -- For an Out parameter, check for useless assignment. Note
4086 -- that we can't set Last_Assignment this early, because we may
4087 -- kill current values in Resolve_Call, and that call would
4088 -- clobber the Last_Assignment field.
4090 -- Note: call Warn_On_Useless_Assignment before doing the check
4091 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4092 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4093 -- reflects the last assignment, not this one.
4095 if Ekind (F) = E_Out_Parameter then
4096 if Warn_On_Modified_As_Out_Parameter (F)
4097 and then Is_Entity_Name (A)
4098 and then Present (Entity (A))
4099 and then Comes_From_Source (N)
4100 then
4101 Warn_On_Useless_Assignment (Entity (A), A);
4102 end if;
4103 end if;
4105 -- Validate the form of the actual. Note that the call to
4106 -- Is_OK_Variable_For_Out_Formal generates the required
4107 -- reference in this case.
4109 -- A call to an initialization procedure for an aggregate
4110 -- component may initialize a nested component of a constant
4111 -- designated object. In this context the object is variable.
4113 if not Is_OK_Variable_For_Out_Formal (A)
4114 and then not Is_Init_Proc (Nam)
4115 then
4116 Error_Msg_NE ("actual for& must be a variable", A, F);
4118 if Is_Subprogram (Current_Scope)
4119 and then
4120 (Is_Invariant_Procedure (Current_Scope)
4121 or else Is_Predicate_Function (Current_Scope))
4122 then
4123 Error_Msg_N
4124 ("function used in predicate cannot "
4125 & "modify its argument", F);
4126 end if;
4127 end if;
4129 -- What's the following about???
4131 if Is_Entity_Name (A) then
4132 Kill_Checks (Entity (A));
4133 else
4134 Kill_All_Checks;
4135 end if;
4136 end if;
4138 if Etype (A) = Any_Type then
4139 Set_Etype (N, Any_Type);
4140 return;
4141 end if;
4143 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4145 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4147 -- Apply predicate tests except in certain special cases. Note
4148 -- that it might be more consistent to apply these only when
4149 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4150 -- for the outbound predicate tests ???
4152 if Predicate_Tests_On_Arguments (Nam) then
4153 Apply_Predicate_Check (A, F_Typ);
4154 end if;
4156 -- Apply required constraint checks
4158 -- Gigi looks at the check flag and uses the appropriate types.
4159 -- For now since one flag is used there is an optimization
4160 -- which might not be done in the IN OUT case since Gigi does
4161 -- not do any analysis. More thought required about this ???
4163 -- In fact is this comment obsolete??? doesn't the expander now
4164 -- generate all these tests anyway???
4166 if Is_Scalar_Type (Etype (A)) then
4167 Apply_Scalar_Range_Check (A, F_Typ);
4169 elsif Is_Array_Type (Etype (A)) then
4170 Apply_Length_Check (A, F_Typ);
4172 elsif Is_Record_Type (F_Typ)
4173 and then Has_Discriminants (F_Typ)
4174 and then Is_Constrained (F_Typ)
4175 and then (not Is_Derived_Type (F_Typ)
4176 or else Comes_From_Source (Nam))
4177 then
4178 Apply_Discriminant_Check (A, F_Typ);
4180 -- For view conversions of a discriminated object, apply
4181 -- check to object itself, the conversion alreay has the
4182 -- proper type.
4184 if Nkind (A) = N_Type_Conversion
4185 and then Is_Constrained (Etype (Expression (A)))
4186 then
4187 Apply_Discriminant_Check (Expression (A), F_Typ);
4188 end if;
4190 elsif Is_Access_Type (F_Typ)
4191 and then Is_Array_Type (Designated_Type (F_Typ))
4192 and then Is_Constrained (Designated_Type (F_Typ))
4193 then
4194 Apply_Length_Check (A, F_Typ);
4196 elsif Is_Access_Type (F_Typ)
4197 and then Has_Discriminants (Designated_Type (F_Typ))
4198 and then Is_Constrained (Designated_Type (F_Typ))
4199 then
4200 Apply_Discriminant_Check (A, F_Typ);
4202 else
4203 Apply_Range_Check (A, F_Typ);
4204 end if;
4206 -- Ada 2005 (AI-231): Note that the controlling parameter case
4207 -- already existed in Ada 95, which is partially checked
4208 -- elsewhere (see Checks), and we don't want the warning
4209 -- message to differ.
4211 if Is_Access_Type (F_Typ)
4212 and then Can_Never_Be_Null (F_Typ)
4213 and then Known_Null (A)
4214 then
4215 if Is_Controlling_Formal (F) then
4216 Apply_Compile_Time_Constraint_Error
4217 (N => A,
4218 Msg => "null value not allowed here??",
4219 Reason => CE_Access_Check_Failed);
4221 elsif Ada_Version >= Ada_2005 then
4222 Apply_Compile_Time_Constraint_Error
4223 (N => A,
4224 Msg => "(Ada 2005) null not allowed in "
4225 & "null-excluding formal??",
4226 Reason => CE_Null_Not_Allowed);
4227 end if;
4228 end if;
4229 end if;
4231 -- Checks for OUT parameters and IN OUT parameters
4233 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4235 -- If there is a type conversion, to make sure the return value
4236 -- meets the constraints of the variable before the conversion.
4238 if Nkind (A) = N_Type_Conversion then
4239 if Is_Scalar_Type (A_Typ) then
4240 Apply_Scalar_Range_Check
4241 (Expression (A), Etype (Expression (A)), A_Typ);
4242 else
4243 Apply_Range_Check
4244 (Expression (A), Etype (Expression (A)), A_Typ);
4245 end if;
4247 -- If no conversion apply scalar range checks and length checks
4248 -- base on the subtype of the actual (NOT that of the formal).
4250 else
4251 if Is_Scalar_Type (F_Typ) then
4252 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4253 elsif Is_Array_Type (F_Typ)
4254 and then Ekind (F) = E_Out_Parameter
4255 then
4256 Apply_Length_Check (A, F_Typ);
4257 else
4258 Apply_Range_Check (A, A_Typ, F_Typ);
4259 end if;
4260 end if;
4262 -- Note: we do not apply the predicate checks for the case of
4263 -- OUT and IN OUT parameters. They are instead applied in the
4264 -- Expand_Actuals routine in Exp_Ch6.
4265 end if;
4267 -- An actual associated with an access parameter is implicitly
4268 -- converted to the anonymous access type of the formal and must
4269 -- satisfy the legality checks for access conversions.
4271 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4272 if not Valid_Conversion (A, F_Typ, A) then
4273 Error_Msg_N
4274 ("invalid implicit conversion for access parameter", A);
4275 end if;
4277 -- If the actual is an access selected component of a variable,
4278 -- the call may modify its designated object. It is reasonable
4279 -- to treat this as a potential modification of the enclosing
4280 -- record, to prevent spurious warnings that it should be
4281 -- declared as a constant, because intuitively programmers
4282 -- regard the designated subcomponent as part of the record.
4284 if Nkind (A) = N_Selected_Component
4285 and then Is_Entity_Name (Prefix (A))
4286 and then not Is_Constant_Object (Entity (Prefix (A)))
4287 then
4288 Note_Possible_Modification (A, Sure => False);
4289 end if;
4290 end if;
4292 -- Check bad case of atomic/volatile argument (RM C.6(12))
4294 if Is_By_Reference_Type (Etype (F))
4295 and then Comes_From_Source (N)
4296 then
4297 if Is_Atomic_Object (A)
4298 and then not Is_Atomic (Etype (F))
4299 then
4300 Error_Msg_NE
4301 ("cannot pass atomic argument to non-atomic formal&",
4302 A, F);
4304 elsif Is_Volatile_Object (A)
4305 and then not Is_Volatile (Etype (F))
4306 then
4307 Error_Msg_NE
4308 ("cannot pass volatile argument to non-volatile formal&",
4309 A, F);
4310 end if;
4311 end if;
4313 -- Check that subprograms don't have improper controlling
4314 -- arguments (RM 3.9.2 (9)).
4316 -- A primitive operation may have an access parameter of an
4317 -- incomplete tagged type, but a dispatching call is illegal
4318 -- if the type is still incomplete.
4320 if Is_Controlling_Formal (F) then
4321 Set_Is_Controlling_Actual (A);
4323 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4324 declare
4325 Desig : constant Entity_Id := Designated_Type (Etype (F));
4326 begin
4327 if Ekind (Desig) = E_Incomplete_Type
4328 and then No (Full_View (Desig))
4329 and then No (Non_Limited_View (Desig))
4330 then
4331 Error_Msg_NE
4332 ("premature use of incomplete type& "
4333 & "in dispatching call", A, Desig);
4334 end if;
4335 end;
4336 end if;
4338 elsif Nkind (A) = N_Explicit_Dereference then
4339 Validate_Remote_Access_To_Class_Wide_Type (A);
4340 end if;
4342 -- Apply legality rule 3.9.2 (9/1)
4344 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4345 and then not Is_Class_Wide_Type (F_Typ)
4346 and then not Is_Controlling_Formal (F)
4347 and then not In_Instance
4348 then
4349 Error_Msg_N ("class-wide argument not allowed here!", A);
4351 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4352 Error_Msg_Node_2 := F_Typ;
4353 Error_Msg_NE
4354 ("& is not a dispatching operation of &!", A, Nam);
4355 end if;
4357 -- Apply the checks described in 3.10.2(27): if the context is a
4358 -- specific access-to-object, the actual cannot be class-wide.
4359 -- Use base type to exclude access_to_subprogram cases.
4361 elsif Is_Access_Type (A_Typ)
4362 and then Is_Access_Type (F_Typ)
4363 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4364 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4365 or else (Nkind (A) = N_Attribute_Reference
4366 and then
4367 Is_Class_Wide_Type (Etype (Prefix (A)))))
4368 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4369 and then not Is_Controlling_Formal (F)
4371 -- Disable these checks for call to imported C++ subprograms
4373 and then not
4374 (Is_Entity_Name (Name (N))
4375 and then Is_Imported (Entity (Name (N)))
4376 and then Convention (Entity (Name (N))) = Convention_CPP)
4377 then
4378 Error_Msg_N
4379 ("access to class-wide argument not allowed here!", A);
4381 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4382 Error_Msg_Node_2 := Designated_Type (F_Typ);
4383 Error_Msg_NE
4384 ("& is not a dispatching operation of &!", A, Nam);
4385 end if;
4386 end if;
4388 Check_Aliased_Parameter;
4390 Eval_Actual (A);
4392 -- If it is a named association, treat the selector_name as a
4393 -- proper identifier, and mark the corresponding entity.
4395 if Nkind (Parent (A)) = N_Parameter_Association
4397 -- Ignore reference in SPARK mode, as it refers to an entity not
4398 -- in scope at the point of reference, so the reference should
4399 -- be ignored for computing effects of subprograms.
4401 and then not GNATprove_Mode
4402 then
4403 Set_Entity (Selector_Name (Parent (A)), F);
4404 Generate_Reference (F, Selector_Name (Parent (A)));
4405 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4406 Generate_Reference (F_Typ, N, ' ');
4407 end if;
4409 Prev := A;
4411 if Ekind (F) /= E_Out_Parameter then
4412 Check_Unset_Reference (A);
4413 end if;
4415 -- The following checks are only relevant when SPARK_Mode is on as
4416 -- they are not standard Ada legality rule. Internally generated
4417 -- temporaries are ignored.
4419 if SPARK_Mode = On
4420 and then Is_Effectively_Volatile_Object (A)
4421 and then Comes_From_Source (A)
4422 then
4423 -- An effectively volatile object may act as an actual
4424 -- parameter when the corresponding formal is of a non-scalar
4425 -- volatile type.
4427 if Is_Volatile (Etype (F))
4428 and then not Is_Scalar_Type (Etype (F))
4429 then
4430 null;
4432 -- An effectively volatile object may act as an actual
4433 -- parameter in a call to an instance of Unchecked_Conversion.
4435 elsif Is_Unchecked_Conversion_Instance (Nam) then
4436 null;
4438 else
4439 Error_Msg_N
4440 ("volatile object cannot act as actual in a call (SPARK "
4441 & "RM 7.1.3(12))", A);
4442 end if;
4444 -- Detect an external variable with an enabled property that
4445 -- does not match the mode of the corresponding formal in a
4446 -- procedure call. Functions are not considered because they
4447 -- cannot have effectively volatile formal parameters in the
4448 -- first place.
4450 if Ekind (Nam) = E_Procedure
4451 and then Ekind (F) = E_In_Parameter
4452 and then Is_Entity_Name (A)
4453 and then Present (Entity (A))
4454 and then Ekind (Entity (A)) = E_Variable
4455 then
4456 A_Id := Entity (A);
4458 if Async_Readers_Enabled (A_Id) then
4459 Property_Error (A, A_Id, Name_Async_Readers);
4460 elsif Effective_Reads_Enabled (A_Id) then
4461 Property_Error (A, A_Id, Name_Effective_Reads);
4462 elsif Effective_Writes_Enabled (A_Id) then
4463 Property_Error (A, A_Id, Name_Effective_Writes);
4464 end if;
4465 end if;
4466 end if;
4468 -- A formal parameter of a specific tagged type whose related
4469 -- subprogram is subject to pragma Extensions_Visible with value
4470 -- "False" cannot act as an actual in a subprogram with value
4471 -- "True" (SPARK RM 6.1.7(3)).
4473 if Is_EVF_Expression (A)
4474 and then Extensions_Visible_Status (Nam) =
4475 Extensions_Visible_True
4476 then
4477 Error_Msg_N
4478 ("formal parameter with Extensions_Visible False cannot act "
4479 & "as actual parameter", A);
4480 Error_Msg_NE
4481 ("\subprogram & has Extensions_Visible True", A, Nam);
4482 end if;
4484 -- The actual parameter of a Ghost subprogram whose formal is of
4485 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(13)).
4487 if Is_Ghost_Entity (Nam)
4488 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4489 and then Is_Entity_Name (A)
4490 and then Present (Entity (A))
4491 and then not Is_Ghost_Entity (Entity (A))
4492 then
4493 Error_Msg_NE
4494 ("non-ghost variable & cannot appear as actual in call to "
4495 & "ghost procedure", A, Entity (A));
4497 if Ekind (F) = E_In_Out_Parameter then
4498 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4499 else
4500 Error_Msg_N ("\corresponding formal has mode OUT", A);
4501 end if;
4502 end if;
4504 Next_Actual (A);
4506 -- Case where actual is not present
4508 else
4509 Insert_Default;
4510 end if;
4512 Next_Formal (F);
4513 end loop;
4514 end Resolve_Actuals;
4516 -----------------------
4517 -- Resolve_Allocator --
4518 -----------------------
4520 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4521 Desig_T : constant Entity_Id := Designated_Type (Typ);
4522 E : constant Node_Id := Expression (N);
4523 Subtyp : Entity_Id;
4524 Discrim : Entity_Id;
4525 Constr : Node_Id;
4526 Aggr : Node_Id;
4527 Assoc : Node_Id := Empty;
4528 Disc_Exp : Node_Id;
4530 procedure Check_Allocator_Discrim_Accessibility
4531 (Disc_Exp : Node_Id;
4532 Alloc_Typ : Entity_Id);
4533 -- Check that accessibility level associated with an access discriminant
4534 -- initialized in an allocator by the expression Disc_Exp is not deeper
4535 -- than the level of the allocator type Alloc_Typ. An error message is
4536 -- issued if this condition is violated. Specialized checks are done for
4537 -- the cases of a constraint expression which is an access attribute or
4538 -- an access discriminant.
4540 function In_Dispatching_Context return Boolean;
4541 -- If the allocator is an actual in a call, it is allowed to be class-
4542 -- wide when the context is not because it is a controlling actual.
4544 -------------------------------------------
4545 -- Check_Allocator_Discrim_Accessibility --
4546 -------------------------------------------
4548 procedure Check_Allocator_Discrim_Accessibility
4549 (Disc_Exp : Node_Id;
4550 Alloc_Typ : Entity_Id)
4552 begin
4553 if Type_Access_Level (Etype (Disc_Exp)) >
4554 Deepest_Type_Access_Level (Alloc_Typ)
4555 then
4556 Error_Msg_N
4557 ("operand type has deeper level than allocator type", Disc_Exp);
4559 -- When the expression is an Access attribute the level of the prefix
4560 -- object must not be deeper than that of the allocator's type.
4562 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4563 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4564 Attribute_Access
4565 and then Object_Access_Level (Prefix (Disc_Exp)) >
4566 Deepest_Type_Access_Level (Alloc_Typ)
4567 then
4568 Error_Msg_N
4569 ("prefix of attribute has deeper level than allocator type",
4570 Disc_Exp);
4572 -- When the expression is an access discriminant the check is against
4573 -- the level of the prefix object.
4575 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4576 and then Nkind (Disc_Exp) = N_Selected_Component
4577 and then Object_Access_Level (Prefix (Disc_Exp)) >
4578 Deepest_Type_Access_Level (Alloc_Typ)
4579 then
4580 Error_Msg_N
4581 ("access discriminant has deeper level than allocator type",
4582 Disc_Exp);
4584 -- All other cases are legal
4586 else
4587 null;
4588 end if;
4589 end Check_Allocator_Discrim_Accessibility;
4591 ----------------------------
4592 -- In_Dispatching_Context --
4593 ----------------------------
4595 function In_Dispatching_Context return Boolean is
4596 Par : constant Node_Id := Parent (N);
4598 begin
4599 return Nkind (Par) in N_Subprogram_Call
4600 and then Is_Entity_Name (Name (Par))
4601 and then Is_Dispatching_Operation (Entity (Name (Par)));
4602 end In_Dispatching_Context;
4604 -- Start of processing for Resolve_Allocator
4606 begin
4607 -- Replace general access with specific type
4609 if Ekind (Etype (N)) = E_Allocator_Type then
4610 Set_Etype (N, Base_Type (Typ));
4611 end if;
4613 if Is_Abstract_Type (Typ) then
4614 Error_Msg_N ("type of allocator cannot be abstract", N);
4615 end if;
4617 -- For qualified expression, resolve the expression using the given
4618 -- subtype (nothing to do for type mark, subtype indication)
4620 if Nkind (E) = N_Qualified_Expression then
4621 if Is_Class_Wide_Type (Etype (E))
4622 and then not Is_Class_Wide_Type (Desig_T)
4623 and then not In_Dispatching_Context
4624 then
4625 Error_Msg_N
4626 ("class-wide allocator not allowed for this access type", N);
4627 end if;
4629 Resolve (Expression (E), Etype (E));
4630 Check_Non_Static_Context (Expression (E));
4631 Check_Unset_Reference (Expression (E));
4633 -- A qualified expression requires an exact match of the type.
4634 -- Class-wide matching is not allowed.
4636 if (Is_Class_Wide_Type (Etype (Expression (E)))
4637 or else Is_Class_Wide_Type (Etype (E)))
4638 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4639 then
4640 Wrong_Type (Expression (E), Etype (E));
4641 end if;
4643 -- Calls to build-in-place functions are not currently supported in
4644 -- allocators for access types associated with a simple storage pool.
4645 -- Supporting such allocators may require passing additional implicit
4646 -- parameters to build-in-place functions (or a significant revision
4647 -- of the current b-i-p implementation to unify the handling for
4648 -- multiple kinds of storage pools). ???
4650 if Is_Limited_View (Desig_T)
4651 and then Nkind (Expression (E)) = N_Function_Call
4652 then
4653 declare
4654 Pool : constant Entity_Id :=
4655 Associated_Storage_Pool (Root_Type (Typ));
4656 begin
4657 if Present (Pool)
4658 and then
4659 Present (Get_Rep_Pragma
4660 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4661 then
4662 Error_Msg_N
4663 ("limited function calls not yet supported in simple "
4664 & "storage pool allocators", Expression (E));
4665 end if;
4666 end;
4667 end if;
4669 -- A special accessibility check is needed for allocators that
4670 -- constrain access discriminants. The level of the type of the
4671 -- expression used to constrain an access discriminant cannot be
4672 -- deeper than the type of the allocator (in contrast to access
4673 -- parameters, where the level of the actual can be arbitrary).
4675 -- We can't use Valid_Conversion to perform this check because in
4676 -- general the type of the allocator is unrelated to the type of
4677 -- the access discriminant.
4679 if Ekind (Typ) /= E_Anonymous_Access_Type
4680 or else Is_Local_Anonymous_Access (Typ)
4681 then
4682 Subtyp := Entity (Subtype_Mark (E));
4684 Aggr := Original_Node (Expression (E));
4686 if Has_Discriminants (Subtyp)
4687 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4688 then
4689 Discrim := First_Discriminant (Base_Type (Subtyp));
4691 -- Get the first component expression of the aggregate
4693 if Present (Expressions (Aggr)) then
4694 Disc_Exp := First (Expressions (Aggr));
4696 elsif Present (Component_Associations (Aggr)) then
4697 Assoc := First (Component_Associations (Aggr));
4699 if Present (Assoc) then
4700 Disc_Exp := Expression (Assoc);
4701 else
4702 Disc_Exp := Empty;
4703 end if;
4705 else
4706 Disc_Exp := Empty;
4707 end if;
4709 while Present (Discrim) and then Present (Disc_Exp) loop
4710 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4711 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4712 end if;
4714 Next_Discriminant (Discrim);
4716 if Present (Discrim) then
4717 if Present (Assoc) then
4718 Next (Assoc);
4719 Disc_Exp := Expression (Assoc);
4721 elsif Present (Next (Disc_Exp)) then
4722 Next (Disc_Exp);
4724 else
4725 Assoc := First (Component_Associations (Aggr));
4727 if Present (Assoc) then
4728 Disc_Exp := Expression (Assoc);
4729 else
4730 Disc_Exp := Empty;
4731 end if;
4732 end if;
4733 end if;
4734 end loop;
4735 end if;
4736 end if;
4738 -- For a subtype mark or subtype indication, freeze the subtype
4740 else
4741 Freeze_Expression (E);
4743 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4744 Error_Msg_N
4745 ("initialization required for access-to-constant allocator", N);
4746 end if;
4748 -- A special accessibility check is needed for allocators that
4749 -- constrain access discriminants. The level of the type of the
4750 -- expression used to constrain an access discriminant cannot be
4751 -- deeper than the type of the allocator (in contrast to access
4752 -- parameters, where the level of the actual can be arbitrary).
4753 -- We can't use Valid_Conversion to perform this check because
4754 -- in general the type of the allocator is unrelated to the type
4755 -- of the access discriminant.
4757 if Nkind (Original_Node (E)) = N_Subtype_Indication
4758 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4759 or else Is_Local_Anonymous_Access (Typ))
4760 then
4761 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4763 if Has_Discriminants (Subtyp) then
4764 Discrim := First_Discriminant (Base_Type (Subtyp));
4765 Constr := First (Constraints (Constraint (Original_Node (E))));
4766 while Present (Discrim) and then Present (Constr) loop
4767 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4768 if Nkind (Constr) = N_Discriminant_Association then
4769 Disc_Exp := Original_Node (Expression (Constr));
4770 else
4771 Disc_Exp := Original_Node (Constr);
4772 end if;
4774 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4775 end if;
4777 Next_Discriminant (Discrim);
4778 Next (Constr);
4779 end loop;
4780 end if;
4781 end if;
4782 end if;
4784 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4785 -- check that the level of the type of the created object is not deeper
4786 -- than the level of the allocator's access type, since extensions can
4787 -- now occur at deeper levels than their ancestor types. This is a
4788 -- static accessibility level check; a run-time check is also needed in
4789 -- the case of an initialized allocator with a class-wide argument (see
4790 -- Expand_Allocator_Expression).
4792 if Ada_Version >= Ada_2005
4793 and then Is_Class_Wide_Type (Desig_T)
4794 then
4795 declare
4796 Exp_Typ : Entity_Id;
4798 begin
4799 if Nkind (E) = N_Qualified_Expression then
4800 Exp_Typ := Etype (E);
4801 elsif Nkind (E) = N_Subtype_Indication then
4802 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4803 else
4804 Exp_Typ := Entity (E);
4805 end if;
4807 if Type_Access_Level (Exp_Typ) >
4808 Deepest_Type_Access_Level (Typ)
4809 then
4810 if In_Instance_Body then
4811 Error_Msg_Warn := SPARK_Mode /= On;
4812 Error_Msg_N
4813 ("type in allocator has deeper level than "
4814 & "designated class-wide type<<", E);
4815 Error_Msg_N ("\Program_Error [<<", E);
4816 Rewrite (N,
4817 Make_Raise_Program_Error (Sloc (N),
4818 Reason => PE_Accessibility_Check_Failed));
4819 Set_Etype (N, Typ);
4821 -- Do not apply Ada 2005 accessibility checks on a class-wide
4822 -- allocator if the type given in the allocator is a formal
4823 -- type. A run-time check will be performed in the instance.
4825 elsif not Is_Generic_Type (Exp_Typ) then
4826 Error_Msg_N ("type in allocator has deeper level than "
4827 & "designated class-wide type", E);
4828 end if;
4829 end if;
4830 end;
4831 end if;
4833 -- Check for allocation from an empty storage pool
4835 if No_Pool_Assigned (Typ) then
4836 Error_Msg_N ("allocation from empty storage pool!", N);
4838 -- If the context is an unchecked conversion, as may happen within an
4839 -- inlined subprogram, the allocator is being resolved with its own
4840 -- anonymous type. In that case, if the target type has a specific
4841 -- storage pool, it must be inherited explicitly by the allocator type.
4843 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4844 and then No (Associated_Storage_Pool (Typ))
4845 then
4846 Set_Associated_Storage_Pool
4847 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4848 end if;
4850 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4851 Check_Restriction (No_Anonymous_Allocators, N);
4852 end if;
4854 -- Check that an allocator with task parts isn't for a nested access
4855 -- type when restriction No_Task_Hierarchy applies.
4857 if not Is_Library_Level_Entity (Base_Type (Typ))
4858 and then Has_Task (Base_Type (Desig_T))
4859 then
4860 Check_Restriction (No_Task_Hierarchy, N);
4861 end if;
4863 -- An illegal allocator may be rewritten as a raise Program_Error
4864 -- statement.
4866 if Nkind (N) = N_Allocator then
4868 -- An anonymous access discriminant is the definition of a
4869 -- coextension.
4871 if Ekind (Typ) = E_Anonymous_Access_Type
4872 and then Nkind (Associated_Node_For_Itype (Typ)) =
4873 N_Discriminant_Specification
4874 then
4875 declare
4876 Discr : constant Entity_Id :=
4877 Defining_Identifier (Associated_Node_For_Itype (Typ));
4879 begin
4880 Check_Restriction (No_Coextensions, N);
4882 -- Ada 2012 AI05-0052: If the designated type of the allocator
4883 -- is limited, then the allocator shall not be used to define
4884 -- the value of an access discriminant unless the discriminated
4885 -- type is immutably limited.
4887 if Ada_Version >= Ada_2012
4888 and then Is_Limited_Type (Desig_T)
4889 and then not Is_Limited_View (Scope (Discr))
4890 then
4891 Error_Msg_N
4892 ("only immutably limited types can have anonymous "
4893 & "access discriminants designating a limited type", N);
4894 end if;
4895 end;
4897 -- Avoid marking an allocator as a dynamic coextension if it is
4898 -- within a static construct.
4900 if not Is_Static_Coextension (N) then
4901 Set_Is_Dynamic_Coextension (N);
4902 end if;
4904 -- Cleanup for potential static coextensions
4906 else
4907 Set_Is_Dynamic_Coextension (N, False);
4908 Set_Is_Static_Coextension (N, False);
4909 end if;
4910 end if;
4912 -- Report a simple error: if the designated object is a local task,
4913 -- its body has not been seen yet, and its activation will fail an
4914 -- elaboration check.
4916 if Is_Task_Type (Desig_T)
4917 and then Scope (Base_Type (Desig_T)) = Current_Scope
4918 and then Is_Compilation_Unit (Current_Scope)
4919 and then Ekind (Current_Scope) = E_Package
4920 and then not In_Package_Body (Current_Scope)
4921 then
4922 Error_Msg_Warn := SPARK_Mode /= On;
4923 Error_Msg_N ("cannot activate task before body seen<<", N);
4924 Error_Msg_N ("\Program_Error [<<", N);
4925 end if;
4927 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4928 -- type with a task component on a subpool. This action must raise
4929 -- Program_Error at runtime.
4931 if Ada_Version >= Ada_2012
4932 and then Nkind (N) = N_Allocator
4933 and then Present (Subpool_Handle_Name (N))
4934 and then Has_Task (Desig_T)
4935 then
4936 Error_Msg_Warn := SPARK_Mode /= On;
4937 Error_Msg_N ("cannot allocate task on subpool<<", N);
4938 Error_Msg_N ("\Program_Error [<<", N);
4940 Rewrite (N,
4941 Make_Raise_Program_Error (Sloc (N),
4942 Reason => PE_Explicit_Raise));
4943 Set_Etype (N, Typ);
4944 end if;
4945 end Resolve_Allocator;
4947 ---------------------------
4948 -- Resolve_Arithmetic_Op --
4949 ---------------------------
4951 -- Used for resolving all arithmetic operators except exponentiation
4953 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4954 L : constant Node_Id := Left_Opnd (N);
4955 R : constant Node_Id := Right_Opnd (N);
4956 TL : constant Entity_Id := Base_Type (Etype (L));
4957 TR : constant Entity_Id := Base_Type (Etype (R));
4958 T : Entity_Id;
4959 Rop : Node_Id;
4961 B_Typ : constant Entity_Id := Base_Type (Typ);
4962 -- We do the resolution using the base type, because intermediate values
4963 -- in expressions always are of the base type, not a subtype of it.
4965 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4966 -- Returns True if N is in a context that expects "any real type"
4968 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4969 -- Return True iff given type is Integer or universal real/integer
4971 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4972 -- Choose type of integer literal in fixed-point operation to conform
4973 -- to available fixed-point type. T is the type of the other operand,
4974 -- which is needed to determine the expected type of N.
4976 procedure Set_Operand_Type (N : Node_Id);
4977 -- Set operand type to T if universal
4979 -------------------------------
4980 -- Expected_Type_Is_Any_Real --
4981 -------------------------------
4983 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4984 begin
4985 -- N is the expression after "delta" in a fixed_point_definition;
4986 -- see RM-3.5.9(6):
4988 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4989 N_Decimal_Fixed_Point_Definition,
4991 -- N is one of the bounds in a real_range_specification;
4992 -- see RM-3.5.7(5):
4994 N_Real_Range_Specification,
4996 -- N is the expression of a delta_constraint;
4997 -- see RM-J.3(3):
4999 N_Delta_Constraint);
5000 end Expected_Type_Is_Any_Real;
5002 -----------------------------
5003 -- Is_Integer_Or_Universal --
5004 -----------------------------
5006 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5007 T : Entity_Id;
5008 Index : Interp_Index;
5009 It : Interp;
5011 begin
5012 if not Is_Overloaded (N) then
5013 T := Etype (N);
5014 return Base_Type (T) = Base_Type (Standard_Integer)
5015 or else T = Universal_Integer
5016 or else T = Universal_Real;
5017 else
5018 Get_First_Interp (N, Index, It);
5019 while Present (It.Typ) loop
5020 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5021 or else It.Typ = Universal_Integer
5022 or else It.Typ = Universal_Real
5023 then
5024 return True;
5025 end if;
5027 Get_Next_Interp (Index, It);
5028 end loop;
5029 end if;
5031 return False;
5032 end Is_Integer_Or_Universal;
5034 ----------------------------
5035 -- Set_Mixed_Mode_Operand --
5036 ----------------------------
5038 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5039 Index : Interp_Index;
5040 It : Interp;
5042 begin
5043 if Universal_Interpretation (N) = Universal_Integer then
5045 -- A universal integer literal is resolved as standard integer
5046 -- except in the case of a fixed-point result, where we leave it
5047 -- as universal (to be handled by Exp_Fixd later on)
5049 if Is_Fixed_Point_Type (T) then
5050 Resolve (N, Universal_Integer);
5051 else
5052 Resolve (N, Standard_Integer);
5053 end if;
5055 elsif Universal_Interpretation (N) = Universal_Real
5056 and then (T = Base_Type (Standard_Integer)
5057 or else T = Universal_Integer
5058 or else T = Universal_Real)
5059 then
5060 -- A universal real can appear in a fixed-type context. We resolve
5061 -- the literal with that context, even though this might raise an
5062 -- exception prematurely (the other operand may be zero).
5064 Resolve (N, B_Typ);
5066 elsif Etype (N) = Base_Type (Standard_Integer)
5067 and then T = Universal_Real
5068 and then Is_Overloaded (N)
5069 then
5070 -- Integer arg in mixed-mode operation. Resolve with universal
5071 -- type, in case preference rule must be applied.
5073 Resolve (N, Universal_Integer);
5075 elsif Etype (N) = T
5076 and then B_Typ /= Universal_Fixed
5077 then
5078 -- Not a mixed-mode operation, resolve with context
5080 Resolve (N, B_Typ);
5082 elsif Etype (N) = Any_Fixed then
5084 -- N may itself be a mixed-mode operation, so use context type
5086 Resolve (N, B_Typ);
5088 elsif Is_Fixed_Point_Type (T)
5089 and then B_Typ = Universal_Fixed
5090 and then Is_Overloaded (N)
5091 then
5092 -- Must be (fixed * fixed) operation, operand must have one
5093 -- compatible interpretation.
5095 Resolve (N, Any_Fixed);
5097 elsif Is_Fixed_Point_Type (B_Typ)
5098 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5099 and then Is_Overloaded (N)
5100 then
5101 -- C * F(X) in a fixed context, where C is a real literal or a
5102 -- fixed-point expression. F must have either a fixed type
5103 -- interpretation or an integer interpretation, but not both.
5105 Get_First_Interp (N, Index, It);
5106 while Present (It.Typ) loop
5107 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5108 if Analyzed (N) then
5109 Error_Msg_N ("ambiguous operand in fixed operation", N);
5110 else
5111 Resolve (N, Standard_Integer);
5112 end if;
5114 elsif Is_Fixed_Point_Type (It.Typ) then
5115 if Analyzed (N) then
5116 Error_Msg_N ("ambiguous operand in fixed operation", N);
5117 else
5118 Resolve (N, It.Typ);
5119 end if;
5120 end if;
5122 Get_Next_Interp (Index, It);
5123 end loop;
5125 -- Reanalyze the literal with the fixed type of the context. If
5126 -- context is Universal_Fixed, we are within a conversion, leave
5127 -- the literal as a universal real because there is no usable
5128 -- fixed type, and the target of the conversion plays no role in
5129 -- the resolution.
5131 declare
5132 Op2 : Node_Id;
5133 T2 : Entity_Id;
5135 begin
5136 if N = L then
5137 Op2 := R;
5138 else
5139 Op2 := L;
5140 end if;
5142 if B_Typ = Universal_Fixed
5143 and then Nkind (Op2) = N_Real_Literal
5144 then
5145 T2 := Universal_Real;
5146 else
5147 T2 := B_Typ;
5148 end if;
5150 Set_Analyzed (Op2, False);
5151 Resolve (Op2, T2);
5152 end;
5154 else
5155 Resolve (N);
5156 end if;
5157 end Set_Mixed_Mode_Operand;
5159 ----------------------
5160 -- Set_Operand_Type --
5161 ----------------------
5163 procedure Set_Operand_Type (N : Node_Id) is
5164 begin
5165 if Etype (N) = Universal_Integer
5166 or else Etype (N) = Universal_Real
5167 then
5168 Set_Etype (N, T);
5169 end if;
5170 end Set_Operand_Type;
5172 -- Start of processing for Resolve_Arithmetic_Op
5174 begin
5175 if Comes_From_Source (N)
5176 and then Ekind (Entity (N)) = E_Function
5177 and then Is_Imported (Entity (N))
5178 and then Is_Intrinsic_Subprogram (Entity (N))
5179 then
5180 Resolve_Intrinsic_Operator (N, Typ);
5181 return;
5183 -- Special-case for mixed-mode universal expressions or fixed point type
5184 -- operation: each argument is resolved separately. The same treatment
5185 -- is required if one of the operands of a fixed point operation is
5186 -- universal real, since in this case we don't do a conversion to a
5187 -- specific fixed-point type (instead the expander handles the case).
5189 -- Set the type of the node to its universal interpretation because
5190 -- legality checks on an exponentiation operand need the context.
5192 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5193 and then Present (Universal_Interpretation (L))
5194 and then Present (Universal_Interpretation (R))
5195 then
5196 Set_Etype (N, B_Typ);
5197 Resolve (L, Universal_Interpretation (L));
5198 Resolve (R, Universal_Interpretation (R));
5200 elsif (B_Typ = Universal_Real
5201 or else Etype (N) = Universal_Fixed
5202 or else (Etype (N) = Any_Fixed
5203 and then Is_Fixed_Point_Type (B_Typ))
5204 or else (Is_Fixed_Point_Type (B_Typ)
5205 and then (Is_Integer_Or_Universal (L)
5206 or else
5207 Is_Integer_Or_Universal (R))))
5208 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5209 then
5210 if TL = Universal_Integer or else TR = Universal_Integer then
5211 Check_For_Visible_Operator (N, B_Typ);
5212 end if;
5214 -- If context is a fixed type and one operand is integer, the other
5215 -- is resolved with the type of the context.
5217 if Is_Fixed_Point_Type (B_Typ)
5218 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5219 or else TL = Universal_Integer)
5220 then
5221 Resolve (R, B_Typ);
5222 Resolve (L, TL);
5224 elsif Is_Fixed_Point_Type (B_Typ)
5225 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5226 or else TR = Universal_Integer)
5227 then
5228 Resolve (L, B_Typ);
5229 Resolve (R, TR);
5231 else
5232 Set_Mixed_Mode_Operand (L, TR);
5233 Set_Mixed_Mode_Operand (R, TL);
5234 end if;
5236 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5237 -- multiplying operators from being used when the expected type is
5238 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5239 -- some cases where the expected type is actually Any_Real;
5240 -- Expected_Type_Is_Any_Real takes care of that case.
5242 if Etype (N) = Universal_Fixed
5243 or else Etype (N) = Any_Fixed
5244 then
5245 if B_Typ = Universal_Fixed
5246 and then not Expected_Type_Is_Any_Real (N)
5247 and then not Nkind_In (Parent (N), N_Type_Conversion,
5248 N_Unchecked_Type_Conversion)
5249 then
5250 Error_Msg_N ("type cannot be determined from context!", N);
5251 Error_Msg_N ("\explicit conversion to result type required", N);
5253 Set_Etype (L, Any_Type);
5254 Set_Etype (R, Any_Type);
5256 else
5257 if Ada_Version = Ada_83
5258 and then Etype (N) = Universal_Fixed
5259 and then not
5260 Nkind_In (Parent (N), N_Type_Conversion,
5261 N_Unchecked_Type_Conversion)
5262 then
5263 Error_Msg_N
5264 ("(Ada 83) fixed-point operation needs explicit "
5265 & "conversion", N);
5266 end if;
5268 -- The expected type is "any real type" in contexts like
5270 -- type T is delta <universal_fixed-expression> ...
5272 -- in which case we need to set the type to Universal_Real
5273 -- so that static expression evaluation will work properly.
5275 if Expected_Type_Is_Any_Real (N) then
5276 Set_Etype (N, Universal_Real);
5277 else
5278 Set_Etype (N, B_Typ);
5279 end if;
5280 end if;
5282 elsif Is_Fixed_Point_Type (B_Typ)
5283 and then (Is_Integer_Or_Universal (L)
5284 or else Nkind (L) = N_Real_Literal
5285 or else Nkind (R) = N_Real_Literal
5286 or else Is_Integer_Or_Universal (R))
5287 then
5288 Set_Etype (N, B_Typ);
5290 elsif Etype (N) = Any_Fixed then
5292 -- If no previous errors, this is only possible if one operand is
5293 -- overloaded and the context is universal. Resolve as such.
5295 Set_Etype (N, B_Typ);
5296 end if;
5298 else
5299 if (TL = Universal_Integer or else TL = Universal_Real)
5300 and then
5301 (TR = Universal_Integer or else TR = Universal_Real)
5302 then
5303 Check_For_Visible_Operator (N, B_Typ);
5304 end if;
5306 -- If the context is Universal_Fixed and the operands are also
5307 -- universal fixed, this is an error, unless there is only one
5308 -- applicable fixed_point type (usually Duration).
5310 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5311 T := Unique_Fixed_Point_Type (N);
5313 if T = Any_Type then
5314 Set_Etype (N, T);
5315 return;
5316 else
5317 Resolve (L, T);
5318 Resolve (R, T);
5319 end if;
5321 else
5322 Resolve (L, B_Typ);
5323 Resolve (R, B_Typ);
5324 end if;
5326 -- If one of the arguments was resolved to a non-universal type.
5327 -- label the result of the operation itself with the same type.
5328 -- Do the same for the universal argument, if any.
5330 T := Intersect_Types (L, R);
5331 Set_Etype (N, Base_Type (T));
5332 Set_Operand_Type (L);
5333 Set_Operand_Type (R);
5334 end if;
5336 Generate_Operator_Reference (N, Typ);
5337 Analyze_Dimension (N);
5338 Eval_Arithmetic_Op (N);
5340 -- In SPARK, a multiplication or division with operands of fixed point
5341 -- types must be qualified or explicitly converted to identify the
5342 -- result type.
5344 if (Is_Fixed_Point_Type (Etype (L))
5345 or else Is_Fixed_Point_Type (Etype (R)))
5346 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5347 and then
5348 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5349 then
5350 Check_SPARK_05_Restriction
5351 ("operation should be qualified or explicitly converted", N);
5352 end if;
5354 -- Set overflow and division checking bit
5356 if Nkind (N) in N_Op then
5357 if not Overflow_Checks_Suppressed (Etype (N)) then
5358 Enable_Overflow_Check (N);
5359 end if;
5361 -- Give warning if explicit division by zero
5363 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5364 and then not Division_Checks_Suppressed (Etype (N))
5365 then
5366 Rop := Right_Opnd (N);
5368 if Compile_Time_Known_Value (Rop)
5369 and then ((Is_Integer_Type (Etype (Rop))
5370 and then Expr_Value (Rop) = Uint_0)
5371 or else
5372 (Is_Real_Type (Etype (Rop))
5373 and then Expr_Value_R (Rop) = Ureal_0))
5374 then
5375 -- Specialize the warning message according to the operation.
5376 -- The following warnings are for the case
5378 case Nkind (N) is
5379 when N_Op_Divide =>
5381 -- For division, we have two cases, for float division
5382 -- of an unconstrained float type, on a machine where
5383 -- Machine_Overflows is false, we don't get an exception
5384 -- at run-time, but rather an infinity or Nan. The Nan
5385 -- case is pretty obscure, so just warn about infinities.
5387 if Is_Floating_Point_Type (Typ)
5388 and then not Is_Constrained (Typ)
5389 and then not Machine_Overflows_On_Target
5390 then
5391 Error_Msg_N
5392 ("float division by zero, may generate "
5393 & "'+'/'- infinity??", Right_Opnd (N));
5395 -- For all other cases, we get a Constraint_Error
5397 else
5398 Apply_Compile_Time_Constraint_Error
5399 (N, "division by zero??", CE_Divide_By_Zero,
5400 Loc => Sloc (Right_Opnd (N)));
5401 end if;
5403 when N_Op_Rem =>
5404 Apply_Compile_Time_Constraint_Error
5405 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5406 Loc => Sloc (Right_Opnd (N)));
5408 when N_Op_Mod =>
5409 Apply_Compile_Time_Constraint_Error
5410 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5411 Loc => Sloc (Right_Opnd (N)));
5413 -- Division by zero can only happen with division, rem,
5414 -- and mod operations.
5416 when others =>
5417 raise Program_Error;
5418 end case;
5420 -- Otherwise just set the flag to check at run time
5422 else
5423 Activate_Division_Check (N);
5424 end if;
5425 end if;
5427 -- If Restriction No_Implicit_Conditionals is active, then it is
5428 -- violated if either operand can be negative for mod, or for rem
5429 -- if both operands can be negative.
5431 if Restriction_Check_Required (No_Implicit_Conditionals)
5432 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5433 then
5434 declare
5435 Lo : Uint;
5436 Hi : Uint;
5437 OK : Boolean;
5439 LNeg : Boolean;
5440 RNeg : Boolean;
5441 -- Set if corresponding operand might be negative
5443 begin
5444 Determine_Range
5445 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5446 LNeg := (not OK) or else Lo < 0;
5448 Determine_Range
5449 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5450 RNeg := (not OK) or else Lo < 0;
5452 -- Check if we will be generating conditionals. There are two
5453 -- cases where that can happen, first for REM, the only case
5454 -- is largest negative integer mod -1, where the division can
5455 -- overflow, but we still have to give the right result. The
5456 -- front end generates a test for this annoying case. Here we
5457 -- just test if both operands can be negative (that's what the
5458 -- expander does, so we match its logic here).
5460 -- The second case is mod where either operand can be negative.
5461 -- In this case, the back end has to generate additional tests.
5463 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5464 or else
5465 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5466 then
5467 Check_Restriction (No_Implicit_Conditionals, N);
5468 end if;
5469 end;
5470 end if;
5471 end if;
5473 Check_Unset_Reference (L);
5474 Check_Unset_Reference (R);
5475 Check_Function_Writable_Actuals (N);
5476 end Resolve_Arithmetic_Op;
5478 ------------------
5479 -- Resolve_Call --
5480 ------------------
5482 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5483 function Same_Or_Aliased_Subprograms
5484 (S : Entity_Id;
5485 E : Entity_Id) return Boolean;
5486 -- Returns True if the subprogram entity S is the same as E or else
5487 -- S is an alias of E.
5489 ---------------------------------
5490 -- Same_Or_Aliased_Subprograms --
5491 ---------------------------------
5493 function Same_Or_Aliased_Subprograms
5494 (S : Entity_Id;
5495 E : Entity_Id) return Boolean
5497 Subp_Alias : constant Entity_Id := Alias (S);
5498 begin
5499 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5500 end Same_Or_Aliased_Subprograms;
5502 -- Local variables
5504 Loc : constant Source_Ptr := Sloc (N);
5505 Subp : constant Node_Id := Name (N);
5506 Body_Id : Entity_Id;
5507 I : Interp_Index;
5508 It : Interp;
5509 Nam : Entity_Id;
5510 Nam_Decl : Node_Id;
5511 Nam_UA : Entity_Id;
5512 Norm_OK : Boolean;
5513 Rtype : Entity_Id;
5514 Scop : Entity_Id;
5516 -- Start of processing for Resolve_Call
5518 begin
5519 -- The context imposes a unique interpretation with type Typ on a
5520 -- procedure or function call. Find the entity of the subprogram that
5521 -- yields the expected type, and propagate the corresponding formal
5522 -- constraints on the actuals. The caller has established that an
5523 -- interpretation exists, and emitted an error if not unique.
5525 -- First deal with the case of a call to an access-to-subprogram,
5526 -- dereference made explicit in Analyze_Call.
5528 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5529 if not Is_Overloaded (Subp) then
5530 Nam := Etype (Subp);
5532 else
5533 -- Find the interpretation whose type (a subprogram type) has a
5534 -- return type that is compatible with the context. Analysis of
5535 -- the node has established that one exists.
5537 Nam := Empty;
5539 Get_First_Interp (Subp, I, It);
5540 while Present (It.Typ) loop
5541 if Covers (Typ, Etype (It.Typ)) then
5542 Nam := It.Typ;
5543 exit;
5544 end if;
5546 Get_Next_Interp (I, It);
5547 end loop;
5549 if No (Nam) then
5550 raise Program_Error;
5551 end if;
5552 end if;
5554 -- If the prefix is not an entity, then resolve it
5556 if not Is_Entity_Name (Subp) then
5557 Resolve (Subp, Nam);
5558 end if;
5560 -- For an indirect call, we always invalidate checks, since we do not
5561 -- know whether the subprogram is local or global. Yes we could do
5562 -- better here, e.g. by knowing that there are no local subprograms,
5563 -- but it does not seem worth the effort. Similarly, we kill all
5564 -- knowledge of current constant values.
5566 Kill_Current_Values;
5568 -- If this is a procedure call which is really an entry call, do
5569 -- the conversion of the procedure call to an entry call. Protected
5570 -- operations use the same circuitry because the name in the call
5571 -- can be an arbitrary expression with special resolution rules.
5573 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5574 or else (Is_Entity_Name (Subp)
5575 and then Ekind (Entity (Subp)) = E_Entry)
5576 then
5577 Resolve_Entry_Call (N, Typ);
5578 Check_Elab_Call (N);
5580 -- Kill checks and constant values, as above for indirect case
5581 -- Who knows what happens when another task is activated?
5583 Kill_Current_Values;
5584 return;
5586 -- Normal subprogram call with name established in Resolve
5588 elsif not (Is_Type (Entity (Subp))) then
5589 Nam := Entity (Subp);
5590 Set_Entity_With_Checks (Subp, Nam);
5592 -- Otherwise we must have the case of an overloaded call
5594 else
5595 pragma Assert (Is_Overloaded (Subp));
5597 -- Initialize Nam to prevent warning (we know it will be assigned
5598 -- in the loop below, but the compiler does not know that).
5600 Nam := Empty;
5602 Get_First_Interp (Subp, I, It);
5603 while Present (It.Typ) loop
5604 if Covers (Typ, It.Typ) then
5605 Nam := It.Nam;
5606 Set_Entity_With_Checks (Subp, Nam);
5607 exit;
5608 end if;
5610 Get_Next_Interp (I, It);
5611 end loop;
5612 end if;
5614 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5615 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5616 and then Nkind (Subp) /= N_Explicit_Dereference
5617 and then Present (Parameter_Associations (N))
5618 then
5619 -- The prefix is a parameterless function call that returns an access
5620 -- to subprogram. If parameters are present in the current call, add
5621 -- add an explicit dereference. We use the base type here because
5622 -- within an instance these may be subtypes.
5624 -- The dereference is added either in Analyze_Call or here. Should
5625 -- be consolidated ???
5627 Set_Is_Overloaded (Subp, False);
5628 Set_Etype (Subp, Etype (Nam));
5629 Insert_Explicit_Dereference (Subp);
5630 Nam := Designated_Type (Etype (Nam));
5631 Resolve (Subp, Nam);
5632 end if;
5634 -- Check that a call to Current_Task does not occur in an entry body
5636 if Is_RTE (Nam, RE_Current_Task) then
5637 declare
5638 P : Node_Id;
5640 begin
5641 P := N;
5642 loop
5643 P := Parent (P);
5645 -- Exclude calls that occur within the default of a formal
5646 -- parameter of the entry, since those are evaluated outside
5647 -- of the body.
5649 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5651 if Nkind (P) = N_Entry_Body
5652 or else (Nkind (P) = N_Subprogram_Body
5653 and then Is_Entry_Barrier_Function (P))
5654 then
5655 Rtype := Etype (N);
5656 Error_Msg_Warn := SPARK_Mode /= On;
5657 Error_Msg_NE
5658 ("& should not be used in entry body (RM C.7(17))<<",
5659 N, Nam);
5660 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5661 Rewrite (N,
5662 Make_Raise_Program_Error (Loc,
5663 Reason => PE_Current_Task_In_Entry_Body));
5664 Set_Etype (N, Rtype);
5665 return;
5666 end if;
5667 end loop;
5668 end;
5669 end if;
5671 -- Check that a procedure call does not occur in the context of the
5672 -- entry call statement of a conditional or timed entry call. Note that
5673 -- the case of a call to a subprogram renaming of an entry will also be
5674 -- rejected. The test for N not being an N_Entry_Call_Statement is
5675 -- defensive, covering the possibility that the processing of entry
5676 -- calls might reach this point due to later modifications of the code
5677 -- above.
5679 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5680 and then Nkind (N) /= N_Entry_Call_Statement
5681 and then Entry_Call_Statement (Parent (N)) = N
5682 then
5683 if Ada_Version < Ada_2005 then
5684 Error_Msg_N ("entry call required in select statement", N);
5686 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5687 -- for a procedure_or_entry_call, the procedure_name or
5688 -- procedure_prefix of the procedure_call_statement shall denote
5689 -- an entry renamed by a procedure, or (a view of) a primitive
5690 -- subprogram of a limited interface whose first parameter is
5691 -- a controlling parameter.
5693 elsif Nkind (N) = N_Procedure_Call_Statement
5694 and then not Is_Renamed_Entry (Nam)
5695 and then not Is_Controlling_Limited_Procedure (Nam)
5696 then
5697 Error_Msg_N
5698 ("entry call or dispatching primitive of interface required", N);
5699 end if;
5700 end if;
5702 -- If the SPARK_05 restriction is active, we are not allowed
5703 -- to have a call to a subprogram before we see its completion.
5705 if not Has_Completion (Nam)
5706 and then Restriction_Check_Required (SPARK_05)
5708 -- Don't flag strange internal calls
5710 and then Comes_From_Source (N)
5711 and then Comes_From_Source (Nam)
5713 -- Only flag calls in extended main source
5715 and then In_Extended_Main_Source_Unit (Nam)
5716 and then In_Extended_Main_Source_Unit (N)
5718 -- Exclude enumeration literals from this processing
5720 and then Ekind (Nam) /= E_Enumeration_Literal
5721 then
5722 Check_SPARK_05_Restriction
5723 ("call to subprogram cannot appear before its body", N);
5724 end if;
5726 -- Check that this is not a call to a protected procedure or entry from
5727 -- within a protected function.
5729 Check_Internal_Protected_Use (N, Nam);
5731 -- Freeze the subprogram name if not in a spec-expression. Note that
5732 -- we freeze procedure calls as well as function calls. Procedure calls
5733 -- are not frozen according to the rules (RM 13.14(14)) because it is
5734 -- impossible to have a procedure call to a non-frozen procedure in
5735 -- pure Ada, but in the code that we generate in the expander, this
5736 -- rule needs extending because we can generate procedure calls that
5737 -- need freezing.
5739 -- In Ada 2012, expression functions may be called within pre/post
5740 -- conditions of subsequent functions or expression functions. Such
5741 -- calls do not freeze when they appear within generated bodies,
5742 -- (including the body of another expression function) which would
5743 -- place the freeze node in the wrong scope. An expression function
5744 -- is frozen in the usual fashion, by the appearance of a real body,
5745 -- or at the end of a declarative part.
5747 if Is_Entity_Name (Subp) and then not In_Spec_Expression
5748 and then not Is_Expression_Function (Current_Scope)
5749 and then
5750 (not Is_Expression_Function (Entity (Subp))
5751 or else Scope (Entity (Subp)) = Current_Scope)
5752 then
5753 Freeze_Expression (Subp);
5754 end if;
5756 -- For a predefined operator, the type of the result is the type imposed
5757 -- by context, except for a predefined operation on universal fixed.
5758 -- Otherwise The type of the call is the type returned by the subprogram
5759 -- being called.
5761 if Is_Predefined_Op (Nam) then
5762 if Etype (N) /= Universal_Fixed then
5763 Set_Etype (N, Typ);
5764 end if;
5766 -- If the subprogram returns an array type, and the context requires the
5767 -- component type of that array type, the node is really an indexing of
5768 -- the parameterless call. Resolve as such. A pathological case occurs
5769 -- when the type of the component is an access to the array type. In
5770 -- this case the call is truly ambiguous.
5772 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5773 and then
5774 ((Is_Array_Type (Etype (Nam))
5775 and then Covers (Typ, Component_Type (Etype (Nam))))
5776 or else
5777 (Is_Access_Type (Etype (Nam))
5778 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5779 and then
5780 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5781 then
5782 declare
5783 Index_Node : Node_Id;
5784 New_Subp : Node_Id;
5785 Ret_Type : constant Entity_Id := Etype (Nam);
5787 begin
5788 if Is_Access_Type (Ret_Type)
5789 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5790 then
5791 Error_Msg_N
5792 ("cannot disambiguate function call and indexing", N);
5793 else
5794 New_Subp := Relocate_Node (Subp);
5796 -- The called entity may be an explicit dereference, in which
5797 -- case there is no entity to set.
5799 if Nkind (New_Subp) /= N_Explicit_Dereference then
5800 Set_Entity (Subp, Nam);
5801 end if;
5803 if (Is_Array_Type (Ret_Type)
5804 and then Component_Type (Ret_Type) /= Any_Type)
5805 or else
5806 (Is_Access_Type (Ret_Type)
5807 and then
5808 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5809 then
5810 if Needs_No_Actuals (Nam) then
5812 -- Indexed call to a parameterless function
5814 Index_Node :=
5815 Make_Indexed_Component (Loc,
5816 Prefix =>
5817 Make_Function_Call (Loc, Name => New_Subp),
5818 Expressions => Parameter_Associations (N));
5819 else
5820 -- An Ada 2005 prefixed call to a primitive operation
5821 -- whose first parameter is the prefix. This prefix was
5822 -- prepended to the parameter list, which is actually a
5823 -- list of indexes. Remove the prefix in order to build
5824 -- the proper indexed component.
5826 Index_Node :=
5827 Make_Indexed_Component (Loc,
5828 Prefix =>
5829 Make_Function_Call (Loc,
5830 Name => New_Subp,
5831 Parameter_Associations =>
5832 New_List
5833 (Remove_Head (Parameter_Associations (N)))),
5834 Expressions => Parameter_Associations (N));
5835 end if;
5837 -- Preserve the parenthesis count of the node
5839 Set_Paren_Count (Index_Node, Paren_Count (N));
5841 -- Since we are correcting a node classification error made
5842 -- by the parser, we call Replace rather than Rewrite.
5844 Replace (N, Index_Node);
5846 Set_Etype (Prefix (N), Ret_Type);
5847 Set_Etype (N, Typ);
5848 Resolve_Indexed_Component (N, Typ);
5849 Check_Elab_Call (Prefix (N));
5850 end if;
5851 end if;
5853 return;
5854 end;
5856 else
5857 Set_Etype (N, Etype (Nam));
5858 end if;
5860 -- In the case where the call is to an overloaded subprogram, Analyze
5861 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5862 -- such a case Normalize_Actuals needs to be called once more to order
5863 -- the actuals correctly. Otherwise the call will have the ordering
5864 -- given by the last overloaded subprogram whether this is the correct
5865 -- one being called or not.
5867 if Is_Overloaded (Subp) then
5868 Normalize_Actuals (N, Nam, False, Norm_OK);
5869 pragma Assert (Norm_OK);
5870 end if;
5872 -- In any case, call is fully resolved now. Reset Overload flag, to
5873 -- prevent subsequent overload resolution if node is analyzed again
5875 Set_Is_Overloaded (Subp, False);
5876 Set_Is_Overloaded (N, False);
5878 -- A Ghost entity must appear in a specific context
5880 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
5881 Check_Ghost_Context (Nam, N);
5882 end if;
5884 -- If we are calling the current subprogram from immediately within its
5885 -- body, then that is the case where we can sometimes detect cases of
5886 -- infinite recursion statically. Do not try this in case restriction
5887 -- No_Recursion is in effect anyway, and do it only for source calls.
5889 if Comes_From_Source (N) then
5890 Scop := Current_Scope;
5892 -- Check violation of SPARK_05 restriction which does not permit
5893 -- a subprogram body to contain a call to the subprogram directly.
5895 if Restriction_Check_Required (SPARK_05)
5896 and then Same_Or_Aliased_Subprograms (Nam, Scop)
5897 then
5898 Check_SPARK_05_Restriction
5899 ("subprogram may not contain direct call to itself", N);
5900 end if;
5902 -- Issue warning for possible infinite recursion in the absence
5903 -- of the No_Recursion restriction.
5905 if Same_Or_Aliased_Subprograms (Nam, Scop)
5906 and then not Restriction_Active (No_Recursion)
5907 and then Check_Infinite_Recursion (N)
5908 then
5909 -- Here we detected and flagged an infinite recursion, so we do
5910 -- not need to test the case below for further warnings. Also we
5911 -- are all done if we now have a raise SE node.
5913 if Nkind (N) = N_Raise_Storage_Error then
5914 return;
5915 end if;
5917 -- If call is to immediately containing subprogram, then check for
5918 -- the case of a possible run-time detectable infinite recursion.
5920 else
5921 Scope_Loop : while Scop /= Standard_Standard loop
5922 if Same_Or_Aliased_Subprograms (Nam, Scop) then
5924 -- Although in general case, recursion is not statically
5925 -- checkable, the case of calling an immediately containing
5926 -- subprogram is easy to catch.
5928 Check_Restriction (No_Recursion, N);
5930 -- If the recursive call is to a parameterless subprogram,
5931 -- then even if we can't statically detect infinite
5932 -- recursion, this is pretty suspicious, and we output a
5933 -- warning. Furthermore, we will try later to detect some
5934 -- cases here at run time by expanding checking code (see
5935 -- Detect_Infinite_Recursion in package Exp_Ch6).
5937 -- If the recursive call is within a handler, do not emit a
5938 -- warning, because this is a common idiom: loop until input
5939 -- is correct, catch illegal input in handler and restart.
5941 if No (First_Formal (Nam))
5942 and then Etype (Nam) = Standard_Void_Type
5943 and then not Error_Posted (N)
5944 and then Nkind (Parent (N)) /= N_Exception_Handler
5945 then
5946 -- For the case of a procedure call. We give the message
5947 -- only if the call is the first statement in a sequence
5948 -- of statements, or if all previous statements are
5949 -- simple assignments. This is simply a heuristic to
5950 -- decrease false positives, without losing too many good
5951 -- warnings. The idea is that these previous statements
5952 -- may affect global variables the procedure depends on.
5953 -- We also exclude raise statements, that may arise from
5954 -- constraint checks and are probably unrelated to the
5955 -- intended control flow.
5957 if Nkind (N) = N_Procedure_Call_Statement
5958 and then Is_List_Member (N)
5959 then
5960 declare
5961 P : Node_Id;
5962 begin
5963 P := Prev (N);
5964 while Present (P) loop
5965 if not Nkind_In (P, N_Assignment_Statement,
5966 N_Raise_Constraint_Error)
5967 then
5968 exit Scope_Loop;
5969 end if;
5971 Prev (P);
5972 end loop;
5973 end;
5974 end if;
5976 -- Do not give warning if we are in a conditional context
5978 declare
5979 K : constant Node_Kind := Nkind (Parent (N));
5980 begin
5981 if (K = N_Loop_Statement
5982 and then Present (Iteration_Scheme (Parent (N))))
5983 or else K = N_If_Statement
5984 or else K = N_Elsif_Part
5985 or else K = N_Case_Statement_Alternative
5986 then
5987 exit Scope_Loop;
5988 end if;
5989 end;
5991 -- Here warning is to be issued
5993 Set_Has_Recursive_Call (Nam);
5994 Error_Msg_Warn := SPARK_Mode /= On;
5995 Error_Msg_N ("possible infinite recursion<<!", N);
5996 Error_Msg_N ("\Storage_Error ]<<!", N);
5997 end if;
5999 exit Scope_Loop;
6000 end if;
6002 Scop := Scope (Scop);
6003 end loop Scope_Loop;
6004 end if;
6005 end if;
6007 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6009 Check_Obsolescent_2005_Entity (Nam, Subp);
6011 -- If subprogram name is a predefined operator, it was given in
6012 -- functional notation. Replace call node with operator node, so
6013 -- that actuals can be resolved appropriately.
6015 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6016 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6017 return;
6019 elsif Present (Alias (Nam))
6020 and then Is_Predefined_Op (Alias (Nam))
6021 then
6022 Resolve_Actuals (N, Nam);
6023 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6024 return;
6025 end if;
6027 -- Create a transient scope if the resulting type requires it
6029 -- There are several notable exceptions:
6031 -- a) In init procs, the transient scope overhead is not needed, and is
6032 -- even incorrect when the call is a nested initialization call for a
6033 -- component whose expansion may generate adjust calls. However, if the
6034 -- call is some other procedure call within an initialization procedure
6035 -- (for example a call to Create_Task in the init_proc of the task
6036 -- run-time record) a transient scope must be created around this call.
6038 -- b) Enumeration literal pseudo-calls need no transient scope
6040 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6041 -- functions) do not use the secondary stack even though the return
6042 -- type may be unconstrained.
6044 -- d) Calls to a build-in-place function, since such functions may
6045 -- allocate their result directly in a target object, and cases where
6046 -- the result does get allocated in the secondary stack are checked for
6047 -- within the specialized Exp_Ch6 procedures for expanding those
6048 -- build-in-place calls.
6050 -- e) If the subprogram is marked Inline_Always, then even if it returns
6051 -- an unconstrained type the call does not require use of the secondary
6052 -- stack. However, inlining will only take place if the body to inline
6053 -- is already present. It may not be available if e.g. the subprogram is
6054 -- declared in a child instance.
6056 -- If this is an initialization call for a type whose construction
6057 -- uses the secondary stack, and it is not a nested call to initialize
6058 -- a component, we do need to create a transient scope for it. We
6059 -- check for this by traversing the type in Check_Initialization_Call.
6061 if Is_Inlined (Nam)
6062 and then Has_Pragma_Inline (Nam)
6063 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6064 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6065 then
6066 null;
6068 elsif Ekind (Nam) = E_Enumeration_Literal
6069 or else Is_Build_In_Place_Function (Nam)
6070 or else Is_Intrinsic_Subprogram (Nam)
6071 then
6072 null;
6074 elsif Expander_Active
6075 and then Is_Type (Etype (Nam))
6076 and then Requires_Transient_Scope (Etype (Nam))
6077 and then
6078 (not Within_Init_Proc
6079 or else
6080 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6081 then
6082 Establish_Transient_Scope (N, Sec_Stack => True);
6084 -- If the call appears within the bounds of a loop, it will
6085 -- be rewritten and reanalyzed, nothing left to do here.
6087 if Nkind (N) /= N_Function_Call then
6088 return;
6089 end if;
6091 elsif Is_Init_Proc (Nam)
6092 and then not Within_Init_Proc
6093 then
6094 Check_Initialization_Call (N, Nam);
6095 end if;
6097 -- A protected function cannot be called within the definition of the
6098 -- enclosing protected type, unless it is part of a pre/postcondition
6099 -- on another protected operation.
6101 if Is_Protected_Type (Scope (Nam))
6102 and then In_Open_Scopes (Scope (Nam))
6103 and then not Has_Completion (Scope (Nam))
6104 and then not In_Spec_Expression
6105 then
6106 Error_Msg_NE
6107 ("& cannot be called before end of protected definition", N, Nam);
6108 end if;
6110 -- Propagate interpretation to actuals, and add default expressions
6111 -- where needed.
6113 if Present (First_Formal (Nam)) then
6114 Resolve_Actuals (N, Nam);
6116 -- Overloaded literals are rewritten as function calls, for purpose of
6117 -- resolution. After resolution, we can replace the call with the
6118 -- literal itself.
6120 elsif Ekind (Nam) = E_Enumeration_Literal then
6121 Copy_Node (Subp, N);
6122 Resolve_Entity_Name (N, Typ);
6124 -- Avoid validation, since it is a static function call
6126 Generate_Reference (Nam, Subp);
6127 return;
6128 end if;
6130 -- If the subprogram is not global, then kill all saved values and
6131 -- checks. This is a bit conservative, since in many cases we could do
6132 -- better, but it is not worth the effort. Similarly, we kill constant
6133 -- values. However we do not need to do this for internal entities
6134 -- (unless they are inherited user-defined subprograms), since they
6135 -- are not in the business of molesting local values.
6137 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6138 -- kill all checks and values for calls to global subprograms. This
6139 -- takes care of the case where an access to a local subprogram is
6140 -- taken, and could be passed directly or indirectly and then called
6141 -- from almost any context.
6143 -- Note: we do not do this step till after resolving the actuals. That
6144 -- way we still take advantage of the current value information while
6145 -- scanning the actuals.
6147 -- We suppress killing values if we are processing the nodes associated
6148 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6149 -- type kills all the values as part of analyzing the code that
6150 -- initializes the dispatch tables.
6152 if Inside_Freezing_Actions = 0
6153 and then (not Is_Library_Level_Entity (Nam)
6154 or else Suppress_Value_Tracking_On_Call
6155 (Nearest_Dynamic_Scope (Current_Scope)))
6156 and then (Comes_From_Source (Nam)
6157 or else (Present (Alias (Nam))
6158 and then Comes_From_Source (Alias (Nam))))
6159 then
6160 Kill_Current_Values;
6161 end if;
6163 -- If we are warning about unread OUT parameters, this is the place to
6164 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6165 -- after the above call to Kill_Current_Values (since that call clears
6166 -- the Last_Assignment field of all local variables).
6168 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6169 and then Comes_From_Source (N)
6170 and then In_Extended_Main_Source_Unit (N)
6171 then
6172 declare
6173 F : Entity_Id;
6174 A : Node_Id;
6176 begin
6177 F := First_Formal (Nam);
6178 A := First_Actual (N);
6179 while Present (F) and then Present (A) loop
6180 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6181 and then Warn_On_Modified_As_Out_Parameter (F)
6182 and then Is_Entity_Name (A)
6183 and then Present (Entity (A))
6184 and then Comes_From_Source (N)
6185 and then Safe_To_Capture_Value (N, Entity (A))
6186 then
6187 Set_Last_Assignment (Entity (A), A);
6188 end if;
6190 Next_Formal (F);
6191 Next_Actual (A);
6192 end loop;
6193 end;
6194 end if;
6196 -- If the subprogram is a primitive operation, check whether or not
6197 -- it is a correct dispatching call.
6199 if Is_Overloadable (Nam)
6200 and then Is_Dispatching_Operation (Nam)
6201 then
6202 Check_Dispatching_Call (N);
6204 elsif Ekind (Nam) /= E_Subprogram_Type
6205 and then Is_Abstract_Subprogram (Nam)
6206 and then not In_Instance
6207 then
6208 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6209 end if;
6211 -- If this is a dispatching call, generate the appropriate reference,
6212 -- for better source navigation in GPS.
6214 if Is_Overloadable (Nam)
6215 and then Present (Controlling_Argument (N))
6216 then
6217 Generate_Reference (Nam, Subp, 'R');
6219 -- Normal case, not a dispatching call: generate a call reference
6221 else
6222 Generate_Reference (Nam, Subp, 's');
6223 end if;
6225 if Is_Intrinsic_Subprogram (Nam) then
6226 Check_Intrinsic_Call (N);
6227 end if;
6229 -- Check for violation of restriction No_Specific_Termination_Handlers
6230 -- and warn on a potentially blocking call to Abort_Task.
6232 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6233 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6234 or else
6235 Is_RTE (Nam, RE_Specific_Handler))
6236 then
6237 Check_Restriction (No_Specific_Termination_Handlers, N);
6239 elsif Is_RTE (Nam, RE_Abort_Task) then
6240 Check_Potentially_Blocking_Operation (N);
6241 end if;
6243 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6244 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6245 -- need to check the second argument to determine whether it is an
6246 -- absolute or relative timing event.
6248 if Restriction_Check_Required (No_Relative_Delay)
6249 and then Is_RTE (Nam, RE_Set_Handler)
6250 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6251 then
6252 Check_Restriction (No_Relative_Delay, N);
6253 end if;
6255 -- Issue an error for a call to an eliminated subprogram. This routine
6256 -- will not perform the check if the call appears within a default
6257 -- expression.
6259 Check_For_Eliminated_Subprogram (Subp, Nam);
6261 -- In formal mode, the primitive operations of a tagged type or type
6262 -- extension do not include functions that return the tagged type.
6264 if Nkind (N) = N_Function_Call
6265 and then Is_Tagged_Type (Etype (N))
6266 and then Is_Entity_Name (Name (N))
6267 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6268 then
6269 Check_SPARK_05_Restriction ("function not inherited", N);
6270 end if;
6272 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6273 -- class-wide and the call dispatches on result in a context that does
6274 -- not provide a tag, the call raises Program_Error.
6276 if Nkind (N) = N_Function_Call
6277 and then In_Instance
6278 and then Is_Generic_Actual_Type (Typ)
6279 and then Is_Class_Wide_Type (Typ)
6280 and then Has_Controlling_Result (Nam)
6281 and then Nkind (Parent (N)) = N_Object_Declaration
6282 then
6283 -- Verify that none of the formals are controlling
6285 declare
6286 Call_OK : Boolean := False;
6287 F : Entity_Id;
6289 begin
6290 F := First_Formal (Nam);
6291 while Present (F) loop
6292 if Is_Controlling_Formal (F) then
6293 Call_OK := True;
6294 exit;
6295 end if;
6297 Next_Formal (F);
6298 end loop;
6300 if not Call_OK then
6301 Error_Msg_Warn := SPARK_Mode /= On;
6302 Error_Msg_N ("!cannot determine tag of result<<", N);
6303 Error_Msg_N ("\Program_Error [<<!", N);
6304 Insert_Action (N,
6305 Make_Raise_Program_Error (Sloc (N),
6306 Reason => PE_Explicit_Raise));
6307 end if;
6308 end;
6309 end if;
6311 -- Check for calling a function with OUT or IN OUT parameter when the
6312 -- calling context (us right now) is not Ada 2012, so does not allow
6313 -- OUT or IN OUT parameters in function calls. Functions declared in
6314 -- a predefined unit are OK, as they may be called indirectly from a
6315 -- user-declared instantiation.
6317 if Ada_Version < Ada_2012
6318 and then Ekind (Nam) = E_Function
6319 and then Has_Out_Or_In_Out_Parameter (Nam)
6320 and then not In_Predefined_Unit (Nam)
6321 then
6322 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6323 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6324 end if;
6326 -- Check the dimensions of the actuals in the call. For function calls,
6327 -- propagate the dimensions from the returned type to N.
6329 Analyze_Dimension_Call (N, Nam);
6331 -- All done, evaluate call and deal with elaboration issues
6333 Eval_Call (N);
6334 Check_Elab_Call (N);
6336 -- In GNATprove mode, expansion is disabled, but we want to inline some
6337 -- subprograms to facilitate formal verification. Indirect calls through
6338 -- a subprogram type or within a generic cannot be inlined. Inlining is
6339 -- performed only for calls subject to SPARK_Mode on.
6341 if GNATprove_Mode
6342 and then SPARK_Mode = On
6343 and then Is_Overloadable (Nam)
6344 and then not Inside_A_Generic
6345 then
6346 Nam_UA := Ultimate_Alias (Nam);
6347 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6349 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6350 Body_Id := Corresponding_Body (Nam_Decl);
6352 -- Nothing to do if the subprogram is not eligible for inlining in
6353 -- GNATprove mode.
6355 if not Is_Inlined_Always (Nam_UA)
6356 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6357 then
6358 null;
6360 -- Calls cannot be inlined inside assertions, as GNATprove treats
6361 -- assertions as logic expressions.
6363 elsif In_Assertion_Expr /= 0 then
6364 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6365 Error_Msg_N ("\call appears in assertion expression", N);
6366 Set_Is_Inlined_Always (Nam_UA, False);
6368 -- Calls cannot be inlined inside default expressions
6370 elsif In_Default_Expr then
6371 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6372 Error_Msg_N ("\call appears in default expression", N);
6373 Set_Is_Inlined_Always (Nam_UA, False);
6375 -- Inlining should not be performed during pre-analysis
6377 elsif Full_Analysis then
6379 -- With the one-pass inlining technique, a call cannot be
6380 -- inlined if the corresponding body has not been seen yet.
6382 if No (Body_Id) then
6383 Error_Msg_NE
6384 ("?no contextual analysis of & (body not seen yet)",
6385 N, Nam);
6386 Set_Is_Inlined_Always (Nam_UA, False);
6388 -- Nothing to do if there is no body to inline, indicating that
6389 -- the subprogram is not suitable for inlining in GNATprove
6390 -- mode.
6392 elsif No (Body_To_Inline (Nam_Decl)) then
6393 null;
6395 -- Calls cannot be inlined inside potentially unevaluated
6396 -- expressions, as this would create complex actions inside
6397 -- expressions, that are not handled by GNATprove.
6399 elsif Is_Potentially_Unevaluated (N) then
6400 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6401 Error_Msg_N
6402 ("\call appears in potentially unevaluated context", N);
6403 Set_Is_Inlined_Always (Nam_UA, False);
6405 -- Otherwise, inline the call
6407 else
6408 Expand_Inlined_Call (N, Nam_UA, Nam);
6409 end if;
6410 end if;
6411 end if;
6412 end if;
6414 Warn_On_Overlapping_Actuals (Nam, N);
6415 end Resolve_Call;
6417 -----------------------------
6418 -- Resolve_Case_Expression --
6419 -----------------------------
6421 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6422 Alt : Node_Id;
6423 Is_Dyn : Boolean;
6425 begin
6426 Alt := First (Alternatives (N));
6427 while Present (Alt) loop
6428 Resolve (Expression (Alt), Typ);
6429 Next (Alt);
6430 end loop;
6432 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6433 -- dynamically tagged must be known statically.
6435 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6436 Alt := First (Alternatives (N));
6437 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6439 while Present (Alt) loop
6440 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6441 Error_Msg_N ("all or none of the dependent expressions "
6442 & "can be dynamically tagged", N);
6443 end if;
6445 Next (Alt);
6446 end loop;
6447 end if;
6449 Set_Etype (N, Typ);
6450 Eval_Case_Expression (N);
6451 end Resolve_Case_Expression;
6453 -------------------------------
6454 -- Resolve_Character_Literal --
6455 -------------------------------
6457 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6458 B_Typ : constant Entity_Id := Base_Type (Typ);
6459 C : Entity_Id;
6461 begin
6462 -- Verify that the character does belong to the type of the context
6464 Set_Etype (N, B_Typ);
6465 Eval_Character_Literal (N);
6467 -- Wide_Wide_Character literals must always be defined, since the set
6468 -- of wide wide character literals is complete, i.e. if a character
6469 -- literal is accepted by the parser, then it is OK for wide wide
6470 -- character (out of range character literals are rejected).
6472 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6473 return;
6475 -- Always accept character literal for type Any_Character, which
6476 -- occurs in error situations and in comparisons of literals, both
6477 -- of which should accept all literals.
6479 elsif B_Typ = Any_Character then
6480 return;
6482 -- For Standard.Character or a type derived from it, check that the
6483 -- literal is in range.
6485 elsif Root_Type (B_Typ) = Standard_Character then
6486 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6487 return;
6488 end if;
6490 -- For Standard.Wide_Character or a type derived from it, check that the
6491 -- literal is in range.
6493 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6494 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6495 return;
6496 end if;
6498 -- For Standard.Wide_Wide_Character or a type derived from it, we
6499 -- know the literal is in range, since the parser checked.
6501 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6502 return;
6504 -- If the entity is already set, this has already been resolved in a
6505 -- generic context, or comes from expansion. Nothing else to do.
6507 elsif Present (Entity (N)) then
6508 return;
6510 -- Otherwise we have a user defined character type, and we can use the
6511 -- standard visibility mechanisms to locate the referenced entity.
6513 else
6514 C := Current_Entity (N);
6515 while Present (C) loop
6516 if Etype (C) = B_Typ then
6517 Set_Entity_With_Checks (N, C);
6518 Generate_Reference (C, N);
6519 return;
6520 end if;
6522 C := Homonym (C);
6523 end loop;
6524 end if;
6526 -- If we fall through, then the literal does not match any of the
6527 -- entries of the enumeration type. This isn't just a constraint error
6528 -- situation, it is an illegality (see RM 4.2).
6530 Error_Msg_NE
6531 ("character not defined for }", N, First_Subtype (B_Typ));
6532 end Resolve_Character_Literal;
6534 ---------------------------
6535 -- Resolve_Comparison_Op --
6536 ---------------------------
6538 -- Context requires a boolean type, and plays no role in resolution.
6539 -- Processing identical to that for equality operators. The result type is
6540 -- the base type, which matters when pathological subtypes of booleans with
6541 -- limited ranges are used.
6543 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6544 L : constant Node_Id := Left_Opnd (N);
6545 R : constant Node_Id := Right_Opnd (N);
6546 T : Entity_Id;
6548 begin
6549 -- If this is an intrinsic operation which is not predefined, use the
6550 -- types of its declared arguments to resolve the possibly overloaded
6551 -- operands. Otherwise the operands are unambiguous and specify the
6552 -- expected type.
6554 if Scope (Entity (N)) /= Standard_Standard then
6555 T := Etype (First_Entity (Entity (N)));
6557 else
6558 T := Find_Unique_Type (L, R);
6560 if T = Any_Fixed then
6561 T := Unique_Fixed_Point_Type (L);
6562 end if;
6563 end if;
6565 Set_Etype (N, Base_Type (Typ));
6566 Generate_Reference (T, N, ' ');
6568 -- Skip remaining processing if already set to Any_Type
6570 if T = Any_Type then
6571 return;
6572 end if;
6574 -- Deal with other error cases
6576 if T = Any_String or else
6577 T = Any_Composite or else
6578 T = Any_Character
6579 then
6580 if T = Any_Character then
6581 Ambiguous_Character (L);
6582 else
6583 Error_Msg_N ("ambiguous operands for comparison", N);
6584 end if;
6586 Set_Etype (N, Any_Type);
6587 return;
6588 end if;
6590 -- Resolve the operands if types OK
6592 Resolve (L, T);
6593 Resolve (R, T);
6594 Check_Unset_Reference (L);
6595 Check_Unset_Reference (R);
6596 Generate_Operator_Reference (N, T);
6597 Check_Low_Bound_Tested (N);
6599 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6600 -- types or array types except String.
6602 if Is_Boolean_Type (T) then
6603 Check_SPARK_05_Restriction
6604 ("comparison is not defined on Boolean type", N);
6606 elsif Is_Array_Type (T)
6607 and then Base_Type (T) /= Standard_String
6608 then
6609 Check_SPARK_05_Restriction
6610 ("comparison is not defined on array types other than String", N);
6611 end if;
6613 -- Check comparison on unordered enumeration
6615 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6616 Error_Msg_Sloc := Sloc (Etype (L));
6617 Error_Msg_NE
6618 ("comparison on unordered enumeration type& declared#?U?",
6619 N, Etype (L));
6620 end if;
6622 -- Evaluate the relation (note we do this after the above check since
6623 -- this Eval call may change N to True/False.
6625 Analyze_Dimension (N);
6626 Eval_Relational_Op (N);
6627 end Resolve_Comparison_Op;
6629 -----------------------------------------
6630 -- Resolve_Discrete_Subtype_Indication --
6631 -----------------------------------------
6633 procedure Resolve_Discrete_Subtype_Indication
6634 (N : Node_Id;
6635 Typ : Entity_Id)
6637 R : Node_Id;
6638 S : Entity_Id;
6640 begin
6641 Analyze (Subtype_Mark (N));
6642 S := Entity (Subtype_Mark (N));
6644 if Nkind (Constraint (N)) /= N_Range_Constraint then
6645 Error_Msg_N ("expect range constraint for discrete type", N);
6646 Set_Etype (N, Any_Type);
6648 else
6649 R := Range_Expression (Constraint (N));
6651 if R = Error then
6652 return;
6653 end if;
6655 Analyze (R);
6657 if Base_Type (S) /= Base_Type (Typ) then
6658 Error_Msg_NE
6659 ("expect subtype of }", N, First_Subtype (Typ));
6661 -- Rewrite the constraint as a range of Typ
6662 -- to allow compilation to proceed further.
6664 Set_Etype (N, Typ);
6665 Rewrite (Low_Bound (R),
6666 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6667 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6668 Attribute_Name => Name_First));
6669 Rewrite (High_Bound (R),
6670 Make_Attribute_Reference (Sloc (High_Bound (R)),
6671 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6672 Attribute_Name => Name_First));
6674 else
6675 Resolve (R, Typ);
6676 Set_Etype (N, Etype (R));
6678 -- Additionally, we must check that the bounds are compatible
6679 -- with the given subtype, which might be different from the
6680 -- type of the context.
6682 Apply_Range_Check (R, S);
6684 -- ??? If the above check statically detects a Constraint_Error
6685 -- it replaces the offending bound(s) of the range R with a
6686 -- Constraint_Error node. When the itype which uses these bounds
6687 -- is frozen the resulting call to Duplicate_Subexpr generates
6688 -- a new temporary for the bounds.
6690 -- Unfortunately there are other itypes that are also made depend
6691 -- on these bounds, so when Duplicate_Subexpr is called they get
6692 -- a forward reference to the newly created temporaries and Gigi
6693 -- aborts on such forward references. This is probably sign of a
6694 -- more fundamental problem somewhere else in either the order of
6695 -- itype freezing or the way certain itypes are constructed.
6697 -- To get around this problem we call Remove_Side_Effects right
6698 -- away if either bounds of R are a Constraint_Error.
6700 declare
6701 L : constant Node_Id := Low_Bound (R);
6702 H : constant Node_Id := High_Bound (R);
6704 begin
6705 if Nkind (L) = N_Raise_Constraint_Error then
6706 Remove_Side_Effects (L);
6707 end if;
6709 if Nkind (H) = N_Raise_Constraint_Error then
6710 Remove_Side_Effects (H);
6711 end if;
6712 end;
6714 Check_Unset_Reference (Low_Bound (R));
6715 Check_Unset_Reference (High_Bound (R));
6716 end if;
6717 end if;
6718 end Resolve_Discrete_Subtype_Indication;
6720 -------------------------
6721 -- Resolve_Entity_Name --
6722 -------------------------
6724 -- Used to resolve identifiers and expanded names
6726 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6727 function Is_Assignment_Or_Object_Expression
6728 (Context : Node_Id;
6729 Expr : Node_Id) return Boolean;
6730 -- Determine whether node Context denotes an assignment statement or an
6731 -- object declaration whose expression is node Expr.
6733 function Is_OK_Volatile_Context
6734 (Context : Node_Id;
6735 Obj_Ref : Node_Id) return Boolean;
6736 -- Determine whether node Context denotes a "non-interfering context"
6737 -- (as defined in SPARK RM 7.1.3(13)) where volatile reference Obj_Ref
6738 -- can safely reside.
6740 ----------------------------------------
6741 -- Is_Assignment_Or_Object_Expression --
6742 ----------------------------------------
6744 function Is_Assignment_Or_Object_Expression
6745 (Context : Node_Id;
6746 Expr : Node_Id) return Boolean
6748 begin
6749 if Nkind_In (Context, N_Assignment_Statement,
6750 N_Object_Declaration)
6751 and then Expression (Context) = Expr
6752 then
6753 return True;
6755 -- Check whether a construct that yields a name is the expression of
6756 -- an assignment statement or an object declaration.
6758 elsif (Nkind_In (Context, N_Attribute_Reference,
6759 N_Explicit_Dereference,
6760 N_Indexed_Component,
6761 N_Selected_Component,
6762 N_Slice)
6763 and then Prefix (Context) = Expr)
6764 or else
6765 (Nkind_In (Context, N_Type_Conversion,
6766 N_Unchecked_Type_Conversion)
6767 and then Expression (Context) = Expr)
6768 then
6769 return
6770 Is_Assignment_Or_Object_Expression
6771 (Context => Parent (Context),
6772 Expr => Context);
6774 -- Otherwise the context is not an assignment statement or an object
6775 -- declaration.
6777 else
6778 return False;
6779 end if;
6780 end Is_Assignment_Or_Object_Expression;
6782 ----------------------------
6783 -- Is_OK_Volatile_Context --
6784 ----------------------------
6786 function Is_OK_Volatile_Context
6787 (Context : Node_Id;
6788 Obj_Ref : Node_Id) return Boolean
6790 function Within_Check (Nod : Node_Id) return Boolean;
6791 -- Determine whether an arbitrary node appears in a check node
6793 function Within_Procedure_Call (Nod : Node_Id) return Boolean;
6794 -- Determine whether an arbitrary node appears in a procedure call
6796 ------------------
6797 -- Within_Check --
6798 ------------------
6800 function Within_Check (Nod : Node_Id) return Boolean is
6801 Par : Node_Id;
6803 begin
6804 -- Climb the parent chain looking for a check node
6806 Par := Nod;
6807 while Present (Par) loop
6808 if Nkind (Par) in N_Raise_xxx_Error then
6809 return True;
6811 -- Prevent the search from going too far
6813 elsif Is_Body_Or_Package_Declaration (Par) then
6814 exit;
6815 end if;
6817 Par := Parent (Par);
6818 end loop;
6820 return False;
6821 end Within_Check;
6823 ---------------------------
6824 -- Within_Procedure_Call --
6825 ---------------------------
6827 function Within_Procedure_Call (Nod : Node_Id) return Boolean is
6828 Par : Node_Id;
6830 begin
6831 -- Climb the parent chain looking for a procedure call
6833 Par := Nod;
6834 while Present (Par) loop
6835 if Nkind (Par) = N_Procedure_Call_Statement then
6836 return True;
6838 -- Prevent the search from going too far
6840 elsif Is_Body_Or_Package_Declaration (Par) then
6841 exit;
6842 end if;
6844 Par := Parent (Par);
6845 end loop;
6847 return False;
6848 end Within_Procedure_Call;
6850 -- Start of processing for Is_OK_Volatile_Context
6852 begin
6853 -- The volatile object appears on either side of an assignment
6855 if Nkind (Context) = N_Assignment_Statement then
6856 return True;
6858 -- The volatile object is part of the initialization expression of
6859 -- another object. Ensure that the climb of the parent chain came
6860 -- from the expression side and not from the name side.
6862 elsif Nkind (Context) = N_Object_Declaration
6863 and then Present (Expression (Context))
6864 and then Expression (Context) = Obj_Ref
6865 then
6866 return True;
6868 -- The volatile object appears as an actual parameter in a call to an
6869 -- instance of Unchecked_Conversion whose result is renamed.
6871 elsif Nkind (Context) = N_Function_Call
6872 and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
6873 and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
6874 then
6875 return True;
6877 -- The volatile object appears as the prefix of a name occurring
6878 -- in a non-interfering context.
6880 elsif Nkind_In (Context, N_Attribute_Reference,
6881 N_Explicit_Dereference,
6882 N_Indexed_Component,
6883 N_Selected_Component,
6884 N_Slice)
6885 and then Prefix (Context) = Obj_Ref
6886 and then Is_OK_Volatile_Context
6887 (Context => Parent (Context),
6888 Obj_Ref => Context)
6889 then
6890 return True;
6892 -- The volatile object appears as the expression of a type conversion
6893 -- occurring in a non-interfering context.
6895 elsif Nkind_In (Context, N_Type_Conversion,
6896 N_Unchecked_Type_Conversion)
6897 and then Expression (Context) = Obj_Ref
6898 and then Is_OK_Volatile_Context
6899 (Context => Parent (Context),
6900 Obj_Ref => Context)
6901 then
6902 return True;
6904 -- Allow references to volatile objects in various checks. This is
6905 -- not a direct SPARK 2014 requirement.
6907 elsif Within_Check (Context) then
6908 return True;
6910 -- Assume that references to effectively volatile objects that appear
6911 -- as actual parameters in a procedure call are always legal. A full
6912 -- legality check is done when the actuals are resolved.
6914 elsif Within_Procedure_Call (Context) then
6915 return True;
6917 -- Otherwise the context is not suitable for an effectively volatile
6918 -- object.
6920 else
6921 return False;
6922 end if;
6923 end Is_OK_Volatile_Context;
6925 -- Local variables
6927 E : constant Entity_Id := Entity (N);
6928 Par : Node_Id;
6930 -- Start of processing for Resolve_Entity_Name
6932 begin
6933 -- If garbage from errors, set to Any_Type and return
6935 if No (E) and then Total_Errors_Detected /= 0 then
6936 Set_Etype (N, Any_Type);
6937 return;
6938 end if;
6940 -- Replace named numbers by corresponding literals. Note that this is
6941 -- the one case where Resolve_Entity_Name must reset the Etype, since
6942 -- it is currently marked as universal.
6944 if Ekind (E) = E_Named_Integer then
6945 Set_Etype (N, Typ);
6946 Eval_Named_Integer (N);
6948 elsif Ekind (E) = E_Named_Real then
6949 Set_Etype (N, Typ);
6950 Eval_Named_Real (N);
6952 -- For enumeration literals, we need to make sure that a proper style
6953 -- check is done, since such literals are overloaded, and thus we did
6954 -- not do a style check during the first phase of analysis.
6956 elsif Ekind (E) = E_Enumeration_Literal then
6957 Set_Entity_With_Checks (N, E);
6958 Eval_Entity_Name (N);
6960 -- Case of subtype name appearing as an operand in expression
6962 elsif Is_Type (E) then
6964 -- Allow use of subtype if it is a concurrent type where we are
6965 -- currently inside the body. This will eventually be expanded into a
6966 -- call to Self (for tasks) or _object (for protected objects). Any
6967 -- other use of a subtype is invalid.
6969 if Is_Concurrent_Type (E)
6970 and then In_Open_Scopes (E)
6971 then
6972 null;
6974 -- Any other use is an error
6976 else
6977 Error_Msg_N
6978 ("invalid use of subtype mark in expression or call", N);
6979 end if;
6981 -- Check discriminant use if entity is discriminant in current scope,
6982 -- i.e. discriminant of record or concurrent type currently being
6983 -- analyzed. Uses in corresponding body are unrestricted.
6985 elsif Ekind (E) = E_Discriminant
6986 and then Scope (E) = Current_Scope
6987 and then not Has_Completion (Current_Scope)
6988 then
6989 Check_Discriminant_Use (N);
6991 -- A parameterless generic function cannot appear in a context that
6992 -- requires resolution.
6994 elsif Ekind (E) = E_Generic_Function then
6995 Error_Msg_N ("illegal use of generic function", N);
6997 -- In Ada 83 an OUT parameter cannot be read
6999 elsif Ekind (E) = E_Out_Parameter
7000 and then (Nkind (Parent (N)) in N_Op
7001 or else Nkind (Parent (N)) = N_Explicit_Dereference
7002 or else Is_Assignment_Or_Object_Expression
7003 (Context => Parent (N),
7004 Expr => N))
7005 then
7006 if Ada_Version = Ada_83 then
7007 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7009 -- An effectively volatile OUT parameter cannot be read
7010 -- (SPARK RM 7.1.3(11)).
7012 elsif SPARK_Mode = On
7013 and then Is_Effectively_Volatile (E)
7014 then
7015 Error_Msg_N ("illegal reading of volatile OUT parameter", N);
7016 end if;
7018 -- In all other cases, just do the possible static evaluation
7020 else
7021 -- A deferred constant that appears in an expression must have a
7022 -- completion, unless it has been removed by in-place expansion of
7023 -- an aggregate.
7025 if Ekind (E) = E_Constant
7026 and then Comes_From_Source (E)
7027 and then No (Constant_Value (E))
7028 and then Is_Frozen (Etype (E))
7029 and then not In_Spec_Expression
7030 and then not Is_Imported (E)
7031 then
7032 if No_Initialization (Parent (E))
7033 or else (Present (Full_View (E))
7034 and then No_Initialization (Parent (Full_View (E))))
7035 then
7036 null;
7037 else
7038 Error_Msg_N (
7039 "deferred constant is frozen before completion", N);
7040 end if;
7041 end if;
7043 Eval_Entity_Name (N);
7044 end if;
7046 Par := Parent (N);
7048 -- When the entity appears in a parameter association, retrieve the
7049 -- related subprogram call.
7051 if Nkind (Par) = N_Parameter_Association then
7052 Par := Parent (Par);
7053 end if;
7055 -- The following checks are only relevant when SPARK_Mode is on as they
7056 -- are not standard Ada legality rules. An effectively volatile object
7057 -- subject to enabled properties Async_Writers or Effective_Reads must
7058 -- appear in a specific context.
7060 if SPARK_Mode = On
7061 and then Is_Object (E)
7062 and then Is_Effectively_Volatile (E)
7063 and then (Async_Writers_Enabled (E)
7064 or else Effective_Reads_Enabled (E))
7065 and then Comes_From_Source (N)
7066 then
7067 -- The effectively volatile objects appears in a "non-interfering
7068 -- context" as defined in SPARK RM 7.1.3(13).
7070 if Is_OK_Volatile_Context (Par, N) then
7071 null;
7073 -- Otherwise the context causes a side effect with respect to the
7074 -- effectively volatile object.
7076 else
7077 SPARK_Msg_N
7078 ("volatile object cannot appear in this context "
7079 & "(SPARK RM 7.1.3(13))", N);
7080 end if;
7081 end if;
7083 -- A Ghost entity must appear in a specific context
7085 if Is_Ghost_Entity (E) and then Comes_From_Source (N) then
7086 Check_Ghost_Context (E, N);
7087 end if;
7089 -- In SPARK mode, need to check possible elaboration issues
7091 if SPARK_Mode = On and then Ekind (E) = E_Variable then
7092 Check_Elab_Call (N);
7093 end if;
7094 end Resolve_Entity_Name;
7096 -------------------
7097 -- Resolve_Entry --
7098 -------------------
7100 procedure Resolve_Entry (Entry_Name : Node_Id) is
7101 Loc : constant Source_Ptr := Sloc (Entry_Name);
7102 Nam : Entity_Id;
7103 New_N : Node_Id;
7104 S : Entity_Id;
7105 Tsk : Entity_Id;
7106 E_Name : Node_Id;
7107 Index : Node_Id;
7109 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7110 -- If the bounds of the entry family being called depend on task
7111 -- discriminants, build a new index subtype where a discriminant is
7112 -- replaced with the value of the discriminant of the target task.
7113 -- The target task is the prefix of the entry name in the call.
7115 -----------------------
7116 -- Actual_Index_Type --
7117 -----------------------
7119 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7120 Typ : constant Entity_Id := Entry_Index_Type (E);
7121 Tsk : constant Entity_Id := Scope (E);
7122 Lo : constant Node_Id := Type_Low_Bound (Typ);
7123 Hi : constant Node_Id := Type_High_Bound (Typ);
7124 New_T : Entity_Id;
7126 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7127 -- If the bound is given by a discriminant, replace with a reference
7128 -- to the discriminant of the same name in the target task. If the
7129 -- entry name is the target of a requeue statement and the entry is
7130 -- in the current protected object, the bound to be used is the
7131 -- discriminal of the object (see Apply_Range_Checks for details of
7132 -- the transformation).
7134 -----------------------------
7135 -- Actual_Discriminant_Ref --
7136 -----------------------------
7138 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7139 Typ : constant Entity_Id := Etype (Bound);
7140 Ref : Node_Id;
7142 begin
7143 Remove_Side_Effects (Bound);
7145 if not Is_Entity_Name (Bound)
7146 or else Ekind (Entity (Bound)) /= E_Discriminant
7147 then
7148 return Bound;
7150 elsif Is_Protected_Type (Tsk)
7151 and then In_Open_Scopes (Tsk)
7152 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7153 then
7154 -- Note: here Bound denotes a discriminant of the corresponding
7155 -- record type tskV, whose discriminal is a formal of the
7156 -- init-proc tskVIP. What we want is the body discriminal,
7157 -- which is associated to the discriminant of the original
7158 -- concurrent type tsk.
7160 return New_Occurrence_Of
7161 (Find_Body_Discriminal (Entity (Bound)), Loc);
7163 else
7164 Ref :=
7165 Make_Selected_Component (Loc,
7166 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7167 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7168 Analyze (Ref);
7169 Resolve (Ref, Typ);
7170 return Ref;
7171 end if;
7172 end Actual_Discriminant_Ref;
7174 -- Start of processing for Actual_Index_Type
7176 begin
7177 if not Has_Discriminants (Tsk)
7178 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7179 then
7180 return Entry_Index_Type (E);
7182 else
7183 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7184 Set_Etype (New_T, Base_Type (Typ));
7185 Set_Size_Info (New_T, Typ);
7186 Set_RM_Size (New_T, RM_Size (Typ));
7187 Set_Scalar_Range (New_T,
7188 Make_Range (Sloc (Entry_Name),
7189 Low_Bound => Actual_Discriminant_Ref (Lo),
7190 High_Bound => Actual_Discriminant_Ref (Hi)));
7192 return New_T;
7193 end if;
7194 end Actual_Index_Type;
7196 -- Start of processing of Resolve_Entry
7198 begin
7199 -- Find name of entry being called, and resolve prefix of name with its
7200 -- own type. The prefix can be overloaded, and the name and signature of
7201 -- the entry must be taken into account.
7203 if Nkind (Entry_Name) = N_Indexed_Component then
7205 -- Case of dealing with entry family within the current tasks
7207 E_Name := Prefix (Entry_Name);
7209 else
7210 E_Name := Entry_Name;
7211 end if;
7213 if Is_Entity_Name (E_Name) then
7215 -- Entry call to an entry (or entry family) in the current task. This
7216 -- is legal even though the task will deadlock. Rewrite as call to
7217 -- current task.
7219 -- This can also be a call to an entry in an enclosing task. If this
7220 -- is a single task, we have to retrieve its name, because the scope
7221 -- of the entry is the task type, not the object. If the enclosing
7222 -- task is a task type, the identity of the task is given by its own
7223 -- self variable.
7225 -- Finally this can be a requeue on an entry of the same task or
7226 -- protected object.
7228 S := Scope (Entity (E_Name));
7230 for J in reverse 0 .. Scope_Stack.Last loop
7231 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7232 and then not Comes_From_Source (S)
7233 then
7234 -- S is an enclosing task or protected object. The concurrent
7235 -- declaration has been converted into a type declaration, and
7236 -- the object itself has an object declaration that follows
7237 -- the type in the same declarative part.
7239 Tsk := Next_Entity (S);
7240 while Etype (Tsk) /= S loop
7241 Next_Entity (Tsk);
7242 end loop;
7244 S := Tsk;
7245 exit;
7247 elsif S = Scope_Stack.Table (J).Entity then
7249 -- Call to current task. Will be transformed into call to Self
7251 exit;
7253 end if;
7254 end loop;
7256 New_N :=
7257 Make_Selected_Component (Loc,
7258 Prefix => New_Occurrence_Of (S, Loc),
7259 Selector_Name =>
7260 New_Occurrence_Of (Entity (E_Name), Loc));
7261 Rewrite (E_Name, New_N);
7262 Analyze (E_Name);
7264 elsif Nkind (Entry_Name) = N_Selected_Component
7265 and then Is_Overloaded (Prefix (Entry_Name))
7266 then
7267 -- Use the entry name (which must be unique at this point) to find
7268 -- the prefix that returns the corresponding task/protected type.
7270 declare
7271 Pref : constant Node_Id := Prefix (Entry_Name);
7272 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7273 I : Interp_Index;
7274 It : Interp;
7276 begin
7277 Get_First_Interp (Pref, I, It);
7278 while Present (It.Typ) loop
7279 if Scope (Ent) = It.Typ then
7280 Set_Etype (Pref, It.Typ);
7281 exit;
7282 end if;
7284 Get_Next_Interp (I, It);
7285 end loop;
7286 end;
7287 end if;
7289 if Nkind (Entry_Name) = N_Selected_Component then
7290 Resolve (Prefix (Entry_Name));
7292 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7293 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7294 Resolve (Prefix (Prefix (Entry_Name)));
7295 Index := First (Expressions (Entry_Name));
7296 Resolve (Index, Entry_Index_Type (Nam));
7298 -- Up to this point the expression could have been the actual in a
7299 -- simple entry call, and be given by a named association.
7301 if Nkind (Index) = N_Parameter_Association then
7302 Error_Msg_N ("expect expression for entry index", Index);
7303 else
7304 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7305 end if;
7306 end if;
7307 end Resolve_Entry;
7309 ------------------------
7310 -- Resolve_Entry_Call --
7311 ------------------------
7313 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7314 Entry_Name : constant Node_Id := Name (N);
7315 Loc : constant Source_Ptr := Sloc (Entry_Name);
7316 Actuals : List_Id;
7317 First_Named : Node_Id;
7318 Nam : Entity_Id;
7319 Norm_OK : Boolean;
7320 Obj : Node_Id;
7321 Was_Over : Boolean;
7323 begin
7324 -- We kill all checks here, because it does not seem worth the effort to
7325 -- do anything better, an entry call is a big operation.
7327 Kill_All_Checks;
7329 -- Processing of the name is similar for entry calls and protected
7330 -- operation calls. Once the entity is determined, we can complete
7331 -- the resolution of the actuals.
7333 -- The selector may be overloaded, in the case of a protected object
7334 -- with overloaded functions. The type of the context is used for
7335 -- resolution.
7337 if Nkind (Entry_Name) = N_Selected_Component
7338 and then Is_Overloaded (Selector_Name (Entry_Name))
7339 and then Typ /= Standard_Void_Type
7340 then
7341 declare
7342 I : Interp_Index;
7343 It : Interp;
7345 begin
7346 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7347 while Present (It.Typ) loop
7348 if Covers (Typ, It.Typ) then
7349 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7350 Set_Etype (Entry_Name, It.Typ);
7352 Generate_Reference (It.Typ, N, ' ');
7353 end if;
7355 Get_Next_Interp (I, It);
7356 end loop;
7357 end;
7358 end if;
7360 Resolve_Entry (Entry_Name);
7362 if Nkind (Entry_Name) = N_Selected_Component then
7364 -- Simple entry call
7366 Nam := Entity (Selector_Name (Entry_Name));
7367 Obj := Prefix (Entry_Name);
7368 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7370 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7372 -- Call to member of entry family
7374 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7375 Obj := Prefix (Prefix (Entry_Name));
7376 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7377 end if;
7379 -- We cannot in general check the maximum depth of protected entry calls
7380 -- at compile time. But we can tell that any protected entry call at all
7381 -- violates a specified nesting depth of zero.
7383 if Is_Protected_Type (Scope (Nam)) then
7384 Check_Restriction (Max_Entry_Queue_Length, N);
7385 end if;
7387 -- Use context type to disambiguate a protected function that can be
7388 -- called without actuals and that returns an array type, and where the
7389 -- argument list may be an indexing of the returned value.
7391 if Ekind (Nam) = E_Function
7392 and then Needs_No_Actuals (Nam)
7393 and then Present (Parameter_Associations (N))
7394 and then
7395 ((Is_Array_Type (Etype (Nam))
7396 and then Covers (Typ, Component_Type (Etype (Nam))))
7398 or else (Is_Access_Type (Etype (Nam))
7399 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7400 and then
7401 Covers
7402 (Typ,
7403 Component_Type (Designated_Type (Etype (Nam))))))
7404 then
7405 declare
7406 Index_Node : Node_Id;
7408 begin
7409 Index_Node :=
7410 Make_Indexed_Component (Loc,
7411 Prefix =>
7412 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7413 Expressions => Parameter_Associations (N));
7415 -- Since we are correcting a node classification error made by the
7416 -- parser, we call Replace rather than Rewrite.
7418 Replace (N, Index_Node);
7419 Set_Etype (Prefix (N), Etype (Nam));
7420 Set_Etype (N, Typ);
7421 Resolve_Indexed_Component (N, Typ);
7422 return;
7423 end;
7424 end if;
7426 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7427 and then Present (PPC_Wrapper (Nam))
7428 and then Current_Scope /= PPC_Wrapper (Nam)
7429 then
7430 -- Rewrite as call to the precondition wrapper, adding the task
7431 -- object to the list of actuals. If the call is to a member of an
7432 -- entry family, include the index as well.
7434 declare
7435 New_Call : Node_Id;
7436 New_Actuals : List_Id;
7438 begin
7439 New_Actuals := New_List (Obj);
7441 if Nkind (Entry_Name) = N_Indexed_Component then
7442 Append_To (New_Actuals,
7443 New_Copy_Tree (First (Expressions (Entry_Name))));
7444 end if;
7446 Append_List (Parameter_Associations (N), New_Actuals);
7447 New_Call :=
7448 Make_Procedure_Call_Statement (Loc,
7449 Name =>
7450 New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
7451 Parameter_Associations => New_Actuals);
7452 Rewrite (N, New_Call);
7454 -- Preanalyze and resolve new call. Current procedure is called
7455 -- from Resolve_Call, after which expansion will take place.
7457 Preanalyze_And_Resolve (N);
7458 return;
7459 end;
7460 end if;
7462 -- The operation name may have been overloaded. Order the actuals
7463 -- according to the formals of the resolved entity, and set the return
7464 -- type to that of the operation.
7466 if Was_Over then
7467 Normalize_Actuals (N, Nam, False, Norm_OK);
7468 pragma Assert (Norm_OK);
7469 Set_Etype (N, Etype (Nam));
7470 end if;
7472 Resolve_Actuals (N, Nam);
7473 Check_Internal_Protected_Use (N, Nam);
7475 -- Create a call reference to the entry
7477 Generate_Reference (Nam, Entry_Name, 's');
7479 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7480 Check_Potentially_Blocking_Operation (N);
7481 end if;
7483 -- Verify that a procedure call cannot masquerade as an entry
7484 -- call where an entry call is expected.
7486 if Ekind (Nam) = E_Procedure then
7487 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7488 and then N = Entry_Call_Statement (Parent (N))
7489 then
7490 Error_Msg_N ("entry call required in select statement", N);
7492 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7493 and then N = Triggering_Statement (Parent (N))
7494 then
7495 Error_Msg_N ("triggering statement cannot be procedure call", N);
7497 elsif Ekind (Scope (Nam)) = E_Task_Type
7498 and then not In_Open_Scopes (Scope (Nam))
7499 then
7500 Error_Msg_N ("task has no entry with this name", Entry_Name);
7501 end if;
7502 end if;
7504 -- After resolution, entry calls and protected procedure calls are
7505 -- changed into entry calls, for expansion. The structure of the node
7506 -- does not change, so it can safely be done in place. Protected
7507 -- function calls must keep their structure because they are
7508 -- subexpressions.
7510 if Ekind (Nam) /= E_Function then
7512 -- A protected operation that is not a function may modify the
7513 -- corresponding object, and cannot apply to a constant. If this
7514 -- is an internal call, the prefix is the type itself.
7516 if Is_Protected_Type (Scope (Nam))
7517 and then not Is_Variable (Obj)
7518 and then (not Is_Entity_Name (Obj)
7519 or else not Is_Type (Entity (Obj)))
7520 then
7521 Error_Msg_N
7522 ("prefix of protected procedure or entry call must be variable",
7523 Entry_Name);
7524 end if;
7526 Actuals := Parameter_Associations (N);
7527 First_Named := First_Named_Actual (N);
7529 Rewrite (N,
7530 Make_Entry_Call_Statement (Loc,
7531 Name => Entry_Name,
7532 Parameter_Associations => Actuals));
7534 Set_First_Named_Actual (N, First_Named);
7535 Set_Analyzed (N, True);
7537 -- Protected functions can return on the secondary stack, in which
7538 -- case we must trigger the transient scope mechanism.
7540 elsif Expander_Active
7541 and then Requires_Transient_Scope (Etype (Nam))
7542 then
7543 Establish_Transient_Scope (N, Sec_Stack => True);
7544 end if;
7545 end Resolve_Entry_Call;
7547 -------------------------
7548 -- Resolve_Equality_Op --
7549 -------------------------
7551 -- Both arguments must have the same type, and the boolean context does
7552 -- not participate in the resolution. The first pass verifies that the
7553 -- interpretation is not ambiguous, and the type of the left argument is
7554 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7555 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7556 -- though they carry a single (universal) type. Diagnose this case here.
7558 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7559 L : constant Node_Id := Left_Opnd (N);
7560 R : constant Node_Id := Right_Opnd (N);
7561 T : Entity_Id := Find_Unique_Type (L, R);
7563 procedure Check_If_Expression (Cond : Node_Id);
7564 -- The resolution rule for if expressions requires that each such must
7565 -- have a unique type. This means that if several dependent expressions
7566 -- are of a non-null anonymous access type, and the context does not
7567 -- impose an expected type (as can be the case in an equality operation)
7568 -- the expression must be rejected.
7570 procedure Explain_Redundancy (N : Node_Id);
7571 -- Attempt to explain the nature of a redundant comparison with True. If
7572 -- the expression N is too complex, this routine issues a general error
7573 -- message.
7575 function Find_Unique_Access_Type return Entity_Id;
7576 -- In the case of allocators and access attributes, the context must
7577 -- provide an indication of the specific access type to be used. If
7578 -- one operand is of such a "generic" access type, check whether there
7579 -- is a specific visible access type that has the same designated type.
7580 -- This is semantically dubious, and of no interest to any real code,
7581 -- but c48008a makes it all worthwhile.
7583 -------------------------
7584 -- Check_If_Expression --
7585 -------------------------
7587 procedure Check_If_Expression (Cond : Node_Id) is
7588 Then_Expr : Node_Id;
7589 Else_Expr : Node_Id;
7591 begin
7592 if Nkind (Cond) = N_If_Expression then
7593 Then_Expr := Next (First (Expressions (Cond)));
7594 Else_Expr := Next (Then_Expr);
7596 if Nkind (Then_Expr) /= N_Null
7597 and then Nkind (Else_Expr) /= N_Null
7598 then
7599 Error_Msg_N ("cannot determine type of if expression", Cond);
7600 end if;
7601 end if;
7602 end Check_If_Expression;
7604 ------------------------
7605 -- Explain_Redundancy --
7606 ------------------------
7608 procedure Explain_Redundancy (N : Node_Id) is
7609 Error : Name_Id;
7610 Val : Node_Id;
7611 Val_Id : Entity_Id;
7613 begin
7614 Val := N;
7616 -- Strip the operand down to an entity
7618 loop
7619 if Nkind (Val) = N_Selected_Component then
7620 Val := Selector_Name (Val);
7621 else
7622 exit;
7623 end if;
7624 end loop;
7626 -- The construct denotes an entity
7628 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7629 Val_Id := Entity (Val);
7631 -- Do not generate an error message when the comparison is done
7632 -- against the enumeration literal Standard.True.
7634 if Ekind (Val_Id) /= E_Enumeration_Literal then
7636 -- Build a customized error message
7638 Name_Len := 0;
7639 Add_Str_To_Name_Buffer ("?r?");
7641 if Ekind (Val_Id) = E_Component then
7642 Add_Str_To_Name_Buffer ("component ");
7644 elsif Ekind (Val_Id) = E_Constant then
7645 Add_Str_To_Name_Buffer ("constant ");
7647 elsif Ekind (Val_Id) = E_Discriminant then
7648 Add_Str_To_Name_Buffer ("discriminant ");
7650 elsif Is_Formal (Val_Id) then
7651 Add_Str_To_Name_Buffer ("parameter ");
7653 elsif Ekind (Val_Id) = E_Variable then
7654 Add_Str_To_Name_Buffer ("variable ");
7655 end if;
7657 Add_Str_To_Name_Buffer ("& is always True!");
7658 Error := Name_Find;
7660 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7661 end if;
7663 -- The construct is too complex to disect, issue a general message
7665 else
7666 Error_Msg_N ("?r?expression is always True!", Val);
7667 end if;
7668 end Explain_Redundancy;
7670 -----------------------------
7671 -- Find_Unique_Access_Type --
7672 -----------------------------
7674 function Find_Unique_Access_Type return Entity_Id is
7675 Acc : Entity_Id;
7676 E : Entity_Id;
7677 S : Entity_Id;
7679 begin
7680 if Ekind_In (Etype (R), E_Allocator_Type,
7681 E_Access_Attribute_Type)
7682 then
7683 Acc := Designated_Type (Etype (R));
7685 elsif Ekind_In (Etype (L), E_Allocator_Type,
7686 E_Access_Attribute_Type)
7687 then
7688 Acc := Designated_Type (Etype (L));
7689 else
7690 return Empty;
7691 end if;
7693 S := Current_Scope;
7694 while S /= Standard_Standard loop
7695 E := First_Entity (S);
7696 while Present (E) loop
7697 if Is_Type (E)
7698 and then Is_Access_Type (E)
7699 and then Ekind (E) /= E_Allocator_Type
7700 and then Designated_Type (E) = Base_Type (Acc)
7701 then
7702 return E;
7703 end if;
7705 Next_Entity (E);
7706 end loop;
7708 S := Scope (S);
7709 end loop;
7711 return Empty;
7712 end Find_Unique_Access_Type;
7714 -- Start of processing for Resolve_Equality_Op
7716 begin
7717 Set_Etype (N, Base_Type (Typ));
7718 Generate_Reference (T, N, ' ');
7720 if T = Any_Fixed then
7721 T := Unique_Fixed_Point_Type (L);
7722 end if;
7724 if T /= Any_Type then
7725 if T = Any_String or else
7726 T = Any_Composite or else
7727 T = Any_Character
7728 then
7729 if T = Any_Character then
7730 Ambiguous_Character (L);
7731 else
7732 Error_Msg_N ("ambiguous operands for equality", N);
7733 end if;
7735 Set_Etype (N, Any_Type);
7736 return;
7738 elsif T = Any_Access
7739 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7740 then
7741 T := Find_Unique_Access_Type;
7743 if No (T) then
7744 Error_Msg_N ("ambiguous operands for equality", N);
7745 Set_Etype (N, Any_Type);
7746 return;
7747 end if;
7749 -- If expressions must have a single type, and if the context does
7750 -- not impose one the dependent expressions cannot be anonymous
7751 -- access types.
7753 -- Why no similar processing for case expressions???
7755 elsif Ada_Version >= Ada_2012
7756 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7757 E_Anonymous_Access_Subprogram_Type)
7758 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7759 E_Anonymous_Access_Subprogram_Type)
7760 then
7761 Check_If_Expression (L);
7762 Check_If_Expression (R);
7763 end if;
7765 Resolve (L, T);
7766 Resolve (R, T);
7768 -- In SPARK, equality operators = and /= for array types other than
7769 -- String are only defined when, for each index position, the
7770 -- operands have equal static bounds.
7772 if Is_Array_Type (T) then
7774 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7775 -- operation if not needed.
7777 if Restriction_Check_Required (SPARK_05)
7778 and then Base_Type (T) /= Standard_String
7779 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7780 and then Etype (L) /= Any_Composite -- or else L in error
7781 and then Etype (R) /= Any_Composite -- or else R in error
7782 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7783 then
7784 Check_SPARK_05_Restriction
7785 ("array types should have matching static bounds", N);
7786 end if;
7787 end if;
7789 -- If the unique type is a class-wide type then it will be expanded
7790 -- into a dispatching call to the predefined primitive. Therefore we
7791 -- check here for potential violation of such restriction.
7793 if Is_Class_Wide_Type (T) then
7794 Check_Restriction (No_Dispatching_Calls, N);
7795 end if;
7797 if Warn_On_Redundant_Constructs
7798 and then Comes_From_Source (N)
7799 and then Comes_From_Source (R)
7800 and then Is_Entity_Name (R)
7801 and then Entity (R) = Standard_True
7802 then
7803 Error_Msg_N -- CODEFIX
7804 ("?r?comparison with True is redundant!", N);
7805 Explain_Redundancy (Original_Node (R));
7806 end if;
7808 Check_Unset_Reference (L);
7809 Check_Unset_Reference (R);
7810 Generate_Operator_Reference (N, T);
7811 Check_Low_Bound_Tested (N);
7813 -- If this is an inequality, it may be the implicit inequality
7814 -- created for a user-defined operation, in which case the corres-
7815 -- ponding equality operation is not intrinsic, and the operation
7816 -- cannot be constant-folded. Else fold.
7818 if Nkind (N) = N_Op_Eq
7819 or else Comes_From_Source (Entity (N))
7820 or else Ekind (Entity (N)) = E_Operator
7821 or else Is_Intrinsic_Subprogram
7822 (Corresponding_Equality (Entity (N)))
7823 then
7824 Analyze_Dimension (N);
7825 Eval_Relational_Op (N);
7827 elsif Nkind (N) = N_Op_Ne
7828 and then Is_Abstract_Subprogram (Entity (N))
7829 then
7830 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7831 end if;
7833 -- Ada 2005: If one operand is an anonymous access type, convert the
7834 -- other operand to it, to ensure that the underlying types match in
7835 -- the back-end. Same for access_to_subprogram, and the conversion
7836 -- verifies that the types are subtype conformant.
7838 -- We apply the same conversion in the case one of the operands is a
7839 -- private subtype of the type of the other.
7841 -- Why the Expander_Active test here ???
7843 if Expander_Active
7844 and then
7845 (Ekind_In (T, E_Anonymous_Access_Type,
7846 E_Anonymous_Access_Subprogram_Type)
7847 or else Is_Private_Type (T))
7848 then
7849 if Etype (L) /= T then
7850 Rewrite (L,
7851 Make_Unchecked_Type_Conversion (Sloc (L),
7852 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7853 Expression => Relocate_Node (L)));
7854 Analyze_And_Resolve (L, T);
7855 end if;
7857 if (Etype (R)) /= T then
7858 Rewrite (R,
7859 Make_Unchecked_Type_Conversion (Sloc (R),
7860 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7861 Expression => Relocate_Node (R)));
7862 Analyze_And_Resolve (R, T);
7863 end if;
7864 end if;
7865 end if;
7866 end Resolve_Equality_Op;
7868 ----------------------------------
7869 -- Resolve_Explicit_Dereference --
7870 ----------------------------------
7872 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7873 Loc : constant Source_Ptr := Sloc (N);
7874 New_N : Node_Id;
7875 P : constant Node_Id := Prefix (N);
7877 P_Typ : Entity_Id;
7878 -- The candidate prefix type, if overloaded
7880 I : Interp_Index;
7881 It : Interp;
7883 begin
7884 Check_Fully_Declared_Prefix (Typ, P);
7885 P_Typ := Empty;
7887 -- A useful optimization: check whether the dereference denotes an
7888 -- element of a container, and if so rewrite it as a call to the
7889 -- corresponding Element function.
7891 -- Disabled for now, on advice of ARG. A more restricted form of the
7892 -- predicate might be acceptable ???
7894 -- if Is_Container_Element (N) then
7895 -- return;
7896 -- end if;
7898 if Is_Overloaded (P) then
7900 -- Use the context type to select the prefix that has the correct
7901 -- designated type. Keep the first match, which will be the inner-
7902 -- most.
7904 Get_First_Interp (P, I, It);
7906 while Present (It.Typ) loop
7907 if Is_Access_Type (It.Typ)
7908 and then Covers (Typ, Designated_Type (It.Typ))
7909 then
7910 if No (P_Typ) then
7911 P_Typ := It.Typ;
7912 end if;
7914 -- Remove access types that do not match, but preserve access
7915 -- to subprogram interpretations, in case a further dereference
7916 -- is needed (see below).
7918 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7919 Remove_Interp (I);
7920 end if;
7922 Get_Next_Interp (I, It);
7923 end loop;
7925 if Present (P_Typ) then
7926 Resolve (P, P_Typ);
7927 Set_Etype (N, Designated_Type (P_Typ));
7929 else
7930 -- If no interpretation covers the designated type of the prefix,
7931 -- this is the pathological case where not all implementations of
7932 -- the prefix allow the interpretation of the node as a call. Now
7933 -- that the expected type is known, Remove other interpretations
7934 -- from prefix, rewrite it as a call, and resolve again, so that
7935 -- the proper call node is generated.
7937 Get_First_Interp (P, I, It);
7938 while Present (It.Typ) loop
7939 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7940 Remove_Interp (I);
7941 end if;
7943 Get_Next_Interp (I, It);
7944 end loop;
7946 New_N :=
7947 Make_Function_Call (Loc,
7948 Name =>
7949 Make_Explicit_Dereference (Loc,
7950 Prefix => P),
7951 Parameter_Associations => New_List);
7953 Save_Interps (N, New_N);
7954 Rewrite (N, New_N);
7955 Analyze_And_Resolve (N, Typ);
7956 return;
7957 end if;
7959 -- If not overloaded, resolve P with its own type
7961 else
7962 Resolve (P);
7963 end if;
7965 if Is_Access_Type (Etype (P)) then
7966 Apply_Access_Check (N);
7967 end if;
7969 -- If the designated type is a packed unconstrained array type, and the
7970 -- explicit dereference is not in the context of an attribute reference,
7971 -- then we must compute and set the actual subtype, since it is needed
7972 -- by Gigi. The reason we exclude the attribute case is that this is
7973 -- handled fine by Gigi, and in fact we use such attributes to build the
7974 -- actual subtype. We also exclude generated code (which builds actual
7975 -- subtypes directly if they are needed).
7977 if Is_Array_Type (Etype (N))
7978 and then Is_Packed (Etype (N))
7979 and then not Is_Constrained (Etype (N))
7980 and then Nkind (Parent (N)) /= N_Attribute_Reference
7981 and then Comes_From_Source (N)
7982 then
7983 Set_Etype (N, Get_Actual_Subtype (N));
7984 end if;
7986 -- Note: No Eval processing is required for an explicit dereference,
7987 -- because such a name can never be static.
7989 end Resolve_Explicit_Dereference;
7991 -------------------------------------
7992 -- Resolve_Expression_With_Actions --
7993 -------------------------------------
7995 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
7996 begin
7997 Set_Etype (N, Typ);
7999 -- If N has no actions, and its expression has been constant folded,
8000 -- then rewrite N as just its expression. Note, we can't do this in
8001 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8002 -- Expression (N) to be expanded again.
8004 if Is_Empty_List (Actions (N))
8005 and then Compile_Time_Known_Value (Expression (N))
8006 then
8007 Rewrite (N, Expression (N));
8008 end if;
8009 end Resolve_Expression_With_Actions;
8011 ----------------------------------
8012 -- Resolve_Generalized_Indexing --
8013 ----------------------------------
8015 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8016 Indexing : constant Node_Id := Generalized_Indexing (N);
8017 Call : Node_Id;
8018 Indexes : List_Id;
8019 Pref : Node_Id;
8021 begin
8022 -- In ASIS mode, propagate the information about the indexes back to
8023 -- to the original indexing node. The generalized indexing is either
8024 -- a function call, or a dereference of one. The actuals include the
8025 -- prefix of the original node, which is the container expression.
8027 if ASIS_Mode then
8028 Resolve (Indexing, Typ);
8029 Set_Etype (N, Etype (Indexing));
8030 Set_Is_Overloaded (N, False);
8032 Call := Indexing;
8033 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8034 loop
8035 Call := Prefix (Call);
8036 end loop;
8038 if Nkind (Call) = N_Function_Call then
8039 Indexes := Parameter_Associations (Call);
8040 Pref := Remove_Head (Indexes);
8041 Set_Expressions (N, Indexes);
8042 Set_Prefix (N, Pref);
8043 end if;
8045 else
8046 Rewrite (N, Indexing);
8047 Resolve (N, Typ);
8048 end if;
8049 end Resolve_Generalized_Indexing;
8051 ---------------------------
8052 -- Resolve_If_Expression --
8053 ---------------------------
8055 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8056 Condition : constant Node_Id := First (Expressions (N));
8057 Then_Expr : constant Node_Id := Next (Condition);
8058 Else_Expr : Node_Id := Next (Then_Expr);
8059 Else_Typ : Entity_Id;
8060 Then_Typ : Entity_Id;
8062 begin
8063 Resolve (Condition, Any_Boolean);
8064 Resolve (Then_Expr, Typ);
8065 Then_Typ := Etype (Then_Expr);
8067 -- When the "then" expression is of a scalar subtype different from the
8068 -- result subtype, then insert a conversion to ensure the generation of
8069 -- a constraint check. The same is done for the else part below, again
8070 -- comparing subtypes rather than base types.
8072 if Is_Scalar_Type (Then_Typ)
8073 and then Then_Typ /= Typ
8074 then
8075 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8076 Analyze_And_Resolve (Then_Expr, Typ);
8077 end if;
8079 -- If ELSE expression present, just resolve using the determined type
8081 if Present (Else_Expr) then
8082 Resolve (Else_Expr, Typ);
8083 Else_Typ := Etype (Else_Expr);
8085 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8086 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8087 Analyze_And_Resolve (Else_Expr, Typ);
8089 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8090 -- dynamically tagged must be known statically.
8092 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8093 if Is_Dynamically_Tagged (Then_Expr) /=
8094 Is_Dynamically_Tagged (Else_Expr)
8095 then
8096 Error_Msg_N ("all or none of the dependent expressions "
8097 & "can be dynamically tagged", N);
8098 end if;
8099 end if;
8101 -- If no ELSE expression is present, root type must be Standard.Boolean
8102 -- and we provide a Standard.True result converted to the appropriate
8103 -- Boolean type (in case it is a derived boolean type).
8105 elsif Root_Type (Typ) = Standard_Boolean then
8106 Else_Expr :=
8107 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8108 Analyze_And_Resolve (Else_Expr, Typ);
8109 Append_To (Expressions (N), Else_Expr);
8111 else
8112 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8113 Append_To (Expressions (N), Error);
8114 end if;
8116 Set_Etype (N, Typ);
8117 Eval_If_Expression (N);
8118 end Resolve_If_Expression;
8120 -------------------------------
8121 -- Resolve_Indexed_Component --
8122 -------------------------------
8124 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8125 Name : constant Node_Id := Prefix (N);
8126 Expr : Node_Id;
8127 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8128 Index : Node_Id;
8130 begin
8131 if Present (Generalized_Indexing (N)) then
8132 Resolve_Generalized_Indexing (N, Typ);
8133 return;
8134 end if;
8136 if Is_Overloaded (Name) then
8138 -- Use the context type to select the prefix that yields the correct
8139 -- component type.
8141 declare
8142 I : Interp_Index;
8143 It : Interp;
8144 I1 : Interp_Index := 0;
8145 P : constant Node_Id := Prefix (N);
8146 Found : Boolean := False;
8148 begin
8149 Get_First_Interp (P, I, It);
8150 while Present (It.Typ) loop
8151 if (Is_Array_Type (It.Typ)
8152 and then Covers (Typ, Component_Type (It.Typ)))
8153 or else (Is_Access_Type (It.Typ)
8154 and then Is_Array_Type (Designated_Type (It.Typ))
8155 and then
8156 Covers
8157 (Typ,
8158 Component_Type (Designated_Type (It.Typ))))
8159 then
8160 if Found then
8161 It := Disambiguate (P, I1, I, Any_Type);
8163 if It = No_Interp then
8164 Error_Msg_N ("ambiguous prefix for indexing", N);
8165 Set_Etype (N, Typ);
8166 return;
8168 else
8169 Found := True;
8170 Array_Type := It.Typ;
8171 I1 := I;
8172 end if;
8174 else
8175 Found := True;
8176 Array_Type := It.Typ;
8177 I1 := I;
8178 end if;
8179 end if;
8181 Get_Next_Interp (I, It);
8182 end loop;
8183 end;
8185 else
8186 Array_Type := Etype (Name);
8187 end if;
8189 Resolve (Name, Array_Type);
8190 Array_Type := Get_Actual_Subtype_If_Available (Name);
8192 -- If prefix is access type, dereference to get real array type.
8193 -- Note: we do not apply an access check because the expander always
8194 -- introduces an explicit dereference, and the check will happen there.
8196 if Is_Access_Type (Array_Type) then
8197 Array_Type := Designated_Type (Array_Type);
8198 end if;
8200 -- If name was overloaded, set component type correctly now
8201 -- If a misplaced call to an entry family (which has no index types)
8202 -- return. Error will be diagnosed from calling context.
8204 if Is_Array_Type (Array_Type) then
8205 Set_Etype (N, Component_Type (Array_Type));
8206 else
8207 return;
8208 end if;
8210 Index := First_Index (Array_Type);
8211 Expr := First (Expressions (N));
8213 -- The prefix may have resolved to a string literal, in which case its
8214 -- etype has a special representation. This is only possible currently
8215 -- if the prefix is a static concatenation, written in functional
8216 -- notation.
8218 if Ekind (Array_Type) = E_String_Literal_Subtype then
8219 Resolve (Expr, Standard_Positive);
8221 else
8222 while Present (Index) and Present (Expr) loop
8223 Resolve (Expr, Etype (Index));
8224 Check_Unset_Reference (Expr);
8226 if Is_Scalar_Type (Etype (Expr)) then
8227 Apply_Scalar_Range_Check (Expr, Etype (Index));
8228 else
8229 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8230 end if;
8232 Next_Index (Index);
8233 Next (Expr);
8234 end loop;
8235 end if;
8237 Analyze_Dimension (N);
8239 -- Do not generate the warning on suspicious index if we are analyzing
8240 -- package Ada.Tags; otherwise we will report the warning with the
8241 -- Prims_Ptr field of the dispatch table.
8243 if Scope (Etype (Prefix (N))) = Standard_Standard
8244 or else not
8245 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8246 Ada_Tags)
8247 then
8248 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8249 Eval_Indexed_Component (N);
8250 end if;
8252 -- If the array type is atomic, and the component is not atomic, then
8253 -- this is worth a warning, since we have a situation where the access
8254 -- to the component may cause extra read/writes of the atomic array
8255 -- object, or partial word accesses, which could be unexpected.
8257 if Nkind (N) = N_Indexed_Component
8258 and then Is_Atomic_Ref_With_Address (N)
8259 and then not (Has_Atomic_Components (Array_Type)
8260 or else (Is_Entity_Name (Prefix (N))
8261 and then Has_Atomic_Components
8262 (Entity (Prefix (N)))))
8263 and then not Is_Atomic (Component_Type (Array_Type))
8264 then
8265 Error_Msg_N
8266 ("??access to non-atomic component of atomic array", Prefix (N));
8267 Error_Msg_N
8268 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8269 end if;
8270 end Resolve_Indexed_Component;
8272 -----------------------------
8273 -- Resolve_Integer_Literal --
8274 -----------------------------
8276 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8277 begin
8278 Set_Etype (N, Typ);
8279 Eval_Integer_Literal (N);
8280 end Resolve_Integer_Literal;
8282 --------------------------------
8283 -- Resolve_Intrinsic_Operator --
8284 --------------------------------
8286 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8287 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8288 Op : Entity_Id;
8289 Arg1 : Node_Id;
8290 Arg2 : Node_Id;
8292 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8293 -- If the operand is a literal, it cannot be the expression in a
8294 -- conversion. Use a qualified expression instead.
8296 ---------------------
8297 -- Convert_Operand --
8298 ---------------------
8300 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8301 Loc : constant Source_Ptr := Sloc (Opnd);
8302 Res : Node_Id;
8304 begin
8305 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8306 Res :=
8307 Make_Qualified_Expression (Loc,
8308 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8309 Expression => Relocate_Node (Opnd));
8310 Analyze (Res);
8312 else
8313 Res := Unchecked_Convert_To (Btyp, Opnd);
8314 end if;
8316 return Res;
8317 end Convert_Operand;
8319 -- Start of processing for Resolve_Intrinsic_Operator
8321 begin
8322 -- We must preserve the original entity in a generic setting, so that
8323 -- the legality of the operation can be verified in an instance.
8325 if not Expander_Active then
8326 return;
8327 end if;
8329 Op := Entity (N);
8330 while Scope (Op) /= Standard_Standard loop
8331 Op := Homonym (Op);
8332 pragma Assert (Present (Op));
8333 end loop;
8335 Set_Entity (N, Op);
8336 Set_Is_Overloaded (N, False);
8338 -- If the result or operand types are private, rewrite with unchecked
8339 -- conversions on the operands and the result, to expose the proper
8340 -- underlying numeric type.
8342 if Is_Private_Type (Typ)
8343 or else Is_Private_Type (Etype (Left_Opnd (N)))
8344 or else Is_Private_Type (Etype (Right_Opnd (N)))
8345 then
8346 Arg1 := Convert_Operand (Left_Opnd (N));
8348 if Nkind (N) = N_Op_Expon then
8349 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8350 else
8351 Arg2 := Convert_Operand (Right_Opnd (N));
8352 end if;
8354 if Nkind (Arg1) = N_Type_Conversion then
8355 Save_Interps (Left_Opnd (N), Expression (Arg1));
8356 end if;
8358 if Nkind (Arg2) = N_Type_Conversion then
8359 Save_Interps (Right_Opnd (N), Expression (Arg2));
8360 end if;
8362 Set_Left_Opnd (N, Arg1);
8363 Set_Right_Opnd (N, Arg2);
8365 Set_Etype (N, Btyp);
8366 Rewrite (N, Unchecked_Convert_To (Typ, N));
8367 Resolve (N, Typ);
8369 elsif Typ /= Etype (Left_Opnd (N))
8370 or else Typ /= Etype (Right_Opnd (N))
8371 then
8372 -- Add explicit conversion where needed, and save interpretations in
8373 -- case operands are overloaded.
8375 Arg1 := Convert_To (Typ, Left_Opnd (N));
8376 Arg2 := Convert_To (Typ, Right_Opnd (N));
8378 if Nkind (Arg1) = N_Type_Conversion then
8379 Save_Interps (Left_Opnd (N), Expression (Arg1));
8380 else
8381 Save_Interps (Left_Opnd (N), Arg1);
8382 end if;
8384 if Nkind (Arg2) = N_Type_Conversion then
8385 Save_Interps (Right_Opnd (N), Expression (Arg2));
8386 else
8387 Save_Interps (Right_Opnd (N), Arg2);
8388 end if;
8390 Rewrite (Left_Opnd (N), Arg1);
8391 Rewrite (Right_Opnd (N), Arg2);
8392 Analyze (Arg1);
8393 Analyze (Arg2);
8394 Resolve_Arithmetic_Op (N, Typ);
8396 else
8397 Resolve_Arithmetic_Op (N, Typ);
8398 end if;
8399 end Resolve_Intrinsic_Operator;
8401 --------------------------------------
8402 -- Resolve_Intrinsic_Unary_Operator --
8403 --------------------------------------
8405 procedure Resolve_Intrinsic_Unary_Operator
8406 (N : Node_Id;
8407 Typ : Entity_Id)
8409 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8410 Op : Entity_Id;
8411 Arg2 : Node_Id;
8413 begin
8414 Op := Entity (N);
8415 while Scope (Op) /= Standard_Standard loop
8416 Op := Homonym (Op);
8417 pragma Assert (Present (Op));
8418 end loop;
8420 Set_Entity (N, Op);
8422 if Is_Private_Type (Typ) then
8423 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8424 Save_Interps (Right_Opnd (N), Expression (Arg2));
8426 Set_Right_Opnd (N, Arg2);
8428 Set_Etype (N, Btyp);
8429 Rewrite (N, Unchecked_Convert_To (Typ, N));
8430 Resolve (N, Typ);
8432 else
8433 Resolve_Unary_Op (N, Typ);
8434 end if;
8435 end Resolve_Intrinsic_Unary_Operator;
8437 ------------------------
8438 -- Resolve_Logical_Op --
8439 ------------------------
8441 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8442 B_Typ : Entity_Id;
8444 begin
8445 Check_No_Direct_Boolean_Operators (N);
8447 -- Predefined operations on scalar types yield the base type. On the
8448 -- other hand, logical operations on arrays yield the type of the
8449 -- arguments (and the context).
8451 if Is_Array_Type (Typ) then
8452 B_Typ := Typ;
8453 else
8454 B_Typ := Base_Type (Typ);
8455 end if;
8457 -- The following test is required because the operands of the operation
8458 -- may be literals, in which case the resulting type appears to be
8459 -- compatible with a signed integer type, when in fact it is compatible
8460 -- only with modular types. If the context itself is universal, the
8461 -- operation is illegal.
8463 if not Valid_Boolean_Arg (Typ) then
8464 Error_Msg_N ("invalid context for logical operation", N);
8465 Set_Etype (N, Any_Type);
8466 return;
8468 elsif Typ = Any_Modular then
8469 Error_Msg_N
8470 ("no modular type available in this context", N);
8471 Set_Etype (N, Any_Type);
8472 return;
8474 elsif Is_Modular_Integer_Type (Typ)
8475 and then Etype (Left_Opnd (N)) = Universal_Integer
8476 and then Etype (Right_Opnd (N)) = Universal_Integer
8477 then
8478 Check_For_Visible_Operator (N, B_Typ);
8479 end if;
8481 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8482 -- is active and the result type is standard Boolean (do not mess with
8483 -- ops that return a nonstandard Boolean type, because something strange
8484 -- is going on).
8486 -- Note: you might expect this replacement to be done during expansion,
8487 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8488 -- is used, no part of the right operand of an "and" or "or" operator
8489 -- should be executed if the left operand would short-circuit the
8490 -- evaluation of the corresponding "and then" or "or else". If we left
8491 -- the replacement to expansion time, then run-time checks associated
8492 -- with such operands would be evaluated unconditionally, due to being
8493 -- before the condition prior to the rewriting as short-circuit forms
8494 -- during expansion.
8496 if Short_Circuit_And_Or
8497 and then B_Typ = Standard_Boolean
8498 and then Nkind_In (N, N_Op_And, N_Op_Or)
8499 then
8500 -- Mark the corresponding putative SCO operator as truly a logical
8501 -- (and short-circuit) operator.
8503 if Generate_SCO and then Comes_From_Source (N) then
8504 Set_SCO_Logical_Operator (N);
8505 end if;
8507 if Nkind (N) = N_Op_And then
8508 Rewrite (N,
8509 Make_And_Then (Sloc (N),
8510 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8511 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8512 Analyze_And_Resolve (N, B_Typ);
8514 -- Case of OR changed to OR ELSE
8516 else
8517 Rewrite (N,
8518 Make_Or_Else (Sloc (N),
8519 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8520 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8521 Analyze_And_Resolve (N, B_Typ);
8522 end if;
8524 -- Return now, since analysis of the rewritten ops will take care of
8525 -- other reference bookkeeping and expression folding.
8527 return;
8528 end if;
8530 Resolve (Left_Opnd (N), B_Typ);
8531 Resolve (Right_Opnd (N), B_Typ);
8533 Check_Unset_Reference (Left_Opnd (N));
8534 Check_Unset_Reference (Right_Opnd (N));
8536 Set_Etype (N, B_Typ);
8537 Generate_Operator_Reference (N, B_Typ);
8538 Eval_Logical_Op (N);
8540 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8541 -- only when both operands have same static lower and higher bounds. Of
8542 -- course the types have to match, so only check if operands are
8543 -- compatible and the node itself has no errors.
8545 if Is_Array_Type (B_Typ)
8546 and then Nkind (N) in N_Binary_Op
8547 then
8548 declare
8549 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8550 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8552 begin
8553 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8554 -- operation if not needed.
8556 if Restriction_Check_Required (SPARK_05)
8557 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8558 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8559 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8560 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8561 then
8562 Check_SPARK_05_Restriction
8563 ("array types should have matching static bounds", N);
8564 end if;
8565 end;
8566 end if;
8568 Check_Function_Writable_Actuals (N);
8569 end Resolve_Logical_Op;
8571 ---------------------------
8572 -- Resolve_Membership_Op --
8573 ---------------------------
8575 -- The context can only be a boolean type, and does not determine the
8576 -- arguments. Arguments should be unambiguous, but the preference rule for
8577 -- universal types applies.
8579 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8580 pragma Warnings (Off, Typ);
8582 L : constant Node_Id := Left_Opnd (N);
8583 R : constant Node_Id := Right_Opnd (N);
8584 T : Entity_Id;
8586 procedure Resolve_Set_Membership;
8587 -- Analysis has determined a unique type for the left operand. Use it to
8588 -- resolve the disjuncts.
8590 ----------------------------
8591 -- Resolve_Set_Membership --
8592 ----------------------------
8594 procedure Resolve_Set_Membership is
8595 Alt : Node_Id;
8596 Ltyp : Entity_Id;
8598 begin
8599 -- If the left operand is overloaded, find type compatible with not
8600 -- overloaded alternative of the right operand.
8602 if Is_Overloaded (L) then
8603 Ltyp := Empty;
8604 Alt := First (Alternatives (N));
8605 while Present (Alt) loop
8606 if not Is_Overloaded (Alt) then
8607 Ltyp := Intersect_Types (L, Alt);
8608 exit;
8609 else
8610 Next (Alt);
8611 end if;
8612 end loop;
8614 -- Unclear how to resolve expression if all alternatives are also
8615 -- overloaded.
8617 if No (Ltyp) then
8618 Error_Msg_N ("ambiguous expression", N);
8619 end if;
8621 else
8622 Ltyp := Etype (L);
8623 end if;
8625 Resolve (L, Ltyp);
8627 Alt := First (Alternatives (N));
8628 while Present (Alt) loop
8630 -- Alternative is an expression, a range
8631 -- or a subtype mark.
8633 if not Is_Entity_Name (Alt)
8634 or else not Is_Type (Entity (Alt))
8635 then
8636 Resolve (Alt, Ltyp);
8637 end if;
8639 Next (Alt);
8640 end loop;
8642 -- Check for duplicates for discrete case
8644 if Is_Discrete_Type (Ltyp) then
8645 declare
8646 type Ent is record
8647 Alt : Node_Id;
8648 Val : Uint;
8649 end record;
8651 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8652 Nalts : Nat;
8654 begin
8655 -- Loop checking duplicates. This is quadratic, but giant sets
8656 -- are unlikely in this context so it's a reasonable choice.
8658 Nalts := 0;
8659 Alt := First (Alternatives (N));
8660 while Present (Alt) loop
8661 if Is_OK_Static_Expression (Alt)
8662 and then (Nkind_In (Alt, N_Integer_Literal,
8663 N_Character_Literal)
8664 or else Nkind (Alt) in N_Has_Entity)
8665 then
8666 Nalts := Nalts + 1;
8667 Alts (Nalts) := (Alt, Expr_Value (Alt));
8669 for J in 1 .. Nalts - 1 loop
8670 if Alts (J).Val = Alts (Nalts).Val then
8671 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8672 Error_Msg_N ("duplicate of value given#??", Alt);
8673 end if;
8674 end loop;
8675 end if;
8677 Alt := Next (Alt);
8678 end loop;
8679 end;
8680 end if;
8681 end Resolve_Set_Membership;
8683 -- Start of processing for Resolve_Membership_Op
8685 begin
8686 if L = Error or else R = Error then
8687 return;
8688 end if;
8690 if Present (Alternatives (N)) then
8691 Resolve_Set_Membership;
8692 goto SM_Exit;
8694 elsif not Is_Overloaded (R)
8695 and then
8696 (Etype (R) = Universal_Integer
8697 or else
8698 Etype (R) = Universal_Real)
8699 and then Is_Overloaded (L)
8700 then
8701 T := Etype (R);
8703 -- Ada 2005 (AI-251): Support the following case:
8705 -- type I is interface;
8706 -- type T is tagged ...
8708 -- function Test (O : I'Class) is
8709 -- begin
8710 -- return O in T'Class.
8711 -- end Test;
8713 -- In this case we have nothing else to do. The membership test will be
8714 -- done at run time.
8716 elsif Ada_Version >= Ada_2005
8717 and then Is_Class_Wide_Type (Etype (L))
8718 and then Is_Interface (Etype (L))
8719 and then Is_Class_Wide_Type (Etype (R))
8720 and then not Is_Interface (Etype (R))
8721 then
8722 return;
8723 else
8724 T := Intersect_Types (L, R);
8725 end if;
8727 -- If mixed-mode operations are present and operands are all literal,
8728 -- the only interpretation involves Duration, which is probably not
8729 -- the intention of the programmer.
8731 if T = Any_Fixed then
8732 T := Unique_Fixed_Point_Type (N);
8734 if T = Any_Type then
8735 return;
8736 end if;
8737 end if;
8739 Resolve (L, T);
8740 Check_Unset_Reference (L);
8742 if Nkind (R) = N_Range
8743 and then not Is_Scalar_Type (T)
8744 then
8745 Error_Msg_N ("scalar type required for range", R);
8746 end if;
8748 if Is_Entity_Name (R) then
8749 Freeze_Expression (R);
8750 else
8751 Resolve (R, T);
8752 Check_Unset_Reference (R);
8753 end if;
8755 -- Here after resolving membership operation
8757 <<SM_Exit>>
8759 Eval_Membership_Op (N);
8760 Check_Function_Writable_Actuals (N);
8761 end Resolve_Membership_Op;
8763 ------------------
8764 -- Resolve_Null --
8765 ------------------
8767 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8768 Loc : constant Source_Ptr := Sloc (N);
8770 begin
8771 -- Handle restriction against anonymous null access values This
8772 -- restriction can be turned off using -gnatdj.
8774 -- Ada 2005 (AI-231): Remove restriction
8776 if Ada_Version < Ada_2005
8777 and then not Debug_Flag_J
8778 and then Ekind (Typ) = E_Anonymous_Access_Type
8779 and then Comes_From_Source (N)
8780 then
8781 -- In the common case of a call which uses an explicitly null value
8782 -- for an access parameter, give specialized error message.
8784 if Nkind (Parent (N)) in N_Subprogram_Call then
8785 Error_Msg_N
8786 ("null is not allowed as argument for an access parameter", N);
8788 -- Standard message for all other cases (are there any?)
8790 else
8791 Error_Msg_N
8792 ("null cannot be of an anonymous access type", N);
8793 end if;
8794 end if;
8796 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8797 -- assignment to a null-excluding object
8799 if Ada_Version >= Ada_2005
8800 and then Can_Never_Be_Null (Typ)
8801 and then Nkind (Parent (N)) = N_Assignment_Statement
8802 then
8803 if not Inside_Init_Proc then
8804 Insert_Action
8805 (Compile_Time_Constraint_Error (N,
8806 "(Ada 2005) null not allowed in null-excluding objects??"),
8807 Make_Raise_Constraint_Error (Loc,
8808 Reason => CE_Access_Check_Failed));
8809 else
8810 Insert_Action (N,
8811 Make_Raise_Constraint_Error (Loc,
8812 Reason => CE_Access_Check_Failed));
8813 end if;
8814 end if;
8816 -- In a distributed context, null for a remote access to subprogram may
8817 -- need to be replaced with a special record aggregate. In this case,
8818 -- return after having done the transformation.
8820 if (Ekind (Typ) = E_Record_Type
8821 or else Is_Remote_Access_To_Subprogram_Type (Typ))
8822 and then Remote_AST_Null_Value (N, Typ)
8823 then
8824 return;
8825 end if;
8827 -- The null literal takes its type from the context
8829 Set_Etype (N, Typ);
8830 end Resolve_Null;
8832 -----------------------
8833 -- Resolve_Op_Concat --
8834 -----------------------
8836 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8838 -- We wish to avoid deep recursion, because concatenations are often
8839 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8840 -- operands nonrecursively until we find something that is not a simple
8841 -- concatenation (A in this case). We resolve that, and then walk back
8842 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8843 -- to do the rest of the work at each level. The Parent pointers allow
8844 -- us to avoid recursion, and thus avoid running out of memory. See also
8845 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8847 NN : Node_Id := N;
8848 Op1 : Node_Id;
8850 begin
8851 -- The following code is equivalent to:
8853 -- Resolve_Op_Concat_First (NN, Typ);
8854 -- Resolve_Op_Concat_Arg (N, ...);
8855 -- Resolve_Op_Concat_Rest (N, Typ);
8857 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8858 -- operand is a concatenation.
8860 -- Walk down left operands
8862 loop
8863 Resolve_Op_Concat_First (NN, Typ);
8864 Op1 := Left_Opnd (NN);
8865 exit when not (Nkind (Op1) = N_Op_Concat
8866 and then not Is_Array_Type (Component_Type (Typ))
8867 and then Entity (Op1) = Entity (NN));
8868 NN := Op1;
8869 end loop;
8871 -- Now (given the above example) NN is A&B and Op1 is A
8873 -- First resolve Op1 ...
8875 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
8877 -- ... then walk NN back up until we reach N (where we started), calling
8878 -- Resolve_Op_Concat_Rest along the way.
8880 loop
8881 Resolve_Op_Concat_Rest (NN, Typ);
8882 exit when NN = N;
8883 NN := Parent (NN);
8884 end loop;
8886 if Base_Type (Etype (N)) /= Standard_String then
8887 Check_SPARK_05_Restriction
8888 ("result of concatenation should have type String", N);
8889 end if;
8890 end Resolve_Op_Concat;
8892 ---------------------------
8893 -- Resolve_Op_Concat_Arg --
8894 ---------------------------
8896 procedure Resolve_Op_Concat_Arg
8897 (N : Node_Id;
8898 Arg : Node_Id;
8899 Typ : Entity_Id;
8900 Is_Comp : Boolean)
8902 Btyp : constant Entity_Id := Base_Type (Typ);
8903 Ctyp : constant Entity_Id := Component_Type (Typ);
8905 begin
8906 if In_Instance then
8907 if Is_Comp
8908 or else (not Is_Overloaded (Arg)
8909 and then Etype (Arg) /= Any_Composite
8910 and then Covers (Ctyp, Etype (Arg)))
8911 then
8912 Resolve (Arg, Ctyp);
8913 else
8914 Resolve (Arg, Btyp);
8915 end if;
8917 -- If both Array & Array and Array & Component are visible, there is a
8918 -- potential ambiguity that must be reported.
8920 elsif Has_Compatible_Type (Arg, Ctyp) then
8921 if Nkind (Arg) = N_Aggregate
8922 and then Is_Composite_Type (Ctyp)
8923 then
8924 if Is_Private_Type (Ctyp) then
8925 Resolve (Arg, Btyp);
8927 -- If the operation is user-defined and not overloaded use its
8928 -- profile. The operation may be a renaming, in which case it has
8929 -- been rewritten, and we want the original profile.
8931 elsif not Is_Overloaded (N)
8932 and then Comes_From_Source (Entity (Original_Node (N)))
8933 and then Ekind (Entity (Original_Node (N))) = E_Function
8934 then
8935 Resolve (Arg,
8936 Etype
8937 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
8938 return;
8940 -- Otherwise an aggregate may match both the array type and the
8941 -- component type.
8943 else
8944 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
8945 Set_Etype (Arg, Any_Type);
8946 end if;
8948 else
8949 if Is_Overloaded (Arg)
8950 and then Has_Compatible_Type (Arg, Typ)
8951 and then Etype (Arg) /= Any_Type
8952 then
8953 declare
8954 I : Interp_Index;
8955 It : Interp;
8956 Func : Entity_Id;
8958 begin
8959 Get_First_Interp (Arg, I, It);
8960 Func := It.Nam;
8961 Get_Next_Interp (I, It);
8963 -- Special-case the error message when the overloading is
8964 -- caused by a function that yields an array and can be
8965 -- called without parameters.
8967 if It.Nam = Func then
8968 Error_Msg_Sloc := Sloc (Func);
8969 Error_Msg_N ("ambiguous call to function#", Arg);
8970 Error_Msg_NE
8971 ("\\interpretation as call yields&", Arg, Typ);
8972 Error_Msg_NE
8973 ("\\interpretation as indexing of call yields&",
8974 Arg, Component_Type (Typ));
8976 else
8977 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
8979 Get_First_Interp (Arg, I, It);
8980 while Present (It.Nam) loop
8981 Error_Msg_Sloc := Sloc (It.Nam);
8983 if Base_Type (It.Typ) = Btyp
8984 or else
8985 Base_Type (It.Typ) = Base_Type (Ctyp)
8986 then
8987 Error_Msg_N -- CODEFIX
8988 ("\\possible interpretation#", Arg);
8989 end if;
8991 Get_Next_Interp (I, It);
8992 end loop;
8993 end if;
8994 end;
8995 end if;
8997 Resolve (Arg, Component_Type (Typ));
8999 if Nkind (Arg) = N_String_Literal then
9000 Set_Etype (Arg, Component_Type (Typ));
9001 end if;
9003 if Arg = Left_Opnd (N) then
9004 Set_Is_Component_Left_Opnd (N);
9005 else
9006 Set_Is_Component_Right_Opnd (N);
9007 end if;
9008 end if;
9010 else
9011 Resolve (Arg, Btyp);
9012 end if;
9014 -- Concatenation is restricted in SPARK: each operand must be either a
9015 -- string literal, the name of a string constant, a static character or
9016 -- string expression, or another concatenation. Arg cannot be a
9017 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9018 -- separately on each final operand, past concatenation operations.
9020 if Is_Character_Type (Etype (Arg)) then
9021 if not Is_OK_Static_Expression (Arg) then
9022 Check_SPARK_05_Restriction
9023 ("character operand for concatenation should be static", Arg);
9024 end if;
9026 elsif Is_String_Type (Etype (Arg)) then
9027 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9028 and then Is_Constant_Object (Entity (Arg)))
9029 and then not Is_OK_Static_Expression (Arg)
9030 then
9031 Check_SPARK_05_Restriction
9032 ("string operand for concatenation should be static", Arg);
9033 end if;
9035 -- Do not issue error on an operand that is neither a character nor a
9036 -- string, as the error is issued in Resolve_Op_Concat.
9038 else
9039 null;
9040 end if;
9042 Check_Unset_Reference (Arg);
9043 end Resolve_Op_Concat_Arg;
9045 -----------------------------
9046 -- Resolve_Op_Concat_First --
9047 -----------------------------
9049 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9050 Btyp : constant Entity_Id := Base_Type (Typ);
9051 Op1 : constant Node_Id := Left_Opnd (N);
9052 Op2 : constant Node_Id := Right_Opnd (N);
9054 begin
9055 -- The parser folds an enormous sequence of concatenations of string
9056 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9057 -- in the right operand. If the expression resolves to a predefined "&"
9058 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9059 -- we give an error. See P_Simple_Expression in Par.Ch4.
9061 if Nkind (Op2) = N_String_Literal
9062 and then Is_Folded_In_Parser (Op2)
9063 and then Ekind (Entity (N)) = E_Function
9064 then
9065 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9066 and then String_Length (Strval (Op1)) = 0);
9067 Error_Msg_N ("too many user-defined concatenations", N);
9068 return;
9069 end if;
9071 Set_Etype (N, Btyp);
9073 if Is_Limited_Composite (Btyp) then
9074 Error_Msg_N ("concatenation not available for limited array", N);
9075 Explain_Limited_Type (Btyp, N);
9076 end if;
9077 end Resolve_Op_Concat_First;
9079 ----------------------------
9080 -- Resolve_Op_Concat_Rest --
9081 ----------------------------
9083 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9084 Op1 : constant Node_Id := Left_Opnd (N);
9085 Op2 : constant Node_Id := Right_Opnd (N);
9087 begin
9088 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9090 Generate_Operator_Reference (N, Typ);
9092 if Is_String_Type (Typ) then
9093 Eval_Concatenation (N);
9094 end if;
9096 -- If this is not a static concatenation, but the result is a string
9097 -- type (and not an array of strings) ensure that static string operands
9098 -- have their subtypes properly constructed.
9100 if Nkind (N) /= N_String_Literal
9101 and then Is_Character_Type (Component_Type (Typ))
9102 then
9103 Set_String_Literal_Subtype (Op1, Typ);
9104 Set_String_Literal_Subtype (Op2, Typ);
9105 end if;
9106 end Resolve_Op_Concat_Rest;
9108 ----------------------
9109 -- Resolve_Op_Expon --
9110 ----------------------
9112 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9113 B_Typ : constant Entity_Id := Base_Type (Typ);
9115 begin
9116 -- Catch attempts to do fixed-point exponentiation with universal
9117 -- operands, which is a case where the illegality is not caught during
9118 -- normal operator analysis. This is not done in preanalysis mode
9119 -- since the tree is not fully decorated during preanalysis.
9121 if Full_Analysis then
9122 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9123 Error_Msg_N ("exponentiation not available for fixed point", N);
9124 return;
9126 elsif Nkind (Parent (N)) in N_Op
9127 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9128 and then Etype (N) = Universal_Real
9129 and then Comes_From_Source (N)
9130 then
9131 Error_Msg_N ("exponentiation not available for fixed point", N);
9132 return;
9133 end if;
9134 end if;
9136 if Comes_From_Source (N)
9137 and then Ekind (Entity (N)) = E_Function
9138 and then Is_Imported (Entity (N))
9139 and then Is_Intrinsic_Subprogram (Entity (N))
9140 then
9141 Resolve_Intrinsic_Operator (N, Typ);
9142 return;
9143 end if;
9145 if Etype (Left_Opnd (N)) = Universal_Integer
9146 or else Etype (Left_Opnd (N)) = Universal_Real
9147 then
9148 Check_For_Visible_Operator (N, B_Typ);
9149 end if;
9151 -- We do the resolution using the base type, because intermediate values
9152 -- in expressions are always of the base type, not a subtype of it.
9154 Resolve (Left_Opnd (N), B_Typ);
9155 Resolve (Right_Opnd (N), Standard_Integer);
9157 -- For integer types, right argument must be in Natural range
9159 if Is_Integer_Type (Typ) then
9160 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9161 end if;
9163 Check_Unset_Reference (Left_Opnd (N));
9164 Check_Unset_Reference (Right_Opnd (N));
9166 Set_Etype (N, B_Typ);
9167 Generate_Operator_Reference (N, B_Typ);
9169 Analyze_Dimension (N);
9171 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9172 -- Evaluate the exponentiation operator for dimensioned type
9174 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9175 else
9176 Eval_Op_Expon (N);
9177 end if;
9179 -- Set overflow checking bit. Much cleverer code needed here eventually
9180 -- and perhaps the Resolve routines should be separated for the various
9181 -- arithmetic operations, since they will need different processing. ???
9183 if Nkind (N) in N_Op then
9184 if not Overflow_Checks_Suppressed (Etype (N)) then
9185 Enable_Overflow_Check (N);
9186 end if;
9187 end if;
9188 end Resolve_Op_Expon;
9190 --------------------
9191 -- Resolve_Op_Not --
9192 --------------------
9194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9195 B_Typ : Entity_Id;
9197 function Parent_Is_Boolean return Boolean;
9198 -- This function determines if the parent node is a boolean operator or
9199 -- operation (comparison op, membership test, or short circuit form) and
9200 -- the not in question is the left operand of this operation. Note that
9201 -- if the not is in parens, then false is returned.
9203 -----------------------
9204 -- Parent_Is_Boolean --
9205 -----------------------
9207 function Parent_Is_Boolean return Boolean is
9208 begin
9209 if Paren_Count (N) /= 0 then
9210 return False;
9212 else
9213 case Nkind (Parent (N)) is
9214 when N_Op_And |
9215 N_Op_Eq |
9216 N_Op_Ge |
9217 N_Op_Gt |
9218 N_Op_Le |
9219 N_Op_Lt |
9220 N_Op_Ne |
9221 N_Op_Or |
9222 N_Op_Xor |
9223 N_In |
9224 N_Not_In |
9225 N_And_Then |
9226 N_Or_Else =>
9228 return Left_Opnd (Parent (N)) = N;
9230 when others =>
9231 return False;
9232 end case;
9233 end if;
9234 end Parent_Is_Boolean;
9236 -- Start of processing for Resolve_Op_Not
9238 begin
9239 -- Predefined operations on scalar types yield the base type. On the
9240 -- other hand, logical operations on arrays yield the type of the
9241 -- arguments (and the context).
9243 if Is_Array_Type (Typ) then
9244 B_Typ := Typ;
9245 else
9246 B_Typ := Base_Type (Typ);
9247 end if;
9249 -- Straightforward case of incorrect arguments
9251 if not Valid_Boolean_Arg (Typ) then
9252 Error_Msg_N ("invalid operand type for operator&", N);
9253 Set_Etype (N, Any_Type);
9254 return;
9256 -- Special case of probable missing parens
9258 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9259 if Parent_Is_Boolean then
9260 Error_Msg_N
9261 ("operand of not must be enclosed in parentheses",
9262 Right_Opnd (N));
9263 else
9264 Error_Msg_N
9265 ("no modular type available in this context", N);
9266 end if;
9268 Set_Etype (N, Any_Type);
9269 return;
9271 -- OK resolution of NOT
9273 else
9274 -- Warn if non-boolean types involved. This is a case like not a < b
9275 -- where a and b are modular, where we will get (not a) < b and most
9276 -- likely not (a < b) was intended.
9278 if Warn_On_Questionable_Missing_Parens
9279 and then not Is_Boolean_Type (Typ)
9280 and then Parent_Is_Boolean
9281 then
9282 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9283 end if;
9285 -- Warn on double negation if checking redundant constructs
9287 if Warn_On_Redundant_Constructs
9288 and then Comes_From_Source (N)
9289 and then Comes_From_Source (Right_Opnd (N))
9290 and then Root_Type (Typ) = Standard_Boolean
9291 and then Nkind (Right_Opnd (N)) = N_Op_Not
9292 then
9293 Error_Msg_N ("redundant double negation?r?", N);
9294 end if;
9296 -- Complete resolution and evaluation of NOT
9298 Resolve (Right_Opnd (N), B_Typ);
9299 Check_Unset_Reference (Right_Opnd (N));
9300 Set_Etype (N, B_Typ);
9301 Generate_Operator_Reference (N, B_Typ);
9302 Eval_Op_Not (N);
9303 end if;
9304 end Resolve_Op_Not;
9306 -----------------------------
9307 -- Resolve_Operator_Symbol --
9308 -----------------------------
9310 -- Nothing to be done, all resolved already
9312 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9313 pragma Warnings (Off, N);
9314 pragma Warnings (Off, Typ);
9316 begin
9317 null;
9318 end Resolve_Operator_Symbol;
9320 ----------------------------------
9321 -- Resolve_Qualified_Expression --
9322 ----------------------------------
9324 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9325 pragma Warnings (Off, Typ);
9327 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9328 Expr : constant Node_Id := Expression (N);
9330 begin
9331 Resolve (Expr, Target_Typ);
9333 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9334 -- operation if not needed.
9336 if Restriction_Check_Required (SPARK_05)
9337 and then Is_Array_Type (Target_Typ)
9338 and then Is_Array_Type (Etype (Expr))
9339 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9340 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9341 then
9342 Check_SPARK_05_Restriction
9343 ("array types should have matching static bounds", N);
9344 end if;
9346 -- A qualified expression requires an exact match of the type, class-
9347 -- wide matching is not allowed. However, if the qualifying type is
9348 -- specific and the expression has a class-wide type, it may still be
9349 -- okay, since it can be the result of the expansion of a call to a
9350 -- dispatching function, so we also have to check class-wideness of the
9351 -- type of the expression's original node.
9353 if (Is_Class_Wide_Type (Target_Typ)
9354 or else
9355 (Is_Class_Wide_Type (Etype (Expr))
9356 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9357 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9358 then
9359 Wrong_Type (Expr, Target_Typ);
9360 end if;
9362 -- If the target type is unconstrained, then we reset the type of the
9363 -- result from the type of the expression. For other cases, the actual
9364 -- subtype of the expression is the target type.
9366 if Is_Composite_Type (Target_Typ)
9367 and then not Is_Constrained (Target_Typ)
9368 then
9369 Set_Etype (N, Etype (Expr));
9370 end if;
9372 Analyze_Dimension (N);
9373 Eval_Qualified_Expression (N);
9375 -- If we still have a qualified expression after the static evaluation,
9376 -- then apply a scalar range check if needed. The reason that we do this
9377 -- after the Eval call is that otherwise, the application of the range
9378 -- check may convert an illegal static expression and result in warning
9379 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9381 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9382 Apply_Scalar_Range_Check (Expr, Typ);
9383 end if;
9384 end Resolve_Qualified_Expression;
9386 ------------------------------
9387 -- Resolve_Raise_Expression --
9388 ------------------------------
9390 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9391 begin
9392 if Typ = Raise_Type then
9393 Error_Msg_N ("cannot find unique type for raise expression", N);
9394 Set_Etype (N, Any_Type);
9395 else
9396 Set_Etype (N, Typ);
9397 end if;
9398 end Resolve_Raise_Expression;
9400 -------------------
9401 -- Resolve_Range --
9402 -------------------
9404 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9405 L : constant Node_Id := Low_Bound (N);
9406 H : constant Node_Id := High_Bound (N);
9408 function First_Last_Ref return Boolean;
9409 -- Returns True if N is of the form X'First .. X'Last where X is the
9410 -- same entity for both attributes.
9412 --------------------
9413 -- First_Last_Ref --
9414 --------------------
9416 function First_Last_Ref return Boolean is
9417 Lorig : constant Node_Id := Original_Node (L);
9418 Horig : constant Node_Id := Original_Node (H);
9420 begin
9421 if Nkind (Lorig) = N_Attribute_Reference
9422 and then Nkind (Horig) = N_Attribute_Reference
9423 and then Attribute_Name (Lorig) = Name_First
9424 and then Attribute_Name (Horig) = Name_Last
9425 then
9426 declare
9427 PL : constant Node_Id := Prefix (Lorig);
9428 PH : constant Node_Id := Prefix (Horig);
9429 begin
9430 if Is_Entity_Name (PL)
9431 and then Is_Entity_Name (PH)
9432 and then Entity (PL) = Entity (PH)
9433 then
9434 return True;
9435 end if;
9436 end;
9437 end if;
9439 return False;
9440 end First_Last_Ref;
9442 -- Start of processing for Resolve_Range
9444 begin
9445 Set_Etype (N, Typ);
9446 Resolve (L, Typ);
9447 Resolve (H, Typ);
9449 -- Check for inappropriate range on unordered enumeration type
9451 if Bad_Unordered_Enumeration_Reference (N, Typ)
9453 -- Exclude X'First .. X'Last if X is the same entity for both
9455 and then not First_Last_Ref
9456 then
9457 Error_Msg_Sloc := Sloc (Typ);
9458 Error_Msg_NE
9459 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9460 end if;
9462 Check_Unset_Reference (L);
9463 Check_Unset_Reference (H);
9465 -- We have to check the bounds for being within the base range as
9466 -- required for a non-static context. Normally this is automatic and
9467 -- done as part of evaluating expressions, but the N_Range node is an
9468 -- exception, since in GNAT we consider this node to be a subexpression,
9469 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9470 -- this, but that would put the test on the main evaluation path for
9471 -- expressions.
9473 Check_Non_Static_Context (L);
9474 Check_Non_Static_Context (H);
9476 -- Check for an ambiguous range over character literals. This will
9477 -- happen with a membership test involving only literals.
9479 if Typ = Any_Character then
9480 Ambiguous_Character (L);
9481 Set_Etype (N, Any_Type);
9482 return;
9483 end if;
9485 -- If bounds are static, constant-fold them, so size computations are
9486 -- identical between front-end and back-end. Do not perform this
9487 -- transformation while analyzing generic units, as type information
9488 -- would be lost when reanalyzing the constant node in the instance.
9490 if Is_Discrete_Type (Typ) and then Expander_Active then
9491 if Is_OK_Static_Expression (L) then
9492 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9493 end if;
9495 if Is_OK_Static_Expression (H) then
9496 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9497 end if;
9498 end if;
9499 end Resolve_Range;
9501 --------------------------
9502 -- Resolve_Real_Literal --
9503 --------------------------
9505 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9506 Actual_Typ : constant Entity_Id := Etype (N);
9508 begin
9509 -- Special processing for fixed-point literals to make sure that the
9510 -- value is an exact multiple of small where this is required. We skip
9511 -- this for the universal real case, and also for generic types.
9513 if Is_Fixed_Point_Type (Typ)
9514 and then Typ /= Universal_Fixed
9515 and then Typ /= Any_Fixed
9516 and then not Is_Generic_Type (Typ)
9517 then
9518 declare
9519 Val : constant Ureal := Realval (N);
9520 Cintr : constant Ureal := Val / Small_Value (Typ);
9521 Cint : constant Uint := UR_Trunc (Cintr);
9522 Den : constant Uint := Norm_Den (Cintr);
9523 Stat : Boolean;
9525 begin
9526 -- Case of literal is not an exact multiple of the Small
9528 if Den /= 1 then
9530 -- For a source program literal for a decimal fixed-point type,
9531 -- this is statically illegal (RM 4.9(36)).
9533 if Is_Decimal_Fixed_Point_Type (Typ)
9534 and then Actual_Typ = Universal_Real
9535 and then Comes_From_Source (N)
9536 then
9537 Error_Msg_N ("value has extraneous low order digits", N);
9538 end if;
9540 -- Generate a warning if literal from source
9542 if Is_OK_Static_Expression (N)
9543 and then Warn_On_Bad_Fixed_Value
9544 then
9545 Error_Msg_N
9546 ("?b?static fixed-point value is not a multiple of Small!",
9548 end if;
9550 -- Replace literal by a value that is the exact representation
9551 -- of a value of the type, i.e. a multiple of the small value,
9552 -- by truncation, since Machine_Rounds is false for all GNAT
9553 -- fixed-point types (RM 4.9(38)).
9555 Stat := Is_OK_Static_Expression (N);
9556 Rewrite (N,
9557 Make_Real_Literal (Sloc (N),
9558 Realval => Small_Value (Typ) * Cint));
9560 Set_Is_Static_Expression (N, Stat);
9561 end if;
9563 -- In all cases, set the corresponding integer field
9565 Set_Corresponding_Integer_Value (N, Cint);
9566 end;
9567 end if;
9569 -- Now replace the actual type by the expected type as usual
9571 Set_Etype (N, Typ);
9572 Eval_Real_Literal (N);
9573 end Resolve_Real_Literal;
9575 -----------------------
9576 -- Resolve_Reference --
9577 -----------------------
9579 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9580 P : constant Node_Id := Prefix (N);
9582 begin
9583 -- Replace general access with specific type
9585 if Ekind (Etype (N)) = E_Allocator_Type then
9586 Set_Etype (N, Base_Type (Typ));
9587 end if;
9589 Resolve (P, Designated_Type (Etype (N)));
9591 -- If we are taking the reference of a volatile entity, then treat it as
9592 -- a potential modification of this entity. This is too conservative,
9593 -- but necessary because remove side effects can cause transformations
9594 -- of normal assignments into reference sequences that otherwise fail to
9595 -- notice the modification.
9597 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9598 Note_Possible_Modification (P, Sure => False);
9599 end if;
9600 end Resolve_Reference;
9602 --------------------------------
9603 -- Resolve_Selected_Component --
9604 --------------------------------
9606 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9607 Comp : Entity_Id;
9608 Comp1 : Entity_Id := Empty; -- prevent junk warning
9609 P : constant Node_Id := Prefix (N);
9610 S : constant Node_Id := Selector_Name (N);
9611 T : Entity_Id := Etype (P);
9612 I : Interp_Index;
9613 I1 : Interp_Index := 0; -- prevent junk warning
9614 It : Interp;
9615 It1 : Interp;
9616 Found : Boolean;
9618 function Init_Component return Boolean;
9619 -- Check whether this is the initialization of a component within an
9620 -- init proc (by assignment or call to another init proc). If true,
9621 -- there is no need for a discriminant check.
9623 --------------------
9624 -- Init_Component --
9625 --------------------
9627 function Init_Component return Boolean is
9628 begin
9629 return Inside_Init_Proc
9630 and then Nkind (Prefix (N)) = N_Identifier
9631 and then Chars (Prefix (N)) = Name_uInit
9632 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9633 end Init_Component;
9635 -- Start of processing for Resolve_Selected_Component
9637 begin
9638 if Is_Overloaded (P) then
9640 -- Use the context type to select the prefix that has a selector
9641 -- of the correct name and type.
9643 Found := False;
9644 Get_First_Interp (P, I, It);
9646 Search : while Present (It.Typ) loop
9647 if Is_Access_Type (It.Typ) then
9648 T := Designated_Type (It.Typ);
9649 else
9650 T := It.Typ;
9651 end if;
9653 -- Locate selected component. For a private prefix the selector
9654 -- can denote a discriminant.
9656 if Is_Record_Type (T) or else Is_Private_Type (T) then
9658 -- The visible components of a class-wide type are those of
9659 -- the root type.
9661 if Is_Class_Wide_Type (T) then
9662 T := Etype (T);
9663 end if;
9665 Comp := First_Entity (T);
9666 while Present (Comp) loop
9667 if Chars (Comp) = Chars (S)
9668 and then Covers (Typ, Etype (Comp))
9669 then
9670 if not Found then
9671 Found := True;
9672 I1 := I;
9673 It1 := It;
9674 Comp1 := Comp;
9676 else
9677 It := Disambiguate (P, I1, I, Any_Type);
9679 if It = No_Interp then
9680 Error_Msg_N
9681 ("ambiguous prefix for selected component", N);
9682 Set_Etype (N, Typ);
9683 return;
9685 else
9686 It1 := It;
9688 -- There may be an implicit dereference. Retrieve
9689 -- designated record type.
9691 if Is_Access_Type (It1.Typ) then
9692 T := Designated_Type (It1.Typ);
9693 else
9694 T := It1.Typ;
9695 end if;
9697 if Scope (Comp1) /= T then
9699 -- Resolution chooses the new interpretation.
9700 -- Find the component with the right name.
9702 Comp1 := First_Entity (T);
9703 while Present (Comp1)
9704 and then Chars (Comp1) /= Chars (S)
9705 loop
9706 Comp1 := Next_Entity (Comp1);
9707 end loop;
9708 end if;
9710 exit Search;
9711 end if;
9712 end if;
9713 end if;
9715 Comp := Next_Entity (Comp);
9716 end loop;
9717 end if;
9719 Get_Next_Interp (I, It);
9720 end loop Search;
9722 -- There must be a legal interpretation at this point
9724 pragma Assert (Found);
9725 Resolve (P, It1.Typ);
9726 Set_Etype (N, Typ);
9727 Set_Entity_With_Checks (S, Comp1);
9729 else
9730 -- Resolve prefix with its type
9732 Resolve (P, T);
9733 end if;
9735 -- Generate cross-reference. We needed to wait until full overloading
9736 -- resolution was complete to do this, since otherwise we can't tell if
9737 -- we are an lvalue or not.
9739 if May_Be_Lvalue (N) then
9740 Generate_Reference (Entity (S), S, 'm');
9741 else
9742 Generate_Reference (Entity (S), S, 'r');
9743 end if;
9745 -- If prefix is an access type, the node will be transformed into an
9746 -- explicit dereference during expansion. The type of the node is the
9747 -- designated type of that of the prefix.
9749 if Is_Access_Type (Etype (P)) then
9750 T := Designated_Type (Etype (P));
9751 Check_Fully_Declared_Prefix (T, P);
9752 else
9753 T := Etype (P);
9754 end if;
9756 -- Set flag for expander if discriminant check required
9758 if Has_Discriminants (T)
9759 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
9760 and then Present (Original_Record_Component (Entity (S)))
9761 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9762 and then not Discriminant_Checks_Suppressed (T)
9763 and then not Init_Component
9764 then
9765 Set_Do_Discriminant_Check (N);
9766 end if;
9768 if Ekind (Entity (S)) = E_Void then
9769 Error_Msg_N ("premature use of component", S);
9770 end if;
9772 -- If the prefix is a record conversion, this may be a renamed
9773 -- discriminant whose bounds differ from those of the original
9774 -- one, so we must ensure that a range check is performed.
9776 if Nkind (P) = N_Type_Conversion
9777 and then Ekind (Entity (S)) = E_Discriminant
9778 and then Is_Discrete_Type (Typ)
9779 then
9780 Set_Etype (N, Base_Type (Typ));
9781 end if;
9783 -- Note: No Eval processing is required, because the prefix is of a
9784 -- record type, or protected type, and neither can possibly be static.
9786 -- If the record type is atomic, and the component is non-atomic, then
9787 -- this is worth a warning, since we have a situation where the access
9788 -- to the component may cause extra read/writes of the atomic array
9789 -- object, or partial word accesses, both of which may be unexpected.
9791 if Nkind (N) = N_Selected_Component
9792 and then Is_Atomic_Ref_With_Address (N)
9793 and then not Is_Atomic (Entity (S))
9794 and then not Is_Atomic (Etype (Entity (S)))
9795 then
9796 Error_Msg_N
9797 ("??access to non-atomic component of atomic record",
9798 Prefix (N));
9799 Error_Msg_N
9800 ("\??may cause unexpected accesses to atomic object",
9801 Prefix (N));
9802 end if;
9804 Analyze_Dimension (N);
9805 end Resolve_Selected_Component;
9807 -------------------
9808 -- Resolve_Shift --
9809 -------------------
9811 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9812 B_Typ : constant Entity_Id := Base_Type (Typ);
9813 L : constant Node_Id := Left_Opnd (N);
9814 R : constant Node_Id := Right_Opnd (N);
9816 begin
9817 -- We do the resolution using the base type, because intermediate values
9818 -- in expressions always are of the base type, not a subtype of it.
9820 Resolve (L, B_Typ);
9821 Resolve (R, Standard_Natural);
9823 Check_Unset_Reference (L);
9824 Check_Unset_Reference (R);
9826 Set_Etype (N, B_Typ);
9827 Generate_Operator_Reference (N, B_Typ);
9828 Eval_Shift (N);
9829 end Resolve_Shift;
9831 ---------------------------
9832 -- Resolve_Short_Circuit --
9833 ---------------------------
9835 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
9836 B_Typ : constant Entity_Id := Base_Type (Typ);
9837 L : constant Node_Id := Left_Opnd (N);
9838 R : constant Node_Id := Right_Opnd (N);
9840 begin
9841 -- Ensure all actions associated with the left operand (e.g.
9842 -- finalization of transient controlled objects) are fully evaluated
9843 -- locally within an expression with actions. This is particularly
9844 -- helpful for coverage analysis. However this should not happen in
9845 -- generics.
9847 if Expander_Active then
9848 declare
9849 Reloc_L : constant Node_Id := Relocate_Node (L);
9850 begin
9851 Save_Interps (Old_N => L, New_N => Reloc_L);
9853 Rewrite (L,
9854 Make_Expression_With_Actions (Sloc (L),
9855 Actions => New_List,
9856 Expression => Reloc_L));
9858 -- Set Comes_From_Source on L to preserve warnings for unset
9859 -- reference.
9861 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
9862 end;
9863 end if;
9865 Resolve (L, B_Typ);
9866 Resolve (R, B_Typ);
9868 -- Check for issuing warning for always False assert/check, this happens
9869 -- when assertions are turned off, in which case the pragma Assert/Check
9870 -- was transformed into:
9872 -- if False and then <condition> then ...
9874 -- and we detect this pattern
9876 if Warn_On_Assertion_Failure
9877 and then Is_Entity_Name (R)
9878 and then Entity (R) = Standard_False
9879 and then Nkind (Parent (N)) = N_If_Statement
9880 and then Nkind (N) = N_And_Then
9881 and then Is_Entity_Name (L)
9882 and then Entity (L) = Standard_False
9883 then
9884 declare
9885 Orig : constant Node_Id := Original_Node (Parent (N));
9887 begin
9888 -- Special handling of Asssert pragma
9890 if Nkind (Orig) = N_Pragma
9891 and then Pragma_Name (Orig) = Name_Assert
9892 then
9893 declare
9894 Expr : constant Node_Id :=
9895 Original_Node
9896 (Expression
9897 (First (Pragma_Argument_Associations (Orig))));
9899 begin
9900 -- Don't warn if original condition is explicit False,
9901 -- since obviously the failure is expected in this case.
9903 if Is_Entity_Name (Expr)
9904 and then Entity (Expr) = Standard_False
9905 then
9906 null;
9908 -- Issue warning. We do not want the deletion of the
9909 -- IF/AND-THEN to take this message with it. We achieve this
9910 -- by making sure that the expanded code points to the Sloc
9911 -- of the expression, not the original pragma.
9913 else
9914 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
9915 -- The source location of the expression is not usually
9916 -- the best choice here. For example, it gets located on
9917 -- the last AND keyword in a chain of boolean expressiond
9918 -- AND'ed together. It is best to put the message on the
9919 -- first character of the assertion, which is the effect
9920 -- of the First_Node call here.
9922 Error_Msg_F
9923 ("?A?assertion would fail at run time!",
9924 Expression
9925 (First (Pragma_Argument_Associations (Orig))));
9926 end if;
9927 end;
9929 -- Similar processing for Check pragma
9931 elsif Nkind (Orig) = N_Pragma
9932 and then Pragma_Name (Orig) = Name_Check
9933 then
9934 -- Don't want to warn if original condition is explicit False
9936 declare
9937 Expr : constant Node_Id :=
9938 Original_Node
9939 (Expression
9940 (Next (First (Pragma_Argument_Associations (Orig)))));
9941 begin
9942 if Is_Entity_Name (Expr)
9943 and then Entity (Expr) = Standard_False
9944 then
9945 null;
9947 -- Post warning
9949 else
9950 -- Again use Error_Msg_F rather than Error_Msg_N, see
9951 -- comment above for an explanation of why we do this.
9953 Error_Msg_F
9954 ("?A?check would fail at run time!",
9955 Expression
9956 (Last (Pragma_Argument_Associations (Orig))));
9957 end if;
9958 end;
9959 end if;
9960 end;
9961 end if;
9963 -- Continue with processing of short circuit
9965 Check_Unset_Reference (L);
9966 Check_Unset_Reference (R);
9968 Set_Etype (N, B_Typ);
9969 Eval_Short_Circuit (N);
9970 end Resolve_Short_Circuit;
9972 -------------------
9973 -- Resolve_Slice --
9974 -------------------
9976 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
9977 Drange : constant Node_Id := Discrete_Range (N);
9978 Name : constant Node_Id := Prefix (N);
9979 Array_Type : Entity_Id := Empty;
9980 Dexpr : Node_Id := Empty;
9981 Index_Type : Entity_Id;
9983 begin
9984 if Is_Overloaded (Name) then
9986 -- Use the context type to select the prefix that yields the correct
9987 -- array type.
9989 declare
9990 I : Interp_Index;
9991 I1 : Interp_Index := 0;
9992 It : Interp;
9993 P : constant Node_Id := Prefix (N);
9994 Found : Boolean := False;
9996 begin
9997 Get_First_Interp (P, I, It);
9998 while Present (It.Typ) loop
9999 if (Is_Array_Type (It.Typ)
10000 and then Covers (Typ, It.Typ))
10001 or else (Is_Access_Type (It.Typ)
10002 and then Is_Array_Type (Designated_Type (It.Typ))
10003 and then Covers (Typ, Designated_Type (It.Typ)))
10004 then
10005 if Found then
10006 It := Disambiguate (P, I1, I, Any_Type);
10008 if It = No_Interp then
10009 Error_Msg_N ("ambiguous prefix for slicing", N);
10010 Set_Etype (N, Typ);
10011 return;
10012 else
10013 Found := True;
10014 Array_Type := It.Typ;
10015 I1 := I;
10016 end if;
10017 else
10018 Found := True;
10019 Array_Type := It.Typ;
10020 I1 := I;
10021 end if;
10022 end if;
10024 Get_Next_Interp (I, It);
10025 end loop;
10026 end;
10028 else
10029 Array_Type := Etype (Name);
10030 end if;
10032 Resolve (Name, Array_Type);
10034 if Is_Access_Type (Array_Type) then
10035 Apply_Access_Check (N);
10036 Array_Type := Designated_Type (Array_Type);
10038 -- If the prefix is an access to an unconstrained array, we must use
10039 -- the actual subtype of the object to perform the index checks. The
10040 -- object denoted by the prefix is implicit in the node, so we build
10041 -- an explicit representation for it in order to compute the actual
10042 -- subtype.
10044 if not Is_Constrained (Array_Type) then
10045 Remove_Side_Effects (Prefix (N));
10047 declare
10048 Obj : constant Node_Id :=
10049 Make_Explicit_Dereference (Sloc (N),
10050 Prefix => New_Copy_Tree (Prefix (N)));
10051 begin
10052 Set_Etype (Obj, Array_Type);
10053 Set_Parent (Obj, Parent (N));
10054 Array_Type := Get_Actual_Subtype (Obj);
10055 end;
10056 end if;
10058 elsif Is_Entity_Name (Name)
10059 or else Nkind (Name) = N_Explicit_Dereference
10060 or else (Nkind (Name) = N_Function_Call
10061 and then not Is_Constrained (Etype (Name)))
10062 then
10063 Array_Type := Get_Actual_Subtype (Name);
10065 -- If the name is a selected component that depends on discriminants,
10066 -- build an actual subtype for it. This can happen only when the name
10067 -- itself is overloaded; otherwise the actual subtype is created when
10068 -- the selected component is analyzed.
10070 elsif Nkind (Name) = N_Selected_Component
10071 and then Full_Analysis
10072 and then Depends_On_Discriminant (First_Index (Array_Type))
10073 then
10074 declare
10075 Act_Decl : constant Node_Id :=
10076 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10077 begin
10078 Insert_Action (N, Act_Decl);
10079 Array_Type := Defining_Identifier (Act_Decl);
10080 end;
10082 -- Maybe this should just be "else", instead of checking for the
10083 -- specific case of slice??? This is needed for the case where the
10084 -- prefix is an Image attribute, which gets expanded to a slice, and so
10085 -- has a constrained subtype which we want to use for the slice range
10086 -- check applied below (the range check won't get done if the
10087 -- unconstrained subtype of the 'Image is used).
10089 elsif Nkind (Name) = N_Slice then
10090 Array_Type := Etype (Name);
10091 end if;
10093 -- Obtain the type of the array index
10095 if Ekind (Array_Type) = E_String_Literal_Subtype then
10096 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10097 else
10098 Index_Type := Etype (First_Index (Array_Type));
10099 end if;
10101 -- If name was overloaded, set slice type correctly now
10103 Set_Etype (N, Array_Type);
10105 -- Handle the generation of a range check that compares the array index
10106 -- against the discrete_range. The check is not applied to internally
10107 -- built nodes associated with the expansion of dispatch tables. Check
10108 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10109 -- the unit.
10111 if Tagged_Type_Expansion
10112 and then RTU_Loaded (Ada_Tags)
10113 and then Nkind (Prefix (N)) = N_Selected_Component
10114 and then Present (Entity (Selector_Name (Prefix (N))))
10115 and then Entity (Selector_Name (Prefix (N))) =
10116 RTE_Record_Component (RE_Prims_Ptr)
10117 then
10118 null;
10120 -- The discrete_range is specified by a subtype indication. Create a
10121 -- shallow copy and inherit the type, parent and source location from
10122 -- the discrete_range. This ensures that the range check is inserted
10123 -- relative to the slice and that the runtime exception points to the
10124 -- proper construct.
10126 elsif Is_Entity_Name (Drange) then
10127 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10129 Set_Etype (Dexpr, Etype (Drange));
10130 Set_Parent (Dexpr, Parent (Drange));
10131 Set_Sloc (Dexpr, Sloc (Drange));
10133 -- The discrete_range is a regular range. Resolve the bounds and remove
10134 -- their side effects.
10136 else
10137 Resolve (Drange, Base_Type (Index_Type));
10139 if Nkind (Drange) = N_Range then
10140 Force_Evaluation (Low_Bound (Drange));
10141 Force_Evaluation (High_Bound (Drange));
10143 Dexpr := Drange;
10144 end if;
10145 end if;
10147 if Present (Dexpr) then
10148 Apply_Range_Check (Dexpr, Index_Type);
10149 end if;
10151 Set_Slice_Subtype (N);
10153 -- Check bad use of type with predicates
10155 declare
10156 Subt : Entity_Id;
10158 begin
10159 if Nkind (Drange) = N_Subtype_Indication
10160 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10161 then
10162 Subt := Entity (Subtype_Mark (Drange));
10163 else
10164 Subt := Etype (Drange);
10165 end if;
10167 if Has_Predicates (Subt) then
10168 Bad_Predicated_Subtype_Use
10169 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10170 end if;
10171 end;
10173 -- Otherwise here is where we check suspicious indexes
10175 if Nkind (Drange) = N_Range then
10176 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10177 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10178 end if;
10180 Analyze_Dimension (N);
10181 Eval_Slice (N);
10182 end Resolve_Slice;
10184 ----------------------------
10185 -- Resolve_String_Literal --
10186 ----------------------------
10188 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10189 C_Typ : constant Entity_Id := Component_Type (Typ);
10190 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10191 Loc : constant Source_Ptr := Sloc (N);
10192 Str : constant String_Id := Strval (N);
10193 Strlen : constant Nat := String_Length (Str);
10194 Subtype_Id : Entity_Id;
10195 Need_Check : Boolean;
10197 begin
10198 -- For a string appearing in a concatenation, defer creation of the
10199 -- string_literal_subtype until the end of the resolution of the
10200 -- concatenation, because the literal may be constant-folded away. This
10201 -- is a useful optimization for long concatenation expressions.
10203 -- If the string is an aggregate built for a single character (which
10204 -- happens in a non-static context) or a is null string to which special
10205 -- checks may apply, we build the subtype. Wide strings must also get a
10206 -- string subtype if they come from a one character aggregate. Strings
10207 -- generated by attributes might be static, but it is often hard to
10208 -- determine whether the enclosing context is static, so we generate
10209 -- subtypes for them as well, thus losing some rarer optimizations ???
10210 -- Same for strings that come from a static conversion.
10212 Need_Check :=
10213 (Strlen = 0 and then Typ /= Standard_String)
10214 or else Nkind (Parent (N)) /= N_Op_Concat
10215 or else (N /= Left_Opnd (Parent (N))
10216 and then N /= Right_Opnd (Parent (N)))
10217 or else ((Typ = Standard_Wide_String
10218 or else Typ = Standard_Wide_Wide_String)
10219 and then Nkind (Original_Node (N)) /= N_String_Literal);
10221 -- If the resolving type is itself a string literal subtype, we can just
10222 -- reuse it, since there is no point in creating another.
10224 if Ekind (Typ) = E_String_Literal_Subtype then
10225 Subtype_Id := Typ;
10227 elsif Nkind (Parent (N)) = N_Op_Concat
10228 and then not Need_Check
10229 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10230 N_Attribute_Reference,
10231 N_Qualified_Expression,
10232 N_Type_Conversion)
10233 then
10234 Subtype_Id := Typ;
10236 -- Do not generate a string literal subtype for the default expression
10237 -- of a formal parameter in GNATprove mode. This is because the string
10238 -- subtype is associated with the freezing actions of the subprogram,
10239 -- however freezing is disabled in GNATprove mode and as a result the
10240 -- subtype is unavailable.
10242 elsif GNATprove_Mode
10243 and then Nkind (Parent (N)) = N_Parameter_Specification
10244 then
10245 Subtype_Id := Typ;
10247 -- Otherwise we must create a string literal subtype. Note that the
10248 -- whole idea of string literal subtypes is simply to avoid the need
10249 -- for building a full fledged array subtype for each literal.
10251 else
10252 Set_String_Literal_Subtype (N, Typ);
10253 Subtype_Id := Etype (N);
10254 end if;
10256 if Nkind (Parent (N)) /= N_Op_Concat
10257 or else Need_Check
10258 then
10259 Set_Etype (N, Subtype_Id);
10260 Eval_String_Literal (N);
10261 end if;
10263 if Is_Limited_Composite (Typ)
10264 or else Is_Private_Composite (Typ)
10265 then
10266 Error_Msg_N ("string literal not available for private array", N);
10267 Set_Etype (N, Any_Type);
10268 return;
10269 end if;
10271 -- The validity of a null string has been checked in the call to
10272 -- Eval_String_Literal.
10274 if Strlen = 0 then
10275 return;
10277 -- Always accept string literal with component type Any_Character, which
10278 -- occurs in error situations and in comparisons of literals, both of
10279 -- which should accept all literals.
10281 elsif R_Typ = Any_Character then
10282 return;
10284 -- If the type is bit-packed, then we always transform the string
10285 -- literal into a full fledged aggregate.
10287 elsif Is_Bit_Packed_Array (Typ) then
10288 null;
10290 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10292 else
10293 -- For Standard.Wide_Wide_String, or any other type whose component
10294 -- type is Standard.Wide_Wide_Character, we know that all the
10295 -- characters in the string must be acceptable, since the parser
10296 -- accepted the characters as valid character literals.
10298 if R_Typ = Standard_Wide_Wide_Character then
10299 null;
10301 -- For the case of Standard.String, or any other type whose component
10302 -- type is Standard.Character, we must make sure that there are no
10303 -- wide characters in the string, i.e. that it is entirely composed
10304 -- of characters in range of type Character.
10306 -- If the string literal is the result of a static concatenation, the
10307 -- test has already been performed on the components, and need not be
10308 -- repeated.
10310 elsif R_Typ = Standard_Character
10311 and then Nkind (Original_Node (N)) /= N_Op_Concat
10312 then
10313 for J in 1 .. Strlen loop
10314 if not In_Character_Range (Get_String_Char (Str, J)) then
10316 -- If we are out of range, post error. This is one of the
10317 -- very few places that we place the flag in the middle of
10318 -- a token, right under the offending wide character. Not
10319 -- quite clear if this is right wrt wide character encoding
10320 -- sequences, but it's only an error message.
10322 Error_Msg
10323 ("literal out of range of type Standard.Character",
10324 Source_Ptr (Int (Loc) + J));
10325 return;
10326 end if;
10327 end loop;
10329 -- For the case of Standard.Wide_String, or any other type whose
10330 -- component type is Standard.Wide_Character, we must make sure that
10331 -- there are no wide characters in the string, i.e. that it is
10332 -- entirely composed of characters in range of type Wide_Character.
10334 -- If the string literal is the result of a static concatenation,
10335 -- the test has already been performed on the components, and need
10336 -- not be repeated.
10338 elsif R_Typ = Standard_Wide_Character
10339 and then Nkind (Original_Node (N)) /= N_Op_Concat
10340 then
10341 for J in 1 .. Strlen loop
10342 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10344 -- If we are out of range, post error. This is one of the
10345 -- very few places that we place the flag in the middle of
10346 -- a token, right under the offending wide character.
10348 -- This is not quite right, because characters in general
10349 -- will take more than one character position ???
10351 Error_Msg
10352 ("literal out of range of type Standard.Wide_Character",
10353 Source_Ptr (Int (Loc) + J));
10354 return;
10355 end if;
10356 end loop;
10358 -- If the root type is not a standard character, then we will convert
10359 -- the string into an aggregate and will let the aggregate code do
10360 -- the checking. Standard Wide_Wide_Character is also OK here.
10362 else
10363 null;
10364 end if;
10366 -- See if the component type of the array corresponding to the string
10367 -- has compile time known bounds. If yes we can directly check
10368 -- whether the evaluation of the string will raise constraint error.
10369 -- Otherwise we need to transform the string literal into the
10370 -- corresponding character aggregate and let the aggregate code do
10371 -- the checking.
10373 if Is_Standard_Character_Type (R_Typ) then
10375 -- Check for the case of full range, where we are definitely OK
10377 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10378 return;
10379 end if;
10381 -- Here the range is not the complete base type range, so check
10383 declare
10384 Comp_Typ_Lo : constant Node_Id :=
10385 Type_Low_Bound (Component_Type (Typ));
10386 Comp_Typ_Hi : constant Node_Id :=
10387 Type_High_Bound (Component_Type (Typ));
10389 Char_Val : Uint;
10391 begin
10392 if Compile_Time_Known_Value (Comp_Typ_Lo)
10393 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10394 then
10395 for J in 1 .. Strlen loop
10396 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10398 if Char_Val < Expr_Value (Comp_Typ_Lo)
10399 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10400 then
10401 Apply_Compile_Time_Constraint_Error
10402 (N, "character out of range??",
10403 CE_Range_Check_Failed,
10404 Loc => Source_Ptr (Int (Loc) + J));
10405 end if;
10406 end loop;
10408 return;
10409 end if;
10410 end;
10411 end if;
10412 end if;
10414 -- If we got here we meed to transform the string literal into the
10415 -- equivalent qualified positional array aggregate. This is rather
10416 -- heavy artillery for this situation, but it is hard work to avoid.
10418 declare
10419 Lits : constant List_Id := New_List;
10420 P : Source_Ptr := Loc + 1;
10421 C : Char_Code;
10423 begin
10424 -- Build the character literals, we give them source locations that
10425 -- correspond to the string positions, which is a bit tricky given
10426 -- the possible presence of wide character escape sequences.
10428 for J in 1 .. Strlen loop
10429 C := Get_String_Char (Str, J);
10430 Set_Character_Literal_Name (C);
10432 Append_To (Lits,
10433 Make_Character_Literal (P,
10434 Chars => Name_Find,
10435 Char_Literal_Value => UI_From_CC (C)));
10437 if In_Character_Range (C) then
10438 P := P + 1;
10440 -- Should we have a call to Skip_Wide here ???
10442 -- ??? else
10443 -- Skip_Wide (P);
10445 end if;
10446 end loop;
10448 Rewrite (N,
10449 Make_Qualified_Expression (Loc,
10450 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10451 Expression =>
10452 Make_Aggregate (Loc, Expressions => Lits)));
10454 Analyze_And_Resolve (N, Typ);
10455 end;
10456 end Resolve_String_Literal;
10458 -----------------------------
10459 -- Resolve_Type_Conversion --
10460 -----------------------------
10462 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10463 Conv_OK : constant Boolean := Conversion_OK (N);
10464 Operand : constant Node_Id := Expression (N);
10465 Operand_Typ : constant Entity_Id := Etype (Operand);
10466 Target_Typ : constant Entity_Id := Etype (N);
10467 Rop : Node_Id;
10468 Orig_N : Node_Id;
10469 Orig_T : Node_Id;
10471 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10472 -- Set to False to suppress cases where we want to suppress the test
10473 -- for redundancy to avoid possible false positives on this warning.
10475 begin
10476 if not Conv_OK
10477 and then not Valid_Conversion (N, Target_Typ, Operand)
10478 then
10479 return;
10480 end if;
10482 -- If the Operand Etype is Universal_Fixed, then the conversion is
10483 -- never redundant. We need this check because by the time we have
10484 -- finished the rather complex transformation, the conversion looks
10485 -- redundant when it is not.
10487 if Operand_Typ = Universal_Fixed then
10488 Test_Redundant := False;
10490 -- If the operand is marked as Any_Fixed, then special processing is
10491 -- required. This is also a case where we suppress the test for a
10492 -- redundant conversion, since most certainly it is not redundant.
10494 elsif Operand_Typ = Any_Fixed then
10495 Test_Redundant := False;
10497 -- Mixed-mode operation involving a literal. Context must be a fixed
10498 -- type which is applied to the literal subsequently.
10500 if Is_Fixed_Point_Type (Typ) then
10501 Set_Etype (Operand, Universal_Real);
10503 elsif Is_Numeric_Type (Typ)
10504 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10505 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10506 or else
10507 Etype (Left_Opnd (Operand)) = Universal_Real)
10508 then
10509 -- Return if expression is ambiguous
10511 if Unique_Fixed_Point_Type (N) = Any_Type then
10512 return;
10514 -- If nothing else, the available fixed type is Duration
10516 else
10517 Set_Etype (Operand, Standard_Duration);
10518 end if;
10520 -- Resolve the real operand with largest available precision
10522 if Etype (Right_Opnd (Operand)) = Universal_Real then
10523 Rop := New_Copy_Tree (Right_Opnd (Operand));
10524 else
10525 Rop := New_Copy_Tree (Left_Opnd (Operand));
10526 end if;
10528 Resolve (Rop, Universal_Real);
10530 -- If the operand is a literal (it could be a non-static and
10531 -- illegal exponentiation) check whether the use of Duration
10532 -- is potentially inaccurate.
10534 if Nkind (Rop) = N_Real_Literal
10535 and then Realval (Rop) /= Ureal_0
10536 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10537 then
10538 Error_Msg_N
10539 ("??universal real operand can only "
10540 & "be interpreted as Duration!", Rop);
10541 Error_Msg_N
10542 ("\??precision will be lost in the conversion!", Rop);
10543 end if;
10545 elsif Is_Numeric_Type (Typ)
10546 and then Nkind (Operand) in N_Op
10547 and then Unique_Fixed_Point_Type (N) /= Any_Type
10548 then
10549 Set_Etype (Operand, Standard_Duration);
10551 else
10552 Error_Msg_N ("invalid context for mixed mode operation", N);
10553 Set_Etype (Operand, Any_Type);
10554 return;
10555 end if;
10556 end if;
10558 Resolve (Operand);
10560 -- In SPARK, a type conversion between array types should be restricted
10561 -- to types which have matching static bounds.
10563 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10564 -- operation if not needed.
10566 if Restriction_Check_Required (SPARK_05)
10567 and then Is_Array_Type (Target_Typ)
10568 and then Is_Array_Type (Operand_Typ)
10569 and then Operand_Typ /= Any_Composite -- or else Operand in error
10570 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10571 then
10572 Check_SPARK_05_Restriction
10573 ("array types should have matching static bounds", N);
10574 end if;
10576 -- In formal mode, the operand of an ancestor type conversion must be an
10577 -- object (not an expression).
10579 if Is_Tagged_Type (Target_Typ)
10580 and then not Is_Class_Wide_Type (Target_Typ)
10581 and then Is_Tagged_Type (Operand_Typ)
10582 and then not Is_Class_Wide_Type (Operand_Typ)
10583 and then Is_Ancestor (Target_Typ, Operand_Typ)
10584 and then not Is_SPARK_05_Object_Reference (Operand)
10585 then
10586 Check_SPARK_05_Restriction ("object required", Operand);
10587 end if;
10589 Analyze_Dimension (N);
10591 -- Note: we do the Eval_Type_Conversion call before applying the
10592 -- required checks for a subtype conversion. This is important, since
10593 -- both are prepared under certain circumstances to change the type
10594 -- conversion to a constraint error node, but in the case of
10595 -- Eval_Type_Conversion this may reflect an illegality in the static
10596 -- case, and we would miss the illegality (getting only a warning
10597 -- message), if we applied the type conversion checks first.
10599 Eval_Type_Conversion (N);
10601 -- Even when evaluation is not possible, we may be able to simplify the
10602 -- conversion or its expression. This needs to be done before applying
10603 -- checks, since otherwise the checks may use the original expression
10604 -- and defeat the simplifications. This is specifically the case for
10605 -- elimination of the floating-point Truncation attribute in
10606 -- float-to-int conversions.
10608 Simplify_Type_Conversion (N);
10610 -- If after evaluation we still have a type conversion, then we may need
10611 -- to apply checks required for a subtype conversion.
10613 -- Skip these type conversion checks if universal fixed operands
10614 -- operands involved, since range checks are handled separately for
10615 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10617 if Nkind (N) = N_Type_Conversion
10618 and then not Is_Generic_Type (Root_Type (Target_Typ))
10619 and then Target_Typ /= Universal_Fixed
10620 and then Operand_Typ /= Universal_Fixed
10621 then
10622 Apply_Type_Conversion_Checks (N);
10623 end if;
10625 -- Issue warning for conversion of simple object to its own type. We
10626 -- have to test the original nodes, since they may have been rewritten
10627 -- by various optimizations.
10629 Orig_N := Original_Node (N);
10631 -- Here we test for a redundant conversion if the warning mode is
10632 -- active (and was not locally reset), and we have a type conversion
10633 -- from source not appearing in a generic instance.
10635 if Test_Redundant
10636 and then Nkind (Orig_N) = N_Type_Conversion
10637 and then Comes_From_Source (Orig_N)
10638 and then not In_Instance
10639 then
10640 Orig_N := Original_Node (Expression (Orig_N));
10641 Orig_T := Target_Typ;
10643 -- If the node is part of a larger expression, the Target_Type
10644 -- may not be the original type of the node if the context is a
10645 -- condition. Recover original type to see if conversion is needed.
10647 if Is_Boolean_Type (Orig_T)
10648 and then Nkind (Parent (N)) in N_Op
10649 then
10650 Orig_T := Etype (Parent (N));
10651 end if;
10653 -- If we have an entity name, then give the warning if the entity
10654 -- is the right type, or if it is a loop parameter covered by the
10655 -- original type (that's needed because loop parameters have an
10656 -- odd subtype coming from the bounds).
10658 if (Is_Entity_Name (Orig_N)
10659 and then
10660 (Etype (Entity (Orig_N)) = Orig_T
10661 or else
10662 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10663 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10665 -- If not an entity, then type of expression must match
10667 or else Etype (Orig_N) = Orig_T
10668 then
10669 -- One more check, do not give warning if the analyzed conversion
10670 -- has an expression with non-static bounds, and the bounds of the
10671 -- target are static. This avoids junk warnings in cases where the
10672 -- conversion is necessary to establish staticness, for example in
10673 -- a case statement.
10675 if not Is_OK_Static_Subtype (Operand_Typ)
10676 and then Is_OK_Static_Subtype (Target_Typ)
10677 then
10678 null;
10680 -- Finally, if this type conversion occurs in a context requiring
10681 -- a prefix, and the expression is a qualified expression then the
10682 -- type conversion is not redundant, since a qualified expression
10683 -- is not a prefix, whereas a type conversion is. For example, "X
10684 -- := T'(Funx(...)).Y;" is illegal because a selected component
10685 -- requires a prefix, but a type conversion makes it legal: "X :=
10686 -- T(T'(Funx(...))).Y;"
10688 -- In Ada 2012, a qualified expression is a name, so this idiom is
10689 -- no longer needed, but we still suppress the warning because it
10690 -- seems unfriendly for warnings to pop up when you switch to the
10691 -- newer language version.
10693 elsif Nkind (Orig_N) = N_Qualified_Expression
10694 and then Nkind_In (Parent (N), N_Attribute_Reference,
10695 N_Indexed_Component,
10696 N_Selected_Component,
10697 N_Slice,
10698 N_Explicit_Dereference)
10699 then
10700 null;
10702 -- Never warn on conversion to Long_Long_Integer'Base since
10703 -- that is most likely an artifact of the extended overflow
10704 -- checking and comes from complex expanded code.
10706 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10707 null;
10709 -- Here we give the redundant conversion warning. If it is an
10710 -- entity, give the name of the entity in the message. If not,
10711 -- just mention the expression.
10713 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10715 else
10716 if Is_Entity_Name (Orig_N) then
10717 Error_Msg_Node_2 := Orig_T;
10718 Error_Msg_NE -- CODEFIX
10719 ("??redundant conversion, & is of type &!",
10720 N, Entity (Orig_N));
10721 else
10722 Error_Msg_NE
10723 ("??redundant conversion, expression is of type&!",
10724 N, Orig_T);
10725 end if;
10726 end if;
10727 end if;
10728 end if;
10730 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10731 -- No need to perform any interface conversion if the type of the
10732 -- expression coincides with the target type.
10734 if Ada_Version >= Ada_2005
10735 and then Expander_Active
10736 and then Operand_Typ /= Target_Typ
10737 then
10738 declare
10739 Opnd : Entity_Id := Operand_Typ;
10740 Target : Entity_Id := Target_Typ;
10742 begin
10743 -- If the type of the operand is a limited view, use nonlimited
10744 -- view when available. If it is a class-wide type, recover the
10745 -- class-wide type of the nonlimited view.
10747 if From_Limited_With (Opnd)
10748 and then Has_Non_Limited_View (Opnd)
10749 then
10750 Opnd := Non_Limited_View (Opnd);
10751 Set_Etype (Expression (N), Opnd);
10752 end if;
10754 if Is_Access_Type (Opnd) then
10755 Opnd := Designated_Type (Opnd);
10756 end if;
10758 if Is_Access_Type (Target_Typ) then
10759 Target := Designated_Type (Target);
10760 end if;
10762 if Opnd = Target then
10763 null;
10765 -- Conversion from interface type
10767 elsif Is_Interface (Opnd) then
10769 -- Ada 2005 (AI-217): Handle entities from limited views
10771 if From_Limited_With (Opnd) then
10772 Error_Msg_Qual_Level := 99;
10773 Error_Msg_NE -- CODEFIX
10774 ("missing WITH clause on package &", N,
10775 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10776 Error_Msg_N
10777 ("type conversions require visibility of the full view",
10780 elsif From_Limited_With (Target)
10781 and then not
10782 (Is_Access_Type (Target_Typ)
10783 and then Present (Non_Limited_View (Etype (Target))))
10784 then
10785 Error_Msg_Qual_Level := 99;
10786 Error_Msg_NE -- CODEFIX
10787 ("missing WITH clause on package &", N,
10788 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10789 Error_Msg_N
10790 ("type conversions require visibility of the full view",
10793 else
10794 Expand_Interface_Conversion (N);
10795 end if;
10797 -- Conversion to interface type
10799 elsif Is_Interface (Target) then
10801 -- Handle subtypes
10803 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10804 Opnd := Etype (Opnd);
10805 end if;
10807 if Is_Class_Wide_Type (Opnd)
10808 or else Interface_Present_In_Ancestor
10809 (Typ => Opnd,
10810 Iface => Target)
10811 then
10812 Expand_Interface_Conversion (N);
10813 else
10814 Error_Msg_Name_1 := Chars (Etype (Target));
10815 Error_Msg_Name_2 := Chars (Opnd);
10816 Error_Msg_N
10817 ("wrong interface conversion (% is not a progenitor "
10818 & "of %)", N);
10819 end if;
10820 end if;
10821 end;
10822 end if;
10824 -- Ada 2012: if target type has predicates, the result requires a
10825 -- predicate check. If the context is a call to another predicate
10826 -- check we must prevent infinite recursion.
10828 if Has_Predicates (Target_Typ) then
10829 if Nkind (Parent (N)) = N_Function_Call
10830 and then Present (Name (Parent (N)))
10831 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
10832 or else
10833 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
10834 then
10835 null;
10837 else
10838 Apply_Predicate_Check (N, Target_Typ);
10839 end if;
10840 end if;
10842 -- If at this stage we have a real to integer conversion, make sure
10843 -- that the Do_Range_Check flag is set, because such conversions in
10844 -- general need a range check. We only need this if expansion is off
10845 -- or we are in GNATProve mode.
10847 if Nkind (N) = N_Type_Conversion
10848 and then (GNATprove_Mode or not Expander_Active)
10849 and then Is_Integer_Type (Target_Typ)
10850 and then Is_Real_Type (Operand_Typ)
10851 then
10852 Set_Do_Range_Check (Operand);
10853 end if;
10854 end Resolve_Type_Conversion;
10856 ----------------------
10857 -- Resolve_Unary_Op --
10858 ----------------------
10860 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
10861 B_Typ : constant Entity_Id := Base_Type (Typ);
10862 R : constant Node_Id := Right_Opnd (N);
10863 OK : Boolean;
10864 Lo : Uint;
10865 Hi : Uint;
10867 begin
10868 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
10869 Error_Msg_Name_1 := Chars (Typ);
10870 Check_SPARK_05_Restriction
10871 ("unary operator not defined for modular type%", N);
10872 end if;
10874 -- Deal with intrinsic unary operators
10876 if Comes_From_Source (N)
10877 and then Ekind (Entity (N)) = E_Function
10878 and then Is_Imported (Entity (N))
10879 and then Is_Intrinsic_Subprogram (Entity (N))
10880 then
10881 Resolve_Intrinsic_Unary_Operator (N, Typ);
10882 return;
10883 end if;
10885 -- Deal with universal cases
10887 if Etype (R) = Universal_Integer
10888 or else
10889 Etype (R) = Universal_Real
10890 then
10891 Check_For_Visible_Operator (N, B_Typ);
10892 end if;
10894 Set_Etype (N, B_Typ);
10895 Resolve (R, B_Typ);
10897 -- Generate warning for expressions like abs (x mod 2)
10899 if Warn_On_Redundant_Constructs
10900 and then Nkind (N) = N_Op_Abs
10901 then
10902 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
10904 if OK and then Hi >= Lo and then Lo >= 0 then
10905 Error_Msg_N -- CODEFIX
10906 ("?r?abs applied to known non-negative value has no effect", N);
10907 end if;
10908 end if;
10910 -- Deal with reference generation
10912 Check_Unset_Reference (R);
10913 Generate_Operator_Reference (N, B_Typ);
10914 Analyze_Dimension (N);
10915 Eval_Unary_Op (N);
10917 -- Set overflow checking bit. Much cleverer code needed here eventually
10918 -- and perhaps the Resolve routines should be separated for the various
10919 -- arithmetic operations, since they will need different processing ???
10921 if Nkind (N) in N_Op then
10922 if not Overflow_Checks_Suppressed (Etype (N)) then
10923 Enable_Overflow_Check (N);
10924 end if;
10925 end if;
10927 -- Generate warning for expressions like -5 mod 3 for integers. No need
10928 -- to worry in the floating-point case, since parens do not affect the
10929 -- result so there is no point in giving in a warning.
10931 declare
10932 Norig : constant Node_Id := Original_Node (N);
10933 Rorig : Node_Id;
10934 Val : Uint;
10935 HB : Uint;
10936 LB : Uint;
10937 Lval : Uint;
10938 Opnd : Node_Id;
10940 begin
10941 if Warn_On_Questionable_Missing_Parens
10942 and then Comes_From_Source (Norig)
10943 and then Is_Integer_Type (Typ)
10944 and then Nkind (Norig) = N_Op_Minus
10945 then
10946 Rorig := Original_Node (Right_Opnd (Norig));
10948 -- We are looking for cases where the right operand is not
10949 -- parenthesized, and is a binary operator, multiply, divide, or
10950 -- mod. These are the cases where the grouping can affect results.
10952 if Paren_Count (Rorig) = 0
10953 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
10954 then
10955 -- For mod, we always give the warning, since the value is
10956 -- affected by the parenthesization (e.g. (-5) mod 315 /=
10957 -- -(5 mod 315)). But for the other cases, the only concern is
10958 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
10959 -- overflows, but (-2) * 64 does not). So we try to give the
10960 -- message only when overflow is possible.
10962 if Nkind (Rorig) /= N_Op_Mod
10963 and then Compile_Time_Known_Value (R)
10964 then
10965 Val := Expr_Value (R);
10967 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
10968 HB := Expr_Value (Type_High_Bound (Typ));
10969 else
10970 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
10971 end if;
10973 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
10974 LB := Expr_Value (Type_Low_Bound (Typ));
10975 else
10976 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
10977 end if;
10979 -- Note that the test below is deliberately excluding the
10980 -- largest negative number, since that is a potentially
10981 -- troublesome case (e.g. -2 * x, where the result is the
10982 -- largest negative integer has an overflow with 2 * x).
10984 if Val > LB and then Val <= HB then
10985 return;
10986 end if;
10987 end if;
10989 -- For the multiplication case, the only case we have to worry
10990 -- about is when (-a)*b is exactly the largest negative number
10991 -- so that -(a*b) can cause overflow. This can only happen if
10992 -- a is a power of 2, and more generally if any operand is a
10993 -- constant that is not a power of 2, then the parentheses
10994 -- cannot affect whether overflow occurs. We only bother to
10995 -- test the left most operand
10997 -- Loop looking at left operands for one that has known value
10999 Opnd := Rorig;
11000 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11001 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11002 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11004 -- Operand value of 0 or 1 skips warning
11006 if Lval <= 1 then
11007 return;
11009 -- Otherwise check power of 2, if power of 2, warn, if
11010 -- anything else, skip warning.
11012 else
11013 while Lval /= 2 loop
11014 if Lval mod 2 = 1 then
11015 return;
11016 else
11017 Lval := Lval / 2;
11018 end if;
11019 end loop;
11021 exit Opnd_Loop;
11022 end if;
11023 end if;
11025 -- Keep looking at left operands
11027 Opnd := Left_Opnd (Opnd);
11028 end loop Opnd_Loop;
11030 -- For rem or "/" we can only have a problematic situation
11031 -- if the divisor has a value of minus one or one. Otherwise
11032 -- overflow is impossible (divisor > 1) or we have a case of
11033 -- division by zero in any case.
11035 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11036 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11037 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11038 then
11039 return;
11040 end if;
11042 -- If we fall through warning should be issued
11044 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11046 Error_Msg_N
11047 ("??unary minus expression should be parenthesized here!", N);
11048 end if;
11049 end if;
11050 end;
11051 end Resolve_Unary_Op;
11053 ----------------------------------
11054 -- Resolve_Unchecked_Expression --
11055 ----------------------------------
11057 procedure Resolve_Unchecked_Expression
11058 (N : Node_Id;
11059 Typ : Entity_Id)
11061 begin
11062 Resolve (Expression (N), Typ, Suppress => All_Checks);
11063 Set_Etype (N, Typ);
11064 end Resolve_Unchecked_Expression;
11066 ---------------------------------------
11067 -- Resolve_Unchecked_Type_Conversion --
11068 ---------------------------------------
11070 procedure Resolve_Unchecked_Type_Conversion
11071 (N : Node_Id;
11072 Typ : Entity_Id)
11074 pragma Warnings (Off, Typ);
11076 Operand : constant Node_Id := Expression (N);
11077 Opnd_Type : constant Entity_Id := Etype (Operand);
11079 begin
11080 -- Resolve operand using its own type
11082 Resolve (Operand, Opnd_Type);
11084 -- In an inlined context, the unchecked conversion may be applied
11085 -- to a literal, in which case its type is the type of the context.
11086 -- (In other contexts conversions cannot apply to literals).
11088 if In_Inlined_Body
11089 and then (Opnd_Type = Any_Character or else
11090 Opnd_Type = Any_Integer or else
11091 Opnd_Type = Any_Real)
11092 then
11093 Set_Etype (Operand, Typ);
11094 end if;
11096 Analyze_Dimension (N);
11097 Eval_Unchecked_Conversion (N);
11098 end Resolve_Unchecked_Type_Conversion;
11100 ------------------------------
11101 -- Rewrite_Operator_As_Call --
11102 ------------------------------
11104 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11105 Loc : constant Source_Ptr := Sloc (N);
11106 Actuals : constant List_Id := New_List;
11107 New_N : Node_Id;
11109 begin
11110 if Nkind (N) in N_Binary_Op then
11111 Append (Left_Opnd (N), Actuals);
11112 end if;
11114 Append (Right_Opnd (N), Actuals);
11116 New_N :=
11117 Make_Function_Call (Sloc => Loc,
11118 Name => New_Occurrence_Of (Nam, Loc),
11119 Parameter_Associations => Actuals);
11121 Preserve_Comes_From_Source (New_N, N);
11122 Preserve_Comes_From_Source (Name (New_N), N);
11123 Rewrite (N, New_N);
11124 Set_Etype (N, Etype (Nam));
11125 end Rewrite_Operator_As_Call;
11127 ------------------------------
11128 -- Rewrite_Renamed_Operator --
11129 ------------------------------
11131 procedure Rewrite_Renamed_Operator
11132 (N : Node_Id;
11133 Op : Entity_Id;
11134 Typ : Entity_Id)
11136 Nam : constant Name_Id := Chars (Op);
11137 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11138 Op_Node : Node_Id;
11140 begin
11141 -- Do not perform this transformation within a pre/postcondition,
11142 -- because the expression will be re-analyzed, and the transformation
11143 -- might affect the visibility of the operator, e.g. in an instance.
11145 if In_Assertion_Expr > 0 then
11146 return;
11147 end if;
11149 -- Rewrite the operator node using the real operator, not its renaming.
11150 -- Exclude user-defined intrinsic operations of the same name, which are
11151 -- treated separately and rewritten as calls.
11153 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11154 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11155 Set_Chars (Op_Node, Nam);
11156 Set_Etype (Op_Node, Etype (N));
11157 Set_Entity (Op_Node, Op);
11158 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11160 -- Indicate that both the original entity and its renaming are
11161 -- referenced at this point.
11163 Generate_Reference (Entity (N), N);
11164 Generate_Reference (Op, N);
11166 if Is_Binary then
11167 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11168 end if;
11170 Rewrite (N, Op_Node);
11172 -- If the context type is private, add the appropriate conversions so
11173 -- that the operator is applied to the full view. This is done in the
11174 -- routines that resolve intrinsic operators.
11176 if Is_Intrinsic_Subprogram (Op)
11177 and then Is_Private_Type (Typ)
11178 then
11179 case Nkind (N) is
11180 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11181 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
11182 Resolve_Intrinsic_Operator (N, Typ);
11184 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
11185 Resolve_Intrinsic_Unary_Operator (N, Typ);
11187 when others =>
11188 Resolve (N, Typ);
11189 end case;
11190 end if;
11192 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11194 -- Operator renames a user-defined operator of the same name. Use the
11195 -- original operator in the node, which is the one Gigi knows about.
11197 Set_Entity (N, Op);
11198 Set_Is_Overloaded (N, False);
11199 end if;
11200 end Rewrite_Renamed_Operator;
11202 -----------------------
11203 -- Set_Slice_Subtype --
11204 -----------------------
11206 -- Build an implicit subtype declaration to represent the type delivered by
11207 -- the slice. This is an abbreviated version of an array subtype. We define
11208 -- an index subtype for the slice, using either the subtype name or the
11209 -- discrete range of the slice. To be consistent with index usage elsewhere
11210 -- we create a list header to hold the single index. This list is not
11211 -- otherwise attached to the syntax tree.
11213 procedure Set_Slice_Subtype (N : Node_Id) is
11214 Loc : constant Source_Ptr := Sloc (N);
11215 Index_List : constant List_Id := New_List;
11216 Index : Node_Id;
11217 Index_Subtype : Entity_Id;
11218 Index_Type : Entity_Id;
11219 Slice_Subtype : Entity_Id;
11220 Drange : constant Node_Id := Discrete_Range (N);
11222 begin
11223 Index_Type := Base_Type (Etype (Drange));
11225 if Is_Entity_Name (Drange) then
11226 Index_Subtype := Entity (Drange);
11228 else
11229 -- We force the evaluation of a range. This is definitely needed in
11230 -- the renamed case, and seems safer to do unconditionally. Note in
11231 -- any case that since we will create and insert an Itype referring
11232 -- to this range, we must make sure any side effect removal actions
11233 -- are inserted before the Itype definition.
11235 if Nkind (Drange) = N_Range then
11236 Force_Evaluation (Low_Bound (Drange));
11237 Force_Evaluation (High_Bound (Drange));
11239 -- If the discrete range is given by a subtype indication, the
11240 -- type of the slice is the base of the subtype mark.
11242 elsif Nkind (Drange) = N_Subtype_Indication then
11243 declare
11244 R : constant Node_Id := Range_Expression (Constraint (Drange));
11245 begin
11246 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11247 Force_Evaluation (Low_Bound (R));
11248 Force_Evaluation (High_Bound (R));
11249 end;
11250 end if;
11252 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11254 -- Take a new copy of Drange (where bounds have been rewritten to
11255 -- reference side-effect-free names). Using a separate tree ensures
11256 -- that further expansion (e.g. while rewriting a slice assignment
11257 -- into a FOR loop) does not attempt to remove side effects on the
11258 -- bounds again (which would cause the bounds in the index subtype
11259 -- definition to refer to temporaries before they are defined) (the
11260 -- reason is that some names are considered side effect free here
11261 -- for the subtype, but not in the context of a loop iteration
11262 -- scheme).
11264 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11265 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11266 Set_Etype (Index_Subtype, Index_Type);
11267 Set_Size_Info (Index_Subtype, Index_Type);
11268 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11269 end if;
11271 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11273 Index := New_Occurrence_Of (Index_Subtype, Loc);
11274 Set_Etype (Index, Index_Subtype);
11275 Append (Index, Index_List);
11277 Set_First_Index (Slice_Subtype, Index);
11278 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11279 Set_Is_Constrained (Slice_Subtype, True);
11281 Check_Compile_Time_Size (Slice_Subtype);
11283 -- The Etype of the existing Slice node is reset to this slice subtype.
11284 -- Its bounds are obtained from its first index.
11286 Set_Etype (N, Slice_Subtype);
11288 -- For packed slice subtypes, freeze immediately (except in the case of
11289 -- being in a "spec expression" where we never freeze when we first see
11290 -- the expression).
11292 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11293 Freeze_Itype (Slice_Subtype, N);
11295 -- For all other cases insert an itype reference in the slice's actions
11296 -- so that the itype is frozen at the proper place in the tree (i.e. at
11297 -- the point where actions for the slice are analyzed). Note that this
11298 -- is different from freezing the itype immediately, which might be
11299 -- premature (e.g. if the slice is within a transient scope). This needs
11300 -- to be done only if expansion is enabled.
11302 elsif Expander_Active then
11303 Ensure_Defined (Typ => Slice_Subtype, N => N);
11304 end if;
11305 end Set_Slice_Subtype;
11307 --------------------------------
11308 -- Set_String_Literal_Subtype --
11309 --------------------------------
11311 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11312 Loc : constant Source_Ptr := Sloc (N);
11313 Low_Bound : constant Node_Id :=
11314 Type_Low_Bound (Etype (First_Index (Typ)));
11315 Subtype_Id : Entity_Id;
11317 begin
11318 if Nkind (N) /= N_String_Literal then
11319 return;
11320 end if;
11322 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11323 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11324 (String_Length (Strval (N))));
11325 Set_Etype (Subtype_Id, Base_Type (Typ));
11326 Set_Is_Constrained (Subtype_Id);
11327 Set_Etype (N, Subtype_Id);
11329 -- The low bound is set from the low bound of the corresponding index
11330 -- type. Note that we do not store the high bound in the string literal
11331 -- subtype, but it can be deduced if necessary from the length and the
11332 -- low bound.
11334 if Is_OK_Static_Expression (Low_Bound) then
11335 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11337 -- If the lower bound is not static we create a range for the string
11338 -- literal, using the index type and the known length of the literal.
11339 -- The index type is not necessarily Positive, so the upper bound is
11340 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11342 else
11343 declare
11344 Index_List : constant List_Id := New_List;
11345 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11346 High_Bound : constant Node_Id :=
11347 Make_Attribute_Reference (Loc,
11348 Attribute_Name => Name_Val,
11349 Prefix =>
11350 New_Occurrence_Of (Index_Type, Loc),
11351 Expressions => New_List (
11352 Make_Op_Add (Loc,
11353 Left_Opnd =>
11354 Make_Attribute_Reference (Loc,
11355 Attribute_Name => Name_Pos,
11356 Prefix =>
11357 New_Occurrence_Of (Index_Type, Loc),
11358 Expressions =>
11359 New_List (New_Copy_Tree (Low_Bound))),
11360 Right_Opnd =>
11361 Make_Integer_Literal (Loc,
11362 String_Length (Strval (N)) - 1))));
11364 Array_Subtype : Entity_Id;
11365 Drange : Node_Id;
11366 Index : Node_Id;
11367 Index_Subtype : Entity_Id;
11369 begin
11370 if Is_Integer_Type (Index_Type) then
11371 Set_String_Literal_Low_Bound
11372 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11374 else
11375 -- If the index type is an enumeration type, build bounds
11376 -- expression with attributes.
11378 Set_String_Literal_Low_Bound
11379 (Subtype_Id,
11380 Make_Attribute_Reference (Loc,
11381 Attribute_Name => Name_First,
11382 Prefix =>
11383 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11384 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11385 end if;
11387 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11389 -- Build bona fide subtype for the string, and wrap it in an
11390 -- unchecked conversion, because the backend expects the
11391 -- String_Literal_Subtype to have a static lower bound.
11393 Index_Subtype :=
11394 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11395 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11396 Set_Scalar_Range (Index_Subtype, Drange);
11397 Set_Parent (Drange, N);
11398 Analyze_And_Resolve (Drange, Index_Type);
11400 -- In the context, the Index_Type may already have a constraint,
11401 -- so use common base type on string subtype. The base type may
11402 -- be used when generating attributes of the string, for example
11403 -- in the context of a slice assignment.
11405 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11406 Set_Size_Info (Index_Subtype, Index_Type);
11407 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11409 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11411 Index := New_Occurrence_Of (Index_Subtype, Loc);
11412 Set_Etype (Index, Index_Subtype);
11413 Append (Index, Index_List);
11415 Set_First_Index (Array_Subtype, Index);
11416 Set_Etype (Array_Subtype, Base_Type (Typ));
11417 Set_Is_Constrained (Array_Subtype, True);
11419 Rewrite (N,
11420 Make_Unchecked_Type_Conversion (Loc,
11421 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11422 Expression => Relocate_Node (N)));
11423 Set_Etype (N, Array_Subtype);
11424 end;
11425 end if;
11426 end Set_String_Literal_Subtype;
11428 ------------------------------
11429 -- Simplify_Type_Conversion --
11430 ------------------------------
11432 procedure Simplify_Type_Conversion (N : Node_Id) is
11433 begin
11434 if Nkind (N) = N_Type_Conversion then
11435 declare
11436 Operand : constant Node_Id := Expression (N);
11437 Target_Typ : constant Entity_Id := Etype (N);
11438 Opnd_Typ : constant Entity_Id := Etype (Operand);
11440 begin
11441 -- Special processing if the conversion is the expression of a
11442 -- Rounding or Truncation attribute reference. In this case we
11443 -- replace:
11445 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11447 -- by
11449 -- ityp (x)
11451 -- with the Float_Truncate flag set to False or True respectively,
11452 -- which is more efficient.
11454 if Is_Floating_Point_Type (Opnd_Typ)
11455 and then
11456 (Is_Integer_Type (Target_Typ)
11457 or else (Is_Fixed_Point_Type (Target_Typ)
11458 and then Conversion_OK (N)))
11459 and then Nkind (Operand) = N_Attribute_Reference
11460 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11461 Name_Truncation)
11462 then
11463 declare
11464 Truncate : constant Boolean :=
11465 Attribute_Name (Operand) = Name_Truncation;
11466 begin
11467 Rewrite (Operand,
11468 Relocate_Node (First (Expressions (Operand))));
11469 Set_Float_Truncate (N, Truncate);
11470 end;
11471 end if;
11472 end;
11473 end if;
11474 end Simplify_Type_Conversion;
11476 -----------------------------
11477 -- Unique_Fixed_Point_Type --
11478 -----------------------------
11480 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11481 T1 : Entity_Id := Empty;
11482 T2 : Entity_Id;
11483 Item : Node_Id;
11484 Scop : Entity_Id;
11486 procedure Fixed_Point_Error;
11487 -- Give error messages for true ambiguity. Messages are posted on node
11488 -- N, and entities T1, T2 are the possible interpretations.
11490 -----------------------
11491 -- Fixed_Point_Error --
11492 -----------------------
11494 procedure Fixed_Point_Error is
11495 begin
11496 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11497 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11498 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11499 end Fixed_Point_Error;
11501 -- Start of processing for Unique_Fixed_Point_Type
11503 begin
11504 -- The operations on Duration are visible, so Duration is always a
11505 -- possible interpretation.
11507 T1 := Standard_Duration;
11509 -- Look for fixed-point types in enclosing scopes
11511 Scop := Current_Scope;
11512 while Scop /= Standard_Standard loop
11513 T2 := First_Entity (Scop);
11514 while Present (T2) loop
11515 if Is_Fixed_Point_Type (T2)
11516 and then Current_Entity (T2) = T2
11517 and then Scope (Base_Type (T2)) = Scop
11518 then
11519 if Present (T1) then
11520 Fixed_Point_Error;
11521 return Any_Type;
11522 else
11523 T1 := T2;
11524 end if;
11525 end if;
11527 Next_Entity (T2);
11528 end loop;
11530 Scop := Scope (Scop);
11531 end loop;
11533 -- Look for visible fixed type declarations in the context
11535 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11536 while Present (Item) loop
11537 if Nkind (Item) = N_With_Clause then
11538 Scop := Entity (Name (Item));
11539 T2 := First_Entity (Scop);
11540 while Present (T2) loop
11541 if Is_Fixed_Point_Type (T2)
11542 and then Scope (Base_Type (T2)) = Scop
11543 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11544 then
11545 if Present (T1) then
11546 Fixed_Point_Error;
11547 return Any_Type;
11548 else
11549 T1 := T2;
11550 end if;
11551 end if;
11553 Next_Entity (T2);
11554 end loop;
11555 end if;
11557 Next (Item);
11558 end loop;
11560 if Nkind (N) = N_Real_Literal then
11561 Error_Msg_NE
11562 ("??real literal interpreted as }!", N, T1);
11563 else
11564 Error_Msg_NE
11565 ("??universal_fixed expression interpreted as }!", N, T1);
11566 end if;
11568 return T1;
11569 end Unique_Fixed_Point_Type;
11571 ----------------------
11572 -- Valid_Conversion --
11573 ----------------------
11575 function Valid_Conversion
11576 (N : Node_Id;
11577 Target : Entity_Id;
11578 Operand : Node_Id;
11579 Report_Errs : Boolean := True) return Boolean
11581 Target_Type : constant Entity_Id := Base_Type (Target);
11582 Opnd_Type : Entity_Id := Etype (Operand);
11583 Inc_Ancestor : Entity_Id;
11585 function Conversion_Check
11586 (Valid : Boolean;
11587 Msg : String) return Boolean;
11588 -- Little routine to post Msg if Valid is False, returns Valid value
11590 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11591 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11593 procedure Conversion_Error_NE
11594 (Msg : String;
11595 N : Node_Or_Entity_Id;
11596 E : Node_Or_Entity_Id);
11597 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11599 function Valid_Tagged_Conversion
11600 (Target_Type : Entity_Id;
11601 Opnd_Type : Entity_Id) return Boolean;
11602 -- Specifically test for validity of tagged conversions
11604 function Valid_Array_Conversion return Boolean;
11605 -- Check index and component conformance, and accessibility levels if
11606 -- the component types are anonymous access types (Ada 2005).
11608 ----------------------
11609 -- Conversion_Check --
11610 ----------------------
11612 function Conversion_Check
11613 (Valid : Boolean;
11614 Msg : String) return Boolean
11616 begin
11617 if not Valid
11619 -- A generic unit has already been analyzed and we have verified
11620 -- that a particular conversion is OK in that context. Since the
11621 -- instance is reanalyzed without relying on the relationships
11622 -- established during the analysis of the generic, it is possible
11623 -- to end up with inconsistent views of private types. Do not emit
11624 -- the error message in such cases. The rest of the machinery in
11625 -- Valid_Conversion still ensures the proper compatibility of
11626 -- target and operand types.
11628 and then not In_Instance
11629 then
11630 Conversion_Error_N (Msg, Operand);
11631 end if;
11633 return Valid;
11634 end Conversion_Check;
11636 ------------------------
11637 -- Conversion_Error_N --
11638 ------------------------
11640 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11641 begin
11642 if Report_Errs then
11643 Error_Msg_N (Msg, N);
11644 end if;
11645 end Conversion_Error_N;
11647 -------------------------
11648 -- Conversion_Error_NE --
11649 -------------------------
11651 procedure Conversion_Error_NE
11652 (Msg : String;
11653 N : Node_Or_Entity_Id;
11654 E : Node_Or_Entity_Id)
11656 begin
11657 if Report_Errs then
11658 Error_Msg_NE (Msg, N, E);
11659 end if;
11660 end Conversion_Error_NE;
11662 ----------------------------
11663 -- Valid_Array_Conversion --
11664 ----------------------------
11666 function Valid_Array_Conversion return Boolean
11668 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11669 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11671 Opnd_Index : Node_Id;
11672 Opnd_Index_Type : Entity_Id;
11674 Target_Comp_Type : constant Entity_Id :=
11675 Component_Type (Target_Type);
11676 Target_Comp_Base : constant Entity_Id :=
11677 Base_Type (Target_Comp_Type);
11679 Target_Index : Node_Id;
11680 Target_Index_Type : Entity_Id;
11682 begin
11683 -- Error if wrong number of dimensions
11686 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11687 then
11688 Conversion_Error_N
11689 ("incompatible number of dimensions for conversion", Operand);
11690 return False;
11692 -- Number of dimensions matches
11694 else
11695 -- Loop through indexes of the two arrays
11697 Target_Index := First_Index (Target_Type);
11698 Opnd_Index := First_Index (Opnd_Type);
11699 while Present (Target_Index) and then Present (Opnd_Index) loop
11700 Target_Index_Type := Etype (Target_Index);
11701 Opnd_Index_Type := Etype (Opnd_Index);
11703 -- Error if index types are incompatible
11705 if not (Is_Integer_Type (Target_Index_Type)
11706 and then Is_Integer_Type (Opnd_Index_Type))
11707 and then (Root_Type (Target_Index_Type)
11708 /= Root_Type (Opnd_Index_Type))
11709 then
11710 Conversion_Error_N
11711 ("incompatible index types for array conversion",
11712 Operand);
11713 return False;
11714 end if;
11716 Next_Index (Target_Index);
11717 Next_Index (Opnd_Index);
11718 end loop;
11720 -- If component types have same base type, all set
11722 if Target_Comp_Base = Opnd_Comp_Base then
11723 null;
11725 -- Here if base types of components are not the same. The only
11726 -- time this is allowed is if we have anonymous access types.
11728 -- The conversion of arrays of anonymous access types can lead
11729 -- to dangling pointers. AI-392 formalizes the accessibility
11730 -- checks that must be applied to such conversions to prevent
11731 -- out-of-scope references.
11733 elsif Ekind_In
11734 (Target_Comp_Base, E_Anonymous_Access_Type,
11735 E_Anonymous_Access_Subprogram_Type)
11736 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11737 and then
11738 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11739 then
11740 if Type_Access_Level (Target_Type) <
11741 Deepest_Type_Access_Level (Opnd_Type)
11742 then
11743 if In_Instance_Body then
11744 Error_Msg_Warn := SPARK_Mode /= On;
11745 Conversion_Error_N
11746 ("source array type has deeper accessibility "
11747 & "level than target<<", Operand);
11748 Conversion_Error_N ("\Program_Error [<<", Operand);
11749 Rewrite (N,
11750 Make_Raise_Program_Error (Sloc (N),
11751 Reason => PE_Accessibility_Check_Failed));
11752 Set_Etype (N, Target_Type);
11753 return False;
11755 -- Conversion not allowed because of accessibility levels
11757 else
11758 Conversion_Error_N
11759 ("source array type has deeper accessibility "
11760 & "level than target", Operand);
11761 return False;
11762 end if;
11764 else
11765 null;
11766 end if;
11768 -- All other cases where component base types do not match
11770 else
11771 Conversion_Error_N
11772 ("incompatible component types for array conversion",
11773 Operand);
11774 return False;
11775 end if;
11777 -- Check that component subtypes statically match. For numeric
11778 -- types this means that both must be either constrained or
11779 -- unconstrained. For enumeration types the bounds must match.
11780 -- All of this is checked in Subtypes_Statically_Match.
11782 if not Subtypes_Statically_Match
11783 (Target_Comp_Type, Opnd_Comp_Type)
11784 then
11785 Conversion_Error_N
11786 ("component subtypes must statically match", Operand);
11787 return False;
11788 end if;
11789 end if;
11791 return True;
11792 end Valid_Array_Conversion;
11794 -----------------------------
11795 -- Valid_Tagged_Conversion --
11796 -----------------------------
11798 function Valid_Tagged_Conversion
11799 (Target_Type : Entity_Id;
11800 Opnd_Type : Entity_Id) return Boolean
11802 begin
11803 -- Upward conversions are allowed (RM 4.6(22))
11805 if Covers (Target_Type, Opnd_Type)
11806 or else Is_Ancestor (Target_Type, Opnd_Type)
11807 then
11808 return True;
11810 -- Downward conversion are allowed if the operand is class-wide
11811 -- (RM 4.6(23)).
11813 elsif Is_Class_Wide_Type (Opnd_Type)
11814 and then Covers (Opnd_Type, Target_Type)
11815 then
11816 return True;
11818 elsif Covers (Opnd_Type, Target_Type)
11819 or else Is_Ancestor (Opnd_Type, Target_Type)
11820 then
11821 return
11822 Conversion_Check (False,
11823 "downward conversion of tagged objects not allowed");
11825 -- Ada 2005 (AI-251): The conversion to/from interface types is
11826 -- always valid
11828 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
11829 return True;
11831 -- If the operand is a class-wide type obtained through a limited_
11832 -- with clause, and the context includes the nonlimited view, use
11833 -- it to determine whether the conversion is legal.
11835 elsif Is_Class_Wide_Type (Opnd_Type)
11836 and then From_Limited_With (Opnd_Type)
11837 and then Present (Non_Limited_View (Etype (Opnd_Type)))
11838 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
11839 then
11840 return True;
11842 elsif Is_Access_Type (Opnd_Type)
11843 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
11844 then
11845 return True;
11847 else
11848 Conversion_Error_NE
11849 ("invalid tagged conversion, not compatible with}",
11850 N, First_Subtype (Opnd_Type));
11851 return False;
11852 end if;
11853 end Valid_Tagged_Conversion;
11855 -- Start of processing for Valid_Conversion
11857 begin
11858 Check_Parameterless_Call (Operand);
11860 if Is_Overloaded (Operand) then
11861 declare
11862 I : Interp_Index;
11863 I1 : Interp_Index;
11864 It : Interp;
11865 It1 : Interp;
11866 N1 : Entity_Id;
11867 T1 : Entity_Id;
11869 begin
11870 -- Remove procedure calls, which syntactically cannot appear in
11871 -- this context, but which cannot be removed by type checking,
11872 -- because the context does not impose a type.
11874 -- The node may be labelled overloaded, but still contain only one
11875 -- interpretation because others were discarded earlier. If this
11876 -- is the case, retain the single interpretation if legal.
11878 Get_First_Interp (Operand, I, It);
11879 Opnd_Type := It.Typ;
11880 Get_Next_Interp (I, It);
11882 if Present (It.Typ)
11883 and then Opnd_Type /= Standard_Void_Type
11884 then
11885 -- More than one candidate interpretation is available
11887 Get_First_Interp (Operand, I, It);
11888 while Present (It.Typ) loop
11889 if It.Typ = Standard_Void_Type then
11890 Remove_Interp (I);
11891 end if;
11893 -- When compiling for a system where Address is of a visible
11894 -- integer type, spurious ambiguities can be produced when
11895 -- arithmetic operations have a literal operand and return
11896 -- System.Address or a descendant of it. These ambiguities
11897 -- are usually resolved by the context, but for conversions
11898 -- there is no context type and the removal of the spurious
11899 -- operations must be done explicitly here.
11901 if not Address_Is_Private
11902 and then Is_Descendent_Of_Address (It.Typ)
11903 then
11904 Remove_Interp (I);
11905 end if;
11907 Get_Next_Interp (I, It);
11908 end loop;
11909 end if;
11911 Get_First_Interp (Operand, I, It);
11912 I1 := I;
11913 It1 := It;
11915 if No (It.Typ) then
11916 Conversion_Error_N ("illegal operand in conversion", Operand);
11917 return False;
11918 end if;
11920 Get_Next_Interp (I, It);
11922 if Present (It.Typ) then
11923 N1 := It1.Nam;
11924 T1 := It1.Typ;
11925 It1 := Disambiguate (Operand, I1, I, Any_Type);
11927 if It1 = No_Interp then
11928 Conversion_Error_N
11929 ("ambiguous operand in conversion", Operand);
11931 -- If the interpretation involves a standard operator, use
11932 -- the location of the type, which may be user-defined.
11934 if Sloc (It.Nam) = Standard_Location then
11935 Error_Msg_Sloc := Sloc (It.Typ);
11936 else
11937 Error_Msg_Sloc := Sloc (It.Nam);
11938 end if;
11940 Conversion_Error_N -- CODEFIX
11941 ("\\possible interpretation#!", Operand);
11943 if Sloc (N1) = Standard_Location then
11944 Error_Msg_Sloc := Sloc (T1);
11945 else
11946 Error_Msg_Sloc := Sloc (N1);
11947 end if;
11949 Conversion_Error_N -- CODEFIX
11950 ("\\possible interpretation#!", Operand);
11952 return False;
11953 end if;
11954 end if;
11956 Set_Etype (Operand, It1.Typ);
11957 Opnd_Type := It1.Typ;
11958 end;
11959 end if;
11961 -- Deal with conversion of integer type to address if the pragma
11962 -- Allow_Integer_Address is in effect. We convert the conversion to
11963 -- an unchecked conversion in this case and we are all done.
11965 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
11966 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
11967 Analyze_And_Resolve (N, Target_Type);
11968 return True;
11969 end if;
11971 -- If we are within a child unit, check whether the type of the
11972 -- expression has an ancestor in a parent unit, in which case it
11973 -- belongs to its derivation class even if the ancestor is private.
11974 -- See RM 7.3.1 (5.2/3).
11976 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
11978 -- Numeric types
11980 if Is_Numeric_Type (Target_Type) then
11982 -- A universal fixed expression can be converted to any numeric type
11984 if Opnd_Type = Universal_Fixed then
11985 return True;
11987 -- Also no need to check when in an instance or inlined body, because
11988 -- the legality has been established when the template was analyzed.
11989 -- Furthermore, numeric conversions may occur where only a private
11990 -- view of the operand type is visible at the instantiation point.
11991 -- This results in a spurious error if we check that the operand type
11992 -- is a numeric type.
11994 -- Note: in a previous version of this unit, the following tests were
11995 -- applied only for generated code (Comes_From_Source set to False),
11996 -- but in fact the test is required for source code as well, since
11997 -- this situation can arise in source code.
11999 elsif In_Instance or else In_Inlined_Body then
12000 return True;
12002 -- Otherwise we need the conversion check
12004 else
12005 return Conversion_Check
12006 (Is_Numeric_Type (Opnd_Type)
12007 or else
12008 (Present (Inc_Ancestor)
12009 and then Is_Numeric_Type (Inc_Ancestor)),
12010 "illegal operand for numeric conversion");
12011 end if;
12013 -- Array types
12015 elsif Is_Array_Type (Target_Type) then
12016 if not Is_Array_Type (Opnd_Type)
12017 or else Opnd_Type = Any_Composite
12018 or else Opnd_Type = Any_String
12019 then
12020 Conversion_Error_N
12021 ("illegal operand for array conversion", Operand);
12022 return False;
12024 else
12025 return Valid_Array_Conversion;
12026 end if;
12028 -- Ada 2005 (AI-251): Internally generated conversions of access to
12029 -- interface types added to force the displacement of the pointer to
12030 -- reference the corresponding dispatch table.
12032 elsif not Comes_From_Source (N)
12033 and then Is_Access_Type (Target_Type)
12034 and then Is_Interface (Designated_Type (Target_Type))
12035 then
12036 return True;
12038 -- Ada 2005 (AI-251): Anonymous access types where target references an
12039 -- interface type.
12041 elsif Is_Access_Type (Opnd_Type)
12042 and then Ekind_In (Target_Type, E_General_Access_Type,
12043 E_Anonymous_Access_Type)
12044 and then Is_Interface (Directly_Designated_Type (Target_Type))
12045 then
12046 -- Check the static accessibility rule of 4.6(17). Note that the
12047 -- check is not enforced when within an instance body, since the
12048 -- RM requires such cases to be caught at run time.
12050 -- If the operand is a rewriting of an allocator no check is needed
12051 -- because there are no accessibility issues.
12053 if Nkind (Original_Node (N)) = N_Allocator then
12054 null;
12056 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12057 if Type_Access_Level (Opnd_Type) >
12058 Deepest_Type_Access_Level (Target_Type)
12059 then
12060 -- In an instance, this is a run-time check, but one we know
12061 -- will fail, so generate an appropriate warning. The raise
12062 -- will be generated by Expand_N_Type_Conversion.
12064 if In_Instance_Body then
12065 Error_Msg_Warn := SPARK_Mode /= On;
12066 Conversion_Error_N
12067 ("cannot convert local pointer to non-local access type<<",
12068 Operand);
12069 Conversion_Error_N ("\Program_Error [<<", Operand);
12071 else
12072 Conversion_Error_N
12073 ("cannot convert local pointer to non-local access type",
12074 Operand);
12075 return False;
12076 end if;
12078 -- Special accessibility checks are needed in the case of access
12079 -- discriminants declared for a limited type.
12081 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12082 and then not Is_Local_Anonymous_Access (Opnd_Type)
12083 then
12084 -- When the operand is a selected access discriminant the check
12085 -- needs to be made against the level of the object denoted by
12086 -- the prefix of the selected name (Object_Access_Level handles
12087 -- checking the prefix of the operand for this case).
12089 if Nkind (Operand) = N_Selected_Component
12090 and then Object_Access_Level (Operand) >
12091 Deepest_Type_Access_Level (Target_Type)
12092 then
12093 -- In an instance, this is a run-time check, but one we know
12094 -- will fail, so generate an appropriate warning. The raise
12095 -- will be generated by Expand_N_Type_Conversion.
12097 if In_Instance_Body then
12098 Error_Msg_Warn := SPARK_Mode /= On;
12099 Conversion_Error_N
12100 ("cannot convert access discriminant to non-local "
12101 & "access type<<", Operand);
12102 Conversion_Error_N ("\Program_Error [<<", Operand);
12104 -- Real error if not in instance body
12106 else
12107 Conversion_Error_N
12108 ("cannot convert access discriminant to non-local "
12109 & "access type", Operand);
12110 return False;
12111 end if;
12112 end if;
12114 -- The case of a reference to an access discriminant from
12115 -- within a limited type declaration (which will appear as
12116 -- a discriminal) is always illegal because the level of the
12117 -- discriminant is considered to be deeper than any (nameable)
12118 -- access type.
12120 if Is_Entity_Name (Operand)
12121 and then not Is_Local_Anonymous_Access (Opnd_Type)
12122 and then
12123 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12124 and then Present (Discriminal_Link (Entity (Operand)))
12125 then
12126 Conversion_Error_N
12127 ("discriminant has deeper accessibility level than target",
12128 Operand);
12129 return False;
12130 end if;
12131 end if;
12132 end if;
12134 return True;
12136 -- General and anonymous access types
12138 elsif Ekind_In (Target_Type, E_General_Access_Type,
12139 E_Anonymous_Access_Type)
12140 and then
12141 Conversion_Check
12142 (Is_Access_Type (Opnd_Type)
12143 and then not
12144 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12145 E_Access_Protected_Subprogram_Type),
12146 "must be an access-to-object type")
12147 then
12148 if Is_Access_Constant (Opnd_Type)
12149 and then not Is_Access_Constant (Target_Type)
12150 then
12151 Conversion_Error_N
12152 ("access-to-constant operand type not allowed", Operand);
12153 return False;
12154 end if;
12156 -- Check the static accessibility rule of 4.6(17). Note that the
12157 -- check is not enforced when within an instance body, since the RM
12158 -- requires such cases to be caught at run time.
12160 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12161 or else Is_Local_Anonymous_Access (Target_Type)
12162 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12163 N_Object_Declaration
12164 then
12165 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12166 -- conversions from an anonymous access type to a named general
12167 -- access type. Such conversions are not allowed in the case of
12168 -- access parameters and stand-alone objects of an anonymous
12169 -- access type. The implicit conversion case is recognized by
12170 -- testing that Comes_From_Source is False and that it's been
12171 -- rewritten. The Comes_From_Source test isn't sufficient because
12172 -- nodes in inlined calls to predefined library routines can have
12173 -- Comes_From_Source set to False. (Is there a better way to test
12174 -- for implicit conversions???)
12176 if Ada_Version >= Ada_2012
12177 and then not Comes_From_Source (N)
12178 and then N /= Original_Node (N)
12179 and then Ekind (Target_Type) = E_General_Access_Type
12180 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12181 then
12182 if Is_Itype (Opnd_Type) then
12184 -- Implicit conversions aren't allowed for objects of an
12185 -- anonymous access type, since such objects have nonstatic
12186 -- levels in Ada 2012.
12188 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12189 N_Object_Declaration
12190 then
12191 Conversion_Error_N
12192 ("implicit conversion of stand-alone anonymous "
12193 & "access object not allowed", Operand);
12194 return False;
12196 -- Implicit conversions aren't allowed for anonymous access
12197 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12198 -- is done to exclude anonymous access results.
12200 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12201 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12202 N_Function_Specification,
12203 N_Procedure_Specification)
12204 then
12205 Conversion_Error_N
12206 ("implicit conversion of anonymous access formal "
12207 & "not allowed", Operand);
12208 return False;
12210 -- This is a case where there's an enclosing object whose
12211 -- to which the "statically deeper than" relationship does
12212 -- not apply (such as an access discriminant selected from
12213 -- a dereference of an access parameter).
12215 elsif Object_Access_Level (Operand)
12216 = Scope_Depth (Standard_Standard)
12217 then
12218 Conversion_Error_N
12219 ("implicit conversion of anonymous access value "
12220 & "not allowed", Operand);
12221 return False;
12223 -- In other cases, the level of the operand's type must be
12224 -- statically less deep than that of the target type, else
12225 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12227 elsif Type_Access_Level (Opnd_Type) >
12228 Deepest_Type_Access_Level (Target_Type)
12229 then
12230 Conversion_Error_N
12231 ("implicit conversion of anonymous access value "
12232 & "violates accessibility", Operand);
12233 return False;
12234 end if;
12235 end if;
12237 elsif Type_Access_Level (Opnd_Type) >
12238 Deepest_Type_Access_Level (Target_Type)
12239 then
12240 -- In an instance, this is a run-time check, but one we know
12241 -- will fail, so generate an appropriate warning. The raise
12242 -- will be generated by Expand_N_Type_Conversion.
12244 if In_Instance_Body then
12245 Error_Msg_Warn := SPARK_Mode /= On;
12246 Conversion_Error_N
12247 ("cannot convert local pointer to non-local access type<<",
12248 Operand);
12249 Conversion_Error_N ("\Program_Error [<<", Operand);
12251 -- If not in an instance body, this is a real error
12253 else
12254 -- Avoid generation of spurious error message
12256 if not Error_Posted (N) then
12257 Conversion_Error_N
12258 ("cannot convert local pointer to non-local access type",
12259 Operand);
12260 end if;
12262 return False;
12263 end if;
12265 -- Special accessibility checks are needed in the case of access
12266 -- discriminants declared for a limited type.
12268 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12269 and then not Is_Local_Anonymous_Access (Opnd_Type)
12270 then
12271 -- When the operand is a selected access discriminant the check
12272 -- needs to be made against the level of the object denoted by
12273 -- the prefix of the selected name (Object_Access_Level handles
12274 -- checking the prefix of the operand for this case).
12276 if Nkind (Operand) = N_Selected_Component
12277 and then Object_Access_Level (Operand) >
12278 Deepest_Type_Access_Level (Target_Type)
12279 then
12280 -- In an instance, this is a run-time check, but one we know
12281 -- will fail, so generate an appropriate warning. The raise
12282 -- will be generated by Expand_N_Type_Conversion.
12284 if In_Instance_Body then
12285 Error_Msg_Warn := SPARK_Mode /= On;
12286 Conversion_Error_N
12287 ("cannot convert access discriminant to non-local "
12288 & "access type<<", Operand);
12289 Conversion_Error_N ("\Program_Error [<<", Operand);
12291 -- If not in an instance body, this is a real error
12293 else
12294 Conversion_Error_N
12295 ("cannot convert access discriminant to non-local "
12296 & "access type", Operand);
12297 return False;
12298 end if;
12299 end if;
12301 -- The case of a reference to an access discriminant from
12302 -- within a limited type declaration (which will appear as
12303 -- a discriminal) is always illegal because the level of the
12304 -- discriminant is considered to be deeper than any (nameable)
12305 -- access type.
12307 if Is_Entity_Name (Operand)
12308 and then
12309 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12310 and then Present (Discriminal_Link (Entity (Operand)))
12311 then
12312 Conversion_Error_N
12313 ("discriminant has deeper accessibility level than target",
12314 Operand);
12315 return False;
12316 end if;
12317 end if;
12318 end if;
12320 -- In the presence of limited_with clauses we have to use nonlimited
12321 -- views, if available.
12323 Check_Limited : declare
12324 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12325 -- Helper function to handle limited views
12327 --------------------------
12328 -- Full_Designated_Type --
12329 --------------------------
12331 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12332 Desig : constant Entity_Id := Designated_Type (T);
12334 begin
12335 -- Handle the limited view of a type
12337 if From_Limited_With (Desig)
12338 and then Has_Non_Limited_View (Desig)
12339 then
12340 return Available_View (Desig);
12341 else
12342 return Desig;
12343 end if;
12344 end Full_Designated_Type;
12346 -- Local Declarations
12348 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12349 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12351 Same_Base : constant Boolean :=
12352 Base_Type (Target) = Base_Type (Opnd);
12354 -- Start of processing for Check_Limited
12356 begin
12357 if Is_Tagged_Type (Target) then
12358 return Valid_Tagged_Conversion (Target, Opnd);
12360 else
12361 if not Same_Base then
12362 Conversion_Error_NE
12363 ("target designated type not compatible with }",
12364 N, Base_Type (Opnd));
12365 return False;
12367 -- Ada 2005 AI-384: legality rule is symmetric in both
12368 -- designated types. The conversion is legal (with possible
12369 -- constraint check) if either designated type is
12370 -- unconstrained.
12372 elsif Subtypes_Statically_Match (Target, Opnd)
12373 or else
12374 (Has_Discriminants (Target)
12375 and then
12376 (not Is_Constrained (Opnd)
12377 or else not Is_Constrained (Target)))
12378 then
12379 -- Special case, if Value_Size has been used to make the
12380 -- sizes different, the conversion is not allowed even
12381 -- though the subtypes statically match.
12383 if Known_Static_RM_Size (Target)
12384 and then Known_Static_RM_Size (Opnd)
12385 and then RM_Size (Target) /= RM_Size (Opnd)
12386 then
12387 Conversion_Error_NE
12388 ("target designated subtype not compatible with }",
12389 N, Opnd);
12390 Conversion_Error_NE
12391 ("\because sizes of the two designated subtypes differ",
12392 N, Opnd);
12393 return False;
12395 -- Normal case where conversion is allowed
12397 else
12398 return True;
12399 end if;
12401 else
12402 Error_Msg_NE
12403 ("target designated subtype not compatible with }",
12404 N, Opnd);
12405 return False;
12406 end if;
12407 end if;
12408 end Check_Limited;
12410 -- Access to subprogram types. If the operand is an access parameter,
12411 -- the type has a deeper accessibility that any master, and cannot be
12412 -- assigned. We must make an exception if the conversion is part of an
12413 -- assignment and the target is the return object of an extended return
12414 -- statement, because in that case the accessibility check takes place
12415 -- after the return.
12417 elsif Is_Access_Subprogram_Type (Target_Type)
12419 -- Note: this test of Opnd_Type is there to prevent entering this
12420 -- branch in the case of a remote access to subprogram type, which
12421 -- is internally represented as an E_Record_Type.
12423 and then Is_Access_Type (Opnd_Type)
12424 then
12425 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12426 and then Is_Entity_Name (Operand)
12427 and then Ekind (Entity (Operand)) = E_In_Parameter
12428 and then
12429 (Nkind (Parent (N)) /= N_Assignment_Statement
12430 or else not Is_Entity_Name (Name (Parent (N)))
12431 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12432 then
12433 Conversion_Error_N
12434 ("illegal attempt to store anonymous access to subprogram",
12435 Operand);
12436 Conversion_Error_N
12437 ("\value has deeper accessibility than any master "
12438 & "(RM 3.10.2 (13))",
12439 Operand);
12441 Error_Msg_NE
12442 ("\use named access type for& instead of access parameter",
12443 Operand, Entity (Operand));
12444 end if;
12446 -- Check that the designated types are subtype conformant
12448 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12449 Old_Id => Designated_Type (Opnd_Type),
12450 Err_Loc => N);
12452 -- Check the static accessibility rule of 4.6(20)
12454 if Type_Access_Level (Opnd_Type) >
12455 Deepest_Type_Access_Level (Target_Type)
12456 then
12457 Conversion_Error_N
12458 ("operand type has deeper accessibility level than target",
12459 Operand);
12461 -- Check that if the operand type is declared in a generic body,
12462 -- then the target type must be declared within that same body
12463 -- (enforces last sentence of 4.6(20)).
12465 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12466 declare
12467 O_Gen : constant Node_Id :=
12468 Enclosing_Generic_Body (Opnd_Type);
12470 T_Gen : Node_Id;
12472 begin
12473 T_Gen := Enclosing_Generic_Body (Target_Type);
12474 while Present (T_Gen) and then T_Gen /= O_Gen loop
12475 T_Gen := Enclosing_Generic_Body (T_Gen);
12476 end loop;
12478 if T_Gen /= O_Gen then
12479 Conversion_Error_N
12480 ("target type must be declared in same generic body "
12481 & "as operand type", N);
12482 end if;
12483 end;
12484 end if;
12486 return True;
12488 -- Remote access to subprogram types
12490 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12491 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12492 then
12493 -- It is valid to convert from one RAS type to another provided
12494 -- that their specification statically match.
12496 -- Note: at this point, remote access to subprogram types have been
12497 -- expanded to their E_Record_Type representation, and we need to
12498 -- go back to the original access type definition using the
12499 -- Corresponding_Remote_Type attribute in order to check that the
12500 -- designated profiles match.
12502 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12503 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12505 Check_Subtype_Conformant
12506 (New_Id =>
12507 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12508 Old_Id =>
12509 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12510 Err_Loc =>
12512 return True;
12514 -- If it was legal in the generic, it's legal in the instance
12516 elsif In_Instance_Body then
12517 return True;
12519 -- If both are tagged types, check legality of view conversions
12521 elsif Is_Tagged_Type (Target_Type)
12522 and then
12523 Is_Tagged_Type (Opnd_Type)
12524 then
12525 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12527 -- Types derived from the same root type are convertible
12529 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12530 return True;
12532 -- In an instance or an inlined body, there may be inconsistent views of
12533 -- the same type, or of types derived from a common root.
12535 elsif (In_Instance or In_Inlined_Body)
12536 and then
12537 Root_Type (Underlying_Type (Target_Type)) =
12538 Root_Type (Underlying_Type (Opnd_Type))
12539 then
12540 return True;
12542 -- Special check for common access type error case
12544 elsif Ekind (Target_Type) = E_Access_Type
12545 and then Is_Access_Type (Opnd_Type)
12546 then
12547 Conversion_Error_N ("target type must be general access type!", N);
12548 Conversion_Error_NE -- CODEFIX
12549 ("add ALL to }!", N, Target_Type);
12550 return False;
12552 -- Here we have a real conversion error
12554 else
12555 Conversion_Error_NE
12556 ("invalid conversion, not compatible with }", N, Opnd_Type);
12557 return False;
12558 end if;
12559 end Valid_Conversion;
12561 end Sem_Res;